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Preface

Since the publication of the first edition a dozen years ago, and the second
about six years ago, the use of this book has been gradually extended from
industry to academia.

Specifically, the first part of the book has been used to teach calculus of
variations for undergraduate mathematics students. Furthermore, the second
part has been used for mathematical modeling classes for applied mathemat-
ics and engineering students.

To accommodate that change of focus and to respond to some requests from
students and teachers, this edition brings extensions to numerous sections of
both parts. Detailed explanations, illustrative examples, and exercises were
added to every chapter of the first part.

Several new sections and subsections modeling various physical phenom-
ena were included in the second part to enhance the mathematical modeling
teaching tool set. The new sections and subsections are also indexed and rel-
evant references added.

Hopefully, the students reading this book find the book’s theoretical founda-
tion clear and concise, and the analytic and computational examples enlight-
ening. The typographical errors found in the prior editions have been cor-
rected, and a strong effort was made to avoid introducing any in the new
material in order to make this work as flawless as possible.
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Introduction

Calculus of variations has a long history. Its fundamentals were laid down
by icons of mathematics like Euler and Lagrange. It was once heralded as
the panacea for all engineering optimization problems by suggesting that all
one needed to do was to state a variational problem, apply the appropriate
Euler-Lagrange equation, and solve the resulting differential equation.

This, as most all encompassing solutions, turned out to be not always true
and the resulting differential equations are not necessarily easy to solve. On
the other hand, many of the differential equations commonly used by engi-
neers today are derived from a variational problem. Hence, it is important
and useful for engineers to delve into this topic.

The book is organized into two parts: calculus of variations foundation,
and mathematical modeling of various physical and engineering phenomena.
The first part starts with the statement of the fundamental variational prob-
lem and its solution via the Euler-Lagrange equation. This is followed by the
gradual extension to variational problems subject to constraints, containing
functions of multiple variables, and functionals with higher order derivatives.
It continues with the inverse problem and analytic solutions, and concludes
with approximate solution techniques of variational problems, such as the
Ritz, Galerkin, and Kantorovich methods.

With the emphasis on mathematical modeling, the second part starts with
a detailed discussion of the geodesic concept of differential geometry and its
extensions to higher order spaces. The computational geometry chapter cov-
ers the variational origin of natural splines and the variational formulation of
B-splines under various constraints.

The chapter dealing with the variational foundation of various motion
phenomena will include discussion of orbital motion and it also introduces
Hamilton’s principle and Lagrange’s equations of motion. The penultimate
chapter focuses on the variational modeling of several classical mechanical
problems. Finally, the fundamental applications of elasticity, heat conduc-
tion, and fluid mechanics, are discussed using the computational technology
of finite elements.

xvii
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Part I

Mathematical foundation

1
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1

The foundations of calculus of variations

The topic of the calculus of variations evolves from the analysis of functions.
In the analysis of functions the focus is on the relation between two sets of
numbers, the independent (x) and the dependent (y) set. The function f cre-
ates a one-to-one correspondence between these two sets, denoted as y = f(x).

In this chapter we generalize the concept of functions by allowing the mem-
bers of the dependent set not being restricted to be numbers, but to be
functions themselves. The relationship between these sets is now called a
functional. The chapter will describe the fundamental problem of calculus of
variations as finding extrema of functionals, most commonly formulated in
the form of an integral. The sufficient and necessary conditions for finding
the extrema will be presented and several classical problems solved.

1.1 The fundamental problem and lemma of calculus of
variations

The fundamental problem of the calculus of variations is to find the extremum
(maximum or minimum) of the functional

I(y) =

∫ x1

x0

f(x, y, y′)dx,

where the solution satisfies the boundary conditions

y(x0) = y0

and
y(x1) = y1.

These problems may also be extended with constraints, the topic of Chapter
2. They may also be generalized to the cases when higher derivatives or multi-
ple functions are given and will be discussed in Chapters 3 and 4, respectively.

A solution process may be arrived at with the following logic. Let us assume
that there exists such a solution y(x) for the above problem that satisfies the

3



4 Applied calculus of variations for engineers

boundary conditions and produces the extremum of the functional. Further-
more, we assume that it is twice differentiable. In order to prove that this
function results in an extremum, we need to prove that any alternative func-
tion does not attain the extremum.

We introduce an alternative solution function of the form:

Y (x) = y(x) + εη(x),

where ε is a small undefined number, and η(x) is an arbitrary auxiliary func-
tion of x, that is also twice differentiable and vanishes at the boundary:

η(x0) = η(x1) = 0.

In consequence, the following is also true:

Y (x0) = y(x0) = y0

and
Y (x1) = y(x1) = y1.

A typical relationship between these functions is shown in Figure 1.1 where
the function is represented by the solid line and the alternative function by
the dotted line. The dashed line represents the arbitrary auxiliary function.

Since the alternative function Y (x) also satisfies the boundary conditions
of the functional, we may substitute into the variational problem.

I(ε) =

∫ x1

x0

f(x, Y, Y ′)dx

where

Y ′(x) = y′(x) + εη′(x).

The new functional is identical with the original in the case when ε = 0 and
has its extremum when

∂I(ε)

∂ε

∣∣∣
ε=0

= 0.

Executing the derivation and taking the derivative into the integral, since the
limits are fixed, with the chain rule we obtain

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y

dY

dε
+

∂f

∂Y ′
dY ′

dε

)
dx.

Clearly

dY

dε
= η(x),
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and
dY ′

dε
= η′(x),

resulting in

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y
η(x) +

∂f

∂Y ′ η
′(x)

)
dx.

Integrating the second term by parts yields∫ x1

x0

(
∂f

∂Y ′ η
′(x)

)
dx =

∂f

∂Y ′ η(x)
∣∣∣x1

x0

−
∫ x1

x0

(
d

dx

∂f

∂Y ′

)
η(x)dx.

Due to the boundary conditions, the first term vanishes. With substitution
and factoring the auxiliary function, the problem becomes

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y
− d

dx

∂f

∂Y ′

)
η(x)dx.

The extremum is achieved when ε = 0 as stated above, hence

∂I(ε)

∂ε

∣∣∣
ε=0

=

∫ x1

x0

(
∂f

∂y
− d

dx

∂f

∂y′

)
η(x)dx.
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Let us now consider the following integral:∫ x1

x0

η(x)F (x)dx,

where x0 ≤ x ≤ x1 and F (x) is continuous, while η(x) is continuously differ-
entiable, satisfying

η(x0) = η(x1) = 0.

The fundamental lemma of calculus of variations states that if for all
such η(x) ∫ x1

x0

η(x)F (x)dx = 0,

then

F (x) = 0

in the whole interval.

The following proof by contradiction is from [18]. Let us assume that there
exists at least one such location x0 ≤ ζ ≤ x1 where F (x) is not zero, for
example,

F (ζ) > 0.

By the condition of continuity of F (x), there must be a neighborhood of

ζ − h ≤ ζ ≤ ζ + h

where F (x) > 0. In this case, however, the integral becomes∫ x1

x0

η(x)F (x)dx > 0,

for the right choice of η(x), which contradicts the original assumption. Hence,
the statement of the lemma must be true.

Applying the lemma to this case results in the Euler-Lagrange differen-
tial equation specifying the extremum:

∂f

∂y
− d

dx

∂f

∂y′
= 0.

Let us immediately illustrate the use of this equation to solve a variational
problem posed as

I =

∫ 1

0

(
1

2
y′2 + (x+ 1)y

)
dx = extremum
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with boundary conditions

y(0) = 0, y(1) = 1.

The components of the Euler-Lagrange differential equation are

∂f

∂y
= (x+ 1),

d

dx

∂f

∂y′
= y′′

and the differential equation becomes

∂f

∂y
− d

dx

∂f

∂y′
= (x+ 1)− y′′ = 0.

Separating the variables we obtain

y′′ =
d2y

dx2
= x+ 1,

and integrating produces

y′ =
x2

2
+ x+ c1.

Integrating again brings the general solution as

y =
x3

6
+
x2

2
+ c1x+ c2.

Using the boundary conditions resolves the integration constants as

y(0) = 0 = c2,

and

y(1) = 1 =
13

6
+

12

2
+ c1

brings

c1 =
1

3
.

Hence, the specific solution is

y =
1

6
x3 +

1

2
x2 +

1

3
x.

Most of the time there is no need to compute the actual extremum, but for
this introductory example we will do so. The derivative of the solution is

y′ =
x2

2
+ x+

1

3
.

Squaring this, rebuilding the functional and executing the integration pro-
duce the actual extremum. In practice, the subject of interest is the solution
function and not the actual extremum; hence, it will be seldom computed in
the remainder of this book.
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1.2 The Legendre test

The Euler-Lagrange differential equation just introduced represents a neces-
sary, but not sufficient, condition for the solution of the fundamental varia-
tional problem.

The alternative functional of

I(ε) =

∫ x1

x0

f(x, Y, Y ′)dx,

may be expanded as

I(ε) =

∫ x1

x0

f (x, y + εη(x), y′ + εη′(x)) dx.

Assuming that the f function has continuous partial derivatives, the mean-
value theorem is applicable:

f (x, y + εη(x), y′ + εη′(x)) = f(x, y, y′)+

ε

(
η(x)

∂f(x, y, y′)
∂y

+ η′(x)
∂f(x, y, y′)

∂y′

)
+O(ε2).

By substituting we obtain

I(ε) =

∫ x1

x0

f(x, y, y′)dx+

ε

∫ x1

x0

(
η(x)

∂f(x, y, y′)
∂y

+ η′(x)
∂f(x, y, y′)

∂y′

)
dx+O(ε2).

With the introduction of

δI1 = ε

∫ x1

x0

(
η(x)

∂f(x, y, y′)
∂y

+ η′(x)
∂f(x, y, y′)

∂y′

)
dx,

we can write

I(ε) = I(0) + δI1 +O(ε2),

where δI1 is called the first variation. The vanishing of the first variation is
a necessary, but not sufficient, condition to have an extremum. To establish
a sufficient condition, assuming that the function is three times continuously
differentiable, we further expand as

I(ε) = I(0) + δI1 + δI2 +O(ε3).
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Here the newly introduced second variation is

δI2 =
ε2

2

∫ x1

x0

(
η2(x)

∂2f(x, y, y′)
∂y2

+ 2η(x)η′(x)
∂2f(x, y, y′)

∂y∂y′
+

η′2(x)
∂2f(x, y, y′)

∂y′2
)
dx.

We now possess all the components to test for the existence of the extremum
(maximum or minimum). The Legendre test states that if independently of
the choice of the auxiliary η(x) function

- the Euler-Lagrange equation is satisfied,

- the first variation vanishes (δI1 = 0), and

- the second variation does not vanish (δI2 �= 0)

over the interval of integration, then the functional has an extremum. This
test presents the necessary and sufficient conditions for the existence of the
extremum. Specifically, the extremum will be a maximum if the second varia-
tion is negative, and conversely a minimum if it is positive. Certain similarities
to the extremum evaluation of regular functions by the teaching of classical
calculus are obvious.

We finally introduce the variation of the function as

δy = Y (x)− y(x) = εη(x),

and the variation of the derivative as

δy′ = Y ′(x)− y′(x) = εη′(x).

Based on these variations, we distinguish between the following cases:

- strong extremum occurs when δy is small, however, δy′ is large, while

- weak extremum occurs when both δy and δy′ are small.

On a final note: the above considerations did not ever state the finding or
presence of an absolute extremum; only the local extremum in the interval of
the integrand is obtained.
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1.3 The Euler–Lagrange differential equation

Let us expand the derivative in the second term of the Euler-Lagrange differ-
ential equation as follows:

d

dx

∂f

∂y′
=

∂2f

∂x∂y′
+

∂2f

∂y∂y′
y′ +

∂2f

∂y′2
y′′.

This demonstrates that the Euler-Lagrange equation is usually of second
order:

∂f

∂y
− ∂2f

∂x∂y′
− ∂2f

∂y∂y′
y′ − ∂2f

∂y′2
y′′ = 0.

The above form is also called the extended form. Consider the case when the
multiplier of the second derivative term vanishes:

∂2f

∂y′2
= 0.

In this case f must be a linear function of y′, in the form of

f(x, y, y′) = p(x, y) + q(x, y)y′.

For this form, the other derivatives of the equation are computed as

∂f

∂y
=
∂p

∂y
+
∂q

∂y
y′,

∂f

∂y′
= q,

∂2f

∂x∂y′
=
∂q

∂x
,

and
∂2f

∂y∂y′
=
∂q

∂y
.

Substituting results in the Euler-Lagrange differential equation of the form

∂p

∂y
− ∂q

∂x
= 0,

or

∂p

∂y
=
∂q

∂x
.

In order to have a solution, this must be an identity, in which case there must
be a function of two variables

u(x, y)
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whose total differential is of the form

du = p(x, y)dx+ q(x, y)dy = f(x, y, y′)dx.

The functional may be evaluated as

I(y) =

∫ x1

x0

f(x, y, y′)dx =

∫ x1

x0

du = u(x1, y1)− u(x0, y0).

It follows from this that the necessary and sufficient condition for the solu-
tion of the Euler-Lagrange differential equation is that the integrand of the
functional be the total differential with respect to x of a certain function of
both x and y.

Considering furthermore, that the Euler-Lagrange differential equation is
linear with respect to f , it also follows that a term added to f will not change
the necessity and sufficiency of that condition.

Another special case may be worthy of consideration. Let us assume that
the integrand does not explicitly contain the x term. Then by executing the
differentiations we obtain

d

dx

(
y′
∂f

∂y′
− f

)
= y′

d

dx

∂f

∂y′
− ∂f

∂x
− ∂f

∂y
y′ = y′

(
d

dx

∂f

∂y′
− ∂f

∂y

)
− ∂f

∂x
.

With the last term vanishing in this case, the differential equation simplifies to

d

dx

(
y′
∂f

∂y′
− f

)
= 0.

Its consequence is the expression known as Beltrami’s formula:

y′
∂f

∂y′
− f = c1, (1.1)

where the right-hand side term is an integration constant.

To illustrate the use of Beltrami’s solution, we consider

I =

∫ 2

0

y2(1− y′)2dx = extremum

with boundary conditions

y(0) = 0, y(2) = 1.

This is a Beltrami case as the function is independent of x. Since

∂f

∂y′
= −2y2(1− y′),
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the formula (multiplied by -1) dictates

f − y′
∂f

∂y′
= y2(1− y′)2 + 2y′y2(1− y′) = −c1.

Executing the posted operations and shortening results in

y2 − y2y′2 = −c1.

Algebraic operations reveal the derivative as

y′ =

√
y2 + c1
y

.

Separating the variables and integrating yields√
y2 + c1 = x+ c2,

from which the implicit solution of

y2 + c1 = (x+ c2)
2

emerges. Applying the boundary conditions

y(0) = 0 → c1 = c22,

and
y(2) = 1 → 1 + c1 = (2 + c2)

2

resolves the integrating coefficients as

c1 =
9

16
, c2 = −3

4
.

Finally the solution is of the form

(x− 3/4)2

9/16
− y2

9/16
= 1,

which is a hyperbola shifted in the x direction.

The classical problem of the brachistochrone, discussed in the next section,
also belongs to this class. It is important to point out that while in most cases
when applicable Beltrami’s approach is simpler, there are cases when it is not.

Finally, it is also often the case that the integrand does not contain the y
term explicitly. Then

∂f

∂y
= 0
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and the differential equation has the simpler

d

dx

∂f

∂y′
= 0

form. As above, the result is

∂f

∂y′
= c2

where c2 is another integration constant. The geodesic problems, subject of
Chapter 8, represent this type of Euler-Lagrange equation.

We can surmise that the Euler-Lagrange differential equation’s general solu-
tion is of the form

y = y(x, c1, c2),

where the c1, c2 are constants of integration, and are solved from the bound-
ary conditions

y0 = y(x0, c1, c2)

and

y1 = y(x1, c1, c2).

1.4 Minimal path problems

This section deals with several classical problems to illustrate the methodol-
ogy. The problem of finding the minimal path between two points in space
will be addressed in different scenarios.

The first problem is simple geometry, the shortest geometric distance
between the points. The second one is the well-known classical problem of the
brachistochrone, originally posed and solved by Bernoulli. This is the path
of the shortest time required to move from one point to the other under the
force of gravity. The third problem considers a minimal path in an optical
sense and leads to Snell’s law of reflection in optics. The fourth example finds
the path of minimal kinetic energy of a particle moving under the force of
gravity.

All four problems will be presented in two-dimensional space, although they
may also be posed and solved in three dimensions with some more algebraic
difficulty but without any additional instructional benefit.
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1.4.1 Shortest curve between two points

First we consider the rather trivial variational problem of finding the solution
of the shortest curve between two points, P0, P1, in the plane. The form of
the problem using the arc length expression is

∫ P1

P0

ds =

∫ x1

x0

√
1 + y′2dx = extremum.

The obvious boundary conditions are the curve going through its endpoints:

y(x0) = y0,

and
y(x1) = y1.

It is common knowledge that the solution in Euclidean geometry is a straight
line from point (x0, y0) to point (x1, y1). The solution function is of the form

y(x) = y0 +m(x− x0),

with slope

m =
y1 − y0
x1 − x0

.

To evaluate the integral, we compute the derivative as

y′ = m

and the function becomes

f(x, y, y′) =
√
1 +m2.

Since the integrand is constant, the integral is trivial

I(y) =
√
1 +m2

∫ x1

x0

dx =
√

1 +m2(x1 − x0).

The square of the functional is

I2(y) = (1 +m2)(x1 − x0)
2 = (x1 − x0)

2 + (y1 − y0)
2.

This is the square of the distance between the two points in plane; hence,
the extremum is the distance between the two points along the straight line.
Despite the simplicity of the example, the connection of a geometric problem
to a variational formulation of a functional is clearly visible. This will be the
most powerful justification for the use of this technique.

Let us now solve the ∫ x1

x0

√
1 + y′2dx = extremum
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problem via its Euler-Lagrange equation form. Note that the form of the
integrand lends itself to the use of one of three methods: the standard form,
the Beltrami formula, or the extended form. Let us use the extended form.

∂f

∂y
= 0,

∂2f

∂x∂y′
= 0,

∂2f

∂y∂y′
= 0,

and
∂2f

∂y′2
=

1

(1 + y′2)3/2
.

Substituting into the extended form gives

1

(1 + y′2)3/2
y′′ = 0,

which simplifies into

y′′ = 0.

Integrating twice, one obtains

y(x) = c0 + c1x,

clearly the equation of a line. Substituting into the boundary conditions, we
obtain two equations,

y0 = c0 + c1x0,

and
y1 = c0 + c1x1.

The solution of the resulting linear system of equations is

c0 = y0 − c1x0,

and

c1 =
y1 − y0
x1 − x0

.

It is easy to reconcile that

y(x) = y0 − y1 − y0
x1 − x0

x0 +
y1 − y0
x1 − x0

x

is identical to

y(x) = y0 +m(x− x0).



16 Applied calculus of variations for engineers

The noticeable difference between the two solutions of this problem is that
using the Euler-Lagrange equation required no a priori assumption on the
shape of the curve and the geometric know-how was not used. This is the
case in most practical engineering applications and this is the reason for the
utmost importance of the Euler-Lagrange equation.

1.4.2 The brachistochrone problem

The problem of the brachistochrone may be the first problem of variational
calculus, already solved by Johann Bernoulli in the late 1600s. The name
stands for the shortest time in Greek, indicating the origin of the problem.

The problem is elementary in a physical sense. Its goal is to find the shortest
path of a particle moving in a vertical plane from a higher point to a lower
point under only the force of gravity. The sought solution is the function y(x)
with boundary conditions y(x0) = y0 and y(x1) = y1 where

P0 = (x0, y0)

and
P1 = (x1, y1)

are the starting and terminal points, respectively. Based on elementary physics
considerations, the problem represents an exchange of potential energy with
kinetic energy.

In a gravitational field, a moving body’s kinetic energy is related to its
velocity and its mass, its potential energy to the height of its position and its
mass. The higher the velocity and the mass, the bigger the kinetic energy.
A body can gain kinetic energy using its potential energy, and conversely,
can use its kinetic energy to build up potential energy. At any point during
the movement, the gain of the kinetic energy is the same as the loss of the
potential energy, hence the total energy is at equilibrium.

The potential energy loss of the particle at any x, y point during the motion
is

ΔEp = mg(y0 − y),

where m is the mass of the particle and g is the acceleration of gravity. The
kinetic energy gain is

ΔEk =
1

2
mv2

assuming that the particle at the (x, y) point has velocity v. They are in
balance as
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ΔEk = ΔEp,

resulting in an expression of the velocity as

v =
√
2g(y0 − y).

The velocity by definition is

v =
ds

dt
,

where s is the arc length of the yet unknown curve. The time required to run
the length of the curve is

t =

∫ P1

P0

dt =

∫ P1

P0

1

v
ds.

Using the arc length formula from calculus, we get

t =

∫ x1

x0

√
1 + y′2
v

dx.

Substituting the velocity expression yields

t =
1√
2g

∫ x1

x0

√
1 + y′2√
y0 − y

dx.

Since we are looking for the minimal time, this is a variational problem of

I(y) =
1√
2g

∫ x1

x0

√
1 + y′2√
y0 − y

dx = extremum.

The integrand does not contain the independent variable; hence, we can apply
Beltrami’s formula of Equation (1.1). This results in the form of

y′2√
(y0 − y)(1 + y′2)

−
√

1 + y′2√
y0 − y

= c0.

Creating a common denominator on the left-hand side produces

y′2
√
y0 − y −

√
1 + y′2

√
(y0 − y)(1 + y′2)√

(y0 − y)(1 + y′2)
√
y0 − y

= c0.

Grouping the numerator simplifies to

−1√
(y0 − y)(1 + y′2)

= c0.

Canceling and squaring results in the solution for y′ as

y′2 =
1− c20(y0 − y)

c20(y0 − y)
.
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Since

y′2 =

(
dy

dx

)2

,

the differential equation may be separated as

dx =

√
y0 − y√

2c1 − (y0 − y)
dy.

Here the new constant is introduced for simplicity as

c1 =
1

2c20
.

Finally x may be expressed directly by integrating

x =

∫ √
y0 − y√

2c1 − (y0 − y)
dy + c2.

The trigonometric substitution of

y0 − y = 2c1 sin
2

(
t

2

)
yields the integral of

x = 2c1

∫
sin2

(
t

2

)
dt = c1 (t− sin(t)) + c2,

The constants of integration may be solved by substituting the boundary
points. At t = 0 we easily find

x = c2 = x0.

Reorganizing and some trigonometry yields

y = y0 − c1 (1− cos(t)) .

Substituting the endpoint location into the y equation, we obtain

y = y0 − c1 (1− cos(t)) = y1,

which is inconclusive, since the time of reaching the endpoint is not known.
For a simple conclusion of this discussion, let us assume that the particle
reaches the endpoint at time t = Π/2. Then

c1 = y0 − y1,

and the final solution is

x = x0 + (y0 − y1) (t− sin(t))
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and
y = y1 + (y0 − y1) (1− cos(t)) .

The final solution of the brachistochrone problem therefore is a cycloid.
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FIGURE 1.2 Solution of the brachistochrone problem

Figure 1.2 depicts the problem of the point moving from (0, 1) until it
reaches the x axis.
For the case shown in Figure 1.2, the point moving from (0, 1) until it reaches
the x axis, the solution curve is

x = t− sin(t)

and
y = cos(t).

The resulting curve seems somewhat counter-intuitive, especially in view of
the earlier example of the shortest geometric distance between two points in
the plane and demonstrated by the straight line chord between the two points.
The shortest time, however, when the speed obtained during the traversal of
the interval depends on the path taken, is an entirely different matter.



20 Applied calculus of variations for engineers

Another intriguing characteristic of the brachistochrone problem is that
when two particles are let go from two different points of the curve they will
reach the terminal point of the curve at the same time. This is also counter-
intuitive, since clearly they have different geometric distances to cover; how-
ever, since they are acting under the gravity and the slope of the curve is
different at the two locations, the particle starting from a higher location
gathers much bigger speed than the particle starting at a lower location.

This, so-called tautochrone, behavior may be proven by calculation of the
time of the particles using the formula developed earlier. Evaluation of this
integral between points (x0, y0) and (x1, y1) as well as between (x2, y2) and
(x1, y1) (where (x2, y2) lies on the solution curve anywhere between the start-
ing and terminal point) will result in the same time.

Hence, the brachistochrone problem may also be posed with a specified ter-
minal point and a variable starting point, leading to the class of variational
problems with open boundary, subject of Section 1.5.

1.4.3 Fermat’s principle

Fermat’s principle states that light traveling through inhomogeneous medium
chooses the path of minimal optical length. The optical length depends on
the speed of light in the medium, which is defined as a continuous function of

c(y),

where y is the vertical component of the path. Then it may be defined as

c(y) =
ds

dt
,

the derivative of the length of the path. Similarly to the brachistochrone
problem, then the time required to cover the distance between two points is

t =

∫
1

c(y)
ds.

The problem is now posed as a variational problem of

I(y) =

∫ (x2,y2)

(x1,y1)

ds

c(y)
.

Substituting the arc length results in

∫ x2

x1

√
1 + y′2

c(y)
dx = extremum,
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with boundary conditions given at the two points P1, P2.

y(x1) = y1; y(x2) = y2.

The functional does not contain the x term explicitly, allowing the use of Bel-
trami’s formula resulting in the simplified form of

y′
∂f

∂y′
− f = k1

where k1 is a constant of integration and its notation is chosen to distinguish
from the speed of light value c. Substituting f , differentiating and simplifying
yields

1

c(y)
√

1 + y′2
= −k1.

Reordering and separating results∫
dx = ±k1

∫
c(y)√

1− k21c
2(y)

dy.

Depending on the particular model of the speed of light in the medium, the
result varies. In the case of the inhomogeneous optical medium consisting of
two homogeneous media in which the speed of light is piecewise constant, the
result is the well-known Snell’s law describing the scenario of the breaking
path of light at the water’s surface.

Assume the speed of light is c1 between points P1 and P0 and c2 between
points P0 and P2, both constant in their respective medium. The boundary
point between the two media is represented by

P0(x, y0),

where the notation signifies the fact that the x location of the light ray is not
known yet. The known y0 location specifies the distance of the points in the
two separate media from the boundary.

Then the time to run the full path between P1 and P2 is simply

t =

√
(x− x1)2 + (y0 − y1)2

c1
+

√
(x2 − x)2 + (y2 − y0)2

c2
.

The minimum of this is simply obtained by classical calculus as

dt

dx
= 0,

or

x− x1

c1
√

(x− x1)2 + (y0 − y1)2
− x2 − x

c2
√

(x2 − x)2 + (y2 − y0)2
= 0.
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The solution of this equation yields the x location of the ray crossing the
boundary, and produces the well-known Snell’s law of

sinφ1
c1

=
sinφ2
c2

,

where the angles are measured with respect to the normal of the bound-
ary between the two media. The preceding work generalizes to multiples of
homogeneous media, which is a practical application in lens systems of optical
machinery.

1.4.4 Particle moving in a gravitational field

The motion of a particle moving in a gravitational field is computed based
on the minimum momentum principle first described by Euler. The principle
states that a particle under the influence of a gravitational field moves on a
path where

I =

∫ P1

P0

mvds = minimum.

Here m is the mass of the particle, v is the velocity of the particle and their
product is the particle’s momentum. The boundary points are

P0 = (x0, y0), P1 = (x1, y1).

Let us assume for the simplicity of algebra, but without the loss of generality
of the discussion, that the starting position is at the origin:

(x0, y0) = (0, 0).

Substituting

ds =
√
1 + (y′)2dx,

the functional may be written as

I = m

∫ x1

x0

v
√
1 + (y′)2dx.

The potential energy change of the particle at a certain height of y is

ΔEp = mg(y − y0) = mgy.

The kinetic energy change corresponding to that position is

ΔEk =
1

2
m(u2 − v2),

where u is an initial speed at (x0, y0) with yet undefined direction but given
magnitude. They are equivalent in the sense that any potential energy gain
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equals the kinetic energy loss and vice versa. Hence

mgy =
1

2
m(u2 − v2),

or
2gy = u2 − v2,

from which the velocity at any point of the trajectory is

v =
√
u2 − 2gy.

Substituting into the functional yields

I = m

∫ x1

x0

√
u2 − 2gy

√
1 + (y′)2dx = extremum.

In the following we assume unit mass for simplicity, m = 1. Since the func-
tional does not contain x explicitly, we can use Beltrami’s formula. Its deriva-
tive term is

fy′ =
√
u2 − 2gy

1

2

2y′√
1 + (y′)2

.

Canceling and substituting into the formula yield

√
u2 − 2gy

√
1 + (y′)2 −

√
u2 − 2gy

y′2√
1 + (y′)2

= c1.

Gathering like terms and using a common denominator produce

√
u2 − 2gy

((1 + (y′)2)− y′2)√
1 + (y′)2

= c1,

or √
u2 − 2gy√
1 + y′2

= c1,

where c1 is an arbitrary constant. Then

u2 − 2gy = c21(1 + y′2),

and

y′ =

√
u2 − 2gy − c21

c1

Separating as

dx = c1
dy√

u2 − 2gy − c21

and integrating yields

x− c2 = c1
1

−g
√
u2 − 2gy − c21
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with c2 being another constant of integration whose sign is chosen for later
convenience. Multiplying by g and squaring results in

c21(u
2 − 2gy − c21) = g2(x− c2)

2,

Reordering yields

c21(u
2 − c21)− g2(x− c2)

2 = c212gy

from which the particle trajectory becomes

y =
u2 − c21

2g
− g

2c21
(x− c2)

2.

The resolution of the constants may be accomplished by using the initial loca-
tion and velocity of the particle. Let us assume x0 = 0 and x1 is open. The
constant c1 is related to the velocity and constant c2 is related to the location.

The derivative of the trajectory is

y′ =
−2g

2c21
(x− c2) = − g

c21
(x− c2).

Given the initial velocity angle to the x axis as α then

y′(0) =
g

c21
c2 = tan(α).

This enables expressing

c2 =
c21 tan(α)

g
.

Let us now substitute into the initial position of the particle

y(0) =
u2 − c21

2g
− g

2c21
(c2)

2 =
u2 − c21

2g
− g

2c21

c41 tan
2(α)

g2
= 0.

Then
u2 − c21

2g
=
c21 tan

2(α)

2g
= 0.

This resolves the second constant as

u2 = c21(tan
2(α) + 1).

Substituting into the location function

y(x) =
u2 − c21

2g
− g

2c21
(x− c2)

2 =

=
u2 − c21

2g
− g

2c21

(
x− c21 tan(α)

g

)2

.
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Executing the square operation brings

y(x) =
u2 − c21

2g
− g

2c21

(
x2 − 2x

c21 tan(α)

g
+
c41 tan

2(α)

g2

)

and multiplying yields

y(x) =
u2 − c21

2g
− gx2

2c21
+ x tan(α)− c21 tan

2(α)

2g
.

Finally the expression for the u obtained above and substituted into the loca-
tion yields

y(x) =
c21(tan

2(α) + 1)− c21
2g

− gx2

2c21
+ x tan(α)− c21 tan

2(α)

2g

and

y(x) =
c21 tan

2(α)

2g
− gx2

2c21
+ x tan(α)− c21 tan

2(α)

2g

The first and last terms cancel out resulting in

y(x) = x tan(α)− gx2

2c21
.

The second term still contains the c1 term. Its substitution

y(x) = x tan(α)− gx2

2 u2

tan2(α)+1

,

and some trigonometry

1

tan2(α) + 1
=

1
sin2(α)
cos2(α) + 1

=
cos2(α)

sin2(α) + cos2(α)

yields the explicit trajectory formula for the particle as

y = x tan(α)− gx2

2u2 cos2(α)
.

This may be reconciled with the well-known parametric trajectory formula
from physics that states

x(t) = u cos(α)t

and

y(t) = u sin(α)t− 1

2
gt2.

Expressing the time variable t from the first equation we obtain

t =
x(t)

u cos(α)
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and squaring we obtain

t2 =
x2

u2 cos2(α)
,

which is in agreement with the second part of the explicit trajectory developed
above. The first part similarly agrees as

y = x tan(α) = u cos(α)t · tan(α) = u sin(α)t.
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FIGURE 1.3 Trajectory of particle

Figure 1.3 demonstrates the path of the particle. The upper three curves
show the path with a 60-degree angle of the initial velocity and with different
magnitudes. The lower three curves demonstrate the paths obtained by the
same magnitude (10 units), but different angles of the initial velocity. For
visualization purposes the gravity constant was chosen to be 10 units as well.

A similarity between the four problems of this section is apparent. This
recognition is a very powerful aspect of variational calculus. There are many
instances in engineering applications when one physical problem may be solved
in an analogous form using another principle. The common variational for-
mulation of both problems is the key to such recognition in most cases.
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1.5 Open boundary variational problems

Let us consider the variational problem of Section 1.1:

I(y) =

∫ x1

x0

f(x, y, y′)dx,

with boundary condition

y(x0) = y0.

Let the boundary condition at the upper end be open. We introduce an auxil-
iary function η(x) that in this case only satisfies the lower boundary condition,

η(x0) = 0.

The extremum in this case is obtained from the same concept as earlier:

∂I(ε)

∂ε

∣∣∣
ε=0

=

∫ x1

x0

(
∂f

∂y
η(x) +

d

dx

∂f

∂y′
η′(x)

)
dx = 0,

while recognizing the fact that x1 is undefined. Integrating by parts and
considering the one-sided boundary condition posed on the auxiliary function
yields

∂I(ε)

∂ε

∣∣∣
ε=0

=
∂f

∂y′

∣∣∣
x=x1

η(x1) +

∫ x1

x0

((
∂f

∂y
− d

dx

∂f

∂y′

)
η′(x)

)
dx = 0.

The extremum is obtained when the Euler-Lagrange equation of

∂f

∂y
− d

dx

∂f

∂y′
= 0

along with the given boundary condition of

y(x0) = y0

is satisfied, in addition to obeying the auxiliary constraint due to the open
boundary condition

∂f

∂y′

∣∣∣
x=x1

= 0.

Similar argument may be applied when the starting point is, or both of them
are open. This is a special case of the transversality condition described in
more detail in the next chapter in connection with the more generic con-
strained variational problems.
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We illustrate the open boundary scenario with the problem

I =

∫ 1

0

(
1

2
y′2 + yy′ + y′ + y

)
dx = extremum

with the boundary conditions open on both locations. The first requirement
for the solution is the satisfaction of the Euler-Lagrange differential equation.
Its components are

∂f

∂y
= y′ + 1,

∂f

∂y′
= y′ + y + 1,

and the equation becomes

∂f

∂y
− d

dx

∂f

∂y′
= y′ + 1− d

dx
(y′ + y + 1) = 0.

This results in the ordinary differential equation of

y′′ = 1.

Note, that since this is a case when Beltrami’s solution may also be used;
however, in the case of this example it leads to

1

2
y′2 − yy′ − y = c1,

which is a more difficult solution avenue. By double integration of the first
form, the general solution is

y = ax+ b+
1

2
x2.

The integrating coefficients are found from the transversality conditions. The
left-hand boundary produces

∂f

∂y′

∣∣∣
x=0

= y′(0) + y(0) + 1 = 0

or
a+ b+ 1 = 0,

while the right-hand boundary gives

∂f

∂y′

∣∣∣
x=1

= y′(1) + y(1) + 1 = 0

or

2a+ b+
5

2
= 0.
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The solution of the two equations yields

a = −3

2

and

b =
1

2
.

Hence, the solution of the open boundary variational problem is

y(x) =
1

2
x2 − 3

2
x+

1

2
.

Computing the derivative of the solution, substitution into the functional and
integration yield the extremum if needed.

1.6 Exercises

Find the solutions for the problems by using the Euler-Lagrange differential
equation and the boundary conditions, if given.

1.
I =

∫
(y′2 + 2y)dx = extremum.

2.
I =

∫
(y′2 + 4xy′)dx = extremum.

3.
I =

∫
(y′2 + yy′ + y2)dx = extremum.

4.
I =

∫
(xy′2 − yy′ + y)dx = extremum.

5.

I =
∫ 2

1

√
1+y′2

x dx = extremum.
Boundary conditions: y(1) = 0, y(2) = 1.

6.
I =

∫ π
8

0
(y′2 + 2yy′ − 16y2)dx = extremum.

Boundary conditions: y(0) = 0, y(π/8) = 1.
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7.
I =

∫ 1

0
(1 + x)y′2dx = extremum.

Boundary conditions: y(0) = 0, y(1) = 1.

8.
I =

∫
y′2

x3 dx = extremum.

9.
I =

∫
(y2 + y′2 + 2yex)dx = extremum.

10.
I =

∫
(2y + y′2)dx = extremum.



2

Constrained variational problems

The boundary conditions applied to a variational problem may also be consid-
ered as constraints. The subject of this chapter is to generalize the constraint
concept in two senses. The first is to allow more difficult, algebraic boundary
conditions, and the second is to allow constraints imposed on the interior of
the domain as well. Several isoperimetric problems from geometry will be
solved, and a closed loop integral solution also presented and illustrated.

2.1 Algebraic boundary conditions

There is the possibility of defining the boundary condition at one end of the
integral of the variational problem with an algebraic constraint. Let the∫ x1

x0

f(x, y, y′)dx = extremum

variational problem be subject to the customary boundary condition

y(x0) = y0

on the lower end, and on the upper end subject of an algebraic condition of
the following form:

g(x, y) = 0.

We again consider an alternative solution of the form

Y (x) = y(x) + εη(x).

The given boundary condition in this case is

η(x0) = 0.

Then, following [6], the intersection of the alternative solution and the alge-
braic curve is

X1 = X1(ε)

31
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and
Y1 = Y1(ε).

The notation is to distinguish from the fixed boundary condition values given
via x1, y1. Therefore, the algebraic condition is

g(X1, Y1) = 0.

This must be true for any ε, hence applying the chain rule yields

dg

dε
=

∂g

∂X1

dX1

dε
+

∂g

∂Y1

dY1
dε

= 0. (2.1)

Since

Y1 = y(X1) + εη(X1),

we expand the last derivative of the second term of Equation (2.1) as

dY1
dε

=
dy

dx

∣∣∣
x=X1

dX1

dε
+ η(X1) + ε

dη

dx

∣∣∣
x=X1

dX1

dε
.

Substituting into Equation (2.1) results in

dg

dε
=

∂g

∂X1

dX1

dε
+

∂g

∂Y1
(
dy

dx

∣∣∣
x=X1

dX1

dε
+ η(X1) + ε

dη

dx

∣∣∣
x=X1

dX1

dε
) = 0.

Since (X1, Y1) becomes (x1, y1) when ε = 0,

dX1

dε

∣∣∣
ε=0

= −
η(x1)

∂g
∂y

∣∣∣
y=y1

∂g
∂x

∣∣∣
x=x1

+ ∂g
∂y

∣∣∣
y=y1

dy
dx

∣∣∣
x=x1

. (2.2)

We now consider the variational problem of

I(ε) =

∫ X1

x0

f(x, Y, Y ′)dx.

The derivative of this is

∂I(ε)

∂ε
=
dX1

dε
f
∣∣∣
x=X1

+

∫ X1

x0

(
∂f

∂Y
η +

∂f

∂Y ′ η
′
)
dx.

Integrating by parts and taking ε = 0 yields

∂I(ε)

∂ε

∣∣∣
ε=0

=
dX1

dε

∣∣∣
ε=0

f
∣∣∣
x=x1

+
∂f

∂y′

∣∣∣
x=x1

η(x1) +

∫ x1

x0

(
∂f

∂y
− d

dx

∂f

∂y′

)
ηdx.

Substituting the first expression with Equation (2.2) results in⎛
⎜⎝ ∂f

∂y′

∣∣∣
x=x1

−
∂g
∂y

∣∣∣
y=y1

f
∣∣∣
x=x1

∂g
∂x

∣∣∣
x=x1

+ ∂g
∂y

∣∣∣
y=y1

dy
dx

∣∣∣
x=x1

⎞
⎟⎠ η(x1)+
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x0

(
∂f

∂y
− d

dx

∂f

∂y′

)
ηdx = 0.

Due to the fundamental lemma of calculus of variations, to find the con-
strained variational problem’s extremum, the following conditions need to be
satisfied. The Euler-Lagrange differential equation

∂f

∂y
− d

dx

∂f

∂y′
= 0,

the given boundary condition

y(x0) = y0,

and the transversality condition of the form

∂f

∂y′

∣∣∣
x=x1

=

∂g
∂y

∣∣∣
y=y1

f
∣∣∣
x=x1

∂g
∂x

∣∣∣
x=x1

+ ∂g
∂y

∣∣∣
y=y1

dy
dx

∣∣∣
x=x1

.

The transversality condition is named such as it assures that the solution
transverses the boundary curve [16]. The evaluation of the transversality
condition requires special care when the constraint curve produces infinite
derivatives.

2.1.1 Transversality condition computation

To demonstrate the computation of the transversality condition, we consider
the problem

I =

∫ x1

0

√
1 + y′2

y
dx = extremum

with left-hand side boundary condition

y(0) = 0

and the right-hand side boundary constraint of

y(x1) = y1

located on the line

g(x, y) = y − x+ 5 = 0.

The first part of the solution as indicated above is to satisfy the Euler-
Lagrange differential equation. Its components are

∂f

∂y
= fy = −

√
1 + y′2

y2
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and
∂f

∂y′
= fy′ =

y′

y
√
1 + y′2

,

with the introduction of a simplified notation for convenience in this section.
Then

d

dx
fy′ =

y′′y
√
1 + y′2 − y′

(
y′
√

1 + y′2 + yy′y′′√
1+y′2

)
y2(1 + y′2)

.

Subtracting the last two terms and using common denominators, the Euler-
Lagrange differential equation becomes

−(1 + y′2)2 − (yy′′ − y′2 − y′4) = 0.

Further algebra yields

−1− 2y′2 − y′4 − yy′′ + y′2 + y′4 = 0,

which shortens to

yy′′ + y′2 = −1.

Recognizing that

(yy′)′ = y′2 + yy′′,

integrating results in

yy′ = −x+ c1.

Separating the variables, we obtain

ydy = (−x+ c1)dx,

and further integration

1

2
y2 = −x

2

2
+ c1x+ c2

produces the general (implicit) solution as

y2 = −x2 + 2c1x+ 2c2.

The fixed boundary condition on the left enables the resolution of one of the
constants of integration

y2(0) = 0 = 2c2 → c2 = 0

and the solution now is of the form

y2 = −x2 + 2c1x.
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To satisfy the algebraic constraint, we reorganize the transversality condition
using the simplified notation as

fy′
∣∣
x1

−
f
∣∣
x1

gx

∣∣
x1

gy

∣∣
y1

+ y′
∣∣
x1

= 0.

Multiplying and reordering yields a computationally expedient form(
f − (

gx
gy

+ y′)fy′
) ∣∣∣

x1

= 0,

where the posted substitution at x1 was moved outside for simplicity of nota-
tion. The derivatives of the constraint equation are

gy = 1; gx = −1

and their ratio is also −1. The transversality condition for this problem then
becomes (

f − (−1 + y′)fy′
)∣∣∣
x1

= 0.

In detail(√
1 + y′2

y
+

(1− y′)y′

y
√
1 + y′2

)∣∣∣
x1

=
(
1 + y′2 + y′ − y′2

) ∣∣∣
x1

= 1 + y′(x1) = 0

hence
y′(x1) = −1.

Since the solution from the Euler-Lagrange equation was

y2 = −x2 + 2c1x,

differentiating produces
2yy′ = −2x+ 2c1.

Substituting x1 results in

2y(x1)y
′(x1) = −2x1 + 2c1.

The solution at that point must also satisfy the constraint equation

y(x1) = x1 − 5;

therefore, the equation

2(x1 − 5)(−1) = −2x1 + 2c1

emerges from which the unknown coefficient is easily solved as

c1 = 5.
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Hence, the specific implicit solution of the problem is

y2 = −x2 + 10x,

or explicitly

y =
√

−x2 + 10x.

Intersecting this with the constraint curve, the actual values of x1, y1 may be
obtained if necessary.

2.2 Lagrange’s solution

We now further generalize the variational problem and impose both boundary
conditions as well as an algebraic condition on the whole domain as follows:

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum,

with

y(x0) = y0, y(x1) = y1,

while

J(y) =

∫ x1

x0

g(x, y, y′)dx = constant.

Following the earlier established pattern, we introduce an alternative solution
function, at this time, however, with two auxiliary functions as

Y (x) = y(x) + ε1η1(x) + ε2η2(x).

Here the two auxiliary functions are arbitrary and both satisfy the conditions:

η1(x0) = η1(x1) = η2(x0) = η2(x1) = 0.

Substituting these into the integrals gives

I(Y ) =

∫ x1

x0

f(x, Y, Y ′)dx,

and

J(Y ) =

∫ x1

x0

g(x, Y, Y ′)dx.
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Lagrange’s ingenious solution is to tie the two integrals together with a yet
unknown multiplier (called the Lagrange multiplier, λ) as follows:

I(ε1, ε2) = I(Y ) + λJ(Y ) =

∫ x1

x0

h(x, Y, Y ′)dx,

where
h(x, y, y′) = f(x, y, y′) + λg(x, y, y′).

The condition to solve this variational problem is

∂I

∂εi
= 0

when

εi = 0; i = 1, 2.

The derivatives are of the form

∂I

∂εi
=

∫ x1

x0

(
∂h

∂Y
ηi +

∂h

∂Y ′ η
′
i

)
dx.

The extremum is obtained when

∂I

∂εi

∣∣∣
εi=0,i=1,2

=

∫ x1

x0

(
∂h

∂Y
ηi +

∂h

∂Y ′ η
′
i

)
dx = 0.

Considering the boundary conditions and integrating by parts yield∫ x1

x0

(
∂h

∂y
− d

dx

∂h

∂y′

)
ηidx = 0,

which, due to the fundamental lemma of calculus of variations, results in the
relevant Euler-Lagrange differential equation

∂h

∂y
− d

dx

∂h

∂y′
= 0.

This equation contains three undefined coefficients: the two coefficients of
integration satisfying the boundary conditions and the Lagrange multiplier,
enforcing the constraint.

2.3 Isoperimetric problems

Isoperimetric problems use a given perimeter of a certain object as the con-
straint of some variational problem. The perimeter may be a curve in the
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two-dimensional case, as in the example of the next section. It may also be
the surface of a certain body in the three-dimensional case.

2.3.1 Maximal area under curve with given length

This problem is conceptually very simple, but useful to illuminate the process
just established. It is also a very practical problem with more difficult geome-
tries involved. Here we focus on the simple case of finding the curve of given
length between two points in the plane. Without restricting the generality
of the discussion, we will position the two points on the x axis in order to
simplify the algebraic work.

The given points are (x0, 0) and (x1, 0) with x0 < x1. Note, however, that
their distance is not specified, a fact to be addressed later. The area under
any curve going from the fixed start point x0 to the open endpoint x1 in the
upper half-plane is

I(y) =

∫ x1

x0

ydx.

The constraint of the given length L is presented by the equation

J(y) =

∫ x1

x0

√
1 + y′2dx = L.

The Lagrange multiplier method brings the function

h(x, y, y′) = y + λ
√

1 + y′2.

The constrained variational problem is

I(y) =

∫ x1

x0

h(x, y, y′)dx = extremum,

whose Euler-Lagrange equation becomes

1− λ
d

dx

y′√
1 + y′2

= 0.

Reordering as
d

dx

λy′√
1 + y′2

= 1

yields
λy′√
1 + y′2

= x− c1,

where the sign of the integrating constant was chosen for further convenience.
The form hints that, instead of differentiating, a simple integration will suffice.
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The algebraic steps of
λ2y′2

1 + y′2
= (x− c1)

2,

λ2y′2 = (x− c1)
2 + y′2(x− c1)

2,

and
y′2(λ2 − (x− c1)

2) = (x− c1)
2

produce

y′ =
x− c1√

λ2 − (x− c1)2
.

Finally we separate the variables as

dy =
x− c1√

λ2 − (x− c1)2
dx,

and integrate again to produce

y(x) =
√
λ2 − (x− c1)2 + c2.

It is easy to reorder this into

(x− c1)
2 + (y − c2)

2 = λ2,

which is the equation of a circle. Since the two given points are on the x axis,
the center of the circle must lie on the perpendicular bisector of the chord,
which implies that

c1 =
x0 + x1

2
.

To solve for the value of the Lagrange multiplier (that is the radius) and the
other constant, we consider that the circular arc between the two points is
the given length:

L = λθ,

where θ is the angle of the arc. The angle is related to the remaining constant
as

2π − θ = 2arctan

(
x1 − x0
2c2

)
.

The two equations may be simultaneously satisfied with

θ = π,

resulting in the shape being a semi-circle. This yields the solutions of

c2 = 0
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and

λ =
L

π
.

The final solution function in implicit form is

(
x− x0 + x1

2

)2

+ y2 =

(
L

π

)2

,

or explicitly

y(x) =

√(
L

π

)2

−
(
x− x0 + x1

2

)2

.

The consequence of this result is that the distance of the open boundary point
x1, to the fixed one, must be the diameter of the circle. Since the radius is
L/π, the location of the open boundary point becomes

x1 = x0 + 2
L

π
.

For example

x0 = 0,

and

L =
π

2

would result in

c1 = 0.5

and

x1 = 1.0

as shown Figure 2.1.

It is simple to verify that the solution produces the extremum of the original
variational problem. Figure 2.1 visibly demonstrates the phenomenon with
three curves of equal length (π/2) over the same interval. Neither of the solid
curves denoted by g(x), the triangle or the rectangle, cover as much area as
the semi-circle y(x) marked by the dashed lines.

On the other hand, since this was really a constrained boundary problem,
the method developed in Section 2.1 may also be applied. The condition

y(x1) = 0

represents an algebraic constraint in the form of

g(x, y) = y = 0.
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FIGURE 2.1 Maximum area under curves

The first part of the solution, the Euler-Lagrange differential equation, is the
same as above. The transversality condition defined for such scenario at the
end of Section 2.1 is applied for this case as

λy′√
1 + y′2

− y + λ
√
1 + y′2

y′

∣∣∣
x=x1

= 0.

Since y(x1) = 0 this simplifies to

λ
−1

y′
√

1 + y′2
= 0.

Since λ cannot be zero,
1

y′
√
1 + y′2

= 0

that results in
y′(x1) = ∞.

Geometrically this means that the curve has a vertical tangent at the end
point, implying that it must be a half circle. Hence, the solutions are in
agreement.
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2.3.2 Optimal shape of curve of given length under gravity

Another constrained variational problem, whose final result is often used in
engineering, is the rope hanging under its weight. The practical importance of
the problem regarding power lines and suspended cables is well-known. Here
we derive the solution of this problem from a variational origin.

A body in a force field is in static equilibrium when its potential energy
has a stationary value. Furthermore, if the stationary value is a minimum,
then the body is in stable equilibrium. This is known as principle of minimum
potential energy and also originated by Euler.

Assume a body of a homogeneous cable with a given weight per unit length
of ρ = constant, and suspension point locations of

P0 = (x0, y0),

and

P1 = (x1, y1).

These constitute the boundary conditions. A constraint is also given on the
length of the curve: L. The potential energy of the cable is

Ep =

∫ P1

P0

ρyds,

where y is the distance of the infinitesimal arc segment from the horizontal
base line and ρds is its weight. Using the arc length formula, we obtain

Ep = ρ

∫ x1

x0

y
√
1 + y′2dx.

The principle of minimal potential energy dictates that the equilibrium posi-
tion of the cable is the solution of the variational problem of

I(y) = ρ

∫ x1

x0

y
√
1 + y′2dx = extremum,

under boundary conditions

y(x0) = y0; y(x1) = y1

and constraint of ∫ x1

x0

√
1 + y′2dx = L.

Introducing the Lagrange multiplier and the constrained function

h(y) = ρy
√

1 + y′2 + λ
√
1 + y′2,
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or
h(y) = (ρy + λ)

√
1 + y′2,

the Euler-Lagrange differential equation may be obtained by Beltrami’s for-
mula since the independent variable does not exist explicitly in the functional.
Hence

(ρy + λ)
√
1 + y′2 − (ρy + λ)y′2√

1 + y′2
= c1,

where c1 is the constant of integration. This simplifies to

(ρy + λ)√
1 + y′2

= c1

and
(ρy + λ)2 = c21(1 + y′2).

Expressing the derivative

y′ =

√
(ρy + λ)2 − c21

c1
,

separating brings
c1dy√

(ρy + λ)2 − c21
= dx.

Substituting
z = ρy + λ,

and posting the integrals result in

c1
ρ

∫
dz√
z2 − c21

=

∫
dx.

Executing the integrals, we obtain

c1
ρ
cosh−1

(
z

c1

)
+ c2 = x

with c2 being another constant of integration. Then

cosh−1

(
z

c1

)
=

ρ

c1
(x− c2),

taking the inverse of the hyperbolic function and back-substituting brings

z

c1
=
ρy + λ

c1
= cosh

(
ρ(x− c2)

c1

)
.

From this the solution of the so-called catenary curve emerges

y = −λ
ρ
+
c1
ρ
cosh

(
ρ(x− c2)

c1

)
.
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The constants of integration may be determined by the boundary conditions
albeit the calculation, due to the presence of the hyperbolic function, is rather
tedious. Let us consider the specific case of the suspension points being at
the same height and symmetric with respect to the origin. This is a typical
engineering scenario for the span of suspension cables. This results in the
following boundary conditions:

P0 = (x0, y0) = (−s, h)
and

P1 = (x1, y1) = (s, h).

Without the loss of the generality, we can consider unit weight (ρ = 1) and
by substituting above boundary conditions, we obtain

h+ λ = c1 cosh

(−s+ c2
c1

)
= c1 cosh

(
s+ c2
c1

)
.

This implies that

c2 = 0.

The value of the second coefficient is solved by adhering to the length con-
straint. Integrating the constraint equation yields

L = 2c1 sinh

(
s

c1

)

whose only unknown is the integration constant c1. This problem is not solv-
able by analytic means; however, it can be solved by an iterative procedure
numerically by considering the unknown coefficient as a variable:

c1 = x,

and intersecting the curve

y = x sinh
( s
x

)
and the horizontal line

y =
L

2
.

The minimal cable length must exceed the width of the span; hence, we expect
the cable to have some slack. Then, for example, using

L = 3s

will result in an approximate solution of

c1 = 0.6175.
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FIGURE 2.2 The catenary curve

Clearly, depending on the length of the cable between similarly posted sus-
pension locations, different catenary curves may be obtained.

The Lagrange multiplier may finally be resolved by the expression

λ = c1 cosh

(
s

c1

)
− h.

Assuming a cable suspended with a unit half-span (s = 1) and from unit
height (h = 1) and length of three times the half-span (L = 3), the value of
the Lagrange multiplier becomes

λ = 0.6175 cosh

(
1

0.6175

)
− 1 = 0.6204.

The final catenary solution curve, shown with a solid line in Figure 2.2, is
represented by

y = 0.6175 cosh

(
1

0.6175

)
− 0.6204.

For comparison purposes, the figure also shows a parabola with dashed lines,
representing an approximation of the catenary and obeying the same bound-
ary conditions.
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2.4 Closed-loop integrals

As a final topic in this chapter, we view variational problems posed in terms
of closed-loop integrals, such as

I =

∮
f(x, y, y′)dx = extremum,

subject to the constraint of

J =

∮
g(x, y, y′)dx = constant.

Note that there are no boundary points of the path given, since it is a closed
loop. The substitution of

x = a cos(t), y = a sin(t),

changes the problem to the conventional form of

I =

∫ t1

t0

F (x, y, ẋ, ẏ)dt = extremum,

subject to

J =

∫ t1

t0

G(x, y, ẋ, ẏ)dt = constant.

The arbitrary t0 and the specific t1 = t0 + 2π boundary points clearly cover
a complete loop. The change resulted in a variational form of two parametric
variables, a topic of the next chapter.

To illustrate the solution with closed-loop integrals, we attempt to find the
curve with given arc length enclosing maximum area. The problem may be
posted as ∫ ∫

D

dA = extremum

under the constraint presented by the closed-loop integral of∮
C

ds = L.

Here D is the domain enclosed by the curve C. Using Green’s identity of∫ ∫
D

dA =
1

2

∮
C

xdy − ydx =
1

2

∮
C

(xy′ − y)dx,

and substituting the arc length, we restate the problem as

1

2

∮
(xy′ − y)dx = extremum,
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with the constraint ∮ √
1 + y′2dx = L.

Using the Lagrange multiplier approach introduced in this chapter, the func-
tional becomes

I =

∮
C

(
1

2
(xy′ − y) + λ

√
1 + y′2

)
dx = extremum.

The components of the Euler-Lagrange differential equation for this case are

∂h

∂y
= −1

2
,

and
d

dx

∂h

∂y′
=

d

dx

(
1

2
x+

λy′√
1 + y′2

)
.

Differentiating only the first term in the latter and combining with the other
component becomes

d

dx

(
λy′√
1 + y′2

)
= −1.

Integrating both sides brings

λy′√
1 + y′2

= −x+ c1.

Expressing the derivative function results in

y′ =
x− c1√

λ2 − (x− c1)2
.

Finally integrating produces the explicit solution of

y =
√
λ2 − (x− c1)2 + c2.

In this case, the implicit solution is more intuitive as

(x− c1)
2 + (y − c2)

2 = λ2,

which is clearly a closed circle. Specifying boundary conditions would enable
us to resolve the location of the center points captured in c1, c2 and the given
value L of the constraint would specify the radius hidden in the Lagrange
multiplier λ.

Note that this problem may also be stated in a dual form as to find a curve
with minimum length enclosing a given area in the plane. The functional in
this case becomes

I =

∮
C

(√
1 + y′2 + λ

(
1

2
(xy′ − y)

))
dx = extremum.
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Dividing by the constant λ produces the identical Euler-Lagrange differential
equation with a different (undefined) Lagrange multiplier. Hence, not surpris-
ingly, the solution is again the circle with two integration constants defining
the center point and a Lagrange multiplier related radius.

2.5 Exercises

Find the solutions for the problems by using the Euler-Lagrange differential
equation and the boundary conditions and cosntraints, if given.

1.

I =
∫ x1

0

√
1+y′2

y dx = extremum.

Boundary conditions: y(0) = 0, (x1, y1) ∈ (x− 9)2 + y2 = 9.

2.
I =

∫ 1

0
(y′2 + x2)dx = extremum.

Constraint:
∫ 1

0
y2dx = 2.

3.
I =

∫ π
0
y′2dx = extremum.

Constraint:
∫ π
0
y2dx = 1.

4.
I =

∫ π
0
(y′2 − y2)dx = extremum.

Constraint:
∫ π
0
ydx = 1.

5.
I =

∮ √
1 + y′2dx = extremum.

Constraint: 1
2

∮
(xy′ − y)dx = A.

6.
I = 2π

∫ x2

x1
y
√
1 + y′2dx = extremum.

Constraint:
∫ x2

x1

√
1 + y′2dx = L.

7.
I =

∫ π/2
0

(y′2 − y2)dx = extremum.
Boundary conditions: y(0) = 0, y(π/2) = 1.

Constraint:
∫ π/2
0

2ydx = 6− π.
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8.
I =

∫ 1

0
(y′2 + xy)dx = extremum.

Boundary conditions: y(0) = − 1
12 , y(1) = 2.

Constraint:
∫ 1

0
12ydx = 6.

9.
I =

∫ x1

0
(y′2 + x2)dx = extremum.

Boundary conditions: y(0) = 0, (x1, y1) ∈ y = 4− x2.

10.
I =

∫ 1

0
(y′2)dx = extremum.

Boundary conditions: y(0) = 0, y(1) = 2.

Constraint:
∫ 1

0
ydx = 4.
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3

Multivariate functionals

The subject of this chapter is further expansion of the classes of functions
used in variational problems. Specifically, we discuss functionals with multiple
functions, functions with multiple variables will be discussed in a variational
context. Parametric functions and minimal surface applications will also be
presented.

3.1 Functionals with several functions

The variational problem of multiple dependent variables is posed as

I(y1, y2, . . . , yn) =

∫ x1

x0

f(x, y1, y2, . . . , yn, y
′
1, y

′
2, . . . , y

′
n)dx

with a pair of boundary conditions given for all functions:

yi(x0) = yi,0

and

yi(x1) = yi,1

for each i = 1, 2, . . . , n. The alternative solutions are:

Yi(x) = yi(x) + εiηi(x); i = 1, 2, . . . , n

with all the arbitrary auxiliary functions obeying the conditions:

ηi(x0) = ηi(x1) = 0.

The variational problem becomes

I(ε1, . . . , εn) =

∫ x1

x0

f(x, . . . , yi + εiηi, . . . , y
′
i + εiη

′
i, . . .)dx,

whose derivative with respect to the auxiliary variables is

∂I

∂εi
=

∫ x1

x0

∂f

∂εi
dx = 0.

51
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Applying the chain rule we get

∂f

∂εi
=

∂f

∂Yi

∂Yi
∂εi

+
∂f

∂Y ′
i

∂Y ′
i

∂εi
=

∂f

∂Yi
ηi +

∂f

∂Y ′
i

η′i.

Substituting into the variational equation yields, for i = 1, 2, . . . , n:

∂I

∂εi
=

∫ x1

x0

(
∂f

∂Yi
ηi +

∂f

∂Y ′
i

η′i

)
dx.

Integrating by parts and exploiting the alternative function form results in

∂I

∂εi
=

∫ x1

x0

ηi

(
∂f

∂yi
− d

dx

∂f

∂y′i

)
dx.

To reach the extremum, based on the fundamental lemma, we need the solu-
tion of a set of n Euler-Lagrange equations of the form

∂f

∂yi
− d

dx

∂f

∂y′i
= 0; i = 1, . . . , n.

Note that in this case the separate functions were dependent on the same
parameter. A later section discusses the case of one dependent function being
turned into this class of problems by introducing a parametric representation.

3.1.1 Euler–Lagrange system of equations

To illustrate this scenario, we consider an example where two functions are
dependent on a common independent variable,

∫ x1

x0

(
2y1y2 +

(
dy1
dx

)2

+

(
dy2
dx

)2
)
dx = extremum,

with the following boundary conditions at

x0 = 0, x1 =
π

2
.

In order to solve the problem, we need distinct boundary conditions for the
two functions:

y1(x0) = 0, y2(x0) = 0,

and

y1(x1) = −1, y2(x1) = 1.

According to the formula developed above, we have a system of two Euler-
Lagrange equations

∂f

∂y1
− d

dx

∂f

∂y′1
= 0
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and
∂f

∂y2
− d

dx

∂f

∂y′2
= 0.

Specifically for our functional

2y2 − d

dx
(2y′1) = 0

and

2y1 − d

dx
(2y′2) = 0.

Differentiation and cancellation produce the coupled system of differential
equations

d2y1
dx2

= y2

and
d2y2
dx2

= y1.

Substituting the first equation into the second as

d2

dx2
d2y1
dx2

= y1

produces the fourth-order homogeneous equation

d4y1
dx4

− y1 = 0.

The characteristic equation of

λ4 − 1 = 0

produces the solutions of
1,−1, i,−i.

The corresponding solutions using Euler’s formula to convert the complex
terms into reals are

y1(x) = aex + be−x + c cos(x) + d sin(x),

and since

y2 =
d2y1
dx2

,

the other solution becomes

y2(x) = aex + be−x − c cos(x)− d sin(x),

Applying the boundary conditions at the lower end, we obtain

y1(0) = ae0 + be0 + c cos(0) + d sin(0) = a+ b+ c = 0
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and
y2(0) = ae0 + be0 − c cos(0)− d sin(0) = a+ b− c = 0.

Similarly at the upper end

y1

(π
2

)
= ae

π
2 + be

−π
2 + c cos

(π
2

)
+ d sin

(π
2

)
= ae

π
2 + be

−π
2 + d = −1

and

y2

(π
2

)
= ae

π
2 − be

−π
2 − c cos

(π
2

)
− d sin

(π
2

)
= ae

π
2 + be

−π
2 − d = 1.

Without details of the elementary algebra, we conclude that

a = 0, b = 0, c = 0, d = −1.

Hence the solution to the problem is

y1 = − sin(x),

and from their relationship of

y2 =
d2y1
dx2

the other solution becomes
y2 = sin(x).

3.2 Variational problems in parametric form

Most of the discussion insofar was focused on functions in explicit form. The
concepts also apply to problems posed in parametric form. The explicit form
variational problem of

I(y) =

∫ x1

x0

f(x, y, y′)dx

may be reformulated with the substitutions

x = u(t), y = v(t).

The parametric variational problem becomes of the form

I(x, y) =

∫ t1

t0

f(x, y,
ẏ

ẋ
)ẋdt,

or

I(x, y) =

∫ t1

t0

F (t, x, y, ẋ, ẏ)dt.
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The Euler-Lagrange differential equation system for this case becomes

∂F

∂x
− d

dt

∂F

∂ẋ
= 0,

and
∂F

∂y
− d

dt

∂F

∂ẏ
= 0.

It is proven in [6] that an explicit variational problem is invariant under param-
eterization. In other words, regardless of the algebraic form of the parame-
terization, the same explicit solution will be obtained.

Parametrically given problems may be considered as functionals with sev-
eral functions. As an example, we consider the following twice differentiable
functions

x = x(t), y = y(t), z = z(t).

The variational problem in this case is presented as

I(x, y, z) =

∫ t1

t0

f(t, x, y, z, ẋ, ẏ, ż)dt.

Here the independent variable t is the parameter, and there are three depen-
dent variables : x, y, z. Applying the steps just explained for this specific case
results in the system of Euler-Lagrange equations

∂f

∂x
− d

dt

∂f

∂ẋ
= 0,

∂f

∂y
− d

dt

∂f

∂ẏ
= 0,

and
∂f

∂z
− d

dt

∂f

∂ż
= 0.

To illustrate this scenario, we consider the problem

I =

∫ 1

0

((ẋ)2 + (ẏ)2 + 2x)dt = extremum

consisting of two functions x(t), y(t) dependent upon the same parameter t
and the boundary conditions

x(0) = 1, y(0) = 1;x(1) =
3

2
, y(1) = 2.

The components of the Euler-Lagrange differential equations are

∂f

∂x
= 2,
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∂f

∂ẋ
= 2ẋ,

and
∂f

∂y
= 0,

∂f

∂ẏ
= 2ẏ.

The system of Euler-Lagrange differential equations becomes

2− d

dt
(2ẋ) = 0,

− d

dt
(2ẏ) = 0.

The equations are decoupled and may be solved separately. The first one after
shortening and reordering is

ẍ = 1.

Integrating both sides yields
ẋ = t+ c1,

and repeating produces the first dependent variable solution

x(t) =
t2

2
+ c1t+ c2.

Similar activity on the second equation proceeds as

ÿ = 0,

ẏ = d1,

and
y(t) = d1t+ d2.

Applying the boundary conditions

x(0) = 1 → c2 = 1,

and

x(1) =
3

2
=

1

2
+ c1 + 1 → c1 = 0.

Similarly
y(0) = 1 → d2 = 1,

and
y(1) = 2 = d1 · 1 + 1 → d1 = 1.

Finally, the solutions are

x(t) =
t2

2
+ 1,

and
y(t) = t+ 1.

Note that the parametric Euler-Lagrange systems are not necessarily decou-
pled as was shown in Section 3.1.1, contrary to this example.



Multivariate functionals 57

3.2.1 Maximal area by closed parametric curve

The problem is to find the not self-intersecting closed parametric curve with
a given length enclosing maximum area in two dimensions. This problem was
also addressed in the last chapter in a single function form.

We use Green’s identity to establish the area in parametric form as

A =
1

2

∫
xdy − ydx =

1

2

∫
(x
dy

dt
− y

dx

dt
)dt =

1

2

∫
(xẏ − yẋ)dt.

The length of the parametric curve is

L =

∫ t1

t0

√
(ẋ)2 + (ẏ)2dt.

The closed nature of the curve is expressed with the boundary conditions

x(t0) = x(t1); y(t0) = y(t1).

The conditional variational statement expressing the problem at hand is

I =

∫ t1

t0

1

2
(xẏ − yẋ) + λ

√
(ẋ)2 + (ẏ)2dt = extremum.

The Euler-Lagrange differential equations become

1

2
ẏ − d

dt

(
−1

2
y +

1

2

2λẋ√
(ẋ)2 + (ẏ)2

)
= 0

and

−1

2
ẋ− d

dt

(
1

2
x+

1

2

2λẏ√
(ẋ)2 + (ẏ)2

)
= 0.

Executing the differentiation only on the first terms in the parenthesis results
in

ẏ − d

dt

(
λẋ√

(ẋ)2 + (ẏ)2

)
= 0

and

−ẋ− d

dt

(
λẏ√

(ẋ)2 + (ẏ)2

)
= 0.

Integrating both equations, we obtain

y − λẋ√
(ẋ)2 + (ẏ)2

= c2

and

x+
λẏ√

(ẋ)2 + (ẏ)2
= c1.
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For convenience, we return to the explicit form as

ẏ

ẋ
=
dy

dx
= y′

and substituting into the second pair of equations we get

x− c1 =
−λy′√
1 + y′2

.

Squaring both sides and multiplying results in

(x− c1)
2(1 + y′2) = λ2y′2

from which the derivative is obtained as

y′ =
x− c1√

λ2 − (x− c1)2
.

Integrating both sides produces

y =
√
λ2 − (x− c1)2 + c2.

This is clearly a circle as

(y − c2)
2 + (x− c1)

2 = λ2.

From the given length of L and the fact that it is a closed circle, the resolution
of the Lagrange multiplier brings

λ =
L

2π
.

The remaining integrating constants, representing the coordinates of the cir-
cle, may be resolved from the equations

(y0 − c2)
2 + (x0 − c1)

2 =

(
L

2π

)2

and

(y1 − c2)
2 + (x1 − c1)

2 =

(
L

2π

)2

.

In order to do so, two distinct (t0 �= t1) boundary conditions are required

x(t0) = x0, y(t0) = y0,

and
x(t1) = x1, y(t1) = y1.

The most practical applications in this class occur in three-dimensional geom-
etry problems to be explored in Chapters 8 and 9.
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3.3 Functionals with two independent variables

All our discussions so far were confined to a single integral of the functional.
The next step of generalization is to allow a functional with multiple indepen-
dent variables. The simplest case is that of two independent variables, and
this will be the vehicle to introduce the process. The problem is of the form

I(z) =

∫ y1

y0

∫ x1

x0

f(x, y, z, zx, zy)dxdy = extremum.

Here the derivatives are

zx =
∂z

∂x

and

zy =
∂z

∂y
.

The alternative solution is also a function of two variables

Z(x, y) = z(x, y) + εη(x, y).

The now familiar process emerges as

I(ε) =

∫ y1

y0

∫ x1

x0

f(x, y, Z, Zx, Zy)dxdy = extremum.

The extremum is obtained via the derivative

∂I

∂ε
=

∫ y1

y0

∫ x1

x0

∂f

∂ε
dxdy.

Differentiating and substituting yield

∂I

∂ε
=

∫ y1

y0

∫ x1

x0

(
∂f

∂Z
η +

∂f

∂Zx
ηx +

∂f

∂Zy
ηy

)
dxdy.

The extremum is reached when ε = 0:

∂I

∂ε

∣∣∣
ε=0

=

∫ y1

y0

∫ x1

x0

(
∂f

∂z
η +

∂f

∂zx
ηx +

∂f

∂zy
ηy

)
dxdy = 0.

Applying Green’s identity for the second and third terms produces∫ y1

y0

∫ x1

x0

(
∂f

∂z
− ∂

∂x

∂f

∂zx
− ∂

∂y

∂f

∂zy

)
ηdxdy+

∫
∂D

(
∂f

∂zx

dy

ds
− ∂f

∂zy

dx

ds

)
ηds = 0.

Here ∂D is the boundary of the domain of the problem, and the second
integral vanishes by the definition of the auxiliary function. Due to the
fundamental lemma of calculus of variations, the Euler-Lagrange differential
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equation becomes

∂f

∂z
− ∂

∂x

∂f

∂zx
− ∂

∂y

∂f

∂zy
= 0.

3.4 Minimal surfaces

Minimal surfaces have intriguing natural occurrences. For example, soap films
stretched over various types of wire loops intrinsically attain such shapes, no
matter how difficult the boundary curve is. Various biological cell interactions
also manifest similar phenomena.

From a differential geometry point-of-view, a minimal surface is a surface
for which the mean curvature of the form

κm =
κ1 + κ2

2

vanishes, where κ1 and κ2 are the principal curvatures. A subset of minimal
surfaces are the surfaces of minimal area, and surfaces of minimal area passing
through a closed space curve are minimal surfaces. Finding minimal surfaces
is called the problem of Plateau.

We seek the surface of minimal area with equation

z = f(x, y), (x, y) ∈ D,

with a closed-loop boundary curve

g(x, y, z) = 0; (x, y) ∈ ∂D.

The boundary condition represents a three-dimensional curve defined over the
perimeter of the domain. The curve may be piecewise differentiable, but con-
tinuous and forms a closed loop, a Jordan curve.

The corresponding variational problem is

I(z) =

∫ ∫
D

√
1 +

∂z

∂x

2

+
∂z

∂y

2

dxdy = extremum,

subject to the constraint of the boundary condition above. The Euler-Lagrange
equation for this case is of the form

− ∂

∂x

∂z
∂x√

1 +
(
∂z
∂x

)2
+
(
∂z
∂y

)2 − ∂

∂y

∂z
∂y√

1 +
(
∂z
∂x

)2
+
(
∂z
∂y

)2 = 0.
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After considerable algebraic work, this equation becomes(
1 +

(
∂z

∂y

)2
)
∂2z

∂x2
− 2

∂z

∂x

∂z

∂y

∂2z

∂x∂y
+

(
1 +

(
∂z

∂x

)2
)
∂2z

∂y2
= 0.

This is the differential equation of minimal surfaces, originally obtained by
Lagrange himself. The equation is mainly of verification value as this is one
of the most relevant examples for the need of a numerical solution. Most of
the problems of finding minimal surfaces are solved by Ritz type methods,
the subject of Chapter 7.
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FIGURE 3.1 Saddle surface

The simplest solutions for such problems are the so-called saddle surfaces,
such as, for example, shown in Figure 3.1, whose equation is

z = x3 − 2xy2.

It is easy to verify that this satisfies the equation. The figure also shows the
level curves of the surface projected to the x-y plane. The straight lines on
the plane correspond to geodesic paths, a subject of detailed discussion in
Chapter 8. It is apparent that the x = 0 planar cross-section of the surface is
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the z = 0 line in the x-y plane, as indicated by the algebra. The intersection
with the y = 0 plane produces the z = x3 curve, again in full adherence to
the equation.

When a minimal surface is sought in a parametric form

r = x(u, v)i+ y(u, v)j + z(u, v)k,

the variational problem becomes

I(r) =

∫ ∫
D

√
EF −G2dA,

where the so-called first fundamental quantities are defined as

E(u, v) = |r′u|2,
F (u, v) = r′u · r′v,

and

G(u, v) = |r′v|2.
The solution may be obtained from the differential equation

∂

∂u

Fr′u −Gr′v√
EF −G2

+
∂

∂v

Er′v −Gr′u√
EF −G2

= 0.

Finding minimal surfaces for special boundary arrangements arising from
revolving curves is discussed in the next section.

3.4.1 Minimal surfaces of revolution

This problem has obvious relevance in mechanical engineering and computer-
aided manufacturing (CAM). Let us now consider two points

P0 = (x0, y0), P1 = (x1, y1),

and find the function y(x) going through the points that generates an object
of revolution z = f(x, y) when rotated around the x axis with minimal surface
area. The surface of that object of revolution is

S = 2π

∫ x1

x0

y
√
1 + y′2dx.

The corresponding variational problem is

I(y) = 2π

∫ x1

x0

y
√
1 + y′2dx = extremum,
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with the boundary conditions of

y(x0) = y0, y(x1) = y1.

The Beltrami formula of Equation (1.1) produces

y
√
1 + y′2 − yy′2√

1 + y′2
= c1.

Reordering and another integration yield

x = c1

∫
1√

y2 − c21
dy.

Hyperbolic substitution enables the integration as

x = c1 cosh
−1

(
y

c1

)
+ c2.

Finally the solution curve generating the minimal surface of revolution between
the two points is

y = c1 cosh

(
x− c2
c1

)
,

where the integration constants are resolved with the boundary conditions as

y0 = c1 cosh

(
x0 − c2
c1

)
,

and

y1 = c1 cosh

(
x1 − c2
c1

)
.

An example of such a surface of revolution, the catenoid, is shown in Figure
3.2 where the meridian curves are catenary curves.

3.5 Functionals with three independent variables

The generalization to functionals with multiple independent variables is rather
straightforward from the last section. The case of three independent variables,
however, has such enormous engineering importance that it is worthy of a spe-
cial section. The problem is of the form

I (u(x, y, z)) =

∫ ∫
D

f(x, y, z, u, ux, uy, uz)dxdydz = extremum.
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FIGURE 3.2 Catenoid surface

The solution function u(x, y, z) may be some engineering quantity describing
a physical phenomenon acting on a three-dimensional body. Here the domain
is generalized as well to

x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1.

The alternative solution is also a function of three variables

U(x, y, z) = u(x, y, z) + εη(x, y, z).

As usual

I(ε) =

∫ ∫
D

f(x, y, z, U, Ux, Uy, Uz)dxdydz.

The extremum is reached when:

∂I

∂ε

∣∣∣
ε=0

=

∫ ∫
D

(
∂f

∂u
η +

∂f

∂ux
ηx +

∂f

∂uy
ηy +

∂f

∂uz
ηz

)
dxdydz = 0.

Applying Green’s identity for the last three terms and a considerable amount
of algebra produces the Euler-Lagrange differential equation for this
case

∂f

∂u
− ∂

∂x

∂f

∂ux
− ∂

∂y

∂f

∂uy
− ∂

∂z

∂f

∂uz
= 0.
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An even more practical three-variable case, important in engineering dynam-
ics, is when the Euclidean spatial coordinates are extended with time. Let us
consider the variational problem of one temporal and two spatial dimensions
as

I(u) =

∫ t1

t0

∫ ∫
D

f(x, y, t, u, ux, uy, ut)dxdydt = extremum.

Here again

ux =
∂u

∂x
;uy =

∂u

∂y
,

and

ut =
∂u

∂t
.

We introduce the alternative solution as

U(x, y, t) = u(x, y, t) + εη(x, y, t),

with the temporal boundary conditions of

η(x, y, t0) = η(x, y, t1) = 0.

As above

I(ε) =

∫ t1

t0

∫ ∫
D

f(x, y, t, U, Ux, Uy, Ut)dxdydt,

and the extremum is reached when:

∂I

∂ε

∣∣∣
ε=0

=

∫ t1

t0

∫ ∫
D

(
∂f

∂u
η +

∂f

∂ux
ηx +

∂f

∂uy
ηy +

∂f

∂ut
ηt

)
dxdydt = 0. (3.1)

The last member of the integral may be written as

∫ t1

t0

∫ ∫
D

∂f

∂ut
ηtdxdydt =

∫ ∫
D

∫ t1

t0

∂f

∂ut
ηtdtdxdy.

Integrating by parts yields

∫ ∫
D

(
∂f

∂ut
η
∣∣∣t1
t0
−
∫ t1

t0

η
∂

∂t

(
∂f

∂ut

)
dt

)
dxdy.

Due to the temporal boundary condition, the first term vanishes and

−
∫ t1

t0

∫ ∫
D

η
∂

∂t

(
∂f

∂ut

)
dxdydt
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remains. The second and third terms of Equation (3.1) may be rewritten by
Green’s identity as follows:

∫ t1

t0

∫ ∫
D

(
∂f

∂ux
ηx +

∂f

∂uy
ηy

)
dxdydt =

−
∫ t1

t0

∫ ∫
D

η

(
∂

∂x

(
∂f

∂ux

)
+

∂

∂y

(
∂f

∂uy

))
dxdydt+

∫ t1

t0

∫
∂D

η

(
∂f

∂ux

dy

ds
+

∂f

∂uy

dx

ds

)
dsdt.

With these changes, Equation (3.1) becomes

∂I

∂ε

∣∣∣
ε=0

=

∫ t1

t0

(

∫ ∫
D

η

(
∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
− ∂

∂t

(
∂f

∂ut

))
dxdy+

∫
∂D

η

(
∂f

∂ux

dy

ds
− ∂

∂uy

dx

ds

)
ds)dt = 0.

Since the auxiliary function η is arbitrary, by the fundamental lemma of cal-
culus of variations the first integral is only zero when

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
− ∂

∂t

(
∂f

∂ut

)
= 0

in the interior of the domain D. This is the Euler-Lagrange differential equa-
tion of the problem. Since the boundary conditions of the auxiliary function
were only temporal, the second integral is only zero when

∂f

∂ux

dy

ds
− ∂

∂uy

dx

ds
= 0

on the boundary ∂D. This is the constraint of the variational problem. This
result will be utilized in Chapter 11 in the solution of the elastic membrane
vibration problem.

This may be generalized to four independent variables by using three spa-
tial (x, y, z) and one temporal (t) variable. In those cases, the Euler-Lagrange
differential equation is extended by an additional term:

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
− ∂

∂y

(
∂f

∂uz

)
− ∂

∂t

(
∂f

∂ut

)
= 0

Such scenario will be instrumental in modeling continuum problems in Chap-
ters 11 and 12.
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3.6 Exercises

Find the Euler-Lagrange differential equation for the functionals.

1.
I =

∫ ∫
(x2

(
∂u
∂x )

2 + y2(∂u∂y )
2
)
dxdy = extremum.

2.
I =

∫ ∫ (
(∂u∂t )

2 − c2(∂u∂x )
2
)
dxdt = extremum.

3.
I =

∫ ∫ (
(∂u∂x )

2 + (∂u∂y )
2
)
dxdy = extremum.

4.
I =

∫ ∫ (
(∂u∂x )

2 + (∂u∂y )
2 + (∂u∂z )

2
)
dxdydz = extremum.

Constraint:
∫ ∫ ∫

u2dxdydz = 1.

5.
I =

∫ ∫ (
1
2 (
∂z
∂x )

2 + 1
2 (
∂z
∂y )

2 + z
)
dxdy = extremum.

6.
I =

∫ b
a
(xy2 + x2y + ẋẏ)dt = extremum.

Find the general solution for the following problems.

7.
I =

∫
(xy + ẋẏ)dt = extremum.

8.
I =

∫ (
x2 + y2 + z2 + (ẋ)2 + (ẏ)2 + (ż)2

)
dt = extremum.

Find the Euler-Lagrange differential equation for the functionals.

9.
I =

∫ ∫ √
1 + (∂u∂x )

2 + (∂u∂y )
2dxdy = extremum.

10.
I =

∫ ∫ √
1 + (∂u∂x )

2 + (∂u∂y )
2 + (∂u∂z )

2dxdydz = extremum.
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4

Higher order derivatives

The fundamental problem of calculus of variations involved the first deriva-
tive of the unknown function. In this chapter, we will allow the presence
of higher order derivatives that lead to the so-called Euler-Poisson equation.
The chapter will also present a method applying an algebraic constraint on
the derivative. Finally the technique of linearization of second order problems
will be discussed and illustrated.

4.1 The Euler–Poisson equation

First let us consider the variational problem of a functional with a single func-
tion, but containing its higher derivatives:

I(y) =

∫ x1

x0

f(x, y, y′, . . . , y(m))dx.

Accordingly, boundary conditions for all derivatives will also be given as

y(x0) = y0, y(x1) = y1,

y′(x0) = y′0, y
′(x1) = y′1,

y′′(x0) = y′′0 , y
′′(x1) = y′′1 ,

and so on until

y(m−1)(x0) = y
(m−1)
0 , y(m−1)(x1) = y

(m−1)
1 .

As in the past chapters, we introduce an alternative solution of

Y (x) = y(x) + εη(x),

where the arbitrary auxiliary function η(x) is continuously differentiable on
the interval x0 ≤ x ≤ x1 and satisfies

η(x0) = 0, η(x1) = 0.

69
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The variational problem in terms of the alternative solution is

I(ε) =

∫ x1

x0

f(x, Y, Y ′, . . . , Y (m))dx.

The differentiation with respect to ε follows

dI

dε
=

∫ x1

x0

d

dε
f(x, Y, Y ′, . . . , Y (m))dx,

and by using the chain rule, the integrand is reshaped as

∂f

∂Y

dY

dε
+

∂f

∂Y ′
dY ′

dε
+

∂f

∂Y ′′
dY ′′

dε
+ . . .+

∂f

∂Y (m)

dY (m)

dε
.

Substituting the alternative solution and its derivatives with respect to ε, the
integrand yields

∂f

∂Y
η +

∂f

∂Y ′ η
′ +

∂f

∂Y ′′ η
′′ + . . .+

∂f

∂Y (m)
η(m).

Hence the functional becomes

dI

dε
=

∫ x1

x0

(
∂f

∂Y
η +

∂f

∂Y ′ η
′ +

∂f

∂Y ′′ η
′′ + . . .+

∂f

∂Y (m)
η(m))dx.

Integrating by term results in

dI

dε
=

∫ x1

x0

∂f

∂Y
ηdx+

∫ x1

x0

∂f

∂Y ′ η
′dx+

∫ x1

x0

∂f

∂Y ′′ η
′′dx+ . . .+

∫ x1

x0

∂f

∂Y (m)
η(m)dx,

and integrating by parts produces

dI

dε
=

∫ x1

x0

η
∂f

∂Y
dx−

∫ x1

x0

η
d

dx

∂f

∂Y ′ dx+

∫ x1

x0

η
d2

dx2
∂f

∂Y ′′ dx−

. . . (−1)m
∫ x1

x0

η
d(m)

dx(m)

∂f

∂Y (m)
dx.

Factoring the auxiliary function and combining the terms again simplifies to

dI

dε
=

∫ x1

x0

η

(
∂f

∂Y
− d

dx

∂f

∂Y ′ +
d2

dx2
∂f

∂Y ′′ − . . . (−1)m
d(m)

dx(m)

∂f

∂Y (m)

)
dx.

Finally the extremum at ε = 0 and the fundamental lemma produces the
Euler-Poisson equation

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
− . . . (−1)m

d(m)

dx(m)

∂f

∂y(m)
= 0.

The Euler-Poisson equation is an ordinary differential equation of order 2m
and requires the aforementioned 2m boundary conditions, where m is the
highest order derivative contained in the functional.
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In reality, the highest order most frequently used is m = 2 reflecting the
fact that many natural phenomena are described by second order differential
equations. In geometry the curvature, and in physics the acceleration, is pro-
portional to the second derivative, giving rise to many practical variational
problems, some discussed in later sections.

To illustrate the Euler-Poisson equation solution, we consider the functional

I =

∫ π/4

0

(y′′2 − y2 + x2)dx = extremum.

The boundary conditions are

y(0) = 0, y(π/4) =
1√
2
,

and

y′(0) = 1, y′(π/4) =
1√
2
.

The second order form of the Euler-Poisson equation is proper for this prob-
lem. The components are

∂f

∂y
= −2y,

∂f

∂y′
= 0,

and
∂f

∂y′′
= 2y′′.

The differential equation becomes

−2y − 0 +
d2

dx2
(2y′′) = 0,

which simplifies to
d4y

dx4
− y = 0.

This is incidentally the same fourth order differential equation obtained in
the example in Section 3.1.1 as a problem of two functions. Borrowing from
there, the solution form will be

y(x) = aex + be−x + c cos(x) + d sin(x).

Applying the four boundary conditions, we obtain a different system of equa-
tions. Specifically, the boundary conditions here will include derivative con-
ditions also. The derivative is

y′(x) = aex − be−x − c sin(x) + d cos(x).
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At the lower end, the displacement condition results in

y(0) = ae0 + be0 + c cos(0) + d sin(0) = a+ b+ c = 0.

The first derivative condition brings

y′(0) = ae0 − be0 − c sin(0) + d cos(0) = a− b+ d = 1.

Similarly at the upper end

y(
π

4
) = ae

π
4 + be

−π
4 + c cos(

π

4
) + d sin(

π

4
) = ae

π
4 + be

−π
4 +

c√
2
+

d√
2
=

1√
2

and

y′(
π

4
) = ae

π
4 − be

−π
4 − c sin(

π

4
) + d cos(

π

4
) = ae

π
4 − be

−π
2 − c√

2
+

d√
2
=

1√
2
.

Without details of the elementary algebra solving the system of four equations,
we conclude

a = 0, b = 0, c = 0, d = 1.

Hence the solution to the problem is

y = sin(t).

The similarities between the two problems belonging to a different class are
important as they illustrate the possibility of solving problems with alterna-
tive methods.

4.2 The Euler–Poisson system of equations

In the case of a functional with multiple functions along with their higher
order derivatives, the problem gets more difficult. Assuming p functions in
the functional, the problem is posed in the form of

I(y1, . . . , yp) =

∫ x1

x0

f(x, y1, y
′
1, . . . , y

(m1)
1 , . . . , yp, y

′
p, . . . , y

(mp)
p )dx.

Note that the highest order of the derivative of the various functions is not
necessarily the same. This is a rather straightforward generalization of the
case of the last section, leading to a system of Euler-Poisson equations as
follows:

∂f

∂y1
− d

dx

∂f

∂y′1
+

d2

dx2
∂f

∂y′′1
− . . . (−1)m1

d(m1)

dx(m1)

∂f

∂y
(m1)
1

= 0,
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. . . ,

∂f

∂yp
− d

dx

∂f

∂y′p
+

d2

dx2
∂f

∂y′′p
− . . . (−1)mp

d(mp)

dx(mp)

∂f

∂y
(mp)
p

= 0.

This is a set of p ordinary differential equations that may or may not be cou-
pled, hence resulting in a varying level of difficulty in solution.

As mentioned before, the highest orders are mostly second order, and two
equations are used describing a pair of functions. Such scenario occurs in
geometrical problems involving the curvature of the curves presented in para-
metric form.

We illustrate the use of a system of Euler-Poisson equations with the fol-
lowing variational problem.

I =

∫ t=1

t=0

((ẍ)2 + (ÿ)2)dt = extremum.

The equations will be

∂f

∂x
− d

dt

∂f

∂ẋ
+
d2

dt2
∂f

∂ẍ
=

d2

dt2
2ẍ = 0,

and
∂f

∂y
− d

dt

∂f

∂ẏ
+
d2

dt2
∂f

∂ÿ
=

d2

dt2
2ÿ = 0.

The system is decoupled
d4

dt4
x(t) = 0,

and
d4

dt4
y(t) = 0.

Hence, the solutions will be simply

x = a0 + a1t+ a2t
2 + a3t

3,

and
y = b0 + b1t+ b2t

2 + b3t
3.

The constants are resolved by different boundary conditions for the two func-
tions albeit for both with a pair of displacement and derivative conditions.
For the x(t) function

x(0) = 0, x(1) = 1, ẋ(0) = 0, ẋ(1) = 1,

yields
x(0) = 0 → a0 = 0,
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and

ẋ(0) = 0 → a1 = 0.

For the remaining coefficients, we get the system of

x(1) = 1 = a2 + a3,

and

ẋ(1) = 1 = 2a2 + 3a3.

The solution is

a2 = 2, a3 = −1,

hence, the solution of the first function is

x(t) = 2t2 − t3.

Applying different boundary conditions for the second function

y(0) = 0, y(1) = 1, ẏ(0) = 2, ẏ(1) = 2,

produces

y(t) = 2t− 3t2 + 2t3.

The solution curve is a parametric spline function shown in Figure 4.1, a sub-
ject of deeper discussion in the computational geometry chapter.

Since the ratio of the parametric function second derivatives is related to
the explicit function second derivatives, in essence the problem was to find a
minimal curvature solution to the functional posted. It is very visible that
the goal of the optimization was achieved, the spline function traversing the
span is certainly smooth.

It is easy to verify that the location boundary conditions are simultaneously
satisfied. Considering the derivative conditions, computing

dy

dx
=
ẏ

ẋ

would result in infinity at the lower end which is demonstrated by the vertical
tangent of the solution there. At the upper end, the tangent adheres to the
computed value of 2.

The system of Euler-Poisson equations may be coupled resulting in a dif-
ficult solution of the participating differential equations. Third order appli-
cations with three equations may also occur in geometrical problems in a
3-dimensional space where the torsion of the parametrically represented curve
is also used.
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FIGURE 4.1 Parametric solution

4.3 Algebraic constraints on the derivative

It is also common in engineering applications to impose constraint conditions
on some of the derivatives participating in the functional, as in the problem

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum,

subject to

g(x, y, y′) = 0.

In order to be able to solve such problems, we need to introduce a Lagrange
multiplier as a function of the independent variable as

h(x, y, y′, λ) = f(x, y, y′) + λ(x)g(x, y, y′).

The use of this approach means that the functional now contains two unknown
functions and the variational problem becomes

I(y, λ) =

∫ x1

x0

h(x, y, y′, λ)dx,
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with the original boundary conditions, but without a constraint. The solu-
tion is obtained for the two function case by a system of two Euler-Lagrange
equations.

Derivative constraints may also be applied to the case of higher order deriva-
tives. The second order problem of

I(y) =

∫ x1

x0

f(x, y, y′, y′′)dx = extremum

may be subject to a constraint

g(x, y, y′, y′′) = 0.

In order to be able to solve such problems, we also introduce a Lagrange mul-
tiplier function as

h(x, y, y′, y′′) = f(x, y, y′, y′′) + λ(x)g(x, y, y′, y′′).

The result is a variational problem of two functions with higher order deriva-
tives as

I(y, λ) =

∫ x1

x0

h(x, y, y′, y′′, λ)dx = extremum.

Hence, the solution may be obtained by the application of a system of two
Euler-Poisson equations.

Furthermore, derivative constraints may also be applied to a variational
problem originally exhibiting multiple functions, such as

I(y, z) =

∫ x1

x0

f(x, y, y′, z, z′)dx = extremum

subject to

g(x, y, y′, z, z′) = 0.

Here the new functional is

h(x, y, y′, z, z′, λ) = f(x, y, y′, z, z′) + λ(x)g(x, y, y′, z, z′).

Following above, this problem translates into the unconstrained form of

I(y, z, λ) =

∫ x1

x0

h(x, y, y′, z, z′, λ)dx

that may be solved by a system of three Euler-Lagrange differential equations

∂h

∂y
− d

dx

∂h

∂y′
= 0,
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∂h

∂z
− d

dx

∂h

∂z′
= 0,

and
∂h

∂λ
− d

dx

∂h

∂λ′
= 0.

For illustration, we consider the variational problem of

I(y, z) =

∫ x1

x0

(y2 − z2)dx = extremum,

under the derivative constraint of

y′ + y − z = 0.

This results in

h(x, y, y′, z, z′, λ) = y2 − z2 + λ(x)(y′ − y + z).

The solution is obtained from the following three equations

2y − λ− λ′ = 0,

−2z + λ = 0,

and
y′ + y − z = 0.

The second equation enables the elimination of the Lagrange multiplier, result-
ing in the linear system of first order differential equations

y − z − z′ = 0,

and
y′ + y − z = 0.

This may be recast in a matrix form as[
z′

y′

]
=

[−1 1
1 −1

] [
z
y

]
.

Computing the matrix exponential or the fundamental solution matrix based
on the characteristic equation solution, the system may easily be solved.

4.4 Linearization of second order problems

It is very common in engineering practice that the highest derivative of interest
is of second order. As mentioned before, accelerations in engineering analysis
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of motion, and other important application concepts are tied to the second
derivative.

This specific case of second order problems may be reverted to a linear
problem involving two functions. Consider

I(y) =

∫ x1

x0

f(x, y, y′, y′′)dx = extremum

with the following boundary conditions

y(x0) = y0, y(x1) = y1, y
′(x0) = y′0, y

′(x1) = y′1.

By introducing a new function

z(x) = y′(x),

we can reformulate the unconstrained second order variational problem as a
constrained variational problem of the first order with multiple functions:

I(y, z) =

∫ x1

x0

f(x, y, z, z′)dx = extremum,

subject to a constraint involving the derivative

g(x, y, z) = z − y′ = 0.

Using the combined function in the form of

h(x, y, z, z′, λ) = f(x, y, z, z′) + λ(x)(z − y′),

and following the process laid out in the last section, we can produce a system
of three Euler-Lagrange differential equations:

∂h

∂y
− d

dx

∂h

∂y′
=
∂f

∂y
+
dλ

dx
= 0,

∂h

∂z
− d

dx

∂h

∂z′
=
∂f

∂z
+ λ− d

dx

∂f

∂z′
= 0,

and
∂h

∂λ
− d

dx

∂h

∂λ′
= z − y′ = 0.

This may, of course, be turned into the Euler-Poisson equation by expressing

λ =
d

dx

∂f

∂z′
− ∂f

∂z

from the middle equation and differentiating as

dλ

dx
=

d2

dx2
∂f

∂z′
− d

dx

∂f

∂z
.
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Substituting this and the third equation into the first yields the Euler-Poisson
equation we could have achieved, had we approached the original quadratic
problem directly:

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0.

Depending on the particular application circumstances, however, the linear
system of Euler-Lagrange equations may be more conveniently solved than
the quadratic Euler-Poisson equation.

We illustrate this process by the following problem:∫
(y2 − y′′2)dx = extremum.

We use
z = y′, z′ = y′′,

to substitute and produce the constrained but linear problem∫ (
y2 − z′2 + λ(z − y′)

)
dx = extremum.

The Euler-Poisson system of equations becomes

∂f

∂y
+
dλ

dx
= 2y + λ′ = 0,

∂f

∂z
+ λ− d

dx

∂f

∂z′
= λ+ 2z′ = 0,

and the third equation is simply the dictated substitution

z − y′ = 0.

In this case, it is not possible to eliminate one of the equations since all
three variables have derivatives also. Hence, the linear system of first order
differential equations becomes

λ′ = −2y,

z′ = −λ/2
and

y′ = z.

Recasting it in matrix form results in⎡
⎣λ′z′
y′

⎤
⎦ =

⎡
⎣ 0 0 −2
−1/2 0 0
0 1 0

⎤
⎦
⎡
⎣λz
y

⎤
⎦ .
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The solution of this system would lead to the same result as would be obtained
by attacking the original problem with the Euler-Poisson equation approach.
While it appears that solving the latter form would be more direct, it depends
on the particular example and is not always the case.

Finally, practical applications of higher than second order derivatives also
do occur albeit not very frequently. Computer aided manufacturing desires
tool paths that are smooth space curves not just with minimal curvature, but
also torsion, bringing in the need for the third derivative.

4.5 Exercises

Find the solutions for the variational problems.

1.
I =

∫ 1

0
(yy′ + y′′2)dx = extremum.

Boundary conditions: y(0) = 0, y′(0) = 1, y(1) = 2, y′(1) = 4.

2.
I =

∫∞
0

(y2 + y′2 + (y′′ + y′)2)dx = extremum.
Boundary conditions: y(0) = 1, y′(0) = 2, y(∞) = 0, y′(∞) = 0.

3.
I =

∫ 1

0
(1 + y′′2)dx = extremum.

Boundary conditions: y(0) = 0, y′(0) = 1, y(1) = 1, y′(1) = 1.

4.
I =

∫ b
a
(y2 + 2y′2 + y′′2)dx = extremum.

5.
I =

∫ 1

0
y′′2dx = extremum.

Boundary conditions: y(0) = 0, y′(0) = 1
2 , y(1) = 1, y′(1) = 3

2 .

6.
I =

∫ π
0
(y′′2 − 4y2)dx = extremum.
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The inverse problem

This chapter deals with the case when the engineer starts from a differential
equation with certain boundary conditions that is difficult to solve. Executing
the inverse of the Euler-Lagrange process and obtaining the variational formu-
lation of the boundary value problem may be advantageous. This discussion
leads to the variational form of eigenvalue problems and the Sturm-Liouville
class of differential equations. The latter are the source of many notable
orthogonal polynomial families, such as Legendre’s, which will be presented
in detail.

5.1 Linear differential operators

It is not necessarily easy, or may not even be possible, to reconstruct the varia-
tional problem from a differential equation. For differential equations, partial
or ordinary, containing a linear, self-adjoint, positive operator, the task may
be accomplished. Such an operator exhibits the relation

(Au, v) = (u,Av),

where the parenthesis expression denotes a scalar product in the function
space of the solution of the differential equation. Positive definiteness of the
operator means

(Au, u) ≥ 0,

with zero attained only for the trivial (u = 0) solution. Let us consider the
differential equation of

Au = f,

where the operator obeys the above conditions and f is a known function. If
the differential equation has a solution, it corresponds to the minimum value
of the functional

I(u) =
1

2
(Au, u)− (u, f).

81
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This may be proven by simply applying the appropriate Euler-Lagrange equa-
tion to this functional.

5.2 The variational form of Poisson’s equation

We demonstrate the inverse process through the example of Poisson’s equa-
tion, a topic of much interest for engineers:

Δu(x) =
∂2u

∂x2
+
∂2u

∂y2
= f(x, y).

Here the left-hand side is the Laplace operator which fulfills the above require-
ments on the operator. We impose Dirichlet type boundary conditions on the
boundary of the domain of interest.

u(x, y) = 0; (x, y) ∈ ∂D,

where D is the domain of solution and ∂D is its boundary. According to the
above proposition, we need to compute

(Au, u) =

∫ ∫
D

u

(
∂2u

∂x2
+
∂2u

∂y2

)
dxdy.

Applying Green’s theorem results in

(Au, u) = −
∫
∂D

(
u
∂u

∂y
dx− u

∂u

∂x
dy

)
−
∫ ∫

D

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dxdy.

Due to the boundary conditions, the first term vanishes and we obtain

(Au, u) = −
∫ ∫

D

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dxdy.

The right-hand side term of the differential equation is processed as

(u, f) =

∫ ∫
D

uf(x, y)dxdy.

The variational formulation of Poisson’s equation finally is

∫ ∫
D

(
−1

2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

− uf

)
dxdy =

∫ ∫
D

Fdxdy = extremum.

To prove this, we will apply the Euler-Lagrange equation developed in Section
3.3. The components for this particular case are:

∂F

∂u
= −f,
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∂

∂x

∂F

∂ux
= − ∂

∂x
ux = −∂

2u

∂x2
,

and
∂

∂y

∂F

∂uy
= − ∂

∂y
uy = −∂

2u

∂y2
.

The Euler-Lagrange differential equation of

−f +
∂2u

∂x2
+
∂2u

∂y2
= 0

is clearly equivalent with Poisson’s equation after ordering.

5.3 The variational form of eigenvalue problems

Eigenvalue problems of various kinds may also be formulated as variational
problems [8]. We consider the equation of the form

Δu(x, y)− λu(x, y) = 0, (5.1)

where the unknown function u(x, y) defined on domain D is the eigenfunction
and λ is the eigenvalue. The boundary condition is imposed as

u(x, y) = 0

on the perimeter ∂D of the domain D. The corresponding variational problem
is of the form

I =

∫ ∫
D

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dxdy = extremum, (5.2)

under the normalization condition of

g(x, y) =

∫ ∫
D

u2(x, y)dxdy = 1.

This relation is proven as follows. Following the Lagrange solution of con-
strained variational problems introduced in Section 2.2, we can write

h(x, y) = u(x, y) + λg(x, y),

and

I =

∫ ∫
D

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+ λu2

)
dxdy.
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Note that the λ is both in the role of the Lagrange multiplier and the eigen-
value. Introducing

U(x, y) = u(x, y) + εη(x, y)

the variational form becomes

I(ε) =

∫ ∫
D

((
∂u

∂x
+ ε

∂η

∂x

)2

+

(
∂u

∂y
+ ε

∂η

∂y

)2

+ λ(u+ εη)2

)
dxdy.

The extremum is reached when

dI(ε)

dε

∣∣∣
ε=0

= 0,

which gives rise to the equation

2

∫ ∫
D

(
∂u

∂x

∂η

∂x
+
∂u

∂y

∂η

∂y
+ λuη

)
dxdy = 0. (5.3)

Green’s identity in its original three-dimensional form was exploited on sev-
eral occasions earlier; here we apply it for the special vector field

η∇u
in a two-dimensional domain. The result is∫ ∫

D

(∇η · ∇u)dA =

∫
∂D

η(∇u · n)ds−
∫ ∫

D

η∇2udA.

Since the tangent of the circumference is in the direction of

dx i+ dy j,

the unit normal may be computed as

n =
dy i− dx j√
dx2 + dy2

.

Finally utilizing the arc length formula of

ds =
√
dx2 + dy2,

the line integral over the circumference of the domain becomes∫
∂D

η

(
∂u

∂x
dy − ∂u

∂y
dx

)
.

Applying above for the first two terms of Equation (5.3) results in∫ ∫
D

(
∂u

∂x

∂η

∂x
+
∂u

∂y

∂η

∂y

)
dxdy =
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∂D

(
η

(
∂u

∂x
i+

∂u

∂y
j

)
· n
)
ds−

∫ ∫
D

(
∂2u

∂x2
+
∂2u

∂y2

)
ηdxdy =

∫
∂D

∂u

∂x
ηdy − ∂u

∂y
ηdx−

∫ ∫
D

Δuηdxdy.

The integral over the boundary vanishes due to the assumption on η and sub-
stituting the remainder part into Equation (5.3) we obtain

−2

∫ ∫
D

(Δu− λu)ηdxdy = 0.

Since η(x, y) is arbitrarily chosen, in order to satisfy this equation

Δu− λu = 0

must be satisfied. Thus we have established that Equation (5.2) is indeed the
variational form of Equation (5.1) and the Lagrange multiplier is the eigen-
value.

5.3.1 Orthogonal eigensolutions

The eigenvalue problem has an infinite number of eigenvalues, and for each
eigenvalue there exists a corresponding eigenfunction that is unique apart from
a constant factor. Hence, the variational form should also provide means for
the solution of multiple pairs.

Let us denote the series of eigenpairs as

(λ1, u1), (λ2, u2), . . . (λn, un).

Assuming that we have already found the first pair satisfying

Δu1 − λ1u1 = 0,

we seek the second solution u2, λ2 �= λ1 following the process laid out in the
last section. Then for any arbitrary auxiliary function η it follows that∫ ∫

D

(
∂u2
∂x

∂η

∂x
+
∂u2
∂y

∂η

∂y
+ λ2u2η

)
dxdy = 0.

Applying an auxiliary function of the special form of

η = u1,

we obtain ∫ ∫
D

(
∂u2
∂x

∂u1
∂x

+
∂u2
∂y

∂u1
∂y

+ λ2u2u1

)
dxdy = 0.
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From the first eigenpair, we know∫ ∫
D

(
∂u1
∂x

∂η

∂x
+
∂u1
∂y

∂η

∂y
+ λ1u1η

)
dxdy = 0.

Applying an auxiliary function of the special form of

η = u2,

we obtain ∫ ∫
D

(
∂u1
∂x

∂u2
∂x

+
∂u1
∂y

∂u2
∂y

+ λ1u1u2

)
dxdy = 0.

Subtracting the equations and canceling the identical terms results in

(λ2 − λ1)

∫ ∫
D

u1u2dxdy = 0.

Since

λ1 �= λ2,

it follows that ∫ ∫
D

u2u1dxdy = 0

must be true. The two eigenfunctions are orthogonal. With similar argu-
ments and specially selected auxiliary functions, it is also easy to show that
the second solutions also satisfy

Δu2 − λ2u2 = 0.

The subsequent eigensolutions may be found by the same procedure and the
sequence of the eigenpairs attain the extrema of the variational problem under
the successive conditions of the orthogonality against the preceding solutions.

5.4 Sturm–Liouville problems

The process demonstrated in the last section in connection with Laplace’s
operator may be applied to arrive at eigenvalues and eigenfunctions of other
differential equations as well. Introducing the Sturm-Liouville operator

LS−L =
d

dx
(p(x)

d

dx
) + q(x),
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where the functions p(x) > 0, q(x), and r(x) > 0 are continuous and continu-
ously differentiable, the eigenvalue problem of the form

LS−Ly(x) + λr(x)y(x) = 0

is called a Sturm-Liouville eigenproblem. Here the unknown solution y(x) is
the eigenfunction and λ is the eigenvalue. The eigenvalues of these problems
are all real, non-negative and form a strictly increasing sequence. For each
eigenvalue, there exists one and only one linearly independent eigenfunction.

This corresponds to the variational problem of

I(y) =

∫ x1

x0

(
p(x)y′2 − q(x)y2

)
dx = extremum,

subject to the constraint of∫ x1

x0

r(x)y2(x)dx = 1.

The Lagrange multiplier constrained form is

I(y) =

∫ x1

x0

(
p(x)y′2 − q(x)y2 − λr(x)y2

)
dx = extremum.

The Euler-Lagrange differential equation becomes

−2q(x)y − 2λr(x)y − d

dx
2p(x)y′ = 0,

or after shortening and ordering

d

dx
p(x)y′ + q(x)y + λr(x)y = 0.

These are called the Sturm-Liouville differential equations. The boundary
conditions imposed are either regular,

y(x0) = y0, y(x1) = y1,

or periodic

y(x0) = y(x1), y
′(x0) = y′(x1).

Note that the same functions with different integration limits and boundary
conditions produce a so-called Sturm-Liouville series that is not discussed fur-
ther here.

To illustrate the Sturm-Liouville equations and their solutions, we consider
the functions

p(x) = 1, q(x) = 0, r(x) = 1.
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The equation for these functions is

d

dx
y′ + λy(x) = 0.

Executing the differentiation, we obtain the equation

y′′ + λy = 0,

whose solutions
yi(x) = ci sin(ix), i = 1, 2, . . .

would satisfy the equation with a judicious choice of the constant ci and
boundary conditions. We will assume the regular boundary conditions of

y(0) = 0, y(π) = 0.

The selection of this boundary is for the convenience of dealing with this func-
tion family and does not restrict the generality of the discussion.

In order to establish the eigenvalues, we compute

d2

dx2
(sin(ix)) =

d

dx
(i cos(ix)) = −i2 sin(ix),

and substitute into the differential equation

−i2ci sin(ix) + λci sin(ix) = 0.

This is satisfied if the eigenvalue is

λ = i2.

The constraint equation aids in recovering the constants. For i = 1∫ π

0

(c1 sin(1x))
2
dx = c21

∫ π

0

sin2(x)dx = c21

(
1

2
x
∣∣∣π
0
− 1

4
sin(2x)

∣∣∣π
0

)
.

Substituting the boundary values results in

c21
π

2
= 1,

producing the constant necessary to satisfy the constraint:

c1 =

√
2

π
.

The generic coefficients may be obtained from the form∫ π

0

(ci sin(ix))
2
dx = c2i

∫ π

0

sin2(ix)dx = c2i

(
1

2
x
∣∣∣π
0
− 1

4i
sin(2ix)

∣∣∣π
0

)
.
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Considering the boundary conditions, the second term vanishes and

c2i
π

2
= 1,

which yields the generic coefficients as

ci =

√
2

π
.

A more generic discussion of this case is presented in [7]. It is noteworthy that
even this simplest form of Sturm-Liouville problems leads to an engineering
application, the vibrating string problem, the subject of Section 11.1.

5.4.1 Legendre’s equation and polynomials

A very important member of the Sturm-Liouville class of problems is obtained
by the selection of

p(x) = 1− x2, q(x) = 0, r(x) = 1.

defined in the interval

(x0, x1) = (−1, 1).

The corresponding variational problem following the last section is of the form

I(y) =

∫ 1

−1

(
(1− x2)(y′)2 − λy2

)
dx = extremum.

After applying the Euler-Lagrange differential equation, the specific Sturm-
Liouville equation becomes

d

dx

(
(1− x2)y′

)
+ λy(x) = 0.

Differentiation yields Legendre’s differential equation

(1− x2)y′′ − 2xy′ + λy = 0.

The solution around x0 = 0 may be sought in the form of a power series as

y =

∞∑
i=0

aix
i,

since x0 = 0 is an ordinary point, albeit the boundary points are regular sin-
gular points.
Substituting this solution and its derivatives as needed yields the generic
recurrence formula

ai+2 =
i(i+ 1)− λi
(i+ 2)(i+ 1)

ai,
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and the equation
(−2 + λ1)a1x+ λ0a0 = 0.

This defines the first two eigenvalues as

λ0 = 0, λ1 = 2,

with yet undefined a0, a1 coefficients. This leads to a solution of two series

y(x) = a0 + a2x
2 + a4x

4 + ...+ a1x+ a3x
3 + a5x

5 + ...

with two sets of coefficients computed from the recurrence formula as:

a0; a2 =
−λ2
1 · 2 a0; a4 =

2 · 3− λ4
3 · 4 a2; ...

and

a1; a3 =
1 · 2− λ3

2 · 3 a1; a5 =
3 · 4− λ5

4 · 5 a3; ...

and so on. To find the eigenvalues in general, we need to substitute the
solution into the differential equation. Let us execute this for the i = 1
solution component

y1(x) = a1x,

by ignoring the constant coefficient. Then

(1− x2)(x)′′ − 2x(x)′ + λ1x = (1− x2) · 0− 2x · 1 + λ1x = −2x+ 2x = 0,

which verifies the first eigenvalue that we obtained from the earlier equation.
This may be written as

λ1 = 2 = 1 · (1 + 1).

This form also fits the trivial eigenvalue of λ0 as 0 · (0 + 1) = 0. From that
observation, we hypothesize that the eigenvalues are of the form

λi = i(i+ 1), i = 0, 1, 2, ...,

Then λ2 = 2(2 + 1) = 6 and the second solution component is

y2 = a0 · 1 + −λ2
1 · 2 a0 · x

2 = a0(1− 3x2).

Ignoring the constant coefficient and substituting into the equation

(1−x2)(1−3x2)′′−2x(1−3x2)′+λ2(1−3x2) = (1−x2)(−6)−2x(−6x)+λ2x =

= −6 + 18x2 + λ2(1− 3x2) = 0.

which is true if λ2 = 6 as expected. Similarly for the next solution component
we obtain

a3 =
1 · 2− λ3

2 · 3 a1 =
1 · 2− 3 · 4

2 · 3 a1 = −5

3
a1,
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hence

y3 = a1x+ a3x
3 = a1(x− 5

3
x3).

The same process may be continued for more solution components, but it is
not followed here further because a more efficient recursive formulation will
be presented later.

Before doing so, we need to address the free coefficients. They may be
resolved by enforcing certain boundary conditions at the ends of the interval,
or applying the normalization constraint shown and used earlier. The Leg-
endre polynomials’ most-known form is obtained by enforcing the boundary
conditions

yi(1) = 1,

and
yi(−1) = (−1)i.

These result in the polynomials

Le0 = 1,

Le1 = x,

Le2 =
3

2
x2 − 1

2
,

and

Le3 =
5

2
x3 − 3

2
x.

The first four Legendre polynomials are shown graphically in Figure 5.1
demonstrating the satisfaction of the boundary conditions.

It is easy to see that the odd Legendre polynomials are anti-symmetric

Lek(x) = −Lek(−x), k = 2i+ 1,

and the even members are symmetric with respect to x = 0.

Higher order Legendre polynomials may be easily obtained from their recur-
rence relation

Lek+1(x) =
2k + 1

k + 1
xLek(x)− k

k + 1
Lek−1(x).

For illustration of the process of obtaining the higher order polynomials, the
first six Legendre polynomials are summarized in Table 5.1.

A recurrence between the derivatives of Legendre functions is also useful

Le′k+1(x)− Le′k−1(x) = (2k + 1)Lek(x).
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FIGURE 5.1 Legendre polynomials

TABLE 5.1

Legendre polynomials

i Lei(x)

0 1
1 x

2 1
2 (3x

2 − 1)

3 1
2 (5x

3 − 3x)

4 1
8 (35x

4 − 30x2 + 3)

5 1
8 (63x

5 − 70x3 + 15x)

Finally, as anticipated from the earlier part of the chapter, the Legendre
polynomials are also orthogonal

∫ 1

−1

Lei(x)Lej(x)dx = 0; i �= j,

and ∫ 1

−1

(Lei(x))
2
dx =

2

2i+ 1
.
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A very important application of the Legendre polynomials is the use of
their zeroes as the locations of the so-called Gauss points. The points are the
sampling locations of the numerical integration process of

∫
f(x)dx =

n∑
k=1

wn,kf(xn,k),

also known as Gauss quadrature. The xn,k locations are the zeroes of the n-th
Legendre polynomials:

Le1(x) = 0 → x1,1 = 0,

Le2(x) = 0 → x2,1 = − 1√
3
, x2,2 = −x2,1,

and

Le3(x) = 0 → x3,1 =
3√
5
, x3,2 = 0, x3,3 = −x3,1.

The wn,k weights are computed by integrating Lagrange polynomials anchored
by the zeroes of the Legendre polynomials over the interval of integration.

The importance of Sturm-Liouville problems lies in the fact that depending
on the choice of the functions p(x), q(x), r(x), a family of influential poly-
nomials may be generated as the eigensolutions. The most known and used
are, besides the Legendre polynomials above, the Bessel functions, Hermite,
Chebyshev and Laguerre polynomials. They also exhibit orthogonality, sym-
metry and recursion properties of their own kind.

Besides the above mentioned, sometimes called classical problems, one can
formulate specific problems for mathematical modeling of some physical phe-
nomenon. For example, the Sturm-Liouville problem using p(x) as the stiffness
and r(x) as the density of a flexible beam leads to the mathematical model of
the longitudinal vibrations of the beam, a subject of Section 11.4.1.

Finally, Sturm-Liouville problems may also be presented with functions of
multiple variables. For example, in three dimensions the equation becomes

−∇ (p(x, y, z)∇u(x, y, z)) + q(x, y, z)u(x, y, z) = λu(x, y, z)

leading to various elliptic partial differential equations that all have engineer-
ing implications. [8]
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5.5 Exercises

Create the differential equations corresponding to the following Sturm-Liouville
problems.

1. p(x) = x, q(x) = − 1
x , r(x) = x.

Boundary conditions: x0 = 0, x1 = ∞, y(x0) = y(x1) = 0.

2. p(x) =
√
1− x2, q(x) = 0, r(x) = 1√

1−x2
.

Boundary conditions: x0 = −1, x1 = ∞, y(x0) = y(x1) = 0.

3. p(x) = e
−x2

2 , q(x) = 0, r(x) = e−
x2

2 .
Boundary conditions: x0 = −∞, x1 = ∞, y(x0) = y(x1) = 0.

4. p(x) = xe−x, q(x) = 0, r(x) = e−x.
Boundary conditions: x0 = 0, x1 = ∞, y(x0) = y(x1) = 0.

5. p(x) = 1− x2, q(x) = 0, r(x) = 1.
Boundary conditions: y(0) = −1, y(1) = 1, y(x0) = y(x1) = 0.



6

Analytic solutions

This chapter presents a handful of analytic methods for solving variational
problems. They include the methods of Laplace transformation, d’Alembert’s
separation of variables techniques, the complete integrals and Poisson’s inte-
gral formula. The method of gradients, with an illustrative example, concludes
the chapter.

6.1 Laplace transform solution

The first method we discuss in this chapter transforms the original variational
problem by applying Laplace transformation and producing an auxiliary dif-
ferential equation [12].
Let us consider the variational problem of

I(t, x) =

∫
f(t, x)dt = extremum,

and apply the Laplace transform to the function as∫ ∞

0

e−stf(t, x)dt.

During this transform we regard t as the independent variable and x as a
parameter. Note that the transformation of the boundary conditions is also
required to obtain the complete auxiliary problem.

Let us illustrate this by the Euler-Lagrange differential equation of one spa-
tial and one temporal independent variable of the form

a2
∂2u

∂x2
− ∂u

∂t
= 0,

which is the one-dimensional heat equation, subject of deeper discussion in
Section 11.6. We apply the initial condition

u(t = 0, x) = 0,

95
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and boundary conditions
u(t, x = 0) = 0

and
u(t, x = 1) = B.

Executing the Laplace transform on the boundary conditions results in

u(s, 0) =

∫ ∞

0

e−stu(t, 0)dt =
∫ ∞

0

e−st0dt =
0

s
= 0

and

u(s, 1) =

∫ ∞

0

e−stu(t, 1)dt =
∫ ∞

0

e−stBdt =
B

s
.

Transforming the yet unknown solution as

u(s, x) =

∫ ∞

0

e−stu(t, x)dt,

we produce the auxiliary equation in the form of

a2
d2u

dx2
− su = 0.

This equation is now ordinary; hence, it is easier to solve, demonstrating the
advantage of this method. By integrating twice and applying Euler’s formu-
lae to eliminate complex terms, the solution of the auxiliary equation becomes

u(s, x) =
B sinh(x

√
s
a )

s sinh(
√
s
a )

.

Finally, inverse Laplace transformation [2] yields the solution of the original
problem in the form of

u(t, x) = B

(
x+

2

π

∞∑
k=1

(−1)k

k
e−(kπa)2t sin(kπx)

)
.

This is the analytic solution of the one-dimensional heat conduction prob-
lem with constant temperature (B) at the boundary. The two- and three-
dimensional heat conduction problems will be the subject of further discus-
sion in the next section.

Let us now consider the variational problem of

I =

∫ 1

0

((
∂u

∂t

)2

−
(
∂u

∂x

)2
)
dt = extremum,

whose temporal derivative in the corresponding Euler-Lagrange equation is
also of second order

a2
∂2u

∂x2
− ∂2u

∂t2
= 0.
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The initial conditions are

u(t = 0, x) = 0,
∂u

∂t
(t = 0, x) = 0.

The boundary conditions are

u(t, x = 0) = 0,
∂u

∂x
(t, x = 1) = B.

The boundary conditions are transformed again as

u(x = 0) = 0

and
du

dx
(x = 1) =

B

s
,

where s is the Laplace variable. The auxiliary equation becomes an ordinary
differential equation of

d2u

dx2
=
s2

a2
u,

Integrating this equation, we obtain the result in the form

u(s, x) =
B

s2
sinh

(
sx
a

)
cosh

(
s
a

) .
Finally, the inverse transformation yields the solution of the original problem
at any point in the domain at any time as

u(t, x) = B

(
x− 8

π2

∞∑
k=0

(−1)k

2k + 1
sin

(πx
2
(2k + 1)

)
cos

(
πat

2
(2k + 1)

))
.

This is the analytic solution to the problem of the compression of a unit length
beam along its longitudinal axis. The coefficient a and boundary condition
B represent the physical characteristics of the beam and the problem, respec-
tively. They will be introduced in connection with the solution of the axial
vibration of a beam, presented in Section 11.4.1.

6.2 d’Alembert’s solution

We now address the two-dimensional version of the problem of the last section

∂u

∂t
= h2

(
∂2u

∂x2
+
∂2u

∂y2

)
.
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We impose uniformly zero boundary conditions as

u(x, 0, t) = u(x, b, t) = 0; 0 ≤ x ≤ a,

and

u(0, y, t) = u(a, y, t) = 0; 0 ≤ y ≤ b.

The initial solution is given as a non-zero function of the spatial coordinates

u(x, y, 0) = f(x, y).

d’Alembert’s separation of variables method seeks a solution in the form of

u(x, y, t) = e−λtu1(x)u2(y),

where λ is a yet unknown constant. Substitution and differentiation yield

−λu1u2 = h2(u′′1u2 + u1u
′′
2).

Conveniently reordering produces

u′′1
u1

+
λ

h2
= −u

′′
2

u2
= k2,

where k is a constant since the left-hand side is independent of y and the
right-hand side is independent of x. Introducing

q2 =
λ

h2
− k2,

we obtain a system of ordinary differential equations:

u′′1 + q2u1 = 0,

and

u′′2 + k2u2 = 0.

Their solutions are obtained as

u1(x) = a1 sin(qx) + b1 cos(qx),

and

u2(y) = a2 sin(ky) + b2 cos(ky).

The boundary conditions imply that b1 = b2 = 0, as well as

sin(qa) = 0

and

sin(kb) = 0.



Analytic solutions 99

Here a, b are the original spatial boundaries. Due to the periodic nature of
the trigonometric functions

q =
mπ

a
,m = 1, 2, ..

and
k =

nπ

b
, n = 1, 2, ..

Substituting produces the unknown variable as

λmn = h2
((mπ

a

)2
+
(nπ
b

)2)
,

and the solution function of

u(x, y, t) =
∞∑
m=1

∞∑
n=1

cmne
−λmnt sin

mπx

a
sin

nπy

b
.

The final unknown coefficient cmn is obtained by the satisfaction of the initial
condition:

f(x, y) =

∞∑
m=1

∞∑
n=1

cmn sin
mπx

a
sin

nπy

b
,

from which the value of

cmn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy

b
dxdy

emerges. It is easy to generalize this solution to the three-dimensional prob-
lem of

∂u

∂t
= h2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
.

We impose uniformly zero boundary conditions on three spatial dimensions as

u(x, y, 0, t) = u(x, y, c, t) = 0; 0 ≤ x ≤ a, 0 ≤ y ≤ b,

u(x, 0, z, t) = u(x, b, z, t) = 0; 0 ≤ x ≤ a, 0 ≤ z ≤ c,

and
u(0, y, z, t) = u(a, y, z, t) = 0; 0 ≤ y ≤ b, 0 ≤ z ≤ c.

The initial solution is given as a non-zero function of the three spatial coor-
dinates,

u(x, y, z, 0) = f(x, y, z).

The solution with

λmnr = h2
((mπ

a

)2
+
(nπ
b

)2
+
(rπ
c

)2)
,
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becomes

u(x, y, z, t) =
∞∑
m=1

∞∑
n=1

∞∑
r=1

cmnre
−λmnrt sin

mπx

a
sin

nπy

b
sin

rπz

c
.

The coefficient of the solution is also a straightforward generalization as

cmnr =
8

abc

∫ c

0

∫ b

0

∫ a

0

f(x, y, z) sin
mπx

a
sin

nπy

b
sin

rπz

c
dxdydz.

These last two solutions are the analytic solutions to the two- and three-
dimensional heat conduction problem. The physical derivation of these prob-
lems is the subject of Section 11.6. The computational solution of the two-
dimensional problem will be further addressed in Chapter 12.

Let us now solve the variational problem of two spatial variables again,

I =

∫ b

0

∫ a

0

(
∂u

∂t

)2

− h2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dxdy = extremum,

but with a temporal variable whose second derivative is present in the Euler-
Poisson equation:

h2
(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂2u

∂t2
.

We assume constant boundary conditions:

u(0, y, t) = u(a, y, t) = 0; 0 ≤ y ≤ b,

and
u(x, 0, t) = u(x, b, t) = 0; 0 ≤ x ≤ a.

The a, b are the dimensions of the domain. We seek the solution in the sepa-
rated form of

u(x, y, t) = eiλtv(x, y).

Note the presence of the imaginary unit i in the exponent for later conve-
nience. We introduce the constant

k2 =
λ2

h2
.

Substitution yields the new differential equation

∂2v

∂x2
+
∂2v

∂y2
+ k2v = 0.

The new boundary conditions are

v(0, y) = v(a, y) = 0; 0 ≤ y ≤ b,
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and

v(x, 0) = v(x, b) = 0; 0 ≤ x ≤ a.

Furthermore, we separate the variables of this equation as

v(x, y) = u1(x)u2(y).

This leads to the system of equations

1

u1

d2u1
dx2

= − 1

u2

d2u2
dy2

− k2 = −m2.

Here m is another yet unknown constant. The now familiar system of ordi-
nary differential equations arises again

d2u1
dx2

+m2u1 = 0,

and
d2u2
dy2

+ q2u2 = 0,

with q2 = k2 −m2. The new boundary conditions are

u1(0) = u1(a) = 0,

and

u2(0) = u2(b) = 0.

Following the road paved earlier in this section, the first equation yields

u1(x) = A1 sin(mx),

with ma = nπ, n = 1, 2, 3, ... and the second equation

u2(y) = A2 sin(qy),

with qb = rπ, r = 1, 2, 3, .... Exploiting the relation

k2 = m2 + q2 = π2

(
n2

a2
+
r2

b2

)

we obtain the original parameter of the transformation

λnr = hπ

√
n2

a2
+
r2

b2
.

Finally by substituting and using Euler’s formulae we obtain

u(x, y, t) =
∞∑
n=1

∞∑
r=1

cnr cos(λnrt) sin
nπx

a
sin

rπy

b
.
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The initial displacement represented by f(x, y) aids in finding the final coef-
ficient as

cnr =
4

ab

∫ b

0

∫ a

0

f(x, y) sin
nπx

a
sin

rπy

b
dxdy.

This is the analytic solution of the problem of the vibrating membrane. A
more general solution of this problem with variable boundary conditions is
presented in Chapter 11.

Finally, let us consider an Euler-Lagrange equation of the first order with
many independent variables in the implicit form of

F (x1, x2, ...xn, u,
∂u

∂x1
,
∂u

∂x2
, ...

∂u

∂xn
) = 0,

whose generic solution is

u(x1, x2, ...xn; a1, a2, ..., an) = 0.

The solution to such a problem may be found by a repeated use of the sepa-
ration of variables and the constant k. Let us first separate one variable as

u(x1, x2, ...xn) = u1(x1) + u2(x2, x3, ...xn).

This corresponds to the following differential equation

F1(x1, u1,
∂u1
∂x1

) = F2(x2, x3...xn, u2,
∂u2
∂x2

,
∂u2
∂x3

, ...
∂u2
∂xn

) = k2.

The equation may be satisfied by solving a pair of equations with an unknown
constant:

F1(x1, u1,
∂u1
∂x1

) = k2,

and

F2(x2, x3...xn, u2,
∂u2
∂x2

,
∂u2
∂x3

, ...
∂u2
∂xn

) = k2.

The first equation becomes an ordinary differential equation whose solution is
easily obtained. The second equation may be further separated and the same
process continued.

6.3 Complete integral solutions

For certain problems a complete integral solution is available [15]. The com-
plete integral form presents a parametric family of general solutions. The
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particular solution of a specific problem can then be obtained from the gen-
eral complete integral solution by selection of the parameters.

We will first demonstrate generating a complete integral solution by exploit-
ing the concept of separation of variables introduced in the last section. For
the simplicity of the discussion, and without loss of generality, we will do this
with an example of only two independent variables. For a given

F (x, y, u,
∂u

∂x
,
∂u

∂y
) = 0,

the complete integral solution is of the form

u(x, y, a, b),

where the a, b are yet unknown coefficients. Let us generate the complete
integral solution for the equation of

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= 1.

We seek a separated solution of the form

u(x, y) = u1(x) + u2(y).

The first differential equation with a constant k is then

F1

(
x, u1,

du1
dx

)
=

(
du1
dx

)2

= k2.

The solution comes by
du1 = kdx,

from which
u1 = kx+ k1

emerges. Similarly, the second, in this case also ordinary equation is

F2

(
y, u2,

du2
dy

)
= 1−

(
du2
dy

)2

= k2.

The solution of

du2 =
√

1− k2dy,

yields

u2 =
√

1− k2y + k2.

Finally, the complete integral solution for this problem is

u(x, y, a, b) = ax+
√
1− a2y + b,
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with a = k and b = k1 + k2. The complete integral solution satisfies the
original problem

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= 1,

since
∂u

∂x
= a,

∂u

∂y
=
√

1− a2,

and

a2 + 1− a2 = 1.

This is a two-parameter family of solutions from which any particular solu-
tion may be obtained. Surely any selection of the parameter b will satisfy
the original equation. As far as the parameter a is concerned, selecting for
example a = 1/2 will result in

∂u

∂x
=

1

2
,
∂u

∂y
=

√
1− 1

4
,

and
1

4
+ 1− 1

4
= 1.

When generating a complete integral solution, the separation strategy depends
on the given differential equation. When second derivatives are also present,
a product type separation may be used. For example, for the equation

∂2u

∂x2
− ∂u

∂y
= 0

the separated solution of the form

u(x, y) = u1(x) · u2(y)
is recommended. The pair of differential equations in this scenario are

1

u1

d2u1
dx2

= k2,

and
1

u2

du2
dy

= k2.

The solution of this system is of the form

u(x, y) = (k1e
kx + k2e

−kx)ek
2y.

Note that three parameters are needed because of the presence of the second
derivative. Since this is the complete integral solution, we have the freedom
of choice of the parameters. By setting them all to unity, a particular solution
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emerges as

u(x, y) = (ex + e−x)ey = ex+y + ey−x.

To validate the solution, we compute

∂2u

∂x2
= ex+y + ey−x

and
∂u

∂y
= ex+y + ey−x,

whose difference is the desired zero.

Let us now consider simply using pre-computed complete integrals. Cer-
tain complete integral solutions actually contain integrals. Consider the non-
homogeneous differential equation type with non-constant coefficients

a(x)

(
∂u

∂x

)2

+ b(x)

(
∂u

∂y

)2

= f(x) + g(y).

Such problems have a complete integral solution of

u(x, y) =

∫ x

0

√
f(t) + a1
a(t)

dt+

∫ y

0

√
g(t)− a1
b(t)

dt+ a2.

For example, the equation

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= x+ y

has a complete integral solution of the form

u(x, y) =

∫ x

0

√
t+ a1dt+

∫ y

0

√
t− a1dt+ a2.

There are also rather specific, but practical problems where the partial deriva-
tives occur in an exponential expression. The generic form of such problems is

∂u

∂x
= f(x)

∂u

∂y
+ g(x)e

∂u
∂y .

The complete integral solution of this problem is in the following form

u = a1

∫ x

0

f(t)dt+ ea1
∫ x

0

g(t)dt+ a1y + a2.

For an example of this case, the equation

∂u

∂x
= x2

∂u

∂y
+ xe

∂u
∂y ,
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has a complete integral solution in the following form

u = a1x
3/3 + ea1x2/2 + a1y + a2.

Finding a particular solution from a complete integral solution is not always
trivial. From the complete integral solution of the form

u = f(x1, x2, ..., xn, a1, a2, ..., an)

the introduction of another set of coefficients as

∂f

∂ai
= bi

results in a new complete integral solution of

u = f(a1, a2, ..., an, b1, b2, ..., bn).

This may provide an easier way toward the particular solution form.

6.4 Poisson’s integral formula

We consider Laplace’s equation in two dimensions, which plays a fundamental
role in mathematical physics:

∂2u

∂x2
+
∂2u

∂y2
= 0.

We will assume a circular domain and use the polar coordinate form as

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
= 0,

where r =
√
x2 + y2, φ = arctan y

x . Here the r is the radius and the φ is the
polar angle. Using the separation of variables again, we seek the solution in
the form of

u(r, φ) = u1(r)u2(φ),

with the notational convention also followed. Substituting into the equation,
we obtain

1

u1(r)
(r2

d2u1
dr2

+ r
du1
dr

) = − 1

u2

d2u2
dφ2

= k2,
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where k2 is the yet unknown coefficient. The resulting pair of ordinary differ-
ential equations becomes

r2
d2u1
dr2

+ r
du1
dr

− k2u1 = 0

and
d2u2
dφ2

+ k2u2 = 0.

The general solutions of these equations were derived in an earlier section.
For k = 0 the separate solutions are

u2,0(φ) = a0φ+ b0

and
u1,0(r) = c0 ln(r) + d0.

The complete solution for the k = 0 case is

u0(r, φ) = (a0φ+ b0)(c0 ln(r) + d0).

In the case of k �= 0, the separated solutions are

u2,k(φ) = ak cos(kφ) + bk sin(kφ),

and
u1,k(r) = ckr

k + dkr
−k.

The solution of the problem is then

uk(r, φ) = (ak cos(kφ) + bk sin(kφ)) (ckr
k + dkr

−k); k �= 0.

We assume a uniquely defined solution function; therefore,

uk(r, φ) = uk(r, φ+ 2π); k �= 0,

which implies that k can only be an integer. Executing the multiplication and
introducing the products

ak = akck,

bk = bkck,

ck = akdk

and
dk = bkdk,

we obtain for k �= 0

uk(r, φ) =

∞∑
k=1

rk
(
ak cos(kφ) + bk sin(kφ)

)
+

∞∑
k=1

1

rk
(
ck cos(kφ) + dk sin(kφ)

)
.
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The constants may be found by the boundary conditions. Dictating that the
solution be non-zero and bounded at the origin implies that

a0, c0, ck, dk = 0.

Because the Laplace equation is linear and homogeneous, the solution is the
sum of the k = 0 and k �= 0 solutions:

u(r, φ) = a0 +

∞∑
k=1

rk
(
ak cos(kφ) + bk sin(kφ)

)
.

Here a0 = b0d0. Let us impose another, external boundary condition at the
outermost radius of our interest as

u(rmax, φ) = f(φ).

Substituting into the solution form, we get

f(φ) = a0 +

∞∑
k=1

rkmax
(
ak cos(kφ) + bk sin(kφ)

)
.

Hence the coefficients become

a0 =
1

2π

∫ 2π

0

f(φ)dφ,

ak =
1

rkmaxπ

∫ 2π

0

f(φ) cos(kφ)dφ,

and

bk =
1

rkmaxπ

∫ 2π

0

f(φ) sin(kφ)dφ.

Bringing the now resolved coefficients into the generic solution form and intro-
ducing a new integral variable ψ, we obtain

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)dψ +
1

π

∞∑
k=1

(
r

rmax

)k (
sin(kφ)

∫ 2π

0

f(ψ) sin(kψ)dψ+

cos(kφ)

∫ 2π

0

f(ψ) cos(kψ)dψ
)
.

Employing the algebraic identity of

cos(ψ − φ) = cos(φ) cos(ψ) + sin(φ) sin(ψ),

we can write

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)dψ +
1

π

∞∑
k=1

∫ 2π

0

f(ψ)

(
r

rmax

)k
cos (k(ψ − φ)) dψ.
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Since for 0 ≤ r ≤ rmax the series of

∞∑
k=1

(
r

rmax

)k
cos (k(ψ − φ))

is monotonically convergent, the order of the integration and summation may
be changed. This results in the form:

u(r, φ) =
1

π

∫ 2π

0

f(ψ)

(
1

2
+

∞∑
k=1

(
r

rmax

)k
cos (k(ψ − φ))

)
dψ.

Finally, we use Euler’s formula to replace the cos term as

cos (k(ψ − φ)) =
eik(ψ−φ) + e−ik(ψ−φ)

2
.

In the above expression, i =
√−1 is the imaginary unit. Substituting the

above and after some algebraic manipulations, we obtain

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)
r2max − r2

r2max − 2rmaxr cos(φ− ψ) + r2
dψ.

This formula is known as Poisson’s integral formula. With this, the solution
value of Laplace’s equation on a bounded circular domain may be obtained at
any radius 0 ≤ r ≤ rmax and at any angle φ + j2π, j = 0, 1, 2, ..., for a given
boundary value function f(φ).

Laplace’s equation also occurs in three-dimensional form as

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0.

Assuming a circular domain as above, the z dimension’s presence leads us to
use cylindrical coordinates

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
+
∂2u

∂z2
= 0.

Following the method laid out above, we seek the solution in the form of

u(r, φ) = u1(r)u2(φ)u3(z).

Substitution yields

1

u3

d2u3
dz2

= − 1

u1

d2u1
dr2

− 1

u1r

du1
dr

− 1

u2r2
d2u2
dφ2

.

Relying on the insight gained in the last sections using an unknown coefficient,
for the left-hand side we choose the solution of

1

u3

d2u3
dz2

= k2.
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This choice yields

u3(z) = c1e
kz + c2e

−kz.

The right-hand side of the problem may be written as

r2

u1

d2u1
dr2

+
r

u1

du1
dr

+ k2r2 = − 1

u2

d2u2
dφ2

= m2,

where m is another yet unknown constant. In order to have a solution as a
uniquely defined function in φ, m is again an integer. The right-hand equation
becomes an ordinary differential equation as

d2u2
dφ2

+m2u2 = 0,

whose solution is

u2(φ) = c3 cos(mφ) + c4 sin(mφ).

Finally the remaining equation is of the Bessel kind:

r2
d2u1
dr2

+ r
du1
dr

+ (k2r2 −m2)u1 = 0.

The solution of such differential equation when m is not an integer is of the
form

u1(r) = c5Jm(kr) + c6J−m(kr),

where J are the Bessel functions of the first kind, defined by the formula

Jm(x) =
∞∑
n=0

(−1)n

n!(n+m)!

(x
2

)m+2n

.

This is a convergent series for any x = kr value. The J−m function in the
expression is simply defined by

J−m(x) = (−1)mJm(x).

However, in our case, m is an integer and so the solution is

u1(r) = c5Jm(kr) + c6Ym(kr).

The Bessel function of the second kind is defined as

Ym(x) = lim
p→m

cos(pπ)Jp(x)− J−p(x)
sin(pπ)

.

The limit is needed since the denominator is zero for any integer multiple of
π. Therefore, this function is infinite at the origin; hence, to assure that at
r = 0 we have a bounded solution, we choose c6 = 0. Then the term with Ym
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drops out and the solution of this equation becomes

u1(r) = c5Jm(kr).

When m is an integer, Bessel functions of the first kind can also be computed
from integral formulae:

Jm(x) =
1

π

∫ π

0

cos (x sin(t)) cos(mt)dt

when m is even, and

Jm(x) =
1

π

∫ π

0

sin (x sin(t)) sin ((m+ 1)t) dt

when m is odd.

Finally, rejoining the separated solutions, we obtain

u(r, φ, z) =
∞∑
m=0

(
ekz (am cos(mφ) + bm sin(mφ))+

+e−kz (dm cos(mφ) + em sin(mφ))
)
Jm(kr).

Here am, bm, dm, em are various products of the above ck constants to be
specified by the boundary conditions. This is the general solution of the
three-dimensional Laplace equation in cylindrical coordinates.

6.5 Method of gradients

The final method in this class of solutions is that of the gradients. Let us
focus on the first order variational problem

I(y) =

∫ 1

0

f(x, y, y′)dx = extremum.

Denoting W as the space of absolutely continuous functions, introduce the
linear subspace

W =
(
y(x)

∣∣∣y ∈W, y(0) = 0
)

on which the norm is defined by the scalar product

(y1, y2) = y1(0)y2(0) +

∫ 1

0

y′1(x)y
′
2(x)dx.
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Borrowing from calculus, we will define the derivative of the functional as

I ′(y) = lim
t→0

I(y + tη)− I(y)

t
,

and this limit exists for all variations η ∈ W . For I ′(y) ∈ W it follows that
the derivative, also called the functional gradient, is of the form [7]

I ′(y) =
∫ x

0

(∫ 1

t

∂

∂y
f (s, y(s), y′(s)) ds+

∂

∂y′
f (t, y(t), y′(t))

)
dt.

With this gradient, we construct an iteration procedure as follows. Starting
from an initial solution y1(x), compute successive approximations yi(x), i =
1, 2, .... In every iteration, the gradient is computed at the current solution:

I ′(yi) =
∫ x

0

(∫ 1

t

∂

∂yi
f (s, yi(s), y

′
i(s)) ds+

∂

∂y′i
f (t, yi(t), y

′
i(t))

)
dt.

It is followed by finding the distance scale αi as solution of

minα≥0I (yi − αI ′(yi)) .

With this, the next iteration is computed as a scaled step into the direction
of the gradient as

yi+1 = yi − αiI
′(yi).

The sequence of

I(y1) ≥ I(y2) ≥ ... ≥ I(yi)

is continued until one of two conditions is satisfied. If I(yi) becomes zero, then
yi(x) is an extremal and satisfies the Euler-Lagrange differential equation of
the problem. Otherwise, the process terminates when it no longer progresses,
measured by

I(yi)− I(yi+1)

I(yi)
< ε,

where ε is an appropriately chosen small number. Most of the time this ter-
minates the procedure and the exact extremum and solution is not reached.

We illustrate the method by computing the solution of the variational prob-
lem

I(y) =

∫ 1

0

(2xy + y2 + y′2)dx = extremum,

with initial condition y(0) = 0, and start the procedure from y1(x) = 0. The
first step is posed as

I ′(y1) =
∫ x

0

(∫ 1

t

∂

∂y
f (s, y1(s), y

′
1(s)) ds+

∂

∂y′
f (t, y1(t), y

′
1(t))

)
dt.
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This results in

I ′(y1) =
∫ x

0

(∫ 1

t

2s+ 2y1(s)ds+ 2y′1(t)
)
dt.

The first term of the double integral is∫ x

0

∫ 1

t

2sdsdt =

∫ x

0

s2
∣∣∣1
t
dt =

∫ x

0

(1− t2)dt = x− x3

3
.

The second term is zero due to the starting solution being zero. Similarly the
single integral ∫ x

0

∂f

∂y′1
dt =

∫ x

0

2y′1(t)dt = 2y1(x) = 0,

is also zero. Hence the gradient at this stage is

I ′(y1) = x− x3

3
.

To find α1 as the solution of

minα≥0I (y1 − αI ′(y1)) ,

compute

I (y1 − αI ′(y1)) = I

(
−α(x− x3

3
)

)
=

=

∫ 1

0

(
−2xα(x− x3

3
) + α2(x− x3

3
)2 + α2(1− x2)2

)
dx.

Executing the posted integrations and substitutions yields

4

15
(
59

21
α2 − α),

whose minimum produces

α1 =
21

118
.

From this the next iterative solution becomes

y2(x) = − 21

118
(x− x3

3
),

and the next iteration of the extremum is

I(y2) = − 21

295
.

Continuing with

I ′(y2) =
∫ x

0

(∫ 1

t

∂

∂y
f (s, y2(s), y

′
2(s)) ds+

∂

∂y′
f (t, y2(t), y

′
2(t))

)
dt
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would produce the next solution iteration in the form of

y3(x) = y2(x)− α2I
′(y2).

The process continues until the process is terminated by either of the detec-
tion mechanisms described above.

The gradient method is the basis for optimization solutions of application
problems in many industries, for example in structural engineering. In the lat-
ter case, however, the gradient is computed by evaluating the solution function
at discrete locations in the solution domain and applied in connection with
finite element discretization (to be discussed in detail in Chapter 12).

6.6 Exercises

Use d’Alembert’s solution to solve Example 1.

1.
(
∂u
∂t

)2
= (∂u∂x )

2 + (∂u∂y )
2.

Use the complete integration approach to solve Problems 2 and 3.

2.
(
∂u
∂x

)2
+ (∂u∂y )

2 = 2.

3.
(
∂u
∂x

)2
+ (∂u∂y )

2 = x+ y.

Execute two iterations of the gradient method on Problems 4 and 5.

4.
∫ 1

0
(y′2 + y2)dx = extremum; y1(x) = 1.

5.
∫ 1

0
(y′2 − y2 − 2xy)dx = extremum; y1(x) = 0.
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Approximate methods

This chapter addresses problems that may not be easily solved by analytic
techniques, if solvable at all. Hence, before we embark on applications in
later chapters, we discuss techniques that provide approximate solutions for
such problems.

The discussion starts with the classical method of this class, the Euler
method, and the most influential method, that of Ritz’s. The methods of
Galerkin and Kantorovich follow, both described in [10]. They could be con-
sidered extensions of Ritz’s. Finally, the boundary integral and the finite
element methods, the most well-known by engineers and used in the industry,
conclude the chapter.

7.1 Euler’s method

Euler proposed a numerical solution for the variational problem of

I(y) =

∫ xn

x0

f(x, y, y′)dx = extremum

with the boundary conditions

y(x0) = y0; y(xn) = yn,

by subdividing the interval of the independent variable as

xi = x0 + i
xn − x0

n
; i = 1, 2, . . . , n.

Introducing

h =
xn − x0

n
,

the functional may be approximated as

I(yi) =

∫ x1

x0

f(xi, yi, y
′
i) = h

n−1∑
i=1

f(x0 + ih, yi,
yi+1 − yi

h
)dx = extremum.

115
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Here the approximated solution values yi are the unknowns and the extremum
may be found by differentiation:

∂I

∂yi
= 0.

The process is rather simple and follows from Euler’s other work in the numeri-
cal solution of differential equations. For illustration, we consider the following
problem:

I(y) =

∫ 1

0

(2xy + y2 + y′2)dx = extremum,

with the boundary conditions

y(0) = y(1) = 0.

Let us subdivide the interval into n = 5 equidistant segments with

h = 0.2,

and
xi = 0.2i.

The approximate functional with the appropriate substitutions becomes

I(yi) = 0.2

4∑
i=1

(0.4iyi + y2i + (5 (yi+1 − yi))
2
).

The computed partial derivatives are

∂I

∂y1
= 0.2(0.4 + 2y1 − 2(y2 − y1)

0.04
) = 0,

∂I

∂y2
= 0.2(0.8 + 2y2 − 2(y3 − y2)

0.04
+

2(y2 − y1)

0.04
) = 0,

∂I

∂y3
= 0.2(1.2 + 2y3 − 2(y4 − y3)

0.04
+

2(y3 − y2)

0.04
) = 0,

and
∂I

∂y4
= 0.2(1.6 + 2y4 +

2y4
0.04

+
2(y4 − y3)

0.04
) = 0.

This system of four equations yields the values of the approximate solution.
The analytic solution of this problem is

y(x) = −x+ e
ex − e−x

e2 − 1
.

The comparison of the Euler solution (yi) and the analytic solution (y(xi)) at
the four discrete points is shown in Table 7.1.
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TABLE 7.1

Accuracy of Euler’s
method

i xi yi y(xi)

1 0.2 -0.0286 -0.0287
2 0.4 -0.0503 -0.0505
3 0.6 -0.0580 -0.0583
4 0.8 -0.0442 -0.0444

The boundary solutions of y(0) and y(1) = 0 are not shown since they are
in full agreement by definition.

7.2 Ritz’s method

Let us consider the variational problem of

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum,

under the boundary conditions

y(x0) = y0; y(x1) = y1.

The Ritz method is based on an approximation of the unknown solution
function with a linear combination of certain basis functions. Finite element
or spline-based approximations are the most commonly used and will be sub-
ject of detailed discussion in Chapters 9 and 11. Let the unknown function
be approximated with

y(x) = α0b0(x) + α1b1(x) + . . .+ αnbn(x),

where the basis functions are also required to satisfy the boundary conditions
and the coefficients are yet unknown. Substituting the approximate solution
into the variational problem results in

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum.

In order to reach an extremum of the functional, it is necessary that the
derivatives with respect to the unknown coefficients vanish:

∂I(y)

∂αi
= 0; i = 0, 1, . . . , n.
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It is not intuitively clear that the approximated function approaches the
extremum of the original variational problem, but it has been proven, for
example in [10].

Let us just illustrate the process with a small analytic example. Consider
the variational problem of

I(y) =

∫ 1

0

y′2(x)dx = extremum,

with the boundary conditions

y(0) = y(1) = 0,

and constraint of

∫ 1

0

y2(x)dx = 1.

Since this is a constrained problem, we apply the Lagrange multiplier tech-
nique and rewrite the variational problem as

I(y) =

∫ 1

0

(y′2(x)− λy2)dx = extremum.

Let us use, for example, the basis functions of

b0(x) = x(x− 1)

and

b1(x) = x2(x− 1).

It is trivial to verify that these also obey the boundary conditions. The
approximated solution function is

y = α0x(x− 1) + α1x
2(x− 1).

The functional of the constrained, approximated variational problem is

I(y) =

∫ 1

0

(y′2 − λy2)dx.

Evaluating the integral yields

I(y) =
1

3
(α2

0 + α0α1 +
2

5
α2
1)− λ(

1

30
α2
0 +

1

30
α0α1 +

1

105
α2
1).

The extremum requires the satisfaction of

∂I

∂α0
= α0

(
2

3
− λ

15

)
+ α1

(
1

3
− λ

30

)
= 0
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and
∂I

∂α1
= α0

(
1

3
− λ

30

)
+ α1

(
4

15
− 2λ

105

)
= 0.

A non-trivial solution of this system of equations is obtained by setting its
determinant to zero, resulting in the following quadratic equation

λ2 − 52λ+ 420

6300
= 0.

Its solutions are

λ1 = 10;λ2 = 42.

Using the first value and substituting into the second condition yield

α1 = 0

with arbitrary α0. Hence

y(x) = α0x(x− 1).

The condition

∫ 1

0

y2dx =

∫ 1

0

α2
0x

2(x− 1)2dx = 1

results in

α0 = ±
√
30.

The approximate solution of the variational problem is

y(x) = ±
√
30x(x− 1).

It is very important to point out that the solution obtained as a function
of the chosen basis functions is not the analytic solution of the variational
problem. For this particular example, the corresponding Euler-Lagrange dif-
ferential equation is

y′′ + λy = 0

whose analytic solution, based on Section 5.3, is

y = ±
√
2 sin(πx).

Figure 7.1 compares the analytic and the approximate solutions and plots the
error of the latter.

The figure demonstrates that the Ritz solution satisfies the boundary con-
ditions and shows acceptable differences in the interior of the interval. Finally,
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FIGURE 7.1 Accuracy of the Ritz solution

the variational problem’s extremum is computed for both cases. The analyt-
ical solution is based on the derivative

y′ =
√
2π cos(πx),

and obtained as

∫ 1

0

y′2(x)dx = 2π2

∫ 1

0

cos2(πx)dx = π2 = 9.87.

The Ritz solution’s derivative is

y′ = −
√
30(2x− 1),

and the approximate extremum is

∫ 1

0

y′2(x)dx = 30

∫ 1

0

(2x− 1)2dx =
30

3
= 10.

The approximate extremum is slightly higher than the analytic extremum,
but by only a very acceptable error.
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7.3 Galerkin’s method

The difference between Ritz’s method and that of Galerkin’s is in the fact
that the latter addresses the differential equation form of a variational prob-
lem. Galerkin’s method minimizes the residual of the differential equation
integrated over the domain with a weight function; hence, it is also called the
method of weighted residuals.

This difference lends more generality and computational convenience to
Galerkin’s method. Let us consider a linear differential equation in two vari-
ables:

L (u(x, y)) = 0

and apply Dirichlet boundary conditions. Galerkin’s method is also based on
the Ritz approximation of the solution as

u =
n∑
i=1

αibi(x, y),

in which case, of course there is a residual of the differential equation

L(u) �= 0.

Galerkin proposed using the basis functions of the approximate solution also
as the weights, and required the integral to vanish with a proper selection of
the coefficients: ∫ ∫

D

L(u)bj(x, y)dxdy = 0; j = 1, 2, . . . , n.

This yields a system for the solution of the coefficients as

∫ ∫
D

L

(
n∑
i=1

αibi(x, y)

)
bj(x, y)dxdy = 0; j = 1, 2, . . . , n.

This is also a linear system and produces the unknown coefficients αi.

For illustration of this method, let us consider the example problem already
solved in Section 1.1 via its Euler-Lagrange differential equation:

I =

∫ 1

0

(
1

2
y′2 + (x+ 1)y)dx = extremum,

with boundary conditions

y(0) = 0, y(1) = 1.
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We seek the approximate solution using power basis functions up to the third
order in the form of

y(x) = c1 + c2x+ c3x
2 + c4x

3.

Immediately applying the boundary conditions enables us to simplify the
approximate solution

y(0) = 0 → c1 = 0

and
y(1) = 1 → c2 + c3 + c4 = 1

results in
c2 = 1− c3 − c4,

and the approximate solution becomes

y(x) = (1− c3 − c4)x+ c3x
2 + c4x

3.

In order to substitute into the functional, we compute the derivatives

y′ = 1− c3 − c4 + 2c3x+ 3c4x
2,

and
y′′ = 2c3 + 6c4x.

For convenience of the substitution, we gather terms as

y(x) = x+ c3(x
2 − x) + c4(x

3 − x).

from which two basis functions to be used as weights are emerging as

w1 = x2 − x,w2 = x3 − x.

The Euler-Lagrange differential equation of the problem is

y′′ − x− 1 = 0,

hence Galerkin’s integral equations become∫ 1

0

wi(y
′′ − x− 1)dx = 0; i = 1, 2.

Specifically for w1∫ 1

0

(x2 − x)
((
x+ c3(x

2 − x) + c4(x
3 − x)

)′′ − x− 1
)
dx = 0,

and for w2∫ 1

0

(x3 − x)
((
x+ c3(x

2 − x) + c4(x
3 − x)

)′′ − x− 1
)
dx = 0.
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Rather involved gathering and integrating produce the system of equations

1

3
c3 +

1

2
c4 − 1

4
= 0,

and
1

2
c3 +

4

5
c4 − 23

60
= 0.

The solutions for the two unknown coefficients are

c3 =
1

2
,

and

c4 =
1

6
.

With these, the Galerkin’s approximate solution becomes

y(x) = (1− 1

2
− 1

6
)x+

1

2
x2 +

1

6
x3,

which is finally

y(x) =
1

3
x+

1

2
x2 +

1

6
x3.

This solution is identical to the Euler-Lagrange differential equation based
analytic solution presented in Section 1.1, but this is a consequence of the
simplicity of the problem. This is not generally true, but that does not dimin-
ish the usefulness of the method.

7.4 Approximate solutions of Poisson’s equation

We will compare the prior two methods by solving Poisson’s equation in its
variational form by Ritz’s method and in its differential equation form by
Galerkin’s.

The second order boundary value problem of Poisson’s, introduced earlier,
is presented in the variational form of

I(y) =

∫ ∫
D

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+ 2f(x, y)u(x, y)

)
dxdy

whose Euler-Lagrange equation leads to the form

∂2u

∂x2
+
∂2u

∂y2
= f(x, y).
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For the simplicity of the discussion and without loss of generality, we impose
the boundary condition of

u = 0

on the perimeter of the domain D. Ritz’s method indicates the use of the
basis functions

bi(x, y)

and demands that they also vanish on the boundary. The approximate solu-
tion in this two-dimensional case is

u(x, y) =

n∑
i=1

αibi(x, y).

The partial derivatives are

∂u

∂x
=

n∑
i=1

αi
∂bi(x, y)

∂x
,

and
∂u

∂y
=

n∑
i=1

αi
∂bi(x, y)

∂y
.

Substituting the approximate solution into the functional yields

I(u) =

∫ ∫
D

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+ 2f(x, y)u(x, y)

)
dxdy.

Evaluating the derivatives, this becomes

I(u) =

∫ ∫
D

⎛
⎝( n∑

i=1

αi
∂bi
∂x

)2

+

(
n∑
i=1

αi
∂bi
∂y

)2

+ 2f(x, y)

n∑
i=1

αibi

⎞
⎠ dxdy,

which may be reordered into the form

I(u) =
n∑
i=1

n∑
j=1

cijαiαj + 2
n∑
i=1

diαi.

The coefficients are

cij =

∫ ∫
D

(
∂bi
∂x

∂bj
∂x

+
∂bi
∂y

∂bj
∂y

)
dxdy

and

di =

∫ ∫
D

f(x, y)bidxdy.
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As above, the unknown coefficients are solved from the conditions

∂I(u)

∂αi
= 0, i = 1, 2, . . . , n,

resulting in the linear system of equations

n∑
j=1

cijαj + dj = 0, i = 1, 2, . . . , n.

It may be shown that the system is non-singular and always yields a non-
trivial solution assuming that the basis functions form a linearly independent
set. The computation of the terms of the equations, however, is rather tedious
and resulted in the emergence of Galerkin’s method.

Now we use Galerkin’s method to solve Poisson’s equation:

L(u) =
∂2u

∂x2
+
∂2u

∂y2
− f(x, y) = 0.

For this, Galerkin’s method is presented as∫ ∫
D

(
∂2u

∂x2
+
∂2u

∂y2
− f(x, y)

)
bjdxdy = 0, j = 1, . . . , n.

Therefore

∫ ∫
D

(
n∑
i=1

αi
∂2bi
∂x2

+

n∑
i=1

αi
∂2bi
∂y2

− f(x, y)

)
bjdxdy = 0, j = 1, . . . , n.

Reordering yields

n∑
i=1

αi

∫ ∫
D

(
∂2bi
∂x2

+
∂2bi
∂y2

)
bjdxdy −

∫ ∫
D

f(x, y)bjdxdy = 0, j = 1, . . . , n.

The system of equations becomes

Ba = b

with solution vector of

a =

⎡
⎢⎢⎣
α1

α2

. . .
αn

⎤
⎥⎥⎦ .

The system matrix is of the form

B =

⎡
⎢⎢⎣
B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

. . . . . . . . . . . .
Bn,1 Bn,2 . . . Bn,n

⎤
⎥⎥⎦
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whose terms are defined as

Bj,i =

∫ ∫
D

(
∂2bi
∂x2

+
∂2bi
∂y2

)
bjdxdy.

Finally, the right-hand side vector is

b =

⎡
⎢⎢⎣
∫ ∫

D
f(x, y)b1dxdy∫ ∫

D
f(x, y)b2dxdy
. . .∫ ∫

D
f(x, y)bndxdy

⎤
⎥⎥⎦ .

The comparison demonstrated that ultimately both methods result in solv-
ing linear systems and such systems are efficiently solved by readily available
software tools in industrial applications.

While Galerkin’s method also uses simple power function bases, it enables
pre-computing some of the matrix components. This is an advantage over the
Ritz method and provides a computational simplicity that is an important
component in practice.

7.5 Kantorovich’s method

Both the Ritz and Galerkin methods are restricted in their choices of basis
functions, because their basis functions are required to satisfy the boundary
conditions. The method of Kantorovich, described in [10], relaxes this restric-
tion and enables the use of simpler basis functions.

Consider the variational problem of two variables

I(u) = extremum, (x, y) ∈ D,

with boundary conditions

u(x, y) = 0, (x, y) ∈ ∂D.

Here ∂D again denotes the boundary of the domain.

The method proposes the construction of a function ω, such that

ω(x, y) ≥ 0, (x, y) ∈ D,

and

ω(x, y) = 0, (x, y) ∈ ∂D.
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This function assumes the role of enforcing the boundary condition and the
following set of simpler, power functions based, basis functions are adequate
to present the solution:

b1(x, y) = ω(x, y),

b2(x, y) = ω(x, y)x,

b3(x, y) = ω(x, y)y,

b4(x, y) = ω(x, y)x2,

b5(x, y) = ω(x, y)xy,

b6(x, y) = ω(x, y)y2,

and so on, following the same pattern. It is clear that all these basis func-
tions vanish on the boundary by the virtue of ω(x, y), even though the power
function components do not.

The question is how to generate ω(x, y) for various shapes of domains. For
a centrally located circle with radius r, the equation

x2 + y2 = r2

implies very intuitively the form of

ω(x, y) = r2 − x2 − y2.

Obviously, the function is zero everywhere on the circle and non-zero in the
interior of the domain. It is also non-zero on the outside of the domain, but
that is irrelevant in connection with our problem.

One can also consider a domain consisting of overlapping circular regions,
some of which represent voids in the domain. Figure 7.2 shows a domain of
two circles with equations

x2 + y2 = r2

and
(x− r/2)2 + y2 = (r/2)2.

Reordering the latter yields

x2 − xr + y2 = 0,

and in turn results in

ω(x, y) = (r2 − x2 − y2)(x2 − rx+ y2).

Clearly on the boundary of the larger circle, the left term is zero and on the
boundary of the smaller circle, the right term is zero. Hence the product
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FIGURE 7.2 Domain with overlapping circular regions

function vanishes on the perimeter of both circles, which constitutes the now
non-trivial boundary.

Let us now consider the boundary of a rectangle of width 2w and height
2h, also centrally located around the origin. The equations of the sides

x = ±w,
and

y = ±h,
imply the very simple form of

ω(x, y) = (w2 − x2)(h2 − y2).

The verification is very simple,

ω(x, y) = 0; (x, y) = (±w,±h).
The construction technique clearly shows signs of difficulties to come with

very generic, and especially three-dimensional domains. In fact such difficul-
ties limited the practical usefulness of this otherwise innovative method until
more recent work enabled the automatic creation of the ω functions for generic
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two- or three-dimensional domains with the help of spline functions, a topic
which will be discussed in Chapter 9 at length.

We shall now demonstrate the correctness of such a solution. For this, we
consider the solution of a specific Poisson’s equation:

∂2u

∂x2
+
∂2u

∂y2
= −2,

with
u(x, y) = 0, (x, y) ∈ ∂D,

where we designate the domain to be the rectangle whose ω function was
specified above. We will search for Kantorovich’s solution in the form of

u(x, y) = (w2 − x2)(h2 − y2)(α1 + α2x+ α3y + . . .).

Since the method is approximate, we may truncate the sequence of power
function terms at a certain order. It is sufficient for the demonstration to use
only the first term.

We will apply the method in connection with Galerkin’s method of the last
section. Therefore, the extremum is sought from

∫ +w

−w

∫ +h

−h

(
∂2u

∂x2
+
∂2u

∂y2
+ 2

)
ω(x, y)dydx = 0.

Executing the posted differentiations and substituting results in

∫ +w

−w

∫ +h

−h
−2α1(w

2 − x2)(h2 − y2)2 − 2α1(w
2 − x2)2(h2 − y2)+

2(w2 − x2)(h2 − y2)dydx = 0.

Since we only have a single coefficient, the system of equations developed ear-
lier boils down to a single scalar equation of

bα1 = f,

with

b =

∫ +w

−w

∫ +h

−h

(
(w2 − x2)(h2 − y2)2 + (w2 − x2)2(h2 − y2)

)
dydx,

and

f =

∫ +w

−w

∫ +h

−h
(w2 − x2)(h2 − y2)dydx.

After the (tedious) evaluation of the integrals, the value of

α1 =
5

4(w2 + h2)
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emerges. In turn, the approximate Kantorovich-Galerkin solution is

u(x, y) =
5

4

(w2 − x2)(h2 − y2)

w2 + h2
.
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FIGURE 7.3 Solution of Poisson’s equation

The solution is depicted graphically in Figure 7.3 using

w = h = 1.

The figure demonstrates that the solution function satisfies the zero boundary
condition on the circumference of the square. To increase accuracy, additional
terms of the power series may be used. The method also enables the exploita-
tion of the symmetry of the domain. For example, if the above domain would
exhibit the same height as width,

s = w = h,

the solution may be sought in the form of

u(x, y) = (s2 − x2)(s2 − y2) (α1 + α23(x+ y)) ,
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where α23 denotes the single constant accompanying both the second and
third terms.

A generalization of this approach is necessary to eliminate the difficulties
of producing an analytic ω function for practical domains with convoluted
boundaries. The idea is to use an approximate solution to generate the ω
function as well.

Let us consider the two-dimensional domain case and generate a surface
approximation over the domain in the form of

ω(x, y) =

n∑
i=0

m∑
j=0

Ci,jBi(x)Bj(y),

where the two sets of B basis functions are of common form, but dependent
on either of the independent variables. The coefficients Ci,j are either sam-
pling points of the domain, or control points used to generate the surface.
The latter case applies mainly to the interior points, and the earlier to the
boundary.

This requires a simple Cartesian discretization of the domain along topo-
logical (possibly even equidistant) lines. The B-spline fitting technique intro-
duced in Chapter 9 will provide the means for accomplishing this.

7.6 Boundary integral method

The boundary integral method is related to Kantorovich’s method in the
sense that both make use of the boundary-interior distinction of a variational
problem. We will discuss this method in connection with a two-dimensional
variational problem; however, the technique and conclusions apply to three
dimensions as well. Let us consider the problem of

L(x, y)u(x, y) = f(x, y),

where L(x, y) is a two-dimensional linear operator and the problem is defined
on the domain (x, y) ∈ Ω. The domain’s boundary is Γ and the outward
normal of the boundary, n, is defined.

The boundary integral method finds the solution in the form of

u(x, y) =

∫
Ω

G(P,Q)f(x, y)dΩ.
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Here G(P,Q) is Green’s function corresponding to the particular linear oper-
ator. It is defined in terms of two points, P = (xp, yp), Q = (xq, yq) as

L (G(P,Q)) = δ(P −Q),

where δ is the Dirac function. Let us work with the two-dimensional Poisson’s
equation of the form

Δu(x, y) = f(x, y).

Here L(x, y) = Δ = ∇2 and its Green’s function is

G(P,Q) =
1

2π
ln(r),

where

r =
√

(xp − xq)2 + (yp − yq)2.

The generic form of Green’s theorem (a consequence of Gauss’ divergence the-
orem) may be written as∫

Ω

(u∇2v − v∇2u)dΩ =

∫
Γ

(u
∂v

∂n
− v

∂u

∂n
)dΓ.

Using Green’s function in place of v we obtain∫
Ω

(u∇2G−G∇2u)dΩ =

∫
Γ

(u
∂G

∂n
−G

∂u

∂n
)dΓ.

By definition

L (G(P,Q)) = ∇2G(P,Q) = δ(P −Q),

and due to the characteristics of the Dirac function, the first term on the
left-hand side reduces to u(x, y). Substituting the original equation into the
second term, the resulting boundary integral solution becomes

u(x, y) =

∫
Ω

Gf(x, y)dΩ+

∫
Γ

u
∂G

∂n
dΓ−

∫
Γ

G
∂u

∂n
dΓ.

The first term on the right-hand side is the applied load in the domain and
it is zero when the homogeneous Laplace problem is solved. The second term
contains the Dirichlet boundary conditions via given boundary values of the
function. The third term represents the Neumann boundary conditions by
given derivatives with respect to the normal. It is possible that both types
are given at the same time.

Assuming that the set of discretized points on the boundary are qj , j =
1, ..m and boundary conditions are given, the solution at any point in the
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interior may be computed as

u(x, y) =

∫
Ω

Gf(x, y)dΩ+

m∑
j=1

u(xqj , yqj )

∫
Γj

∂G(p, qj)

∂n
dΓj−

−
m∑
j=1

∂u(xqj , yqj )

∂n

∫
Γj

G(p, qj)dΓj .

Here the boundary segments are assigned to the given boundary points as

Γ =

m−1∑
j=1

Γj .

It is also possible to produce a discretized solution at a set of given interior
points pi, i = 1, ...n. In this case, a matrix formulation is possible (using the
homogeneous case for simplicity of the presentation) as

u(xpi , ypi) =

m∑
j=1

Ai,ju(xqj , yqj )−
m∑
j=1

Bi,j
∂u(xqj , yqj )

∂n
,

where the matrix coefficients contain the pre-computed integrals

Ai,j =

∫
Γj

∂G(pi, qj)

∂n
dΓj ,

and

Bi,j =

∫
Γj

G(pi, qj)dΓj .

Let us now gather the solution points into the array

u =

⎡
⎢⎢⎣
u(xp1 , yp1)
u(xp2 , yp2)

. . .
u(xpn , ypn)

⎤
⎥⎥⎦ .

Then the solution may be written as a simple matrix equation:

u = Av −Bt,

where the vector containing the boundary condition displacement values is

v =

⎡
⎢⎢⎣
u(xq1 , yq1)
u(xq2 , yq2)

. . .
u(xqm , yqm)

⎤
⎥⎥⎦
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and the vector holding the tangents is

t =

⎡
⎢⎢⎢⎣

∂u(xq1
,yq1 )

∂n
∂u(xq2

,yq2 )

∂n
. . .

∂u(xqm ,yqm )
∂n

⎤
⎥⎥⎥⎦ .

This is the approach of software tools using the boundary element method.
The method is of engineering importance when the solution of a problem in
the interior is largely homogeneous and the important solution variation is at
or close to the boundary.

Let us now consider the case when only boundary tangents (Neumann
boundary conditions) are given. Then the unknowns may be both in the
interior and on the boundary as

u(xpi , ypi) = u(xqj , yqj ),

when i = j. By the definition, the Green’s function for the Laplace opera-
tor is singular when the solution point coincides with a boundary condition
point and the solution integrals become improper. Hence the evaluation of
the matrix coefficients must deal with that issue.

Nevertheless, the problem can be reformulated as

m∑
j=1

(Ai,j +
1

2
δij)u(xqj , yqj ) =

m∑
j=1

Bi,j
∂u(xqj , yqj )

∂n
,

where δij is the Kronecker delta. The problem is then of the form

Au = Bt.

Since the matrix on the left-hand side is now square, the system of equations
may be formally solved as

u = A
−1
Bt.

The singularity of the integrals carries into the system matrix by making it
numerically ill-conditioned and requiring specialized solution techniques that
avoid computing an explicit inverse.

The method is easily generalized to the three-dimensional Laplace operator
whose Green’s function is of the form

G(P,Q) =
−1

4πr
,

where
r =

√
x2 + y2 + z2.
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Finding the Green’s function for other operators is also possible. For example,
the Green’s function for the operator

L(x, y, t) = ∂2t −∇2

is defined also in terms of the Dirac function and the radius r as

G(P,Q) =
δ(t− r)

4πr
.

This is the so-called d’Alembert operator of the wave equation that will be
the subject of a mechanical problem (the elastic string) in Section 11.1.

7.7 Finite element method

The finite element method is an extension of Ritz’s and Galerkin’s approaches.
Hence it is sometimes called the Ritz-Galerkin finite element method.

The method of finite elements extends the basis function approximation
concept with a subdivision or discretization of the interval of interest. This
extension enables the use of lower order basis functions than those of Ritz or
Galerkin, in many cases linear interpolation. On the other hand, the result
will be at the discrete locations of the interval and not an approximate con-
tinuous function as in Ritz’s or Galerkin’s methods.

The finite element method solves the variational problem

I =

∫ xn

x1

f(x, y, y′)dx = extremum

by using approximate solutions in a collection of segments of the interval

I =

n−1∑
i=1

∫ xi+1

xi

f (x, yi(x), y
′
i(x)) dx = extremum.

The linear interpolation basis functions for the segments are of the form

yi(x) = yi
xi+1 − x

xi+1 − xi
+ yi+1

x− xi
xi+1 − xi

.

The derivatives become

y′i(x) = yi
−1

xi+1 − xi
+ yi+1

1

xi+1 − xi
=
yi+1 − yi
xi+1 − xi

.
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The yi discrete scalar values at the end points of the segments are the unknown
values of the solution function at the corresponding locations. They are the
solutions of the system of equations

∂I

∂yi
= 0; i = 2, ..., n− 1.

Note that the interval end points are not included as they are the boundary
conditions satisfied by the interpolations in the first and the last segments.
The intermediate values are not exactly in agreement with the analytic solu-
tion, hence the method is approximate. To obtain solution values inside the
segments, the linear interpolation function that is valid for that segment is
used. As such, it is again an approximation of the analytic solution.

To illustrate this conceptually different method, let us view the example
that we also solved via Galerkin’s method:

I =

∫ 1

0

(
1

2
y′2 + (x+ 1)y

)
dx = extremum

with boundary conditions

y(0) = 0, y(1) = 1.

We will use three interior segments to discretize the interval as

x1 = 0, x2 =
1

3
, x3 =

2

3
, x4 = 1.

Hence there will be three solution function sections:

y1(x) = y1
x2 − x

x2 − x1
+ y2

x− x1
x2 − x1

; 0 ≤ x ≤ 1

3
,

y2(x) = y2
x3 − x

x3 − x2
+ y3

x− x2
x3 − x2

;
1

3
≤ x ≤ 2

3
,

and

y3(x) = y3
x4 − x

x4 − x3
+ y4

x− x3
x4 − x3

;
2

3
≤ x ≤ 1.

Similarly the derivatives are computed in three sections:

y′1 =
y2 − y1
x2 − x1

; 0 ≤ x ≤ 1

3
,

y′2 =
y3 − y2
x3 − x2

;
1

3
≤ x ≤ 2

3
,

and

y′3 =
y4 − y3
x4 − x3

;
2

3
≤ x ≤ 1.
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Substitution into the functional, integrating and summing we obtain

I = 3y22 + 3y23 − 3y2y3 +
4

9
y2 − 22

9
y3 +

49

7
.

The derivative based system of equations becomes

∂I

∂y2
= 6y2 − 3y3 +

4

9
= 0,

and
∂I

∂y3
= −3y2 + 6y3 − 22

9
= 0.

The solution is

y2 =
14

81
, y3 =

40

81
,

along with the dictated boundary conditions

y1 = 0, y4 = 1.

Evaluating the solution at the mid-point of the interval we obtain

y

(
1

2

)
= y2

(
1

2

)
=

14

81

2/3− 1/2

2/3− 1/3
+

40

81

1/2− 1/3

2/3− 1/3
=

34

81
.

To put the accuracy into perspective, we compare it to the analytic solution
computed in Section 1.1 as

y =
1

6
x3 +

1

2
x2 +

1

3
x.

The exact solution value at the mid-point is

y

(
1

2

)
=

15

48
,

and the error of the approximate solution is

139

1296

or approximately 0.1. The discussion here was intended to illustrate the con-
cept of the discretized and interpolated solution approach of finite elements.
The practical importance of the method is in continuum mechanical problems
of two and three dimensions, the detailed subject of Chapter 12.
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7.8 Exercises

Compare your results with the analytic solution given.

1.
Use Euler’s method to find an approximate solution. Use 5 intermediate seg-
ments.
I =

∫ 1

0
(2y + y′2)dx = extremum.

Boundary conditions y(0) = 0, y(1) = 1.

2.
Use Ritz’s method to find an approximate solution. Use power function bases.

I =
∫ 1

0
(xy′ + y′2)dx = extremum.

Boundary conditions y(0) = 0, y(1) = 1.

3.
Use Galerkin’s method to find an approximate solution. Use power function
bases.
I =

∫ 1

0
(4xy′ + y′2)dx = extremum.

Boundary conditions y(0) = 0, y(1) = 1.

4. Use the finite element method to find an approximate solution. Use
three segments in the interval.∫ 1

0
(y′2 + 12xy)dx = extremum.

Boundary conditions y(0) = 0, y(1) = 1.

5.
Use any numerical method to find an approximate solution.∫ 1

0
(y′′)2dx = extremum.

Boundary conditions y(0) = 0, y(1) = 1, y′(0) = 0, y′(1) = 3.
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8

Differential geometry

Differential geometry is a classical mathematical area that has become very
important for engineering applications in the recent decades. This importance
is based on the rise of computer-aided visualization and geometry generation
technologies.

The chapter will address the fundamental problem of differential geometry,
the finding of geodesic curves, that has practical implications in manufactur-
ing. Development of non-mathematical surfaces used in ships and airplanes
has serious financial impact in reducing material waste and improving the
quality of the surfaces.

While the discussion in this chapter will focus on analytically solvable prob-
lems, the methods and concepts we introduce will provide a foundation appli-
cable in various engineering areas.

8.1 The geodesic problem

Finding a geodesic curve on a surface is a classical problem of differential
geometry. Variational calculus seems uniquely applicable to this problem.
Let us consider a parametrically given surface

r = x(u, v)i+ y(u, v)j + z(u, v)k.

Let two points on the surface be

r0 = x(u0, v0)i+ y(u0, v0)j + z(u0, v0)k,

and

r1 = x(u1, v1)i+ y(u1, v1)j + z(u1, v1)k.

The shortest path on the surface between these two points is the geodesic
curve. Consider the square of the arc length

ds2 = (dx)2 + (dy)2 + (dz)2,

141
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and compute the differentials related to the parameters,

ds2 = E(u, v)(du)2 + 2F (u, v)dudv +G(u, v)(dv)2.

Here the so-called first fundamental quantities are defined as

E(u, v) =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2

= |r′u|2,

F (u, v) =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= r′u · r′v,

and

G(u, v) =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

= |r′v|2.

Assume that the equation of the geodesic curve in the parametric space is
described by

v = v(u).

Then the geodesic curve is the solution of the variational problem

I(v) =

∫ u1

u0

√
E(u, v) + 2F (u, v)

dv

du
+G(u, v)(

dv

du
)2 du = extremum

with boundary conditions

v(u0) = v0,

and
v(u1) = v1.

The corresponding Euler-Lagrange differential equation is

Ev + 2v′Fv + v′2Gv
2
√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

−

d

du

F +Gv′√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

= 0,

with the notation of

Ev =
∂E

∂v
, Fv =

∂F

∂v
,Gv =

∂G

∂v
,

and

v′ =
dv

du
.

The equation is rather difficult in general, and exploitation of special cases
arising from the particular surface definitions is advised.
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When the first fundamental quantities are only functions of the u parame-
ter, the equation simplifies to

F +Gv′√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

= c1.

A further simplification is based on the practical case when the u and v
parametric lines defining the surface are orthogonal. In this case

F = 0,

and the equation may easily be integrated as

v = c1

∫ √
E√

G2 − c21G
du+ c2.

The integration constants may be resolved from the boundary conditions.

When the first fundamental quantities are only functions of the v parame-
ter, and the F = 0 assumption still holds, the equation becomes

Gv′2√
E +Gv′2

−
√
E +Gv′2 = c1.

Reordering and another integration bring

v = c1

∫ √
E2 − c21E√

G
dv + c2.

8.1.1 Geodesics of a sphere

For an enlightening example, we consider a sphere, given by

x(u, v) = R sin(v) cos(u),

y(u, v) = R sin(v) sin(u),

and

z(u, v) = R cos(v).

The first fundamental quantities encapsulating the surface information are

E = R2 sin2(v),

F = 0,

and

G = R2.



144 Applied calculus of variations for engineers

Since this is the special case consisting of only v, the equation of the geodesic
curve becomes

u = c1

∫
R√

R4 sin4(v)− c21R
2 sin2(v)

dv + c2.

After the integration by substitution and some algebraic manipulations, we get

u = −a sin cot(v)√(
R
c1

)2
− 1

+ c2.

It follows that

sin(c2) (R sin(v) cos(u))− cos(c2) (R sin(v) sin(u))− R cos(v)√(
R
c1

)2
− 1

= 0.

Substituting the surface definition of the sphere yields

x sin(c2)− y cos(c2)− z√(
R
c1

)2
− 1

= 0

and that represents an intersection of the sphere with a plane. By substituting
boundary conditions, it would be easy to see that the actual plane contains
the origin and defines the great circle going through the two given points. This
fact is manifested in everyday practice by the transoceanic airplane routes’
well-known northern swing in the Northern Hemisphere.

8.1.2 Geodesic polyhedra

Let us consider a case of three intersecting geodesics of a sphere and the
resulting spherical triangle that is called an Euler triangle. Any such spherical
triangle has angles α, β and γ at the three corners. If the radius of the sphere
is r, then the area of the spherical triangle is

A = r2[(α+ β + γ)− π].

The term in the bracket is called the spherical excess, essentially describing
the difference between the area of the planar triangle spanning the three inter-
section points and that of the spherical triangle. This excess could be rather
significant.

Let us consider the unit sphere and the main circles of the x − z, x − y
and y − z planes’ intersections with the sphere. Focusing only on the first
octant of the sphere, the angles at the intersection of each pair of these circles
is 90 degrees, resulting in an excess of also 90 degrees, or π/2. The area of
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that spherical triangle according to the above formula is 12 · π/2, which is
one-eighth of the surface of the unit sphere.

The three intersection points, the corners of the spherical triangle are
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The distances between any pair of these points

is
√
2, hence the area of the planar triangle is

√
3
2 , which is significantly less

than that of the spherical triangle.

The triangularization of a sphere is a seamless covering the whole surface of
a sphere with a set of connecting, but not overlapping spherical triangles. If
the spherical triangles on the sphere are replaced by the corresponding planar
triangles, the result is the tessellated sphere, which is a geodesic polyhedron,
shown in Figure 8.1.

FIGURE 8.1 Tessellated sphere

Tessellation, or generating geodesic polyhedra, is an important component
of the surface meshing technology of the finite element technique, described
in more detail in Section 12.1.1.
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8.2 A system of differential equations for geodesic curves

Let us now seek the geodesic curve in the parametric form of

u = u(t),

and
v = v(t).

The curve goes through two points

P0 = (u(t0), v(t0)) ,

and
P1 = (u(t1), v(t1)) .

Then the following variational problem provides the solution:

I(u, v) =

∫ t1

t0

√
Eu′2 + 2Fu′v′ +Gv′2dt = extremum.

Here

u′ =
du

dt
, v′ =

dv

dt
.

The corresponding Euler-Lagrange system of differential equations is

Euu
′2 + 2Fuu

′v′ +Guv
′2

2
√
Eu′2 + 2Fu′v′ +Gv′2

− d

dt

2(Eu′ + Fv′)√
Eu′2 + 2Fu′v′ +Gv′2

= 0,

and

Evu
′2 + 2Fvu

′v′ +Gvv
′2

2
√
Eu′2 + 2Fu′v′ +Gv′2

− d

dt

2(Fu′ +Gv′)√
Eu′2 + 2Fu′v′ +Gv′2

= 0.

In the equations, the notation

Eu =
∂E

∂u
, Fu =

∂F

∂u
, Gu =

∂G

∂u

was used.

A more convenient and practically useful formulation, without the explicit
derivatives, based on [5] is

u′′ + Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2 = 0,

and
v′′ + Γ2

11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 = 0.
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Here

u′′ =
d2u

dt2
, v′′ =

d2v

dt2
.

The Γ are the Christoffel symbols that are defined as

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

,

Γ1
12 =

GEv − FGu
2(EG− F 2)

,

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

,

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

,

Γ2
12 =

EGu − FEv
2(EG− F 2)

,

and

Γ2
22 =

EGv − 2FFv + FGu
2(EG− F 2)

.

These formulae all require that

EG− F 2 �= 0

which is true when a parameterization is regular.

8.2.1 Geodesics of surfaces of revolution

Another practically important special case is represented by surfaces of revo-
lution. Their generic description may be of the form

x = u cos(v),

y = u sin(v),

and
z = f(u).

Here the last equation describes the meridian curve generating the surface.
The first order fundamental terms are

E = 1 + f ′2(u),

F = 0,

and
G = u2.
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The solution following the discussion in Section 8.1 becomes

v = c1

∫ √
1 + f ′2(u)

u
√
u2 − c21

du+ c2.

A simple sub-case of this class is a unit cylinder, described as

x = cos(v),

y = sin(v),

and

z = u.

The geometric meaning of the v parameter is the rotation angle generating
the cylinder’s circumference and the u parameter is the axial direction of the
surface. The fundamental terms are

E = 1,

F = 0,

and

G = 1.

The equation of the geodesic curve on the cylinder following above is

v = c1

∫
1

1
√

1− c21
du+ c2,

or

v = c1
1√

1− c21

∫
du+ c2.

With

c3 = c1
1√

1− c21

and integration we obtain

v = c3u+ c2.

In the general case, this is a helix on the surface of the cylinder going through
the two points. This is also a line in the parametric space. This fact is geo-
metrically easy to explain because the cylinder is a developable surface. Such
a surface may be rectified onto a plane. In such a case, the geodesic curve is
a straight line on the rectifying plane. The only curvature of the helix will be
that of the cylinder.

The constants of integration may be determined from the boundary condi-
tions. For example, assume the case shown in Figure 8.2, where the starting



Differential geometry 149

 0

 0.2

 0.4

 0.6

 0.8

 1  0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

FIGURE 8.2 Geodesic curve of a cylinder

point is at

P0 = (x0, y0, z0) = (1, 0, 0)

corresponding to parametric coordinates

u(t0) = 0, v(t0) = 0.

The endpoint is located at

P1 = (x1, y1, z1) = (0, 1, 1)

corresponding to parametric coordinates

u(t1) = 1, v(t1) = π/2.

Substituting the starting point yields

0 = c3 · 0 + c2,

which results in

c2 = 0.
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The endpoint substitution produces

π/2 = c3 · 1 + c2,

and in turn

c3 =
π

2
.

The specific solution for this case in the parametric space is

v =
π

2
u.

The Cartesian solution is obtained in the form of

x = cos(v),

y = sin(v),

and
z =

v

π/2
.

It is easy to see that the last equation makes the elevation change from zero
to 1, in accordance with the turning of the helix.

Since the parametric space of the cylinder is simply the rectangle of the
developed surface, it is easy to see some special sub-cases. If the two points
are located at the same rotational position (v=constant), but at different
heights, the geodesic curve is a straight line. If the two points are on the
same height (u=constant), but at different rotational angles, the geodesic
curve is a circular arc.

The last two sections demonstrated the difficulties of finding the geodesic
curves even on regular surfaces like the sphere or the cylinder. On a general
three-dimensional surface, these difficulties increase significantly and may ren-
der using the differential equation of the geodesic curve unfeasible.

8.3 Geodesic curvature

Let us consider the parametric curve

r(t) = x(t)i+ y(t)j + z(t)k

on the surface

S(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k.
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Let n denote the unit normal of the surface. The curvature vector of a three-
dimensional curve is defined as

k =
dt

dt
= t′,

where t is the tangent vector computed as

t =
dr

dt
,

and also assumed to be a unit vector (a unit speed curve) for the simplicity
of the derivation. Then the unit bi-normal vector is

b = n× t.

We represent the curvature vector with components along the bi-normal vec-
tor and the normal vector n at any point as

k = κnn+ κgb.

The coefficients are the normal curvature and the geodesic curvature, respec-
tively. Taking the inner product of the last equation with the b vector and
exploiting the perpendicularity conditions present, we obtain

b · k = κg.

Substituting the definition of the bi-normal and the curvature vector results in

κg = (n× t) · t′.
For the more generic case when the tangent and normal vectors are not of
unit length, the geodesic curvature of a curve is defined as

κg =
r′′(t) · (n× r′(t))∣∣∣∣∣∣r′(t)∣∣∣∣∣∣3 .

A curve on a surface is called geodesic if at each point of the curve its principal
normal and the surface normal are collinear. Therefore:

A curve r(t) on the surface S(u, v) is geodesic if the geodesic cur-
vature of the curve is zero.

In order to prove that, the terms are computed from the surface informa-
tion, such as

r′ = t =
∂f

∂u
u′ +

∂f

∂v
v′ = fuu

′ + fvv
′.

The application of the chain rule results in

r′′ = t′ = fuu(u
′)2 + 2fuvu

′v′ + fvv(v
′)2 + fuu

′′ + fvv
′′.
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After substitution into the equation of the geodesic curvature and some alge-
braic work, while employing again the Christoffel symbols, [5] produces the
form

κg =
√
EG− F 2

(
Γ2
11(u

′)3 + (2Γ1
12 − Γ1

11)(u
′)2v′+

(Γ2
22 − 2Γ1

12)u
′(v′)2 − Γ1

22(v
′)3 + u′v′′ − u′′v′

)
.

Since

EG− F 2 �= 0,

the term in the brackets must be zero for zero geodesic curvature. That hap-
pens when the following terms vanish

u′′ + Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2 = 0,

and

v′′ + Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 = 0.

This result is the decoupled system of equations of the geodesic, introduced
in Section 8.1, hence the vanishing of the geodesic curvature is indeed a char-
acteristic of a geodesic curve.

Finally, since the recent discussions were mainly on parametric forms, the
equation of the geodesic for an explicitly given surface

z = z (x, y(x))

is quoted from [5] for completeness’ sake without derivation:(
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2
)
d2y

dx2
=
∂z

∂x

∂2z

∂y2

(
dy

dx

)3

+

(
2
∂z

∂x

∂2z

∂x∂y
− ∂z

∂y

∂2z

∂y2

)(
dy

dx

)2

+

(
∂z

∂x

∂2z

∂x2
− 2

∂z

∂y

∂2z

∂x∂y

)
dy

dx
− ∂z

∂y

∂2z

∂x2
.

The formula is rather overwhelming and useful only in connection with the
simplest surfaces.

8.3.1 Geodesic curvature of helix

Let us enlighten this further by reconsidering the case of the geodesic curve
of the cylinder discussed in the last section. The geodesic curve we obtained
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was the helix:

r(t) = cos(t)i+ sin(t)j +
t

π/2
k.

The appropriate derivatives are

r′(t) = − sin(t)i+ cos(t)j +
1

π/2
k

and

r′′(t) = − cos(t)i− sin(t)j + 0k.

The surface normal is computed as

n =
∂S

∂u
× ∂S

∂v
.

In the specific case of the cylinder

S(u, v) = cos(v)i+ sin(v)j + uk,

it becomes

n = cos(t)i+ sin(t)j + 0k.

The cross-product and substitution of v = t yields

n(t)× r′(t) =
2

π
sin(t)i− 2

π
cos(t)j +

(
sin2(t) + cos2(t)

)
k.

The numerator of the curvature becomes zero, as

(− cos(t)i− sin(t)j+0k) ·
(
2

π
sin(t)i− 2

π
cos(t)j +

(
sin2(t) + cos2(t)

)
k

)
= 0.

Since the denominator

∣∣∣∣∣∣r′(t)∣∣∣∣∣∣3 =

⎛
⎝
√

1 +

(
1

π/2

)2
⎞
⎠

3

is not zero, the geodesic curvature becomes zero. Hence, the helix is truly the
geodesic curve of the cylinder.

The concept of geodesic curves may be generalized to spaces of higher
dimensions. The geodesic curve notation, however, while justified on a three-
dimensional surface, needs to be generalized as well. In such cases, one talks
about finding a geodesic object, or just a geodesic, as opposed to a curve on
a surface.
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8.4 Generalization of the geodesic concept

Insofar, we confined the geodesic problem to finding a curve on a three-
dimensional surface, but the concept may be generalized to higher dimensions.
Physicists use the space-time continuum as a four-dimensional (Minkowski)
space and find geodesic paths in that space. The arc length definition of this
space is

ds2 = dx2 + dy2 + dz2 − cdt2,

where t is the time dimension and c is the speed of light. The variational
problem of minimal arc length may be posed similarly as in Section 8.1 and
may be solved with similar techniques. Einstein used this generalization to
explain planetary motion as a geodesic phenomenon in the four-dimensional
space.



9

Computational geometry

The geodesic concept, introduced in the last chapter purely on variational
principles, has interesting engineering aspects. On the other hand, the ana-
lytic solution of a geodesic curve by finding the extremum of a variational
problem may not be easy in practical cases.

The subject of this chapter is to provide a computational representation of
various geometry objects also from a variational foundation. The technology
of splines, natural and constrained, will be explored and extended to surfaces
and even volumes. Their practical use will also be described.

9.1 Natural splines

It is reasonable to assume that the quality of a curve in a geodesic sense is
related to its curvature. This observation proposes a strategy for creating
good quality (albeit not necessarily geodesic) curves by minimizing the cur-
vature.

Since the curvature is difficult to compute, one can use the second derivative
of the curve in lieu of the curvature. This results in the following variational
problem statement for a smooth curve: Find the curve s(t) that results in

I(s) =

∫ tn

t0

k(s′′)2dt = extremum.

The constant k represents the fact that this is an approximation of the
curvature, but will be left out from our work below. This variational problem
leads to the well-known spline functions.

Let us consider the following variational problem. Find the curve between
two points P0, P3 such that

I(s) =

∫ t3

t0

(
d2s

dt2

)2

dt = extremum,

155
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with boundary conditions of

P0 = s(t0), P3 = s(t3),

and additional discrete internal constraints of

P1 = s(t1), P2 = s(t2).

In essence, we are constraining two interior points of the curve, along with
the fixed beginning and endpoints. We will, for the sake of simplicity, assume
unit equidistant parameter values as

ti = i, i = 0. . . . , 3.

While the functional does not contain the independent variable t and the
dependent variable s(t), it is of higher order. Hence, the Euler-Poisson equa-
tion of second order applies:

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0,

and in this case it simplifies to

d4

dt4
s(t) = 0.

Straightforward integration yields the solution of the form

s(t) = c0 + c1t+ c2t
2 + c3t

3,

where ci are constants of integration to be satisfied by the boundary condi-
tions. Imposing the boundary conditions and constraints yields the system of
equations ⎡

⎢⎢⎣
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

⎤
⎥⎥⎦
⎡
⎢⎢⎣
c0
c1
c2
c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
P0

P1

P2

P3

⎤
⎥⎥⎦ .

The inversion of the system matrix results in the generating matrix

M =

⎡
⎢⎢⎣

1 0 0 0
−11/6 3 −3/2 1/3

1 −5/2 2 −1/2
−1/6 1/2 −1/2 1/6

⎤
⎥⎥⎦

for the natural spline. For any given set of four points

P =

⎡
⎢⎢⎣
x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3

⎤
⎥⎥⎦
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the coefficients of the solution may be obtained by

C =MP,

with distinct coefficients for all coordinate directions as

C =

⎡
⎢⎢⎣
cx0 c

y
0 c

z
0

cx1 c
y
1 c

z
1

cx2 c
y
2 c

z
2

cx3 c
y
3 c

z
3

⎤
⎥⎥⎦ .

For example, the points

P =

⎡
⎢⎢⎣
1 1
2 2
3 2
4 3

⎤
⎥⎥⎦

result in coefficients

C =

⎡
⎢⎢⎣
1 1
1 13/6
0 −3/2
0 1/3

⎤
⎥⎥⎦ .

The parametric solution curve is of the form

x(t) = 1 + t,

y(t) = 1 + 13/6t− 3/2t2 + 1/3t3.

The example solution curve is shown in Figure 9.1, where the input points
are connected by the straight lines that represent the chords of the spline.
The spline demonstrates a good smoothness while satisfying the constraints.

Several extensions of this problem are noteworthy. It is possible to pose the
variational problem in two-parameter form as

I(s) =

∫ ∫
D

((
∂

∂u
s(u, v)

)2

+

(
∂

∂v
s(u, v)

)2
)
dudv = extremum.

The Euler-Lagrange equation corresponding to this problem arrives at Laplace’s
equation:

∂2

∂u2
s(u, v) +

∂2

∂v2
s(u, v) = 0.

This is sometimes called the harmonic equation, hence the splines so obtained
are also called harmonic splines.
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FIGURE 9.1 Natural spline approximation

It is also often the case in practice that many more than four points are
given:

Pi = (xi, yi, zi), i = 0, . . . , n.

This enables the generation of a multitude of natural spline segments, and a
curvature continuity condition between the segments may also be enforced.
Finally, the direct (for example Ritz) solution of the above variational prob-
lem leads to the widely used B-splines, a topic of the next chapter.

9.2 B-spline approximation

As shown in Chapter 7, when using numerical methods, an approximate solu-
tion is sought in terms of suitable basis functions:

s(t) =

n∑
i=0

Bi,k(t)Qi,
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where Qi are the yet unknown control points (i=0,. . . ,n) and Bi,k are the basis
functions of degree k in the parameter t. For industrial computational work,
the class of basis functions resulting in the so-called B-splines are defined in [1]
as

Bi,0(t) =

{
1, ti ≤ t < ti+1

0, t < ti, t ≥ ti+1

where the higher order terms are recursively computed:

Bi,k(t) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t).

The basis functions are computed from specific parameter values, called
knot values. If their distribution is not equidistant, the splines are called
non-uniform B-splines. If they are uniformly distributed, they are generating
uniform B-splines.

The knot values are a subset of the parameter space and their selection
enables a unique control of the behavior of the spline. For example, the use
of duplicate knot values inside the parameters span of the spline results in a
local change. The use of multiple knot values at the boundaries enforces var-
ious end conditions, such as the frequently used clamped end condition. This
control mechanism contributes to the popularity of the method in computer-
aided design (CAD), but will not be further explored here.

Smoothing a B-spline is defined by the variational problem

Is(Q) =

∫ tn

t0

(
n∑
i=0

B′′
i,k(t)Qi

)2

dt = extremum.

The derivative of the basis functions may be recursively computed. For k = 1,
since Bi,0 are constant

d

dt
Bi,1(t) = B′

i,1(t) =
1

ti+1 − ti
Bi,0(t)− 1

ti+2 − ti+1
Bi+1,0(t).

For k = 2

d

dt
Bi,2(t) = B′

i,2(t) =
1

ti+2 − ti
Bi,1(t) +

t− ti
ti+2 − ti

B′
i,1(t)−

1

ti+3 − ti
Bi+1,1(t) +

ti+3 − t

ti+3 − ti+1
B′
i+1,1(t).

Substituting the k = 1 derivative into the second term results in

t− ti
ti+2 − ti

B′
i,1(t) =

t− ti
ti+2 − ti

(
1

ti+1 − ti
Bi,0(t)− 1

ti+2 − ti+1
Bi+1,0(t)

)
=
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1

ti+2 − ti

(
t− ti

ti+1 − ti
Bi,0(t) +

ti − t

ti+2 − ti+1
Bi+1,0(t)

)
.

The content of the parenthesis is easily recognizable as Bi,1(t), hence this term
is identical to the first. Similar arithmetic on the second two terms results in
the derivative for k = 2 as

d

dt
Bi,2(t) = B′

i,2(t) =
2

ti+2 − ti
Bi,1 − 2

ti+3 − ti+1
Bi+1,1.

By induction, for any k value, the first derivative is as follows:

d

dt
Bi,k(t) = B′

i,k(t) =
k

ti+k − ti
Bi,k−1(t)− k

ti+k+1 − ti+1
Bi+1,k−1(t).

A repeated application of the same step will produce the needed second deriva-
tive B′′ as

d

dt
B′
i,k(t) = B′′

i,k(t) =
k

ti+k − ti
B′
i,k−1(t)−

k

ti+k+1 − ti+1
B′
i+1,k−1(t).

The spline, besides being smooth (minimal in curvature), is expected to
approximate a given set of points Pj ; j = 0, . . . ,m, with associated pre-
scribed parameter values (not necessarily identical to the knot values) of
tj ; j = 0, . . . ,m. If such parameter values are not given, the parameterization
may be via the simple method of uniform spacing defined as tj = j; 0 ≤ j ≤ m.
Assuming that the point set defined is geometrically semi-equidistant, this is
proven in industry to be a good method for the problem at hand. If that is
not the case, a parameterization based on the chord length may also be used.

Approximating the given points with the spline is another variational prob-
lem that requires finding a minimum of the squares of the distances between
the spline and the points.

Ia(s) =

m∑
j=0

(
s(tj)− Pj

)2
= extremum.

Substituting the B-spline formulation and the basis functions results in

Ia(Q) =
m∑
j=0

(
n∑
i=0

Bi,k(tj)Qi − Pj

)2

.

Similarly, in the smoothing variational problem, we also replace the integral
with a sum over the given points in the parameter span, resulting in

Is(Q) =
m∑
j=0

(
n∑
i=0

B′′
i,k(tj)Qi

)2

.
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Finally, the functional to produce a smooth spline approximation is the sum
of the two functionals

I(Q) = Ia(Q) + Is(Q).

The notation is to demonstrate the dependence upon the yet unknown control
points of the spline.

According to the numerical method developed in Chapter 7, the problem
has an extremum when

∂I

∂Qi
= 0,

for each i = 0, . . . , n. The control points will be, of course, described by
Cartesian coordinates; hence, each of the above equations represents three
scalar equations.

The derivative of the approximating component with respect to an unknown
control point Qp yields

∂Ia
∂Qp

= 2

m∑
j=0

Bp,k(tj)

(
n∑
i=0

Bi,k(tj)Qi − Pj

)
= 0,

where p = 0, 1, . . . , n. This is expressed in matrix form as

BTBQ−BTP

with the matrices

B =

⎡
⎢⎢⎣
B0,k(t0) B1,k(t0) B2,k(t0) . . . Bn,k(t0)
B0,k(t1) B1,k(t1) B2,k(t1) . . . Bn,k(t1)
. . . . . . . . . . . . . . .

B0,k(tm) B1,k(tm) B2,k(tm) . . . Bn,k(tm)

⎤
⎥⎥⎦ ,

P =

⎡
⎢⎢⎣
P0

P1

. . .
Pm

⎤
⎥⎥⎦ ,

and

Q =

⎡
⎢⎢⎣
Q0

Q1

. . .
Qn

⎤
⎥⎥⎦ .

For degree k = 3, the basis functions may be analytically computed as:

B0,3 =
1

6
(1− t)3,
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B1,3 =
1

6
(3t3 − 6t2 + 4),

B2,3 =
1

6
(−3t3 + 3t2 + 3t+ 1),

and

B3,3 =
1

6
t3.

Furthermore, for uniform parameterization, the B matrix is easily com-
puted by hand as

B =
1

6

⎡
⎢⎢⎢⎢⎣

1 4 1 0
0 1 4 1
−1 4 −5 8
−8 31 −44 27
−27 100 −131 64

⎤
⎥⎥⎥⎥⎦ .

The derivative of the smoothing component of the functional, with respect
to an unknown control point Qp yields

∂Is
∂Qp

= 2

m∑
j=1

B′′
p,k(tj)

n∑
i=0

B′′
i,k(tj)Qi = 0,

where p ∈ [0, . . . , n]. This results in a smoothing matrix

D =

⎡
⎢⎢⎣
B′′

0,k(t0) B′′
1,k(t0) . . . B

′′
n,k(t0)

B′′
0,k(t1) B′′

1,k(t1) . . . B
′′
n,k(t1)

. . . . . . . . . . . .
B′′

0,k(tm) B′′
1,k(tm) . . . B′′

n,k(tm)

⎤
⎥⎥⎦ .

These second derivatives for the cubic case are

B′′
0,3 = 1− t,

B′′
1,3 = 3t− 2,

B′′
2,3 = −3t+ 1,

and

B′′
3,3 = t.

For uniform parameterization, the smoothing matrix is computed as

D =
1

6

⎡
⎢⎢⎢⎢⎣

1 −2 1 0
0 1 −2 1
−1 4 −5 2
−2 7 −8 3
−3 10 −11 4

⎤
⎥⎥⎥⎥⎦ .
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The simultaneous solution of both the smoothing and approximating prob-
lem is now represented by the matrix equation

AQ = BTP

where the system matrix is

A = BTB +DTD.

The solution of this system produces the control points for a smooth approx-
imation.
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FIGURE 9.2 Smooth B-spline approximation

Figure 9.2 shows the smooth spline approximation for a set of given points.
The input points as well as the computed control points are also shown. Note
that, as opposed to the natural spline, the curve does not go through the
points exactly, but it is very smooth.
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9.3 B-splines with point constraints

It is possible to require some of the points to be exactly satisfied. For the
generic case of multiple enforced points, a constrained variational problem is
formed.

I(Qi) = extremum,

subject to

s(tl) = Rl; l = 0, 1, . . . , o.

Here the enforced points Rl represent a subset of the given points (Pj), while
the remainder are to be approximated. The subset is specified as

Rl =MPj ; l = 0, 1, . . . , o; j = 0, 1, . . . ,m; o < m,

where the mapping matrixM has o rows and m columns and contains a single
non-zero term in each row, in the column corresponding to a selected inter-
polation point. For example, the matrix

M =

[
0 1 0 0
0 0 1 0

]

would specify the two internal points of four Pj points, i.e.,

R0 = P1

and

R1 = P2.

This approach could be used to specify any pattern, such as every second or
third term, or some specific points at intermittent locations.

Introducing the specifics of the splines and Lagrange multipliers, the con-
strained variational problem is presented as

I(Qi, λl) = I(Qi) +

o∑
l=0

λl

(
n∑
i=0

(Bi,k(tl)Qi)−Rl

)
.

The derivatives of I(Qi) with respect to the Qp control point were computed
earlier, but need to be extended with the derivative of the term containing
the Lagrange multiplier:

o∑
l=0

Bp,k(tl)λl

n∑
i=0

Bi,k(tl).
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Utilizing the earlier introduced matrices, this term is

BTMTΛ,

where Λ is a column vector of o+ 1 Lagrange multipliers,⎡
⎢⎢⎣
λ0
λ1
. . .
λo

⎤
⎥⎥⎦ .

The derivatives with respect to the Lagrange multipliers λl produce

∂I(Qi, λl)

∂λl
=

n∑
i=0

(Bi,k(tl)Qi)−Rl = 0; l = 0, 1, . . . , o.

This results in o+ 1 new equations of the form

n∑
i=0

Bi,k(tl)Qi = Rl,

or in matrix form, using the earlier matrices:

MBQ = R,

where R is a vector of the interpolated points. The two sets of equations may
be assembled into a single matrix equation with n+1+o+1 rows and columns
of the form [

A BTMT

MB 0

] [
Q
Λ

]
=

[
BTP
MP

]
.

The first matrix row represents the constrained functional and the second
row represents the constraints. The simultaneous solution of this (symmetric,
indefinite, but still linear) system produces the optimized (approximated and
smoothed) and selectively interpolated solution.

The solution of this problem is accomplished in the following steps. First,
the unknown control points are expressed from the first row of

AQ+BTMTΛ = BTP

as functions of the unknown Lagrange multipliers. Substituting into the sec-
ond equation is the way to compute the multipliers:

Λ = (MBA−1BTMT )−1(MBA−1BTP −MP ).

Finally, the set of control points, which are solutions of the constrained vari-
ational problem, are obtained explicitly from the first equation as

Q = A−1(BTP −BTMTΛ).
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FIGURE 9.3 Point constrained B-spline

The effect of point constraints is shown in Figure 9.3 in connection with
the earlier example, constraining the spline to go through the second and the
fourth points. The dashed curve is the original curve, while the dotted curve
is the new curve and it demonstrates the adherence to the constraint, at the
same time maintaining the quality of the approximation and the smoothness.

9.4 B-splines with tangent constraints

It may be desirable for the engineer to be able to enforce constraints posed
by specifying tangents at certain points. These are of the form

s′(tl) = Tl; l = 0, 1, . . . , o,

assuming for now that the tangents are given at the same points where inter-
polation constraints were also given. The constrained problem shown in the
prior section will be extended with the additional constraints and Lagrange
multipliers:
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I(Qi, λl) = I(Qi) +

o∑
l=0

λl

(
n∑
i=0

(B′
i,k(tl)Qi)− Tl

)
.

The derivatives with respect to the new Lagrange multipliers are

∂I(Qi, λl)

∂λl
=

n∑
i=0

(B′
i,k(tl)Qi)− Tl = 0; l = 0, 1, . . . , o.

This results in o+ 1 new equations of the form

n∑
i=0

B′
i,k(tl)Qi = Tl,

or in matrix form, using some of the earlier matrices:

MCQ = T,

where T is a vector of the given tangents and the matrix of first derivatives is

C =

⎡
⎢⎢⎣
B′

0,k(t0) B′
1,k(t0) . . . B

′
n,k(t0)

B′
0,k(t1) B′

1,k(t1) . . . B
′
n,k(t1)

. . . . . . . . . . . .
B′

0,k(tm) B′
1,k(tm) . . . B′

n,k(tm)

⎤
⎥⎥⎦ .

The first derivatives of the basis functions for the cubic case with uniform
parametrization are

B′
0,3 = −1

2
(1− t)2,

B′
1,3 =

3

2
t2 − 2t,

B′
2,3 = −3

2
t2 + t+

1

2
,

and

B′
3,3 =

1

2
t2.

For the uniform case, the C matrix containing the first derivatives is

C =
1

2

⎡
⎢⎢⎢⎢⎣
−1 0 1 0
0 −1 0 1
−1 4 −7 4
−4 15 −20 9
−9 32 −39 16

⎤
⎥⎥⎥⎥⎦ .
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The three sets of equations may be assembled into one matrix equation
with n+ 1 + 2(o+ 1) rows and columns of the form⎡

⎣ A BTMT CTMT

MB 0 0
MC 0 0

⎤
⎦
⎡
⎣ Q
Λp
Λt

⎤
⎦ =

⎡
⎣BTPMP
MT

⎤
⎦ .

The index of the Lagrange multipliers refers to points (p) or tangents (t).

The restriction of giving tangents at all the same points where interpola-
tion constraints are also given may be relaxed and the points with tangential
constraints may only be a subset of the points where interpolation constraints
are placed. In this case, the final equation is⎡

⎣ A BTMT CTNT

MB 0 0
NC 0 0

⎤
⎦
⎡
⎣ Q
Λp
Λt

⎤
⎦ =

⎡
⎣BTPMP
NT

⎤
⎦ .

Here the N mapping matrix is a subset of the M mapping matrix. The solu-
tion of this problem is similar to the solution of the simply constrained case,
albeit a bit more tedious, due to the fact that the constraints are now of two
different kinds. First, the solution in terms of the multipliers is expressed

Q = A−1BTP −A−1
[
BTMT CTNT

] [Λp
Λt

]
.

Then there is a matrix equation to compute the multipliers from[
MB
NC

]
Q =

[
MP
NT

]
.

The sets of multipliers are obtained from

[
Λp
Λt

]
=

([
MB
NC

]
A−1

[
BTMT CTNT

])−1([
MB
NC

]
A−1(BTP )−

[
MP
NT

])
by executing the posted matrix operations. Finally, the desired set of control
points satisfying the constrained problem are

Q = A−1(BTP −BTMTΛp − CTNTΛt).

Let us use again the same set of points, but enforce the curve going through
the second point with a tangent of 45 degrees.

The dotted curve in Figure 9.4 demonstrates the satisfaction of both con-
straints, going through the second point and having a 45-degree tangent. It
is also very clear that such a strong constraint imposed upon one point has a
significant effect on the shape of the curve, but the smoothness of the curve
is still excellent.
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FIGURE 9.4 Tangent constrained B-spline

In practical applications, some heuristics, like setting the tangent at a cer-
tain point parallel to the chord between the two neighboring points, can be
used successfully. Then

Ti =
Pi+1 − Pi∣∣∣∣∣∣Pi+1 − Pi

∣∣∣∣∣∣ .

This would result in different control points and a much smaller deformation
of the overall curve may be obtained. Systematic and possibly interactive
application of this concept should result in good shape preservation and gen-
eral smoothness.
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9.5 Generalization to higher dimensions

The spline technology discussed above is easily generalized to spaces of higher
dimensions. Let us consider surfaces given in the form of

z(x, y) = f(x, y)

first. A B-spline surface is defined by a set of control points as

s(u, v) =

n∑
i=0

m∑
j=0

Bi,k(u)Bj,k(v)Qij ,

where now we have two distinct knot value sequences of

ui; i = 0, 1, . . . , n,

and
vj ; j = 0, 1, . . . ,m.

Here the k is again the order of the approximation that is usually 3. The
rectangular arrangement of the control points is not necessary and may be
overcome by coalescing certain points or adjustments of the knot points. The
control points to provide a smooth approximation of the given geometric sur-
face are selected from the variational problem of

I(s) =

∫ ∫
(f(x, y)− s(x, y))

2
dxdy = extremum.

Substituting the surface spline definition and sampling of the given surface
results in another, albeit more difficult, system of linear equations from which
the control point locations may be resolved in a similar fashion as in the case
of spline curves before.

Finally, it is also possible to describe some geometrical volumes with the
B-spline technology. Consider the form

s(u, v, t) =

n∑
i=0

m∑
j=0

p∑
l=0

Bi,k(u)Bj,k(v)Bl,k(t)Qijl,

where now the third set of knot values

tl; l = 0, 1, . . . , p

defines the direction through the volume starting from a surface. The rectan-
gular arrangement is applied again, but may be overcome with some inconve-
nience.
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9.6 Weighting and non-uniform parametrization

It is also possible to generalize the B-spline technology by the use weights,
resulting in rational B-splines. When a non-uniform parameterization is also
used, the splines become Non-Uniform, Rational B-splines, known as NURBS
[13].

Introducing weights associated with each control point results in the ratio-
nal B-spline curve of form

S(t) =

∑n
i=0 wiBi,k(t)Qi∑n
i=0 wiBi,k(t)

.

The geometric meaning of the weights is simply to pull the curve closer to
certain input points. It is, however, important to point out that changing
one single weight value will result only in a local shape change in the segment
related to the point. This local control is a spectacular advantage in modeling
geometric objects.

The other, not always recognized advantage of the weighted technology is
the ability to exactly fit conic sections, such as circles or parabolas. That is
not possible without the weights. One can ask why do this, since conic sec-
tions have simple closed form descriptions. The advantage lies in the seamless
modeling process of a geometry dominated by non-mathematical curves and
surfaces, but occasionally interspersed with conic sections. The whole model
will be comprised of splines, some integer, some rational, but with simply
enforced continuity between the segments.

The weighted, or rational, formulation extends quite easily to surfaces:

S(u, v) =

∑n
i=0

∑m
j=0 wi,jBi,k(u)Bj,l(v)Qi,j∑n

i=0

∑m
j=0 wi,jBi,k(u)Bj,l(v)

.

Note that the degree of the v directional parametric curve may be different
than that of the u curve, denoted by l. Similarly, the parameterization in both
directions may be different. This gives tremendous flexibility to the method.

Geometric modeling operations are enabled by these objects. Consider gen-
erating a swept surface by moving a curve C(u) along a trajectory T (v). This
is conceptually similar to generating a cylinder by defining a circle and the
axis perpendicular to the plane of the circle. In general, the surface generated
by this process may be described as

S(u, v) = C(u) + T (v).
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Assume that the curves are rational B-splines of the same order k,

C(u) =

∑n
i=0 w

C
i Bi,k(u)Q

C
i∑n

i=0 w
C
i Bi,k(u)

and

T (v) =

∑m
j=0 w

T
j Bj,k(v)Q

T
j∑m

j=0 w
T
j Bj,k(v)

.

Then the swept rational B-spline surface is of form

S(u, v) =

∑n
i=0

∑m
j=0 wi,jBi,k(u)Bj,k(v)Qi,j∑n

i=0

∑m
j=0 wi,jBi,k(u)Bj,k(v)

,

where
Qi,j = QCi +QTj

and
wi,j = wCi w

T
j .

The superscripts C and T stand for the curve and trajectory, respectively.
Similar considerations may be used to generate rational B-spline surfaces of
revolution around a given axis.

Finally, rational B-splines also generalize to three dimensions for modeling
volumes:

S(u, v, t) =

∑n
i=0

∑m
j=0

∑q
p=0 wi,j,pBi,k(u)Bj,k(v)Bp,k(t)Qi,j,p∑n

i=0

∑m
j=0

∑q
p=0 wi,j,pBi,k(u)Bj,k(v)Bp,k(t)

.

The form is written with the assumption of the curve degree being the same
(k) in all three parametric directions, albeit that is not necessary.

It is important to point out that the surface representations via B-splines
may also produce non-rectangular surface patches. Such, for example trian-
gular, patches are very important in the finite element discretization step to
be discussed in Chapter 12. They may easily be produced from the above
formulations by collapsing a pair of points into one.

9.7 Industrial applications

Both of the generalizations in the last two sections are important in computer-
aided design (CAD) tools in the industry. They represent an efficient way to
describe general (non-mathematical) surfaces and volumes.
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Another, very important higher than three-dimensional extension occurs in
computer-aided manufacturing (CAM). The calculation of smooth tool-paths
of five-axis machines includes the three Cartesian coordinates and two addi-
tional quantities related to the tool position. This is important in machining
of surface parts comprised of valleys and walls.

The positioning of the cutting tool is customarily described by two angles.
The tool’s “leaning” in the normal plane is one which may be construed as a
rotation with respect to the bi-normal of the path curve. The tool’s “swaying”
from the normal plane, which constitutes a rotation around the path tangent
as an axis, may be another angle.

Abrupt changes in the tool axes are detrimental to the machined surface
quality as well as to the operational efficiency. Hence, it is a natural desire to
smooth these quantities as well. The variational formulation for the geomet-
ric smoothing of the spline, shown above, accommodates any number of such
additional considerations.

A recent application of the techniques developed in this chapter is in the
area of 3D printing. A body printed is described by a B-spline volume
described earlier. Any printing technology proceeds along a certain axis specif-
ically related to the shape of the body. The contour curves of the cross-sections
of the body perpendicular to the axis of printing are 2D B-spline curves. The
printing area in each layer is bounded by these curves and controls the print-
ing process.
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Variational equations of motion

We encountered variational forms of equations of motion in prior chapters,
for example, when solving the brachistochrone problem in Section 1.4.2. Sev-
eral dynamic equations of motion will be derived from variational principles in
this chapter using techniques developed by Legendre, Hamilton and Lagrange.
Specifically, mechanical systems, electric circuits and orbital motion will be
investigated.

10.1 Legendre’s dual transformation

This transformation invented by Legendre is of fundamental importance. Let
us consider the function of n variables

f = f(u1, u2, ..., un).

Legendre proposed to introduce a new set of variables by the transformation of

vi =
∂f

∂ui
; i = 1, 2, ..., n.

The Hessian matrix of this transformation is

H(f) =

⎡
⎢⎢⎢⎢⎣

∂2f
∂u2

1

∂2f
∂u1∂u2

... ∂2f
∂u1∂un

∂2f
∂u2∂u1

∂2f
∂u2

2
... ∂2f

∂u2∂un

... ... ... ...
∂2f

∂un∂u1

∂2f
∂un∂u2

... ∂2f
∂u2

n

⎤
⎥⎥⎥⎥⎦ .

If the determinant of this matrix, sometimes called the Hessian, is not zero,
then the variables of the new set are independent. This means that they could
also be obtained as functions of the original variables.

We define a new function in terms of the new variables

g = g(v1, v2, ..., vn).

175
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The two functions are related as

g =
n∑
i=1

uivi − f.

The notable consequence is the spectacular duality between the two sets. The
original variables can be now expressed as

ui =
∂g

∂vi
; i = 1, 2, ..., n.

and the original function regained as

f =

n∑
i=1

uivi − g.

Legendre’s transformation is completely symmetric.

Let us now look at a function of two sets of variables:

f = f(u1, u2, ..., un, w1, w2, ..., wn).

If the variables of the second set are independent of the first, they are consid-
ered to be parameters and the transformation will retain them as such:

g = g(v1, v2, ..., vn, w1, w2, ..., wn).

The relationship between the two functions regarding the parameters is

∂f

∂wi
= − ∂g

∂wi
, i = 1, 2, ..., n.

This transformation will be instrumental when applied to the functions intro-
duced in the next sections.

10.2 Hamilton’s principle

Hamilton’s principle is a generalization of Euler’s principle of minimum action,
introduced earlier in Section 1.4.4 in connection with the problem of a particle
moving under the influence of a gravity field. Hamilton’s principle, however,
is much more general and it is applicable to complex mechanical systems. For
conservative (energy preserving) systems, Hamilton’s principle states that the
motion between two points is on the path of least action defined by the vari-
ational problem of
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∫ t2

t1

Ldt = extremum,

with the Lagrangian function

L = Ek − Ep,

where Ek and Ep are the kinetic and potential energy, respectively. Hence
the principle may also be stated as

∫ t2

t1

(Ek − Ep)dt = extremum,

where the extremum is not always zero. The advantageous feature of Hamil-
ton’s principle is that it is stated in terms of energies, which are independent
of the selection of coordinate systems. Hamilton’s principle is of fundamental
importance because many of the general physical laws may be derived from
it as we will see in the next sections.

10.3 Hamilton’s canonical equations

Let us view the Lagrangian as a function of n generalized displacements and
velocities, and time as

L = L(qi, q̇i, t),

for i = 1, 2, . . . n.
Hamilton’s canonical equations are the result of the application of Legendre’s
transformation to the Lagrangian function. Specifically Hamilton transformed
the velocity components as

pi =
∂L

∂q̇i
.

Differentiating and applying the Euler-Lagrange differential equation, we obtain

ṗi =
d

dt
pi =

d

dt

∂L

∂q̇i
=
∂L

∂qi
.

On the other hand, the total differential of the Lagrangian is

dL =
∂L

∂t
dt+

n∑
i=1

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i

)
.
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Substituting results in

dL =
∂L

∂t
dt+

n∑
i=1

(ṗidqi + pidq̇i).

Reordering yields

d(
n∑
i=1

piq̇i − L) = −∂L
∂t
dt−

n∑
i=1

(ṗidqi − q̇idpi),

where we exploited the total differential

d(piq̇i) = dpiq̇i + pidq̇i.

Introducing the function

H =

n∑
i=1

(piq̇i − L),

called the Hamiltonian that is now only a function of the new and old gener-
alized displacement variables and time:

H = H(pi, qi, t).

Its total differential is

dH =
∂H

∂t
dt+

n∑
i=1

(
∂H

∂pi
dpi +

∂H

∂qi
dqi

)
.

Matching terms between the dH and dL differentials produces the relationship

∂H

∂t
= −∂L

∂t
.

Hamilton’s canonical equations are then

q̇i =
∂H

∂pi
,

and

ṗi = −∂H
∂qi

,

for i = 1, 2, . . . n. The pi, qi are called canonical variables. There are twice as
many first order equations as number of components, but being first order,
this system is easy to solve by matrix methods.

Legendre’s duality is clearly present. The time variable is the parameter
unchanged by the Legendre transformation and it satisfies the same equation
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derived in Section 10.1 as

∂H

∂t
= −∂L

∂t
.

The dual relationship of the Lagrangian and Hamiltonian functionals is also
clearly satisfied

H =

n∑
i=1

piq̇i − L,

and

L =

n∑
i=1

piq̇i −H.

The double dimensional space of the canonical variables is called the phase-
space, sometimes also called the q − p space. When the time variable t is
added, the space is called the state-space, an instrumental platform in struc-
tural mechanics.

10.3.1 Conservation of energy

The relationship between the two functionals is not always easy to establish.
Let us consider conservative systems in which the potential energy is only a
function of the displacement generalized variables as

Ep = Ep(q),

while the kinetic energy is a quadratic function of the derivative generalized
variables (or generalized velocities):

Ek = Ek(q̇
2
i ).

Hence

2Ek =

n∑
i=1

∂Ek
∂q̇i

q̇i.

Substituting the canonical variables from the last section, we obtain

2Ek =

n∑
i=1

∂L

∂q̇i
q̇i =

n∑
i=1

piq̇i.

Therefore, the Hamiltonian becomes

H =

n∑
i=1

piq̇i − L = 2Ek − (Ek − Ep) = Ek + Ep.
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This relationship states that the Hamiltonian is the sum of kinetic and poten-
tial energy. Let us now further investigate the Hamiltonian. Since it is of the
form

H = H(q1, q2, ..., qn, p1, p2, ..pn),

its derivative with respect to time is

dH

dt
=

n∑
i=1

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
.

By the virtue of the canonical equations

dH

dt
= 0,

from which it follows that

H = constant = Etotal.

This is the law of conservation of energy, stating that for a conservative sys-
tem the total energy (which is the Hamiltonian) is constant.

10.3.2 Newton’s law of motion

We consider the simplest mechanical system of a single particle, but since any
complex mechanical system may be considered a collection of many particles,
the following is valid for those as well. Let the mass of the particle be m and
its position defined at a certain time t by the displacements:

qi(t), i = 1, 2, 3,

where q1(t) = x(t), q2(t) = y(t), q3(t) = z(t).

The kinetic energy of the particle is then

Ek =
3∑
i=1

1

2
mq̇2i .

The particle is moving from its position at time t0 to a position at time
t1. We assume that the system is conservative, where the change in kinetic
energy is equalized by the change in potential energy, and Hamilton’s principle
applies, ∫ t1

t0

Ldt = extremum.

Applying the Euler-Lagrange equation for each i = 1, 2, 3

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0.
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Since
L = Ek − Ep.

and the kinetic energy is function of the velocities while the potential energy
is that of the displacements, the Euler-Lagrange equations become

d

dt

∂Ek
∂q̇i

= −∂Ep
∂qi

.

For a conservative system, there exists a force potential such that

fi = −∂Ep
∂qi

.

Here fi are the components of the force in the coordinate directions. Substi-
tuting, executing the differentiation and reordering yields

fi = mq̈i; i = 1, 2, 3.

This is Newton’s second law of motion, better known in the form of

F = ma.

Let us illustrate this by describing the motion of a mass suspended by a rigid
bar from a fixed point and allowing it to rotate in the plane, a pendulum.

Using polar coordinates, the mass at a certain time is at (r, θ), where r is
the length of the bar and the position of the pendulum is at the angle θ. The
kinetic energy of the mass (assuming the bar is massless) is

Ek =
1

2
mr2θ̇2.

The potential energy is simply the height of the mass over the neutral (bottom)
position

Ep = mgr cos(θ).

Differentiating the relevant terms

d

dt

∂Ek

∂θ̇
= mr2θ̈

and
∂Ep
∂θ

= mgr sin(θ).

Substituting and shortening yields the governing equation of motion for the
pendulum

θ̈ +
g

r
sin(θ) = 0.

This is of course a single degree of freedom system since the only freedom for
the pendulum is the rotation about the fixed point on a rigid bar.
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10.4 Lagrange’s equations of motion

Let us now extend Hamilton’s principle by including external work:

∫ t1

t0

(Ek − (Ep −We)) dt = extremum.

The external work asserted on the system is of the form

We = qif
a
i .

Here fai is the force acting on the mass point m in the three coordinate direc-
tions. Note that the force components may be time dependent and the work
depends on the displacement of the system. Furthermore, let us generalize
the potential energy as

Ep =
1

2
kiq

2
i ,

where the ki term represents some way of storing potential energy, for exam-
ple a spring. The amount of energy stored, similarly to the pendulum in the
last section, is related to the position of the mass relative to the stationary
position.

Taking the above into consideration, the Euler-Lagrange equation of the
extended form becomes

−∂Ep
∂qi

− d

dt

∂Ek
∂q̇i

+
∂We

∂qi
= 0,

which brings Lagrange’s equations of motion

d

dt

∂Ek
∂q̇i

+
∂Ep
∂qi

=
∂We

∂qi
.

Hence, following the last section and executing the derivatives, we obtain

mq̈i + kiqi = fai ; i = 1, 2, 3.

These equations represent the forced vibrations of the system of a single mass
particle. In addition to that, lack of external forces brings the free (natural)
vibrations of the system

mq̈i + kiqi = 0; i = 1, 2, 3,

crucial in many industrial applications. These will be used in several later
sections.
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Finally, it is possible to allow dissipative forces resulting in non-conservative
systems. The dissipative forces are the negative gradient of the Rayleigh
dissipation function as

fdi = −∂D
∂q̇i

.

The Rayleigh dissipative function is of the form

D =
1

2

3∑
i=1

diq̇
2
i ,

where di are the coefficients of dissipation. Hence, the dissipative forces are

fdi = −diq̇i.
Adding these forces to the right-hand side we obtain the extended form of
Lagrange’s equations of motion (or sometimes called Lagrange’s equations of
the second kind) as

d

dt

∂Ek
∂q̇i

+
∂Ep
∂qi

=
∂We

∂qi
− ∂D

∂q̇i
.

Substituting the above derivatives yields

mq̈i + diq̇i + kiqi = fai ; i = 1, 2, ..., 3

These equations describe the forced, damped vibrations of a single mass par-
ticle. Assuming only a single direction, for example x motion, the single
mass-spring-damper system is shown in Figure 10.1.

Again, lack of right-hand side forces brings the free, damped vibrations of
the system,

mq̈i + diq̇i + kiqi = 0; i = 1, 2, 3,

crucial in many industrial applications. These will also be used in several
later sections.

10.4.1 Mechanical system modeling

Lagrange’s equations of motion are widely used for modeling mechanical sys-
tems. The single mass, but three degrees of freedom system developed in the
last section may be generalized to a mechanical system of n distinct masses
mj , j = 1, ..., n and the generalized coordinates of the motion become

q1 = x1, q2 = y1, q3 = z1; q4 = x2, q5 = y2, q6 = z2; ...

and
q3n−2 = xn, q3n−1 = yn, q3n = zn.
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FIGURE 10.1 Mass-spring-damper system

They are gathered into a vector q. The masses of the particles are

m1 = m2 = m3 = m1;m4 = m5 = m6 = m2; ...

and
m3n−2 = mn,m3n−1 = mn,m3n = mn.

Note the distinction between the subscripts and superscripts. In a general
system the particles may be connected via an energy retaining component
(for example springs, ki) and simultaneously be damped by some kind of a
dissipative phenomenon (for example, friction, di).

For illustration, let us consider a system of two particles by duplicating the
system shown in Figure 10.1. The second system is attached to the first mass
in place of the force, and we have the force f(t) acting on the second mass
only. The masses, springs and dampers may be different between the two
systems,

m1 �= m2, k1 �= k2, d1 �= d2.

The matrix equation for this system is assembled as[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
d1 + d2 −d2
−d2 d2

] [
ẋ1
ẋ2

]
+

[
k1 + k2 −k2
−k2 k2

] [
x1
x2

]
=

[
0
f(t)

]
.
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With a larger number of mass points and not just a linear but planar or spatial
connectivity arrangement, the generalization leads to modeling and analysis
of large systems resulting in a matrix equation of the form

Mq̈ +Dq̇ +Kq = fa.

Here M,D,K are the mass, damping and stiffness matrices representing all
masses, springs and damping in the system, the q is the vector containing all
mass point positions and fa contains all active forces. Ultimately this is also
the basis for modeling continuum systems discussed in Chapter 12.

10.4.2 Electro-mechanical analogy

Let us consider the behavioral characteristics of mechanical systems and focus
on a single mass system for simplicity. We can say that the mass m is rep-
resenting the inertia, the spring k is the elastic energy and the damping d is
the dissipative function. The inertia may be compared to the inductance of a
coil in an electrical circuit, denoted by L. The damping is analogous to the
resistance R of the circuit, and the elastic spring is akin to the capacitor C of
a circuit.

To complete the analogy, we can associate the displacement of the mass in
the mechanical system with the charge of the electrical circuit. With these
analogies, we can write the single degree of freedom mechanical system gov-
erning equation from Section 10.4 in electrical terms as

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t).

Here the E represents the external power source of the circuit and as such,
it is analogous to the active force in the mechanical system. The capacitor
is inversely proportional to the spring in the mechanical system. Figure 10.2
shows the electrical circuit corresponding to this equation. The arrow indi-
cates the direction of current, and the open segment between the + and −
signs is the location of the external power source.

As a consequence of this analogy, a simple mechanical system may be elec-
tronically simulated by creating a circuit replacing the inertia with inductance,
damping with resistance, stiffness with the reciprocal of a capacity, and the
actuating mechanical force with the electromotive force applied to the circuit.
This was the founding principle of the analog computers of the 1950s.

In that process, the electro-mechanical analogy was carried into complex
systems with multiple connected circuits to simulate multiple member mechan-
ical system behavior. Hence, Lagrange’s equation of motion can also be gen-
eralized to electrical systems.
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FIGURE 10.2 Electrical circuit

As kinetic energy, we introduce the magnetic energy as

Em =
1

2

n∑
i=1

n∑
j=1

LijQ̇iQ̇j ,

the electrostatic energy as potential energy

Es =
1

2

n∑
i=1

n∑
j=1

1

Cij
QiQj ,

and dissipation function is represented by the energy loss in the resistors as

D =
1

2

n∑
i=1

n∑
j=1

RijQ̇iQ̇j .

Here D is defined as half of the energy transformed into heat per unit time.
Hence Lagrange’s equation of motion, without an external power source will
become

d

dt

∂Em

∂Q̇i
+
∂Es
∂Qi

+
∂D

∂Q̇i
= 0.

The actual current flowing through the circuit is

I =
dQ

dt
.
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In practice, another form of the circuit equation, in terms of the current, is
preferred since that is an easily measurable quantity, but our focus being on
the mechanical analogy, we used the charge based form.

10.5 Orbital motion

We now address the orbital motion of two celestial bodies moving under each
other’s gravitational influence. It is known from Newtonian mechanics that
such a motion is planar and we can confine our discussion to the x− y plane.

We will assume that the central body is located at the origin and the mov-
ing body has unit mass. The location of the moving body at time t is at
coordinates x, y, and it is moving on a path

u(x, y, t).

The distance between these bodies is

√
x2(t) + y2(t).

Newton’s law of gravitation states that the gravitational potential acting on
the moving body is

Ep = − γ√
x2 + y2

.

Here the constant γ is the universal gravitational constant generated by the
mass of the central body. The velocity of the orbiting body is

√
(ẋ)2 + (ẏ)2,

hence its kinetic energy is

Ek =
1

2
((ẋ)2 + (ẏ)2).

Let us first observe this in the Lagrangian framework. The Lagrangian becomes

L =
1

2
((ẋ)2 + (ẏ)2)− −γ√

x2 + y2
.

We have two generalized displacement variables and their velocities as

q1 = x, q2 = y, q̇1 = ẋ, q̇2 = ẏ.
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One set of components of Lagrange’s equations of motion are obtained by
evaluating

d

dt

∂L

∂q̇i
; i = 1, 2.

The results are ẍ and ÿ. The other component set comes from computing

∂L

∂qi
, i = 1, 2,

and produces the expressions

−γx(x2 + y2)−3/2,−γy(x2 + y2)−3/2.

Hence, the two Lagrange equations of motion are

ẍ+ γx(x2 + y2)−3/2 = 0

and
ÿ + γy(x2 + y2)−3/2 = 0.

Now turning to Hamilton’s formulation, we introduce the variables

pi =
dqi
dt
.

Specifically in our case they are

p1 = ẋ, p2 = ẏ.

The other generalized variables remain as q1 = x, q2 = y. The Hamiltonian
is, as shown in an earlier section, of the form

H =
1

2
(p21 + p22) +

−γ√
q21 + q22

.

The canonical equations are

ṗi = −∂H
∂qi

= −γqi(q21 + q22)
−3/2; i = 1, 2,

and

q̇i =
∂H

∂pi
= pi; i = 1, 2.

The resulting canonical system of four equations becomes

p1 =
dx

dt
,

p2 =
dy

dt
,

ṗ1 = −γx(x2 + y2)−3/2,
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and
ṗ2 = −γy(x2 + y2)−3/2.

It is easy to see by differentiation and substitution that the solution of this
system is identical to the Lagrange solution.

Polar coordinate transformation enables us to further simplify this problem.
The kinetic energy per unit mass is then

Ek =
1

2
(ṙ2 + r2φ̇2)

and the gravitational potential (also per unit mass) energy becomes

Ep = −γ 1
r
.

Let us use this formulation for the solution of the problem. The variational
statement using Hamilton’s principle becomes∫ t2

t1

(
1

2
(ṙ2 + r2θ̇2) +

γ

r

)
dt = extremum.

The first Euler-Lagrange differential equation for this is

∂f

∂r
− d

dt

∂f

∂ṙ
= rθ̇2 − γ

r2
− r̈ = 0.

Reorganizing, we get the ordinary differential equation

d2r

dt2
− r

(
dθ

dt

)2

= − γ

r2
.

The second Euler-Lagrange differential equation becomes

∂f

∂θ
− d

dt

∂f

∂θ̇
= 2r

dr

dt

dθ

dt
+ r2

d2θ

dt2
=

d

dt

(
r2
dθ

dt

)
= 0

from which it follows that

r2
dθ

dt
= c.

The value of the constant is the angular momentum per unit mass

l = c.

Hence, the second differential equation becomes

dθ

dt
=

l

r2
.

Substituting into the first results in

d2r

dt2
− r

(
l

r2

)2

= − γ

r2
.
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Introducing a new variable

u =
1

r
,

then differentiating brings

dr

dt
=

d

dt

(
1

u

)
= − 1

u2
du

dθ

dθ

dt
= −l du

dθ
.

Similarly
d2r

dt2
=

d

dθ

dr

dt

dθ

dt
=

d

dθ

(
−l du
dθ

)
lu2 = −l2u2 d

2u

dθ2
.

Hence the governing equation becomes

−l2u2 d
2u

dθ2
− 1

u
l2u4 = −γu2,

which after appropriate shortening by common terms simplifies to

d2

dθ2
+ u =

γ

l2
.

This is a non-homogeneous second order ordinary differential equation with
solution of

u =
γ

l2
+ c1 cos(θ) + c2 sin(θ).

Assuming that the initial position is a maximum or minimum of the orbit

u′ = −c1 sin(θ) + c2 cos(θ) = 0

implies
c2 = 0.

A second initial condition may be posed on the original variable as

r(θ = 0) + r(θ = π) = 2a.

Substituting

2a =
l2

γ

(
1

1 + c3 cos(0)
+

1

1 + c3 cos(π)

)
=
l2

γ

2

1− c21
.

Hence

c3 =

√
1− l2

γa
,

which produces

r =
l2

γ

1

1 +
√
1− l2

γa cos(θ)
.
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Introducing the energy

ε =
−γ
2a

and the eccentricity

e =

√
1 +

2εl2

γ2

the orbit equation becomes that of a conic section

r(θ) =
l2

γ

1

1 + e cos(θ)
.

This equation describes the path of the orbiting body in relationship to the
one in the center.

Specifically the orbital trajectory is an ellipse when e < 1, a parabola when
e = 1, and a hyperbola when e > 1. The minimum value of the elliptic tra-
jectory radius is

rmin =
θ2

γ

1

1 + e
,

while its maximum is at

rmax =
θ2

γ

1

1− e
.

These are the lengths of the minor and major axes of the elliptical path of the
orbiting body.

10.5.1 Conservation of angular momentum

This is in essence the conservation of the energy principle introduced earlier
applied to a rotational system.

The angular momentum L of a particle on a circular path is a vector quan-
tity defined as

L = r × p

where r is the radius of the circular motion as shown in Figure 10.3. The
rotation results in a tangential linear momentum of the particle, defined as

p = mv

with v being the circular velocity. The rate of change of the angular momen-
tum is

dL

dt
=

d

dt
(r × p).

Using the product rule produces

dL

dt
=
dr

dt
× p+ r × dp

dt
.
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FIGURE 10.3 Angular momentum

Since
dr

dt
= v,

the first term becomes

v × p = m(v × v) = 0.

The second term using Newton’s law changes as

dp

dt
= m

dv

dt
= ma = F

and also becomes zero,

r × dp

dt
= r × F = 0,

since r and F are parallel. Hence

dL

dt
= 0

which implies that the angular momentum is preserved.
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10.5.2 The 3-body problem

This is a famous, in general unsolved problem of orbital modeling, subject to
the intense efforts by scientists like Lagrange, who spent decades of working
on it. The problem consists of 3 celestial bodies with their respective gravi-
tational potential fields and their joint motion.

The reason for the discussion here is that a calculus of variables foundation
enables the solution of a so-called restricted version of the problem. This
restriction, in part, is focusing on a planar version that enables the finding of
extremely important orbital locations, the Lagrange points named after his
work and discovery.

In the 3-body problem these objects have different masses. The largest one
on the left of Figure 10.4 is assumed to have a mass of M and is located in
the origin of the x-axis. The second largest mass (m) is at the distance of
R on the right, also on the x-axis. They both have measurable gravitational
fields. Finally, the third object is at the location of a certain x value (L1), and
is assumed to be of negligible mass (the second part of the restriction) with
no gravitational field, rotating in synchrony with the second mass on its right.

FIGURE 10.4 3-body problem
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The cover image is an artistic rendering of the equipotential lines of the
3-body gravitational scenario. The intersection points of the curves are the
L1, L2, L3 point locations. The center points of the two interior circular shapes
are the location of the large (M) and small (m) masses, respectively, from the
right. The two oblique shaped areas are the home of the Lagrange points
L4, L5.

Let us now introduce a center of mass point that is somewhere between the
two masses on the x-axis at the distance of r from the main mass on the left.
That is the center of rotation for all masses participating in the system.

With this comes a potential function for the centripetal force in this rotating
system acting at the third body position is

Ec = −1

2
(x− r)2ω2,

where x− r is the third body’s distance from the center of rotation.

Following the prior section, the gravitational field potential of the large
mass is of the form

EM =
GM

x
,

where G is the universal gravitational constant and x is the distance from the
large mass to L1. Similarly, the second mass’s gravitational field potential at
the L1 location is

Em = − Gm

R− x
,

where R − x is the distance from the second mass to L1. The sign is neg-
ative to reflect the fact that its potential is acting against that of the big mass.

Their sum yields the variational problem

I =

∫
Ldx =

∫
(EM + Em + Ec)dx = extremum.

Since none of the terms in the Lagrangian contains the derivatives, the Euler-
Lagrange equation is

∂L

∂x
=
GM

x2
− Gm

(R− x)2
− (x− r)ω2 = 0.

Hence, the governing equation of the model of the restricted problem becomes

G
M

x2
−G

m

(R− x)2
= (x− r)ω2.

Substituting

ω =
2π

T
,
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dividing by G and substituting Kepler’s 3rd law of

T 2 =
4π2

G(M +m)
R3

results in
M

x2
− m

(R− x)2
=

(M +m)(x− r)

R3
.

Dividing by M , introducing

k =
m

M
and using common denominator results in the algebraic equation

(R− x)2R3 − kx2R3 − (k + 1)x2(R− x)2(x− r) = 0.

This is an equation containing a parameter k representing the ratio of the
participating masses. Hence the locations of the Lagrange points are differ-
ent between any pairs of celestial bodies. Furthermore, it is of fifth order in
the unknown variable x, hence it is unsolvable analytically, as was proven by
Ruffini, Abel and Galois centuries ago. For a given k value, however, it is
possible to find a numerical solution for the location of the L1 point.

The distance of the L1 point from the smaller mass is obtained approxi-
mately as

R− x ≈ R 3

√
1

3
(
1
k + 1

) .
For illustration, we consider the Sun (M) and Earth (m) scenario. The ratio
of their masses is approximately

k ≈ 3 · 10−6,

or the Earth’s mass is about three millionths of that of the Sun. Substituting
this value and executing the arithmetics yield

R− x ≈ R
3
√
10−6 = R · 10−2 = 0.01R,

meaning that the distance of the L1 point from Earth (denoted by d in Figure
10.4) is about 1 % of the way from the Earth to Sun.

The equation, being of fifth order, produces two more real roots in the line
of the masses along our x-axis, they are called the L2, L3 points. As the figure
shows, L2 is on the other side of the smaller mass (m), while L3 is at a dis-
tance on the other side of the larger mass (M), hence not shown on the figure.

Finally the complex pair leads to two points located outside of the x-axis
at the intersection of the line originating in the location of the large mass,
inclining ±60 degrees from the x-axis and the circular orbit of the smaller (m)
mass. These are the L4, L5 points.
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The practical importance of these locations is in the fact that they are sta-
tionary points of the combined gravitational fields. Objects placed in those
points will stay synchronized to the motion of the outside (m) mass. Specif-
ically L4, L5 are stable; the other ones are saddle points of the combined
gravitational fields, hence not fully stable.

Nature has recognized these locations by asteroids captured in Jupiter’s
L4, L5 points, called the Trojan and Greek asteroids. Humankind also exploited
these locations: our SOHO solar observatory is located in the L1 point between
Sun and Earth, approximately 1.5 million kilometers from Earth. That is 1
% of the average 150 million kilometers between Earth and Sun. L2 is also
about the same distance from Earth on the opposite side from Sun in Earth’s
shadow, hence well positioned to observe outside of our Solar system. The
new generation Webb space telescope will be located in the L2 point after its
2021 launch.

10.6 Variational foundation of fluid motion

Until now we have focused on particles of mechanical systems. To provide a
foundation for a later topic, we now consider a fluid “particle” in the form
of an infinitesimally small volume ν. For simplicity of the presentation, the
vector notation will be omitted since the use of vector operations distinguishes
the vector components.

Let us now follow the Hamiltonian avenue again. The mass of the infinites-
imal volume of fluid is

dm = ρ dν,

where ρ is the density of the fluid. Then, the kinetic energy of the infinitesi-
mal mass of fluid is

ek =
1

2
ρ|v|2 dν.

The potential energy of the fluid element is in the form

ep = ρφ dν,

where φ is the gravitational potential. The lower case e letters indicate the
energy of the small fluid volume as opposed to the total fluid. The variational
form of our problem then is
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∫ t2

t1

(ek − ep)dt = extremum.

Combining all the elementary fluid volumes and substituting yields∫ t2

t1

∫
ν

ρ

(
1

2
|v|2 − φ

)
dνdt = 0.

We will assume that this elementary volume of fluid will not change but,
true to the behavior of fluid, could move by the displacement vector u =
(ux, uy, uz). The condition of the unchanged volume may be expressed as∫

ν

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
dν =

∫
ν

∇ · u dν = 0.

This condition we apply with a yet unknown Lagrange multiplier λ. Exploit-
ing the identity

∇ · (λu) = λ(∇ · u) +∇(λ) · u,
we obtain

λ(∇ · u) = ∇ · (λu)−∇(λ) · u.
Substituting into the volume condition∫

ν

λ(∇ · u)dν =

∫
ν

(∇ · (λu)−∇(λ) · u)dν = 0.

The first term may be transformed into a surface integral of the volume and
as such vanishes, hence the second term represents the constraint in the vari-
ational problem∫ t2

t1

∫
ν

(
ρ

(
1

2
|v|2 − φ

)
−∇(λ) · u

)
dνdt = extremum.

The Euler-Lagrange differential equation corresponding to this constrained
variational problem now becomes

−ρdv
dt

− ρ∇(φ)−∇(λ) = 0.

By reordering we obtain

dv

dt
= −∇(φ)− 1

ρ
∇(λ).

What remains to be found is the physical meaning of the Lagrange multiplier.
Let us assume that the fluid is in equilibrium, then v = 0. The equation then
simplifies to

∇(φ) +
1

ρ
∇(λ) = 0.
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In the case of incompressible fluid ρ = constant = ρ0 and may be moved into
the differential operator. Hence, the equation may be simplified to

φ+
λ

ρ0
= constant.

The gravitational potential φ at a height (or depth as we will see) is

φ = −gz,
hence we obtain

λ = ρ0g(z − z0).

The integration constant above is captured in the reference height z0. This is
really Archimedes’ law of hydrostatics, known in the form of

p = ρ0g(z − z0).

Hence, the physical meaning of the Lagrange multiplier is the pressure p.

If we relinquish the incompressibility condition but assume that the density
is a function of the pressure, then

∇p
ρ

=
∇p
f(p)

= ∇P,
where

P =

∫
dp

f(p)
.

The hydrostatic equilibrium is then

φ+ P = constant.

For isothermic (constant temperature) fluids the form

P =
p0
ρ0

log
ρ

ρ0

applies, resulting in

p = p0e
−αz.

This is the gravitational potential based fluid pressure solution and α is a
constant specific to the fluid medium. For air, it is 0.1184km−1 resulting in
Laplace’s atmospheric formula of

p = p0e
−0.1184z,

where z is measured in kilometers and p0 is the pressure at sea level. The
negative exponent indicates the decrease of atmospheric pressure at higher
elevations.
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In fluid dynamics applications at the same height the gravity potential is
constant and its derivative vanishes. Using this, and introducing the pressure
instead of the multiplier in our above solution and further differentiation yields

ρü = −∇p,
which is the well-known Euler equation of fluid dynamics. This will be the
starting equation of the computational formulation discussion in Section 12.4.
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11

Analytic mechanics

Analytic mechanics is a mathematical science, but it is of high importance
for engineers as it provides analytic solutions to fundamental problems of
engineering mechanics. At the same time, it establishes generally applicable
procedures. Mathematical physics texts, such as [9], laid the foundation for
these analytic approaches addressing physical problems.

This chapter presents modeling applications for classical mechanical prob-
lems of elasticity utilizing Hamilton’s principle. The most fitting application
is the excitation of an elastic system by displacing it from its equilibrium posi-
tion. In this case, the system will vibrate with a frequency characteristic to
its geometry and material, while constantly exchanging kinetic and potential
energy. The behavior of strings, membranes and beams will be discussed in
detail.

The case of non-conservative systems, where energy loss may occur due to
dissipation of the energy, will not be discussed. Hamilton’s principle may
be extended to non-conservative systems, but the added difficulties do not
enhance the discussion of the variational aspects, which is our main focus.

11.1 Elastic string vibrations

We first consider the phenomenon of vibration of an elastic string. Let us
assume that the equilibrium position of the string is along the x axis, and the
endpoints are located at x = 0 and x = L. We will stretch the string (since
it is elastic) by ΔL resulting in a certain force F exerted on both endpoints
to hold it in place. We assume there is no loss of energy and the string will
vibrate indefinitely if displaced, i.e., the system is conservative.

The particle of the string located at the coordinate value x at the time t
has a yet unknown displacement value of y(x, t). The boundary conditions are:

y(0, t) = y(L, t) = 0,

201



202 Applied calculus of variations for engineers

in other words, the string is fixed at the ends. In order to use Hamilton’s
principle, we need to compute the kinetic and potential energies.

With unit length mass of ρ, the kinetic energy is of the form

Ek =
1

2

∫ L

0

ρ

(
∂y

∂t

)2

dx.

The potential energy is retained in the elongated (stretched) string. The arc
length of the elastic string is

∫ L

0

√
1 +

(
∂y

∂x

)2

dx,

and the elongation due to the transversal displacement is

ΔL =

∫ L

0

√
1 +

(
∂y

∂x

)2

dx− L.

Assuming that the elongation is small, i.e.,

∣∣∣∂y
∂x

∣∣∣ < 1,

it is reasonable to approximate

√
1 +

(
∂y

∂x

)2

≈ 1 +
1

2

(
∂y

∂x

)2

.

The elongation by substitution becomes

ΔL ≈ 1

2

∫ L

0

(
∂y

∂x

)2

dx.

Hence, the potential energy contained in the elongated string is

Ep =
1

2
FΔL =

F

2

∫ L

0

(
∂y

∂x

)2

dx.

We are now in the position to apply Hamilton’s principle. The variational
statement describing the phenomenon becomes

I(y) =

∫ t2

t1

(Ek − Ep)dt =

1

2

∫ t2

t1

∫ L

0

(
ρ

(
∂y

∂t

)2

− F

(
∂y

∂x

)2
)
dxdt = extremum.
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The Euler-Lagrange differential equation for a function of two independent
variables, derived in Section 3.3, is applicable and results in

F
∂2y

∂x2
= ρ

∂2y

∂t2
. (11.1)

This is the governing equation of the vibration of the elastic string, also known
as the wave equation.

The solution of the problem may be solved by the separation approach of
d’Alembert. We seek a solution in the form of

y(x, t) = a(t)b(x),

separating it into time and space dependent components. Then

∂2y

∂x2
= b′′(x)a(t)

and
∂2y

∂t2
= a′′(t)b(x),

where

b′′(x) =
d2b

dx2
,

a′′(t) =
d2a

dt2
.

Substituting into Equation (11.1) yields

b′′(x)
b(x)

=
1

f2
a′′(t)
a(t)

,

where for convenience we introduced

f2 =
F

ρ
.

The two sides of this differential equation are dependent on x and t, respec-
tively. Their equality is required at any x and t values which implies that the
two sides are constant. Let us denote the constant by −λ and separate the
(partial) differential equation into two ordinary differential equations:

d2b

dx2
+ λb(x) = 0,

and
d2a

dt2
+ f2λa(t) = 0.

The solution of these equations may be obtained by the techniques learned
in Section 5.3 for the eigenvalue problems. The first equation has the spatial
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solutions of the form

bk(x) = sin

(
kπ

L
x

)
; k = 1, 2, . . . ,

corresponding to the eigenvalues

λk =
k2π2

L2
.

Applying these values, we obtain the temporal solution from the second equa-
tion by means of classical calculus in the form of

ak(t) = ck cos

(
kπf

L
t

)
+ dk sin

(
kπf

L
t

)
,

with ck, dk arbitrary coefficients. Considering that at t = 0 the string is in a
static equilibrium position

a′(t = 0) = 0

we obtain dk = 0 and the temporal solution of

ak(t) = ck cos

(
kπf

L
t

)
.

The general mathematical model for the vibrating string becomes

yk(x, t) = ck cos

(
kπf

L
t

)
sin

(
kπ

L
x

)
; k = 1, 2, . . . .

For any specific value of k, the natural frequencies of the string are

ωk =
√
λk =

kπ

L

and the corresponding spatial solutions are the natural vibration shapes, also
called normal modes:

bk(x) = sin(ωkx).

The first three normal modes are shown in Figure 11.1 for an elastic string of
unit tension force, mass density, and span. The figure demonstrates that the
period of the vibration decreases and the frequency increases for the higher
mode number k.

The motion is initiated by displacing the string and releasing it. Let us
define this initial enforced amplitude as

y(xm, 0) = ym,
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FIGURE 11.1 Normal modes of elastic string

where the xm describes the location of the initial stationary displacement of
the string as an internal value of the span

xm ∈ (0, L).

Then the initial shape of the string is a triangle over the span, described by
the function

f(x) =

{ ym
xm
x; 0 ≤ x ≤ xm,

ym + ym
xm−L (x− xm); xm < x ≤ L.

The unknown coefficient may be solved from the initial condition as

y(xm, 0) = f(xm) = ck cos

(
kπf

L
0

)
sin

(
kπ

L
xm

)
= ym,

from which

ck =
ym

sin
(
kπ
L xm

) .
Note that if the interior point is the middle point of the span,

xm =
L

2
,
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then the first (k = 1) coefficient will be simply the ym amplitude:

c1 = ym,

since

sin

(
π

L

L

2

)
= sin

(π
2

)
= 1.

Similar, but not identical, considerations may be applied for the coefficients
of the higher normal modes of which only the odd numbered will exist.

The natural frequencies depend on the physical conditions, such as the pre-
applied tension force and the material characteristics embodied in the unit
weight ρ. Specifically, the higher the tension force F in the string, the higher
the frequency becomes. A very tight string vibrates very quickly (with high
frequency), while a very loose string vibrates slowly.

11.2 The elastic membrane

We now turn to the phenomenon of the vibration of an elastic membrane. We
assume that the membrane is fixed on its perimeter L which surrounds the
domain D of the membrane. We further assume that the initial, equilibrium
position of the membrane is coplanar with the x− y plane.

z(x, y, t) = 0; t = 0.

The membrane is displaced by a certain amount and released. The ensuing
vibrations are the subject of our interest. The vibrations are a function of the
location of the membrane and the time as

z = z(x, y, t).

We will again use Hamilton’s principle after the kinetic and potential ener-
gies of the membrane are found. Let us assume that the unit area mass of
the membrane does not change with time, and is not a function of the location:

ρ(x, y) = ρ = constant.

The velocity of the membrane point at (x, y) is

v =
∂z

∂t
,
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resulting in kinetic energy of

Ek =
1

2

∫ ∫
D

ρv2dxdy

or

Ek =
1

2

∫ ∫
D

ρ

(
∂z

∂t

)2

dxdy.

We consider the source of the potential energy to be the stretching of the
surface of the membrane. The initial surface is∫ ∫

D

dxdy,

and the extended surface is

∫ ∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy.

Assuming small vibrations, we approximate as earlier in the case of the string√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

≈ 1 +
1

2

((
∂z

∂x

)2

+

(
∂z

∂y

)2
)
.

Hence the surface change is

1

2

∫ ∫
D

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy.

The stretching of the surface results in a surface tension σ per unit surface
area. The potential energy is the product

Ep = σ
1

2

∫ ∫
D

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy.

We are now in the position to apply Hamilton’s principle. Since

I(z) =

∫ t2

t1

(Ek − Ep)dt = extremum,

substitution yields the variational problem of the elastic membrane:

1

2

∫ t2

t1

∫ ∫
D

(
ρ

(
∂z

∂t

)2

− σ

((
∂z

∂x

)2

+

(
∂z

∂y

)2
))

dxdydt = extremum.

The Euler-Lagrange differential equation for this class of problems following
Section 3.5 becomes

σ

(
∂2z

∂x2
+
∂2z

∂y2

)
= ρ

∂2z

∂t2
,
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or using Laplace’s symbol

σΔz = ρ
∂2z

∂t2
.

The solution will follow the insight gained at the discussion of the elastic
string and we seek a solution in the form of

z(x, y, t) = a(t)b(x, y).

The derivatives of this solution are

Δz(x, y, t) = a(t)Δb(x, y),

and
∂2z(x, y, t)

∂t2
= b(x, y)

d2a(t)

dt2
.

Substitution and separation of terms yields

σΔb

ρb
=

1

a(t)

d2a(t)

dt2
.

Again, since the left-hand side is only a function of spatial coordinates and
the right-hand side is only of time, they must be equal and constant, assumed
to be −λ. This separates the partial differential equation into an ordinary
differential equation in time,

d2a(t)

dt2
+ λa(t) = 0,

and a simpler partial differential equation in (x, y),

σΔb(x, y) + λρb(x, y) = 0.

The solution of the first differential equation is

a(t) = c1 cos(
√
λt) + c2 sin(

√
λt).

Since initially the membrane is in equilibrium,

da

dt

∣∣∣
t=0

= 0,

which indicates that

c2 = 0.

Hence

a(t) = c1 cos(
√
λt).

In order to demonstrate the solution for the second equation, let us omit the
tension and material density for ease of discussion. The differential equation
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of the form

Δb(x, y) + λb(x, y) = 0,

is the same we solved analytically in the case of the elastic string; however, it is
now with a solution function of two variables. The solution strategy will con-
sider the variational form of this eigenvalue problem introduced in Section 5.2:

I(b) =

∫ ∫
D

((
∂b

∂x

)2

+

(
∂b

∂y

)2

− λb2(x, y)

)
dxdy = extremum.

11.2.1 Circular membrane vibrations

Let us restrict ourselves to the domain of the unit circle for simplicity. The
domain D in rectangular coordinates is defined by

D : (1− x2 − y2 ≥ 0).

We use Kantorovich’s method and seek an approximate solution in the form of

b(x, y) = αω(x, y) = α(x2 + y2 − 1),

where α is a yet unknown constant. It follows that on the boundary ∂D

ω(x, y) = x2 + y2 − 1 = 0,

hence the approximate solution satisfies the zero boundary condition. With
this choice

I(α) = α2

∫ ∫
D

(4x2 + 4y2 − λ(x2 + y2 − 1)2)dxdy = extremum.

Introducing polar coordinates for ease of integration yields

I(α) = α2

∫ 2π

0

∫ 1

0

4r3 − λr(r2 − 1)2drdφ = extremum.

The evaluation of the integral results in the form

I(α) = (2π − λ
π

3
)α2 = extremum.

The necessary condition of the extremum is

∂I(α)

∂α
= 0,

which yields an equation for λ

2α(2π − λ
π

3
) = 0.
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The eigenvalue as the solution of this equation is

λ = 6.

The unknown solution function coefficient may be solved by normalizing the
eigensolution as ∫ ∫

D

b2(x, y)dx = 1.

Substituting yields

α2

∫ 2π

0

∫ 1

0

r(r2 − 1)2drdφ = 1.

Integrating results in

α2π

3
= 1.

Hence

α =

√
3

π
.

The spatial solution is therefore

b(x, y) =

√
3

π
(x2 + y2 − 1).

The complete solution of the differential equation of the elastic membrane of
the unit circle is finally

z(x, y, t) = c1 cos(
√
6t)

√
3

π
(x2 + y2 − 1).

The remaining coefficient may be established by the initial condition.
Assuming the center of the membrane is displaced by an amplitude A,

z(0, 0, 0) = A = c1

√
3

π
(−1).

from which follows

c1 = −A
√
π

3
.

The final solution is

z(x, y, t) = −A cos(
√
6t)(x2 + y2 − 1).

The shape of the solution is shown in Figure 11.2. The figure shows the solu-
tion of the half-membrane at three distinct time steps. The jagged edges are
artifacts of the discretization; the shape of membrane was the unit circle.
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FIGURE 11.2 Vibration of elastic membrane

11.2.2 Non-zero boundary conditions

So far, we restricted ourselves to trivial boundary conditions for the sake of
clarity. In engineering practice, however, non-zero boundary conditions are
very often imposed. These, also called enforced motion, boundary conditions
are the subject of our focus here.

Let us consider the membrane with flexible boundary allowing some or all
of the boundary points to attain non-zero displacement from the plane. We
introduce p(s) as the tension force in a unit arc length section of the boundary
stretched due to a unit displacement of the membrane: z = 1. Let the arc
length of a section of the boundary in equilibrium be ds. Then, the tension
force in the section due to a non-unit displacement z is

−p(s)z(x, y, t)ds,
where the negative sign indicates the force’s effort to pull the boundary back
toward the equilibrium position and opposite from the displacement. The
potential energy of the boundary section may be computed by

p(s)ds

∫
zdz =

1

2
p(s)z2ds.
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The total potential energy due to the tension force on the boundary L is

ELp =
1

2

∫
L

p(s)z2ds.

Applying Hamilton’s principle for this scenario now yields

I(z) =
1

2

∫ t2

t1

Fdt = extremum,

where

F =

(∫ ∫
D

(
ρ

(
∂z

∂t

)2

− σ

((
∂z

∂x

)2

+

(
∂z

∂y

)2
))

dxdy −
∫
L

p(s)z2ds

)
.

The newly introduced boundary integral’s inconvenience may be avoided as
follows. First, it may also be written as∫

L

p(s)z2ds =
1

2

∫
L

(
p(s)z2

ds

dy
dy + p(s)z2

ds

dx
dx

)
.

Introducing the twice differentiable

P =
1

2
pz2

ds

dy

and

Q = −1

2
pz2

ds

dx

functions that are defined on the boundary curve L the integral further
changes to ∫

L

pz2ds =

∫
L

(Pdy −Qdx).

Finally, with the help of Green’s theorem, we obtain∫
L

pz2ds =

∫ ∫
D

(
∂P

∂x
+
∂Q

∂y

)
dxdy.

Hence the variational form of this problem becomes

I(z) =
1

2

∫ t2

t1

Gdt = extremum,

where

G =

∫ ∫
D

(
ρ

(
∂z

∂t

)2

− σ

((
∂z

∂x

)2

+

(
∂z

∂y

)2
)

−
(
∂P

∂x
+
∂Q

∂y

))
dxdy.

This problem is identical to the one in Section 3.5, the case of a functional
with three independent variables. The two spatial independent variables are
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augmented in this case with time as the third independent variable. The cor-
responding Euler-Lagrange differential equation becomes the same as in the
case of the fixed boundary

σΔz = ρ

(
∂2z

∂2t

)
,

with the addition of the constraint on the boundary as

σ
∂z

∂n
+ pz = 0,

where n is the normal of the boundary. The solution may again be sought in
the form of

z(x, y, t) = a(t)b(x, y),

and as before, based on the same reasoning

a(t) = c1 cos(
√
λt) + c2 sin(

√
λt).

The b(x, y) now must satisfy the following two equations.

σΔb+ λρb = 0; (x, y) ∈ D,

and

σ
∂b

∂n
+ pb = 0; (x, y) ∈ L.

The solution of these two equations follows the procedure established in the
last section.

11.3 Bending of a beam under its own weight

The two analytic elasticity examples presented so far were one- and two-
dimensional, respectively. The additional dimensions (the string’s cross-section
or the thickness of the membrane) were negligible and ignored in the presen-
tation. In this section we address the phenomenon of the bending of a beam
with a non-negligible cross-section and consider all three dimensions.

In order to deal with the problem of the beam, we introduce some basic
concepts of elasticity for this specific case only. A fuller exposition of the
topic will be in the next chapter. Let us consider an elastic beam with length
L and cross-section area A. We consider the beam fully constrained at one
end and free on the other, known as a cantilever beam, with a rectangular
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cross-section of width 2a along the z-axis and height 2b along the y-axis as
shown in Figure 11.3. The axis of the beam is aligned along the x-axis.

 
z

y

a-a

-b

b

FIGURE 11.3 Beam cross-section

The relationship between the stress resulting from an axial force exerted on
the free end of the beam and its subsequent deformation is expressed by the
well-known Hooke’s law

σ = Eε,

where the constant E, called Young’s modulus, expresses the inherent elastic-
ity of the material with regards to elongation. The relationship between the
stress (σ) and the force (F ) is

σ =
F

A
.

The strain (ε) describes the relative deformation of the beam and in the axial
case this is

ε =
dl

l
,
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where dl is the elongation along the beam’s longitudinal direction. In different
deformation scenarios, like the ensuing bending, the formulation for the strain
may vary and will be discussed in more detail later.

The variational statement of this problem is again based on Hamilton’s
principle; however, since in this particular example we consider a static equi-
librium, there is no kinetic energy. The two components of the extended
Hamiltonian are the potential energy (manifested in the strain energy) and
the work of forces acting on the body.

The internal energy related to the strain is

Es =
1

2

∫
V

σεdV.

Substitution of Hooke’s law yields

Es =
1

2
E

∫
V

ε2dA dx.

The strain energy of a particular cross-section is obtained by integrating as

Es(x) =
1

2
E

∫ b

−b

∫ a

−a
ε2dzdy.

The bending will result in a curved shape with a radius of curvature r and
a strain in the beam. Note that the radius of curvature is a function of the
lengthwise location since the shape of the beam (the subject of our interest)
is not a circle.

The relationship between the radius of curvature and the strain is estab-
lished as follows. Above the neutral plane of the bending, that is the x − z
plane in our case, the beam is elongated and it is compressed below the plane.
Based on that at a certain distance y above or below the plane the strain is

ε =
y

r
.

Note that since y is a signed quantity, above yields zero strain in the neutral
plane, positive (tension) above the plane and negative (compression) below.
Using this in the strain energy of a particular cross-section yields

Es(x) =
E

2

∫ b

−b

∫ a

−a

y2

r2
dzdy =

E

2

4ab3

3

1

r2
=
EI

2

1

r2
,

where

I =
4ab3

3

is the moment of inertia of the rectangular cross-section with respect to the
z-axis. The total strain energy in the volume is
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Es =
1

2
EI

∫ L

0

1

r2
dx.

We assume that the only load on the beam is its weight. We denote the
weight of the unit length with w. The bending moment generated by the
weight of a cross-section with respect to the neutral, the x-z plane is

dM = ywdx,

where y is the distance from the neutral plane and dx represents an infinites-
imally thin cross-section. The total work of bending will be obtained by
integrating along the length of the beam:

W =

∫ L

0

dM = w

∫ L

0

ydx,

since the weight (or density) of the material is constant.

Using Hamilton’s principle extended with external work but without a
kinetic energy component yields the variational statement of the form

I(y) =

∫ t2

t1

(Es −W ) dt = extremum.

Substituting the energies brings

I(y) =

∫ t2

t1

∫ L

0

(
1

2
EIy′′2(x)− wy

)
dxdt = extremum.

Here we substituted

r =
1

y′′(x)

since the radius of curvature is reciprocal of the second derivative of the bent
curve of the beam.

Here the functional contains the second derivative; therefore, the Euler-
Poisson equation of order two will apply as

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0.

Since in this case

f(y, y′′) =
1

2
EIy′′2 − wy,

the first term is simply

∂f

∂y
= −w.



Analytic mechanics 217

The second term vanishes as the first derivative of the unknown function is
not explicitly present. With

∂f

∂y′′
= 2

1

2
EIy′′,

the third term becomes

d2

dx2
∂f

∂y′′
= EI

d4

dx4
y.

Hence, the governing equation of the phenomenon becomes

d4y

dx4
=

w

EI
.

Direct integration yields the general mathematical model as

y(x) =
w

24EI
(x4 + 4c1x

3 + 12c2x
2 + 24c3x+ c4),

where the ci are constants of integrations. The solution curve yields the shape
of the bent beam shown in Figure 11.4.
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FIGURE 11.4 Beam profile under its weight
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In the figure unit physical coefficients were used for the sake of simplicity
and the coefficients of integration are resolved from the boundary conditions
as follows. At the fixed end, the beam is not deflected, hence

y(x = 0) = 0,

which implies

c4 = 0.

Furthermore, at the fixed end the tangent of the curve is horizontal as

y′(x = 0) = 0,

implying

c3 = 0.

Finally, at the free end the beam has no curvature, the second derivative
vanishes. Therefore,

y′′(L) = 0

results in

c2 =
L2

2
.

Furthermore, the problem is planar, hence there is no torsion at the end
resulting in

y′′′(L) = 0

yields
c1 = −L.

With these, the specific mathematical model becomes

y(x) =
w

24EI
(x4 − 4Lx3 + 6L2x2).

Substituting the length (L) of the beam produces the’ maximum deflection of
a cantilever beam often quoted in engineering handbooks:

y(L) =
wL4

8EI
.

Finally, it is worthwhile to point out the intriguing similarities between this
problem and the natural spline solution of Chapter 9.

The scenario is also often presented as a problem of optimization. In engi-
neering practice, it is a natural desire to minimize the deflection of the beam
under its own weight, since very likely there is an additional load applied to
it as well.
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In our case, it is easy to see that to minimize the deflection, either of the
quantities in the denominator, the Young’s modulus or the moment of inertia,
should be increased. Assuming that the material type is dictated hence E is
fixed, we can still address the shape. Since the chosen cross-section is rect-
angular, it follows that the higher the b dimension the smaller the deflection is.

This, however, cannot be carried to the extreme, some minimal and max-
imal ratios of dimensions of rectangular cross-sections are usually given as
constraints. The mathematical problem becomes

I =
4ab3

3
= maximum,

subject to

rmin ≤ b

a
≤ rmax.

This is a constrained optimization problem whose solution is intuitively at the
maximum ratio

Imax =
4r3maxa

4

3
.

This is a simplest problem of shape optimization, a topic of high importance
in structural engineering. The method of gradients in Section 6.5 provides the
foundation for the variational solution of similar problems.

11.3.1 Transverse vibration of beam

The phenomenon of our interest here is dynamic as opposed to the static
nature of the last section. The bending beam was in stationary equilibrium,
but now we consider the time dependent behavior of the beam and the solution
becomes

y = y(x, t).

According to our modeling approach of the past sections in this chapter, we
establish the potential energy in the elastic beam as

Ep =
1

2

∫ L

0

EI

(
∂2y

∂x2

)2

dx.

The kinetic energy of the beam is computed by integrating the kinetic energies
of the infinitesimally thin cross-sections of the beam

Ek =
1

2

∫ L

0

ρA

(
∂y

∂t

)2

dx.



220 Applied calculus of variations for engineers

Here ρ is the density of the material of the beam and A is the cross-section
that we will assume to be constant and unit for the simplicity of the discussion.

Hamilton’s principle applied to this scenario results in the corresponding
Euler-Lagrange differential equation of

ρ
∂2y

∂t2
− d2

dx2
EI

∂2y

∂x2
= 0.

Executing the posted differentiation brings

∂2y

∂t2
− EI

ρ

∂4y

∂x4
= 0,

and the governing equation becomes

∂2y

∂t2
=
EI

ρ

∂4y

∂x4
.

Following d’Alembert’s solution approach and the prior sections, we separate

y(x, t) = v(t)w(x).

Considering the initial condition and following Section 11.1, the temporal
solution will be of the form

v(t) = sin(ωt).

For convenience, introduce

γ4 =
ρω2

EI
.

The spatial solution is then obtained from the equation

d4w(x)

dx4
− γ4w(x) = 0.

The characteristic equation produces the solution

w(x) = c1e
γx + c2e

−γx + c3e
iγx + c4e

−iγx.

Using Euler’s identities, the more convenient solution form is

w(x) = a cos(γx) + b sin(γx) + c cosh(γx) + d sinh(γx).

The coefficients may be resolved by boundary conditions. The beam is fixed
on the left-hand side, hence

w(0) = 0, w′(0) = 0.

Applying these boundary conditions, it follows that

a+ c = b+ d = 0,
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hence
w = a (cosh(γx)− cos(γx)) + b (sinh(γx)− sin(γx)) .

At the free end, there is no curvature and due to the planar model there is no
torsion; therefore,

w′′(L) = 0, w′′′(L) = 0.

Applying these conditions will result in the system

aγ2 (cosh(γL) + cos(γL)) + bγ2 (sinh(γL) + sin(γL)) = 0,

and
aγ2 (sinh(γL)− sin(γL)) + bγ2 (cosh(γL) + cos(γL)) = 0.

The system may be solved if the determinant is zero,

cosh(γL) cos(γL) + 1 = 0.

The solutions of this transcendental equation may be approximated by the
values

γL = (k − 1

2
)π; k = 1, 2, 3, ...

hence we set

γk = (k − 1

2
)
π

L
; k = 1, 2, 3, ...

With some algebraic tedium, the vibration shapes corresponding to these
values will be of the form

wk =
cosh(γkx)− cos(γkx)

cosh(γkL) + cos(γkL)
− sinh(γkx)− sin(γkx)

sinh(γkL) + sin(γkL)
.

The natural frequencies of vibration are recovered from the earlier definition
of γ as

ωk =

√
γ4kEI

ρ
= γ2k

√
EI

ρ
= ((k − 1

2
)
π

L
)2

√
EI

ρ
; k = 1, 2, 3, ...

Figure 11.5 shows the first three transversal vibration shapes of the cantilever
beam (fixed on one side only) normalized to unit amplitude. The first shape
is a single wave going down to the right. The second shape is going to the
upper corner after one downward wave. Finally, the third shape exhibits both
a lower and an upper wave component.

The mathematical model of the transversal vibration of a beam then becomes

yk(x, t) = ckwk(x) sin(ωkt), k = 1, 2, ...

It is easy to recognize that these vibration shapes, while conceptually sinu-
soid, adhere to the specific boundary conditions of the problem. The fixed
end visibly shows the zero tangent of the waves and at the free end the curves
have no curvature as was dictated by the boundary conditions.
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FIGURE 11.5 Transversal vibrations of cantilever beam

11.4 Buckling of a beam under axial load

Another interesting phenomenon related to the flexible beam is its axial behav-
ior that is of utmost importance in the construction industry. The physical
problem is to find the limit of the axial loading of a beam without physical
failure. The scenario may be described in a horizontal beam with axial loads,
but we address the more familiar (albeit mathematically identical) vertical
beam buckling case shown in Figure 11.6.

We are going to rely on some of the foundation established in the prior
section, specifically we start from the internal strain energy which, for a bent
beam, was found to be

Es =
1

2

∫ L

0

EI(y′′)2dx,

where L is the length of the beam, I is the cross-section moment of inertia
and E is the Young’s modulus of the material. We again consider this as
potential energy since if a beam buckled under some load but did not break,
the stored strain energy would push it back into straight form after the load
is released.
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FIGURE 11.6 Buckling scenario

Similarly to the transversal case, we need to consider the work extended on
the beam to reach the curved shape, or to generate the potential energy. The
axial elongation of the beam is

ΔL ≈ 1

2

∫ L

0

y′2dx.

The work of the axial force F is

Wa = F ·ΔL,

Hamilton’s principle extended to include external work is used here, but in
this case lacking kinetic energy:

I =

∫ t2

t1

(Es −Wa)dt = extremum.

The functional contains a second order derivative, hence the Euler-Poisson
equation introduced in Chapter 4 applies, whose components are

d

dx

∂f

∂y′
= − d

dx
(Fy′),
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and
d2

dx2
∂f

∂y′′
=

d2

dx2
(EIy′′),

resulting in

− d

dx
(Fy′)− d2

dx2
(EIy′′) = 0.

Assuming that the beam is of constant cross-section and homogenous material,
the governing equation may be written as

d2

dx2
y′′ +

F

EI
y′′ = 0.

Introducing
v(x) = y′′(x),

the buckling differential equation appears as

d2

dx2
v(x) +

F

EI
v(x) = v′′(x) +

F

EI
v(x) = 0.

This is physically meaningful, since y′′ is proportional to the inverse of the
radius of curvature, that in turn is proportional to the displacement from
the axis of the undeformed beam. The solution of such ordinary differential
equation by the characteristic equation method, after applying Euler formulae
to convert the exponential expressions to trigonometric, is of the form

v(x) = A sin

(√
F

EI
x

)
+B cos

(√
F

EI
x

)
.

Applying the boundary conditions at the ends,

v(0) = 0, v(L) = 0

means that we do not allow curvature at either end. The boundary condition
at the bottom end brings

v(0) = 0 → B = 0.

The top end results in

v(L) = A sin

(√
F

EI
L

)
= 0.

The non-trivial solution, A �= 0, implies

sin

(√
F

EI
L

)
�= 0,
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which occurs when √
F

EI
L = k · π; k = 1, 2, ...

The very first such solution is when k = 1 and is called the critical load under
which the beam first buckles:

Fcr =
π2EI

L2
.

The position attained by the beam when loaded by Fcr is stable, if the load
will not increase, the shape will not change. The corresponding critical stress
value is computed as

σcr =
Fcr
A
,

where A is the cross-section area. If the critical stress value does not exceed
the yield point of the material, the deformation is flexible and releasing the
load will allow the beam to spring back to its undeformed shape.

What is hidden in our solution is that the actual value of A has not been
determined. We only computed the shape of the buckled beam but the mid-
point deflection cannot be identified. In order to do so, more physical infor-
mation must be taken into consideration, and that is beyond our focus here.

11.4.1 Axial vibration of a beam

Let us now turn to the dynamic phenomenon of the axial vibration of the
beam. The elastic potential energy in this case is contained in its axial strain,

ε =
∂u

∂x
,

and is proportional to the modulus of elasticity E and cross-section A:

Ep =
1

2

∫ L

0

EA

(
∂u

∂x

)2

dx.

Here the displacement along the longitudinal axis is denoted by u(x, t) since
the beam is oriented horizontally, along the x axis. The kinetic energy is
based on the speed of the cross-section movement as

Ek =
1

2

∫ L

0

ρA

(
∂u

∂t

)2

dx.

The variational statement of this phenomenon, following Hamilton, is

I(u) =

∫ t2

t1

A

2

∫ L

0

(
ρ

(
∂u

∂t

)2

− E

(
∂u

∂x

)2
)
dxdt = extremum,
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with the assumption of constant cross-section. The corresponding Euler-
Lagrange differential equation is again comprised of temporal and spatial
derivatives and leads to the governing equation

E
∂2u

∂x2
= ρ

∂2u

∂t2
.

This is formally identical to the one-dimensional wave equation developed in
connection with the vibrating string except for the fact that the tension force
F is replaced by the modulus of elasticity E here.

The general solution of the differential equation will also be obtained with
the same separation process but with different results due to the different
boundary conditions. The string was constrained at both ends, but here the
beam is fixed on one end and free on the other.

Assuming the same separation

u(x, t) = v(t)w(x),

and the stationary initial condition, the temporal solution is of the form

v(t) = sin(ωt),

where

ω = λ

√
E

ρ
.

The spatial solutions are of the form

w(x) = d1 cos(λx) + d2 sin(λx).

The fixed end boundary condition yields

w(0) = 0 → d1 = 0,

and in order to get non-trivial solution, d2 �= 0, the velocity at the free end
must be zero. This requires cos(λL) = 0, which is satisfied when

λL =
π

2
,
3π

2
, ...

hence

λk =
2k − 1

2

π

L
; k = 1, 2, ...

The natural vibration shapes will be

wk(x) = dk sin(λkx); k = 1, 2, ...
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The natural frequencies are computed as

ωk = λk

√
E

ρ
=

2k − 1

2

π

L

√
E

ρ
, k = 1, 2, ...

The general fundamental solutions will become

uk(x, t) = dk sin(λkx) sin(ωkt), k = 1, 2, ...

Using the trigonometric identities of the sin and cos of sums and differences
of angles, and ignoring the undefined coefficient, one may derive the form of

uk(x, t) =
1

2
(cos(λkx+ ωkt) + cos(λkx− ωkt)) .

This solution form is the sum of two traveling waves, originally proposed by
d’Alembert. Figure 11.7 demonstrates the traveling wave form of the 2nd
vibration shape.

FIGURE 11.7 Axial vibrations of a beam

While the x-axis still represents the longitudinal axis of the beam, the y
values in the figure are the axial deformations at that point in the beam. The
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curves are the second vibration shape in three consecutive time instances,
illustrating the wave’s propagation from the fixed toward the free end.

11.5 Simultaneous axial and transversal loading of beam

This modeling scenario of the beam is very practical in airplane structures,
specifically the components called spars [11]. This is in a sense a combination
of the phenomena discussed in two prior sections, except for the fact that the
transversal load is allowed to be an external, albeit constant distributed load,
not just weight. Nevertheless, the commonality in the variational foundation
of the prior sections will be exploited here.

The potential energy captured in the beam is still the internal strain energy
as

Es =
1

2

∫ L

0

EI(y′′)2dx.

The work resulting in that deformation is now the superposition of the two
external sources, the work of the axial force

Wa = F
1

2

∫ L

0

y′2dx,

and that of the transversal load,

Wt = w

∫ L

0

ydx.

Hence, the variational statement of the problem becomes

I =

∫ t2

t1

∫ L

0

(
1

2
(EIy′′2 − Fy′2)− wy

)
dxdt = extremum.

Here we turn again to the Euler-Poisson differential equation, whose compo-
nents are

∂f

∂y
= −w,

d

dx

∂f

∂y′
= − d

dx
(Fy′),

and
d2

dx2
∂f

∂y′′
=

d2

dx2
(EIy′′).
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The Euler-Poisson equation becomes

−w +
d

dx
(Fy′) +

d2

dx2
(EIy′′) = 0.

Introducing again

v(x) = y′′(x)

results in the governing equation

d2

dx2
v(x) +

F

EI
v(x) = w,

or

v′′(x) +
F

EI
v(x) = w.

The solution of this non-homogeneous differential equation is of the form

v(x) = A sin

(√
F

EI
x

)
+B cos

(√
F

EI
x

)
+ w

EI

F
.

The boundary conditions at the ends now define different constants than in
the prior cases

v(0) = 0 → 0 +B + w
EI

F
= 0

or

B = −wEI
F
.

The other end produces

v(L) = 0 → A sin

(√
F

EI
L

)
− w

EI

F
cos

(√
F

EI
L

)
+ w

EI

F
= 0,

from which

A = −wEI
F

1− cos(
√

F
EIL)

sin(
√

F
EIL)

.

The solution then becomes

w(x) = −wEI
F

⎛
⎜⎝1− cos

(√
F
EIL

)
sin(

√
F
EIL)

sin

(√
F

EI
x

)
+ cos

(√
F

EI
x

)
− 1

⎞
⎟⎠ ,

which is somewhat more difficult to interpret. Clearly when the term√
F

EI
L = π,
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the denominator is zero and the deformation is infinite. Hence the critical
load is still

Fcr =
π2EI

L2
,

despite the fact that additional bending loads are present. On the other hand,
the actual deformation values are different because the transversal load (that
produced the particular solution of the governing equation) also contributed
to the deformations.

This is a spectacular manifestation of the superposition principle shared
between the engineering and mathematical community. We will leave it at
that with the reinforcement of the value of a variational approach to this
problem.

11.6 Heat diffusion in a beam

This phenomenon in connection with the beam is of a different physical dis-
cipline: heat transfer. Diffusion itself is a general topic applicable to multiple
disciplines where some material or energy exchange occurs; however, here we
will focus on the transfer of heat. Heat transfer is also multifaceted; dissi-
pation is for example exchanging heat with the environment, while diffusion,
the topic of our discussion, is the heat flow inside of a body. Finally, the
phenomenon may be transient (changing in time) or steady state when the
solution is no longer changing in time, which we will address here in connec-
tion with the simple one-dimensional model of the beam.

We assume that the beam is located along the x-axis, it is of length L and
insulated on its surface allowing no dissipation of heat. One the other hand,
it is connected to the environment at both ends, allowing the control of the
boundary temperature there. The beam is of uniform and unit area cross-
section, and made of homogeneous material. These are restrictions imposed
for simplicity of the discussion, but are not such in practice.

In any diffusion model, there is a density of a certain quantity at a particular
location and in time, u(x, t), which is a function assumed to be continuously
differentiable in the body. In our case u(x, t) will be the temperature. If there
is a change in the density of the quantity, here in temperature, there is a flow
accomplishing this change. The speed of this flow is

∂u

∂x
,



Analytic mechanics 231

the thermal flow. While we focus on the case when the temperature does not
change in time, ∂u∂t = 0, we will still use partial derivatives to retain generality.
Then the flow energy in the body may be written as

Ef =
1

2
k

∫ L

0

(
∂u

∂x

)2

dx,

where k is the thermal conductivity coefficient. In most circumstances, there
is a heat source of some sort, and the work of this source is

Ws =

∫ L

0

qu(x, t)dx,

where q is the generated heat that may also be function of the location, but
we will consider it constant here. The flow energy and the work of the source
are in balance stated by the functional

∫ L

0

(Ef −Ws)dx =

∫ L

0

(
1

2
k

(
∂u

∂x

)2

− qu

)
dx = extremum.

The Euler-Lagrange differential equation is of the form

∂f

∂u
− ∂

∂x

∂f

∂ux
= −q − ∂

∂x
k
∂u

∂x
= 0,

from which the steady state heat diffusion governing equation emerges as

k
∂2u

∂x2
+ q = 0.

The general mathematical model is obtained by integrating twice,

u(x, t) = − q

2k
x2 + ax+ b.

The constants of integration may be resolved by boundary conditions. Let us
assume that both ends of the beam are kept at constant temperatures. Note
that the fact of assuring the temperature stays constant at both ends means
that there is a heat extraction or contribution by convection (or maybe radi-
ation) at those ends. These phenomena are not of our concern in this case as
they are external to our problem. Their behavior is simply manifested by the
temperature boundary conditions.

The boundary conditions of

u(0, t) = T1, u(L, t) = T2,

on the left end will imply
b = T1.
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On the right end

u(L, t) = − q

2k
L2 + aL+ T1 = T2,

from which the second coefficient is resolved as

a =
q

2k
L+

T2 − T1
L

.

Finally, the specific mathematical model adhering to the conditions of con-
stant temperatures (T1, T2) at both ends and generated heat (q), becomes

u(x, t) = − q

2k
x2 +

(
q

2k
L+

T2 − T1
L

)
x+ T1.

This is also known as the heat conduction equation. Two sub-cases of this
mathematical model are considered. If there is no internal heat generation,
q = 0, then the solution is simply a linear temperature distribution.

u(x, t) =
T2 − T1

L
x+ T1.

If there is internal heat generation, but both side temperatures are the same,

u(x, t) = − q

2k
x2 +

q

2k
Lx+ T1,

and the solution is a quadratic distribution above the temperatures on the
side.

Figure 11.8 shows the temperature profile in the beam along its axis. The
physical components, (k, L) were unity for visualization purposes. The top
curve is the sub-case when the two side temperatures are the same, T1 = T2,
the second curve is the sub-case with different side temperatures and the third
curve, the line represents the case when there is no internal heat generation,
q = 0.

The above mathematical model may be extended to the transient case,
when the change of the temperature still depends on time, hence its temporal
derivative also arises. Then the equation becomes

k
∂2u

∂x2
+ q = ρc

∂u

∂t
.

The new coefficients are the density per unit volume, ρ, and the specific heat,
c, of the material of the body. Furthermore, the transient model without a
generating source is described by the form

k
∂2u

∂x2
= ρc

∂u

∂t
.

This form is most commonly known as the heat equation whose algebraic
solution follows the techniques used in the wave equation. In those earlier
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FIGURE 11.8 Temperature distribution in beam

solutions, however, we largely ignored the physics by assigning unit values for
physical quantities.

While that approach was useful in producing simplicity in the model gen-
eration, the proper way is to transition from a physical to a dimensionless
mathematical governing equation. This process will be demonstrated in con-
nection with the heat equation in the next section.

11.6.1 Dimensionless heat equation

The physical components of the heat equation are of different dimensions. Let
us introduce the thermal diffusivity coefficient in the form of

κ =
k

cρ
,

where the right-hand side terms were all defined above. With this, the heat
equation is written as

κ
∂2u

∂x2
=
∂u

∂t
.
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The first step creating a dimensionless heat equation is to analyze its compo-
nents using a consistent system of units. Using the SI system, the temperature
is in Kelvins, time is in seconds and distance in meters. The SI unit (denoted
by the bracket) of the diffusivity coefficient from the units of its components
becomes

[κ] =
m2

sec
.

With this, the left-hand side of the heat equation is measured as[
κ
∂2u

∂x2

]
=
m2

sec

K

m2
=

K

sec
.

The right-hand side is simply the rate of change of the temperature,[
∂u

∂t

]
=

K

sec
,

hence the physical equation is dimensionally correct.

The transformation process is in essence the removal of dimensions from
the physical equation by a specific normalization. Note that the independent
variables, distance (x) and time (t) also have dimensions. Assuming that the
beam has physical length L, it is natural to normalize the spatial independent
variable as

x =
x

L
,

which produces a dimensionless spatial variable since [x] = 1 . Let us assume
a certain time T for normalization purposes, without specifying its value yet.
Then

t =
t

T
,

which is also a dimensionless time variable, [t] = 1. Finally, with a specific
temperature U , we obtain

u =
u

U
,

and [u] = 1. The value of U is usually the maximum temperature feasible for
the physical scenario being modeled, somewhat akin to the length normaliza-
tion in earlier sections.

The derivatives of the heat equation are computed in terms of the dimen-
sionless variables as

∂u

∂t
=
∂u

∂u

∂u

∂t

∂t

∂t
.

Differentiating and substituting result in

∂u

∂t
=
U

T

∂u

∂t
.
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Similar approach on the spatial derivative brings

∂u

∂x
=
∂u

∂u

∂u

∂x

∂x

∂x
,

and
∂u

∂x
=
U

L

∂u

∂x
.

Repeating this step yields the second derivative as

∂2u

∂x2
=

U

L2

∂2u

∂x2
.

Finally, substituting into the physical heat equation we obtain

κ
U

L2

∂2u

∂x2
=
U

T

∂u

∂t
.

We select the normalization time variable as

T =
L2

κ
,

which is dimensionally correct, [T ] = sec. Substituting and shortening result
in the mathematical, dimensionless heat equation as

∂2u

∂x2
=
∂u

∂t
.

This is now amenable to purely algebraic solution; however, the results must
be reformulated in physical terms. For example, the range of the spatial
results is

x ∈ (0, 1),

from which the physical location is easy to recover by multiplication by L.
Similarly, the dimensionless temperature result is simply scaled back by the
multiplication by U .

On the other hand, the physical time solution component recovery is more
difficult, requiring

t = Tt =
L2

κ
t.

While this process was demonstrated in connection with the heat equation,
the technique transcends the application areas we discussed. For example,
the wave equation may also be rendered dimensionless by using the approach
presented herein.

Furthermore, despite the apparent tediousness of the process, in certain real
life applications it may be necessary. Many computational mechanics solu-
tions discussed in the next chapter, are executed by software tools devised to
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be industry independent, and as such, unaware of dimensions and units. It is
the users’ responsibility to provide the input data in a dimensionless fashion,
or at least in a consistent system of units.

Finally, the computational solutions used in large-scale engineering applica-
tions apply numerical methods whose accuracy is dependent upon the range of
the terms of the variables. Hence the inherent scaling of the process increases
the quality of the solution.



12

Computational mechanics

The algebraic difficulties of generating a mathematical model for various phe-
nomena in the last chapter were considerable and may become insurmountable
in real-world problems. Computational mechanics is based on the discretiza-
tion of the geometric continuum and describing its physical behavior in terms
of generalized coordinates. Its focus is on computing numerical solutions to
practical problems of engineering mechanics.

In order to support the engineering mechanical applications following in the
later sections, this chapter starts with their common computational solution
technique, the method of finite elements. Computational solutions for elastic
bodies, heat conduction and fluid mechanics will be discussed in detail.

12.1 The finite element technique

We introduced the concept of the finite element method as an approximate
solution to variational problems in a one-dimensional setting in Section 7.7.
The practical importance of the method is in its two- and three-dimensional
extension, called the finite element technique, the subject of this section. The
Lagrangian formulation used in the next sections for the three-dimensional
elasticity, heat conduction and fluid mechanics problems is a generalization of
the basis function and discretized approach of the finite element method.

Computational solutions via the finite element technique achieved an unpar-
alleled industrial success. The topic’s implementation details cover an exten-
sive territory [13]; hence, we will discuss only the main components here.

These common, application-independent components are:
- automatic discretization of the geometric domain by finite elements,
- computation of the basis functions used in the approximate solutions,
- computation of finite element matrices,
- assembly of the finite element system matrices, and
- solution of the arising linear system or eigenvalue problem.
They are described in detail in the following sections.

237
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12.1.1 Finite element meshing

The discretization of a generic three- or two-dimensional domain is usually by
finite elements of simple shapes, such as tetrahedra or triangles. The foun-
dation of many general methods of discretization (commonly called mesh-
ing) is the classical Delaunay triangulation method. The Delaunay triangu-
lation technique in turn is based on Voronoi polygons. The Voronoi polygon,
assigned to a certain point of a set of points in the plane, contains all the
points that are closer to the selected point than to any other point of the set.

FIGURE 12.1 Delaunay triangularization

In Figure 12.1 the dots represent such a set of points. The irregular (dotted
line) hexagon containing one point in the middle is the Voronoi polygon of
the point in the center. It is easy to see that the points inside the polygon
are closer to the center point than to any other points of the set. It is also
quite intuitive that the edges of the Voronoi polygon are the perpendicular
bisectors of the line segments connecting the points of the set.

The union of the Voronoi polygons of all the points in the set completely
covers the plane. It follows that the Voronoi polygons of two points of the



Computational mechanics 239

set do not have common interior points; at most they share points on their
common boundary.

The definition and process generalize to three dimensions very easily. If the
set of points are in space, the points closest to a certain point define a Voronoi
polyhedron.

The Delaunay triangulation process is based on the Voronoi polygons by
constructing Delaunay edges connecting those points whose Voronoi polygons
have a common edge. Constructing all such possible edges will result in the
covering of the planar region of our interest with triangular regions, the Delau-
nay triangles.

The process starts with placing vertices on the boundary of the domain
in an equally spaced fashion. The Voronoi polygons of all boundary points
are created and interior points are generated gradually proceeding inward by
creating Delaunay triangles. This is called the advancing front technique.

The process extends quite naturally and covers the plane as shown in Figure
12.1 with six Delaunay triangles where the dotted lines are the edges of the
Voronoi polygons, and the solid lines depict the Delaunay edges. It is known
that under the given definitions no two Delaunay edges cross each other.

Finally, in three dimensions, the Delaunay edges are defined as lines con-
necting points that share a common Voronoi facet (a face of a Voronoi poly-
hedron). Furthermore, the Delaunay facets are defined by points that share
a common Voronoi edge (an edge of a Voronoi polyhedron). In general,
each edge is shared by exactly three Voronoi polyhedra; hence, the Delau-
nay regions’ facets are going to be triangles. The Delaunay regions connect
points of Voronoi polyhedra that share a common vertex. Since in general
the number of such polyhedra is four, the generated Delaunay regions will
be tetrahedra. The triangulation method generalized into three dimensions is
called tessellation.

12.1.2 Shape functions

We will demonstrate the finite element technique by assuming that the meshed
domain in the prior section represents an irregularly shaped membrane prob-
lem, and only out of plane deformations of the membrane are considered. This
will simplify the presentation of the technique while still capturing its intrica-
cies. The three-dimensional elasticity formulation is simply a generalization
of the process presented below.
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In the introduction of the finite element method in Chapter 7, we used basis
functions to describe the approximate solutions. In order to approximate the
solution inside the domain, the finite element technique uses a collection of
low order polynomial basis functions. For a triangular element discretization
of a two-dimensional domain, as shown in Figure 12.2, bilinear interpolation
functions are commonly used in the form:

u(x, y) = a+ bx+ cy.

Here u represents any of the q, T or p physical solution quantities introduced
in the past three sections.

In order to find the coefficients, let us consider a triangular element in the
x−y plane with corner nodes (x1, y1), (x2, y2) and (x3, y3). For this particular
triangle we seek three specific basis functions Ni, called shape functions in the
finite element field, satisfying

N1 +N2 +N3 = 1.

We also require that these functions at a certain node point reduce to zero at
the other two nodes. This is called the Kronecker property and is presented as

Ni =

{
1 at node i,
0 at node �= i.

Furthermore, a shape function is zero along the edge opposite to the particu-
lar node at which the shape function is non-zero.

The solution for the nodes of a particular triangular element e can be
expressed in matrix form as

ue =

⎡
⎣u1u2
u3

⎤
⎦ =

⎡
⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦
⎡
⎣ab
c

⎤
⎦ .

This system of equations is solved for the unknown coefficients that produce
the shape functions

⎡
⎣ab
c

⎤
⎦ =

⎡
⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦
−1 ⎡
⎣u1u2
u3

⎤
⎦ =

⎡
⎣N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

⎤
⎦
⎡
⎣u1u2
u3

⎤
⎦ .

By substituting into the matrix form of the bilinear interpolation function

u(x, y) =
[
1 x y

] ⎡⎣ab
c

⎤
⎦ =

[
1 x y

] ⎡⎣N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

⎤
⎦
⎡
⎣u1u2
u3

⎤
⎦ ,
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we get

u(x, y) =
[
N1 N2 N3

] ⎡⎣u1u2
u3

⎤
⎦ .

Here the N1, N2, N3 shape functions are

N1(x, y) = N1,1 +N2,1x+N3,1y,

N2(x, y) = N1,2 +N2,2x+N3,2y,

and
N3(x, y) = N1,3 +N2,3x+N3,3y.

The shape functions, as their name indicates, solely depend on the coordinates
of the corner nodes and the shape of the particular triangular element of the
domain. With these we are able to approximate the solution value inside an
element in terms of the solutions at the corner node points as

u(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3.

The shortcoming of this direct approach is that the coefficients of the shape
functions are different for each element and they would have to be computed
for all elements in the domain.

FIGURE 12.2 Parametric coordinates of triangular element
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It is practical therefore to generate the shape functions for a standard,
parametrically defined element. In that case, the shape functions and their
derivatives may be pre-computed and appropriately transformed as was orig-
inally proposed in [20]. Let us define a parametric coordinate system for the
triangular element as shown in Figure 12.2.

The relationship between the geometric and parametric coordinates is defined
by the bidirectional mapping

x = x(v, w), y = y(v, w)

and

v = v(x, y), w = w(x, y).

The v axis is directed from node 1 with coordinates (x1, y1) to node 2 with
coordinates (x2, y2). The w axis is directed from node 1 with coordinates
(x1, y1) to node 3 with coordinates (x3, y3). The pairing between the geomet-
ric and parametric coordinates of the nodes of the triangle is shown in Table
12.1.

TABLE 12.1

Coordinate pairing of
triangular element

node x y v w

1 x1 y1 0 0
2 x2 y2 1 0
3 x3 y3 0 1

Let us now compute the shape functions in terms of these parametric coor-
dinates:

Ni(v, w) = Ni (v(x, y), w(x, y)) .

Specifically, we choose

N1(v, w) = 1− v − w,

N2(v, w) = v,

and

N3(v, w) = w.

These shape functions also satisfy the Kronecker property stated above and
the conditions of polynomial completeness:
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3∑
i=1

Ni(v, w) = 1− v − w + v + w = 1,

3∑
i=1

Ni(v, w)xi = x

and
3∑
i=1

Ni(v, w)yi = y.

The last two equations imply that the location of any point inside the element
will also be represented by these shape functions as

x = N1(v, w)x1 +N2(v, w)x2 +N3(v, w)x3,

and
y = N1(v, w)y1 +N2(v, w)y2 +N3(v, w)y3.

Such elements are called iso-parametric elements since both the geometry and
the solution function inside the element are approximated by the same para-
metric shape functions. Substituting the shape functions we obtain

x = (1− v − w)x1 + vx2 + wx3 = x1 + (x2 − x1)v + (x3 − x1)w,

and

y = (1− v − w)y1 + vy2 + wy3 = y1 + (y2 − y1)v + (y3 − y1)w.

This formulation is a crucial component of the standardized element matrix
generation as we will see it in the next section.

12.1.3 Element matrix generation

In order to compute a particular matrix for a finite element, we consider all the
corner nodes specifying the sides bounding a particular element. For example,
the mass of an element is described by the elemental matrix

Me = ρ

∫ ∫
x,y∈De

N(x, y)TN(x, y)dxdy,

where the N(x, y) matrix is the local shape function matrix of the particular
element, De is its geometric domain and ρ is the density of the material.

Using the parametric coordinates, however, the above elemental mass matrix
integral may be evaluated as

Me = ρ

∫ 1

v=0

∫ 1−v

w=0

N(v, w)TN(v, w) det

(
∂(x, y)

∂(v, w)

)
dwdv.
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The matrix of the determinant, called the Jacobian matrix, is computed as
follows

J =
∂(x, y)

∂(v, w)
=

[
∂x
∂v

∂x
∂w

∂y
∂v

∂y
∂w

]
.

For our triangular element, this is

J =

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
and

det(J) = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

This is a different value for each element. However, since it is a constant, it
could be moved outside of the integral which will be important. Its value is
indicative of the quality of the finite element. A very small value indicates an
ill-shaped finite element that will be detrimental to the solution quality as we
will see later.

Since the matrix of the shape functions is organized as

N(v, w) =
[
N1 N2 N3

]
,

the N(v, w)TN(v, w) product needed for the mass matrix is of the form

N(v, w)TN(v, w) =

⎡
⎣NT

1 N1 N
T
1 N2 N

T
1 N3

NT
2 N1 N

T
2 N2 N

T
2 N3

NT
3 N1 N

T
3 N2 N

T
3 N3

⎤
⎦ .

These terms are only functions of the v, w parametric variables; hence, they
may be pre-computed as

N(v, w)TN(v, w) =

⎡
⎣ (1− v − w)2 (1− v − w)v (1− v − w)w
v(1− v − w) v2 vw
w(1− v − w) wv w2

⎤
⎦ .

The matrix is symmetric and the integral over the parametric domain of the
triangular finite element becomes

Me = ρdet(J)

∫ 1

v=0

∫ 1−v

w=0

N(v, w)TN(v, w)dwdv.

In this form, the evaluation of the integrals is still cumbersome due to the
variable upper limit of the inner integral. They may be further transformed
to enable easier integration by the substitution

w =
1− v

2
+

1− v

2
r,

and

v =
1

2
+

1

2
s.
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This will of course modify N(v, w), a function of v, w, to N(s, r), a function
of s, r and brings the consequences

dv =
1

2
ds

and

dw =
1− v

2
dr.

Finally, the integrals become

Me = ρdet(J)

∫ 1

s=−1

1

2

∫ 1

r=−1

N(s, r)TN(s, r)

(
1

4
− 1

4
s

)
drds.

These may now be easily integrated for the standard element a priori and
only once. During computation of the finite element solution, the standard
element matrix is multiplied by values in front of the integrals that are char-
acteristic to the shape of the particular element. This is a fundamental aspect
of practical finite element technique.

The generation of the stiffness matrix will require the computation of a
matrix containing the derivatives of the shape functions. For our simplified
case, the matrix is of the form:

B(x, y) =

⎡
⎣ ∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y

⎤
⎦ .

Since the shape functions are defined in terms of the parametric coordinates,
the derivatives of the local shape functions are computed by using the chain
rule as

∂Ni
∂v

=
∂Ni
∂x

∂x

∂v
+
∂Ni
∂y

∂y

∂v

and
∂Ni
∂w

=
∂Ni
∂x

∂x

∂w
+
∂Ni
∂y

∂y

∂w
.

These relations may be gathered as

[
∂Ni

∂v
∂Ni

∂w

]
=

[
∂x
∂v

∂y
∂v

∂x
∂w

∂y
∂w

] [ ∂Ni

∂x
∂Ni

∂y

]
.

The first term on the right-hand side is

[
∂x
∂v

∂y
∂v

∂x
∂w

∂y
∂w

]
= JT ,
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as we found it earlier. Hence[
∂Ni

∂v
∂Ni

∂w

]
= JT

[ ∂Ni

∂x
∂Ni

∂y

]
and [ ∂Ni

∂x
∂Ni

∂y

]
= JT,−1

[
∂Ni

∂v
∂Ni

∂w

]
.

The inverse of the Jacobian matrix may be computed by

J−1 =
adj(J)

det(J)
.

This equation clarifies the earlier warning comment about the numerical prob-
lems arising from elements with a very small Jacobian determinant that is in
the denominator. Hence, we now have arrived at the B matrix with shape
function derivatives with respect to the parametric coordinates as

B(v, w) = JT,−1

⎡
⎣ ∂N1

∂v
∂N2

∂v
∂N3

∂v

∂N1

∂w
∂N2

∂w
∂N3

∂w

⎤
⎦ .

Using the terms of the Jacobian matrix we obtained earlier, the adjoint is

adj(JT ) =

[
y3 − y1 x1 − x3
y1 − y2 x2 − x1

]
,

and the determinant becomes

det(J) = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1).

Therefore, the inverse matrix contains the element specific coordinates. It is
easy to find from the preceding that

∂N1

∂v
= −1,

∂N1

∂w
= −1,

∂N2

∂v
= 1,

∂N2

∂w
= 0,

and
∂N3

∂v
= 0,

∂N3

∂w
= 1.

For our specific element, we obtain

B(v, w) = JT,−1

[−1 1 0
−1 0 1

]
.

The elemental stiffness matrix, with the inclusion of the material specific elas-
ticity matrix D, may now be computed as

Ke = det(J)

∫ 1

v=0

∫ 1−v

w=0

B(v, w)TDB(v, w)dwdv.
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This element stiffness matrix is of order 3 by 3 for our triangular element with
a scalar field solution.

The integral transformation shown in connection with the mass matrix is
also executed here as

Ke = det(J)

∫ 1

s=−1

1

2

∫ 1

r=−1

B(s, r)TDB(s, r)

(
1

4
− 1

4
s

)
drds.

However, due to the content of the B matrix and the presence of the elastic-
ity matrix, this integral cannot be evaluated a priori; it has to be computed
during the solution. For the sake of efficiency, the integrals are numerically
evaluated, usually by Gaussian quadrature.

The integrals are replaced by weighted sums and the integrand is evaluated
at strategically selected points called the Gauss points:

Ke =
1

2
det(J)

n∑
i=1

ci

n∑
j=1

cjB
T (si, rj)DB(si, rj)

(
1

4
− 1

4
si

)
.

Table 12.2 shows the si = ti, rj = tj Gauss point locations and corresponding
ci weights. Their computation was explained in Section 5.4.1.

TABLE 12.2

Gauss points and weights

n i ti ci

1 1 0 2

2 1 −0.577350 1
2 2 0.577350 1

3 1 −0.774597 0.555556
3 2 0 0.888889
3 3 0.774597 0.555556

4 1 −0.861136 0.347855
4 2 −0.339981 0.652146
4 3 0.339981 0.652146
4 4 0.861136 0.347855

For very simple elements, first order (n = 1) integration suffices. For ele-
ments representing more difficult physics, the second and third order formulae
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are used. Fourth order integration is sometimes used for quadratic or higher
order elements.

Finally, the elemental load vector is also obtained by integrating with the
shape function matrix as

Fe = det(J)

∫ 1

v=0

∫ 1−v

w=0

N(v, w)T fdwdv.

Here f is the vector of forces acting on the nodes of the element

f =

⎡
⎣ f1f2
f3

⎤
⎦ .

We are now in the position to assemble the elemental matrices and obtain the
solution of the problem on the complete domain.

12.1.4 Element matrix assembly and solution

Since the element matrices have been developed in terms of the local (v, w)
parametric coordinate system, before assembling they must be transformed
to the global (x, y) coordinate system common to all the elements. The coor-
dinates of a point in the two systems are related as

⎡
⎣xy
1

⎤
⎦ = T

⎡
⎣ vw
1

⎤
⎦ .

The transformation matrix is formed as

T =

⎡
⎣ vx wx x1vy wy y1

0 0 1

⎤
⎦ ,

where

v = vxi+ vyj

and

w = wxi+ wyj

are the vectors in the global system defining the local parametric coordinate
axes. The point (x1, y1) defines the local element system’s origin as was shown
in Figure 12.2.

The same transformation is applicable to the solution values. The global
solution values are related to the local elemental solution values by the same
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transformation matrix in the form of⎡
⎣ue,xue,y

1

⎤
⎦ = T

⎡
⎣ ue,vue,w

1

⎤
⎦ .

Hence, the element solutions in the two systems are related as

uge = Tue

or

ue = T−1uge .

The uge notation refers to the element solution in the global coordinate system.

Let us now consider an elemental solution with the local element matrix
and the local load vector Fe as

Keue = Fe.

The relationship between the load vector in local terms and its version in the
global coordinate system is similar:

F ge = TFe,

or

Fe = T−1F ge .

Substituting into the elemental solution, we obtain

KeT
−1uge = T−1F ge ,

Pre-multiplying by T and exploiting the emerging identity matrix results in

TKeT
−1uge = F ge ,

or

Kg
eu

g
e = F ge .

Here

Kg
e = TKeT

−1

is the element matrix transformed to global coordinates. This transformation
follows the element matrix generation and precedes the assembly process.

Finally, the K global stiffness matrix is assembled as

K =
m∑
e=1

LgeK
g
eL

T
ge,
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where Lge is a Boolean matrix mapping the element local node numbers to
the global node numbers. If, for example, the element is described by nodes
1, 2 and 3, then the terms in Kg

e contribute to the terms of the 1st, 2nd and
3rd columns and rows of the assembled, global K matrix. Let us assume that
another element is adjacent to the edge between nodes 2 and 3 whose third
node is numbered 4. The second element’s matrix terms will contribute to
the 2nd, 3rd and 4th columns and rows of the global matrix.

The individual element matrices are mapped to the global matrix that is of
size 4 by 4, reflecting the presence of the 4 node points as

LgeK
g
1L

T
ge =

⎡
⎢⎢⎣
K1(1, 1) K1(1, 2) K1(1, 3) 0
K1(2, 1) K1(2, 2) K1(2, 3) 0
K1(3, 1) K1(3, 2) K1(3, 3) 0

0 0 0 0

⎤
⎥⎥⎦ ,

and

LgeK
g
2Lge =

⎡
⎢⎢⎣
0 0 0 0
0 K2(1, 1) K2(1, 2) K2(1, 3)
0 K2(2, 1) K2(2, 2) K2(2, 3)
0 K2(3, 1) K2(3, 2) K2(3, 3)

⎤
⎥⎥⎦ .

Here the subscript is the element index e = 1, 2 and the row, column indices
in the parenthesis refer to the local element node numbers. The assembled
global finite element matrix is then

K =

⎡
⎢⎢⎣
K1(1, 1) K1(1, 2) K1(1, 3) 0
K1(2, 1) K1(2, 2) +K2(1, 1) K1(2, 3) +K2(1, 2) K2(1, 3)
K1(3, 1) K1(3, 2) +K2(2, 1) K1(3, 3) +K2(2, 2) K2(2, 3)

0 K2(3, 1) K2(3, 2) K2(3, 3)

⎤
⎥⎥⎦ ,

The assembled global load vector is similarly obtained:

F =

2∑
i=1

LgeF
g
e,i =

⎡
⎢⎢⎣

F1(1)
F1(2) + F2(1)
F1(3) + F2(2)

F2(3)

⎤
⎥⎥⎦ .

The notation convention is the same as in the element matrix assembly.

The global solution is then obtained from the matrix equation

Ku = F,

where K is the global stiffness matrix and F is the global force vector. The
global solution vector is

u = K−1F =

⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ ,
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and the solution inside of a particular element is

u(x, y) = N i
1u
i
1 +N i

2u
i
2 +N i

3u
i
3.

The superscript indicates the shape functions and node point values asso-
ciated with a particular (i-th) element. For the first element in the above
hypothetical two element model, u1j = uj ; j = 1, 2, 3 and for the second ele-

ment, u2j = uj+1; j = 1, 2, 3.

Naturally the M matrix is similarly transformed and assembled as

M =
m∑
e=1

LgeM
g
eL

T
ge.

This process is the same for any number of elements contained in the finite
element discretization of the geometric model.

12.2 Three-dimensional elasticity

One of the fundamental concepts necessary to understanding continuum
mechanical systems is a generic treatment of elasticity described in detail in
the classical reference of the subject [17]. When an elastic continuum under-
goes a one-dimensional deformation, like in the case of the beam discussed in
Section 11.3, Young’s modulus was adequate to describe the changes.

For a general three-dimensional elastic continuum we need another coeffi-
cient, introduced by Poisson, to capture the three-dimensional elastic behav-
ior. Poisson’s ratio measures the contraction of the cross-section, while an
object such as a beam is stretched. The ratio ν is defined as the ratio of the
relative contraction and the relative elongation:

ν = −dr
r
/
dl

l
.

Here a beam with circular cross-section and radius r is assumed. Poisson’s
ratio is in the range of zero to 1/2 and expresses the compressibility of the
material. The two constants are also often related as

μ =
E

2(1 + ν)
,

and

λ =
Eν

(1 + ν)(1− 2ν)
.

Here μ and λ are the so-called Lamé constants.
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In a three-dimensional elastic body, the elasticity relations could vary sig-
nificantly. Let us consider isotropic materials, whose elastic behavior is inde-
pendent of the material orientation. In this case, Young’s modulus is replaced
by an elasticity matrix whose terms are only dependent on the Lamé constants
as follows

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Viewing an infinitesimal cube of the three-dimensional body, there are six
stress components on the element,

σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σx
σy
σz
τyz
τxz
τxy

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first three are normal and the second three are shear stresses. There are
also six strain components

ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
εy
εz
γyz
γxz
γxy

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first three are extensional strains and the last three are rotational strains.
The stress-strain relationship is described by the generalized Hooke’s law as

σ = Dε.

This will be the fundamental component of the computational techniques for
elastic bodies. Let us further designate the location of an interior point of the
elastic body with

r(x, y, z) = xi+ yj + zk =

⎡
⎣xy
z

⎤
⎦ ,

and the displacements of the point with

u(x, y, z) = ui+ vj + wk =

⎡
⎣ uv
w

⎤
⎦ .
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Then the following strain relations hold:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

and

εz =
∂w

∂z
.

These extensional strains manifest the change of rate of the displacement of
an interior point of the elastic continuum with respect to the coordinate direc-
tions.

The rotational strains are computed as

γyz =
∂v

∂z
+
∂w

∂y
,

γxz =
∂u

∂z
+
∂w

∂x
,

and

γxy =
∂u

∂y
+
∂v

∂x
.

These terms define the rate of change of the angle between two lines crossing
at the interior point that were perpendicular in the undeformed body and get
distorted during the elastic deformation.

The strain energy contained in the three-dimensional elastic continuum is

Es =
1

2

∫
V

σT εdV =
1

2

∫
V

[
σx σy σz τyz τxz τxy

]
⎡
⎢⎢⎢⎢⎢⎢⎣

εx
εy
εz
γyz
γxz
γxy

⎤
⎥⎥⎥⎥⎥⎥⎦
dV.

We will also consider distributed forces acting at every point of the volume
(like the weight of the beam in Section 11.3), described by

f = fxi+ fyj + fzk =

⎡
⎣ fxfy
fz

⎤
⎦ .

The work of these forces is based on the displacements they caused at the
certain points and computed as
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W =

∫
V

uT fdV. =

∫
V

[
u v w

] ⎡⎣ fxfy
fz

⎤
⎦ dV.

In order to evaluate the dynamic behavior of the three-dimensional body, the
kinetic energy also needs to be computed. Let the velocities at every point of
the volume be described by

u̇(x, y, z) = u̇i+ v̇j + ẇk =

⎡
⎣ u̇v̇
ẇ

⎤
⎦ .

With a mass density of ρ, assumed to be constant throughout the volume, the
kinetic energy of the body is

Ek =
1

2
ρ

∫
V

u̇T u̇dV.

We are now in the position to write the variational statement describing
the equilibrium of the three-dimensional elastic body:

I (u(x, y, z)) =

∫ t2

t1

(Ek − (Ep −W )) dt = extremum,

which is of course Hamilton’s principle extended with the external work.

The unknown deformation u of the body at every (x, y, z) point is the sub-
ject of the computational solution discussed in the next sections.

12.3 Mechanical system analysis

We now consider a mechanical system of a continuum and seek the deforma-
tion at any point inside the system. The solution will be obtained by finding
an approximate solution of a variational problem in the form of

u(x, y, z) =

n∑
i=1

q
i
Ni(x, y, z).

The yet unknown coefficients, the q
i
values are displacements at i = 1, 2, . . .

discrete locations inside the volume. These are also known as generalized dis-
placements and discussed in an earlier section [14].
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The variational statement in detail is

I(u) =

∫ t2

t1

∫
V

(
1

2
ρu̇T u̇− (

1

2
σT ε− uT f)

)
dV dt = extremum.

Let us organize the generalized displacements as

q =

⎡
⎣ q1. . .
q
n

⎤
⎦ ,

where, in adherence to our three-dimensional focus

q
i
=

⎡
⎣ qi,xqi,y
qi,z

⎤
⎦ .

Using this, the approximate solution becomes

u(x, y, z) = Nq

with the matrix of basis functions

N(x, y, z) = Nxi+Nyy +Nzk =

⎡
⎣N1 0 0 . . . Nn 0 0

0 N1 0 . . . 0 Nn 0
0 0 N1 . . . 0 0 Nn

⎤
⎦ .

The basis functions are usually low order polynomials of x, y, z as shown in
Section 12.1.2.

Let us apply this to the terms of our variational problem, starting with the
kinetic energy. Assuming that the velocity is also a function of the generalized
velocities,

u̇(x, y, z) = Nq̇,

where

q̇ =

⎡
⎣ q̇1. . .
q̇
n

⎤
⎦ ,

we obtain

Ek =

∫
V

1

2
ρu̇T u̇dV =

1

2
q̇t
∫
V

NT ρNdV q̇.

Introducing the mass matrix

M =

∫
V

NT ρNdV,
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the final form of the kinetic energy becomes

Ek =
1

2
q̇TMq̇.

Now let’s focus on the strain energy. Note that the strain is now also expressed
in terms of the basis functions. Hence

ε(N) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 q

t
i
∂N
∂x∑n

i=1 q
t
i
∂N
∂y∑n

i=1 q
t
i
∂N
∂z∑n

i=1 q
t
i

(
∂N
∂z + ∂N

∂y

)
∑n
i=1 q

t
i

(
∂N
∂z + ∂N

∂x

)
∑n
i=1 q

t
i

(
∂N
∂y + ∂N

∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

or in matrix form

ε(N) = Bq,

where the columns of B are

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z
∂Ni

∂z + ∂Ni

∂y
∂Ni

∂z + ∂Ni

∂x
∂Ni

∂y + ∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

With this, the integral becomes∫
V

εT (N)Dε(N)dV =

∫
V

qTBTDBqdV.

The total strain energy in the system is

Es =
1

2
qT
∫
V

BTDBdV q.

Introducing the stiffness matrix of the system as

K =

∫
V

BTDBdV,

the strain energy is of final form

Es =
1

2
qTKq.

A similar approach on the external work yields

We =

∫
V

qTNT fdV.
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Introducing the active force vector on the system as

F =

∫
V

NT fdV,

this term becomes

We = qTF.

We are ready to find the value of the unknown solution components and will
use the extended form of Lagrange’s equations of motion

d

dt

∂Ek
∂q̇

+
∂Ep
∂q

=
∂We

∂q
.

The first term is evaluated as

∂Ek
∂q̇

=Mq̇.

Then

d

dt
(Mq̇) =Mq̈.

Here the generalized accelerations are

q̈ =

⎡
⎣ q̈1. . .
q̈
n

⎤
⎦ .

The second part results in

∂Ep
∂q

= Kq,

and the right-hand side brings

∂We

∂q
= F,

The final result is

Mq̈ +Kq = F.

This is the well-known equation of the forced undamped vibration of a three-
dimensional elastic body.
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12.4 Heat conduction

While staying on the mechanics territory, we now explore the area of heat con-
duction. This phenomenon occurs when the temperature between two areas
of a body differs. In this application, every point in space is associated with
a scalar quantity, the temperature, hence these types of problems are called
scalar field problems.

For our discussion, we will assume that the body does not deform under the
temperature load. This assumption, of course, may be violated in real life.
Serious warping of objects left in the sun is a strong example of that scenario.

Two more restrictions we impose. We’ll consider two-dimensional problems
for simplification of the discussion. We will also only consider the steady state
solution case, when the temperature at a certain point is independent of the
time. The analytical foundation of this scenario was presented in Section 11.6
in connection with the beam.

The 1D heat conduction problem presented in Section 11.6 may be gener-
alized to two dimensions as [4]

k

(
∂2T

∂x2
+
∂2T

∂y2

)
+Q = 0,

where the temperature and source are now functions of two variables,

T = T (x, y), Q = Q(x, y).

The k is the thermal conductivity of the material of the object which in gen-
eral may be a function of the location as well, but considered to be constant
here.

This is in essence Poisson’s equation in the form of

−kΔT (x, y) = Q(x, y).

Following Section 5.2 where we obtained the variational form of Poisson’s
equation, the variational form of the heat conduction becomes∫ ∫

D

(
k
1

2

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)

− TQ

)
dxdy = extremum.

Following the avenue charted in the last section for the elasticity problem, we
will approximate the temperature field in terms of basis functions by

T (x, y) =

n∑
i=1

TiNi,
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where Ti are the temperatures at the discretization points. Then

∂T (x, y)

∂x
=

n∑
i=1

Ti
∂Ni
∂x

,

and
∂T (x, y)

∂y
=

n∑
i=1

Ti
∂Ni
∂y

.

Here Ti = T (xi, yi) are the temperatures at the discretization locations in the
domain. We introduce a vector of these temperatures

T =

⎡
⎣ T1. . .
Tn

⎤
⎦ .

We also build a B matrix of the basis function derivatives with columns

Bi =

[ ∂Ni

∂x
∂Ni

∂y

]
.

Finally we also concatenate the Ni basis functions into the matrix N

N =
[
N1 . . . Nn

]
.

This architecture of the N matrix is simpler than in the case of the elasticity,
reflecting the fact that this is a scalar field problem. The elasticity was a vec-
tor field problem as the solution quantity at each point was the displacement
vector of three dimensions.

Utilizing these matrices we write

T (x, y) = NT,(
∂T

∂x

)2

+

(
∂T

∂y

)2

= (BT )TBT,

and substituting into the variational problem we obtain∫ ∫
D

(
k
1

2
TTBTBT −QNT

)
dxdy = extremum.

Introducing a conductivity matrix of

K =

∫ ∫
D

kBTBdxdy,

as well as a source vector of

Q =

∫ ∫
d

QNdxdy,
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we obtain the optimization problem of

I(T ) =
1

2
TTKT −QT = extremum.

The solution is obtained from a linear system of equations

KT = Q.

This is the computational solution of the two-dimensional heat conduction
problem. This two-dimensional process is easily extended to three dimensions
with identical computational details.

12.5 Fluid mechanics

As a final application, we discuss a phenomenon when fluid is partially or
fully surrounded by an external structure and the dissipation of energy into
the surrounding space is negligible [19].

Assuming small motions, the equilibrium of a compressible fluid inside a
cavity is governed by the Euler equation derived in Section 10.5

ρü = −∇p,
where ü is the acceleration of the particles and p is the pressure in the fluid.
Furthermore, ρ is the density and ∇ is the differential operator. The explicit
vector notation is again omitted for the physical vectors, but the linear alge-
braic vectors are marked as such.

We also assume locally linear pressure-velocity behavior of the fluid as

p = −b∇u,
where b is the so-called bulk modulus related to the density of the fluid and
the speed of sound. Differentiating twice with respect to time and substitut-
ing the Euler equation, we get Helmholtz’s equation describing the behavior
of the fluid:

1

b
p̈ = ∇

(
1

ρ
∇p

)
.

The following boundary conditions are also applied. At a structure-fluid inter-
face

∂p

∂n
= −ρün, (12.1)
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where n is the direction of the outward normal. At free surfaces:

u = p = 0.

Since the equilibrium differential equation of the physical phenomenon is
given at this time, the inverse problem approach introduced in Chapter 5 will
be used again. Accordingly, for the differential equation of

Au = 0,

the variational problem of

I(u) = (Au, u)

applies. Here the inner product is defined over the continuum. For our case,
this results in ∫ ∫ ∫

V

(
1

b
p̈− 1

ρ
∇ · ∇p

)
pdV = 0. (12.2)

Following the earlier sections, we will also assume that the pressure field is
approximated by basis functions as:

p(x, y, z) =

n∑
i=1

Nipi = Np.

The same holds for the derivatives:

p̈(x, y, z) = Np̈.

Separating the two parts of Equation (12.2), the first yields∫
V

1

b
p̈pdV =

∫
V

1

b
pp̈dV = pT

∫
V

1

b
NTNdV p̈.

Introducing the mass matrix

M =

∫
V

1

b
NTNdV,

this term simplifies to ∫
V

1

b
p̈pdV = pTMp̈.

Let us now turn our attention to the second part of Equation (12.2). Inte-
grating by parts yields

−
∫
V

(
1

ρ
∇ · ∇pp

)
dV =

∫
V

1

ρ
∇p · ∇pdV −

∫
S

1

ρ
∇ppdS.
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From the above assumptions, it follows that

∇p = ∇Np,
and we obtain

pT
∫
V

(
1

ρ
∇NT

)
∇NdV p+ pT

∫
S

NT ündS.

Here the boundary condition stated in Equation (12.1) was used. Introducing

K =

∫
V

1

ρ
∇NT∇NdV,

the first part simplifies to

pTKp.

The force exerted on the boundary by the surrounding structure is

F =

∫
S

NT ündS.

Substituting and reordering yields

pTMp̈+ pTKp+ pTF = 0.

Finally, the equilibrium equation is

Mp̈+Kp+ F = 0.

This, as all the similar problems of this chapter, may be solved by efficient
numerical linear algebra computations and will not be discussed further here.

In conclusion, let us emphasize the fact that in all three mechanical engi-
neering disciplines (structural elasticity, heat conduction and fluid mechanics)
we used the same computational technique to model the behavior of the phys-
ical phenomenon over the geometric domain.

Furthermore, it is important to notice the finite element technique’s tran-
scendence of the multiple engineering disciplines. For example, as demon-
strated in [3], the governing equation in electrostatics is also Poisson’s equa-
tion, albeit the participating terms have different physical meaning.

The applicability of a certain variational problem to unrelated disciplines
is straightforward; one only needs to adhere to the differences in the physics.
This fact makes the techniques demonstrated in this book extremely useful in
modeling of various phenomena in diverse engineering disciplines.



Solutions to selected exercises

Section 1.6

1.
y = 1

2x
2 + c1x+ c2.

2.
y = −x2 + c1x+ c2.

3.
y = c1x+ c2.

4.
y = c1 ln |x|+ 1

2x+ c2.

5.
y = 2−√

5− x2.

6.
y = sin(4x).

7.
y = ln |1+x|

ln 2 .

8.
y = c1x

4

8 + c2

9.
y = c1e

x + c2e
−x + 1

2x.

10.
y = c1 + c2x+ 1

2x
2.
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Section 2.5

1.
y =

√
8x− x2.

2.
y = ±2 cos(kπx), k = 1, 2, 3, ..

3.

y = ±
√

2
π cos(kx), k = 1, 2, 3, ..

4.
y = c1 cos(x) +

2
pi .

5.
(x− c1)

2 + (y − c2)
2 = λ2

6.
y = λ cosh(x−c1c2

).

7.
y = cos(x) + 2 sin(x)− 1.

8.
y = 1

12x
3 + 21

8 x
2 − 5

8x− 1
12 .

9.
y = (−2± x1

√
5)x+ c2.

10.
y = −18x2 + 20x.

Section 3.6

1.
2xux + x2uxx + 2yuy + y2uyy = 0.

2.
utt − c2uxx = 0.



Solutions to selected exercises 265

3.
uxx + uyy = 0.

4.
Δu = λu;u = u(x, y, z)

5.
1− zxx − zyy = 0.

6.
ÿ = y2 + 2xy; ẍ = −x2 − 2xy;

7.
x = c1e

t + c2e
−t; y = c3e

t + c4e
−t.

8.
x = c1e

t + c2e
−t; y = c3e

t + c4e
−t; z = c5e

t + c6e
−t.

Section 4.5

6.
y(x) = ae

√
2x + be−

√
2x + c cos(

√
2x) + d sin(

√
2x).

Section 5.4

1. d
dx

[
x dydx

]
+ (− 1

x + λx)y = 0.

x2y′′ + xy′ + (x2 − λ)y = 0, λ = n2.

2. d
dx

[√
1− x2 dydx

]
+ λ√

1−x2
y = 0.

(1− x2)y′′ − xy′ + λy = 0, λ = n2.

3. d
dx

[
e−

x2

2
dy
dx

]
+ λe−

x2

2 y = 0.

y′′ − xy′ + λy = 0, λ = 2n.

4. d
dx

[
xe−x dydx

]
+ λe−xy = 0.

xy′′ + (1− x)y′ + λy = 0, λ = n.



266 Applied calculus of variations for engineers

5. d
dx

[
(1− x2) dydx

]
+ λy = 0.

(1− x2)y′′ − 2xy′ + λy = 0, λ = n(n+ 1).

They are the Bessel, Chebyshev, Hermite, Laguerre and Legendre equa-
tions, in order.

Section 6.6

1. u(x, y, t) = ce−λte±kxe±
√
λ2−k2y.

2. u(x, y) = 2
√
a1x+

√
2− a1y + a2.

4. y2(x) = 1− 5
14 (2x− x2); y1 = 1.

5. y2(x) = − 21
25 (−x+ x3

3 ); y1 = 0.

Section 7.8

1. y = 1
2 (x+ x2).

2. y = 5
4x− 1

4x
2.

3. y = 2x− x2.

4. y = x3.

5. y = x3.



Notations

Notation Meaning

f(x) Function of one variable
f(x, y), F (x, y) Function of two variables
r Radius of curvature
g Acceleration of gravity
r Vector in Cartesian coordinates
rx First partial derivative with respect to x
ry First partial derivative with respect to y
ṙ First parametric derivative
r̈ Second parametric derivative
p Pressure
s Arc length
s(t) One-dimensional spline function
s(u, v) Two-dimensional spline function
y′(x), f ′(x) First derivative
y′′(x), f ′′(x) Second derivative
n Normal vector
t Tangent vector
b Bi-normal vector

∇ Gradient operator
Δ Laplace operator
κ Curvature
κg Geodesic curvature
κn Normal curvature
κm Mean curvature
δI Variation of integral functional
Γkij Christoffel symbols
σ Stress
ε Strain
ν Poisson’s ratio
λ Eigenvalue
ρ Material density
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[B] Shape function derivative matrix
Bi,k(t) B-spline basis function
E,F,G First fundamental quantities
E Young’s modulus
[D] Elasticity matrix
F Active force
Fcr Critical buckling force
G Green’s function
Es Strain energy
Ek Kinetic energy
Ep Potential energy
I() Integral functional
I Moment of inertia
[J ] Jacobian matrix
L1...5 Lagrange points
[K] Stiffness matrix
[M ] Mass matrix
M Momentum
[N ] Shape function matrix
Q Heat source
S Surface area
T Surface (traction) force
[T ] Temperature matrix
V Volume
We External work
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angular momentum, 189, 191
Archimedes law, 198
auxiliary function, 4
axial strain, 225
axial vibration of beam, 97

B-spline, 158
basis functions, 117
Beltrami’s formula, 11
Beltrami’s solution, 28
Bernoulli, 16
Bessel equation, 110, 265
Bessel function, 110
Bessel functions, 93
bi-normal vector, 151
bilinear interpolation, 240
boundary conditions, 3
brachistochrone, 12
buckling, 222
bulk modulus, 261

CAD, 159, 172
CAM, 62, 172
cantilever beam, 221
catenary curve, 45
catenoid, 63
Chebyshev equation, 265
Chebyshev polynomials, 93
chord, 169
Christoffel symbols, 147
compressible fluid, 260
conservative systems, 180
constrained splines, 164
constrained variational problem, 38
control points, 161
curvature, 151
curvature vector, 151
cylindrical coordinates, 109

d’Alembert operator, 135
d’Alembert solution, 203, 220, 227
damping, 185
Delaunay triangles, 239
Dirac function, 132
direct method, 115
Dirichlet boundary conditions,

82, 132
dissipation function, 186

eigensolution, 85
eigenvalue, 85
electrical circuit, 185
electrostatic energy, 186
Euler, 22
Euler equation, 199, 260
Euler triangle, 144
Euler’s formula, 96, 101, 109
Euler’s method, 115
Euler-Lagrange equation, 6, 28
Euler-Poisson equation, 70
Extended Lagrange’s equations

of motion, 183
extremum of functional, 3

Fermat’s principle, 20
finite element matrix generation, 243
first fundamental quantities, 62, 142
first variation, 8
force potential, 180
functional derivative, 112
functional gradient, 112
fundamental lemma, 6

Galerkin’s method, 121
Gamma function, 110
Gauss points, 93, 247
Gauss quadrature, 93
Gaussian quadrature, 247
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generalized displacements, 255
geodesic curvature, 151
geodesic curve, 141
geodesic polyhedron, 145
gravitational potential, 189
great circle, 144
Greek asteroids, 196
Green’s function, 132
Green’s identity, 46, 59, 64, 66, 84
Green’s theorem, 132, 212

Hamilton’s principle, 176
Hamiltonian, 178
harmonic splines, 157
heat conduction, 258
helix, 148
Helmholtz equation, 261
hemisphere, 144
Hermite equation, 265
Hermite polynomials, 93
Hooke’s law, 214

inverse problem, 81

Jacobian matrix, 244
Jordan curve, 60

Kantorovich’s method, 126
kinetic energy, 16
knot points, 159
knot values, 159
Kronecker delta, 134
Kronecker property, 242

Lagrange multiplier, 37, 78, 83,
85, 87, 164

Lagrange’s equations of motion,
182

Lagrangian, 177
Laguerre equation, 265
Laguerre polynomials, 93
Lamé constants, 251
Laplace operator, 81, 82
Laplace transform, 95
Laplace’s equation, 106, 109
Legendre equation, 89, 265
Legendre polynomials, 91

Legendre test, 9
Legendre’s transformation, 175

mass-spring-damper system, 183
mean curvature, 60
mean-value theorem, 8
meshing, 238
minimal surfaces, 60
Minkowski space, 154

natural frequency, 204, 221
natural spline, 156
necessary conditions, 9
Neumann boundary conditions, 132
Newton’s law, 180
non-uniform splines, 159
normal curvature, 151
normal mode, 204
normal vector, 151
NURBS, 171

orbital trajectory, 191

parametric coordinate system, 248
parametric spline, 74
Plateau’s problem, 60
Poisson’s integral formula, 109
Poisson’s ratio, 251
polar coordinates, 106
polynomial completeness, 242
potential energy, 16
pressure, 260
principal curvature, 60
principle of minimal momentum, 22
principle of minimal potential energy,

42

Rational B-splines, 171
Ritz method, 117
Ritz-Galerkin method, 135

second variation, 9
shape functions, 240, 244
Snell’s law, 21
SOHO observatory, 196
spatial solution, 204
speed of sound, 261
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steady state heat conduction, 230
steady state solution, 258
strain, 214
strain energy, 222, 256
stress, 214
strong extremum, 9
Sturm-Liouville eigenproblem, 86
Sturm-Liouville equation, 87
Sturm-Liouville operator, 86
surface of revolution, 62

tangent constraints, 166
tangent vector, 151
tautochrone, 20
temperature field, 259
temporal solution, 204

tessellation, 239
transversality condition, 27, 33, 35,
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transverse vibration, 219
Trojan asteroids, 196

uniform parameterization, 162
uniform splines, 159

velocity, 260

weak extremum, 9
Webb space telescope, 196
weighted residuals, 121

Young’s modulus, 214
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