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Preface to the Second Edition

Within the last eighteen years since the publication of the first edition of 4 First Course
in Integral Equations, the growth in the field of Integral Equations has been flourishing
with many advances. The new developments, which complement the traditional
concepts, present clear expositions of the main concepts and keys of Integral Equations.
Moreover, a further significant recognition of the use of Integral Equations in scientific
fields, engineering, and mathematics has developed. This recognition has been followed
up with further achievements in research. Like the first edition, the second edition is
helpful to a wide range of advanced undergraduate and graduate students in varying
fields, as well as researchers in science, mathematics, and engineering. Some of the
strengths of the new edition are the detailed treatments, clarifications, explanations of
the new developments, discussions of the wide variety of examples, and the well-
presented 1llustrations to aid the learner to better understand the concepts.

In editing this new edition, the following distinguishing features, above the
pedagogical aims of the first edition, were highly considered:

1. Many new and remarkable developments have been added. The scope of each chapter
1s extended to contain these fascinating new findings.
2. The linear and the nonlinear integral equations were handled in a systematic manner
with more methods and applications. This edition provides very systematic and detailed
instructions on how to handle each kind of equations.
3. Many people have written to me since the publication of the first edition. They
offered many useful and constructive suggestions. Their suggestions for extending some
topics were honored in this text.
4. The fruitful evaluations, made by my students who used the first edition, provide
useful input. My students’ questions and concerns were addressed in this edition.
5. A new application chapter has been added to discuss a variety of scientific
applications. Numerical and analytic treatments of linear and nonlinear integral
equations are explained in this chapter to highlight the effectiveness of the traditional
and the new methods.
6. The exact solutions of integral equations play a significant role in the proper
understanding of the features and structures of the problem. For this reason, and based
upon a vast request by readers, a solutions manual has been made that gives detailed
explanations and illustrations for solving each problem of the second edition.

I would like to acknowledge the encouragement of my wife who supported me in all
my endeavors, and in this edition and the accompanied solutions manual. I would also
like to acknowledge our son and three daughters for their support and encouragement.



Saint Xavier University Abdul-Majid Wazwaz
Chicago, IL 60655 e-mail: wazwaz@sxu.edu
Summer 2015
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Preface to the First Edition

Engineering, physics and mathematics students, both advanced undergraduate and
beginning graduate, need an integral equations textbook that simply and easily
introduces the material. They also need a textbook that embarks upon their already
acquired knowledge of regular integral calculus and ordinary differential equations.
Because of these needs, this textbook was created. From many years of teaching, I have
found that the available treatments of the subject are abstract. Moreover, most of them
are based on comprehensive theories such as topological methods of functional
analysis, Lebesgue integrals and Green functions. Such methods of introduction are not
easily accessible to those who have not yet had a background in advanced mathematical
concepts. This book is especially designed for those who wish to understand integral
equations without having the extensive mathematical background. In this fashion, this
text leaves out abstract methods, comprehensive methods and advanced mathematical
topics.

From my experience in teaching and in guiding related senior seminar projects for
advanced undergraduate students, I have found that the material can indeed be taught in
an accessible manner. Students have showed both a lot of motivation and capability to
grasp the subject once the abstract theories and difficult theorems were omitted. In my
approach to teaching integral equations, I focus on easily applicable techniques and I do
not emphasize such abstract methods as existence, uniqueness, convergence and Green
functions. I have translated my means of introducing and fully teaching this subject into
this text so that the intended user can take full advantage of the easily presented and
explained material.

I have also introduced and made full use of some recent developments in this field.

The book consists of six chapters, each being divided into sections. In each chapter
the equations are numbered consecutively and distinctly from other chapters. Several
examples are introduced in each section, and a large number of exercises are included
to give the students a constructive insight through the material and to provide them with
useful practice.

In this text, we were mainly concerned with linear integral equations, mostly of the
second kind. The first chapter introduces classifictions of integral equations and
necessary techniques to convert differential equations to integral equations or vice
versa. The second chapter deals with linear Fredholm integral equations and the
reliable techniques, supported by the new developments, to handle this style of
equations. The linear Volterra integral equations are handled, using the recent
developed techniques besides standard ones, in Chapter 3. The topic of integro-
differential equations has been handled in Chapter 4 and reliable techniques were



implemented to handle the essential link between differential and integral operators.
The fifth chapter introduces the treatment of the singular and the weakly singular
Volterra type integral equations. The sixth chapter deals with the nonlinear integral
equations. This topic is difficult to study. However, recent schemes have been
developed which show improvements over existing techniques and allow this topic to
be far more easily accessible for specific cases. A large number of nonlinear integral
examples and exercises are investigated.

Throughout the text, examples are provided to clearly and throughly introduce the
new material in a clear and absorbable fashion. Many exercises are provided to give
the new learner a chance to build his confidence and ease with the newly learned
material. The exercises increase in complexity, to challenge the student.

Finally, the text has three useful Appendices. These Appendices provide the user
with the integral forms, Maclaurin series and other related materials which are needed
to be used in the exercises.

The author would highly appreciate any note concerning any error found.

Chicago, IL 1995 Abdul-Majid Wazwaz



Chapter 1
Introductory Concepts

1.1 Definitions

An integral equation is an equation in which the unknown function u(x) to be determined
appears under the integral sign. A typical form of an integral equation in u(x) is of the
form

Alx)
ulzx) = f(z)+ / Kix, t)u(t)dt. (1)

el )

where K(x, ¢) is called the kernel of the integral equation, and a(x) and f(x) are the
limits of integration. In (1), it is easily observed that the unknown function u(x) appears
under the integral sign as stated above, and out of the integral sign in most other cases as
will be discussed later. It is important to point out that the kernel K(x, ¢) and the function
f(x) in (1) are given in advance. Our goal is to determine u(x) that will satisfy (1), and
this may be achieved by using different techniques that will be discussed in the
forthcoming chapters. The primary concern of this text will be focused on introducing
these methods and techniques supported by illustrative and practical examples.

Integral equations arise naturally in physics, chemistry, biology and engineering
applications modelled by initial value problems for a finite interval [a, b]. More details
about the sources and origins of integral equations can be found in [12] and [14]. In the
following example we will discuss how an initial value problem will be converted to
the form of an integral equation.

Example 1. Consider the initial value problem
_“_,I:R_} =2zu(z), = =0, (2)
subject to the initial condition
w(0] = 1. (3)

The equation (2) can be easily solved by using the method of separation of variables;
where by using the initial condition (3), the solution



2 AR
le) = B (4)

1s easily obtained. However, integrating both sides of (2) with respect to x from 0 to x
and using the initial condition, Eq. (3) yields the following

/ u.’.;ﬁwff:/ 2tu(t)dt, (5)
0 0

or equivalently
u(r) =1+ f 2tu(t) dt, (6)
0

obtained by integrating the left hand side of (5) and by using the given initial condition
(3). Comparing (6) with (1) we find that f{x) = 1 and the kernel K(x, ¢) = 2t¢.

We will further discuss the algorithms of converting initial value problems and
boundary value problems in detail to equivalent integral equations in the forthcoming
sections. As stated above, our task is to determine the unknown function u(x) that
appears under the integral sign as in (1) and (6) and that will satisfy the given integral
equation.

We further point out that integral equations as (1) and (6) are called /inear integral
equations. This classification is used if the unknown function u(x) under the integral sign
occurs linearly i.e. to the first power. However, if u(x) under the integral sign is
replaced by a nonlinear function in u(x), such as u%(x), cos u(x), coshu(x) and e*™),
etc., the integral equation is called in this case a nonlinear integral equation.

1.2 Classification of Linear Integral Equations

The most frequently used linear integral equations fall under two main classes namely
Fredholm and Volterra integral equations. However, in this text we will distinguish four
more related types of linear integral equations in addition to the two main classes. In
what follows, we will give a list of the Fredholm and Volterra integral equations, and
the four related types:

Fredholm integral equations

Volterra integral equations

Integro-differential equations

Singular integral equations

Volterra-Fredholm integral equations

Volterra-Fredholm integro-differential equations

In the following we will outline the basic definitions and properties of each type.

SIS



1.2.1 Fredholm Linear Integral Equations

The standard form of Fredholm linear integral equations, where the limits of integration
a and b are constants, are given by the form

b
¢(x)u(z) = fz) + /’1/ Kz, tyu(t)dt,a < z,t < b, (T)
[}

where the kernel of the integral equation K(x, ) and the function f{x) are given in
advance, and 4 is a parameter. The equation (7) is called /inear because the unknown
function u(x) under the integral sign occurs linearly, i.e. the power of u(x) is one.

The value of ;(x) will give the following kinds of Fredholm linear integral equations:

1. When 4(x) =0, Eq. (7) becomes
b
flz)+ )&f K(x, t)u(t)dt =0, (&)

and the integral equation is called Fredholm integral equation of the first kind.

2. When 4(x) =1, Eq. (7) becomes
b
u(z) = flx)+ }uf K (z,t)u(t)dt, (9)

and the integral equation is called Fredholm integral equation of the second kind.
In fact, the equation (9) can be obtained from (7) by dividing both sides of (7) by 4
(x) provided that #(x) # 0.

In summary, the Fredholm integral equation is of the first kind if the unknown function
u(x) appears only under the integral sign. However, the Fredholm integral equation is of
the second kind if the unknown function u(x) appears inside and outside the integral

sign.

1.2.2 Volterra Linear Integral Equations

The standard form of VWolterra linear integral equations, where the limits of integration
are functions of x rather than constants, are of the form

b
dlx)ulx) = flz) + )x/ K(x, t)u(t) dt, (10)
i

where the unknown function u(x) under the integral sign occurs linearly as stated before.



It is worth noting that (10) can be viewed as a special case of Fredholm integral
equation when the kernel K(x, ¢) vanishes for ¢ > x, x is in the range of integration [a, b].

As in Fredholm equations, Vlterra integral equations fall under two kinds,
depending on the value of 4(x), namely:

1. When »4(x) =0, Eq. (10) becomes
flx) + A/ Kz, tyu(t)dt =0, (11)

and in this case the integral equation is called Volterra integral equation of the first
kind.

2. When 4(x) =1, Eq. (10) becomes
u(z) = flz) + J\f K (z, t)u(t)dt, (12)

and in this case the integral equation is called Volterra integral equation of the
second kind.

Examining the equations (7)—(12) carefully, the following remarks can be concluded:

In summary, the Volterra integral equation is of the first kind if the unknown function
u(x) appears only under the integral sign. However, the Volterra integral equation is of
the second kind if the unknown function u(x) appears inside and outside the integral

sign.

Remarks

Examining the equations (7)—(12) carefully, the following remarks can be concluded.

1. The structure of Fredholm and Volterra equations:

The unknown function u(x) appears linearly only under the integral sign in linear
Fredholm and Wlterra integral equations of the first kind. However, the unknown
function u(x) appears linearly inside the integral sign and outside the integral sign
as well in the second kind of both linear Fredholm and Volterra integral equations.

2. The limits of integration:

In Fredholm integral equations, the integral is taken over a finite interval with fixed
limits of integration. However, in Volterra integral equations, at least one limit of
the range of integration is a variable, and the upper limit is the most commonly
used with a variable limit.



3. The origins of integral equations:

It is important to note that integral equations arise in engineering, physics,
chemistry, and biology problems [ 12] and [14]. Further, integral equations arise as
representation forms of differential equations. Furthermore, Fredholm and Volterra
integral equations arise from different origins and applications, such as boundary
value problems as in Fredholm equations, and from initial value problems as in
Volterra equations. Based on the fact that integral equations arise from distinct
origins, different techniques and approaches will be used to determine the solution
of each type of integral equations.

4. The linearity property:

As indicated before, the unknown function u(x) in Fredholm and Volterra integral
equations (9) and (12) occurs to the first power wherever it exists. However,
nonlinear Fredholm and Volterra integral equations arise if u(x) is replaced by a
nonlinear function F(u(x)), such as u*(x), u3(x), e“® and so on. The following are
examples of nonlinear integral equations:

uiE] = f{.r.‘;l—i—,kf K(z, t)u?(t)dt, (13)
a

u(z) = f{.r}—i—)&/ K (z,t)e*®dt, (14)
a
1

u(zx) = f{;:}+)~f Kz, t)sin(u(t))dt. (15)

where the linear function u(x) in (1) has been replaced by the nonlinear functions
u(t), eV and sin(u(f)) respectively.

5. The homogeneity property:

If we setf(x) = 0 in Fredholm or VWlterra integral equation of the second kind
given by (9) and (12), the resulting equation is called a homogeneous integral
equation, otherwise it is called nonhomogeneous or inhomogeneous integral
equation.

6. The singular behavior of the integral equation:

An integral equation is called singular if the integration is improper. This usually
occurs if the interval of integration is infinite, or if the kernel becomes unbounded
at one or more points of the interval of consideration a <7 < b. Singular integral
equations will be defined later. However, the methods to handle singular integral



equations will be introduced in Chapter 6.

It is worth noting that four other types of integral equations, related to the two main
classes Fredholm and VWolterra integral equations arise in many science and engineering
applications. In the following, we introduce these significant equations as distinct types.

1.2.3 Integro-Differential Equations

Volterra, in the early 1900, studied the population growth, where new type of equations
have been developed and was termed as integro-differential equations. In this type of
equations, the unknown function u(x) occurs in one side as an ordinary derivative, and
appears on the other side under the integral sign. Several phenomena in physics and
biology [14] and [20] give rise to this type of integro-differential equations. Further, we
point out that an integro-differential equation can be easily observed as an intermediate
stage when we convert a differential equation to an integral equation as will be
discussed later in the coming sections.
The following are examples of integro-differential equations:

o
1 Ju,‘\.rj = —F +/ (2 —t)u(t)dt, wu{0)=0, u’{llj =l (16)
0
. €T
w(r) = —sinr—1-— +/ u(t)dt, u(0)=1, (17)
0
iy = .= EI + rtu(t)dt, wu{d)=1. (18)
0

Equations (16)—(17) are Volterra integro-differential equations, and (18) is a
Fredholm integro-differential equation. This classification has been concluded as a
result to the limits of integration. The solution for integrodifferential equations will be
established using in particular the most recent developed techniques. The integro-
differential equations will be discussed extensively in Chapters 4 and 5.

1.2.4 Singular Integral Equations
The integral equation of the first kind

filx) = }-./ Kz, t)u(t)dt, (19)
oK

()

or the integral equation of the second kind



Blx)
u{z) = flz) + A Kz, t)u(t)dt, (20)

el )
1s called singular if the lower limit, the upper limit or both limits of integration are
infinite. In addition, the equation (19) or (20) is also called a singular integral equation

if the kernel K(x, ) becomes infinite at one or more points in the domain of integration.

Examples of the first type of singular integral equations are given by the following
examples:

o0
i) =2z | G] sin(x — t)u(t)dt, (21)
0
L
ulx)=x+ _—/ cos(x + t)u(t)dt, (22)
S ..5 s
1 o
u(z) =1+ 22+ —,f (x4 t)ul(t)dt, (23)
4 {) .

where the singular behavior in these examples has resulted from the range of integration
becoming infinite.

Examples of the second kind of singular integral equations are given by

S |

x? =/ I,_f.!a.{a‘](h‘. (24)
o VIl
& 1
r= / 7 f,ﬂ?f-l;ﬁ]tff. l<a<l, (25)
] I- ; — __.I

= 1

uhr)=1— 2\;?— f \/_u.ufrjugfr, |:2{1J'|
L i r— \.f e

where the singular behavior in this kind of equations has resulted from the kernel K(x, )
becoming infinite as t — x.

It is important to note that integral equations similar to examples (24) and (25) are
called Abel’s integral equation and generalized Abel’s integral equation respectively.
Moreover these types of singular integral equations are among the earliest integral
equations established by the Norwegian mathematician Niels Abel in 1823. Singular
equations similar to example (26) are called the weakly-singular second-kind Volterra
type integral equations. This type of equations usually arises in science and engineering
applications like heat conduction, super-fluidity and crystal growth. The singular
integral equations and the methods to handle it will be discussed in Chapter 6.

1.2.5 Volterra-Fredholm Integral Equations



The Volterra-Fredholm integral equation, which is a combination of disjoint Volterra
and Fredholm integrals, appears in one integral equation. The Wlterra-Fredholm
integral equations arise from the modelling of the spatiotemporal development of an
epidemic, from boundary value problems and from many physical and chemical
applications. The standard form of the Volterra-Fredholm integral equation reads

T b
u(z) = f(x) -l—f Ki(x, t)u(t)dt —I—/ Koz, thu(t) dt (27)
(] ]

where K;(x, t) and K,(x, ) are the kernels of the equation.
Examples of the Volterra-Fredholm integral equations are

T ¥
u(z) = 2r — f (x — t)u(t)dt + / ru(t)dt (28)
] 0

and
= ¥
u(x) =sinxr —cosx — / u(t)dt +/ w(t) dt. (29)
1] il

Notice that the unknown function u(x) appears inside the Volterra and Fredholm
integrals and outside both integrals.

1.2.6 Volterra-Fredholm Integro-Differential Equations

The Volterra-Fredholm integro-differential equation, which is a combination of disjoint
Volterra and Fredholm integrals and differential operator, may appear in one integral
equation. The Wolterra-Fredholm integro-differential equations arise from many
physical and chemical applications similar to the Volterra-Fredholm integral equations.
The standard form of the Volterra-Fredholm integro-differential equation reads

= b
ulm) (z) = f{z) +f Kqi(z, t)u(t)dt —I—f Ka(x, t)u(t) dt (30)
0 i

where K (x, ) and K5(x, t) are the kernels of the equation, and is the order of the

ordinary derivative of u(x). Notice that because this kind of equations contain ordinary
derivatives, then initial conditions should be prescribed depending on the order of the
derivative involved.

Examples of the Volterra-Fredholm integro-differential equations are

T 1
wz) =1 +/ (z —t)u(t)dt —|—/ ztu(t)dt,u(0) =1 (31)
0 1]



and

u'(x) = —x — é;z‘a’ —I—/ u(t)dt -|—f zru(t) dt,uw(0) = 0,u'(0) = 2. (32)
Notice that the unknown functionu(x) appears inside the Volterra and Fredholm
integrals and outside both integrals.

In closing this section, we illustrate the classifications and the basic concepts that
were discussed earlier by the following examples.

Example 1. Classify the following integral equation

ulz)=2— i_-,i'-3 + frnf;r‘ — thult)dt, (33)
‘ 8 L )
as Fredholm or Volterra integral equation, /inear or nonlinear and homogeneous or
nonhomogeneous.

Note that the upper limit of the integral is x and the function u(x) appears twice. This
indicates that the equation (33) is a Volterra integral equation of the second kind. The
equation (33) is linear since the unknown function u(¢) appears linearly inside and
outside the integral sign. The presence of the function f(z) = » — 12® classifies the
equation as a nonhomogeneous equation.

Example 2. Classify the following integral equation
1 1
uzr)==+=x —/ (x — t)ul(t)dt, (34)
2 0

as Fredholm or Volterra integral equation, /inear or nonlinear and homogeneous or
nonhomogeneous.

The limits of integration are constants and the function u(x) appears twice, therefore
the equation (34) is a Fredholm integral equation of the second kind. Further, the
unknown function appears under the integral sign with power two indicating the
equation is a nonlinear equation. The nonhomogeneous part f(x) appears in the equation
showing that it is a nonhomogeneous equation.

Example 3. Classify the following equation
Y 1 3 2 R Iy Py Y
i) =1—=—2", tu(t)dt, w(0)=0, (35)
3 0

as Fredholm or Volterra integro-differential equation, and /inear or nonlinear.



It is easily seen that (35) includes differential and integral operators, and by noting
that the upper limit of the integral is a variable, we conclude that (35) is a Volterra
integro-differential equation. Moreover, the equation is /inear since u(x) and u'(x)
appear linearly in the equation.

We finally discuss the following example.

Example 4. Discuss the type, linearity and homogeneity of the following equation
u{z) =1 —|—/ ﬁu.{r}(ff—i—f sin(u(t))u(t) dt. (36)
0 0

This equation combines Volterra and Fredholm integrals, hence it is Volterra—Fredholm
integral equation. It is nonlinear because of the term sin(u(¢)). It is nonhomogeneous
because f(x) = 1.

We point out that linear Fredholm integral equations, linear Volterra integral
equations, integro-differential equations, singular integral equations, Volterra-Fredholm
integral and integro-differential equations will be discussed in the forthcoming chapters.
The Volterra and Fredholm nonlinear integral equations will also be briefly discussed.
The recent developed methods, that proved its effectiveness and reliability, will be
applied to all types of integral equations. In other words, we will use the Adomian
decomposition method (ADM) and the variational method (VIM) for handling these
chapters. Some of the traditional methods will also be used so that newly developed
methods and traditional methods complement each other.

Exercises 1.2

Inexercises 1-10, classify each of the following integral equations as Fredholm or
Volterra integral equation, /inear or nonlinear, and homogeneous or nonhomogeneous:

1
(1) u(z) = .i"-l-/ xtu(t) dt
I:l feH
(2) wfz) =14 22 -|—/ (x — t)ult) dt
_ Ve
(3) u(z) = e® —I—f tu(t) dt
1 i
4) ulf_xj=f (z — )% ult) dt
a
> 1
(5) ur) == 1~+f xtu(t) db
3 o X
1
(6) ur)=-zr+—-+ f (r= 'f_]3 u(t)dt
L5 0

g T p
(7) uca~;=1+if I
L

4 J, x4+t ult)

ey ]




1 e
(8) u{:-:.‘,'|=51:'os:r+§ f cosx u(t) dt
]

T
9) u(m]=1+f (z— )% u(t) dt

i

I
(10) ulzr)=1-— f (x —t)ult)dt
0

Inexercises 11-15, classify the following integro-differential equations as Fredholm
integro-differential equation or Volterra integro-differential equation. Also determine
whether the equation is /inear or nonlinear:

(1) w'z) =1+ fT e~2ud(tydt, u(0) =1
(1]
- i
(12) w'(z)=1- %*«:+/ wtu(t) dt,  u(0) =0

[

(13) " (2) = isc” - T[w —tyityde, u(0)=1,u'(0)=0
2 |_'| -

(14) 4" (z) = sinz — = + j-E ztu'(t) dt,  w(0)=1,u'(0) =0, u"(0) =—1
(1]
(15) «"(z) = _11—_‘2:-:“1 + f (z—twit)dt, u(0)=u'(0)=0,u"(0)=2
0

In exercises 1620, integrate both sides of each of the following differential equations
once from O tox, and use the given initial condition to convert to a corresponding
integral equation or integro-differential equation. (Follow Example 1.)

(16) u'(x) =4u(x), u(0)=1.

(17) u'(x) = 3x%u(x), u(0)=1.

(18) u'(x) = u*(x), u(0)=4.

(19) u"(x) = 4xu’(x), u(0)=2, u'(0)=1.
(20) u"(x) = 2xu(x), u(0)=0,u'(0)=1.

[ nexercises 21-22, discuss the type, linearity and homogeneity of the following
equations

(21) u(@) =z + [7 tan(u(t)u(t)dt — [} (z — Hyu(t) dt
(22) w'(z) =1+ [F(z = yu(t)dt + [, (ztu(t)dt, u(0) = 1
(23) ‘u-’(:.:j =zinx + J-.]T fuLfJ{Ef - J|"D1 fﬂuzm ddts M(O) = O

(24) ulx) = 14+z+ I:.r ‘?-'Z‘l:i]; dt

1.3 Solution of an Integral Equation



A solution of an integral equation or an integro-differential equation on the interval of
integration 1s a function u(x) such that it satisfies the given equation. In other words, it
the given solution is substituted in the right hand side of the equation, the output of this
direct substitution must yield the left hand side, i.e. we should verify that the given
function u(x) satisfies the integral equation or the integro-differential equation under
discussion. This important concept will be illustrated first by examining the following
examples.

Example 1. Show that u(x) = e¢* is a solution of the Volterra integral equation
() = 1—|—f u(t)dt. (37)
0

Substituting u(x) = €* in the right hand side (RHS) of (37) yields
RHE = 14 ' e'dt
= 1+ [-f'n* 0 (38)
=)

= .LHS:

Example 2. Show that u(x) = x is a solution of the following Fredholm integral equation
. 1 gl
u(z) = E.rr — =+ i f (x4 t)u(t)dt. (39)
0

Substituting u(x) = x in the right hand side of (39) we obtain

0 g n
RHS = Zz—si2 fn (2 + tyut)dt
5 ., et . B (40)
= ZEEssEsli== el -
er 93l 3l
= =)
— LHS.

Example 3. Show thatu(x) =x is a solution of the following Fredholm integro-
differential equation

; 2 !
w () == —|—/ tu(t)dt. (41)
T

Substituting u(x) = x in the right hand side of (41) we obtain



9 1
RHS = _—+f t2 dt

& Ty

L

_ o4 [ﬂ]l
T g el
= 1=ul(r)
= LHS.

(42)

Example 4. Check ifu(x) =x +e* is a solution of the following Fredholm integral

equation

1

"
(i

Substituting u(x) = x + e* in the right hand side of (43) we obtain

y 4 :
RHS = (.-I_E,r+—|—f ;r.‘t‘{i!‘.—l—{’tjfh‘-
== (."r — H.Hl::j';l
= LHS.

Example 5. If u(x) = ¢™" is a solution of the following Volterra integral equation

EH
i) =il ﬂf tu(t)dt.
0

Find a.
Substituting u(x) = ¢ into both sides of (45) we obtain

Solving for a gives
B =2

3

Example 6. u(x) = x> + x> is a solution of the Fredholm integral equation

1
u(z) =2 — 22 - 2x + :1-[ (zt? + 2%t)u(t)dt.
= |

Find a.
Substituting u(x) = x> + x> into both sides of (48) we obtain

[ ="~ E;r + rtu(t) dt, u(0) = 1,u'(0) = 2.

(43)

(44)

(46)

P
(47

(48)



:2 0
P +rt=ad—2?— 22+ -ﬂ{?:i!'g + =x). (49

Solving for a gives
& =0 (50)

Three useful remarks can be made with respect to the concept of the solution of an
integral equation or an integro-differential equation. First, the question of existence of a
solution and the question of uniqueness of a solution, that usually we discuss in
differential equations and integral equations will be left for further studies.

We next remark that if a solution exists for an integral equation or an integro-
differential equation, it is important to note that this solution may be given in a closed
form expressed in terms of elementary functions, such as a polynomial, exponential,
trigonometric or hyperbolic function, similar to the solutions given in the previous
examples. However, it 1s not always possible to obtain the solution in a closed form,
but instead the obtained solution may be expressible in a series form. The solution
obtained in a series form is usually used for numerical approximations, and in this case
the more terms we obtain the better accuracy level we achieve.

It 1s important to illustrate the difference between the two expressible forms, the
exact solution in a closed form and the approximant solution in a series form.
Considering Example 1 above, we note that the exact solution is given in a closed form

by the exponential function u(x) = e*. However, it will be shown later that the solution
of the integral equation

1 i€
uiz) =1+ 1/ ru(t)dt, (51)
is given by the series form

ulz) =14 i.r‘2 + i;r“* + L,.r6 Heammay (52)
: 4 48 960
where we can easily observe that it is difficult to express the series (52) in an
equivalent closed form. As indicated earlier, the series obtained can be used for
numerical purposes, and to achieve the highly desirable accuracy we should determine
more terms in the series solution.
In closing our remarks, we consider the nonlinear Fredholm integral equation

= 1 gl

¢ 2 1 o A

wx) = —r+ — ru“(t)dt. (53)
) {_} 2 0

It was found that equation (53) has two real solutions given by



HAT ) = T BT; (54)

and this can be justified through direct substitution. The uniqueness concept is not
applicable for this example and for many other nonlinear problems. The nonlinear
problems will be examined briefly in forthcoming chapters. The uniqueness criteria for
nonlinear problems is justified for only specific problems under specific conditions.
Generally speaking, nonlinear problems, differential and integral, give more than one
solutions.

It is useful to point out that our main concern in this text will be on the linear integral
equations and the linear integro-differential equations only. The nonlinear Fredholm and
the nonlinear Volterra integral equations will be examined as well. In addition, we will
focus our study on equations with closed form solutions as in Examples 1 and 2. Other
cases that may lead to a series solution will be investigated as well, supported by the
development of the reliable techniques that will be discussed later. Moreover, nonlinear
integral equations will be investigated in its simplest forms. The recent developed
methods presented powerful techniques, and therefore these methods have been carried
out with promising results in linear and nonlinear equations.

Exercises 1.3

Inexercises 1-10, verify that the given function is a solution of the corresponding
integral or integro-differential equation:

1 1
(1) ul_‘_:?:;|=:t+f u(t)dts u(z) =2+ —
; 24

; i
(2) u(z) = §m+ [ wtu(t)dts u(x) =x
0

1
(3) ulz)=mx +f rtu’(t)dt u(x) = 2x

]

x .
(4) ufz) =2 - f (& — t)u(t)dt, u(X) = sinx

(K]

I
(5) u(r) =2coshz — rsinhz — 1+ f tu(t)dts u(x) = coshx
0

b L
(6) ufz) ==+ é:ﬁ . f tud(t)dt, U(x) =X

(i

(7) v'(z) =22 —2*+ fr stu(t)dt, u(0) = 0, u(x) = x?

(8) t,!HI::l‘:I =xecosr— 2sine + fr tu(t)dt, M(O) = 0, u'(O) = 1, u(x) =sinx

9 f (x — )2u(t)dt = 2* u(x) =3

3

I_ T
; . 3
(10) [ lx — r}l"gu[fjda‘ = 2%/, ulr) = E
i}

In exercises 11-14, find the unknown if the solution of each equation is given:



1 i y
(11) u[:-sjzl—if{:cj—f (z—tu(t)dt wu(xr)=2cosz—1
(1]

(12) uurcj=f(:cj+f (x — tyu(t)dt  u(z)=e

e
(13) ulz)=1-— crf 3t2u(t)dt u(x)=e*

(n]

x

(14) u(z)= flz) -1+ [ﬁ tu(t)dt u(zr)=sinz
0

1.4 Converting Volterra Equation to an ODE

In this section we will present the technique that converts Wolterra integral equations of
the second kind to equivalent differential equations. This may be easily achieved by
applying the important Leibniz Rule for differentiating an integral. It seems reasonable
to review the basic outline of the rule.

1.4.1 Differentiating Any Integral: Leibniz Rule

i

To differentiate the integral ") ¢(z,t)dt With respect to x, we usually apply the useful
Leibniz rule given by:

d A= : . . 2] 5 - do Alz) pG
et Gla.t)dt = G(z, f(z)) — — G(r, a(x)) — + 2
dxr ' : “dr S dr = dx

(55)

afx) (z)
where G(x, t) and 25 are continuous functions in the domain D in the xz-plane that
contains the rectangular region R, a <x < b, t, <t < ¢, and the limits of integration a(x)
and f(x) are defined functions having continuous derivatives for a <x < b. We note that
Leibniz rule is usually presented in most calculus books, and our concern will be on
using the rule rather than its theoretical proof. The following examples are illustrative

and will be mostly used in the coming approach that will be used to convert Volterra
integral equations to differential equations.

Example 1. Find % f (z — t)2u(t) dt.

L

In this example, a(x) = 0, f(x) = x, hence a'(x) =0, f'(x) = 1 and g_r; — 2z — t)u(t). UsIng
4 H
Leibniz rule (55), we find

d = T = az
— (z — t)*u(t)dt = 2(x — t)u(t) dt. (56)
dr J, 0



Example 2. Find % f (z — t)u(t)dt-

0

In this example, a(x) = 0, f(x) =x, hence a'(x) = 0,(x) = 1, and 2 — (). Using
Leibniz rule (55), we find
A — R e —
T/:, (z— t)u(t) dr:/ﬂ u(t)dt. (57)

. d z _
Example 3. Find = [ u(t) dt.

Proceeding as before, we find that

d 2 .
e u(t) dt = u(x). (58)
dx Jo

We now turn to our main goal to convert a Wlterra integral equation to an equivalent
differential equation. This can be easily achieved by differentiating both sides of the
integral equation, noting that Leibniz rule should be used in differentiating the integral as
stated above. The differentiating process should be continued as many times as needed
until we obtain a pure differential equation with the integral sign removed. Moreover,
the 1nitial conditions needed can be obtained by substitutingx = 0 in the integral
equation and the resulting integro-differential equations as will be shown.

We are now ready to give the following illustrative examples.

Example 4. Find the initial value problem equivalent to the Volterra integral equation
u(zr) = 1 —I—/ u(t)dt. (59)
0o

Differentiating both sides of the integral equation and using Leibniz rule we find

¥

u () =ulz). (60)

The 1nitial condition can be obtained by substituting x = 0 into both sides of the integral
equation; hence we find u(0) = 1. Consequently, the corresponding initial value problem
of first order is given by

g (z) —u(x)=0, u(0)=1. (61)

Example 5. Convert the following Volterra integral equation to an initial value problem

i€
u(z) =r +/ (t — x)u(t)dt. (62)
0



Differentiating both sides of the integral equation we obtain
w (z}=1 —/ u(t)dt. (63)
o

We differentiate both sides of the resulting integro-differential equation (63) to remove
the integral sign, therefore we obtain

i

u (z) = —ulz), (64)
or equivalently
w (z) +u(z) =0. (65)

The related 1nitial conditions are obtained by substituting x = 0 in u(x) and in u'(x) in the
equations above, and as a result we find #(0) = 0 and »'(0) = 1. Combining the above
results yields the equivalent initial value problem of the second order given by

i i A Fan’ r ! i 41 E e el
w {z) +o{r)="0, w0} =0;u(0)=1, (66)

with constant coefficients that can be easily handled.

Example 6. Find the initial value problem equivalent to the Volterra integral equation
u(r) = x° +/ (z — t)%u(t) dt. (67)
0

Differentiating both sides of (67) three times we find

”'Jlf.-r-‘,'l = 327 +2/ (x — t)ult)dt,
0o
u'(z) = 6x+2 f u(t)dt, (68)
0
?.l"l".'l::;]_';l — (}—‘—2“{3)]_

The proper initial conditions can be easily obtained by substituting x = 0 in u(x), u'(x)
andu”(x) in the obtained equations above. Consequently, we obtain the
nonhomogeneous initial value problem of third order given by

¥

w' (z) —2u(x) = 6, uw(0)=1u(0)=u"(0)=0, (69)

with constant coefficients that can be easily solved as an ordinary differential equation.
We point out here that the solution of initial value problems, that result from



converting Volterra integral equations, will be discussed in Chapter 3.

Exercises 1.4

In exercise 1-4, find di for the given integrals by using Leibniz rule:
=

(1) frfx—szuLdef

(2)f et dt

(3) (x—1 JuLf‘laf
fd.:r

(4)f sin(x + f) dt

In exercise 5-14, convert each of the Wlterra integral equations to an equivalent initial
value problem:
B uz)=1+=2 +[ (@ —t)2u(t) dt
W]
T
(6) ujz)=e*— f (z — t)u(t) dt
%
(7) ufz) == +[ (z — t)u(t)dt
0

r
(8) ulr)=a —cosx + f (x —t)ult)dt

0 I
(9) u(z) =24 3z + 5z + f [1+4 2{x —t)]u(t)dt

0
g

(10) uiz) = -5+ 6 +f (5 — 6z + 6t)u(t) dt

i

T
(1 1) u(x) =tanx — /. u(t)dt, x < w/2
0
5 = 5
(12) @)= 142+ E:rz +f [34+6(x—1t)— %[:c — t)*]u(t) dt
T o

(13) wiz)=2* + 22 + :2[ (z —t)2u(t)dt

Q

1 x
(14) u(z) = 2% + Ef (x —tPult) dt
]

1.5 Converting IVP to Volterra Equation

In this section, we will study the method that converts an initial value problem to an
equivalent Volterra integral equation. Before outlining the method needed, we wish to
recall the useful transformation formula



1 * .
/ f / f f(zp)dz, ---dxy = = 1.,.[ |;3'—1‘j”_1_r|j~ﬁ;|dﬁ‘
e — 1) Jn

70
ALY

that converts any multiple integral to a single integral. This is an essential and useful
formula that will be employed in the method that will be used in the conversion
technique. We point out that this formula appears in most calculus texts. For practical

considerations, the formulas
o oL i
f fit)dtdi = f (x —t) f(t)dt, (T1)
] 0 0

and

f f jlrudnirrfr == —f (z — t)? f(t) dt, (E)
] 0o

are two special cases of the formula given above, and the mostly used formulas that will
transform double and triple integrals respectively to a single integral for each. For
simplicity reasons, we prove the first formula (71) that converts double integral to a
single integral. Noting that the right hand side of (71) 1s a function of x allows us to set
the equation

h4
I(x) :f (x—t) f(t)dt. (73)
0

Differentiating both sides of (73), and using Leibniz rule we obtain

I'(z)= / f(t)dt. (74)
0

Integrating both sides of (74) from 0 to x, noting that /(0) = 0 from (73), we find

II{.r";l:/f fit) dtdt. (75)
o Jo

Equating the right hand sides of (73) and (75) completes the proof for this special case.
The proof for the conversion of the triple integral to a single integral given by (72) may
be carried out in the same manner. The procedure of reducing multiple integral to a
single integral will be illustrated by examining the following examples.

Example 1. Convert the following quadruple integral



ey £ I £
Fiip) = / / / f (i) didtdtdt, (76)
o Jo Jo Jo

to a single integral.

Using the formula (70), noting that n = 4, we find
T e]i= %[J (x —t)3 u(t) dt, (77)
the equivalent single integral.

Example 2. Convert the triple integral

Ilf_;r";l:f /] w(t) dtdidt, (78)
i ] i

to a single integral.

Using the formula (70) yields

o

1 . )
I{z)== (x — t)%u(t) dt, (79)

' Jo
the equivalent single integral.

Returning to the main goal of this section, we discuss the technique that will be used
to convert an initial value problem to an equivalent Volterra integral equation. Without
loss of generality, and for simplicity reasons, we apply this technique to a third order
initial value problem given by

e

y M \ . i \ ; . P

y () +plx)y (r)+qlz)y (x) +r(z)ylzr) =g(x) (80)
subject to the initial conditions

p ¥ \ L LS piE

y(0)=a,y (0) =5,y (0) =<, a, 8 and ~ are constants. (81)

The coefficient functions p(x), g(x) and r(x) are analytic functions by assuming that
these functions have Taylor expansions about the origin. Besides, we assume that g(x) is
continuous through the interval of discussion. To transform (80) into an equivalent
Volterra integral equation, we first set

m

y (z) = u(zx), (82)

where u(x) 1s a continuous function on the interval of discussion. Based on (82), it



remains to find other relations for y and its derivatives as single integrals involving
u(x). This can be simply performed by integrating both sides of (82) from 0 to x where
we find

y”{.r] = ?J”I:'{}:J =[ u(t)dt, (83)
or equivalently
y (z) =+ / u(t)dt, (84)
0

obtained upon using the initial condition y"(0) =y. To obtain y'(x) we integrate both
sides of (84) from 0 to x to find that
,t.rJ z})=8+vx -I-/ f w(t)dtdt. (85)
o Jo

Similarly we integrate both sides of (85) from 0 to x to obtain

: ’ 1 =7 5 : P
yl.i:]'.‘,.l =a+4+ 0r+ Eﬁ; ;;;.2 +f ] / ?n'-ILTJEFTEFTL'ET. I;Sfj;l
0 0 (]

Using the conversion formulas (71) and (72), to reduce the double and triple integrals in
(85) and (86) respectively to single integrals, we obtain

fee
yJ{;rr:I = Hf pr-f f (x — t)u(t)dt, (87)
0
and

i k! n) l 2 1 i i 12 i fooh
yiry=a+ pr+ —vyr° + = (x —t)“u(t)dt, (M)
& 2 -) I:I . & wos

respectively. Substituting (82), (84), (87) and (88) into (80) leads to the following
Volterra integral equation of the second kind

T
u(z) = f(x) —|—/ K (x, t)u(t)dt, (89)
0
where

K(z,t) =plz)+ alz)(z —t) + E-.‘r‘(-.rj[;i:‘ — e‘;l": (90)



and

flz)=g(z) - {“.rpl;f-rz‘.' + Bqlz) + ar(z) + yzq(z) + r(z) (;"F;t‘ = ;-ﬁ)} :

(01)
The following examples will be used to illustrate the above discussed technique.
Example 3. Convert the following initial value problem
ym — ::Iju” - fj-gf + 5y =0, (92)
subject to the initial conditions
y(0) =y (0) =y (0) =1, (93)
to an equivalent Volterra integral equation.
As indicated before, we first set
y () = u(x). (04)

Integrating both sides of (94) from 0 to x and using the initial condition y"(0) = 1 we
find

i
?IJ (| =:1 +f u(t)dt. (95)
i

Integrating (95) twice and using the proper initial conditions we find

..Ull ':Jf:| =14z +f / ul';f\(h‘df |__ﬂ'r}}|
i 1}

1 e fra T
y(z)=1+4z+ 2%+ f / f u(t)dtdtdt. (97)
2 o Jo Jo

Transforming the double and triple integrals in (96) and (97) to single integrals by using
the formulas (71) and (72) we find

and

o
,t.rJ bE) =121 f (x — t)u(t)dt, (98)
0



and
o 1, 1 [ P o
ylr) =1+ + =2+ = (x — 1)*u(t)dt. (99)
: 2 i
Substituting (94), (95), (98) and (99) into (92) we find
u(r) = 4+ 2 — 2% + f (3 S Bl th=mfm— r.]z) u(t)dt,  (100)
‘ 2 0 2 :
the equivalent Volterra integral equation.

Example 4. Find the equivalent Volterra integral equation to the following initial value
problem

yf’{;r‘] + yiz) =cosz, y(0) =0, ;uJ [D)==1; (101)

Proceeding as before, we set

y () = u(z). (102)
Integrating both sides of (102) from 0 to x, using the initial condition y'(0) = 1 yields
yJ (z} = 1+/ wu(t)dt. (103)
0
Integrating (103), using the initial condition y(0) = 0 leads to
ylz) == +/ f u(t) dtdt, (104)
o Jo
or equivalently
Yzl == —|—f (x — t)ult) dt, (105)
0

upon using the conversion rule (71). Inserting (102) and (105) into (101) leads to the
following required Volterra integral equation

£
u(z) = cosx—x —/ (x—t)u(t)dt, (106)
0

the equivalent Volterra integral equation.
As previously remarked, linear Volterra integral equations will be discussed



extensively in Chapter 3. It is of interest to point out that the newly developed methods
and the traditional methods will be introduced in that chapter.

Exercises 1.5

In exercises 1-3, convert each of the following first order initial value problem to a
Volterra integral equation:

(1)y' +y=0,y(0)=1
(2)y' —y=x,»0)=0
(3) y' +y =sec’x, y(0) =0

I nexercises 4-10, derive an equivalent Volterra integral equation to each of the
following initial value problems of second order:

4)y"+y=0,»0)=1,)(0)=0

()" —y=0,y0)=1,)'(0)=1
(6)y"+5y'+6y=0,»0)=1,)(0)=1
(7N y"+y'=0,y(1)=0,y(1)=1

(3)y" +y' =2y =2x,»(0)=0,)'(0)=1

(9) y"+y=sinx, y(0)=0, y'(0) =0

(10) y" —sinx y'+ ey =x, (0) =1, y'(0) =—1

In exercises 11-15, convert each of the following initial value problems of higher order
to an equivalent Volterra integral equation:

A y" =y" =y"+y=0,»(0) =2, y'(0) = 0,y"(0) =2

(12) y"+ 4y"=x, (0) = 0, y'(0) = 0, y"(0) = 1

(13)y"W+2y" +y=3x+4,y(0)=0,)'(0)=0,y"(0)=1,y"'(0) =1
(14) y¥ =y =0,3(0) = 1,'(0) = 0, »"(0) =~1,""(0) = 0

(15) ¥ +y" =2e%, »(0) =2,)'(0) =2, y"(0) = 1, y"'(0) = 1

1.6 Converting BVP to Fredholm Equation

So far we have discussed how an initial value problem can be transformed to an
equivalent Wlterra integral equation. In this section, we will present the technique that
will be used to convert a boundary value problem to an equivalent Fredholm integral
equation. The technique is similar to that discussed in the previous section with some
exceptions that are related to the boundary conditions. It is important to point out here



that the procedure of reducing boundary value problem to Fredholm integral equation is
complicated and rarely used. The method is similar to the technique discussed above,
that reduces 1nitial value problem to Volterra integral equation, with the exception that
we are given boundary conditions.

A special attention should be taken to define y'(0), since it is not always given, as
will be seen later. This can be easily determined from the resulting equations. It seems
useful and practical to illustrate this method by applying it to an example rather than
proving it.

Example 1. We want to derive an equivalent Fredholm integral equation to the
following boundary value problem

y”f_.r] Fyiz) ==, gz <m, (107)
subject to the boundary conditions
iy =1, ymwi=x-—=1. (10%)
We first set
y” (z) = u(z). (109)

Integrating both sides of (109) from 0 to x gives

e % e
f Yy {:!‘}rh‘:f u(t) dt, (110)
i 0

or equivalently
,uf{;;r*;l =y () —i—f u(t) dt. (111)
0

As indicated earlier, »'(0) is not given in this boundary value problem. However, y'(0)
will be determined later by using the boundary condition at x = 7.

Integrating both sides of (111) from 0 to x and using the given boundary condition at x
=0 we find

fes
ylz) =1+ xy (0) —|—/ (x — t)u(t) dt, (112)
0

upon converting the resulting double integral to a single integral as discussed before. It
remains to evaluate y'(0), and this can be obtained by substituting x = 7 in both sides of
(112) and using the boundary condition at x =z, hence we find



y(w) = 1-|—T|'3,|'fl:|?|:l+/ (m —t)u(t) di. (113)
0

Solving (113) for »'(0) we obtain

o . . o : :
y{ﬂj::(l;fr—:zj—f [7—1) u.{t‘.jfh‘.). (114)
il 0

Substituting (114) for y'(0) into (112) yields
y(r) =1+ — ({n‘ = d = f (m— z‘jmtjda‘.) + f (r —t)u(t)dt. (115)
il [ 0

Substituting (109) and (115) into (107) we get

; T o : N ;
ulr) = r—1-— (fjr = 2} — f == fju-{t;ldt)
® u (116)

—/ (x — t)u(t) dt.
0

The following identity

f |;.;|=f .;_;J+f (), (117)
1] o &

will carry the equation (116) to

_— & i o
wr) = z—-1—=(m—2)+= [ (m—t)u(t)dt
0

—
il il

g ¥ . & .
+ —f (m— t)u(t)dt — / (x — t)u(t)dt,
mJs 0

or equivalently, after performing simple calculations and adding integrals with similar
limits

(118)

a2 ) = = —— (£ ) =

il n il

u(t)dt. (119)

Frr
al

BE = T Ttz —m) fﬂ z(t —m)
i

Consequently, the desired Fredholm integral equation of the second kind 1s given by

. 2r—m ® o . -
u(z) = —/ K(x,t)u(t) dt, (120)
0o

where the kernel K(x, ¢) is defined by



foro<t<ze
K(z,t) = il (121)
- - forz<t< .

It is worth noting that the equation (120) obtained is a nonhomogeneous Fredholm
integral equation, and this usually results when converting a nonhomogeneous boundary
value problem to its equivalent integral equation. However, homogeneous boundary
value problems always lead to homogeneous Fredholm integral equations. Further, we
point out here that the solution of boundary value problems is much easier if compared
with the solution of its corresponding Fredholm integral equation. This leads to the
conclusion that transforming boundary value problem to Fredholm integral equation is
less important if compared with transforming initial value problems to Wolterra integral
equations.

It is of interest to note that the recent developed methods, namely the Adomian
decomposition method and the direct computation method, will be introduced in Chapter
2 to handle Fredholm integral Equations. In addition, the traditional methods, namely the
successive approximations method and the method of successive substitutions, will be
used in Chapter 2 as well.

Exercises 1.6

Derive the equivalent Fredholm integral equation for each of the following boundary
value problems:

1.y" +4y=sinx, 0 <x <1, y(0)=p(1)=0
2.9"+2xy=1,0<x<1,p(0)=y(1)=0
3.9"+y=x,0<x<1,p0)=1,y(1)=0
4.9"+y=x,0<x<1,y0)=1,y'(1)=0

It is to be noted that we will use two developed methods to solve many kinds of
integral equations. These two methods mostly give the solution in a series form or in an
infinite geometric series. It is therefor useful to present brief summaries of both series.
More explanations of these two series can be found in calculus and algebra text books.

1.7 Taylor Series

In this section we will introduce a brief idea on Taylor series. Recall that the Taylor
series exists for analytic functions only.

Let f{x) be a function that is infinitely differentiable in an interval [b, c] that contains
an interior point a. The Taylor series of f{(x) generated atx =a is given by the sigma



notation
fla) = f 20 -
which can be written as
Jiz) = -flaj +f—Jl':1_i;'-[1 m+ |;.:

ndia) \
-+ f—riam*—a?ﬁ{—...

Tl

The Taylor series of the function f(x) at a = 0 is given by

R

a)”,

|
._:I'e-

f@ =y, 20,

n=>0

which can be written as

flz) = f(0)+

T 21 3!

0) "o )
f' -|—f|"1:‘2+fl"3:‘3-|—

(122)

——J—ltr-— al + -
(123)
(124)
f(nlfm] = . :
+——x"+---. (125)

n.

In what follows, we discuss few examples for the derivation of the Taylor series at x

=0.

Example 1. Find the Taylor series generated by f{x) = cos x atx = 0.

We list the exponential function and its derivatives as follows:

Fnl(z) i (0)
flz) =cosx Jloyi=:1,
fi(z) = —sinzx f(0) =0,
f”fj:] = —COST f”fji.‘-l] ===
f(z) =sinz £ (0) =0,

£ (x) = cosx Felny =1,

and so on. This gives the Taylor series for cos x by

cosr=1 TE + — Thl
] — — —
21 4!

and in a compact form by

o CETHR

(126)



Similarly, we can easily show that

coshr =1+ 2’ + z* =5
oshr = — 4+ —
21 4!
and in a compact form by
) i man g .
coshr = HZ_D (2?!]51 , for all ».

Example 2. Find the Taylor series generated by f{x) = sinx atx = 0.

Proceeding as before we find

f17) (x) £ (0)

flx) =sinx f(0) =0,
f(z) =cosz £ =1,
f”{:tr] = —sinr f”f\l]] =i,
f”a[':e‘j = —COST f”a({}j = —i,
fvl(2) = sine flul(0) =0,

f®)z) = cosz Floy=1,

and so on. This gives the Taylor series for sin x by

5 3 25
sin x =1—3—,—|—5—,—|—---.

and in a compact form by

o0 I:'_J-JIJ'}
sinr = E —_— 2+l for all .

(2n + 1)1

n=0

In a similar way we can show

and in a compact form by

(127)

(128)

(129)

(130)

(131)

(132)



e

1 2n+1 )

sinr = —_—r*"T for all z. (133)

; Zj 2n+1)! * h
n=0 * :

In Appendix C, the Taylor series for many well known functions generated at x = 0 are
given.

It was stated before that the proposed methods that will be used will give the solution
in a series form. The obtained series form may converge to a closed form solution, it
such a solution exists. Otherwise the truncated series solution may be used for
numerical purposes. To get an exact solution, it is normal that we practise for the
determination of this solution using Taylor series. In what follows, we study three
examples only, and most of the integral equations will lead to these series.

Example 3. Find the closed form function for the following series

iy o

Lr_,l' i
ey =1+ 3rF =p2 f P f (134)
JAZ) 2 2 s k :

This series can be rewritten in the form

(322  (3x)%® (3x)¢
flz} =14 38z + - / — —

21 3l T WL50)
that will converge to the exact form
flx) = . (136)
Example 4. Find the closed form function for the following series
P 1 l ) 1 3 1 4 J. 5 e
(z)=1—-2r—=—2"+=-2"4+—2" — —2" + - --. (137)
/=) 3 T8 T T 1 S
We group the series in the form
1 . 1 : 1 1 :
(2)=(1— =22+ —=2*+... )= (2 — =23+ =25 +...), (138)
b= 21 4! S 3! 5! : S
that converges to
flr) =cosxr —sinx. (139)

Exercises 1.7

Find the closed form function for the following Taylor series:



4 2
1. 1+11:c+2:-::2+;1‘3+§3:4+---
ut
9 9 27
2. 1—3:c+§:c9—§:£3+?‘1“‘+---
3 Lok S oo
. ."E-I—ED. +E:1 +4E:1 Slsninan
4. 1—2T2+—:€4—4—F:?J'3+
5 . Bl 243
. EQ—ET +ETJ—ET'+
: )
6. Dandmu® g oo
1Jr's.’““;’ua :315 a
7. 1+3’-:9+§3:4+E:?;5+
Q. 2,24 27,4 4 81,6,
2 = %0
9. 2—2m3+§:{:"—f—r15+
e 11
1 1 - 1 -
10, 142—Za34 —2af + -

6 120° 500"

1.8 Infinite Geometric Series

A geometric series is a series with a constant ratio between successive terms. The
standard form of an infinite geometric series is given by

T
P o E a1 = a1 +arr + a1 Farrd +art + -+ agr™. (140)

An infinite geometric series converges if and only if |r| < 1, otherwise it diverges. The
sum of infinite geometric series, for || < 1, 1s given by

S, = - ) (141)

As stated earlier, some of the proposed methods that will be used in this text give the
solution as an infinite geometric series. To determine the exact solution in a closed
form, it is normal to find the sum of this series. For this reason we will study examples
of infinite geometric series.

Example 1. Find the sum of the infinite geometric series

8.8 A it
—_ — — .. 2]
5 ' 25 ' 125 Y

It is obvious that the first term isa; = 1 and the common ratio is » = ¢. The sum is
therefore given by



(143)

s
[ iy |

S =

| e

]i=

(144)

1
l— =t —— —
: 17

Example 2. Find the sum of the infinite geometric series
1 1
3 9

It is obvious that a; = I and » = _4, [r| < 1. The sum s therefore given by
(145)
(146)

(147)

The given expression can be rewritten as
- 1

S=z+= __|_...)_
5 9

p
5

1
1+ =+
(43

It is obvious that the second part is an infinite geometric series, witha; = 1 and » = 1, ||

< 1. The sum is therefore given by

1 3 ,

S=1+2 = = = (148)

11 2 ~
Example 4. Simplify the following expression
S=1+ —T sec? ¢ + i sec? r + X sec? r + (149)
8 i) 32 )

(150)

1),

The given expression can be rewritten as
1
o ;
e r J. ey
2eCT I ( + 5 + 1

It is obvious that the second part is an infinite geometric series, witha; = 1 and » = 1, ||
(151)

< 1. The sum is therefore given by
S=1+ gavc-g T.



Example 5. Simplify the following expression

.5'=a:4+i;rrz+£“‘2+ La.? =

_-LE TP r!r. k!
at Tt T Timet T (152)

The given expression can be rewritten as

L g 13 } o i -
S=ot+—r?+—=2?(l+=+=+-]). (153)
14 70 5" 25 £

It is obvious that the third part is an infinite geometric series, witha; =1 and » = L, || <
1. The sum is therefore given by

1 11 15 |
—a?y gl =gt a2 (154)

ISI = ':4 A
Ry 56 56



Chapter 2
Fredholm Integral Equations

2.1 Introduction

In this chapter we shall be concerned with the nonhomogeneous Fredholm integral
equations of the second kind of the form

b

wizx) = flxr) + )m/ Kz, t)u(t)dt, a<xz<hbh, (1)
where K(x, ¢) is the kernel of the integral equation, and /4 is a parameter. A considerable
amount of discussion will be directed towards the various methods and techniques that
are used for solving this type of equations starting with the most recent methods that
proved to be highly reliable and accurate. To do this we will naturally focus our study
on the degenerate or separable kernels all through this chapter. The standard form of
the degenerate or separable kernel 1s given by

i
Kiz,t] = E Grlx) hy(t). (2)
k=1

The expressions x — ¢, x + ¢, xt, x*> — 3xt + ¢, etc. are examples of separable kernels. For
other well-behaved non-separable kernels, we can convert it to separable in the form
(2) simply by expanding these kernels using Taylor’s expansion.

Moreover, the kernel K(x, ¢) is defined to be square integrable in both x and ¢ in the
square a <x < b, a <t < b if the following regularity condition

b b
/ / K(x,t)dz dt < oo, (3)
i a

1s satisfied. This condition gives rise to the development of the solution of the Fredholm
integral equation (1). It is also convenient to state, without proof, the so-called
Fredholm Alternative Theorem that relates the solutions of homogeneous and
nonhomogeneous Fredholm integral equations.

Fredholm Alternative Theorem

The nonhomogeneous Fredholm integral equation (1) has one and only one solution if
the only solution to the homogeneous Fredholm integral equation



b
u(z) = )xf Kz, t)u(t)dt, (4)
a

is the trivial solution u(x) = 0.

We end this section by introducing the necessary condition that will guarantee a
unique solution to the integral equation (1) in the interval of discussion. Considering
(2), if the kernel K(x, ¢) is real, continuous and bounded in the square a <x < b and a <¢
<b,1.e.if

IK(z,t)] <M, a<z<b and a<t<h, (5)

and if f(x) # 0, and continuous ina <x <b, then the necessary condition that will
guarantee that (1) has only a unique solution is given by

MM (b—a) < 1. (6)

It is important to note that a continuous solution to Fredholm integral equation may
exist, even though the condition (6) is not satisfied. This may be clearly seen by
considering the equation

1
y(z) = —4 —i—/ (2x + 3t)u(t)dt. (7T)
0

In this example, 4 = 1, [K(x, #)| < 5 and (b — a) = 1; therefore
INM((b—a)=5#1. (8)

Accordingly, the necessary condition (6) fails to hold, but in fact the integral equation
(7) has an exact solution given by

u(x) = 4r, (9)

and this can be justified through direct substitution.

As indicated in our objective for a first course in integral equations, we will pay
more attention to the practical techniques for solving integral equations rather than the
abstract theorems. In the following we will discuss several methods that handle
successfully the Fredholm integral equations of the second kind starting with the most
recent methods as indicated earlier.

2.2 The Adomian Decomposition Method



Adomian [1] developed the so-called Adomian decomposition method or simply the
decomposition method (ADM). The method was well introduced by Adomian in his
recent books [1] and [2]. The method proved to be reliable and effective for a wide
class of equations, differential and integral equations, linear and nonlinear models. The
method provides the solution in a series form as will be seen later. The method was
applied mostly to ordinary and partial differential equations, and was rarely used for
integral equations in [1] and [2]. The concept of convergence of the solution obtained by
this method was addressed extensively in the literature. The convergence concept is
beyond the scope of this text. However, the decomposition method can be successfully
applied towards linear and nonlinear integral equations.

In the decomposition method we usually express the solution u(x) of the integral
equation (1) in a series form defined by

oo
u(zr) = E i, (2] (10)

Substituting the decomposition (10) into both sides of (1) yields
o0 b oo
Y ua(z) = f(z) + Af K(x,t) (Z u.,,,m) dt, (11)
n=>0 o n=>0

or equivalently

b

ug(x) + uy (z) + ug(x) + -+ = f(z) —I—Jk—[ K (z, t)ug(t)dt
b

—I—)a—[ K(z,t)us(t)dt

b
—I—Af Kz, t)uq(t)dt
a2

The components uy(x) , uy(x) , ur(x) , u3(x), ... of the unknown functionu(x) are
completely determined in a recurrent manner if we set

ve{z) = fiz), (13)

b

ur(x) = A/ Kz, t)ug(t)dt, (14)
e}
b

uz(r) = )&/ Kz, t)uy (t)dt, (15)



b
usl(x) = )«/ Kz, t)uz(t)dt, (16)
a2

and so on. The above discussed scheme for the determination of the components u(x),
uq(x), up(x), us(x), ... of the solution u(x) of Eq. (1) can be written in a recursive manner

by

wlz) = flx), (17)
b

U, 1(x) = }\/ Kz, t)u,(t)dt, n = 0. (18)
a

In view of (17) and (18), the components uy(x) , ui(x) , uy(x) , uz(x), ... follow

immediately. With these components determined, the solution u(x) of (1) is readily
determined in a series form using the decomposition (10). It is important to note that the
obtained series for u(x) converges to the exact solution in a closed form if such a
solution exists as will be seen later. However, for concrete problems, where exact
solution cannot be evaluated, a truncated series y* , ;) is usually used to
approximate the solution u(x) and this can be used for numerical purposes. We point out
here that few terms of the truncated series usually provide the higher accuracy level of
the approximate solution if compared with the existing numerical techniques. The
decomposition technique proved to be effective and reliable even if applied to
nonlinear Fredholm integral equations as will be discussed in a forthcoming chapter.

In the following we discuss some examples that illustrate the decomposition method
outlined above.

Example 1. We first consider the Fredholm integral equation of the second kind

9 1 g .
u(z) = —x? + / — 2 t2u(t) dt. (19)
10 g
It is clear that f(z) = 222, A = I, K(2,t) = 1222 To evaluate the components u(x),
uy(x), us(x), ... of the series solution, we use the recursive scheme (17) and (18) to find

9 9
g 2

uplz) = (20)



) B
: 1 .
wi{xr) = ]_—sz‘zt‘-zun{ﬂda‘..
o 2

j (B
J'\Z"qa-l
- fni‘? 1ot @t

B o g 21"
= e (L)
1
us(z) = f —:r.‘gi‘-zlulif-:lt’-!‘t‘-
& I:I 2
1 .
1 9
= — ¥t —t2dt
v 27 7 108
L s s
— — r22
1000 oL
and so on. Noting that
u(z) = uwo(z) + us(z) + uz(z) + - - -, (23)
we can easily obtain the solution in a series form given by
. B.E . . L o
(2) = —22 4+ —a2 4+ —224 ..., (24
=10 T100” T 1000”0 T )
so that the solution of (19) in a closed form
ufz) = =2, (25)

follows immediately upon using the formula for the sum of the infinite geometric series.
Example 2. We next consider the Fredholm integral equation

u(z) =cosz + 2z + f: rtu(t) dt. (26)
Proceeding as in Example 1, we set

ug(x) = cosz 4 2z, {27}

ui(z) = —[rr riun(t)dt

= /art(w:}st‘.+2tjdt
0

= (—2 -+ §} ) T, LE'EJ



m
uz(z) = fartulif;lfft
(]

T 2
2 .
3 G . dyistann
= — =T 4 =" | . (20)
( 3 9 ) 5k

Consequently, the solution of (26) in a series formis given by
u(r) = cosz 4 2z + (—2 e %:3) T + (—:E':.j e —:rﬁ) ok ek (30)
and in a closed form
u(z) = cosz, (31)
by eliminating the so-called self-cancelling noise terms between various components of
u(x). The answer obtained can be justified through substitution. The self-cancelling
noise terms are defined to be similar terms with opposite signs that will vanish in the

limit. The phenomenon of noise terms will be presented in a forthcoming section.

Example 3. We consider here the Fredholm integral equation
1
ala ) =e¢""=1F / tu(t) dt. (32)
0

Applying the decomposition technique as discussed before we find

wl@) = -1, (33)
1
wlz) = ft‘.u.g{a‘]dr
0
1
= fﬂ(e*—l}dt
0
= (34)
= - | vt |
2 5 g
1
uz(r) = fﬁu.lia‘jffa‘
0
1
1
= '/\_—Tl‘jf-
o 2
= i (35)
4



The determination of the components (33)-(35) yields the solution of the equation (32)
in a series form given by

1 1 1
wrl=e*—1+—=(1+=—+—-—4+---}, (36)
(o) ¢ +2(+2+4+ ) (30

where we can easily obtain the solution in a closed form given by
iu(r) =€, (37)

by evaluating the sum of the infinite geometric series in the right hand side of Eq. (36).
Recall that the sum of the infinite geometric series was presented in the previous
chapter.

It is important to note that the evaluation of the components uy(x), u;(x), uy(x), ... 1s

simple as we observed from the examples above. However, we can still reduce the size
of calculations by using a modified version of the decomposition method. In this
modified approach, we often need to evaluate the first two components uy(x) and u;(x)

only. In what follows, we introduce the modified decomposition method suggested by
Wazwaz [59].

2.2.1 The Modified Decomposition Method

It 1s worth noting that the Adomian decomposition method may be sometimes
implemented in a different but easier manner in order to facilitate the computational
work. It is recommended to apply the modified decomposition method, developed by
Wazwaz [59], for cases where the nonhomogeneous part f(x) in (1) consists of a
combination of many terms. This modified technique, as will be seen later, will
minimize the volume of calculations and reduce the several integral evaluations that
result in applying the standard Adomian decomposition method.

It is also of interest, before giving a clear discussion of this method, to note that this
modified technique will be carried out with promising results in Volterra integral
equations and nonlinear integral equations in forthcoming chapters. The technique
avoids the cumbersome integrations of other methods.

In the modified method, we split the given function f{(x) into two parts defined by

f(z) = folz) + fi(z), (38)

where f(x) consists of number of terms of f(x), and f;(x) includes the remaining terms of

f(x). We note that a necessary condition is required to apply this approach in that f(x)
should consist of more than one term as shown by (38). In view of (38), the integral
equation (1) becomes



b
ulz) = folz) + fi(z) + )xf Kz, tu(t)dt, a<z <b. (39)

Substituting the decomposition series (10) into both sides of (39), and using few terms
of the expansion we obtain

b

uglz) + uy(z) +ug(z) + --- = folz) + filx) —i—)«f Kz, t)ug(t)dt
b

-I-)af Kz, t) ui(t)dt

b
—I—A/ K(x,t)ug(t)dt
€l

-
(40)
The components uy(x), u(x), us(x), u3(x), ... of the unknown function u(x) can be
completely determined in a recurrent manner if we assignfy(x) only to the zeroth
component uy(x), whereas the functionf;(x) will be added to the formula of the
component u(x) given before in Eq. (14). In other words the modified decomposition
method works elegantly if we set

uo(z) = fo(z), (41)
b
uilz) = fﬂ:z‘j—l—)&f Kz, t)up(t)dt, (42)
b
uglz) = Jx/ Kz, t)uy(t)dt, (43)
b
uziz) = A/ Kz, t)ua(t)dt, (44)

and so on. The above discussed scheme for the determination of the components u(x),
uy(x) , uy(x), uz(x), ... of the solutionu(x) of the equation (1) can be written in a
modified recursive manner by

up(z) = folz), (45)

b
ui(z) = fl[':-:'j—l—)\f Kix, t)ug(t)dt, (46)
a



b
i, iale) = J«f Ki®, thu, (2)dE, =11, (47)

Recall that in most problems we need to use two iterations only where we need to use
(45) and (46).

The modified decomposition scheme can be explained by the following illustrative
examples:

Example 4. We consider here the Fredholm integral equation
1 1
u(z) = &3 — 5 (2¢* +1) 2 +f xt u(t) dt. (48)
1]

To apply the modified decomposition scheme as discussed above, we first split the
function f(x) into

folz) = €37, (49)
and
e Al .
fafz) = 5 {267 1) (50)
Therefore, we set
up(r) = g (51)
and
1
ui(z) = —g(2e84+1) -.r.‘—i-/ rtug(t)dt
]
L G (52)
= —gl (Et-:‘g’ + 1) -J.‘-I—:r.‘fj te”tdt
= 0
In view of (52), we conclude that ,, =0, n > 1. The exact solution
u(zr) = e3°, (53)

follows immediately.

Example 5. We consider here the Fredholm integral equation



u(zx) =sin™ x + (

1
— 1) &= xu(t) dt.

b | =4

(54)

Applying the modified decomposition method as discussed above, we first split the

function f(x) into

and

Therefore, we set

up(x)

uy(z)

folz) =sin'ax,

=, 1
=] i— G — 4 b |_|:f:. if
(2 ).I fn Truglt)d
- 1
= (——')a‘—arf sin~!tdt
2 0

Consequently, the components u,(x) =0, n > 1. The exact solution

1s readily obtained.

ulz) = sin~!z,

Example 6. We consider here the Fredholm integral equation

T 8 ;o
u(z) = sinzr 4 cosx —2x + 3 i / (r —t)ult)dt.
0

We first split the function f{x) into

We then set

u.|:| |:;_1"J| —]

wy(x) =

folz) = sinz +cosz,
m

ilr) = =224 —.

filz) + 5

sinx + cosx,

. fF,
—2r + EI —|—f (x —t)uglt)dt = 0.

(56)

=]

(58)

(59)

(60)

(61)



Consequently, the components u,(x) =0, n > 1. The exact solution
u({r) =s8inz + cosz, (63)
is readily obtained.

Example 7. We finally consider the Fredholm integral equation

T

T
u(z) =1+ z + sec? £ — 3222 — 8wx? — w2x? +f 3202 u(t)dt.  (64)
i

We divide the function f{x) into

folz) = 14 x4+ sec?, (65)
filz) = —322%— 8wx? — w222 09
We then set
up(z) = 14+ sec? 66)
" ’ : X : | el |
ui(z) = —322? — 8war? —a?x? 4 [ ¢ 3227 up(t) dt = 0. R

Consequently, the components u,(x) =0, n > 1. The exact solution
u(z) = 1 +z + sec?, (67)

is readily obtained.

This confirms our belief that the decomposition method and the modified
decomposition method introduce the solution of Fredholm integral equation in the form
of a rapidly convergent power series with elegantly computable terms. However, if f{x)
consists of more than one term, the modified decomposition method minimizes the
volume of the computational work.

2.2.2 The Noise Terms Phenomenon

In [62], Wazwaz examined the noise terms phenomenon which accelerates the
convergence of the Adomian decomposition method. The noise terms phenomenon
demonstrates a useful tool for fast convergence of the solution. In [62], it was proved
that the noise terms phenomenon may appear only for nonhomogeneous PDEs of any
order or nonhomogeneous integral equations of any kind. The noise terms, if exist, it
will appear in all components. The noise terms that may exist in the components u, and

uy, will give the solution in a closed form by using the components uy(x) and u(x).
The noise terms are the identical terms with opposite signs that arise in the



components, and may exist only for nonhomogeneous equations. It was found that by
canceling the noise terms between uy(x) and u;(x), even though u; contains other terms,

the remaining non-canceled terms of uy(x) may give the exact solution of the equation.
Notice that it 1s necessary to verify that the non-canceled terms of u(x) satisfy the PDE
or the integral equation. In case the non-canceled terms of uy(x) did not satisfy the given

equation, or the noise terms did not appear, then we proceed to determine more
components of the series solution.

It was shown by many authors that non homogeneity condition is not sufficient to give
noise terms. Moreover, it is necessary that the zeroth component uy(x) should contain

the exact solution u(x) among other terms, and this only may give noise terms about
components. Moreover, noise terms may appear if the exact solution u(x) is part of the
zeroth component uy(x). The noise terms phenomenon will be explained by studying the

following illustrative examples.

Example 8. Solve the Fredholm integral equation by using the noise terms phenomenon
ulr) =zrcoszr + 2z + f ru(t) dt. (68)

Using the Adomian method, we set the recurrence relation

Mplx) = xcosx+ 2,

P e : (69
Upr1(Z) = / zu(t)dt, k= 0. ¥R
A
0

This gives
UD[J‘] = rcosT + 2T,

w Pyra—

F i I | 4”

u(r) = / rup(t) dt = —2x + iz e
o

The noise terms +2x appear inuy(x) and u(x). Canceling this term from the zeroth
component uy(x) gives the exact solution
ulT) = rcose, (71)

that justifies the integral equation. The other terms of #(x) vanish in the limit with other
terms of the other components.

Example 9. Solve the Fredholm integral equation by using the noise terms phenomenon



T ¥
u{z) = cosz —sinz 4 22 — El’c F f xtu(t) dt. (72)
0

The standard Adomian method gives the recurrence relation

ug(r) = ecosz —sinzr+ 2z — %;rr.
% (73)
SiLile) = / riug(t)dt, k = 0.
0
This gives
tiglzx) = cosx —sinr+ 2r — —z,

’ 2 s
. E] j 5 T e md (74)

wiler) = Tiuglt)dt = =25 + =7 + =—F — =1,

LA ]E L P TRT T B

The noise terms #Z= and +2x appear inuy(x) and u;(x). Canceling these terms from
ug(x) gives the exact solution

u(r) = cosz — sinz, (75 )
that satisfies the integral equation.

Example 10. Solve the Fredholm integral equation by using the noise terms phenomenon

= 1
u(z) = EIJ —z+ztan~lz — / ru(t) dt. (T6)
~1
We use the recurrence relation
wlz) = z—lr —z+ztan~ !z,
_ l (77)
Uy le) = —/ rug(t)dt, k = 0.
i
This gives
Py m =]
Uglf) = —Tr—z+zrtan T,
: : s iy (78)
wiley = =~ zup(t) dt = —ER‘-I— 7.
e

Canceling these terms from uy(x) gives the exact solution

u(zr) = rtan™' . (79)



that satisfies the integral equation.

Exercises 2.2
I nexercises 1-12, solve the following Fredholm integral equations by using the
Adomian decomposition method

. 1
1. ~‘|=E. —if atu(t)dt-

ulx) 3T1-L D't;utj
2. u(z)=2* - E:r+j. rtu(t)dt
0

1
3. u(z) =22 +f rtu(t)dt-
0
4

1
culz) =ef +e71 f u(t)dt-
]

WD

w2
culr)=x+sinr — 1‘[ ult )t
0
.T,-"ﬁ
ulr)=x+cosx — ‘2:.:.‘[ uit)dt-
0
1 w8
u(x) = cos(dz) + Vi / ru(t)dt-
(K]

1
u(z) = sinhz — e 'z 4 f rtu(t)dt-
a

e S

1
u(r) =2+ (1 —e*)z + f au(t)dt-
0

mid
10. u(z) =14sec’ z — f w(t)dt-
g U
11. u(z) =sinz + f 507Ny (1) dt

-1
T3

12. u($J=tan;¢_f 'S Ty (1) dit.

—mf3

In exercises 13-20 solve the given Fredholm integral equations by using the modified
decomposition method.

13. u(x) = tan~1 1112 2 f
14. u(x) =coshzx +|:&-1n111,|’c+{ —1) / (x —t)u(t)dt-
15. u(z) = s + 2zsinh(w/4) — x f BT byt
16 l -~ ~Laye .
- ulz) = + (e’”b - 1) T — :rj- ™™ Fu(t)dt.
=) v1—x° 0 /

1 72 !
17. wiz) = == +E:r—:cj; tan ™! tu(t)dt

i
18. u(z) =cos tz— mr+ f ru(t)dt-
-1



ro1 .
19. u(z) =ztan 1z + Lo Ve il onftiii.
L1 4 2 L.I LI

20. u(z) =zsin lz+1- (% + 1) T+ f zu(t)dt.
0

Hint: £;(x) =x sin ' x + 1.

In exercises 21-26 solve the given Fredholm integral equations by using the noise terms
phenomenon:

sinx by g
21. ulxr) = +x — - :-:+[ u(t)dt-
0

14 sinz 2
e =
22. ulz) = i T xIn(2) +f ru(t)dt
14 cosa 0
. o T
23. ulx) = S g 111|;:2J+/ Tu(t)dt:
14 tanx o
24, ulr)=1+sinzr—x— I??S + [ rtu(t)dt-
0

o

T T T ¥ :
25. ulj:c;l=1+sins-;+-:'mss-;—:21*—§m+3+?+f (2 — f)ult)dt-
F = i}

x

;2
26. u(a‘]=:¢sin1‘—'3—1‘+fr+[ (x —t)u(t)dt-

i

2.3 The Variational Iteration Method

In this section we will present the variational iteration method that was used recently
in the literature to handle both differential and integral equations, linear and nonlinear.
Recall that the Adomian decomposition method gives the components of the
decomposition series by using a recurrence relation. Unlike the ADM, the variational
iteration method gives successive approximations of the solution that may converge
rapidly to the exact solution if such a solution exists. However, for concrete problems
the obtained approximations can be used for numerical reasons.

It is interesting to note that the variational iteration method (VIM) is used for a
differential equation, ordinary or partial, and for an integrodifferential equation. This
means that to use this method for solving integral equations, we first should convert the
integral equation to its equivalent differential equation, or to its equivalent integro-
differential equation, by using any appropriate method. Unlike the Adomian method that
can be used directly to solve an integral equation, the VIM will be employed to the
converted differential or integro-differential equation.

In this section, we will apply the variational iteration method to handle Fredholm
integral equation. The method works effectively if the kernel K(x, ¢) is separable of the
form K(x, t) = g(x)h(¢). The Fredholm integral equation can be converted to an identical



Fredholm integro-differential equation by differentiating both sides, where an initial
condition should also be derived. For simplicity, we will study only the cases where

g(x) =x", n> 1. In what follows we will present the main steps for using this method.
The standard Fredholm integral equation is of the form

b
u(z) = flz) +f K(x, t)u(t)dt, (80)

or equivalently

b
u{z) = flizk+ {'.fl:.l.‘:l/ hit)u(t)dt, K(x,t) = g(z)h(t). (81)
Recall that the integral at the right side of (81) depends on ¢ only, hence it is equivalent
to a constant. Differentiating both sides of (81) with respect to x gives

b
it o o= fJf,t'J —|—_t,'r’(;r‘,'|f hit)u(t)dt. (82)
a

The wvariational iteration method admits the use of a correction functional for the
integro-differential equation (82) in the form

T b

! ! ! LY 5 Y o 5 y .

Unt1{T) = Un(T) -|-/ AlE) (un{ﬁ —f (&) —g |;::;-J|/ hir)iia(r) d’;-) dg,
0 @

(83)

where /4 1s a general Lagrange multiplier. Note that the Lagrange multiplier 4 may be a
constant or a function, and {i, is a restricted value that means it behaves as a constant,

hence Jti, = 0, where 0 1s the variational derivative. The Lagrange multiplier 4 can be

identified optimally via the variational theory as proved in the literature.

The variational iteration method depends mainly on two essential steps. We first
should determine the Lagrange multiplier A(¢) that can be identified optimally via the
variational theory where integration by parts should be used. As stated before, 4 may be
a constant or a function, and it is different from one question to another. A list of some
of these Lagrange multipliers will be given later, but this list does not cover all
differential or integral problems. However for our present use in this chapter, A({) = —1
for first order integro-differential equations. Having determined /A, an iteration formula,
without restricted variation, given by

x (]
|l i ! ""I i b |I|' ;" i ! i & i !
g (B = g i) —/ (um[f,l = E)=0 lﬁ;/ hir)u,(r) z.!‘r) d&, (84)
0 a



1s used to determine the successive approximations u, ,(x), n > 0 of the solution u(x).
Notice thatu,(x) gives the successive approximations of the solution and not the

components as in the case when Adomian method is used. In other words, the correction
functional will give several approximations of the solution.
The zeroth approximation u, can be any selective function. However, using the given

initial value u(0) 1s preferably used for the selective zeroth approximation u, as will be
seen later. Consequently, the solution is given by

u{z) = lim wu,[z). (85)

L — OO

The determination of the Lagrange multiplier is essential for the use of the correction
functional. In what follows, we summarize some iteration formulae that show ODE, its
corresponding Lagrange multipliers for this kind of ODEs, and its correction functional
respectively [18]:

() w + flu@),u(€)=0,A=—1,
Un i1 :un—ff:,l [ﬂ;+_,f‘l;ﬂ;;.u;;l] dE,

(if) '+ f(u€),u'(€),u"(€) =0, A= (£ - 2),
Upp1 = Un + ,,Irf:.l I:‘f i TJ |:un + f':uﬂ'-uﬂ'-un] ':-'!‘E

(i) { w4 flu(f)u (), (8)u (£) =0, A= —F(E— 2P,

T L e e b
Unfi = Un — f._—. %':‘f_:":,lz ["'J-ﬂ, + f(tn, ..., u, )| dE,

{iw),

vy { 2O+ 1), W O, "€, (O u V(€)= 0, ) = (6 ~ 27,
a e o i
uﬁ+1=uﬂ+.ﬁj %(‘5_1\}3 |:un + J(Un,Up,y ey Un ') dlf-

and generally

(v) ul® 4 f(u(&),u' (&), u™(E) =0, = (—1)" =5 (€ — 2) 1),
gt = tn + (=17 fi (€ =)™ uy + Flun, o)) de,
forn>1.
The variational iteration method will be illustrated by studying the following

Fredholm integral equations.

Example 1. Use the variational iteration method to solve the Fredholm integral equation
1

) =we’ — a4 5!‘/ u(t)dt. (86)
0

Differentiating both sides of this equation with respect to x yields



!

1
I e e | -I-f w(t)dt, u(0) = 0. (87)
0
The correction functional for this equation is given by
x , ) 1
Upt1 (2) = Up(2) —f (U-H(EJ —kpt gt —/ Uy (1) ff?‘) dé, (38)
i ]
where we used 4 = —1 for first-order integro-differential equations. It is preferable to

select up(x) =u(0) = 1. Using this selection into the correction functional gives the
following successive approximations

uo(z) = 0,
i Ty 1 i :
ur(zr) = wuo— J; (up(€) — et — e~ +1— [ uo(r)dr) dé = re* —z,
e T Fiin i - 1 P i
ug(zr) = up— [ (wy(€) — &ef —ef + 1— [ wa(r)dr) dé = ve* — Lo,
i D f F 1 o :
us(z) = ug — [y (ua(€) — &e5 —ef + 1 — [} ua(r)dr) dé = ze* — gz,
ty(z) = 2" — =gx,n =1
(89)
The VIM admits the use of
) = lim u,[z)=we". (90)
T — O

Example 2. Use the variational iteration method to solve the Fredholm integral equation
. % " o N
u(r)=cosx—x+ ;rrf u(t)dt. (91)
0
Differentiating both sides of this equation with respect to x gives
L . -g. \ ; \
i [z} ==pgine—1 —|—f w(t)dt, u(0) = 1. (92)

The correction functional for this equation is given by

= ; z
Un 12} = BalT) — f ('-!L,.L'.f:.' +BinE 4 L= f Un(T) r:f-r) d¢, (93)
0 0

where we used A = —1 for first-order integro-differential equations. The initial condition
u(0) =1 is obtained by substituting x = 0 into (91).



We can use the initial condition to select uy(x) = u(0) = 0. Using this selection into
the correction functional gives the following successive approximations

uglel = 1
u1(r) = uolx)— f;’ (u,}(&j SEE 41— U.'.jl ) dr) dé
cosT — 1+ Xz,
uz(x) = uilz) —f; (Hllf.l-i-‘-:ll'lcE-FJ.— g um‘;dr) ds
= (comE:==x) :|z= 81|+1—;1
uz(r) = ug(r) —f; (uzl@ +8in&+4 1= ﬁ'& uzlmm) d&
= Le:u:ﬁ*.:—’.:J+|.r——21n—|—n—;r——.1|-|—L—3ﬂ—---j-|—---~
(94)
and so on. Canceling the noise terms, the exact solution is given by
u(z) = coez. (95)

Example 3. Use the variational iteration method to solve the Fredholm integral equation
1 1

u(z) =2 - =2 —I—/ ru(t)dt. (06)

, 3 i

Differentiating both sides of this equation with respect to x gives

: 1 !
i )i =25 = 3 +f u(t)dt, u(0) = 0. (97)
The correction functional for this equation is given by

: . "o 1 ! s
Ui () = Un(2) —/ (un{é:-} — 28+ 3 —/ Un(r) dr) dt. (98)
i 0

The initial condition #(0) = O is obtained by substituting x = 0 into (96). Using this
selection into the correction functional gives the following successive approximations

wlz) = 0,

wizr) = 22— %;r:
o . it

ug(z) = 22 —{u, (99)
Ry 3 1

ug(r) = x*— =T,

and so on. This in turn gives



. 1,1 .
Un{T) = - 7(—‘1”_12: o (100)
s 2 2.- )
This converges to the exact solution
u(z) = 22 (101)

Exercises 2.3

Solve the following Fredholm integral equations by using the variational iteration
method

J—

1 1
cu(z)=2"— =z +f wtu(t)dt
5 &
culz)=¢e" —a+ f tu(t)dt
2 "
ulr)=—-x+ f rtu(t)dt
3 i}

12

1
u(z) =2 +24 — _i:r s f rtu(t)dt
s
ulr) =e" +2x — I/. wtu(t)dt
30
ulr)=e"" +2r+ 5[ ztu(t)dt

1
1 1
ulz) =1+ — 1—,}:;2 + f P tu(t)dt
& i}
1

® N U oA W

u(z) = e* — 2° +f 2 tu(t)dt
i

2.4 The Direct Computation Method

We next introduce an efficient traditional method for solving Fredholm integral
equations of the second kind (1), called the direct computational method. Recall that our
attention will be focused on separable or degenerate kernels K(x, ¢) expressed in the
form defined by (2). Without loss of generality, we may assume that the kernel of (1)
can be expressed as

K (z,t) = g(z)h(t). (102)

Accordingly, the equation (1) becomes

b
u(z) = flz) + hg(;rj] hit)u(t)dt. (103)



It is clear that the definite integral at the right hand side of (103) reveals that the
integrand depends on one variable, namely the variable . This means that the definite
integral in the right hand side of (103) is equivalent to a numerical value a, where a 1s a
constant. In other words, we may write

b
z'1=/ hit)u(t)dt. (104)

It follows that equation (103) becomes
u(x) = flx) + Aagl(x). (105)

It 1s thus obvious that the solutionu(x) is completely determined by (105) upon
evaluating the constant a. This can be easily done by substituting Eq. (105) into Eq.
(104). We point out here that this approach is slightly different than other existing
techniques in that we substitute (105) into (104) and not in (103) as used by other texts.

It 1s worth noting that the direct computation method determines the exact solution in
a closed form, rather than a series form, provided that the constant a is evaluated. In
addition, this method usually gives rise to a system of algebraic equations depending on
the structure of the kernel, where sometimes we need to evaluate more than one constant
as will be seen in Examples 3 and 4. For linear Fredholm integral equations, we obtain
one value for a, or one value for each of o and £ if these two constants are used. This is
due to the fact that linear equation has a unique solution.

In what follows, we examine four illustrative examples by using the direct
computation method.

Example 1. We will use the direct computation method to solve the following Fredholm
integral equation

= f 1

o 1 .

ulr)=-x + —/ rt u(t)dt. (106)
\ '[_'I .} |:| \

As indicated before we set

1
¥ =/ tult)dt, (107)
0

where o 1s a constant that represents the numerical value of the integral (107). The
equation (107) carries (106) into

B A .
u(e) = (— e —n) o (108)
. 673 \



To determine a, we substitute (108) into (107) to obtain

o= | (Bl ) t2dt
o= /D B #F Eﬂ it,
so that by integrating the right hand side and solving for a we find

o =

L
=
Substituting (110) into (108) yields

u{r| = =z,

the exact solution of the given Fredholm integral equation.

(100)

(110]

(111)

Example 2. We will use the direct computation method to solve the following Fredholm

integral equation

T
u(z) = sec®z — 1 +f u(t)dt.

Proceeding as before we set

.5.
a =f w(t)dt,
0

and by substituting this into (112) yields
u(z) =sec®r — 1+ a.

Inserting (114) into (113) we find

%
o= f {HN'E!‘ -1+ t‘r} dt,
0

so that
o =:1.

Substituting (116) into (114) gives

u(x) = sec?z,

the exact solution of the Fredholm integral equation of Example 2.

(112)

(113)

(114)

(115)

(116)

(117)



Example 3. We will use the direct computation method to solve the following Fredholm
integral equation

1
u(xr) = —8r — 627 + / (202t* + 122%t) u(t)dt. (118)
]

Noting that the kernel here is separable and consists of two terms, we can rewrite Eq.
(118) as

1 1
u(z) = —8x — 627 + :zm:f t2u(t)dt + 1:3:.:-2f tu(t)dt. (119)
0 0
In a manner parallel to the preceding example, we set
1
0 = f t2u(t)dt, (120]
0
and
1
8= f tu(t)dt, (121)
i

where o and f are constants. Consequently, Eq. (119) can be expressed in the form
u(z) = (200 — 8)x + (125 — 6) 22, (122)

Substituting (122) into (120) and (121) we obtain
1
o= / [(20a — 8)t 4 (1283 — 6) t?] tdt, (123)
and
1
g = f [(200 —8)t 4 (125 — 6) t‘.z] tdt. (124)
i

Integrating the right hand side of equations (123) and (124) yields the system of
equations

ba4+38 = 4, (125)

40+ 128 = 25, (126)



so that by solving this system we find

) 7 ,
= E 8= E (127)

Inserting (127) into (122) gives
u(z) = a2 + . (128)

Example 4. We will use the direct computation method to solve the following Fredholm
integral equation

1
u(z) = 14 92 + 222 + 2* —[ (202t 4 102%%) u(t)dt. (129)
0

Noting that the kernel here is separable and consists of two terms, we can rewrite Eq.
(129) as

1 1
u(z) =1+ 9+ 222 + 23 — 21]3*/ tu(t)dt + 123*2f t2u(t)dt. (130)
i 0

In a manner parallel to the preceding example, we set
1
n-=f tu(t)dt, (131)
and
1
B = / t2u(t)dt, (132)
0

where o and f are constants. Consequently, Eq. (130) can be expressed in the form
u(z) =14 (9 — 20a)z + (2 — 108) 22 + 25, (133)

Substituting (133) into (131) and (132) we obtain
1
o= f [1+(9—20a)t + (2 — 108) £* + t7] tdt, (134)
0
and

1
A= f [14 (9 —20a)t + (2 — 108) t* + t3] t3dL. (135)
]



Integrating the right hand side of equations (134) and (135) yields the system of
equations

2300 + 758 = 126, (136)
1000 + 603 = 63, (137)
so that by solving this system we find
] .
3= % A= % (138)
Inserting (138) into (133) gives
u(z) = 1— 22 + 28 (139)

In closing this section, we point out that the direct computation method introduces a
very direct technique to formally determine the solution of Fredholm integral equation.
In this method, the Fredholm integral equation will be transformed into a more readily
solvable integral. Moreover, the direct computation method introduces the exact
solution in a closed form rather than a series form as in the case of the decomposition
method or the variational iteration method. The other traditional methods, that will be
discussed in the forthcoming sections, also determine the solution in a series form, but
in a different approach than the decomposition method or the variational iteration
method. We remark here that the direct computation method was introduced in this
section in a slightly different manner than other texts.

Exercises 2.4

Solve the following Fredholm integral equations by using the direct computation
method:

1
l. u(z) =ze* —x +f zu(t)dt.
]

25 ] .
u(z) = 2% — B f rtul(t)dt

[

T
ulr) =axsinre — x + f xu(t)dt-
(1]

2.
3.
. ! ,
4. uiz) = e** — i [EE +1) =z +f ztu(t)dt-
0
w4

5. u(r) = sec’ r — 2 + f u(t)dt-

4 0
6.

1 lT.l'li
ulx) =sin(2x) — 5:-‘:+ f zu(t)dt-
0



: . 1
7. u(zr) =22 — i:r - +f (x+ 2) ult)dt-
T
T IT.I'IZ
8. u(r) =sinr +cosr — 5% + f ztu(t)dt-
0

/3
9. ulr) =secrtanx +x — f xu(t)dt-
o

1
10. it B G i
ulz) == —ﬁ£—24+2 : (14 x—t)ult)dt

T - /2
11. ulr)=sinr — — + — xtw(t)dt-
TR
1

12. ulz) =1+ In{zt)u(t)dt, 0<z<l1.
0+

9 6
13. w(z) = ﬁf + Ef o tu(t)dt-
i

1 w4
14. u(z) =1+ E[ secs z u(t)dt-
o

2.5 The Successive Approximations Method

In this method, we replace the unknown function under the integral sign of the Fredholm
integral equation of the second kind

b
u(z) = f(z) —|—)~f K(z.t)u(t)dt, a <z <b, (140)

by any selective real valued functionuy(x) ,a <x <b. Accordingly, the first
approximation u(x) of the solution u(x) 1s defined by

b
ui(z) = flz) + }-./ K(z,t)uo(t)dt. (141)

The second approximation of u,(x) of the solution u(x) can be obtained by replacing
up(x) in (141) by the obtained approximation u(x), hence we find

b
us(xr) = flz)+ }-./ Kz, t)us(t)dt. (142)
Ll

This process can be continued in the same manner to obtain the nth approximation. In
other words, the various approximations of the solution u(x) of (140) can be obtained in
a recursive scheme given by



up(r) = any selective real valued funection

b (143)
Unlz} = f{;r.‘j-l—)xf Kz, tyun_1(t)dt, n > 1.

a

Even though we can select any real valued function for the zeroth approximation u(x),
the most commonly selected functions for uy(x) are 0, 1 or x. At the limit, the solution
u(x) 1s obtained by

u(z) = lim w,(z), (144)

TR— OO

so that the resulting solution u(x) is independent of the choice of u(x).

It i1s important to distinguish between the recursive schemes used in the Adomian
decomposition method and in the successive approximations method. In the
decomposition method, we apply the approach to determine several components of the
solution u(x) where, in this case

e )
w(xr) = E un(T), (145)
n=(

so that the zeroth component u(x) 1s defined by all terms that are out of the integral sign

or part of these terms if the modified version is used. However, in the successive
approximations method, we apply the above recursive scheme (143) to determine
various approximations of the solution u(x) itself, and not components of u(x). Further,
we should note here that the zeroth approximation u(x) is not defined but rather given

by a selective function, and as a result the solution u(x) is given by the formula (144).
The successive approximations method will be illustrated by the following examples.

Example 1. Consider the Fredholm integral equation
1
ey =&"F {_—1/ u(t) dt. (146)
0

As indicated above we can select any real value function for the zeroth component,
hence we set

uplz) = 0. (147)

Substituting (147) into the right hand side of (146) we find

1
uy () =e* 4 e / g (1) dt, (148)
0



and this gives the first approximation of u(x) by
uy (x) = €.

Inserting (149) into (148) to replace uy(x) we obtain

1
ua(zx) = e* + g f et dt,
0

where by integration we determine the second approximation of u(x) by

wgfx] =e"+4 1 — e 1,

Continuing in the same manner we find the third approximation of u(x) given by

ug(z) =e*+1—e2,
Proceeding as before, we obtain the nth component
tUnlr) =64+ 1— g, o > 1.
Using (144), the solution u(x) of (146) is given by
u(z) = lim wugx(z),
o= 30
= iy (r:'“c +1- r:-'_"r"'_ll')
Te— 20
= w41,

obtained upon evaluating the limit as n — oo.

Example 2. We next consider the Fredholm integral equation
1
u(r) =x+ /Hf riu(t)dt.

The zeroth approximation may by selected by
up(z) = 0,

where by substituting this in the right hand side of (155) the first approximation
wilx) =,

follows immediately. Proceeding in the same manner we find that

(149)

(150)

(151)

(152)

(153)

(156]



us(z) =z + A rtidt, (158)
i ]

so that
: A ..
U2 ()} = = + 32 (159)
In a similar manner we obtain
1 A
g2} =2+ }\] xt (1 + ;) tdt, (160)
0 b
which yields
I - n.- 1] }l - ..}"2 - i L %
us(z) =2+ 37 ¥ 5 % (161)
Generally we obtain for the nth approximation
: A 2 Ar—l :
i (2} =2 F ER‘-F i_I:H_ i e o om=1: (162)
Consequently, the solution u(x) of (155) is given by
u(z) = lim u,(z),
i — OO
A 3 PR,
— ol B Gl (163)
]111_1}1:1’; (:c 4 37 = gz + )
== mi : e X3

To show that u(x) obtained in (163) does not depend on the selection of uy(x), we
will solve the equation (155) by selecting

up(x) = . (164)

Using the new selection of uy(x) in the right hand side of (155) the first approximation
. A |
gy = B (165)

is readily obtained. Proceeding as before we thus obtain

1
: A :
ua(x) =z + }xf xt (t‘- + Et‘) dt, (166)



which gives

2

(x) =1+ —x+ —r. (167
g () J-|—31+ ﬂ? l )

In a parallel manner we find
f ) . . '}"2 i }"n . =1 (168"
UnplT) =1 +§J‘+3—23++3—HJ‘.‘ n - 1. { _J

Accordingly, we obtain
3

u(x) = - )\-,t.; 1 T (169)

which 1s consistent with the same result obtained above in (163).

Exercises 2.5

Solve the following Fredholm integral equations by using the successive
approximations method.:

J 3 1
1. utz) = EL = atu(t)dt.
ulr) 12’-:.‘+__L : atul(t)
6 51
2. u(:rjl=::1‘3+:/ i tu(t)dt
d i o

13 x
3. u(z) = 5= 1].; wtu(t)dt-

s

1
ulr) =1+ f ru(t)dt-
0 ,

w2
culxr) =sinr+ f sinx cos f u(t)df-
]

9,

u(zr) = — LA P murfjc.ia‘
& - 2 2 I:I %
1 1 f~i3
ulr) = —— 4 secxrtany + — w(t)dt -
4 4/,

1
u(z) =coshz+ (1—e™ )z - f wtw(t)dt-
0

© % N o

: ; E ¥
culr)=¢e" — (sinhl)x + E[ ru(t)dt.
=1

w2
10. ulx =ls-:+ sinr — = ()t
L J 4 4 ||. &
0

2.6  The Method of Successive Substitutions



This method introduces the solution of the integral equation in a series form through
evaluating single integral and multiple integrals as well. The computational work
needed in this method is huge compared with other techniques.

In this method, we set x = ¢ and ¢ = ¢#{ in the Fredholm integral equation

b
u(z) = f(zx) +th Kz, tju(t)dt, a <z <b, (170)
to obtain
b
u(t) = f(t) + A/ K (t, ty)u(ty)dty. (171)

Replacing u(¢) in the right hand side of (170) by its obtained value given by (171)
yields

b
uf_;” =f[’.!] —|—)&[ ffli.l\ T}flif}r_’fif-

B " (172)
+ A2 Kz, r‘.jf K (t,t1)ulty )dt,dt.
Substituting x = ¢, and # = ¢, in (170) we obtain
b
'Eillfljl = ffflj+}-.f _:ri-l.frl.,!lz_lli'.fl.rfzjt”g L'lT.:IJ

Substituting the value of u(#,) obtained in (173) into the right hand side of (172) leads to

b
wliz)y = flz) -I-Pa/ Kz, t)fit)dt
S
-I-P'F/ / K (z, t)K(t, t1)f(t1)dt dt

& b b
+ ‘)&3‘/' / / K |2, f’.:lf‘i.- I:if-., lelfi-lii‘-l. f-g;lﬂ-liﬂg;lfff-gd?lff-!'_

(174)

Accordingly, the general series form for u(x) can be written as



b
ulz) = fix) )xf Kz, t)f(t)dt

—I—)«\E/ f Kz, t)K(t,t1)f(t1)dt1dt

+A3f f f Kz, t)K(t,t)K (1), t2) f(ta)diodt dt,

and so on. We note that the series solution given in (175) converges uniformly in the
interval [a, b] if AM(b — a) < 1 where |K(x, t)| < M. The proof of the theorem appears in
the texts [16], [19], [20] and others. We remark here that in this method the unknown
function u(x) 1s replaced by the given function f(x) that makes the evaluation of the
several multiple integrals possible and easily computable. This substitution of u(x)
occurs several times through the integrals and hence this is why it is called the method
of successive substitutions. The technique will be illustrated by discussing the

following examples.

Example 1. We solve the following Fredholm integral equation

st S OO v
u(z) = e + x/ rtu(t)dt,
il 5 Jo

by using the method of successive substitutions.
Substituting x = 4, f(z) = £z, and K(x, #) = xt into (175) yields

o 1o i it a3 1 O el ;
wzr) = —r+= | —at?di+ — bRl g e,
) 6 8Jp, 6 8 f, Jo 6

or equivalently

so that we obtain the solution
ulr) = 4z,
upon evaluating the sum of the geometric series.

Example 2. We next solve the Fredholm integral equation

: 1 T2
ey =1+ I/ cos x u(t)dt,
* Jo

175)

(176)

(178)

(179)

(180)



by using the method of successive substitutions.
Substituting x = 1, r, f(x) = 1, and K{(x, ¢) = cos x into (175) yields

1 'Tl',."lz 1 fr;E ™ ..'"2
u(r) =1+ —f cosx dt + —f f cosx costdtydt+ ---
‘ 4 Jo 16 Jy 0

and this will yield

T T
—COST + —— COS T + ) .
8 32

u(z) =1+ (
which gives the exact solution
w(zx) =1+ E COS T,
obtained upon using the sum of the infinite geometric series.

Exercises 2.6

, (181)

(182)

(183)

Solve the following Fredholm integral equations by using the successive substitutions

method:

i 3 i
1. ey i d tu(t)dt
u(x) EFRH_-L d ztu(t)

T2
culz)=1-— —f cos rult)dt-
1o
Z 1 1
culx) = E:-:.‘+ 14+ E/.:. atu(t)dt-

w2
- u(x) =cosx+ E[ sin ru(t)dt-
0
s 1 [,
T4 = x-tu(t)dt-
A

2
3
4
5
6. ufpf = i lf r3tu(t)dt-
7
8
9

ool =1

10 2 i

/2
- u(x) =sinr+ 3 f cos ru(t)dt.
(1]

T2
culr)=1+ —f sin ru(t )df-
2 fy
1

T4
culz) =1+ —f sec? x u(t)dt-
0

o]

1 /3
10. ulr) =1+ —f secx tan o u(t)dt-
o

oy ]

2.7 Comparison between Alternative Methods



Having finished the mathematical analysis of the methods that handle Fredholm integral
equations, we are now ready to carry out a comparison between these methods. When it
comes to selecting a preferable method among the five methods for solving linear
Fredholm integral equations, we cannot recommend a specific method. However, we
found that if the separable kernel K(x, ¢) of the integral equation consists of a
polynomial of one or two terms only, the direct computation method might be the best
choice because it provides the exact solution with the minimum volume of calculations.
For other types of kernels, and if in addition the nonhomogeneous partf(x) is a
polynomial of more than two terms we found that the Adomian decomposition method
or the Variational Iteration Method, are proved to be effective, reliable and produces
a rapid convergent series for the solution. The series obtained by using the
decomposition method may give the solution in a closed form or we may obtain an
approximation of high accuracy level by using a truncated series for concrete problems.

It is worth noting that the decomposition method expands the solution u(x) about a
function, instead of a point as in Taylor theorem.

To compare the decomposition method with the successive approximation method,
it is clear that the decomposition method is easier in that we always integrate few terms
to obtain the successive components, whereas in the other method we integrate many
terms to evaluate the successive approximations after selecting the zeroth
approximation. The two methods give the solution in a series form.

In addition, we point out that the method of successive substitutions suffers from the
huge size of calculations in evaluating the several multiple integrals especially if the
function f(x) is a trigonometric, logarithmic or exponential function. However, the
method is directly based on substituting the unknown function u(x) under the integral
sign by the given function f(x).

It is to be noted that, for a first course in integral equations, we introduced five
methods only to handle Fredholm integral equations, noting that other traditional
techniques are left for a further study.

To achieve our goal of the comparison between these methods, we demonstrate this
comparison by discussing the following example by using all various methods.

Example 1. We solve the following example

1
51 1
u{r) = =x+ = atu(t)dt, (184)

by using the five alternative methods discussed before.

(a) The Adomian Decomposition Method: In this method, we have to set the zeroth
component u, by all terms outside the integral sign, hence we have



5

uglz) = rea (185)
>

Using (185) we obtain the first component u(x) by
. 1§ ipth .
uylx) = —::e*f i_r?.:fr. (186
‘ il %
so that
THEES éa:. (187)
Proceeding in the same manner we can easily obtain

: i ;
UalF)] = —i. (155)
bal 1) ﬁg.r (185)

Noting that in the decomposition method we have

w(r) =wup+us +uz+uz+---, (189)
so that
: D 1 1 1 :
u(z) = =z l+—_+.—+.—+"')~ (190)
G 6 62 @° :

and this gives the exact solution
u(z) = z, (191)
obtained by evaluating the sum of the infinite geometric series.
(b) The Variational Iteration Method: Differentiate both sides gives
g B e " s
uiz)==+ _—/ tu(t) dt, u(0) = 0. (192)
f_‘r .2 0
The correction functional for this equation is given by

T = 1
i b i kY i i ! -_" i 1 i LR
Up11(T) = Uy (X) —f (aenlﬁg ~3 —f Py, (7) L‘Er) dt. (193)
0 0

The initial condition #(0) = 0 is obtained by substituting x = 0 into (96). Using this
selection into the correction functional gives the following successive approximations



wolz) = 0,

'b-'-l |:;;]_‘:| = %ﬁ
uz(z) = %.I
us(r) = 22, (194)
PR 05
ug(r) = 2,
Malmy = %I.
This converges to the exact solution

u(z) = . (195)

(¢) The Direct Computation Method: As discussed earlier we set

1
Cx :f tu(t)dt, (196)
0

where o 1s a constant that represents the numerical value of the integral (196). The
equation (196) carries (184) into

, 5 1
wlr)= |-+ —a |z (197)
0= (3+1) w7

To determine a, we substitute (197) into (196) to obtain

1 ;
5 1 |
a =/ (i_ e -a) 2t (198)
o \6 2

so that by integrating the right hand side and solving for a we find

1
= —, (199)
3 . )

Substituting (199) into (197) yields
u(zr) = z, (200)
the exact solution of the equation (184).

(d) The Successive Approximations Method: In this method we select the zeroth
approximation by

ug(z) = 0. (201)



Following the technique that was discussed above, the other approximations of the
solution u(x) can be easily obtained by

uy () = ig : (202)
' 6 .
a9, 9 pratEn

uz(z) = (E +o ) (203)
5 8 5 b 5 R

uzlr) = (E + [‘;._2 + [‘;._3) xr, l.?':;'—ij

and so on. Accordingly, the nth component is given by

. 5.8 B . B Y. e o
Unlx) = E+ﬁ_2+ﬁ_3+ﬁ_4+.”+ﬁ_’3 @ ek (205)
Consequently we find
u(z) = Hm u.(z),
Te—r 0

5 1 1 1 1 fone)
e i - ’ — — — — e I._E'[}"I'JJI

nlll}]’.{f: 6 (l i (5] t 62 t 3 b G4 x )

= ;]'_“I
the same result obtained above.

(e) The Method of Successive Substitutions: In this method we have to set K(x, ) =
xt, » = L and f(z) = s, hence we have

i o 1 2,4
wr) = =14 = —Jf i"—|— —J 3t Aty dt -
’ 'r:P 2 0

5 (1+l+l+ ) (207)
= & 6

= I

This confirms our belief that the Adomian decomposition method, the variational
iteration method, and the direct computation method reduce the size of calculations and
provide improvements if compared with the other traditional techniques. In addition, the
Adomian decomposition method gives the components of the solution u(x). However,
the variational iteration method gives the successive approximations of the solution u(x)
instead of the components.



2.8 Homogeneous Fredholm Integral Equations

In this section we will study the homogeneous Fredholm integral equation with
separable kernel given by

b
n[m_‘;:)&f Kiz. t)u(t) dt, (208)

obtained from (1) by setting f(x) = 0. It is easily seen that the trivial solution u(x) =0 1s
a solution of the homogeneous Fredholm integral equation (208). In this study our goal
will be focused on finding nontrivial solutions to (208) if exist. We can achieve our
goal by introducing the technique that will enable us to determine the nontrivial
solutions to (208). Generally speaking, the homogeneous Fredholm integral equation
with separable kernel may have nontrivial solutions. Our approach in obtaining these
desired solutions will be based mainly on the direct computation method that was
employed effectively for nonhomogeneous Fredholm integral equations. We point out
that Adomian decomposition method is not applicable for the homogeneous Fredholm
integral equations. This may be related to the fact that the nonhomogeneous part f{x)
does not exist in this type of problems, and therefore the zeroth component u(x) cannot

be defined.

We recall that the direct computation method reduces the equation to an algebraic
equation if the kernel consists of one term only, or to a system of algebraic equations it
the kernel contains many separable terms. Additional discussions will be required for
determining possible values of A that will give rise to the nontrivial solutions as will be
discussed soon.

Without loss of generality we may assume a one term kernel given by

K(x,t) = g(x) h(t), (200)

so that (208) becomes
b
uiz) = Ag{m}f hit)u(t)dt. (210)
Using the direct computation method we set
b
= f hit)u(t)dt, (211)

so that (210) becomes

u(xz) = Aag(x). (212)



We note that a = 0 gives the trivial solution u(x) = 0, by using Eq. (212), which is not
our desired goal in this study. However, to determine the nontrivial solutions of (208),
we need to determine the values of the parameter A by considering a # 0. This can be
done by substituting (212) into (211) to obtain

b
n = }m/ hit)g(t)dt, (213)
or equivalently
b
o ,:af h(t)g(t)dt (214)

which gives a numerical value for A # 0 by evaluating the definite integral in (214).
Having evaluated A, the nontrivial solution given by (212) 1s determined.

For separable kernels that contain more than one term, the method reduces the
homogeneous Fredholm integral equation to a system of algebraic equations as will be
seen from the examples below.

In closing this section we point out that the particular nonzero values of A that result
from solving the algebraic system of equations are called the eigenvalues of the kernel.
Moreover, substituting the obtained values of A in (212) gives the usually called
eigenfunctions of the equation which are the nontrivial solutions of (208).

The following illustrative examples will be used to explain the technique introduced
above and the concept of eigenvalues and eigenfunctions.

Example 1. We first solve the homogeneous Fredholm integral equation with one term

kernel
1
ujz) = .lf x u(t)dt. (215)
0
As indicated above, (215) becomes
u(z) = Aazx, (216)

where

1
t1=/ w(t)dt. (217}

Substituting (216) into (217) yields



1
a = Jm-f tdt,
0

which gives
o= %)\(h
so that the eigenvalue of the kernel
A=2,

obtained by noting that o # 0. Substituting (220) into (219) yields

0 = (k,

(218)

(219)

(220)

(221)

which indicates that o 1s an arbitrary constant. Using (220) and (221) in (216) leads to

the eigenfunction of the equation given by
u(z) = 2o,
obtained upon using (216).

Example 2. We next solve the homogeneous Fredholm integral equation

2 i
u(r) ==X cos(x + t)u(t)dt.
T Jo

The equation (223) can be rewritten as

u(z) = —Acos Jf cos tu(t)dt — —Asin ;rf sin tu(t)di,
(] 0

il il

or by
: 2 .
u(z} = —A(acosz — Ssinz),
fil

where

T
a = /{*li}m‘-u[t‘.]d!‘.
0

T
g = f&:int‘.u[ﬁ]dt.
0

(222)

(223)

(224)

(225)

(226)

(227)



Substituting (225) into (226) and (227) and integrating yield

a = Ao, (228)
and
A= —M\3. (229)
For a # 0 and f # 0, we obtain the eigenvalues
Ai=1, and Ay =-—1. (230)
Substituting A; = 1 in (228) and (229) yields
a=a, and B=0, (231)

which gives the eigenfunction corresponding to 4; = 1 by

- .
(T} = —axcoB T, (232)
. !

obtained upon using (225), where « is an arbitrary constant.
Similarly substituting 1, =—1 in (228) and (229) yields

a=0, and fA=F5, (233)

which gives the second eigenfunction corresponding to 4, =—1 by

. 2 .
Us(r) = —fFsinry, (234)
m

obtained upon using (225), where f is an arbitrary constant.

Example 3. We finally solve the homogeneous Fredholm integral equation with two-
term kernel

1
w(xr) = A/ (62 — 28 )u(t)dt. (235)
0

Equation (235) can be rewritten as
u(zr) = 6Aar — FA, (236)

where



1
g = fu{z‘}ﬂ’t
0
1
B = f?a‘.u(t)dr.
0

Substituting (236) into (237) and (238) and integrating yield
(1—3X)a+ A8 =0,

and

—4da+ (14+ A)3=0.

For a # 0 and S # 0, we obtain the eigenvalues
A=Az =1.
Substituting A; = 1 in (239) and (240) yields

B =2

Consequently the eigenfunctions corresponding to A; =4, = 1 are given by

U (2} = us(zr) = 6or — 2a,

obtained upon using (236).

Exercises 2.8

(237)

(238)

(230)

(240)

(241)

(242)

(243)

Find the nontrivial solutions for following homogeneous Fredholm integral equations by

using the eigenvalues and eigenfunctions concepts

1
1. u(z) = }t/ 2tu(t)dt-
04
culx) = A[ 4xu(t)dt:
0

1
culx) = J.f :recurrjf.!f-

2
3
4. ulxr) = }tf cosrsint w(d)df-
5. u(z) = —}L[ sin(x + f)u(t)dt.
6

culx) = —}L[ cos(x — t)u(t)dt-
T Ja



7. ulx) _}'-.f sec rtan t u(t)dt
8. uui—}\/ sec” ru(t)dt-
9. ?.,!IL:}'.:I=,:"./‘ sin™! zu(t)dt-

i

1
10. u(zx) = A/ (3— g:-:,'lfumdf-
i .

2.9 Fredholm Integral Equations of the First Kind

It was stated before that in Fredholm integral equations of the first kind, the unknown
function u(x) appears only inside the integral sign. The standard form of the Fredholm
integral equations of the first kind reads

b
flz) = ,h/ Kz, t)u(t)dt,z € D, (244)

where f(x) 1s the data. The occurrence of u(x) under the integral sign makes it difficult to
apply the aforementioned method. It was proved in the literature that the data function
f(x) must lie in the range of the kernel K(x,#). This means that if we set the kernel by

K(x, t) =¢€* cost, then for any u(x), the resulting data f(x) must be a multiple of ¢*,
otherwise the solution u(x) does not exist. The Fredholm integral equations of the first
kind appear in many physical models such as radiography, spectroscopy, cosmic
radiation, image processing and in the theory of signal processing.

In the literature, the Fredholm integral equations of the first kind is considered ill-
posed problem, and this indicates that this first kind Fredholm equation may have no
solution, or if a solution exists it is not unique and may not depend continuously on the
data [40].

There are many methods that were used to investigate the Fredholm integral equations
of the first kind, analytically and numerically. However, in this text we will use the
method of regularization that transforms first kind equation to second kind equation.
Having converted the equation from the first kind to the second kind enables us to apply
any appropriate method that were presented in this chapter.

2.9.1 The Method of Regularization

The method of regularization was introduced in [33, 40]. The method of regularization
converts the linear Fredholm integral equation of the first kind



b

flzr= / Kz, t)u(t)dt,z € D, (245)

to the Fredholm integral equation of the second kind in the form

b
el @) = flz} —f K (z,t)u(t) dt, (246)
or equivalently

g Douper 16 ¥ sen s o g
Ue(x) = ?furj = K(z,t)uclt) dt, (247)

where ¢ 1s a small positive parameter. It is obvious that the solution u, of equation (247)
converges to the solution u(x) of (245) as « — O.

In what follows we will present two illustrative examples. Our focus will be on
transforming the first kind equation to a second kind equation by using the method of
regularization, and hence we can use any appropriate method.

Example 1. Combine the method of regularization and the direct computation method to
solve the Fredholm integral equation of the first kind

1
1 o o, : .
—f-‘z*zf a2®=2t o (t) dt. (248)
2 i

Using the method of regularization, Eq. (248) becomes

- %
Ue(x) = iﬁz*’ — l/ e2=— 2y (1) dt. (249)

" 26 E I:I o4 "
Using the direct computation method, Eq. (249) becomes

. o | o, o ST,
Ul ) = [(=— — —;62"". (250)
; " 2e €

where

1
7
o =/ e~ 2y, (t) dt. (251)
0

To determine a, we substitute (250) into (251), integrate and solving to find that




This in turn gives

The exact solution is given by

u(z) = lim u,(z) = e**. (254)
! e—+0 * g

Example 2. Combine the method of regularization and the Adomian decomposition
method to solve the Fredholm integral equation of the first kind

| =

1
P f xtult) di. (255)
Using the method of regularization, Eq. (255) can be transformed to
He €

gos 1 ! i —
UT) = —2— = ztu(t)dt. (256)

To use the Adomian decomposition method, we first select ufo(x) = 0. Consequently, we
obtain the following approximations

U, {x) = é&‘ :
U (r) = —mipo,
Ue, (1) = = (257)
?fegl;ﬂ";l = —ﬁ'ilﬂ
and so on. Based on this we obtain the solution
- 3 (258)
Ue| T | = = ————T. (23 )
ST B(1 4 3¢) :
The exact solution u(x) of (255) can be obtained by
. . 3
w(r) = lim u.(r) = =x. (259)
O 5 :

It is interesting to point out that another solution to this equation is given by

u(z) = 2°. (260)



This is normal to get more than one solution because the Fredholm integral equation of
the first kind 1s 1ll-posed problem.

Exercises 2.9

Combine the regularization method with any other method to solve the Fredholm integral
equations of the first kind

1 1
1-—:c=f wtu (t)dt
L L p
2. —e‘I:l{ e" " Tu(t)dt
0
3
3-1.1::/ wt?u(t)dt
} i
4 2 5 ! 3.0
c =1t = et ult)di
=1
"IT

T
. :Ecos:f: = f cos(x — t)u(t)dt
0

6 _ T ™ i ;
c— —cosT = sin(x — ¢)u(t)dt
2 i /



Chapter 3

Volterra Integral Equations

3.1 Introduction

In this chapter we will be concerned with the nonhomogeneous Volterra integral
equation of the second kind of the form

u(z) = flz) + A K (z, t)u(t)dt, (1)
0o
where K(x,?) is the kernel of the integral equation, and A 1s a parameter. As indicated
earlier the limits of integration for the Wolterra integral equations are functions of x and
not constants as in Fredholm integral equations. The kernel in equation (1) will be
considered a separable kernel as discussed before in the previous chapter. Our concern
will be on applying various methods to determine the solution u(x) of (1) and not on the
abstract theorems related to the existence, uniqueness of the solution or the convergence
concept. These important concepts can be found in a variety of integral equations texts.
We discussed in Section 1.5 the technique that converts initial value problems to
Volterra integral equations. In the following we will discuss several methods that
handle successfully the linear VWolterra integral equations in a manner parallel to our
approach in discussing Chapter 2. There is a variety on analytic and numerical
techniques, traditional and new, that are usually used in studying Volterra integral
equations. Accordingly we will first start with the recent methods.

3.2 The Adomian Decomposition Method

As stated earlier, Adomian developed the Adomian decomposition method or simply
the decomposition method that proved to work for all types of differential, integral and
integro-differential equations, linear or nonlinear. The method was introduced by
Adomian in his books [1] and [2] and other related research papers such as [3] and [4].
The focus of the two books was mainly on ordinary and partial differential equations.
We have seen from Chapter 2 that the decomposition method mostly establishes the
solution in the form of a power series. The approach we will follow here is identical to
the same approach that was implemented earlier in Chapter 2. In this method, the



solution u(x) will be decomposed into an infinite series of components, that will be

determined, given by the series form
ulz) = Z Un (L),
n=>0
with u, identified by all terms out of the integral sign, 1.e.
ug(z) = f(=z).
Substituting (2) into (1) yields
0

=il n=0

which by using few terms of the expansion gives

ug(z) + uy(x) +uglz)+--- = flz) + Jaf,;’ Kz, t)ug(t)dt
—I—A/ Kz, t)us (t)dt
+ ,.hf Kz, t)ug(t)dt

+)~f Kz, t)us(t)dt

dsiiea

Z . (z) = f(x) —|—A/ K(z,t) (Zun[a‘.]) dt,

(2)

(4)

The components u,(x), i > 0 of the unknown function u(x) are completely determined by

using the recurrence manner

wo(z) = flz),

o
wifE] = }nf Kz, t)up(t)dt,
0
Iy
Ugl(z) = A[ Kz, t)u,(t)dt,
0

us{z) = J&f K (z,t)usz(t)dt,
0

(6]
oo

(8)

(9)

and so on. The above discussed scheme for the determination of the components u4x), i

> 0 of the solution u(x) of Eq. (1) can be written in a recurrence relation by



wo(z) = fiz), (10)

o
UpanlE) = A K(x, t)u,(t)dt, n =0. (11)
1]

In view of (10) and (11), the components u,(x),i > 0, follow immediately upon

integrating the easily computable integrals. With these components determined, the
solution u(x) of (1) is readily determined in a series form upon using (2). As discussed
before, the series obtained for u(x) frequently provides the exact solution in a closed
form 1f an exact solution exists as will be illustrated later. However, for concrete
problems, where (2) cannot be evaluated, a truncated series s~* (2 1s usually used to
approximate the solution u(x). It 1s to be noted here that, for numerical purposes, few
terms of the obtained series usually provide the higher accuracy level of the
approximation of the solution if compared with the existing numerical techniques.

It is interesting to recall that the decomposition method provides the solution of any
style of equations in the form of a power series with easily computable components. In
addition, applications have shown a very fast convergence of the series solution. The
convergence concept of the decomposition technique was addressed extensively in [7]
and by others, but it will not be discussed in this text.

We indicated earlier, that the decomposition technique proved to be powerful and
reliable even if applied to nonlinear Volterra integral equations as will be discussed in
the forthcoming Chapters.

The following illustrative examples will be discussed to explain the above outlined
decomposition method.

Example 1. We first consider the Volterra integral equation
u(z) = 1—|—/ u(t) dt. (12)
1]

It is clear that f(x) = 1,4 = 1, K(x,#) = 1. Using the decomposition series solution (2)
and the recursive scheme (10) and (11) to determine the components u,,, n > 0, we find

U |_‘ T :' - l ) |‘_ 13 _.I

o
i {r) = / g (1 )dt
0

£
= /m’a‘:r. (14)
0
o
ua(x) = /m{ﬁ_‘.ln’r
0



and so on. Noting that

u{z) = ug(z) + us{z) + uz(x)} + - - -,

we can easily obtain the solution in a series form given by

: 1
piry=1-+z+ 2—,1‘2+---~

and this converges to the closed form solution
ui{z) = e*,
obtained upon using the Taylor expansion for e*.

Example 2. We next consider the Volterra integral equation

i) == —i—/ (t — z)u(t) dt.
0

Proceeding as in Example 1, we set

ulz) = =,
iy
wy(x) = f[t—:c-j?x-c.{a‘jfir
0
I
= t(t—z)dt = =3,
/E, ) 3
fr
w(xr) = f(r.—:ejul(r}dr
0

= a 1
= f ——t* (t —z)dt = =
0 -5. ]

Consequently, the solution of (19) in a series formis given by

u-l:;,:l'.‘;I = T - _TE _|_ _|~T5 + L

31 5!
and in a closed form by

u(z) =sinz,

—I .

5

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



obtained by using the Taylor expansion of sin x.

Example 3. We consider here the Volterra integral equation

1 o
u(z) = 6 — > + 3] tu(t)dt. (25)
0

Applying the decomposition technique as discussed before we find

up(r) = 6x— z3, (26)
: A
) = —/ tug(t)dt
‘ 5 J,
1 f° 1.
= —f ot — ) dt =2 —— 2" (27)
Tk 10
_ |
uz(x) = —f tuq(t)dt
‘ 5 J,
L sfm 1 1 51 = 0R)
= = [ t{t’—=t")dt = —2° — —2". 28
:zﬁ ( 10 ) “=10° T 10’ el
Consequently, the solution of (25) in a series formis given by
: 1 1 1 -
.I" ) — {'I._\.S ..3__\:_5 _;.5___._| ST 2{'
u(zr) = (6 —a }-I—(;z 5 )-l—(l“r T )—i— (20)

where we can easily obtain the solution in a closed form given by
u(x) = 6, (30)

by eliminating the self-cancelling noise terms between various components of the
solution u(x).

It was discussed in Section 1.3 that it 1s not always possible to determine a solution
in a closed form, but instead the solution obtained may be expressed in a series form.
The difference between the closed form solution and the power series solution has been
illustrated before in Section 1.3. However the series solution is usually employed for
numerical approximations, and the more terms we obtain provide more accuracy in the
approximation of the solution. In the next example we discuss again the solution
expressed in a series form.

Example 4. Consider the Volterra integral equation



TR | o — p—_—
wr)=14+ = at=ul(t) dt. (31)
N, & :2 I:I . & LY &

Following the procedure used above, we find

uplze) = 1, (32)
. 1 *
ui(x) = —:r:f t2dt
2 Jo
1 .
= -z (33)
G
. T
uz(xr) = —=x t-dt
2ix) 12 f;.
1 .
= —zb, (34)
fofil
. 1 i
ug(r) = —z [ t19dt
P 168 [
1
= 212, (35)
1&ds it R

Consequently, the solution of (31) in a series formis given by

u(zr) =1+ i_;z-‘* . Dy _L;r” 2 E— (36)
6 84 1848
so that a closed form for u(x) does not appear obtainable.

Even though the decomposition method proved to be powerful and reliable, but it can
be used sometimes in a more effective manner which we called the modified
decomposition method. In a manner parallel to that used in Chapter 2, the volume of
calculations will be reduced by evaluating only the first two components uy(x) and

uy(x). The modified technique works for specific problems where the function f(x) in
(1) consists of at least two terms.

3.2.1 The Modified Decomposition Method

It 1s important to note that the modified decomposition method, that was introduced
before in Chapter 2 for the Fredholm integral equations, is also applicable here. In
Volterra integral equations where the nonhomogeneous part f{x) in (1) consists of a
polynomial that includes many terms, or in the case f{x) contains a combination of
polynomial and other trigonometric or transcendental functions, the modified
decomposition method showed to work extremely well. As indicated earlier, the



technique may minimize the volume of calculations needed when applying the standard
decomposition method. To achieve our goal, we decompose the function f{(x) into two
parts such as

flz) = folz) + falz), (37)

where f(x) consists of one term only, or if needed of more terms in fewer other cases,
and f(x) includes the remaining terms of f(x). Accordingly, Eq. (1) becomes

£
u(z) = folz)+ f1lz)+ A/ K (z,t)u(t)dt. (38)
0

Substituting the decomposition given by (2) into (38) and using few terms of the
expansions we obtain

up(r) +wi(z) +ua(z) +--- = falz) + filz) + fo Kz, t)uo(t)dt
0

+ )\f K(z.t) uy(t)dt
0
i

+ A Kiz.t) ua(t)dt
0

+A[ Kz, t) us(t)dt.
0

(39)

Consequently, the components u,(x),i > 0 of the unknown functionu(x) can be
completely determined in a modified recurrence relation if we assign fy(x) only to the
component uy(x), whereas the component f;(x) will be added to the formula of the
component u;(x) given before inEq. (7). In other words, the modified recurrence
relation

uo(z) = fol2), (40)
i
up(x) = fll;';::‘:.l+)\f K(z, t)up(t)dt, (41)
0
i
0
o
us(r) = ,k/ K (z,t)us(t)dt, (43)
0

and so on. The method discussed above for the determination of the components of the



solution u(x) of Eq. (1) can be written in a recursive relationship by

uplz) = Jfolz), (44)
€
wphE] = fllia‘}—l-h/ K (z,t)ug(t)dt, (45)
0
o
U gPE] = Af K{z,tyu,(t)dt, n > 1. (46)
0

In most problems, we need to use (44) and (45) only. For illustration purposes, we

study the following examples.

Example 5. We consider here the Volterra integral equation

Ll

o ] A : 1 £ 1 ..
u(r) =secrtanr — 5 (e™°F —e}x + E_[ re®ty(t) dt, r < -

Using the modified decomposition method as discussed above, we first decompose the

(4T)

1=

ol

§

function f{x) into
folx) = secrtanz, (48)

and
(49)

filz) = e (e" T —e) 2.

Consequently, we find

= Bsecrtanr,

uplz) =
i § _BEC T ’ 1 & sec t 4%
3 (e —e)jr+ 5 e “ug(t) dt
c i
i

: . I ;
(g™ —e)z + I?/ sect tante™“tdt = 0,
1 )y

i l:-.]',l =

obtained by integrating by substitution where we sety = sect. Accordingly, other
components u,(x) = 0, for i > 2. Therefore, the exact solution
u(r} =secxtanz, (50)

follows immediately. It is clear that two components are calculated to determine the

exact solution. modified recurrence relation.



Example 6. We consider here the Volterra integral equation
u(r) =cosr +sinzx — f w(t) dt. (51)
0

Using the modified decomposition method as discussed above, we first decompose the
function f{(x) into

fo(x) = cosx, (52)
and

filx) =sinx. (53)
Consequently, we find

ug(x) = cosz,

y
wile) = —/ ug(t) di = 0.
0

Accordingly, other components u,(x) = 0, for i > 2. Therefore, the exact solution
u(x) = cosx, (54)
follows immediately.

3.2.2 The Noise Terms Phenomenon

The noise terms phenomenon was presented before in studying the Fredholm integral
equations. It was proved that the noise terms phenomenon accelerates the convergence
of the solution. The noise terms, that may appear between components of the unknown
solution, are defined by the identical terms with opposite signs. The noise terms, that
may exist between the first two components uy(x) and u;(x), may provide the exact

solution by using these two components.

In Chapter 2, we outlined the main concepts of the noise terms phenomenon, hence we
present a summary of these outlines. When the noise terms appear, especially between
the components uy(x) u;(x), then by canceling the noise terms between uy(x) and u;(x),

even though u(x) contains further terms, the remaining non-canceled terms of uy(x) may

give the exact solution of the integral equation. The appearance of the noise terms
between uy(x) and u;(x) is not always enough to give the exact solution, hence it is

necessary to show that the non-canceled terms ofu(x) satisfy the given integral
equation.



We point out that noise terms may appear only for nonhomogeneous problems,
whereas homogeneous problems do not give rise to noise terms. Moreover, it was
proved by Wazwaz in [62] that the appearance of the noise terms is governed by a
necessary condition, in that the zeroth component uy(x) must contain the exact solution

u(x) among other terms. The phenomenon of the useful noise terms will be explained by
the following illustrative examples.

Example 7. Solve the Volterra integral equation by using noise terms phenomenon
u(x) = 6z + 3z —f u(t) dt. (55)
0

The Adomian method admits the use of the recurrence relation

ug(z) = 62+ 322,
N i (56)
Up () = — tug(t) dt, k = 0.
0
This gives
ug(z) = 6z + 322,
8 : (5T)
w(z) = —/ tug(t) dt = —32% — 23, /
0

The noise terms +3x? appear inuy(x) and u,(x). Canceling this term from the zeroth
component uy(x) gives the exact solution

u(x) = 6, (58]
that satisfies the integral equation. This should be justified by substitution.

Example 8. Solve the Volterra integral equation by using noise terms phenomenon
u(x) = sinhz + xsinhz — 2% cosh z —|—f riu(t) dt. (59)
0

Following the standard Adomian method we set the recurrence relation

2

ug(r) = sinhz+ zsinhr — r°coshe,

= (60)
Upip1lx) = / rtug(t)dt, k = 0. '

This gives



up(x) = sinhx+ rsinhx — 2% coshz, (61)
uy(z) = fn& tug(t) dt = —xsinhx + 22 coshx + other terms. % =

The noise terms +x sinhx and +-52 coshx appear inug(x) and u(x). Canceling these
terms from the zeroth component uy(x) gives the exact solution

u(xr) = sinhz, (62)

that satisfies the integral equation, that should be justified. The other terms of u(x)
vanish in the limit with other terms of the other components.

Exercises 3.2

Solve the following Volterra integral equations by using the Adomian decomposition
method

T
l. u|;xj|=4a~+:2:c2—[ u(t)dt
0z
. u(r)=1+:c—:r2+f u(t)dt
0

T
- ulz) = l—f ult)dt
0

T
culr)=x+ f (z— t)u(t)dt
0

2
3
4
b
5. u(z) =31~—9f (z — t)ult)dt
¢l
6. uz)=1— 4[ (z — t)u(t)dt
0 -
T ouz)=1+2 —f (z— t)u(t)dt
I:I:[‘
8. uz)=1—= —f (z — t)u(t)dt
|:|T
9

. U[i‘:l=1+£+j; (z— t)u(t)dt
r
10. u(a~;=1—:r+f (@ — t)u(t)dt
L o
1. um:;z.,.f (z— t)u(f)dt
(1] x
12. u(a~;=1+a~+f w(t)dt
P
13. u(a‘]=1—2—1:¢‘2—[ (z — t)u(t)dt
- 0

1 ¥ :
14. u(:rj=1+2—1:1‘2+f (z — t)u(t)dt
| I

In exercises 15-19 solve the given Volterra integral equations by using the modified
decomposition method.:



T
ulz)=cosxz + (1 —e T4+ T eS¢ d
. |: _.I l ln T Hin T I:f_ll f
i

I
16. u(z) =sec’z 4+ (1— """}z + 1‘[ et ty(t)dt, z < 7 /2
0

17. wiz) = coshz + % (1— E*.E‘i“hr;l + %f e=mh (1) dt
(1]

1 : R -
18. U(E‘J=Sinh:}.‘+ﬁ(tT—EDL'EhTJ +Ej; E*."':Eh"ulif]tff

®
19 ulx) = 73— P -- 5[ t‘u[t‘_]d'a‘
0

T
20. u(z) = gecrtana 4+ (e — €77 + U y(t\dt, » < /2
L -'I LY -'I |'. & i
0

In exercises 21-26 solve the given Volterra integral equations by using the noise terms
phenomenon:

T
21. u(z) = 8z — 42° + f ru(t)dt
i

C o pX
22. u(z) = 82 — 24" +[ wtu(t)dt
i
T

23. u(z) =sec’ z — tanx + ult)di

5

1 1l 15 B
24 w(z) =14z +2% — 2ot — 22® — 22+ [ Bult)dt
4 G o :
I
25. ulr)=xsinr 4+ rcosr —sinx + f u(t)dt
0

. 1 1 &
26. u(z) = cosh® x — = sinh(2x) — 57 + [ u(t)dt
0

3.3 The Variational Iteration Method

In Chapter 2, we presented the variational iteration method for handling the Fredholm
integral equations. Ji-Huan He [15— 17] developed this method, that proved to be
reliable in the study of linear and nonlinear, and homogeneous and inhomogeneous
equations. As we showed in Chapter 2, the method gives the successive approximations
of the exact solution that may converge to the exact solution in case this solution exists.
One significant feature of this method is that it can handle especially nonlinear problems
without the use of the so-called Adomian polynomials as required by the Adomian
decomposition method.

The variational iteration method was given in detail in Chapter 2, hence we skip it
here. The method admits the use of a correction functional in the form

o
Unt1(Z) = un(z) + f AE) (Lun(§) + N in(§) —g(£)) df,n =0,  (63)
(K]



where A is a general Lagrange multiplier that can be determined optimally via the
variational theory as shown before. In Chapter 2, we presented a rule that gives these
Lagrange multipliers for some ordinary differential equations that will be examined in
this text. Recall that the variational iteration method (VIM) is used for ODEs and
integro-differential equations and this can be obtained by differentiating the Volterra
integral equation. Moreover, the zeroth component uy(x) in (63) can be selected

according to the order of the resulted ODE. For example, for ODEs of first order,
second order, and third order, we select

uplx) = wu(0),
uo(z) = wu(0)+zu (0), (64)
uplze) = wu(0)+ a‘uf{DJ + %.’cfu” (ay,

respectively, and these are the first term, the first two terms, and the first three terms of
the Taylor series of u(x) at x = 0. The exact solution is thus given by

u(zr) = lim wun(z). (65)

M— OO

In other words, to solve any Volterra integral equation by using this method, we
should first transform this equation to its equivalent ODE or its equivalent Volterra
integro-differential equation, where Leibniz rule should be used. The next step consists
of the determination of the Lagrange multiplier A using the rules given in Chapter 2.
Finally, we select the zeroth approximation u((x) as indicated earlier. Having prepared

all these steps, we then use the correction functional (63) to determine as many
successive approximations as we can.

Example 1. Solve the Volterra integral equation by using the variational iteration
method

uz)=1l-=z+ [ﬂ (z — t)ult)dt. (66)

Differentiating both sides of (66), and using Leibniz rule, we find
u(z)=—1 +jr-.r u(t) dt. (67)
The initial condition #(0) = 1 1s obtained by using x = 0 into (66), and hence we can

select uy(x) = 1.
The correction functional for equation (67) is

T £
tn 41 () = un(®) — f (u;taﬂ— f unmdr) de (68)
] ]



where we selected 4 = —1 for the first order integro-differential equation (67). As stated
before, we can use the initial condition to select uy(x) = 1 that will lead to the following

successive approximations

uplx) = 1,

T £ ;
; 1
wlr) = l—l (uf.(cfj+1—j; ug(r) d?*) di=1-—xz+ 2—1:-:9,

x £
us(z) = 1—1‘+2ir3:2—[ (ulf_f.‘fj—f ul[r‘jdr*) il
- o 0

1
= 1—=z +E:¢3—§13+Ef‘.
(69)
Recall that
ulz) = Lm wuy(x),
o 1 1 1 1 (70)
pan I ' R e . e lE e S T S, [ 3 b 4
T T g 2h
that gives the exact solution by
i) =g, (V1)

Example 2. Solve the Volterra integral equation by using the variational iteration
method

_ 1 = ]
ulr)=2sinr— E.’-':E' +j. [ — 1) ult)dt. (72)
o

Differentiating both sides of (72) once with respect to x and using Leibniz rule we
obtain the integro-differential equation

; 1 " )
u(z)=2ecosr— 59;2 e f u(t)dt, (73)
]

where by using x = 0 into (72) we find u(0) = 0.
The variational iteration method admits the use of correction functional for equation
(73) by

z [ 1 ¢
Uny1(2) = un(z) — f (unua—zcosnaqf— f Un(7) dr) de. (74)
0 a

Proceeding as before we obtain the following successive approximations



uplz) = 0,

= i 1 <
ufr) = —/ (14.3':5] —2cos(£) + 552 —f Hl:-':f‘:'d?‘) de
o 0

3

= 2siny — —=x",
ualxr) = 2sinz —Ea (75)
T \ 1 £
- [ (v - 20089+ 56 - [Cuairyar) e
(] (K]
1 =
= 2~__~3__~--~
T8 TT1a0t
r 1 J. 5 T
ugle) = 2w— 37:1‘3 + EI 2
and so on. The solution in a series form is given by
1 1 . 1 .
ulz)=xr+ (1‘—51‘3+E.’c”—ﬁ:&' + ) ; (76)
Recall that
ulx) =n1_:i+n:1,C Un(x), (77)
and this gives the exact solution by
u(z) = x4+ sinx. (78)

Example 3. Solve the Volterra integral equation by using the variational iteration
method

1 i1 .
u(a‘j=331—3—2x—§xz+§f (z —t)? u(t) dt. (79)
0

Using Leibniz rule to differentiate both sides of (79) with respect to x gives the integro-
differential equations

T
u (a~j=1+a~+f (z —t)ult)dt, u(d) = 0. (30)
0

Proceeding as before we obtain the following successive approximations

uplz) = 0,
\ Sl g om g s
wife) = w4a+ e+t + 52"+
\ oo mes Ruagein Mbad @ T
() = r4ai+ gt 4+ttt +--0,
\ T e O P S 1
Un(z) = z(l+r+ 50+ F2° + ot + 2% + 2%+ -+ 2™,

(81)

\,



This in turn gives the exact solution by

) = (82)

Exercises 3.3
Use the variational iteration method to solve the following Volterra integral equations:
1. .u[a‘j =1+ /;T w(t)dt
ulr) =ax+ ﬂmi.’c — fjul(t)dt
u(z) =3z —‘:;ij(:v — fjult)dt
ulr)=1-— 4£rw — tult)dt
ur)=1+=z — fT(:c— thu(t)dt
o

F
uzr)=1—=z —j. (x— t)ul(t)dt
0

; T
ulr)=1-— %12 +s&inx — cosx + é[ (x — t) u(t)dt
0

® NS ok WD

- T
u(r) =x+ coshxr —sinhx + Ej. (z — t)u(t)dt
i

3.4 The Series Solution Method

In this section we will introduce a practical method to solve the Volterra integral
equation with variable limits of integration

u{z) = flz) + XA K (z, t)u(t)dt, (83)
0

where K(x,?) is the kernel of the integral equation, and A is a parameter, called the
series solution method. We will follow a parallel approach to the method of the series
solution around an ordinary point that usually applied in solving an ordinary differential
equation. The method is applicable provided that u(x) is an analytic function, i.e. u(x)
has a Taylor expansion atx = 0. Accordingly, u(x) can be expressed by a series
expansion given by

e

u(z) = Z s Bty e (84)

n=>0

where the coefficients a, are constants that will be determined. Substituting (84) into



both sides of (83) yields

oo T o
Zﬂm.r” = (=) —|—A/ Kz, t) (Z ﬂnz‘”‘) dt, (85)

n=0 0 n=0
so that by using few terms of the expansions in both sides, we find

ag + a1z +azz® +azxrd +--- = f(z) +A ]':; K(z,t)aodt
—i—)«/ Kz, t)a, tdt
0
—i—)«f K(z,t)ast? dt (86)
0

—I—A—[ K(z, t)ast® dt
0
ke

In view of (86), the integral equation (83) will be reduced to several traditional

integrals, with defined integrands having terms of the form %, n > 0 only. We then write
the Taylor expansions for f(x) and evaluate the first few integrals in (86). Having
performed the evaluation, we equate the coefficients of like powers of x in both sides of
Eq. (86). This will lead to a complete determination of the coefficients ay, a;, a,, ....

Consequently, substituting the obtained coefficients a,, n > 0, in (84) produces the

solution in a series form. This may lead to a solution in a closed form if the expansion
obtained is a Taylor expansion to a well known elementary function.

It seems reasonable to illustrate the series solution method by discussing the
following examples.

Example 1. We use the series solution method to solve
u(z) =1+ f (t — x)u(t)dt. (87)
0

Substituting u(x) by the series

e

uir) = E a, ", (S8)

n=>0

into both sides of the equation (87) leads to



Z a. " = 1—|—f (t —x) (Z fe,.,?."") dt, (59)

n=I( 0 n=0
which gives
] T ] o
Z a,r" = 1+f (E a t"t —x Z anz‘”) dt. (90)
n=10 a n=0 n=>0

Evaluating the regular integrals at the right hand side that involve terms of the form ¢, n
> 0 yields

] ! fanl 1 - .
R =1-— — B 01)
J-z—;.ﬂ ? Z_; (nt Dtz ™ e
or equivalently
; ; 2 8 _a Heea Loog Lo.o.g -
Ip + T + asx” +azr” +---=1 g—lﬂul Eﬂll Eﬂg.l. + ... (92)

Equating the coefficients of like powers of x in both sides we find

agp = 1,
1 = i,
az = —a. (93)
iz = i,
e 1
gy = Tk
and generally
fla. = I.'—l'J"'L_~ for n =0, (94)
* (2n)! =
@nt1 = 0, for n2=20. (95)
Using (88) we find the solution in a series form
e v R B Lo
uL:-:;=l—E;t +E;1 —E:e G R (96)
and in a closed form by
u(x) = cosx. (97)

Example 2. We next use the series solution method to solve



€T
#(r) = 2coshz — rsinhz — 1 —|—/ tu(t)dt. (98)
0

Proceeding as before, and substituting (88) into both sides of the equation (98) we

obtain
o p2ntl R 20
il = = o1 i At |,
Ea = thru ! ;L2n+1j! +/|:| Zﬂ ‘

ﬂ—ll

where we use the Taylor series of cosh x and sinh x. Using a few terms from each series
involved and integrating the resulting integrals at the right hand side we obtain

S 4 e B
. 2 X r I a
g+ a1+ a4 --- =2 l—i——-l——-l—---)—;rr :.!‘—I———i-—...)
2! 4! 3! 5!
1 1 1 m
—1 -+ Eﬂ-ni'z + E(I]_Ta -+ EL'EZ:IA 4+ . I:l'[;'”JI

Equating the coefficients of like powers of x in in both sides of (100) yields

g = 1,
i1 =: N
az = o, (101)
iz = 0,
1
a4 = 3
and generally
C . for n>0 (102)
L2n = 317 i = U,
2 (2n)! \15)
znt1 = 0, for n>0. (103)
Consequently the solution in a series formis given by
1 1 1 .
ur)=1+ =22+ —at + =2+ ..., (104)
" ot Tt T e e
and in a closed form
u(x)} = cosh =, (105)

obtained by using the Taylor expansion of cosh x.



Exercises 3.4

Solve the following Volterra integral equations by using the series solution method

[E—

.
-uLa‘j=21‘+2x2—1‘3+f ul(t)dt
i

_ e Loy o I o
culr) =140 — =" — =2 42 tuit)dt
3 5 0
ul;:a:]l=1+2t:in:¢—f ult)dt
]

. Yog o liag e i
uzr) =142 4 =" + =" — (z —f)ulf)dt

2! 3! i

T
ul;:v]lz—l—f w(t)dt

Or
u(rjz]—i[ w(t)dt

0 T
ul;:v]l=1+:ﬂer—f tu(t)dt

.o

T
ulr)=x+ f (z— t)u(t)dt
(1]

R I B RV SIS

1 =
cu(z)=1- =a* _f (z —t)ult)dt
2 Jo
10. yiz)y=1-= —f (2 — t)u(t)dt
0 .
11. wiz) =1+sinhx — coshx +[ u(t)dt
o

T
12, wiz) = zcosz + f tu(t)dt
0

3.5 Converting Volterra Equation to IVP

In Chapter 1 the process of converting initial value problems to equivalent Volterra
integral equations has been discussed in detail. However, the technique of converting
Volterra integral equations to initial value problems will be discussed in this section,
though it is rarely used. This may be explained by the fact that integral equations are
easily solved because initial conditions are embedded in the integral equations.
However, solving initial value problems, where initial conditions will be used, will
increase the size of evaluations required because additional steps will be needed to
complete the solution.

To employ this method, we simply differentiate both sides of (1), noting that Leibniz
rule should be used in differentiating the integral at the right hand side of (1). The
differentiation process should be carried out successively until the integral sign is
removed and the integral equation is converted to a pure differential equation equivalent
to the integral equation under discussion. It is interesting to note that initial conditions
should be determined at every step of differentiating by settingx = 0 at u(x) and its



obtained derivatives. The resulting initial value problem is then solved following the
traditional techniques used in undergraduate course of ordinary differential equations.
The technique of converting Wolterra integral equations to initial value problems, though
not usually used as indicated earlier, will be illustrated by discussing the following
examples.

Example 1. Solve the fOHOWing Volterra integral equation
u(r) =z + —1 zt + /Iu’:‘ —x) u(t) dt, (106)
S 1.2 5 L) ¥ S \ s

by converting it to an equivalent initial value problem.
Differentiating both sides of (106) with respect to x and using the Leibniz rule we
find

' 1 o
u(xr) =2 + _—;1'3 —f u(t) dt. (107)
3 0 *

Note that we have to differentiate both sides of (107) again to get rid of the integral sign
at the right hand side, doing so we obtain

n'.”[;z'j =2+ 2% — u(z), (108)
or equivalently the nonhomogeneous second order differential equation
' (z) + u(z) = 2 + 22. (109)

The proper initial conditions can be obtained by substitutingx = 0 into both sides of
equations (106) and (107), hence we find

w(0)=0, u(0)=0. (110)
To solve the resulting initial value problem
u.”f:;r:] +u(z) =2+2%, u(0)=0, rr.Jf_l'I] =1 (111)
We first solve the corresponding homogeneous equation
u () +u(z) = 0. (112)
The characteristic equation of (112) is given by

r241=0, (113)



so that the roots of (113) are
N =1, rp=—1i (114)
As a result the complementary solution is
u. = Acosz + Bsine, (115)

where A and B are constants to be determined later by using the initial conditions. To
determine a particular solution u,(x) of (111), we assume that u,,(x) is of the form

Up=a + G+ 2, (116)

where a, f, and y are constants that will be determined. Substituting (116) into (111),
and equating like powers of x on each side we find

a=0, B8=0 %=1 (117)
Combining (115) — (117) we obtain the general solution
u(r) = Acosr + Bsinx + x2. (118)

We can determine the constants 4 and B upon using the initial conditions (110) where
we find

A= 0, Bi=0 (119)

so that the solution of (111)

uzr) = x2, (120])

follows immediately.
However, we can easily show that using the modified decomposition method, by

setting uo(x) = x2, will give the same result obtained above with minimal work.
Example 2. Solve the following Volterra integral equation

u(z) =e"4 /; (t —x)ul(t) dt, (121)
by converting to an equivalent initial value problem.

Differentiating both sides of (121) twice with respect to x and using the Leibniz rule
we obtain



oL
! i T RN 4 vy
u(z) =e" — f u(t)dt, (122)
0

and

o, . \
U (] =¢€" —ulx) (123)
or equivalently
"

i 2) Faulz) =€, (124)

The proper initial conditions can be obtained by substituting x = 0 into both sides of the
equations (121) and (122), hence we find

w()=1, wu(0)=1. (125)
To solve the resulting initial value problem
w (z) +u(@) =€, u(0)=1, u(0)=1 (126)
We first solve the corresponding homogeneous equation
u () 4+ u(z) = 0. (127)

Following the steps we used in the first example, we find that the complementary
solution is

u. = Acosz + Bsinz, (128)

where 4 and B are constants to be determined later by using the initial conditions.
Moreover, a particular solution of (126) may be assumed of the form

=08 ; (129)

where a is a constant that will be determined. Substituting (129) into (126) and equating
like powers of x on both sides we find

0 =

1
o (130)
2 oY)

Combining (128) — (130) we obtain the general solution

: L.
u(x) = Acosz 4+ Bsinr + Et""’. (131)



The constants 4 and B are determined by using the initial conditions in (125) where we
find

g . Bt (132)
2 2 :
Thus the solution of (126) is
: | - : :
u(xr) = = (sin® 4 cosx | 7], (133)

obtained upon substituting (132) into (131).

Exercises 3.5

Solve the following Volterra integral equations by converting to equivalent initial value
problems:

[S—

T
- ulz) = 1—3f w(t)dt
o

T
2. ulr) =1+ f (x— tjult)dt
(] T
3. ur)=1—=z —f (x— t)u(t)dt
il
.
4. ulr)=x+ u(t)dt
]
T
5. ur)=1+= +! (x— t)ult)dt
]
6. u(z) =1+ %f (z — t)3u(t)dt
1pe
T ouz)=z+ —f (z — t)u(t)dt
6/
8. u(z) =22 +f (z — t)ul(t)dt
. z
9. ulz) =z + E:ﬁ —f (z — t)u(t)dt
: 0
1 1 =
10. wiz) =2 — 22 4 E:ﬁ = F:e:*" —f (@ —t)u(t)dt
] 0

3.6 Successive Approximations Method

The method of successive approximations, that was used earlier in Chapter 2 for
handling Fredholm integral equation will be implemented here to solve Volterra integral
equations as well. In this method, we replace the unknown function u(x) under the
integral sign of the Volterra equation



£
u(E) = Flz+ }m/ K (z,t)u(t)dt, (134)
0

by any selective real valued continuous function u(x), called the zeroth approximation.
This substitution will give the first approximation u(x) by
i) = Flak-X Kz, t)ug(t)dt. (135)
0
It 1s obvious that u(x) 1s continuous whenever f(x), K(x, ) and uy(x) are continuous.
The second approximation u,(x) of u(x) can be obtained similarly by replacing uy(x) in
(135) by u;(x) obtained above, hence we find

i) = flok-X K (x, t)uq(t)dt. (136)
0

This process can be continued in the same manner to obtain the nth approximation. In
other words, the various approximations of the solution u(x) of (134) can be obtained in
a recursive scheme given by

ug(x) = any selective real valued function

. (137)
U.{x) = f{r]+)&f Kz, t)ue—1{t)df; n=1.

i

The most commonly selected functions for uy(x) are 0, 1 or x. At the limit, the solution
u(x) of the equation (134) is obtained by

u(z) = lim w.{z), (138)
Ti—¢ O

so that the resulting solutionu(x) is independent of the choice of the zeroth
approximation u(x).

It 1s useful, for comparison reasons, to distinguish between the recursive schemes
used in the decomposition method and in the successive approximations method. In the
decomposition method, we decompose the solution u(x) into components u, U, U, ...

where each component 1s evaluated subsequently, and in this case the solution is given
in a series form

o
u(x) = E Un{Z), (139)
n=>0



where the zeroth component u(x) is defined and given by all terms that are out of the

integral sign. However, in the successive approximations method, we apply the above
recursive scheme (137) to determine various approximations of the solution u(x) itself,
and not components of u(x), noting that the zeroth approximation is not defined but
rather given by a selective real valued function, and as a result the solution u(x) is given
by the formula (138).

To illustrate the difference between the two recursive algorithms, we start by solving
Example 2 in Section 3.2. The reader can easily compare between the two approaches.

Example 1. Solve the Volterra integral equation
u(zr) ==z —|—/ (t — z)u(t) dt, (140)
0

by the successive approximations method. We first select any real valued function for
the zeroth approximation, hence we set

up(z) = 0. (141)
Substituting (141) into (140) we find
wilz) == —l—/ (t — ) uwolt)dt, (142)
0
and this gives the first approximation of u(x) by
ilzx) = x> (143)

Inserting (143) into (142) to replace uy(x) we obtain
uzlr) == —|—f (t —x)tdt, (144)
]

where by integrating the right hand side of (144), the second approximation of u(x)

_-— L.n g
Uz(T) =1 — —I", | ]-_1.’3}
i3 J. i3

is readily obtained. Continuing in the same manner we find that the third approximation

of u(x) is

1 1
ug(z) == — FJ‘S + =" (146)
H [



Accordingly, the nth approximation is given by

LC 4 ]‘2
)= (1P, m >
= (2k —1)!

Consequently, the solution u(x) of (140) is given by

uz) = lim d.iz)

R— OO

= p (D =

= =&inr.

(147)

) (148)

To show that u(x) obtained in (148) does not depend on the selection of uy(x), we

will solve the equation (140) by selecting

EI.DI:\;J‘.‘_] =,

(149)

Using the new selection of uy(x) in the right hand side of (140) we obtain

o
kel =1=% —I—f (t — z)tdt,
0

which gives the first approximation by

1 4
u(x) = — -

Proceeding as before we can easily obtain the second approximation

T +1
uz(r) = & — 27 + 52

In a parallel manner we find that

il R‘ZFH_ 1

P F 1k .
UnlE) = E[ 1) —I:Qk'—i—l_]!" n = 0.

k=0

Accordingly, we obtain

(150)

(152)



u(x) = lim u,(x)
E Ti— 0D o

n D41 s
; i s O (154)
= lim E —1)" (194)
i (k._.-. NNCTESVI
= =sinr,

the same answer we obtained above in (148). This confirms the fact that the solution
obtained does not depend on the selection of the zeroth approximation u(x).

Example 2. Solve the Volterra integral equation
u(z)=1-= / (t —ax)ul(t)dt, (155)
0

by using the successive approximations method. We start first by selecting the zeroth
approximation and in this time we choose

ug(z) = 1, (156)
where by substituting this in the right hand side of (155) the first approximation
uiz) =1 —/ (t — z)uo(t)dt, (157)
0
so that

. 1 .
ui(z) =1+ 2._|*T2 (158)

follows immediately. Proceeding in the same manner we find that

uglz) = 1— /-u{r — ) uy (t)dt, (159)
0
so that
ua(z) =1+ %J‘E =+ i—:.r‘*. (160)
In a similar manner we obtain
us(z) =1+ ;—!;r? + J‘i,z‘* + Bi“‘ (161)

Generally we obtain for the nth approximation



10, {r) = Z eIk n = 0. (162)
k=0

Consequently, the solution u(x) of (155) is given by

u(r)

lim un(z),

To—F O3

ik 2k \
: r (163)
. (E ( 2?:]!)

k=0

cosh r,

obtained upon using the Taylor expansion of cosh x.
It is useful to observe that the zeroth approximation in this method is selected and it is
not a part of the integral equation as in the decomposition method.

Exercises 3.6

Solve the following Volterra integral equations by the successive approximations

method.:
I
1. ulr) = ]_—f u[t‘)di!‘
i -
2. ulr)=1-— ‘.}f (z—t)ult)dt
0
T
3. ur)=14+2r+4 [ (z—f)u(t)dt
4 lg 1
culz)=1—z+— [ (z—t)u(t)dt
ull.a.l 4T+ 16 l:l ||.1 Jull. i
T
5. u(z) zz_f (z — t)ult)dt
I:I;‘['
6. u(z) = 1—f Dtu(t)dt
I:I;‘['
7. u(z) =:e:+f (z — t)u(t)dt
I:IT
8. ulr)=1-— f (a0 —t)ult)di
0

9.

10. i) =1—x—

b
ur)=1+= —f (x— #ult)dt
(1] -
( — t)ult)dt

T

iy

I w@y=2—2+ | u(t)dt

12 a|:1~;|=1— T — —IT

0

k| =

T
4 f (z — t)u(t)dt
i}



3.7 The Method of Successive Substitutions

The method of successive substitutions, that will be used here, is completely identical to
that used in Chapter 2 for handling Fredholm integral equations. In this method, we set x
=t and 7 = ¢{ in the Volterra integral equation

u(zr) = flzx)+A | Kz t)u(t)dt, (164)
0o

to obtain
t
uup=ﬂn+ﬁffﬁnmmummb (165)
i
Replacing u(¢) at the right hand side of (164) by its obtained value given by (165) yields

ule) = flz) =X Kz, t)f(t)dt

L ’ (166)
+Jx9f Kz, r]] Kit, ty)u(ty)dt dt.
0 0
Substituting x = ¢; and ¢ = ¢, in (164) we obtain
31
?Il:fl:,l == fl:!llj-i-)'.f Ii-llfl~f3;'|?i-l:;f2:|5frg. fl{:.TJ

Substituting the value of u(#;) obtained in (167) into the right hand side of (166) leads to

X
u(z) = f(z) -I-P&/ K(z,t)f(t)dt
0
i t
+ A2 f K(x, t)K(t, t1)f(t1)dtdt
il i

T t £y
-I-J\S/ ff Kz, t)K(t, 1)K (t1, t2)u(tz )dizdtdt.
il il ]
(168)

Accordingly, the general series form for u(x) can be rewritten as



u(z) = fn,'.rr]+,?af Kz, t)f(t)dt
I:I

-I-)azf f Kz t)K(t, t)f(ty)dt,dt

+A3/ /[ Kz, t)K(t, t1)K (t1,t2) f(t2)dtadt, dt
0

We remark here that in this method the unknown function u(x) is substituted by the
given function f{x) that makes the evaluation of the multiple integrals easily computable.
This substitution of u(x) occurs several times through the integrals and hence this is why
it is called the method of successive substitutions. The technique will be illustrated by
discussing the following examples.

(169)

Example 1. We solve the following Volterra integral equation

£
u(z) == —/ (z — t)u(t)dt, (170)
0o

by using the method of successive substitutions. Substituting A = —1, f(x) = x, and K(x,?)
= (x — 1) into (169) yields

T T t
u(z) =;z‘—f (x—t) tth‘—l—/ f (z —t)(t — &y )tadtadt +---,  (171)
] 0 1]

or equivalently

uu;,r]:,r-—f (a-r—r2}c£t+f /(a-—r](rr.l—rfjdndwr---. (172)
i i i

Therefore we obtain the solution in a series form

i % J‘ 3 J‘ 5 i i R
u(z) =z — 5z —|—E;r s CEET (173)
or in a closed form

u(x) =sinz {174)

upon using the Taylor expansion for sin x.

Example 2. We next solve the Volterra integral equation by applying the method of
successive substitutions



u(z) = 2% — 2 + fx At u(t)dt. (175)
Substituting 2 = 4, f{x) = x> —x*, and K(x,#) = ¢ into (169) yields

T i t
u(r) = x?—at +4/ t(t*—tt)dt + 16/ / ity (11 — t1) dtrdt
0 o i

T t ty

+G-_1f ff ttyty (t3 — t3) dtadty dt
0 0 0

_|_

(176)
and this will yield
2 2 1 1
N gl et ate Bomiy o o GruBp 177
U} =2 B ot —ml fegtt g ok g8 CEEL)
Consequently we easily obtain the exact solution
u{zr) = °, (178)

upon cancelling the similar terms with opposite signs in (177).

Exercises 3.7

Solve the following Volterra integral equations by the successive substitutions method:

[E—

T
. u[:rjl::?:+/ u(t)dt
0

0
T
ulr) =1+ 2/ w(t)dt
0
T

ulr) =3 —2x + ult)dt

1 T
2. u[g_‘jzg:tz+f u[f]di‘
: 0
T
3. u[:a:]l=ir$3'—f (x — t)ult)dt
3 0
4. L i
. [:H—?r +£ (2 — t)ult)dt
5. uz) = —:cz f'.:.‘— t)u(t)dt
0
6. uLa:I:l_ETZ_ ﬂLf’
7.
8.
9

1 T
-u[a‘)=2+§:c2—f (z — t)u(t)dt

1 T
10. u(:rj=1—:r+§:r2—f (x — thult)dt
0



1 . = ,
11. ulr) =2 — 51‘3 + f {x —t)ult)dt
1 2"
12. uwiz) = =2 + (z — tult)dt
.1 .II 21 3 ll. .II .1 .II

3.8 Comparison between Alternative Methods

Before making a comparison between all methods discussed in this chapter, it is
convenient to point out that there are other techniques for solving Volterra integral
equations that are beyond the scope of this text. Using Laplace transforms to handle
Volterra equations requires extensive background in Laplace transforms and the
convolution integral. However, when it comes to selecting a preferable method among
the methods that were introduced in the previous sections, we cannot recommend a
specific method.

Even though the method of reducing Volterra integral equation to initial value
problem is rarely used, but it is the only method that may give directly the exact solution
in a closed form. This is easily seen if the resulting initial value problem has constant
coefficients. We may obtain the solution in a series form, similar to the results obtained
by other methods, when the coefficients of the resulting initial value problem are
functions of the independent variable x. The latter case will not be introduced here. A
useful example has been discussed by Example 1 in Section 3.2.

However, we found that if the kernel K(x, ¢) of the integral equation is a degenerate
one that consists of a polynomial of one or two terms, the series method and the
decomposition method might be the best choices because it minimize the volume of
calculations. The series solution obtained by using these methods might yield the exact
solution in a closed form or we may obtain an approximation of the solution. Moreover,
1ff(x) 1s a transcendental function, the series solution method works easier than the
decomposition method.

Comparing the Adomian decomposition method with the successive approximation
method, it is evident the decomposition method is much easier in that we integrate
always very few terms to obtain the successive components, whereas in the other
method we integrate many terms to evaluate the successive approximations after
selecting the zeroth approximation. Moreover, for linear Volterra integral equations, the
variational iteration method works effectively as the Adomian method.

In closing this section, we point out that the method of successive substitutions suffers
from the huge size of calculations, especially if the function f(x) is a trigonometric or
exponential function.

To achieve our goal of the comparison between these methods, we illustrate this
comparison by solving the following Volterra integral equation by using all various
methods.



Example 1. We solve the following example
u(z) = 1+f w(t)dt, (179)
0

by using the six alternative methods.
We will start with the Adomian decomposition method, then we use the variational
method, the series solution method and so on for the other methods examined in this text.

(a) Adomian Decomposition Method:
As discussed earlier we set

u(z) = E UnlT). (180)
n=>0
Substituting (180) into both sides of (179) we obtain
uglx)+uy(z)+us(x)+--- = 1+f (walt) + wy(t) + ug(t) +---) dt. (181)
0

As stated before, we have to set the zeroth component uy(x) by all terms outside the
integral sign, hence we have

?'I|'_||::-!l':| - ].. flgz}
The first component u;(x) may be obtained by
ui(z) = / ug(t)di, (183)
0
which gives the first component
iz} == (184)

Proceeding in the same manner we can easily obtain

[ ) 1 o FaE
ug(x) = 7, (185)

and so on for other components. Noting that in the decomposition method we have

w(r) =g+ Uy + ug +ug+---, (186)



hence by using the results (182)-(185) into (186) we obtain the solution in a series form

. 1 1
w(xy=14+r+ —r24+ —23 +....
i " T3

and in a closed form by the exact solution
u(xr) = e®.

(b) The Variational Iteration Method

Differentiating both sides of the integral equation (179) with respect to x gives

u'(z) = u{r).

Using the correction functional

o
. s Ty 4oy =
Unp1 ) = w2y — f (un LE) =un hf;) dé,n = 0,
0

gives the following approximations

uglE] = 1,
= [
ui{m)] = l—f (u.,jqrj - i!t.jl:!’:l) dt
0
= Heclams
p & i
el): = A7 —f (er.l{tj = i:i-lU:J) dt
0
1 5
= l+z+ Tk
oy 1 5 1 4
ug{x] = 1+=x+ E-r + E:I‘ :

and so on. The solution in a series form is thus given by

som s o o Hon
uxr)=1+z+ 2—..1: B ol e e

that converges to the exact solution
u(z) = e”.

(¢) The Series Method:
As indicated before, assuming that u(x) is analytic, hence we may write

(187)

(188)

(180)

(190)

(191)

(192)

(193)



oD
u(z) = E e RO
n=>0

Substituting (194) into both sides of (179) we find

g + ax + -f:g;r‘2 + t‘eaﬁf‘a o=l +/ (L‘-!.;. + a1t + t‘cg!‘z + .- } dt.

Integrating the easy integrals in the right hand side we obtain
2 3 ; L9, 1. 5
Qg+ T+ aax” + agx”" +--- =14+ agr + E-::l::r Tomlgl e

Equating the coefficients of like powers of x from both sides we find

i - 1-..
M = 1,
1
a2 = ?
1
3 = 3—...

(194)

(195)

(196)

(197)

(198)
(199)

(200)

and so on. Substituting the results obtained for a;, £ > 0 into (194) we obtain the

solution in a series form

i " & J:n
uir) = E —_—
.

n=(0
and in a closed form
n{z) = e”,
1s the exact solution of the example under discussion.

(d) Converting to Initial Value Problems:
Differentiating both sides of (179) with respect to x we obtain

)

u (z) = ulz},
with the initial condition

u(0) = 1.

(201)

(202)

(203)

(204)



Solving the first separable order differential equation (203) and using the initial
condition (204) the exact solution

u(z) = e”, (205)
is readily obtained.

(e) Successive Approximations Method:
In this method we select the zeroth approximation by

tpo(z) = 1. (206)

Following the technique that was discussed above, the other approximations of the
solution u(x) can be easily obtained by

wi(z) = 14 =, {207)
: r? :
usx(zx) = 14+x+ T (208)
: r? 23 .
ug{r] = 1i4x4 = kit e (209)

and so on. Accordingly, the nth component is given by

IR L 3‘2 o J.‘S s N ™ o
Upld )] = r+ — — — 210
e 21 3! r2l ! J
Consequently we find
u(z) = lim u,(z),
— OO
2 3 g
= liml4r+—+—+--- (211)
Ti— O 21 31
=1 B,

the same solution obtained above.

(f) The Method of Successive Substitutions:
In this method we have to set K(x,7) =1, 4 =1 and f(x) = 1, hence we have



T @ t b t ty
u(z) = l-l-lf ln’f-l—/ f ln’ﬁdf—l—/ ff ledtodt dt + - - -
0 0 J0 o Jo Jo
2 3

T T
=t Lfdf e e

= e

(212)

the same result obtained by other methods.

An important observation, and not a recommendation, can be made from the
comparison performed above which suggests that the decomposition method, the
variational iteration method, and the series method introduce promising improvements
over other existing techniques.

We point out that there are other powerful techniques that are used for solving
Volterra integral equations. Examples of these techniques include wavelet method,
Legendre wavelets method, Laplace transform method, and many others.

3.9 Volterra Integral Equations of the First Kind

In this section we will study the Volterra integral equation of the first kind with
separable kernel given by

[y
flx) =/ K (z,t)u(t)dt. (213)
0

We point out that the Adomian decomposition method or the variational iteration method
cannot be used in a straightforward manner. However, the traditional series solution
method that we used in this chapter can be used in a direct manner. Although there are
other analytical and numerical methods that can be used to handle Volterra integral
equations of the first kind, but in this section we will concern ourselves with two
practical methods.

3.9.1 The Series Solution Method

The method was presented earlier. In this method we use the Taylor series for the
solution u(x) in the form

o

u(z) = E a, 2", (214)

n=0

where a,,, n > 0 are coefficients that will be determined. We then substitute this series



into both sides of the Volterra integral equations of the first kind. We next evaluate the
integral at the right side. By equating the coefficients of like terms into both sides we
determine the coefficients a,, n > 0, and this in turn leads to the solution in a series

form. This will be illustrated by studying the following two examples.

Example 1. Find the solution of the Volterra equation of the first kind
2 1 3 Ir. Y o F
T+ =z = f (2 4z —t)ult)dt. (215)
'rJ 0
Substituting the series (214) in the right side and evaluating the resulting integral we

find

g dg 1) oo okl . AT
T —i—Eg* =:2re.;.r+|‘3ug+a1)\r —|-|‘3—Im—|—:.r:g)a‘ + e (216)

Equating the coefficients of like terms from both sides gives

ag = 0O,
1. (217)
g =y = ==~ = (.

i
{lo

Substituting this result into (214) gives the exact solution
u{r) ==. (218)
Example 2. Find the solution of the Volterra equation of the first kind
xe” = f et u(t)dt, (219)
or equivalently

&£
1'=/ et u(t)dt. (220)
0

Substituting the series (214) in the right side and evaluating the resulting integral we
find

1 1 . 1 ' 1 .
T =apr + (—ap + —a 122 + (=ay — =@y + —as)rs 4+ .- .. (221)
] \ _EIL'I 211, lﬁij 311 EIQJ \, )

Equating the coefficients of like terms from both sides gives



|:l!|:|

[
[y

Y= B =

=8 (222)
iz =
Substituting this result into (214) gives the series solution
g L.g. L.3 P
ur)=1+r+ ="+ —1" +--., (223)
e ZTAT S
that converges to the exact solution
u(xr) = e*. (224)

To apply the Adomian method or the variational iteration method, we should convert
the Volterra integral equation of the first kind to a Volterra integral equation of the
second kind.

3.9.2 Conversion of First Kind to Second Kind

It is important to note that the Volterra integral equation of the first kind can be handled
simply by converting this equation to a Volterra equation of the second kind. This goal
can be accomplished by differentiating both sides of (213) with respect to x to obtain

frH
o ¥ LY s y f LY fg i % ah i !
f [z} =K(z,zu{z) + f Ko (z, t)u(t)dt, (225)
0

by using Leibniz rule. If K(x, x) # O in the interval of discussion, then dividing both
sides of (225) by K(x, x) yields

u(z) = ;ff.;_;,:i’:,_.;, o j 5 /j Ko (z,t) u(t)dt, (226)
a Volterra integral equation of the second kind. The case where the kernel K(x, x) = 0
leads to a complicated behavior of the problem that will not be investigated here.

To solve (226) we select any method that we discussed before. The technique of
differentiating both sides of Volterra integral equation of the first kind, verifying that
K(x, x) # 0, reducing to Volterra integral equation of the second kind and solving the
resulting equation will be illustrated by discussing the same two examples solved by
using the series solution method.

Example 3. Find the solution of the Volterra equation of the first kind



€T
x? 4+ =3 = f (2 4z —t)ult)dt. (227)
0

We note first that K(x,£) = 2 +x — t, hence K(x,x) = 2 # 0. Differentiating both sides of
(227) with respect to x yields

1 T
2r + 5.1'2 = 2u(x) -|—/ uit)dt, (228)
o
or equivalently
. 1 [ g, .
ulz) =z +-2% - —/ u(t)dt. (229)
&£ 4 2 l:l .

We prefer to use the modified decomposition method, hence we set
ug(z) = =, (230)
which gives

| 1 | e
ui(z) = Z""“E_Ef Lt (231)
: 0 X
Y

Accordingly, other components u,(x) =0, n > 2. The exact solution u(x) is given by
u(r) ==, (232)
obtained upon using the components obtained above.

Example 4. Find the solution of the Volterra equation of the first kind
re¥ = f e*tu(t)dt. (233)

We note first that K(x,7) = ¢*/, hence K(x,x) = 1 # 0. Differentiating both sides of (233)
with respect to x yields

e” et =alel 4 f e* ~tu(t)dt, (234)
0
or equivalently

o
u(z) = e* + re® —/ e tu(t) dt. (235)
0



We shall solve the resulting equation by the Adomian decomposition method and by the
modified decomposition method. We first start by applying the Adomian decomposition

method, therefore we set
up(z) = €* + ze”.

Consequently, we obtain

oL
u () = —f e (e + te') dt
0

o _(.r T+ '1\2)
- o R

and

: " t2
uz(x) = / ' (a‘:-*.* 3 2—,(‘*) dt
0 -

and so on. Using the above results of the components obtained gives

a

5 2 2 a
u(r) = f**(1+3'—3-—g—1_+“§—_,+"§—1—§—1—---)ff!‘

e,

the exact solution obtained upon cancelling like terms with opposite signs.
Using the modified decomposition method we set

uolz) = €*,

which gives
RgliE) = TETe f ol
0

== ik

It immediately follows that
y = 2=,

Accordingly, the exact solution is

ulz) =¢€".

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)



Exercises 3.9

Solve the following Volterra integral equations of the first kind by any method:
512 4+ 2% = LT(S + 3z — 3t)u(t)dt

ze~* = ]I e" " Tu(t)dt

2eT —x—2= /;Ttl + @ — thu(t)dt

2eoshr —sinhx —(2—2) = ﬁT[E — x4+ tjult)dt

T
dsiny — Jcosr + 3 =‘/ {4+ 3z — 3t)u(t)dt
0

AR S

tanx — In(cos z) = f (142 —thuit)dt, =<m/2
0



Chapter 4
Fredholm Integro-Differential Equations

4.1 Introduction

In this chapter we will be concerned with the Fredholm integro-differential equations
where both differential and integral operators will appear in the same equation. The
differential operator may be of first order or higher order.

Scientists and researchers investigated the topic of integro-differential equations
through their work in science applications such as heat transfer, diffusion process in
general, neutron diffusion and biological species coexisting together with increasing and
decreasing rates of generating. More details about the sources where these equations
arise can be found in physics, biology and engineering applications as well as in
advanced integral equations books.

In the Fredholm integro-differential equations, it is important to note that the unknown
function u(x) and one or more of its derivatives such as u'(x), u"(x), ..., appear outside
and inside the integral sign as well. The Fredholm integro-differential equations come
as a first kind and as a second kind as defined for the Fredholm integral equations.

The following are examples of linear integro-differential equations:

1
’
u(z) = \;r*—/ e tu(t)dt, wu(0) =0,
i

1
' (o) = &= -I-/ ztu (t)dt, w(0)=1,u (0)=1.
]

It is clear from the examples given above that the unknown function u(x) or one of its
derivatives appear under the integral sign, and other derivatives of u(x) appear out of
the integral sign as well. Therefore, the above given equations involve the derivatives
and the integral operators in the same equation, and consequently the term integro-
differential equations has been used for problems involving this combination of
operators. Moreover, because these equations involve differential operator, it is
necessary to describe the initial conditions for each problem,

To determine a solution for the Fredholm integro-differential equation, the initial
conditions should be given as stated earlier, and this may be clearly seen as a result of
involving u(x) and its derivatives. The initial conditions in solving any differential
equation are needed to determine the constants of integration.



In what follows, we will discuss several methods that can handle successfully the
linear Fredholm integro-differential equations of the second kind where the solution
u(x) and at least one of its derivatives appear inside and outside the integral sign.

4.2  Fredholm Integro-Differential Equations

In this section we will discuss the reliable methods used to solve Fredholm integro-
differential equations. This type of equations was termed as Fredholm integro-
differential equations, given in the form

b
u'™(x) = flx) + )x/ K(x, t)u(t)dt. (2)
a

We remark here that we will focus our concern on the equations that involve
separable kernels where the kernel K(x, ¢) can be expressed as a finite sum of the form

ra
Klzd)= E gulx) hy(t). (3)

k=1

Without loss of generality, we will make our analysis on a one term kernel K(x,?) of the
form

K(x,t) = g(z) h(t), (4)

and this can be generalized for other cases. The non-separable kernel can be reduced to
separable kernel by using the Taylor expansion for the kernel involved. The Fredholm
integro-differential equations are usually solved by a variety of methods, some are
numerical methods, whereas others are analytic methods. It is worth noting that in this
chapter we will introduce the most recent and practical schemes that handle this type ot
equations, where we may obtain an exact solution or an approximation to the solution
with the highest desirable accuracy. We point out here that the methods to be discussed
are introduced before, but we will focus our discussion on how these methods can be
implemented in this type of equations. We first start with the most practical traditional
method.

We point out that the direct computation method, that will be used first, requires
integrating or multiple integrating of the derivatives that are involved in the equation. In
what follows, we list some of the facts used in calculus courses:



i wf)dt = ulx)=u0),
Jo o w'(s)dsdt = u'(x)—wu(0)—zu'(0), (5)
lr:l fj lrc u(r)drdsdt = u'(x)—u(0)—zu'(0) - %*'2“”':{”*

and so on for other derivatives.

4.3 The Direct Computation Method

The direct computation method has been extensively used in Chapter 2 to handle
Fredholm integral equations. Without loss of generality, we may assume a standard form
to the Fredholm integro-differential equation given by

- l .
ut™(x) = f(x) +/ K(z. tyu(t)dt, u™0)=b,0<k<(n-1) (6)
0

where u")(x) indicates the nth derivative of u(x) with respect to x and b, are constants
that define the initial conditions. Substituting (4) into (6) yields

1
u™(z) = f(x) + g(fj/ hit) w(t)dt, u®0)=b, 0< k< (n—1). (7)
0

We can easily observe that the definite integral in the integro-differential equation (7)
involves an integrand that completely depends on the variable ¢, and therefore, it seems
reasonable to set that definite integral in the right side of (7) to a constant a, i.e. we set

1
.{1:/ EEI:T;IHI:T:I(H. L’g\'
0

With a defined in (8), the equation (7) can be written by
ul™)(x) = f(z) + aglz). (9)

It remains to determine the constant o to evaluate the exact solution u(x). To find a, we
should derive a form for u(x) by using (9), followed by substituting this form in (8). To
achieve this we integrate both sides of (9) » times from 0 to x, and by using the given

initial conditions u)(0) = bk, 0 < k< (n — 1) we obtain an expression for u(x) given by
ulz) = pir; a), (10)

where p(x; ) 1s the result derived from integrating (9) and by using the given initial
conditions. Substituting (10) into the right hand side of (8), integrating and solving the



resulting equation lead to a complete determination of a. The exact solution of (6)
follows immediately upon substituting the resulting value of a into (10).

To give a clear view of the technique, we illustrate the method by solving the
following examples.

Example 1. Solve the first-order Fredholm integro-differential equation by using the
direct computation method:

AP 1 b s
w ik y= 1= Er 4+ J.‘/ tu(t)dt, wu(0)=0. {11
0
The equation (11) may be written in the form

' 1 ' e
u(z)=1—=z+azxr, u0)=0, (12)
b

where the constant o is defined by

1
n:f tult)dt. (13)
0o

To determine a, we first need an expression for u(x) to be used in (13). This can be
easily done by integrating both sides of (12) from O to x, using (5), and by using the
given initial condition we obtain

: a 1 _
wre)=2z+(=—=) 22 (14)
T (2 ﬁ) | L)

Substituting (14) into (13) and evaluating the integral we find

[

so that the exact solution
u(z) = z, (16)
follows immediately upon using (15) into (14).

Example 2. Solve the following third-order Fredholm integro-differential equation by
using the direct computation method:

. w2 ;
¥ (2)=s8inr—z— / rtu (t)dt, (17)
1]



subject to the initial conditions
u(0)=1, w(0)=0, wu (0)=-—L. (18)
This equation can be written in the form

u (z)=sine—(1+a)z, w0)=1, w(0)=0, u (0)=—1, (19)

where

w2 .
(3 f tu (t)dt. (20)
0

To determine o, we should find an expression for «'(x) in terms of x and « to be used in
(20). This can be achieved by integrating (19) three times from 0 to x, using (5), and
using the initial conditions, hence we find

PELy 1+ o fya

it [P} =-—00BT — z2, (21

Py . 14 o I

u (z) = —sinx — —— 13, (22)

3 3| \, &

and
. i e .
u(r) =cosx — 1 2, (23)

Substituting (22) into (20) we obtain

a2 F
2 1 B
O =/ (—t‘-Hillt‘-— ?l_lﬂ t"l) dt, (24)
" 3!

which gives
==k (25)
Substituting (25) into (23) gives the exact solution
u(xr) = cosz. (26)

Example 3. Solve the following second-order Fredholm integro-differential equation by
using the direct computation method:



1
T —i—/ (xt? + 22t?) u(t)dt,
—1

subject to the initial conditions
u(0)=1, u(0)=1.
This equation can be written in the form

" . 2 . . 16 . b
=21 = E-J.‘J + (8 — Fj;t‘g. ui0)=1, u{0)=1
5]

where

1
b = f tu(t) dt,
_11
B = f t2u(t) dt.
-

(28)

(20)

(30)

To determine a, and S, we should find an expression for #(x) in terms of x, o and f to be
used in (30). This can be achieved by integrating (29) two times from 0 to x, using (5),

and using the initial conditions, hence we find

i B B BT 2__-;.‘3_'_____; 16 x?
LI = ; r e Y — el o]
e SRR T W 95
Substituting (31) into (30), solving for a and S, we obtain
9 .
a==, = E
3 15

which gives the exact solution
u(z) =1+ + 22

Exercises 4.3

(31)

(32)

(33)

Solve the following Fredholm integro-differential equations by using the direct

computation method

) 5 ! 1
| B (£) ==+ =—=x —f rtu(t) dt, wu(0)= ry
(1]

36
' 1
:?:—f rtu(t)dt, wu(0)= =
0 G

[==1 W

2. Y@=

o] .
|—'|'_

TI'.I"E
3. u (:1*}=—sin:-f:+1‘—f stu(t) dt, u(0) =0,u'(0) =1
o



"o 9 1 1_ . \ ; L
u L:r:l=1——:v+f (z—t)u(t)dt, wu(0)=wu (0)=0-
(K]

Lo

my 4
u (r)=2secx’tanzr — +f ru(t)dt, wu(0)=1
0
1

u (z) = -5 — 6z + f (z — t)u(t)dt, u(0)=1-

, -1 /2
u L:r]l:fos:-':+1—:?:+f (z —t)u(t)dt, wu(0)=0

i

i

© =N ok

\ T T, 2
u(r)=cosx—sinr — 2r+ = f (z —t)u(t)dt, wu(0)=1-
FA i

4.4 The Adomian Decomposition Method

The Adomian decomposition method in its simplest form, has been extensively
introduced in Chapters 2 and 3 for handling Fredholm and Volterra integral equations.
In this section we will study how this powerful method can be implemented to
determine a series solution to the Fredholm integro-differential equations. As indicated
earlier, we may assume a standard form to the Fredholm integro-differential equation
given by

1
u™) () =f(;z~j+/ K(z,t)u(t)dt, u®0)=b, 0<k<(n—-1) (34)
0

where u(")(x) indicates the nth derivative of u(x) with respect to x and b, are constants
that give the initial conditions. Substituting (4) into (34) yields

1
u™(x) = f(z)+ _q{;r:]/ hit)w(t)dt. (35)

We can easily observe that the definite integral in the integro-differential equation (35)
involves an integrand that completely depends on the variable ¢ as discussed in the
preceding section. In an operator form, the equation (35) can be written as

1
Lu(z) = flz) + _{r{;rr]f hit)u(t)dt, (36)
0

where the differential operator L is given by

B dqr
T odxm

i =y
(37)

It is clear that L is an invertible operator, therefore the integral operator L~! is an n-fold



integration operator and may be considered as definite integrals from 0 to x for each
integral. Applying L~! to both sides of (36) yields

1 1 '
u.|;;;g‘;| — b,:l + IE'-III = _)—Ilbgil'z Hemeernyl m E’n—lﬂ':n_l = -I[r—l Irf“”

1
e (/ h(t) u{a‘jda‘) L="{g{z)}.
0

In other words we integrated (35) n times from 0 to x and we used the initial conditions
at every step of integration. It is important to note that the equation obtained in (38) is a
standard Fredholm integral equation. This note will be used in the coming section.

In the decomposition method we usually define the solution u(x) of (34) in a series
form given by

(38)

uz) = Z ytry: (39)

Substituting (39) into both sides of (38) we get

Y une) = Z —hm (S (@)
n=( k=0 L-1||JI
g / h( r,u uﬂm,lr:fz‘ (g(zx))
or equivalently
n—1 i
Ug(x) + Uy (z) + ug(x) + -+ = Z Fhka:;" + L7Y(f(z))
k=0

1
+ ([ hit) uﬂa‘jd‘z‘) L~ (g(z))
o s
2 (/ hit) u.p;r;lrfr) L~ (g(z))
0,
+ ([ hit) ug{rjffr) L~ (g(z))
- _

The components u,(x), i > 0 of the unknown function u(x) are determined in a recurrent
manner, in a similar fashion as discussed before, where we set
r—1

1 : . : :
ug(xr) = Z ?Dkar;‘ + L7 (f(2)) (42)

k=0



1
u(r) = (f h{:‘]?r{.{rjlffi") L~ (g(x)) (43)
0
1
ug(z) = (f h{z‘]ul{r}ffr) L1 (g(x)) (44)
0

1
uszlr) = (f hit) EJ.glirjlrfr) L~ (g(x)) (45)
0

and so on. The above discussed scheme for the determination of the components u(x),
uy(x), ur(x) , uz(x), ... of the solutionu(x) of the equation (34) can be written in a
recursive relationship by

n—1
1 . .
tg(x) = Z FE},—,;.:J‘ 0 (flx))
=0

(46)

1
. like) = (/ h(t) u,, {z‘]fh‘) LY (g(z)), n=0.
0

In view of (46), the components uy(x), u;(x), uy(x) , uz(x) , us(x), ... ofu(x) are

immediately determined. With these components established, the solution u(x) of (34) is
readily determined in a series form using (39). Consequently, the series obtained for
u(x) frequently provides the exact solution in a closed form as will be illustrated later.
However, for some problems, where a closed form is not easy to find, we use the series
form obtained to approximate the solution. We point out here that few terms of the series
derived by the decomposition method usually provide the higher accuracy level of the
approximate solution.

The decomposition method avoids massive computational work and difficulties that
arise from other methods. The computational work can be minimized, sometimes, by
using the modified decomposition method or by observing the so-called self-cancelling
noise terms phenomena. The aforementioned techniques were presented earlier in
details, hence i1t will be summarized in the following sections.

4.4.1 The Modified Decomposition Method

The modified decomposition method is a powerful technique that minimizes the size of
calculations. An essential requirement for the use of this method is that the data function
f(x) in (36) should consist of more than one term. Consequently, the data function f(x)
can be decomposed to two parts, as introduced in [59], of the form



f(x) = folz) + fulz). (47)

As stated before, the selection of these two parts depends mainly on a trial basis.
Moreover, using this selection, we set the modified recurrence relation as

n—1
1 . .
wp(x) = Z Fbk.r‘j‘ + LY fo(z))

k=0

1
wy(r) = L—ll;fu;a-:';wr( f fu;r;wn':r:wfr) L=t (g(z)), (48)

; )
Hapa(x) = (/ hit) v, {:‘Jd:‘) L Y(g(z)), m=1.
0

Although the change between the Adomian decomposition method is slight, but it was
proved from using the proposed modification that this techniques minimizes the
calculations size, and mostly exact solution can be derived in using two iterations only
for ug(x) and u(x). The strength of this modified method was confirmed before in

Chapters 2 and 3.
Another observation that facilitates the convergence of the solution is the so-called
noise terms phenomenon that was explained before, but will be summarized next.

4.4.2 The Noise Terms Phenomenon

The noise terms phenomenon, that handles the self-cancelling noise terms, was
introduced in previous chapters and used effectively in the literature. It was proved by
Adomian and Rach [4] and others that the exact solution of any integral or integro-
differential equation, for some cases, may be obtained by considering the first two
components #, and u; only. Instead of evaluating several components, it 1s useful to

examine the first two components u, and u;. The conclusion made in [4] suggests that if

we observe the appearance of like terms in both components with opposite signs, then
by cancelling these terms, the remaining non-cancelled terms of uy, may in some cases

provide the exact solution. This can be justified through substitution. The self-cancelling
terms, the identical terms with opposite terms, between the components u, and u; are

called the noise terms. It was formally proved that other terms in other components will
vanish in the limit if the noise terms occurred in uy(x) and u,(x). However, if the exact

solution was not attainable by using this phenomena, then we should continue
determining other components of u(x) to get a closed form solution or an approximate
solution as discussed earlier.

Moreover, it is important to note that, even though this is a remarkable achievement
that speeds the convergence of the solution and minimizes the size of calculations work,
but unfortunately the self cancelling noise terms do not appear always, but a necessary



condition should hold for the possibility that these terms may appear. The condition of
the appearance of the noise terms, as proved in [62], requires the existence of the exact
solution as one term of the zeroth component u(x).

In the following we discuss some examples which illustrate the above outlined
decomposition scheme, the modified decomposition method, and the phenomenon of the
self cancelling noise terms as well.

Example 1. Solve the following Fredholm integro-differential equation

; ¥ .
2 {T)=co8x+ I;rr — E[ rtui(t)dt, u(0)=0. (49]

Integrating both sides of the equation (49) from 0 to x gives
. : X s A o . 5 s
u(z) —u{d) =sine + =x* — —,rrE/ tul(t)dt, wu(0)=0, (50)
8 8 i
which gives upon using the initial condition
¢ . 1 . 1, e o e R
u{r) =sine + —z° — =z tu(t)dt. (h1)
' R & ) !

(1) Using the Adomian decomposition method: We usually decompose the solution into
a series form given by

u(x) = Z tUnlT). (52)
n=0
Substituting (52) into both sides of (51) yields
% Un(r) =sinx + 1*2 — 11‘2 i t G g (t) | dt (b3)

The Adomian decomposition method admits the use of the recurrence relation



1

pen | s g Ll
uglr) = s8inx+ 3T
1 A 1 w
o N £ - S
() = 8:.5 (./; t up Ij‘}lf-!‘t‘) 3 T = g
. 1 w2 . rd 8 (54)
pies 2 (1) 2 . |24 )
Us(x) = —=x tug(t)dt | = L e 1
ol 8 ( fj : ) 165~ ' 216
1 a2 8
s (1) ——z? tus(t)dt | = — _ r? + other terms

_|_
In view of these results, we obtain the exact solution
u(r) = sinr. (55)

(11) Using the noise terms phenomenon: Using the first two components uy(x) and
uj(x), we observe that the two identical terms .2 appear in these two components with
opposite signs. Cancelling this noise term from u(x), the remaining non-cancelled term
in ug(x) gives the exact solution

u(x) =sine, (56)
that should be checked if it justifies the integro-differential equation.

(i11) Using the modified decomposition method: We first decompose the data function
f(z) =sinz + 122 as follows:

folz) = sing, -
filzg) = 32

using the modified recurrence relation (48) gives

uplr) = sinr,
u(z) = 2x?—1a? (f;uz t ug(t‘.]dt‘.) =0, 2
that gives the exact solution (56) that we justified.
Example 2. Solve the following Fredholm integro-differential equation
e ~+/l tu(t)dt, u(0) =0 (50)
u{r)=gz— 332 } xtu(t)dt, u(0)=0. (59)

(1) Using the Adomian decomposition method. Integrating both sides of the equation



(59) from O to x gives

. T 1 o . -
.'.-.1 = .- 5\ =i faety U 15 . i , i ot D‘I i --l_-
u{z) — u(0) = eZ 3(}1 + 5T (./.;: r'm\rjr:fa‘) u(0) (60)

which gives upon using the initial condition

11 L o - s
u(x) = Ea — 3—r,r S 2 (.[3 a‘uu‘;—:fa‘) : (61)

In the decomposition method we usually express the solution u(x) into a series form
given by

u(x) = z Un (). (62)
n=>0
Substituting (62) into both sides of (61) gives
T;IH,EL?J—-—I—%IE—k_ (/ (nz_:u m) dr) (63)

The Adomian decomposition method admits the determination of the components in a
recurrent manner as follows:

g (1) l’a 1 12
ol = =F— =1,
o 6 36
ui (2} = 1’-:‘2 ltu "t‘"da‘) oy 2
W gL SRR g
. 1 : » 7 gt
us(z) = =22 ty [a‘.,‘lf.fa‘.) = - — 5 (64)
s L 7 .
us(ry = -—=zx tus(t)dt | = ——x*,
3(¥) 2 (ﬂ 2 ) 64 = 288

Consequently the exact solution can be obtained upon using

: gt L 1+1+1+ ) 65
u(r) = 52— 2T + 22T 61 S

which gives the exact solution

tfp)=—r-x (66)



upon evaluating the sum of the infinite geometric series.

(i1) Using the noise terms phenomenon: From the preceding calculations we find

[ 1l o 1 .2

Tl = =TI —=I", £ iy
artl5 Y o B gw (67)

1] |.~,_]'.J| = 5EE i

Notice that u;(x) can be written as
: 1 5 s

Up(r) = —1r° — —ux |68

1 =367 T 28s V

The noise terms +.L »2 appear between the components uy(x) and u,(x). By canceling the
noise term from u(x), we obtain the exact solution given in (66).

(111) Using the modified decomposition method.: We first split f(x) into two parts, given
by

folz) = gz,
= S G

2 i)
DlEy = —5Et )
We next use the modified recursion relation
upg(r) = 2 — 3522 i
u(z) = —a=a?+ [ tug(t)dt =0. R

The other components vanish in the limit. This gives the exact solution given earlier in
(66).

Example 3. Solve the following Fredholm integro-differential equation
w () =s8inr —r —/ - art‘.-.u.“[tjzh‘.. w(0] =1, qu_ﬂJ =, .u.”[{]l} =)
0
(T1)

Using the Adomian decomposition method: We point out here that the first derivative
u'(x) of the unknown function u(x) appears under the integral sign in this example. The
approach we will follow is the same as used before, and will be illustrated through the
solution. Integrating both sides of the equation (71) three times from 0 to x yields

i

L g a 1 1 1 L
u{;;r‘,'l—u{l'.lj—z—,;i:'zu- (0) ={*-::lh';z‘—I—E.rrz—?.rr‘L—l—T:'*f tw (t)dt, (72)
H H = H & 0



which gives upon using the initial conditions in (71)

1 4 J. 4 Tr';.lz O . y
u(z) = coex — T? EI fj tu (t)dt. (T3)

We begin by expressing the solution u(x) into a series form by

]
u(zx) = E Un(T). (7T4)
n=0

Substituting (74) into both sides of (73) yields

1 4 -
Z‘H () =cosz —Ir ——.I f (E ) 'f'.l) (73]

= |:|

Proceeding as before, we determine the components u,(x), i > 0 recurrently, where we
set

i) : L
Up(x) = cosr— E;r. :
. 1 B 1 S
gy 4 £ 4 4
Uy (r) = ——x tug(t)dt | = — 1% 4+ ——on1",
2 4! (/E. e ) 4! (51)(3)(32)
: 1 /2 ' e
ua(x) = ——IJ:‘* tuy(t)dl | = ————— x* + other terms,
‘ 4! 0 e (5!)(31)(32)

(76)

Considering the first two components uy(x) and u;(x), we observe that the two i1dentical

terms Lt appear in these components with opposite signs. Cancelling these terms and
justifying that the remaining non-cancelled term of uy(x) satisfies the given equation

yield the exact solution

u{x) = cosx. (7T7)
Notice that we can solve this example by applying the modified decomposition method.
We leave it to the reader to use this technique.
Exercises 4.4

Solve the following Fredholm integro-differential equations by using the Adomian
decomposition method, modified decomposition method, or noise terms



: 1 B
L. *-u(.’-:J=5'11111:c+3(1—e_1):c—§f rtu(t)dt, wu(0)=1-
, 1 S
2. (z) = 1—§1‘+f rtul(t) dt, w(0)=0-
¢ ’ 1
3. a(.tjzre"+e"—:c+f zu(t)dt, wu(0)=0-
, . T2
4. ulr)=rcosxr+sinr— x4 ru(t)di, wu(0)=0-
T2 .
5. w (x) = —sinx+ 1‘—[ rtu(t)dt, u(0)=0,u(0)=1
L 1 nl':n: ¢ L0
0. « |;a~)=+3+:c—f zu' (t)dt, w(0)=—1,u(0)=1,u"(0) = —2-
L L—I T".Iz L i
T u |;1*]|=—-:'Ds:?:+:-:+f ru (t)dt,u(0)=u"{0)=0u(0) = 1.
" ! - m,2
8. u () =cosx —sinx —2x 4 §+f (z —t)ult)dt,u(0) = 1.
T Tr.-:;IE
9. a’(:a:j:—sinm—:c+5—1+f (2 — t)ult) dt, u(0) = 1.
0 .

10 - : . T T_.'2 ; ; ;
-ou Lr)=51n1‘+m&:1‘+2—5+ (x —f)u(t)dt,u(0) =-1-
0

4.5 The Variational Iteration Method

The variational iteration method [14—18] was presented in Chapters 2 and 3 in detail,
therefore we introduce a summary of the main steps. The method usually computes the
successive approximations that will converge to the exact solution if such a solution
exists. Otherwise, the obtained approximations can be sued for numerical computations
especially if the problem is concrete and an exact solution cannot be obtained.

The standard jth order Fredholm integro-differential equation reads

ey b
ul? (z) = f(z) +f Kz, t)u(t)dt, (78)
a

where y,0)(z) = 44, and u(0), u'(0), -, uV = 1(0) are the initial conditions that should be
given.
The correction functional for the Fredholm integro-differential equation (78) 1s

T b
i pal )= 1, () —|—f Alt) (E:'E::'[tj — f(t) —f K(t,riua(r) f.!‘r) dt.
1] a

(T9)

To apply the variational iteration method, we should first determine the Lagrange
multiplier A(7) that can be identified optimally as presented in Chapters 2 and 3. Having



A(t) determined, an iteration formula should be used for the determination of the
determination of the successive approximations u, (x), n > 0 of the solution u(x). The

zeroth approximation u, can be any selective function, but using the given initial values

u(0), u'(0), -+ are usually used as examined earlier. Consequently the solution is given
by

u(r) = lim u.(z). (80)
R— OO

It is interesting to recall that the variational iteration method evaluates successive
approximations of the solution and not the components of the solution as in ADM. The
last obtained approximation can be considered as u,(x) where its limit should be

evaluated as given earlier.
In what follows, the VIM will be examined by investigating the following examples.

Example 1. Use the variational iteration method to solve the Fredholm integro-
differential equation

T
w(r)=2—sinxr+ / tu(t)dt, u(0) = 1. (81)
0

The correction functional for this equation is given by

£ T
f 5 i i y PR [ = F S, ! oy
B b1 (T = U ]-= / (-unur; — 2 +sint — f Tun(r)d r) dt. (82)
0 0

where we used A = —1 for first-order integro-differential equation. Notice that the
correction functional involves Volterra and Fredholm integral equations.
We can use the 1nitial condition to select uy(x) =u(0) = 1. Using this uy(x) = 1 into

the correction functional gives the following successive approximations

uglz) = 1,
& ; T
U (x) = ug(z) —/ uy(t) — 2 -l-HiIlf—/ rig(r) fh') dt
0 0
2
= cosr+ 2r+ —r,
@ e (83)
. ! .
uz(x) = ui(z) —/ (u,j{a‘j =22 —i-HiIlf—/ ruy (1) m’-r) dt
0 0
: G g T2 L 2 N 2T .
= |C03r 4+ 22)+ |—2% + —T) — g i
1 { A 1 E‘ A |I. 2 3 .II

+ other terms.



I m
n P % ¢ P F - r %
uz(z) = uz(z)— f (H-ELH —2+5111!‘—[ rug(r) r:h*) dt
i i

; 2 . 2r
= feosz+22)+(-224+ —2)+(——x 4+ —=x
(€0 . 5 ( 5 3 )

P | )
2. L—?T + other terms).

and so on. The VIM admits the use of
u(z) = lim u,(z). (84)

i—s OO

It is obvious that noise terms appear in the successive approximations, that will be
cancelled in the limit. Hence, we obtain the exact solution

u(z) = cos. (85)

Example 2. Use the variational iteration method to solve the Fredholm integro-
differential equation

¢

T
u(z) =seczr —In2+ f u(t)dt, u(0) = 0. (86)
0

The correction functional for this equation is given by

& : -E-
nt1(Z) = Bu(z) —/ (un[a‘.] —sec?t+In2 - ] U (1) t!r) dt, (87)
0 0

where we used A =—1.
We can use the initial condition to select uy(x) =u(0) = 0. Using this uy(x) = 1 into

the correction functional gives the following successive approximations

uwo(zx) = 0,

= ) . -E-
ui(r) = wuofz)— f ('u.t,['r] —secit+In2— f (1) (fi‘) dt
0 i

= tanr—rln2,

T : -E-
us(x) = w(z)— f (ulii’.] —sec®t+1In2— / (1) (f'?‘) dt
0 il



2
ol

= (tanz —rn2)+ (zln2 — —
18

A T
uz(z) = ug(z) —/ (?j.ZIZﬁj—Hr?{‘ZT-FII‘LQ—/ lf.z[F‘]{f'I‘) dt
0 1]
5
i

: 5 g T2 . miz .
o LTﬂIlﬂ!—'»11113J+LR1113—Whlll‘i‘kﬁlllﬁ-l----,h

In2).

(88)
and so on. The VIM admits the use of

u(r) = lim u.(z). (59)

R— OO

It 1s obvious that noise terms appear in the successive approximations, that will be
cancelled in the limit. Hence, we obtain the exact solution

u(x) = tanz. (90)

Exercises 4.5

Solve the following Fredholm integro-differential equations by using the variational
iteration method

k]

l-uf(:ﬁj=3111x+mcos:c—l+f u(t) dt, u(0)=0-
0
m
2. u“(:c;=noe:r—s-;5'1n:c+:2+f u(t)dt, wu(0)=0.
0

.
2 i

3. uf(:cjzzseegrctanr—;—g+f u(t)dt, u(0)=1-
0

1
4. u"lzx_ll =3-12x +f fﬂl._f:l .:‘Efl 'LI.I:G_] =1.
, !
S. v (z) =€ — 1+f tu(t)dt, wu(0)=1.
o
: 19 1
6. u (z) = —E+21~_3x2 +£ u(t)dt, wu(0)=1-

4.6 Converting to Fredholm Integral Equations

In this section we will discuss a technique that will convert Fredholm integro-
differential equation to an equivalent Fredholm integral equation. This can be easily
done by integrating both sides of the integro-differential equation as many times as the
order of the derivative involved in the equation from 0 to x for every time we integrate,



and by using the given initial conditions.

It 1s important to note that this technique 1s applicable only if the Fredholm integro-
differential equation involves the unknown function u(x) only, and not any of its
derivatives, under the integral sign.

Having established the transformation to a standard Fredholm integral equation, we
can use any of the methods that were discussed before in Chapter 2, namely the
decomposition method, the variational iteration method, the direct computation method,
the successive approximations method or the successive substitutions method.

To give a clear overview of this method we discuss the following illustrative
examples.

Example 1. Solve the following Fredholm integro-differential equation by converting it
to a standard Fredholm integral equation

: 1 : i —
U e =1~=2+ ;?'f tu(t)dt, wu(0)=0. (91)
0

ok

Integrating both sides from 0 to x and using the initial condition we obtain

; 3 bog o e g
u(r) =1 — —=r°+ —=x tult)dt ) . (92)
3! 2! 0

It can be easily seen that (92) is a Fredholm integral equation; therefore we can select
any method that was introduced earlier. To achieve our goal, we select the successive
approximations method to solve this equation. Hence we set a zeroth approximation by

uplz) = =, (93)

and using this choice in (92) yields the first approximation

1 1 !
ur(r) = r — —2% + =a? (f rgu‘r) : (04)
~ 3! 21 "

which gives

y(z) = 2. (95)
It is obvious that if we continue in the same manner, we then obtain

L lx) = 2. (96)

Accordingly,



uz) = lim u,(z)

R— O3

= lim =z (O7)
—r 30

— " &

Example 2. Solve the following Fredholm integro-differential equation by converting it
to a standard Fredholm integral equation.

i

1
i oE=1¢6" —;r:—l—:::‘/ tult)dt, wu(0)=1, ?,t-’f_l'_l;'l =1 (98)
0o

Integrating both sides of (98) twice from 0 tox and using the initial conditions we
obtain

1 1 !
u(xr) = e® — Ea'a + EJ:S—[] tu(t) dt, (99)
a typical Fredholm integral equation. As indicated earlier we can select any method that
will determine the solution; therefore we will use the direct computation method for this
example. Therefore we can express (99) in the form

wr)=e"= %.173 He ﬂ:j—ll;l.j.. (100)

where the constant a 1s defined by the definite integral

1
0 =f tu(t) dt. (101)
0

Substituting (100) into (101) we obtain

: t 1 3 1 3 y
(t =/D i“((' 2 E!‘ -I-t'rEt‘- ) dt, (102)

an easy integral to evaluate, from which we obtain
=1 (103)
Inserting the value of a obtained in (103) into (100) yields the exact solution given by

ule) =¢€". (104)

Exercises 4.6



Solve the following Fredholm integro-differential equations by converting it to
Fredholm integral equations

T2
l. (x) = —xsinr +cosx+ (1 —7/2)z +j- zu(t)dt, wu(0)=0.
0

[l 1 1 .
2.y (x) = —e" + 5T+ / xtu(t) dt, wu(0)=0,u (0)=-1-
7] v ni2
3. u (z)=—sinr+cosx+ (2 —m/2)x — f xtu(t) dts
0
w(0)=—1,u'(0) =1-
- 1
4. ' (z) = ‘E — 1z — | (z=tiu(t)dt, u(0)=0
(1]

‘ 1 |T.l'l-'1
5. u ()= i cos(2r) —f zu(t)dt, u(0)=0
; A



Chapter 5

Volterra Integro-Differential Equations

5.1 Introduction

In this chapter we will be concerned with the Volterra integro-differential equations
where both differential and integral operators will appear in the same equation. This
style of equations was introduced by Volterra for the first time in the early 1900.
Volterra was investigating a population growth model, focusing his study on the
hereditary influences, where through his research work the topic of integro-differential
equations was established. Scientists and researchers investigated the topic of integro-
differential equations through their work in science applications such as heat transfer,
diffusion process in general, neutron diffusion and biological species coexisting
together with increasing and decreasing rates of generating. More details about the
sources where these equations arise can be found in physics, biology and engineering
applications as well as in advanced integral equations books.

In the integro-differential equations, it is important to note that the unknown function
u(x) and one or more of its derivatives such as u'(x), u"(x), ..., appear outside and
inside the integral sign as well. One quick source of integro-differential equations can
be clearly seen when we convert a differential equation to an integral equation using
Leibniz rule. The Volterra integro-differential equation can be viewed in this case as an
intermediate stage when finding an equivalent Volterra integral equation to the given
differential equation as discussed in Section 1.5.

The following are examples of linear Volterra integro-differential equations:

)

Uz} = .:r—/ (z —t)u(t)dt, wu(0)=0, (1)
0

Ll

X
u (x) = —,r+/ (z —t)ult)dt, u(0)=0, u (0) = —1. (2)
]

It is clear from the examples given above that the unknown function u(x) or one of its
derivatives appear under the integral sign, and other derivatives of u(x) appear outside
the integral sign as well. Therefore, the above given equations involve the derivatives
and the integral operators in the same equation, and consequently the term integro-
differential equations has been used for problems involving this combination of
operators.



Examining the limits of integrals in equations (1)-(2) and following the classification
concept used inChapter 1 allow us to use the classification Volterra integro-
differential equations to equations (1) and (2). In addition, it is also interesting to know
that equations (1)-(2) are linear Volterra integro-differential equations, and this is
related to the linearity occurrence of the unknown function u(x) and its derivatives in the
equations above. However, nonlinear integro-differential equations also arise in many
scientific and engineering problems. Our concern in this chapter will be focused on the
linear Volterra integro-differential equations.

To determine a solution for the Volterra integro-differential equation, the initial
conditions should be given, and this may be clearly seen as a result of involving u(x)
and its derivatives. The initial conditions are needed to determine the constants of
integration.

5.2 Volterra Integro-Differential Equations

In this section we will present the reliable methods that will be used to handle Volterra
integro-differential equations. This new type of equations was termed as Volterra
integro-differential equations, given in the form

T
() = f(z)+ A / K (x,t)u(t)dt. (3)

We will focus our study on equations that involve separable kernels of the form

ir
K(x,t) =Y gel(a) hi(t). (4)

k=1

Without loss of generality, we will consider the cases where the kernel K(x, ¢) consists
of one product of the functions g(x) and 4(#) given by

K{z,t) = g(z) h(t), (5)

where other cases can be generalized in the same manner. The nonseparable kernel can
be reduced to separable kernel by using the Taylor expansion for the kernel involved.
The methods to be introduced are identical, with some exceptions, to the methods
discussed in Chapter 3. Our approach will be mainly based on how we can extend the
methods used in Chapter 3 to handle this type of equations. For this reason we first start
with the most practical method.



5.3 The Series Solution Method

This method has been extensively introduced in Chapter 3. Without loss of generality,
we may consider a standard form to the Volterra integro-differential equation given by

i
ut™(z) = f(x) + / K(z,t)u(t)dt, uw™(0)=b,0<k< (n-1), (6)
0

where u(")(x) indicates the nth derivative of u(x) with respect to x, and b, are constants
that define the initial conditions. Substituting (5) into (6) yields

ha
u'™(z) = f(z) + g[szj/ hit) u(t)dt, u'® 10} =g, 0 < k< (R=1). (7)
0

We will follow a manner parallel to the approach of the series solution method that
usually used in solving ordinary differential equations around an ordinary point. To
achieve this goal, we first assume that the solution u(x) of (7) 1s an analytic function and
hence can be represented by a series expansion given by

= u]
u(z) = E arz®, (8)
k=0

where the coefficients g, are constants that will be determined. It is to be noted that the
first few coefficients a; can be determined by using the initial conditions so that

ag = ul0),

' . £
u (0], (9)
1

LLEFISEN
=1 (U],

q

o

and so on depending on the number of the initial conditions given, whereas the
remaining coefficients a;, will be determined from applying the technique as will be

discussed later. Substituting (8) into both sides of (7) yields

(Z Le;-J‘k) === 42 +_{?fj.‘]f h{t) (Z (1;‘-?;‘) dt. (10)
k=0 g k=0

In view of (10), the integral equation (7) will be reduced to several calculable integrals
in the right hand side of (10) that can be easily evaluated where we have to integrate
terms of the form ¢, n > 0 only.

The next step 1s to write the Taylor expansion for f(x), evaluate the resulting
traditional integrals in (10), and then equating the coefficients of like powers of x in



both sides of the equation. Accordingly, this leads to a complete determination of the
coefficients a;, i > 0.

Consequently, substituting the obtained coefficients a;, £ > 0 into (8) produces the

solution in a series form. This may converge to a solution in a closed form, if an exact
solution exists, or we may use the obtained series for numerical purposes.

To give a clear overview of the technique and how it should be implemented for
Volterra integro-differential equations, the series solution method will be illustrated by
discussing the following examples.

Example 1. Solve the following Wlterra integro-differential equation by using the
series solution method.

[

o
[z} ==xeoshe —/ tu{t)dt, w(0)=0,u(0)=1. (11)
0

Substituting u(x) by the series

u(x) = Z s Yo (12)

nn=(

into both sides of the equation (11) and using the Taylor expansion of cosh x we obtain

20 . ik Es =
fon 1% i T S ' _ r £a
E n(n — l)a,a =1 (E {2-"1',":) j; t ( E Qnt ) di. (13)

n—=2 k=0 n=0
Using the initial conditions yields
ag = 0, (14)

m = 1 (13)

Evaluating the traditional integrals that involve terms of the form¢*, n > 0, and using
few terms from both sides yield

; 1 . 1
2az + 6azr + 12a47% + 20asz3 +--- = =z (1 £ o il TR‘"I + - )

Equating the coefficients of like powers of x in both sides we find



g = 0,
e 1
g = Tl

gy = 0,
and generally
g, =0, for n>=0,

and

(gppg = ——, for n =0

(2n+ 1)V’

Using (12) we find the solution u(x) in a series form

L Log b g d. o
BEL) =2 = ==
5 3! 5! 7!

and in a closed form, the exact solution is given by
u(xr) = sinhz,

obtained upon using the Taylor series of sinh x.

Example 2. As a second example we use the series solution method to solve

o

Using (8) and considering the first few terms of the expansion of u(x), we obtain

upe] =14 ag;rr2 + fe31‘3 + a43‘4 +agx® 4o,

Substituting (23) into both sides of (22) yields

TE

i
2a9 + basgr + 12(:43.‘2 -t :2{}f¢5,;rr3 4= (1 +—_—4 -

21

1/, (22)2 (2z)% )
4(l+ TR TR

o 213 ipf_i
+f (r.+—+—+---) (1+ agt® + ast® + - - ) dt.
0

3! * 5!

(17)

(18)

(19)

(20)

(21)

; 1 1 a : : Fis
¢ (r) = coshz + 11 cosh 2r + / sinhtu(t)dt, wu(0)=1, u (0)=0.
T &

22)

(23)

1)



Integrating the right hand side and equating the coefficients of like powers of x we find

—_

] =

o]
-

=
I._ '\-\_-'t\:ll._

i1
2
i3
gy
as =

=

and so on, where the constants a, and a; are defined by using the initial conditions.
Consequently the solution in a series formis given by

.E.'E 1.4 I.G

u@r~j=1+‘_j—,+‘4—,+?+---~ (26)

which gives the exact solution in a closed form

u(zr) = coshz. (27)

Exercises 5.3

Solve the following VWlterra integro-differential equations by using the series solution
method

I
L. w'(z)=1—-2zsinz+ f u(t)dt, wu(0)=0.
: 1 ’ =
2.y (r)=—-1+ EJ'Z —ze” —] tu(t)dt, u{0)=0.

[]:['

3. u”(:cj =1-—z(cosx +sinx) — f tu(t)dt, wu(0)= —'l,uf(DJ =1.
1]

i 1 s i
4.y (x)= -8 — E[‘TS — i +j (z —t)u(t)dt, wu(0)=0,u (0)=2.
]

L 1 L
5. u I::.:j=§.?:2—:¢|:oeuhm—f tu(t)dt, wu(0)=1u(0)=-1.
0

5.4 The Adomian Decomposition Method

The Adomian decomposition method (ADM) and the modified decomposition method
were discussed in detail in Chapters 2, 3 and 4. In this section we will introduce how
this successful method can be implemented to determine a series solution to the Volterra
integro-differential equations. Without loss of generality, we may assume a standard
form to the Volterra integro-differential equation defined by the standard form



I
ut™(z) = f(x) —I—f K(z,t)u(t)dt, uw'™0)=b,0<k<(n—1) (28)
0

where u")(x) indicates the nth derivative of u(x) with respect to x and b, are constants

that define the initial conditions. It is natural to seek an expression for u(x) that will be
derived from (28). This can be done by integrating both sides of (28) from 0 to x as
many times as the order of the derivative involved. Consequently, we obtain

n—1

HL?J—ZF—E?;;? + L7 (f(x) + L~ 1(/ Hl;axa‘]u[a‘.]da‘.)~ (20)
: 0

where o1 15,0k is obtained by using the initial conditions, and L' is ann-fold
integration operator. Now we apply the decomposition method by defining the solution
u(x) of (29) in a decomposition series given by

u(z) = Z U, (). (30)

n=(

Substituting (30) into both sides of (29) we get

nn—1 T oo
E uﬂuJ_EFE}kJ "+ L7 (f(z))+ L~ l([ K(zx,t) (Z 1&,,,{2‘.}) d?‘-)~

=il k=0 =i ) .
(31)
or equivalently

up(x) + w1 (x) + uz(z) +--- Z—Eﬂ;ﬂ.t + L7 f(2))

. . . — 1 .
uo(z) + uy () + ug(z) + - - Zf_ x* + L1 (f(z))

(f {(z, t‘mnmda‘)

ffiu nm-hda‘) -
(32)

(f Kz, t)us(t) dz‘)

The components u(x), i > 0 of the unknown function u(x) are determined in a recursive

___d..—.,_\



manner, in a similar way as discussed before, if we set

n—1 .
; 1 i .
ug(z) = E ?a;‘.g-"’ + L7 (f(=z)), (33)
k=0

w(z) = L (/ Kz, t) un{?]:’ff) : (34)
0

uz(z) = ;i (/ Kz, ﬁ]'u-ll.’_a‘].fh‘) ; (35)
0

uz(z) = T (/ Kz, t) Ea'-gl.il‘]:’fi‘) : (36)
0

and so on. The decomposition method discussed above for the determination of the
components u(x), i > 0 of the solution u(x) of the equation (28) can be written in a

recursive manner by

n—1 .
P 1 k B Ry PR
ug{T) = E TTRT + L= (f(x)) (37)
L2

k=0
o) = o (f K(r, t)un I:E‘:Iff-.!‘) , n=0. (38)

In view of (37) and (38), the components u(x), i > 0 are immediately evaluated. With
the components determined, the solution u(x) of (28) is then obtained in a series form
using (30). Consequently, the series obtained for u(x) mostly provides the exact solution
in a closed form as will be illustrated later. However, for concrete problems, where
(30) cannot be evaluated, a truncated series 5%y, (z) 18 usually used to approximate the
solution u(x).

It is convenient to point out that the phenomenon of the self-cancelling noise terms
that was introduced before may be applied here if the noise terms appear between u(x)

and u(x). Moreover, the modified decomposition method can be used as well. The

following examples will explain how we can use the Adomian decomposition
technique.

Example 1. Solve the following Volterra integro-differential equation by using the
decomposition method.

u-”(:.:'_‘.l =it —I—f (z —t)u(t)dt, wu(0)=0, w (0= 1 (39)
0



Applying the two-fold integral operator L~!

i s
L‘ll;'.]:f f ()dx dz, (40)
0 ]

to both sides of (39), i.e. integrating both sides of (39) twice from 0 to x, and using the
given initial conditions yield

ulx) =+ _—;;:~3 S8 ot ([ (x —1) u[?‘-}n‘h‘-) : (41)
0

Following the decomposition scheme (37) and (38) we find

oo (R TR GO
uplz) = T+ TR
ol
w(zr) = L1 (f [ — 1} u[.{t‘.jdt) .
0
N L 1.7
= E'I .I,—J '

f (x—1) uﬂt‘-jdf) :
0

A1

+
us(zr) = L‘l(

1 (42)
—1
11!

_|_
(s} = L7 (f (.:r—rju.g{r.jdr.).
0

1 : 1 A6
= ﬁ.r +ﬁ.l 5

._
£a

Combining the last results yields the solution u(x) in a series form given by

wrl=r+—u"+—r'+—ar'"+—2'+—r +—r"+—r"+---, (43)
\E) 3 TR T Tort 1 13! 15! \)
and this leads to the exact solution in a closed form

u(x) = sinh z. (44)

Example 2. Solve the following Volterra integro-differential equation
u.”{;r.‘] =il +/ (z—1)u(t)dt, u(0)=1, w (0) =0, (45)
0

by using the decomposition method. Integrating both sides of (45) twice from 0 to x and
using the given initial conditions yield



: 1 3 . _
u(z) =1+ 2—,;1.‘2 +L1 (f (z— t) u{f}dt‘.) : (46)
H il

where L! is a two-fold integration operator given above by (40).
Following the decomposition method we obtain

up(r) = 1+ %a2%
ui(z) = L1 (/ (z—1) u.t.{r.jdr) :
0
! 4 1 6
= Tt Tyt -
" (47)
wiz) = L (f (z-—rjulqiﬁjdr).
0
1 3 1 10
= =T —T
8! T 10!
Combining the obtained results yields the solution u(x) in a series form given by
1.5 . Lo, B, BLE . 0k .0
T = _ am o — —7r — — .7:‘:
wir) 1+2:3 —|—__1:3 +ﬁ::: He 8!1 = 1{}!? 4 (48)
and this gives the exact solution in a closed form
u(x) = coshz. (49)
Example 3. Solve the following Volterra integro-differential equation
u' (z) :—1+f u(t)dt, w(0)=wu(0)=1,u (0)=—1 (50
0

by using the decomposition method.

We note here that the Volterra integro-differential equation involves the third order
differential operator u"’(x), therefore integrating both sides of (50) three times from 0 to
x and using the initial conditions we obtain

1

; 1 N e
wlz)i=1 fa— E;;r:2 = ;;1*3 + L7t (f u-{fjdf) g (51)
H (i H i}

Following the decomposition scheme we find



. 1 1 R
tp{r)=1+2— EJ:Q — E:I‘S. (52)

which gives

iy
wi(z) = L1 (/ u.;.[r}d.r)
i F e

| . (53)
1
4 5 6 T
4l ! 5l ; f}'l T'J

Consequently, the solution u(x) given in a series form

() — - .._1.2_1.3 l,.4 J'.j_l.ﬁ_lj' FE A

were)=1+= Tk T o Tk + Tk a1 Tk off (54)

We can easily observe that the series solution obtained in (54) will not easily give the
closed form solution; however, rewriting (54) by

: | = 1 1 1 sipicsir
u(z) = 1——::1‘2—|——55‘4—|—---) + 3?——2‘3+—:E‘5+---) ; (55)
e ( TR TRl T b
provides the closed form solution given by
uf{xr) = cosz 4 ein . (56)

Exercises 5.4

Solve the following Wolterra integro-differential equations by using the Adomian
decomposition method

3!

" 1 x I. F % L
1. (x)=14+z— =1 +,/ (r—tiu(t)dt, wuw(0)=1u(0)=2
0
(r) = -1 — =z* +] (z — thu(t)dt, u(0) =2,u (0)=0.
0

¢

2.4
: I

3. u'(z) =2 -|—j u(t)dt, wu(0)=2.
0
I

4, -“Il|::tz‘:| =] ] 'Hl:ir':] fl.rf E!(D:I = 1.
0

SR 1 ® T
5. ul(g) = —z + ?rz —f (x — t)u(t)dt-
- o

u(0) =1, u'(0)=—1, u"(0) =0, u"(0) = 1.

5.5 The Variational Iteration Method



The variational iteration method was used effectively in the preceding chapters. This
method was used to handle both Fredholm and Volterra integral equations. The method
was presented before where we studied the necessary issues that should be addressed.
We should first give the correction functional that works for differential equation
provided that the Lagrange multiplier is derived. The method gives successive
approximations of the exact solution and does not give distinct components as in the
case of Adomian decomposition method. Because we will study the Volterra integro-
differential equations in this section, then we can apply this method directly, and we do
not need any specific condition. In what follows we give a brief summary to the
essential steps of the variational method.
The standard jth order integro-differential equation is of the form

X
u(z) = f(z) + / Kz, t)u(t)dt, (57)
0

where ,,0)(;) = £y, and u(0), u'(0), -, uV=1(0) are the initial conditions.
The correction functional for the integro-differential equation (57) is

Unt1(2) = Unlx) —|—/ Alz, 1) (ufj*‘{z‘] — f(t) — f K(t,r)ug(r) u‘r) dt.
0 0
(58)

Recall that the Lagrange multipliers were identified optimally, as shown before, and
summarized by

L} ’ ’ \ ! F o'y - a
u + flu(g),u(€)=0A=-1,
" i i ! 'ln' i " i A% F, - 1
u + flu(f),u (&),u (£)=0,A=¢&—=x, (59)
L i i 5\ ! i 1 L i 4 1 i (Y L y T
u + fu(@).w (€)u (€)u (§) =0,A=—g5(§ —2)%,

and so on. Moreover, the zeroth approximation uy(x) can be preferably selected by

using the initial values u(0), ©'(0), ... and Taylor series. Having determined the first few
successive approximations, the solution is given by

u(z) = lim u,(z). (60)
R— OO

The VIM will be illustrated by studying the following examples.

Example 1. Use the variational iteration method to solve the Volterra integro-
differential equation

' 1 T
X)) =21 3:1*3 + / uit)dt, u(0) = 2. (61)
0



The correction functional for this equation is given by

: : o 1 " s
Yo ialEy =% ley= f (u”{z‘j e Erz = / U, (7) a’-r) dt, (62)
0 ]

where we used A =—1 for first-order integro-differential equations.
We can use the initial condition to select uy(x) = u(0) = 2. Using this selection into

the correction functional gives the following successive approximations

[y Li;r.‘:l

iy ()

ua(r)

ug(x)

2'.

o () = f3 (“E{ﬁ' +1t—$t? — fl:,t g () ff-r) dt,

2t %J.‘g + %3*33

w (2) - fy ('“1 )+t — 5 = [yw(r) -.rf-r‘) dt. (63)
. 1 p2 1.3 1.4 1.5

2+TJ+?R +T.I +?J~

uz () — fo (u;{tj +t— 12— [Tug(r) dr) dt.,

: : : . : 6 7
2+ f2? 4 Lo’ + fat 4 Fat 4 Lof + 427,

and so on. The VIM admits the use of

that gives the exact solution

u(z) = lim u.(z), (64)
Fi— OO0
w(r) =1—x + €. (65)

Example 2. Use the variational iteration method to solve the Volterra integro-

differential equation

X
%) =36"—x—12 —l—f (x — t)u(t)dt, u(0) = 0. (66)
0

The correction functional for this equation is given by

T t
i, ey = lEy = f (uﬁ{a‘j — 3 +t+2-— f (t —r)u,(r) (f?“) dt,
] 1]

(67)

where we used A =—1 for first-order integro-differential equations.
We can use the initial condition to select uy(x) = u(0) = 2. Using this selection into

the correction functional gives the following successive approximations



uglz) = 0,

w(x) = wug(x)— f; (u;(t‘.j —3ef+t42— _ﬁ;l:i!‘- — 1 )ug(r) ﬂ‘r) dt
= rtai+ i+ Lot + ot =af
uz2(r) = uolx)— f; (ul(t‘.j —3e"+t+2-— fnt{i!‘. —r)uy(r) f.!‘r) dt
= rs+z+ 4ot + Lot + Lot + Faf 4
(68)
and so on. The VIM admits the use of
uw{z) = im wu,(z), (69)
TR— oo
that gives the exact solution
yiz) = ne”. (70)

Example 3. Use the variational iteration method to solve the Volterra integro-
differential equation

u”(:r} =i -|—f (z — t)u(t)dt, uw(0) = 0,u'(0) = 1. (T1)
0
The correction functional for this equation is given by
T " t
ke =1, {x) -l—/ (t—z) (u,,,{rj +t— f (t—7)ug(r) f.!‘r) dt, (72)
0 0
where we used A = (¢ — x) for second-order integro-differential equations. We can use

the initial condition to select ug(x) =u(0) +xu'(0) =x. Using this selection into the
correction functional gives the following successive approximations

uplx] = =,
wi(r) = wugle)+ f,;” (t —x) (u.;{rjl +1t— fnt(t‘. — 7 )ug(r) d-r) it

— o e %3\3 + %;]‘.'5,, LTJJ
ug{z) = uy(e)+ f5(t—2) (uf; (t)+1t— th“_ —r)uy(r) dr) dt

g 1.3 1 .5 Lo 1.6
= :I—ﬁ:? +FJ‘—F2"+EJ

and so on. The VIM admits the use of

u(z) = Hm wun(z), (74)
— oo



that gives the exact solution

u(r) =sinz. (7T5)

Exercises 5.5

Solve the following Volterra integro-differential equations by using the variational
iteration method

I
l.u’(:c;=2e.f—1+f u(t)dt, wu(0)=0
0
2 fe oo 1, & . \
culx)=2ecosxr— 51" + uit)dt, w(0)=0.
]
: 1., s
3. u () =1+ 2sinx — ;xg +f w(t)dt, u(0)=-1.
, 1 = "
4. u(z)=1- 513 +j. u(t)dt, wu(0)=1
(]
L J. ) i i
5. u (2) =142 — —2* + (x— tul(t)dt, u{0)=1,u'(0)=2.
W) 5 . JUlL) ) W
i)

E
6. u"|;1~j|=.?:—1+f (z —thu(t)dt, u(0)=1,u'(0)=—1.
0

5.6 Converting to Volterra Integral Equation

We can easily convert the Vlterra integro-differential equation to an equivalent
Volterra integral equation, provided that the kernel is a difference kernel defined by the
form K(x, t) = K(x — t). This can be easily done by integrating both sides of the equation
and using the initial conditions. To perform the conversion to a standard Volterra
integral equation we should use the formula (70) of Chapter 1 that converts multiple
integral to a single integral. The reader is advised to review that formula for further
reference. The following two specific formulas

f f u(t) dt dt = / (x — t)u(t) dt, (T6)
o Jo 0

o i T J_ s )
‘/r_ f /:l u(t) dtdt dt = ?/ (x —t)%u(t) dt, QA

given by (71) and (72) in Chapter 1 are usually used to transform double integrals and
triple integrals respectively to a single integral. Having established the transformation
to a standard Volterra integral equation, we may proceed using any of the alternative
methods that were discussed before in Chapter 3. To give a clear overview of this

and



method we discuss the following examples.

Example 1. Solve the following Volterra integro-differential equation

u [z) =2~ l;r2 -+ if u(t)dt, wu(0)=0, (78)
‘ 1 3l ™ ‘
by converting to a standard Volterra integral equation.
Integrating both sides from 0 to x and using the initial condition we obtain

1 1 £ T
w(z) = 2r — —z + = u(t) dt dt, (79)
i 12 -1 0 i :
which gives
. 1 1. f* , o
u(r) =2r — —r3+ = [ (z—t)u(t)dt, (80)
12 L

upon using the formula (76). It is clearly seen that (80) is a standard Volterra integral
equation that will be solved by using the decomposition method. Following the
Adomian decomposition method we set

. 1
un(x) = 22 — —2°, (81]
oL 12 (ol)
which gives
1 = 1 .
T == —/ lx—1t) (:zr = _—1‘3) dt, (82)
i -.1 0 12
so that
. i - 1 Fe—_ P
Ulr) = —r" — ——x-. ~3
W= 19 240 \&2)

We can easily observe that the noise terms +.L.* appear in the components uy(x) and
uy(x), and by cancelling this noise term from uy(x) and justifying that

u(r) = 2r, (54)
1s the exact solution of (80).

Example 2. Solve the following Volterra integro-differential equation



I
aa.JJ{J':I =1 —|—f (x —t)u(t)dt, u(0)=1, n (B == (85)

by converting to a standard Volterra integral equation.
Integrating both sides twice from 0 to x and using the initial conditions we obtain

uf':f-f‘f.' = - -l—f f (r—t)u(t)dtdt
0

(86)

= —;r—|—— LE—!‘IHITJEEI

,_,. |:|
by using formula (76), and
wE] = 1——.r —i—/ f / (x—t)u(t)dtdtdt

(87)

= ] l.J‘E —|— (@ —t) ult)dt

- ‘EI 3 |:| - .-'I L 3

by using formula (77). The last equation is a standard Volterra integral equation that
will be solved by using the modified decomposition method. To determine u(x) we set

ug(z) = 1, (88)
which gives

1.3 .1 - .
uy(r) = ——r* + — (80)
) 2! T

We can easily observe that the noise terms did not appear between the components u(x)
and u,(x), therefore we continue to find more terms to study the solution more closely.
Consequently, we find

1 l ez
us(x) = —E,te -|— x5, (90)

Combining the results for the components uy(x), u;(x) and u,(x) we obtain the series

expression for the solution given by

1 .2 1 1 6 A e
wr)=1— =r"+ =—r —_— T (91
\ 21 4! 6! & R

which gives the exact solution

w(x) = cosz. (92)



Exercises 5.6

Solve the following Volterra integro-differential equations by converting the problem to
Volterra integral equation

T
1-u”|_‘_:-:]=1+f (z —t)u(t)dt, w(0)=1,u(0)=0.
0

T
2. u ':T.]=1—f u(t)dt, wu(0)=0.
(1]
b i
3. U”'-'.f"e'jl=1‘+f (z —t)u(t)dt, wu(0)=0,u(0)=1.
' 1" T
4. U':TJ=2—2—13J2+[ u(t)dt, wu(0)=1.
3 i
3.
6.

u(z)=1-— [ u(t)dt, u(0)=1

]
T

u”(.’ﬂj=1+:¢‘+[ (z —t)u(t)dt, wu(0)=u (0)=1
0

5.7 Converting to Initial Value Problems

In this section we will study how to convert the Volterra integro-differential equation to
an equivalent initial value problem, focusing our discussion on the case where the
kernel is a difference kernel where K(x, f) = K(x —¢). This can be achieved easily by
differentiating both sides of the integro-differential equation as many times as needed to
remove the integral sign. In differentiating the integral involved we shall use the Leibniz
rule to achieve our goal. The Leibniz rule has been extensively introduced in Section
1.4. It is important to note that we should define the initial conditions at every step of
differentiation. A similar technique was discussed and examined in Chapters 1 and 2.
The reader is advised to review the related material for further use.

Having converted the Volterra integro-differential equation to an initial value
problem, the various methods that are used in any ordinary differential equation course
can be used to determine the solution. The idea is easy to use but requires more
calculations if compared with the integral equations techniques.

To give a clear overview of this method we discuss the following illustrative
examples.

Example 1. Solve the following Volterra integro-differential equation by converting it
to an initial value problem.

£
W) =1 -|—/ u(t)dt, w(0)=0. (93)
0

Differentiating both sides of (93) with respect tox and using the Leibniz rule to



differentiate the integral at the right hand side we obtain
'u”(?c_‘; =ulr); (94)
with initial conditions given by

- ! P ’ "
ul0) = 0, u (0) =1, (95)

where the last initial condition was obtained by substituting x = 0 in both sides of (93).
The characteristic equation of (93) is

rf—1=0, (96)
which gives the roots
r=41 (97)
so that the general solution is given by
w(r) = Acoshr + Bsinhz, (98)

where A4 and B are constants to be determined. Using the initial conditions given by (95)
to find the constants 4 and B, we find that the solution 1s

u(x) = sinhz. (99)

Example 2. Solve the following Volterra integro-differential equation by converting it
to an initial value problem.

u () = —;1‘—|—/ (z — tu(t)dt, u(0) =0, u (0)=1. (100)
0
Differentiating both sides of (100) and using Leibniz rule we find
v (z)=—1 +f u(t) dt, (101)

and by differentiating again to reduce the equation to a pure differential equation we
obtain

ul™(z) = u(z). (102)

Combining the given initial conditions in(100) with the other initial conditions,
obtained by substituting x = 0 in (100) and (101), we write



w(0)=0, w(0)=1, v (0)=0, u (0)=—1. (103)

The characteristic equation of (102) is

rt—1=0, (104)
which gives the roots
r=41,+i. (105)
so that the general solution is given by
uw(xr) = Acoshr + Besinhax + Ceosx + Dsinz, (106)

where 4, B, C and D are constants to be determined. Using the initial conditions (103)
to determine the numerical values for the constants 4, B, C and D, we find the solution
given by

u(z) = sinz. (107)

Example 3. Solve the following Volterra integro-differential equation by reducing the
equation to an initial value problem.

- 1 1. " .
u(r)=2--z2%+ —f u(t)dt wu(0)=0. (108)
. 4 _L I:I B B .

Differentiating both sides of (108) with respect tox and using Leibniz rule to
differentiate the integral at the right hand side we obtain

L 1 1 r b
(r) = ——71 —al7) {15
w (r) 2.1 i _l_m:.: (109)
or equivalently

L ] J. "
w (r)— —ulr) = —=r. (110
. el _L . & 2 " el

with initial conditions given by
w(0)=0, u(0)=2, (111)

where the second initial condition was obtained by substituting x = 0 in both sides of
(108). The characteristic equation for the corresponding homogeneous equation of (110)
is



= W (112)
1 =u, L J
which gives the roots

- : (113)
P - |
2 iaan

so that the complementary solution is given by
: i B . H . ah
Ue(z) = A {*(:uaL’EJ T Br:'.m(EJ. (114)

where 4 and B are constants to be determined. A particular solution u,(x) can be
obtained by assuming that

u(x)i=0C +-De. (115)
Substituting (115) into (110) yields
C=0 D=2 (116)
Combining (114)-(116) yields
u{r) =A r.-l:}.%(%j i g Baim’%] + 2z, (117)
which gives
u(z) = 2z, (118)

upon using the initial conditions (111).

Exercises 5.7
Solve the following Volterra integro-differential equations by converting the problem to
an initial value problem

L
l.u“(w;l:ef—f u(t)dt, w(0)=1.
: g
2.u(a~)=1—f u(t)dt, w(0)=0.
G "1 z ;
3. u {:ﬂj=—$—5:ﬂ2+/; ( —thul(t)dt, u(0)=1,u'(0)=1.
E T
4. u”(:c;n:l—%:r9+j; (z—thu(t)dt, u(0)=2u(0)=0

i 1 2 o ¢
S5.u E:EJ:_EIZ_ETS_'_I (z —t)u(t)dt, wu(0)=1,u (0)=4.
5 1]



1 1 % - 1
6. u'(z) = —2— E:.-F +f (z —t)u(t)dt, u(0)=-,u(0)=1
- i &

I
7. Uf'-r.i‘.] =1+4sinr + / u(t)dt, wu(0)=-1.
u}

5.8 Volterra Integro-Differential Equations of the First Kind

The standard form of the VWolterra integro-differential equation of the first kind was
introduced by Linz [25, 26]. The standard form of this integro-differential equation
reads

fHlu;r.r;w;r}dr+/ Ko(z,thu'™(t)dt = f(r), Ka(z,t) #0, (119)
i [

with given initial conditions. The Wlterra integro-differential equation of the first kind
(119) was investigated by Linz [25, 26] by using analytical and numerical methods.
Moreover, the equation was handled by other techniques as will be presented later.

The most significant method for handling this problem is to convert it to an equivalent
Volterra integro-differential equation of the second kind, or even Wlterra integral
equation of the second kind simply by using the Leibniz rule for differentiating any
integral. Also this can be achieved by integrating the second integral in (119) by parts.
Having converted the Volterra integro-differential equation of the first kind to its
equivalent of the second kind, then we can employ any of the methods that were applied
earlier in this text, such as the series method, the Adomian decomposition method and
the variational iteration method. For practical use, we will apply the latter method. The
reader is advised to use other methods.

In this text we will concern ourselves on the Volterra integro-differential equation of
the first kind where the kernels K;(x, ) and K5(x, t) of (119) are difference kernels, that

each depends on the difference (x — ¢) such as (x — ¢ + 1), sin(x — ), €7, .... One more
essential condition that should be considered that the solution exists 1f K5(x, x) # 0. This

necessary condition can be observed by introducing the conversion process to an
equivalent Volterra integro-differential equation of the second kind.
Differentiating both sides of (119), and using Leibniz rule we find

i’ " = g = "
\ f(x) iz x] 1 = HKi(x, 1))
] et e e ————u'"(t)dt
Ko(z,z) Kao(z,z) ~ ° Kalz,z) Jo dx o
1 T S Eqlx, 1))
= - — 2 ut™(t) dt.
Kalz,z) Jy dr E

(120)



The obtained equation is a Volterra integro-differential equation of the second kind that
can be evaluated only if K5(x, x) # 0.

We will focus our illustrative examples by the variational iteration method, where
other methods can be used as well. Recall that we need the Lagrange multiplier A that
will be used in the correction functional. Moreover, the zeroth approximation can be
selected by using the given initial condition as presented before. The Wlterra integro-
differential equation of the first kind will be examined by using the variational iteration
method when studying the following examples.

Example 1. Solve the Volterra integro-differential equation of the first kind
f (z—t+1) n (t)dt =2e* —xz — 2,u(0) = 1. (121)
0

Differentiating both sides of this equation once with respect to x gives the Volterra
integro-differential equation of the second kind

U e} =25 =1— / '.!.'.ffliﬁ] dt. (122)
The correction functional for equation (122) is given by

b t
U p1{T) = {z) — f (uL_LﬁJ —2ef+ 1+ / u,(r) fa‘r) dt (123)
0 0

where we used A(¢) = —1. The zeroth approximation uy(x) can be selected by uy(x) = 1.
This gives the successive approximations

“l:l |'..]l:l — 1~
uy{r) = 2e°—1-—=,
us(z) = 142+ L2
e R (124)
uslz) = 14+zx+ ?153‘9 + %,ﬁ + %g-{
This gives
1 1 1
un(2) =142+ o + ?;z-ﬂ' + T;;rr‘* + e, (125)

that converges to the exact solution

u(z) = e”. (126)



Example 2. Solve the Volterra integro-differential equation of the first kind
/ (x —t)u(t)dt + f (z—t+ 1}7:5 (t)dt =1+ x —cosx,u(0) =0. (127)
i 1]

Differentiating both sides of this equation once with respect to x gives the Volterra
integro-differential equation of the second kind

uf(:.e‘} =1+4sinzr — / (u(t) + uf[ﬁ]} dt. (128)
0
The correction functional for equation this equation is given by

x t
Upy1(2) = () — f (u;(t‘] <= gin +f (un(r) + u,, (7)) d-.'r*) dt.
0 (]
(129)

The zeroth approximation uy(x) can be selected by uy(x) = 0. This gives the successive
approximations

up(r) = 0,
ui(r) = 1+x—cosz,
) i el ofloMue Ao
U.QI,‘;J'.JI = rn— T'I = ﬁﬂf. - ?? = + - (130}
us(r) = r—4rd+&a® —La’ 4.
This gives the exact solution
u(z) = sinz. (131)

Example 3. Use the variational iteration method to solve the Vlterra integro-
differential equation of the first kind

- : I e . 5 1 : :
/ (x —t)u(t)dt — —f (2 —t+ Du (t)dt = =2% — =z, u(0) = 6. (132)
I:I 3 & . 2 I:I . L -:. 2 B .

Differentiating both sides of (132) once with respect to x gives the Volterra integro-
differential equation of the second kind

h o
u(r)=-10r+1 —I—f (2u(t) — ?flit‘-:l','l dt. (133)
0

The correction functional for equation this equation is given by



t
Uni1(Z) = tnlz) — / (u,.l(a‘j ] / (2un(r) —u,(r)) ff-r) dt
0 0

(134)

where we used A(f) = —1. The zeroth approximation uy(x) can be selected by uy(x) = 6
This gives the successive approximations

#o(z) = B,
ui(r) = 6+z+ 2%,
ug(z) = 6+ z+ 422 + St
uz(z) = 6+z4 Frf+ Fri4 Lot — Lot 4+ —
I I (135)
ug(r) = 64+ Fri+ f2d+ Fat 4+ a2+ “
us(z) = 6+ 2+ F2? + Frd 4+ Fat 4+ L2® + -
This gives
T 1 1 l P
UnlZ) =5+ [1+2 —I—E:r + J + .1 + T (136)
The exact solution is therefore given by
gy =05F . (137)
Example 4. Solve the Volterra integro-differential equation of the first kind
& 7 LY ! P ¥ J' 2 Fr # LY F a4 e
(r—t4+1u(t)dt =1+ 2z + E’c =g, Wh==1. (138)
0

Differentiating both sides of (138) once with respect to x gives the Volterra integro-
differential equation of the second kind

u.“(mj =2+ ¥-—e’ — / uJ{rj dt. (139)
0
The correction functional for equation (139) is given by

T t
Unt1{T) = un(z) — [ (u-;,['t‘-] +et —t—2+ f U, (r) ﬂ‘r) dt  (140)
0 0

where we used A(¢) =—1. The zeroth approximation uy(x) can be selected by uy(x) = —1.
This gives the successive approximations



ulz) = =1,
w(z) = 2x-— %:::2 e®
ey _dAnn Ly
of 1) l4+r— sz e
ug(r) = —l+a—g2?—fat—Fab4 ..., (141)
w(r) = —1l+z— rg—%1‘4—%rﬁ—%z‘8+---
This gives
Un(Z) =T +2,1 +__1:1 -|—6:;r, —|—3:;r: e (& (142)
The exact solution is therefore given by
u(r) =z — coshz. (143)

Exercises 5.8

Solve the following Volterra integro-differential equations of the first kind by using the
variational iteration method or any other method

1. [gx —t+1)u'(t)dt =sinz+cosz— 1 — =, u(0) =1

|la —t4 Du'(t)dt = —z, u(0) =1

r—1+ 1;IHIII:E”IEEE‘ =sinhz + coshx — 1, u(0) =0

L:l—f]ul'fj-‘.’ii‘+/ [a—a‘+lju|‘a“|dz‘ 3e® -3 -2z, uld)=1

2.
3.
4.
5. 1 1

u—rjurr;dr+ (1—?+1;u|ﬁda‘—smﬂ:+§1 +Ea ,u0 =1
6.

‘E."-HE“-EE“-&E“-Q“-H

>
L:l —tiult) df+[ (z—t+2)u (t)dt = sinhz+3coshr—x—3, u(d) =1
0



Chapter 6

Singular Integral Equations

6.1 Introduction

An integral equation is called a singular integral equation if one or both limits of
integration become infinite, or if the kernel K(x, ) of the equation becomes infinite at
one or more points in the interval of integration. In other words, the integral equation ot
the first kind

Il_:l\'l:.r_:l
Pla)== A/ Kz, t)u(t)dl (1)
il

()
or the integral equation of the second kind

u(z) = flx) + A o K(x,t) u(t)dt, (2)

)
1s called singular if the lower limita(x), the upper limitf(x) or both limits of
integration are infinite. Moreover, the equation (1) or (2) is also called a singular
integral equation if the kernel K(x, #) becomes infinite at one or more points in the
domain of integration. Examples of the first style of singular integral equations are

given by the following examples:

oG
ulr) = 1+f-'—“'—f u(t)dt, (3)
i
o
F{A} = / e~ u(r)de, (4)
—ED

oo
Llu(z)] = / e~ *u(r)dr. (5)
0

The integral equations (4) and (5) are Fourier transform and Laplace transform of the
function u(x) respectively. In addition, the equations (4) and (5) are in fact Fredholm

integral equations of the first kind with kernels given by K(x, £) =e ™ and K(x, f) = ¢~
M It is important to note that the Laplace transforms and the Fourier transforms are



usually used for solving ordinary and partial differential equations with constant
coefficients. However, these transforms will not be used in this text to solve integral
equations, but will be used in the derivation of two formulas as will be seen later.

One important point to be noted here is that the singular behavior in (3)-(5) has been
attributed to the range of integration becoming infinite.

Examples of the second style of singular integral equations are given by

x? ) ._1 w(t)dt (6)
= L)AL, L0
0 ¥ r—t -'
* 1 o for
2 = ; —u(t)dt, 0<a<l, L)
p W — f;lc" .
= 1

u(z) = 1+ 24/ — / J,—fff-'lff-'-fff- (8)

o VI —I1

where the singular behavior in this style of equations has been attributed to the kernel
K(x, t) becoming infinite as t — x.

It is important to note that integral equations similar to examples (6) and (7) are
called Abel’s problems and generalized Abel’s integral equations respectively.
Moreover these styles of singular integral equations are among the earliest integral
equations established by the Norwegian mathematician Niels Abel in 1823. In addition,
Abel’s equations arise frequently in mathematical physics.

However, singular equations similar to example (8) are called the weakly-singular
second-kind Volterra-type integral equations. This type of equations usually arise in
scientific and engineering applications like heat conduction, super fluidity and crystal
growth. Recently, the weakly-singular second-kind Volterra type integral equations have
been the subject of extensive analytical studies. Moreover, numerical studies have been
carried out to obtain approximations, of high accuracy level, to the exact solution.

In addition to the definitions of the singular Volterra integral equations that we
defined, we note that singularity behavior arises also in Fredholm integral equations of
the second kind. Examples of the weakly-singular Fredholm integral equations are given

by
Ty B
ulx) = flx) —l—/
a VI—1

w(t) dt, (9)

]

and

b
: 1 :
w(z) = f(x) +/ _ — u(t) dt, 0 < a < 1. (10)
) s B



Recall that for the first kind, the unknown solution u(x) appears only inside the integral
sign, whereas for the second kind the unknown solution u(x) appears inside and outside
the integral sign, a characteristic feature of the first and the second kind integral
equations.

We point out that the weakly singular Volterra integral equations arise in
mathematical physics applications, chemical applications such as stereology, heat
conduction, radiation of heat from a semi-infinite solid and crystal growth. However,
the weakly-singular Fredholm integral equations often arise in scientific applications
such as Dirichlet problems, radiation equilibrium applications, electrostatics, potential
theory, astrophysics, and radiative heat transfer.

In this chapter we will focus our study on the second style of singular Volterra
integral equations, namely the equations where the kernel K(x, ¢) becomes unbounded at
one or more points of singularities in its domain of definition. The equations that will be
investigated are Abel’s problem, generalized Abel integral equations and the weakly-
singular second-kind Volterra type integral equations. Moreover, we will proceed in
our study to cover the singular Fredholm integral equations using the practical methods.
The singular Fredholm integral equations was approached by many approaches, mostly
by numerical techniques, such as homotopy method, wavelet Galerkin method, Taylor
expansion method and other methods as well. In a manner parallel to the approach used
in previous chapters, we will focus our study on the techniques that will guarantee the
existence of a unique solution to any singular integral equation with singularity related
to the kernel K(x, ¢) becoming unbounded at its domain of integration. We point out here
that singular integral equations are in general very difficult to handle.

6.2 Abel’s Problem

Abel in 1823 investigated the motion of a particle that slides down along a smooth
unknown curve, in a vertical plane, under the influence of the gravitational field. It is
assumed that the particle starts from rest at a point P, with vertical elevation x, slides
along the unknown curve, to the lowest point O on the curve where the vertical distance
is x = 0. The total time of descent 7" from the highest point to the lowest point on the
curve 1s given in advance, and dependent on the elevation x, hence expressed by

T = h(z). (11)

Assuming that the curve between the points P and O has an arclength s, then the velocity
at a point Q on the curve, between P and O, given by

s

dr

2g(x — t), (12)



where ¢ 1s a variable coordinate defines the vertical distance of the point O, and g is a
constant defines the acceleration of gravity. Integrating both sides of (12) gives

(13)

_fp ds
Setting
ds = u(t)dt, (14)

and using (11) we find that the equation of motion of the sliding particle is governed by

flr) _/ w(t)dt (15)
0 \,rJ—

We point out that f(x) is a predetermined function that depends on the elevation x and
given by

flx) = /20 h(z), (16)

where g is the gravitational constant, and 4(x) is the time of descent from the highest
point to the lowest point on the curve. The main goal of Abel’s problem is to determine
the unknown function u(x) under the integral sign that will define the equation of the
curve. Having determined u(x), the equation of the smooth curve, where the particle
slides along, can be easily obtained using the calculus formulas related to the arclength
concepts.

It 1s worth mentioning that Abel’s integral equation (15) is also called Volterra
integral equation of the first kind. Besides, the kernel K(x, #) in (15) 1s given by

K{z,t)= . (17)
1l i) \.m I |

which shows that the kernel (17) is singular in that
Kir,t) =200 as t—=r (18)

The interesting Abel’s problem has been approached by different methods. In the
following we will employ Laplace transforms only to determine a suitable formula to
solve Abel’s problem (15), noting that Laplace transforms will not be used in our
approach to handle the singular equations. Taking Laplace transforms of both sides of
(15) leads to



Lif(z)] = Lu(z)]Llz~1]

o (19)
_ L[u[:z*}]rﬁ#f.

where I' 1s the gamma function. In Appendix D, the definition of the gamma function and

some of the relations related to it are given. Noting that (i) = /7, the equation (19)

becomes

Llu(x)] = T: L{f(z)]. (20)
which can be rewritten by
Llu@) = = (V- EL[f(@)]) (21)
Setting
h(z) = /j J(;z‘ — )~ f(t)dt, (22)
into (21) yields
Llu(z)] = = L[h(z)] (23)
which gives
Lu(z)] = &L[Ff{a‘]y (24)
upon using the fact
L[k (z)] = 2 L[h(z)]. (25)

Applying L~! to both sides of (24) yields the easily calculable formula

; 1d f* f(t)
u,|;3~;| = —— L

L rt’f 3 (26)
that will be used for the determination of the solution. It is clear that Leibniz rule is not
applicable in (26) because the integrand i1s discontinuous at the interval of integration.
As indicated earlier, determination of u(x) will lead to the determination of the curve
where the particle slides along this curve.



It is obvious that Abel’s problem given by (15) can be solved now by using the
formula (26) where the unknown function u(x) has been replaced by the given function
f(x). One last remark concerns the use of the formula (26). The process consists of
selecting the proper substitution for (x —¢), integrate the resulting definite integral and
finally differentiate the result of the evaluation. Appendix B, an appropriate calculator
or any symbolic computer software, such as Maple or Mathematica, can be used as a
helpful tool needed for evaluating the integrals involved.

The procedure of using the formula (26) that determines the solution of Abel’s
problem (15) will be illustrated by the following examples.

Example 1. As a first example we consider the following Abel’s problem

T =j; y/;rljm‘” dt. (27)
Substituting f(x) =7 in (26) yields
ulx) = . ? i dt
rdr Jo Vx—1 —_—
: (28)
_od [f 1 i S
T ode fy VE—1

Setting the substitution y = x — ¢ in (28), we obtain

“wET i (2v2) (20)
| |
— J- ‘. J
VT
Example 2. Solve the following Abel’s problem
al I /I L w(t) dt (30)
— N = T ) L. ]
2 =g e
Substituting f(+) = Z in (26) gives
. 1d [* &t
ulxr) = :E . '1:— ftfﬁ
il 0 | I IE.EJ_JI
Ll B 3

= —=_—— dt.

2dz Jo -t

Using integration by substitution, where we sety =x —¢, or by using Appendix B, we
obtain



il = i -L.I%)
= 3@ \3 (32)

1
= ¥,

Example 3. As a third example we consider the following Abel’s problem

8 1 )
2./r = u(t) dt. (33)
/z fj —u(t 33)
Substituting f(+) = 2,/7 in (26) we find
o 2d [T Vi .

The integral at the right hand side of (34) can be evaluated by using integration by
substitution, where in this case we set the substitution

t = xsin? @, (35)
so that
VI —1t =+/Tcosh, (36)
and
dt = 2z sin @ cos#d#f. (37)

Substituting (35)-(37) in (34) we obtain

. 4 d i
wizr) = ] (J‘/ ainzﬁ'r&'ﬂ)
: T dr 0

1 d s B o T (38)
= 22 (2|=0- = sin(26)
T dr 2 4 i

= I

The integral at the right hand side of (38) may be evaluated directly by using Appendix
B.

Exercises 6.2

Solve the following Abel’s integral equations:

= 1
1. m(z+ 1) = f ult) dt.
0 r—t



5 % = ' L w(t) dt
15‘. - |'] l'..\,—zl.t L J I
3

u(t)dt.

u(t) di.

2
3
4
5.%&&:]: Irl_r“(r;“gt.
6
7
8
9

4

,5' = 1 oo
T4 T = ul ) at.
o T

S '
10. sinz = ] ——u(t) di-
0 3

VL — t

6.3 The Generalized Abel’s Integral Equation

It is important here to note that Abel introduced the more general singular integral
equation

T 3

: 1 : o

f(x) = / - —a(t)dt, 0 <o <1, (39)
\ 0 I-.R - f.lla

known as the Generalized Abel’s integral equation, where the exponent of the
denominator of the kernel is a, such as 0 <a < 1. It can be easily seen that Abel’s
problem discussed above is a special case of the generalized equation where o = 1. To
determine a practical formula for the solution u(x) of (39), and hence for the Abel’s
problem, we simply use the Laplace transform in a similar manner to that used above.
As noted before, the Laplace transform will be used for the derivation of the proper

formula, but will not be used in handling the equations. Taking Laplace transforms to
both sides (39) yields

Lif(z)] = Llu(z)]L[z=]
(40)
= Llu(x)]

I'1 — @)
l—cx L

where I 1s the gamma function. The equation (40) can be written as



Liu(z)] = —I'(a)z~L[f(x)], (41)

IN(e! IFLl — @)
or equivalently
Lu(z)] = T(a Jnl o L@, (42)
where
0@ = [ @-0="f (e (13)
0
Using (43) into (42) yields
Liu(z)] = aLitiil L[_,.' (z)], (44)
upon using the identities
Llg (z)] = 2 Llg(z)], (45)
and
T 46
o' (1 — @) Y (46)

from Laplace transforms and Appendix D respectively. Applying L~! to both sides of
(44) yields the easily computable formula for determining the solution
sin(am) d 1)

®  drJp (z—=1—=

u(z) = dt, 0<a<l. (47T)

Recall that f(x) is differentiable, therefore we can derive from (47) a more suitable
formula that will support our computational purposes. To determine this formula, we
first integrate the integral at the right hand side of (47) by parts where we obtain

* 1) L SN - f
—dt = —=[f(t){x—1)"]; +— [E=4)" |i"|3t‘
'/I; I:‘J._rjl_L-t 0 [ft .lll. j L

1
— —_jflﬁu = / ‘.I.—E‘f,lc‘f (t)dt.
a J,

(48)

Differentiating both sides of(48), noting that Leibniz rule should be used in
differentiating the integral at the right hand side, yields



d [* f(t) f(0) = P -
— - it = —— 7 (49)
I'.'Ef-!‘ 5 I,i:]‘.‘ _ r_;,l—-:g Tl—-:g +‘/|:. ,;:].: E_t Hl—-:: |‘~ )

Substituting (49) into (47) yields the desired formula given by

. f i1 Fay’ £ e
.. sinfam) (o it ’ W—_—
H'I..:.T,I f— , e f\. .II + _ f -..-,] {fr ) 1-| ‘_ I 1__-\- 1“I |l-5|_|ll|
’ T ;I"'J.—Ck 0 I._‘-T — f,ll_c"

that will be used to determine the solution of the generalized Abel’s equation and
consequently, of the standard Abel’s problem as well. This will be illustrated by
examining the following examples.

Example 1. Solve the following generalized Abel’s integral equation

=] -
272 = f —u(t) dt. (51)
n {2= z‘]’}
Notice that , — L f(x) = 2128 Using (47) gives

: v3id [ 27t
ulr) = ——

dt = 4022, (52)
2w dr Jy (z—t)% =

Example 2. Solve the following generalized Abel’s integral equation

431z = / u(t) dt. (53)
0 z—= fﬁ
Notice that o = 2, f(x) = 4y/3rz- Using (47) gives
/3 d [T d44/3mt
. s ak = e
b e it = Or¥, 54
RS 2w ffﬂ?£ (ﬂ‘—?}%f i o

Example 3. Solve the following generalized Abel’s integral equation

9 I —
_—_-Jrg' =f —u(t) di. (55)
10 0o (z—1t)%

Notice that , = & f(r) = 2,3 Using (47) gives

10

di = 2. (56)

. V3d /"” 428
ML == —
’ 27 dr o (7 — z‘.ﬁ'



Example 4. Find an approximate solution to the following Abel’s problem

u(t) dt. (57)

; f‘r 1
sinhr =
o0 VI— i

In this example f{x) = sinh x, hence f{0) = 0 and f'(x) = cosh x. Using the formula (47)
we find

i

() 1 —/I E'!_{.ﬁh; dt (58
1) N P ‘_-_'l_ ]
: T Jo r—t

An approximate solution can be found by considering ..« + = 1 e for
small x. Consequently, we have

i 1 / 1._+ 2_dt (59)
L = —- 'y |2
J m 1] W xr— r
which gives
oo 2~ 2, .
U(T) & o= v z(15+ 4z°), for small z, (60)
Sar

by integrating by substitution or by using Appendix B.

Exercises 6.3

Solve the following generalized Abel’s integral equations

T

1
1. % *_‘HU“J dt
55 0 Lr—ﬂ?
.28 8 _ [7 (t)dt
. — i
440 Jo |'z —z‘JE A
3. 2407 = ﬂ-um dt
0 r? —fll
4.3 ::'§—|-Qr::& = —;uu‘;c!z‘
U (r—1)3
5. 'E =u(t)dt
7 o (x —z‘;
§_ 1
6. 27z% + 0z —ulf)dt
o (r —z‘ﬁ

6.4 The Weakly-Singular Volterra Integral Equations



As indicated earlier, the weakly-singular Volterra integral equations of the second kind
are given by

: = B —
u(z) = g(x) -|—/ ' u(t)dt, =z [0,T]. (61)
0

A o T
[ |

and the generalized form

= o] _
u(r) = g(x) + / — u(t)dt, ze€[0,T],0<a<]l, (62)
0

x— 1)

appear frequently in many mathematical physics and chemistry applications such as heat
conduction, crystal growth, electro chemistry, and radiation of heat from a semi-infinite
solid. It is to be noted that § is a constant and 7' = 1, 2, or 3 depending on the science
model under discussion. It is also assumed that the function g(x) is sufficiently smooth
so that a unique solution to (61) is guaranteed. The equations (61) and (62) fall under
the category of singular equations with singular kernel &'(x,t) = ——. Notice that the

kernel is called weakly singular as the singularity may be transformed away by a change
of variables [12]. A considerable amount of work has been carried out recently on these
models to determine its exact solutions or to achieve numerical approximations of high
degree of accuracy.

In this section we will base our discussion on the Adomian decomposition method
that was introduced in the preceding chapters, and mostly we will use the modified
decomposition method and the noise terms phenomenon. We will show that this
technique 1s an effective and powerful tool to handle this style of singular equations
analytically and numerically. The method has been discussed extensively and need not
be introduced in details here. We note here that we cannot use the variational iteration
method because we cannot use Leibniz rule for singular equations.

6.4.1 The Adomian Decomposition Method

In the following we outline a brief framework of the method. The method as presented
before gives the solution in a series that converges to the exact solution if an exact
solution exists. To determine the solution u(x) of (61) we usually use the decomposition

u(z) = E 14 B (63)
into both sides of (61) to obtain

o = 3 o
Ax) = qglx) i o (1] ., I 0,17, (6
Z a2} = g{z) -I—f — (; unlj,l) dt, ze[0,T] (64)

T =|:| = \F'




The components uy(x), u(x), u)(x), ... are immediately determined upon applying the
following recurrent algorithm

( uglz) = g(zx),

bl

() = v (t)dt,
o Vr—t P
4 ; [

& v
i'_.l'zl:;;r:] == : i 'T;l-fhl
fj v —t

%

The same approach can be used for the generalized weakly-singular integral equation
where 0 <a < 0. Having determined the components u/(x), i > 0, the solution u(x) of

(61) will be easily obtained in the form of a rapid convergent power series by
substituting the derived components in (63).

It is important to note that the phenomenon of the self-cancelling noise terms, where
like terms with opposite signs appear in specific problems, should be observed here
between the components u(x) and u;(x). As mentioned earlier, the appearance of these

terms usually speeds the convergence of the solution and normally minimizes the size of
the computational work. For illustration purposes, we discuss the following examples.

Example 1. We first consider the weakly-singular Volterra integral equation of the
second kind

1 ol -
W(r)=+r+ =mr — —_lt)dt, I =1[02|. (66
0= VEtgre= [ o=t 0,2] (66)
Using the recurrent algorithm we set
_ 1
up(x) = T+ e

i —/‘"" \,“"?-l- %.-'I_f it
wilr)] = -— — (67 |
1(x) ] = (67)

1 2 a4
= —E T = EJIJ ’

The result (67) can be obtained directly by using Appendix B, calculator, or computer
software. Observing the appearance of the noise terms +1r between the components
ug(x) and u;(x), and verifying that the non-cancelled term in uy(x) justifies the equation

(66) yields the exact solution given by

u(r) = . (68)



It can be shown that it is possible to obtain the exact solution (68) by using the
modified decomposition method. This can be done by splitting the nonhomogeneous part
g(x) into two parts. Accordingly, we set

up(x) =/, (60)

so that

Uy (z) = : I o it (70
lT) = =TT — i, i
1h 9 . =3 7 i)
Wthh gi\/eS

Hj_[:?‘_\.l = 0. |:_4'1;|

Consequently, other components will vanish, and the exact solution (68) follows
immediately.

Example 2. As a second example we consider the weakly-singular second-kind
Volterra integral equation

: 4 4, i 1 :
u(z) =+ =32 —f —u(t)dt, I=1[0,2]. (72)
[ ) N [0, 2]
Proceeding as before we set

4 4
uy(r) = z+ E_J.S_. 2

@ t + iIS.’;E o
w(zr) = — ;ﬁ_ dt (73)

2

T .

e e SRR
3

[l

Cancelling the noise terms between the components uy(x) and u;(x), and verifying that
the remaining term in u(x) satisfies the equation (72) gives the exact solution

x| = . (T4)

As discussed in example 1, we can obtain the exact solution (74) by using the modified
decomposition method. We leave it as an exercise to the reader.

Example 3. We next consider the weakly-singular Volterra integral equation of the



second kind

€T
1 —
u(z) = 2/ — f uft)dt; -I=[0;2]. (75)
i \m
Following the discussion in the previous examples we use the recurrence relation
“-|:| |::.T;| == 21,’_-"'?.
iy () 2 TV dt
T = = :
1L, X mf—-f-" =
= —Tr,
_ f“ (g It
Ha{x] = —
& 4._'. v Tr — i!‘
gt g:‘I_JLS'IE. |__ i 'rJJl
4 f° w32
us{r) = —= —— dt
’ 3 '/,; VI — i
1
= ——}Tz.t'z.
2

It is clear that the noise terms did not appear between the components uy(x) and u;(x).

This explains why we determined more components. Combining the obtained results, the
solution #(x) in a series form

|

. - S| .
(z) = 24/ — Tx T — =y (77 )
ufa 241 r + =mx3/? 2 222 + (TT)

Qo

1s readily obtained. The result obtained in (77) can be expressed as
w(r) = 2y/r — mr + {"J'{_;r'%j. as r — 0. (T8)

It is to be noted that in this example we determined four components of the series
solution. Other components can be obtained in a similar fashion to increase the degree
of accuracy for numerical purposes. However, the exact solution of (75) is given by

u{z) = 1 — e™erfc(+/mx), (79)

where erfc is the complementary error function normally used in probability topics. The
definitions of the error function and the complementary error function can be found in
Appendix D.

Example 4. We now consider the weakly-singular Volterra integral equation of the
second kind



9 ¥ * 1 ;
u(r)=r—- —2% + —ul(t) dt. (80)
10 .[:u LJ:—!‘P}

In this example we will use the modified decomposition method. Hence, we use the
recurrence relation
up{r) = :-::
r) = ——p¥y (81)
uy{z) = —.1 u(t) dt = 0.
ih(x) T 0 @ _“& (1)

This yields the exact solution
ufe) = . (82)

Example 5. We finally consider the weakly-singular Volterra integral equation of the
second kind

: 4 128 ;
u(z) =1+ D l-iL ——u(t)dt. (53]
‘ 3 231 0 (z— ;J&

Using the modified decomposition method sets the recurrence relation

ug(z) = 1+ 22,
. 4 128 14 L (84)
wile) = ——=xd — Tﬁl‘l} =+ %‘HLEJ di =1 \5d)
: 3 231 o {(r—1)7T
This yields the exact solution
wr) =1+ r?, (85)

Exercises 6.4

Use the decomposition method or the modified decomposition method to solve the
following weakly-singular Volterra integral equations of the second kind:

T

urﬂrf

1. u(E) = /T —7T + ?]

o Var—1t
o

3 1
2. wix) =z + =wz? —
u(r)=r7 + = g : 1'ﬁﬁurﬂu‘f
1
3. uf{z) = i VT -I—f J,_m‘r,l dt.
1
4 w{x) = VI — =TT+ ?HL?HEF
il é_."..i —lf
S5.u(x)=z% - w4 —u(t) dt.
(x) = “3 . et ()



i

32
6. u(xr) =2+ = -

— (1) dt.
33 i 1!.- i —2"

4 Gl
7. = 142-2yT— zz? (t)dt.
ulx) +x VT ji: + : m“‘ X
8. u(zr) =142/ —f ,_mjm
i
16 ;"
9. ulr) ==z -I——::*—f em‘;rff
o vI—t
10. ::4f.t*1=—ﬁ—|——~ :e*—l—] ——u(t) df.
] E_ir-
11. u(z)=1+=x ——::f'——:'»i'-l—] —recmfﬁ*
3 2 ] U—z‘;
i 9 243
12. i:e[.::‘}=.:‘+.r2——i:§—— 7 f —ruLﬁffr
4 140 0 U _Q‘J
. . 4 512 s
13. ufz) =1+ 32® — Za ¥ :-41'" w(t) dt.
AT 3 385 3 m L
14. afe) =5 —z—Bol 4 2o 4 u(t) dt.
E 55 : m* 4

6.5 The Weakly-Singular Fredholm Integral Equations

The weakly-singular Fredholm integral equations of the second kind take the form

1

u(z) = flz) + u(t)dt, r € [0.1], (86)

0 '-,,-3!'—1‘

and can be generalized to

1

: . 1 3 g

u(z) = f(z) +f — u(t)dt,0 <a <1, x € [0,1], (87)
o \r—1)= 7

where u(¢) is the unknown solution. The weakly-singular Fredholm integral equations
often arise in scientific applications such as Dirichlet problems, radiation equilibrium
applications, electrostatics, potential theory, astrophysics, and radiative heat transfer.

In the literature, there is a variety of numerical methods that were used for solving
weakly-singular Fredholm integral equations (86)—(87), where the main goal was the
determination of numerical approximations of the solutions. Examples of the methods
that were used so far are the Galerkin method, collocation, quadrature methods, the
homotopy analysis method, and the Taylor series method. The spectral method, the
random point approximation method, and a fast spectral collocation method was applied
for surface integral equations of potential problems in a spheroid. In [26], the spectral
collocation method were also used for solving these equations.

In this chapter, we will use the modified decomposition method and the noise terms



phenomenon to determine exact solutions of such singular integral equations. In the
sequel, we will briefly review the necessary steps of the two proposed schemes that
will be used.

6.5.1 The Modified Decomposition Method

The Adomian decomposition method admits the use of the decomposition series for the
solution

w{z) = E i, (2}, (88)
where the solution components uf(x),i > 0, are determined by using the standard
recurrence relation

u(x) = f(x)

b (89)
e i1lE) = /H[;z'.:‘]un[r]dm?..?_}||.

)

However, the modified decomposition method introduces a slight change in the
recurrence relation. The modified decomposition method decomposes the function f(x)
into two components f(x) and fi(x), and introduces the modified recurrence relation

given as

ug(z) = folz),
b
ur(z) = fll;':-f.l-l—/ Kz, t)uo(t) dt, (90)
b * o
Upyr(T) = fH"i"’"‘r;"“v.'if,"‘-'ff-”:—;‘1-
a

The use of the modified decomposition method minimizes the computations. It is worth
noting that a proper selection of fy(x) and f(x) 1s essential for a successful use of the

modified decomposition method.
The noise terms are defined as the identical terms with opposite signs that may
appear within the components u,(x), for n > 0. The noise terms, if appearing especially

within both of the components uy(x) and u,(x), will provide the exact solution by using
only the first two iterations. By canceling the noise terms for uy(x), the remaining non-
canceled terms of uy(x) may give the exact solution, and this can be verified through

substitution into the original equation.
In a manner parallel to our earlier analysis, we will investigate three weakly-singular



Fredholm integral equations. We will apply the modified decomposition method and the
noise terms phenomenon when appropriate.

Example 1. Consider the weakly-singular Fredholm integral equation

1 PR
3 it
u(z) =3+ 6vr — 1 — 6/ + —

]

yﬂ‘-ﬁ

dt,o<z<1. (91)

We first decompose f(x) into two parts defined as

folz) =

3,
filz) = 6yr—1-6T.

The modified decomposition method admits the use of the modified recurrence relation
as

(92)

iz} = 3;
. ) - . El'-ljliﬁ:l ’
up(r) = 6yr—1-6r+ | ——==dt (93)
o s/ |,.I — 1
=
This gives the exact solution by
uiz)=3. (94)

Example 2. Consider the weakly-singular Fredholm integral equation

. o B M . bou(t) g
u(z) = l—ar—zﬁ[l——xj——L';rr—lﬁ—i—f = dt,0 <z <1. (95)
) 3 2 0 Tr—1i
We first decompose f(x) into two parts defined as
folzy = 1-—=,
: 2 . 4 ; (96)
filz) = =2,x(1= S5 E{J.‘ =1y

The modified decomposition method admits the use of the modified recurrence relation
as
wp{z] = 1-—m=m,

. 2. 4 b ouo(t)
ui(z) = -2 El;l+ra~i—.—l;a~—1a%+f dt (97)
' VRETRY TR T T Vet

This gives the exact solution by



(el =1—-=m. (98)
Example 3. Consider the weakly-singular Fredholm integral equation

1 £y

g 21 w(t 5

ulz) = 1—|—::——1:§——.1'5'-|——u—1 %’—I——[’-:—lji—i—f ;Jid.r.. (99)
2 10 10+ a {J_‘—f}ﬁ

where 0 <x < 1. We first decompose f(x) into two parts defined as

Jolz) = 1 —|— . §
2 (100)

\ 21
filzx) %+—IJ—1|§'+EIJ—1I§

10 10

The modified decomposition method admits the use of the modified recurrence relation
as

o : 3 2
uplef = 142— E-.ra .
e I e B iy '3' el _]_i‘ _'\~_]_‘i' f ;’If_;
P oo T gl W gle =0t s ST
3
= 315 + other terms.
(101)
Cancelling the noise term from u(x) gives the exact solution by
ale)l=1"1z. (102)

Exercises 6.5

Use the modified decomposition method and the noise terms phenomenon to solve the
following weakly-singular Fredholm integral equations of the second kind:

L. ue) = 22 — Wb 4 BT | 8o/ET 4 J0lVET | 1wy (0) i,
=10 QIIIr —1)% —20(z + 1)% ) it.
2. u(x) +20(xr - 1) (z+ 1)+ 1 S
3. u(z) =10z — OgT + 6(x — l}‘-? + 9x(z — lJ‘J + fu —“'—'}- u(t) dt.
(x—t])
4. u(r)=3 1D.~—Q.-%—ﬂc§ 2 _1)% r—11§ it.
ulr) + 1z 1 rd | T J-I— 1:: +fuﬁe
S.

u{z) =z 4z2 18 ri‘(1+—z )+ = (r— 1)1 (742224 1623) + {u %eif.

l\.T_".-I



Chapter 7

Nonlinear Fredholm Integral Equations

7.1 Introduction

So far in this text we have been mainly concerned with studying different methods for
solving linear integral equations of the first and the second kind. We pointed out earlier
that nonlinear integral equations yield a considerable amount of difficulties. However,
with the recent methods developed, it seems reasonable to present some reliable and
powerful techniques that will make the study of specific cases of nonlinear integral
equations successful and valuable. In general, the solution of the nonlinear integral
equation is not unique. However, the existence of a solution of nonlinear integral
equations with specific conditions is possible. Because we will concern ourselves with
nonlinear Fredholm integral equations that will give solutions, therefore we will not
discuss in this text the theorem of existence of solutions of nonlinear equations. For
more information about the conditions that are necessary for the existence of solutions
for nonlinear equations, the reader is advised to look in other texts such as [19] and
[44].

The purpose of this chapter is to introduce reliable and easily computable techniques
for solving specific cases of nonlinear Fredholm integral equations. As indicated in
Chapter 1, given F(u(?)) a nonlinear function in u(¢), integral equations of the form

b
w(x) = f(xr) + ,h/ Kz, t) F(u(t))dt, (1)
[+
and
i
u(r) = f(x) + }n/ K(x,t) F(u(t))dt, (2)
0

are called nonlinear Fredholm integral equations and nonlinear Volterra integral
equations respectively. The function F(u()) is nonlinear in u(¢) such as u?(¢), u3(¢), e
and A is a parameter. However, in this text, we will restrict our discussion to the case
where F(u(t)) =u"(¢t),n > 2, whereas other nonlinear integral equations that involve

nonlinear terms other than #”*(¢) can be handled in a very similar manner. The following
are examples of nonlinear Fredholm integral equations:



1
u(z) = 1+ A / u2(t)dt, ()
0o

1
u(z) =.;-~+/ atu’ (t)dt. (4)
0

7.2 Nonlinear Fredholm Integral Equations of the Second
Kind

In this section we will discuss the most successful methods for solving nonlinear
Fredholm integral equations of the second kind. Recall that for nonlinear Fredholm
integral equations of the second kind, the unknown function u(x) appears inside and
outside the integral sign. It has been concluded that the direct computation method
proved to be reliable in that it handled successfully the linear Fredholm integral
equations and the Fredholm integro-differential equations in Chapters 2 and 4
respectively. Based on this conclusion, the direct computation method will be
implemented here to provide the exact or (closed form) solution as will be discussed
later.

Moreover, the Adomian decomposition method proved to be an elegant tool in
handling linear and nonlinear equations as well. Accordingly, it is useful to use this
method here to obtain the solution in the form of a power series. However, one
important fact concerning the decomposition method, in handling the nonlinear
problems, is that it requires the use of the so called Adomian polynomials that will
represent the nonlinear terms such as u”(f), n > 2 or ™ that appear under the integral
sign. The scheme that to construct the Adomian polynomials will be explained in details
later.

7.2.1 The Direct Computation Method

The direct computation method was presented before and used effectively in Chapters 2
and 4. The method approaches the problem directly and gives all possible solutions of
the nonlinear equations if the equation has more than one solution.

As stated before we will focus our study on the nonlinear Fredholm integral
equations of the second kind of the form

b
u(z) = flz) + }\/ K(x, t)u™(t)dt, (5)
a

where the kernel K(x, ¢) will be assumed a separable kernel. Without loss of generality,



we may consider the kernel K(x, ¢) to be expressed by
K(zx,t) = g(z)h(t). (6)

Consequently, we rewrite the equation (5) as
b
u(z) = f(z) + )a_z;l;;;:-}/ h(t)u™(t)dt. (7)
a

We can easily observe that the definite integral in the right hand side of (7) depends
only on the variable ¢. Therefore, we will follow the approach usually used in the direct
computation method, hence we set
b
0 =/ hit)u™(t)dt, (8)

where the constant a represents the numerical value of the integral. Accordingly, we
may rewrite (7) as

u(xr) = f(xr) + daglx). (9)

Substituting u(x) from (9) into (8), and integrating the easily computable integral yield
the numerical value of the constant a. The exact solution u(x) 1s readily determined upon
substituting the obtained value of a in (9).

We point out that the derived solution u(x) in(9) depends on the parameter A.
Accordingly, it is normal to discuss all possible values of A that will define real
solutions for u(x). As a result, two related phenomena, termed as the bifurcation point
and the singular point, may appear. These phenomena have been introduced by [ 19, 44]
and others. For simplicity reasons, the direct computation method and the phenomena ot
the bifurcation point and the singular point of the nonlinear integral equation will be
illustrated by the following examples.

Example 1. We consider the nonlinear Fredholm integral equation

1
u(r) =2+ Af '{4'2|:ﬁ;| dt. (10)

Setting

1
¥ =f u?(t) dt, (11)

carries (10) into



u(r) =2+ Aa. (12)

Substituting (12) into (11) yields

1
o = / (2 + Aa)? dt, (13)
0o
which gives
. \2 G
0 = |._}-_-* - }.,K}’J : |EJ.=.1J|
or equivalently
Ma?+(dA—1Da+4=0. (15)

Solving the quadratic equation (15) for a gives

(1 —4M)++1—8A
222

o = [ l{j:I

so that substituting (16) into (12) yields

i Lk ayf1—8X P
wlr) = BE-Te— (17)

Singular Points and Bifurcation Points

It is obvious from (17) that the number of solutions depends on A. The bifurcation point
is a value of A such that when A changes though the bifurcation value, then the number of
real solutions will change as a result. To explain this, we examine the following
possible values of A:
(1) For A = 0, using (10) we obtain u(x) = 2, but using (17) we find that u(x) is infinite.
For this reason, the point A = 0 is called a singular point of the equation (10).
(i1) For x < 1, the equation (10) has two real solutions. It is clear in this case that the
solution is not unique. This is normal for nonlinear integral equations.
(ii1) For x =1, the equation (10) has one real solution and the point x = 1 is called a
bifurcation point. The real solution in this case 1s u(x) = 4.

This in turn explains that for » = 1 we obtain one solution, whereas when A changes to
» =4, such as A = —1, the number of real solutions will be changed from one to two,
namely u(x) =-2, 1.

Example 2. We next consider the nonlinear Fredholm integral equation



oow Mg Qg
w(xr) = e + ) xtu“(t) dt.
: 0

Setting

1
n-=/ tu?(t) dt,

carries (18) into

P L P
ulz) = (3 e Ea jx.

Substituting (20) into the equation (19) gives
which gives

or equivalently
(4 — 1)(da — 49) = 0,
so that

49
i

b= | —

k¥ =
Accordingly, two real solutions given by
uiE) = &, 1,

are obtained upon using (24) into (20).

Example 3. We now consider the nonlinear Fredholm integral equation

arE
35

51 !
u(z) =1 — —z? +/ x?ud(t) dt.
0

Setting

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(26)



1
¥ =f u3(t) dt,

carries (26) into

PR J. { ﬁl\ 2
u(z) =14+ (a0 — —=)x*.

Substituting (28) into the equation (27), and proceeding as before we find

16 79 &9

(f = = — ——,
35 35 35
Accordingly, three real solutions given by

4
i) =1 z%,1 — 422,14 ;.1‘2.
2

are obtained upon using (29) into (28).

(28)

(29)

(30)

To obtain more than one solution is normal for a nonlinear equation. Linear equations
give unique solutions. As will be seen later, the Adomian decomposition method,
although is reliable to solve integral equations but will give only one solution, but this

will not indicate that nonlinear equation gives only one solution.

Exercises 7.2.1

Inexercises 1-5, use the Direct Computation Method to solve the given nonlinear
integral equations. Also find the singular point and the bifurcation point of each

equation

| ST L
1. u(z) =1+ E}.j u?(t) dt
0
1
2. u(z)=1- }.f u2(t) di
[:'1
3. u(r) =1+ }.] tuZ(t) dt
o
1
4. ylzy =1+ A/ 2u2(t) dt
0
5

1
cur) =1+ A] t*u?(t) dt
0

In exercises 6-12, use the Direct Computation Method to solve the following nonlinear

integral equations



cufr)=2——-r+ rtu?(t) dt
3 0 .

6
4 T2
7. ulr) ==inr i l/I w2 () d
—_+ i Tf.!‘
(x) R 5 . L)
8
0.

- 1 T2
culr) =cosx — —+ Ef u?(t) dt
1.1 lr- n
ulr)=z— = u”(t) dt
(1) =z-g+g [ ')
10. HEJEER __+.Zj u?(t) dt
11. HH_E—E—I-] (u(t) + u U‘JJ-:ET
12. .‘4(.::']=J:'—1+E] (2t + w?(t)) dt
W]

7.2.2 The Adomian Decomposition Method

The Adomian decomposition method introduces a reliable analysis to handle the
nonlinear integral equations. The method provides a rapidly convergent series solution
without using any restrictive assumptions such as linearization or perturbation
assumptions. The linear term u(x) in the equation is usually expressed in a power series
in a similar manner to that discussed before for linear integral equations. However, an

essential scheme is required for representing the nonlinear term u"(x) involved in the
equation. Moreover, the decomposition method does not investigate the existence of the
solution of the problem. In addition, it gives one solution although nonlinear equations
generally give more than one solution.

In the following, the decomposition method will be fully discussed for nonlinear
equations [1] and [2]. For simplicity reasons, we consider the simple form of nonlinear
Fredholm integral equation

b
u(z) = flz) + )x/ K(x,t)u"(t)dt, (31)

where other forms of nonlinearity of F(u(¢)) can be handled in a parallel manner. The
solution u(¢) of (31) can be represented normally by the decomposition series

)= z Un(z), (32)
n=0

where the components u,(x), » > 0 can be computed in a recursive manner as discussed

before. However, as stated above the nonlinear term u"(¢) of the equation (31) should
be represented, using a distinct scheme, by the so called Adomian polynomials 4, (7).



Adomian Polynomials

The simple and practical scheme that will construct Adomian polynomials begins by

assuming that the nonlinear term «"*(¢) under the integral signin(31) will be equated to
the polynomial series

ut(t) = ) Ant), (33)

where the 4, (¢) are the so called Adomian polynomials. It was formally proved by [ 1-

5] that the Adomian polynomials can be completely determined by using the following
scheme

Ay = F(up),
'I. \
A1 = w1 F {ug),
', " Ty "-'r .
__'—12 = Uz _F | tp) .- )—} .F |.__l!l'-|:|J|..
AP B o« Et‘? WL :
As = uz F (uwo) + wiug F (uo) + — F (uo), (34)
v H - +
P % J- 2 "". 1
Ay = uyg F(ug) + ?“—2"‘“1“3 F (ug)
udug

T3

ol J‘ TN i %
F (up) + il wiF) (ug),

where F(u(¢)) is the nonlinear function, and in this specific equation it is given by
F(u(t)) = u"(¢). In addition we point out that 4, depends only on u,, 4; depends only on
uy and u;, A, depends only on u, u; and u,, etc. It is to be noted that the sum of the
subscripts of each term of 4,, is equal to n. For example, in 4,, we the two terms include
uy and 2 = wuyu,, Where the sum of subscripts of each termis 2 and 2. For 4, the terms
are us, U u,, and 3, with sum of subscripts 1s 3 for each term. More details about the

derivation of Adomian polynomials can be found in [1-4, 44].

It is remarked before that in this section, for simplicity reasons, we will discuss
nonlinear Fredholm integral equation (31) where the nonlinear term is of the form
F(u(?)) = u"(¢) only.

In the following we explain how we can use the scheme given by (34) to define
Adomian polynomials:

(1) Consider the nonlinear function

i A q' it i %
i =a"0x), (35)

then



([ Ap ul,

_-*11 = IE.’EI-UEI. 1
{ As = 2ugug + t:-% (36)
_-*13 = 231-031-3 + E'.u-lu-g

*

We can easily observe from (36) that in the polynomial 4, the sum of the subscripts of
each term of the two terms 2uyu, and u u; 1s equal to the subscript of 4,. The same fact

holds for other polynomials.
(i1) For the nonlinear function

F(u) = u® (37)
we find
( Ay = ud
A = 3?1%11,1
! Az = Sudug + Sugui (38)
As = 331%11.3 + Guigity il —Hﬁ
\
(111) For the nonlinear function
F(u) = u? (30)
we find
( -"Lj = Hg
A = -1u,§u1
) Ay = -1u.§ug 2} Gu-%uf (40])
Ag = -1u,§?,t3 Tt litugu,luz T 'J_-Eiﬂu?
(iv) For the nonlinear function
F(u) = e* (41)

we use the scheme (34) to generate the Adomian polynomials



( _';!.I:l = 'f'“':l
_-*1.1 = lflrf'm

ui N
As = — 4+ wg ) ™0
2 ( 5 + 2)

3
{5 i
Az = (F + witz + M3) £

(v) For the nonlinear function
Flu) = sinu(x)
we use the scheme (34) to generate the Adomian polynomials

Ay = sinug
A, = uycosuyy

1
; : 254
As = ugcosuy — Q—I’HI 11 g

(vi) For the nonlinear function
F(u) = cosu(x)

we use the scheme (34) to generate the Adomian polynomials

Ap = cosuyg
Ay =ursinug
. 1
As = —ussinug — Euf COS U

(42)

(43)

(44)

(46)

The last three examples, where the nonlinear functions are e, sinu, cos u, have been
introduced for further studies beyond the scope of this text. These examples are
presented here for illustration purposes only. As stated before, F(u) may have other
nonlinear forms such as sinh(u), cosh(u), In u. However, our concern in this text will be

on nonlinear functions of the form F(u) =u". We point out that for, n > 3, the
decomposition method is easier to use than the direct computation method. In the latter

case, an algebraic equation of higher degree is obtained.

We now return to the main goal of our discussion to determine the components u(x),
uy(x), uy(x), ... of the solution u(x). This can be done by substituting the decomposition

(32) that represents the linear term u(x), and the decomposition (33) that represents the



nonlinear term #"*(x) into (31). Hence we obtain

o0 k o0
Eun[&'} = ifiz) +)&/ Kz, t) (E _-;ln,l;f]) dt, (47)
n=I0 a n=(0
or simply
uplr) + wi(zr)+us(z)+---
b

=: Filx)+ )x—[ K(x,t) [Aol(t) + Ar(t) + Ao(t) + - -] dt. (48)
The components ug(x) , u;(x) , u)(x), ... are completely determined by using the
recurrence relation
H..jl;.j';l = f'.i:l",'h

b
Uy (z) = )&/ Kz, t)Ay(t)dt,
Lr!

b
& Ug(x) =)mf Kz, t)A,(t)dt, (49)
Lr!

b
Uny1(2) = )tf K(x,t)A,.(t)dt, n =0.
a

\

Consequently the solution of (31) in a series form is immediately determined. As
indicated earlier, the series obtained may converge to the exact solution in a closed
form, or a truncated series vk, (;) may be used if a numerical approximation is
desired. It is worth noting that the convergence question of the method was addressed by
many authors.

Before we give a clear view of the method that handles the occurrence of the

nonlinear term u"*(x), it is useful to discuss the following remarks:

(1) Even though the decomposition method gives only one solution for each nonlinear
equation, this does not indicate the uniqueness of the solution of the nonlinear integral
equations. We have seen that two real solutions were obtained for examples discussed
above by using the direct computation method, and a unique solution is determined
under specific conditions only. This is consistent with the fact that the decomposition
method does not address the existence and the uniqueness concept.

(11) The modified decomposition method, that was introduced before and the criteria of
the self-cancelling noise terms can be implemented here to speed the process of



obtaining the solution.

(111) It 1s important to emphasize that Adomian polynomials 4, can be calculated for
complicated nonlinearities of F(u).

(1v) There are other techniques that can be used to construct Adomian polynomials, but
we will use the Adomian algorithm that we introduced earlier in this text.

In the following we will outline a brief framework of the modified decomposition
method. Splitting the nonhomogeneous part f{x) into two parts f,(x) and f1(x) enables us

to follow the scheme given by

ug(x) = folz),
b
uy (1) =f1|::-}-|—9\/ Kz, t)Ag(t)dt,

P
(D)

b
t2(1) =)~/ Kz, t)A(t)dt,
il

b
U 1(2) = )a/ K(x,t)A,(t)dt, n >0.
a

X

Having determined the components u((x), u;(x), u5(x), ... leads to the solution in a series

form upon using (32).

The decomposition method and the modified decomposition method will be
illustrated by studying the following examples. For comparison reasons, we discuss
Examples 1 and 2 above that were solved before by using the direct computation
method.

Example 1. We consider the nonlinear Fredholm integral equation
: 1
u(z) =2+ )«/ ul(t)dt, A< ~ (51)
In this example we have
ia) = wl(z), (52)

which generates the following polynomials



(A = ui,
.-*11 .= Qﬂ-nﬂ-l
{ As = Zupus + ’u.? (53)
As = Z2upus + Zuqus
Using the recursive algorithm (49) we find
ol = 2, (54)
1
ui(zr) = )\f Ag(t)dt -
0 (53)
= 4X
1
uz(r) = )\f A (t)dt
0 (56)
=. BEA%,
1
us(r) = )kf Ao (t)dt -
0 (57)
= 80A3,
and so on. The solution in a series form is then given by
u(z) =2+ 41 + 162% + 80A% + .. .. (58)

It is obvious from(58) that only one solution has been obtained by using the
decomposition method. We recall that two answers have been obtained earlier by using
the direct computation method given by

R 1+4/1—8A s
Uiz = o ; (DY)
which, by using the binomial theorem to expand the square root, gives
o 1 (1—4A—8A% —3203 — 160X + - - )
u(z) = ; (60)

2A



so that u(x) has the two expansions
u(z) = % — (244X + 1607+ 80A° + .- 1), (61)
and
u(z) = (2442 + 1622 + 80A% + .- ) . (62)

We can easily observe that the solution (58) obtained by using the decomposition
method is consistent with the second solution (62) obtained by using the direct
computation method. However, the decomposition method did not address any
procedure to find the second solution (61).

Example 2. We next consider the nonlinear Fredholm integral equation
- 1 1
g | o J_ - . L] 2 % oy
w(r) = Sj + 5 fn xtu“(t) dt. (63)

In this example the Adomian polynomials for the nonlinear term

Fu) =u*(z), (64)
are given by
[ Ay = ud.
A = 2upguy
! Az = 2upuz + uf (65)
Az = 2uguz + 2uqus
Using the recursive algorithm (49) we find
wlz) = ?’.:‘ (66)
olr)] = ?'_< . | )
1t
ul':;]‘.‘:l = Eﬂ—[ f:;;!.l:l{f-;ldt..
49 ;
= T (67)

512



1 1
-3;.2{;1:] = E?—[ f-_-—'lllif'-;lffﬂ

343 "
= T (68)
16354
and so on. The solution in a series form is given by
i 49 343

ur) = -—-r+ r+ — T
' & h12 163584
= 0.87T5x + 0.0957031x 4+ 0.02935x 4 - - -,

-l (69)

Note that we can use the modified decomposition method, where we set fy(x) = x and
f(x) = —+r and proceed as before. We remark that two solutions u(x) =x and u(x) = 7x

were obtained in (25) by using the direct computation method.

Example 3. As a third example we consider the nonlinear Fredholm integral equation
aow fl s e
ux) =1——=z+ [ xt*u”(t)dt. (T0)
o 0
The Adomian polynomials for the nonlinear term
Fu) =u’(z), (71)

have been determined before in(38). In this example we will use the modified
decomposition method. Setting

wlz) = 1 (72)
leads to
1 b
m(x) = —=z+2z [ t*Ap(t)dt =0, i
11T 3 ‘/D' :lt ) L*‘;J
ir) = 0; %=L
This yields the exact solution
nixr)=1. (74)

For comparison reasons, we will solve this integral equation by using the direct
computation method. From (70) we set



K., =
u(z) =1+ (e —7)z, (75)

b

where

1
tl=] t2u3(t) dt. (T6)
0

To determine o, we substitute (75) into (76) where we get an algebraic equation of third
degree in a given by
1 5 13 73 233

= =iy —|——.r13—|——‘r+ 3
6 30 150 1620

(7TT7)
Solving this equation, by using a calculator or a computer software as Maple, we find

1 22 /474 22 /474 o

== ——=f — —— — —— (T8)

3° 15 10 ' 15 10

Substituting these values of a in (75) gives the three distinct solutions given by

9 474 I BV | pradog
== —x, 1 — (= + 0 . (79)
3] [

r)=1,1—1{
i) ([ T

This example shows that the direct computation method produces all three solutions,
whereas the decomposition method gives only one of these three solutions. Although the
Adomian decomposition method is effective and reliable, but because it gives only one
solution for a nonlinear integral equation, it is considered by many as an aspect of
weakness in solving nonlinear integral equations.

Exercises 7.2.2

Use the decomposition method or the modified decomposition method to solve the
following nonlinear Fredholm integral equations:

! 1
Lowizy =1+ A f(t) dt, A<=
l\. ! ll. £ i
0 2
1 "
2. uz)y =14+ X[ Bu(t)dt, A<t
Lr) L)
o
. w2
3. u(z) = 2sinz — = l]: u?(t) ¢
culr) =280 — =+ = u*(t) dt-
& 8 BJg
w2
4. u{r) = 2eosx — :T + %] - u?(t) dt-

0

wid

5. ulr) =secr —r+ .i-'f u?(t) dt-
0



o g e BT o
6. uf{z) = 5.2‘ + Ef ru?(t)dt-
0

‘o T
Toufz) =22 — — = tu®(t)dt-
W)
0

12 :;'1_

8. ulfma— Lt F 2.

() =1 8+‘2 ] 1+“2mc3f
9. uz) == 1+2 L dt

() l+4rr1
10. w(z) =z — = it

u(z T 1112—!— ] 1+cr2rﬁ

o U I ol
11. Jr;1_51nz+c0bz——+f] u?(t) dt-
8 4/,

1

12. w(z) = sinhz —1+f (cosh?(t) — w2(t)) dt-
)

13. ulr) =cosxr 4+ 2 — f (14 sin®(t) + u:{z‘]j it

0
1

14. u(x) = secxr — -I—f x (u?(t) — tan®(t)) dt-
0

7.2.3 The Variational Iteration Method

In this section we will present the variational iteration method for solving nonlinear
Fredholm integral equations. We will follow a manner parallel to the analysis presented
earlier in this text. This means that to use this method for solving integral equations,
linear or nonlinear, we first should convert the integral equation to its equivalent
differential equation, or to its equivalent integro-differential equation.

In this chapter, we will consider the kernel K(x, ) to be separable of the form K(x, )
= g(x)h(t). The Fredholm integral equation can be converted to an identical Fredholm
integro-differential equation by differentiating both sides, where an initial condition

should also be derived. For simplicity, we will study only the cases where A(x) =x", n
> 1. In what follows we will present the main steps for using this method.
The standard Fredholm integral equation is of the form

b
w(r) = flr) —|—f Kz, t)F(u(t))dt, (80)
or equivalently
b
wu(z) = flxr)+ gf_a*]/ h(t)F(u(t))dt, K(x,t) = g(z)h(t), (81)

where F(u(t)) 1s a nonlinear function of u(¢). Recall that the integral at the right side of
this equation depends on ¢ only, hence it is equivalent to a constant. Differentiating both
sides of (81) with respect to x gives



b

' ! \ 'I.- % T Ffa ¥ £ P oy

v(iz)=f(z)+g L_;.r:,lf R(t)EF(u(t))dt. (82)
a

The variational iteration method admits the use of a correction functional for the
integro-differential equation in the form

T b
! ﬁ". s lI|’ % i it i i A
Un41(2) = tn(2)+ f () (H,-.'ZEJ ~ (€ -d') / h(r)F (ttn(r)) ff-r) dé
0 i

(83)

where A is a general Lagrange multiplier. A list of some of these Lagrange multipliers
was formally derived and given in Section 2.3. Having determined A, an iteration
formula, can be constructed using the correction functional that will allow us to
determine the successive approximations u,{(x), n > 0 of the solution u(x). Notice that

u,(x) gives the successive approximations of the solution and not the components as in

the case when Adomian method is used. The significant feature of the variational
iteration method comes from its power to approach the nonlinear problems directly in a
straightforward manner without any need to use Adomian polynomials as in the
Adomian decomposition method. This in turn leads to minimizing the computational
work.

The zeroth approximation u, can be any selective function. However, using the given

nitial value u(0) 1s preferably used for the selective zeroth approximation u as will be
seen later. Consequently, the solution is given by

u{z) = im wun(z). (84)
Fl— oD

The variational iteration method will be illustrated by studying the following
nonlinear Fredholm integral equations.

Example 1. Use the variational iteration method to solve the nonlinear Fredholm
integral equation

- r 1
f o i 1 LT P
wr)=—xr+ = rtu*(t)dt. (85)
" ?_‘: -:r I:I

Differentiating both sides of this equation with respect to x yields

, [ : .
ufz)=—=+ 3/ tu?(t)dt, u(0) =0. (86)
0

co| =1

The correction functional for this equation is given by



= - 1
F ! ! i 1 : F
Unt1(Z) = tn(z) —f (h‘-nllufJ sl —f -.'r‘u-if-rj t.!‘r) d£. (87)
& & I:I 8 2 I:I .

where we used A = —1 for first-order integro-differential equations. It is preferable to
select up(x) =u(0) = 0. Using this selection into the correction functional gives the

following successive approximations

up(z) = 0,
7
.-_:-_ s _l‘,_ s |:|.?_<'Trl‘-.
uy(x) 31 5%
: 497
Uslr) = —x=0.9707Tr,
2\T) 512 f -
: 2082017 . _ (88)
uz(r) = ——r = 0.9928z,
: 2097152
i 35121120366017 ) :
Walas) = : —r = 0.9952r,
: 351584372088832
The VIM admits the use of
u(z) = lim wniz)==. (89)
Ti— 0

It is worth pointing out that the variational iteration method gives only one solution for
this nonlinear equation, although the equation is a nonlinear equation. However, this
equation has two solutions as obtained by the direct computation method, where we
found

uE) = &, V. (90)
Example 2. Use the variational iteration method to solve the nonlinear Fredholm

integral equation

35

5: :
umy= 1= i’rz —|—/ x2ud(t)dt. (91)
0
Differentiating both sides of this equation with respect to x yields

g Giig ! : o
u(z) = —2x+ 23?/ ud(t)dt, u(0) = 1. (92)
fte] |:|

The correction functional for this equation is given by

i i S v, 102 s 5
Unp41(T) = Un(T) — u, () — T & —2¢ u,(r)dr | dg, (93)
1] o il




where we used A = —1 for first-order integro-differential equations. Proceeding as
before, we obtain the following successive approximations

uglx)

1

wy(x) = 1-—0.457122
ug(x) = 1—0.802522,
uz(x) = 1-— 0947122
ug(r) = 1— 0987402
The VIM admits the use of
ulz) = Jm w.iz)=1- z2,

T— OO

(94)

(95)

However, this equation has three solutions as obtained by the direct computation

method, where we found

. 4
u(z) =1-2%1—422,1+ =22

5

(96)

Example 3. Use the variational iteration method to solve the nonlinear Fredholm

integral equation

we) =1+ 22—

-}3 : 1
2 + r2tu?(t)dt.
10 0 o

Differentiating both sides of this equation with respect to x yields

’

, 33 U e e 4
u(r)=2——r+2r tu”(t)dt,u(0) = 1.
I 0

Proceeding as before, we obtain the following successive approximations

uplr)

'U-ll:ﬂ‘:.l
'H-ZKT:J

HEL"J

The VIM admits the use of

1.
14

1 f=dan— T:I.‘E.
5

1l Se=dp=i—np
5

1l Se=dp=i—np

1]

(97)

(08)

(99)



$ s 3 5 2 142 o
w(r)= lim wun(z)=14+2r—— . (100)
—+ 20

53

However, this nonlinear equation has two solutions given by
fie 14 o 2 p—
TV o B P (B ok L B e B B (101)
5

Exercises 7.2.3

Use the variational iteration method to solve the following nonlinear Fredholm
integral equations:

3 ¥ o g
1. w{z) = IZ +/ xtu(t) dt-
: 0

1 ¥ g
2. y(z) =2 — E.r+f rtu®(t) dt-
0,
3 . 1
culr)== —E:+ rtu?(t) dt-
n
4. ulr) =r— —x° +] 2 t2u?(t) dt-
2 0

3. ulz)=z+ i z2 | ritud(t) dt-
() =2+ 155 U o

7.3 Nonlinear Fredholm Integral Equations of the First Kind

The nonlinear Fredholm integral equations of the first kind reads
b
)= f Kz, t)F{u(t))dt, (102)

where the kernel K(x, ¢), which is a function of x and ¢, and the function f(x) are given
real-valued functions. The function F(u(x)) is a nonlinear function of u(x), such as u*(x),
u3(x), e, etc. The linear Fredholm integral equation of the first kind is presented in
Chapter 2.

The nonlinear Fredholm integral equation of the first kind was examined in the
literature by using many methods, analytical and numerical as well. Some of the
methods that are used are the homotopy perturbation method, the Taylor series method,
the Galerkin method, the collocation method and others. The methods that we used so
far in this text cannot handle this kind of equations independently if it is expressed in its
standard form (102). We aim to make our approach to be consistent with our approach
for linear Fredholm integral equations. In view of this, we will concern ourselves on



using the method of regularization that we applied before in Chapter 2. This means that

we should transform the nonlinear form of the integral equations as we applied before.
To determine a solution for the nonlinear Fredholm integral equation of the first kind

(102), we first transform it to a linear Fredholm integral equation of the first kind as

b
flx) =f K(x,t)v(t)dt,z € D (103)

by using the transformation
v(z) = Flu(x)). (104)
Assuming that F(u(x)) is invertible leads to
u(z) = F~1(v(x)). (105)

Recall that in Chapter 2, we presented an important remark that the function f{x) must
lie in the range of the kernel K(x, ¢). This means that if we set the kernel by

K(z,t) = coszée’, (106)

then for any integrable function F(u(x)) in(102), the resulting f{x) must clearly be a
multiple of cos x. However, if f{x) is not a multiple of the x component, cosx, of the
kernel, then we cannot find a solution for (102). This necessary condition on f{(x) can be
generalized. This means that the data function f{x) must involve components which are
matched by the corresponding x components of the kernel K(x, ).

Hadamard [13] introduced a definition to the mathematical term well-posed problem.
He believed that well-posed models of physical phenomena should have the following
three properties:

1. A solution exists.

2. A solution is unique.

3. Continuous dependence of the solution #(x) on the data f{x).

Examples of well-posed problems include the Dirichlet problem for Laplace’s
equation, and the heat equation with specified initial conditions. However, models that
are not well-posed in the sense of Hadamard are termed ill-posed problems. The
nonlinear Fredholm integral equation of the first kind is considered ill-posed problem
because it does not satisfy the aforementioned three properties. For any ill-posed
problem, a very small change on the data f(x) can lead to a change in the solution u(x).

As stated earlier, we will apply the method of regularization that received a
considerable amount of interest to confirm its reliability. In what follows we will
present a brief summary of the method of regularization that will be used to handle the
nonlinear Fredholm integral equations of the first kind.



7.3.1 The Method of Regularization

The method of regularization was established independently by Phillips [33] and
Tikhonov [40]. The method was used before in handling linear Fredholm integral
equations of the first kind. The method of regularization consists of replacing ill-posed
problem by well-posed problem. The method of regularization transforms the linear
Fredholm integral equation of the first kind

b
flx) =/ K(z,t)v(t)dt,z € D, (107)
to an approximation Fredholm integral equation
b
eve(z) = flz) - f K(z,t)v.(t)dt, > € D, (108)

where ¢« 1s a small positive parameter. The resulting equation (108) is a Fredholm
integral equation of the second kind rewritten in the form

TR N a e T,
ve(z) ==flz) — = Kz, t)v(t)dt,z € D. (100)
€ €J.

Moreover, it was proved in [33, 40] that the solution v, of equation (109) converges to
the solution v(x) of (107) as ¢ — 0. Having converted the Fredholm integral equation of
the first kind to an equivalent Fredholm integral equation of the second kind, we then
can use any of the methods that we used earlier in Chapter 2, such as the Adomian
decomposition method, the direct computation method, or others. Note that we should
convert the nonlinear equation to a linear equation by using a proper transformation as
will be seen later. The exact solution v(x) of (107) can thus be obtained by

v(z) = lim v.(x). (110)
G e—0

In what follows we will present three illustrative examples where we will use the
method of regularization to transform the first kind integral equation to a second kind
integral equation. The resulting equation will be solved by any appropriate method that
we used before.

Example 1. Use the regularization method and the direct computation method to solve
the nonlinear Fredholm integral equation of the first kind

1
e” =/ el T (111)
0



We use the transformation
v(zx) = ELS(;E‘j.u.(;.gj - "g“f‘t'li.?‘L

to convert (111) into

1
r‘*’=f e u(t) dt.
0

Using the method of regularization, Eq. (113) can be transformed to

. T
. e s
velr) = —e* — = e*= 3y (t) dt,
£ € Jg

that can be rewritten as

. 1 o,
V(1) = (= — —)e”,
£ €

where

1
a:f e~y (t) dt.
0

To determine a, we substitute (115) into (116) to find

1
1 ¥

a=(=—=) g~ gy
Al A

so that

1—e2

Y 1-e2t2e

This 1n turn gives

o '-r"—l 1 e )F*"
SN 1—e-2942e) '

The exact solution v(x) of (114) can be obtained by

2e*

1—g=%

v(z) = lim v (z) =
d e—00

Using (112) gives the exact solution of (111) by

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)



o - ife 2e® ~I-
ulr) = 1V' ﬁ llzlj

One more solution to Eq. (111) is given by
) = e”. (122)

Example 2. Use the regularization method and the direct computation method to solve
the nonlinear Fredholm integral equation of the first kind

%3' = —[jl rtut(t) dt. (123)
We use the transformation
v(z) = ut(x), u(z) = £ Y v(z). (124)
to convert (123) into
43 ! : ;
07 = ./-:l rtv(t) dt. (125)

Using the method of regularization, Eq. (125) can be transformed to

o fe .. . T :
v (r) = =(—x) — —f rtv (t) dt, (126)
: e 10 £ Jn o :
that can be rewritten as
. 1 43
v lr)=—(— —ar, (127)
W) A L 10 ) \ )
where
1
0 =/ tv(t) dt. (128)
i
Proceeding as before, we find
43 .
10 + 10¢ :

This 1n turn gives



.. 1,43 43
V(1) = =(——

—"mr.
€ 10 104 10e°

The exact solution v(x) of (126) can be obtained by

) = i T
) = Il ¥ |F) = —.
27 Rl e 10

Using (124) gives the exact solution of (123) by

o of 129
ulr) = :I:v To -

One more solution to Eq. (123) is given by

w(x) = (1 + ).

(130)

(131)

(132)

(133)

Example 3. Use the regularization method and the direct computation method to solve

the nonlinear Fredholm integral equation of the first kind
1
—1? = / 2212 u?(t) dt.
0

We use the transformation
v(z) = u?(z), u(z) = £/v(z),

to convert (134) into

9 1
—:.:‘Ezf 22 v(t) dt.
2?- 0

Using the method of regularization, Eq. (136) can be transformed to

. Ay . f 4t ;
valm)i= —{—_R‘ZJ - —f ;rrzt‘z'e-',g{rjffa‘.
£ 27 £ 0
that can be rewritten as
. |
ve(z) = —(= — a)z?,

e 27

where

(134)

(135)

(136)

(137)

(138)



1
o= f t2u,(t) dt. (139)
0o

Proceeding as before, we find

0= ﬁ (140)
This in turn gives
ve(z) = élé — ﬁn? (141)
Following the discussion presented earlier gives the exact solution of (134) by
u(x) = :|:1U- E;rr. (142)
Two more solutions to Eq. (134) is given by
u(zxy =+Inz. (143)

Exercises 7.3

Combine the regularization method with any method to solve the nonlinear Fredholm
integral equations of the first kind

49 ¥ g e
1. —1 = f xtu”(t)dt
]

1 Tl
2 2,8 370y
. S Tot* u(t) dt
120 f] 4 o

1 : o
. gl ] *t u?(t) dt
4 0

2

3

4. e’ = f i “.1“;”3?

0
5
‘ 1

6. 2 ;2 / r2t% u(t) dt
125 o i

7.4 Nonlinear Weakly-Singular Fredholm Integral Equations

In Chapter 6, we studied the linear weakly-singular Fredholm integral equations of the
second kind where the modified decomposition method was applied effectively. In this
section we will study the nonlinear weakly-singular Fredholm integral equations of the



second kind. The nonlinear weakly-singular Fredholm integral equations are of the form

1

1

u(z) = flz) + F{u(t))dt, z € [0,1], (144)

and its generalized form is given by

1

; 1 . :

ulz) = f(x) —|—/ _ — F(u(t))dt,0 <a <1,z e [0,1], (145)
o [g(x) —g(t)]

where F(u(f)) is a nonlinear function of u(¢), such as #%(x), u3(x), e*®, etc.

The nonlinear weakly-singular Fredholm integral equations often arise, as in the
linear case, in practical applications such as Dirichlet problems, radiative equilibrium
models, potential theory, electrostatics problems, the particle transport problems of
astrophysics and reactor theory. Note that that the function f(x) is a given real-valued
function. Recall that the kernel is called weakly-singular because singularity can be
removed by an appropriate transformation.

Many analytical and numerical methods have been used for the determination of exact
or numerical approximations of the solutions of the nonlinear weakly-singular Fredholm
integral equations. Examples of the methods that were used so far are the multi-
projection method and its re-iterated algorithm, the fast spectral method, the Galerkin
collocation method, quadrature methods, the homotopy analysis method, the Taylor
series method, the Adomian decomposition method, and the variational iteration
method.

In this section, we will use the modified Adomian decomposition method (ADM) and
the noise terms phenomenon to determine exact solutions for nonlinear weakly-singular
Fredholm integral equations. The modified method was used thoroughly in this text.
However, in what follows, we briefly summarize the necessary steps of this method.

7.4.1 The Modified Decomposition Method

The Adomian decomposition method, well-known now in the literature, decomposes the
solution of any equation as an infinite series of components, where these components
are determined by a recurrence relation. However, the modified decomposition method
introduces a slight change in the recurrence relation suggested by the Adomian method.
The modified method decomposes the data function f(x) into two components f,(x) and

f1(x), where only f(x) 1s assigned to the zeroth solution component u(x), and the f;(x)
is added to the first component #;(x) in addition to the other terms assigned by using the

standard ADM.
In other words, the modified method proposes the modified recurrence relation given



as

up(z) = folz),
u(z) = file)+ [0 K(z,t)Ao(t) dt, (146)
e 1{E) = j‘: K(z,t)A.(t)dl,n = 1.

The use of the modified decomposition method not only minimizes the computations, but
avoids the use of the higher order Adomian polynomials. It is worth noting that a proper
selection of fy(x) andfj(x) 1s essential for a successful use of the modified

decomposition method. However, a criteria for this selection was not found, and trial is
the only option.

Recall that we can facilitate the convergence of the solution by using the noise terms
phenomenon that we used before in this text. The noise terms are defined as the identical
terms with opposite signs. In both instances, the size of the calculations will be
minimized, which validates the efficiency and reliability of the modified method and the
noise terms phenomenon.

In what follows we will study three illustrative examples to highlight the use of the
modified decomposition method and the noise terms phenomenon. We also aim to
confirm the power of this method in handling the nonlinear weakly-singular Fredholm
integral equations.

Example 1. Consider the nonlinear weakly-singular Fredholm integral equation

1 w2(t)

2
+ —
3ayT+ /22 =1]) Jo ]23-19]

By using the modified decomposition method, the data function f(+) = =

u(r) =z — di,0 <z <1. (147)

o

- Alr T |r? =11

is decomposed into two parts as

falz} = =,
Fily = = 2 (148)
‘ 3(zvT + 2% — 1))
Consequently, we set the modified recurrence relation as
tgle} = =,
1 Ag(t) (149)

uy(xr) = dt = 0,

2
— [ =
T + /23 = 1)) 0 4/ |x® — 13

where the zeroth-order Adomian polynomial .4,(+) = w2(x). The other components u,(x)
= 0 for » > 2 vanish in the limit. The exact solution,



u(T) ==, (150)

follows immediately.
However, to use the Adomian decomposition method combined with the noise terms
phenomenon, we set the standard recurrence relation

2
3z /T + |:e‘~'3'—l|~

_ —IDLI )t)
ui{r) = —|— other terms.

|3 —z‘3| .3uf+1f

up(z) =

(151)

The noise terms ¥—aﬂ— appear in both uy(x) and u;(x). By canceling the noise

Az T |2
term from uy(x) and verifying that the remaining non-canceled term 1n uy(x) identically

satisfies the original equation (147), the exact solution is therefore given as
u(r) ==. (152)

Example 2. Consider the nonlinear weakly-singular Fredholm integral equation

' 16 _
HH'—1+1—2\/_(1+3.:+—¢ +; 3) (153)
5
16 ; . 5 2 3 ’ um
+—=w2~=1(12 +13z+82° + 22%) + dt,0<z<l1.
S 0+ |r—t

We first decompose f{(x) into two parts by

folz) = 1+
16 5 i g
filz} = —2\/_(14—23 —|——:r + — ) (154)
._;_'r
+ #£Vr-1 (1z+m B 20%).

Consequently, the modified recurrence relation is given by

Hgle) = 1+,

_ 8 16 Lt Ag(t)
1 () — —2./r 11 D = .‘2 —._"3) gt
() ﬁ( Fdp et 4 m

(155)

where the zeroth-order Adomian polynomial .4,(r) = u2(x). The exact solution is thus
given by

n(e)=14=. (156)



Example 3. Consider the nonlinear weakly-singular Fredholm integral equation

et Y oy Ty u?(t) :
u(x) = y/cosxr 4+ 24/sin |r — 1| — 2 ‘-:111|’.:|—|— J t, (157)

«,f|51111: —5111?

where 0 < = < 2. We first decompose f(x) into two parts given as

folz) = +/cosz, (1E8)
filz) = 24/sin|z — 1| — 2+/sin|z|. L)

We next set the modified recurrence relation as

up(r) = +/cosz,

N . . -';!-D'-ir:-' =
() = 24/Einjr—1}— 2v/sinjz|+ _ — il ='0.
0o +/|sinz —sint|
(159)
This in turn gives the exact solution as
u(xr) = /cosz. (160)
Example 4. Solve the nonlinear weakly-singular Fredholm integral equation
u(z) = 243z + (8+ 24z + 182%)(vz — —\/_,I+f dt,0 <z < 1.
F
(161)
We first decompose f(x) into two parts by
filz) = (8+24z + 182%)(vT —1— /T). \0E
Consequently, the modified recurrence relation is given by
tplx) = 2+ 3T,
b Ao(1)
uifz) = (84+24z+ 182 (VT —1—T)+ | ——==dt=0.
0 4 |.‘1'L — f|
(163)
The exact solution is thus given by
u(x) = 2 + 3. (164)

Exercises 7.4



Solve the nonlinear weakly-singular Fredholm integral equations

e

u(xr) =

.u[;rj—:r——:aﬂ'+ =T — L1+—.1+E:r2j+f07ﬁ-LtﬂfD‘i.1*il

= 1‘—£I§+ vir—1(14+6x+8x -I—lE-tﬂ-I—fU 7“-;-&'{.& bxz=<.

—r=2/F(1—-dr+2%)+1evT — 1(1-20+2° H‘fu

u’ [t

Ve

'f"!]fauft“‘:l

uLIj_l+1——I§Ll+-F+ZDI j+4D(1—1,|§L123+Q'Di +27r j+fu |z

u(x) = /cos —|—2|l&.1n|1—l|J| ——5111|a:|J%+fD 4——%-{52‘ D<xr <32

u{z) =

Vveinr + £(cos|z — 1 1E —
Fh )

%(c‘:"gh'“'-‘r "‘Jru

(

| sm:r—sm t|)
u?it)

(| cos z—cost|)

dt,

0=<g=<1

=
2

dt,0 <z <1



Chapter 8

Nonlinear Volterra Integral Equations

8.1 Introduction

In the previous chapter, we studied the nonlinear Fredholm integral equations of the first
and the second kinds. We pointed out earlier that nonlinear integral equations need a
considerable amount of work. However, with the recent developed methods we can
minimize significantly this cumbersome work. It is therefore useful to present some
reliable and powerful techniques that will make the study of nonlinear integral equations
successful and valuable. In general, the solution of the nonlinear integral equations is
not in general unique as we studied in the case of the nonlinear Fredholm integral
equations. However, the existence of a unique solution of nonlinear integral equations
with specific conditions is possible but cannot be assumed general. This will be
illustrated by the forthcoming examples. Accordingly, our emphasis will be on
introducing reliable and easily calculable techniques for solving specific cases of
nonlinear Volterra integral equations. As indicated in Chapter 1, integral equations of
the form

b
u(x) = fxz) + )Lf K(z,t) F(u(t))dt (1)
a
and
oL
u(z) = f(z) + Jx/ K(z,t) F(u(t))dt, (2)
0

are called nonlinear Fredholm integral equations and nonlinear Volterra integral
equations respectively. The function F(u(x)) is nonlinear in u(x) such as u*(x), u3(x),
"™, sinu(x) and many others, and A is a parameter. In this text, we will concern
ourselves to the case where F(u(¢)) =u"(t),n > 2, whereas other nonlinear integral

equations that involve other forms of nonlinearity of F(u(x)) can be handled in a very

similar way. The following are examples of the nonl/inear Volterra integral equations of
the second kind

1 .
uwz)=1x— —xt —|—f r..rF{r;-dr. (3)
4 0



/o) L.g P ‘A
ulx) = 2r + =x° — tu”(t) dt. (4)
\ 6 : L

Moreover, the nonlinear Volterra integral equations of the first kind are of the form

o
2
J?:/ tu®(t)dt, (5)

i
2 = —/ t2ut(t) dt. (6)
0

8.2 Nonlinear Volterra Integral Equations of the Second
Kind

In this section we will focus our study on the nonlinear Volterra integral equations of the
second kind given in the standard form

oL
u{z) = f(z) + A/ Kz, t) F(u(t))dt, (7)
0

where F(u(¢)) 1s nonlinear inu(f) and A is a parameter. Several powerful methods,
analytical and numerical, are used in the literature. Based on our discussions in
Chapters 3 and 5 we have found that the series solution method, the Adomian
decomposition method, and the variational iteration method proved to be reliable
techniques in handling successfully the linear Volterra integral equations and the linear
Volterra integro-differential equations. It seems reasonable to use these methods in our
study of the nonlinear Volterra integral equations. It is to be noted that the Adomian
decomposition method approaches the nonlinear Volterra equations generally by using
the so called Adomian polynomials, that was introduced earlier in Chapter 7, hence we
will skip details. The so-called Adomian polynomials will be used to represent the

involved nonlinear function "(¢), n > 2 in a similar manner as presented before. In the
following we will outline the steps needed to use these methods effectively.

8.2.1 The Series Solution Method

The nonlinear Volterra integral equations of the form
uir) = fiz)+ J\/ Kz, t)u™(t)dt, (8)

where the kernel K(x, #) will be assumed a separable kernel, will be examined using the



series solution method. To use this method we should assume that u(x) is analytic,
hence it admits the Taylor expansion about x = 0 given by

e
u(z) = E Gai™, (9)

n=0

Substituting (9) into both sides of (8), assuming that K(x, #) = h(x)g(¢) yields

e J__ e T
Z anz" = f(x) + Ah [;z-}f glt) (E unr”) dt, (10)
11=l:| I:I 1'.5.=|:|
or simply
€T . "
@+ 0T+ agz + -+ = f(z)+ Mz-.f\;r:]f g(t) {u.;. + ayt + @zt + - - } g {3
0

(11)

such that the integral in (8) that includes the unknown function u(x) is reduced to an
easily computable integrals. Using the Taylor expansions for f(x) and /(x), integrating
the resulting simple integral at the right hand side, and then equating the coefficients of
like powers ofx lead to the complete determination of the coefficients a; i > 0.

Consequently, the solution u(x) is readily obtained upon using (9). As discussed before,
the exact solution may be obtained if the resulting series is an expansion of a well
known function, otherwise we use few terms of the obtained series to achieve an
accurate numerical approximation for computational purposes. The method discussed
above will be 1llustrated by using the following examples.

Example 1. We first consider the nonlinear Volterra integral equation
l O
w(r) = v — =z +/ tu?(t) dt. (12)
\ _1 B

Substituting the series form of u(x) given by (9) into both sides of (12) yields

dp + a1 + agx® + azx® + ---

=1'—&3'4+/ t [ao + a1t + aat? + ast® + --]” dt, (13)
0

or equivalently



ag + a1z + asx? + azrd + .- -

=z— ot + / t [ag + 2aga;t + (20002 + a3) t* +
0

Integrating the integral at the right hand side of (14) we find

ap+ ar+agxr? +azzP+ .- =r— gz

2
Equating the coefficients of like powers of x in both sides yields
iy=1.: 3,=1, Jor nLil
Consequently, the exact solution is given by
u(r) =z,
upon substituting (16) into (9).

Example 2. We next consider the nonlinear Volterra integral equation
: - 1 * i
e = e ;R‘ES'I + E.l + f ru’ (t)dt.
ak 0

Substituting the series (9) into both sides of (18) noting that

3

gives
ap + a1 + azx® + azx® +agzt 4+ -

J.E :1.3 .1‘4
(l+.r T i e )

1 27
—=r|1+3 -
31:( G J+2J 2 3

ue) = ag‘. + 3&,%&1;1‘ + (3&.3&? + 3&,%(:2]3.‘2 v

1
:r+ .:r—|— )—I——-.r

1 2 1
—|——a§a:2 o> ;anm&‘a e 1 {a% 4 Ea.;,az} i

i
+ :-:‘f [a{.‘g + 3agZayt + (3agay? + 3ag2as)t? + - - ] dt.
il

(14)

(16)

(17)

(18)

(19)

(20)

Evaluating the integral at the right hand side of (20) and equating the coefficients of like

powers of x we find



Ly = J.

a = 1
1
15 = E
. B 1
373
1
Iy = = forn > 0.
n!

This gives the solution in a series form

Rk, 53 L., 1.4
u(r) = 1+ 7+ 2—.3.‘ 4= L + .
which gives the solution in a closed form by

u(z) = e®.

Example 3. We now consider the nonlinear Volterra integral equation

Y 1 P \ 1 : 21y
ujr) =cosr — —sin(2r) — =r + u“(t)dt.
E -L " L 2 I:I oA

Note that we should use the Taylor series of cos x and sin(2x) by

EEE g S T
COBE: = L@ gt vavy

BUREENN o . | Fy 1 ey b |
sin(2z) = (2z) — g(22)% 4+ 5(22)5+---.

Substituting the series (9) into both sides of (24) gives

TR [ L_\z L 3 L 4

+f I:I‘.'-!.j + aqt + [.12!‘2 + . ']2 dt.
0

{21}

(22)

(23)

(24)

(26)

Evaluating the integral at the right hand side of (26) and equating the coefficients of like

powers of x we find

g = 1
(iq = 0
(o %
g = 0
[.!,4 = l

=

(27)



This gives the solution in a series form

1 1
u(z) =1— E.r‘z = E:‘"l sy (28)
which gives the solution in a closed form by
u(x) = cose. (29)

Exercises 8.2.1

Use the series solution method to solve the following nonlinear Volterra integral
equations:

1 . =
l. u(z) =22 + 5% —5 [ vt
0o

r 3 el c 1 & L
wal=1——a 2% _ g4 u(t) dt.
) 9 -'l-'! L LIL) e
s . 1 d.. S
ujr)=sinr — —r+ —sin2r + u“(t) dt.
2 4 o
u(r) = cosa 1r = in2r + ' 2(t) dt
cufr) =cosr — —r — —sin i f
) 3 1 2 \t)ats
- L. —
10. ulr) =e* + E.rl;azzr -1) - j Tu“(t) dt.
0

2 FERY 2 l (i1 J' % T ]
culr) =1+ Ez =3 tws(t) dt.
o
4 T
cu(z)=1-—2° - E“'E +f u?(t) dt.
0
g 1. =
4. ur)j=1—-r+z° — EJ:‘J - E.:'J + f u?(t) dt.
: 0
1 & A% 5.
5. u(z) = 22 + —r' — = w(t) dt-
ll. .II J_-L ‘2 ['| L Sl
G ) I
6. uir) = i = l —2r Er'f‘ it.
wlr) 2+¢ QE ; u.HH
7.
8.
9

8.2.2 The Adomian Decomposition Method

The purpose of this section is to describe how the Adomian decomposition method can
be applied to nonlinear Wolterra integral equations. Even though the method does not
discuss the existence and the uniqueness concepts, but it provides a reliable and
powerful technique to handle nonlinear equations.

The method has been introduced in details in solving nonlinear Fredholm integral
equations. For this reason, we will outline a brief framework of the method that will be
implemented for nonlinear Volterra integral equations. Recall that we will focus our
study on the nonlinear Volterra integral equations of the form



I
uer)i= fir) }\[ Kz, t)u™(t)dt, (30)

where the kernel is assumed a separable kernel. We usually represent the solution u(t)
of (30) by the series

u(xr) = Z i LE), 31

n={

and the nonlinear termu”(f), under the integral sign of the equation (30), by the
polynomial series

u(t) = Y Aa(), (32)

where the 4,(f) n > 0 are the so called Adomian polynomials. The Adomian
polynomials can be established by using the algorithm

r

Ay = P[u,:,i:.
A = wy d:_.!.;.ﬁ:uu]' o

] A2 = w2 %F(uu] + Z—f %F(ugj. (33)
As = ug d:;il:lf(uﬂ] + tiqilg %F(ugj + 2—? %F{ug&

[

We introduced in the previous section several examples explaining how we can
generate Adomian polynomials.
Substituting (31) and (32) into (30) yields

Y oua(z) = flz) +X ] K(z,t) (E An(r.j) dt (34)
n=( 0 s
or simply
uo(x) + u1(x) + uz(z) + -+ = f(z)
K | (35)
+A | K(x,t)[Ao(t) + A1(t) + Aa(t) + - -] dt. (39)

1]

The components uy(x), ui(x), u(x), -+ are completely determined by using the recurrent
scheme



uplz) = flz),
uy () —)‘-./ K(x,t)Ag(t)dt,

uo () —)&f Kz, t)Aq(t)dt, (36)

b
uﬁ+1f_;r:]=)\f K(z, )A, (H)dt, n>0.
\ a
Consequently the solution of (30) in a series form follows immediately by using (31).
As indicated earlier, the series obtained may yield the exact solution in a closed form,
or a truncated series ko, (x) MAY be used if a numerical approximation is desired.

It is worth noting that the modified decomposition method and the noise terms
phenomenon work also effectively for nonlinear cases and play a major role in
minimizing the size of calculations. In what follows, we will apply the Adomian
decomposition method and the modified decomposition method for handling the
nonlinear Volterra integral equations.

Example 1. We first consider the nonlinear Volterra integral equation

1 €I
u(r) = x4 —2° — f tu(t) dt. (37)
0

b

We start by setting the zeroth component

1 L
ug(xr) =+ =1, (38)
4]
so that the first component is obtained by
i
Uiz} = —/ tAg(t) di, (39)
0
which gives
Hilr) = ——=1 —r = T (40
1 5 15 325 2125 VY
upon using
i i J‘ 543 F \
_';le.xrf.l == '.xf + :f -_.I . I\__il_.l

o

It can be easily observed that by cancelling the noise terms 145 and — g5 between u(x)



and u,(x), and justifying that the remaining term of u(x) justifies the equation lead to the
exact solution

u(r) ==. (42)

We point out here that the exact solution can also be obtained by using the modified
decomposition method.

Example 2. We next consider the nonlinear Volterra integral equation

: 1 1. ™
i) =12z — 1—__)J“* 5E If {z—1) u.gn,';‘J dt. (43)
F4 . 0

To minimize the calculations volume, we will use the modified decomposition method
in this example. For this reason we split f(x) between the two components u(x) and

uy(x), hence we set

uo(x) = 2z. (44)
Consequently, the first component is defined by
uy(z) = —%3-4 + %/ju —t)Ao(t) dt, (45)
which gives
u1(zx) =0, (46)
upon using
Ap(t) = {21‘}12. (47)
This defines the other components by
up{el =0, fork>1 (48)
The exact solution
ulz) = 2z, (49)

follows immediately.

Example 3. It seems reasonable to compare the series solution method and the
Adomian decomposition method by solving Example 2 in the previous subsection given



ufr) =" l:.:'r?3Jr + l.t + /J; zud(t)dt. (50)
: a3 3 0
Applying the standard decomposition method will result in a considerable amount of
difficulties in integrating and forming the Adomian polynomials. It is useful to consider
using the modified decomposition method. Splitting f(x) between the first two
components yields

ug(z) = €%, (51)
and
wi(r) = —_l;rr_ﬂa"” + i:e + /I rAp(t)dt, (52)
3 3 i
or equivalently
wy(r) =0 (53)
upon using
Ag(t) = (7). (54)
Accordingly, the exact solution
u(z) = €=, (55)

1s readily obtained.

Exercises 8.2.2

Use the decomposition method or the modified decomposition method to solve the
following nonlinear Volterra integral equations by finding the exact solution or by
writing few terms of the series solution

1 *,u':uc‘l—ﬂ."c+11‘*l ) J‘_I 1 (#) dt
- M 21 e i

2. u[r‘n:Z:r—la“’ + i Tuﬂﬂdf
' 2 4 Jfa o
1 1 1 2 ;
3. ulr) =sinr 4+ R sin(2x) — 11‘ + E[ u® (t) dt
4

. 1 5 * a3
. uu‘]lz.?:2+;:r - w”(t) dt
5

a



T

5. u(z) =:.-:+/ (x— t)u(t) dt
|_'|T

6. m;:cjl=1+f (z— t)2u2(f) dt
|:|T

7. u|;1~j|=1+f (z —t)2u(t) dt
|_'|:LI

8.u|;1~j|=:.:+f (z — £)2u2(t) dt
|_'|T

9. u(z) = 1+/ (t+ u®(t)) dt
0

10.u{1‘j=1+[ (8% + u?(t)) dt

0
i
m
11. uixr) =secr +tanx + 1‘—[ I'\1+u9|;fj|;| dt, =< 5
(K]

i 4
12. S i e AT e T
uiar) = tan 4b111‘2.'t,| 5 + | 1T e at, T < 2

8.2.3 The Variational Iteration Method

The variational iteration method was presented in the preceding chapters for handling
integral equations. The method has been proved to be reliable in the study of linear and
nonlinear, and homogeneous and inhomogeneous equations. The method gives the
successive approximations of the exact solution that may converge to the exact solution
in case this solution exists. One significant feature of this method is that it can handle
especially nonlinear problems without the use of the so-called Adomian polynomials as
required by the Adomian decomposition method.
The variational iteration method admits the use of a correction functional in the form

€T
Ui 1(X) = unl;:.e-j+/ A(E) (Lug (&) + N F(un(£)) — g(£)) d&,n 2 0, (56)
0

where A is a general Lagrange multiplier that can be determined optimally via the
variational theory as shown before and F(u(x)) 1s a nonlinear function ofu(x). In
Chapter 2, we presented a rule that gives these Lagrange multipliers for some ordinary
differential equations that will be examined in this text. Recall that the variational
iteration method (VIM) 1s used for ODEs and integro-differential equations and this can
be obtained by differentiating the Volterra integral equation. Moreover, the zeroth
component #y(x) in (56) can be selected according to the order of the resulted ODE. The

exact solution is thus given by

u(z) = lim u.(z). (hT)

TR— O

In other words, to solve any nonlinear Volterra integral equation by using the
variational method, we should first transform this equation to its equivalent ODE or its



equivalent nonlinear Wlterra integro-differential equation by differentiating both sides,
where Leibniz rule should be used. The next step consists of the determination of the
Lagrange multiplier A using the rules given in Chapter 2. Finally, we select the zeroth
approximation uo(x) as indicated earlier. Having prepared all these steps, we then use

the correction functional (56) to determine as many successive approximations as we
can. For simplicity reasons, we will focus our study on the difference kernel, where
K(x,t) =K (x—1).

Example 1. Solve the nonlinear VWlterra integral equation by using the variational
iteration method

UL = 2 — —T = i —1t)u (i) at. [ anis |
\ F 12 _1 I:I \, K L 1 s

Differentiating both sides of this equation, and using Leibniz rule, we find

fis: 1 j T ol : . o
)=l == _—;1‘3 e —/ u-zl.'a‘;l dt,u(0) = 0. (59)
3 4 f, :

The 1nitial condition u(0) = 0 1s obtained by using x = 0 into the integral equation, and
hence we can select uy(x) = 0.
The correction functional for equation (59) is

- =
- £k ¥ e Log: & 8% g
U 1(2) = U (T) — f t (ol B i / uZ(r)dr | d¢,  (60)
0 wk -1_- i

where we selected A = —1 for the first order integro-differential equation. As stated
before, we can use the initial condition to select uy(x) = 0 that will lead to the following

successive approximations

“-|:| |_‘ ..T;I - I::I .

up(z) = 2o— ot
ug(r) = 20— srt+ (rt — 2a7) + et (61>
il = D TP d il B 0 il e, BBy e
3\x) = *~ Boa \sozt T Biswt /T sismt ’
Cancelling the noise terms gives the exact solution by
i) = 2. (62)

Example 2. Solve the nonlinear Volterra integral equation by using the variational



iteration method

u(z) = 2% — —zB +] (x — t)ul(t) dt. (63)
‘ 30 D i

Differentiating both sides of this equation, and using Leibniz rule, we find

£ 1 e : P
n ) =2e— ;;1‘5 —|—/ u?(t) dt. u(0) = 0. (64)
o i

The 1nitial condition #(0) = 0 1s obtained by using x = 0 into the uy(x) = 0.
The correction functional for equation (64) is

z f 1 ;

U () = 11 () —f (u” (E) — 26+ =£" — uy(r)dr | dg, (65)
. __" —~
i ]

where we selected A = —1 for the first order integro-differential equation. As stated
before, we can use the initial condition to select uy(x) = 0 that will lead to the following

successive approximations

a2} = 0,
B 1 .6
up(x) = 2% — gz
N o2 1.6 (1.6 _ _1 10y 114
Up(r) = 7= 55T+ 5T @t )T Tesse0
pooy e el sl B popedieiii S TN (e,
uzlr) = oL +t i@ t TEEso0f ) T TEEmooL T

(66)
Cancelling the noise terms gives the exact solution by

u(z) = z2 (67)

Example 3. Solve the nonlinear Volterra integral equation by using the variational
iteration method

1, 2 .1

" Y R S ) . S .
wE =Tt - 5T T 05 T 252

€T
® —I—/ (z — t)%u?(¢) dt. (68)
0

Differentiating both sides of this equation, and using Leibniz rule, we find

, 1 4 1 B - s g e
u.J[-,rr] = 1+43z2— {—j:-:‘"1 = E:rrﬁ = QRIS + 2’] (= Tjt.'.ﬁl;tj dt,w(0) = 0. (69)
. i 0



The initial condition u(0) = 0 1s obtained by using x = 0 into the integral equation, and
hence we can select uy(x) = 0. the following successive approximations

0,

glx)

{ ') . : 1 .. 2.7 1 ..
uplr) = J+11-3—E~35—E3r —Eﬂg.

| 0
ug(r) = x4’ — a4, 70}
us(z) = x+ad+..-,

Cancelling the noise terms gives the exact solution by
u(z) =z +2°. (71)

Exercises 8.2.3

Use the variational iteration method to solve the following nonlinear Volterra integral
equations

F Ly
l. u[a~j=x—%w5+[] (z — t)u(t) dt

1.q = )
2. u(z)=2% — =l ] (e tiu(t) dt

o 0

4 - 3 f an
3. uz)=2 .'E—Lf‘—imﬂ—ixﬂ (x — t)us(t) dt
4. wz)y=1 St B (x — t)u?(t)dt
ulx) +x 2:-; 3:-:.‘ 121 +_._3 [z — t)u”(t)
1 1 1 = : :
5. uga~)=1+x—5x3—1x4—ﬁa~”+f (x — ) 2u?(t) dt
0

8.3 Nonlinear Volterra Integral Equations of the First Kind

In this section we will study the nonlinear Volterra integral equation of the fir
f(z) =/ K(x,t)F(u(t))dt, (72)
0

where the kernel K(x, ¢) and the function f{x) are given real-valued functions. The
function F(u(x)) is a nonlinear function of u(x). As a first kind equation, the unknown
function u(x) appears only under the integral sign, and as a Volterra equation there is at
least one limit of integration is a variable x. The linear Wlterra integral equation of the
first kind 1s presented in Section 3.9 where it was examined by using a variety of
powerful methods.



In this section we will first use the series solution method. However, it 1s to be noted
that this method suffers from the size of computational work, that can be facilitated by
using any computer algebra system such as Maple or Mathematica. The series method
can be used in a direct manner like the way presented earlier in this Chapter.

8.3.1 The Series Solution Method

The series solution method was presented earlier in details. The nonlinear Volterra
integral equations of the first kind reads

o€
f(z) =f Kz, t)u™(t)dt, (73)
0

where the kernel K(x, ¢) will be assumed a separable kernel, will be examined using the

series solution method. For simplicity, we used the nonlinear term u"(x) for the
nonlinear general operator F(u(x)). To use this method we should assume that u(x) is
given by

G
u({z) = E anT . (T4)

n=0

Substituting (74) into both sides of (73), assuming that K(x, ¢) = h(x)g(t) yields

5 ] T
fz)=~rh |:;::'_‘,I/ glt) (Z tinﬁ“) dt, (75)
0

=i

or simply

i

EH
f(z) =fa{;z~j/ g(t) (ao + art + agt* +---) " dt. (T6)
0

Using the Taylor expansions for f{x) and /(x), integrating the resulting integral at the
right side, and then equating the coefficients of like powers of x lead to the complete
determination of the coefficients a;, i > 0. Consequently, the solution u(x) is readily

obtained upon using (74). As stated earlier, the method requires more work compared to
the newly developed methods such as the Adomian decomposition method or the
variational iteration method. In what follows we will use the series method to explain
three nonlinear Volterra integral equations of the first kind.

Example 1. We first consider the nonlinear Volterra integral equation of the first kind



PO | - : ey
—e® — — = f uz[?‘j dt. (77)
2 2 i

Using the Taylor series of the left side, and substituting the series form of u(x) given by
(74) into both sides of (77) yields

2 1 = .
,1:+:-:‘2—|—§;r3 +§a‘4+--- =f [te.;.+£11t‘+(12ﬁ2+f132‘3+---]2 dt. (78)
0

Integrating the integral at the right side of (78) we find

2 1 1 .
T+ 22+ 3;1*3 + 53*4 +- - = afr + apay 2 + =(2apag + af )2 4 ---. (79)
ik

Equating the coefficients of like powers of x in both sides yields
; il 1 —
iagp = +1. a1 ==+1, r::g=:|:2—” e (80)

Consequently, the exact solution is given by
Yz =e". (81)

Notice that we did not use Adomian polynomials in solving this problem. Moreover, the
series solution method gave use two answers and this is normal for non linear problem.

Example 2. We next consider the nonlinear Volterra integral equation of the first kind

bovg ol cog s w o
-7 + =sn°r = r— thu=(t) dt. 82
3 1 = [J L Ju=it) (52)

Using the Taylor series of the left side, and substituting the series form of u(x) given by
(74) into both sides of (82) yields

1 1 1 & , 2
53‘2 — EJ.“l + EI‘E + = .[J \z—1) [L‘-',.j + ait + &ga‘z + t‘t32‘3 + .- ] dt.
(83)

Proceeding as before, and equating the coefficients of like powers of x in both sides
yields

1 1 .
ap==1, a1 =0, az= :I:E~ ag =0, ayg= :I:T.- . (84)

Consequently, the exact solution is given by



u(z) =t cosx. (85)
Example 3. We next consider the nonlinear Volterra integral equation of the first kind

1 1 1 = : s
5T = EJ‘E =3 sin{2x) = [_. (z —t)u?(t) dt. (86)

Using the Taylor series of the left side, and substituting the series form of u(x) given by
(74) into both sides of (86) yields

1 1 1 i : 2 o
;;172—5;1‘3—1—F;r.‘5+- = f (z—1) [{:D + ait + r::gi!‘.2 + ngﬁS + ] di:: [8T)
& o 0

Proceeding as before, and equating the coefficients of like powers of x in both sides
yields

1 1 -
3 = F—, O4=F—, --- (88)

ap =21, ai==+1, as= Tk oIk

E 5
Consequently, the exact solution is given by
u(r) = £(cosx + sinzx). (89)

Exercises 8.3.1

Use the series solution method to solve the following nonlinear Volterra integral
equations of the first kind:

1 1 o it .- I. 2 o
qf —gsnE= [z — ) u”(t) dt
o

4
7
2. legr—la*—lzf (x— t)u’(t) dt
1 5 1 e ) Juit)

1 1 -
3.2 __ = f w?(t) dt
1 NE z
4. - sin(2r) 4 =2 — =z = f (x — t)u?(t) dt
4 2 0

[ ]

e

8.3.2 Conversion to a Volterra Equation of the Second Kind

We turn now to use the commonly used methods, used in this text, to handle the
nonlinear Volterra integral equations of the first kind. To determine a solution for the
nonlinear Volterra integral equation of the first kind (72), we follow our approach in the
linear case in Section 3.9, hence we first convert it to a linear Volterra integral equation
of the first kind of the form



oL
flx) =/ Kz, t)v(t)dt, (90)
0

by using the transformation
v(z) = Flu(x)). (91)
This in turn means that
u(z) = F~1{v(x)). (92)

It is worth noting that the Volterra integral equation of the first kind (90) can be solved
by any method that was studied in Section 3.9. However, in this section we will handle
Eq. (90) by the conversion to Volterra integral equation of the second kind, and this can
be achieved by using Leibniz rule. The conversion technique works effectively only if
K(x, x) # 0. Differentiating both sides of (90) with respect to x, and using Leibniz rule,
we find

T
fi{e) =K, 2o +/ Ko(z, t)v(t)dt. (93)

Solving for v(x), provided that K(x, x) = 0, we obtain the Volterra integral equation of
the second kind given by

o(z) = ;”I;I - fn - Il o5 Kl (s (04)
Having converted the Wolterra integral equation of the first kind to the Volterra integral
equation of the second kind, we then can use any method that was presented before.
Because we solved the Wlterra integral equations of the second kind by many methods
in this text, therefore we will select specific methods for solving the nonlinear Volterra
integral equation of the first kind after converting it to a Wolterra integral equation of the
second kind. This will be worked out for revision purposes only.

Example 1. Convert the nonlinear Volterra integral equation of the first kind to the
second kind and solve the resulting equation

1 . - i . oz
i f (x — t + 1)u?(t)dt. (95)
4] |:|

We first set

2

viz) = u*(z), u(z) = £+/v(zx), (96)



to carry out (95) into

1 . * ._ -
"+ —z = [ (x—t+1)v(t)dt 97)
5 30 / ! iad i )

Differentiating both sides of (97) with respect to x by using Leibniz rule we find the
Volterra integral equation of the second kind

1 ol
v(z) =zt 4 -1’ — / v(t)dt. (98)
0

o

We will select the modified decomposition method to solve this equation. Using the
recursive relation

wl(z) = a
1 = (99)
vi(z) = —z° —f vo(t)dt = 0. \="2)
o 0
The exact solutions are therefore given by
u(z) = +r?. (100)

Example 2. Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

5 1 5 = .

ot T =f (x —t+ 2)u*(t)dt. (101)

4 2 4 a g :
We first set

v(z) = u?(z), u{r) = ++/v{z), (102)

to carry out (101) into

Gﬁh gh 5 _/L'ri‘—!‘+2]’-!'fa‘"|rh‘ (103)

'-1_-. 2“ _1 - : \ il " \ K

Difterentiating both sides of (103) and proceeding as before we find
v(z) = EFEI e %_[3 v(t)dt. (104)

We will select the modified decomposition method to solve this equation. Using the
recursive relation



vgl{x) = e
vi(r) = éﬁh —i—ﬂranumdr =il 1489)
The exact solutions are therefore given by
u(z) = £e°. (106)

Example 3. Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

1 1 & :

=sinr + —sin(2z) = f cos(x — t)u?(t)dt. (107)

3 .3 . B l:l . & woF .
This equation is equivalent to

b, e copocnans o ey i ——

—sinr + =sin(2r) = cos(x — t)v(t)dt, (108)

:3 3 I:I . ¥ L

upon setting 1%(x) = v(x). Differentiating both sides of (108) and using Leibniz rule we
obtain

.l 2 : - . :
v(r) = 3 coST + - cos(2x) +f sin{x — t)v(t)dt. (109)
b i

For this problem, we select the Adomian decomposition method. Consequently, we use
the recursion relation

vp(x) = Leosz+ %cos(2x),
vi(z) = %J.‘Hl'rl o é cos(x) — %r_'u_m(:z:r:L

P . P PR (110]
vz(z) = %;z* sinx — 2—14-3.'2 cos(x) — 2% cosr + 22—? cos(2r), e

Recall that u(x) = ug + u; +u, + ---. Using the Taylor series for the sum of the obtained
components gives

. 1 2 .
u(z) =1 — 22 +§:.:-4 —Fa~ﬁ+---. (111)
45

which gives

v(z) = cos® . (112)



Consequently, the exact solution of the integral equation is given by
u(r) = + cosz, (113)
obtained by noting that v(x) = u*(x).

Exercises 8.3.2

Convert the following nonlinear Wlterra integral equations of the first kind to a second
kind then solve the resulting equation:

T ] f Do g
1 1 1 ¥
- = +E:-c = (z—1t41)u”(t)dt
'I i
2.1 o 1 0 JTr t 4 1 u(t) dt
=+ —2 = r—1 =
9 a0 o I
1 4 L 1 . 3
3.ﬁr +ﬁ1‘ =f (x—t+ Lju(t) dt
2 Jo
3 . 1 3 = 3
4. EEET_?T_E:/. fx—1t+ 1:”:,!2[?]{:',2‘
) i}
T
5. %mgezr + L% — x)e?® — %:.-:— g = j- (x—t+ 1)u?(t) dt
& - i
oo Houiogn & G :
6. Ee—”+5:c+3=f (x—t+1)u(t)dt
0

8.4 Nonlinear Weakly-Singular Volterra Integral Equations

In Chapter 6, we studied the linear weakly-singular Volterra integral equations of the
second kind where the modified decomposition method was applied effectively. In this
section we will study the nonlinear weakly-singular Volterra integral equations of the
second kind.

The nonlinear weakly-singular Volterra integral equation of the second kind reads

: S
u(z) = f(z) —|—f p— F(u(t))dt, x € [0,T], (114)
] ¥ —
and can be generalized to
u(z) = f(x) —|—/ — — Fu(t))dt.0 <a < 1,z [0.T]. (115)
o [g(z) —g(t)]

where F(u(f)) is a nonlinear function of u(¢f) such as u*(x) and u3(x), and the data
function f(x) is a given real-valued function. The unknown function u(x) appears inside
and outside the integral signs, a characteristic feature of a second-kind integral equation.



The nonlinear weakly-singular Volterra integral equations (114) and (115) arise in
many mathematical physics and scientific applications such as stereology, heat
conduction, crystal growth and the radiation of heat from a semi-infinite solid.

Numerical and analytical algorithms have been used for solving the nonlinear
weakly-singular Volterra integral equations (114)—(115), where the main goal was the
determination of numerical approximations of the solutions, or closed form solutions if
exist. Examples of the methods that were used so far are the Galerkin collocation
method, quadrature methods, spline methods, the homotopy analysis method, the Taylor
series method, and the variational iteration method. Other useful methods such as the
fast spectral method, the spectral method, the random point approximation method were
also used.

In this work, we will use the Adomian decomposition method, or mostly the related
techniques which are the modified Adomian decomposition method and the noise terms
phenomenon to determine exact solutions of such nonlinear integral equations. In the
sequel, we will briefly review the necessary steps of the two proposed schemes that
will be used.

8.4.1 The Modified Decomposition Method

The Adomian method decomposes the solution u(x) by the decomposition series

e ]
ulr) = E B (), (116)
i

and the nonlinear term F(u(x)) by the infinite series of Adomian polynomials

A Ay T x.r.-. 1 d" - 5 1 ¢
Flu(@)) =) An(2), 4n = — = {P (Z A eu)L_E.rmn.i.L

n=>0 +=0
(117)

Where the 4, are the Adomian polynomials, into both sides of the given equation.
Consequently, the solution components u,(x),i > 0, can be determined by using the
standard recurrence relation

ug(z) = flx)
bi @) I.fllr‘ﬁ}l
i ale) = / K(x,t)A,(t)dt,n > 1.
alx)
Having determined the solution components uy(x), u;(x), »(x),. . . the solution u(x)

follows immediately.



However, he modified decomposition method decomposes the data function f{x) into
two components fy(x) and f{(x), where only the first part is assigned to the zeroth

solution component, and the latter is added to the first solution component u(x) in

addition to the other terms assigned by using the standard ADM. This in turn gives the
modified recurrence relation by

wp(x) = folx),

bix)
) = flli.r;l—l—/ Kz, t)Aq(t) dt,
i

|:.,1;;|

(119)

bia)
Upyy(x) = / K(z,t)A,(t)dt,n > 1.
L)

(=)

Notice that the at least one of the limits of integration, either a(x) or b(x), must be a
function of the independent variable in the case of Wlterra integral equations. The use
of the modified decomposition method not only minimizes the computations, but avoids
the use of the higher order Adomian polynomials for such cases. It is worth noting that a
proper selection of fy(x) and fi(x) 1s essential for a successful use of the modified

decomposition method.
Moreover, the noise terms, if appearing especially within both of the components
up(x) and u(x), will provide the exact solution by using only the first two iterations. By

canceling the noise terms for uy(x), the remaining non-canceled terms of uy(x) may give

the exact solution, and this can be verified through substitution into the original
equation.

In what follows, we will examine several illustrative examples, where each one will
be investigated by using the modified decomposition method, then by using the ADM
combined with the noise terms phenomenon. In both cases, we only need the zeroth-
order Adomian polynomial 4y(x) = F (uy(x)). As will be shown in the sequel, there is

no need to use the higher-order Adomian polynomials in such cases, because we shall
see that the computations will mostly depend on the determination of uy(x) and u;(x).

In this section, we will study three nonlinear weakly-singular Volterra integral
equations. We begin by applying the modified decomposition method and next by using
the ADM combined with the noise terms phenomenon.

Example 1. Consider the nonlinear weakly-singular Volterra integral equation

3 TRt
ulr) = r? — f;r;rr‘* + s

—_—dt < r < 1. (120)
6 0 ABE=TB, |

The modified decomposition fz) = #2 — Lz into two parts defined as



fole) = 22,

7
i ! ot
filg) = — Tzl

Consequently, we can set the modified recurrence relation as

uplz) = 2,

ty () 3 ma® " olt) dt =0

1T = —=—mr — — =1,
16 0 \'_,-"_:]':'2 — 2

(121)

where the zeroth-order Adomian polynomial 4,(z) = u2(z). The subsequent solution

components u;(x) = 0 for j > 2. This gives the exact solution by
2

niT] =%

However, using the ADM combined gives the standard recurrence relation

3
ug(r) = T2 — f,'r;r.A~
: 16
€I Fa
" _-*lefl
ui(z) = —f —dt,
1] re — 1t
2 4 4 other t
= —7r other terms.
16

(123)

(124)

The noise terms 2 x4 appear within both uy(x) and u(x). By canceling the noise term
fromuy(x) and verifying that the remaining non-canceled term 1inuy(x) identically

satisfies the original equation (120), the exact solution is therefore given as

w(z) = 22,

Example 2. Consider the nonlinear weakly-singular Volterra integral equation

wlz) = V1422 - %[1 + 2%) +

* (i)
: it 0< > <1.

The modified decomposition method decomposes f(x) into two parts defined as

folz) = 1+ 22,
o) = B+

Consequently we can set the modified recurrence relation as

(126)

(127)



ug(z) = Y1+ 22,
Aglt)

P -"T.- L 7 L R T=h'
BHE] = —==ll+T ’I+,[ —t (128)
J 2" 0 vJ.‘E — 12
= 1

where the zeroth-order Adomian polynomial 4,z = ul(x)-
The exact solution,

u(z) = 1+ 22, (129)

follows immediately.
However, ADM admits the use of the standard recurrence relation

wlr) = Vi+z —%{14—3.‘2}.
fr i
. Aplt) P
ui(z) = o ol S (130)
b j.; \f:.:'i — 12

¥ r

= =(1+ -.t‘zj + other terms.

L]

The noise terms +z (1 +z2)appear within both uy(x) and u;(x). Proceeding as before gives
the same exact solution obtained earlier.

Example 3. Consider the nonlinear weakly-singular Volterra integral equation

. 3 . “ u(t) : .
ulr) = sin? z — —(cosr — ljé —I—f - ———di,0<x<1. (131)
2 o (cosz — cost)?

The modified decomposition method decomposes f{(x) into two parts defined by

fulz) = sin? .,
: 3 (132)
filz) = —=(cosx — 1]’3'. ) /
" 2 .
Consequently, we can set the modified recurrence relation as
; .1
uplx) = sin? o,
; 3 - * Aplt) (133)
HlE] = —=|ooBy:=1)8 f — - ——tlf = 0. R
2 o (sinx —sint)%

The exact solution is thus given as

£ o Lk 104
u(xr) = s8in? . (134)



Exercises 8.4

Solve the nonlinear weakly-singular Volterra integral equations

T2Q 5 T 3._{_.
L) =2° - —2% +f o
0ol

3080 2 )t
T 3(4)
2.,:1‘,_231 i ()
u(r) =x oE™ T | |
T B
3'uf$=al+14_il+iri+ u{f:l df—
() = v/ gl === ‘
! T \
4, Giah = S et g [ 2 3, u(t) 5
ulr)=vl+r+zx l2+3+31 Yk Sy
T 5(#)
5. u(xr) = veosx — 2vsinz + L kil ¢
0 Vsinz— sdmg_*
6. ulz) = Vsinz + 2vecosx — 1+ u”(t) dt

0 COsT — coat



Chapter 9
Applications of Integral Equations

9.1 Introduction

Several scientific and engineering applications are usually described by integral
equations or integro differential equations, standard or singular. In Chapter 1, we have
seen a large class of initial and boundary value problems that can be converted to
Volterra or Fredholm integral equations. Integral equations arise in the potential theory
more than any other field. Integral equations arise also in diffraction problems,
conformal mapping, water waves, scattering in quantum mechanics, and Volterra’s
population growth model. The electrostatic, electro magnetic scattering problems and
propagation of acoustical and elastical waves are scientific fields where integral
equations appear.

We have presented in this text a variety of traditional methods and some newly
developed methods to handle integral and integro-differential equations, Fredholm or
Volterra type. Our concern in this text was the determination of the exact solutions in an
easy computable fashion. Moreover, our aim was to present these selected methods to
facilitate the computational work, and we avoided the abstract theorems that can be
found in many other texts.

It is the goal of this chapter to select some applications that include integral or
integro-differential equations. We will employ the methods introduced in this text. For
numerical purposes we will use the Pad’e approximants that represent a function by a
ratio of two polynomials.

9.2 Volterra Integral Form of the Lane-Emden Equation

The Lane-Emden equation appears mostly in astrophysics, such as the theory of stellar
structure, and the thermal behavior of a spherical cloud of gas. The Lane-Emden
equation comes in two kinds, namely the Lane-Emden equation of the first kind, or of
index m, that reads

" ,11 ¢
y + ?,u’ £y =Ll =1 [0 =N0E>1, (1)



and the Lane-Emden equation of the second kind in the form
" k ' 4 G o S ey
y +—y +e'=0,9{0)=9y {0) =0,k > 1. (2)
5

The Lane-Emden equation of the first kind appears in astrophysics and used for
computing the structure of interiors of polytropic stars, where exact solutions exist for m
= 0, 1, 5. However, the Lane-Emden equation of the second kind models the non-
dimensional density distribution y(x) in an isothermal gas sphere. The singular behavior
of these equations that occurs atx = 0 is the main difficulty of these two equations.
Several methods were used in the literature to overcome the difficulty of the singular
behavior.

A new study in [65] introduced a useful work to overcome the singularity behavior,
where the Lane-Emden equation was converted to an equivalent Volterra integral form
or to an equivalent Volterra integro-differential form. In what follows we summarize the
formulation of new forms.

The generalized Lane-Emden equation of shape factor of £ > 1 reads

k ;
ik .E_..H’ + f(y) =0,y(0) = o, ¥’ (0) = 0,k > 1, (3)

where f{(y) can take " or ¢’™) as given earlier. To convert (3) to an integral form, it
was given that

Yr) = o — —— tl1l— — (y(t))dt. (4)
y(z) =1/, ( R_H_l) fly(t)) (4,

Differentiating (4) twice, using the Leibniz rule, gives

y'(z) = _/ (_.!.) Fly(t))dt,
0 x ()

& 2.j.:
y'(x) = —flylz))+ k ) fly(t))dt.
; / . ) R '

that can be proved by multiplying y’ by £ and adding the result to y"(x). This shows that
the Lane-Emden equation is equivalent to the VWolterra integral form (4) or to the two
Volterra integro-differential forms in (5) of first-order and second-order respectively.

It is to be noted that equations (4) and (5) work for any function f{), such as y"* and
ey as in the first kind and the second kind of the Lane-Emden equation. Moreover, f(y)
can be any linear or nonlinear function of y. A significant feature of equations (4) and
(5) 1s the overcome of the singular behavior at x = 0. This was tested in [65] and proved
to be reliable and efficient.




Moreover, for k=1 the integral formis
o r i .
y(z) = o —I—f ﬁlm’_;j fly(t))dt, (6)
0

which can be obtained by setting k — 1 in Eq. (4).
Based on the last results we set the Volterra integral forms for the Lane-Emden
equations as

£
Lrcnaa o
oy +/ a‘ln{;}ﬂ;g[ﬁj ) dit for:k =1
ylr) = ] o ' 1 (7)
0 — — tl1— (y(t))dt fork > 1.

In what follows, we will examine the Lane-Emden equation of the first and the
second kind, where the standard shape factor & =2 will be used. For comparison
reasons, we will use the Adomian decomposition method for the Volterra integral form
(4). We then will apply the variational iteration method for the Volterra integro-
differential form (5), because the variational iteration method is applicable to the
integro-differential forms.

9.2.1 Lane-Emden Equation of the First Kind

The Lane-Emden equation of the first kind, or of index m, 1s
L :2 )
y +—=y +y™ =0, y0)=1.%(0) =0, (8)
T

which is a basic equation in the theory of stellar structure. This equation describes the
temperature variation of a spherical gas cloud under the mutual attraction of its
molecules and subject to the laws of thermodynamics. We will first start by using the
Adomian decomposition method.

(i) By using the Adomian decomposition method:

Because the Lane-Emden equation involves the nonlinear term )™, it is normal to set the
Adomian polynomials for the nonlinear term y™” by



z‘.'l ] = USTI 3

4, = my",:,“_lyl.
1 :
A = '.rny",:,”_l_t:g + Q—ImUH - ljyf:?"_zg,fi
i . 1 )
As = '.rnyf:,“_lyg + m(m — 1,‘|y".;.”_234'1.t.f2 - ?m[m —1)(m— ij,:,’_3y?.
(9)

and so on for higher order polynomials.
Using (4) for k& = 2, the recursive relation becomes

olz} = 1,
. = t 10)
Ynialz) = —f a‘.(l - ?) A,dt, n> 0. )
0 L

Using this relation, together with the Adomian polynomials (9) leads to the first few
components

tp(z) = 1,
o 1
wilxr) = —E:.rg.
: i m ,
$| = =—if
(r) 1
: B m(8m —5) g
Yz(r) = — ——m
YslT, 3. 71
.+ m(70—183m+ 122m?) 4
Balt) = 90! ot
o m(3150 — 1080m + 12642m? — 5032m?)
yslz) = -— =

45. 11!

Consequently, the generalized solution of the standard Lane-Emden equation takes the
form

. 1 5 m, mBm-5 5 m(70—183m+ 122m?) ,
= T T

(z)=1— =2+ —2
yz) 3 4l 3.7 9.0l
_ m(3150 — 1080m + 1:;(sl42¢?12 — 5032m3) A9 11)
45 . 11!

The following exact solutions



y(@) = 1-=d?,

yz) = —, (12)

=
ylr) = (14— ;
yix) ( 3 )

are obtained for m =0, 1 and 5, respectively.

Fig. 1 below shows the Padé approximants [4/4] of y(x) in(11) form =2, 3,4, 5. It
is well-known that Padé approximants into a rational function to gain more information
about the solution y(x).

0.8
L

0.4

i} T T

[
s
o=
/

Fig. 1. The Pade approximants [4/4] of y(x)) for m=2,34,5.

(ii) By using the variational iteration method:

Recall that the variational iteration method does not require the use of the Adomian
polynomials. The variational iteration method can be used through a correction
functional that requires the use of Lagrange multiplier A. We first start with the
generalized Lane-Emden equation of the first kind

" ko ! : p
y 4=y Ayt =0k>1,9(0)= 1,y'(0) =0, (13)

Using (5) gives the integro-differential form of the Lane-Emden equation by

] E.-z
v (z) = —f (1—2) y™(t) dt,y(0) = 1. (14)



Consequently, the correction functional reads

: : = 0 W . o
?'r:l'.+l|-i;l"»] = Un I:'-I'LJ - / (U:;L“ F / E‘_E ?.'.I'ﬂll.ir;l (h‘) dt . f.'.l",i|_|;| =4, LJ.r:l,l
1] il

By selecting the zeroth selection yy(x) = 1 we obtain the first few solution components

wilz) = 1
o 1
nir) = 1-— :_Tl‘TE'
‘o 1 m
wplr) = 1-— T + E;z
- 1 m , m(Bm—-35) 4
i 1 m , m8m-5) o m(70—183m+ 122m? ,
yalxr) = l—E—i-E,t = 3T il 9.0l 1
1 m , mBm—5) ¢ m(70—183m+ 122m? 4
slr) = 1— =4 —1" — =T + i
Ys\T) TR 3.7 9. 9!
m(3150 — 1080m + 12642m? — 5032m3) 410

45 - 11!

Recall that the variational iteration method gives successive approximations. This
means that the approximation ys is consistent with the approximation obtained before by

the Adomian decomposition method.

9.2.2 Lane-Emden Equation of the Second Kind
In this section, we will study the Lane-Emden equation of the second kind

[T 2 [ 5 "
y + 2y +e'=0,y0)=y (0)=0 (16)

by using the Adomian decomposition method and then by the variational iteration
method. This equation, models the distribution of mass in an isothermal gas sphere.

(1) By using the Adomian decomposition method:
Because the Lane-Emden the Lane-Emden equation involves the nonlinear term e’™, it
is normal to set the Adomian polynomials for the nonlinear term e’™¥) by



Apg = e¥o

_-4.1 = ylfﬂ':'.
1 .
_-"12 = EU? + '-!.I'E) E."E'ID..
1 1 Bko
Az = §§f+mﬂz+.ﬂa) eve, KLey
1 4 1- 2.2y Yo
Ay = Tyl + 2—,1‘3;1;;2; + s+ ys ) €¥°,

To solve the Lane-Emden equation (16) by using the Adomian decomposition method,
we substitute £ =2, o =0 and f(y) = ¢ in (4), and using the recursive relation

w(r) = 0

dna(2) = —[Zt(1—2) Andt, n>0, (18)
as presented before. Using (18) gives the following components
HDl:JT:I = 0,
ot 1,
yilz) = —o,
: 1
ya(z) = =at
(" H
[t 8 L P
Ysixr} = _‘1 w0 -;--ldE L ngal
i 1150
yalx) = e q,R
o 5032 g
xr = = o i
e 15 % 111
The series solution is therefore given by
_. N 8 122 , 5032 .
|| =i = e T _—r" - ——7 20
VW=7 15" T3xn” Toxo®  Bxl’ £

Fig. 2 below shows the Padé approximants —[4/4] and —[5/5] of y(x) in (20).



Fig. 2. The Pade approximants —[4/4] and —[5/5] of y(x) in (20).

(i) By using the variational iteration method:
To solve the Lane-Emden equation of the second kind, we set the correction

functional
T ’ t _rz
ﬂn+1{37] = .Un.lif-!‘:l —/ (_t.rﬂ{!‘j +[ T_2 t-“.y“':r:') dt, y[l{}] = 0. (21)
0 ] 2

Proceeding as in the previous case, we obtain the following components

yolr) = 0,
i 1 .
r) = ——z1°,
Hir) 3!
| 1 1
yo(r) = —=2®+ :-.1‘4 i gty
3! 5!
P 1 2 1 4 B i
r) = ——1°+—1"-— s 9"
I TR T T (22)
Lo 14 B e 122
nle) = —g= tH* “Ixa’ Toxe”’
- Log 1 & o A8 o 15098 .
(r) = —=Ir +—1 — T " — ——x
e 3T TR T 3x7 x0T 45 x1ill

The series solution is therefore given by



ploe & .my 122 .9 BOS2 _ag

2

(23)

- 1 1
Wy = — =3 o — — 1
e 3! 5! 3x T 9 x 9! 45 x 11!

which 1s consistent with the result obtained by using the Adomian decomposition
method.

In closing this section, it is worth noting that the Adomian decomposition method
requires the use of Adomian polynomials for nonlinear terms that needs more
computational work. However, using the variational iteration method requires the use of
Lagrange multiplier A, where we used A = —1 for first order integro-differential
equations.

9.3 The Schlomilch’s Integral Equation

In this section we will study the Schlomilch’s integral equation that was used for the
computation of 1onospheric height that corresponds to a given plasma frequency from
oblique propagation data. Although the Schlomilch’s integral equation is linear, but we
will study the linear and the nonlinear cases.

9.3.1 The Linear Schlomilch’s Integral Equation

The Schlomilch’s integral equation reads

2 r¥
flz) = :f u(x sin t) dt, (24)
il 0

where f{(x) 1s a continuous differential coefficient for —7 < x <. It has been proved that
this equation gives one solution given by

3
u(z) = f(0) + ;;:'/ f'(xsint) dt, (25)
o

where /7 is the derivative of f with respect to the complicated argument £ = x sin¢. The
Schlomilch’s integral equation and its unique solution have been used to determine the
electron density profile from the ionospheric ionograms for the case of the quasi-
transverse (QT) approximations [41]. However, our study on the Schlomilch’s integral
equation will be focused on the mathematical side only.

It is obvious that the Schlomilch’s integral equation is a special case of Fredholm
integral equation of the first kind. The method of regularization was used effectively in
Chapter 2 to handle the Fredholm integral equation of the first kind. In view of this, we
will employ the method of regularization to handle the Schlomilch’s integral equation



(24).

9.3.2 The Method of Regularization

The method of regularization was introduced in Chapter 2, hence we skip details. The
method of regularization converts the linear Schlomilch’s integral equation of the first
kind

2 2
flm) = :[ u(xrsint)dt,x € D, (26)
T Jo

to the Schlomilch’s integral equation of the second kind in the form

Ty . o
ele() = flr) — — ue(rsint) dt, (27)
1]

al

or equivalently

1 1{2 % . .
t(z) = —f(z) — - (—f t.(rsint) da‘) ; (28)
£ e\mJy

where ¢ is a small positive parameter. It is obvious that the solution u, of equation (28)
converges to the solution u(x) of (26) as ¢ — 0. Consequently, we can apply any method
that we studied before for solving the Fredholm integral equations of the second kind.
However, we will use the Adomian decomposition method, where we set the
recurrence relation as

w2y = =flz)
€

1 (2 % (29)
tgpgbe) = === —f Ue, (xsint)dt | k> 0.
e \ 7 Jp

In what follows we will present two illustrative examples. Our focus will be on
transforming the first kind equation to a second kind equation by using the method of
regularization, and hence we can use any appropriate method.

Example 1. Solve the Schlomilch’s integral equation
2 ¥
1 = :/ u(rsint)dt, -7 <z < 7. (30)
al |:|

Using the method of regularization, Eq. (30) becomes



oy _ Lo 1f2 &
H-_Etxil’-‘,I:?l‘lﬂ‘ﬁ!".l—? = u(zsint)dt ] .
i o

(31)

We select the Adomian method for solving this equation. The Adomian method admits

the use of the recurrence relation

wle) = =1 T,
s a )

. 1f2 2
U, () = === U, (rsint)dt | .k > 0.
T o

This in turn gives the first few components

. 1
UglE) = —MbTh
. i o i
el VL) =~ 7
e
- w2 + Az
Ugl®) = e
. T+ 8z
Yal®) = g
P ™ + 16z
This in turn gives
e fi B B B, )+a X A 8
__"I| - [ — — e — .. — —_— —
o R E € €2 €3 € e w2e2 g3
which gives
w() 1 I T
x) = T,
= e

(32)

(33)

obtained upon finding the summation of each infinite geometric series. The exact

solution is given by

u(r) = EE}I.J. ity =14 Ear:.

Example 2. Solve the Schlomilch’s integral equation

(36)



2 I . o
3t = —/ u(rsint)dt, 7w <z <. (37)
0

il

Using the method of regularization, Eq. (37) becomes

. 3 1 (2 f5 . -
i) = —zrt— = (—/ Ul reint) c.!‘i!‘.) : (38)
3 O W

We select the Adomian method for solving this equation. The Adomian method
admits the use of the recurrence relation

B lBY = =2

1
ey 2Y = =%

This in turn gives the first few components

z (39)
[ U, (xsint)dt | .k = 0.
0

: 3
U, fxr) = =z4,
€
. 9
Ue, () = —S3I7,
. (r) = —sx°,
(%) 64€3
o 8L,
Ug(Z) = —gog0
This in turn gives
s 1 4(1 3 4 9 27 3 ) A1
e = 2v 8¢ ' 64¢2 51263 ' )° )
which gives
: 24 s
Ulxr) = — T, (42
W) 3+ Be Vo

obtained upon finding the summation of the infinite geometric series. The exact solution
1s given by

u(z) = lim u.(r) = 8z*. (43)
> e—0

9.3.3 The Nonlinear Schlomilch’s Integral Equation

The Schlomilch’s integral equation may come in a nonlinear form as



. B e :
Fle)= tf Flu(xsint)) dt, (44)
il :|

where F(u(x sin t)) is a nonlinear function of u(x sin ¢), such as u?(x sin ¢) and #>(x sin
t), f(x) is a continuous differential coefficient for -7 <x <.

It is obvious that the nonlinear Schlomilch’s integral equation is a special case of the
nonlinear Fredholm integral equation of the first kind. It is thus normal to follow the

analysis used before in Chapter 7 for handling nonlinear Fredholm integral equation of
the first kind.
We first transform (44) to a linear form of the first kind given by

. 3 .p% . .
flay= —f v(rsint)dt,z € D (45)
0

m
by using the transformation
v(zsint) = Fu(xsint)). (46)
Assuming that F(u(x sin ¢)) is invertible leads to
1

u(zsint) = F~"(v(z)). (47)

The method of regularization converts the linear Schlomilch’s integral equation of the
first kind (45) to the Schlomilch’s integral equation of the second kind in the form

1 1 (2 (%
v (z) ==f(xr) — = —f v.(rsint)dt |, (48)
€ e\mJy

where ¢ 1s a small positive parameter. Applying the Adomian decomposition method
gives the recurrence relation

i ! J' i %
VelZ) = =J(Z),
ol A

Vepyt(T) = —= —f Ve, (Teint)dt | ,k = 0.
e\ T Jp

The scheme that we presented will be illustrated by examining the following examples.

Example 3. Solve the Schlomilch’s integral equation

Hg 248 o o
P u“(rsint)dt, —w < x <. (50)

T Jo



2

Using the transformation v = u~ carries out the last equation to

Using the method of regularization, Eq. (51) becomes

e |
/ v(rsint)dt,—w <=x
0

—

i:JI.

.3 L2 f% .
v (1) = —xt — = —/ v (rsint)dt | . (52)
Re e \ 7 Jg

- 3 4
Vel I') = ==
ot/ Re _
. I 53)
VepralZ) = —= —f v, (zsint)dt ] , k> 0.
£ m i
This in turn gives the first few components
]
v ol — g
UgplZ) = E‘? 1
. 9
v, (z) = ——szt, (54)
“ e ket
PO =, i -4
VgghZ] = TR
This in turn gives
Ve(z) }14 2 s )+R 1 2—!— : + ) (55)
) = —x ——_—f —t —_ — —_——t — SO I i Y5
V) € Be  64¢? € e w2l
which gives
il %) = 3 r (56)
Co 3+8 A

obtained upon finding the summation of each infinite geometric
u?, hence the exact solution is given by

4

v(z) = 2%, u(z) = £22

Example 4. Solve the Schlomilch’s integral equation

series. Recall thatv =



Using the transformation v = u

3

32 4
3

2 (% ;
—a = —/ ud(rsint)dt,—wm <z <m.
0

=
£l

carries out the last equation to

32
—rd
3

2 (¥ i
_/ v(esint) dt, —w <z < .
0

il

Using the method of regularization, Eq. (51) becomes

. B 1(2/% o )
V) = —a° —— | — ve(xsint)dt | .
: 3 e\NT S -

The Adomian method gives the recurrence relation

Ve, (22)

Vepya L)

This in turn gives the first few components

Proceeding as before, and recall that v = u>, hence the exact solution is given by

9.4 Bratu-Type Problems

32
3me

12 f2
= (_f v, (rint) dt‘-) vk =0.
£ T Jo

. 32
7! LR‘ | = = T .
o 37e

. 128
v (1) = ——m—m—x,
£1|-. ! QTI_EEE

. 512
v, (r) = ——z7,
g 27m3e3

. 2048
v, (r) = —= T3,
= S1miet

v(z) = 82°, u(x) = 2z.

(59)

(60)

(61)

(62)

It is well known that Bratu’s boundary value problem in 1-dimensional planar

coordinates is of the form

M
u + Ae® =

0,0<2x <1,

] = a(lj=0.

(64)



The standard Bratu problem (64) was used to model a combustion problem in a
numerical slab. The Bratu problem appears in many scientific applications such as the
fuel 1gnition of the thermal combustion theory and in the Chandrasekhar model of the
expansion of the universe. It stimulates a thermal reaction process in a rigid material
where the process depends on a balance between chemically generated heat, radiative
heat transfer and nanotechnology, and heat transfer by conduction.

The Bratu problem was subjected to a considerable amount of research work.
Several numerical techniques, such as the finite difference method, finite element
approximation, weighted residual method, Adomian-Laplace method, the variational
iteration method, collocation method, Chebyshev wavelets method, and the shooting
method have been implemented independently to handle the Bratu model numerically. In
addition, Boyd [5] employed Chebyshev polynomial expansions and the Gegenbauer
polynomials as base functions.

The exact solution to (64) reads [5]

cosh((xz — 1)£)
u(x) =—21n [ — .ﬁ.zaz;] (65)
! f-uHhLIJ
where 6 satisfies
= H 5
# = v'2A cosh 1) (66)

The Bratu problem has zero, one or two solutions when A > A, A = A, and A < A,
respectively where the critical value A, satisfies the equation

B
A, = 8esch? (i) : (67)
4

It was evaluated in [5] that the critical value A, 1s given by
Ae = 3.513830719. (68)

In this section we will concern ourselves on studying three distinct Bratu-type
problems, given by

ERL T (= - g o ]

u m _a’“\ = l[]l.r .I[II. e (69)
ul0) = wu(l)=0.

u 472 = 0,0<z<]1

(70)
w(0) = u(l)=0 L



and

u' —e* = 0,0<z<]l, (71)
u(0) = wu(l)=0.
The lastequation (71) is of great interest in magneto hydrodynamics [4]. The
aforementioned Bratu-type problems were examined by many methods in the literature.
In this section, we will convert these problems to equivalent Volterra integro-

differential equations and study it by the methods used in this text.
9.4.1 First Bratu-Type Problem
We begin this analysis by studying the first Bratu-type problem

u —m* = 0,0<z<l,

. 72)
w(0) = u(l)=0. hfed

Integrating both sides of (72) converts this equation to an equivalent Wlterra integro-
differential equation given by

oL
'l (¢ =y
u =a-+m / e dto <z <1, {73}
0

wherea =u'(0) # 0 is not defined but will be determined by using the boundary
conditionu(1l) = 0. Applying the variational iteration method for (73) gives the
correction functional reads

T t

; ; s e

U 1(2) = u,(2) — f (unu‘) —a— ;rzf gun(r) .-:f-r) dt. (T4)
0 0

By selecting the zeroth selection uy(x) = 0 we obtain the first few solution components

wp(x) = 0,
i
P il b
ulr) = ar+4+ —r”,
2
i R L L
ug(r) = ar+ —r° + —a" + (— + — )2~ + other terms,
2 6 4! 41
. _|_:r2 2+a;72 3+_;‘r4+a27r9\ F
uz(z) = ar+ —r°+ —z°+ (— )z
i 2 6 4! 41
ot . ated. o
+ (— + Jr* + other terms,

|
30 6!



where the Taylor series for the nonlinear term ™) was used in the computational work.
To determine a, we need to use the Pad¢é approximants. Pade approximants represent a
function by the ratio of two polynomials. Pade approximant, symbolized by [m/n], is a
rational function defined by

ag+ a1+ agr? + - + @™
1+ byx+box? +--- 4 bya™ '

[m/n] = (T6)
where the numerator and denominator have no common factors. If we selected m = n,
then the approximants [n/n] are called diagonal approximants. The coefficients of the
polynomials in the numerator and in the denominator are determined by using the
coefficients in the Taylor expansion of the function which we need to find its

approximants. For example, consideringf(x) =¢*, the Pade [2/2] and [3/3]
approximants are given by

12 + 6z + =2 3/3] = 120 + 60z + 1222 + 3
12—6zx+z2° "' T 120 — 60z + 1222 — 23

2/2] =

However, Padé approximants can be evaluated by using any symbolic computer
software such as Maple or Mathematica.

To determine a, we use the boundary condition (1) = 0 in the Padé approximants
[2/2], [3/3], [4/4], ..., of (75) to find thata = z. Substitutinga =7 inus(x) gives the

series solution

2 3 4 =
dl al

P " 9 T 2 4 5 i’y
twr)=mr+4+ =" + =" + =—t" f —1 e, (77
\E) 2 6 2 T W

This 1n turn gives the exact solution by

i .
w(xr) =—In (1 + cos (l‘E + ;zjrr)) : (78]

Fig. 3 below shows the solution u(x) in(78) that blows up in the middle of the
domain.



Fig. 3. The solution u(x) in (78).

9.4.2 Second Bratu-Type Problem

In this section we will the second Bratu-type problem

u +7w2e® = 0,0<z<l, (79)
u(0) = wu{l)=0. :

Integrating both sides of (79) converts this equation to an equivalent Wolterra integro-
differential equation given by

i
! { Y ¥ - "
U =0 sz e~ "N 0 < 2 < 1, (80])
0

wherea =u'(0) # 0 is not defined but will be determined by using the boundary

conditionu(l) = 0. Applying the variational iteration method for (80) gives the
correction functional reads

I t
K i k! ! i b d —_— - i 4 %
Uni1(z) = un(z) — f (u.n (1) —a+ :rzf gt -:fr) dt. (81)
] i}

By selecting the zeroth selection uy(x) = 0 we obtain the first few solution components



uglz) = D,

P ] 2
ui(x) = ar— —x°,
) 2
s T L
us(r) = ar— —r°+ —z° — (— + ——)z" + other terms,
2 6 4] 4!
. o R g, A R
UglL) = G B o i S o o e | (82)
2 6 4! 4
2 am?  adn?, Rl et
Iz other terms,
'30 6!

where the Taylor series for the nonlinear term e “*) was used in the computational
work.

To determine a, we use the boundary condition #(1) = 0 in the Pade approximants
[2/2], [3/3], [4/4], ..., to find thata =m. Substitutinga =7 inus(x) gives the series

solution

T :T\ =TT ?I_E J*g + ;I_S 3,3 J‘I_hl ?-."1 + 'I‘I_:. :1._5 + -7“:3
This in turn gives the exact solution by
u(x) =In(1+sin(rzx)) . (84)

Fig. 4 below shows the exact solution u(x) in (84) and the approximate solution (83).
The graph shows that u(x) 1s bounded, and the deviation between the exact solution and
the approximation is caused by the use of finite number of terms of the series solution.

1.3

14 Approximation solulion

0,5 wact soluiion




Fig. 4. The exact solution u(x) in (84) and the approximate solution (83).

9.4.3 Third Bratu-Type Problem

We close this section on Bratu-type problems by examining a third Bratu-type problem
in the form

L

i o—ed = 0 0ce<cl, (85)
u{0] = u{l)=0, )

which is of great interest in magneto hydrodynamics [4]. Proceeding as before, we
integrate both sides of (85) to convert it to an equivalent Volterra integro-differential
equation as

e
! r g : g ¥
o =0k f AR I A (86)
0

where a = u'(0) # 0 1s not defined yet, but will be determined by using the boundary
conditionu(l) = 0. Applying the variational iteration method for (86) gives the

correction functional by
@ " t
Unf1(2) = tnlz) — f (un{rj —a —f gtn () ff'.f') dt. (87)
0 0

By selecting the zeroth selection uy(x) = 0 we obtain the first few solution components

uglr) = 0,

M 1,
w]ilr) = ar+ E;r ;

P 1, a .3 1 a?
sl = @Ittt Sfil=d —, jx* + other terms.

g 2 6 41 4! G

. (88)

U f.]‘.l f_]‘—'—l 2+ﬂ?3+ J.+ “|14

() = r T+ == [ — —

= 2,8 a4l
il il
(— + — )z + other terms,

30 6!

where the Taylor series for the nonlinear term %) was used in the computational work.
Using the boundary condition u(1) = 0 gives

a=u'(0) = —0.463639988227675. (89)

Substituting this result into u5(x) gives the series approximation



u(xr) = —0.463639988227675x + 0.5z% — 0.077273331372>

+  0.050623418282* — 0.016285207912° 4+ 0.0080038765342°

—  0.00364612573727 4+ 0.0018684770522% — 0.000851751709z"
+ 0.00042835175182'% — 0.00020577494792} (90)
+ 0.00010334957012'2 — 0.00005105422613213

+ 0.00002576005100z 4 - ...

However, an exact solution is given by
u(x) = —In2 4 In{A(z)), (91)

where

I PO 2
)'x':;r.‘:l = (.-? 500 (#)) . I:ﬂﬂ:l

and c 1s the root of
C.y2 s
ooaee| — —=:3, (93)
(P LJIH‘-LJ) L)

The root ¢ lies between 0 and z, namely ¢ = 1.336055695, to ten figures.

9.5 Systems of Integral Equations

Systems of Fredholm and Volterra integral equations, of the first and the second kinds,
appear in scientific applications. Many powerful methods were used to study these
systems of equations. In this section, we aim to apply the methods presented in this text
to study systems of integral equations.

9.5.1 Systems of Fredholm Integral Equations

In this section we will concern ourselves on solving system of Fredholm integral
equations of the second kind with only two unknown functions u(x) and v(x). The
analysis can be extended to more than two unknown functions. The standard system of
Fredholm integral equations of the second kind is given by

k) =  fled +f (Hl{a: thult) + Ii'll.’,r: tho(t) ) dt,
o (94)
wlz) = oz} -|-f (f‘i._zl;;l‘, thu(t) + Ka(x, r}a'(rj) dt.



where the unknown functions that will be determined are u(x) and v(x). Recall that for
the second kind, the unknown functions appear inside and outside the integral sign. The
kernels K{(x, ¢), and g, (x, )i = 1,2, and the functionf;(x) and f,(x) are prescribed real-
valued functions.

Recall that we applied the direct computation method and the Adomian
decomposition method, together with its related modification, for handling Fredholm
integral equations. The aforementioned methods are now well known, hence we will
select two distinct examples that will be examined by using the two methods.

Example 1. Use the Adomian decomposition method and the noise terms phenomenon to
solve the following system of Fredholm integral equations

m T - g :
ulx) = x4 sinx — T 5T +/ ((1 4 zt)ul(t) + (1 — xt)v(t)) dt,
“2 ‘-‘;_ ||.5. |
piE) = T£—CoEX-— L S b E —|—f ((1—2zt)u(t) + (1 + xt)v(t)) di.

(95)

The Adomian decomposition method decomposes u(x) and v(x) by an infinite series of
components

u(z) = E i [2),

@) = Etuul

(96)

where u,(x) and v, (x), n > 0 are the components of #(x) and v(x) that will be computed

1n a recursive manner.
Substituting (96) into (95) gives

S

: v T
to(r) = x+4sinr——-——x
n=(
£
* f '~l+”'zﬂul“+'l—ﬂjz?'nm dt,
0 n=>0 =0 (07
= |2 T L)
D va(@) = z—cosT——t=2
n=>0
'ET' kit o
T f ('Ll —2t) Y un(t)+ (L +2t) Y %-n{r‘-j) dt.
0o
n=10 n=0

The Adomian decomposition method admits the use of the recurrence relation



i

A

n al
UglT) =T + 8INT — =— — =T,
e T 2
i ™ T
vo{z) = T~ cogz——+ Ea:
z : T v Ry
() = 14+ axt)ug(t) + ({1 —at)m(t)) di= — + —x — + —=x
J‘-\. -‘I [ U -‘I l:l-\. K . r) :ll. L 4 2 -L Q-L
E @ x =«
vi{x) = (1 —zt)ug(t) + (1 +xt) vp(t)) dt = — — =2 — — — —1
14T /E . PRy \ JUoll)) 1 5 1 21
(08)

By canceling the noise terms from u((x) and from vy(x) we obtain the exact solutions
(u(z),v(z)) = (x + sinx, r — cosx). (99)

Recall that the remaining terms of u#;(x) and v{(x) will be cancelled with the noise
terms that will appear when evaluating the components u,(x) and v,(x). Generally, all

noise terms will vanish in the limit.
In the next example, to review the methods presented earlier, we will apply the direct
computation method. Note that we can also use the modified decomposition method.

Example 2. Solve the following system of Fredholm integral equations by using the
direct computation method

s z
u(r) = x%24sinz— _I—;r: —i—/ (zu(t) + zv(t)) dt,
12 M \ S N .
= (100)
2
pE) == r? — cosr — 2z + f (ru(t) — rov(t)) dt.
0

Following the analysis presented above, this system can be rewritten as

=
L. | . O « L L LI :
u(r) = z°+sinr+ (a 12’”‘ (101)
v(z) = z%—cosx+(F—2)z,
where
=
= f (u(t) + v(t)) dt,

Oz (102)
A = / (u(t) —vit)) dt.

Substitute (101) into (102) and solving the resulting equations we find



]
[=5]

-

0==— 3=2. (103)

—
b

This in turn gives the exact solutions
(ulx),v(x)) = (° +sinx, z° — cosx). {104

9.5.2 Systems of Volterra Integral Equations

Systems of VWolterra integral equations appear in many scientific applications such as
Volterra population growth models and species propagation. Recall that Volterra
integral equations are characterized by at least one variable limit of integration.
Proceeding as before, we will concern ourselves for systems of Volterra integral
equations of the second kind where only two unknown functions u(x) and v(x) are
involved.

The standard system of Volterra integral equations of the second kind, the unknown
functions u(x) and v(x) appear inside and outside the integral sign of the form

o
wr] = fp;;r}—kf (Hl{,r.r;re.a{r;l+H1{.::r_‘n-{r;|) dt,
0

ha
v(z) = fg[;z-j—i—/ (fi'g{;r‘.f_‘.ru{rj + f{g{J:J‘-}?'{r:l) di. (105)
o

The kernels K;(x, 1), K5(x), K(x, 1), K5(x, t), and the functions f;(x) and f5(x) are given

real-valued functions.

To avoid the cumbersome work that usually arise from the traditional methods, we
will use the Adomian decomposition method and the modified decomposition method in
this section.

Example 3. Use the modified decomposition method to solve the following system of
Volterra integral equations of the second kind

1 G .
u(x) = 22— 1—_}:1‘5 + f ((z — t)u(t) + (z — t)v(t)) dt,
- 0, (106)
v(r) = =3+ mu.‘ﬁ + f ((x —t)%u(t) — (z — tho(t)) dt.
0

The modified decomposition method suggests assumes that u(x) and v(x) be expressed
by an infinite series of components



wz) = Z Uy, (2},
=y (107)
v(z) = Un(z),
where u,(x) and v,(x), n > 0 are the components of #(x) and v(x) that will be computed

by a recursive manner.
Substituting (107) into (106) gives

. 1 = : . :
Fo .2 5 f 2 4 | f4
UplT) = 2% — —1 —i—f (z—1) Ut} + (2 — 1) v, (1) | dt,
Z 12 0 ( Z Z

n=0 =0 =0
o0 1 T o0 o0
e s - o 442 VD — ) ()
Ztnu.) = e +j; (L\.l t) ZUHLHE,\;{. t) Etﬂ.\a‘;) dt.
n=0 n=>u n=>0
(108)
The modified method gives the recursive relation
up(r) = =%,
vo(z) = 23,
P 1 5 & g \ 3 G i . P :
wmlr) = —331 +/.;. ((z — )" uo(t) + (z —t) vo(t)) dt =0, (100)
ilr) = —z + {L:E — &) uplt) — [r — 1) ?'.jm} il =1
3 G 0 -
This 1n turn gives
(u(z),v(z)) = (2%, 2%). (110)

Example 4. Use the modified decomposition method to solve the following system of
Volterra integral equations of the second kind

feH
u(z) = e+ -r—i—/ (e~ tu(t) — 2e*v(t)) dt,
i (111)
v(r) = e T—=zx+ (2~ u(t) — e*v(t)) dt.
1]

Proceeding as before, the modified decomposition method gives the recursive relation



uplr) = €7,
vglzy = e %

&£
wzr) = :1‘+/ (e *uo(t) — 2evo(t)) dt =0, (112)
I:I o
nir) = —=x —I—f (26~ *uo(t) — €'wo(t)) dt = 0.
0

This in turn gives

fu{z) vlx)) =%, e ) (113)

9.6 Numerical Treatment of Fredholm Integral Equations

Fredholm and Volterra integral equations have several applications in physics,
chemistry, biology, and engineering. For concrete integral equations, analytical
solutions are hard to find. Due to this fact, several numerical methods have been
developed for finding numerical solutions of integral equations. Examples of these
methods include Chebyshev polynomials, Taylor series method, the radial basis
functions, Bernstein’s method, the wavelet method,, the homotopy perturbation method,
approximation, the Toeplitz matrix method, and other methods. The need to apply
numerical methods is necessary in order to have a scientific platform to be used for
numerical purposes.

As stated before, the two newly developed methods, namely the Adomian
decomposition method and the variational iteration method provide convergent series of
the solution of any integral equation. For concrete problems, we may face some
difficulties that need cumbersome work to obtain many terms of the series solution. In
this case, we often determine few terms of the series solution, either by computing finite
number of components, if Adomian method is wused, or by evaluating few
approximations, if the variational iteration method is used. In this case we use the
obtained series for numerical purposes, where it was found that the obtained truncated
series gives accuracy of higher level. In the following examples, we will use the
Adomian method for numerical treatment of the Fredholm integral equations of the
second kind. The accuracy level will be tested by showing the errors between the exact
solution and the truncated series.

Example 1. Use the Adomian decomposition method to find ¢, of the numerical solution
and the errors between the exact solution and ¢, of the Fredholm integral equation of the
second kind



o 4 : 7 : g :
ulr) = = cosr(12 — 4dwrxr 4+ ':rzj =+ r.w:;.%;r:f (& — tyu?(t) dt. (114)
0

The Adomian method is well known now, hence we skip details. The Adomian
method admits the use of the recurrence relation

. 1
uplr) = T6 cosz(12 — dmz + m2),
7 (115)
Upyq(Z) = cos .If (x—t)A(t)dt. k > 0,
0

where 4, (x) are the Adomian polynomial for the nonlinear term #%(x). By evaluating the
first four components only, and using the fourth-stage solution approximant

3
ba(z) =) ui(x), (116)
1=0

and by using the Taylor series for the approximant ¢, we find that

by = 0.9529469970 + 0.02054436161 =
— 0.4764734985 22 — 0.01477218072 23
+0.03970612488 2% 4+ 0.001231015071 z°
— 0.001323537497 2% — 0.00004103383560 =7 (117)
+ 0.00002363459814 23 + 0.0000007327470680 °
— 0.0000002626066460 19 — 0.0000000081 41634054 211
+ 0.000000001989444288 22 + O(2'3).

Note that the exact solution u(x) = cos x, therefore we list the following table of
errors.

Table 1
x Error = |cos (x) — ¢4]
0.0 4.705300334¢-2
0.1 4.387825847¢-2
0.2 4.032398704¢-2
0.3 3.648400803e-2
0.4 3.245382203e-2
[ i ]




0.5 2.832908706¢-2
0.6 2.420411131e-2
0.7 2.017038004¢-2
0.8 1.631513883¢-2
0.9 1.272005321e-2
1.0 1.631513883¢-2
1.1 6.60173118e-3
1.2 4.20326626¢-3
< 0.00000000000

This clearly shows that we obtained a series of higher accuracy level by using four

components only.

Table 1 above shows the error between the exact solution and the approximation ¢,.

Example 2. Use the Adomian decomposition method to find the third-stage solution ¢4
of the numerical solution and the errors between the exact solution and ¢; of the
Fredholm integral equation of the second kind

5 ;

8

. g M .
ujz)=(2r—zln2+1)ln2—z—- +111{1-|—;r:j—|—§/ (x—t)u®(t)dt. (118)

Proceeding as in Example 1, we set the recurrence relation

uol )

Urt+1(T)

5
(22 —zln2+1)In2—2 — i + In(1 + x),
1 & (119)
r_-u:}rs;r:/ (z —t)Ax(t) dt, k > 0,
0

where 4, (x) are the Adomian polynomial for the nonlinear term #%(x). By evaluating the
first three components only, and using the approximant

2
gs(z) = E u;(z), (120)
=0



and by using the Taylor series for the approximant ¢; we find that

d3 = — 0.00053678031 4+ 1.000338540 x — 0.5000000000 22
+ 0.3333333333 % — 0.2500000000 z* + 0.2000000000 z°
— 0.1666666667 8 4+ 0.1428571420 7 — 0.1250000000 ®
+ 0.1111111111 2% — 0.1000000000 x1° + 0.09090000001 z11
— 0.08333333333 212+ O(z13).
(121)

Note that the exact solution is u(x) = In(1 + x).

Table 2
x Error = [In (1 +x) — ¢3
0.0 5.36780e-4
0.1 5.02926e-4
0.2 4.69072¢e-4
0.3 4.35219¢-4
0.4 4.01365¢e-4
0.5 3.67515¢e-4
0.6 3.33660e-4
0.7 2.99803e-4
0.8 2.65950e-4
0.9 2.32096¢-4
1.0 1.98243¢-4

Table 2 above shows the error between the exact solution and the approximation ¢5.

Example 3. Use the Adomian decomposition method to find the approximation ¢, and
w1, of the numerical solution and the errors between the exact solutions and ¢, and y,
of the system of Fredholm integral equations of the second kind



u(r) = - z + = + fl l['.'r + t)(u(t) + v(t)) dt
( = wtst) 3 )ul (t)) dt,
19 (122)
viz) = 2%-— Esr:—i- 1 -I—f xt(u(t) + v(t)) dt.
0
Proceeding as in Example 1, we set the recurrence relations
up(r) = : ¥+ A
Co S T |
15 (123)
uppalz) = f E[I + t)(us(t) + ve(t))dt, £ =0,
i
and
; 19
mlr) = 2 — —g ],
j 12 (124)
v pilz) = f ri(wp(t) + ve(t)) di, & = 0.
0
This in turn gives
ulz) = L T !
S Tl
19
£ o] :
gl = x°— —zx41,
Bl 12
g 25 103
EI-1|.\I:| = ﬁ’l l:';_l_R .
YR (i (20}
T
wlz) — 18517
202 = ottt
iy — 1T,
2ix) = T

and so on for other components. By evaluating the first twelve components for u(x) and
v(x), the approximations

11
$ra(x) = ) ui(z) = 0.981305z + 0.988512,

i=0 (126)
Yio(z) = ) wi(z) =1- 0034504z + 22,

+=0

are readily obtained.



In this example, we found it necessary to determine twelve components for the
solutions u(x) and v(x) to enhance the accuracy level. To minimize the errors between
the exact solutions and the approximations, we should evaluate more components.

Note that the exact solutions are given by

(u{z),vi{z))=1+2,14+ . (127)

In view of this, we present the following table of errors.

Table 3

x Error = (1 +x) — ¢12| Error = |(1 +x2) — y13)|
0.0 1.14880e-2 0.0

0.1 1.33575¢-2 3.45040¢-3
0.2 1.52270e-2 6.90080¢-3
0.3 1.70965¢-2 1.03512¢-2
0.4 1.89660e-2 1.38016e-2
0.5 2.08355¢-2 1.72520e-2
0.6 2.27050e-2 2.07024e-2
0.7 2.45745¢-2 2.41528e-2
0.8 2.64440¢-2 2.76032¢-2
0.9 2.83135¢-2 3.10536¢-2
1.0 3.01830e-2 3.45040¢-2

Table 3 above shows the error between the exact solutions and the approximations ¢,

and Y1ir-

9.7 Numerical Treatment of Volterra Integral Equations

In a manner parallel to the analysis presented in the previous section, we will handle



concrete problems of the Volterra integral equations, where some difficulties may arise.
In this case, we prefer to handle the problem numerically, and we often determine few
terms of the series solution, either by computing finite number of components, if
Adomian method is used, or by evaluating few approximations, if the variational
iteration method is used. In this case we use the obtained series for numerical purposes,
where it was found that the obtained truncated series gives accuracy of higher level. It is
worth noting that the accuracy level can be enhanced by determining more components,
1f ADM is used, or more approximations if VIM is used. In the following examples, we
will use the Adomian method for numerical treatment of the Volterra integral equations
of the second kind. The accuracy level will be tested by showing the errors between the
exact solution and the truncated series.

Example 1. Use the Adomian decomposition method to find ¢4 of the numerical solution
and the errors between the exact solution and ¢, of the Volterra integral equation of the
second kind

1 . o .
iw(r) = 5 cosz(3 — 2% + cos®x) + (x —t) cosx 'uz{t‘j dt. (128)
1
0

The Adomian method 1s well known now, hence we skip the details. The Adomian
method admits the use of the recurrence relation

ug(z) = 7 cosz(3 — 2 + cos? 2),
Sp (129)
tpg1(z) = f (r —t) coszAg(t)dt, k = 0,
i

where 4, (x) are the Adomian polynomial for the nonlinear term %(x). By evaluating the
first four components only, and using the approximant

3
dq(x) = E u;(z), (130)

=0

and by using the Taylor series for the approximant ¢, we find that

dy = 1—0.522 4+ 0.0416666666Tr* — 0.001388888880ex®
—0.0019593253972% + 0.00340580908321° — 0.00281849371 7212
+0.0015416128622'4 — 0.000637647853621% + O(z17).
(131)

As stated before, we can minimize the errors between the exact solution and the
approximant, by evaluating more components of the solution. Note that the exact solution



1s given by
u(x) = cosx. (132)

Based on this, we list the following table of errors.

Table 4

x Error = | cos (x) — ¢4 |
0.0 1.080430170e-8
0.1 6.996036355¢-9
0.2 1.18811309¢-8
0.3 1.11844732e-7
0.4 9.9126378e-7
0.5 5.0337891e-6
0.6 1.78202512e-5
0.7 4.85318893e-5
0.8 1.07732322e-4
0.9 2.01940664e-4
1.0 3.26754224e-4
1.1 4.61429093e-4
1.2 5.68707641e-4
5 0.00000000000

Table 4 above shows the error between the exact solution and the approximation ¢,.

This clearly shows we obtained a series of higher accuracy level by using few
components only. The accuracy level can be enhanced by the determination of new
components.

Example 2. Use the Adomian decomposition method to find ¢3 of the numerical solution



and the errors between the exact solution and ¢; of the Volterra integral equation of the
second kind

ul{z) = [3+2z)n(1-+ ) ={14 =z} 1112{1 +z)—2r+ f u?(t)dt. (133)
0

Proceeding as in Example 1, we set the recurrence relation

oz} = (34 2z)In{l4+2}— {1+ x) 1112{1 + z)='2%,
i)l = f Ag(t)dt, k = 0, k34
i
where 4, (x) are the Adomian polynomial for the nonlinear term u°(x). By evaluating the
first three components only, and using the approximant

2
g3(z) = E ui(zx), (135)

=0

and by using the Taylor series for the approximant ¢; we find that

¢ = =z —.5x%+.333333333323% — 252* + .22° — 16666666672
+ 0.08888888889x7 — 0.05277777778z® 4 0.05205026455ex”
— 0.05548280423ex1° 4 0.056257615842 — 0.05533472057212
+ O(z13).
(136)

Note that the exact solution is u(x) = In(1 + x), hence, we present the following table
of errors

Table 5
X Error = | In (x) — ¢3 |
0.1 4.7e-9
0.2 5.315e-7
0.3 8.016e-6
0.4 5.300296e-5
0.5 2.23463816e-4
| I




0.6 7.08677e-4
0.7 1.84631e-3
0.8 4.16473¢-3
0.9 8.41388e-3
1.0 1.557791e-2

Table 5 above shows the error between the exact solution and the approximation ¢s.

Recall that the more components we determine the more accuracy level we achieve.

Example 3. Use the Adomian decomposition method to find ¢4 of the numerical solution

and the errors between the exact solution and ¢, of the Volterra integral equation of the

first kind

£
ginx = f cos(x — t)u(t) dt.
0

(137)

We first convert this equation from first kind to a second kind by using Leibniz rule.

This in
u(z) = cos -.r:-|-/ sin(z — t)u(t) dt.
0

We next set the recurrence relation

up(x) = cosr,

upp1(z) = fu.;;(t‘-jda‘..ﬂ‘:_}{}.
0

By evaluating the first four components only, and using the approximant

3
Py(r) = E ui(x),
i=0

we obtain

2 L =

o . 11 3 :
y(r)=co8(r)+ —rsinr — —r coOBTr — —I” SINT.
; . 45

i) 16

Table 6

(138)

(139)

(140)

(141)




x Error = [In (x) — ¢%
0.1 3.2e-11
0.2 8.0c-11
0.3 1.68¢-9
0.4 1.61c-8
0.5 9.58¢-8
0.6 4.1e-7
0.7 1.4¢-6
0.8 4.0e-6
0.9 1.0e-5
1.0 2.4e-5

Table 6 above shows the error between the exact solution and the approximation ¢,
Recall that the more components we determine the more accuracy level we achieve.



Appendix A
Table of Indefinite Integrals

I. Basic Forms:
1 T 1 n+1 al o 3
J tdr= ——x + O n -1
41

1 _

2]-&=mm+m
I

3. f efdr=e"4+C.

1
4. f T2 dr = tan"lz 4+ .

1 _
> f dr = sin~ 'z 4+ C.
v1—x?

6. fl:us rdr =snxr+C.

7. fsin rdr = —cosr 4+ C.
8. f tanrdr = —In|cosx| + C.
9. ] tanr secx dr = secx + C.
10. fsecz.ref.r = tanx + C'.
II. Trigonometric Forms:
1. ] sin?x dr = %z - %sin 2r 4+ C.
2. fl:usz.::' dr = %;: + ésin 2r 4+ C.
3. f sin*z dr = —% cosx (2 +sin’x) + C.
4. fl:ussxi:' dr = %:’5111 z (2 + cos?z) 4+ C.

5. f tan‘rdr = tanr —z + C.



6. f cot?lzdr = —cotz—z+C.-

7. / rsinrdr = sinr —xcosz +C.

8. f reosrdr = cosr 4+ rsinr + C.

9. / r'sinzdr = 2rsinx — (27 —2) cosz + C.

10. f 2 eosrdr = 2rcosT + I:.t‘2 = Q} ainx 4+ .

III. Inverse Trigonometric Forms:

1. /sin_lx dr = rsin 'z + V1 — 2% +C-
2. / cos lrdr = reosTlzr —v1-—x24+C.

: - :

3. /tan_l.t' dr = rtan™'r — §1an1 + %)+ C-
Ty 1. - -
4. / rain lzds = E[[Qrz — 1)sin~'z + zv'1 — 22| + C.

5. f reos 'zdr = =[(22* — l)eos™ 'z — zv/1 — 22| +- C-
6-f:ctan_1mdsr=

] =

[(#* + 1)tan—'z — 7] + C'.

[

7. /sec_l;r dz = zeee 1z — In(z + 22 — 1)+ C.
1 .
8. f rsec 'z dr = 5[.1‘25ec_1;r — 2 1]+ C.
IV. Exponential and Logarithmic Functions Forms:
1 ;
1. f e®Tdr = e 4+ .
a
2 2 Eﬂ'd T b, 1 f . T ["
- | re™dxr = a—zLezi —1je** 4+ C-
3 2_ax 1. 2.2 Y L OF
- [ T dr = —(a"7" —2ax+2)e" 4 C.
i
4 3_ax 1 331 2.2, @, ar |
- f T dz = Fr“n r* — Ja“r® 4 bar — 6)e™ 4+ C.

5. f e*sinxdr = %(sin r—cosxje” +C.



- .
6. f e*cosrdr = EI:SIII r4cosxje” +C.
7. f Inzdr=zrzlhz—x+C.

8-fx1nxfﬂr = %Iz[ln:r. - %,I +C

V. Hyperbolic Functions Forms:
1. f.sinh rdr = coshx + .
2. f coshrdr = sinhx + .
3. f rsinhrdr = reoshr — sinh x + .
4, / reoshzdr = zsinhzr — coshe 4+ .
. 13 1.. .
5. f.smh T dr = §(slnh reoshr —x) 4+ C.

6. f cosh’z dr = %{sinh zeoshr 4+ ) +C.



Appendix B

Integrals Involving Irrational Algebraic
Functions

L. Integrals Involving ——, n is an Integer, n > 0:

T

l. dt = 2/
i r—ti
T v
2 L dt = EL%
0 r—1 3
T 7 1 :
3 a l:'lrll = _J-—G.-!"%°
0o VT —1 15
x .3 99 .
4 _r fhl == 13—2.-!‘#
i r—1t -3-5
5 [Tt 256 s
. il = m— T
i Wi — t 315
T i = 4 ¢
6 _r flr-!l —_— E #
i) r—t {;93
7 ol = ; 2048 1
it = T
o AWr—t 3003

LIntegrals Involving L,  is an Integer, n > 1:

1] fr_l_
. F 5
2] rfz‘:imr'z.
; r—z‘ &
3] 7=
r—t
4. T ol
0 r—1i 128

5. dt .
f W —1 EJG



6.fr f% dt =

231 .

1024

7. it
X dt
L o —1

Sf J:—z‘

~ 2048

6435

~ 30768

12155

=m“"




Appendix C

Series

I. Exponential Series:

L. :—l+z+£+i+i+
2 3!

2.¢ —l—z+;—;+i+

3. e =1 _ 3 +2.—:1—;—T+

4., —l+2111e4+%[21nc41 +—r::1nm +-

II. Trigonometric Series:

lalnz—i:—;—ki—;-l—-“'
2-Ens.r=1—;+;—g+

3. sinz4cosr=(1+z)— (:”

III. Hyperbolic Functions Series:

= 5
1. i
51nhr—r+—+—+—+

3'
2 4
2. cosh x —l-l—%—k 5

T

I

0

+— +-

Gl

Ly = 0



Appendix D

The Error and the Gamma Functions

I. The Error Function:

The error function erf (x) is defined by:

2 a
1 . erf |:..i" :I = ] f'_“ fl;l'! .
0

3 5 o
2. erf (z) = i,_ (——+—_I—+ )
The complementary error function erfc (x) is defined by:

3. erfe [E)-= i.:f e~ du.
VT Jz
4. erf(x) +(x) =1

3 ] T
5. efofe) <= fpemiia® e B
N A IR TR T

ol

II. The Gamma Function I'(x):

)
1. T(x) =f =1 e~tds.
0

2. Iz+1) ==zlz)

3.7(1)=1.T(n+1) = n, 7 is an integer.

—
il

4. Tl —z) ==

BN W



Answers to Exercises

Exercises 1.2

O 00 IO DN K~ WK —

O W S Gy Sy S
DN AN WN =D

—_ = e
O o0 3 O

20.

21.
22.
23.
24.

. Fredholm, linear, nonhomogeneous

. Volterra, linear, nonhomogeneous

. Volterra, nonlinear, nonhomogeneous

. Fredholm, linear, homogeneous

. Fredholm, linear, nonhomogeneous

. Fredholm, nonlinear, nonhomogeneous
. Fredholm, nonlinear, nonhomogeneous
. Fredholm, linear, nonhomogeneous

. Volterra, nonlinear, nonhomogeneous

. Volterra, linear, nonhomogeneous

. Volterra integro-differential equation, nonlinear
. Fredholm integro-differential equation, linear

. Volterra integro-differential equation, nonlinear
. Fredholm integro-differential equation, linear

. Volterra integro-differential equation, linear

cula) = 1 _|_/ 4.!"[f:|l"|r-'l
u

o
culr)=1 +f 320 ()t
li]

!
- ulx) =.L+f w2 (t)dt
]

-
. :rllI:.i":l =14 -L.*.-rzl:f]r."a‘~ u(0) =2

0.

u(r) =1+ j 2tu(t)dt, w(0)=0
]

Volterra—Fredholm integral equation, nonlinear, nonhomogeneous
Volterra—Fredholm integro-differential equation, linear, nonhomogeneous
Volterra—Fredholm integro-differential equation, nonlinear, nonhomogeneous
Volterra (singular) integral equation, nonlinear, nonhomogeneous

Exercises 1.3

11
12
13
14

fx) =x?
Jx) =1 +x,
co=1

flx) =sinx



Exercises 1.4

1

\O)

b
f 3(z — t)7ut)dt
a
] b rﬂ
c 2re®™ — €T —|-f te™tdt
i
T
-[4i.v-—r'_1~‘ufr]cfr
J0

dx
- d=mbr —sin2r 4+ f cos(r 4+ t)dt
Lu"(x) =2u(x), u(0) =u'(0) =1, u"(0) =0

u"(x) +ulx)=¢€" u(0)=u'(0)=1
u"(x) —u(x)=0,u(0),u'=(0)=1

u'"(x) —u(x)=cosx, u(0),u (0)=—-1,u'"(0)=1

u"(x) —u'(x) —2u(x) =10, u(0) =2, u' (0) =5

10 u"(x) — Su'(x) + 6u(x) 0, u(0)=-5,u"(0) =
11. u'(x) + u(x) = sec?x, u(0) =0

12, u" = 3u"(x) — 6u"(x) + Su(x) =0,
u(0)=1,u'(0)=4, u"(0) =23

13. u"(x) — 4u(x) = 24x,

u

=u'(0)=0,u'(0)=2

14. u*V(x) —u(x) =0,
w(0)=u'(x)=0,u"(0)=2,u"(0)=0

Exercises 1.5

[E—

(8}

x
culr) =—1 —f u(t)dt, where y'(z) = ulz)
0
culzg)=x4+ u(t)dt, where y'(z) = u(x)
o0 -
culz) = sec"EL."J - / w(t)dt, where y'(z) = ulzx)
00

In problems 4-10, set y"(x) = u(x)

4. ulz) = —1 —f T —t)ult)dt,
i e
5. ulz) = 1+_r+f (z — t)u(t)dt
o
6. ulz) = —11 — 6xr — / [5+ 6z — )] ult)dt
. 0
T.u(z)=—1 —f u(t)dt
1 __“
8. ulz) =—1+4xr + / [Qr,_?- o 1] wlt)di
_Jo
9. w(r) =sinx — f (x—thu(t)dt
0



10.

11.
12.
13.
14.
15.

u(x) =r—sinr 4+ re” f [(x —t)e® — sinx] u(t)dt
In problems 11-15, set y”(x) = u(x)
1
w(x) = 2z — ..!z-l—f [1+ (r—1) — El.r _“2} ulf)dt
0

T
1_-[|:;r';| :—3?‘—-]‘/. I:J"—?':Hr[?l:lflli"
1]

1 1., = 1 ;
u(z) =24 5 — =x* — =37 — f {2[.2' —t) 4+ =(r— !‘]“"] u(t)dt
0

2 (4] G
ulxl=1-— %12+ i'f (z — tV P u(t)dt
ui:r]zﬁa-r—l—.r—f (x — thu(t)dt

1]

Exercises 1.6

1. u(z) =sinzx + J':.Jl Kz t)u(t)dis
where the kernel K(x, ¢) is defined by

Kir t)=

4t(1 — z) 0<t<z
Az(1 —1) s<t<]

1
2. wlr) =14 / K(x t)ult)dt,
0

where the kernel K(x, £) is defined by
K (z.t) = { 2rt(l — x) 0<t<zx

2r2(1 —t) R it

3. fr[e]—lf‘t—1]+/ Kz, t)u(t)di,

where the kernel K(x t) 1s defined by
It[.r.ﬂz{”l D<t<uz

?Ll—!‘} T

4. ulx) =(xr—1)+ / Kz t)u(t)dts

where the kernel K(x, ¢) is defined by
£ i D<t<x

I\[.t'J]:{ ; 0

r=<t=1

Exercises 1.7

1. fix) = &>
2. flx)=e
3. f{x)=¢€"—1

4. f(x) = cos(2x)
5. fix) = sin(3x)
6. f(x) = sin h(2x)
7. fix) = cos h(2x)



8. flx) = cos h(3x) — 1
9. flx) =1 + cos(2x)
10.f(x) =1+ sinx

Exercises 2.2

1. u(x) = 4x
2. u(x) =x>
3. ula) = 3 +%J.
4u(x)=1+e"
5. u(x) =sinx
6. u(x) = cos x
7. u(x) = cos (4x)
8. u(x) = sinhx
9. u(x) = 2e*
10. u(x) = secx
1. u(x) =sinx
12. u(x) = tan x
13. u(x) = tan” ' x
14. u(x) = coshx
15. ulr) = 1+ 22
16. u(x) = "'fll_ r?
17. wiz) = R
18, u(x) =Ccos~ 1 X
19. u(x) = xtan ! x
20. u(x) = xsin™! x + 1
21. i), D
VT L psing
22. ulr) = l:”;; i -
23. ]y 2 E
1 l + tan .

24. u(x) = 1 +sinx
25. u(x) =1 +sinx + cos x
26. u(x) =x sinx

Exercises 2.3

L ou(x) =x°



X NN R WD

u(x) =x"

u(x) =x

u(x) = x>+ x*
u(x)=x+e*
ux)=x+e *
u(x)=1+x+x>
u(x)=e"

Exercises 2.4

1
1
1

1
1

WX Nk =

u(x) =xe*
u(x) =x>—2x + 1
u(x) =x sinx
u(x) = e*
u(x) =1+ secx
u(x) = sin (2x)
i) = e.z_i'_ = i
187 36
u(x) = sinx +cos x
. u(x) =sec x tanx
0. u(x) = x?
. u(x) =sinx
2. i) =14 1} Inx
3. u(x) =x>
4, w(z)=1+ Esrﬂrz.z'

Exercises 2.5

=0 XN R =

u(x) =x
u(x) = x3
u(x) = 4x
ux)=1+2x
u(x) =2 sinx
u(x) = sec?x
u(x) =sec x tan x
u(x) = cosh x
cu(x)=é€*
0. u(x) =sinx



Exercises 2.6

L. u(x) =2x

2. ulr)=1-— %rjmﬁ xr
Bou(x)=x+1

4. u(x) =sinx + cos x
5. u(x) = x?

6. u(x) = x>

7. u(x) =sinx + cos x
8. ulz)=1+ %-5'111 T

9. ulr) =1+ i::'ul'.‘ll'zi'

10. ulz) =1+ i—ésec.rtm T

Exercises 2.8

1. u(x) = A4, A 1is a constant
2. u(x) =2A4x
3. u(x) = Ax, A 1s a constant
4. u(x) = 2Acosx

2

Uzlxr) = -4 llsiu I — Ccos T
T
5 pH ;
cuy(r)=—A(sinr + cosix)
T

6 2

‘wilz) =ualE) = “: (Asinx + Beosx)
il
7. u(x) = 2A4sec x
8. u(x) = 24sec? x

)

m— 27

Asin~ 'z

9. ala) =

10. ulr) = o3 — %J“]

Exercises 2.9

. u(x) =x,

2. u(x) =3x
3.u(x)=e ",
4. u(x) = x?

5. u(x) =cos x
6. u(x) =sinx

Exercises 3.2



1. u(x) =4x
2.u(x)=1+2x
3.u(x)=e™*

4. u(x) = sinh x

5. u(x) = sin (3x)

6. u(x) = cos(2x)

7. u(x) =sinx + cos x
8. u(x) =cos x —sinx
9.u(x)=¢€"

10. u(x) =e™

11. u(x) =2 coshx
12. u(x) =2 e* —1

13. u(x) =2 cosx —1
14. u(x) =2 coshx —1
15. u(x) =cos x

16. u(x) = sec®x

17. u(x) = coshx

18. u(x) =sinh x

19. u(x) =x3

20. u(x) =sec x tan x
21. u(x) =8x

22. u(x) = 8x?

23. u(x) = sec’x

24. u(x)=1+x+x>
25. u(x) =xsinx
26. u(x) = cosh? x

Exercises 3.3

l. u(x) =e"

2. u(x) =sinh x

3. u(x) = sin(3x) + cos x
4. u(x) = cos(2x)

5. u(x) = cos x+sinx

6. u(x) =cos x —sinx

7. u(x) =sinx

8. u(x) = coshx

Exercises 3.4



WX NN R WD =

u(x) = 2x + 3x?
u(x)=1++x?

u(x) =sinx + cos x + cos x
u(x)=1+x

u(x) =—e*+sinx

u(x)=e >

u(x)=e*

u(x) = sinh x

u(x)=2cosx—1

10. u(x) =cos x —sinx
11. u(x) =sinh x
12. u(x) =sinx

Exercises 3.5

WX Nk W=

u(x) = e
u(x) = cosh x
u(x) =cosx —sinx
ux)=e*—1
u(x)=e"
pion e T .
u(r) = 5 (cosx + cosh )
il .
ur) = 7 (sinr + sinh )
u(x) =2coshx —2
u(x) =x

10. u(x) =x — x?

Exercises 3.6

1
2
3
4
3.
6
7
8
9.
1

cu(x)y=e™*
. u(x) = cos(3x)
cu(x) =e*
- u(z) = e~ 1"

u(x) = 2cosx
cu(x) = e ™2
. u(x) =sinh x
.u(x) =cos x

u(x) = cos x + sinx
0. u(x) =cos x —sinx



11
12

u(x)y=1+¢€"
.u(x)=1—sinhx

Exercises 3.7

0 3 O\ AW

9.

10
11
12

cu(x)y=€e"—1
Lux)=e" —x—1
.u(x) =x—sinx

. u(x) =—x +sinh x
.u(x)=—1+cosx
u(x)=1-—x
Cu(x) = e
Lux)=2+¢€"
u(x)=1+cosx

.u(x)=1-—sinx
.u(x)=1+coshx
.u(x) =—1+coshx

Exercises 3.9

AN DN AW N =

cu(x) =2x
cu(x)y=e™*
cu(x) =é€*

. u(x) = sinh x
.u(x) =cos x
. u(x) = sec®x

Exercises 4.3

L. () = #[1 + )

3. u(x) =sinx

4. u(x) = x?

5. u(x) = sec’x

6. u(x) =1-3x — 3x?
7. u(x) =sinx

8. u(x) =sinx + cos x

Exercises 4.4



1
2
3
4
5
6.
7
8
9
1

0

. u(x) =coshx

cu(x)=x

. u(x) = xe*

.u(x) =xsinx

.u(x) =sinx
u(x)=x>—x>+x—1

.u(x) =sinx

.u(x) =sinx + cos x
u(x) =cos x
.u(x) =sinx —cos x

Exercises 4.5

ANl e

u(x) = xsinx

u(x) =x cos x

u(x) =x + sec® x
u(x) =1+ 2x — 6x2
u(x) =e"

u(x)=1-x+x>—x°

Exercises 4.6

I

. u(x) =x cos x

u(x)y=1-—¢€*
u(x) =sinx cos x
u(x) = 2x — 6x2

]
w(x) = 35111[:1..:-]

Exercises 5.3

R

. u(x) =x cos x
ux)=1-¢*
u(x) =sinx — cos x
u(x) = 2x — 4x?
.u(x)=1-—sinhx

Exercises 5.4

L.u(x)=x+¢&*
2.u(x)=1+cosx



3. u(x) =2e*
4. u(x) =sinx + cos x
5.u(x)=1-sinx

Exercises 5.5

u(x) = xe*

u(x) =x +sinx
u(x) =x —cos x
u(x) =x + coshx
u(x)=x-+e"

u(x) =cosx —sinx

SAINANE ol

Exercises 5.6

1. u(x) =coshx

2. u(x) =sinx

3. u(x) =sinh x

4. u(x)=x+¢e*

5. u(x) =sinx + cos x
6. u(x) =e"

Exercises 5.7

1 il = ipgq r 4 i‘1'\.11'1 r | —eT
.,rL.[J_:__) SRS :__).. . :]r.

2. u(x) =sinx

3. u(x) = 1+sinx

4. u(x) = 1+cosh x

5. u(x) = 1+4x

6 i J'_;- 3 — 1 it
< aulr) =Ir — - —5C|.|Fb.ll

7 Fii J‘.r § —x I it
culr) = FY =g g eesd

Exercises 5.8

l. u(x) =cos x
2.u(x)=e *

3. u(x) =sinh x

4. u(x)=¢€*
5.u(x)=x+cosx



6. u(x) =coshx

Exercises 6.2

1
1. s —iy r —
i(x) = 2/T + &
4
2. u(x)= VF(E'“'_ 1)
1 B .
3. ulx) = - (1 + 2.1‘-|—_—_i-")
T/ 3
4- ulr) = .;-"E'
5.u(x)=x
6. u(x) = %:2
7. ulr) = rl—? 3
108 -
8. u(x) = };f_r‘i’
0. ulr) = -

o
[y
ol
] oo
‘-‘t\.'l
i S

5
10 uiz) » =7

Exercises 6.3

I.u(x)=x

2. u(x) =x3
3.u(x)=6

4. u(x)=x=4x
5.u(x)=x

6. u(x) = 4x + 14x?

Exercises 6.4

l. ul{z) = /T

2. ula) = ot

3. () =é

4 uz)= V7

5. wwfx) = .r%

6. u(x) = x>
T.u(x)=1+x
8. u(x)=1

9. u(x) = x>



;} l— J.r
10. ulr) = —-,,; L +E£2

11. u(x) = 1 + X
12. u(x) =x +x3
13. u(x) =1+ 3x3
4. u(x)=5—x

Exercises 6.5

1. u(x) = x>

2. u(x)=10

3. u(x) =10x

4. u(x)=3+10x
5. u(x) =x + x?

Exercises 7.2.1
1. l+yl-2 }-._*':—9
2

e = —o"——"—"—

A=01sa s1ngu1ar point, » — 1 bifurcation point

2 14+ +/~T+4X l
culr) = ——mm——

2 Ay
4 =0 is a singular point, y = = bifurcation point
3. u(x) = bt F A< E’
/A=01sa s1ngu1ar pomt ,a = L bifurcation point
4. ga) et WD 00 —tR 23,

2 A 1

4 =0 1is a singular point, x — & bifurcation point
5' lf[[.i"] — w_ A E;

A =0 is a singular point, \ = 1 bifurcation point
6. u(x) =2

7. u(x) =sinx

8. u(x) =cos x

9. ulr)=mx,r+ §
10. ugy=at i

o
o

1T u(x) =x,x — 1
12. ulz) =z, + é

Exercises 7.2.2



1. ulz) = l+%+%+%+...
2. ulr) = 1+E+?+...

3. u(x) =2sinx

4. u(x) =2cos x

5. u(x) =secx

6. u(x) = 2x

7. u(x) = x>

8. u(x)=x

9. u(x)=x

10. u(x) =x

11. u(x) =sinx + cos x
12. u(x) = sinh x
13. u(x) =cos x
14. u(x) =sec x

Exercises 7.2.3

I. u(x) =x 3x,
. 12
2. ulx) = ,,1'2, ,.1‘2 + —r
() E

q o B
3. ulr) = i =y

1-1‘EI
4. u(z) =z. 1+ T.rg
5. ulr) =r+ . r -+ %.1'2

Exercises 7.3

1. u i‘I—?.]I%_J 4 72
Fa
D gy g
cufxr) = ¢/ —
L T
3 El.'ll 4e2z 2
R A T |
o) ={ =
: L
4. ulr) = «]:ll'll '3" = t‘ll
S5.u(x)=u,Inu
6.

ulxr) = < T,zlnz

Exercises 7.4

L. u(x)=x



2.u(x)=x

Bou(x)=1—x
4 ux)=1+x
S. u(x) = Yeosz
6. u(z) = vemz

Exercises 8.2.1

1. u(x) = x?

2. u(x) = x?
Bou(x)=1+x
4. u(x)=1+x?
5. u(x) = x?

6. u(x)=e *
T.u(x)=1+x
8. u(x) =sinx
9. u(x)=cosx
10. u(x) = e*

Exercises 8.2.2

. u(x) =3x
2. u(x) =2x
3. u(x) =sinx
4. u(x) = x?
1 1 .
5. il:?’:l—n-l-,}—ui' +1_,TD e SN
0. u(x) =14 30% 4 o2+
1

7. rl, _-I_l_l__"-ll-l_mb“_
8. () =z + =x° l_“

W =2 g® Tt T
9. rii“]—l+‘jr'+.:r'2+%'ﬂ+--~

1
10. [[J]—l—l—r-l-r -|- a +b o AR

11. u(x) =secx
12. u(x) =tanx

Exercises 8.2.3
L. u(x) =x,



2. u(x) =x,

3. u(x) =x +x2,
4. u(x)=1+x,
S.u(x)=1+x

Exercises 8.3.1

1. u(x) =% sinx

2.u(x)=+x¢&"
3. u(x) =x°
4. u(x) =£(cos x — sin x)

Exercises 8.3.2

1. u(x) =+ x?
2. u(x) =+ x*
3. u(x) =x*

4. ux)==x¢€"
5. u(x) =% xe*
6. u(x)=xe~

Exercises 8.4

1. u(x) =+ x3

2. u(x) =x*

3. u(r) = 1+

4. ulx) = m
5. u(w) = Yoos 7

0. ulr) = Vsinx
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