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PREFACE

This book is a thorough revision of its earlier eighth edition, which was published in
2009. That edition has served, just as the earlier ones did, as a textbook for a one-term
introductory course in the theory and application of functions of a complex variable.
This new edition preserves the basic content and style of the earlier ones, the first two
of which were written by the late Ruel V. Churchill alone.

The book has always had two main objectives.

(a) The first is to develop those parts of the theory that are prominent in applications of
the subject.

(b) The second objective is to furnish an introduction to applications of residues and
conformal mapping. The applications of residues include their use in evaluating
real improper integrals, finding inverse Laplace transforms, and locating zeros of
functions. Considerable attention is paid to the use of conformal mapping in solving
boundary value problems that arise in studies of heat conduction and fluid flow.
Hence the book may be considered as a companion volume to the authors’ text
Fourier Series and Boundary Value Problems, where another classical method for
solving boundary value problems in partial differential equations is developed.

The first nine chapters of this book have for many years formed the basis of a three-
hour course given each term at The University of Michigan. The final three chapters have
fewer changes and are mostly intended for self-study and reference. The classes using
the book have consisted mainly of seniors concentrating in mathematics, engineering,
or one of the physical sciences. Before taking the course, the students have completed at
least a three-term calculus sequence and a first course in ordinary differential equations.
If mapping by elementary functions is desired earlier in the course, one can skip to
Chap. 8 immediately after Chap. 3 on elementary functions and then return to Chap. 4
on integrals.

We mention here a sample of the changes in this edition, some of which were
suggested by students and people teaching from the book. A number of topics have
been moved from where they were. For example, although harmonic functions are still

XV



Xvi PREFACE

introduced in Chap. 2, harmonic conjugates have been moved to Chap. 9, where they
are actually needed. Another example is the moving of the derivation of an important
inequality needed in proving the fundamental theorem of algebra (Chap. 4) to Chap. 1,
where related inequalities are introduced. This has the advantage of enabling the reader
to concentrate on such inequalities when they are grouped together and also of making
the proof of the fundamental theorem of algebra reasonably brief and efficient without
taking the reader on a distracting side-trip. The introduction to the concept of mapping
in Chap. 2 is shortened somewhat in this edition, and only the mapping w = z° is
emphasized in that chapter. This was suggested by some users of the last edition, who
felt that a detailed consideration of w = z2 is sufficient in Chap. 2 in order to illustrate
concepts needed there. Finally, since most of the series, both Taylor and Laurent, that are
found and discussed in Chap. 5 rely on the reader’s familiarity with just six Maclaurin
series, those series are now grouped together so that the reader is not forced to hunt
around for them whenever they are needed in finding other series expansions. Also,
Chap. 5 now contains a separate section, following Taylor’s theorem, devoted entirely
to series representations involving negative powers of z — zo. Experience has shown that
this is especially valuable in making the transformation from Taylor to Laurent series a
natural one.

This edition contains many new examples, sometimes taken from the exercises
in the last edition. Quite often the examples follow in a separate section immediately
following a section that develops the theory to be illustrated.

The clarity of the presentation has been enhanced in other ways. Boldface letters
have been used to make definitions more easily identified. The book has fifteen new
figures, as well as a number of existing ones that have been improved. Finally, when
the proofs of theorems are unusually long, those proofs are clearly divided into parts.
This happens, for instance, in the proof (Sec. 49) of the three-part theorem regarding
the existence and use of antiderivatives. The same is true of the proof (Sec. 51) of
the Cauchy-Goursat theorem. Finally, there is a Student’s Solutions Manual (ISBN:
978-0-07-352899-1; MHID: 0-07-352899-4) that is available. It contains solutions of
selected exercises in Chapters 1 through 7, covering the material through residues.

In order to accommodate as wide a range of readers as possible, there are footnotes
referring to other texts that give proofs and discussions of the more delicate results
from calculus and advanced calculus that are occasionally needed. A bibliography of
other books on complex variables, many of which are more advanced, is provided in
Appendix 1. A table of conformal transformations that are useful in applications appears
in Appendix 2.

As already indicated, some of the changes in this edition have been suggested by
users of the earlier edition. Moreover, in the preparation of this new edition, continual
interest and support has been provided by a variety of other people, especially the staff
at McGraw-Hill and my wife Jacqueline Read Brown.

James Ward Brown



CHAPTER

1

COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, we write x = (x, 0); and it is clear that
the set of complex numbers includes the real numbers as a subset. Complex numbers
of the form (0, y) correspond to points on the y axis and are called pure imaginary
numbers when y # 0. The y axis is then referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that (see Fig. 1)

(D z=(x,y).
y
ez=(x,)
0i=(0,1)
o x=(‘x, 0) x FIGURE 1



2 COMPLEX NUMBERS CHAP. 1

The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively, and we write

2) x =Rez, y=1Imz.

Two complex numbers z; and z, are equal whenever they have the same real parts and
the same imaginary parts. Thus the statement z; = z, means that z; and z, correspond
to the same point in the complex, or z, plane.

The sum 7, + z, and product 7z, of two complex numbers

z1=(x1,y1) and 2z = (x1, y1)
are defined as follows:
(3) (1, 1) + (x2, y2) = (X1 + X2, y1 + y2),
4) (x1, YD) (x2, y2) = (x1X2 — y1y2, Y1X2 + X1)2).

Note that the operations defined by means of equations (3) and (4) become the usual
operations of addition and multiplication when restricted to the real numbers:

(x1,0) 4+ (x2,0) = (x1 4+ x2, 0),
(x1, 0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is easy
to see that (0, 1)(y, 0) = (0, y). Hence

z=(x,0)+ (0, D(y, 0);

and if we think of a real number as either x or (x, 0) and leti denote the pure imaginary
number (0,1), as shown in Fig. 1, it is clear that*

&) Z=x+1Iy.
Also, with the convention that z2 = zz, z° = 72z, etc., we have

i>=(0,1)(0,1) = (-1,0),

or
(6) i?=—1.
Because (x, y) = x + iy, definitions (3) and (4) become
(7 (er +iy1) + (2 +iy2) = (o +x2) +i(y1 + y2),
(3) (x1 +iy1)(x2 +iy2) = (x1x2 — y1y2) +i(y1x2 + x1y2).

*In electrical engineering, the letter j is used instead of i.
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Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by replacing
i* by —1 when it occurs. Also, observe how equation (8) tells us that any complex
number times zero is zero. More precisely,

2:0=(x+iy)0+i0)=0+i0=0

forany z = x +1iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

(D utn=n+z2, 2122 =227
and the associative laws
() (z1+)+z=u+(@2+23), (2122)73 = 21(2223)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers have corresponding properties. The same is
true of the distributive law

3 2(z1 + 22) = zz1 + 220.

EXAMPLE. If

z1=(x1,y1) and 2z = (x2, yo),

then

itz =@ +x2, 1+ y) =@ +x,»+y)=22+21.

According to the commutative law for multiplication, iy = yi. Hence one can
write z = x + yi instead of z = x 4 iy. Also, because of the associative laws, a sum
71+ 22+ z3 or a product z; 7,73 is well defined without parentheses, as is the case with
real numbers.

The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

“4) z4+0=z and z-1=¢
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for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 8).
There is associated with each complex number z = (x, y) an additive inverse

Q) —z=(—x,—y),

satisfying the equation z + (—z) = 0. Moreover, there is only one additive inverse for
any given z, since the equation

(x,y)+ (u,v) = (0,0
implies that
u=—x and v=—y.

For any nonzero complex number z = (x, y), there is a number z~! such that
zz~! = 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real numbers u and v, expressed in terms of x and y, such that

(. y)(u,v) = (1,0).

According to equation (4), Sec. 1, which defines the product of two complex numbers,
u and v must satisfy the pair

xu—yv=1, yu+xv=0
of linear simultaneous equations; and simple computation yields the unique solution
X -y
U= ————-, vV=—5"-.
x2 + y2 x2 + y2

So the multiplicative inverse of z = (x, y) is

6) = (ﬂi—yz ﬁ) (z # 0).

The inverse z ! is not defined when z = 0. In fact, z = 0 means that x> + y> = 0; and

this is not permitted in expression (6).

EXERCISES
1. Verify that

(@) W2—i)—i(l—~/2i)=-2i
(b) (2,-3)(=2,1) = (-1,8);

1 1
() (B, D@, —1)<§, E) =@2.D.
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Show that
(a) Re(iz) = —Imz;
(b) Im(iz) = Rez.

3. Show that (1 +2)* =1+ 2z + z°.
4. Verify that each of the two numbers z = 1 & i satisfies the equation z> — 2z +2 = 0.

5. Prove that multiplication of complex numbers is commutative, as stated at the beginning

11.

3.

of Sec. 2.
Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

Use the associative law for addition and the distributive law to show that
2(z1 + 22+ 23) = 221 + 220 + 223-

(a) Write (x, y)+ (u, v) = (x, y) and point out how it follows that the complex number
0 = (0, 0) is unique as an additive identity.

(b) Likewise, write (x, y)(u,v) = (x,y) and show that the number 1 = (1,0) is a
unique multiplicative identity.

. Use —1 = (—1,0) and z = (x, y) to show that (—1)z = —z.
10.

Usei = (0, 1) and y = (y, 0) to verify that —(iy) = (—i)y. Thus show that the additive
inverse of a complex number z = x +iy can be written —z = —x —iy without ambiguity.

Solve the equation z> + z + 1 = 0 for z = (x, y) by writing
(xx, y)(x, y) + (x, y) +(1,0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show
that y # 0.

1 3
Ans.z = | —=, :I:£ .
2 2

FURTHER ALGEBRAIC PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses enables

us to show that if a product 7,z is zero, then so is at least one of the factors z; and
2. For suppose that z1zo = 0 and z; # 0. The inverse zfl exists; and any complex
number times zero is zero (Sec. 1). Hence

n=2n1= Zz(lel_l) = (zflm)m =z (1) =7 0=0.
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That is, if z;zo = 0, either z; = 0 or z, = 0; or possibly both of the numbers z; and
75 are zero. Another way to state this result is that if two complex numbers z, and z»
are nonzero, then so is their product 7,2;.

Subtraction and division are defined in terms of additive and multiplicative
inverses:

(1 - =2+ (—2),
2) doagn' (@20,
22

Thus, in view of expressions (5) and (6) in Sec. 2,

(€)) z1 — 22 = (X1, y1) + (=x2, =y2) = (X1 — x2, y1 — »2)
and
(4) o ) < 2X2 . z—yz 2) _ (xlxi + )’12)’2’ ym; —xlzyz)
22 Xty nty Xty Xty
(22 #0)

when z; = (xq, y1) and z2 = (x2, y2).
Using z; = x; + iy; and 7z, = x; + iy,, one can write expressions (3) and (4)
here as

() 21— 22 =(x1 —x2) +i(y1 — y2)

and

Z1 XpXo+yiy2 | L Y12 — X1y
(6) — =

7, 2 7, 2
22 X3+ X, +y;

(z2 #0).

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)
i (o +iy) (o —iy2)

7 — = - —,
22 (2 +iy2)(x2 —iy2)

multiplying out the products in the numerator and denominator on the right, and then
using the property

21+ 22

®)

—1 —1 S
=(z1+22)75 =2z, +22z = —+ = (z3 #0).
23 3 23

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:
441 B @4 +i)2+3i0) _5—|—14i_5 14

-3 2-3)@e+3) 13 13 13"
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There are some expected properties involving quotients that follow from the
relation

1 -1
©) — =12 (z2 #0),
22

which is equation (2) when z; = 1. Relation (9) enables us, for instance, to write
equation (2) in the form

21 1
(10) — =11<—) (z2 #0).
22 22

Also, by observing that (see Exercise 3)
122z ') = @iz D) =1 (@ #0,22 #0),
and hence that zl_lzz_ ' = (z122) 7!, one can use relation (9) to show that

1 1 —1_-1 -1 1
(11) (—> (—) =2z 2, =(z122) = — (z1 #0,220 #0).
2122

21 22

Another useful property, to be derived in the exercises, is

(12) (Z—‘) (Z—Z) =12 20,24 £0).

73 24 2324

Finally, we note that the binomial formula involving real numbers remains valid
with complex numbers. That is, if z; and z, are any two nonzero complex numbers,
then

n

n _
(13) (zl+zZ)”=Z(k)z’{zg" (n=1,2,..)
k=0
where
(")—"7! k=0,1,2,....n)
k) k'(n —k)! STy

and where it is agreed that 0! = 1. The proof is left as an exercise. Because addition
of complex numbers is commutative, the binomial formula can, of course, be written

(14) (z1 +22)" =Z(Z)z’f_kz'2‘ (n=1,2,..)).
k=0
EXERCISES
1. Reduce each of these quantities to a real number:
1+2i 2-i S5i ) 4
@ 3%t 5 O The—ne=i’ © (=i

2 1
Ans. (a) — —=; (b)

3 _5; (c) —4.
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2. Show that
1

I_/Z:Z (z #0).

3. Use the associative and commutative laws for multiplication to show that

(z2122)(z324) = (2123)(2224).

4. Prove that if z;zoz3 = 0, then at least one of the three factors is zero.
Suggestion: Write (2;z2)zz = 0 and use a similar result (Sec. 3) involving two
factors.

5. Derive expression (6), Sec. 3, for the quotient z; /z, by the method described just after it.
6. With the aid of relations (10) and (11) in Sec. 3, derive the identity

(Z—1> (2—2) =22 (A0 uA0).
23 24 2324

7. Use the identity obtained in Exercise 6 to derive the cancellation law

U _ T, 20,7 #0).

222 22

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true when n = 1. Then, assuming that it is valid when
n =m where m denotes any positive integer, show that it must hold when n =m + 1.
Suggestion: When n = m + 1, write

@G +)" =@ +a)@+)" =G+ Yy, (’,’:) iz
k=0

m m
_ M\ g _m+1—k MY k1l _m—k
= E (k)zlz2 + E k)3 2
k=0 k=0

and replace k by k — 1 in the last sum here to obtain

m
(Zl +Z2)m+1 — Z?+l +Z |:(’]7:> 4 (kT 1):| Zl]czgz+1—k +len+l.
k=1

Finally, show how the right-hand side here becomes

m m+1 m+1 m+1
1 k _m+1—k m+1 k 1—-k
A+ ( p >z1z2+ +t=> ( B )zlzg’+ .
k=1

k=0

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents z in the complex
plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers
z =x + iy and —2 4 i are displayed graphically as both points and radius vectors.
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y
(-2, 1)
o 1 7= (.x’ y)
\2*[ ﬂ*w
7
2 o *  FIGURE 2

When z; = x; +iy; and z; = x; + iy;, the sum
21+ 22 = (x1 +x2) +i(y1 + y2)

corresponds to the point (x; + x2, y; + ¥2). It also corresponds to a vector with those
coordinates as its components. Hence z; + z, may be obtained vectorially as shown
in Fig. 3.

y

| /
x 1 S

o X FIGURE 3

Although the product of two complex numbers z; and z; is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for z;
and z,. Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector analysis.

The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x 4 iy is defined as the nonnegative real
number 1/x2 + y? and is denoted by |z|; that is,

(1) lz] = /x%+ y2.

It follows immediately from definition (1) that the real numbers |z|, x = Re z,
and y = Im z are related by the equation

) lz> = (Rez)? + (Imz)*.
Thus
(3) Rez <|Rez| <|z|] and Imz <|Imz| <|z].

Geometrically, the number |z| is the distance between the point (x, y) and the
origin, or the length of the radius vector representing z. It reduces to the usual absolute
value in the real number system when y = 0. Note that while the inequality z; < z»
is meaningless unless both 7| and z, are real, the statement |z| < |z2| means that the
point z; is closer to the origin than the point z; is.
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EXAMPLE 1. Since |—-3 + 2i| = +/13 and |1 + 4i| = /17, we know that the
point —3 + 2i is closer to the origin than 1 + 4i is.

The distance between two points (x1, y;) and (x3, ¥2) is |z — z2|. This is clear
from Fig. 4, since |z; — z»] is the length of the vector representing the number
21— 22 =2+ (—22);

and, by translating the radius vector z; — z,, one can interpret z; — z; as the directed
line segment from the point (x,, y;) to the point (x;, y;). Alternatively, it follows from
the expression

21— 22=(x1 —x2) +i(y1 — »)
and definition (1) that

21 — 22 = V(x1 — x2)? + (1 — )%

y
(x2’ Y2)
*\\\81\\52/
g TV~
y ;’ (xh yl)
71 II
0] /—Zz X
E
e~ FIGURE 4

The complex numbers z corresponding to the points lying on the circle with center
zo and radius R thus satisfy the equation |z — zo| = R, and conversely. We refer to
this set of points simply as the circle |z — zo| = R.

EXAMPLE 2. The equation |z — 1 4 3i| = 2 represents the circle whose center
is zo = (1, —3) and whose radius is R = 2.

Our final example here illustrates the power of geometric reasoning in complex
analysis when straightforward computation can be somewhat tedious.
EXAMPLE 3. Consider the set of all points z = (x, y) satisfying the equation
|z —4i| + |z +4i| =10.
Upon writing this as
lz —4il + |z — (= 4i)] =10,

one can see that it represents the set of all points P (x, y) inthe z = (x, y) plane the sum
of whose distances from two fixed points F (0, 4) and F’(0, —4) is the constant 10.
This is, of course, an ellipse with foci F (0, 4) and F’(0, — 4).
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5. TRIANGLE INEQUALITY

We turn now to the friangle inequality, which provides an upper bound for the modulus
of the sum of two complex numbers z; and z5:

(D |21 + 22l < |z1] + |z2l.

This important inequality is geometrically evident in Fig. 3 of Sec. 4 since it is merely
a statement that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. We can also see from Fig. 3 that inequality (1)
is actually an equality when 0, z;, and z, are collinear. Another, strictly algebraic,
derivation is given in Exercise 15, Sec. 6.

An immediate consequence of the triangle inequality is the fact that

2) |21 + 22| = [lz1] — [22]]-
To derive inequality (2), we write
lzi] = [(z1 + z2) + (=22)| = |21 + 22| + | — 22,
which means that
(3) lz1 + 22| = |z1| — |z2].

This is inequality (2) when |z;| > |z2|. If |z1| < |z2|, we need only interchange z;
and z, in inequality (3) to arrive at

|21 + 22| = —(lz1] — |z2]),

which is the desired result. Inequality (2) tells us, of course, that the length of one side
of a triangle is greater than or equal to the difference of the lengths of the other two
sides.

Because | — z2| = |z2], one can replace z; by —z; in inequalities (1) and (2) to
write

lz1 — 22l < |zl + |z2| and |z — 22| = [lz1] — [22]].
In actual practice, however, one need use only inequalities (1) and (2). This is illustrated
in the following example.
EXAMPLE 1. If a point z lies on the unit circle |z| = 1, inequalities (1) and
(2) tell us that
z=2l=lz+ (DI =<zl +[-2|=1+2=3
and

lz=2[=lz+ DI = Izl = |-2=1-2| =1
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The triangle inequality (1) can be generalized by means of mathematical induction
to sums involving any finite number of terms:

4) |21 + 22 + -+ zul =zl + |z + - - + [z, (n=2,3,..)).

To give details of the induction proof here, we note that when n = 2, inequality (4)
is just inequality (1). Furthermore, if inequality (4) is valid when n = m, it must also
hold when n = m 4 1 since by inequality (1),

[(z1+ 22+ +zw) +Zmptl Sz + 22+ + 2wl + 2w
< (lz1l + lz2l + -+ + |zm D) + [zm1l-
EXAMPLE 2. Let z denote any complex number lying on the circle |z| = 2.
Inequality (4) tells us that

B4+z42°| <3+ 21+ |27

Since |z?| = |z|?, according to Exercise (8),
13+z+2% <9.
EXAMPLE 3. If n is a positive integer and if ag, a;, az, . . ., a, are complex

constants, where a,, # 0, the quantity
5) P()=ay+aiz+az® + -+ +a, 7"

is a polynomial of degree n. We shall show here that for some positive number R, the
reciprocal 1/ P (z) satisfies the inequality

1 2
— <
P(z)|  las|R"
Geometrically, this tells us that the modulus of the reciprocal 1/P(z) is bounded from
above when z is exterior to the circle |z| = R. This important property of polynomials

will be used later on in Sec. 58 of Chap. 4, and we verify it here since it illustrates the
use of inequalities presented in this section, as well as the identities

(6)

whenever |z| > R.

lziz2]l = |z1llz2l and "] =[z" (n=1,2,...)

to be obtained in Exercises 8 and 9.
We first write

™ ="t
Z Z

(z #0),

a a ap—1
3 + ) + -
Zl’l

so that

®) P(2) = (an + w)Z"
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when z # 0. Next, we multiply through equation (7) by z":

w" =ay+ a2+ a4 a1 2"

This tells us that
2 —
lwllz|" < laol + laillz] + laallz|* + - - - + lan_1]lzI" ",

or

o] la | laz| |@n—1]
n -1 STt -
1z |z|" z|" |z]

) lw| <

13

Now that a sufficiently large positive number R can be found such that each of the
quotients on the right in inequality (9) is less than the number |a, |/ (2n) when |z| > R,

and so

a a
lw| < n|2”| = |2"| whenever |z|>R.
n

Consequently,

||
la, +w| > |la,| — |w|| > —2 whenever |z| > R;
and, in view of equation (8),
|| ||
—2n lz]" > _2n R" whenever |z| > R.

Statement (6) follows immediately from this.

(10)  |P@)] = lan + wliz|" >

EXERCISES
1. Locate the numbers z; + z, and z; — z, vectorially when
2
(@ z1=2i, 2= §_i;

(b) 21 =(—/3.1), 2= (/3,0);
© z1=(=3,1), z2=(1,4);
(d) z1 =x1 +iy1, z2=x1 —iy.
2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z|.
3. Use established properties of moduli to show that when |z3| # |z4],
Re(zi +22) _ |zl + Iz2
lzz +zal 7 llz3l — |z4ll

4. Verify that v/2 |z > |[Rez| + |Imz|.

Suggestion: Reduce this inequality to (|x| — [y[)? > 0.

5. In each case, sketch the set of points determined by the given condition:

(@ |z—14+i]l=1; D) lz+il <3; (¢) |z —4i| > 4.
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. Using the fact that |z; — z;] is the distance between two points z; and z;, give a geometric

argument that |z — 1| = |z 4 i| represents the line through the origin whose slope is —1.

. Show that for R sufficiently large, the polynomial P(z) in Example 3, Sec. 5, satisfies

the inequality
|P(2)| < 2la,llz|* whenever |z| > R.

Suggestion: Observe that there is a positive number R such that the modulus of
each quotient in inequality (9), Sec. 5, is less than |a,|/n when |z| > R.

. Let z; and z, denote any complex numbers

zi=x1+iy; and zp = x2 +iy.

Use simple algebra to show that

G iy G+ i)l and /(5 4+ 33) (33 + 33)
are the same and then point out how the identity
lz1z2] = |z1llz2]
follows.

Use the final result in Exercise 8 and mathematical induction to show that
1Z"| = |z]" n=1,2,...),

where z is any complex number. That is, after noting that this identity is obviously true
when n = 1, assume that it is true when n = m where m is any positive integer and then
show that it must be true whenn = m + 1.

COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number z = x + iy is
defined as the complex number x — iy and is denoted by Z; that is,

6]

Z=x—1iy.

The number 7 is represented by the point (x, —y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

Z=z and [Z] =z

for all z.

’
|
!
’ ’\: '
‘ ¢ (x,-y) FIGURE 5
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Ifz; = x; +iy; and 25 = x, + iy,, then
21+ 2= (1 +x2) —i(y1 + y2) = (x1 —iy1) + (x2 — iy2).

So the conjugate of the sum is the sum of the conjugates:

2) utn=7u+2.

In like manner, it is easy to show that

(3) 21— 22=721 — 22

4) Z122 = 2122,

and

5) (Zl> — L (2o
22 22

The sum z 4 z of a complex number z = x + iy and its conjugate 7 = x — iy is
the real number 2x, and the difference z — 7 is 2iy. Hence
z+7z z2—2
(6) Rez=—— and Imz=—.
2 2i
An important identity relating the conjugate of a complex number z = x + iy to
its modulus is
(7) 2z =zl

where each side is equal to x? + y2. It suggests the method for determining a quo-
tient z;/z, that begins with expression (7), Sec. 3. That method is, of course, based
on multiplying both the numerator and the denominator of z;/z, by z, so that the
denominator becomes the real number |z, |%.

EXAMPLE 1. As an illustration,
—1+3 (=14+3)2+i) —-5+5 —-5+5i
2—i T Qe-be+h  p-iPr s
See also the example in Sec. 3.

=—1+i.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that (compare with Exercise 8, Sec. 5)

(8) [z122] = |z1llz2].
Also,
z |Z1]
) T="0 (@ #0.
22 |z2]

Property (8) can be established by writing

1z122)7 = (2122)(@172) = (2122) @ 22) = (217D (2272) = |21 122 = (21| 22])?
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and recalling that a modulus is never negative. Property (9) can be verified in a similar
way.

EXAMPLE 2. Property (8) tells us that |z?| = |z|> and |z®| = |z|*. Hence if 7 is
a point inside the circle centered at the origin with radius 2, so that |z| < 2, it follows
from the generalized triangle inequality (4) in Sec. 5 that

122+ 322 =2z + 1] < |z]P + 3]z + 2Iz] + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 6 to show that
(@) 7+ 3i =z — 3i; (b) iz = —iz;

© Q+i?=3-4i; (@ |QZ+5HW2-D)|=V3]2z+5|.
2. Sketch the set of points determined by the condition
(a) Re(z —i)=2; b) 2z +il =4
3. Verify properties (3) and (4) of conjugates in Sec. 6.
4. Use property (4) of conjugates in Sec. 6 to show that
(@) 10T =21 22735 (b) #=7*
5. Verify property (9) of moduli in Sec. 6.

6. Use results in Sec. 6 to show that when z, and z3 are nonzero,

(a) <i) = i; (b) al
2233 2213

IR
|z2llz3]”
7. Show that

2223

[Re+7Z+2°)| <4  when|z|] < 1.

8. Itis shown in Sec. 3 that if z;z, = 0, then at least one of the numbers z; and z, must be
zero. Give an alternative proof based on the corresponding result for real numbers and
using identity (8), Sec. 6.

9. By factoring z* — 4z> 4 3 into two quadratic factors and using inequality (2), Sec. 5,
show that if z lies on the circle |z| = 2, then

1
7+ —47243

| 1
<-.
-3

10. Prove that
(a) zisrealifandonlyifz = z;
(b) z is either real or pure imaginary if and only if 72 = z2.
11. Use mathematical induction to show that whenn = 2,3, ...,
@zttt tum=u+2+ -+
b)) Tz =022 e



SEC. 7 EXPONENTIAL FORM 17

12. Let ag, ay, as, ..., a, (n > 1) denote real numbers, and let z be any complex number.
With the aid of the results in Exercise 11, show that

_ ) _
atazta?+ - +a" =a+azitaz +---+az"

13. Show that the equation |z — z9| = R of a circle, centered at zo with radius R, can be
written

|z|* — 2Re(zZ0) + |zol* = R™.

14. Using expressions (6), Sec. 6, for Re z and Im z, show that the hyperbola x> — y? = 1
can be written

F+ =2
15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 5)
lz1 + 22| < 21| + |z2]-
(a) Show that
21+ 2 = @+ 2@ +2) = ah + @2 +02) + 2%
(b) Point out why
272 + 2172 = 2Re(2122) < 2lz1llz2l.
(c) Use the results in parts (a) and () to obtain the inequality
21+ 22 < (21l + 122,

and note how the triangle inequality follows.

7. EXPONENTIAL FORM

Let r and 6 be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x + iy. Since x = r cos6 and y = r sin6, the number z can be
written in polar form as

(D 7 =r(cosf +isinh).

If z = 0, the coordinate 6 is undefined; and so it is understood that z = 0 whenever
polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z ; that is, 7 = |z|. The real number 6 represents the an-
gle, measured in radians, that z makes with the positive real axis when z is interpreted
as a radius vector (Fig. 6). As in calculus, 6 has an infinite number of possible values,
including negative ones, that differ by integral multiples of 27z. Those values can be
determined from the equation tan6# = y/x, where the quadrant containing the point
corresponding to z must be specified. Each value of 6 is called an argument of z, and
the set of all such values is denoted by arg z. The principal value of arg z, denoted by
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A
L :

FIGURE 6

Arg z, is the unique value ® such that —7 < ® < 7. Evidently, then,
) argz = Arg z 4+ 2nmw (n=0,=£1,£2,..)).
Also, when 7 is a negative real number, Arg z has the value 7, not —r.

EXAMPLE 1. The complex number —1 — i, which lies in the third quadrant,
has principal argument —37 /4. That is,

. 3
Arg(—1—1i) = 1

It must be emphasized that because of the restriction —m < ® < 7 of the principal
argument 0, it is not true that Arg(—1 — i) = Sm /4.
According to equation (2),

3
arg (—1 — i) = —T” Yo (n=0,%+1,42,..).

Note that the term Arg z on the right-hand side of equation (2) can be replaced by any
particular value of arg z and that one can write, for instance,

5
arg (—1 — i) = Tn—i—ZnJT (n=0,+1,42, ...

The symbol e'?, or exp(if), is defined by means of Euler’s formula as
3 e = cos@ +isind,

where 6 is to be measured in radians. It enables us to write the polar form (1) more
compactly in exponential form as

4) z=re".

The choice of the symbol ¢!’ will be fully motivated later on in Sec. 30. Its use in
Sec. 8 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number —1 — i in Example 1 has exponential form

5) —1—i :\/Eexp[i(—%”)].
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With the agreement that e ~/¢ = /(=) this can also be written —1 — i = /2 ¢/37/4,
Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of —1 — i:

(©6) —1—i=ﬁexp{i<—%+2nn>} (n=0,+1,42,..)).

Note how expression (4) with » = 1 tells us that the numbers ¢’ lie on the circle
centered at the origin with radius unity, as shown in Fig. 7. Values of ¢! are, then,
immediate from that figure, without reference to Euler’s formula. It is, for instance,
geometrically obvious that

T =—1, e ?=—i and e =1.

FIGURE 7

Note, too, that the equation
(7) z=Re’ (0<6<2m)

is a parametric representation of the circle |z| = R, centered at the origin with radius
R. As the parameter 6 increases from 6§ = 0 to § = 2, the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More
generally, the circle |z — z9| = R, whose center is zo and whose radius is R, has the
parametric representation

(8) z=z0+ R’  (0<6<2m).

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
|z — zo] = R once in the counterclockwise direction corresponds to the sum of the
fixed vector zp and a vector of length R whose angle of inclination 6 varies from 6§ = 0
to 6 = 2m.

y

Rei?

20
(@] X FIGURE 8
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8. PRODUCTS AND POWERS IN EXPONENTIAL FORM

Simple trigonometry tells us that ¢’ has the familiar additive property of the expo-
nential function in calculus:

%% = (cos @, +isinb)(cos b, + i sinb,)
= (cos 6, cos B, — sin B sin ;) + i (sin O cos B, + cos b, sinb;)
= cos(0) + 6>) + i sin(0; + 6,) = &' @0

Thus, if z; = r1e'? and z, = r,e'®, the product z;z, has the exponential form

(1) 2120 = 1€ e = rire’® el = (r1ry)e @),
Furthermore,
i i0) ,—i6, i(61—02)
) o _ne® o efe _n.e _ r_lei(elfez)
22 el py elhemi gy el0 r

Note how it follows from expression (2) that the inverse of any nonzero complex
number z = re'? is

3) = 1 _ 1e_l_0 _ lei(ofo) _ lefie.
z ret? r r
Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual
algebraic rules for real numbers and e*.
Another important result that can be obtained formally by applying rules for real

numbers to z = re'? is

“4) 7" = e (n=0,%1,+£2,..).

It is easily verified for positive values of n by mathematical induction. To be specific,
we first note that it becomes z = re'” when n = 1. Next, we assume that it is valid
when n = m, where m is any positive integer. In view of expression (1) for the product
of two nonzero complex numbers in exponential form, it is then valid forn = m + 1:

m+1 __ m im6

7 ="y =M 6 — (rmr)ei(m0+6) — rm+lei(m+])9.

Expression (4) is thus verified when 7 is a positive integer. It also holds when n = 0,
with the convention that z° = 1. If n = —1, =2, ..., on the other hand, we define 7"
in terms of the multiplicative inverse of z by writing

"= Y where m=-n=12,....

Then, since equation (4) is valid for positive integers, it follows from the exponential
form (3) of z~! that

n 1 i(—0) " 1 " im(—0) 1 o i(—n)(—0) n inf
7 = |—e = | - e = | - e =re
r r r

(n=-1,-2,...).

Expression (4) is now established for all integral powers.
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Expression (4) can be useful in finding powers of complex numbers even when
they are given in rectangular form and the result is desired in that form.

EXAMPLE 1. In order to put (—1 + i) in rectangular form, write
(_1 + l)7 — (ﬁei3n/4)7 — 27/261'217'[/4 — (23ei5ﬂ)(21/2€in/4).

Because
23657 = (8)(—=1) = —8
and
) 1 i
21/2171/4: 2 z Z :«/5 J— — =1 ',
e x/—(cos4+zsm4) \/5 ﬁ +1i
we arrive at the desired result: (—1 +i)” = — 8 (1 +i).

Finally, we observe that if » = 1, equation (4) becomes
(5) @' =" (n=0,+1,42,...).
When written in the form
(6) (cosO +isinh)" =cosnf +isinnd (n=0,=%1,+2,...),

this is known as de Moivre’s formula. The following example uses a special case of it.

EXAMPLE 2. Formula (6) with n = 2 tells us that
(cos B +isinf)* = cos 26 + i sin 26,
or
cos’> 0 — sin® 0 + i2sin@ cos O = cos 26 + i sin 20.

By equating real parts and then imaginary parts here, we have the familiar trigonometric
identities

0820 = cos> 6 — sin29, sin260 = 2sin6 cosH.

(See also Exercises 10 and 11, Sec. 9.)

9. ARGUMENTS OF PRODUCTS AND QUOTIENTS

If z; = r1e'” and zo = rye'®, the expression
(1 2122 = (rlrz)ei(9'+02)
in Sec. 8 can be used to obtain an important identity involving arguments:

@ arg(z1z2) = argz; + arg 2.
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Equation (2) is to be interpreted as saying that if values of two of the three (multiple-
valued) arguments are specified, then there is a value of the third such that the equation
holds.

We start the verification of statement (2) by letting 6, and 6, denote any values
of arg z; and arg z,, respectively. Expression (1) then tells us that 8; + 6, is a value
of arg(z;z2). (See Fig. 9.) If, on the other hand, values of arg(z,z,) and argz; are
specified, those values correspond to particular choices of n and n; in the expres-
sions

arg(z1z2) = (61 + 62) + 2nw (n=0,%1,£2,...)
and
argz; =60 4+ 2nym (ny =0,%1,£2,...).
Since
(01 + 62) + 2nmw = (01 + 2m7) + [02 + 2(n — ny)7],
equation (2) is evidently satisfied when the value
argz, = 6, +2(n — ny)w

is chosen. Verification when values of arg(z;z») and arg z, are specified follows from
the fact that statement (2) can also be written

arg(z2z1) = argzp + arg z;.

X FIGURE 9

Statement (2) is sometimes valid when arg is replaced everywhere by Arg (see
Exercise 6). But, as the following example illustrates, that is not always the case.

EXAMPLE 1. When z; = —1 and 7, = i,

. T T 3
Arg(z122) = Arg(—i) = 5 but Argz) +Argz =m + 5= 5

If, however, we take the values of arg z; and arg z, just used and select the value
T 3
Arg(z1z2) + 2 = —3 + 27 = -

of arg(z1z2), we find that equation (2) is satisfied.
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Statement (2) tells us that

arg<§1) =arg (212, ") = argzy +arg (,);
2

and, since (Sec. 8)

ZZ = —€ )
)

one can see that
(3) arg (z;') = —arg 2.
Hence

21
“4) arg(z—> = argz) — arg2s.

2

Statement (3) is, of course, to be interpreted as saying that the set of all values on the
left-hand side is the same as the set of all values on the right-hand side. Statement (4)
is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. Inorder toillustrate statement (4), let us use it to find the principal
value of Argz when

i
7= -,
—1—1i

We start by writing
argz = argi —arg (—1 —1).

Since
A ] - d A (_1 - .) —73
rgi = an r i) = ,

one value of arg z is 5t /4. But this is not a principal value ®, which must lie in the
interval —r < ® < . We can, however, obtain that value by adding some integral
multiple, possibly negative, of 25:

i S 3
Arg - =— -2 = ——.
—1—i 4 4

EXERCISES

1. Find the principal argument Argz when

-2 A6
(a)Z:m, (b)Z:(\/g—l>
Ans. (a) 2w /3; (b) .

2. Show that (a) €| = 1; (b) €¥ = 1",
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Use mathematical induction to show that

101610 . .. i

o' — ef(6|+92+~'+9n) (I’l — 2, 3’ . )

Using the fact that the modulus |e? — 1] is the distance between the points e/’ and 1 (see
Sec. 4), give a geometric argument to find a value of 6 in the interval 0 < 0 < 27 that
satisfies the equation |e!? — 1| = 2.

Ans. .

By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(@) i(1 =33 +i)=2(1++/3i); (b) 5i/Q2+i)=1+2i;
(©) (V3+i)=—64; (d) (14++/3)710=2""(=14+/30).
Show that if Rez; > 0 and Re z, > 0, then

Arg(z122) = Arg z; + Arg 25,

where principal arguments are used.

Let z be a nonzero complex number and n a negative integer (n = —1, —2,...). Also,
write z = re'’ andm = —-n=1,2,.... Using the expressions
m m im0 —1 (1) i(—0)
7" =r"e and z7 =|(-)e ,
-
verify that (z”)~' = (z~!)" and hence that the definition z* = (z~!)" in Sec. 7 could

have been written alternatively as z" = (z)~.

. Prove that two nonzero complex numbers z; and z, have the same moduli if and only if

there are complex numbers ¢; and ¢; such that z; = cjc; and z; = cj¢;3.
Suggestion: Note that

01+ 62 01— 0 .
exp ZT exp| i 5 = exp(ib)

and [see Exercise 2(b)]
.0+ 6, .0 — 6y .
exp IT exp lT = exp(ibh).

_ Zn+1

1+z+zz+~~~+z"=? z#1)

. Establish the identity

and then use it to derive Lagrange’s trigonometric identity:

1 in[(2 1)6/2
l+cos€+00529+~'+cosn9=E—i—sm[z(s?T—;/;)/] 0 <6 <2m).
Suggestion: As for the first identity, write S = 1 + z + z> + - - - + 2" and consider
the difference S — zS. To derive the second identity, write z = ¢! in the first one.



SEC. 10 ROOTS OF COMPLEX NUMBERS 25

10. Use de Moivre’s formula (Sec. 8) to derive the following trigonometric identities:
(a) cos30 = cos> 0 — 3cos0 sin® 0;
(b) sin36 = 3cos? 0 sinf — sin® 6.
11. (a) Use the binomial formula (14), Sec. 3, and de Moivre’s formula (Sec. 8) to write

n

cosnf +isinnf = Z (Z) cos" %9 (i sin9)F n=0,1,2,...).
k=0

Then define the integer m by means of the equations
m— n/2 if n is even,
T l(m—1)/2 ifnisodd
and use the above summation to show that [compare with Exercise 10(a)]

m
cosnf =Y ( " )(—1)k cos" % 9 sin** 6 n=0,1,2,...).
=\ 2k

(b) Write x = cos# in the final summation in part (a) to show that it becomes a
polynomial*

T,(x) = Z (znk) (= )k =2(] — x2)k

k=0

of degree n (n =0, 1,2, ...) in the variable x.

10. ROOTS OF COMPLEX NUMBERS

Consider now a point z = re'?, lying on a circle centered at the origin with radius
r (Fig. 10). As 6 is increased, z moves around the circle in the counterclockwise
direction. In particular, when 6 is increased by 2, we arrive at the original point; and
the same is true when 6 is decreased by 2. It is, therefore, evident from Fig. 10 that
two nonzero complex numbers

0] 02

71 =re and 7, = re'

7= reit

FIGURE 10

*These are called Chebyshev polynomials and are prominent in approximation theory.
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are equal if and only if
ri=r, and 0; =0, + 2k,

where k is any integer (k = 0, £1, £2,...).

This observation, together with the expression z" = r"¢"? in Sec. 8 for integral
powers of complex numbers z = re'?, is useful in finding the nth roots of any nonzero
complex number 7o = re'®, where n has one of the values n = 2, 3, ... . The method
starts with the fact that an nth root of z( is a nonzero number z = re’? such that z" = z,
or

rneiHG — roeiGO
According to the statement in italics just above, then,
r'"=ryg and n6 =0+ 2km,

where k is any integer (k = 0, =1, £2,...). So r = /ry, where this radical denotes
the unique positive nth root of the positive real number ry, and
0o + 2k 6 2k
n n n

(k=0,£1,£2,..)).

Consequently, the complex numbers
6o 2k
Z=%exp[i(—0+—ﬂ>] (k=0,%1,42,..)
n n
are nth roots of zo. We are able to see immediately from this exponential form of the

roots that they all lie on the circle |z| = /ro about the origin and are equally spaced
every 2m/n radians, starting with argument 6,/n. Evidently, then, all of the distinct

roots are obtained when k = 0, 1,2, ..., n — 1, and no further roots arise with other
values of k. We let ¢, (k =0, 1,2, ...,n — 1) denote these distinct roots and write
(2 2k
(1) ck:%exp{i(—o—k—ﬂ)] (k=01,2,....n—1).
n n

(See Fig. 11.)

Cy n

FIGURE 11



SEC. 10 ROOTS OF COMPLEX NUMBERS 27

The number /1y is the length of each of the radius vectors representing the n roots.
The first root ¢y has argument 6y/n; and the two roots when n = 2 lie at the opposite
ends of a diameter of the circle |z| = /o, the second root being —cyp. When n > 3,
the roots lie at the vertices of a regular polygon of n sides inscribed in that circle.

We shall let z(l)/ " denote the set of nth roots of zg. If, in particular, zq is a positive
real number ry, the symbol r(}/ " denotes the entire set of roots; and the symbol /7y
in expression (1) is reserved for the one positive root. When the value of 6, that is
used in expression (1) is the principal value of argzy (—7 < 6y < m), the number
co is referred to as the principal root. Thus when z is a positive real number ry, its
principal root is /7.

Observe that if we write expression (1) for the roots of zg as

o, 2k
ck:,”/roexp(i—o> exp(i—ﬂ> (k=0,1,2,...,n—1),
n n
and also write

2 Wy = €Xp (12_7[) )
n

it follows from property (5), Sec. 8, of ¢’ that

2k

3) w,’;zexp(i—”) k=0,1,2,....n—1)
n

and hence that

(4) a=cowt (k=0,1,2,....,n—1).

The number ¢( here can, of course, be replaced by any particular nth root of zg, since
w, represents a counterclockwise rotation through 27 /n radians.

Finally, a convenient way to remember expression (1) is to write zg in its most
general exponential form (compare with Example 2 in Sec. 7)

(5) 20 = ro € @2k (k=0,%1,42,..)

and to formally apply laws of fractional exponents involving real numbers, keeping in
mind that there are precisely n roots:

; n i (6p + 2k 0 2k
cx = [rg e’ @] Y Jroexp [M] = J/roexp [i (—0 + —n)]
n n

n

(k=0,1,2,...,n—1).

The examples in the next section serve to illustrate this method for finding roots of
complex numbers.
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11. EXAMPLES

In each of the examples here, we start with expression (5), Sec. 10, and proceed in the
manner described just after it.

EXAMPLE 1. Let us find all four values of (—16)!/#, or all of the fourth roots
of the number —16. One need only write

—16 = 16expli(m +2kn)]  (k=0,%1,42,..))

to see that the desired roots are
k
(1) ck=26xp{i(%+§)] k=0,1,2,3).

They lie at the vertices of a square, inscribed in the circle |z| = 2, and are equally
spaced around that circle, starting with the principal root (Fig. 12)

2exp [i(T)] =2 (cos T isinT) =2 (i) = VA
co=2expli|— )| =2(cos— +isin—) = —4i— | = i).
0 Py 4 4 NG
Without any further calculations, it is then evident that
1 =vV2(=1+1i), ca=+2(—1—i), and c3=+2(1—i).
Note how it follows from expressions (2) and (4) in Sec. 10 that these roots can
be written

L
co, Cows, cowf, cocoi where w4 = exp (1 E> .

FIGURE 12
EXAMPLE 2. In order to determine the nth roots of unity, we start with
1 = lexpli(0+ 2km)] (k=0,£1,£2..))
and find that

0 (0 2km 2k
Q) c=~Texpli| -+ == )| =exp|i— k=0,1,2,....,n—1).
n n n

When n = 2, these roots are, of course, =1. When n > 3, the regular polygon at
whose vertices the roots lie is inscribed in the unit circle |z|] = 1, with one vertex
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corresponding to the principal root z = 1 (k = 0). In view of expression (3), Sec. 10,
these roots are simply

2
2 n—1 .
1, wp, @, ..., @y where w, =exp<z7 .

See Fig. 13, where the cases n = 3, 4, and 6 are illustrated. Note that ! = 1.

FIGURE 13

EXAMPLE 3. Let a denote any positive real number. In order to find the two
square roots of a + i, we first write

A=la+il=Va*+1 and o« = Arg(a +1).
Since
a+i=Aexplila+2km)] (k=0,+1,42,..),

the desired square roots are

3) = Aexp [i(%—{—kn)} (k=0,1).
Because ¢/ = —1, these two values of (a + i)'/? reduce to
4) co=vAe? and ¢ = —cp.

Euler’s formula tells us that
%) co:«/z<cos%+isin%).
Because a + i lies above the real axis, we know that 0 < o < ; and so
o Lo
cos— >0 and sin— > 0.
2 2

Hence, in view of the trigonometric identities

,a l+cosa ., 1—cosa
cos” — = ————, s~ = —7—,
2 2 2 2
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expression (5) can be put in the form

© c0=ﬂ<\/1+;0sa+i\/l—§0sa>‘

Butcosa = a/A, and so

1+ cosa 1+ (a/A) Ata
@ \/ 2 Z\/ 2 =\/2,4‘

Consequently, it follows from expression (6) and (7), as well as the relation ¢; = — ¢y,
that the two square roots of a + i(a > 0) are (see Fig. 14)

(8) x/A—i-a—i-i«/A—a).

i%(

Co

C1=—=Cy

FIGURE 14

EXERCISES

1. Find the square roots of (a) 2i; (b) 1 — V/3i and express them in rectangular coordinates.
V3-—i

Nl

2. Find the three cube roots ¢ (k = 0, 1, 2) of —8i, express them in rectangular coordinates,
and point out why they are as shown in Fig. 15.

Ans. (a) £(1+1i); (b)) £

Ans. £4/3 — i, 2i.

FIGURE 15
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3. Find (—8 — 8+/3i)!/4, express the roots in rectangular coordinates, exhibit them as the

vertices of a certain square, and point out which is the principal root.

Ans. £(/3 — i), =(1 + /30).

. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root:

(@ (=D () 8.

1+ /3i il—ﬁi
V2 V2

. According to Sec. 10, the three cube roots of a nonzero complex number z, can be written
cp, Cows, coa% where ¢ is the principal cube root of zp and

(,2n) —14/3i
w3y =expli—— | =——7.
3 2

Ans. (b) £v2, +

Show that if zg = —4+/2 4+ 4+/2i, then ¢y = \/5(1 + i) and the other two cube roots are,
in rectangular form, the numbers

W3+ D+GE-Di L (B-D - (B
V2 B V2 '

. Find the four zeros of the polynomial z* + 4, one of them being

20 = V26t =1 +i.

Cows =

Then use those zeros to factor z> + 4 into quadratic factors with real coefficients.

Ans. (22 + 22 +2)(2> =2z +2).

7. Show that if ¢ is any nth root of unity other than unity itself, then

l4+c++- 4+t =0.

Suggestion: Use the first identity in Exercise 9, Sec. 9.

8. (a) Prove that the usual formula solves the quadratic equation

az?+bz+c=0  (a#0)

when the coefficients a, b, and ¢ are complex numbers. Specifically, by completing
the square on the left-hand side, derive the quadratic formula

—b + (b* — 4ac)!/?
7= )
2a

where both square roots are to be considered when b — dac # 0,

(b) Use the result in part (a) to find the roots of the equation z> + 2z + (1 — i) = 0.

Ans. (b) (—1 + %) + %, (—1 - %) - %
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9. Let z = re'’ be a nonzero complex number and 7 a negative integer (n = —1, =2, ...).
Then define z!/" by means of the equation z!/" = (z=!)!/" where m = —n. By showing
that the m values of (z!/”)~" and (z=!")!/™ are the same, verify that V= (/=L
(Compare with Exercise 7, Sec. 9.)

12. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the z plane,
and their closeness to one another. Our basic tool is the concept of an ¢ neighborhood
(1 |z —z0l <€

of a given point z¢. It consists of all points z lying inside but not on a circle cen-
tered at zo and with a specified a positive radius ¢ (Fig. 16). When the value of ¢ is
understood or immaterial in the discussion, the set (1) is often referred to as just a
neighborhood. Occasionally, it is convenient to speak of a deleted neighborhood, or
punctured disk,

2) O<|z—2z0l <e¢

consisting of all points z in an & neighborhood of zy except for the point z; itself.

y
|Z_Z0| RN
L)
\ 20 /
\ /
\\\-///
(@] X FIGURE 16

A point z is said to be an inferior point of a set S whenever there is some
neighborhood of z, that contains only points of S; it is called an exterior point of S
when there exists a neighborhood of it containing no points of S. If z¢ is neither of
these, it is a boundary point of S. A boundary point is, therefore, a point all of whose
neighborhoods contain at least one point in § and at least one point not in S. The
totality of all boundary points is called the boundary of S. The circle |z| = 1, for
instance, is the boundary of each of the sets

(3) lz] <1 and |z] < 1.

A set is open if it does not contain any of its boundary points. It is left as an
exercise to show that a set is open if and only if each of its points is an interior point.
A set is closed if it contains all of its boundary points, and the closure of a set S is the
closed set consisting of all points in S together with the boundary of S. Note that the
first of sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set S to be not open there
must be a boundary point that is contained in the set, and for S to be not closed there
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must be a boundary point not in it. Observe that the punctured disk 0 < |z] < 1 is
neither open nor closed. The set of all complex numbers is, on the other hand, both
open and closed since it has no boundary points.

An open set S is connected if each pair of points z; and z; in it can be joined
by a polygonal line, consisting of a finite number of line segments, joined end to end,
that lies entirely in S. The open set |z| < 1 is connected. The annulus 1 < |z| < 2
is, of course open and it is also connected (see Fig. 17). A nonempty open set that
is connected is called a domain. Note that any neighborhood is a domain. A domain
together with some, none, or all of its boundary points is usually referred to as aregion.

y
7T T~
e N
// N
/ _‘\sz \
/ e \\
/ 7 \ \
| / \ \
[ [ ' |
\ V@ 2 x
\ N\ / !
\ ~ | .7 /
\ 7
N 4
\\\ ///
FIGURE 17

A set S is bounded if every point in S lies inside some circle |z| = R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Rez > 0
is unbounded.

EXAMPLE. Let us sketch the set

1

4) Im (—) > 1
b4

and identify a few of the properties just described.

First of all, except when z = 0,

- = = = —) Z:x+l .
7z zZ Jz* x2+4y? ( Y)

or
X 4+y2+y<0.

By completing the square, we arrive at

x2+<2+ +1)<1
YAyt )<
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So inequality (4) represents the region interior to the circle (Fig. 18)

o) =)
(x =0 y+3) =\3) >

centered at z = — i /2 and with radius 1/2.
y
/ o \\\\ !
/ .
I oL ‘,
\ 2
\ /
\ /
\\ //
FIGURE 18

A point zg is said to be an accumulation point, or limit point, of a set S if each
deleted neighborhood of z( contains at least one point of S. It follows that if a set S is
closed, then it contains each of its accumulation points. For if an accumulation point
Zo were not in S, it would be a boundary point of S; but this contradicts the fact that
a closed set contains all of its boundary points. It is left as an exercise to show that
the converse is, in fact, true. Thus a set is closed if and only if it contains all of its
accumulation points.

Evidently, a point zg is not an accumulation point of a set S whenever there exists
some deleted neighborhood of z( that does not contain at least one point in S. Note
that the origin is the only accumulation point of the set

Zn=; n=1,2,...).
EXERCISES
1. Sketch the following sets and determine which are domains:
(@ lz=24+i| < 1; D) 12z +3] > 4;
(¢) Imz > 1; (d) Imz =1;
() O=argz <m/4(z#0); 0 |z =4 = Izl

Ans. (b), (¢) are domains.

2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e).

3. Which sets in Exercise 1 are bounded?
Ans. (a).
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4.

In each case, sketch the closure of the set:

(a) —m <argz <mw (z#0); (b) Rez| < |zl;
1 1

(9] Re(—) <= (d) Re(z%) > 0.
Z 2

Let S be the open set consisting of all points z such that |z] < 1 or |z — 2| < 1. State
why S is not connected.

. Show that a set S is open if and only if each point in § is an interior point.

7. Determine the accumulation points of each of the following sets:

(@ z,=i"(n=1,2,...); b) zp=i"/n(n=1,2,...);
() 0 <argz <7/2 (z #0); (d) Zn=(_1)n(1+i)n_1
Ans. (a) None; (b) 0 (d) £(1 +1i).

Prove that if a set contains each of its accumulation points, then it must be a closed set.

n=1,2,...).
n

9. Show that any point z of a domain is an accumulation point of that domain.

10.

Prove that a finite set of points 71, 22, ..., 2, cannot have any accumulation points.
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CHAPTER

2

ANALYTIC FUNCTIONS

‘We now consider functions of acomplex variable and develop a theory of differentiation
for them. The main goal of the chapter is to introduce analytic functions, which play
a central role in complex analysis.

13. FUNCTIONS AND MAPPINGS

Let S be a set of complex numbers. A function f defined on S is a rule that assigns
to each z in S a complex number w. The number w is called the value of f at z and is
denoted by f(z), so that w = f(z). The set S is called the domain of definition of f.*

It must be emphasized that both a domain of definition and a rule are needed in
order for a function to be well defined. When the domain of definition is not mentioned,
we agree that the largest possible set is to be taken. Also, it is not always convenient
to use notation that distinguishes between a given function and its values.

EXAMPLE 1. If f is defined on the set z # 0 by means of the equation
w = 1/z,itmay be referred to only as the function w = 1/z, or simply the function 1/z.

Suppose that # + iv is the value of a function f at z = x + iy ; thatis,
u+iv=fx+iy).

*Although the domain of definition is often a domain as defined in Sec. 12, it need not be.

37
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Each of the real numbers # and v depends on the real variables x and y, and it follows
that f(z) can be expressed in terms of a pair of real-valued functions of the real
variables x and y:

(D f@) =ulx,y)+iv(x,y).

EXAMPLE 2. If f(z) = z%, then
fx+iy) = (x+iy)? =x* — y* +i2xy.
Hence
u(x,y) = x> — y2 and wv(x,y) = 2xy.

If the function v in equation (1) always has value zero, then the value of f is
always real. Thus f is a real-valued function of a complex variable.

EXAMPLE 3. A real-valued function that is used to illustrate some important
concepts later in this chapter is

f@) =z =x"+y* +i0.
If n is a positive integer and if ag, a;, a, .. ., a, are complex constants, where
a, # 0, the function
P(x) =ay+az+az? + -+ a, 7"

is a polynomial of degree n. Note that the sum here has a finite number of terms and that
the domain of definition is the entire z plane. Quotients P (z)/Q(z) of polynomials are
called rational functions and are defined at each point z where Q(z) # 0. Polynomials
and rational functions constitute elementary, but important, classes of functions of a
complex variable.

If the polar coordinates r and 6 are used instead of x and y, then

u+iv= f(reie)
where w = u + iv and z = re'?. In that case, we may write

2 f(@) =u(r,0) +iv(r,0).

EXAMPLE 4. Consider the function w = z? when z = re'. Here
w = (re'’)? = r?e’® = r?cos 26 + ir?sin26.
Hence
u(r,0) =r*cos20 and v(r,0) = r’sin26.

A generalization of the concept of function is a rule that assigns more than one
value to a point z in the domain of definition. These multiple-valued functions occur
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in the theory of functions of a complex variable, just as they do in the case of a real
variable. When multiple-valued functions are studied, usually just one of the possible
values assigned at each point is taken, in a systematic manner, and a (single-valued)
function is constructed from the multiple-valued one.

EXAMPLES. Letz denote any nonzero complex number. We know from Sec. 10
that 7'/ has the two values

®
77 = :i:ﬁexp(iE),

wherer = |z]and ® (—7 < ® < ) is the principal value of arg z. But, if we choose
only the positive value of +./r and write

(3) f(z)zﬁexp(i%) r>0,—-7<0<mn),

the (single-valued) function (3) is well defined on the set of nonzero numbers in the
z plane. Since zero is the only square root of zero, we also write f(0) = 0. The function
f is then well defined on the entire plane.

Properties of a real-valued function of a real variable are often exhibited by the
graph of the function. But when w = f(z), where z and w are complex, no such
convenient graphical representation of the function f is available because each of
the numbers z and w is located in a plane rather than on a line. One can, however,
display some information about the function by indicating pairs of corresponding
points z = (x, y) and w = (u, v). To do this, it is generally simpler to draw the z and
w planes separately.

When a function f is thought of in this way, it is often referred to as a mapping,
or transformation. The image of a point z in the domain of definition S is the point
w = f(z), and the set of images of all points in a set 7' that is contained in S is called
the image of 7. The image of the entire domain of definition S is called the range of
f. The inverse image of a point w is the set of all points z in the domain of definition
of f that have w as their image. The inverse image of a point may contain just one
point, many points, or none at all. The last case occurs, of course, when w is not in the
range of f.

Terms such as translation, rotation, and reflection are used to convey dominant
geometric characteristics of certain mappings. In such cases, it is sometimes convenient
to consider the z and w planes to be the same. For example, the mapping

w=z+1=x+1) +1iy,

where z = x 4+ iy, can be thought of as a translation of each point z one unit to the
right. Since i = ¢/"/2, the mapping

w =iz=rexp[i(9+%)},
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where z = re'?, rotates the radius vector for each nonzero point z through a right angle
about the origin in the counterclockwise direction; and the mapping

w=z=x—1y
transforms each point z = x + iy into its reflection in the real axis.
More information is usually exhibited by sketching images of curves and re-

gions than by simply indicating images of individual points. In the next section, the
transformation w = z2 is used to illustrate this.

14. THE MAPPING w = z?

According to Example 2 in Sec. 13, the mapping w = z* can be thought of as the
transformation

(H u=x>—y>, v=2xy

from the xy plane into the uv plane. This form of the mapping is especially useful in

finding the images of certain hyperbolas.
It is easy to show, for instance, that each branch of a hyperbola

) > —y'=c (e >0)

is mapped in a one to one manner onto the vertical line u = ¢;. To do this, we start by
noting from the first of equations (1) that u = ¢; when (x, y) is a point lying on either
branch. When, in particular, it lies on the right-hand branch, the second of equations
(1) tells us that v = 2y+/y% + ¢;. Thus the image of the right-hand branch can be
expressed parametrically as

u=c;, v=2yVyr+c (—00 <y < 00);

and it is evident that the image of a point (x, y) on that branch moves upward along the
entire line as (x, y) traces out the branch in the upward direction (Fig. 19). Likewise,
since the pair of equations

u=cy, v=-=2y\Vy2+c (—o00 <y < 00)

furnishes a parametric representation for the image of the left-hand branch of the
hyperbola, the image of a point going downward along the entire left-hand branch is
seen to move up the entire line u = c;.

y v
u=c; >0

\ ———————— —=t=-=v=0c,>0
N N
\\
-—=~L_ O X (0] u
N
A

\
\
1
1

FIGURE 19

w=z2.
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On the other hand, each branch of a hyperbola
3) 2xy = ¢ (cp > 0)

is transformed into the line v = ¢;, as indicated in Fig. 19. To verify this, we note from
the second of equations (1) that v = ¢, when (x, y) is a point on either branch. Suppose
that (x, y) is on the branch lying in the first quadrant. Then, since y = ¢;/(2x), the
first of equations (1) reveals that the branch’s image has parametric representation

2

c
u=x2—4—22, V=120 0 <x <o0).
X
Observe that
limuy = —o00 and lim u = oo.
x—=0 X—>00

x>0

Since u depends continuously on x, then, it is clear that as (x, y) travels down the
entire upper branch of hyperbola (3), its image moves to the right along the entire
horizontal line v = ¢,. Inasmuch as the image of the lower branch has parametric
representation

u=—=—-—y, v=c —00<y<0
4y? y 2 y<0)
and since
Iim u =—-—00 and limu = oo,
y—>—00 y—>

it follows that the image of a point moving upward along the entire lower branch also
travels to the right along the entire line v = ¢; (see Fig. 19).

Let us now illustrate how the form (1) of the mapping w = z? can be used to find
images of certain regions.

EXAMPLE 1. The domain x > 0,y > 0, xy < 1 consists of all points lying
on the upper branches of hyperbolas from the family 2xy =c, where 0 <c <2
(Fig. 20). We have just seen that as a point travels downward along the entirety of
such a branch, its image under the transformation w = z*> moves to the right along

- FIGURE 20
B c x A B C Uy
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the entire line v = c. Since, for all values of ¢ between 0 and 2, these upper branches
fill out the domain x > 0, y > 0, xy < 1, that domain is mapped onto the horizontal
strip0 < v < 2.

In view of equations (1), the image of a point (0, y) in the z plane is (—y?, 0).
Hence as (0, y) travels downward to the origin along the y axis, its image moves to the
right along the negative u axis and reaches the origin in the w plane. Then, since the
image of a point (x, 0) is (x2, 0), that image moves to the right from the origin along
the u axis as (x, 0) moves to the right from the origin along the x axis. The image
of the upper branch of the hyperbola xy = 1 is, of course, the horizontal line v = 2.
Evidently, then, the closed region x > 0,y > 0,xy < 1 is mapped onto the closed
strip 0 < v < 2, as indicated in Fig. 20.

Our next example illustrates how polar coordinates can be used in analyzing
certain mappings.

EXAMPLE 2. The mapping w = z> becomes
(4) w = r2ei?

when z = re'. Evidently, then, the image w = pe’? of any nonzero point z is found
by squaring the modulus r = |z| and doubling the value 6 of arg z that is used:

) p=r> and ¢ =20.
Observe that points z = rpe!” on a circle r = ry are transformed into points
w = rge' on the circle p = r3. As a point on the first circle moves counterclockwise
from the positive real axis to the positive imaginary axis, its image on the second
circle moves counterclockwise from the positive real axis to the negative real axis (see
Fig. 21). So, as all possible positive values of ry are chosen, the corresponding arcs
in the z and w planes fill out the first quadrant and the upper half plane, respectively.
The transformation w = z? is, then, a one to one mapping of the first quadrant r > 0,
0 < 6 < /2 in the z plane onto the upper half p > 0,0 < ¢ < & of the w plane, as
indicated in Fig. 21. The point z = 0 is, of course, mapped onto the point w = 0.
This mapping of the first quadrant onto the upper half plane can also be verified
using the rays indicated by dashes in Fig. 21. Details of the verification are left to

Exercise 7.

FIGURE 21

w=12‘
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The transformation w = z? also maps the upper half plane » > 0,0 < 6 < 7 onto
the entire w plane. However, in this case, the transformation is not one to one since
both the positive and negative real axes in the z plane are mapped onto the positive
real axis in the w plane.

When n is a positive integer greater than 2, various mapping properties of the
transformation w = z", or w = r"e™?, are similar to those of w = z2. Such a
transformation maps the entire z plane onto the entire w plane, where each nonzero
point in the w plane is the image of n distinct points in the z plane. The circle r = ry
is mapped onto the circle p = r{; and the sector r < 9,0 < 0 < 27 /n is mapped

onto the disk p < r{, but not in a one to one manner.

Other, but somewhat more involved, mappings by w = z> appear in Example 1,
Sec. 107, and Exercises 1 through 4 Sec. 108.

EXERCISES

1. For each of the functions below, describe the domain of definition that is understood:

1
@ fO=——  ® f(Z)=Arg(E>;

2+1

z
(c) f(Z)—mv d) f(z)=

1
1—|z*
Ans. (a) z # +i; (b)Rez #0.
2. In each case, write the function f(z) in the form f(z) = u(x, y) +iv(x, y):
=2
z
(@ f@Q=2+z+1 ) f@)= GRS 0).
Suggestion: In part (b), start by multiplying the numerator and denominator by Z.
Ans. (@) f(2) = (x> =3xy> +x + D) +iBx%y — y3 +y);
X =3xy*  y3—3x%y
1 .
X2 + y2 X2 + y2

(b) f(2) =

3. Suppose that f(z) = x> —y?—2y+i(2x —2xy), where z = x +iy. Use the expressions
(see Sec. 6)

z+z z—z
and y=—
2i

X =

to write f(z) in terms of z, and simplify the result.
Ans. f(z) =7 + 2iz.

4. Write the function

1
f(z)=z+g (z#0)
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in the form f(z) = u(r,0) 4+ iv(r, 0).
Ans. f(z) = (r + %) cos 6 —I—i(r — %) sinf.

5. By referring to the discussion in Sec. 14 related to Fig. 19 there, find a domain in the
7z plane whose image under the transformation w = z? is the square domain in the w
plane bounded by the linesu = 1,u =2, v = 1, and v = 2. (See Fig. 2, Appendix 2.)

6. Find and sketch, showing corresponding orientations, the images of the hyperbolas
x> - y2 =cy(c; <0) and 2xy =c; (2 <0)

under the transformation w = z2.

7. Use rays indicated by dashed half lines in Fig. 21 to show that the transformation w = z2
maps the first quadrant onto the upper half plane, as shown in Fig. 21.

8. Sketch the region onto which the sector » < 1,0 < 0 < 7 /4 is mapped by the transfor-
mation (a) w = z%; (b) w = 2°; (¢) w = z*.

9. One interpretation of a function w = f(z) = u(x, y)+iv(x, y) is that of a vector field in
the domain of definition of f. The function assigns a vector w, with components u(x, y)
and v(x, y), to each point z at which it is defined. Indicate graphically the vector fields
represented by

(a@yw=iz; b)w= i.

|z]

15. LIMITS

Let a function f be defined at all points z in some deleted neighborhood of a point zg.
The statement that f(z) has a limit w, as z approaches z, or that
)] lim f(z) = wo,

Z—>20

means that the point w = f(z) can be made arbitrarily close to wy if we choose the
point z close enough to zy but distinct from it. We now express the definition of limit
in a precise and usable form.

Statement (1) means that for each positive number ¢, there is a positive number
& such that

) | f(z) —wp| <& whenever 0 < |z —z¢| <.

Geometrically, this definition says that for each ¢ neighborhood |w — wgy| < € of
wy, there is a deleted § neighborhood 0 < |z — zo| < § of zp such that every point
z in it has an image w lying in the ¢ neighborhood (Fig. 22). Note that even though
all points in the deleted neighborhood 0 < |z — z9| < & are to be considered, their
images need not fill up the entire neighborhood |w — wo| < €. If f has the constant
value wy, for instance, the image of z is always the center of that neighborhood. Note,
too, that once a § has been found, it can be replaced by any smaller positive number,
such as 6/2.
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FIGURE 22

The following theorem on uniqueness of limits is central to much of this chapter,
especially the material in Sec. 21.

Theorem. When a limit of a function f(z) exists at a point zy, it is unique.
To prove this, we suppose that
lim f(z) =wy and lim f(z) = w;.
Z—>20 =20
Then, for each positive number ¢, there are positive numbers &y and &; such that
| f(z) —wp| <& whenever 0 < |z — 20| < &
and
|f(z) —w;| <& whenever 0 < |z—z0| <.
Since
wi; —wy = [f(z) — wol + [w1 — f(2)],
the triangle inequality tells us that
lwi —wol < [f(2) —wol + [w1 — f(2)] = [f(2) —wol + | f(2) — wil.
Soif0 < |z — zo| < § where § is any positive number smaller than §p and §;, we find that
lwy —wy| < &+ ¢ < 2e.
But |w; — wy| is a nonnegative constant, and & can be chosen arbitrarily small. Hence
wl—w0=0, or w; = wy.

Definition (2) requires that f be defined at all points in some deleted neighborhood
of zo. Such a deleted neighborhood, of course, always exists when zg is an interior
point of aregion on which f is defined. We can extend the definition of limit to the case
in which z is a boundary point of the region by agreeing that the first of inequalities

(2) need be satisfied by only those points z that lie in both the region and the deleted
neighborhood.

EXAMPLE 1. Let us show that if f(z) = iz/2 in the open disk |z| < 1, then

3) lim £(2) = ’5
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the point 1 being on the boundary of the domain of definition of f. Observe that when
z is in the disk |z] < 1,

iz i _lz—1
2 2 2

Hence, for any such z and each positive number ¢ (see Fig. 23),

‘f(z)—% =

f(z)—%

<& whenever 0 < |z—1| <2e.

Thus condition (2) is satisfied by points in the region |z| < 1 when § is equal to 2¢ or
any smaller positive number.

y v
//// \:X’_\\ I/lf:e/\\
N ¢ =

AT e Rt
\ 9] \ 1y Jox %) u

\ N // /

\\ - 7

\\ //
i FIGURE 23

If limit (1) exists, the symbol z — zo implies that z is allowed to approach zj
in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE 2. If

) f) ==,
Z

the limit

(5) Zlgrg) f@

does not exist. For, if it did exist, it could be found by letting the point z = (x, y)
approach the origin in any manner. But when z = (x, 0) is a nonzero point on the real
axis (Fig. 24),

x +1i0
f@) = —=1;
x —1i0
y
z=(0,y)e
©.0) =60 X GURE 24
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and when z = (0, y) is a nonzero point on the imaginary axis,

T 0 y
Thus, by letting z approach the origin along the real axis, we would find that the desired

limit is 1. An approach along the imaginary axis would, on the other hand, yield the
limit —1. Since a limit is unique, we must conclude that limit (5) does not exist.

While definition (2) provides a means of testing whether a given point wy is a
limit, it does not directly provide a method for determining that limit. Theorems on
limits, presented in the next section, will enable us to actually find many limits.

16. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we may use their
definition and properties freely.

Theorem 1. Suppose that
f@ =ulx,y)+ivx,y) (z=x+1iy)

and
20 = X0 +iyo, wo = ug+ivg.
If
(D) lim  u(x,y) =ug and lim v(x, y) = vy,
(x,y)— (x0,Y0) (x,y)=> (x0,¥0)
Then
(2 lim f(z) = wo;
Z—>20

and, conversely, if statement (2) is true, then so is statement (1).

To prove the theorem, we first assume that limits (1) hold and obtain limit (2).
Limits (1) tell us that for each positive number &, there exist positive numbers §; and
&> such that

3) lu — ug| < g whenever 0 < v/(x — x0)2 + (y — y0)2 < &

and

@) v — | < % whenever 0 < v/(x — x0)% + (v — y0)2 < 8.
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Let § be any positive number smaller than §; and §,. Since
|(u +iv) — (uo +ivo)| = [(u —up) +i(v —vo)| < |u —upl + v — vy

and

V=30 + (5 — 30)? = |(x —x0) +i(y — y0)| = |(x +iy) — (x0 + iyo)l,

it follows from statements (3) and (4) that

. ) e €
[(u +iv) — (uog +ivy)| < 2+2—8

whenever

0 < |(x +iy) — (xo +iyo)| < 6.

That is, limit (2) holds.

Let us now start with the assumption that limit (2) holds. With that assump-
tion, we know that for each positive number ¢, there is a positive number § such
that

&) |(u +iv) — (uo +ivo)| < €
whenever

(6) 0 < [(x+iy)— (xo+iyo)| <.
But

lu —uo| < [(u —up) +i(v—vo)| = [(u +iv) — (o +ivo)l,
v —vol < [(u —ug) +i(v—vp)| = |(u+iv) — (ug+ivy)l,

and

|(x +iy) — (x0 + iyo)| = [(x —x0) +i(y — yo)| = v/ (x — x0)2 + (v — yo)2.
Hence it follows from inequalities (5) and (6) that
lu—ugl <e and |v—1v9| <e¢

whenever

0<V(x—x0)2+(y— y)? <38.

This establishes limits (1), and the proof of the theorem is complete.

Theorem 2. Suppose that
(7 lim f(z) =wy and lim F(z) = W,.
=20

=20
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Then
®) zlir?o[f (2) + F(2)] = wo + Wy,
&) zhleo[f(Z)F(Z)] = wo Wo;
and, if Wy # 0,
(10) fim 2@ _ w0

Z—20 F(Z) W()

This important theorem can be proved directly by using the definition of the limit
of a function of a complex variable. But, with the aid of Theorem 1, it follows almost
immediately from theorems on limits of real-valued functions of two real variables.

To verify property (9), for example, we write

f@ =ulx,y) +ivix,y), F()=Ux,y) +iV(x,y),
20 = X0 +iyo, wo=ug+ivg, Wo=Uy+1iVj.

Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches
(x0, yo) of the functions u, v, U, and V exist and have the values u, vy, Uy, and Vj,
respectively. So the real and imaginary components of the product

f(F (@) = WU —vV)+i(wU +uV)

have the limits uoUy — voVy and voUy + ugVy, respectively, as (x, y) approaches
(x0, Yo)- Hence, by Theorem 1 again, f(z) F(z) has the limit

(woUp — vo Vo) +i(voUp + 1o Vo)

as z approaches zp; and this is equal to wyWj. Property (9) is thus established. Corre-
sponding verifications of properties (8) and (10) can be given.
It is easy to see from definition (2), Sec. 15, of limit that

limc=c¢ and lim z = z,

=20 =20

where zo and ¢ are any complex numbers; and, by property (9) and mathematical
induction, it follows that

limz" =z (n=12,..).
Z—>20

So, in view of properties (8) and (9), the limit of a polynomial
P(2) =ay+aiz+az® + -+ a2
as z approaches a point z is the value of the polynomial at that point:

(11) Zli)n;lo P(z) = P(20).
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17. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity,
denoted by oo, and to use limits involving it. The complex plane together with this
point is called the extended complex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered at
the origin (Fig. 25). To each point z in the plane there corresponds exactly one point
P on the surface of the sphere. The point P is the point where the line through z and
the north pole N intersects the sphere. In like manner, to each point P on the surface
of the sphere, other than the north pole N, there corresponds exactly one point z in
the plane. By letting the point NV of the sphere correspond to the point at infinity, we
obtain a one to one correspondence between the points on the sphere and the points
in the extended complex plane. The sphere is known as the Riemann sphere, and the
correspondence is called a stereographic projection.

FIGURE 25

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the point N deleted.
Moreover, for each small positive number ¢, those points in the complex plane exterior
to the circle |z| = 1/& correspond to points on the sphere close to N. We thus call the
set |z| > 1/¢ a neighborhood of oc.

Let us agree that in referring to a point z, we mean a point in the finite plane.
Hereafter, when the point at infinity is to be considered, it will be specifically
mentioned.

A meaning is now readily given to the statement

lim f(z) = wo

i—20
when either zo or wy, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 15, we simply replace the appropriate
neighborhoods of zp and wq by neighborhoods of co. The proof of the following
theorem illustrates how this is done.

Theorem. If 7o and wq are points in the z and w planes, respectively, then

g ln 7@ =00 i lim 75 =0



SEC. 17 LIMITS INVOLVING THE POINT AT INFINITY 51

and
@) lim @) =w if }%f(é) = wp.
Moreover,
. . . 1
3) lim f(z) =00 if }gr(l) 71/2) =0

We start the proof with the assumption that the second of limits (1) holds. This
means that for each positive number ¢, there is a positive number § such that
1
—— — 0| <& whenever 0 < |z—2z0] <3$.

f(@)

Since this can be written
1

@) |f(z)] > — whenever 0 < |z —2zo| <3,
£

we arrive at the first of limits (1).
Suppose now that the second of limits (2) holds. That is,

7(2) e

Replacing z by 1/z here, we have the statement

<¢& whenever 0 < |z—0] <3$.

1
) |f(z) —wo| <& whenever |z] > 5

from which the first of limits (2) follows.
Finally, the second of limits (3) means that

0| <& whenever 0 < |z—0] <§;

’ 1
f(1/z)
and replacement of z by 1/z in these inequalities yields the statement
1 1
(6) |f(z)] > — whenever |z| > 3
£

This is, of course, the definition of the first of limits (3).

EXAMPLES. Observe that

iz+3 ) .ooz+1
im =o0 since lim - =
-1 741 i>-liz+3
and
. 2z+1i ) . Q)+ . 241z
lim =2 since lim— = lim =

=00 741 z—>0(1/z)—|—1_z—>01—|—z
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Furthermore,
. 228 -1 . Yo T
lim —— =00 since Ilim—— = — =0.
o0 2241 =0 (2/23) -1 =>02-273

18. CONTINUITY

A function f is continuous at a point z if all three of the following conditions are
satisfied:

(D) Zli)rrzl f(z) exists,
2) f(zp) exists,
3) }gl}o f(2) = f(zo0).

Observe that statement (3) actually contains statements (1) and (2), since the existence
of the quantity on each side of the equation in that statement is needed. Statement (3)
says, of course, that for each positive number ¢, there is a positive number é such that

) | f(z) — f(z0)] <& whenever |z—zo| <3.

A function of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.

If two functions are continuous at a point, their sum and product are also contin-
uous at that point; their quotient is continuous at any such point if the denominator
is not zero there. These observations are direct consequences of Theorem 2, Sec. 16.
Note, too, that a polynomial is continuous in the entire plane because of limit (11) in
Sec. 16.

We turn now to two expected properties of continuous functions whose verifica-
tions are not so immediate. Our proofs depend on definition (4) of continuity, and we
present the results as theorems.

Theorem 1. A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
w = f(z) be a function that is defined for all z in a neighborhood |z — z9| < § of a
point zy, and we let W = g(w) be a function whose domain of definition contains the
image (Sec. 13) of that neighborhood under f. The composition W = g[ f(z)]1is, then,
defined for all z in the neighborhood |z — z9| < 8. Suppose now that f is continuous at
Zo and that g is continuous at the point f (zo) in the w plane. In view of the continuity
of g at f(zo), there is, for each positive number &, a positive number y such that

lglf ()] —glf(zo)ll <& whenever |[f(z)— f(z0)l <.

(See Fig. 26.) But the continuity of f at zo ensures that the neighborhood |z — z9| < 8
can be made small enough that the second of these inequalities holds. The continuity
of the composition g[ f (z)] is, therefore, established.
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Theorem 2. If a function f(z) is continuous and nonzero at a point 7, then
f(z) # 0 throughout some neighborhood of that point.

Assuming that f(z) is, in fact, continuous and nonzero at zy, we can prove Theo-
rem 2 by assigning the positive value | f(zo)|/2 to the number ¢ in statement (4). This
tells us that there is a positive number § such that

If @) — fzo)| < 'f(zzo”

So if there is a point z in the neighborhood |z — z9| < é at which f(z) = 0, we have
the contradiction

whenever |z — 79| < §.

|f o)l
2 b

|f (o)l <

and the theorem is proved.
The continuity of a function

®) f@) =ulx,y) +iv(x,y)

is closely related to the continuity of its component functions u(x, y) and v(x, y), as
the following theorem indicates.

Theorem 3. Ifthe component functions u and v in expression (5) are continuous
at a point 7o = (Xo, Yo), then so is f. Conversely, if f is continuous at z, the same is
true of u and v at that point.

The proof follows immediately from Theorem 1 in Sec. 16, regarding the con-
nection between limits of f and limits of u and v.

The next theorem is extremely important and will be used often in later chapters,
especially in applications. Before stating the theorem, whose proof is based on Theo-
rem 3, we recall from Sec. 12 that a region R is closed if it contains all of its boundary
points and that it is bounded if it lies inside some circle centered at the origin.
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Theorem 4. If a function f is continuous throughout a region R that is both
closed and bounded, there exists a nonnegative real number M such that

(6) |f(z)| <M  forall points 7 in R,
where equality holds for at least one such z.

To prove this, we assume that the function f in equation (5) is continuous and
note how it follows that the function

VIu, »P? + vx, )P

is continuous throughout R and thus reaches a maximum value M somewhere in R.*
Inequality (6) thus holds, and we say that f is bounded on R.

EXERCISES
1. Use definition (2), Sec. 15, of limit to prove that
=2
(@) limRez=Rezp;  (b) limz =7%g; (c) lim = = 0.
=20 =20 =0 7
2. Let a, b, and ¢ denote complex constants. Then use definition (2), Sec. 15, of limit to
show that
(a) lim(az +b) =azo+ b; (b) lim(z>+c) =23 +c;
=20 =20

(© lim [x+iCx+yl=1+i @=x+iy).

3. Letn be a positive integer and let P(z) and Q(z) be polynomials, where Q(zp) # 0. Use
Theorem 2 in Sec. 16, as well as limits appearing in that section, to find
-1 P(2)

1 iz .
a) lim — 0); i lim ——.
(a) Jim = (zo # 0) (b) llg} P (c) im0

Ans. (a) 1/z8;  (b) 0; (c) P(20)/Q(20).
4. Use mathematical induction and property (9), Sec. 16, of limits to show that

lim 7" = zj
=20

when 7 is a positive integer (n = 1,2, ...).

o= (2)

has the value 1 at all nonzero points on the real and imaginary axes, where z = (x, 0)
and z = (0, y), respectively, but that it has the value —1 at all nonzero points on the
line y = x, where z = (x, x). Thus show that the limit of f(z) as z tends to 0 does

5. Show that the function

*See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125-126 and p. 529,
1983.



SEC. 19 DERIVATIVES 55

10.

11.

12.
13.

not exist. [Note that it is not sufficient to simply consider nonzero points z = (x, 0) and
z = (0, y), as it was in Example 2, Sec. 15.]

. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

. Use definition (2), Sec. 15, of limit to prove that

if  lim f(z) =wp, then lim |f(z)] = |wol.
Z—>20

Z—>20

Suggestion: Observe how inequality (2), Sec. 5, enables one to write

I1f @] = [woll = [f(2) — wol.

. Write Az = z — zp and show that

lim f(z) = wy if and only if Alimof(z() + A7) = wy.
>

=20

. Show that

linzl f(@)gkz) =0 if liIIzl f@=0

=20 =20

and if there exists a positive number M such that |g(z)| < M for all z in some neighbor-
hood of z.

Use the theorem in Sec. 17 to show that

47? . 1 2+1
i =4 b) lim—— = oo; i —
(a) zhHH;O(z—l)Q 4, (b) e T (¢) zhj})loz_l 00

With the aid of the theorem in Sec. 17, show that when
_az+ b
T cz+d

T(z) (ad —bc #0),
(@) lim T(z) =00 ifc=0;
—> 0
(b) lim T(z) = 2 and lim T(z) =00 ifc#0.
7—>00 c z——d/c
State why limits involving the point at infinity are unique.

Show that a set S is unbounded (Sec. 12) if and only if every neighborhood of the point
at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z —z¢| < € of
a point zg. The derivative of f at z; is the limit

ey

ey — tim L@ @)

>0 Z2—2p

and the function f is said to be differentiable at 7z, when f'(z) exists.
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By expressing the variable z in definition (1) in terms of the new complex variable
Az=z-2z20 (z2# 20,
one can write that definition as
/ . f(Z() + AZ) - f(z())
2 =1 .
2 f(zo) = lim Az

Because f is defined throughout a neighborhood of zg, the number f(zgp + Az) is
always defined for | Az| sufficiently small (Fig. 27).

y
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When taking form (2) of the definition of derivative, we often drop the subscript
on 7 and introduce the number

Aw = f(z+ Az) — f(2),

which denotes the change in the value w = f(z) of f corresponding to a change Az
in the point at which f is evaluated. Then, if we write dw/dz for f'(z), equation (2)
becomes

dw . Aw
3) = lim

dz T A0 Az’

EXAMPLE 1. Suppose that f(z) = 1/z. At each nonzero point z,

1 1\ 1 —1
lim — = lim ( ——)—zlim —_—
Az—0 Az Az—=0\z+ Az z/) Az A—0(z+ AZ)z
provided these limits exist; and properties of limits in Sec. 16 tell us that
dw 1 , 1
—=——, or =——,
dz 22 r@ 22

when z # 0.

EXAMPLE 2. If f(z) =z, then
4@ Aw  z+Az-7 Z+Az-7T Az
Az Az Az Az
If the limit of Aw/Az exists, it can be found by letting the point Az = (Ax, Ay)
approach the origin (0, 0) in the Az plane in any manner. In particular, as Az approaches
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(0, 0) horizontally through the points (Ax, 0) on the real axis (Fig. 28),
A7=Ax+i0=Ax —i0 = Ax +i0 = Az.
In that case, expression (4) tells us that
Aw Az
Az Az
Hence if the limit of Aw/Az exists, its value must be unity. However, when Az
approaches (0, 0) vertically through the points (0, Ay) on the imaginary axis, so that

1.

Az=0+iAy=0—iAy=—(0+iAy) = —Az,

we find from expression (4) that
Aw —Az _
Az Az ’

Hence the limit must be —1 if it exists. Since limits are unique (Sec. 15), it follows
that dw/dz does not exist anywhere.

Ay
0,Ay)e

0.0) (Ax.0)  Ax

FIGURE 28

EXAMPLE 3. Consider the real-valued function f(z) = |z|>. Here
Aw |z+Az]> —z]*>  (z+ A7)+ Az) — 2T,

’

A—z Az Az
and since z + Az = 7 + Az, this becomes
) S eI
Ay CTERTEAL

Proceeding as in Example 2, where horizontal and vertical approaches of Az toward
the origin gave us

Az=Az and Az=—Az,

respectively, we have the expressions

Aw  _
A—:z-l—Az-l—z when Az = (Ax,0)
Z
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and

Aw  _

— =7Z—Az—2z when Az=(0,Ay).

Az
Hence if the limit of Aw/Az exists as Az tends to zero, the uniqueness of limits, used
in Example 2, tells us that

Z+z=7—2,

or that z = 0. Evidently, then, dw/dz cannot exist if z # 0.
To show that dw/dz does, in fact, exist at z = 0, we need only observe that
expression (5) reduces to
L v
Az ¢
when z = 0. We conclude, therefore, that dw/dz exists only at z = 0, its value there
being 0.

Example 3 illustrates the following three facts, the first two of which may be
surprising.

(a) A function f(z) = u(x,y) +iv(x, y) can be differentiable at a point z = (x, y)
but nowhere else in any neighborhood of that point.

(b) Since u(x,y) = x>+ y? and v(x, y) = 0 when f(z) = |z|?, one can see that
the real and imaginary components of a function of a complex variable can have
continuous partial derivatives of all orders at a pointz = (x, y) and yet the function
of z may not be differentiable there.

(c) Because the component functions u(x, y) = x> + y? and v(x,y) = 0 of the
function f(z) = |z|? are continuous everywhere in the plane, it is also evident
that the continuity of a function of a complex variable at a point does not imply
the existence of its derivative there. More precisely, the components

u(x,y)=x*+y> and v(x,y)=0

of f(z) = |z|* are continuous at each nonzero point z = (x, y) but f’(z) does not
exist there. It is, however, true that the existence of the derivative of a function at
a point implies the continuity of the function at that point. To see this, we assume
that f'(z¢) exists and write

lim (/@) — £l = lim ZE 7T i 2y = 0=,

—>20 Z—20 =20

from which it follows that
lim f(z) = f(z0)-
=20

This is the statement of continuity of f at zy (Sec. 18).
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Geometric interpretations of derivatives of functions of a complex variable are
not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.

20. RULES FOR DIFFERENTIATION

The definition of derivative in Sec. 19 is formally the same as the definition in calculus
when z is substituted for x. Hence the basic differentiation rules given below can be
derived from the definition in Sec. 19 by the same steps as the ones used in calculus.
In stating such rules, we shall use either

d /
d—zf(Z) or  f(2),

depending on which notation is more convenient.
Let ¢ be a complex constant, and let f be a function whose derivative exists at a
point z. It is easy to show that

ey d 0 d 1 d[f()] 1'(@)
—c =0, —z=1, —|C =C .
= dzz i z Z
Also, if n is a positive integer,
d
(2) Ezn — I’lZn_].

This rule remains valid when 7 is a negative integer, provided that z # 0.
If the derivatives of two functions f and g exist at a point z, then

d
3) E[f(z) +8@1= 1)+,

d
“4) E[f(z)g(z)] = f(g' (@) + f(2)g2);
and, when g(z) # 0,

) d {f(z)} _8@f'(@) - f@8' @)

dz lg@] [g()1?
Let us derive rule (4). To do this, we write the following expression for the change
in the product w = f(z)g(2):

Aw = f(z+ Az)g(z + Az) — f(2)g(2)
= f(@Mgz + Az) =g+ [f(z+ Az) — f(D]g(z + Az).

Thus

Aw gz+Az) —g(x) fz+Az)— f(2)
——=/©@ +
Az Az Az
and, letting Az tend to zero, we arrive at the desired rule for the derivative of f(z)g(z).
Here we have used the fact that g is continuous at the point z, since g’(z) exists; thus

g(z + Az) tends to g(z) as Az tends to zero (see Exercise 8, Sec. 18).

g(z+ Az);
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There is also a chain rule for differentiating composite functions. Suppose that f
has a derivative at z and that g has a derivative at the point f(z¢). Then the function
F(z) = gl f(2)] has a derivative at z, and

(6) F'(z0) = g'[f o)1 f (z0).

If we write w = f(z) and W = g(w), so that W = F(z), the chain rule becomes
dw  dWdw
dz  dw dz

EXAMPLE. To find the derivative of (1 —4z%)3, one can write w = 1 —4z% and
W = w?. Then

d
d_Z(l — 4Z2)3 = 3w2(— 82) = _24Z(1 _ 4Z2)2.

To start the derivation of rule (6), choose a specific point zo at which f’(z¢)
exists. Write wg = f(z¢) and also assume that g’(wy) exists. There is, then, some &
neighborhood |w — wy| < ¢ of wy such that for all points w in that neighborhood, we
can define a function ® having the values ® (wy) = 0 and

gw) —g(wp)
=

@) O (w) = g'(wp) when w # wy.

Note that in view of the definition of derivative,

(8) lim &(w) =0.

w—wo

Hence @ is continuous at wyg.
Now expression (7) can be put in the form

©)) g(w) — g(wo) = [g'(wo) + P(W)I(w —wp)  (Jw —wo| < &),

which is valid even when w = wy; and since f'(zo) exists and f is therefore contin-
uous at zg, we can choose a positive number § such that the point f(z) lies in the &
neighborhood |w — wy| < & of wy if z lies in the § neighborhood |z — zo| < & of zp.
Thus it is legitimate to replace the variable w in equation (9) by f(z) when z is any
point in the neighborhood |z — zo| < 8. With that substitution, and with wy = f(z¢),
equation (9) becomes

(10) gLf @1 = glfzo)l _ (&1 zo)] + PLFEI) (@) — f(z0)

Z—20 Z—20
0 < |z —z0| < 9),

where we must stipulate that z # zo so that we are not dividing by zero. As already
noted, f is continuous at zo and ® is continuous at the point wy = f(z0). Hence the
composition @[ f(z)] is continuous at zg; and since ®(wg) = 0,

Zlgrzl0 S[f(2)]=0.

So equation (10) becomes equation (6) in the limit as z approaches zg.
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EXERCISES
1. Use definition (3), Sec. 19, to give a direct proof that
d
aw =2z when w=2z"
dz

2. Use results in Sec. 20 to find f'(z) when

(a) f(2) =32 =2z +4 b) f) = Q2 +i)%

-1 1 1 2\4
© [C) =57 (175—5); @ r@=" 2o

3. Using results in Sec. 20, show that

(a) apolynomial
P@) =ay+aiz+amz® + -+ a7 (a, #0)

of degree n (n > 1) is differentiable everywhere, with derivative

P/(Z) =a;+2az+--- +nanzn—l;

(b) the coefficients in the polynomial P(z) in part (a) can be written

PIO P’/O P(")O
ap=P0), a = (), a; = (), e, Gy = ()-
1! 2! n!

4. Suppose that f(z0) = g(zo) = 0 and that f’(zo) and g’(zo) exist, where g'(z) # 0. Use
definition (1), Sec. 19, of derivative to show that

im L@ _ 1 (z0)
m ——-

—ug(z)  g(z0)

5. Derive expression (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative of z" when n is a positive integer
by using
(a) mathematical induction and expression (4), Sec. 20, for the derivative of the product

of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).

7. Prove that expression (2), Sec. 20, for the derivative of z" remains valid when n is a
negative integer (n = —1, =2, ...), provided that z # 0.

Suggestion: Write m = —n and use the rule for the derivative of a quotient of two

functions.

8. Use the method in Example 2, Sec. 19, to show that f’(z) does not exist at any point
z when

(a) f(z) =Rez; (b) f(z) =Imz.
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9. Let f denote the function whose values are

=2

z°/z when z #0,
f@) = { / *

0 when z =0.

Show that if z = 0, then Aw/Az = 1 at each nonzero point on the real and imaginary
axes in the Az, or Ax Ay, plane. Then show that Aw/Az = —1 at each nonzero point
(Ax, Ax) ontheline Ay = Ax in that plane (Fig. 29). Conclude from these observations
that f”(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the Az plane. (Compare with
Exercise 5, Sec. 18, as well as Example 2, Sec. 19.)

Ay
©.4%) (Ax, Ax)
,Ay) ¢
0,0) (Ax, 0) Ax
FIGURE 29

10. With the aid of the binomial formula (13) in Sec. 3, point out why each of the functions

n

n!2n dzr

P,(z) = @Z-1" ®=0,1,2,..)

is a polynomial (Sec. 13) of degree n*. (We use the convention that the derivative of
order zero of a function is the function itself.)

21. CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of
the component functions u# and v of a function

(D f@) =ulx,y)+iv(x,y)

must satisfy at a point zop = (x¢, yo) When the derivative of f exists there. We also
show how to express f'(zo) in terms of those partial derivatives.
Starting with the assumption that f/(zo) exists, we write

20 = X0 +iyo, Az =Ax+iAy,

*These are called Legendre polynomials and are important in applied mathematics. See, for instance,
Chap. 10 of the authors’ book (2012), listed in the Bibliography.
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and
Aw = f(z0 + Az) — f(z0),

which is the same as

Aw =[u(xo + Ax, yo + Ay) +iv(xg + Ax, yo + Ay)] — [u(xo, Yo) + iv(x0, yo)].
This last equation enables us to write
2) Aw _ ulxo+ Ax, yo + éy) — u(xoYo) +i v(xo + Ax, yo + éy) — v(Xoy0)

Az Ax +iAy Ax +iAy

Now it is important to keep in mind that expression (2) remains valid as (Ax, Ay)
tends to (0, 0) in any manner that we may choose.

Horizontal approach

In particular, write Ay = 0 and let (Ax, 0) tend to (0, 0) horizontally. Then, in view
of Theorem 1 in Sec. 16, equation (2) tells us that

u(xo + Ax, yo) — u(xoyo) +ilim v(xo + Ax, yo) — v(xoY0)

li

o= Jim,

AXx Ax—0 Ax
That is,
(3) f'(z0) = ux(x0, yo) + i v (X0, Yo)-
Vertical approach

We might have set Ax = 0 in equation (2) and taken a vertical approach. In that case,
we find from Theorem 1 in Sec. 16 and equation (2) that
u(xo, yo + Ay) — u(xoyo) Y lim v(xo, Yo + Ay) — v(xoYo)

. li .
iAy Ay—0 iAy

’

, .
Z0) = lim
Sf'(zo) Aim
or, because 1/i = — i,

v(xo, yo + Ay) — v(xoyo) i lim u(xo, yo + Ay) — u(xoyo)
Ay Ay—0 Ay )

e = fim,
It now follows that

“4) f'(z0) = vy (x0, yo) — i uy(x0, yo),

where the partial derivatives of # and v are, this time, with respect to y. Note that
equation (4) can also be written in the form

5 f'(z0) = —iluy(xo, Yo) + ivy(xo, yo)1.

Expressions (3) and (4) not only give f”(zo) in terms of partial derivatives of the
component functions « and v but, in view of the uniqueness of limits (Sec. 15), they
also provide necessary conditions for the existence of f'(zg). To obtain those condi-
tions, we need only equate the real parts and then the imaginary parts in expressions
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(3) and (4) to see that the existence of f’(zo) requires that

(6) uy (X0, yo) = vy(x0, o) and  u,(xo, yo) = — vx (X0, Yo).

Equations (6) are the Cauchy—Riemann equations, so named in honor of the French
mathematician A. L. Cauchy (1789-1857), who discovered and used them, and in
honor of the German mathematician G. F. B. Riemann (1826-1866), who made them
fundamental in his development of the theory of functions of a complex variable.

We summarize the above results as follows.

Theorem. Suppose that
f@ =ulx,y) +ivix,y)

and that f'(z) exists at a point 7o = xo + iyo. Then the first-order partial derivatives
of u and v must exist at (xo, yo), and they must satisfy the Cauchy—Riemann equations

(7) Uy =Vy, Uy = —Uy
there. Also, f'(zo) can be written
(8) f/(ZO) = Uy +ivy,

where these partial derivatives are to be evaluated at (xg, yo).

22. EXAMPLES

Before we continue our discussion of the Cauchy—Riemann equations, we pause here
to illustrate their use and to motivate further discussion of them.

EXAMPLE 1. In Exercise 1, Sec. 20, we showed that the function
f(2) =722 =x* —y* +i2xy

is differentiable everywhere and that f'(z) = 2z. To verify that the Cauchy—Riemann
equations are satisfied everywhere, write

2

u(x,y)=x>—y> and wv(x,y) = 2xy.

Thus
Uy =2X =Vy, Uy=—2y=—0,.
Moreover, according to equation (8) in Sec. 21,
(@) =2x +i2y =2(x +iy) = 2z.
Since the Cauchy—Riemann equations are necessary conditions for the existence

of the derivative of a function f at a point z, they can often be used to locate points
at which f does not have a derivative.
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EXAMPLE 2. When f(z) = |z|?, we have
u(x,y) =x>+y> and wv(x,y) =0.

If the Cauchy—Riemann equations are to hold at a point (x, y), it follows that 2x = 0
and 2y = 0, or that x = y = 0. Consequently, f’(z) does not exist at any nonzero
point, as we already know from Example 3 in Sec. 19. Note that the theorem just
proved does not ensure the existence of f’(0). The theorem in the next section will,
however, do this.

In Example 2, we considered a function f (z) whose component functions u(x, y)
and v(x, y) satisfy the Cauchy—Riemann equations at the origin and whose derivative
f'(0) exists there. It is possible, however, to have a function f(z) whose component
functions satisfy the Cauchy—Riemann equations at the origin but whose derivative
f'(0) does not exist. This is illustrated in our next example.

EXAMPLE 3. If the function f(z) = u(x, y) + iv(x, y) is defined by means
of the equations

)
_ [ Z%/z whenz #0,

J@ = {0 when z = 0,

its real and imaginary components are [see Exercise 2(b), Sec. 14]
3 2

x> —3xy

3 2
y’ —3x%y
M(X,)’)=W and v(x,y) =

x2+y?
when (x, y) # (0, 0). Also, u(0, 0) = 0 and v(0, 0) = 0.

Because
1,0, 0) = Al)iglou(o—i_ Axi)i —u(0,0) _ Al)igloi_;c 1
and
0,(0,0) = AI;TOU(O’ 0+ AAy})] —v(0,0) _ Aljr_r}oi—i _ 1

we find that the first Cauchy—Riemann equation u, = v, is satisfied at z = 0. Likewise,
it is easy to show that u, = 0 = —v, when z = 0. But, as was shown in Exercise 9,
Sec. 20, f/(0) fails to exist.

23. SUFFICIENT CONDITIONS FOR
DIFFERENTIABILITY

As pointed out in Example 3, Sec. 22, satisfaction of the Cauchy—Riemann equations
at a point zo = (xo, Yo) is not sufficient to ensure the existence of the derivative of
a function f(z) at that point. But, with certain continuity conditions, we have the
following useful theorem.
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Theorem. Let the function

f@) =ulx,y)+iv(x,y)

be defined throughout some & neighborhood of a point 7o = xo + iyy, and suppose
that

(a) the first-order partial derivatives of the functions u and v with respect to x and y
exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (xg, yo) and satisfy the Cauchy—
Riemann equations

Uy =Vy, Uy = —TVy

at (xo, o),

Then f'(zo) exists, its value being
f'(z0) = ux +ivy

where the right-hand side is to be evaluated at (xg, yo).

To prove the theorem, we assume that conditions (a) and () in its hypothesis are
satisfied and write Az = Ax +iAy, where 0 < |Az| < ¢, as well as

Aw = f(zo + Az) — f(z0).

Thus
(1) Aw = Au +iAv,
where
Au = u(xo + Ax, yo + Ay) — u(xo, yo)
and

Av = v(xo + Ax, yo + Ay) — v(xg, Yo).

The assumption that the first-order partial derivatives of u and v are continuous at the
point (xg, yo) enables us to write*

() Au = u,(xo, yo) Ax + uy(xo, yo) Ay + €1 Ax + &2 Ay
and
3) Av = v (X0, Yo) Ax + vy (X0, yo) Ay + €3Ax + e4AYy,

*See, for instance, W. Kaplan, “Advanced Calculus,” 5th ed., pp. 86ff, 2003.



SEC. 23 SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY 67

where €1, &5, €3, and &4 tend to zero as (Ax, Ay) approaches (0, 0) in the Az plane.
Substitution of expressions (2) and (3) into equation (1) now tells us that
“4) Aw = uy(x0, Yo) Ax + uy(xo, yo)Ay + €1Ax + &,Ay
+ i[vy (x0, Yo) Ax + vy (x0, Yo) Ay + e3Ax + e4AY].
Because the Cauchy—Riemann equations are assumed to be satisfied at (xg, yo),

one can replace u, (xo, yo) by —v, (xo, yo) and v, (xo, yo) by u, (xo, yo) in equation (4)
and then divide through by the quantity Az = Ax + i Ay to get

Aw ) o Ax . Ay
@) —— = u, (X0, yo) + vy (X0, Yo) + (61 +ie3)— + (&2 +icy) —.

Az Az Az
But |[Ax| < |Az| and |Ay| < |Az|, according to inequalities (3) in Sec. 4, and so

A A
’—x <1 and |2 <1
Az z

Consequently,

. Ax .
(&1 -1-183)A—Z < ler +ies] < ler] + |es

and

. Ay .
(&2 +l84)AZ‘ < |ea +ies] < |eo] + |esl;

and this means that the last two terms on the right in equation (5) tend to zero as the
variable Az = Ax + i Ay approaches zero. The expression for f”(zo) in the statement
of the theorem is now established.
EXAMPLE 1. Consider the function
f(z) =e"e” =e“cosy+iesiny,

where z = x 4+ iy and y is to be taken in radians when cos y and sin y are evaluated.
Here

u(x,y) =e*cosy and v(x,y)=e"siny.

Since u, = vy and u, = —v, everywhere and since these derivatives are everywhere
continuous, the conditions in the above theorem are satisfied at all points in the complex
plane. Thus f”(z) exists everywhere, and

(@) =u, +iv, =e“cosy+ie'siny.
Note that f/(z) = f(z) for all z.
EXAMPLE 2. It also follows from our theorem that the function f(z) = |z|2,
whose components are

u(x,y):)cz—i—y2 and v(x,y) =0,
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has a derivative at z = 0. In fact, f'(0) = 0 4+ i0 = 0. We saw in Example 2,
Sec. 22, that this function cannot have a derivative at any nonzero point since the
Cauchy—Riemann equations are not satisfied at such points. (See also Example 3,
Sec. 19.)

EXAMPLE 3. When using the theorem in this section to find a derivative at a
point zo, one must be careful not to use the expression for f'(z) in the statement of the
theorem before the existence of f'(z) at zg is established.

Consider, for instance, the function

f@=x+i -y’

Here
u(x,y) =x> and v(x,y) = (1 -y,
and it would be a mistake to say that f'(z) exists everywhere and that
(6) f'(z) = uy +ivy = 3x°.
To see this, we observe that the first Cauchy—Riemann equation u, = v, can hold

only if
@) X4 (1-y)P=0

and that the second equation u, = —uv;, is always satisfied. Condition (7) thus tells us
that f/(z) can exist only when x = 0 and y = 1. In view of equation (6), then, our
theorem tells us that f'(z) exists only when z = i, in which case f'(i) = 0.

24. POLAR COORDINATES
Assuming that zy # 0, we shall in this section use the coordinate transformation
() x =rcosf, y=rsinf

to restate the theorem in Sec. 23 in polar coordinates.
Depending on whether we write

z=x-+1iy or z=re’ (z #0)

when w = f(z), the real and imaginary components of w = u + iv are expressed in
terms of either the variables x and y or r and 6. Suppose that the first-order partial
derivatives of u and v with respect to x and y exist everywhere in some neighborhood
of a given nonzero point zy and are continuous at z. The first-order partial derivatives
of u and v with respect to r and 6 also have those properties, and the chain rule for
differentiating real-valued functions of two real variables can be used to write them in
terms of the ones with respect to x and y. More precisely, since

ou  Jdu dx  Jdu Ay du  Ou dx  du dy

ar oxor Tayor 90 ox 00 | oy 90’
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one can write

2) U =1u,Ccos0 +uy,sin€, wug=—u,rsinf +u,rcoso.
Likewise,
3) Vp =V, €080 +vy,sinf, vy = —v,7sin6 + v, rcosb.

If the partial derivatives of u# and v with respect to x and y also satisfy the
Cauchy—Riemann equations

4 Uy =Vy, Uy = —Vy

at zo, equations (3) become

%) Uy = —uyCcosO +u,sinf, vy =u,rsind 4 u, rcosd
at that point. It is then clear from equations (2) and (5) that

(6) ruy =vp, Up= —TV

at zp.

If, on the other hand, equations (6) are known to hold at z, it is straightforward
to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore,
an alternative form of the Cauchy—Riemann equations (4).

In view of equations (6) and the expression for f'(zg) that is found in Exercise 8,
we are now able to restate the theorem in Sec. 23 using r and 6.

Theorem. Let the function
f@@) =u(,0)+iv(r,0)

be defined throughout some ¢ neighborhood of a nonzero point zo = ro exp(i6y), and
suppose that

(a) the first-order partial derivatives of the functions u and v with respect to r and 0
exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (ry, 6y) and satisfy the polar form

ru, =vg, Ug=—Trv,
of the Cauchy—Riemann equations at (rg, 6p).
Then f'(zg) exists, its value being
f'(z0) = e (u, +iv,),

where the right-hand side is to be evaluated at (rg, 6)).

EXAMPLE 1. If

()_1_ ! _l—ize_l( 20 — i sin26)
fz T2 (reif): g2 T2 cos 1810 26),
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where z # 0, the component functions are

cos 26 sin 260
u= 5 and v=-— -
r r
Since
2cos 20 2sin 26
ru, = — 5 = Vg, Ug = — S =Ty,
r r

and since the other conditions in the theorem are satisfied at every nonzero point

7z = re'?, the derivative of f exists when z # 0. Moreover, according to the theorem,

, o[ 2c0s20  2sin20 e ¥ 2 2
fi(z) =e — +1i 3 = —2e

73 e

3 (rei®3 3

EXAMPLE 2. The theorem can be used to show that any branch
f@=re?? (>0 a<6<a+2r)
of the square root function z'/2 has a derivative everywhere in its domain of definition.

Here 0 )
u(r, 0) = /r cos 3 and v(r, 6) = /7 sin X

Inasmuch as

Vroo 0 Vrooo

ru, = — coS— =1vy and uy=—— sin— = —rv,
2 2 2 2

and since the remaining conditions in the theorem are satisfied, the derivative f’(z)
exists at each point where f(z) is defined. The theorem also tells us that

0 0 >
2Jr f
and this reduces to

—i6 o .. 0\ 1 1
() = 2\/_ (cos§+131n—)_ =

2) T2 T 25 )
EXERCISES
1. Use the theorem in Sec. 21 to show that f’(z) does not exist at any point if
(@) f(@)=7; b) f(2)=2-71;
(© f(@)=2x+ixy% @) f(z)=e"e™.

2. Use the theorem in Sec. 23 to show that f'(z) and its derivative f”(z) exist everywhere,
and find f”(z) when

(a) f(z) =iz +2; B) f(z) = eFe™;
(0 f@)=2% (d) f(z) =cosxcoshy —isinxsinhy.

Ans. (b) f"(2) = f(2); (@) f"(2) = —f(2).
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3. From results obtained in Secs. 21 and 23, determine where f”(z) exists and find its value
when

(@) fz)=1/z; (b) f(2) =x2+iy%: (¢) f(z) =zImz.

Ans. (@) f'(2) = =1/22 ( #0);  (b) f'(x +ix) =2x; (¢) f'(0) =0.

4. Use the theorem in Sec. 24 to show that each of these functions is differentiable in the
indicated domain of definition, and also to find f'(z):

(@) f)=1/z" (2#0);
b fG)=ecos(Inr) +ie?sin(nr) (r>0,0<06 <2m).
f(@

Ans. () f'(2) =i ==

5. Solve equations (2), Sec. 24 for u, and u, to show that

sin 6 . cos 6
Uy = U, COSO —ug ——, Uy =u,sin6 + uy
r

Then use these equations and similar ones for v, and v, to show thatin Sec. 24 equations (4)
are satisfied at a point z if equations (6) are satisfied there. Thus complete the verification
that equations (6), Sec. 24, are the Cauchy—Riemann equations in polar form.

6. Letafunction f(z) = u+iv be differentiable at a nonzero point zg = rp exp(i6p). Use the
expressions for u, and v, found in Exercise 5, together with the polar form (6), Sec. 24,
of the Cauchy—Riemann equations, to rewrite the expression

f/(ZO) =uy+ ivx

in Sec. 23 as

f'@o) = e (u, +iv,),
where u, and v, are to be evaluated at (rg, 6)).

7. (a) With the aid of the polar form (6), Sec. 24, of the Cauchy—Riemann equations, derive
the alternative form

£/@0) = —(ug + ivg)
20

of the expression for f'(zo) found in Exercise 6.
(b) Use the expression for f’(zo) in part (a) to show that the derivative of the function
f(z) = 1/z (z # 0) in Exercise 3(a) is f'(z) = —1/z%.
8. (a) Recall (Sec. 6) that if z = x + iy, then

4z and -z
-2 Y

By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression

oF OF 8x+8F ay 1 (8F ,aF)

— =t — ==z |—+i— .

0z ox dz dy dz 2 \ ox ay

X
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(b) Define the operator

ad 1 ( 0 L ad )
— = —+i=],
a0z 2\ ox dy
suggested by part (a), to show that if the first-order partial derivatives of the real and
imaginary components of a function f(z) = u(x, y) + iv(x, y) satisfy the Cauchy—
Riemann equations, then
af 1 .
Frin 5[(“}( —vy) +i(vx +uy)] =0.

Thus derive the complex form df/37 = 0 of the Cauchy-Riemann equations.

25. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic in an open set S if it has a derivative everywhere in
that set. It is analytic at a point z if it is analytic in some neighborhood of z.*

Note how it follows that if f is analytic at a point zq, it must be analytic at each
point in some neighborhood of zj. If we should speak of a function that is analytic
in a set S that is not open, it is to be understood that f is analytic in an open set
containing S.

An entire function is a function that is analytic at each point in the entire plane.

EXAMPLES. The function f(z) = 1/z is analytic at each nonzero point in the
finite plane since its derivative f’(z) = —1/z> exists at such a point. But the function
f(z) = |z|? is not analytic anywhere since its derivative exists only at z = 0 and not
throughout any neighborhood. (See Example 3, Sec. 19.) Finally, since the derivative of
a polynomial exists everywhere, it follows that every polynomial is an entire function.

A necessary, but by no means sufficient, condition for a function to be analytic
in a domain D is clearly the continuity of f throughout D. (See the statement in
italics near the end of Sec. 19.) Satisfaction of the Cauchy—Riemann equations is also
necessary, but not sufficient. Sufficient conditions for analyticity in D are provided by
the theorems in Secs. 23 and 24.

Other useful sufficient conditions are obtained from the rules for differentiation
in Sec. 20. The derivatives of the sum and product of two functions exist wherever the
functions themselves have derivatives. Thus, if two functions are analytic in a domain
D, their sum and their product are both analytic in D. Similarly, their quotient is
analytic in D provided the function in the denominator does not vanish at any point in
D. In particular, the quotient P (z)/Q(z) of two polynomials is analytic in any domain
throughout which Q(z) # 0.

*The terms regular and holomorphic are also used in the literature to denote analyticity.



SEC. 25 ANALYTIC FUNCTIONS 73

From the chain rule for the derivative of a composite function, we find that
a composition of two analytic functions is analytic. More precisely, suppose that a
function f(z) is analytic in a domain D and that the image (Sec. 13) of D under the
transformation w = f(z) is contained in the domain of definition of a function g(w).
Then the composition g[ f(z)] is analytic in D, with derivative

d
d—g[f(z)] =g f@1f'(2).
Z

The following property of analytic functions is especially useful, in addition to
being expected.

Theorem. If f'(z) = 0 everywhere in a domain D, then f(z) must be constant
throughout D.

We start the proof by writing f(z) = u(x, y)+iv(x, y). Assuming that f'(z) =0
in D, we note that u, + iv, = 0; and, in view of the Cauchy—Riemann equations,
v, —iu, = 0. Consequently,

Uy =u,=0 and v, =v,=0
y y

at each pointin D.

Next, we show that u(x, y) is constant along any line segment L extending from
a point P to a point P’ and lying entirely in D. We let s denote the distance along L
from the point P and let U denote the unit vector along L in the direction of increasing
s (see Fig. 30). We know from calculus that the directional derivative du/ds can be
written as the dot product

d
(D) a_ (grad u) - U,
ds

where grad u is the gradient vector
(2) gradu = ud—+u,j.

Because u, and u, are zero everywhere in D, grad u is evidently the zero vector at
all points on L. Hence it follows from equation (1) that the derivative du/ds is zero
along L; and this means that « is constant on L.

o X FIGURE 30
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Finally, since there is always a finite number of such line segments, joined end
to end, connecting any two points P and Q in D (Sec. 12), the values of «# at P and
Q must be the same. We may conclude, then, that there is a real constant a such that
u(x, y) = a throughout D. Similarly, v(x, y) = b; and we find that f(z) = a + bi at
each point in D. That is, f(z) = ¢ where c is the constant ¢ = a + bi.

If a function f fails to be analytic at a point zo but is analytic at some point in
every neighborhood of zy, then zy is called a singular point, or singularity, of f. The
point z = 0 is evidently a singular point of the function f(z) = 1/z. The function
f(z) = |z|%, on the other hand, has no singular points since it is nowhere analytic.
Singular points will play an important role in our development of complex analysis in
chapters to follow.

26. FURTHER EXAMPLES

As pointed out in Sec. 25, it is often possible to determine where a given function f(z)
is analytic by simply recalling various differentiation rules in Sec. 20.

EXAMPLE 1. The quotient

2
= +3
f@)= ——F
(z+ D" +53)
is evidently analytic throughout the z plane except for the singular points z = —1 and

7= :I:\/g i. The analyticity is due to the existence of familiar differentiation rules,
which need to be applied only if an expression for f’(z) is actually wanted.

When a function is given in terms of its component functions «# and v, its analyt-
icity can be determined by direct application of the Cauchy—Riemann equations.

EXAMPLE 2. If f(z) = sinx coshy + i cos x sinh y, the component functions
are

u(x,y) =sinxcoshy and wv(x,y) = cosxsinhy.

Because

uy, =cosxcoshy =v, and wu, =sinxsinhy =—v,

everywhere, it is clear from the theorem in Sec. 23 that f is entire. In fact, according
to that theorem,

(1) f'(z) = u, +iv, = cosxcoshy —isinxsinhy.
It is straightforward to show that f’(z) is also entire by writing expression (1) as

ff@=Ux,y)+iV(x,y)



SEC. 26 FURTHER EXAMPLES 75

where
U(x,y)=cosxcoshy and V(x,y)= —sinxsinhy.
For then
U, = —sinxcoshy=V, and U, =cosxsinhy=—1V,.
Furthermore,

f"(z2) =U,+iV, = —(sinxcoshy +icosxsinhy) = — f(z).

The next two examples serve to illustrate how the Cauchy—Riemann equations
can be used to obtain various properties of analytic functions.

EXAMPLE 3. Suppose that a function f(z) = u(x,y) + iv(x,y) and its
conjugate f(z) = u(x,y) — iv(x, y) are both analytic in a domain D. Let us show
that f(z) must, then, be constant throughout D.

To do this, we write f(z) = U(x, y) + V(x, y) where

2 Ux,y)=u(x,y) and V(x,y)=—v(x,y).
Because of the analyticity of f(z), the Cauchy—Riemann equations
3) Uy =Vy, Uy = —Uy

hold in D; and the analyticity of f(z) in D tells us that

4) u,=Vv,, U,=-V,.

In view of relations (2), equations (4) can also be written

(®)) Uy = —Vy, Uy = Uy

By adding corresponding sides of the first of equations (3) and (5), we find that
u, = 0in D. Similarly, subtraction involving corresponding sides of the second of
equations (3) and (5) reveals that v, = 0. According to expression (8) in Sec. 25, then,

F(2) =ty +ivy = 0+i0 = 0;

and it follows from the theorem in Sec. 25 that f(z) is constant throughout D.

EXAMPLE 4. As in Example 3, we consider a function f that is analytic
throughout a given domain D. Assuming further that the modulus | f(z)| is constant
throughout D, one can prove that f (z) must be constant there too. This result is needed
to obtain an important result later on in Chap. 4 (Sec. 59).

The proof is accomplished by writing

(6) |f(z)] =c forallzin D,
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where c is a real constant. If ¢ = 0, it follows that f(z) = 0 everywhere in D. If
¢ # 0, the property zZ = |z|? of complex numbers tells us that

f@f@=c#0
and hence that f(z) is never zero in D. So

2

f2) = % for all zin D,

and it follows from this that f(z) is analytic everywhere in D. The main result in
Example 3 just above thus ensures that f(z) is constant throughout D.

EXERCISES

1. Apply the theorem in Sec. 23 to verify that each of these functions is entire:
(@) f(2)=3x+y+iQBy—x); (b) f(z) = coshxcosy + isinhxsiny;
(¢) f(z) =eVsinx —ie ¥ cosx; @) f(2) = (2 —2e e ™™,

2. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere
analytic:

(@) f(z)=xy+iy; (b) f@)=2xy+i(x*—y?);
(¢) f(z) =ee™.

3. State why a composition of two entire functions is entire. Also, state why any linear

combination c| fi(z) + ¢ f2(z) of two entire functions, where ¢; and ¢, are complex
constants, is entire.

4. In each case, determine the singular points of the function and state why the function is
analytic everywhere else:

241 Si

(a) f(Z)_Z(Z2+1), (b) f(Z):Z2_3Z+2’
241

© f@)= s

Z+2)(E*+22+2)
Ans.(a) z=0,%£i; (b)z=1,2; (¢)z=-2,—1=i.
5. According to Example 2, Sec. 24, the function
g(z) = /rel?? r>0,-m7<0<m)
is analytic in its domain of definition, with derivative

b 1
g = YIS
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Show that the composite function G(z) = g(2z — 2 4 i) is analytic in the half plane
x > 1, with derivative

1
gz —2+1i)
Suggestion: Observe that Re(2z — 2 +1i) > 0 when x > 1.

G'(z) =

6. Use results in Sec. 24 to verify that the function
gix)=Inr +i6 (r>0,0<6 <2m)

is analytic in the indicated domain of definition, with derivative g’(z) = 1/z. Then show
that the composite function G(z) = g(z> + 1) is analytic in the quadrant x > 0,y > 0,
with derivative

2z
241
Suggestion: Observe that Im(z> + 1) > O when x > 0, y > 0.

G'() =

7. Let a function f be analytic everywhere in a domain D. Prove that if f(z) is real-valued
for all z in D, then f(z) must be constant throughout D.

27. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in
a given domain of the xy plane if, throughout that domain, it has continuous partial
derivatives of the first and second order and satisfies the partial differential equation

(1) Hy(x,y) + Hyy(x,y) =0,

known as Laplace’s equation.

Harmonic functions play an important role in applied mathematics. For
example, the temperatures 7 (x, y) in thin plates lying in the xy plane are often har-
monic. A function V (x, y) is harmonic when it denotes an electrostatic potential that
varies only with x and y in the interior of a region of three-dimensional space that is
free of charges.

EXAMPLE 1. It is easy to verify that the function 7'(x, y) = ¢~ sinx is har-
monic in any domain of the xy plane and, in particular, in the semi-infinite vertical
strip 0 < x < m, y > 0. It also assumes the values on the edges of the strip that are
indicated in Fig. 31. More precisely, it satisfies all of the conditions

Txx(-x7 y) + Tyy(x’ )’) = 07
r©0,y)=0, T(m,y) =0,
T(x,0)=sinx, lim T(x,y)=0,

y—>00

which describe steady temperatures 7 (x, y) in a thin homogeneous plate in the xy
plane that has no heat sources or sinks and is insulated except for the stated conditions
along the edges.
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(0] T=sinx

FIGURE 31

The use of the theory of functions of a complex variable in discovering solutions,
such as the one in Example 1, of temperature and other problems is described in
considerable detail later on in Chap. 10 and in parts of chapters following it.* That
theory is based on the theorem below, which provides a source of harmonic functions.

Theorem. If a function f(z) = u(x,y) + iv(x,y) is analytic in a domain D,
then its component functions u and v are harmonic in D.

To show this, we need a result that is to be proved in Chap. 4 (Sec. 57). Namely,
if a function of a complex variable is analytic at a point, then its real and imaginary
components have continuous partial derivatives of all orders at that point.

Assuming that f is analytic in D, we start with the observation that the first-
order partial derivatives of its component functions must satisfy the Cauchy—Riemann
equations throughout D:

2 Uy =Vy, Uy = —Uy.

Differentiating both sides of these equations with respect to x, we have
3) Uxx = Vyx, Uyx = —Ux.

Likewise, differentiation with respect to y yields

4) Uyy = Vyy, Uyy = —Uxy.

Now, by a theorem in advanced calculus,’ the continuity of the partial derivatives of
u and v ensures that u,, = u,, and vy, = v,,. It then follows from equations (3) and
(4) that

Uyx +uyy =0 and vy, + vy, =0.

That is, u and v are harmonic in D.

*Another important method is developed in the authors’ “Fourier Series and Boundary Value Problems,’
8th ed., 2012.

See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 199-201, 1983.
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EXAMPLE 2. The function f(z) = ¢ sinx —ie™” cos x is entire, as is shown
in Exercise 1(c), Sec. 26. Hence its real component, which is the temperature function
T (x,y) = e~ sinx in Example 1, must be harmonic in every domain of the xy plane.

EXAMPLE 3. Since the function f(z) = 1/z? is analytic at every nonzero
point z and since

11 72 _ 72 _ 72 _ (x2 = y%) —i2xy
22 22 2 (2D |2 @P4y»)r
the two functions
2 2
X —y 2xy
ux,y) = ——— and v(x,y) =——7—"-—
(x,y) SR (x,y) @2+ y2)2

are harmonic throughout any domain in the xy plane that does not contain the origin.

Further discussion of harmonic functions related to the theory of functions of a
complex variable appears in Chaps. 9 and 10, where they are needed in solving physical
problems, such as in Example 1 here.

EXERCISES

1. Let the function f(z) = u(r,0) + iv(r,0) be analytic in a domain D that does not
include the origin. Using the Cauchy—Riemann equations in polar coordinates (Sec. 24)
and assuming continuity of partial derivatives, show that throughout D the function u(r, )
satisfies the partial differential equation

721, (r, 0) 4 ru, (r, 0) + ugg (r, ) = 0,

which is the polar form of Laplace’s equation. Show that the same is true of the function
o(r, 0).

2. Let the function f(z) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the
families of level curves u(x,y) = c¢; and v(x,y) = ¢y, where ¢ and ¢, are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
z0 = (xp, Yo) is a point in D which is common to two particular curves u(x,y) = ¢
and v(x, y) = ¢; and if f'(zg) # O, then the lines tangent to those curves at (xg, yo) are
perpendicular.

Suggestion: Note how it follows from the pair of equations u(x,y) = ¢; and
v(x, y) = c; that

du  dudy dv dvdy

i T =0 d —+— =0.
8x+3y dx an 8x+8y dx

3. Show that when f(z) = z2, the level curves u(x,y) = ¢; and v(x,y) = ¢, of the
component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality
of the two families, described in Exercise 2. Observe that the curves u(x, y) = 0 and
v(x, y) = 0 intersect at the origin but are not, however, orthogonal to each other. Why is
this fact in agreement with the result in Exercise 2?7
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FIGURE 32
4. Sketch the families of level curves of the component functions u and v when
f(z) = 1/z, and note the orthogonality described in Exercise 2.
5. Do Exercise 4 using polar coordinates.
6. Sketch the families of level curves of the component functions # and v when
z—1
)= —"7,
1@ z+1

and note how the result in Exercise 2 is illustrated here.

28. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an analytic
function in a domain D are affected by its values in a subdomain of D or on a line
segment lying in D. While these sections are of considerable theoretical interest, they
are not central to our development of analytic functions in later chapters. The reader
may pass directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that

(a) afunction f is analytic throughout a domain D;

(b) f(z) =0 ateach point z of a domain or line segment contained in D.
Then f(z) = 0in D; that is, f(z) is identically equal to zero throughout D.

To prove this lemma, we let f be as stated in its hypothesis and let zo be any point
of the subdomain or line segment where f(z) = 0. Since D is a connected open set
(Sec. 12), there is a polygonal line L, consisting of a finite number of line segments
joined end to end and lying entirely in D, that extends from zy to any other point P in
D. We let d be the shortest distance from points on L to the boundary of D, unless D
is the entire plane; in that case, d may be any positive number. We then form a finite
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sequence of points
205215225 «++52n—152n
along L, where the point z, coincides with P (Fig. 33) and where each point is
sufficiently close to adjacent ones that
|z — zk—1] < d (k=1,2,...,n).
Finally, we construct a finite sequence of neighborhoods
No, N1, Na, ..., Ny_1, Ny,

where each neighborhood N, is centered at z; and has radius d. Note that these
neighborhoods are all contained in D and that the center z; of any neighborhood N;
(k=1,2,...,n) lies in the preceding neighborhood Nj_;.

= ~ S~ —

P i TN > IV/ yad RN
- N ~N N _ N
// N, \\N, N Ny ™\ L An=1/""N, \
\ I
/ \ \ ] P \
l | ! Zy_ |
| % <) ) / VoA Iz, /
\ / / NI /
/ / ’
\\ // Pl \\\\\ P
N S - TS _ -
~o__ <" FIGURE 33

At this point, we need to use a result that is proved later on in Chap. 6. Namely,
Theorem 3 in Sec. 82 tells us that since f is analytic in Ny and since f(z) = O in a
domain or on a line segment containing z, then f(z) = 0 in Ny. But the point z; lies
in Ny. Hence a second application of the same theorem reveals that f(z) = 0 in Ny;
and, by continuing in this manner, we arrive at the fact that f(z) = 01in N,. Since N,
is centered at the point P and since P was arbitrarily selected in D, we may conclude
that f(z) = 0in D. This completes the proof of the lemma.

Suppose now that two functions f and g are analytic in the same domain D and
that f(z) = g(z) at each point z of some domain or line segment contained in D. The
difference

h(z) = f(2) — g(2)
isalso analyticin D, and i (z) = 0 throughout the subdomain or along the line segment.
According to the lemma, then, 4(z) = 0 throughout D; that is, f(z) = g(z) at each
point in D. We thus arrive at the following important theorem.

Theorem. A function that is analytic in a domain D is uniquely determined over
D by its values in a domain, or along a line segment, contained in D.

A more general result, sometimes called the coincidence principle, is straight-
forward to prove. Namely, if two functions f and g are analytic in the same domain D
and if f(z) = g(z) on a subset of D that has a limit point 7 in D, then f(z) = g(z)
everywhere in D.* We do not, however, have need for such a generalization.

*See, for example, pp. 5657 of the book by Boas, pp. 142—144 of the book by Silverman, or pp. 369-370
in Vol. I of the book by Markushevich, all of which are listed in Appendix 1.
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The theorem just proved is useful in studying the question of extending the domain
of definition of an analytic function. More precisely, given two domains D; and D,
consider the intersection Dy N D,, consisting of all points that lie in both D; and D;.
If D} and D, have points in common (see Fig. 34) and a function fj is analytic in D,
there may exist a function f,, which is analytic in D,, such that f>(z) = f;(z) for each
z in the intersection Dy N D,. If so, we call f, an analytic continuation of f| into the
second domain D;.

-

Ve N
—— N
a8 N \\
N
S\ DD, ) N
’ - \
// -~ \\
/Dy SN D, \
// . N \\
/ ”/'{_—“*‘3 \
/ 7, V\\\ \
/s ~
[ s D \ \ |
\ (// 3 \\ \ /
- < /
S~ _____ 7= FIGURE 34

Whenever that analytic continuation exists, it is unique, according to the
theorem just proved. That is, not more than one function can be analytic in D, and
assume the value f7(z) at each point z of the domain D; N D; interior to D,. However,
if there is an analytic continuation f3 of f, from D, into a domain D3 which intersects
Dy, as indicated in Fig. 34, it is not necessarily true that f3(z) = f(z) for each z in
D, N Ds. Exercise 2, Sec. 29, illustrates this.

If f; is the analytic continuation of f; from a domain D; into a domain D,, then
the function F defined by means of the equations

[ fi(z) whenzisin Dy,
F@)= {fz(z) when z is in D,

is analytic in the union D; U D,, which is the domain consisting of all points that lie
in either Dy or D,. The function F is the analytic continuation into D U D, of either
fior fr;and f; and f, are called elements of F.

29. REFLECTION PRINCIPLE

The theorem in this section concerns the fact that some analytic functions possess the
property that f(z) = f(z) for all points z in certain domains, while others do not. We
note, for example, that the functions z + 1 and z> have that property when D is the
entire finite plane; but the same is not true of z + i and iz>. The theorem here, which
is known as the reflection principle, provides a way of predicting when f(z) = f(2).

Theorem. Suppose thatafunction f is analytic in some domain D which contains
a segment of the x axis and whose lower half is the reflection of the upper half with
respect to that axis. Then

6] f@=rf®
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for each point z in the domain if and only if f(x) is real for each point x on the
segment.

We start the proof by assuming that f(x) is real at each point x on the segment.
Once we show that the function

2) F(2)=f@

is analytic in D, we shall use it to obtain equation (1). To establish the analyticity of
F(z), we write

f@) =ulx,y)+ivix,y), F@=U(,y)+iV(x,y)

and observe how it follows from equation (2) that since

3) F@ =ux, —y) —iv(x, -y),

the components of F(z) and f(z) are related by the equations

“4) Ux,y)=u(x,t) and V(x,y) = —v(x,1),

where t = —y. Now, because f (x 4 it) is an analytic function of x + i, the first-order

partial derivatives of the functions u(x, t) and v(x, t) are continuous throughout D
and satisfy the Cauchy—Riemann equations*

(5) Uy =V, Uy = —Uy.

Furthermore, in view of equations (4),

Ux:’/lxs Vv:_vtﬂzvt;
) dy
and it follows from these and the first of equations (5) that U, = V,,. Similarly,
U,=u ﬂ = —u Vi = —vy;
y t dy ts X X
and the second of equations (5) tells us that U, = —V,. Inasmuch as the first-order

partial derivatives of U(x, y) and V(x, y) are now shown to satisfy the Cauchy-
Riemann equations and since those derivatives are continuous, we find that the function
F(z) is analytic in D. Moreover, since f(x) is real on the segment of the real axis
lying in D, we know that v(x, 0) = 0 on the segment; and, in view of equations (4),
this means that

FxX)=Ux,00+iV(x,0) =u(x,0) —iv(x,0) = u(x,0).
That is,
(6) F(z) = f(2)

*See the paragraph immediately following Theorem 1 in Sec. 26.
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at each point on the segment. According to the theorem in Sec. 28, which tells us that
an analytic function defined on a domain D is uniquely determined by its values along
any line segment lying in D, it follows that equation (6) actually holds throughout D.
Because of definition (2) of the function F(z), then,

) f@ = f@;

and this is the same as equation (1).
To prove the converse in the theorem, we assume that equation (1) holds and note
that in view of expression (3), the form (7) of equation (1) can be written

u(x, —y) —iv(x, —y) = u(x, y) +iv(x, y).
In particular, if (x, 0) is a point on the segment of the real axis that lies in D,
u(x,0) —iv(x,0) =u(x,0)+iv(x,0);

and, by equating imaginary parts here, we see that v(x, 0) = 0. Hence f(x) is real on
the segment of the real axis lying in D.

EXAMPLES. Just prior to the statement of the theorem, we noted that
z+1=z+1 and 22=7°

for all z in the finite plane. The theorem tells us, of course, that this is true, since x + 1
and x? are real when x is real. We also noted that z+i and i z> do not have the reflection
property throughout the plane, and we now know that this is because x + i and i x> are
not real when x is real.

EXERCISES

1. Use the theorem in Sec. 28 to show that if f(z) is analytic and not constant throughout a
domain D, then it cannot be constant throughout any neighborhood lying in D.
Suggestion: Suppose that f(z) does have a constant value wy throughout some
neighborhood in D.

2. Starting with the function
fi(z) = re? (r>0,0<6<m)

and referring to Example 2, Sec. 24, point out why

H(@) = \/761'9/2 (r >0, % <0 < 27r>

is an analytic continuation of f; across the negative real axis into the lower half plane.
Then show that the function

. 5
f3(z) = re'?? <r>0,7r <9<7n>

is an analytic continuation of f, across the positive real axis into the first quadrant but
that f3(z) = — f1(z) there.
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3. State why the function
fa(2) = \/;em/z (r>0,—m<6<m

is the analytic continuation of the function f;(z) in Exercise 2 across the positive real axis
into the lower half plane.

4. We know from Example 1, Sec. 23, that the function
f(@) =e*cosy+ie siny

has a derivative everywhere in the finite plane. Point out how it follows from the reflection
principle (Sec. 29) that

f@)=fQ®
for each z. Then verify this directly.

5. Show that if the condition that f(x) is real in the reflection principle (Sec. 29) is replaced
by the condition that f(x) is pure imaginary, then equation (1) in the statement of the
principle is changed to

f@=-f@.
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CHAPTER

3

ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define corre-
sponding functions of a complex variable. To be specific, we define analytic functions
of a complex variable z that reduce to the elementary functions in calculus when
z = x 4 i0. We start by defining the complex exponential function and then use it to
develop the others.

30. THE EXPONENTIAL FUNCTION

The exponential function can be defined by writing

(1) e =ee”  (z=x+iy),
where Euler’s formula (see Sec. 7)

) eV =cosy+isiny

is used and y is to be taken in radians. We see from this definition that e* reduces to
the usual exponential function in calculus when y = 0; and, following the convention
used in calculus, we often write exp z for e*.

Note that since the positive nth root /e of e is assigned to ¢* when x = 1/n
(n=2,3,...), expression (1) tells us that the complex exponential function e* is also
e when z = 1/n (n = 2,3,...). This is an exception to the convention (Sec. 10)
that would ordinarily require us to interpret e!/” as the set of nth roots of e.

87
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Note, too, that when definition (1) is written in the form

Z

et = pe'? where p=c" and¢p =y,

it becomes clear that

3) le*] = e” and arg(e®) =y +2nmr (n=0,£1,+2,...).
Moreover, since e* is never zero,

“) et #0 for any complex number z.

In addition to property (4), there are a number of other properties that carry over from
e* to e, and we mention a few of them here.

According to definition (1), e*e’”” = e**%; and this is consistent with the additive
property e*le®? = ¢*1™2 of the exponential function in calculus. The extension

(5) et = ezl+zz
to complex analysis is easy to verify. To do this, we write
z1=x14+iy; and zp =x; +iys.

Then

efle? = (eMeM)(ee?) = (eMe™) (e e™).
But x; and x, are both real, and we know from Sec. 8 that

eVieiy — piity2)
Hence
eYe? = e(x1+x2)ei(}‘1+yz);

and, since

(X1 +x2) +i(y1 +y2) = (x1 +iy1) + (x2 +iy2) =21 + 20,

the right-hand side of this last equation becomes e 22, Property (5) is now established.
Observe how property (5) enables us to write ¢! ~*2¢*2 = ¢!, or

eZl
T Ju-n
(6) = e .
From this and the fact that ¢® = 1, it follows that 1 /et =e %,
There are a number of other important properties of e* that are expected. Accord-
ing to Example 1 in Sec. 23, for instance,

@) 4 g g
—e =e¢
dz

everywhere in the z plane. Note that the differentiability of e® for all z tells us that
e* is entire (Sec. 25).
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Some properties of e* are, on the other hand, not expected. For example, since

ez+2m — ezeZJTl 2mi — 1’

and e
we find that e is periodic, with a pure imaginary period of 27i:
(8) ez+27ri = ¢%.

For another property of e* that e* does not have, we note that while e* is always
positive, e* can be negative. We recall (Sec. 6), for instance, that ¢’ = —1. In fact,

ei(2n+1)7r — ei2n7'[+i7'[ — ei2n7rei7'[ — (1)(_1) —— (n — O, Zl:l, :l:z’ . )

There are, moreover, values of z such that e* is any given nonzero complex number.
This is shown in the next section, where the logarithmic function is developed, and is
illustrated in the following example.

EXAMPLE. In order to find numbers z = x + iy such that
) ¢ =1+/3i,
we write equation (9) as
eelV =2 eim/3

Then, in view of the statement in italics at the beginning of Sec. 10, regarding the
equality of two nonzero complex numbers in exponential form,

¢ =2 and y:%—i—Znn (n=0,41,42...).
Because In(e¥) = x, it follows that

x=In2 and y=%—|—2nn (n=0,+1,42,..):

and so
(10) z=1n2+(2n—|—%)m’ (n=0,+£1,%£2,...).
EXERCISES
1. Show that
. ) 24 mi e .
(a) exp(2 £37mi) = —e7; (b) exp( 1 ) = \/;(1 +1);

(c) exp(z +mi) = —expz.
2. State why the function f(z) = 27> — 3 — ze® + e 7 is entire.

3. Use the Cauchy—Riemann equations and the theorem in Sec. 21 to show that the function
f(z) = expZz is not analytic anywhere.

4. Show in two ways that the function f(z) = exp(z?) is entire. What is its derivative?
Ans. f/(z) = 2zexp(z?).
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5. Write |exp(2z 4 i)| and |exp(iz?)| in terms of x and y. Then show that
lexp(2z + 1) + exp(izz)l < e 4o,

6. Show that exp(z%)| < exp(|z|?).
7. Prove that |exp(—2z)| < 1 if and only if Re z > 0.
8. Find all values of z such that
(a) ¢ = —=2; b) e =1+1; (c) exp(z—1)=1.

Ans. (a) z=I2+ Cn+ Dmi (n =0, £1,£2,...);

1 1
b)) z= Eln2+ <2n+ Z)m’ (n=0,%£1,%2,...);

1
(¢) z= E-l—nm' (n=0,=%1,%2,...).

9. Show that exp(iz) = exp(iz) if and only if z = nw (n = 0, £1, £2,...). (Compare
with Exercise 4, Sec. 29.)

10. (a) Show that if ¢® is real, then Imz = nw (n =0, £1, £2,...).
(b) If e is pure imaginary, what restriction is placed on z?
11. Describe the behavior of e* = e*e’ as (a) x tends to —oo; (b) y tends to co.

12. Write Re(e'/?) in terms of x and y. Why is this function harmonic in every domain that
does not contain the origin?

13. Let the function f(z) = u(x,y) + iv(x, y) be analytic in some domain D. State why
the functions

Ux,y) =" “Ycosv(x,y), V(x,y) =" sinv(x,y)

are harmonic in D.
14. Establish the identity

(&) = ™ (n=0,%1,42,..)

in the following way.

(a) Use mathematical induction to show that it is valid whenn =0, 1,2, ... .
(b) Verity it for negative integers n by first recalling from Sec. 8 that

= (H" m=-n=12..)

when z # 0 and writing (e*)" = (1/e*)™. Then use the result in part (a), together
with the property 1/e* = e~ (Sec. 30) of the exponential function.

31. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the
equation

(1) eV =z



SEC. 31 THE LOGARITHMIC FUNCTION 91

for w, where z is any nonzero complex number. To do this, we note that when z and
w are written 7 = re'® (=7 < ® < ) and w = u + iv, equation (1) becomes
ol ei v, ei ®
According to the statement in italics at the beginning of Sec. 10 about the equality of
two nonzero complex numbers expressed in exponential form, this tells us that
e"=r and v=0+42nxw

where 7 is any integer. Since the equation e = r is the same as u = Inr, it follows
that equation (1) is satisfied if and only if w has one of the values

w=Inr+i(® + 2nm) (n=0,=£1,+2,...).
Thus, if we write
2) logz =Inr 4+i(® + 2nm) (n=0,+£1,%£2,...),
equation (1) tells us that
3) =z (2#0),
Inasmuch as equation (2) becomes
logx =Inx + 2nmi (n=0,+£1,%£2,..))
when z = x > 0 and since equation (3) then reduces to the familiar identity
4) e = x (x > 0)

in calculus, equation (4) suggests that we use expression (2) as the definition of the
(multiple-valued) logarithmic function of a nonzero complex variable z = re’’.

It should be emphasized that it is not true that the left-hand side of equation (3)
with the order of the exponential and logarithmic functions reversed reduces to just z.
More precisely, since expression (2) can be written

logz =Inlz| +iargz
and since (Sec. 30)
le*| = ¢ and arg(e®) =y 4+ 2nx (n=0,%1,%£2,...)
when z = x + iy, we know that

log(e®) = In|e*| 4+ i arg(e®) = In(e*) +i(y + 2nmw) = (x +iy) + 2nmwi
(n=0,=%l1,+£2,..)).

That is,
5) log(e®) = z + 2nmi (n=0,=£1,4£2,..)).

The principal value of log z is the value obtained from equation (2) when n = 0
there and is denoted by Log z. Thus

(6) Logz=Inr+i®.
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Note that Log z is well defined and single-valued when z # 0 and that
(7 logz = Logz + 2nmi (n=0,=£1,£2,...).

It reduces to the usual logarithm in calculus when z is a positive real number. To
see this, one need only write z = x (x > 0), in which case equation (6) becomes
Logz =Inx.

32. EXAMPLES

In this section we illustrate material in Sec. 31.

EXAMPLE 1. If z = —1 — +/3i, then r = 2 and ® = —25/3. Hence
2 1
log(—1 — +/3i) = 1n2+i<—?” + 2n71) = 1n2+2(n - 5) i

(n=0,%+1,42,..).

EXAMPLE 2. From expression (2) in Sec. 31, we find that
logl =Inl+4i(0+2nw) =2nmi (n=0,+£1,%2,...).
As anticipated, Log 1 = 0.

The next example reminds us that although we were unable to find logarithms of
negative real numbers in calculus, it is now possible.

EXAMPLE 3. Observe that
log(—1) =Inl+i(r +2n7) = 2n + )mi (n=0,+£1,£2,..))
and that Log (—1) = mi.

Special care must be taken in anticipating that familiar properties of Inx in
calculus carry over to be properties of log z and Log z.

EXAMPLE 4. The identity
(1 Log[(1 +i)*] = 2Log(1 + i)
is valid since
Log[(1 4+ i)*] = Log (2i) = In2 + i%

and

2Log(l +i) =2 (ln\/i—i-i%) =1n2+i%.
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On the other hand,
) Log[(—14i)?] # 2Log(—1+1i)
because
Log[(—1 +i)%] = Log(—2i) = In2 — i%
and

3 3
2Log(—1+4i) =2 (mﬁm%) - ln2+i7n.

While statement (1) might be expected, we see that statement (2) would not be
true as an equality.

EXAMPLE 5. It is shown in Exercise 5, Sec. 33, that
1
(3) log(i'/?) = 3 log i

in the sense that the set of values on the left is the same as the set of values on the
right. But

4) log(i%) # 2logi
because
In(i%) = log(—1) = 2n + )i (n=0,%1,%£2,...),
according to Example 3, and since
2ogi =2 [Inl +i (% +onx)| = @ntDmi = 0,%1,42,..).

Upon comparing statements (3) and (4), we find that familiar properties of loga-
rithms in calculus are sometimes but not always true in complex analysis.

33. BRANCHES AND DERIVATIVES OF LOGARITHMS
If z = re'? is a nonzero complex number, the argument 6 has any one of the values
0 =0+2n7 (n=0,%£1,£2,...), where ® = Arg z. Hence the definition

logz =Inr +i(® 4+ 2nm) (n=0,%1,%£2,...)
of the multiple-valued logarithmic function in Sec. 31 can be written
(D) logz =Inr +i6.

If we let o denote any real number and restrict the value of 0 in expression (1) so
that < 6 < «a + 27, the function

2) logz=Inr +1i6 r>0,0<0 <a+2m),
with components
3) u(r,0) =Inr and v(r,0) =20,
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is single-valued and continuous in the stated domain (Fig. 35). Note that if the function
(2) were to be defined on the ray 6 = «, it would not be continuous there. For if z is
a point on that ray, there are points arbitrarily close to z at which the values of v are
near « and also points such that the values of v are near « + 2.

Y

of X  FIGURE 35

The function (2) is not only continuous but also analytic throughout the domain
r >0, < 6 < o+ 27 since the first-order partial derivatives of u and v are
continuous there and satisfy the polar form (Sec. 24)

ru, = vy, Uy = —FV,

of the Cauchy—Riemann equations. Furthermore, according to Sec. 24,

_d —i6 : el . 1
10gZ=e (Mr+lvr)=e —4+i0) = '9;
r ret

dz
that is,
d 1
4) —logz = - (Jz| > 0,0 < argz < a + 2m).
dz z
In particular,
d 1
5) — Logz = — (Jz| > 0, =7 < Arg z < m).
dz z

A branch of a multiple-valued function f is any single-valued function F that
is analytic in some domain at each point z of which the value F(z) is one of the
values of f. The requirement of analyticity, of course, prevents F' from taking on a
random selection of the values of f. Observe that for each fixed «, the single-valued
function (2) is a branch of the multiple-valued function (1). The function

(6) Logz=Inr +i® r>0,—-m7<0®<m)

is called the principal branch.

A branch cut is a portion of a line or curve that is introduced in order to define a
branch F of a multiple-valued function f. Points on the branch cut for F are singular
points (Sec. 25) of F, and any point that is common to all branch cuts of f is called a
branch point. The origin and the ray & = o make up the branch cut for the branch (2)
of the logarithmic function. The branch cut for the principal branch (6) consists of the
origin and the ray ® = . The origin is evidently a branch point for branches of the
multiple-valued logarithmic function.
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We saw in Example 5, Sec. 32, that the set of values of log(i %) is not the set of
values of 2logi. The following example does show, however, that equality can occur
when a specific branch of the logarithm is used. In that case, of course, there is only
one value of log(i?) that is to be taken, and the same is true of 2logi.

EXAMPLE. In order to show that
(7) log(i®) = 2logi

when the branch

T I

1 =1 1% 0,— <6 < —

0gz nr—+1 <r> 4< < 4)
is used, write

log(i®) =log(—=1) =Inl +im = 7i
and then observe that
2ogi =2 (1n1 + iz) — i,
2
It is interesting to contrast equality (7) with the result log(i?) # 2logi in Exer-

cise 4, where a different branch of log z is used.

In Sec. 34, we shall consider other identities involving logarithms, sometimes
with qualifications as to how they are to be interpreted. A reader who wishes to pass
to Sec. 35 can simply refer to results in Sec. 34 when needed.

EXERCISES
1. Show that
(a) Log(—ei) =1— %i; (b) Log(l — i) = %mz - %i.
2. Show that

(a) loge=1+4+2nwi (m=0,%1,£2,...);
1
(b) logi = (Zn + 5) wi (m=0,=%1,+£2,...);

1
() log(—14+/3i) =1In2+2 (n + §> i (n=0,%1,£2,...).

3. Show that Log(i®) # 3Logi.
4. Show that log(i?) # 2logi when the branch

. 3 117
logz=Inr +i6 r>0,7<0<T

is used. (Compare this with the example in Sec. 33.)
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5. (a) Show that the two square roots of i are

ei?‘[/4 and ei5ﬂ/4

Then show that

, 1
log(e'™*) = (Zn + Z) i (n=0,%1,42,..)

and
i57/4 1.
log(e )= (2n+1)+Z i (n=0,=%£l1,+£2,...).
Conclude that
1
log(i'/?) = (n + Z) mi (n=0,%1,42,..).
(b) Show that

1
log(il/z) = —logi,
2
as stated in Example 5, Sec. 32, by finding the values on the right-hand side of this
equation and then comparing them with the final result in part (a).

6. Given that the branch logz = Inr +i0 (r > 0, < 0 < « + 2m) of the logarith-
mic function is analytic at each point z in the stated domain, obtain its derivative by
differentiating each side of the identity (Sec. 31)

logz

e =2z (Jz] > 0,0 < argz < @ 4 2m)

and using the chain rule.
7. Show that a branch (Sec. 33)

logz=Inr +1i6 r>0,0a <0 <a+2m)

of the logarithmic function can be written

1
logz = = In(x? + yz) +itan”! (X)
2 X

in rectangular coordinates. Then, using the theorem in Sec. 23, show that the given branch
is analytic in its domain of definition and that

4 ogz =1
dz z
there.
8. Find all roots of the equation log z = im /2.
Ans.z =1.

9. Suppose that the point z = x + iy lies in the horizontal strip « < y < « 4 27. Show that
when the branch logz = Inr +i6 (r > 0, < 0 < «a + 27) of the logarithmic function
is used, log(e*) = z. [Compare with equation (5), Sec. 31.]
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10. Show that

(a) the function f(z) = Log(z — i) is analytic everywhere except on the portion x < 0
of the line y = 1;
(b) the function

Log(z +4)

1= 224

is analytic everywhere except at the points £(1 — i)/+/2 and on the portion
x < —4 of the real axis.

11. Show in two ways that the function In(x> + y?) is harmonic in every domain that does
not contain the origin.

12. Show that
1
Re[log(z — D] = 5 In[(x — D*+y1 (@#D.

Why must this function satisfy Laplace’s equation when z # 1?

34. SOME IDENTITIES INVOLVING LOGARITHMS

If z; and z, denote any two nonzero complex numbers, it is straightforward to show
that

(1) log(z122) = logz; + log z,.

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

() arg(z1z2) = argzy +argz;

was in Sec. 9. That is, if values of two of the three logarithms are specified, then there
is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following
way. Since |z1z2| = |z1]]z2| and since these moduli are all positive real numbers, we
know from experience with logarithms of such numbers in calculus that

In|ziz2] = In|z(| 4+ In|zs].

So it follows from this and equation (2) that
3) In|ziza| +iarg(ziz2) = (In|z1| +iargzy) + (In|zz| + i arg zo).
Finally, because of the way in which equations (1) and (2) are to be interpreted,
equation (3) is the same as equation (1).

EXAMPLE 1. To illustrate statement (1), write z; = z = —1 and recall from
Examples 2 and 3 in Sec. 32 that

logl =2nmi and log(—1) = 2n + )xi,



98 ELEMENTARY FUNCTIONS CHAP. 3

where n = 0, &1, 2, .... Noting that z,z, = 1 and using the values
log(z1z2) =0 and logz, = mi,

we find that equation (1) is satisfied when the value log z, = —mi is chosen.
If, on the other hand, principal values are used when z; = z, = —1,

Log(zizo) =0 and Logz; + Logz, = 27i.

Thus statement (1) is not always true when principal values are used in all three terms.
In our next example, however, principal values can be used everywhere in equation (1)
when certain restrictions are placed on the nonzero numbers z; and z;.

EXAMPLE 2. Let z; and z, denote nonzero complex numbers lying to the right
of the imaginary axis, so that

Rez; >0 and Rez, > 0.

Thus
z1=r1exp(i®;) and zp =rexp(i®,),
where
T b3 T b1
—— <B®;<— and —— <O < —.
2 2 2 2

Now it is important to notice that —7 < ®; 4+ ®, < 7 since this means that

Arg (z122) = O 4 O,.

Consequently,
Log(z1z2) = In|z1z2| + iArg (z122)
= In(riry) +i(©) + O2)
=((nr +i®)) + (nr, +i0,).
That is,

Log(z1z) = Logz; + Logzo.

(Compare this result with the one in Exercise 6, Sec. 9.)

Verification of the statement
z
(4) log(z—l> =logz; —logz,
2

which is to be interpreted in the same way as statement (1), is left to the exercises.
We include here two other properties of log z that will be of special interest in
Sec. 35. If z is a nonzero complex number, then

(5) 7" = eMlogs n=0+1,42,...)
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for any value of log z that is taken. When n = 1, this reduces, of course, to relation
(3), Sec. 31. Equation (5) is readily verified by writing z = re’? and noting that each
side becomes r"e"?.

It is also true that when z # 0,

1
(6) 7/ = exp(—logz) n=1,2,...).
n

That is, the term on the right here has n distinct values, and those values are the nth
roots of z. To prove this, we write z = r exp(i®), where © is the principal value of
arg z. Then, in view of definition (2), Sec. 31, of log z,

1 1 i(©+ 2km)
exp ;logz = exp ;lnr—k?

where k =0, =1, £2, ... . Thus
1 ® 2k

(7 exp(—logz) :Wexp[i(——i——n)] (k=0,%1,%2,...).
n n n

Because exp(i2km /n) has distinct values only whenk = 0, 1, ..., n—1, theright-hand
side of equation (7) has only n values. That right-hand side is, in fact, an expression for
the nth roots of z (Sec. 10), and so it can be written z'/”. This establishes property (6),
which is actually valid when 7 is a negative integer too (see Exercise 4).

EXERCISES

1. Show that for any two nonzero complex numbers z; and z»,
Log(z1z2) = Log z; + Log z» + 2N i

where N has one of the values 0, £1. (Compare with Example 2 in Sec. 34.)
2. Verify expression (4), Sec. 34, for log(z;/z2) by

(a) using the fact that arg(z;/z,) = argz; — arg z» (Sec. 9);

(b) showing thatlog(1/z) = —logz (z # 0), in the sense that log(1/z) and — log z have
the same set of values, and then referring to expression (1), Sec. 34, for log(z,z2).

3. By choosing specific nonzero values of z; and z,, show that expression (4), Sec. 34, for
log(z1/z2) is not always valid when log is replaced by Log.

4. Show that property (6), Sec. 34, also holds when 7 is a negative integer. Do this by writing
/" = (z'/™)=! (m = —n), where n has any one of the negative values n = —1, =2, . ..
(see Exercise 9, Sec. 11), and using the fact that the property is already known to be valid
for positive integers.

5. Let z denote any nonzero complex number, written z = re'® (—w < ® < ), and letn
denote any fixed positive integer (n = 1, 2, ...). Show that all of the values of log(z'/")
are given by the equation

O+ 2(pn+ k)

1
log(z'/")y = = Inr +1i
n n
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where p =0,+1,£2,...and k =0, 1,2, ...,n — 1. Then, after writing

1 1 ®+2
—logz = —lnr+iﬂ,
n n n
where ¢ = 0, £1, £2, ..., show that the set of values of log(zl/") is the same as the set

of values of (1/n)log z. Thus show that log(z!/"*) = (1/n)log z where, corresponding
to a value of log(z'/") taken on the left, the appropriate value of log z is to be selected
on the right, and conversely. [The result in Exercise 5, Sec. 33, is a special case of this
one.]

Suggestion: Use the fact that the remainder upon dividing an integer by a positive
integer n is always an integer between 0 and n — 1, inclusive; that is, when a positive
integer n is specified, any integer g can be written ¢ = pn + k, where p is an integer
and k has one of the valuesk =0,1,2,...,n— 1.

35. THE POWER FUNCTION

When z # 0 and the exponent c¢ is any complex number, the power function z¢ is
defined by means of the equation

(D 7€ = ecloes (z #0).

Because of the logarithm, z€ is, in general, multiple-valued. This will be illustrated in
the next section. Equation (1) provides a consistent definition of z¢ in the sense that
it is already known to be valid (see Sec. 32) when ¢ = n (n = 0, £1,+2,...) and
c=1/n(n = +£1,£2,...). Definition (1) is, in fact, suggested by those particular
choices of c.

We mention here two other expected properties of the power function z¢.

One such property follows from the expression 1/e¢* = e~ * (Sec. 30) of the
exponential function. Namely,

1 1 .

_—— — = —_ 1 =7 .
¢ exp(clogz) exp(—clog) =z

The other property is a differentiation rule for z°. When a specific branch (Sec. 33)
logz =Inr +i6 (r>0,0 <0 <a+2m)

of the logarithmic function is used, log z is single-valued and analytic in the indicated
domain. When that branch is used, the function (1) is single-valued and analytic in the
same domain. The derivative of such a branch of z¢ is found by first using the chain
rule to write

d

d c
—z° = —exp(clogz) = — exp(clogz)
dz dz Z

and then recalling (Sec. 31) the identity z = exp(log z). That yields the result

d . exp(clogz)
—7" =c——— = cexp[(c — 1) log z],
dz exp(log z)
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or
d c c—1
2) d—z =cz (Jz] > 0,a < argz < a 4+ 27).
b4
The principal value of z¢ occurs when log z is replaced by Log z in definition (1):
3) PV. 7" = elogs,

Equation (3) also serves to define the principal branch of the function z¢ on the domain
|z] >0, —m < Argz < .

According to definition (1), the exponential function with base c, where c is any
nonzero complex constant, is written

4) ¢t = etlee,

Note that although e° is, in general, multiple-valued according to definition (4), the
usual interpretation of e occurs when the principal value of the logarithm is taken.
This is because the principal value of log e is unity.

When a value of log ¢ is specified, ¢* is an entire function of z. In fact,

d d

T _ 7ezlogc —e

—C
dz dz

zlogc

logc;
and this shows that

d
(&) d—zcZ = c*logc.

36. EXAMPLES

The examples here are intended to illustrate the material in Sec. 35.

EXAMPLE 1. Consider the power function
l-i — ei logi'

Inasmuch as

) T 1 )
1ogl=1n1+l(5+2nn)=<2n+§)m (n=0,41,42,..).

we are able to write

‘ 1 1
i" =exp [i <2n + E) m} = exp [— <2n + 5) 7T:| (n=0,=£1,+£2,..)

and

i m
P.V. i' =exp (_E) .

Note that the values of i’ are all real numbers.
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EXAMPLE 2. Because
log(—1) =Inl+i(wr 4+ 2nw) = 2n+ Dmi (n=0,=%1,£2,..)),

it is easy to see that

(—DHY™ =exp E log(—l)] =exp[2n+ 1)i] (n=0,%1,42,..)).

EXAMPLE 3. The principal branch of z*/3 can be written
2 2 2 20
exp( ZLogz | =exp(=Inr+=i® | =vVr2exp(i— ).
3 3 3 3
Thus
20 20
P.V. 22/ = Vr2 cos 3 +iv/r2sin R

This function is analytic in the domain r > 0, —7 < ® < 7, as one can see directly
from the theorem in Sec. 24.

While familiar laws of exponents used in calculus often carry over to complex
analysis, there are exceptions when certain numbers are involved.
EXAMPLE 4. Consider the nonzero complex numbers
z71i=14i, zp=1—i, and z3=-1—1.

When principal values of the powers are taken,

(z122)" =2 = /1082 = (/2O — piln2
and
Z’i — pilog+i) ei(lnﬁ+in/4) _ e’”/“g"(lnz)/z,
Zé — pilog=i) _ ,i(nv2—in/4) _ ,mw/4,i(n2)/2
Thus
M (2122)" =2}z,

as might be expected.
On the other hand, continuing to use principal values, we see that

(2223) = (=2) = oIL08(=2) _ i(n24im) _ = ,iln2
and

zé — pilog(=1-) _ ei(lnﬁ—i3n/4) — 37/4,i(n2)/2
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Hence
(2az3) = [l nD/2] [3/4ginD/2) g=2n
or
(2) (2223)' = Zhdhe ™.
EXERCISES
1. Show that

i b In2
(@) A+1i) =exp (_Z + 2nn) exp (17) (n=0,=%£l1,+£2,...);
1
(b) = = expl(4n + D] (n=0,+£1,£2,...).
1 1

2. Find the principal value of
3mi
@ (=) (b E(—l—ﬁi)} L@ (=D,

Ans.  (a) exp(/2); (b) —exp(2m?); (c)e™[cos(2In2) +isin(2In2)].
3. Use definition (1), Sec. 35, of z¢ to show that (—1 + +/3i)%/2 = £2/2.
4. Show that the result in Exercise 3 could have been obtained by writing
(@) (=1 ++/3)>% = [(—1 + +/3i)"/2]® and first finding the square roots of —1 4 /3i;
(b) (=1 ++/30)¥% = [(—1 + +/3i)*]"/? and first cubing —1 + v/3i.
5. Show that the principal nth root of a nonzero complex number z, that was defined in
Sec. 10 is the same as the principal value of z(')/" defined by equation (3), Sec. 35.

6. Show that if z % 0 and « is a real number, then |z¢| = exp(aIn|z|) = |z|¢, where the
principal value of |z]? is to be taken.

7. Let ¢ = a + bi be a fixed complex number, where ¢ # 0, =1, £2, ..., and note that i®
is multiple-valued. What additional restriction must be placed on the constant ¢ so that
the values of |i¢| are all the same?

Ans. c is real.

8. Letc, ¢y, ¢;, and z denote complex numbers, where z # 0. Prove that if all of the powers
involved are principal values, then

(a) 9z = Z01+cz; b) i — chfcz;
7%
(© @)'=z"  (m=12..).

9. Assuming that f’(z) exists, state the formula for the derivative of ¢/ @,

37. THE TRIGONOMETRIC FUNCTIONS sin z AND cosz

Euler’s formula (Sec. 7) tells us that

e =cosx +isinx and e f =cosx —isinx
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for every real number x. Hence

e —e™™ =2isinx and € 4+ e =2cosx.
That is,
) eix _ e—ix eix + e—ix
sinx = ———— and cosx=-——
2i 2

It is, therefore, natural to define the sine and cosine functions of a complex variable z
as follows:
) eiz _ efiz eiz + efiz
() sing=——— and cosz=——
2i 2
These functions are entire since they are linear combinations (Exercise 3, Sec. 26) of
the entire functions e¢'* and e™**. Knowing the derivatives

d . ‘ ‘ :
— et =ie" and —e 't =—je "
dz dz
of those exponential functions, we find from equations (1) that
. d .
) —sinz=cosz and —cosz = —sinz.
dz dz

It is easy to see from definitions (1) that the sine and cosine functions remain odd
and even, respectively:

3) sin(—z) = —singz, cos(—z) =cosz.
Also,
4 e'" = cosz +isinz.

This is, of course, Euler’s formula (Sec. 7) when z is real.
A variety of identities carry over from trigonometry. For instance (see Exercises 2
and 3),

®)] sin(z; + z2) = sinz; coS zo + Ccos 7 Sin 2o,
(6) cos(z1 4+ z2) = €0S z1 COs 2 — Sin zg Sin ;.

From these, it follows readily that

(7 sin2z = 2sinzcosz, cos2z = cos’z — sin’z,
. b4 ) T
() sin (z + E) =cosz, sin (z - 5) = —Cosz,

and [Exercise 4(a)]

) sinz + cos’z = 1.
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The periodic character of sin z and cos z is also evident:
(10) sin(z + 2m) =sinz, sin(z + ) = —sinz,
(11) cos(z +2m) =cosz, cos(z+m) = —cosz.
When y is any real number, definitions (1) and the hyperbolic functions

Yy _ gy Y4
sinhy = % and coshy = %

from calculus can be used to write
(12) sin(iy) = isinhy and cos(iy) = coshy.

Also, the real and imaginary components of sin z and cos z can be displayed in terms
of those hyperbolic functions:

(13) sinz = sinx cosh y 4 i cos x sinh y,

(14) cos z = cosx cosh y — i sinx sinh y,

where z = x + iy. To obtain expressions (13) and (14), we write
z1=x and zp =1y

in identities (5) and (6) and then refer to relations (12). Observe that once expres-
sion (13) is obtained, relation (14) also follows from the fact (Sec. 21) that if the
derivative of a function

f@) =ulx,y)+ivix,y)

exists at a point z = (x, y), then

fl(@) = uy(x,y) +ive(x, y).
Expressions (13) and (14) can be used (Exercise 7, Sec. 38), to show that
(15) |sinz|* = sin’ x + sinh? v,
(16) | cos z|> = cos? x + sinh? y.
Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two
equations that sinz and cos z are not bounded on the complex plane, whereas the

absolute values of sinx and cosx are less than or equal to unity for all values of x.
(See the definition of a bounded function at the end of Sec. 18.)

38. ZEROS AND SINGULARITIES OF
TRIGONOMETRIC FUNCTIONS
A zero of a given function f is a number z( such that f(zo) = 0. It is possible that

a function of a real variable can have more zeros when the domain of definition is
enlarged.



106 ELEMENTARY FUNCTIONS CHAP. 3

EXAMPLE. The function f(x) = x2 41, defined on the real line, has no zeros.
But the function f(z) = 7% + 1, defined on the complex plane, has the zeros z = =i.

Consider now the sine function f(z) = sin z that was introduced in Sec. 37. Since
sin z becomes the usual sine function sin x in calculus when z is real, we know that
the real numbers

z=nr  (n=0,+£1,2,..)

are zeros of sinz. One might ask if there are other zeros in the entire plane, and a
similar question can be asked regarding the cosine function.

Theorem. The zeros of sin z and cos 7 in the complex plane are the same as the
zeros of sinx and cos x on the real line. That is,

sinz =0 if and only if z=nmr m=0,%£1,2,...)

and
cosz=0  ifand only if z:%—}—nn’ (n=0,+1,42, ...

In order to prove this theorem, we consider first the sine function and assume that
sinz = 0. Since sin z becomes the usual sine function in calculus when z is real, we
know that the real numbers z = nw (n = 0, &1, £2,...) are all zeros of sinz. To
show that there are no other zeros, we assume that sin z = 0 and note how it follows
from equation (15), Sec. 37, that

sin? x 4 sinh® y = 0.
This sum of two squares reveals that
sinx =0 and sinhy =0.

Evidently, then, x = nw (n = 0, £1,2,...) and y = 0. Hence the zeros of sin z are
as stated in the theorem.
As for the cosine function, the second of relations (8) in Sec. 37 tells us that
. TN,
cosz = —sin (Z 2),
and it follows that the zeros of cos z are also the ones in the statement of the theorem.
The other four trigonometric functions are defined in terms of the sine and cosine
functions by the expected relations:

sin z Cos Z
(1) tanz = , cotz=——,
cos z sin z
1
) secy = ——, CSCZ= ——

cos Z sing’
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Observe that the quotients tan z and sec z are analytic everywhere except at the singu-
larities (Sec. 25)

Z:%—‘-nﬂ (n=0,:|:l,:|:2,...),

which are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros
of sin z, namely

Z=nmw (n=0,=£1,%£2,...).

By differentiating the right-hand sides of equations (1) and (2), we obtain the antici-
pated differentiation formulas

3) — tanz = sec’ z, —cotz = —csc? z,
dz dz

4 —secz =secztanz, ——CSCZ = —csczcotz.
dz dz

The periodicity of each of the trigonometric functions defined by equations (1) and
(2) follows readily from equations (10) and (11) in Sec. 37. For example,

(&) tan(z + ) = tanz.

Mapping properties of the transformation w = sin z are especially important in
the applications later on. A reader who wishes at this time to learn some of those
properties is sufficiently prepared to read Secs. 104 and 105 (Chap. 8), where they are
discussed.

EXERCISES

1. Give details in the derivation of expressions (2), Sec. 37, for the derivatives of sin z and
coS Z.

2. (a) With the aid of expression (4), Sec. 37, show that

iz

e'e' = cos 71 coszy — sinzy sinzy + i(sinzy cos zp + €cos 71 Sinz,).

Then use relations (3), Sec. 37, to show how it follows that

—izy ,—iz

e e = cos 71 coSzy — sinzy Sinzy — i(Sinzj cos zo + COS z; Sinzy).

(b) Use the results in part (a) and the fact that
Sin(Z] +ZZ) — l |:ei(Z1+Z2) _ e—i(Z1+Z2)] — i (eimeizZ _ e—izle—izz)
2i 2i
to obtain the identity
sin(zy + z2) = sinz; cos zp + COS z1 Sin 2,
in Sec. 37.

3. According to the final result in Exercise 2(b),

sin(z 4+ z») = sinz cos z + cos z sin z5.
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By differentiating each side here with respect to z and then setting z = z;, derive the
expression

cos(z] + 22) = €OS z] COSZp — Sinzy Sin 2,
that was stated in Sec. 37.
4. Verity identity (9) in Sec. 37 using

(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 28 and the fact that the entire function

fl) = sin®z 4+ cos’z — 1
has zero values along the x axis.
5. Use identity (9) in Sec. 37 to show that
(@) 1+tan?z =sec?z; (b) 1+ cot>z =csc?z.
6. Establish differentiation formulas (3) and (4) in Sec. 38.

7. In Sec. 37, use expressions (13) and (14) to derive expressions (15) and (16) for |sin z|?
and |cos z|?.
Suggestion: Recall the identities sin® x 4+ cos®x = 1 and cosh? y — sinh® y = 1.

8. Point out how it follows from expressions (15) and (16) in Sec. 37 for |sin z|> and |cos z|?
that

(a) |sinz| > |sinx|; (b) |cosz| > |cosx|.
9. With the aid of expressions (15) and (16) in Sec. 37 for |sin z|? and |cos z|?, show that
(a) |sinhy| <|sinz| <coshy; (b) |sinhy| < |cosz| < coshy.
10. (a) Use definitions (1), Sec. 37, of sin z and cos z to show that
2sin(zy + z2) sin(z; —z2) = cos 2z, — cos 2z;.

(b) With the aid of the identity obtained in part (a), show that if cos z; = cos z,, then at
least one of the numbers z; + z, and z; — z5 is an integral multiple of 2.

11. Use the Cauchy—Riemann equations and the theorem in Sec. 21 to show that neither sinz
nor cos 7 is an analytic function of z anywhere.

12. Use the reflection principle (Sec. 29) to show that for all z,
(a) sinz =sinZ; (b) COSZ = cosZ.
13. With the aid of expressions (13) and (14) in Sec. 37, give direct verifications of the
relations obtained in Exercise 12.
14. Show that
(a) cos(iz) = cos(iz) forall z;
(b) sin(iz) =sin(iz) ifandonlyif z=nnwi (n=0,=%1,%2,...).

15. Find all roots of the equation sinz = cosh4 by equating the real parts and then the
imaginary parts of sin z and cosh 4.

Ans. (% n Znn) +4i (=0, 41,42,..).
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16. With the aid of expression (14), Sec. 37, show that the roots of the equation cos z = 2
are

z=2nmw+icosh™'2  (n=0,£1,£2,...).
Then express them in the form

z="2nm £iln@2 ++3) (n=0,%1,+2,...).

39. HYPERBOLIC FUNCTIONS

The hyperbolic sine and cosine functions of a complex variable z are defined as they
are with a real variable:

eZ . e_Z eZ —‘f_ e_Z
1 inhz = ———— hyg = —
(1) sinh z 5 coshz 3

Since ¢* and e™* are entire, it follows from definitions (1) that sinh z and cosh z are
entire. Furthermore,

d . d .
2) — sinhz = coshz, — coshz = sinhz.
dz dz
Because of the way in which the exponential function appears in definitions (1)
and in the definitions (Sec. 37)
eiz _ e—iz eiz + e—iz
siny=———, COSZ= ——
2i 2
of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those
trigonometric functions:

3) —isinh(iz) = sinz, cosh(iz) = cos z,
4) —isin(iz) = sinhz, cos(iz) = coshz.

Note how it follows readily from relations (4) and the periodicity of sinz and cos z
that sinh z and cosh z are periodic with period 27i.

Some of the most frequently used identities involving hyperbolic sine and cosine
functions are

5) sinh(—z) = —sinhz, cosh(—z) = coshz,
(6) cosh?z —sinh? z = 1,
(7 sinh(zy + z2) = sinh z; cosh z, + cosh z; sinh 7,

(8) cosh(z; + z2) = cosh z; cosh z, + sinh z; sinh z;
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and

) sinh z = sinh x cos y 4+ i cosh x sin y,
(10) coshz = coshx cos y 4 i sinhx siny,
(11) |sinh z|*> = sinh? x + sin? v,
(12) |cosh z|> = sinh® x + cos? y,

where z = x + iy. While these identities follow directly from definitions (1), they
are often more easily obtained from related trigonometric identities, with the aid of
relations (3) and (4).

EXAMPLE 1. To illustrate the method of proof just suggested, let us verify
identity (6), starting with the relation
(13) sinz 4+ cos’z = 1
in Sec. 37. Using relations (3) to replace sin z and cos z in relation (13) here, we have

— sinh®(iz) 4 cosh’(iz) = 1.

Then, replacing z by —iz in this last equation, we arrive at identity (6).

EXAMPLE 2. Let us verify expression (12) using the second of relations (4).
We begin by writing
(14) |coshz|? = | cos(iz)|* = | cos(—y + ix)|>.
Now we already know from relation (16) in Sec. 37 that

| cos(x + iy)|2 = cos’ x + sinh® v,

and this tells us that
(15) | cos(—y + ix)|* = cos y + sinh? x.
Expressions (14) and (15) now combine to yield relation (12).

We turn now to the zeros of sinh z and cosh z. We present the results as a theorem
in order to emphasize their importance in later chapters and in order to provide easy

comparison with the theorem in Sec. 38, regarding the zeros of sin z and cos z. In fact,
the theorem here is an immediate consequence of relations (4) and that earlier theorem.

Theorem. The zeros of sinhz and coshz in the complex plane all lie on the
imaginary axis. To be specific,
sinhz =0 if and only if z=nmwi m=0,%£1,2,...)
and

coshz =0 if and only if z=(%+nn)i (n=0,41,+£2,...).
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The hyperbolic tangent of 7 is defined by means of the equation

(16) tanhz =

and is analytic in every domain in which cosh z 7 0. The functions coth z, sech z, and
csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. It is straightforward
to verify the following differentiation formulas, which are the same as those established
in calculus for the corresponding functions of a real variable:

d d
7 — tanh z = sech’z, — cothz = — csch?z,
dz dz
d d
(18) —sechz = —sechztanhz, — cschz = —cschzcothz.
dz dz
EXERCISES

1. Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 39.
2. Prove that sinh 2z = 2 sinh z cosh z by starting with

(a) definitions (1), Sec. 39, of sinh z and cosh z;
(b) the identity sin2z = 2sin z cos z (Sec. 37) and using relations (3) in Sec. 39.

3. Show how identities (6) and (8) in Sec. 39 follow from identities (9) and (6), respectively,
in Sec. 37.

4. Write sinh z = sinh(x 4+ iy) and cosh z = cosh(x + iy), and then show how expressions
(9) and (10) in Sec. 39 follow from identities (7) and (8), respectively, in that section.

5. Derive expression (11) in Sec. 39 for |sinh z|%.
6. Show that |sinh x| < |cosh z| < cosh x by using
(a) identity (12), Sec. 39;
(b) the inequalities |sinh y| < |cos z| < cosh y, obtained in Exercise 9(b), Sec. 38.
7. Show that
(a) sinh(z 4+ i) = —sinhz; (b) cosh(z + i) — coshz;
(¢) tanh(z + mi) = tanh z.
8. Give details showing that the zeros of sinh z and cosh z are as in the theorem in Sec. 39.

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic
tangent function.

10. Show that tanh z = —i tan(iz).
Suggestion: Use identities (4) in Sec. 39.

11. Derive differentiation formulas (17), Sec. 39.
12. Use the reflection principle (Sec. 29) to show that for all z,

(a) sinhz = sinhZ; (b) coshz = coshz.

13. Use the results in Exercise 12 to show that tanh z = tanh 7 at points where cosh z # 0.
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14. By accepting that the stated identity is valid when z is replaced by the real variable x
and using the lemma in Sec. 28, verify that

(a) cosh?z —sinh?z = 1; (b) sinhz + coshz = e*.
[Compare with Exercise 4(b), Sec. 38.]

15. Why is the function sinh(e®) entire? Write its real component as a function of x and vy,
and state why that function must be harmonic everywhere.

16. By using one of the identities (9) and (10) in Sec. 39 and then proceeding as in Exercise 15,
Sec. 38, find all roots of the equation

1
(a) sinhz =1; (b) coshz = X

1
Ans. (a) z = (2n+ E)m' n=0,%x1,£2,...);

1
(b) z= (2n:l:§)rri (n=0,=£1,42,...).

17. Find all roots of the equation coshz = —2. (Compare this exercise with Exercise 16,
Sec. 38.)

Ans.z=+1InQ@ +3)+ Qn+ Dmi (n =0, £1, 42, ..)).

40. INVERSE TRIGONOMETRIC
AND HYPERBOLIC FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of
logarithms.

In order to define the inverse sine function sin~! z, we write
w=sin"'z when z=sinw.

That is, w = sin~! z when

If we put this equation in the form

(€™)? = 2iz(e™) =1 =0,
which is quadratic in e, and solve for ¢/ [see Exercise 8(a), Sec. 11], we find that
(1) e =iz+(1-2H"?

where (1 — Zz)l/ 2 is, of course, a double-valued function of z. Taking logarithms of
each side of equation (1) and recalling that w = sin~! z, we arrive at the expression

) sin™!z = —ilogliz + (1 — z22)'/?].

The following example emphasizes the fact that sin~! z is a multiple-valued function,
with infinitely many values at each point z.
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EXAMPLE. Expression (2) tells us that
sin”!(—i) = —i log(1 + v/2).

But
log(1++2) =In(1+~2) +2nmi  (n=0,+1,42,..))
and
log(1 —v2)=In(v2—= D+ Qn+Dri  (n=0,+1,42,..).
Since

1
1 2—1)=1 = —1In(1 2
n(v2 - 1) " n(l ++2),

then, the numbers
(=D)"In(1 +v2) +nwi (1 =0,+1,£2,..)
constitute the set of values of log(1 £ «/5). Thus, in rectangular form,

sin! (=) =n7 +i(=D)""In(1 ++2)  (n=0,%1,42,...).

One can apply the technique used to derive expression (2) for sin~! z to show that

(3) cos™' z = —ilog[z +i(l —z)"?]
and that
4) tanflz:ilogl_—i_z.

2 i —z

The functions cos~! z and tan~! 7 are also multiple-valued. When specific branches of
the square root and logarithmic functions are used, all three inverse functions become
single-valued and analytic because they are then compositions of analytic functions.

The derivatives of these three functions are readily obtained from their logarithmic
expressions. The derivatives of the first two depend on the values chosen for the square
roots:

5) 4 it 7= ;,
dz (1 —z2)12
d -1
(6) az coslz= m
The derivative of the last one,
(7 4 tan~!z = #,
dz 1422

does not, however, depend on the manner in which the function is made single-valued.
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Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

(8) sinh™' z =log[z + (2Z + D'/,
©) cosh™'z =log[z + (2 — D'?],
and

1.1
(10) tanh™' z = ~ log ~— %

2 11—z

Finally, we remark that common alternative notation for all of these inverse func-
tions is arcsin z, etc.

EXERCISES

1. Find all the values of
(a) tan='(2i);  (b) tan~'(1 +1i);  (¢) cosh™'(=1);  (d) tanh™'0.

1 .

Ans. (a) <n + 5)7‘[ + %lnS(n =0, 41,42, ...);
(d) nwi(n =0,+£1,£2,...).

2. Solve the equation sin z = 2 for z by

(a) equating real parts and then imaginary parts in that equation;

(b) using expression (2), Sec. 40, for sin”! z.

1 .
Ans. z = (Zn + E)?T +ilnQ2+/3)(n=0,+1,42,...).

Solve the equation cos z = /2 for z.
Derive expression (5), Sec. 40, for the derivative of sin~!z.
Derive expression (4), Sec. 40, for tan~! z.

Derive expression (7), Sec. 40, for the derivative of tan~! z.

RO .

Derive expression (9), Sec. 40, for cosh™' z.



CHAPTER

4

INTEGRALS

Integrals are extremely important in the study of functions of a complex variable. The
theory of integration, to be developed in this chapter, is noted for its mathematical
elegance. The theorems are generally concise and powerful, and many of the proofs
are short.

41. DERIVATIVES OF FUNCTIONS w(¢)

In order to introduce integrals of f(z) in a fairly simple way, we need to first consider
derivatives of complex-valued functions w of a real variable t. We write

ey w(r) = u(r) +iv(),

where the functions u and v are real-valued functions of ¢. The derivative

(1) d (1)
w or —w
9 dt 9

of the function (1) at a point ¢ is defined as
2 w'(t) = u'(t) +iv' (1),

provided each of the derivatives u’ and v’ exists at ¢.

Various rules learned in calculus, such as the ones for differentiating sums and
products, apply just as they do for real-valued functions of areal variable 7. Verifications
can often be based on corresponding rules in calculus.

115
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EXAMPLE 1. Assuming that the functions u(¢) and v(z) in expression (1) are
differentiable at ¢, let us prove that

d /
(3 E[w(t)]2 =2w()w(@).
To do this, we begin by writing
[w®]> = (u+iv)* = u® — v> + i2uv.
Then
d 2 2 2N/ . I
E[w(t)] =" —v) +iCuv)
= 2uu’ —2vv" +i2(uv + u'v)
=2 +iv)w +iv),
and we arrive at expression (3).
EXAMPLE 2. Another expected rule for differentiation that we shall often use is
(4) iezm — Zoezof’

dt
where zo = x¢ + iyg. To verify this, we write

e = M = ™ cos yot + ie™ sin yot

and refer to definition (2) to see that

d
Ee“’ = (™ cos yot)' + i(e™ sin yyt)'.

Familiar rules from calculus and some simple algebra then lead us to the expression

Eezo’ = (x0 + iy0) (€™ cos yot + ie™ sin yot),

or

%6107 = (xo + iyo)ex"’eiy"t.

This is, of course, the same as equation (4).

While many rules in calculus carry over to functions of the type (1), not all of
them do. The following example illustrates this.

EXAMPLE 3. Suppose that w(t) is continuous on an interval a < r < b; that s,
its component functions u(¢) and v(¢) are continuous there. Even if w’(¢) exists when
a <t < b, the mean value theorem for derivatives no longer applies. To be precise, it
is not necessarily true that there is a number c in the interval a < ¢ < b such that

w(b) — w(a)

) wi(e) = — —



SEC. 42 DEFINITE INTEGRALS OF FUNCTIONS w(f) 117

To see this, consider the functi_on w(t) = ¢ on the interval 0 < ¢ < 27. When
that function is used, |w'(z)| = |ie''| = 1 (see Example 2); and this means that the
derivative w’(c) on the left in equation (5) is never zero. As for the quotient on the
right in equation (5),

wb) —w)  w@r)—w0) e — ¢i0 1—-1
b—a —  21-0 2m 27
So there is no number ¢ such that equation (5) holds.

42. DEFINITE INTEGRALS OF FUNCTIONS w(?)

When w(t) is a complex-valued function of a real variable ¢ and is written
(1) w(t) =u(t) +iv(r),

where u and v are real-valued, the definite integral of w(t) over anintervala <t < b
is defined as

b b b
(2) /w(t)dt:/ u(t)dt+i/ v(t) dt,

provided the individual integrals on the right exist. Thus

b b b b
3) Re/ w(t)dt:/ Re[w(f)]dt and Im/ w(t)dt:/ Im[w(z)]dt.

a

EXAMPLE 1. For an illustration of definition (2),

/4 /4 /4 /4
/ e'dt = / (cost +isint)dt = / costdt + i/ sint dt
0 0 0 0

1 1
= [sin7]}/* +i[—cost]]/* = —+i(——+1>_
[sinz], [ To 7 7

Improper integrals of w(#) over unbounded intervals are defined in a similar way.
[See Exercise 2(d).]

The existence of the integrals of u and v in definition (2) is ensured if those
functions are piecewise continuous on the interval @ < t < b. Such a function is
continuous everywhere in the stated interval except possibly for a finite number of
points where, although discontinuous, it has one-sided limits. Of course, only the
right-hand limit is required at a; and only the left-hand limit is required at . When
both # and v are piecewise continuous, the function w is said to have that property.

Anticipated rules for integrating a complex constant times a function w(z), for
integrating sums of such functions, and for interchanging limits of integration are all
valid. Those rules, as well as the property

b c b
/w(t)dt:/ w(t)dt—l—/ w(t)dt,

are easy to verify by recalling corresponding results in calculus.
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The fundamental theorem of calculus, involving antiderivatives, can, moreover,
be extended so as to apply to integrals of the type (2). To be specific, suppose that the
functions

w(t) = u(t) +iv(t) and W) =U@) +iV ()

are continuous on the interval a <t < b. If W/(¢t) = w(t) whena <t < b, then
U'(t) = u(r) and V'(t) = v(¢). Hence, in view of definition (2),

b
/zuom=4Umm+uvmﬁ=uum+¢wmyﬂumynvwn

That is,
b b
4) / w)dt = W(b) — W) =W()| .

We now have another way to evaluate the integral of e'’ in Example 1.

EXAMPLE 2. Since (see Example 2 in Sec. 41)

it
i i =lie”=lie”:e"’
dr \ i idt i ’
one can see that

/4 el /4 oin/4 1 1 T T
/ e'ldt = — =— ——=—(cos—+isin——1
) 4 4

iy i i i

S{CIERDEERICAS)

Then, because 1/i = —i,

/7!/4 y 1 1
am:_+(__+g.
0 V2 V2

We recall from Example 3 in Sec. 41 how the mean value theorem for derivatives
in calculus does not carry over to complex-valued functions w(#). Our final example
here shows that the mean value theorem for integrals does not carry over either. Thus
special care must continue to be used in applying rules from calculus.

EXAMPLE 3. Let w(t) be a continuous complex-valued function of ¢ defined
on an interval @ < t < b. In order to show that it is not necessarily true that there is a
number c in the interval a < ¢t < b such that

b
5) /wmmzw@w—u
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we write a = 0, b = 27 and use the same function w(t) = /(0 < t < 27) as in
Example 3, Sec. 41. It is easy to see that

b o et 1%
/ w(t)dt = / e dt = f} =0.
a 0 U 1o

But, for any number ¢ such that 0 < ¢ < 2w,
lw(c)(b —a)| = || 2 = 2r;

and we find that the left-hand side of equation (5) is zero but that the right-hand side
is not.

EXERCISES
1. Use rules in calculus to establish the following rules when
w(t) =u(t) +iv(r)
is a complex-valued function of a real variable ¢ and w'(r) exists:

d
(a) E[Zow(t)] = zow'(t), where zo = xo + iy is a complex constant;

d
(b) Ew(—t) = —w/(—t) where w’(—r) denotes the derivative of w(¢) with respectto 7,
evaluated at —t¢;

Suggestion: In part (a). show that each side of the identity to be verified can be
written
(xou" — yov') + i (you' + xov').

2. Evaluate the following integrals:

1 2 1 2
. 2 . . .
(@) /0 (14 in’dr: ®) /1 <;_l) dr:

/6 00 }
(c) / e dt; (d) / e~ dt (Rez > 0).
0 0
2 1 j 1
Ans. (@) S+i () —3—ilnds (@ ?Jr%; @ .

3. Show that if m and n are integers,

2
im0 —ind _ 40 when m # n,
e'"e do =
0 2w whenm = n.

4. According to definition (2), Sec. 42, of definite integrals of complex-valued functions of

areal variable,
T ) T T
/ Y dx = / e cosxdx + i/ e’ sinx dx.
0 0 0

Evaluate the two integrals on the right here by evaluating the single integral on the left
and then using the real and imaginary parts of the value found.
Ans. —(14+¢€")/2, (1+4+¢€7)/2.
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5. Let w(t) = u(t) + iv(t) denote a continuous complex-valued function defined on an
interval —a <t < a.

(a) Suppose that w(t) is even; thatis, w(—t) = w(t) for each point ¢ in the given interval.

Show that
/ w(t) dt =2/ w(t)dt.
—a 0

(b) Show that if w(r) is an odd function, one where w(—t) = —w(¢) for each point ¢ in
the given interval, then

/ w(t)dt = 0.

—a

Suggestion: In each part of this exercise, use the corresponding property of integrals
of real-valued functions of ¢, which is graphically evident.

43. CONTOURS

Integrals of complex-valued functions of a complex variable are defined on curves in
the complex plane, rather than on just intervals of the real line. Classes of curves that
are adequate for the study of such integrals are introduced in this section.

A set of points z = (x, y) in the complex plane is said to be an arc if

(1) x=x(), y=y@) (a <t <b),

where x(#) and y(¢) are continuous functions of the real parameter 7. This definition
establishes a continuous mapping of the interval @ < ¢ < b into the xy, or z, plane;
and the image points are ordered according to increasing values of 7. It is convenient
to describe the points of C by means of the equation

() z=12z(t) (@<t =<bh),
where
3) (1) = x() +iy(1).

The arc C is a simple arc, or a Jordan arc,” if it does not cross itself ; that is, C is
simple if z(¢;) # z(#;) when #; # t,. When the arc C is simple except for the fact that
z(b) = z(a), we say that C is a simple closed curve, or a Jordan curve. Such a curve
is positively oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different notation for the
parameter ¢ in equation (2). This is, in fact, the case in the following examples.

*Named for C. Jordan (1838-1922), pronounced jor-don'.
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EXAMPLE 1. The polygonal line (Sec. 12) defined by means of the equa-
tions
) _ Jx+4+ix whenO=<x <1,

L= x+i whenl<x<?2
and consisting of a line segment from O to 1 4 i followed by one from 1 i to2 4§
(Fig. 36) is a simple arc.

y
1+ 2+
1_
% 1 2 X FIGURE 36
EXAMPLE 2. The unit circle
(5) z=¢?  (0<6<2n)

about the origin is a simple closed curve, oriented in the counterclockwise direction.
So is the circle

(6) 7 =20+ R 0 <6 <2m),

centered at the point zo and with radius R (see Sec. 7).
The same set of points can make up different arcs.

EXAMPLE 3. The arc
(7 r=e" (0 <6 <27)
is not the same as the arc described by equation (5). The set of points is the same, but
now the circle is traversed in the clockwise direction.
EXAMPLE 4. The points on the arc
(3 z=e% 0<0<2m

are the same as those making up the arcs (5) and (7). The arc here differs, however,
from each of those arcs since the circle is traversed twice in the counterclockwise
direction.

The parametric representation used for any given arc C is, of course, not unique.
It is, in fact, possible to change the interval over which the parameter ranges to any
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other interval. To be specific, suppose that

(€)) 1=¢() (e=t=p),

where ¢ is a real-valued function mapping an interval « < v < B onto the interval
a <t < b inrepresentation (2). (See Fig. 37.) We assume that ¢ is continuous with a
continuous derivative. We also assume that ¢’(t) > 0 for each t; this ensures that ¢
increases with 7. Representation (2) is then transformed by equation (9) into

(10) z=Z(7) (@ <1 <P,
where
(1) Z(7) = z[p(D)].
This is illustrated in Exercise 3.
t
! (B8,b)
|
|
I
|
: FIGURE 37
B T t=¢()

Suppose now that the components x’(¢) and y’(¢) of the derivative (Sec. 41)
(12) () = x'(t) +iy' (1)

of the function (3), used to represent C, are continuous on the entire intervala <t < b.
The arc is then called a differentiable arc, and the real-valued function

1Z(1)] = VIX'(DF + [y ()]

is integrable over the interval a < t < b. In fact, according to the definition of arc
length in calculus, the length of C is the number

b
(13) L=/|Amm.

The value of L is invariant under certain changes in the representation for C that
is used, as one would expect. More precisely, with the change of variable indicated in
equation (9), expression (13) takes the form [see Exercise 1(b)]

B
L= / 1Z'[p(D)]¢'(7) dx.
So, if representation (10) is used for C, the derivative (Exercise 4)

(14) Z'(t) =Z[¢(0]¢ (1)
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enables us to write expression (13) as

B
Lz/ |Z'(v)| dT.

Thus the same length of C would be obtained if representation (10) were to be used.

If equation (2) represents a differentiable arc and if z'(#) # 0 anywhere in the
interval a < t < b, then the unit tangent vector

7
12" (1)]
is well defined for all ¢ in that open interval, with angle of inclination arg z'(¢). Also,
when T turns, it does so continuously as the parameter ¢ varies over the entire interval
a <t < b. This expression for T is the one learned in calculus when z(¢) is inter-
preted as a radius vector. Such an arc is said to be smooth. In referring to a smooth
arc z = z(t) (a <t < b), then, we agree that the derivative z'(¢) is continuous on the
closed interval ¢ < t < b and nonzero throughout the open interval a < t < b.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(¢) is
continuous, whereas its derivative z'(¢) is piecewise continuous. The polygonal line
(4) is, for example, a contour. When only the initial and final values of z(¢) are the
same, a contour C is called a simple closed contour. Examples are the circles (5) and
(6), as well as the boundary of a triangle or a rectangle taken in a specific direction.
The length of a contour or a simple closed contour is the sum of the lengths of the
smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are boundary
points of two distinct domains, one of which is the interior of C and is bounded. The
other, which is the exterior of C, is unbounded. It will be convenient to accept this
statement, known as the Jordan curve theorem, as geometrically evident; the proof is
not easy.”*

EXERCISES

1. Show that if w(#) = u(z) + iv(¢) is continuous on an interval a < t < b, then

(a) ./_;aw(—t) dt = ./u‘hw(f) drt;

b B
(b) / w(t) dt :/ wlp(t)]p'(r) dt, where ¢(t) is the function in equation (9),

o

Sec. 43.

Suggestion: These identities can be obtained by noting that they are valid for real-
valued functions of 7.

*See pp. 115-116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in
Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol. 1
of the work by Hille, also cited in Appendix 1.
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2. Let C denote the right-hand half of the circle |z| = 2, in the counterclockwise direction,
and note that two parametric representations for C are

. v T
z=12(0) =2¢" (—55955)

z=Z(y)=\/4=y2+iy (=2<y=<2).

Verify that Z(y) = z[¢(y)], where

d(y) = arctan ——>—— <— T <arctant < z).
Va4 —y? 2 2

Also, show that this function ¢ has a positive derivative, as required in the conditions
following equation (9), Sec. 43.

and

3. Derive the equation of the line through the points («, a) and (8, b) in the t¢ plane that
are shown in Fig. 37. Then use it to find the linear function ¢ (7) which can be used in
equation (9), Sec. 43, to transform representation (2) in that section into representation
(10) there.

b— —b

a - ap oz.

B—a B—«

4. Verify expression (14), Sec. 43, for the derivative of Z(t) = z[¢ (7)].

Suggestion: Write Z(t) = x[¢(7)] + iy[¢(r)] and apply the chain rule for real-
valued functions of a real variable.

Ans. ¢(t) =

5. Suppose that a function f(z) is analytic at a point zp = z(fp) lying on a smooth arc
z=2z(t) (a <t < b). Show that if w(t) = f[z(t)], then

w'(1) = f'lz(0)] (1)

when t = 1.
Suggestion: Write f(z) = u(x, y) +iv(x, y) and z(t) = x(¢t) + iy(¢), so that

w(t) = ulx@), y@Ol+ iv[x (), y()].

Then apply the chain rule in calculus for functions of two real variables to write
w' = (uex +uyy) +i(vex’ +vyy"),

and use the Cauchy—Riemann equations.

6. Let y(x) be a real-valued function defined on the interval 0 < x < 1 by means of the
equations

x3 sin(r/x) when0 < x <1,
y@x) = {0 when x = 0.

(a) Show that the equation
z=x+iy(x) O=x=<1

represents an arc C that intersects the real axis at the pointsz = 1/n (n =1,2,...)
and z = 0, as shown in Fig. 38.
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FIGURE 38

(b) Verify that the arc C in part (a) is, in fact, a smooth arc.
Suggestion: To establish the continuity of y(x) at x = 0, observe that

(T
Hsin( = )| < x®
X

when x > 0. A similar remark applies in finding y’(0) and showing that y’(x) is con-
tinuous at x = 0.

0=

44. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex variable z.
Such an integral is defined in terms of the values f(z) along a given contour C,
extending from a point z = z; to a point z = z, in the complex plane. It is, therefore,
a line integral; and its value depends, in general, on the contour C as well as on the
function f. It is written

/Cf(Z)dz or /:f(z)dz,

the latter notation often being used when the value of the integral is independent of
the choice of the contour taken between two fixed end points. While the integral can
be defined directly as the limit of a sum,* we choose to define it in terms of a definite
integral of the type introduced in Sec. 42.

Definite integrals in calculus can be interpreted as areas, and they have other
interpretations as well. Except in special cases, no corresponding helpful interpretation,
geometric or physical, is available for integrals in the complex plane.

Suppose that the equation

(1 z=z(1) (@a=t=b)

represents a contour C, extending from a point z; = z(a) to a point z, = z(b). We
assume that f[z(¢)] is piecewise continuous (Sec. 42) on the interval a < t < b and

*See, for instance, pp. 2451f in Vol. I of the book by Markushevich that is listed in Appendix 1.
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refer to the function f(z) as being piecewise continuous on C. We then define the line
integral, or contour integral, of f along C in terms of the parameter ¢:

b
(2) /Cf(z)dz=/ flz®1Z' (1) dt.

Note that since C is a contour, 7'(¢) is also piecewise continuous on a < ¢t < b; and
so the existence of integral (2) is ensured.

The value of a contour integral is invariant under a change in the representation of
its contour when the change is of the type (11), Sec. 43. This can be seen by following
the same general procedure that was used in Sec. 43 to show the invariance of arc
length.

We mention here some important and expected properties of contour integrals;
and we begin with the agreement that when a contour C is given, —C denotes the same
set of points on C but with the order of those points reversed (Fig. 39). Observe that
if C has the representation (1), a representation for — C is

3) z=z(=1) (=b<t=<-—a).
y
C
2
-C
<
o X FIGURE 39

Also, if C; is a contour from z; to z> and C, is a contour from z, to z3, the
resulting contour is called a sum and we write C = C; 4 C, (see Fig. 40). Note, too,
that the sum of contours C; and —C, is well defined when C; and C, have the same
final points. It is denoted by C = C; — C5.

y

FIGURE 40
O X C=C+(C,

In stating properties of contour integrals, we assume that all functions f(z) and
g(z) are piecewise continuous on any contour used.
The first property is

@) /C o f (2)dz = 20 /C F)dz,
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where z is any complex constant. This follows from definition (2) and properties of
integrals of complex-valued functions w(#) mentioned in Sec. 42, and the same is true
of the property

) /[f(z)+g(z)]dz=/f(z)dz+/g(z)dz-
C C C

By using representation (3) and referring to Exercise 1(b), Sec. 42, one can see
that

—a d —a
/ f(@)dz = / flz(=0)] d—z(—t) dt = —/ flz(=017'(=1)dt
-C —b ! —b

where 7'(—t) denotes the derivative of z(¢) with respect to ¢, evaluated at —¢. Then,
by making the substitution T = —¢ in this last integral and referring to Exercise 1(a),
Sec. 43, we obtain the expression

b
/c f()dz = —/ flz(DZ (r) d,
which is the same as
©) / F@dz= - / ) dz.
-C c

Finally, consider a path C, with representation (1), that consists of a contour C}
from z; to z, followed by a contour C, from z; to z3, the initial point of C, being
the final point of C; (Fig. 40). There is a value ¢ of ¢, where @ < ¢ < b, such that
z(c) = z». Consequently, C; is represented by

z=2z(t) (a<tr=oc)
and C; is represented by
z=2z(1) (c<t<Dh).

Also, by a rule for integrals of functions w(¢) that was noted in Sec. 42,

b c b
/f[z(t)]z’(t)dt=/ f[z(t)]z’(t)dt+/ flz()1Z () dr.

Evidently, then,

@) /Cf(Z)dZ=/Cl f(z)dz—i—/czf(z)dz.

45. SOME EXAMPLES

The purpose of this and the next section is to illustrate how contour integrals are to
be evaluated when definition (2), Sec. 44, of such integrals is used and to illustrate
some of the properties of contour integrals that were mentioned in Sec. 44. We defer
development of antiderivatives until Sec. 48.



128 INTEGRALS CHAP. 4

EXAMPLE 1. Let us evaluate the contour integral
dz
oz
where C is the top half
z=¢" 0=<6=<m)

of the circle |z] = | from z = 1 to z = —1 (see Fig. 41). According to definition (2),
Sec. 44,

d S i
¢ 2 0 et 0
cr\

1 x

FIGURE 41
C=C—-0C

Now let us evaluate the integral
dz
&z
over the bottom half of the same circle [z] = 1 from z = 1 to z = —1, also shown in

Fig. 41. To evaluate this integral, we use the parametric representation

7 = et

(r <6 <2m)
of the contour —C5. Then
d, d 2 1 ) 2w
@) S| Tao [ Sidtdo=—i a0=-ni
Cz Z 7C2 < g el g

Note that the values of integrals (1) and (2) are not the same. Note, too, that if C
is the closed curve C = C| — C,, then

d d d
3) /jz/i_ T ri = (—mi) = 27i.
c 2 c, < c <

EXAMPLE 2. We begin here by letting C denote an arbitrary smooth arc
(Sec. 43)
z=2z(t) (a<t=<Dh)

from a fixed point z; to a fixed point z, (Fig. 42). In order to evaluate the integral

b
/zdz=/ 72(HZ' (¢) dt,
C a
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\_@zz
z

! C

o X FIGURE 42

we note that according to Example 1, Sec. 41,

d 0P
dt 2
Then, because z(a) = z; and z(b) = z,, we have

/zﬂ_k@Vr_k@F—mwF_é—ﬁ
c T 2,22

Inasmuch as the value of this integral depends only on the end points of C and is
otherwise independent of the arc that is taken, we may write

=z()Z'(1).

a

22 2 2
: 25—z
4) / zdz = 22 —=1
21 2
Expression (4) is also valid when C is a contour that is not necessarily smooth
since a contour consists of a finite number of smooth arcs Cy (k =1, 2, ..., n), joined

end to end. More precisely, suppose that each C; extends from z; to zi41. Then

- S "\ o1 — 3 Zap — A
&) [raz=Y [ car=) [ ede= Y FAE S A
¢ k=1 Ck k=1 "% k=1

where this last summation has telescoped and z; is the initial point of C and z,4; is
its final point.

If f(z) is given in the form f(z) = u(x, y) + iv(x, y), where z = x + iy, one
can sometimes apply definition (2), Sec. 44, using one of the variables x and y as the
parameter.

EXAMPLE 3. Here we first let C; denote the polygonal line OAB shown in
Fig. 43 and evaluate the integral

Y

i 1+

FIGURE 43
0] X C=C—(C,
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(6) L= | fdz= f(@)dz + f(2)dz,
C 0A AB

where
f@=y—x—i3x’ (z=x+iy).

The leg OA may be represented parametrically as z =0+ iy (0 < y < 1); and, since
x = 0 at points on that line segment, the values of f there vary with the parameter y
according to the equation f(z) = y (0 < y < 1). Consequently,

1 1 .

1

f(z)dz=/ yidy=i/ ydy = =.
0A 0 0 2

On the leg AB, the points are z = x + i (0 < x < 1); and, since y = 1 on this
segment,

1 1 1
1
ﬂ@dz:/fl—x—wﬁyldw:/(1—mdx—y/nﬁdx:——ﬁ
AB 0 0 0 2

In view of equation (6), we now see that
1—i
@) I = 7

If C, denotes the segment O B of the line y = x in Fig. 43, with parametric
representation 7 = x +ix (0 < x < 1), the fact that y = x on OB enables us to write

. 1 1
L= f&)dzzy/ —Bx%l+4)dx=3(1—i)/ xXdx =1-i.
G 0 0

Evidently, then, the integrals of f(z) along the two paths C; and C; have different
values even though those paths have the same initial and the same final points.

Observe how it follows that the integral of f(z) over the simple closed contour
OABO, or C| — C», has the nonzero value

—14i

h—h=——.

These three examples serve to illustrate the following important facts about con-
tour integrals:

(a) the value of a contour integral of a given function from one fixed point to another
might be independent of the path taken (Example 2), but that is not always the
case (Examples 1 and 3);

(b) contour integrals of a given function around every closed contour might all have
value zero (Example 2), but that is not always the case (Examples 1 and 3).

The question of predicting when contour integrals are independent of path or always
have value zero when the path is closed will be taken up in Secs. 48, 50, and 52.
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46. EXAMPLES INVOLVING BRANCH CUTS
The path used in a contour integral can contain a point on a branch cut of the integrand

involved. The next two examples illustrate this.

EXAMPLE 1. Let C denote the semicircular path
z=3¢" 0=<0=<m

from the point z = 3 to the point z = —3 (Fig. 44). Although the branch
1
fz) = 712 = exp (E logz) (Jz| > 0,0 < argz < 2m)

of the multiple-valued function z!/2 is not defined at the initial point z = 3 of the
contour C, the integral

(1) 1=/z1/2a’z
C

nevertheless exists, since its integrand is piecewise continuous on C. To see that this
is so, we first observe that when z(6) = 3 ¢'?,

1 ,
flz(6)] = exp [5(1113 + i@)] =372
Hence the right-hand limits of the real and imaginary components of the function
. . ‘ 36 30
Flz(0)1Z'0) = V3 €9?3ie' = 3+/3ie** = —3+/3 sin 5+ i3+/3 cos >

0O<6<m

at =0 exist, those limits being 0 and i3+/3, respectively. This means that
f1z(0)]Z'(0) is continuous on the closed interval 0 < 0 < 7 when its value at § = 0
is defined as i3+/3. Consequently,

[ = 3«/31'/ 2 dp.
0

Since

T
/n ¢392 dp = gem/z} =—3(1+i)

we now have the value
2) I =-2v3(1+1i)
of integral (1).

X FIGURE 44
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EXAMPLE 2. Using the principal branch
f@ =" =expl(=1+DLogzl  (lz] > 0.~ < Argz <)

of the power function z~'*, let us evaluate the integral

(3) I Z/Z—]+i dz
C

where C is the positively oriented unit circle (Fig. 45)
z=é" (-7 =6 <)

about the origin.

FIGURE 45

When z(f) = e'?, it is easy to see that
() Fl2(@)12(0) = 1D 1+i6); 50,0,
Inasmuch as the function (4) is piecewise continuous on —7 < 6 < 7, integral (3)

exists. In fact,

s
I = i/ e ?do =i[—e T, =i(—e ™ +e"),
—TT

or

I =i2— =i2sinh.

EXERCISES

For the functions f and contours C in Exercises 1 through 8, use parametric representations
for C, or legs of C, to evaluate

/ f(2) dz.
c
1. f(z)=(z+2)/zand Cis
(@) the semicircle z =2¢" (0 <6 < n);
(b) the semicircle z =2¢" (w <0 < 2n);
(¢) thecircle z =2 (0 <6 < 2n).
Ans. (a) —4+42ni; (D) 44 2ni; (c) 4mi.



SEC. 46 EXAMPLES INVOLVING BRANCH CUTS 133

2. f(z) =z — l and C is the arc from z = 0 to z = 2 consisting of
(a) the semicircle z = 1 + ¢ (7 <6 < 2n);
(b) the segment z = x (0 < x < 2) of the real axis.
Ans. (a) 0; (b) 0.

3. f(z) = wexp(wz) and C is the boundary of the square with vertices at the points 0, 1,
1 + i, and i, the orientation of C being in the counterclockwise direction.

Ans. 4(e™ —1).
4. f(z) is defined by means of the equations
1 when y < 0,
@)= {4y when y > 0,
and C is the arc from z = —1 — i to z = 1 + i along the curve y = x°.
Ans. 2+ 3i.
5. f(z) = 1 and C is an arbitrary contour from any fixed point z; to any fixed point z; in
the z plane.
Ans. 7o — 7.

6. f(z) is the principal branch
7= exp(iLogz) (]z] >0,—7 < Argz <m)
of the power function z’, and C is the semicircle z = ¢!/ (0 < 0 < 7).
14+e™™ .
(1 —1).

2
7. f(z) is the principal branch

Ans. —

"7 =expl(—1 —2i)Logz] (2] > 0, -7 < Argz < 1)

of the indicated power function, and C is the contour

z=¢" (0<0<£).
- T2

e’ —1
2
8. f(z) is the principal branch

Ans. i

a

= exp[(a — 1)Logz] (|z| > 0, —m < Argz < m)

a—1

of the power function z“~", where a is a nonzero real number, and C is the positively
oriented circle of radius R about the origin.
2R

Ans. i sin amr, where the positive value of R is to be taken.

9. Let C denote the positively oriented unit circle |z| = 1 about the origin.

(a) Show that if f(z) is the principal branch

~3/4 3
Z = exp —ZLogz (Jz] > 0, = < Argz < )
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of z73/4, then
/ f(2)dz = 4v2i.
C

(b) Show that if g(z) is the branch

—3/4

3
T =exp {_Z 10g2] (Iz] > 0,0 < argz < 2m)

of the same power function as in part (a), then

/ g(@dz =—4+4i.

c

This exercise demonstrates how the value of an integral of a power function depends
in general on the branch that is used.

10. With the aid of the result in Exercise 3, Sec. 42, evaluate the integral

/ 7" z7"dz,
c

where m and n are integers and C is the unit circle |z| = 1, taken counterclockwise.

11. Let C denote the semicircular path shown in Fig. 46. Evaluate the integral of the function
f(2) = zZ along C using the parametric representation (see Exercise 2, Sec. 43)

(@) z = 2 (—%505%); B 1= VE—y+iy (-2<y<2).

Ans. 4mi.
y
20 ¢
C
0] X
—2i ¢
FIGURE 46

12. (a) Suppose thatafunction f(z) is continuous on a smooth arc C, which has a parametric
representation z = z(¢) (@ <t < b); thatis, f[z(¢)] is continuous on the interval
a <t < b.Show thatif ¢(7) (¢ < v < B) is the function described in Sec. 43, then

b B
/ FL01 (@) di = / FIZONZ (0) de

where Z(t) = z[¢(7)].
(b) Point out how it follows that the identity obtained in part (a) remains valid when C
is any contour, not necessarily a smooth one, and f(z) is piecewise continuous on
C. Thus show that the value of the integral of f(z) along C is the same when the
representation z = Z(7) (¢ < v < f) is used, instead of the original one.
Suggestion: In part (a), use the result in Exercise 1(b), Sec. 43, and then refer to
expression (14) in that section.
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13. Let Cy denote the circle centered at zo with radius R, and use the parametrization

z=zO+Rei9 (—m <0 <m
to show that
0 whenn==41,42,...
_ n—1 — ’ ’ ’
C“(Z 20)"dz = {27‘[1’ when n = 0.

(Put zo = 0 and then compare the result with the one in Exercise 8§ when the constant a
there is a nonzero integer.)

47. UPPER BOUNDS FOR MODULI OF
CONTOUR INTEGRALS

We turn now to an inequality involving contour integrals that is extremely important
in various applications. We present the result as a theorem but preface it with a needed
lemma involving functions w(#) of the type encountered in Secs. 41 and 42.

Lemma. If w(t) is a piecewise continuous complex-valued function defined on

an interval a <t < b, then
b b
/ w(t) dt 5/ lw(t)|dt.

This inequality clearly holds when the value of the integral on the left is zero.
Thus, in the verification, we may assume that its value is a nonzero complex number
and write

b
@) / w(t)dt = ry ™.

(1

Solving for r(, we have

b
(3) r0=/ e w(r)dr.

Now the left-hand side of this equation is a real number, and so the right-hand side is
too. Thus, using the fact that the real part of a real number is the number itself, we find
that

b
ro = Re/ e Pw(t)dr.

a

Hence, in view of the first of properties (3) in Sec. 42,

b
“4) roz/ Re[e % w(r)] dt.
But

Re[e ™ w(n)] < le ®w(@)| = e ™| lw(®)| = [w(®)],
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and it follows from equation (4) that

b
rof/ lw(t)|dt.

Finally, equation (2) tells us that ry is the same as the left-hand side of inequality (1),
and the verification of the lemma is complete.

Theorem. Let C denote a contour of length L, and suppose that a function f(z)
is piecewise continuous on C. If M is a nonnegative constant such that

(%) lf@l =M
for all points z on C at which f(z) is defined, then

/c f(z)dz

To obtain inequality (6), we assume that inequality (5) holds and let

(6) <ML.

z=2(t) (a<t<b)

be a parametric representation of C. According to the lemma,

‘/ f()dz
C

Inasmuch as

b b
/ flz()1Z' (t) dt 5/ | flz()1Z' (1)] dt.

|flz®O O] = [ flzO 12/ (O] < M |2/ ()]

when a <t < b, except possibly for a finite number of points, it follows that

‘/Cf(z)dz

Since the integral on the right here represents the length L of C (see Sec. 43), inequality
(6) is established. It is, of course, a strict inequality if inequality (5) is strict.

Note that since C is a contour and f is piecewise continuous on C, a number
M such as the one appearing in inequality (5) will always exist. This is because the
real-valued function | f[z(7)]| is continuous on the closed bounded intervala <t < b
when f is continuous on C; and such a function always reaches a maximum value M
on that interval.* Hence | f(z)| has a maximum value on C when f is continuous on
it. The same is, then, true when f is piecewise continuous on C.

b
§M/ |z'(1)| dt.

*See, for instance A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 86-90, 1983.
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EXAMPLE 1. Let C be the arc of the circle |z| = 2 from z = 2 to z = 2i that
lies in the first quadrant (Fig. 47). Inequality (6) can be used to show that
4
<

/ z2—2

—dz| < —.

ct+1 15

This is done by noting first that if z is a point on C, then
lz=2l=lz+ (=D =zl +[-2/=2+2=4

(7

and
Izt + 1 > ||zI* = 1] = 15.

Thus, when z lies on C,

A1 A1 15

By writing M = 4/15 and observing that L = r is the length of C, we may now use
inequality (6) to obtain inequality (7).

z—2‘_ 22 _ 4

y

21 ¢

0 2 X FIGURE 47

EXAMPLE 2. Let Cg denote the semicircle
z = Re" 0<6<m)

from z = R to z = —R, where R > 3 (Fig. 48). It is easy to show that
®) lim / z+Ddz
R=oofe, (22 +4)(22+9)
without actually evaluating the integral. To do this, we observe that if z is a point
on Cg,
lz+ 1 <lzl+1=R+1,
|22 +4| > ||z|*> -4 = R* — 4,

and

122 +9] > ||z = 9] = R? —09.

R Ol 3R * FIGURE4S
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This means that if z is on Cg and f(z) is the integrand in integral (8), then

z+1 |z + 1] R+1

If @ =|— 2 =2 2 =R 2 =
(z2+4) (2 +9) |22 4+4]|z224+9] — (R2—4)(R*-9)

where M serves as an upper bound for | f (z)| on Cg. Since the length of the semicircle
is m R, we may refer to the theorem in this section, using

Mk,

R+1
Mp = and L =nR,

(R = 4) (R = 9)

to write
d

) / # < ML

cr @ +DH(EF+9)
where

1 1 1
AR2+R)  gi " (ﬁ*ﬁ)
(R —4) (R —9) 1~ <1_4) <1_9)'
R4 R2 R2

This shows that Mx L — 0 as R — oo, and limit (8) follows from inequality (9).

MRrL =

EXERCISES
1. Without evaluating the integral, show that
z+4 6 dz T
dz| < —; b <=
@ | [Foel=T o253

when C is the arc that was used in Example 1, Sec. 47.
2. Let C denote the line segment from z = i to z = 1 (Fig. 49), and show that

d
‘ / Cl<av2
cz
without evaluating the integral.
Suggestion: Observe that of all the points on the line segment, the midpoint is
closest to the origin, that distance being d = +/2/2.

o 1 X FIGURE 49
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3. Show that if C is the boundary of the triangle with vertices at the points 0, 37, and —4,
oriented in the counterclockwise direction (see Fig. 50), then

/(;(eZ —2)dz

Suggestion: Note that |e* — 7| < e* + \/x2 + y2 when z = x +iy.

< 60.

3i

-4 0 X FIGURE 50

4. Let Cg denote the upper half of the circle |z] = R (R > 2), taken in the counterclockwise
direction. Show that

/ 22— 1 _ TRQR+1)
A5+ | TR DR -4

Then, by dividing the numerator and denominator on the right here by R*, show that the
value of the integral tends to zero as R tends to infinity. (Compare with Example 2 in
Sec. 47.)

5. Let Cy be thecircle |z] = R (R > 1), described in the counterclockwise direction. Show

that
L InR
= <2n(”+7n),
cg <

R
and then use I’Hospital’s rule to show that the value of this integral tends to zero as R
tends to infinity.

6. Let C, denote a circle |z| = p (0 < p < 1), oriented in the counterclockwise direction,
and suppose that f(z) is analytic in the disk |z| < 1. Show that if z~!/? represents any
particular branch of that power of z, then there is a nonnegative constant M, independent
of p, such that

/ 22 f(2)dz| <27 M \/p.
Je,

Thus show that the value of the integral here approaches 0 as p tends to 0.
Suggestion: Note that since f(z) is analytic, and therefore continuous, throughout
the disk |z| < 1, it is bounded there (Sec. 18).
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7. Apply inequality (1), Sec. 47, to show that for all values of x in the interval —1 < x < 1,
the functions™

1 g
P,,(x):;/o (x +iVv1—x2cos0)" do n=0,1,2,...)

satisfy the inequality | P, (x)| < 1.
8. Let Cy denote the boundary of the square formed by the lines

1 1
x::l:(N—l—E)n and y::l:(N—i—E)rr,
where N is a positive integer and the orientation of Cy is counterclockwise.
(a) With the aid of the inequalities
[sinz| > |sinx| and |sinz| > [sinhy]|,

obtained in Exercises 8(a) and 9(a) of Sec. 38, show that | sin z| > 1 on the vertical
sides of the square and that |sin z| > sinh(;r/2) on the horizontal sides. Thus show
that there is a positive constant A, independent of N, such that [sinz| > A for all
points z lying on the contour Cy.

(b) Using the final result in part (a), show that
16

/ dz -
cy 22sinz| — 2N+ DA

and hence that the value of this integral tends to zero as N tends to infinity.

48. ANTIDERIVATIVES

Although the value of a contour integral of a function f(z) from a fixed point z; to
another fixed point z, depends, in general, on the path that is taken, there are certain
functions whose integrals from z; to z, have values that are independent of path.

Recall statements (a) and (b) at the end of Sec. 45. Those statements also remind
us of the fact that the values of integrals around closed paths are sometimes, but not
always, zero. Our next theorem is useful in determining when integration is independent
of path and, moreover, when an integral around a closed path has value zero.

The theorem contains an extension of the fundamental theorem of calculus that
simplifies the evaluation of many contour integrals. The extension involves the concept
of an antiderivative of a continuous function f(z) on a domain D, or a function F(z)
such that F'(z) = f(z) for all z in D. Note that an antiderivative is, of necessity,
an analytic function. Note, too, that an antiderivative of a given function f(z) is
unique except for an additive constant. This is because the derivative of the difference
F(z) — G(z) of any two such antiderivatives is zero; and, according to the theorem

*These functions are actually polynomials in x. The are known as Legendre polynomials and are
important in applied mathematics. See, for example, the authors’ book (2012) that is listed in Appendix
1. The expression for P,(x) used in Exercise 7 is sometimes called Laplace’s first integral form.
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in Sec. 25, an analytic function is constant in a domain D when its derivative is zero
throughout D.

Theorem. Suppose that a function f(z) is continuous in a domain D. If any one
of the following statements is true, then so are the others:

(a) f(2) has an antiderivative F (z) throughout D;

(b) the integrals of f(z) along contours lying entirely in D and extending from any
fixed point z, to any fixed point z, all have the same value, namely
22

= F(z) - F(z)

21

/ F(@)dz = F(2)

where F (z) is the antiderivative in statement (a);

(c) the integrals of f(z) around closed contours lying entirely in D all have value
zero.

It should be emphasized that the theorem does not claim that any of these state-
ments is true for a given function f(z). It says only that all of them are true or that
none of them is true. The next section is devoted to the proof of the theorem and can
be easily skipped by a reader who wishes to get on with other important aspects of
integration theory. But we include here a number of examples illustrating how the
theorem can be used.

EXAMPLE 1. The continuous function f(z) = €™* evidently has an antideriva-
tive F(z) = €% /m throughout the finite plane. Hence

i/2 em /2 1 ) ) 1 1
/ e"idz = ] =—("?—e™) = =@ +1)=—(1+1i).
i T, b/ b4 kg

EXAMPLE 2. The function f(z) = 1/z%, which is continuous everywhere ex-

cept at the origin, has an antiderivative F'(z) = — 1/z in the domain |z| > 0, consisting
of the entire plane with the origin deleted. Consequently,
dz
— =0
c <

when C is the positively oriented unit circle z = ¢! (—m < 6 < 7) about the origin.
Note that the integral of the function f(z) = 1/z around the same circle cannot
be evaluated in a similar way. For, although the derivative of any branch F(z) of log z
is 1/z (Sec. 33), F(z) is not differentiable, or even defined, along its branch cut. In
particular, if a ray & = « from the origin is used to form the branch cut, F’(z) fails to
exist at the point where that ray intersects the circle C (see Fig. 51). So C does not lie
in any domain throughout which F’(z) = 1/z, and one cannot make direct use of an
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c -
N\ e

antiderivative. But Example 3, just below, illustrates how a combination of two different
antiderivatives can be used to evaluate f(z) = 1/z around C.

FIGURE 51

EXAMPLE 3. Let C; denote the right half

i0 T 7
z=¢e -5 <0<
2 2

of the circle C in Fig. 51. The principal branch
Logz=1Inr +i® r>0 -7 <0 <m)

of the logarithmic function serves as an antiderivative of the function 1/z in the eval-
uation of the integral of 1/z along C; (Fig. 52):

d ‘d i
/ az — az — Logz]ii = Logi — Log (—i)
c 2 -i Z

=(Inl+i Inl—i =i
=|(In — )= Inl—i=) =mi.
12 12 i

C

—6

FIGURE 52
Next let C; denote the left half

i T 3w
z=e T <0=<—
2 2

of the same circle C and consider the branch

logz =Inr +1i6 (r>0,0<06 <2m)
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of the logarithmic function (Fig. 53). One can write

d —id o
/ dz =/ 4z =1ogz] = log(—i) — logi
) £ i < i

3
- (1n1+i7”) _ <1n1+i%> = i,

y

%
G

o

19) X
p—i

FIGURE 53
The value of the integral of 1/z around the entire circle C = C; + C; is thus
obtained:

dz dz dz . . .
/—:/ — 4+ — =i +mwi = 2mi.
c z c 2 c 2

EXAMPLE 4. Let us use an antiderivative to evaluate the integral

(1) / 2 dz,
Cy

where the integrand is the branch

1 .
2) f@) =z =exp <2 10gz> = Jre'’? r>0,0<6 <2m)
of the square root function and where C; is any contour from 7z = —3 to z = 3 that,

except for its end points, lies above the x axis (Fig. 54). Although the integrand is

piecewise continuous on C1, and the integral therefore exists, the branch (2) of z!/2 is

G

/—-\,
4,“

FIGURE 54
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not defined on the ray 6 = 0, in particular at the point z = 3. But another branch,

. 3
fi(z) = re? (r -0, —% <0< 7”)

is defined and continuous everywhere on C;. The values of fi(z) at all points on C;
except z = 3 coincide with those of our integrand (2); so the integrand can be replaced
by f1(z). Since an antiderivative of f)(z) is the function

2 2 ;
32 _ gr«/?e’%)/z <r -0, _% <0 < 3_77)

Fl(Z)= gZ 2

we can now write
3 3
/ M dz = / fi(z) dz = Fy (z)] =23 — 7% = 2/3(1 + ).
Cl -3 -3

(Compare with Example 1 in Sec. 46.)
The integral

(3) / 22 dz
Cy

of the function (2) over any contour C, that extends from z = —3 to z = 3 below the
real axis can be evaluated in a similar way. In this case, we can replace the integrand
by the branch

) 5
@) = re? (r > 0, % <0< 7”)

whose values coincide with those of the integrand at z = —3 and at all points on C;
below the real axis. This enables us to use an antiderivative of f>(z) to evaluate integral
(3). Details are left to the exercises.

49. PROOF OF THE THEOREM

In order to prove the theorem in Sec. 48, it is sufficient to show that statement (a)
implies statement (b), that statement (b) implies statement (c), and that statement (c)
implies statement (a). Thus, as pointed out in Sec. 48, either the statements are all true
or none of them is true.

(a) implies (b)

We begin with the assumption that statement (a) is true, or that f (z) has an antideriva-
tive F(z) on the domain D. To show how statement (b) follows, we need to show that
integration is independent of path in D and that the fundamental theorem of calculus
can be extended using F(z). If a contour C from z; to z; is a smooth arc lying in
D, with parametric representation z = z(t) (@ <t < b), we know from Exercise 5,
Sec. 43, that

d
EF[Z(I)] = Flz®Z 1) = flz®O1Z() (a =t < b).
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Because the fundamental theorem of calculus can be extended so as to apply to
complex-valued functions of a real variable (Sec. 42), it follows that

b b
/Cf(z)dz =/ flz))Z (1) dt = F[z(t)]} = Flz(b)] = Flz(a)].
Since z(b) = z; and z(a) = z;, the value of this contour integral is then

F(z2) — F(z1);

and that value is evidently independent of the contour C as long as C extends from z;
to z» and lies entirely in D. That is,

22

22
(D / f(z)dz=F(22)—F(11)=F(z)}
21 21
when C is smooth. Expression (1) is also valid when C is any contour, not necessarily
a smooth one, that lies in D. For, if C consists of a finite number of smooth arcs
Cy(k=1,2,...,n), each C extending from a point z; to a point zz4, then

[r@daz=Y [ f@d=3" [ f@d:=Y1F@u - Fel
¢ k=1 " Ck k=1 "% k=1

Because the last sum here telescopes to F(z,+1) — F'(z1), we arrive at the expression

/Cf(z) dz = F(zp41) — F(z1).

(Compare with Example 2, Sec. 45.) The fact that statement (b) follows from statement
(a) is now established.

(b) implies (c)

To see that statement (b) implies statement (c), we now assume that integration of f (z)
is independent of path in D and show how it follows that the values of integrals of f (z)
around closed paths in D are zero. To do this, we let z; and z, denote two points on
any closed contour C lying in D and form two paths C and C», each with initial point
z1 and final point z;, such that C = C; — C, (Fig. 55). Assuming that integration is
independent of path in D, one can write

() f@dz= | f(2)dz,
C] C2

o S~ -7 X FIGURE 55




146 INTEGRALS CHAP. 4

or
3) f)dz + / f(z)dz =0.
a —C

That is, the integral of f(z) around the closed contour C = C; — C; has value zero.

(c) implies (a)

It remains to show that if integrals of a given function f(z) around closed contours
in D always have value zero, then f(z) has an antiderivative on D. Assuming that
the values of such integrals are in fact zero, we start by showing that integration is
independent of path in D. We let C| and C; denote any two contours, lying in D, from
a point z; to a point z and observe that since integrals around closed paths lying in D
have value zero, equation (3) holds (see Fig. 55). Thus equation (2) holds. Integration
is, therefore, independent of path in D; and we can define the function

F(2) =/ f(s)ds

on D. The proof of the theorem is complete once we show that F'(z) = f(z) every-
where in D. We do this by letting z + Az be any point distinct from z and lying in
some neighborhood of z that is small enough to be contained in D. Then

z+Az ¥4 7+Az
Fe+s-F@ = [ jods— [ roas= [ roas

20

where the path of integration may be selected as a line segment (Fig. 56). Since

+Az
/ ds = Az
z

(see Exercise 5, Sec. 46), one can write

+Az
f(Z):ALz/Z f(2)ds;

and it follows that
F(z+ Az) — F(2)

1 z+Az
~r@ = [ e - solas
2 Jz

Az

X FIGURE 56
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But f is continuous at the point z. Hence, for each positive number ¢, a positive number
& exists such that

|f(s) — f(z2)| <e whenever |s—z| <3d.

Consequently, if the point z + Az is close enough to z so that |Az| < §, then

Pet89=F0 _ ro) < Lejazi=e

that is,

Az |Az|
. F(z+Az) — F(2)
1 =
Aim, Az f (@),

or F'(z) = f(2).

EXERCISES

1.

Use an antiderivative to show that for every contour C extending from a point z; to a
point z7,

1 n n
/Cz”dz=n+1(zz+1—zl+l) n=0,1,2,...).

By finding an antiderivative, evaluate each of these integrals, where the path is any
contour between the indicated limits of integration:

1+i 420 3
(a)A 2dz; (b)/0 cos(%)dz; (c)/l(z—2)3dz.

2 1
Ans. (a) g(—l +1i); (b)) e+—; (¢) 0.
e
Use the theorem in Sec. 48 to show that

(z—z20)"'dz=0 (n==41,%2,..)
Co

when Cj is any closed contour which does not pass through the point zy. (Compare with
Exercise 13, Sec. 46.)

Find an antiderivative F,(z) of the branch f»(z) of z'/? in Example 4, Sec. 48, to show
that integral (3) there has value 2/3(—1 + i). Note that the value of the integral of the
function (2) around the closed contour C; — C in that example is, therefore, —4./3.

Show that
L 14+e ™
/ Z'dz = (1—1),
1 2

where the integrand denotes the principal branch

7 =exp(iLogz)  (lz]| >0, -7 < Argz < 7)

of 7' and where the path of integration is any contour from z = —1 to z = 1 that, except
for its end points, lies above the real axis. (Compare with Exercise 6, Sec. 46.)
Suggestion: Use an antiderivative of the branch

) 3
7' = exp(ilogz) <|z| > 0, —% <argz < ;)

of the same power function.
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50. CAUCHY-GOURSAT THEOREM

In Sec. 48, we saw that when a continuous function f has an antiderivative on a
domain D, the integral of f(z) around any given closed contour C lying entirely in
D has value zero. In this section, we present a theorem giving other conditions on a
function f which ensure that the value of the integral of f(z) around a simple closed
contour (Sec.43) is zero. The theorem is central to the theory of functions of a complex
variable; and some modifications of it, involving certain special types of domains, will
be given in Secs. 52 and 53.

We let C denote a simple closed contour z = z(¢) (@ < t < b), described in
the positive sense (counterclockwise), and we assume that f is analytic at each point
interior to and on C. According to Sec. 44,

ey /Cf(z) dz = /ab flz®O1Z @) dt;
and if

f@@) =ux,y)+ivix,y) and z(t) =x(1) +iy(),
the integrand f[z(¢)]z'(¢) in expression (1) is the product of the functions

ulx(0), y(O +ivlx (@), yOl, (1) +iy'(1)

of the real variable ¢. Thus

b b
2) / f(z)dz = / (ux' —vy'ydt + i/ (vx" 4+ uy')dt.
C a a
In terms of line integrals of real-valued functions of two real variables, then,
3) /f(Z)dzz/udx—vdy+i/vdx—l—udy.
c c c

Observe that expression (3) can be obtained formally by replacing f(z) and dz on the
left with the binomials

u+iv and dx+idy,

respectively, and expanding their product. Expression (3) is, of course, also valid
when C is any contour, not necessarily a simple closed one, and when f[z(¢)] is only
piecewise continuous on it.

We next recall a result from calculus that enables us to express the line integrals
on the right in equation (3) as double integrals. Suppose that two real-valued functions
P(x,y)and Q(x, y), together with their first-order partial derivatives, are continuous
throughout the closed region R consisting of all points interior to and on the simple
closed contour C. Green’s theorem states that

LPM+Q@=/A@waM-

Now f is continuous on R, since it is analytic there. Hence the functions « and
v are also continuous on R. Likewise, if the derivative f’ of f is continuous on R, so
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are the first-order partial derivatives of u and v. Green’s theorem then enables us to
rewrite equation (3) as

) /f(z) dz=//(—vx—uy)dA+i//(ux—vy)dA.
C R R

But, in view of the Cauchy—Riemann equations
Uy =Vy, Uy = —Uy,

the integrands of these two double integrals are zero throughout R. So when f is
analytic in R and f’ is continuous there,

5) /C F(2) dz =0,

This result was obtained by Cauchy in the early part of the nineteenth century.

Note that once it has been established that the value of this integral is zero, the
orientation of C is immaterial. That is, statement (5) is also true if C is taken in the
clockwise direction, since then

/Cf(Z)dZ=—/7cf(z)dz=O.

EXAMPLE. If C is any simple closed contour, in either direction, then
/ sin(z%) dz = 0.
c

This is because the composite function f(z) = sin(z?) is analytic everywhere and its
derivative f'(z) = 2z cos(z?) is continuous everywhere.

Goursat* was the first to prove that the condition of continuity on f' can be omitted.
Its removal is important and will allow us to show, for example, that the derivative f’
of an analytic function f is analytic without having to assume the continuity of f’,
which follows as a consequence. We now state the revised form of Cauchy’s result,
which is known as the Cauchy-Goursat theorem.

Theorem. If a function f is analytic at all points interior to and on a simple

closed contour C, then
/ f(z)dz=0.
c

The proof is presented in the next section, where, to be specific, we assume that
C is positively oriented. The reader who wishes to accept this theorem without proof
may pass directly to Sec. 52.

*E. Goursat (1858-1936), pronounced gour-sah’.
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51. PROOF OF THE THEOREM

Since the proof of the Cauchy-Goursat theorem is necessarily rather lengthy, we present
that proof in three parts. The reader is encouraged to digest each part before continuing
to another.

A Preliminary Lemma

We begin with a lemma to be used in proving the theorem. In this lemma, we form
subsets of the region R which consists of the points on a positively oriented simple
closed contour C together with the points interior to C. To do this, we draw equally
spaced lines parallel to the real and imaginary axes such that the distance between
adjacent vertical lines is the same as that between adjacent horizontal lines. We thus
form a finite number of closed square subregions, where each point of R lies in at least
one such subregion and each subregion contains points of R. We refer to these square
subregions simply as squares, always keeping in mind that by a square we mean a
boundary together with the points interior to it. If a particular square contains points
that are not in R, we remove those points and call what remains a partial square. We
thus cover the region R with a finite number of squares and partial squares (Fig. 57),
and our proof of the following lemma starts with this covering.

y

o N

8
v

o X FIGURE 57

/
(=

Lemma. Let f be analytic throughout a closed region R consisting of the points
interior to a positively oriented simple closed contour C together with the points on C
itself. For any positive number ¢, the region R can be covered with a finite number of

squares and partial squares, indexed by j = 1,2, ..., n, such that in each one there
is a fixed point zj for which the inequality
f@) = f&z)
(1) = = | <.
Z—Zj

is satisfied by all points other than z; in that square or partial square.
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To start the proof, we consider the possibility that in the covering constructed just
prior to the statement of the lemma, there is some square or partial square in which no
point z; exists such that inequality (1) holds for all other points z in it. If that subregion
is a square, we construct four smaller squares by drawing line segments joining the
midpoints of its opposite sides (Fig. 57). If the subregion is a partial square, we treat
the whole square in the same manner and then let the portions that lie outside of R
be discarded. If in any one of these smaller subregions, no point z; exists such that
inequality (1) holds for all other points z in it, we construct still smaller squares and
partial squares, etc. When this is done to each of the original subregions that requires
it, we find that after a finite number of steps, the region R can be covered with a finite
number of squares and partial squares such that the lemma is true.

To verify this, we suppose that the needed points z; do not exist after subdividing
one of the original subregions a finite number of times and reach a contradiction. We
let oy denote that subregion if it is a square; if it is a partial square, we let oy denote
the entire square of which it is a part. After we subdivide oy, at least one of the four
smaller squares, denoted by o7, must contain points of R but no appropriate point
zj. We then subdivide o1 and continue in this manner. It may be that after a square
ox—1 (k = 1,2,...) has been subdivided, more than one of the four smaller squares
constructed from it can be chosen. To make a specific choice, we take oy to be the one
lowest and then furthest to the left.

In view of the manner in which the nested infinite sequence

() 00, 01,02, ..., Ok—1, Ok, - . .

of squares is constructed, it is easily shown (Exercise 9, Sec. 53) that there is a point z¢
common to each oy ; also, each of these squares contains points of R other than possibly
Z0- Recall how the sizes of the squares in the sequence are decreasing, and note that
any 6 neighborhood |z — z9| < § of zy contains such squares when their diagonals
have lengths less than 6. Every § neighborhood |z — zg| < & therefore contains points
of R distinct from z(, and this means that z( is an accumulation point of R. Since the
region R is a closed set, it follows that z¢ is a point in R. (See Sec. 12.)

Now the function f is analytic throughout R and, in particular, at zy. Consequently,
f'(zo) exists. According to the definition of derivative (Sec. 19), there is, for each
positive number &, a 6 neighborhood |z — zo| < § such that the inequality

f(@) — f(z0)

Z—20

— flzo)| < ¢

is satisfied by all points distinct from z, in that neighborhood. But the neighborhood
|z —zo| < & contains a square ox when the integer K is large enough that the length of
a diagonal of that square is less than § (Fig. 58). Consequently, z( serves as the point z;
in inequality (1) for the subregion consisting of the square ok or a part of o . Contrary
to the way in which the sequence (2) was formed, then, it is not necessary to subdivide
ok . We thus arrive at a contradiction, and the proof of the lemma is complete.
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An Upper Bound for the Modulus of an Integral

Continuing with a function f which is analytic throughout a region R consisting of a
positively oriented simple closed contour C and points interior to it, we are now ready
to prove the Cauchy—Goursat theorem, namely that

3) /C F(2)dz = 0.

Given an arbitrary positive number ¢, we consider the covering of R in the state-
ment of the lemma. We then define on the jth square or partial square a function §;(z)
whose values are §;(z;) = 0, where z; is the fixed point in inequality (1), and

f(@)— f(z))
2

4) 8j(z) = — f'(z;) whenz # z;.

J

According to inequality (1),
&) 18;(2)] < ¢

at all points z in the subregion on which §;(z) is defined. Also, the function §;(z) is
continuous throughout the subregion since f(z) is continuous there and

lim 8;(2) = f'(z)) = f'(z) = 0.

Next, we let C; (j = 1,2,...,n) denote the positively oriented boundaries of
the above squares or partial squares covering R. In view of our definition of §(z), the
value of f at a point z on any particular C; can be written

f@=f@)—zif'@)+ @2+ (z—2;)8;(2);

and this means that
(6) /Cf(z)dz=[f(zj)—zjf’(zj)]/c dz+f/(z,»)/czdz

+/ (z—2zj)3;(2) dz.
Cj



SEC. 51 PROOF OF THE THEOREM 153

But

/dz:O and /zdz:O
C; C;

7 J

since the functions 1 and z possess antiderivatives everywhere in the finite plane. So
equation (6) reduces to

(7 /Cf(z)dz=/c(z—zj)5j(z)dz (j=1,2,....n).

The sum of all n integrals on the left in equations (7) can be written

jz:/cjf(z)dzz/cf(z)dz

since the two integrals along the common boundary of every pair of adjacent subregions
cancel each other, the integral being taken in one sense along that line segment in one
subregion and in the opposite sense in the other (Fig. 59). Only the integrals along the
arcs that are parts of C remain. Thus, in view of equations (7),

/Cf(z) dz = ,-Zl/c/(z —2))8,(2) dz;

and so
®) ‘/ f(2)dz SZ / (z—z;)8;(2) dz|.
c 4l7e
y
S
O X
v FIGURE 59
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Conclusion

We now use the theorem in Sec. 47 to find an upper bound for each modulus on the
right in inequality (8). To do this, we first recall that each C; coincides either entirely
or partially with the boundary of a square. In either case, we let s; denote the length
of a side of the square. Since, in the jth integral, both the variable z and the point z;
lie in that square,

|z — 21 < V/2s;.

In view of inequality (5), then, we know that each integrand on the right in inequality
(8) satisfies the condition

) |z = 2))8;()| = Iz — 2,118 (2)] < V2sje.

As for the length of the path C;, itis 4s; if C; is the boundary of a square. In that case,
we let A; denote the area of the square and observe that

(10) < V2sjeds; =424 ¢.

/ (z—2;)0,(2) dz
Cj

If C; is the boundary of a partial square, its length does not exceed 4s; + L ;, where
L; is the length of that part of C; which is also a part of C. Again letting A; denote
the area of the full square, we find that

(11) < V2s;6(ds; + L;) < 4V2A;6 +V2SLje,

/ (z—2;)08j(2) dz
Cj

where S is the length of a side of some square that encloses the entire contour C as
well as all of the squares originally used in covering R (Fig. 59). Note that the sum of
all the A;’s does not exceed S?.

If L denotes the length of C, it now follows from inequalities (8), (10), and (11)

that
/ f(2)dz
c

Since the value of the positive number ¢ is arbitrary, we can choose it so that the right-
hand side of this last inequality is as small as we please. The left-hand side, which
is independent of &, must therefore be equal to zero ; and statement (3) follows. This
completes the proof of the Cauchy—Goursat theorem.

< (4V28% + V2SL)e.

52. SIMPLY CONNECTED DOMAINS

A simply connected domain D is adomain such that every simple closed contour within
it encloses only points of D. The set of points interior to a simple closed contour is an
example. The annular domain between two concentric circles is, however, not simply
connected. Domains that are not simply connected are discussed in the next section.
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The closed contour in the Cauchy—Goursat theorem (Sec. 50) need not be simple
when the theorem is adapted to simply connected domains. More precisely, the contour
can actually cross itself. The following theorem allows for this possibility.

Theorem. If a function f is analytic throughout a simply connected domain D,
then

(D / f(z)dz=0
c
for every closed contour C lying in D.

The proof is easy if C is a simple closed contour or if it is a closed contour that
intersects itself a finite number of times. For if C is simple and lies in D, the function
f is analytic at each point interior to and on C; and the Cauchy—Goursat theorem
ensures that equation (1) holds. Furthermore, if C is closed but intersects itself a finite
number of times, it consists of a finite number of simple closed contours, and the
Cauchy-Goursat theorem can again be applied. This is illustrated in Fig. 60, where
two simple closed contours C; and C, make up C. Since the values of the integrals
around Cy and C, are zero, regardless of their orientations,

/cf(Z)dZ:/cl f(z)dz—l—/czf(z)dzzo.

(0] X FIGURE 60

Subtleties arise if the closed contour has an infinite number of self-intersection
points. One method that can sometimes be used to show that the theorem still applies
is illustrated in Exercise 5, Sec. 53.*

EXAMPLE. If C denotes any closed contour lying in the open disk |z] < 2

(Fig. 61), then
sin z
——dz=0
/c (22 +9)°

*For a proof of the theorem involving more general paths of finite length, see, for example, Secs. 63-65
in Vol. I of the book by Markushevich that is cited in Appendix 1.
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FIGURE 61

This is because the disk is a simply connected domain and the two singularities 7 = £3i
of the integrand are exterior to the disk.

Corollary 1. A function f that is analytic throughout a simply connected domain
D must have an antiderivative everywhere in D.

We begin the proof of this corollary with the observation that a function f is
continuous on a domain D when it is analytic there. Consequently, since equation (1)
holds for the function in the hypothesis of this corollary and for each closed contour
C in D, f has an antiderivative throughout D, according to the theorem in Sec. 48.

Corollary 2. Entire functions always possess antiderivatives.

This corollary is an immediate consequence of Corollary 1 and the fact that the
finite plane is simply connected.

53. MULTIPLY CONNECTED DOMAINS

A domain that is not simply connected (Sec. 52) is said to be multiply connected.
The following theorem is an adaptation of the Cauchy—Goursat theorem to multiply
connected domains. While the statement of the theorem involves n contours labeled
Ci(k=1,2,...,n), we shall be guided in the proof by Fig. 62, where n = 2.

Theorem. Suppose that

(a) C is a simple closed contour, described in the counterclockwise direction;

(b) Cy(k = 1,2,...,n) are simple closed contours interior to C, all described in
the clockwise direction, that are disjoint and whose interiors have no points in
common (Fig. 62).
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Ifafunction f is analytic on all of these contours and throughout the multiply connected
domain consisting of the points inside C and exterior to each Cy, then

(1) /Cf(z)dz+kz=;/Ckf(z)dz =0.

C

o

o X FIGURE 62

Note that in equation (1), the direction of each path of integration is such that the
multiply connected domain lies to the left of that path.

To prove the theorem, we introduce a polygonal path L, consisting of a finite
number of line segments joined end to end, to connect the outer contour C to the inner
contour C;. We introduce another polygonal path L, which connects C; to C,; and we
continue in this manner, with L, connecting C, to C. As indicated by the single-
barbed arrows in Fig. 62, two simple closed contours I'; and I'; can be formed, each
consisting of polygonal paths L, or —L; and pieces of C and Cy and each described in
such a direction that the points enclosed by them lie to the left. The Cauchy—Goursat
theorem can now be applied to f on I'; and I';, and the sum of the values of the integrals
over those contours is found to be zero. Since the integrals in opposite directions along
each path L, cancel, only the integrals along C and the C; remain; and we arrive at
statement (1).

Corollary. Let C\ and C, denote positively oriented simple closed contours,
where Cy is interior to C, (Fig. 63). If a function f is analytic in the closed region
consisting of those contours and all points between them, then

2) f@)dz =/ f(2)dz.
Cy C

This corollary is known as the principle of deformation of paths since it tells us
that if C; is continuously deformed into C,, always passing through points at which
f is analytic, then the value of f over C; never changes. To verify this corollary. we
need only observe how it follows from the theorem that

/ f(z)dz+/ f(x)dz =0.
Cp_ *Cl

But this the same as equation (2).
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o

o X FIGURE 63

EXAMPLE. When C is any positively oriented simple closed contour surround-
ing the origin, the corollary can be used to show that
d
=~ oni.
c <
This is done by constructing a positively oriented circle Cy with center at the origin
and radius so small that Cj lies entirely inside C (Fig. 64). Since (see Exercise 13,
Sec. 46)
d
= _ 2mi
G 2
and since 1/z is analytic everywhere except at 7 = 0, the desired result follows.
Note that the radius of C could equally well have been so large that C lies entirely
inside Cy.

FIGURE 64
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EXERCISES
1. Apply the Cauchy—Goursat theorem to show that
[ r@az=0
c
when the contour C is the unit circle |z| = 1, in either direction, and when
2

@ J@ =" b) f(@) =z © F@= a5 47°
(d) f(z) =sechz; (e) f(z) =tanz; (N f(z) =Log(z+2).

2. Let C; denote the positively oriented boundary of the square whose sides lie along the
lines x = +1, y = =£1 and let C; be the positively oriented circle |z| = 4 (Fig. 65). With
the aid of the corollary in Sec. 53, point out why

/c, f(z)dZZ/sz(z)dz

when
@ Q=55 B f@= % © [ ="
y
c,
¢,
1 4 X
FIGURE 65

3. If Cy denotes a positively oriented circle |z — zg| = R, then

0 whenn = £1,£2, ...,
2mi whenn =0,

(z—2z0)""dz = {

Co

according to Exercise 13, Sec. 46. Use that result and the corollary in Sec. 53 to show
that if C is the boundary of the rectangle 0 < x < 3,0 < y < 2, described in the positive
sense, then

h a1 5 J0 whenn = £+1,+£2, ...,
/C(Z 2-9) dz_{Zni when n = 0.

4. Use the following method to derive the integration formula

{o0)
/ e cos2bx dx = ?eib“ (b > 0).
Jo
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(a) Show that the sum of the integrals of ¢ =< along the lower and upper horizontal legs
of the rectangular path in Fig. 66 can be written

2/ e dx — 2" / e cos 2bx dx
0 0

and that the sum of the integrals along the vertical legs on the right and left can be
written

b b
. —a? 2 ) 2 .
ie™ / e e 2y —jed / e ey,
0 0

Thus, with the aid of the Cauchy—Goursat theorem, show that

a 2 2 a 2 2 2 b 2 .
/ e cos2bxdx = e / eV dx e @t )/ e¥” sin2ay dy.
0 0 0

—a+ bi a+ bi

—a [2) a

FIGURE 66

(b) By accepting the fact that*

and observing that

b b
/ e sin2aydy‘ < / eyzdy,
0 0

obtain the desired integration formula by letting a tend to infinity in the equation at
the end of part (a).

5. According to Exercise 6, Sec. 43, the path C; from the origin to the point z = 1 along
the graph of the function defined by means of the equations

y(x) = {x3 sin (r/x) when0 <x <1,
0 when x =0

is a smooth arc that intersects the real axis an infinite number of times. Let C, denote
the line segment along the real axis from z = 1 back to the origin, and let C3 denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its
end points in common with the arcs C; and C, (Fig. 67). Apply the Cauchy—Goursat

*The usual way to evaluate this integral is by writing its square as

e 2 "0 2 B 2,2
/ e dx/ e Ydy :/ / e~ dxdy
0 0 o Jo

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680-681, 1983.
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FIGURE 67

theorem to show that if a function f is entire, then

/le(z)dz=/c.3f(1)dz and /C.zf(Z)dZ=_./c3f(Z)dz'

Conclude that even though the closed contour C = C| + C; intersects itself an infinite
number of times,

/C F(0)dz = 0.

6. Let C denote the positively oriented boundary of the half disk 0 <r < 1,0 <6 < m,
and let f(z) be a continuous function defined on that half disk by writing f(0) = 0 and
using the branch

. 3
£ = Jre (r 0.7 << 7”)

of the multiple-valued function z'/2. Show that

/Cf(z)dzzo

by evaluating separately the integrals of f(z) over the semicircle and the two radii which
make up C. Why does the Cauchy—Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the region
enclosed by C can be written
1
— [ zdz.
2% /c zdz

Suggestion: Note that expression (4), Sec. 50, can be used here even though the
function f(z) = 7 is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervalsa, < x < b, (n =0,1,2,...)
is formed in the following way. The interval a; < x < b, is either the left-hand or
right-hand half of the first interval ap < x < by, and the interval a, < x < b, is then
one of the two halves of a; < x < by, etc. Prove that there is a point xo which belongs
to every one of the closed intervals a, < x < b,.

Suggestion: Note that the left-hand end points a,, represent abounded nondecreasing
sequence of numbers, since ap < a,, < a,4+ < bo ; hence they have a limit A as n tends
to infinity. Show that the end points b, also have a limit B. Then show that A = B, and
write xo = A = B.
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9. Nested Squares. A square oy : ayp < x < bg,co < y < dp is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller squares
o1:a; <x <bj,c; <y <d, is selected according to some rule. It, in turn, is divided
into four equal squares one of which, called o5, is selected, etc. (see Sec. 49). Prove
that there is a point (xo, yp) which belongs to each of the closed regions of the infinite
sequence oy, 01, 02, ... .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervalsa, < x <b,andc, <y <d,(n=0,1,2,...).

54. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let [ be analytic everywhere inside and on a simple closed contour
C, taken in the positive sense. If 7y is any point interior to C, then
1 f(z)dz
)] fo) = 5=

278 Jo z—z0

Expression (1) is called the Cauchy integral formula. 1t tells us that if a function
f is to be analytic within and on a simple closed contour C, then the values of f
interior to C are completely determined by the values of f on C.

We begin the proof of the theorem by letting C,, denote a positively oriented circle
|z — zo| = p, where p is small enough that C,, is interior to C (see Fig. 68). Since the
quotient f(z)/(z — zo) is analytic between and on the contours C, and C, it follows
from the principle of deformation of paths (Sec. 53) that

f(2)dz _ f(2) dz

c 220 c, 220

This enables us to write

d d —
@) fdz Fzo) / . _ [ f@ = [z dz.
Jc, 2 =20

c 2—20
But [see Exercise 13, Sec. 46]

c, T—20

dz
/ = 2mi,
c, 2 —20

o X FIGURE 68
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and so equation (2) becomes

f)dz i f(e0) = f@&=feo
c 2—20 C, Z—20

3)

Now the fact that f is analytic, and therefore continuous, at zo ensures that
corresponding to each positive number ¢, however small, there is a positive number §
such that

4) |f(z) — f(z0)] <& whenever |z —zo| <3d.

Let the radius p of the circle C,, be smaller than the number § in the second of these
inequalities. Since [z — zo| = p < & when z is on C,, it follows that the first of
inequalities (4) holds when z is such a point; and the theorem in Sec. 47, giving upper
bounds for the moduli of contour integrals, tells us that

f(@) — f(zo) dz

c, T—20

e
< —2mp =2me.
P

In view of equation (3), then,

f2)dz

c <—20

< 2me.

—2mif(zo)

Since the left-hand side of this inequality is a nonnegative constant that is less than an
arbitrarily small positive number, it follows that

f(z)dz

c 2—20

— 27if(z9) = 0.

Hence equation (1) is valid, and the theorem is proved.
When the Cauchy integral formula is written as

f(@)dz

c ZT—20

&) = 27if(20),

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z|] = 1 about the origin.
Since the function
cos z
f@) = 219
is analytic inside and on C and since the origin zp = 0 is interior to C, equation (5)
tells us that

cos z (cosz)/(z>+9) . 2mi
————dz= | —————dz=2 0)=—.
/c 2(Z2+9) ¢ c z—0 ¢ =2mif (0) 9
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55. AN EXTENSION OF THE CAUCHY
INTEGRAL FORMULA

The Cauchy integral formula in the theorem in Sec. 50 can be extended so as to provide
an integral representation for derivatives £ (zo) of f at 2.

Theorem. Let f be analytic inside and on a simple closed contour C, taken in
the positive sense. If z is any point interior to C, then

) _ ”!/ f)dz B
@) f (Zo)—zj_”. Spapnvry n=0,1,2,..)),

With the agreement that

9 = f(zo) and 0!'=1,
this theorem includes the Cauchy integral formula

1 d
) Fla) = —— [ L%

2mi C Z_ZO'

Verification of expression (1) will be taken up in Sec. 56.
When written in the form

(3) / M:Zi'if(”)(z()) n=0,1,2,...),
c n:

(Z _ Zo)n-H

expression (1) can be useful in evaluating certain integrals when f is analytic inside
and on a simple closed contour C, taken in the positive sense, and z is any point
interior to C. It has already been illustrated in Sec. 50 when n = 0.

EXAMPLE 1. If C is the positively oriented unit circle |z] = 1 and

f(2) = exp(22),
then

/sz/mz%f”’(mzﬁ

Z4 c (Z _ 0)3+1 3

EXAMPLE 2. Let zy be any point interior to a positively oriented simple closed
contour C. When f(z) = 1, expression (3) shows that

d
/ < =2mi
cZ—20

dz
- =0 n=1,2,....
/C (z — zo)"*! ( )
(Compare with Exercise 13, Sec. 46.)

and



SEC. 55 AN EXTENSION OF THE CAUCHY INTEGRAL FORMULA 165

Expression (1) can also be useful in slightly different notation. Namely, if s
denotes points on C and if z is a point interior to C, then

4 FO@) = ’/M (n=0.1.2...).
27l

c (s — )l

where f©)(z) = f(z) and, of course, 0! = 1. Our next example illustrates the use of
expression (4) in the form

/c (sfisi)cfil = %f(")(l) (n=0,1,2,...),

which includes the special case

)

f(s)ds

c §S—2

(6)

= 27i £(2).

EXAMPLE 3. If n is a nonnegative integer and f(z) = (z*> — 1)", expression
(4), becomes
n! (s — 1)"ds
— ”—— — m=0,1,2,...),
d n (Z ) 2i c (S _ Z)n+l ( )
where C is any simple closed contour surrounding z. In view of equation (7), one can
write the Legendre polynomial*

(N

n

P,(2) = 2y =0,1,2,...
®) (2) o dz"(z ' m=0 )
as

1 (s> = Dds
9 P,(z) = , =0,1,2,...).
© O =g | G © )
Because

(2—=D"  (s—=D"(s+D"  (s+1)
(s— Dttt (s—Dntl T 51
expression (9) reveals that

b

1 (s + 1)ds
2ntlgr C s—1

and by writing f(s) = (s + 1)" and z = 1 in equation (6), we arrive at the values

P,(1) = n=0,1,2, ...);

P (1) = S (LD =1 (=0.1.2,..).

2n+1

The values P,(—1) = (—1)"(n =0,1,2,...)can be found (Exercise 8, Sec. 57) in a
similar way.

*See Exercise 10, Sec. 20, and the footnote with it.
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Finally, we note how expression (4) is suggested. If s denotes points on C and z
is a point interior to C, the Cauchy integral formula is
1 f(s)ds
(10) f@)=5= .

2wi Je s —2

By differentiating formally under this integral sign, without rigorous justification, we
find that

/_1 0 1
f@—%LmEmwda

or
TN L f(s)ds
TO= 2 e s =0
Likewise,
7 _ (2)(1) f(S) ds
PO= "0 Jes—opn
and
f///(z) — (3)(2)(1) f(S) ds

2mi Jo (s — 2)3F

These three special cases suggest that expression (4), which is to be verified in Sec. 56,
may be valid. A reader who wishes to accept expression (4) without verification can
easily pass to Sec. 57.

56. VERIFICATION OF THE EXTENSION

We turn now to the verification of the extended Cauchy integral formula that was

introduced in Sec. 55. Specifically, we consider a function f that is analytic inside and

on a simple closed contour C, taken in the positive sense, and we let z be any point

interior to C. We begin with statement (10), Sec. 55, of the Cauchy integral formula:
1 f(s)ds

ey @) =5=

2riJe s—z

In order to verify that f'(z) exists and that the expression

1 d
2) Flo) = — [ L&ds

2mi C (S—Z)2

in Sec. 55 is valid, we let d denote the smallest distance from z to points s on C and
assume that 0 < |Az| < d (see Fig. 69). It then follows from expression (1) that

f(z+Az)—f(Z)_1/( 1 1 >f(s)ds.
C

Az T 27 s—z—Az_s—z Az
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o X FIGURE 69

Evidently, then,

fe+A)—f@ 1 f(s)ds
Az 27i Joe (s —z—Az) (s — 2)
But
1 1 Az

= + 9
(s—z—A2)(s—2) (s—2?% (—z—A)(s—2)?
and this means that

f(z—i—Az)—f(z)_i/ f(s)ds 1 Azf(s)ds
c

3 —
) Az 2mi

(s—2)?2 27iJo(s—z—AD(s —2)?*

Next, we let M denote the maximum value of | f (s)| on C and observe that since
s —z| >dand |Az| <d,

Is —z— Azl =|(s —2) — Azl > [|Is — z| — |Az|| = d — |Az| > 0.

Thus

|Az|M
T (d—|Azhd?

/ Az f(s)ds
c(s—z—A(s—2)?
where L is the length of C. Upon letting Az tend to zero, we find from this inequality
that the right-hand side of equation (3) also tends to zero. Consequently,

. f@+A) - f2) 1 f(s)ds
lim

Az—0 Az 21i Jo (s — 2)?

and the desired expression for f'(z) is established.
The same technique can be used to verify the expression

1 d
) fl@)=— / S04
Tl

c(s—2)7*
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The details, which are outlined in Exercise 9, Sec. 57, are left to the reader. Mathe-
matical induction can, moreover, be used to obtain the formula

|
(5) () = /M n=1.2 ).
C

(S _ Z)n+l

The verification is considerably more involved than for just n = 1 and n = 2, and
we refer the interested reader to other texts for it.* As already pointed out in Sec. 55,
expression (5) is also valid when n = 0, in which case it is simply the Cauchy integral
formula.

57. SOME CONSEQUENCES OF THE EXTENSION

We turn now to some important consequences of the extension of the Cauchy integral
formula in Sec. 55.

Theorem 1. If a function f is analytic at a given point, then its derivatives of
all orders are analytic there too.

To prove this remarkable theorem, we assume that a function f is analytic at a
point zg. There must, then, be a neighborhood |z — z¢| < ¢ of zg throughout which f is
analytic (see Sec. 25). Consequently, there is a positively oriented circle Cy, centered
at zo and with radius €/2, such that f is analytic inside and on Cy (Fig. 70). From
expression (4), Sec. 55, we know that

1 d
o= [ 102

Tl Co (S — 2)3

at each point z interior to Cy, and the existence of f”(z) throughout the neighborhood
|z — zo| < €/2 means that f’ is analytic at zo. One can apply the same argument to
the analytic function f’ to conclude that its derivative f” is analytic, etc. Theorem 1
is now established.

N e

2 el2

o S~— x FIGURE 70

*See, for example, pp. 299-301 in Vol. I of the book by Markushevich, cited in Appendix 1.
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As a consequence, when a function

f(@) =ulx,y) +iv(x,y)

is analytic at a point z = (x, y), the differentiability of f’ ensures the continuity of f’
there (Sec. 19). Then, since (Sec. 21)

f(@) =ux +ive = vy —iuy,

we may conclude that the first-order partial derivatives of # and v are continuous at
that point. Furthermore, since f” is analytic and continuous at z and since

f”(z) =Upy F iUy = Vyx — l.l/tyx,

etc., we arrive at a corollary that was anticipated in Sec. 27, where harmonic functions
were introduced.

Corollary. If a function f(z) = u(x,y) + iv(x,y) is analytic at a point
z = (x,y), then the component functions u and v have continuous partial deriva-
tives of all orders at that point.

The proof of the next theorem, due to E. Morera (1856—1909), depends on the
fact that the derivative of an analytic function is itself analytic, as stated in Theorem 1.

Theorem 2. Let f be continuous on a domain D. If

(1) / f()dz=0
c
for every closed contour C in D, then f is analytic throughout D.

In particular, when D is simply connected, we have for the class of continuous
functions defined on D the converse of the theorem in Sec. 52, which is the adaptation
of the Cauchy—Goursat theorem to such domains.

To prove Theorem 2, we observe that when its hypothesis is satisfied, the theorem
in Sec. 48 ensures that f has an antiderivative in D; that is, there exists an analytic
function F such that F'(z) = f(z) at each point in D. Since f is the derivative of F,
it then follows from Theorem 1 that f is analytic in D.

Our final theorem here will be essential in the next section.

Theorem 3. Suppose that a function f is analytic inside and on a positively
oriented circle Cy, centered at zy and with radius R (Fig. 71). If Mg denotes the

y
Cr

&~

o X FIGURE 71
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maximum value of | f(z)| on Cg, then
n !MR

) | (z0)] <

Inequality (2) is called Cauchy’s inequality and is an immediate consequence of
the expression

f(z)dz

2mi cr (2 —zo)"H!

" (z0) = n=12..),

in the theorem in Sec. 55 when r is a positive integer. We need only apply the theorem
in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals,
to see that

| ™ (z0)] < P Mg —Z27R (n=1,2,..)
ZO _2 R”+1 - ’ 9 200 )y

where My is as in the statement of Theorem 3. This inequality is, of course, the same
as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = £2 and y = % 2. Evaluate each of these integrals:

e~*dz cos Z zdz
. b d :
(@) cz—(wi/2)’ ®) /cz(zz—i-S) ‘ ©) /22+1
oz /)
(d) / g dz; (e) o x) dz (=2 <x9<?2).

Ans. (a)2m; (b)mi/d, (c) —mi/2; (d)0; (e)imsec’(xo/2).
2. Find the value of the integral of g(z) around the circle |z — i| = 2 in the positive sense

when

(@) g(z) = b) g(z) =

[ 1
2 +4 ’ (Z2 + 4)2 :
Ans. (a) 7/2; (b) m/16.
3. Let C be the circle |z| = 3, described in the positive sense. Show that if

2252
g(z)zé%ds (2] # 3),

then g(2) = 8mi. What is the value of g(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane, and
write
s34 2s

c(s—2)7?

Show that g(z) = 6iz when z is inside C and that g(z) = 0 when z is outside.

g(z) =
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5. Show that if f is analytic within and on a simple closed contour C and zg is not on C,
then

f'@dz / f(2) dz
CJe @—z20?
6. Let f denote a function that is continuous on a simple closed contour C. Following the
procedure used in Sec. 56, prove that the function
1 f(s)ds

8(2)2% o s—z

c Z—20

is analytic at each point z interior to C and that

/()_L f(s)ds
s =5 c(s—12)2

at such a point.

7. Let C be the unit circle z = ¢/ (=7 < @ < 7). First show that for any real constant a,

J e(lz .
/ dz = 2mi.
c z

Then write this integral in terms of 6 to derive the integration formula

T
/ e*“*% cos(asinf) do = 7.
0

8. Showthat P,(—1) = (—1)"(n =0, 1, 2, ...), where P,(z) are the Legendre polynomials
in Example 3, Sec. 55.
Suggestion: Note that
(s>—1"  (s—1)

(s+ D+t s4+1
9. Follow the steps below to verify the expression

froy L[ S0

i Jo (s —2)3

in Sec. 56.
(a) Use expression (2) in Sec. 56 for f'(z) to show that
fE+A)— @) 1 / f)ds 1 / 6 -0az =289 o
cs—2% 27iJe(s—z— A s—2)} '
(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C. Also, let M be the maximum value of | f(s)| on C and L the length of C. With
the aid of the triangle inequality and by referring to the derivation of expression (2)
in Sec. 56 for f'(z), show that when 0 < |Az| < d, the value of the integral on the
right-hand side in part (a) is bounded from above by
(3D|Az| 4 2|Az|H)M
(d —|Az|)2d?
(¢) Use the results in parts (a) and (b) to obtain the desired expression for f”(z).

Az i
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10. Let f be an entire function such that | f(z)| < A|z| for all z, where A is a fixed positive
number. Show that f(z) = a;z, where a; is a complex constant.
Suggestion: Use Cauchy’s inequality (Sec. 57) to show that the second derivative
f"(z) is zero everywhere in the plane. Note that the constant My in Cauchy’s inequality
is less than or equal to A(|zo| + R).

58. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 57 can be used to show that no entire function
except a constant is bounded in the complex plane. Our first theorem here, which is
known as Liouville’s theorem, states this result in a slightly different way.

Theorem 1. If a function f is entire and bounded in the complex plane, then f(z)
is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is entire,
Theorem 3 in Sec. 57 can be applied with any choice of zo and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that when n = 1,

) o) < %

Moreover, the boundedness condition on f tells us that a nonnegative constant M
exists such that | f(z)| < M for all z; and, because the constant My in inequality (1)
is always less than or equal to M, it follows that

M
2) | f'(z0)| < <

where R can be arbitrarily large. Now the number M in inequality (2) is independent
of the value of R that is taken. Hence that inequality holds for arbitrarily large values
of R only if f’(z9) = 0. Since the choice of zy was arbitrary, this means that f'(z) = 0
everywhere in the complex plane. Consequently, f is a constant function, according
to the theorem in Sec. 25.

The following theorem is called the fundamental theorem of algebra and follows
readily from Liouville’s theorem.

Theorem 2. Any polynomial
P@)=ap+aiz+amz*+---+a, 2" (a, #0)
of degree n (n > 1) has at least one zero. That is, there exists at least one point 7 such

that P(zy) = 0.

The proof here is by contradiction. Suppose that P(z) is not zero for any value of
z. Then the quotient 1/ P(z) is clearly entire. It is also bounded in the complex plane.
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To see that it is bounded, we first recall statement (6) in Sec. 5. Namely, there is a
positive number R such that

1
P(z) la,|R"

So 1/P(z) is bounded in the region exterior to the disk |z| < R. But 1/P(z)
is continuous on that closed disk, and this means that 1/P(z) is bounded there too
(Sec. 18). Hence 1/ P(z) is bounded in the entire plane.

It now follows from Liouville’s theorem that 1/P(z), and consequently P (z), is
constant. But P (z) is not constant, and we have reached a contradiction.*

The fundamental theorem tells us that any polynomial P(z) of degree n (n > 1)
can be expressed as a product of linear factors:

3 P()=cz—z1)(z—22) - (2= Za),

where ¢ and z; (k = 1,2, ..., n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z;. Then, according to Exercise 8, Sec. 59,

P(z) =(z—21)01(2),

where Q(z) is a polynomial of degree n — 1. The same argument, applied to Q;(z),
reveals that there is a number z, such that

P(z) = (z — z1)(z — 22) 02(2),

where Q5(z) is a polynomial of degree n — 2. Continuing in this way, we arrive at
expression (3). Some of the constants z; in expression (3) may, of course, appear more
than once, but it is clear that P(z) can have no more than n distinct zeros.

whenever |z] > R.

59. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a needed lemma.

Lemma. Suppose that | f(z)| < | f(zo)| at each point z in some neighborhood
|z —z0| < e inwhich f is analytic. Then f(z) has the constant value f(z¢) throughout
that neighborhood.

To prove this, we assume that f satisfies the stated conditions and let z; be any
point other than zg in the given neighborhood. We then let p be the distance between
z1 and zo. If C,, denotes the positively oriented circle |z — zg| = p, centered at zo and

*For an interesting proof of the fundamental theorem of algebra using the Cauchy—Goursat theorem,
see R. P. Boas, Jr., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.
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passing through z; (Fig. 72), the Cauchy integral formula tells us that

1 dz
(1) fe =5~ S dz,
Tl

c, =20
and the parametric representation
z=z0+pe?  (0<60<2m)

for C, enables us to write equation (1) as

1 [ )
(2) f(z0) = Sy f(zo+ pele)dg.
T Jo

CHAP. 4

We note from expression (2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This

result is called Gauss’s mean value theorem.

y
O X FIGURE 72
From equation (2), we obtain the inequality

1 2 .

3) F o)l < 2—/ £ 2o+ pe®)] do.
T Jo

On the other hand, since

(4) |fzo+pe) <1l (06 <27),

we find that

2T ) 21
| 1o+ petiid < [ 1 Gode = 215 ol
0 0

Thus
1 2 )

5) O 2—/ £ (0 + pei®) | 6.
T Jo

It is now evident from inequalities (3) and (5) that

1 [ .
|f(zo)| = o / | f 20+ pe'®)| b,
7T Jo

or
2

[1.f zo)l — |f (zo + pe)[1d6 = 0.
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The integrand in this last integral is continuous in the variable 6; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0 < 6 < 2.
Because the value of the integral is zero, then, the integrand must be identically equal
to zero. That is,

(6) |f(z0 + pe')| = | f(zo)] (0 <6 <27).

This shows that | f(z)| = | f (zo)| for all points z on the circle |z — 70| = p.

Finally, since z; is any point in the deleted neighborhood 0 < |z — z¢| < €, we
see that the equation | f(z)| = | f(z0)| is, in fact, satisfied by all points z lying on any
circle |z — zo| = p, where 0 < p < &. Consequently, | f(z)| = | f(zo)| everywhere in
the neighborhood |z — z¢| < ¢. But we know from Example 4. Sec. 26, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f(z) = f(zo) for each point z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the
maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then
| f (2)| has no maximum value in D. That is, there is no point z in the domain such
that | f (2)| < |f(zo)| for all points z in it.

Given that f is analytic in D, we shall prove the theorem by assuming that | ()]
does have a maximum value at some point zg in D and then showing that f(z) must
be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in
Sec. 28. We draw a polygonal line L lying in D and extending from z( to any other
point P in D. Also, d represents the shortest distance from points on L to the boundary
of D. When D is the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points

205 215225 - - > Zn—1, Zn
along L such that z,, coincides with the point P and
lze — k1] < d k=1,2,...,n).
In forming a finite sequence of neighborhoods (Fig. 73)
No, Ni, Na, ..., N1, Ny

Szl ~——-7 FIGURE 73
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where each N; has center z; and radius d, we see that f is analytic in each of these
neighborhoods, which are all contained in D, and that the center of each neighborhood
Ny (k=1,2,...,n) lies in the neighborhood N _;.

Since | f(z)| was assumed to have a maximum value in D at z, it also has a
maximum value in N at that point. Hence, according to the preceding lemma, f(z)
has the constant value f(zp) throughout Ny. In particular, f(z;) = f(zo). This means
that | f(z)| < | f(z1)| for each point z in N;; and the lemma can be applied again, this
time telling us that

f@) = f(z1) = f(zo)

when z is in N;. Since z5 is in Ny, then, f(z2) = f(z0). Hence | f(z)| < | f(z2)| when
z is in Np; and the lemma is once again applicable, showing that

f@) = f(z2) = f(z0)

when z is in N,. Continuing in this manner, we eventually reach the neighborhood N,
and arrive at the fact that f(z,) = f(zo).

Recalling that z,, coincides with the point P, which is any point other than z, in
D, we may conclude that f(z) = f(zo) for every point z in D. Inasmuch as f(z) has
now been shown to be constant throughout D, the theorem is proved.

If a function f that is analytic at each point in the interior of a closed bounded
region R is also continuous throughout R, then the modulus | f(z)| has a maximum
value somewhere in R (Sec. 18). That is, there exists a nonnegative constant M such
that | f(z)| < M for all points z in R, and equality holds for at least one such point.
If f is a constant function, then |f(z)| = M for all z in R. If, however, f(z) is not
constant, then, according to the theorem just proved, | f(z)| % M for any point z in
the interior of R. We thus arrive at an important corollary.

Corollary. Suppose that a function f is continuous on a closed bounded region
R and that it is analytic and not constant in the interior of R. Then the maximum value
of | f(z)| in R, which is always reached, occurs somewhere on the boundary of R and
never in the interior.

When the function f in the corollary is written f(z) = u(x,y) + iv(x, y), the
component function u(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 27). This is
because the composite function g(z) = exp[f(z)] is continuous in R and analytic
and not constant in the interior. Hence its modulus |g(z)| = exp[u(x, y)], which is
continuous in R, must assume its maximum value in R on the boundary. In view of
the increasing nature of the exponential function, it follows that the maximum value
of u(x, y) also occurs on the boundary.

Properties of minimum values of | f (z)| and u(x, y) are similar and treated in the
exercises.
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EXAMPLE. Consider the function f(z) = (z + 1)? defined on the closed
triangular region R with vertices at the points

z=0, z=2, and z=1.

A simple geometric argument can be used to locate points in R at which the modulus
| f (2)| has its maximum and minimum values. The argument is based on the interpre-
tation of | f(z)| as the square of the distance d between —1 and any point z in R:

& =1f@]=lz—- (DI

As one can see in Fig. 74, the maximum and minimum values of d, and therefore
| f(2)], occur at boundary points, namely z = 2 and z = 0, respectively.

Y

R 0| 2 x  FIGURE 74

EXERCISES

1. Suppose that f(z) is entire and that the harmonic function u(x, y) = Re[ f(z)] has an
upper bound u ; that is, u(x, y) < u for all points (x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane.

Suggestion: Apply Liouville’s theorem (Sec. 58) to the function g(z) = exp[f(2)].

2. Let a function f be continuous on a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming that f(z) # 0 anywhere in R, prove
that | f (z)| has a minimum value m in R which occurs on the boundary of R and never in
the interior. Do this by applying the corresponding result for maximum values (Sec. 59)
to the function g(z) = 1/f(2).

3. Use the function f(z) = z to show that in Exercise 2 the condition f(z) # 0 anywhere
in R is necessary in order to obtain the result of that exercise. That is, show that | f(z)|
can reach its minimum value at an interior point when the minimum value is zero.

4. Let Rregion 0 < x < mw,0 <y < 1 (Fig. 75). Show that the modulus of the entire
function f(z) = sinz has a maximum value in R at the boundary point z = (7r/2) + i.
Suggestion: Write | f (z)|> = sin’ x + sinh? y (see Sec. 37) and locate points in R

at which sin® x and sinh? y are the largest.

(71/2,1)

o b4 X FIGURE 75
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5. Let f(z) = u(x, y)+iv(x, y) be afunction thatis continuous on a closed bounded region
R and analytic and not constant throughout the interior of R. Prove that the component
function u(x, y) has a minimum value in R which occurs on the boundary of R and never
in the interior. (See Exercise 2.)

6. Let f be the function f(z) = e® and R the rectangular region 0 < x < 1,0 <y < .
Ilustrate results in Sec. 59 and Exercise 5 by finding points in R where the component
function u(x, y) = Re[ f(z)] reaches its maximum and minimum values.

Ans.z=1,z=1+mi.

7. Let the function f(z) = u(x,y) + iv(x,y) be continuous on a closed bounded
region R, and suppose that it is analytic and not constant in the interior of R. Show
that the component function v(x, y) has maximum and minimum values in R which are
reached on the boundary of R and never in the interior, where it is harmonic.

Suggestion: Apply results in Sec. 59 and Exercise 5 to the function g(z) = —if(z).

8. Let z( be a zero of the polynomial
P(z) =ay+aiz+az® + - +a,7" (a, #0)
of degree n (n > 1). Show in the following way that
P(z) = (z—20)0Q(2)
where Q(z) is a polynomial of degree n — 1.
(a) Verify that
F—g =G + Ptz T+ Y (k=2,3,...).
(b) Use the factorization in part (a) to show that
P(z) = P(z0) = (z — 20) Q(2)

where Q(z) is a polynomial of degree n — 1, and deduce the desired result from this.



CHAPTER

S

SERIES

This chapter is devoted mainly to series representations of analytic functions. We
present theorems that guarantee the existence of such representations, and we develop
some facility in manipulating series.

60. CONVERGENCE OF SEQUENCES

An infinite sequence 71, 22, . . . , Z, - . . of complex numbers has a limit z if, for each
positive number ¢, there exists a positive integer ng such that

(1) |z, —z| <& whenever n > ng.

Geometrically, this means that for sufficiently large values of n, the points z,, lie in
any given ¢ neighborhood of z (Fig. 76). Since we can choose ¢ as small as we please,
it follows that the points z,, become arbitrarily close to z as their subscripts increase.
Note that the value of n that is needed will, in general, depend on the value of ¢.

A sequence can have at most one limit. That is, a limit z is unique if it exists
(Exercise 5, Sec. 61). When the limit z exists, the sequence is said to converge to z,
and we write

) lim z, = z.

n—oo

If a sequence has no limit, it diverges.

179



180 SERIES CHAP. 5

y
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o X FIGURE 76

Theorem. Suppose that z, = x, +iy, (n =1,2,...) and z = x + iy. Then

(3) lim z, =z
n—oo
if and only if
Ch) lim x, =x and limy,=y.
n—00 n—00

To prove this theorem, we first assume that conditions (4) hold and obtain condi-
tion (3) from it. According to conditions (4), there exist, for each positive number &,
positive integers n; and n, such that

£
lx, — x| < 3 whenever n > n;
and

&
[y, — ¥l < 3 whenever n > n,.
Hence if ng is the larger of the two integers 7, and n,,

e e
|x, — x| < 2 and |y, —y| < 2 whenever n > ny.

Since
[Cop +iyn) — (X +in)| =10 —x) +i(Qn — W < |xp — x|+ |yn — ¥,

then,

& €
|Zn—Z|<E+§=8 whenever n > ng.

Condition (3) thus holds.
Conversely, if we start with condition (3), we know that for each positive number
&, there exists a positive integer n, such that

|(x, +iy,) — (x +iy)| <& whenever n > ng.
But
Xy — x| < | —X) + i — V)| = [ +iyn) — (x + 1)
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and
Iyn = Y <1 = x) + iy = V)| = [0 +iyn) — (X +iY)];
and this means that
X, —x| <& and |y, —y| <e& whenever n > n.

That is, conditions (4) are satisfied.
Note how the theorem enables us to write

lim (x, +iy,) = lim x, +{ lim y,
n—00 n—o00 n—o00

181

whenever we know that both limits on the right exist or that the one on the left exists.

EXAMPLE 1. The sequence
="

e n=1,2,..)

Zn=—1+1i

converges to —1 since

lim [—l—i—i(_l)n] = lim (=1) +i lim (_?n

H— 00 n2 n—00 n—oo n
Definition (1) can also be used to obtain this result. More precisely,

(_l)l‘l 1
| =5 <€ whenever n > —
n

n? JE

lzn = (=Dl = ’i

=—1+4i-0=—1.

One must be careful when adapting our theorem to polar coordinates, as the

following example shows.

EXAMPLE 2. Consider now the same sequence

—1)"
Zn=_1+l( 2)

n=12..)
n

as in Example 1. If we use the polar coordinates
rn =1z, and O, = Argz, n=1,2,..)

where Arg z,, denotes principal arguments (—7 < ®, < ), we find that
. . 1
lim r, = lim 1—|——4=1
n—00 n—00 n

Iim ©,, =7 and Ilim ®,, | = —7 n=1,2,..).
n—oo n—oo

but that

Evidently, then, the limit of ®,, does not exist as n tends to infinity. (See also Exercise 2,

Sec. 61.)
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61. CONVERGENCE OF SERIES

An infinite series

[.¢]
(1) a=atat o tuwt

n=1

of complex numbers converges to the sum S if the sequence

N
2) SN=> m=u+n+-+wy  N=12..)

n=1

of partial sums converges to S; we then write

oo
Zz,, =S.
n=1

Note that since a sequence can have at most one limit, a series can have at most one
sum. When a series does not converge, we say that it diverges.

Theorem. Suppose that z, = x, +iy, (n=1,2,...)and S = X +iY. Then

3) S=S
n=1

if and only if
o0 o0

@ an =X and Z y. =Y.
n=1 n=l1

This theorem tells us, of course, that one can write

00 00 00
Z(xn + iyn) = an +i Zyn
n=1 n=1

n=1

whenever it is known that the two series on the right converge or that the one on the
left does.
To prove the theorem, we first write the partial sums (2) as

(5) Sy =Xy +iYy,

where

N N
XN=an and YN=Zy,,.
n=1 n=1
Now statement (3) is true if and only if

(6) lim Sy =S;

N—oo



SEC. 61 CONVERGENCE OF SERIES 183

and, in view of relation (5) and the theorem on sequences in Sec. 60, limit (6) holds if
and only if

@) ngnooXNzX and ngnooYNzY.

Limits (7) therefore imply statement (3), and conversely. Since Xy and Yy are the
partial sums of the series (4), the theorem here is proved.

This theorem can be useful in showing that a number of familiar properties of
series in calculus carry over to series whose terms are complex numbers. To illustrate
how this is done, we include here two such properties and present them as corollaries.

Corollary 1. If a series of complex numbers converges, the nth term converges
to zero as n tends to infinity.

Assuming that series (1) converges, we know from the theorem that if
Zn =Xy +iy, (n=1,2,..),

then each of the series

o o
®) > x, and Yy,
n=1 n=1
converges. We know, moreover, from calculus that the nth term of a convergent series
of real numbers approaches zero as n tends to infinity. Thus, by the theorem in Sec. 60,

lim z, = lim x, +i lim y,=04+0-i =0;

n—00 n—o0 n—oo

and the proof of Corollary 1 is complete.

It follows from this corollary that the terms of convergent series are bounded. That
is, when series (1) converges, there exists a positive constant M such that |z,| < M
for each positive integer n. (See Exercise 9.)

For another important property of series of complex numbers that follows from
a corresponding property in calculus, series (1) is said to be absolutely convergent if
the series

) 00
Z |zn| = Z x,% + y,% (zn = X, +iyn)
n=1 n=1

of real numbers |/x2 + y2 converges.

Corollary 2. The absolute convergence of a series of complex numbers implies
the convergence of that series.

To prove Corollary 2, we assume that series (1) converges absolutely. Since

IXu| < \/x24+y2 and |y,| < \/x2+ y2,
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we know from the comparison test in calculus that the two series

o0 o0
> lxal and >yl
n=1 n=I1

must converge. Moreover, since the absolute convergence of a series of real numbers
implies the convergence of the series itself, it follows that the series (8) both converge.
In view of the theorem in this section, then, series (1) converges. This finishes the
proof of Corollary 2.

In establishing the fact that the sum of a series is a given number S, it is often
convenient to define the remainder py after N terms, using the partial sums (2):

) pN =S8 — Sy.

Thus § = Sy + pw; and, since |[Sy — S| = |py — 0|, we see that a series converges
to a number S if and only if the sequence of remainders tends to zero. We shall make
considerable use of this observation in our treatment of power series. They are series
of the form

o0
D anz—z0)" =ao+ a1z — 20) + a2z —20)° -+ an(z —20)" + -,

n=0

where zp and the coefficients a, are complex constants and z may be any point in
a stated region containing zo. In such series, involving a variable z, we shall denote
sums, partial sums, and remainders by S(z), Sn(z), and py (z), respectively.

EXAMPLE. With the aid of remainders, it is easy to verify that

e.¢]
1
10 7" = —— whenever |z] < 1.
(10) 22;) T 2]
We need only recall the identity (Exercise 9, Sec. 9)
1 — ZrL+]
1+z+z2+-~~+z”=1—_Z (z#1)
to write the partial sums
N-1
Sn@ =) =l4z4+ 4+ @#ED
n=0
as
1—zV
Swie) = ~—
It
1

S(Z)= 1——2’
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then,
N
pn(z) = 8(z) — Sn(z) = 1= (z#1D).
Thus
Y
lon (2)] = Tk

and it is clear from this that the remainders py (z) tend to zero when |z| < 1 but not
when |z| > 1. Summation formula (10) is, therefore, established.

EXERCISES

1. Use definition (1), Sec. 60, of limits of sequences to show that

1
lim (7+i) =1.
n—>00 \ 1

2. Let®, (n =1, 2,...) denote the principal arguments of the numbers

(=D"
Zn=1+1i 5 n=1,2,...),
n
and point out why
lim ®, =0.
n—oo
(Compare with Example 2, Sec. 60.)
3. Use the inequality (see Sec. 5) ||z,| — |z|| < |z, — z| to show that
if limz, =2z, then lim |z,|=|z|.
n—o00 n—o00

4. Write z = re’®, where 0 < r < 1, in the summation formula (10), Sec. 61. Then, with
the aid of the theorem in Sec. 61, show that

i . ) recosf —r? q i » ginnd rsin®
r*cosn = ————— an r*sinn = ——M ———
1 —2rcosf +r? 1 —2rcosf +r?

n=1 n=1
when 0 < r < 1. (Note that these formulas are also valid when r = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

oo o0
if > z,=S. then » z,=S5.
n=1

n=1

7. Let ¢ denote any complex number and show that

o] o0
if > z,=S. then > cz,=cS.
n=1

n=1
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8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 61, show that

o] o0 o]
if > z,=8 and Y w,=T, then » Gu+wy)=S+T.
n=1 n=1

n=1

9. Let a sequence z, (n = 1,2,...) converge to a number z. Show that there exists a
positive number M such that the inequality |z,| < M holds for all n. Do this in each of
the following ways.

(a) Note that there is a positive integer ng such that
lzol =z + (2 — D < lz] +1

whenever n > ny.

(b) Write z, = x,, + iy, and recall from the theory of sequences of real numbers that
the convergence of x,, and y, (n = 1, 2, ...) implies that |x,| < M, and |y,| < M,
(n=1,2,...) for some positive numbers M; and M,.

62. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Suppose that a function f is analytic throughout a disk |z — zo| < Ry,
centered at 7y and with radius Ry (Fig. 77). Then f(z) has the power series represen-
tation

(1 f@ =) az—z0)" (2= 2zl < Ro),
n=0
where
(n)
@) a,,=% (n=0.1.2..)

That is, series (1) converges to f(z) when z lies in the stated open disk.

y
//’—'_\\\\
Ve N
// ° b
/ Z \
/ \
/ \
: % ,
| I
\ 20 /
\ /
\ /
\ /
(@] AN e X
S~ ___-7 FIGURE 77

This is the expansion of f(z) into a Taylor series about the point zq. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable. With
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the agreement that

@) = f(z0) and 0!=1,
series (1) can, of course, be written

/ "
f 1(?0) (2= 20) + f 2(!20)

Any function which is analytic at a point zp must have a Taylor series about z.
For, if f is analytic at z, it is analytic throughout some neighborhood |z — z¢| < € of
that point (Sec. 25) ; and ¢ may serve as the value of Ry in the statement of Taylor’s
theorem. Also, if f is entire, Ry can be chosen arbitrarily large; and the condition of
validity becomes |z — z9| < oco. The series then converges to f(z) at each point z in
the finite plane.

When it is known that f is analytic everywhere inside a circle centered at z,
convergence of its Taylor series about z to f(z) for each point z within that circle is
ensured; no test for the convergence of the series is even required. In fact, according to
Taylor’s theorem, the series converges to f(z) within the circle about zy whose radius
is the distance from z to the nearest point z; at which f fails to be analytic. In Sec. 71,
we shall find that this is actually the largest circle centered at zo such that the series
converges to f(z) for all z interior to it.

In the following section, we shall first prove Taylor’s theorem when zo = 0, in
which case f is assumed to be analytic throughout a disk |z| < Ry. Series (1) then
becomes a Maclaurin series:

3) f(@ = f(z0) + (z—20)+-+  (Iz—z0l < Ro).

SR ON())
@) f@=) fn,( L (el < Ro).
n=0 :

The proof when z, is nonzero will follow as an immediate consequence. A reader
who wishes to accept the proof of Taylor’s theorem can easily skip to the examples in
Sec. 64.

63. PROOF OF TAYLOR’S THEOREM

As indicated at the end of Sec. 62, the proof falls naturally into two parts.

The case zp = 0

To begin the derivation of representation (4) in Sec. 62, we write |z| = r and let Cy
denote the positively oriented circle |z| = rgp where r < ry < Ry (see Fig. 78). Since
f 1is analytic inside and on the circle Cy and since the point z is interior to Co, the
Cauchy integral formula

1 f(s)ds
(D f@) ==

2mi c §—Z

applies.
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FIGURE 78

Now the factor 1/(s — z) in the integrand here can be put in the form
1 1 )
s—z s 1 —(z/s)’

2

and we know from the example in Sec. 56 that

n

3 L.
& =

when z is any complex number other than unity. Replacing z by z/s in expression (3),
then, we can rewrite equation (2) as

N—

1
n N
an+lz +z G5

=0

“

§—2Z

Multiplying through this equation by f (s) and then integrating each side with respect
to s around Cy, we find that

N-1

s)ds s)ds s)ds
f(s) _Z f()] ”+ZN/ f(s) -
Co §—Z Co S”+ Co (S - Z)S
In view of expression (1) and the fact that (Sec. 55)
1 d @0
. f(S) Szf () (n:071’27"‘)7
2ri Je, s n!
this reduces, after we multiply through by 1/(27i), to
N—1
f(”)( ) »
(5) f@=>Y 2"+ oy (2),
n=0
where
N
Z f(s)ds
(6) PN (2) =

2mi c (5 — z)sN
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Representation (4) in Sec. 62 now follows once it is shown that
(7 lim py(z) = 0.
N—o00

To accomplish this, we recall that |z| = r and that Cy has radius ry, where ry > r.
Then, if s is a point on Cy, we can see that

Is —z| = [Is| — [zl =ro — 1

Consequently, if M denotes the maximum value of | f(s)| on Cy,

@l =M M“(’N
z . Troy = — .
PN 2 (ro— r)rév 0 ro—1r \ro

Inasmuch as (r/rg) < 1, limit (7) clearly holds.

The case z9 # 0

In order to verify the theorem when the disk of radius Ry is centered at an arbitrary
point zg, we suppose that f is analytic when |z — z9| < Rp and note that the composite
function f(z + zp) must be analytic when |(z 4 z0) — 20| < Ro. This last inequality
is, of course, just |z| < Ry ; and, if we write g(z) = f(z + zo), the analyticity of g in
the disk |z| < Ry ensures the existence of a Maclaurin series representation:

40
g@=2gj%" (12| < Ro).
n=0 ’

That is,

o0 (n)
fz+z0) = Z f n(,ZO) "

n=0

(Iz] < Ro).

After replacing z by z — z¢ in this equation and its condition of validity, we have the
desired Taylor series expansion (1) in Sec. 62.

64. EXAMPLES

In Sec. 72, we shall see that any Taylor series representing a function f(z) about a
given point zo is unique. More precisely, we will show that if

f@ =) anz—z0)"
n=0

for all points z interior to some circle centered at z, then the power series here
must be the Taylor series for f about zp, regardless of how those constants arise.
This observation often allows us to find the coefficients a, in Taylor series in more
efficient ways than by appealing directly to the formula a, = £ (zo)/n! in Taylor’s
theorem.
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This section is devoted to finding the following six Maclaurin series expansions,
where zo = 0, and to illustrate how they can be used to find related expansions:

1 oo

(1) . =1+z+2+ (2 <),
—< n=0
[es) n 2
@ F=) =14t (2] <o),
—n! 12!
2n+1 Z3 ZS
(3) s1nz—nz;( 1)‘:z—§+§_... (2] < 00),
) 211 ZZ Z4
@) COSZ_Z_:O( 1) (2n)'=1_27!+47!_”. (Jz] < 00),
®© o+l PR
(5) sinhz = ;m Z+ 3 + 3 +- (Iz] < 00),
o Z2n 2
6 hz = =1 .
(6) coshz ; ! +Z 5 + 1 —I— (Iz] < 00)

We list these results together in order to have them for ready reference later on. Since
the expansions are familiar ones from calculus with z instead of x, the reader should,
however, find them easy to remember.

In addition to collecting expansions (1) through (6) together, we now present their
derivations as Examples 1 through 6, along with some other series that are immediate
consequences. The reader should always keep in mind that

(a) the regions of convergence can be determined before the actual series are found;
(b) there may be several reasonable ways to find the desired series.

EXAMPLE 1. Representation (1) was, of course, obtained earlier in Sec. 61,
where Taylor’s theorem was not used. In order to see how Taylor’s theorem can be
used, we first note that the point z = 1 is the only singularity of the function

f@)=—

in the finite plane. So the desired Maclaurin series converges to f(z) when |z] < 1.
The derivatives of f(z) are

|

gy =—" a=1,2,..).
( )n+1

Hence if we agree that f©(z) = f(z) and 0! =1, we find that £ (0) =n! when
n=0,1,2,...; and upon writing

() 0
f@—zf@) Z

n=0

we arrive at the series representation (1).
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If we substitute —z for z in equation (1) and its condition of validity, and note
that |z| < 1 when | — z| < 1, we see that
1 oo
— = —1)"z" 1).
s ;( ' (2l < D)

If, on the other hand, we replace the variable z in equation (1) by 1 — z, we have
the Taylor series representation

1 o0
-=) C0E=T z=1i< D,
n=0

This condition of validity follows from the one associated with expansion (1) since
|l —z| < listhesameas |z — 1| < 1.

For another application of expansion (1), we now seek a Taylor series represen-
tation of the function

_ 1
f(Z)_lT

about the point zp = i. Since the distance between z( and the singularity z = 1 is
|1 — i| = +/2, the condition of validity is |z — i| < +/2. (See Fig. 79.) To find the
series, which involves powers of z — i, we first write

1 1

_ 1 1
I—z (A=iD=@-n 1-=i | (z=iY
1—1i
Because
z—1i _Iz—il_lz—il<l
1—i| =il 2
when |z —i| < +/2, expansion (1) now tells us that
1 7 —i\" ]
7—1'22 1—; (|Z—l|<ﬁ);
1 — Z—) n=0 -
1—i
y
/// \\\
/ \
/ \
! \
| . |
| l |
\ y/
\ /
\ /
\\ 0 //I X
R FIGURE 79

lz—il <2
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and we arrive at the Taylor series expansion

[ee}

1 1 iV E iy |
l—zzl—iz_;(l_i) =§m (z —i| <2).

EXAMPLE 2. Since the function f(z) = e® is entire, it has a Maclaurin series
representation that is valid for all z. Here ™ (z) = e (n =0, 1,2, ...); and because
f™©0) = 1(n = 0,1,2,...), expansion (2) follows. Note that if 7 = x + i0, the
expansion becomes
xn
— (—00 < x < 00).

mk
I
hE

n!

Il
o

n

The entire function z3e* is also represented by a Maclaurin series. The simplest
way to show this is to replace z by 2z in expression (2) and then multiply through the
result by z3:

[e.¢] 21’!
¥ = Z =3 (Jz] < 00).

|
=0 n:

Finally, if we replace n by n — 3 here, we have

S 21173

D=3 e (el <o

n=3

EXAMPLE 3. One can use expansion (2) and the definition (Sec. 37)

ei F4 —iz
2i

to find the Maclaurin series for the entire function f(z) = sinz. To give the details,

we refer to expansion (1) and write

Slnz_z Z(lz)” Z —lZ)n Z%i 1_( 1)
! n=0

n=0

. —e
simnzg =

'nn

Z

(Iz] < 00).

But 1 — (—1)" = 0 when n is even, and so we can replace n by 2n + 1 in this last
series:

1 o S i2n+lz2n+1
1 —_ 1 _ _1 n - s .
_— 2in§::0[ M Gy (<o

Inasmuch as
1—(=D*"=2 and =% = (=",

this reduces to expansion (3).
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EXAMPLE 4. Using term by term differentiation, which will be justified in
Sec. 71, we differentiate each side of equation (3) and write

= (=" 4 nbl o 2] e
COSZ_;(ZI’L—I—I)'dz Z( (2n+l)' ZO( )(211)'

(Jz] < 00).

Expansion (4) is now verified.

EXAMPLE 5. Because sinhz = —i sin(iz), as pointed out in Sec. 39, we need
only recall expansion (3) for sin z and write

(Z)2n+l
sinhz = —i Z(— )V 2 Dl (Iz] < 00),

which becomes

x Z2nJrl
SlnhZZZm (|Z| <OO)
n=0

EXAMPLE 6. Since coshz = cos(iz), according to Sec. 39, the Maclaurin
series (4) for cos z reveals that

00 n(iz)2n
coshz = ;}(—1) o)1 (Iz] < 00),

and we arrive at the Maclaurin series representation

S Z2n
coshz = ; o (z| < 00).
Observe that the Taylor series for cosh z about the point zo = —27i, for example,

is obtained by replacing the variable z on each side of this last equation by z + 27
and then recalling (Sec. 39) that cosh(z + 27wi) = cosh z for all z:

oo \2n
(z 4 2mi)
coshz = E W (Iz] < 00).
n=0

65. NEGATIVE POWERS OF (z — z¢)

If a function f fails to be analytic at a point zo, one cannot apply Taylor’s theorem
there. It is often possible, however, to find a series representation for f(z) involving
both positive and negative powers of (z — zo). Such series are extremely important
and are taken up in the next section. They are often obtained by using one or more of
the six Maclaurin series listed at the beginning of Sec. 64. In order that the reader be
accustomed to series involving negative powers of (z — z¢), we pause here with several
examples before exploring their general theory.
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EXAMPLE 1. Using the familiar Maclaurin series

2 2

eZ=1+%+5+5+5+-~ (12| < 00),
we can see that
ezzl<1_Z+Z2_Z3+Z4_...>=1—1+1—Z+Z2—
72 72 120 31 4! 22z 20 314

when 0 < |z| < o0.

EXAMPLE 2. From the Maclaurin series

S 2n

Z
coshz = ; )] (Iz] < o0)
it follows that when 0 < |z| < oo,
1 > 1 > 1
3 3
Scosh( - | = D) D —
<o <z> ¢ ;) Q2n) 1z ZZ:O (2n) 1z 3

We note that 2n — 3 < O when n is O or 1 but that 2n — 3 > 0 when n > 2. Hence this
last series can be rewritten so that

1 Z > 1
3 _ 3
Z cosh(;) =z + 3 + ngzz )22 0 < |z] < 00).

Anticipating a standard form for such an expansion in the next section, we can replace
n by n + 1 in this series to arrive at

1 z > 1 1
3 _ 3
Z cos(z> =—-4+27+ g g (0 < |z]| < 00).

n=1

EXAMPLE 3. For our next example, let us expand the function
1+22 1 2(1+z2H—-1 1 1
1+ 22

2+ P 1+z22 2
into a series involving powers of z. We cannot find a Maclaurin series since f(z) is
not analytic at z = 0. But we do know that

1 2, .3, 4
kR T TR AR A Iz < 1);
and, after replacing z by —z” on each side here, we have
1
P26 8. D.
52 T+ -2 +z (Iz < 1)

Sowhen O < |z| < 1,

1 1 1
f(z)=1—3(2—1+z2—z4+26—z8+~~~)=Z—3+g—z+z3—zs+---.
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We call such terms as 1/z* and 1/z negative powers of z since they can be written z 3

and z~!, respectively. As already noted at the beginning of this section, the theory of
expansions involving negative powers of (z — zp) will be discussed in the next section.

The reader will notice that in the series obtained in Examples 1 and 3 the negative
powers appear first but that the positive powers appear first in Example 2. Whether the
positive or negative powers come first is usually immaterial in the applications later
on. Also, these three examples involve powers of (z — zg) when zg = 0. Our final
example here does, however, involve a nonzero z.

EXAMPLE 4. We propose here to expand the function
eZ
(z+1)?
in powers of (z 4+ 1). We start with the Maclaurin series

(Iz] < 00)

[e.¢] n
ZZ
ezz —
n!

n=0

and replace z by (z + 1):
o0
(z+1D"
ez+l:z(:)T (Iz+ 1] < 00).
Dividing through this equation by e(z + 1)? reveals that

ez _ o (Z+1)n—2
(z+ 1)2 - Z '

nle
So we have
e 1 1 1 L (z+ 12
—_— == | — 4+ —+ —_— 0 < Z+1 < 00),
Z+D2 e|@+1D? z+1 ; n! O < | )

which is the same as

0 < |z4 1] < 00).

e 1 i(z—i—l)” 1 1
E+D? e |Zn+2)! 241 (z+1)?

EXERCISES*
1. Obtain the Maclaurin series representation
5 o Z4rH—l
zcosh(z?) = ; a1 (el<oo.

*In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 64.
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Obtain the Taylor series

e=e D <o)
n=0

n!

for the function f(z) = e* by
(@) using fO(1) (1 =0,1,2,...);  (b) writing ¥ = & e

. Find the Maclaurin series expansion of the function

Z z 1
JO=33= 8 Tram

Ans. f(R) =) CD st (g < V2.

2n+2
n=0 2

. With the aid of the identity (see Sec. 37)

. T
cosz = —sin Z—E ,

expand cos z into a Taylor series about the point zg = 7 /2.

Use the identity sinh(z 4+ i) = —sinh z, verified in Exercise 7(a), Sec. 39, and the fact
that sinh z is periodic with period 27 to find the Taylor series for sinh z about the point
70 = Ti.
0 \2n+1
Z—Tmi .
Ans. —Z¥ (|z — wi| < 00).
— @n+D!

What is the largest circle within which the Maclaurin series for the function tanh z
converges to tanh z? Write the first two nonzero terms of that series.

Show that if f(z) = sinz, then
fe0)=0 and f@VO)=(-1)" n=0,1,2,...).

Thus give an alternative derivation of the Maclaurin series (3) for sin z in Sec. 64.

Rederive the Maclaurin series (4) in Sec. 64 for the function f(z) = cos z by
(a) using the definition
eiz + efiz
cosz = —

in Sec. 37 and appealing to the Maclaurin series (2) for e* in Sec. 64 ;
(b) showing that

0 = (D" and f*PO)=0 (=012,...).
Use representation (3), Sec. 64, for sin z to write the Maclaurin series for the function
f(@) =sin(z*),
and point out how it follows that

Ff90)=0 and f*D0)=0 ®=0,1,2,...).
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10. Derive the expansions

YL L A S R

a = - —_— < |z| < 00);
2z = @n+3)!
sin(z2) 1 Z2 ZG Zl()

O —— =gyt gt O<kl<oo

11. Show that when 0 < |z]| < 4,

1 1 = "
47 -2 _E+n§=:04"+2'

66. LAURENT SERIES
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We turn now to a statement of Laurent’s theorem, which enables us to expand a
function f(z) into a series involving positive and negative powers of (z — z9) when

the function fails to be analytic at zo.

Theorem. Suppose that a function f is analytic throughout an annular domain
Ry < |z — 20| < Ry, centered at 7, and let C denote any positively oriented simple
closed contour around zy and lying in that domain (Fig. 80). Then, at each point in

the domain, f(z) has the series representation

o0 o0 bn
D f@=) az—z20)"+>, —— (R <l|z—z2| <R,
— (z—20)

n=0
where
_ i f(2)dz _
2) a, = i e 7& mpmevey n=0,1,2,..))
and
3) by = J@) & (n=1,2,..)

270 Je (z = zo) !

FIGURE 80
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Note how replacing n by —n in the second series in representation (1) enables us
to write that series as

—1 b,
2

W @ —z0)™"
where
1 f(@dz
b, =— [ —F—— =—1,-2,...).
" 20 Je (z = zo)nt! (n )
Thus

—1 o0
f@=) baGc—z20)"+> az—20)" (R <lz—2z0l < Ra).

n=—00 n=0

If

b, whenn < —1,
Cn = a, whenn >0,

this becomes

) f@ =Y clz—20)" (Ri<l|z—z0l<Ry)
where
(5) e [ LD a0,

27i Je (z = zo)"™!
In either one of the forms (1) and (4), the representation of f(z) is called a Laurent
series.
Observe that the integrand in expression (3) can be written f(z)(z —z0)" . Thus
it is clear that when f is actually analytic throughout the disk |z — z9| < R», this
integrand is too. Hence all of the coefficients b, are zero; and, because (Sec. 55)

1 f@dz ™ (z0)

21i Je (z—zo)"tt n!

n=0,1,2,...),

expansion (1) reduces to a Taylor series about zg.

If, however, f fails to be analytic at zo but is otherwise analytic in the disk
|z — 20| < Ry, the radius R; can be chosen arbitrarily small. Representation (1) is
then valid in the punctured disk 0 < |z — z9| < R;. Similarly, if f is analytic at each
point in the finite plane exterior to the circle |z — zo| = R;, the condition of validity
is R; < |z — zo| < oo. Note that if f is analytic everywhere in the finite plane except
at zo, series (1) is valid at each point of analyticity, or when 0 < |z — zo| < 0.

We shall prove Laurent’s theorem first when zo = 0, which means that the annulus
is centered at the origin. The verification of the theorem when z is arbitrary will follow
readily; and, as was the case with Taylor’s theorem, a reader can skip the entire proof
without difficulty.
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67. PROOF OF LAURENT’S THEOREM

As was the case with the proof of Taylor’s theorem, we divide the proof here into two
parts, the first when zo = 0 and the second when z is any nonzero point in the finite
plane.

The case zp = 0

We start the proof by forming a closed annular region r; < |z| < r; thatis contained in
the domain R; < |z| < R, and whose interior contains both the point z and the contour
C (Fig. 81). We let C| and C, denote the circles |z| = r| and |z] = ry, respectively,
and we assign each of them a positive orientation. Observe that f is analytic on C
and C,, as well as in the annular domain between them.

Next, we construct a positively oriented circle y with center at z and small enough
to be contained in the interior of the annular region r; < |z| < r;, as shown in Fig. 81.
It then follows from the adaptation of the Cauchy—Goursat theorem to integrals of
analytic functions around oriented boundaries of multiply connected domains (Sec. 53)
that

=0.

flsrds f(s)ds_/f(s)ds
C, S —Z C, S —Z y S —Z

But, according to the Cauchy integral formula (Sec. 54), the value of the third integral
here is 27i f (z). Hence

0 F@) = L f(s)ds n L f(s) ds'

2ni Je, s—z 2ni Jo, z—5

Now the factor 1/(s — z) in the first of these integrals is the same as in expres-
sion (1), Sec. 63, where Taylor’s theorem was proved; and we shall need here the

FIGURE 81
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expansion

2

— Z R
— n+1 _ N’
s—z 4 (s —2)s
which was used in that earlier section. As for the factor 1/(z —s) in the second integral,
an interchange of s and z in equation (2) reveals that

1 sN

n+l ZN

77— z—5

If we replace the index of summation n here by n — 1, this expansion takes the form
1 N

1 N 1 1 s
3 = R
( ) z s ; g—n+l 7" ZN

which is to be used in what follows.

Multiplying through equations (2) and (3) by f(s)/(2wi) and then integrating
each side of the resulting equations with respect to s around C, and C, respectively,
we find from expression (1) that

z—s

N—1
) f@ = a"+pyGR) + Z +on (),
n=0 <
where the numbersa, (n =0,1,2,...,N —1)and b, (n = 1,2,..., N) are given
by the equations
1 d 1 d
s e L[ fwds 1 [ f@ds
2ri Je, st 2ri Jeo, s
and where
@ = N[ fs)ds - 1 / sV £(s) ds
, O = .
PN =i Cz(s—z)N N 2riZV Jo, z—s

As N tends to oo, expression (4) evidently takes the proper form of a Laurent
series in the domain R; < |z| < R, provided that

(6) lim py(z) =0 and lim oy(z) = 0.
N—o00 N—oo

These limits are readily established by a method already used in the proof of Taylor’s
theorem in Sec. 63. We write |z| = r, so that r; < r < r,, and let M denote the
maximum value of | f(s)| on C| and C,. We also note that if s is a point on C,, then
|s —z| > rp, —r;andif s ison Cy, we have |z — s| > r — ry. This enables us to write

M N M N
lon ()] < —2 (r) and lon ()] < - il (L‘) )

rp—r \n —r \r

Since (r/r;) < 1 and (ry/r) < 1, it is now clear that both py(z) and oy (z) tend to
zero as N tends to infinity.
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Finally, we need only recall the corollary in Sec. 53 to see that the contours used
in integrals (5) here may be replaced by the contour C. This completes the proof of
Laurent’s theorem when z; = O since, if z is used instead of s as the variable of
integration, expressions (5) for the coefficients a, and b, are the same as expressions
(2) and (3) in Sec. 66 when zy = O there.

The case zy #0

To extend the proof to the general case in which z is an arbitrary point in the finite
plane, we let f be a function satisfying the conditions in the theorem; and, just as
we did in the proof of Taylor’s theorem, we write g(z) = f(z + zo). Since f(z) is
analytic in the annulus R; < |z — 79| < Ry, the function f(z + zo) is analytic when
Ri < |(z + z0) — zo| < R». That is, g is analytic in the annulus R; < |z| < R»,
which is centered at the origin. Now the simple closed contour C in the statement of
the theorem has some parametric representation z = z(¢) (@ <t < b), where

(7 Ry < |z(t) — 20l < Ro
for all 7 in the interval @ < t < b. Hence if I" denotes the path
®) z=2z() — 20 (@ <t =<bh),

" is not only a simple closed contour but, in view of inequalities (7), it lies in the
domain R; < |z| < R,. Consequently, g(z) has a Laurent series representation

©) 8(@) = ianz” + i% (R < |z| < Ra),
n=0 n=1 "

where

(10) anzﬁ F% n=0,1,2,...),

(an L O R )

27Ti r Z—n+l

Representation (1) in Sec. 66 is obtained if we write f(z + z¢) instead of g(z)
in equation (9) and then replace z by z — zp in the resulting equation, as well as in
the condition of validity R; < |z| < R,. Expression (10) for the coefficients a, is,
moreover, the same as expression (2), Sec. 66, since

b /
/g(z) dz flz(0)]z' (1) dt:/ f @) dz
r C

o [2(0) =z (z —zo)"+!

Similarly, the coefficients b, in expression (11) are the same as those in expression (3),
Sec. 66.
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68. EXAMPLES

The coefficients in a Laurent series are generally found by means other than appealing
directly to the integral representations in Laurent’s theorem (Sec. 66). This has already
been illustrated in Sec. 65, where the series found were actually Laurent series. The
reader is encouraged to go back to Sec. 65, as well as to Exercises 10 and 11 of that
section, in order to see how in each case the punctured plane or disk in which the series
is valid can now be predicted by Laurent’s theorem. Also, we shall always assume that
the Maclaurin series expansions (1) through (6) in Sec. 64 are well known, since we
shall need them so often in finding Laurent series. As was the case with Taylor series,
we defer the proof of uniqueness of Laurent series till Sec. 72.

EXAMPLE 1. The function
B 1 1
TO=0ya = T+a
has singularities at the points z = 0 and z = =i. Let us find the Laurent series
representation of f(z) that is valid in the punctured disk 0 < |z| < 1 (see Fig. 82).

y
i
=~
// \\
- AN
/ \
/ \
/ \
/ \
/ \
| |
T T
\ 0 11 X
\ /
\ /
\ /
\ 7
N s
~ -
~_ _-
- —
—1
FIGURE 82

Since | — z?| < 1 when |z| < 1, we may substitute —z2 for z in the Maclaurin
series expansion

1 o
(1) T = Yt (<.
—Z n=0

The result is

1 o
— _1 nZZn 7| < 1 ,
o ;( ) (Izl < 1)

and so

f@) = %Z(—l)"zz" =St O <zl < D,
n=0 n=0
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That is,
1 o
f@=—+3> (D ©O<lal <D,
n=l1
Replacing n by n + 1, we arrive at
1 o
f) = ; + Z(_l)n+112n+l O < |z] < 1).
n=0
In standard form, then,
> 1
) f@)=> (=1t to o O<kl<D.
n=0
(See also Exercise 3.)

EXAMPLE 2. The function
z+1
z—1

f@)=

’

which has the singular point z = 1, is analytic in the domains (Fig. 83)
Di:|zl<1 and D;:1<|z|] < o0.

In these domains f(z) has series representations in powers of z. Both series can be
found by making appropriate replacements for z in the same expansion (1) that was
used in Example 1.

y
//’—‘ _§\\\
// \\ D2
/ \
/ \
/ D1 \
/ \
! X
! ?
\ o 11 X
\ /
\ /
\ /
\ 7
N s
N 7
~_ _ -
FIGURE 83

We consider first the domain D; and note that the series asked for is a Maclaurin
series. In order to use series (1), we write

1 1

11—z 1—-2z

1
f@)=—-@z+ 1)1——2 = —z
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Then

o0 o0 [e.¢] oo
f@==2) "= "==>" =" (zd<D.
n=0 n=0 n=0 n=0

Replacing n by n — 1 in the first of the two series on the far right here yields the desired
Maclaurin series:

3) f@Q==Y "= ==-1-2)"2 (z<D.
n=1 n=0 n=1

The representation of f(z) in the unbounded domain D; is a Laurent series, and
the fact that |1/z] < 1 when z is a point in D, suggests that we use series (1) to write

1
1+_ 00 00 00
oz 1 1 1 1 1
ro=—=(1+1) "=+ X s-1 i+
1— = '1—— n= n=0 n=0
Z Z

(1 < |z|] < 00).
Substituting n — 1 for n in the last of these series reveals that

<1 <1
f@=3 S +> -  (<ll<oo),
n=0

n=1

and we arrive at the Laurent series

21
) f(z)=1+2zz—n (1 < |z < o0).
n=1

EXAMPLE 3. Replacing z by 1/z in the Maclaurin series expansion

o0 p z ZZ ZS
Z —
e—E_On! 1+1'+2,+3'+ (Jz] < 00),

| S|

we have the Laurent series representation

e x| ! 1 1 0
e —E%nlzn— tptaataa o O<kli<oo.
n=

Note that no positive powers of z appear here, since the coefficients of the positive
powers are zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 66, that coefficient is the number

1
by=— [ ¢/"d
! 2ni/c€ ¢
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where C is any positively oriented simple closed contour around the origin. Since

by, = 1, then,
/ e'"dz = 2mi.
c

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. 6 and then used extensively in Chap. 7.

EXAMPLE 4. The function f(z) = 1/(z—i)? is already in the form of a Laurent
series, where zo = i. That is,
1 o0
s :n;oocn(z —i" (0 <l|z—i]l <o0)

where c_, = 1 and all of the other coefficients are zero. From expression (5), Sec. 66,
for the coefficients in a Laurent series, we know that

1 d
= — | % i=0,41,42,..)
2ri Jo (z —i)"t3
where C is, for instance, any positively oriented circle |z — i| = R about the point

zo = i. Thus [compare with Exercise 13, Sec. 46]
dz _ o when n #£ -2,
c (z—i)+3 | 2mi whenn = —-2.

EXERCISES

1. Find the Laurent series that represents the function

2o (1
f(z) =z sin =
z
in the domain 0 < |z| < oo.

= (=D 1
Ans. 1+Z 2n 1 Dl T
2. Find a representatlon for the function
1 1 1
A A F V)

in negative powers of z that is valid when 1 < |z| < oo.

Ans Z ( l)n+l

3. Find the Laurent series that represents the function f(z) in Example 1, Sec. 68, when
1 < |z| < o0.

1)n+1

Ans Z 2n+1

n=l1
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4. Give two Laurent series expansions in powers of z for the function

)= 5>

f (@) )
and spemfy the regions in which those expansions are valid
11 >
Ans. Zz totg O<ll<D

n=0
5. The function

1
-2 (U<ll<o

n=3
@) — Lo
7) = = - ;
z—D)(iz—-2) z—-1 z-2
which has the two singular points z = 1 and z = 2, is analytic in the domains (Fig. 84)
Dzl <1, Dy:1<]|z| <2,

2 < |z] < oo.
Find the series representation in powers of z for f (z) in each of those domalns
Ans.

z_:o(z—” '~ 1)z in Dy; ng Z— in Dz,zl_

in Dj3.
n=0 n=1 4
y
//// \\?3
// ,//— N D2 \\
/ , N \
[y
\ L\ 0 T2 X
\ \ / /
\\ \\\ /// //
\ - /
N\ 7
\\\ ///
FIGURE 84
6. Show that when 0 < |z — 1| < 2

(z—1)"
&—Mrﬁ) _322”+2

2z—1)°
7. (a) Let a denote a real number, where —1 < a < 1, and derive the Laurent series
representation

1

n

Ooa
e

(la] < |z| < 00)
n=1
(b) After writing z = e’

in the equation obtained in part (a), equate real parts and then

imaginary parts on each side of the result to derive the summation formulas

acosf — >

Z a" cosnb = and Z a" sinnf =
1 —2acosf + a?

n=1

asinf
where —1 < a < 1. (Compare with Exercise 4, Sec. 61.)

1 —2acos6 +a?’
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8. Suppose that a series

e}

Z x[n]z™"

n=—00

converges to an analytic function X (z) in some annulus R; < |z| < R,. That sum X (z)
is called the z-fransform of x[n] (n = 0, £1, £2, ...).* Use expression (5), Sec. 66, for
the coefficients in a Laurent series to show that if the annulus contains the unit circle
|z] = 1, then the inverse z-transform of X (z) can be written

9. (a)

(b)

10. (a)

1 T . .
x[n] = —/ X (e do (n=0,+1,£2,...).
27 J_x

Let z be any complex number, and let C denote the unit circle
w=e?  (-m<¢=<m)

in the w plane. Then use that contour in expression (5), Sec. 66, for the coefficients
in a Laurent series, adapted to such series about the origin in the w plane, to show
that

wli(e- 1)) F w0t

where
J.(z) = % " expl—i(n¢ — zsing)]d¢ (n=0,=%x1,£2,...).

With the aid of Exercise 5, Sec. 42, regarding certain definite integrals of even and
odd complex-valued functions of a real variable, show that the coefficients in part
(@) here can be written'

Ju.(z) = %/On cos(ngp — zsing) d¢ (n=0,=x1,%£2,...).

Let f(z) denote a function which is analytic in some annular domain about the origin
that includes the unit circle z = ¢'¢ (—7 < ¢ < 7). By taking that circle as the path
of integration in expressions (2) and (3), Sec. 66, for the coefficients a, and b, in a
Laurent series in powers of z, show that

e

17 . 1 & 7 - z \" "
— _ i¢ ~ "
ro=5- [ fe )d¢+2”nz=; | fe )[(eiq,) +<Z>}d¢

when z is any point in the annular domain.

*The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.

"These coefficients J,(z) are called Bessel functions of the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary Value
Problems,” 8th ed., Chap. 9, 2012.
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(b) Write u(6) = Re[f(e'?)] and show how it follows from the expansion in part (a)
that

1 (= I &7
u(®) = —/ u(p)de + — Z/ u(¢) cos[n(6 — ¢)1d¢.
21 ) T
This is one form of the Fourier series expansion of the real-valued function u(6) on
the interval —w < 6 < . The restriction on u(#) is more severe than is necessary
in order for it to be represented by a Fourier series.*

69. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and the corollary in
these sections can easily skip the proofs in order to reach Sec. 73 more quickly.

We recall from Sec. 61 that a series of complex numbers converges absolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series
oo
(1 > an(z —z20)"
n=0

converges when z = 71 (21 # 20), then it is absolutely convergent at each point 7 in
the open disk |z — zo| < Ry where Ry = |71 — 7| (Fig. 85).

y -7 T <
// [ Vé AN
/ \
/ 7
/ R, !
1
l\\ % /1
\\ ///
o X FIGURE 85

We start the proof by assuming that the series
oo
Zan(zl —z0)" (21 # 20)
n=0

converges. The terms a, (z; — zo)" are thus bounded; that is,

|an(Zl_Z0)n|§M (”120,1,2,...)

*For other sufficient conditions, see Secs. 12 and 13 of the book cited in the footnote to Exercise 9.
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for some positive constant M (see Sec. 61). If |z — z9| < Ry and if we write
_lz— 2z
|21 — 2ol
we can see that

|z — zol

|an(z_20)n| = la,(z; _ZO)n| ( > SMIOn n=0,1,2,...).

|z1 — 2ol
Now the series

is a geometric series, which converges since p < 1. Hence, by the comparison test for
series of real numbers,
o0

> lan(z — 20)"]

n=0

converges in the open disk |z — zo| < R;. This completes the proof.

The theorem tells us that the set of all points inside some circle centered at zg
is a region of convergence for the power series (1), provided it converges at some
point other than zy. The greatest circle centered at z such that series (1) converges at
each point inside is called the circle of convergence of series (1). The series cannot
converge at any point z, outside that circle, according to the theorem; for if it did, it
would converge everywhere inside the circle centered at zo and passing through z5.
The first circle could not, then, be the circle of convergence.

Our next theorem involves terminology that we must first define. Suppose that
the power series (1) has circle of convergence |z — zo| = R, and let S(z) and Sy (z)
represent the sum and partial sums, respectively, of that series:

00 N—1
S@ =Y az—z20)" Sv@ =) az—z)"  (z—2|<R).
n=0 n=0

Then write the remainder function (see Sec. 61)
(2) pN(2) = S(2) — Sn(2) (Iz = 20l < R).

Since the power series converges for any fixed value of z when |z — 70| < R, we know
that the remainder py (z) approaches zero for any such z as N tends to infinity. Accord-
ing to definition (1), Sec. 60, of the limit of a sequence, this means that corresponding
to each positive number &, there is a positive integer N, such that

3) lon(z)| <& whenever N > N,.

When the choice of N, depends only on the value of ¢ and is independent of the point
z taken in a specified region within the circle of convergence, the convergence is said
to be uniform in that region.
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Theorem 2. If z; is a point inside the circle of convergence |z — zo| = R of a
power series

) > an(z —z0)"
n=0

then that series must be uniformly convergent in the closed disk |z — zo| < R, where
R = |z1 — zo0| (Fig. 86).

y

o S~o _-7 X FIGURE 86

Our proof of this theorem depends on Theorem 1. Given that z; is a point lying
inside the circle of convergence of series (4), we note that there are points inside that
circle and farther from zo than z; for which the series converges. So, according to

Theorem 1,
o

(5) > lan(zi — 20)"|

n=0

converges. Letting m and N denote positive integers, where m > N, one can write the
remainders of series (4) and (5) as

m
(©) py(@) = lim ZNan(z—zO)
and
(7 oy = lim " lay(z1 = 20)"l.
n=N
respectively.

Now, in view of Exercise 3, Sec. 61,

lon(2)] = lim
m—>00

3

m
> an(z —z20)"|;
n=N

and, when |z — zo| < |z1 — 20l,

m m m m
S anz—20)"[ =Y lanllz —zol" <Y laullzi — 20" =D lan(zi — 20)"1.
n=N n=N n=N n=N




SEC. 70 CONTINUITY OF SUMS OF POWER SERIES 211

Consequently,
®) lon(2)] =on  when [z —2zol = Ry.

Since oy are the remainders of a convergent series, they tend to zero as N tends to
infinity. That is, for each positive number €, an integer N, exists such that

)] oy <& whenever N > N,.

Because of conditions (8) and (9), then, condition (3) holds for all points z in the
disk |z — zo| < Ry; and the value of N, is independent of the choice of z. Hence the
convergence of series (4) is uniform in that disk.

70. CONTINUITY OF SUMS OF POWER SERIES

Our next theorem is an important consequence of uniform convergence, discussed in
the Sec. 69.

Theorem. A power series
o0
(1) >,z —z0)"
n=0

represents a continuous function S(z) at each point inside its circle of convergence
|z —zol = R.

Another way to state this theorem is to say that if S(z) denotes the sum of series
(1) within its circle of convergence |z — zo| = R and if z; is a point inside that circle,
then for each positive number ¢ there is a positive number § such that

2) |S(z) — S(z1)| <& whenever |z —z1] <.

[See definition (4), Sec. 18, of continuity.] The number é here is small enough so that
z lies in the domain of definition |z — zo| < R of S(z) (Fig. 87).

FIGURE 87
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To prove the theorem, we let S, (z) denote the sum of the first NV terms of series
(1) and write the remainder function

pn(z) = S(z) — Sy (2) (Iz = zol < R).

Then, because

S(z) = Sn(2) + pn(2) (Iz = zol < R,

one can see that

[S(z) — S| = 1Sy(2) — Sn(z1) + pn(2) — pn(zD)]s
or

3 1S(z) — Szl = ISy (2) = Sn (D] + |on (D] + 1on (2]

If z is any point lying in some closed disk |z — zo| < Ro whose radius Ry is greater
than |z; — zo| but less than the radius R of the circle of convergence of series (1) (see
Fig. 87), the uniform convergence stated in Theorem 2, Sec. 69, ensures that there is
a positive integer N, such that

“) lon(2)] < g whenever N > N.,.

In particular, condition (4) holds for each point z in some neighborhood |z — z;| < 8
of z; that is small enough to be contained in the disk |z — zo| < Rp.

Now the partial sum Sy(z) is a polynomial and is, therefore, continuous at z;
for each value of N. In particular, when N = N, + 1, we can choose our § so small
that

&
®) Sv(2) = Sy(z)l < 3 whenever |z — 2] < 4.

By writing N = N, + 1 in inequality (3) and using the fact that statements (4) and (5)
are true when N = N, + 1, we now find that

e & ¢
[S(z) — S(z1)| < 3 + 3 + 3 whenever |z —z;| <.

This is statement (2), and the theorem is now established.
By writing w = 1/(z — z¢), one can modify the two theorems in the previous
section and the theorem here so as to apply to series of the type

(6) > o

— n'
— (z—20)

If, for instance, series (6) converges at a point z; (z; # zo), the series

00
g b,w"
n=1
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must converge absolutely to a continuous function when
(7 lw| < ———.
lz1 — zol

Thus, since inequality (7) is the same as |z — zo| > |21 — zo|, series (6) must converge
absolutely to a continuous function in the domain exterior to the circle |z — z9| = R},

where R = |71 — z¢|. Also, we know that if a Laurent series representation
o0 o0 b
n
f@=) az—z)"+> ——
n=0 n=1 (Z o ZO)

is valid in an annulus R; < |z —z9| < R», then both of the series on the right converge
uniformly in any closed annulus which is concentric to and interior to that region of
validity.

71. INTEGRATION AND DIFFERENTIATION
OF POWER SERIES

We have just seen that a power series

(1 S@) =) an(z—z0)"

n=0

represents a continuous function at each point interior to its circle of convergence. In
this section, we prove that the sum S(z) is actually analytic within that circle. Our
proof depends on the following theorem, which is of interest in itself.

Theorem 1. Let C denote any contour interior to the circle of convergence of
the power series (1), and let g(z) be any function that is continuous on C. The series
formed by multiplying each term of the power series by g(z) can be integrated term
by term over C; that is,

2) /Cg(z)S(z) dz=Y"a, /C g(2)(z — z0)" dz.

n=0

To prove this theorem, we note that since both g(z) and the sum S(z) of the power
series are continuous on C, the integral over C of the product
N-1
g@)S(2) =Y a,8(x)(z —20)" + g()pn (2),

n=0

where py (z) is the remainder of the given series after N terms, exists. The terms of
the finite sum here are also continuous on the contour C, and so their integrals over
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C exist. Consequently, the integral of the quantity g(z) oy (z) must exist; and we may
write

N-—1
3) /C c@DS@dz =Y a, /C 2z — 20)" dz + /C 2@y () dz.
n=0

Now let M be the maximum value of |g(z)| on C, and let L denote the length of
C. In view of the uniform convergence of the given power series (Sec. 69), we know
that for each positive number ¢ there exists a positive integer N, such that, for all
points z on C,

lon(2)| <& whenever N > N,.

Since N, is independent of z, we find that

< MeL whenever N > Ng;

/ g(@)pn(z) dz
C

that is,

lim /g(z)pN(z) dz = 0.
N—o0 C

It follows, therefore, from equation (3) that

N—1
/Cg(z)S(z) dz = Nh_r)noo ,;an /C g(2)(z — z0)" dz.

This is the same as equation (2), and Theorem 1 is proved.

If |g(z)| = 1 for each value of z in the open disk bounded by the circle of
convergence of power series (1), the fact that (z — zp)" is entire whenn =0, 1,2, ...
ensures that

/g(z)(z—zo)”dz=/(z—zo)"dz=0 n=0,1,2,..))
c c

for every closed contour C lying in that domain. According to equation (2), then,

/S(z) dz=0
c

for every such contour; and, by Morera’s theorem (Sec. 57), the function S(z) is
analytic throughout the domain. We state this result as a corollary.

Corollary. The sum S(z) of power series (1) is analytic at each point z interior
to the circle of convergence of that series.

This corollary is often helpful in establishing the analyticity of functions and in
evaluating limits.
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EXAMPLE 1. To illustrate, let us show that the function defined by means of
the equations

Fo) = {(sin 2)/z when z # 0,

1 whenz =0

is entire. Since the Maclaurin series representation

00 ZZn-H
4 inzg = )
4) sinz ;( ) anr !
is valid for every value of z, the series
S 2n 2 4
Z Z Z
5 ) = -4
) Z( ) 2n + 1! 3!+5!

n=0
obtained by dividing each side of equation (4) by z, converges to f(z) when z # 0.
Also, series (5) clearly converges to f(z) when z = 0. Hence f(z) is represented by
the convergent series (5) for all z; and f is, therefore, an entire function.
Note that since (sinz)/z = f(z) when z # 0 and f is continuous at z = 0,

. sinz .
lim — = lim f(z) = f(0) = 1.
z—0 z z—0

This is a result known beforehand because the limit here is the definition of the deriva-
tive of sinz at z = 0. That is,
lim 212y SN2 TS0 o1,
=0 Z 7—0 z—0
We observed in Sec. 62 that the Taylor series for a function f about a point zg
converges to f(z) at each point z interior to the circle centered at zo and passing
through the nearest point z; where f fails to be analytic. In view of our corollary to
Theorem 1, we now know that there is no larger circle about z such that at each point
z interior to it the Taylor series converges to f(z). For if there were such a circle, f
would be analytic at z;; but f is not analytic at z;.
We now present a companion to Theorem 1.

Theorem 2. The power series (1) can be differentiated term by term. That is, at
each point z interior to the circle of convergence of that series,

(6) S'(2) = nay(z—z0)""".
n=1

To prove this, let z denote any point interior to the circle of convergence of series
(1). Then let C be some positively oriented simple closed contour surrounding z and
interior to that circle. Also, define the function

(N g(s) = —-
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at each point s on C. Since g(s) is continuous on C, Theorem 1 tells us that

oo
®) [ 2056 ds =3 a, [ g1 =20 ds.
c =0 c
Now S(z) is analytic inside and on C, and this enables us to write

/g(s)S(s) ds = 1 [ Se)ds = S'(2)
C

27i Je (s — 2)?
with the aid of the integral representation for derivatives in Sec. 55. Furthermore,

woo_ L[ (s—z)"  d o _
/Cg(s)(s—z()) ds = i ci(s—z)z ds_dz(z 20) n=0,1,2,...).

Thus equation (8) reduces to
= d
S'(z) =) ay—(z—z20)",
(2) go )
which is the same as equation (6). This completes the proof.

EXAMPLE 2. In Example 1, Sec. 64, we saw that

1 o0
=) D'@=D" (z—-1<D.
=0

Z
Differentiation of each side of this equation reveals that
1 e.¢]
5 =Y D'ne-D"" (z—1 <),
n=1

Z

or

1 o0
5= =)'+ De-D"  (z—1]<D.

n=0

72. UNIQUENESS OF SERIES REPRESENTATIONS

The uniqueness of Taylor and Laurent series representations, anticipated in Secs. 64
and 68, respectively, follows readily from Theorem 1 in Sec. 71. We consider first the
uniqueness of Taylor series representations.

Theorem 1. If a series
o0
(1 > an(z —z0)"
n=0

converges to f(z) at all points interior to some circle |z — zo| = R, then it is the Taylor
series expansion for f in powers of 7 — 2.
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To start the proof, we write the series representation

[e.¢]

2) f@=> aiz—z)" (z—zl<R)
n=0

in the hypothesis of the theorem using the index of summation m:
o0

f@=> anz—z20"  (z—2z0l <R).

=0

Then, by appealing to Theorem 1 in Sec. 71, we may write

3 dz = " — "dz,
3) /C ¢ f(2) dz m;)a /C () — z0)" dz

where g(z) is any one of the functions

1 1

“) 8(2) = T

and C is some circle centered at 7o and with radius less than R.
In view of the extension (3), Sec. 55, of the Cauchy integral formula (see also the
corollary in Sec. 71), we find that

n=0,1,2,..)

1 d (n)
(5) /Cg(Z)f(Z)dz:— f(2)dz _ S (Zo);

27i Je (2 — zo)rt! n!

and, since (see Exercise 13, Sec. 46)

(6) / ez dr = [ {0 when m # n,
C

27i Jo (z — zg)nmH! 1 whenm =n,

it is clear that

o0
) > an [ 8@ 20" dz = a,
m=0 ¢
Because of equations (5) and (7), equation (3) now reduces to
[P o)
n! o

This shows that series (2) is, in fact, the Taylor series for f about the point zg.

Note how it follows from Theorem 1 that if series (1) converges to zero throughout
some neighborhood of zy, then the coefficients @, must all be zero.

Our second theorem here concerns the uniqueness of Laurent series
representations.

Theorem 2. If a series

oo

(8) S -0 =Y a0+
n=0 n=1

—_ n
Bt — (2 —20)
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converges to f(z) at all points in some annular domain about z, then it is the Laurent
series expansion for f in powers of z — zo for that domain.

The method of proof here is similar to the one used in proving Theorem 1. The
hypothesis of this theorem tells us that there is an annular domain about z, such that

o0

f@ =Y calz—20)"

n=—oo

for each point z in it. Let g(z) be as defined by equation (4), but now allow n to be
a negative integer too. Also, let C be any circle around the annulus, centered at zg
and taken in the positive sense. Then, using the index of summation m and adapting
Theorem 1 in Sec. 71 to series involving both nonnegative and negative powers of
z — zo (Exercise 10), write

/ g(2)f(2)dz = Z Cm / 2(2)(z — 20)" dz,

m=—00

or

1 d
©) L[ Sl Z Cm/g(z)(z—ZO) dz.

(7 — i+l
2ri Je (z—z20) =

Since equations (6) are also valid when the integers m and n are allowed to be
negative, equation (9) reduces to

1 f2)dz

% szcn (I’l=0,:|:l,:|:2,),

which is expression (5), Sec. 66, for the coefficients ¢, in the Laurent series for f in
the annulus.

EXERCISES

1. By differentiating the Maclaurin series representation
1 oo
2= ;f‘ (2l < D),
obtain the expansions
[e.9)
s=> (+D" (2l <1
n=0
and

— = =) m+Dn+2)z"  (z] < D).
(1-12)3 Z::O
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2. By substituting 1/(1 — z) for z in the expansion
1 (o]
—_— = " | < 1),
a= ;ow )2 (<D

found in Exercise 1, derive the Laurent series representation

I S ED'"(n=1)
= AR — 1 <]z —1] < 00).
> 2 — (I <lz=1] < o0)
(Compare with Example 2, Sec. 71.)
3. Find the Taylor series for the function
1 1 1 1

1 24G:z-2 2 1+@z-2)2

about the point zp = 2. Then, by differentiating that series term by term, show that

1 -2\
Z=iaeresn(32) d-2<.
n=0

4. Show that the function defined by means of the equations

_ (1 —cosz)/z*> whenz #0,
f(Z)—{l/z when z =0

is entire. (See Example 1, Sec. 71.)
5. Prove that if

COS Z
2 _ 2
fo =4

—— when z = £m/2,
b4

when z # £m/2,

then f is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 1, Sec. 64)

1 o0
— =Y )'w-D"  (w—-1<1
=0

w

219

along a contour interior to its circle of convergence from w = 1 to w = z to obtain the

representation

=~y

LogZZZ

n=1

@=D"  (z—=1<D.

7. Use the result in Exercise 6 to show that if

L
fl) = =22

and f(1) = 1, then f is analytic throughout the domain

when z # 1
z—1

0< |zl <00, —m < Argz < m.
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8.

10.
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Prove that if f is analytic at zo and f(z0) = f'(z0) = --- = f"(z9) = 0, then the
function g defined by means of the equations

/@)
——————  when z # 7,
o (z — 7o)+ # 20
8(2) =
" (z0)
——~ whenz =7z
(m 4+ 1)!

is analytic at zg.

Suppose that a function f'(z) has a power series representation
(o]
@)=Y anz—z0)"
n=0

inside some circle |z — zo| = R. Use Theorem 2 in Sec. 71, regarding term by term
differentiation of such a series, and mathematical induction to show that

- k)!
fP@=>Y (nkLv)“”“‘ z—z2)f ®=01,2..)
k=0 :

when |z — z9| < R. Then, by setting z = z, show that the coefficients a, (n =0, 1, 2,...)
are the coefficients in the Taylor series for f about zy. Thus give an alternative proof of
Theorem 1 in Sec. 72.

Consider two series

S s b
S (Z) = An (Z - ZO)n and SZ(Z) = ;,
1 nz:% nz:; (z —z0)"

which converge in some annular domain centered at zo. Let C denote any contour lying
in that annulus, and let g(z) be a function which is continuous on C. Modify the proof
of Theorem 1, Sec. 71, which tells us that

/Cg(z)Sl(z) dz=§an/cg(z)(z—zo) dz,

to prove that
> g(2)
g8 () dz = bn/ > dz

/c ? nz:; c (z—zo0)"
Conclude from these results that if

o0 o0 o0 b

S@ =Y cz—z200"=> az—2)" + Y ———.

n=1

_ n
n=—oo n=0 = (Z ZO)
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then

/Cg(z)S(z) dz= )Y cn/cg(z)(z—zO)” dz.

n=—0oo
11. Show that the function

H) = m (z # %)

is the analytic continuation (Sec. 28) of the function

f@ =) (=" (z <1

n=0
into the domain consisting of all points in the z plane except z = %i.

12. Show that the function f>(z) = 1/z* (z # 0) is the analytic continuation (Sec. 28) of
the function

oo

@ =D n+DE+D"  (z+1<1)

n=0

into the domain consisting of all points in the z plane except z = 0.

73. MULTIPLICATION AND DIVISION
OF POWER SERIES

Suppose that each of the power series

o0 o
QY D anz—z0)" and Y bz —zp)"

n=0 n=0
converges within some circle |z — zg| = R. Their sums f(z) and g(z), respectively,
are then analytic functions in the disk |z — zo| < R (Sec. 71), and the product of those
sums has a Taylor series expansion which is valid there:

2) f@8@) =) az—z0)"  (z2—2l<R).
n=0

According to Theorem 1 in Sec. 72, the series (1) are themselves Taylor series.
Hence the first three coefficients in series (2) are given by the equations

co = f(z0)g(z0) = aobo,

o = f(z0)g (zo) + [(z0)g(z0)
1!

= apb; + a by,

and

) = f(z0)g" (z0) + 2f/(202)'g/(Z0) + 7 0)g ) = apby + a1by + axby.
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The general expression for any coefficient ¢, is easily obtained by referring to Leibniz’s
rule (Exercise 7)

n

G U@s@” =Y ()Y@ P m=12..

k=0

where

n n!
=" ®=012....n),
(k) Mok ")

for the nth derivative of the product of two differentiable functions. As usual,
fO(z) = f(z) and 0! = 1. Evidently,

L0z g P(ze) &
n = . = bnf 5
¢ ; k! n—k)! %a" k

and so expansion (2) can be written

4) (g = apby + (aphi + aiby)(z — z0)
+ (aobs + ar1by + asbo)(z — z0)*> + - - -
+ (Z akbnk> (z—z0)"+--- (Iz — zol < R).
k=0

Series (4) is the same as the series obtained by formally multiplying the two series
(1) term by term and collecting the resulting terms in like powers of z — zg ; it is called
the Cauchy product of the two given series.

EXAMPLE 1. The function

sinh z
f@=
I+z
has a singular point at z = —1, and so its Maclaurin series representation is valid in

the open disk |z| < 1. The first four nonzero terms are easily found by writing

(sinh ) S z+lz3+Lz5+~~- (I—z+27 =2+
1+z 6 120 '

and multiplying these two series term by term. To be precise, we may multiply each

term in the first series by 1, then each term in the first series by —z, etc. The following

systematic approach is suggested, where like powers of z are assembled vertically so
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that their coefficients can be readily added:

Z + lz3 + LZ5 T
6 | 120 |
_ZZ _ _Z4 _ mz6 _
a4l e
—z* + éz6 -

The desired result, involving four nonzero terms, is found to be

sinh z 7 7
=z—-2+-2— '+ (Izl < D).

5
) 11z ° 6° " 6

Continuing to let f(z) and g(z) denote the sums of series (1), suppose that
g(z) # 0 when |z — zo| < R. Since the quotient f(z)/g(z) is analytic throughout
the disk |z — zo| < R, it has a Taylor series representation

(6) Jgt((;) = ;dn(z —20)"  (Iz— 2zl < R),

where the coefficients d, can be found by differentiating f(z)/g(z) successively and
evaluating the derivatives at z = z. The results are the same as those found by formally
carrying out the division of the first of series (1) by the second. Since it is usually only
the first few terms that are needed in practice, this method is not difficult.

EXAMPLE 2. As pointed out in Sec. 39, the zeros of the entire function sinh z
are z =nmwi (n =0, x1,£2,...). So the reciprocal

1 B 1
sinhz 2 2 ’
Z+§+§+"'
which can be written
o 1 1
sinhz ~ z . 2 ’

has a Laurent series representation in the punctured disk 0 < |z] < 7. A power series
representation of the function in parentheses here can be found by dividing the series
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in the denominator into unity as follows:

1 12+{1 1}4+
3T En 50t

3170 751
14+ =22 Ll
3! 51
1, 1,
—aZ —EZ +
B W
3! (31)?

o1,
[GW_ﬂZ+W

1 1
[GW_Jf+W

This shows that

! =1—1z2+[ ! —1}z4+-~ (Iz] < m),
1+§+§+“_ 3! (3H2 5!
3! 5!
or
®) 1 =1—lz2+iz4+'“ Iz < 7).
AU
3t 5!

In view of equation (7), then,

C)) ! b1 + ! e (0 < |z )
=—— -7+ -— < 7).
sinhz 2z 6° ' 360" o=

Although we have given only the first three nonzero terms of this Laurent series, any
number of terms can, of course, be found by continuing the division.

EXERCISES
1. Use multiplication of series to show that
et 1 1 5,
m=g+l—§z—gz +-e- O <zl < D.

2. By multiplying two Maclaurin series term by term, show that

_ 1
(a) ezs1nz=z+zz+§z3+--- (Iz] < 00);
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YA WLV S M )
14z 2 3
3. By writing csc z = 1/ sin z and then using division, show that
1 1 1 17 4
cscz=g+§z+{(3!)2—5}2*4-“' 0 < fz| <m).
4. Use division to obtain the Laurent series representation
! L S e 0 < |z| < 27).

-1 7z 2 12° 720
5. Note how the expansion
1 1 11 7
m=z—3—g'g+ﬁ2+"' O <|z| <m)
is an immediate consequence of the Laurent series (8) in Sec. 73. Then use the method
illustrated in Example 4, Sec. 68, to show that

/ dz _ i
c z2sinhz = 3

when C is the positively oriented unit circle |z| = 1.

6. Follow these steps, which illustrate an alternative to straightforward division, to obtain
equation (8) in Example 2, Sec. 73.

(a) Write
1
1422/30 4+ 24/5! + - -

where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

:d()+dlz+d222+d3z3+d4z4+...,

1 1
1= (1+§z2+§z4+~-~)(d0+d1z+d2z2+d3z3+d4z4+---).

Perform this multiplication to show that

3! 3!
1 1 .
—dr+ —dy |2 +---=0

1 1
(do—1)+diz+ (dz + —do)22 + (d3 + —d1)23

+ (d4+ £ 5
when |z| < 7.

(b) By setting the coefficients in the last series in part (a) equal to zero, find the values
of dy, dy, d», d3, and d,. With these values, the first equation in part (@) becomes
equation (8), Sec. 73.

7. Use mathematical induction to establish Leibniz’s rule (Sec. 73)

n

o =3 (3) F0g" P =120

k=0

for the nth derivative of the product of two differentiable functions f(z) and g(z).
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Suggestion: Note that the rule is valid when n = 1. Then, assuming that it is valid
when n = m where m is any positive integer, show that

(fO"Y = (feH™ + (f'9)™
— fg(m+1) +§: K’Z) + (kT ])} f<k)g(m+1—k) _+_f(m+1)g.
k=1

Finally, with the aid of the identify

(1) +(20)= (")

that was used in Exercise 8, Sec. 3, show that

m
7 m m—+1 _
(fg)(n+1) =fg( 1+l)+2( i >f(k)g(m+| k)+f(M+1)g
k=1

m+1

m+1 e l—
:Z< . )f(k)g( +1-k)
k=0

8. Let f(z) be an entire function that is represented by a series of the form
f@Q=z4+ml+ad+--- (2] < 0).

(a) By differentiating the composite function g(z) = f[f(z)] successively, find the first
three nonzero terms in the Maclaurin series for g(z) and thus show that

SU@I=z2+2a2" +2(a; +a)2’ +--- (2] <00).
(b) Obtain the result in part (a) in a formal manner by writing
fIf@l= f@ +alf@1* +alf@] +---,

replacing f(z) on the right-hand side here by its series representation, and then
collecting terms in like powers of z.

(c) By applying the result in part (a) to the function f(z) = sin z, show that

.. 1
s1n(s1nz)=z—§z3+-~- (Iz] < 00).
9. The Euler numbers are the numbers E,, (n =0, 1, 2, .. .) in the Maclaurin series repre-
sentation
1

o) En
> (El<m/2).

coshz =

Point out why this representation is valid in the indicated disk and why
Emii=0 (1=0,1,2,..)).
Then show that
Ey=1, E,=-1, E4=5, and Ec= —6l.



CHAPTER

6

RESIDUES AND POLES

The Cauchy—Goursat theorem (Sec. 50) states that if a function is analytic at all points
interior to and on a simple closed contour C, then the value of an integral of the
function around that contour is zero. If, however, the function fails to be analytic at a
finite number of points interior to C, there is, as we shall see in this chapter, a specific
number, called a residue, which each of those points contributes to the value of the
integral. We develop here the theory of residues; and, in Chap. 7, we shall illustrate
their use in certain areas of applied mathematics.

74. ISOLATED SINGULAR POINTS

We saw in Sec. 25 that a function fis analytic at a point z if it has a derivative at each
point in some neighborhood of z. If, on the other hand, ffails to be analytic at z( but
is analytic at some point in every neighborhood of it, we also saw in Sec. 25 that z is
a singular point of f.

The theory of residues in this chapter centers around a special type of singu-
lar point. Namely, a singular point zq is said to be isolated if there is a deleted ¢
neighborhood 0 < |z — zo| < € of z¢ throughout which fis analytic.

EXAMPLE 1. The function
z—1
Z =
1@ (2 +9)

227
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has the three isolated singular points z = 0 and z = %3i. In fact, the singular points of
a rational function, or quotient of two polynomials, are always isolated. This because
the zeros of the polynomial in the denominator are finite in number (Sec. 58).

EXAMPLE 2. The origin z = 0 is a singular point of the principal branch
(Sec. 33)
F(z) =Logz=Inr +i® r>0—1m7<0®<m)

of the logarithmic function. It is not, however, an isolated singular point since every
deleted e neighborhood of it contains points on the negative real axis (see Fig. 88)
and the branch is not even defined there. Similar remarks can be made regarding any
branch

f()=logz=Inz+i6 r>0,a0a <0 <a+2m)

of the logarithmic function.

FIGURE 88

EXAMPLE 3. The function
fl@) =

sin(r/z)

clearly does not have a derivative at the origin z = 0; and because sin(;r/z) = 0 when
w/z = nm (n = £1,+£2,...), the derivative of f also fails to exist at each of the
points z = 1/n (n = £1, £2, .. .). Inasmuch as the derivative of f does exist at every
point that is not on the real axis, it follows that fis analytic at some point in every
neighborhood of each of the points

1) 7=0 and z=1/n (n==%1,42,..)).

Hence each of the points (1) is a singularity of f.

The singularity z = 0 is not isolated because every deleted ¢ neighborhood of it
contains other singular points. More precisely, when a positive number ¢ is specified
and m is any positive integer such that m > 1/¢, the fact that 0 < 1/m < & means
that the singularity z = 1/m lies in the deleted & neighborhood 0 < |z| < &.
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The remaining points z = 1/n (n = +1, £2,...) are in fact, isolated. In order
to see this, let m denote any fixed positive integer and observe that fis analytic in the

deleted neighborhood of z = 1/m whose radius is
1 1 1

m m+1 Zm(m-i—l).
(See Fig. 89.) A similar observation can be made when m is a negative integer.

y
//// \\\\
/
/ £ \
4 s
0O 1 \\ L ,l X
m+1 m //
N s
S~ 7 FIGURE 89

In this chapter, it will be important to keep in mind that if a function is analytic
everywhere inside a simple closed contour C except for a finite number of singular
points z1, 22, - - ., 2y, those points must all be isolated and the deleted neighborhoods
about them can be made small enough to lie entirely inside C. To see that this is so,
consider any one of the points z;. The radius ¢ of the needed deleted neighborhood can
be any positive number that is smaller than the distances to the other singular points
and also smaller than the distance from z; to the closest point on C.

Finally, we mention that it is sometimes convenient to consider the point
at infinity (Sec. 17) as an isolated singular point. To be specific, if there is a
positive number R; such that f is analytic for R} < |z] < oo, then f is said to
have an isolated singular point at 7y = oo. Such a singular point will be used in
Sec. 77.

75. RESIDUES

When zj is an isolated singular point of a function f, there is a positive number R,
such that f is analytic at each point z for which 0 < |z — z9| < R;. Consequently,
f(z) has a Laurent series representation

00 bl b2 bn
| _ =z T R
@ ga C=wl+ 0 (z — 20)? " (z —z0)"

(0 < |z — 20l < Ry),

where the coefficients a,, and b, have certain integral representations (Sec. 66). In
particular,

1 f)dz

= [ =1,2,...
i Jeamzgt )

n
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where C is any positively oriented simple closed contour around z that lies in the
punctured disk 0 < |z — z9| < Ry (Fig. 90). When n = 1, this expression for b,
becomes

1
b] = %Af(z)dz

or

@ /C F(@)dz = 2iby.

FIGURE 90

The complex number b, which is the coefficient of 1/(z — zp) in expansion (1),
is called the residue of f at the isolated singular point zy, and we shall often write

b; = Res f(z).
=20
Equation (2) then becomes

3) /C f(2)dz =2mi Bzf;i f ().

Sometimes we simply use B to denote the residue when the function f and the point
Zp are clearly indicated.

Equation (3) provides a powerful method for evaluating certain integrals around
simple closed contours.

EXAMPLE 1. Consider the integral

i1
@) /e4 dz
C Z

where C is the positively oriented unit circle |z| = 1 (Fig. 91). Since the integrand
is analytic everywhere in the finite plane except at z = 0, it has a Laurent series
representation that is valid when 0 < |z| < oo. Thus, according to equation (3), the
value of integral (4) is 2mi times the residue of its integrand at z = 0.
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To determine that residue, we recall (Sec. 64) the Maclaurin series representation

o

. z

et = ; P (Jz|] < o0)
and use it to write

et —1 1 X O g5
The coefficient of 1/z in this last series occurs when n — 5 = —1, or when n = 4.
Hence
et — 1 1 1

RS “n=

and so

/ et —1 J i 1 i
= LTl — = —.
e 2 T )T 12

FIGURE 91

EXAMPLE 2. Let us show that

%) /cosh(%) dz =0
C Z

where C is the same positively oriented unit circle |z] = 1 as in Example 1. The
composite function cosh(1/z?) is analytic everywhere except at the origin since the
same is true of 1/z% and since cosh z is entire. The isolated singular point z = 0 is
interior to C, and Fig. 91 in Example 1 can be used here as well. With the help of the
Maclaurin series expansion (Sec. 64)
2 4 6
coshz=1+%+%+%+--- (Jz] < 00),

one can write the Laurent series expansion

h(l) ppo bttt 0 < |2] < 00)
cosh|l = ] = [ . R < < .
z 21 72 41 4 6! 2 ¢
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The residue of the integrand at its isolated singular point z = 0 is, therefore, zero
(by = 0), and the value of integral (5) is established.

We are reminded in this example that although the analyticity of a function within
and on a simple closed contour C is a sufficient condition for the value of the integral
around C to be zero, it is not a necessary condition.

EXAMPLE 3. A residue can be used to evaluate the integral

dz
© /c z2(z —2)°

where C is the positively oriented circle |z — 2| = 1 (Fig. 92). Since the integrand is
analytic everywhere in the finite plane except at the points z = 0 and z = 2, it has
a Laurent series representation that is valid in the punctured disk 0 < |z — 2| < 2,
which is shown in Fig. 92. Thus, according to equation (3), the value of integral (6) is
2mi times the residue of its integrand at z = 2. The nature of that integrand suggests
that we might use the geometric series (Sec. 64)
1 [.¢]

—=> 7 (<D

n=0

11—z

to determine the residue. We write

1 _ 1 1 . 1 1
G-2° " @-2 24(-2  2e-2° | _(_z=2Y
2
and then use the geometric series:
1 S =2\ & (=D
= - = -2)"7 (0<|z—2/<2).
2(z =20  2(z-2)° nz:;( 2 ) ’;0 2+l (z=2) O<lz—2[<2)

In this Laurent series, which could be written in the form (1), the coefficientof 1/(z—2)
is the desired residue, namely 1/32. Consequently,

/ dz ( 1 ) i
—_— =27 — | = —.
c 2(z = 2)5 32 16

y
////——\\\\
// N
;o C N
/ \
//_\ |
(RN
\ /
\ /
AN /
\\ //
Tt FIGURE 92
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76. CAUCHY’S RESIDUE THEOREM

If, except for a finite number of singular points, a function f is analytic inside a simple
closed contour C, those singular points must all be isolated (Sec. 74). The following
theorem, which is known as Cauchy’s residue theorem, is a precise statement of the
fact that if f is also analytic on C and if C is positively oriented, then the value of the
integral of f around C is 2mi times the sum of the residues of f at the singular points
inside C.

Theorem. Let C be a simple closed contour, described in the positive sense. If
a function f is analytic inside and on C except for a finite number of singular points
7k (k=1,2,...,n) inside C (Fig. 93), then

(1) / f( dz:2m'ZResf(z).
¢ =1 &

0 X FIGURE 93

To prove the theorem, let the points z; (k = 1, 2, ..., n) be centers of positively
oriented circles C; which are interior to C and are so small that no two of them have
points in common. The circles Cy, together with the simple closed contour C, form
the boundary of a closed region throughout which f is analytic and whose interior is a
multiply connected domain consisting of the points inside C and exterior to each Cy.
Hence, according to the adaptation of the Cauchy—Goursat theorem to such domains
(Sec. 53),

/f(Z)dz—Z/ f(2)dz =0.
¢ k=17 C

This reduces to equation (1) because (Sec. 75)

f@dz=2miRes f(2) (k=1.2,....n),

Cy

and the proof is complete.
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EXAMPLE. Let us use the theorem to evaluate the integral

@) /42—5d
c2z—1 %

where C is the circle |z| = 2, described in the counterclockwise direction (Fig. 94).
The integrand has the two isolated singularities z = 0 and z = 1, both of which are
interior to C. The corresponding residues B; at z = 0 and B, at z = 1 are readily
found with the aid of the Maclaurin series representation (Sec. 64)

1

——=1+4z+2+-  (zI <D.
1—z

We observe first that when 0 < |z] < 1,

4z -5 4z—-5 —1 5 )
— . = (4 — — —1—-z—-z — )
z2(z—1) Z 1—z ( )( )

z
and by identifying the coefficient of 1/z in the product on the right here, we find that
3) By =5.
Also, since
4z-5 4z-DH-1 1
2(z—1) z—1 I+@z-1

(+-:5) 2
=(4-—)Jl-G-D+GE-1"~]
z—1

when 0 < |z — 1] < 1, it follows that

4) B, = —1.
Thus
47 —5 . .
(®)] / dz =2mi(B; + By) = 8mi.
czz—1
y

FIGURE %4
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In this example, it is actually easier to start by writing the integrand in integral
(2) as the sum of its partial fractions:
4z -5 5 -1

-0z z-1

Then, since 5/z is already a Laurent series when 0 < |z| < 1 and since —1/(z — 1) is
a Laurent series when 0 < |z — 1| < 1, it follows that statement (5) is true.

77. RESIDUE AT INFINITY

Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C.
Next, let R denote a positive number which is large enough that C lies inside the circle
|z| = R (see Fig. 95). The function f is evidently analytic throughout the domain
R < |z| < o0 and, as already mentioned at the end of Sec. 74, the point at infinity is
then said to be an isolated singular point of f.

FIGURE 95

Now let Cy denote a circle |z] = Ry, oriented in the clockwise direction, where
Ro > R;. The residue of f at infinity is defined by means of the equation

(1) f(z)dz =2miRes f(z).

CO =00
Note that the circle C keeps the point at infinity on the left, just as the singular point
in the finite plane is on the left in equation (3), Sec. 75. Since f is analytic throughout
the closed region bounded by C and Cy, the principle of deformation of paths (Sec. 53)
tells us that

/f(Z)dz=/ fdz=— | f(2)dz.
c —Co Co
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So, in view of definition (1),

(2) /Cf(z) dz = —2mi ;IS,% £(2).
To find this residue, write the Laurent series (see Sec. 66)
3 f2) = i ' (R < z| < 00),
where _
) L R S

2mi J ¢, !

Replacing z by 1/z in equation (3) and then multiplying through the result by 1/z2, we
see that

1 1 Eal . Chn 1
_Zf_ ZZZ11+2=Z O<|Z|<R_]

< < n=-00 n=-—00 <
and
R 1 7 1
_1=Res|—=f(-]].
1T 2\
Putting n = —1 in expression (4), we now have
1
o1 =5 f(@)dz,
2mi —Co
or
. 1 1
5 f(z)dz = —2mi Res [ﬂ“(ﬂ .
Co =0 |z Z
Note how it follows from this and definition (1) that
1 1
(6) Res f(z) = —Res {zf()] .
7=00 =0 | Z Z

With equations (2) and (6), the following theorem is now established. This theorem
is sometimes more efficient to use than Cauchy’s residue theorem in Sec. 76 since it
involves only one residue.

Theorem. If a function f is analytic everywhere in the finite plane except for a
finite number of singular points interior to a positively oriented simple closed contour
C, then

7 dz =2mwiR ! !
™ [ r@dz=mives[ 21 ()]
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EXAMPLE. It is easy to see that the singularities of the function
3
z°(1 —3z2)
@)=
(I +2)(1+2z%)

all lie inside the positively oriented circle C centered at the origin with radius 3. In
order to use the theorem in this section, we write

(8) if(l)zlL
27 \z 7z (Z+D(E*+2)
Inasmuch as the quotient
z—3
(z+D(E*+2)

is analytic at the origin, it has a Maclaurin series representation whose first term is the

nonzero number —3/2. Hence, in view of expression (8),

1 1 1 3 5 3 3 1 5
Sz )=-\—5taztwtar+ ) =—5 - —F+ataztaz+ -
z z z 2 2z

for all z in some punctured disk 0 < |z| < Ry. It is now clear that

=)=
Res | fl - )| =—=,
z=0 Zz Z 2

and so
31 —
©) | s = 2m‘(—%) — 3mi.
EXERCISES
1. Find the residue at z = 0 of the function
(@) zJ:—zz; (b) ZCOSG); © ° _;inz; (d) C;’#; (e) %

Ans. (a) 1; (b) —=1/2; (c) 0; (d) —1/45; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 76) to evaluate the integral of each of these functions
around the circle |z| = 3 in the positive sense:

exp(—2z) exp(—z2) 2 ( 1 ) z+1
a ; b ; c) z7expl| - ); d .
(@) = ()(z—1)2 (c) P\ 7 ()zz—Zz
Ans. (a) —2mi; (b) —2mife; (c) wi/3; (d) 2mi.
3. In the example in Sec. 76, two residues were used to evaluate the integral
"4z -5
/ < dz
cz(z—1)
where C is the positively oriented circle |z| = 2. Evaluate this integral once again by
using the theorem in Sec. 77 and finding only one residue.
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4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

2 b) —; ©
@ RN oz

Ans. (a) —2mi; (b) 0; (c) 2mi.

5. Let C denote the circle |z| = 1, taken counterclockwise, and use the following steps to
show that

1

1 [oe]
exp|z+ - | dz =2mi _.
/c p( Z) ;n!(n—l—l)!

(a) By using the Maclaurin series for e and referring to Theorem 1 in Sec. 71, which
justifies the term by term integration that is to be used, write the above integral as

1 1
Z — / Z"exp| — | dz.
n! C Z
n=0
(b) Apply the theorem in Sec. 76 to evaluate the integrals appearing in part (a) to arrive

at the desired result.

6. Suppose that a function f is analytic throughout the finite plane except for a finite number
of singular points z;, z2, .. ., 2,. Show that

Res f(z) + Res f(z) +--- + Res f(z) + Res f(z) = 0.
=71 =22 = =00
7. Let the degrees of the polynomials
P)=ay+az+amz* +---+a, 2" (a, #0)
and
Q@) =bo+biz+b22+ - +bu2" (b #0)

be such that m > n + 2. Use the theorem in Sec. 77 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C, then

P

ﬁ dz =0.

c 0(2)
[Compare with Exercise 4(b).]

78. THE THREE TYPES OF ISOLATED
SINGULAR POINTS

We saw in Sec. 75 that the theory of residues is based on the fact that if f has an
isolated singular point at zo, then f(z) has a Laurent series representation

by . b, n . b,
—2z0 (z—2z20)? (z — zo)"

D) f@=) az—z0)"+ -
n=0 i
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in a punctured disk 0 < |z — zg9| < R». The portion

b n by P b,
z—z0 (z—20)? (z—zo)"

2)

of the series, involving negative powers of z — z, is called the principal part of f at
z0. We now use the principal part to identify the isolated singular point z, as one of
three special types. This classification will aid us in the development of residue theory
that appears in following sections.

There are two extremes, the case in which every coefficient in the principal part
(2) is zero and the case in which an infinite number of them are nonzero.

(a) Removable Singular Points

When every b, is zero, so that

B) @ =) anz—z0)"=ao+az—20) +axz—20)" + -
n=0
(0 < |z =20l < Ry),

Zo 1s known as a removable singular point. Note that the residue at a removable singu-
lar point is always zero. If we define, or possibly redefine, f at 7y so that f(zo) = ao,
expansion (3) becomes valid throughout the entire disk |z —zo| < R;. Since a power se-
ries always represents an analytic function interior to its circle of convergence (Sec. 71),
it follows that f is analytic at 7o when it is assigned the value ag there. The singularity
Zo 18, therefore, removed.

(b) Essential Singular Points

If an infinite number of the coefficients b, in the principal part (2) are nonzero, z; is
said to be an essential singular point of f.

(c) Poles of Order m

If the principal part of f at zo contains at least one nonzero term but the number of
such terms is only finite, then there exists a positive integer m (m > 1) such that

by #0 and by =by=---=0.
That is, expansion (1) takes the form

b n by b b
—z20 (z—2z20)? (z —zo)™
(0 < |z — 20l < Ro),

@ f@ =) aE—0)"+-
n=0
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where b,, # 0. In this case, the isolated singular point z is called a pole of order m.*
A pole of order m = 1 is usually referred to as a simple pole.

In the next section, we shall give examples of these three types of isolated singular
points; and in the remaining sections of the chapter, we shall examine in greater depth
the theory of the three types of isolated singular points just described. The emphasis will
be on useful and efficient methods for identifying poles and finding the corresponding
residues.

The final section (Sec. 84) of the chapter includes three theorems that point out
fundamental differences in the behavior of functions at the three types of isolated
singular points.

79. EXAMPLES

The examples in this section illustrate the three types of isolated singularities described
in Sec. 78.

EXAMPLE 1. The point zo = 0 is a removable singular point of the function

1 —coshz
(1) f(Z)=72
z
because
1 2 8 1 2
f(Z)=Z2[1—<1+2!+4!+6!+"'>}=—2!—4!—6!_“‘

When the value f(0) = —1/2 is assigned, f becomes entire.

EXAMPLE 2. We recall from Example 3 in Sec. 68 that

12 =1 1 1 1 1 1
2 e*= ——=1l4+—=-—4+ =54+ 0 < |z] < 00),
n! z" 1z 2! z2
n=0
and it follows that ¢!/ has an essential singularity at zo = 0, where the residue b is
unity.
This example can be used to illustrate an important result known as Picard’s
theorem. It concerns the behavior of a function near an essential singular point and
states that in each neighborhood of an essential singular point, a function assumes

every finite value, with one possible exception, an infinite number of times."

*The reason for the terminology pole is pointed out on pp. 348-349 of the book (2005) by A. D. Wunsch
as well as on p. 62 of the one (2010) by R. P. Boas, both of which are listed in Appendix 1. Also, the
reason will be touched on in Sec. 84.

fFor a proof of Picard’s theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in
Appendix 1.
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It is easy to see, for instance, that e'/% assumes the value —1 an infinite number
of times in each neighborhood of the origin. More precisely, since e* = —1 when
z=Qn+ Hmi n=0,+1,+£2,...),
(see Sec. 30), it follows that ¢!/ = —1 when
1 i i
I=— - == (n=0,41,42,...),
Cn+ Dmi i @2n+ D

Soif nislarge enough, an infinite number of such points lie in any given € neighborhood
of the origin. Zero is evidently the exceptional value when Picard’s theorem is applied

to e'/% at the origin.
EXAMPLE 3. From the representation
(3) f(z):%:l(l+z+z2+z3+z4+m)
21—z 22
1 1 )
:Z_2+Z+1+Z+Z +-- O<|z]l <),

one can see that f has a pole of order m = 2 at the origin and that

Reos f@=1.
=
From the limit
. 1 . 0
}g%m = }gl(l)[z (1 -] = 0,
it follows that (see Sec. 17)

@) lim £ (2) = oo.

Such a limit always occurs at poles, as will be shown in Sec. 84.

EXAMPLE 4. Finally, we observe that the function

2
“+z—=2 z(z+ D=2 2 2
7) = = =z— =—14+@Z+1)-—
F@ z+1 z+1 z+1 ¢ ) z+1
O <|z4+1] < 00)
has a simple pole at zp = —1. The residue there is —2. Moreover, since
. . z+1 0
lim — = lim —— = — =0,
-1 f(z) >-17247-2 =2
we find that
(5) limlf(z) = 0.
—>—

[Compare with limit (4) in Example 3.]
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In the remaining sections of this chapter, we shall develop in greater depth the
theory of the three types of isolated singular points just illustrated. The emphasis will
be on useful and efficient methods for identifying poles and finding the corresponding
residues.

EXERCISES

1. In each case, write the principal part of the function at its isolated singular point and
determine whether that point is a removable singular point, an essential singular point,
or a pole:

(@) (1) p oM @ 2 g
a) zexp( — |; ; ) —; ; €) S 3
P\Z ®) 1+7 z z 2-2)

2. Show that the singular point of each of the following functions is a pole. Determine the

order m of that pole and the corresponding residue B.

1 —coshz 1 —exp(2z) exp(2z)
— ) ———— c .
z’ 74 (z—1)2
Ans. (@) m=1,B=—-1/2; (b)y m=3,B=—-4/3; (c) m=2,B= 262

3. Suppose that a function f is analytic at zo, and write g(z) = f(z)/(z — z0). Show that

(@)

(@) if f(zo) # 0O, then z is a simple pole of g, with residue f(zo);
(b) if f(z0) =0, then z( is a removable singular point of g.
Suggestion: As pointed out in Sec. 62, there is a Taylor series for f(z) about zg

since f is analytic there. Start each part of this exercise by writing out a few terms of
that series.

4. Write the function

8 3.2
f@) = (Zzi—;p (a > 0)
as -
¢ @) _ 8a’z
J@ = ey e PO =

Point out why ¢ (z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

¢”(ai)/2+ @' (ai) " ¢$ai) i/2 aj2 a’i

7z —ai (z—ai)?  (z—ai)}  z—ai (z—ai)? (z—ai)}

80. RESIDUES AT POLES

When a function f has an isolated singularity at a point zg, the basic method for
identifying zo as a pole and finding the residue there is to write the appropriate Laurent
series and to note the coefficient of 1/(z — zp). The following theorem provides an
alternative characterization of poles and a way of finding residues at poles that is often
more convenient.
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Theorem. Let 7o be an isolated singular point of a function f. The following two
statements are equivalent:
(a) zois apole of orderm (m =1,2,...)of f;
(b) f(2) can be written in the form

¢(2)

(z —zo)™

f) =

where ¢ (z) is analytic and nonzero at z.

Moreover, if statements (a) and (b) are true,
Res f(z) = ¢ (z9) whenm =1
=20

and

(m—1)
Res f(o) = G henm =2.3,....
2=29 (m — 1)!

Observe that these two expressions for residues need not have been written sep-
arately since, with the conventions that ¢@(z9) = ¢(z9) and 0! = 1, the second
expression reduces to the first when m = 1.

To prove the theorem, we first assume that statement () is true. That is, f(z) has
a Laurent series representation

B o o by by . bt b
f@) = ;an(z z0)" + P + (z —20)° + (z—zo)" " (z—zo)"
(b #0),

which is valid in a punctured disk 0 < |z — zp| < R». Now a function ¢ (z) defined by
means of the equations

(z —2z0)" f(z) whenz # zo,
bm when z = 20

$(2) = {
evidently has the power series representation
¢(2) = bn+bp1(z—20) + -+ bz —20)" 7+ bi(z — 200"
+ ian (z —zo)"™"

n=0

throughout the entire disk |z — zo| < R». Consequently, ¢ (z) is analytic in that disk
(Sec. 71) and, in particular, at zo. Inasmuch as ¢(zg) = b,, # 0, the expression for
f(2) in statement (b) follows.
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Suppose, on the other hand, that we know only that f(z) has the form in state-
ment (b) and recall (Sec. 62) that since ¢(z) is analytic at 7o, it has a Taylor series
representation

/ /" (m—1)
¢ (2) = ¢ (z0) + ¢ SO) (z—z0) + ¢ 2(70) (z—z20)* 4+ 9 o) (z —zo)™!
! ! (m —1)!
= ¢ (20) "
+ E: _ (z — z0)

in some neighborhood |z —zp| < € of zg. The quotient in statement () then tells us that

¢ (z0) n ¢’ (z0)/1! 9" (20)/2! n ‘_+¢(’"—1)(Zo)/(m—1)!

f(Z) = (Z _ Zo)m (Z _ Zo)m—l (Z _ ZO)m_2 . Z—20
o (n)
+ Z ¢ n(!ZO) (z—2z0)" ™"

when 0 < |z — zo| < . This Laurent series representation, together with the fact that
¢(zo) # 0, reveals that z is, indeed, a pole of order m of f(z). The coefficient of
1/(z — zo) tells us, of course, that the residue of f(z) at z¢ is as stated in the theorem,
whose proof is now complete.

81. EXAMPLES

The following examples serve to illustrate the use of the theorem in Sec. 80.

EXAMPLE 1. The function

z+4
f@)= o
has an isolated singular point at z = i and can be written
z z+4
f@) = M where  ¢(z) = ——.
=1 z+1

Since ¢ (z) is analytic at z = i and ¢ (i) # 0, that point is a simple pole of f; and the
residue there is

i+4 0 —1+4i 1

B =¢@() = - = - —2i.
1= ==y Ty
The point z = —i is also a simple pole of f, with residue
1
By = - +2i.
2 2—i— 1

EXAMPLE 2. If
2 +2z
(z—10)3

f@) =
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then
9@
)= G i)

The function ¢ (z) is entire, and ¢ (i) = i # 0. Hence f has a pole of order 3 at 7z = i,
with residue

where ¢ (z) = 2+ 2z

¢"(i) 6

B = = —
2! 2!

= 3i.

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

where the branch
logz =Inr +i6 (r>0,0<6<2m)

of the logarithmic function is to be used. To find the residue of f at the singularity
z =1, we write

3
f@ = 9@ where ¢ (z) = (log 2)

z—1i z+i
The function ¢ (z) is clearly analytic at z = i; and, since
. (logi)®  (nl+im/2)3 3
p(i)=—F—= . =—-0
2i 2i 16
f has a simple pole there. The residue is

#0,

3

T
B =)=~

While the theorem in Sec. 80 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.

EXAMPLE 4. If, for instance, the residue of the function

1 —cosz
f@=—75—
J
is needed at the singularity z = 0, it would be incorrect to write

f@

and to attempt an application of the theorem in Sec. 80 with m = 3. For it is necessary
that ¢ (0) # 0 if the theorem is to be used here. In this case, the simplest way to obtain

where ¢(z) =1 —cosz

_ @
_
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the desired residue is to write out a few terms in the Laurent series

1 Z2 Z4 Z6 1 22 Z4 Z6
f(Z)=Z3{1—(1—2!+4-!—6!+-")]=Z3<2!—4!+6!—"')

11z Zz
This shows that f(z) has a simple pole at z = 0, not a pole of order 3, the residue at
z=0being B = 1/2.

EXAMPLE 5. Since z2 sinh z is entire and its zeros are (Sec. 39)
7z =nmi (n=0,=£1,£2,..)),

the point z = 0 is clearly an isolated singularity of the function

f) =

Here it would be a mistake to write

F@ =22 where g = -
z sinh z

and try to use the theorem in Sec. 80 with m = 2. This is because the function ¢ (z)
is not even defined at z = 0. The needed residue, namely B = —1/6, follows at once
from the Laurent series
: L1 PR 0 <lz| <m)

- = - - . = - o < < T

Zsinhz 2 6z 360° <
that was obtained in Exercise 5, Sec.73. The singularity at z = 0 is, of course, a pole
of the third order, not the second order.

7z2sinhz’

EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the order
m of each pole, and find the corresponding residue B.

z+1 42 2\ e
(@) = (b) (o) (m) ; d) 5——

+9’ z—1"7 2+
3414
Ans. (@) m=1,B = 6 ; )ym=1,B=3; (¢) m=3,B=—

_ 16’
i
d m=1,B=+—.
2
2. Show that

@ Res 2 HL (L2000 2m)
a es = z] > 0,0 <argz < 27);
=—1z+1 V2 &

Log z T+ 2i
b) R = ;
) Res 17 = 3

Z1/2 1_1
(c) Res =—— (]z] 0,0 <argz < 2m).

=@+ D? 8Y2
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. Ineach case, find the order m of the pole and the corresponding residue B at the singularity
7=0:

sinhz 1
(a) 4 (b) m-

1 1
Ans. =3,B=—; (b =2,B=——.
ns. (a) m G (b)y m 3

/ 323 +2

—————— dgz,

c z—D(E2+9)

taken counterclockwise around the circle (a) |z — 2| =2 (b) |z| = 4.
Ans. (a) wi; (b) 6mi.

. Find the value of the integral

. Find the value of the integral

/ dz
cP@E+4)’

taken counterclockwise around the circle (a) |z| = 2; (b) |z + 2| = 3.
Ans. (a) mwi/32; (b) 0.

. Evaluate the integral

coshmz
/ ——dz
cz(Z+1
when C is the circle |z| = 2, described in the positive sense.

Ans. 4mi.

. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z| = 3 when

(3z+2)? Bell

D215 (b) f(z)=1+z3-

Ans. (a) 9mi; (b)) 2mi.

. Let zp be an isolated singular point of a function f and suppose that
$(2)

(z—zo)™’

where m is a positive integer and ¢ (z) is analytic and nonzero at zo. By applying
the extended form (3), Sec. 55, of the Cauchy integral formula to the function ¢ (z),
show that

(@) f(z)=

fl@)=

9"V (20)
(m — 1!

Res f(z) = .
=20
as stated in the theorem of Sec. 80.

Suggestion: Since there is a neighborhood |z — zo| < & throughout which ¢ (z) is
analytic (see Sec. 25), the contour used in the extended Cauchy integral formula can be
the positively oriented circle |z — zo| = &/2.
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82. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point zo. We know from Sec. 57 that
all of the derivatives f™(z) (n = 1,2, ...) exist at zo. If f(z9) = 0 and if there is a
positive integer m such that

() f)=f@)=[f"@z)=-=f"D()=0 and f"(z0) #0,

where m is a positive integer, f is said to have a zero of order m at zy. We agree, of
course, that £ (zo0) = f(zo) when m = 1. Our first theorem here provides a useful
alternative definition of zeros of order m.

Theorem 1. Let f denote a function that is analytic at a point zo. The following
two statements are equivalent:

(a) f has a zero of order m at zp;

(b) there is a function g, which is analytic and nonzero at z, such that
f@) = (z—120)"g).

Our proof of this theorem has two parts. First, we need to show that the truth of
statement (a) implies the truth of statement (). Once that is accomplished, we need
to show that if statement () is true, then so is statement (a). Both parts use the fact
(Sec. 62) that if a given function is analytic at a point z¢, then it must have a Taylor
series representation in powers of (z — zo) that is valid throughout some neighborhood
|z — zo| < € of zg.

(a) implies (b)

We start the first part of the proof by assuming that f has a zero of order m at z( and
showing how statement () follows. The analyticity of fat z, and conditions (1) tell us
that in some neighborhood |z — zg| < € there is a Taylor series representation

_ £ (z0) w S (20) mat ST (20) 2
f(Z)——!(Z—Zo) +W(Z—ZO) +W(Z—ZO) + -
_ w [ F™ (o) f T (z0) M2 (z9) 2
= (2 —20) oy + ! (Z—Zo)+W(Z—Zo)+“-.
Consequently, f(z) has the form shown in statement (b), where
™) | " (20) £ (z0) )
g(z) = oy + m+ 1! (Z—Zo)‘f‘m(Z—Zo) + -

(Iz — zol < &).
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The convergence of this last series when |z — zo| < ¢ ensures that g is analytic in that
neighborhood and, in particular, at zg (Sec. 71). Moreover,

(m)
f (ZO);«EO.
m!

This completes the proof of the first part of the theorem.

g(zp) =

(b) implies (a)
Here we assume that the expression for f(z) in part (b) holds; and we note that since

the function g(z) is analytic at zj, it has a Taylor series representation

g iZ!O) (z—z20)+ 2 SO) (z—20)++

in some neighborhood |z — zo| < € of zo. The expression for f(z) in part (b) thus

takes the form
m, 8 o) m "(z0)
f(@) = gzo)(z — z0) +g1'0 (z — 20) +1+g2_'0

when |z — 70| < ¢. Since this is actually a Taylor series expansion for f(z), according
to Theorem 1 in Sec. 72, conditions (1) hold; in particular,

™ (z0) = mlg(zp) # 0.

Hence zj is a zero of order m of f. The proof is now complete.

g(z) = g(z0) +

(Z _ Zo)m+2 4.

EXAMPLE. The polynomial f(z) = z> — 1 hasazeroof orderm = latzy = 1
since

f@) =(@—-1Dg),

where g(z) = z>+z+ 1, and because f and g are entire and g(1) = 3 5 0. Note how
the fact that zp = 1 is a zero of order m = 1 of f also follows from the observations
that

F(1)=0 and f'(1)=3 0.

Our next theorem is a precise statement of the fact that an analytic function f(z)
has only isolated zeros when is not identically equal to zero. This means that if zj is
a zero of such a function f(z), there is a deleted neighborhood 0 < |z — 79| < € of
Zo in which f(z) is nonzero. (Compare with the definition of an isolated singularity in
Sec. 74.)

Theorem 2. Given a function f and a point 7, suppose that
(a) f is analytic at 7o,
(b) f(zo) =0 but f(z) is not identically equal to zero in any neighborhood of z .
Then f(z) # 0 throughout some deleted neighborhood 0 < |z — zo| < € of zo .
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To prove this, let f be as stated and observe that not all of the derivatives of f at zg
are zero. If they were, all of the coefficients in the Taylor series for f about zo would be
zero; and that would mean that f(z) is identically equal to zero in some neighborhood
of zp . Soitis clear from the definition of zeros of order m at the beginning of this section
that f must have a zero of some finite order m at zy. According to Theorem 1, then,

(2) f@)=(@—20)"gk)

where g(z) is analytic and nonzero at z; .

Now g is continuous, in addition to being nonzero, at zo because it is analytic
there. Hence there is some neighborhood |z — zg| < € in which equation (2) holds and
in which g(z) # 0 (see Sec. 18). Consequently, f(z) # 0 in the deleted neighborhood
0 < |z — z0] < &; and the proof is complete.

Our final theorem here concerns functions with zeros that are not all isolated. It
was referred to earlier in Sec. 28 and makes an interesting contrast to Theorem 2 just
above.

Theorem 3. Given a function f and a point 7, suppose that
(a) f is analytic throughout a neighborhood Ny of zg;
(b) f(z) = 0ateach point 7 of a domain D or line segment L containing z, (Fig. 96).

Then f(z) = 0in Ny; that is, f(2) is identically equal to zero throughout Ny.

y
/’——ﬁ‘\\
/// \\
Vi AN
/ = N
/ -~ N \
/ .~ DA \
/ / ! \
| / \
| /
| / |
LL— ) / I
\ N / !
\ N 7 /
\ ~——- 7
\ NO/
0] N 7 X
~_ -
- FIGURE 96

‘We begin the proof with the observation that under the stated conditions, f(z) =0
in some neighborhood N of zg. For, otherwise, there would be a deleted neighborhood
of zo throughout which f(z) # 0, according to Theorem 2; and that would be in-
consistent with the condition that f(z) = 0 everywhere in a domain D or on a line
segment L containing z¢. Since f(z) = 0 in the neighborhood N, then, it follows that
all of the coefficients

_ ™ (z0)

n!

n=0,1,2,..)

n

in the Taylor series for f(z) about zp must be zero. Thus f(z) = 0 in the neighborhood
Ny, since the Taylor series also represents f(z) in Ny. This completes the proof.
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83. ZEROS AND POLES

The following theorem establishes a connection between zeros of order m and poles
of order m.

Theorem 1. Suppose that

(a) two functions p and q are analytic at a point zo;

(b) p(zo) # 0and q has a zero of order m at z .

Then the quotient p(z)/q(z) has a pole of order m at z;.

The proof is easy. Let p and g be as in the statement of the theorem. Since ¢ has
a zero of order m at zg, we know from Theorem 2 in Sec. 82 that there is a deleted
neighborhood of zg throughout which g (z) # 0; and so zg is an isolated singular point
of the quotient p(z)/q(z). Theorem 1 in Sec. 82 tells us, moreover, that

q(z2) = (2 — 20" g(2),
where g(z) is analytic and nonzero at zy. Consequently,

p(2) ¢ (2) p(2)
= h = —.
q(z)  (z—z0)" where  ¢(2) g(2)

Since ¢ (z) is analytic and nonzero at zy, it now follows from the theorem in Sec. 80
that zq is a pole of order m of p(z)/q(z).

(1)

EXAMPLE 1. The two functions
p(z)=1 and ¢(z) =1—cosz

are entire, and we know from Exercise 2 that ¢(z) has a zero of order m = 2 at the
point zp = 0. Hence it follows from Theorem 1 that the quotient

p@ _ 1
q(2) 1 —cosz
has a pole of order m = 2 at that point.

Theorem 1 leads us to another method for identifying simple poles and finding the
corresponding residues. This method, stated just below as Theorem 2, is sometimes
easier to use than the theorem in Sec. 80.

Theorem 2. Let two functions p and q be analytic at a point z . If

p(zo) #0, q(z0) =0, and ¢'(z0) #0,
then zq is a simple pole of the quotient p(z)/q(z) and
p(2)  pzo)

(2) Res —= = .
=20 4q(z) q'(20)
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To show this, we assume that p and ¢ are as stated and observe that because of
the conditions on ¢, the point z is a zero of order m = 1 of that function. According
to Theorem 1 in Sec. 82, then,

3 q(z) = (2 — 20)8(2)

where g(z) is analytic and nonzero at zy. Furthermore, Theorem 1 in this section tells
us that z is a simple pole of p(z)/q(z); and expression (1) for p(z)/q(z) in the proof
of that theorem becomes

P _ @) _r@

q(z) z—20 8(2)
Since this ¢ (z) is analytic and nonzero at zy, we know from the theorem in Sec. 80 that
Res p@) _ p(zo) .
=0 q(z)  g(zo)

But g(z9) = ¢'(z0), as is seen by differentiating each side of equation (3) and then
setting z = zo. Expression (4) thus takes the form (2).

where ¢ (2)

“

EXAMPLE 2. Consider the function
cosz
f@) =cotz = ——,
sinz
which is a quotient of the entire functions p(z) = cos z and ¢(z) = sin z. Its singular-

ities occur at the zeros of ¢, or at the points
z=nm (n=0,=%1,£2,..)).

Since
pm)=(—1)"#0, qnr)=0, and g¢'(nm)=(-1)"#0,

Theorem 2 tells us that each singular point z = nm of f is a simple pole, with residue
_pm) (D"
gy (=1

EXAMPLE 3. The residue of the function
z —sinhz
f@= z2sinhz
at the zero z = i of sinh z (see Sec. 39) is readily found by writing
p(z) =z —sinhz and ¢(z) = z*sinhz.
Because
p(i)=mi #0, q(mi)=0, and g¢'(mi)=n*+#0,
Theorem 2 tells us that z = 7i is a simple pole of f and that the residue there is

_ p(ri) . i i

¢@i) w2 7
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EXAMPLE 4. Since the point
20 = V26T =14

is a zero of the polynomial z* + 4 (see Exercise 6, Sec. 11), it is also an isolated
singularity of the function

L
44
Writing p(z) = z and ¢(z) = z* + 4, we find that

f@) =

P@) =20 #0, q(z0) =0, and ¢'(z0) = 4z #0.
Theorem 2 then reveals that z is a simple pole of f. The residue there is, moreover,

B — pzo)  zo 1 1 i

O_q’(ZO)_4—z8:%=§__§'
Although this residue can also be found by the method in Sec. 80, the computation is
somewhat more involved.

There are expressions similar to expression (2) for residues at poles of higher
order, but they are lengthier and, in general, not practical.

EXERCISES

1. Show that the point z = 0 is a simple pole of the function

1
f(@)=cscz=—
Sin Z

and that the residue there is unity by appealing to Theorem 2 in Sec. 83. (Compare with
Exercise 3, Sec. 73, where this result is evident from a Laurent series.)

2. Use conditions (1) in Sec. 82 to show that the function

q(z) =1—cosz

has a zero of order m = 2 at the point zo = 0.

3. Show that
@ sinh z 4
a es —— = ———;
z=ni/2 72 cosh z 72
exp(zt) exp(zt)
(b) Res — + Res — = —2cos(mt).
z=ni sinhz z=-ni sinhz
4. Show that

T
(@) Res(zsecz) = (—=1)"*!z, where z, = ) +nr (n=0,%x1,£2,...);
Z=Zn

(b) Res(tanhz) = 1 where z,, = (% + nn)i (n=0,=%x1,£2,...).
I=Zn
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5. Let C denote the positively oriented circle |z| = 2 and evaluate the integral

" dz
a tanz dz; b .
@ /c ®) ¢ sinh 2z
Ans. (a) —4mi; (b) —mi.

6. Let Cy denote the positively oriented boundary of the square whose edges lie along

the lines
1 1
x=:i:(N—|—§)rr and y::|:<N+§)n

where N is a positive integer. Show that

/ dz
cy 2sing
Then, using the fact that the value of this integral tends to zero as N tends to infinity
(Exercise 8, Sec. 47), point out how it follows that

o (_1)n+l 7.[2

D 212

n=1

(="
o[22 G

7. Show that

/ dz o
c(@-12+3 22’
where C is the positively oriented boundary of the rectangle whose sides lie along the
linesx =42, y=0,andy = 1.

Suggestion: By observing that the four zeros of the polynomial ¢ (z) = (z> — 1) +3
are the square roots of the numbers 1 + +/3i, show that the reciprocal 1/¢(z) is analytic
inside and on C except at the points

V3+i =3+
and =

0 = —Z0 =
0 NG 0 NG
Then apply Theorem 2 in Sec. 83.

8. Consider the function

1
F&=Lor

where ¢ is analytic at zg, ¢(z0) = 0, and ¢'(z9) # 0. Show that z, is a pole of order
m = 2 of the function f, with residue

q" (z0)
lq'(z)
Suggestion: Note that z¢ is a zero of order m = 1 of the function ¢, so that

q(z) = (z—208(2)

where g(z) is analytic and nonzero at z,. Then write

9@
f@ = (z — z0)?

where ¢ (z) =

1
(g1
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10.

11.

12.

The desired form of the residue By = ¢’(z¢) can be obtained by showing that

q'(z0) = g(z0) and q"(z0) = 2g'(z0).

Use the result in Exercise 7 to find the residue at z = 0 of the function

_ 2. —
(@ f@) =csemz; () f(2) = T r

Ans. (a) 0; (b)) —2.

Let p and g denote functions that are analytic at a point zo, where p(zg) # 0 and
q(z0) = 0. Show that if the quotient p(z)/q(z) has a pole of order m at zp, then zq is a
zero of order m of g. (Compare with Theorem 1 in Sec. 83.)

Suggestion: Note that the theorem in Sec. 80 enables one to write

P _ 9@
q()  (@—z)"
where ¢ (z) is analytic and nonzero at z, . Then solve for ¢ (2).

Recall (Sec. 12) that a point z( is an accumulation point of a set S if each deleted neighbor-
hood of z( contains at least one point of S. One form of the Bolzano—Weierstrass theorem
can be stated as follows: an infinite set of points lying in a closed bounded region R has
at least one accumulation point in R.* Use that theorem and Theorem 2 in Sec. 82 to
show that if a function f is analytic in the region R consisting of all points inside and
on a simple closed contour C, except possibly for poles inside C, and if all the zeros of
f in R are interior to C and are of finite order, then those zeros must be finite in number.

Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano—Weierstrass theorem (see Exercise 11) and the fact that poles are
isolated singular points to show that if f is analytic in the region R except for poles
interior to C, then those poles must be finite in number.

84. BEHAVIOR OF FUNCTIONS NEAR ISOLATED

SINGULAR POINTS

The behavior of a function f near an isolated singular point z, varies, depending on
whether z( is a removable singular point, an essential singular point, or a pole of some
order m. In this section, we describe some of that behavior. Since the results presented
here will not be used elsewhere in the book, the reader who wishes to reach applications
of residue theory more quickly may pass directly to Chap. 7 without disruption.

(a) Removable Singular Points

We start with two theorems about removable singular points.

*See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521, 1983.
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Theorem 1. If 7 is a removable singular point of a function f, then f is bounded
and analytic in some deleted neighborhood 0 < |z — z| < € of zp.

The proof is easy and is based on the fact that the function f here is analytic in a
disk |z — zo| < Ry when f (zo) is properly defined; f is then continuous in any closed
disk |z — zo| < & where ¢ < R;. Consequently, f is bounded in that disk, according
to Theorem 4 in Sec. 18; and this means that, in addition to being analytic, f must be
bounded in the deleted neighborhood 0 < |z — 70| < &.

The next theorem is known as Riemann’s theorem and is closely related to
Theorem 1.

Theorem 2. Suppose that a function f is bounded and analytic in some deleted
neighborhood 0 < |z — z| < € of zo. If f is not analytic at z, then it has a removable
singularity there.

To prove this, we assume that f is not analytic at zy. As a consequence, the point
Zo must be an isolated singularity of f; and f(z) is represented by a Laurent series

(1) f@)= Zan(z —z20)" + Z

throughout the deleted neighborhood 0 < |z — 79| < e. If C denotes a positively
oriented circle |z — zo] = p, where p < ¢ (Fig. 97), we know from Sec. 66 that the
coefficients b, in expansion (1) can be written

1 f@)dz

27i Jeo (z — zo) " T!

(z — Zo)"

2) b, = n=12,...).
Now the boundedness condition on f tells us that there is a positive constant M such
that | f(z)| < M whenever 0 < |z —z9| < €. Hence it follows from expression (2) that

bn| = 5—

_271.,0—;14-12,0—MP (n=12,..).

FIGURE 97
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Since the coefficients b, are constants and since p can be chosen arbitrarily small,
we may conclude that b, = 0 (n = 1, 2, ...) in the Laurent series (1). This tells us
that zo is a removable singularity of f, and the proof of Theorem 2 is complete.

(b) Essential Singular Points

We know from Example 2 in Sec. 79 that the behavior of a function near an essen-
tial singular point can be quite irregular. The next theorem, regarding such behavior,
is related to Picard’s theorem in that earlier example and is usually referred to as
the Casorati-Weierstrass theorem. It states that in each deleted neighborhood of an
essential singular point, a function assumes values arbitrarily close to any given
number.

Theorem 3. Suppose that zq is an essential singularity of a function f, and let
wg be any complex number. Then, for any positive number ¢, the inequality

(3) | f(z) —wg| < ¢

is satisfied at some point z in each deleted neighborhood 0 < |z — zo| < § of 2o
(Fig. 98).

o X o u FIGURE 98

The proof is by contradiction. Since z is an isolated singularity of f, there is
a deleted neighborhood 0 < |z — zo9| < & throughout which f is analytic; and we
assume that condition (3) is not satisfied for any point z there. Thus | f(z) — wg| > ¢
when 0 < |z — z¢| < §; and so the function

“) 8(2) = (0 <lz—z0 <9

1
f(@) —wo
is bounded and analytic in its domain of definition. Hence, according to Theorem 2,
7o is a removable singularity of g; and we let g be defined at z( so that it is analytic
there.

If g(z0) # 0, the function f(z), which can be written

1
) f@=—=+wo
g(2)
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when 0 < |z — z9| < §, becomes analytic at zo when it is defined there as

1
fzo) = 20) -+ wo.

But this means that z( is a removable singularity of f, not an essential one, and we
have a contradiction.

If g(z0) = 0, the function g must have a zero of some finite order m (Sec. 82) at
7o because g(z) is not identically equal to zero in the neighborhood |z — zp| < §. In
view of equation (5), then, f has a pole of order m at zy (see Theorem 1 in Sec. 83).
So, once again, we have a contradiction; and Theorem 3 here is proved.

(c) Poles of Order m
Our next theorem shows how the behavior of functions near poles is fundamentally
different from their behavior near removable and essential singularities.*
Theorem 4. If z, is a pole of a function f, then
(6) lim f(z) = oo.

=20

To verify limit (6), we assume that f has a pole of order m at zo and use the
theorem in Sec. 80. It tells us that

®(2)
()= ——.
f (z — zo)™
where ¢ (z) is analytic and nonzero at z¢. Since
o -z AmE—2" g
lim = lim = - = =0,
=a f(z) = ¢(2) ZILH}O¢ (2) #(z0)

then, limit (6) holds, according to the theorem in Sec. 17 regarding limits involving
the point at infinity.

*As pointed out in the two books referred to in the footnote in Sec. 78, the theorem here tells us that the
modulus | f(z)| increases without bound as z tends to zo and thus suggests the existence of a pole in the
nonmathematical sense.



CHAPTER

7

APPLICATIONS OF RESIDUES

We turn now to some important applications of the theory of residues, which was de-
veloped in Chap. 6. The applications include evaluation of certain types of definite and
improper integrals occurring in real analysis and applied mathematics. Considerable
attention is also given to a method, based on residues, for locating zeros of functions
and to finding inverse Laplace transforms by summing residues.

85. EVALUATION OF IMPROPER INTEGRALS

In calculus, the improper integral of a continuous function f (x) over the semi-infinite
interval 0 < x < oo is defined by means of the equation

o0 R
(1) / f&x)dx = lim / fx)dx.
0 R—o0 0
When the limit on the right exists, the improper integral is said to converge to that

limit. If f(x) is continuous for all x, its improper integral over the infinite interval
—00 < x < oo is defined by writing

o0 0 R2
2) / f(x)dx = lim / f(x)dx + lim / f(x)dx;
—00 Ri—o0 R, Ry—o0 Jq

and when both of the limits here exist, we say that integral (2) converges to their sum.
Another value that is assigned to integral (2) is often useful. Namely, the Cauchy

259
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principal value (P.V.) of integral (2) is the number

oo R
3) PV. / fOodx = lim / f(x)dx,
NS —o00 J_p

provided this single limit exists.
If integral (2) converges, its Cauchy principal value (3) exists; and that value is
the number to which integral (2) converges. This is because

R 0 R

lim/ f(x)dx = lim [/ f(x)dx+/ f(x)dx]

R—o00 J_p R—o00 _R 0

0 R
= lim / f(x)dx + lim / f(x)dx
R—o00 _R R—o00 0
and these last two limits are the same as the limits on the right in equation (2).
Itis not, however, always true that integral (2) converges when its Cauchy principal

value exists, as the following example shows.

EXAMPLE. Observe that

0 R %2 R
4 P.V./ xdx = lim xdx = lim {] = lim 0=0.
NS R—oo J_p R—oo | 2 | _p R0
On the other hand,
o0 0 RZ
5) / xdx = lim xdx-l— lim xdx
0o R;—0o0 Ry—00 /g
27k
R]—>oo |: ] T Rll—gnoo |:?:|O
2 RZ
= — lim —+ lim

Ri—»0o 2 Ry—oo 2

and since these last two limits do not exist, we find that the improper integral (5) fails
to exist.

But suppose that f(x) (—o00 < x < 00) is an even function, one where

f(=x) = f(x) forallx,

and assume that the Cauchy principal value (3) exists. The symmetry of the graph of
y = f(x) with respect to the y axis tells us that

0 1 Ry
Feydr== [ fdx
& 2

and
RQ RZ

fx)dx = E f(x)dx.

0 —R,
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Thus
0 R, 1 Ry
f(x)dx + = f(x)dx.
R 2 )R,
If we let R} and R, tend to co on each side here, the fact that the limits on the right

exist means that the limits on the left do too. In fact,

Ry
Fdr+ [ fode=2+
0 2

_Rl

(6) /oo f(x)dx =PV. /oo f(x)dx.
Moreover, since
R 1 R
/ f(x)dX=f/ fx)dx,

0 2 )R
it is also true that
(7) /oof(x)dx:%[P.V./oof(x)dx}.

0 —00

We now describe a method involving sums of residues, to be illustrated in the
next section, that is often used to evaluate improper integrals of rational functions
f(x) = p(x)/q(x), where p(x) and ¢g(x) are polynomials with real coefficients and
no factors in common. We agree that g (z) has no real zeros but has at least one zero
above the real axis.

The method begins with the identification of all the distinct zeros of the polynomial
q (z) that lie above the real axis. They are, of course, finite in number (see Sec. 58) and
may be labeled zy, 22, - . ., Z4, Where n is less than or equal to the degree of ¢ (z). We
then integrate the quotient

p()
(®) f@)="—+

q(2)
around the positively oriented boundary of the semicircular region shown in Fig. 99.
That simple closed contour consists of the segment of the real axis from z = —R to

Z = R and the top half of the circle |z| = R, described counterclockwise and denoted
by Ckg. It is understood that the positive number R is large enough so that the points
21, 22, - - -, 2y all lie inside the closed path.

FIGURE 99
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The parametric representation z = x (—R < x < R) of the segment of the real
axis just mentioned and Cauchy’s residue theorem in Sec. 76 can be used to write

R n
/ fx)dx +/ f(@)dz =2mi Y Resf(2),
-R Cr =

or
R n
) / f(x)dx =2mi ) Resf(2) —/ f(2)dz.
—R =1 =k CR
If
lim f()dz =0,
R—00 Cr
it then follows that
(10) P.V. /oo fx)dx =2mi Y Resf(2):
—o0 =1 X
and if f(x) is even, equations (6) and (7) tell us that
(11) /OO fx)dx =27miy Resf(z)
—o0 =1t
and
(12) /oo f)dx =miy Resf(2).
0 =1k

86. EXAMPLE

We turn now to an illustration of the method described in Sec. 85 for evaluating
improper integrals. In order to evaluate the integral

/ ©  dx
0 x0+1 ’
we start with the observation that the function

1
0= 5
has isolated singularities at the zeros of 7 4+ 1, which are the sixth roots of —1, and is
analytic everywhere else. The method in Sec. 10 for finding roots of complex numbers
reveals that the sixth roots of —1 are

2%
ck=exp{i<g+6n>} k=0,1,2,...,5),
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and it is clear that none of them lies on the real axis. The first three roots,

co=e€"° ¢, =i, and ¢, = /0,

lie in the upper half plane (Fig. 100) and the other three lie in the lower one. When
R > 1, the points ¢, (k = 0, 1, 2) lie in the interior of the semicircular region bounded
by the segment z = x (—R < x < R) of the real axis and the upper half Cy of the
circle |z] = R from z = R to z = —R. Integrating f (z) counterclockwise around the
boundary of this semicircular region, we see that

R
(1) / f(x)dx+/ f(2)dz =2mi(By + Bi + B),
-R Ck

where B is the residue of f(z) atc; (k =0, 1,2).

-R

FIGURE 100

Theorem 2 in Sec. 83 tells us that the points ¢; are simple poles of f and that

1 1
Bi=Res—— = — -+ =% =% (=012,
z=c 70 + 1 6Ck Ck 6cy 6
Thus
1
(2) Bo+31+32=—g(co+61+cz)~

If we think of the root ¢, = ¢">7/¢ as a point on the unit circle |z| = 1, itis geometrically

evident that ¢, can also be written ¢, = —e~7/%. Also, the definition of sin z in Sec. 37
tells us that

; ; . .
€m0 — ¢TI0 = 2jgin = = .
6
These two observations and equation (2) enable us to write
i

1 . .
Bo+ Bt By= = (/0 i — e/ = —2.

Equation (1) then becomes

R 27
3 / fedr =~ / F)dz,
—R Cr

which is valid for all values of R greater than unity.
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Next, we show that the integral on the right in equation (3) tends to 0 as R tends
to 0o. To do this, we observe that when R > 1,

126+ 11>z =1 = RS —1.

So, if z is any point on Cg,

1 1
=——— <My where Mp=——;
|f (2] 1] = Mr where Mg = e
and this means that
4) f(z)dz| < Mg7R,
Cr
7 R being the length of the semicircle Cg. (See Sec. 47.) Since the number
MexR TR
TR = ——
K RS —1

is a quotient of polynomials in R and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero as R tends to co. More
precisely, if we divide both numerator and denominator by R® and write

it is evident that Mg R tends to zero. Consequently, in view of inequality (4),

lim / f(zx)dz=0.
Cr

R— 00

It now follows from equation (3) that

) R dx 2
lim = —,
R—co J_p x0+1 3
or
/ R dx 2
P.V. —_ = .
—R .X'6 + 1 3
Since the integrand here is even, we know from equation (7) in Sec. 85 that
© dx b4
) [ ==%
0o XxX°+ 1 3
EXERCISES

Use residues to derive the integration formulas in Exercises 1 through 6.

/°° dx T
1. _ = —.
o xZ4+1 2

2/°° dx Ly
Y CEES I
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3. /Oo Jdx
Jo x*+1
" / * xldx

0o x04+1

5 /°° x2dx 7
"o 24+ D24+4) 6

(&)
e

oS

6 / o0 x%dx _n
"o 2+ +4)2 2000
Use residues to find the Cauchy principal values of the integrals in Exercises 7 and 8.

o0 dx
7./ >
oo X2 2x 42

3 /°° xdx
" 2P D2+ 2x+2)
Ans. —1 /5.

9. Use aresidue and the contour shown in Fig. 101, where R > 1, to establish the integration

formula
/°° dx _ 21
o X+1 33
y
Rei27r/3
0 R X
FIGURE 101

10. Let m and n be integers, where 0 < m < n. Follow the steps below to derive the

integration formula
/ 0 xm b4 (2m +1 >
———dx = —csc .
0 X2 41 2n 2n

(a) Show that the zeros of the polynomial z>* + 1 lying above the real axis are

{, 2k + 1)71}
Ccr =expli————
2n

(k=0,1,2,....n—1)

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 83, show that

2m

z [
R — ikt k=0,1,2,...,n—1
z:%f 72n 1 2ne ( " .
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where ¢ are the zeros found in part (a) and

2m + 1
T
2n

o=

Then use the summation formula
n—1
1—z
Yd=—" @#D
— 1-z

(see Exercise 9, Sec. 9) to obtain the expression

n—1 2 P

21 Res .
lzz Ck22n+1 nsino

(c) Use the final result in part (b) to complete the derivation of the integration formula.

11. The integration formula

*© dx
/0 (2 —a)> +1]2 8ﬁ ;[2d* +3)VA +a+aVA—al,

where a is any positive number and A = +/a? + 1, arises in the theory of case-hardening
of steel by means of radio-frequency heating.* Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial
@) = —a) +1

are the square roots of the numbers a & i. Then, using the fact that the numbers

20 = %(\/A—f-a—i—i«/A—a)

and —z( are the square roots of a + i (see Example 3 in Sec. 11), verify that + 7,
are the square roots of a — i and hence that zo and —Z; are the only zeros of ¢(z) in
the upper half plane Imz > 0.

(b) Using the method derived in Exercise 8, Sec. 83, and keeping in mind that z3 = a +i
for purposes of simplification, show that the point zg in part (a) is a pole of order 2
of the function f(z) = 1/[¢(z)]* and that the residue B at 7o can be written

~q"(z0) _a—iQa®+3)
lg' o) 16A%2z

After observing that ¢’(—z) = —¢'(z) and ¢”(—2) = q"(z), use the same method
to show that the point —Zq in part (a) is also a pole of order 2 of the function f(z),

with residue
—
B, = {LZOL} — _E.
lg'(z0)]

*See pp. 359-364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.
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Then obtain the expression

1
B+ B, = SAL Im

—a+iQa*+3)
20

for the sum of these residues.

(c) Refertopart(a)and show that |g(z)| > (R—|zo])*if |z| = R, where R > |zg|. Then,
with the aid of the final result in part (b), complete the derivation of the integration
formula.

87. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the form

(D) /OQ f(x)sinaxdx or /oo f(x)cosaxdx,

where a denotes a positive constant. As in Sec. 85, we assume that f(x) = p(x)/q(x)
where p(x) and g (x) are polynomials with real coefficients and no factors in common.
Also, g (x) has no zeros on the real axis and at least one zero above it. Integrals of
type (1) occur in the theory and application of the Fourier integral.*

The method described in Sec. 85 and used in Sec. 86 cannot be applied directly
here since (see Sec. 39)

sinaz|* = sin® ax + sinh® ay
and
cosaz|* = cos® ax + sinh® ay.

More precisely, since
eay _ efay
2 9
the moduli [sin az| and |cos az| increase like e* as y tends to infinity. The modification
illustrated in the example below is suggested by the fact that

sinhay =

R R R
/ f(x)cosaxdx + i/ f(x)sinax dx = / f(x)e'™ dx,

together with the fact that the modulus

|eiaz| — |eia(x+iy)| — |efayeiax —

is bounded in the upper half plane y > 0.

*See the authors’ Fourier Series and Boundary Value Problems, 8th ed., Chap. 6, 2012.
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EXAMPLE. Let us show that

@ / ©  cos2x J 5w
——dx = —.
0o (xZ+4)2 32¢4
‘We introduce the function
3 )= —
3) 1@ =

and observe that the product f(z)e'** is analytic everywhere on and above the real
axis except at the point z = 2i. This singularity lies in the interior of the semicircular
region whose boundary consists of the segment —R < x < R of the real axis and
the upper half Cy of the circle |z| = R (R > 2) from z = R to z = —R (Fig. 102).
Integration of f(z)e'?* around that oriented boundary yields the equation

R ein ) 0
4) /_Rmdxzan— CRf(z)e “dz

where

B = Res [f(2)e'™].

y
Cr 02i
“R 0 R x
FIGURE 102
Since
¢ (2) el
- "  wh .
J@ = 2o Where 2@ ="

the point z = 2i is evidently a pole of order m = 2 of the product f(z)e'??; and it is

straightforward to show that

B =¢'(2i) = .
¥ @ 32¢4i
By equating the real parts on each side of equation (4), then, we find that
R cos2x 5t ,
5 dx = -R % dz.
5) | s ke[ @ a:

Finally, we observe that when z is a point on Cg,
1

|f(z)| < Mgr where Mg = m
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and that |e'?| = ¢? < 1 for such a point. Consequently, in view of the property
|[Re z| < |z| of complex numbers,

Re f(2)e* dz
Cr

(6)

=

< MrmR.

/ f(2)e* dz
Cr

Since the quantity

R3

tends to 0 as R tends to oo and because of inequalities (6), we need only let R tend to
infinity in equation (5) to arrive at the equation

PV /°° cos 2x J 5w
V. X = ,
oo (X2 4)2 164

which is just another form of equation (2) since the integrand is even.

7R
(R? —4)?

|
Mg 7R = 'RT4
R*

88. JORDAN’S LEMMA

In the evaluation of integrals of the type treated in Sec. 87, it is sometimes necessary
to use Jordan’s lemma,* which is stated just below as a theorem.

Theorem. Suppose that

(a) a function f(z) is analytic at all points in the upper half plane y > 0 that are
exterior to a circle |z| = Ry;

(b) Cg denotes a semicircle 7 = Re'’(0 < 0 < 1), where R > Ry (Fig. 103);

(c) for all points z on Cg, there is a positive constant Mg such that

|f(2) < Mgp and 1lim Mp =0.
R—o0

Cr

1N

0 R, R

FIGURE 103

*See the first footnote in Sec. 43.
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Then, for every positive constant a,

lim f(z)e'“dz = 0.

R—o0 Cr

The proof is based on Jordan’s inequality:

T ; T
(D) / e Rl g9 < — (R > 0).
0 R
To verify inequality (1), we first note from the graphs (Fig. 104) of the functions
. 26
y=sinf and y=—
T
that
26
sinf >~ when 0<6<_.
b4 2
Consequently, since R > 0,
e Rsint < p2RO/T when 0<6 < %;
and so
/2 ) /2 T
/ e Rsint gp < / e R gp = (1 —e® (R >0).
0 0 2R
Hence
/2 ) T
() / e Rl gg < — (R >0).
0 2R

But this is just another form of inequality (1), since the graph of y = sin # is symmetric
with respect to the vertical line & = 7/2 on the interval 0 < 6 < 7.

FIGURE 104

Turning now to the proof of the theorem and keeping in mind statements (a)—(b)
of its hypothesis, we write

f(z)e"“dz=/ f(Re'yexp(iaRe)Rie db.
Cr 0
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Since
|f(Re')| < Mg and |exp(iaRe'?)| < e *Rsin®
and in view of Jordan’s inequality (1), it follows that

MRN
PR

f()e'“dz
Cr

o
< MRR / efaR sin 6 do <
0
The final limit in the theorem is now evident since Mp — 0 as R — o0.

EXAMPLE. Let us evaluate the improper integral

% x sin2x
3 —dx.
©) /o x2+3 *

271

As usual, the existence of the integral will be established by actually finding its value.
We continue to use a closed semicircular path (Fig. 105) similar to the one in Sec. 87.

y
Cr *3i
R 0 R x

FIGURE 105

We write
Z Z
fl@) = =
243 (z—+/3)(z +/30)

and assume that R > +/3 in Fig. 105. This ensures that the singularity z = +/3i is

interior to the closed path. It is, moreover, a simple pole of the function

¢ (2) zexp(i2z)
_ h =
z— \/gl where  $(2) zZ+ «/gl ’

since ¢ (z) is analytic at z = V/3i and

f()e® =

d(V3i) = % exp(—2+/3) # 0.

The only other singularity 7 = —/3i is, of course, outside of the path.
The residue at z = +/3i is

B=¢(3i)= %exp(—Z\/g).

According to Cauchy’s residue theorem, then,

R xei2x '
(4) / ———dx=inm exp(—2ﬁ) _ f(Z)eIZZ dZ,

R.x2+3 Cg
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where Cp is the closed semicircular path shown in Fig. 105. By equating imaginary
parts on each side of equation (4), we arrive at

R : 2 .
(5) / T x = mexp(—2v3) —Im | f(0)e dz,
—R x2 + 3 Cr

Now the property |Imz| < |z| of complex numbers tells us that

El

(6) ’Im f(2)e* dz
Cr

< ‘ / F)e™ dz
Cr

and we note that when z is a point on Cg,

R
R>-3

|f(z)] < Mg where Mg =

and that |¢/??| = ¢~ < 1 for such a point.
By proceeding as we did in Sec. 87, we cannot conclude that the right-hand side
of inequality (6) tends to 0 as R tends to oco. This is because the quantity

7 R? I
R2 -3 3
1 - —
R2

MRTL'R =

does not tend to zero.
The theorem at the beginning of this section does, however, provide the desired
limit:

lim f()e*¥dz = 0.

R—o0 Cr

This is because

So it does, indeed, follow from inequality (6) that the left-hand side there tends to
zero as R tends to infinity. Consequently, since the integrand on the left in equation (5)
is even, we arrive at the result

° x sin2x
[m 213 dx =m exp(—2\/§),

or

® x sin 2x T
dx = — —24/3).
/0 213 X 2exp( V3)
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EXERCISES

Use residues to derive the integration formulas in Exercises 1 through 5.

1 /°° cosx dx T e? e ( b= 0)
. = —_— = a>b=>0).
oo (X2 aP)(x2+bY)  ar—b*\ b a

o0
2. / cos ax dx = ze_” (a > 0).
0 x2+1 2

"0 cos ax b
3. A m dx = 4b3 (1 +ab)e “ (a > 0, b > 0)

o
4. / rsmax dx = zefa sina (a > 0).
o X444 2

x3sinax _
5/ dx =me “cosa (a > 0).
) x4+4

Use residues to evaluate the integrals in Exercises 6 and 7.

6 /°° xsinxdx
T oo (2 D24 4)

/ ©  x3sinxdx

7. —_— .

o T+ 1DHE*+9)

Use residues to find the Cauchy principal values of the improper integrals in Exercises 8
through 11.

/°° sinx dx
8. _
Jooo X2 4+4x+5

T
Ans. ——sin 2.
e

xsinx dx
/.
o X2+ 2x +2
Ans. —(sinl + cos 1).

© (x +1)cosx
10. dx.
/oo x2+4x+5

Ans. — (sin 2 —cos?2).
e

o0 cosx dx
11. — (b >0).
/ﬁ,o(x+a)2+b2 =0

12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac-

tion theory:
el o0 1
/ cos(x?) dx = / sin(x?) dx = —1/ z
0 Jo 2V 2
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(a) By integrating the function exp(iz?) around the positively oriented boundary of the
sector 0 < r < R,0 <60 < m/4 (Fig. 106) and appealing to the Cauchy—Goursat
theorem, show that

R 1 R 2
cos(x?) dx = —/ e " dr — Re/ e'v dz
/0 \/E 0 Cr

and

/R in(x2) d ! /R dr—Im [ ¥ d
SIm(x X = —F= e r — e Z,
0 V2 Jo Cr

where Cy is the arc z = Re' (0 < 0 < 7/4).

y
Re! /4
Cr
0 R x
FIGURE 106

(b) Show that the value of the integral along the arc Cy in part (a) tends to zero as R
tends to infinity by obtaining the inequality

/ e dz| < E /”/2 e’RzSi“"’d(ﬁ
Cr ~ 2 Jo

and then referring to the form (2), Sec. 88, of Jordan’s inequality.
(c) Use the results in parts (a) and (b), together with the known integration formula*

/oceixzdxzﬁ
0 27

to complete the exercise.

89. AN INDENTED PATH

In this and the following section we illustrate the use of indented paths. We begin with
an important limit that will be used in this section.

Theorem. Suppose that

(a) afunction f(z) has a simple pole at a point 7 = x on the real axis, with a Laurent
series representation in a punctured disk 0 < |z — xo| < R, (Fig. 107) and with
residue By;

*See the footnote with Exercise 4, Sec. 53.
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(b) C, denotes the upper half of a circle |z—xo| = p, where p < R, and the clockwise
direction is taken.

Then

1im/ f(z)dz = —Bymi.
p—0 c,

FIGURE 107

Assuming that the conditions in parts (a) and (b) are satisfied, we start the proof
of the theorem by writing the Laurent series in part (a) as

By
f@=g@)+—— O <l|z—x| <Ro)
Z— X0

where
8@) =Y anz—x0)" (Iz— x| < Ry).
n=0
Thus
dz
(1) / f(z)dz=/ g(z)dz+Bo/ .
C, C, c, T—Xo

Now the function g(z) is continuous when |z —xy| < R», according to the theorem
in Sec. 70. Hence if we choose a number pg such that p < py < R, (see Fig. 107), it
must be bounded on the closed disk |z — xo| < py, according to Sec. 18. That is, there
is a nonnegative constant M such that

lg(z)| < M whenever |z — xo| < po;

and since the length L of the path C, is L = mp, it follows that

/ 8(2) dz
Cﬂ
Consequently,

(2) lim / g(z)dz =0.
p—0 C,

<ML = Mnmnp.




276 APPLICATIONS OF RESIDUES CHAP. 7

Inasmuch as the semicircle —C, has parametric representation
z=x0+pe’  (0<0<m),

the second integral on the right in equation (1) has the value

d d T ; "
/ 2 =—/ < =—/ 7 pie’edé’:—i/ do = —im.
c, T—Xo —-c, T—Xo 0o pe 0

Thus

d
3) lim t _ _inm

p—0 C, Z — X0
The limit in the conclusion of the theorem now follows by letting p tend to zero
on each side of equation (1) and referring to limits (2) and (3).

EXAMPLE. We shall evaluate here Dirichlet’s integral*

4) /00 sin x dx =2
0 X 2

by integrating e'*/z around the simple closed contour shown in Fig. 108. In that figure,
p and R denote positive real numbers, where p < R; and L; and L, represent the
intervals p < x < Rand —R < x < —p,respectively, on the real axis. The semicircles
C, and Cy are as shown in the figure. The semicircle C,, is introduced here in order
to avoid passing through the singularity of the quotient ¢'*/z.

Y

o
L,

-R Y /4 R *  FIGURE 108

The Cauchy—Goursat theorem tells us that

eiz eiz eiz eiz
/—dz—l—/ —dz+/ —a’z+/ —dz =0,
L, < Ccr < L, < C, Z
or

eiz eiz eiz eiz
(5) /—dz+/ —dz=—/ dz—/ dz.
L, % L, % C, Z Cr <

*This integral is important in applied mathematics and, in particular, the theory of Fourier integrals.
See the authors’ Fourier Series and Boundary Value Problems, 8th ed., pp. 163-165, 2012, where it is
evaluated in a completely different way.
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Moreover, since the legs L; and — L, have parametric representations
(©6) z=ré’=r(p<r<R) and z=re" =—r(p<r <R),

respectively, the left-hand side of equation (5) can be written

eiz eiz R eir R e—ir R eir _ e—ir
/—dz—/ —dz:/ —dr—/ dr:/ —dr
Ly % -L, % p T o r r
Relr ¢ ” smr
— 2 / /
p C2ir p

Consequently, equation (5) reduces to

R & iz iz
(7) Zi/ 2= e—dz—/ £ dz.
P r c, 2 cg <
Now, from the Laurent series representation
e’ (iz)  (2)* (2’ i
. 1+~ — _ _
z z[+1'+ 21 3 +1v+2'z+3!z+

(0 < fz] < 00),

it is clear that e*/z has a simple pole at the origin, with residue unity. So, according
to the theorem at the beginning of this section,

iz

lim — dz = —mi.
=0 Jc, 2
Also, since
1 1 1
2l 1=l TR

when z is a point on Cg, we know from Jordan’s lemma in Sec. 88 that

eiz
lim —dz =0.
R—o0 cr 2

Thus, by letting p tend to 0 in equation (7) and then letting R tend to co, we arrive at

the result
. [ sinr )
2i dr = i,
0 r

which is, in fact, the same as equation (4).

90. AN INDENTATION AROUND A BRANCH POINT

An indented path such as the one used in Sec. 89 can often be used to avoid a branch
point (Sec. 33), as well as an isolated singularity.
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EXAMPLE. Let us derive the integration formula

o x¢ B (1 —a)m B
M /0 2P T Teos@npy T Eesd

where a is a real number with the indicated restriction and x* = exp(a Inx) when
x > 0. To do this, we shall use the function

B z? __exp(alogz) 3r
&= G = @ty (' 1> 0= <arg2<2)

whose branch cut is the origin and the negative imaginary axis. The path of integration
is shown in Fig. 109, where p < 1 < R and the branch cut is indicated with a hollow
dot and dashes.

FIGURE 109
Starting with Cauchy’s residue theorem, we write
) f()dz +/ f(2)dz =2miResf(z) — / f(@dz — / f()dz.
L L, =i c, Cr

If we use the parametric equations
z=re®=r(p<r<R) and z=re" =—r(p<r<R)

for L; and —L,, respectively, we can write the left-hand side of equation (2) as

_ [®expla(nr +i0)] Rexpla(Inr +im)]
/Llf(z)dz—/sz(z)dZ—/p Wdr—}—/p 2117 dr

R a R a
= / LA + ei“”/ S
p (r2+1)2 p (rz + 1)2

Thus

3) L]f(z)dz+ f(z)dz—(1+€’“)/ = l)zd
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Also,

s _
“4) 1§=el,8f(z)=¢(l) where ¢ (z) = Grip

since there is a pole of order m = 2 at the point z = i. Straightforward differentiation
reveals that

() — pla—Dlogz W}
$@) =e [ 2
and, therefore,
1—
(5) Resf(z) ol a2 (Ta) .

Upon substituting expressions (3) and (5) into equation (2), we have

iam K re _ﬂ(l_a) iam/2 .
©6) (1+e )/p (r2+1)2dr_ 5 e —/Cpf(z)dz—/CRf(z)dz,

and once we have shown that
(7 lim/ f()dz=0 and lim/ f(z)dz =0,
p—0 c, p—0 c,

the desired integration formula (1), with a different variable of integration, follows
from equation (6):

o a _nl-a) eler/2 gmian/2
/0 (7 +1)2 2 leer eienn
= 4 elam/2 4 e=ian/2 " 4cos(am/2)’

The limits (7) are found by first observing that |z¢| = r¢ when z = re'? is any

point on the closed contour in Fig. 109. Also,

2+ 1 = 2 =1 =1 p
when z is a point on C,; and

[+ 1=z =1 =R*—1

when z is on Cg. So the first of limits (7) is obtained by writing

a a a+1
/ 2Z »dz| = pzzﬂp: - 22
c, (Z*+ 1) (1—p) (1 —p%)
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and noting that p**! — 0 as p — Osince a + 1 > 0. As for the second of limits (7),

1 1
Zu R¢ _ ]TRa+l . ﬁ _ T R3_a .
3 dz| < TR = S =7
o @+ T @ e T wen L 1
Roo\I" g

and we see that 1/R3>™* — 0 as R — oo since 3 —a > 0.

91. INTEGRATION ALONG A BRANCH CUT

Cauchy’s residue theorem can be useful in evaluating improper integrals from real
analysis when part of the path of integration of the function f(z) to which the theorem
is applied lies along a branch cut of that function.

EXAMPLE. Let x~“, where x > 0 and 0 < a < 1, denote the principal value
of the indicated power of x; that is, x ™ is the positive real number exp(—a Inx). We
shall evaluate here the improper real integral

(1) /0 xx~|— ] dx 0<a<l)),

which is important in the study of the gamma function.” Note that integral (1) is
improper not only because of its upper limit of integration but also because its integrand
has an infinite discontinuity at x = 0. The integral converges when 0 < a < 1 since
the integrand behaves like x ~ near x = 0 and like x ™! as x tends to infinity. We
do not, however, need to establish convergence separately; for that will be contained
in our evaluation of the integral.

We begin by letting C, and Cg denote the circles |z] = p and |z| = R, respectively,
where p < 1 < R; and we assign them the orientations shown in Fig. 110. We then
integrate the branch

—a

Z
z+1
of the multiple-valued function z7¢/(z 4 1), with branch cut argz = 0, around the
simple closed contour indicated in Fig. 110. That contour is traced out by a point
moving from p to R along the top of the branch cut for f(z), next around Cg and back
to R, then along the bottom of the cut to p, and finally around C, back to p.
Now 6 = 0 and 6 = 27 along the upper and lower “edges,” respectively, of the
cut annulus that is formed. Since
exp(—alogz) exp[—a(lnr +i6)]
f@= = =
z+1 re'? 41

2 f2) =

(Jz] > 0,0 < argz < 2m)

*See, for example, p. 4 of the book by Lebedev cited in Appendix 1.
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FIGURE 110

where z = re'?, it follows that

_expl—a(lnr +i0)] r ¢

r+1 T r+1

f(@

on the upper edge, where z = re'®, and that

exp[—a(Inr +i27)]  r~“e "
r+1 T+l

f@)=

on the lower edge, where z = re’?”. The residue theorem thus suggests that

R rfa R rfaefiZan
3 d dz — —d d
3) /,, T T /,, - r+/cpf(z) :

= 27'[1'Res1 f(2).
—

Our derivation of equation (3) is, of course, only formal since f(z) is not analytic,
or even defined, on the branch cut involved. It is, nevertheless, valid and can be fully
justified by an argument such as the one in Exercise 6 of this section.

The residue in equation (3) can be found by noting that the function

¢(z) =77 =exp(—alogz) =exp[—a(lnr +i0)] r>00<6<2m)
is analytic at z = —1 and that
d(—1) =exp[—a(nl +im)] = e 9" £0.
This shows that the point z = —1 is a simple pole of the function (2) and that
zlieisl f(2) = eiam,

Equation (3) can, therefore, be written as

R —a
@ [ —e*ﬂ“”)/ L dr =2mie " —/ f(@ dz—/ f(2) dz.
o T +1 G Cr



282 APPLICATIONS OF RESIDUES CHAP. 7

According to definition (2) of f(z),

/ f@dz| < P mp= Pyt
c, l—p l—p
and
f()dz] < R 2R = 2R L
Ca ~R-1 R—1 R¢

Since 0 < a < 1, the values of these two integrals evidently tend to 0 as p and R
tend to 0 and oo, respectively. Hence, if we let p tend to 0 and then R tend to oo in
equation (4), we arrive at the result

. o pa .
(1- e_’z‘”’)/ dr = 2mie ",
o I+ 1
or

0 —a ) e—ian eian 2i
dr =21i——— —— =m
0

r+1 1 — e—i2am  pian elan _ p—iam’

Using the variable of integration x here, instead of r, as well as the expression

eian _ e*iarr
sinamw = e ——
2i
we arrive at the desired result:
o x¢ T
(®)] / dx = — O<a<l).
o x+1 sinasw

EXERCISES

1. Use the function f(z) = (¢’* — ¢/¥%)/z? and the indented contour in Fig. 108 (Sec. 89)
to derive the integration formula

/‘°° cos(ax) — cos(bx) J

T
; 2 x:z(b—a) (a=0,b=>0).

Then, with the aid of the trigonometric identity 1 — cos(2x) = 2sin® x, point out how it

follows that
00 @i
/ sin” x dx — z .
0 x2 2

2. Derive the integration formula
/°° dx o
0 Jr(x2+1) T V2

by integrating the function

Z71/2 6(71/2)10gz T 37
f@= |Z|>0,—§<arg2<*

21 241 2
over the indented contour appearing in Fig. 109 (Sec. 90).
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3. Derive the integration formula obtained in Exercise 2 by integrating the branch
12 o(—1/2)10gz
241 2241
of the multiple-valued function z7'/2/(z% + 1) over the closed contour in Fig. 110
(Sec. 91).

4. Derive the integration formula

[ N e

f@)=

(lz] > 0,0 < argz < 27)

Croein T B a=p @700

using the function
Z1/3 e(l/S)logz
Z+a)z+b)  (z+a)z+Db)

and a closed contour similar to the one in Fig. 110 (Sec. 91), but where

fl@)= (lz] > 0,0 < argz < 27)
p<b<a<R.

5. The beta function is this function of two real variables:

1
B(p.q) =/ A =0 A (p> 0. > 0),
0

Make the substitution = 1/(x + 1) and use the result obtained in the example in Sec. 91
to show that

B(p,l—p):# O<p<l).
sin (prr)

6. Consider the two simple closed contours shown in Fig. 111 and obtained by dividing
into two pieces the annulus formed by the circles C, and Cg in Fig. 110 (Sec. 91). The
legs L and —L of those contours are directed line segments along any ray argz = 6,
where m < 0y < 37 /2. Also, I, and y, are the indicated portions of C,, while I'z and
yg make up Cg.

o ——————

|
|
: YR
|
| FIGURE 111

(a) Show how it follows from Cauchy’s residue theorem that when the branch

7z~ b4 3
fl(Z):Z+1 <|z|>0,—5<argz<7)
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of the multiple-valued function z7/(z + 1) is integrated around the closed contour
on the left in Fig. 111,

R ra . .
| s [ n@ds [ n@dz [ fi@dz=miRe @)

(b) Apply the Cauchy—Goursat theorem to the branch

Z—ll T 57_[
I <|z| - 0.7 <argz < 7)
of z7%/(z+ 1), integrated around the closed contour on the right in Fig. 111, to show

that

R rfaefisz
—/ ——dr+ | f2(z)dz— / H@dz+ | fr(z)dz=0.
o r+1 Yo L YR
(c) Point out why, in the last lines in parts (a) and (b), the branches f;(z) and f>(z) of
77%/(z + 1) can be replaced by the branch

Z—a
f@ = z+1

Then, by adding corresponding sides of those two lines, derive equation (3), Sec. 91,
which was obtained only formally there.

(Jz] > 0,0 < argz < 2m).

92. DEFINITE INTEGRALS INVOLVING
SINES AND COSINES

The method of residues is also useful in evaluating certain definite integrals of the type

2
(1) / F(sin0, cos6) d6.
0

The fact that 6 varies from O to 27 leads us to consider 6 as an argument of a point z
on a positively oriented circle C centered at the origin. Taking the radius to be unity,
we use the parametric representation

2) z=e%  (0<6<2m)

to describe C (Fig. 112). We then refer to the differentation formula (4), Sec. 41, to
write

% =i’ =iz
o
and recall (Sec. 37) that
ol0 _ o—if el 4 e—if
sinf = —— and cosf) = ——
2i
These relations suggest that we make the substitutions
| —1 d
3) sin@:Z < cosG=Z+Z d@:—z,

2i 2 7 iz
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Z=el

FIGURE 112

which transform integral (1) into the contour integral

@ /F z—z7' z4z7! @
¢ 2i 2 iz

of a function of z around the circle C. The original integral (1) is, of course, simply
a parametric form of integral (4), in accordance with expression (2), Sec. 44. When
the integrand in integral (4) reduces to a rational function of z, we can evaluate that
integral by means of Cauchy’s residue theorem once the zeros in the denominator have
been located and provided that none lie on C.

EXAMPLE 1. Let us show that

) /ZH (=1 1)
= <a< .
0 1+ asin® V1 —a2

This integration formula is clearly valid when a = 0, and we exclude that case in our
derivation. With substitutions (3), the integral takes the form

2/a
© /c 21 @ija 1%

where C is the positively oriented circle |z| = 1. The quadratic formula reveals that
the denominator of the integrand here has the pure imaginary zeros

) =<_1+m>_ ) =<_1_m>,

i i
a a
So if f(z) denotes the integrand in integral (6), then

2/a
(z—z)(z—22)

fl@) =
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Note that because |a| < 1,

1++/1—a?
|Z2|=T> 1.

Also, since |z;z2| = 1, it follows that |z;| < 1. Hence there are no singular points on
C, and the only one interior to it is the point z;. The corresponding residue B is found
by writing

z 2/a
f2) = 9@ where ¢ (z) = / .
=21 1—22
This shows that z; is a simple pole and that
B = ¢(2)) 2/a 1
= Z = = .
: : 21— 22 i1 —a?
Consequently,
2/a : 2
/ ——————dz=27iB = ———;
c 22+ Qija)z -1 1 — a2

and integration formula (5) follows.

The method just illustrated applies equally well when the arguments of the sine
and cosine are integral multiples of 6. One can use equation (2) to write, for example,

ei29 +e—i29 _ (eiG)Z + (eiO)—Z _ Z2 +Z_2

7 20 =
(7) cos 5 5 5

EXAMPLE 2. Our goal here is to show that

/” cos 20d6 a*r -1 D
= —l<a< .
o 1—2acos@ +a?> 1—a?

Just as we did in Example 1, we exclude the possibility that a = 0, in which case
equation (8) is obviously true. We begin with the observation that because

cos(2mr —0) =cosf® and cos2(2wr — ) = cos?20,

®)

the graph of the integrand is symmetric with respect to the vertical line & = . This
observation, together with equations (3) and (7), enables us to write

/” cos 20 df _1/277 cos 20 df _i/ 1 i
o 1—2acos@+a%> 2Jy 1—2acos®+a? 4)c(z—a)az—1Dz2
where C is the positively oriented circle in Fig. 112. Evidently, then,
©) | e = Lo + ),
o 1 —2acos® +a> 4

where B; and B, denote the residues of the function

41
(z —a)(az — 1z?

f@)=
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at a and 0, respectively. The singularity z = 1/a is, of course, exterior to the circle C
since |a| < 1.
Inasmuch as

_ %0 s
f(Z) = Z—_a where ¢(Z) = m,
it is easy to see that
a*+1
(10 By =¢(a) = m-

The residue B, can be found by writing

¢(2) Z+1
7) = ——~ where )=
f&="3 PO = @
and straightforward differentiation reveals that
, a’>+1
Y By =¢0) = —7—.

Finally, by substituting the residues (10) and (11) into expression (9), we arrive
at the integration formula (8).

EXERCISES

Use residues to establish the following integration formulas:

L /2” o 2m
“Jo 544sin0 3

” do
—x 1 4sin” 0

3 /2” cos2 360 do _3n
“Jo S—4cos20 8
4 /2” do 2 -1 0
. = —1l<a<l).
o l+acosb V1 —a?
5 /” do am ( 1
. = a>1).
o (a+cos6)? ( a2—1)3
T
.5 _ 2n)! _
6. /0 sin”"0 d@—mﬂ (n—1,2,)

93. ARGUMENT PRINCIPLE

A function f is said to be meromorphic in a domain D if it is analytic throughout
D except for poles. Suppose now that f is meromorphic in the domain interior to a
positively oriented simple closed contour C and that it is analytic and nonzero on C.
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The image I" of C under the transformation w = f(z) is a closed contour, not necessar-
ily simple, in the w plane (Fig. 113). As a point z traverses C in the positive direction,
its image w traverses I" in a particular direction that determines the orientation of I".
Note that since f has no zeros on C, the contour I does not pass through the origin in
the w plane.

20

u X J u

Let wo and w be points on I', where wy is fixed and ¢y is a value of arg wy. Then
let arg w vary continuously, starting with the value ¢y, as the point w begins at the point
wo and traverses I" once in the direction of orientation assigned to it by the mapping
w = f(z). When w returns to the point wg, where it started, arg w assumes a particular
value of arg wy, which we denote by ¢,. Thus the change in arg w as w describes I
once in its direction of orientation is ¢; — ¢o. This change is, of course, independent
of the point wy that is chosen to determine it. Since w = f(z), the number ¢; — ¢y is,
in fact, the change in argument of f(z) as z describes C once in the positive direction,
starting with a point zo; and we write

Acarg f(z) = ¢1 — Po.

The value of A¢ arg f(z) is evidently an integral multiple of 277, and the integer

FIGURE 113

1
Z—AC arg f(z)
T

represents the number of times the point w winds around the origin in the w plane. For
that reason, this integer is sometimes called the winding number of " with respect to
the origin w = 0. It is positive if I' winds around the origin in the counterclockwise
direction and negative if it winds clockwise around that point. The winding number
is always zero when I" does not enclose the origin. The verification of this fact for a
special case is left to the reader (Exercise 3, Sec. 94).

The winding number can be determined from the number of zeros and poles of
f interior to C. The number of poles is necessarily finite, according to Exercise 12,
Sec. 83. Likewise, with the understanding that f(z) is not identically equal to zero
everywhere else inside C, it is easily shown (Exercise 4, Sec. 94) that the zeros of f
are finite in number and are all of finite order. Suppose now that f has Z zeros and P
poles in the domain interior to C. We agree that f has m zeros at a point z if it has a
zero of order my there; and if f has a pole of order m , at z, that pole is to be counted
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m, times. The following theorem, which is known as the argument principle, states
that the winding number is simply the difference Z — P.

Theorem. Let C denote a positively oriented simple closed contour, and suppose
that

(a) afunction f(z) is meromorphic in the domain interior to C;
(b) f(2) is analytic and nonzero on C;

(¢) counting multiplicities, Z is the number of zeros and P the number of poles of f(z)
inside C.

Then

1
—Acarg f(z) =Z — P.
2

To prove this, we evaluate the integral of f'(z)/f(z) around C in two different
ways. First, we let z = z(t) (@ < t < b) be a parametric representation for C,
so that

’ b g1 /
1) f@ [ IEOEO
c [ a Jlz@]
Since, under the transformation w = f(z), the image I' of C never passes through
the origin in the w plane, the image of any point z = z(#) on C can be expressed in
exponential form as w = p(¢) expli¢ (¢)]. Thus

2) flzO1 = p1)e® (@ <t <b);

and, along each of the smooth arcs making up the contour I', it follows that (see
Exercise 5, Sec. 43)

d d . . .
3 [z @) = 501 = E[p(r)e’q"’)] =p' 1)V +ip(1)e'? D¢/ (1).

Inasmuch as p’(¢) and ¢’ () are piecewise continuous on the interval a < ¢t < b, we
can now use expressions (2) and (3) to write integral (1) as follows:

@ ("o [, B b b
e dz—/a 0 dt—i-z/a &' (1) di _ln,o(t)L—l-uj)(t)L.
But
p(b) =p(a) and ¢(b) — ¢p(a) = Acarg f(2).
Hence
“4) NG dz =iAcarg f(2).

c f(@

Another way to evaluate integral (4) is to use Cauchy’s residue theorem. To be
specific, we observe that the integrand f'(z)/f (z) is analytic inside and on C except
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at the points inside C at which the zeros and poles of f occur. If f has a zero of order
my at zo, then (Sec. 82)

) f(@) =(z—2z20)"¢g),

where g(z) is analytic and nonzero at zo. Hence

f(z0) = mo(z — 20)™ 'g(2) + (z — 20)™ ¢ (2),

or

(6)

f'@  mo n g' (@)
f@  z—z2 gk
Since g'(z)/g(z) is analytic at z, it has a Taylor series representation about that point;
and so equation (6) tells us that f'(z)/f (z) has a simple pole at zo, with residue my.

If, on the other hand, f has a pole of order m, at zo, we know from the theorem in
Sec. 80 that

(7 f@) =(@—20""¢(),

where ¢ (z) is analytic and nonzero at zo. Because expression (7) has the same form
as expression (5), with the positive integer m in equation (5) replaced by —m ,, it is
clear from equation (6) that f'(z)/f(z) has a simple pole at z, with residue —mz,,.
Applying the residue theorem, then, we find that

f'(@)
c f@)

The conclusion in the theorem now follows by equating the right-hand sides of
equations (4) and (8).

) dz =2mwi(Z — P).

EXAMPLE. The only zeros of the function

242 2

=7+
z

f@) =

are exterior to the circle |z] = 1, since they are the cube roots of —2; and the only
singularity in the finite plane is a simple pole at the origin. Hence, if C denotes the
circle |z| = 1 in the positive direction, our theorem tells us that

Acarg f(z) =27 (0—1) = —2m.

That is, the image I" of C under the transformation w = f(z) winds around the origin
w = 0 once in the clockwise direction.

94. ROUCHE’S THEOREM

The main result in this section is known as Rouché’s theorem and is a consequence of
the argument principle, just developed in Sec. 93. It can be useful in locating regions
of the complex plane in which a given analytic function has zeros.



SEC. 94 ROUCHE’S THEOREM 291

Theorem. Let C denote a simple closed contour, and suppose that
(a) two functions f(z) and g(z) are analytic inside and on C;
®) |f (@] > |g(2)| at each point on C.

Then f(z) and f(z) + g(z) have the same number of zeros, counting multiplicities,
inside C.

The orientation of C in the statement of the theorem is evidently immaterial. Thus,
in the proof here, we may assume that the orientation is positive, or counterclockwise.
We begin with the observation that neither the function f(z) nor the sum f(z) + g(z)
has a zero on C, since

|f@]>1g@)I=0 and [f(2)+g@I=]11f(@I—IgII>0

when z ison C.
If Z; and Z ., denote the number of zeros, counting multiplicities, of f(z) and
f(z) + g(z), respectively, inside C, we know from the theorem in Sec. 93 that

1 1
Zy=5-Acarg f(z2) and Zpi, =-—Acarglf(z) +g@)].
Consequently, since

Acarg[f(z) +8(@)] = Ac arg{f(z) {1 + &} }
f (@)

— Acarg () + Ac arg[l + %]

it is clear that

1
(1) Zivg=Z5+ gAC arg F(z),
where
8(2)
F =14+ =-—=.
(2) +f(z)
But
lg(2)]
F — 1] = 1;
N e

and this means that under the transformation w = F(z), the image of C lies in the
open disk |w — 1| < 1. That image does not, then, enclose the origin w = 0. Hence
Ac arg F(z) = 0 and, since equation (1) reduces to Z,,, = Z, Rouché’s theorem is
proved.

EXAMPLE 1. Inorder to determine the number of roots, counting multiplicities,
of the equation

) A 4+324+6=0
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inside the circle |z| = 2, write
f@ =32 and g() =7"+6.
Then observe that when |z| = 2,
If()| =3z =24 and |g(2)| < |z|*+6=22.

The conditions in Rouché’s theorem are thus satisfied. Consequently, since f(z) has
three zeros, counting multiplicities, inside the circle |z| = 2, so does f(z) + g(2).
That is, equation (2) has three roots there, counting multiplicities.

EXAMPLE 2. Rouché’s theorem can be used to give another proof of the
fundamental theorem of algebra (Theorem 2, Sec. 58). To give the detals here, we
consider a polynomial

3) P(R)=ay+aiz+az’+- - +a " (a, #0)

of degree n (n > 1) and show that it has n zeros, counting multiplicities. We write

f@) = a.z", g@) =a+aiz+a+--+a, 17"

and let z be any point on a circle 7| = R, where R > 1. When such a point is taken,
we see that

|f (@] = las|R".
Also,
18(2)| < lao| + la1|R + |az|R? + - - - + |an_1|R""".
Consequently, since R > 1,
1g(@)] < lagl R + |a|R"™" + laa| "™ + -+ + lay— |[R";

and it follows that
1g@)| _ laol + lai| + laz| + - - - + |an—1]
< <
|f (@I lan| R
if, in addition to being greater than unity,
laol + lai| + laz| + - - + |ap—1]
|aﬂ| ’

@ R >

That is, | f(z)| > |g(z)| when R > 1 and inequality (4) is satisfied. Rouché’s theorem
then tells us that f(z) and f(z) 4 g(z) have the same number of zeros, namely 7, inside
C. Hence we may conclude that P (z) has precisely n zeros, counting multiplicities, in
the plane.

Note how Liouville’s theorem in Sec. 58 only ensured the existence of at least
one zero of a polynomial; but Rouché’s theorem actually ensures the existence of n
zeros, counting multiplicities.
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EXERCISES

1.

Let C denote the unit circle |z| = 1, described in the positive sense. Use the theorem in
Sec. 93 to determine the value of A¢ arg f(z) when

(@) f(z)=2% (b) f(z)=1/z% (© fle)=Qz—17/2.
Ans. (a) 4m; (b)) —4m; (c) 8m.

. Let f be a function which is analytic inside and on a positively oriented simple closed

contour C, and suppose that f(z) is never zero on C. Let the image of C under the
transformation w = f(z) be the closed contour I' shown in Fig. 114. Determine the
value of Acarg f(z) from that figure; and, with the aid of the theorem in Sec. 93,
determine the number of zeros, counting multiplicities, of f interior to C.

Ans. 67; 3.

v

-

FIGURE 114

. Using the notation in Sec. 93, suppose that I does not enclose the origin w = 0 and that

there is a ray from that point which does not intersect I'. By observing that the absolute
value of Ac arg f(z) must be less than 27 when a point z makes one cycle around C
and recalling that A¢ arg f(z) is an integral multiple of 2, point out why the winding
number of I" with respect to the origin w = 0 must be zero.

. Suppose that a function f is meromorphic in the domain D interior to a simple closed

contour C on which f is analytic and nonzero, and let Dy denote the domain consisting
of all points in D except for poles. Point out how it follows from the lemma in Sec. 28
and Exercise 11, Sec. 83, that if f(z) is not identically equal to zero in Dy, then the
zeros of f in D are all of finite order and that they are finite in number.

Suggestion: Note that if a point zp in D is a zero of f that is not of finite order, then
there must be a neighborhood of zy throughout which f(z) is identically equal to zero.

. Suppose that a function f is analytic inside and on a positively oriented simple closed

contour C and that it has no zeros on C. Show thatif f hasn zeros z; (k = 1,2, ..., n)
inside C, where each z; is of multiplicity my, then

'),
/C @ dz—2mk;mkzk.

[Compare with equation (8), Sec. 93, when P = 0 there.]

. Determine the number of zeros, counting multiplicities, of the polynomial

(@ 22 =524 +23 =2z () 22* =223 42222249, (o) -4 +z— L.
inside the circle |z| = 1.
Ans. (a) 4; (b) 0; (c) 3.
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7. Determine the number of zeros, counting multiplicities, of the polynomial
(@ ' =22 +92%24+z-1; (b 2+323+22+1
inside the circle |z| = 2.
Ans. (a) 2; (b) 5.

8. Determine the number of roots, counting multiplicities, of the equation
227 — 622 +z+1=0

in the annulus 1 < |z] < 2.
Ans. 3.

9. Show that if ¢ is a complex number such that |c| > e, then the equation cz" = e® has n
roots, counting multiplicities, inside the circle |z| = 1.

10. Let two functions f and g be as in the statement of Rouché’s theorem in Sec. 94, and let
the orientation of the contour C there be positive. Then define the function

1 - / , t /
o) = — [LOFED g2y
2wt Je f(2) +1tg(2)
and follow these steps below to give another proof of Rouché’s theorem.
(a) Point out why the denominator in the integrand of the integral defining ® (¢) is never
zero on C. This ensures the existence of the integral.

(b) Lett and fy be any two points in the interval 0 < ¢ < 1 and show that

|t — 1o

2

|®(1) — (10)| =

/ 8 —f's
c (f +1)(f +108)
Then, after pointing out why

' &' —f's _ g = fgl
(f+t)(f +10g) |~ (fl1—1gh?

at points on C, show that there is a positive constant A, which is independent of ¢
and 1o, such that

|D(r) — @(to)| = Alr — 19].

Conclude from this inequality that ®(#) is continuous on the interval 0 < < 1.

(c) By referring to equation (8), Sec. 93, state why the value of the function & is, for
each value of ¢ in the interval 0 < r < 1, an integer representing the number of
zeros of f(z) + tg(z) inside C. Then conclude from the fact that ® is continuous,
as shown in part (b), that f(z) and f(z) + g(z) have the same number of zeros,
counting multiplicities, inside C.

95. INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex variable s is analytic throughout the finite s
plane except for a finite number of isolated singularities. Then let L z denote a vertical
line segment from s = y —iR tos = y + i R, where the constant y is positive and
large enough that the singularities of F all lie to the left of that segment (Fig. 115). A
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~—ey—iR

FIGURE 115

new function f of the real variable ¢ is defined for positive values of ¢ by means of the
equation

1
(1) f() = — lim ' F(s)ds (t > 0),
27T R—o0 Lk
provided this limit exists. Expression (1) is usually written
1 y+ioco
2) f@t)=—PV / ' F(s)ds (t > 0)
2mi y—ioco

[compare with equation (3), Sec. 85], and such an integral is sometimes referred to as
a Bromwich integral.

It can be shown that when fairly general conditions are imposed on the functions
involved, the function f(¢) in equation (2) is the inverse Laplace transform of the
function

3) F(s) = /oo e f(0) dt,
0

which is the familiar Laplace transform of f(¢). Thatis, if F'(s) is the Laplace transform
of f(t), then f(¢) is retrieved by means of equation (2).* This is done with the aid of
Cauchy’s residue theorem, which tells us that

N
4) / es’F(s)ds=2m’ZRes[e”F(s)]—/ &' F(s)ds,
Lk S=Sp

n=1 Cr

*For a detailed justification of the material in this section, see, for example, Chap. 6 of the book
Operational Mathematics, 3rd ed., 1972, by R. V. Churchill. Also, an exceptionally clear treatment of
the material appears in Chap. 7 of the book Complex Variables with Applications, 3rd ed., 2005, by A.
D. Wunsch. Both books are listed in the Bibliography.
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where Cy is the semicircle shown in Fig. 115. Then, if we assume that

(5) lim e'F(s)ds =0,

R—o0 Cr

it follows from equation (1) that

N
(6) f@ = Z&fﬁs [ F(s)] (t > 0).
n=1 "

In many applications of Laplace transforms, such as the solution of partial differ-
ential equations arising in studies of heat conduction and mechanical vibrations, the
function F (s) is analytic for all values of s in the finite plane except for an infinite set
of isolated singular points s, (n = 1, 2, ...) that lie to the left of some vertical line
Res = y. Often the method just described for finding f(¢) can then be modified in
such a way that the finite sum (6) is replaced by an infinite series of residues:

(7) f@ =) Res[¢"F(s)] (1> 0).
n=1 "

Our purpose here is to draw the reader’s attention to the use of residues and, in
particular, expression (6) in finding inverse Laplace transforms. Our discussion is brief
and does not include verification that equation (1) actually gives the inverse transform
f(¢) or describe conditions on F (s) that allow limit (5) to exist. As in the example
just below, only a formal treatment is expected in the exercises to follow.

EXAMPLE. The function
S s

244 (5420 —2i)

has isolated singularities at the points s = 42i. According to expression (6), then,

F(s) =

f(t) =Res {L} + Res L]
s=2i | (s + 2i)(s — 2i) s==2i | (s + 2i)(s — 2i)
Both singularities are simple poles; and if we write
é1(s) [ $2(s)
F = f{f’z?L - 21'} i e 21‘]

where

etls esls

¢1(s) = Y and ¢ (s) = o

we find that

eZit(zi) N 6721'[(_21') _ eiZI _}_efiZt

— cos2t.
4i — 4 2 €os

F @) =¢1(20) + ¢ (—2i) =
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EXERCISES

In each of the Exercises 1 through 3, use residues to find the inverse Laplace transform f(¢)
corresponding to the given function F(s). Do this in a formal way, without full justification,

1. F(s) = Z—S3

st —4
Ans. f(t) = cosh V2t + cos /2t
2s —2

TG+ D2 +2545)

Ans. f(t) = e '(cos2t +sin2t — 1).
12

2. F(s)

3. F(s) =

Suggestion: After finding the three cube roots —2 and 1 4= +/3i of —8, it is helpful
to notice that the property z + 7 = 2 Re z of complex numbers enables one to write

ei\/§t e—iﬁz eiﬁt
+ —2Re|——
—1+iv3  —1-iV3 ~1+iV3

Re

Ans. f(t) = e ¥ + ¢ (v/3sin /31 — cos /31).
4. Follow the steps below to find f(z) when

F(s) 1 1
§) = — — .
s2  ssinhs

Start with the observation that the isolated singularities of F(s) are
so=0, s,=nmi, s,=—nmi n=1,2,...).

(a) Use the Laurent series found in Exercise 5, Sec. 73, to show that the function e*' F (s)
has a removable singularity at s = s, with residue 0.

(b) Use Theorem 2 in Sec. 83 to show that
(=1)"iexp(inmt)

Res[e" F(s)] =
§=S, ni
and
, —(=D"i —inmt
Res[e F(s)] = (o exp(zinmn)
S=5, ni

(c¢) Show how it follows from parts (a) and (b), together with series (7), Sec. 95, that
oS 2 0o (_1 n+l

fo=> {ggs [ F(s)] + Res [e“F(s)]} = ;Z

n=1 n=1

sinnmt.
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CHAPTER

3

MAPPING BY ELEMENTARY
FUNCTIONS

The geometric interpretation of a function of a complex variable as a mapping, or
transformation, was introduced in Secs. 13 and 14 (Chap. 2). We saw there how the
nature of such a function can be displayed graphically, to some extent, by the manner
in which it maps certain curves and regions.

In this chapter, we shall see further examples of how various curves and regions
are mapped by elementary analytic functions. Applications of such results to physical
problems are illustrated in Chaps. 10 and 11.

96. LINEAR TRANSFORMATIONS
To study the mapping
(1) w = Az,

where A is a nonzero complex constant and z # 0, we write A and z in exponential
form:

A =aexp(ia), z=rexp(if).
Then
(2) w = (ar) expli(a + 0)],

299
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and we see from equation (2) that transformation (1) expands or contracts the radius

vector representing z by the factor @ and rotates it through the angle « about the origin.

The image (Sec. 13) of a given region is, therefore, geometrically similar to that region.
The mapping

3) w=2z+B,

where B is any complex constant, is a translation by means of the vector representing
B. That is, if

w=u-+iv, z=x+4iy, and B =0>b|+ib,,
then the image of any point (x, y) in the z plane is the point
(4) (u,v) =(x+b1,y+b2)

in the w plane. Since each point in any given region of the z plane is mapped into the
w plane in this manner, the image region is geometrically congruent to the original
one.

The general (nonconstant) linear transformation

(&) w=Az+B (A#0)
is a composition of the transformations
Z=Az (A#0) and w=Z7Z+B.
When z # 0, it is evidently an expansion or contraction and a rotation, followed by a
translation.
EXAMPLE. The mapping
(6) w=(1+i)z+2

transforms the rectangular region in the z = (x, y) plane of Fig. 116 into the rectan-
gular region shown in the w = (u, v) plane there. This is seen by expressing it as a
composition of the transformations

7 Z=(+4i)z and w=Z+2.
Writing

14+i= ﬁexp(i%) and z =rexp(if),
one can put the first of transformations (7) in the form

Z = (\/Er) exp {i (9 + %)}

This first transformation thus expands the radius vector for a nonzero point z by the
factor /2 and rotates it counterclockwise 7 /4 radians about the origin. The second of
transformations (7) is, of course, a translation two units to the right.
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y Y v
~1+3i 1+3i
1+2i
B B B”
AI A/I
4 L
A N4
0 A x 0 X 0 2 u
FIGURE 116

w=1+i)z+2.

EXERCISES

1.

2i

State why the transformation w = iz is a rotation in the z plane through the angle 7 /2.
Then find the image of the infinite strip 0 < x < 1.

Ans.0 < v < 1.

. Show that the transformation w =iz + i maps the half plane x > 0 onto the half plane

v> 1.

. Find alinear transformation that maps the stripx > 0,0 < y < 2ontothestrip—1 <u < 1,

v > 0, as shown in Fig. 117.
Ans. w =iz + 1.

l

¥ 10l 1 %  FIGURE 117
Find and sketch the region onto which the half plane y > 0 is mapped by the transfor-
mation w = (1 +1)z.
Ans. v > u.

Find the image of the half plane y > 1 under the transformation w = (1 — i)z.

6. Give a geometric description of the transformation w = A(z + B), where A and B are

complex constants and A # 0.

97. THE TRANSFORMATION w =1/z

The equation

(1
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establishes a one to one correspondence between the nonzero points of the z and the
w planes. Since |z|*> = zZ, the mapping can be described by means of the successive
transformations

) Z:%, w=7
Z

The first of these transformations is an inversion with respect to the unit circle
|z| = 1. That is, the image of a nonzero point z is the point Z with the properties

|Z| = % and argZ =argz.
Thus the points in the finite plane that are exterior to the circle are mapped onto the
nonzero points interior to it (Fig. 118); and, conversely, the nonzero points interior to
the circle are mapped onto the exterior points in the finite plane. Each point on this
circle is mapped onto itself. The second of transformations (2) is simply a reflection
in the real axis.

- — -+ —

FIGURE 118

If we write transformation (1) as

1
(3) T(z) = z (z#0),

we can define T at the origin and at the point at infinity so as to be continuous on the
extended complex plane. To do this, we need only refer to Sec. 17 to see that

. . . 1 .
4) !gr(l) T(z) =00 since }1_r)r(1) o~ 11_r)r(1)z =0
and
. . . 1 .
5) lim T(z) =0 since lim7 (-] =1imz=0.
z—>00 z—0 Ve z—0

In order to make T continuous on the extended plane, then, we write
1

(6) TO)=o00, T(c0)=0, and T(z) = -
z

for the remaining values of z. More precisely, limits (4) and (5) reveal that

(7 lim T'(z) = T(zo)

i—20
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for each point in the extended z plane, including zp = 0 and zy = oo. The fact that T
is continuous everywhere in the extended z plane is now a consequence of limit (7).
(See Sec. 18.) Because of this continuity, we tacitly assume that 7'(z) is intended when
the function 1/z is referred to and the point at infinity is involved.

98. MAPPINGS BY 1/z

When a point w = u + iv is the image of a nonzero point z = x + iy in the finite
plane under the transformation w = 1/z, writing

.z
Tz [z
reveals that
X -y
(D) U= m, v = m
Also, since
1 w w
= E = ﬁ = W,
one can see that
u —v
@ Tur YT

The following argument, based on these relations between coordinates, shows
that the mapping w = 1/z transforms circles and lines into circles and lines. When
A, B, C, and D are all real numbers satisfying the condition

3) B>+ C? > 4AD,
the equation
4) AX>+y)+Bx+Cy+D=0

represents an arbitrary circle or line, where A # 0 for a circle and A = 0 for a line.
The need for condition (3) when A # 0 is evident if, by the method of completing the
squares, we rewrite equation (4) as

(2 e ) = (TS

2A Yt oA 2A

When A = 0, condition (3) becomes B 4+ C? > 0, which means that B and C are
not both zero. Returning to the verification of the statement in italics just above, we
observe that if x and y satisfy equation (4), we can use relations (2) to substitute for
those variables. After some simplifications, we find that # and v satisfy the equation
(see also Exercise 14)

(3) Dw?+v)+Bu—Cv+A=0,
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which also represents a circle or line. Conversely, if # and v satisfy equation (5), it
follows from relations (1) that x and y satisfy equation (4).
It is now clear from equations (4) and (5) that

(a) a circle (A # 0) not passing through the origin (D # 0) in the z plane is
transformed into a circle not passing through the origin in the w plane;

(b) acircle (A # 0) through the origin (D = 0) in the z plane is transformed into a
line that does not pass through the origin in the w plane;

(c) aline (A = 0) not passing through the origin (D # 0) in the z plane is transformed
into a circle through the origin in the w plane;

(d) aline (A = 0) through the origin (D = 0) in the z plane is transformed into a line
through the origin in the w plane.

EXAMPLE 1. According to equations (4) and (5), a vertical line x =c;
(c1 # 0) is transformed by w = 1/z into the circle —c; (u? + v?) +u = 0, or

1\, 1\
© (—2—)+=(2—)

which is centered on the 1 axis and tangent to the v axis. The image of a typical point
(c1, y) on the line is, by equations (1),

(. v) = (71 ;y) _
’ ity 4y’

If ¢; > 0, the circle (6) is evidently to the right of the v axis. As the point (¢, y)
moves up the entire line, its image traverses the circle once in the clockwise direction,
the point at infinity in the extended z plane corresponding to the origin in the w plane.
This is illustrated in Fig. 119 when ¢; = 1/3. Note that v > 0if y < O; and as y
increases through negative values to 0, one can see that u increases from 0 to 1/c;.
Then, as y increases through positive values, v is negative and u decreases to 0.

If, on the other hand, c; < 0, the circle lies to the left of the v axis. As the point
(c1, y) moves upward, its image still makes one cycle, but in the counterclockwise

direction. See Fig. 119, where the case ¢c; = —1/2 is also shown.
y v
clz_% Cl:% sz—%
/"‘\
/ _1
I 1 ‘=3
1
—— i e e 52:% \\\ ’,/
1 x _ 1 By NN u
——— g e e Cz__i = 3 'I \l
\\ /,
"'ngl
2
FIGURE 119

w=1/z.
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EXAMPLE 2. A horizontal line y = ¢, (¢, # 0) is mapped by w = 1/z onto
the circle

(7) u? + (v - i>2 = <i>2
2C2 2C2 ’

which is centered on the v axis and tangent to the u axis. Two special cases are shown in
Fig. 119, where corresponding orientations of the lines and circles are also indicated.

EXAMPLE 3. When w = 1/z, the half plane x > ¢; (¢; > 0) is mapped onto
the disk

1\, 1
© () = ()

For, according to Example 1, any line x = ¢ (¢ > ¢;) is transformed into the circle

1\, 1\*
©)] <M—Z> +v :<Z)

Furthermore, as c increases through all values greater than ¢, the lines x = ¢ move to
the right and the image circles (9) shrink in size. (See Fig. 120.) Since the lines x = ¢
pass through all points in the half plane x > ¢ and the circles (9) pass through all
points in the disk (8), the mapping is established.

y v

FIGURE 120
w=1/z.

EXERCISES

1. In Sec. 98, point out how it follows from the first of equations (2) that when w = 1/z,
the inequality x > ¢ (c; > 0) is satisfied if and only if inequality (8) holds. Thus give
an alternative verification of the mapping established in Example 3, Sec. 98.

2. Show that when ¢; < 0, the image of the half plane x < ¢; under the transformation
w = 1/z is the interior of a circle. What is the image when ¢; = 0?

3. Show that the image of the half plane y > ¢, under the transformation w = 1/z is the
interior of a circle when ¢, > 0. Find the image when ¢, < 0 and when ¢, = 0.



306

MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

. Find the image of the infinite strip 0 < y < 1/(2c¢) under the transformation w = 1/z.

Sketch the strip and its image.
Ans.u>+ (w+¢)?>¢% v<O.

. Find the image of the region x > 1, y > 0 under the transformation w = 1/z.

1\? 1\?
Ans.(u——) +v2<<—),v<0.
2 2

. Verity the mapping, where w = 1/z, of the regions and parts of the boundaries indicated

in (a) Fig. 4, Appendix 2; (b) Fig. 5, Appendix 2.

7. Describe geometrically the transformation w = 1/(z — 1).

8. Describe geometrically the transformation w = i /z. State why it transforms circles and

10.

11.

12.

13.

14.

lines into circles and lines.

. Find the image of the semi-infinite strip x > 0, 0 < y < 1 when w = i/z. Sketch the

strip and its image.

1\? 1\2
Ans.(u——) +v2><—),u>0,v>0.
2 2

By writing w = p exp(i¢), show that the mapping w = 1/z transforms the hyperbola
x? — y?> = 1 into the lemniscate p> = cos 2¢. (Use Exercise 14, Sec. 6.)

Let the circle |z] = 1 have a positive, or counterclockwise, orientation. Determine the
orientation of its image under the transformation w = 1/z.

Show that when a circle is transformed into a circle under the transformation w = 1/z,
the center of the original circle is never mapped onto the center of the image circle.

Using the exponential form z = re’ of z, show that the transformation
1
w=z+ -,
z

which is the sum of the identity transformation and the transformation discussed in
Secs. 97 and 98, maps circles r = ry onto ellipses with parametric representations

1 1
u:(ro—f-—)cos@, vz(ro——) sin 0 0=6=<2m)
ro ro

and foci at the points w = =£2. Then show how it follows that this transformation maps
the entire circle |z| = 1 onto the segment —2 < u < 2 of the u axis and the domain
outside that circle onto the rest of the w plane.

(a) Write equation (4), Sec. 98, in the form
2A7z72+ (B —Ci)z+ (B+ Ci)z+2D =0,

where z = x + iy.
(b) Show that when w = 1/z, the result in part (a) becomes

2Dww + (B 4 Ci)w + (B — Ci)w + 24 = 0.

Then show that if w = u + iv, this equation is the same as equation (5), Sec. 98.
Suggestion: In part (a), use the relations (see Sec. 6)

_+z 72—z

d =
X > and y Y
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99. LINEAR FRACTIONAL TRANSFORMATIONS

The transformation

az+b
1 w= ad — bc #0),
(1) p— ( #0)
where a, b, ¢, and d are complex constants, is called alinear fractional transformation,

or Mobius transformation. Observe that equation (1) can be written in the form

) Azw+Bz+Cw+D=0  (AD— BC #0);

and, conversely, any equation of type (2) can be put in the form (1). Since this alternative
form is linear in z and linear in w, another name for a linear fractional transformation
is bilinear transformation.

When ¢ = 0, the condition ad — bc # 0 with equation (1) becomes ad # 0; and
we see that the transformation reduces to a nonconstant linear function. When ¢ # 0,
equation (1) can be written
3) a n bc —ad 1

w = — .
c c cz+d

So, once again, the condition ad — bc # 0 ensures that we do not have a constant
function. The transformation w = 1/z is evidently a special case of transformation
(1) when ¢ # 0.

Equation (3) reveals that when ¢ # 0, a linear fractional transformation is a
composition of the mappings.

(ad — bc #0).

1 a bc—ad
Z=cz+d, W=, w=-—+
Z c
It thus follows that, regardless of whether c is zero or nonzero, any linear fractional
transformation transforms circles and lines into circles and lines because these special
linear fractional transformations do. (See Secs. 96 and 98.)
Solving equation (1) for z, we find that
—d b
(4) e= "0 ad—be £0).

cw —a

4 (ad — bc #0).

When a given point w is the image of some point z under transformation (1), the point
z is retrieved by means of equation (4). If ¢ = 0, so that @ and d are both nonzero,
each point in the w plane is evidently the image of one and only one point in the z
plane. The same is true if ¢ # 0, except when w = a/c since the denominator in
equation (4) vanishes if w has that value. We can, however, enlarge the domain of
definition of transformation (1) in order to define a linear fractional transformation 7'
on the extended z plane such that the point w = a/c is the image of z = oo when
¢ # 0. We first write

az+b
cz+d

4) T(z)= (ad — bc # 0).



308 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

We then write

(6) T (00) = o0 if c=0
and
7 T (00) = % and T(—%) —0o if %0,

In view of Exercise 11, Sec. 18, this makes 7 continuous on the extended z plane.
It also agrees with the way in which we enlarged the domain of definition of the
transformation w = 1/z in Sec. 97.

When its domain of definition is enlarged in this way, the linear fractional trans-
formation (5) is a one to one mapping of the extended z plane onto the extended w
plane. That is, T'(z;) # T (z2) whenever z; # z»; and, for each point w in the second
plane, there is a point z in the first one such that T(z) = w. Hence, associated with
the transformation 7', there is an inverse transformation T—!, which is defined on the
extended w plane as follows:

T~ '(w)=7z ifand onlyif T(z) =w.

From equation (4), we see that

®) T'(w)=——+—  (ad — bc # 0).

cw —a

Evidently, T is itself a linear fractional transformation, where

9) T'oo)=00 if ¢=0

and

(10) T~ (3) —oo and Tl oo)=-2 it cx0
C C

If T and § are two linear fractional transformations, then so is the composition S[7 (z)].
This can be verified by combining expressions of the type (5). Note that, in particular,
T~'[T(z)] = z for each point z in the extended plane.

There is always a linear fractional transformation that maps three given distinct
points z1, z2, and z3 onto three specified distinct points w;, w,, and ws, respectively.
Verification of this will appear in Sec. 100, where the image w of a point z under
such a transformation is given implicitly in terms of z. We illustrate here a more direct
approach to finding the desired transformation.

EXAMPLE 1. Let us find the special case of the general linear fractional trans-
formation
az+b

= d—>b 0
W= (a c#0)

that maps the points

71 = 2, 72 = i, and 3 = -2
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onto the points
wy =1, wp,=1i, and w3 =-—1.
Since 1 is to be the image of 2 and —1 is to be the image of —2, we require that
2c+d=2a+b and 2c—d = —-2a+0b.

Adding corresponding sides of these two equations reveals that b = 2c. The first
equation then becomes d = 2a, and we have

az +2c¢
w =

cz+2a
Because i is to be transformed into i, equation (11) tells us that ¢ = (ai)/3. Hence

i 2

(11) [2(a®> — %) #0].

w=— =7 (a #0);
§z+2a a <§z+2>
and we can cancel out the nonzero factor a to write
Z+ %i
W= 3 ,
§Z +2
which is the same as
3z+2i
(12) YT ive
EXAMPLE 2. Suppose that the points
z71=1, zp=0, and zz3=—1
are to be mapped onto
wy =1, w,=o00, and w3=1.

Since w, = oo corresponds to z, = 0, we know from equations (6) and (7) that ¢ # 0
and d = 0 in equation (1). Hence

az+b
w =
cz

(13) (bc #0).

Then, because 1 is to be mapped onto i and —1 onto 1, we have the relations
ic=a+b, —c=—a+b;

and it follows that

2a = (1+i)e, 2b=(i— 1.
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Finally, if we multiply numerator and denominator in the quotient (13) by 2, make
these substitutions for 2a and 2b, and then cancel out the nonzero number ¢, we arrive at
i+Dz+G—-1
w = .
27

(14)

100. AN IMPLICIT FORM

The equation

(w—w)(wr —w3)  (z2—21)(22 —23)

(w—w3)(wy —w1)  (z2—2z3)(z2 —21)

defines (implicitly) a linear fractional transformation that maps distinct points z;, z2,

and z3 in the finite z plane onto distinct points w;, w,, and w3, respectively, in the
finite w plane.* To verify this, we write equation (1) as

M

2) —z)(Ww—w)(z2 —z)(w2 —w3) = (2 — z21)(w — w3)(z2 — z3) (W2 —wy).

If z = zj, the right-hand side of equation (2) is zero; and it follows that w = wy.
Similarly, if z = z3, the left-hand side is zero and, consequently, w = ws. If z = 25,
we have the linear equation

(w—wp)(wy —w3) = (w— w3)(wr — wy),

whose unique solution is w = w,. One can see that the mapping defined by equation (1)
is actually a linear fractional transformation by expanding the products in equation (2)
and writing the result in the form (Sec. 99)

3 Azw+ Bz+ Cw+ D =0.

The condition AD — BC # 0, which is needed with equation (3), is clearly satisfied
since, as just demonstrated, equation (1) does not define a constant function. It is left
to the reader (Exercise 10) to show that equation (1) defines the only linear fractional
transformation mapping the points z, z», and z3 onto wy, w,, and w3, respectively.

EXAMPLE 1. The transformation found in Example 1, Sec. 99, required that
21:2722=Z,Z3=—2 and w1217w2=i, w3=_1.
Using equation (1) to write

w-DHiE+D  @=2)>0+2)
w4+ D -1 @+2)3-2)

*The two sides of equation (1) are cross ratios, which play an important role in more extensive devel-
opments of linear fractional transformations than in this book. See, for instance, R. P. Boas, Invitation
to Complex Analysis, 2d ed., pp. 171-176, 2010 or J. B. Conway, Functions of One Complex Variable,
2d ed., 6th printing, pp. 48-55, 1997.
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and then solving for w in terms of z, we arrive at the transformation

. 3z+42i
iz 46
found earlier.

If equation (1) is modified properly, it can also be used when the point at infinity
is one of the prescribed points in either the (extended) z or w plane. Suppose, for
instance, that z; = 0o. Since any linear fractional transformation is continuous on the
extended plane, we need only replace z; on the right-hand side of equation (1) by 1/z;,
clear fractions, and let z; tend to zero:

G-V —z) 21 @z—D@a—23) 2-2
a=0(z—z) (22— 1/z) o a>0@—z)zn—-1D -z

The desired modification of equation (1) is, then,
(w—w)(wr —w3)  22—23
(w—w3)(w, —wy)  z2—23

Note that this modification is obtained formally by simply deleting the factors involving
z1 in equation (1). It is easy to check that the same formal approach applies when any
of the other prescribed points is co.

EXAMPLE 2. In Example 2, Sec. 99, the prescribed points were
z1=1,20=0, z3=~-1 and w; =1, wp =00, w3z = 1.
In this case, we use the modification

w—w (z —z21)(z2 — 23)
w—ws (z—z3)(z2—21)

of equation (1), which tells us that
w—i  @=DO+1D
w—1" (+DO-1’
Solving here for w, we have the transformation obtained earlier:
v — (i—i—l)z—i—(i—l)'

2z
EXERCISES
1. Find the linear fractional transformation that maps the points z; = —1,z, = 0,z3 = 1
onto the points w; = —i, wy = 1, w3 = 1.

Suggestion: The most efficient way to find this transformation is to use equation (1)
in Sec. 100.

i—z
Ans. w =

i+z
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Find the linear fractional transformation that maps the points z; = —i, 2z, = 0,z3 =i
onto the points w; = —1, w, = i, w3 = 1. Into what curve is the imaginary axis x = 0
transformed?

Find the bilinear transformation that maps the points z; = 00, 7, = i, z3 = 0 onto the
points w; = 0, wy =i, w3 = oco.

Ans. w = —1/z.
Find the bilinear transformation that maps distinct points z;, z2, z3 onto the points
w1=0,w2=1,w3=oo.
(z—21)(z2 — 23)

Ans. w = .
(z —23)(z2 — 21)

Show that a composition of two linear fractional transformations is again a linear frac-
tional transformation, as stated in Sec. 99. To do this, consider two such transformations
a1z + b
T(z)=——— (a1d; —bic 0
(@) C1z+d1(11 1c1 #0)
and
@z + b
S(z) = ———— (a2d, — by 0).
(@) s (ardy — bycy #0)
Then show that the composition S[7'(z)] has the form
aszz + b3
S[T(2)] = ———,
[7)] 3z +d;
where
asd; — bycy = (ardy — bicy)(axdy — byca) # 0.
A fixed point of a transformation w = f(z) is a point z such that f(z9) = zo. Show that

every linear fractional transformation, with the exception of the identity transformation
w = z, has at most two fixed points in the extended plane.

. Find the fixed points (see Exercise 6) of the transformation

6z—9

(a)wzjﬁ; b)) w=

Z
Ans. (a) z = =%i; (b) z =3.

Modify equation (1), Sec. 100, for the case in which both z, and w; are the point at infinity.
Then show that any linear fractional transformation must be of the form w = az (a # 0)
when its fixed points (Exercise 6) are 0 and co.

Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation,
then the transformation can be written in the form
Z
v= cz+d d#0).

Show that there is only one linear fractional transformation which maps three given
distinct points z;, z2, and z3 in the extended z plane onto three specified distinct points
wi, wy, and ws in the extended w plane.

Suggestion: Let T and S be two such linear fractional transformations. Then, after
pointing out why ST (zx)] = zx (k = 1,2, 3), use the results in Exercises 5 and 6 to
show that S~'[T(z)] = z for all z. Thus show that 7' (z) = S(z) for all z.
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11. With the aid of equation (1), Sec. 100, prove that if a linear fractional transformation
maps the points of the x axis onto points of the u axis, then the coefficients in the
transformation are all real, except possibly for a common complex factor. The converse
statement is evident.

12. Let
az+b
cz+d

T(z) = (ad — bc #0)

be any linear fractional transformation other than 7 (z) = z. Show that
T-'=7T ifandonlyif d=—a.
Suggestion: Write the equation T~!(z) = T'(z) as

(@a+d)[c>+(d—a)z—b]=0.

101. MAPPINGS OF THE UPPER HALF PLANE

This section is devoted to the construction of the most general linear fractional trans-
formation having the following property:

(a) itmaps the upper half plane Im z > 0 onto the open disk |w| < 1 and the boundary
Im z = 0 of the half plane onto the boundary |w| = 1 of the disk (Fig. 121).
We will show that any such linear fractional transformation must be of the follow-
ing type, and conversely:
(b) it must be of the form
w = e® (Z_ZO) (Imzp > 0),

Z—720

where « is any real number.

A
D
N ) \J H FIGURE 121

2 ) —
o/ 0 w:e’“(ﬂ) (Im zg > 0).

Z—20

In order to show that statements (a) and (b) are equivalent, we first assume that
statement (a) is true and obtain statement (b). Once that is done, we assume that
statement (b) is true and obtain statement (a),
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(a) implies (b)

Keeping in mind that points on the line Im z = 0 are to be transformed into points on
the circle |w| = 1, we start by selecting the points z = 0,z = 1, and z = oo on the
line and determining conditions on a linear fractional transformation

az+b
1 = d—>b 0
(1) w=_—  (ad=bc#0)
which are necessary in order for the images of those points to have unit modulus.

We note from equation (1) that if jw| = 1 when z = 0, then |b/d| = 1; that is,
@) b = |d| # 0.

Furthermore, statements (6) and (7) in Sec. 99 tell us that the image of the point z = co
is a finite number only if ¢ # 0, that finite number being w = a/c. So the requirement
that |w| = 1 when z = co means that |[a/c| = 1, or

(3) lal = lc| # 0;
and the fact that @ and ¢ are nonzero enables us to rewrite equation (1) as
a z+ (b/a)
4) - _. 7/
¢ z+4+(d/c)
Then, since |a/c| = 1 and
b d
“|=1]=#£0,
a C

according to relations (2) and (3), equation (4) can be put in the form

) w=e"“(z_z°> (1211 = Iz0l # 0).

Z—2
where « is a real constant and z( and z; are (nonzero) complex constants.
Next, we impose on transformation (5) the condition that |w| = 1 when z = 1.
This tells us that

1 —zi| = [l —zol,
or
(I =z —z1) =1 —20)(1 = 20).
But 7,71 = z0zo since |z1| = |zo|, and the above relation reduces to
21+ 21 =20+ Zos
that is, Re z; = Re z¢. It follows that either
Z1=29 Or 2 =20,

again since (71| = |zo|. If z1 = zo, transformation (5) becomes the constant function
w = exp(ia); hence z; = Zp.
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Transformation (5), with z; =7, maps the point z; onto the origin w = 0; and,
since points interior to the circle [w| = 1 are to be the images of points above the real
axis in the z plane, we may conclude that Im zo > 0. Any linear fractional transforma-
tion having property (a) must, therefore, have the form (b).

(b) implies (a)

It remains to show that, conversely, any linear fractional transformation of the form
(b) has the mapping property (a). This is easily done by taking the modulus of each
side of the equation in statement (b) and interpreting the resulting equation,

|z — zol

lw| = —

|z — Zol
geometrically. If a point z lies above the real axis, both it and the point z( lie on the
same side of that axis, which is the perpendicular bisector of the line segment joining
zo and 7. It follows that the distance |z — z¢| is less than the distance |z —Zg| (Fig. 121);
that is, [w| < 1. Likewise, if z lies below the real axis, the distance |z — zo| is greater
than the distance |z — Zo|; and so |w| > 1. Finally, if z is on the real axis, |w| = 1
because then |z — zg| = |z — Zo|. Since any linear fractional transformation is a one to
one mapping of the extended z plane onto the extended w plane, this shows that the
transformation in statement (b) maps the half plane Im z > 0 onto the disk \w| < 1
and the boundary of the half plane onto the boundary of the disk.

102. EXAMPLES

Our first example here illustrates the linear fractional transformation obtained in the
preceding section, namely

(1) w = ¢ (Z - ZO) (Imzy > 0),

Z—720

where « is any real number.

EXAMPLE 1. The transformation .
i—z
i+z

iz
w:eln - 9
z—1

which is a special case of transformation (1). Inasmuch as transformation (1) is simply
a restatement of the transformation that is of the form (b) in Sec. 101, it follows that
this special case also has property (a) in Sec. 101. (See Exercise 1, Sec. 100, as well as
Fig. 13 in Appendix 2, where corresponding points in the z and w planes are indicated.)

can be put in the form

Images of the upper half plane Imz > 0 under other types of linear fractional
transformations are often fairly easy to determine by examining the particular trans-
formation in question, as is done in the next example.
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EXAMPLE 2. By writing z = x +iy and w = u 4 iv, we can readily show that
the transformation

z—1
w =
z+1

maps the half plane y > 0 onto the half plane v > 0 and the x axis onto the u axis. We
first note that when the number z is real, so is the number w. Consequently, since the
image of the real axis y = 0 is either a circle or a line, it must be the real axis v = 0.
Furthermore, for any point w in the finite w plane,

@-DE+D 2y
C+DGE+1) |z +172

The numbers y and v thus have the same sign, and this means that points above the
x axis correspond to points above the u axis and points below the x axis correspond
to points below the u axis. Finally, since points on the x axis correspond to points
on the u axis and since a linear fractional transformation is a one to one mapping of
the extended plane onto the extended plane (Sec. 99), the stated mapping property of
transformation (2) is established.

2

v=Imw =Im

(z # =1).

Our final example involves a composite function and uses the mapping discussed
in Example 2.

EXAMPLE 3. The transformation

(3) w = Log

where the principal branch of the logarithmic function is used, is a composition of the
functions
&) z=""1 and Log Z
= an w = LO .
z+1 g

According to Example 2, the first of transformations (4) maps the upper half
plane y > 0 onto the upper half plane ¥ > 0, where z = x +iyand Z = X +iY.
Furthermore, it is easy to see from Fig. 122 that the second of transformations (4) maps
the half plane Y > 0 onto the strip 0 < v < 7, where w = u + iv. More precisely, by
writing Z = Rexp(i®) and

LogZ=InR+i® (R>0,—mT<® <m),

we see that as a point Z = Rexp(i®p) (0 < ®y < m) moves outward from the origin
along the ray ® = ©®,, its image is the point whose rectangular coordinates in the w
plane are (In R, ®). That image evidently moves to the right along the entire length
of the horizontal line v = ®. Since these lines fill the strip 0 < v < 7 as the choice
of ®¢ varies between ®y = 0 to ®¢ = 7, the mapping of the half plane ¥ > 0 onto
the strip is, in fact, one to one.
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i

\@0

FIGURE 122
w = Log Z.

This shows that the composition (3) of the mappings (4) transforms the plane
y > 0 onto the strip 0 < v < &. Corresponding boundary points are shown in Fig. 19
of Appendix 2.

EXERCISES
1. Recall from Example 1 in Sec. 102 that the transformation
i—z
itz

maps the half plane Imz > 0 onto the disk |w| < 1 and the boundary of the half plane
onto the boundary of the disk. Show that a point z = x is mapped onto the point

1—x2  2x
“ire Ty
and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2, by
showing that segments of the x axis are mapped as indicated there.

w

2. Verify the mapping shown in Fig. 12, Appendix 2, where

z—1
w = .
z+1
Suggestion: Write the given transformation as a composition of the mappings
. i—Z
Z:[Z7 W:— s w=—W.
i+Z

Then refer to the mapping whose verification was completed in Exercise 1.
3. (a) By finding the inverse of the transformation
i—z
i+z
and appealing to Fig. 13, Appendix 2, whose verification was completed in Exercise 1,
show that the transformation

w =

11—z
i

1+z
maps the disk |z| < 1 onto the half plane Imw > 0.

w =
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(b) Show that the linear fractional transformation
z—2
z

w =

can be written
1-Z
1+Z

Then, with the aid of the result in part (a), verify that it maps the disk [z — 1] < 1
onto the left half plane Rew < 0.

Z=z—-1, W=i

, w=1iW.

4. Transformation (1), Sec. 102, maps the point z = oo onto the point w = exp(i«), which
lies on the boundary of the disk |w| < 1. Show that if 0 < o < 27 and the points z = 0
and z = 1 are to be mapped onto the points w = 1 and w = exp(i«/2), respectively, the
transformation can be written

w — o {z + exp(—ia/2)} '
z+exp(ic/2)
5. Note that when o = /2, the transformation in Exercise 4 becomes
iz +exp(in/4)
T ztexplin/4)

Verify that this special case maps points on the x axis as indicated in Fig. 123.

A'lE’
D/

-1 1 C/
' ' FIGURE 123
N A v
B Y T explin/d)

6. Show that if Im z¢ < 0, transformation (1), Sec. 102, maps the lower half plane Imz < 0
onto the unit disk |w| < 1.

7. The equation w = log(z — 1) can be written
Z=z—1, w=logZ.

Find a branch of log Z such that the cut z plane consisting of all points except those on the
segment x > 1 of the real axis is mapped by w = log(z — 1) onto the strip 0 < v < 27
in the w plane.

103. MAPPINGS BY THE EXPONENTIAL FUNCTION

The object of this section is to provide the reader with some examples of mappings
by the exponential function e* that was introduced in Chap. 3 (Sec. 30). Our examples
are reasonably simple, and we begin here by examining the images of vertical and
horizontal lines.
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EXAMPLE 1. We know from Sec. 30 that the transformation
(1) w = ¢é°
can be written w = e*e’”, where z = x + iy. Thus, if w = pe’?,

2) p=e, ¢=y.

The image of a typical point z = (cj, y) on a vertical line x = ¢; has polar
coordinates p = exp c; and ¢ = y in the w plane. That image moves counterclockwise
around the circle shown in Fig. 124 as z moves up the line. The image of the line is
evidently the entire circle; and each point on the circle is the image of an infinite
number of points, spaced 27 units apart, along the line.

A horizontal line y = ¢; is mapped in a one to one manner onto the ray ¢ = c,. To
see that this is so, we note that the image of a point z = (x, ¢;) has polar coordinates
p = e and ¢ = c,. Consequently, as that point z moves along the entire line from left
to right, its image moves outward along the entire ray ¢ = c;, as indicated in Fig. 124.

y v
xX=c

—————tme == V= () /

0 X 0 expc, U
FIGURE 124

w = expz.

Vertical and horizontal line segments are mapped onto portions of circles and rays,
respectively, and images of various regions are readily obtained from observations
made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformation w = e* maps the rectangular
regiona < x < b,c <y < d onto the region ¢ < p < el e < ¢ < d. The
two regions and corresponding parts of their boundaries are indicated in Fig. 125.

y v C’
dd D C
DI
B/

C A B ¢=d A/

p=c
0 a b x 0 u
FIGURE 125

w =expz.
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The vertical line segment AD is mapped onto the arc p = e, ¢c < ¢ < d, which
is labeled A’ D’. The images of vertical line segments to the right of AD and joining
the horizontal parts of the boundary are larger arcs; eventually, the image of the line
segment BC is the arc p = el e < ¢ < d, labeled B'C’. The mapping is one to one
if d — ¢ < 2. In particular, if c = 0 and d = 7, then 0 < ¢ < 7r; and the rectangular
region is mapped onto half of a circular ring, as shown in Fig. 8, Appendix 2.

Our final example here uses the images of horizontal lines to find the image of a
horizontal strip.

EXAMPLE 3. When w = ¢?, the image of the infinite strip 0 < y < x is the
upper half v > 0 of the w plane (Fig. 126). This is seen by recalling from Example 1
how a horizontal line y = c is transformed into a ray ¢ = ¢ from the origin. As the
real number c increases from ¢ = 0 to ¢ = m, the y intercepts of the lines increase
from O to v and the angles of inclination of the rays increase from ¢ = 0to ¢ = 7.
This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on
the boundaries of the two regions are indicated.

y v ,
i )/
/
/
/
/
/
ci A
——————————— - ————————— , _
/ \4)_ ¢
/
o X o u
FIGURE 126
w =expz.

104. MAPPING VERTICAL LINE SEGMENTS BY w =sinz

Since (Sec. 37) sinz = sinx cosh y 4 i cos x sinh y, where z = x + iy, the transfor-
mation w = sin z, where w = u + iv, can be written

(H u =sinxcoshy, v =cosxsinhy.

One method that is often useful in finding images of regions under this transfor-
mation is to examine images of vertical lines x = ¢;. If 0 < ¢; < 7/2, points on the
line x = ¢ are transformed into points on the curve

(2) u =sincycoshy, v =cosc;sinhy (—o00 <y < 00),

which is the right-hand branch of the hyperbola

u? v?
3) -5

- =1
sin“¢;  Cos“ ¢
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with foci at the points

w = +1/sin’ ¢; + cos?¢; = 1.

The second of equations (2) shows that as a point (¢}, y) moves upward along the entire
length of the line, its image moves upward along the entire length of the hyperbola’s
branch. Such aline and its image are shown in Fig. 127, where corresponding points are
labeled. Note that, in particular, there is a one to one mapping of the top half (y > 0)
of the line onto the top half (v > 0) of the hyperbola’s branch. If —7/2 < ¢; < 0,
the line x = ¢; is mapped onto the left-hand branch of the same hyperbola. As before,
corresponding points are indicated in Fig. 127.

The line x = 0, or the y axis, needs to be considered separately. According to
equations (1), the image of each point (0, y) is (0, sinh y). Hence the y axis is mapped
onto the v axis in a one to one manner, the positive y axis corresponding to the positive
v axis.

y v
F C F c
E B
x| o0 T X u
2 2
D A FIGURE 127
w = sinz.

We now illustrate how these observations can be used to establish the images of
certain regions.

EXAMPLE. Here we show that the transformation w = sinz is a one to one
mapping of the semi-infinite strip —7/2 < x < 7/2,y > 0 in the z plane onto the
upper half v > 0 of the w plane.

To do this, we first show that the boundary of the strip is mapped in a one to one
manner onto the real axis in the w plane, as indicated in Fig. 128. The image of the
line segment B A there is found by writing x = 7/2 in equations (1) and restricting
y to be nonnegative. Since u = coshy and v = 0 when x = /2, a typical point
(m/2,y) on BA is mapped onto the point (cosh y, 0) in the w plane; and that image
must move to the right from B’ along the u axis as (77/2, y) moves upward from B.
Points (x, 0) on the horizontal segment D B have images (sin x, 0), which move to the
right from D’ to B’ as x increases from x = —m/2 to x = /2, or as (x, 0) goes from
D to B. Finally, as points (—7/2, y) on the line segment D E move upward from D,
their images (—cosh y, 0) move left from D’.
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y v
E A
M| L
M| L
D c B E D\ lcfB A
= o z x -1 00 1 “  FIGURE 128
w = sinz.

Now each point in the interior —7/2 < x < 7 /2,y > 0 of the strip lies on
one of the vertical half lines x = ¢,y > 0 (—7/2 < ¢; < 7/2) that are shown in
Fig. 128. Also, it is important to notice that the images of those half lines are distinct
and constitute the entire half plane v > 0. More precisely, if the upper half L of a
line x = ¢; (0 < ¢; < 7/2) is thought of as moving to the left toward the positive
y axis, the right-hand branch of the hyperbola containing its image L’ is opening up
wider and its vertex (sin ¢y, 0) is tending toward the origin w = 0. Hence L’ tends to
become the positive v axis, which we saw just prior to this example is the image of the
positive y axis. On the other hand, as L approaches the segment BA of the boundary
of the strip, the branch of the hyperbola closes down around the segment B’ A’ of the u
axis and its vertex (sin ¢y, 0) tends toward the point w = 1. Similar statements can be
made regarding the half line M and its image M’ in Fig. 128. We may conclude that
the image of each point in the interior of the strip lies in the upper half plane v > 0
and, furthermore, that each point in the half plane is the image of exactly one point in
the interior of the strip.

This completes our demonstration that the transformation w = sin z is a one to
one mapping of the strip —n/2 < x < m/2,y > 0 onto the half plane v > 0. The
final result is shown in Fig. 9, Appendix 2. The right-hand half of the strip is evidently
mapped onto the first quadrant of the w plane, as shown in Fig. 10, Appendix 2.

105. MAPPING HORIZONTAL LINE
SEGMENTS BY w =sinz

Another convenient way to find the images of certain regions when w = sinz is to
consider the images of horizontal line segments y = ¢ (—w < x < ), wherec, > 0.
According to equations (1) in Sec. 104, the image of such a line segment is the curve
with parametric representation

(1) u = sinx coshcy, v = cosxsinhc; (—m <x <m).

That curve is readily seen to be the ellipse

u? v?

2 =1,

+ —
cosh’?c,  sinh’c,
whose foci lie at the points

w= :I:\/cosh2 ¢y — sinh® ¢ = 1.
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The image of a point (x, ¢;) moving to the right from point A to point £ in Fig. 129
makes one circuit around the ellipse in the clockwise direction. Note that when smaller
values of the positive number ¢, are taken, the ellipse becomes smaller but retains the
same foci (£1, 0). In the limiting case ¢, = 0, equations (1) become

u=sinx, v=0 (=7 <x <m);

and we find that the interval —m < x < 7 of the x axis is mapped onto the interval
—1 < u < 1 ofthe u axis. The mapping is not, however, one to one, as itis when ¢, > 0.

y=¢,>0

|
NI
)
NS
S
=
14
)
<

FIGURE 129

w = sinz.

EXAMPLE. The rectangular region —7/2 < x < /2, 0 <y < b is mapped
by w = sinz in a one to one manner onto the semi-elliptical region that is shown in
Fig. 130, where corresponding boundary points are also indicated. For if L is a line
segment y = ¢; (—m/2 < x < 7/2), where 0 < ¢, < b, its image L’ is the top
half of the ellipse (2). As ¢, decreases, L moves downward toward the x axis and the
semi-ellipse L’ also moves downward and tends to become the line segment E'F’'A’

from w = —1to w = 1. In fact, when ¢, = 0, equations (1) become
. T T
u=sinx, v=20 (——§x§—>;
2 2
y v
D bi |C B
L
E F A D’
T o x X u
2 2
FIGURE 130

w = sinz.
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and this is clearly a one to one mapping of the segment EFA onto E’'F’A’. Inasmuch
as any point in the semi-elliptical region in the w plane lies on one and only one of
the semi-ellipses, or on the limiting case E'F’A’, that point is the image of exactly
one point in the rectangular region in the z plane. The desired mapping, which is also
shown in Fig. 11 of Appendix 2, is now established.

106. SOME RELATED MAPPINGS

Mappings by various other functions closely related to the sine function are easily
obtained once mappings by the sine function are known.

EXAMPLE 1. One need only recall the identity (Sec. 37)
) T
s1n(z + 5) =C0SZ
to see that the transformation w = cos z can be written successively as

s .
Z=z+5, w = sin Z.

Hence the cosine transformation is the same as the sine transformation preceded by a
translation to the right through /2 units.

EXAMPLE 2. According to Sec. 39, the transformation w = sinhz can be
written w = —i sin(iz), or
Z=iz, W=sinZ, w=-—iW.
It is, therefore, a combination of the sine transformation and rotations through right

angles. The transformation w = cosh z is, likewise, essentially a cosine transformation
since cosh z = cos(iz).

EXAMPLE 3. With the aid of the identities
sin (z + %) =cosz and cos(iz) = coshz

that were used in the two examples just above, one can write the transformation
w = cosh z as

. T .
(H Z=lz+5, w = sin Z.
Let us now use transformations (1) to find the image of the horizontal semi-infinite
strip

x>0,0<y<m/2

under the transformation w = cosh z.

The first of transformations (1) is a rotation of the given strip through a right angle
in the positive direction followed by a translation /2 units to the right, as shown in
Fig. 131. The transformation w = sin Z then maps the resulting strip onto the first
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lel

Y v
C D D, A, D’/
c B !
B A * r X c” B” AV U FIGURE 131
2 w = coshz.

quadrant of the w plane, as pointed out at the end of Sec. 104 and shown in Fig. 10,
Appendix 2. It is left to the reader to verify corresponding boundary points of the given
strip and the first quadrant that are labeled in Fig. 131.

EXERCISES

1.

Show that the lines ay = x (a # 0) are mapped onto the spirals p = exp(a¢) under the
transformation w = exp z, where w = p exp(i¢).

By considering the images of horizontal line segments, verify that the image of the
rectangular region a < x < b,c¢ < y < d under the transformation w = expz is the
region ¢’ < p < el e < ¢ < d, as shown in Fig. 125 (Sec. 103).

Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transformation is w = exp z.

Find the image of the semi-infinite strip x > 0,0 < y < & under the transformation
w = exp z, and label corresponding portions of the boundaries.

. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line

x = ¢ (—m/2 < ¢; < 0) in a one to one manner onto the top half (v > 0) of the
left-hand branch of hyperbola (3), Sec. 104, as indicated in Fig. 128 of that section.

. Show that under the transformation w = sinz, aline x = ¢ (/2 < ¢; < ) is mapped

onto the right-hand branch of hyperbola (3), Sec. 104. Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto the lower and upper
halves, respectively, of the branch.

. Vertical half lines were used in the example in Sec. 104 to show that the transformation

w = sinz is a one to one mapping of the open region —7/2 < x < /2,y > 0 onto
the half plane v > 0. Verify that result by using, instead, the horizontal line segments
y=c (—m/2 < x < m/2), where ¢; > 0.

. (a) Show that under the transformation w = sinz, the images of the line segments

forming the boundary of the rectangular region 0 < x < 7/2,0 <y < 1 are the
line segments and the arc D'E’ shown in Fig. 132. The arc D’E’ is a quarter of the

y v
E D E’
F C F’

/2 1 FIGURE 132
A B x Al BC'D' Uy —sinz
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ellipse

u? v?

- 4+ —— =
cosh?1 ' sinh®1
(b) Complete the mapping indicated in Fig. 132 by using images of horizontal line

segments to prove that the transformation w = sin z establishes a one to one corre-
spondence between the interior points of the regions ABDE and A’B’'D'E’.

9. Verify that the interior of a rectangular region —7 < x < m,a < y < b lying above
the x axis is mapped by w = sin z onto the interior of an elliptical ring which has a cut
along the segment —sinh b < v < —sinha of the negative imaginary axis, as indicated
in Fig. 133. Note that while the mapping of the interior of the rectangular region is one
to one, the mapping of its boundary is not.

y
F E D
v
El
A B C
B/
r x X Alc u
1 FIGURE 133
F’|D w = sinz.

10. Observe that the transformation w = cosh z can be expressed as a composition of the
mappings

I |
Z=¢, W=Z+— w=-W.
¢ t7 Y3

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z, the
semi-infinite strip x < 0,0 < y < m in the z plane is mapped onto the lower half v < 0
of the w plane. Indicate corresponding parts of the boundaries.

11. (a) Verify that the equation w = sin z can be written
Z:i(z—i— %) W =coshZ, w=—W.

(b) Use the result in part (a) here and the one in Exercise 10 to show that the transfor-
mation w = sin z maps the semi-infinite strip —7/2 < x < 7 /2,y > 0 onto the
half plane v > 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in a
different way in the example in Sec. 104 and in Exercise 7.)

107. MAPPINGS BY 72

In Chap 2 (Sec. 14), we considered some fairly simple mappings under the transfor-
mation w = z2, written in the form

(hH u=x>—y>, v=2xy.

We turn now to a less elementary example and then (Sec. 108) examine related map-
pings w = z!/2, where specific branches of the square root function are taken.
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EXAMPLE 1. Let us use equations (1) to show that the image of the vertical
strip0 < x < 1, y > 0, shown in Fig. 134, is the closed semiparabolic region indicated
there.

Y| L, o
L;\\
L;\\
c B B FIGURE 134
1 X D’ (o4 1 u =2z

When 0 < x; < 1, the point (x|, y) moves up a vertical half line, labeled L,
in Fig. 134, as y increases from y = 0. The image traced out in the uv plane has,
according to equations (1), the parametric representation

2) u=xi—y, v=2y (0<y<o0).

Using the second of these equations to substitute for y in the first one, we see that the
image points (#, v) must lie on the parabola

(3) vt = —dxi(u —x}),

with vertex at (x7, 0) and focus at the origin. Since v increases with y from v = 0,
according to the second of equations (2), we also see that as the point (x;, y) moves
up L, from the x axis, its image moves up the top half L) of the parabola from the
u axis. Furthermore, when a number x, larger than x; but less than 1 is taken, the
corresponding half line L, has an image L} that is a half parabola to the right of L,
as indicated in Fig. 134. We note, in fact, that the image of the half line BA in that
figure is the top half of the parabola v = —4(u — 1), labeled B'A’.

The image of the half line CD is found by observing from equations (1) that a
typical point (0, y), where y > 0, on CD is transformed into the point (—y?, 0) in the
uv plane. So, as a point moves up from the origin along CD, its image moves left from
the origin along the u axis. Evidently, then, as the vertical half lines in the xy plane
move to the left, the half parabolas that are their images in the uv plane shrink down
to become the half line C'D’.

It is now clear that the images of all the half lines between and including CD and
BA fill up the closed semiparabolic region bounded by A’B’C’D’. Also, each point in
that region is the image of only one point in the closed strip bounded by ABCD. Hence
we may conclude that the semiparabolic region is the image of the strip and that there
is a one to one correspondence between points in those closed regions. (Compare with
Fig. 3 in Appendix 2, where the strip has arbitrary width.)
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Mappings that are compositions of z> and other elementary functions are often
interesting and useful.

EXAMPLE 2. Let us show that the transformation w = sin® z maps the semi-
infinite vertical strip 0 < x < /2, y > 0 onto the upper half plane v > 0. We do this
by writing

4) Z =sinz, w=2>

and noting that the first of these transformations maps the given region in the z plane
into the Z plane as shown in Fig. 135. (See the last paragraph in Sec. 104 and also
Fig. 10 in Appendix 2.) The second of transformations (4) then maps the first quadrant
in the Z plane onto the upper half of the w plane. This second mapping is evident from
the discussion of the transformation w = z? in Sec. 14 (Chap. 2).

y Y
v
D A D
C |5 ; !
| z * cl B AX  p” ¢’ B” A” 4  FIGURE 135
2 w = sin? 7.

108. MAPPINGS BY BRANCHES OF z!/2

We turn now to mappings by branches of the square root function and recall from
Sec. 10 in Chap. 1 how the square roots of z'/? were defined when z # 0. According
to that section, if polar coordinates are used and

z=rexp(i®) (r>0,—m<®<m),

then
(O + 2k
(1) 2= rexp % (k=0,1),

the principal root occurring when k = 0. In Sec. 34, we saw that z'/? can also be
written

12 _ 1
() 7/t = exp(i log z> (z #0).

The principal branch Fy(z) of the double-valued function z'/? is then obtained by
taking the principal branch of log z and writing (see Sec. 35)

1
Fy(z) = exp<2 Log z) (Jz| > 0, =7 < Arg z < ).
Since

ELogz:5(1nr+i®)=1n\/;+’7
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when z = r exp(i ®), this becomes
i®
3) Fy(z) = /rexp > (r>0,—7 <® <m).

The right-hand side of this equation is, of course, the same as the right-hand side of
equation (1) when k = 0 and — < ® <  there. The origin and the ray ® = & form
the branch cut for F{, and the origin is the branch point.

Images of curves and regions under the transformation w = Fy(z) may be
obtained by writing w = pexp(i¢), where p = /r and ¢ = ©/2. Arguments
are evidently halved by this transformation, and it is understood that w = 0 when
z=0.

EXAMPLE. It is easy to verify that w = Fj(z) is a one to one mapping of the
quarter disk 0 <r < 2,0 <6 < 7/2 onto the sector 0 < p < «/5,0 <¢ <m/4in
the w plane (Fig. 136). To do this, we observe that as a point z = r exp(i6;) moves
outward from the origin along a radius R; of length 2 and with angle of inclination 6,
(0 <6, < m/2), its image w = /7 exp(if; /2) moves outward from the origin in the
w plane along a radius R| whose length is V2 and angle of inclination is 6, /2. See
Fig. 136, where another radius R, and its image R} are also shown. It is now clear from
the figure that if the region in the z plane is thought of as being swept out by a radius,
starting with DA and ending with DC, then the region in the w plane is swept out by
the corresponding radius, starting with D’ A’ and ending with D’C’. This establishes a
one to one correspondence between points in the two regions.

Cl
R, \B’
R}
\2 FIGURE 136
X D’ A" u w = Fy(z).

When —m < ® < 7 and the branch
logz =Inr 4+i(® 4 2m)

of the logarithmic function is used, equation (2) yields the branch

(O +2
4) Fl(z)zﬁexpw (r>0—m<®<m)
of z!/2, which corresponds to k = 1 in equation (1). Since exp(iw) = —1, it follows

that F|(z) = —Fy(z). The values & Fy(z) thus represent the totality of values of z'/2
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at all points in the domain » > 0, —7 < ® < m. If, by means of expression (3),
we extend the domain of definition of Fj to include the ray ® = 7 and if we write
Fy(0) = 0, then the values & F(z) represent the totality of values of z!/? in the entire
z plane.

Other branches of z!/? are obtained by using other branches of log z in expression
(2). A branch where the ray 6 = « is used to form the branch cut is given by the
equation

(©) fa(Z)=«/;exp% (r>0,00 <6 <a+2m).

Observe that when @« = —m, we have the branch Fj(z) and that when o = 7, we
have the branch Fj(z). Just as in the case of Fj, the domain of definition of f, can
be extended to the entire complex plane by using expression (5) to define f, at the
nonzero points on the branch cut and by writing f,(0) = 0. Such extensions are,
however, never continuous on the entire complex plane.

Finally, suppose that n is any positive integer, where n > 2. The values of z'/" are
the nth roots of z when z # 0; and, according to Sec. 34, the multiple-valued function
z!/" can be written

1/n

1 (O + 2k
(6) z”":exp(logz):{ﬁexpl(—i_n) k=0,1,2,...,n—1),
n n

where r = |z| and ® = Arg z. The case n = 2 has just been considered. In the general
case, each of the n functions

(7) Fk(z)z(/;expw (k=0,1,2,...,n—1)

is a branch of z!/”, defined on the domain » > 0, —7 < ® < 7. When w = pe'?, the
transformation w = Fi(z) is a one to one mapping of that domain onto the domain

~o, Gk=br _, _Ck+Dr

These n branches of z'/" yield the n distinct nth roots of z at any point z in the domain
r >0, —m < ® < m. The principal branch occurs when k = 0, and further branches
of the type (5) are readily constructed.

EXERCISES

1. Show, indicating corresponding orientations, that the mapping w = z? transforms hori-
zontal lines y = y; (y; > 0) into parabolas v? = 4y?(u + y?), all with foci at the origin
w = 0. (Compare with Example 1, Sec. 107.)

2. Use the result in Exercise 1 to show that the transformation w = z” is a one to one
mapping of a horizontal stripa < y < b above the x axis onto the closed region between
the two parabolas

v =4a’(u +a%), vP=4b%(u +bP).
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3. Point out how it follows from the discussion in Example 1, Sec. 107, that the transfor-
mation w = z2 maps a vertical strip 0 < x < ¢, y > 0 of arbitrary width onto a closed
semiparabolic region, as shown in Fig. 3, Appendix 2.

4. Modify the discussion in Example 1, Sec. 107, to show that when w = 72, the image
of the closed triangular region formed by the lines y = £ x and x = 1 is the closed
parabolic region bounded on the left by the segment —2 < v < 2 of the v axis and on
the right by a portion of the parabola v> = —4(u — 1). Verify the corresponding points
on the two boundaries shown in Fig. 137.

y
D
C
A 1 <
B
FIGURE 137
w = Zz.

5. Write the transformation w = Fy(sin z) as
Z =sinz, w = Fy(Z) (1Z] > 0, —m < Argz < m).

With the understanding that F,(0) =0, show that w = Fy(sin z) maps the vertical semi-
infinite strip 0 < x < /2, y > 0 onto the octant in the w plane that is shown on the far
right in Fig. 138. (Compare this exercise with Example 2 in Sec. 107.)

Suggestion: See the last sentence in Sec. 104.

y Y v
DII
D A D’
b
2 1 1 FIGURE 138
C B X c’ B’ A" X c” B” A" u w = Fy(sinz).

6. Use Fig. 9, Appendix 2, to show that if w = (sinz)'/* and the principal branch of the

fractional power is taken, then the semi-infinite strip —7/2 < x < /2, y > 0is mapped
onto the part of the first quadrant lying between the line v = u and the u axis. Label
corresponding parts of the boundaries.

7. According to Example 2, Sec. 102, the linear fractional transformation
= 1
T
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maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half
planes Y > 0 and Y < 0, respectively. Show that, in particular, it maps the segment
—1 < x <1 of the x axis onto the segment X < 0 of the X axis. Then show that when
the principal branch of the square root is used, the composite function

w e 72 _ (z—l)l/z
z+1

maps the z plane, except for the segment —1 < x < 1 of the x axis, onto the right half
plane u > 0.

8. Determine the image of the domain r > 0, —7 < ® < x in the z plane under each of
the transformations w = Fi(z) (k = 0, 1, 2, 3), where Fj(z) are the four branches of
z!/* given by equation (7), Sec. 108, when n = 4. Use these branches to determine the
fourth roots of i.

109. SQUARE ROOTS OF POLYNOMIALS

The remaining three sections of this chapter deal with aspects of multiple-valued
functions that will not be used to any extent in the chapters that follow, and the reader
may skip to Chap. 9 without serious disruption.

EXAMPLE 1. Branches of the double-valued function (z — zo)'/? can be ob-
tained by noting that it is a composition of the translation Z = z — zo and the double-
valued function Z'/2. Each branch of Z'/? yields abranch of (z—z¢)'/?. More precisely,
when Z = Re'?, branches of Z!/? are

1%
Zl/zzﬁexp% (R>0,00 <0 <a+2m),
according to equation (5) in Sec. 108. Hence if we write

R=1|z—2z, ©=Arg(z—z0), and 6 =arg(z— z0),

two branches of (z — z)'/? are

(1) Go(z)=«/ﬁexp§ (R>0,—7 <©® <)
and

) 20(z) = ﬁexp% (R>0,0 <6 <27).

The branch of Z'/? that was used in writing G(z) is defined at all points in the
Z plane except for the origin and points on the ray Arg Z = m. The transformation
w = Gy(z) is, therefore, a one to one mapping of the domain

|z =20 >0, —m<Arg(z—z0)<m
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onto the right half Re w > 0 of the w plane (Fig. 139). The transformation w = go(z)
maps the domain

|z —z0l >0, 0<arg(z—zp) <27

in a one to one manner onto the upper half plane Im w > 0.

y z Y v i
R z i
I
© s L e e
_______ ~d R
0 ® W./z
x Tttt X i u
1
FIGURE 139
w = Go(2).

EXAMPLE 2. For an instructive but less elementary example, we now consider
the double-valued function (z> — 1)!/2. Using established properties of logarithms,
one can write

2 1/2 1 2 1 1
@ - = GXPL log(z” — 1)} = eXP[zlog(z -1+ Elog(z + 1,
or
3) @=D"=@-D"@+ D" (@#£*D.

Consequently, if fi(z) is a branch of (z — 1)!/? defined on a domain D and f>(z) is
a branch of (z + 1)!/? defined on a domain D, the product f(z) = fi(z) f>(z) is a
branch of (z> — 1)!/? defined at all points lying in both D; and D,.

In order to obtain a specific branch of (z> — 1)!/2, we use the branch of
(z — 1)'/2 and the branch of (z + 1)!/? given by equation (2). If we write

rp=1]z—1 and 6 =arg(z—1),
that branch of (z — 1)'/? is
16
film) = «/ﬁexp% (rn > 0,0 <0, <27).

The branch of (z + 1)!/? given by equation (2) is

1%
f2(2) = /raexp 172 (r, > 0,0 <6, <2m),



334 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

where
rp=|z+1] and 6, =arg(z+1).

The product of these two branches is, therefore, the branch f of (z> — 1)!/? defined
by means of the equation

“) (@) = /rirexp

where

i(0) +0,)
2 b

re >0, 0<6 <2m k=1,2).

As illustrated in Fig. 140, the branch f is defined everywhere in the z plane except on
the ray r, > 0, 6, = 0, which is the portion x > —1 of the x axis.

FIGURE 140

The branch f of (z> — 1)!/? given in equation (4) can be extended to a function
i(6;+6
5) F@) = Janep )
where
re>0, 0<6,<2nm (k=1,2) and ry+r > 2.

As we shall now see, this function is analytic everywhere in its domain of definition,
which is the entire z plane except for the segment —1 < x < 1 of the x axis.

Since F(z) = f(z) for all z in the domain of definition of F except on the ray
r; > 0,60; = 0, we need only show that F is analytic on that ray. To do this, we form
the product of the branches of (z — 1)'/? and (z +1)!/? which are given by equation (1).
That is, we consider the function

i(©®+06
G(2) = Jrirmexp %7
where
n=lz=1, n=lz+l1, O=Ag—-1), O,=Arg(z+1)
and where
re>0 —-m<0Op<m (k=1,2).

Observe that G is analytic in the entire z plane except for the ray r; > 0, ®; = 7.
Now F(z) = G(z) when the point z lies above or on the ray r; > 0, ®; = 0; for
then 6, = ®; (k = 1,2). When 7 lies below that ray, 6y = ©; + 27 (k = 1,2).
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Consequently, exp(i6;/2) = —exp(i®;/2); and this means that

X 4i(01+92) = (ex ﬂ ex @ =ex 4i(®1+®2)
P = ("5 Py )=

So again, F(z) = G(z). Since F(z) and G (z) are the same in a domain containing the
ray r; > 0, ®; = 0 and since G is analytic in that domain, F is analytic there. Hence
F' is analytic everywhere except on the line segment P, P; in Fig. 140.

The function F defined by equation (5) cannot itself be extended to a function
which is analytic at points on the line segment P, P;. This is because the value on
the right in equation (5) jumps from i,/r|7, to numbers near —i,/rir; as the point
z moves downward across that line segment, and the extension would not even be
continuous there.

The transformation w = F(z) is, as we shall see, a one to one mapping of the
domain D, consisting of all points in the z plane except those on the line segment
P> P, onto the domain D,, consisting of the entire w plane with the exception of the
segment —1 < v < 1 of the v axis (Fig. 141).

FIGURE 141
w = F(z).

Before verifying this, we note that if z =iy (y > 0), then
rr=rp,>1 and 0+ 6, =m;

hence the positive y axis is mapped by w = F(z) onto that part of the v axis for which
v > 1. The negative y axis is, moreover, mapped onto that part of the v axis for which
v < —1. Each point in the upper half y > 0 of the domain D, is mapped into the
upper half v > 0 of the w plane, and each point in the lower half y < 0 of the domain
D, is mapped into the lower half v < 0 of the w plane. Also, the ray r; > 0,6, =0
is mapped onto the positive real axis in the w plane, and the ray r, > 0,6, = 7w is
mapped onto the negative real axis there.

To show that the transformation w = F(z) is one to one, we observe that if

F(z1) = F(z2), then z3 — 1 = z5 — 1. From this, it follows that z; = z, or z; = —25.
However, because of the manner in which F maps the upper and lower halves of the
domain D_, as well as the portions of the real axis lying in D_, the case z; = —z is

impossible. Thus, if F(z;) = F(z2), then z; = z5; and F is one to one.

We can show that /" maps the domain D, onto the domain D,, by finding a function
H mapping D,, into D, with the property thatif z = H(w), then w = F(z). This will
show that for any point w in D,,, there exists a point z in D, such that F'(z) = w; that
is, the mapping F is onto. The mapping H will be the inverse of F.
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To find H, we first note that if w is a value of (z> — 1)!/? for a specific z, then
w? = 72 — 1; and z is, therefore, a value of (w? 4+ 1)'/2 for that w. The function H
will be a branch of the double-valued function

w?>+ D" = w - )" w+ i)' (w # +i).

Following our procedure for obtaining the function F (z), we writew — i = p; exp(i¢)
and w +i = pyexp(ig,). (See Fig. 141.) With the restrictions

3
pk>o,—%s¢k<7”(k=1,z> and  py+p > 2,

we then write

i(¢1 +¢2)
—

the domain of definition being D,,. The transformation z = H (w) maps points of D,,
lying above or below the u axis onto points above or below the x axis, respectively. It
maps the positive u axis into that part of the x axis where x > 1 and the negative u axis
into that part of the negative x axis where x < —1.If z = H(w), then z> = w? + 1;
and so w? = z> — 1. Since z is in D, and since F(z) and —F(z) are the two values
of (z> — 1)Y/2 for a point in D., we see that w = F(z) or w = —F(z). But it is
evident from the manner in which F and H map the upper and lower halves of their
domains of definition, including the portions of the real axes lying in those domains,
that w = F(2).

(6) H(w) = \/p1p2 exp

Mappings by branches of double-valued functions

(7) w=(>+Az+ B)"? = [(Z—Zo)z—Zﬂl/2 (z1 #0),

where A = —2zp and B = z} = z7, can be treated with the aid of the results found for
the function F in Example 2 just above and the successive transformations

(8) Z="=: ., W=(Z*=D"?, w=gW.

EXERCISES

1. The branch F of (z2 — 1)'/?in Example 2, Sec. 109, was defined in terms of the coordi-
nates ry, 2, 01, 6. Explain geometrically why the conditions r; > 0,0 < 6, +6, < 7
describe the first quadrant x > 0,y > 0 of the z plane. Then show that w = F(z)
maps that quadrant onto the first quadrant # > 0, v > 0 of the w plane.

Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described, note
that 0; + 6, = 7 at each point on the positive y axis and that 6; + 6, decreases as a point
z moves to the right along aray 6, = ¢ (0 < ¢ < 7/2).
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2. For the mapping w = F(z) of the first quadrant in the z plane onto the first quadrant in
the w plane in Exercise 1, show that

1 1
u= E\/rlrz—i-xz —y2—1 and v= ﬁ\/rlrz —x24+y2+1,
where
(rr2)* = 2 + 32 + 1) — 4x7,
and that the image of the portion of the hyperbola x> — y> = 1 in the first quadrant is the
ray v = u (u > 0).

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first
quadrant of the z plane is described by the conditions r; > 0,0 < 6, + 6, < m/2.
Then show that the image of D is the octant 0 < v < u. Sketch the domain D and its
image.

4. Let F be the branch of (z> — 1)!/? that was defined in Example 2, Sec. 109, and let
z0 = roexp(ifp) be a fixed complex number, where rp > 0 and 0 < 6y < 27. Show that
a branch Fy of (z> — z3)!/? whose branch cut is the line segment between the points zo
and —z( can be written Fy(z) = zoF (Z), where Z = z/zp.

5. Write z — 1 = ryexp(if;) and z + 1 = r, exp(i®,), where
0<6 <27 and —7w < ®, <,

to define a branch of the function
(a) (22— DV

L1\
® (z+1) '

In each case, the branch cut should consist of the two rays 6; = 0 and ©, = .

6. Using the notation in Sec. 109, show that the function

z—1\'? " i(6) — 6,)
w = =,/—exXp—F7F7—
z+1 r 2

is a branch with the same domain of definition D, and the same branch cut as the function

w = F(z) in that section. Show that this transformation maps D, onto the right half plane

p>0,—7/2 < ¢ < /2, where the point w = 1 is the image of the point z = co. Also,
show that the inverse transformation is

1+ w?

1= =

1 — w?

(Compare with Exercise 7, Sec. 108.)

(Rew > 0).

7. Show that the transformation in Exercise 6 maps the region outside the unit circle |z| = 1
in the upper half of the z plane onto the region in the first quadrant of the w plane between
the line v = u and the u axis. Sketch the two regions.

8. Write z = rexp(i®),z — 1 = rexp(i®,), and z + 1 = rp exp(i®,), where the values
of all three arguments lie between —m and 7. Then define a branch of the function
[z(z> — 1)]'/? whose branch cut consists of the two segments x < —1 and 0 < x < 1 of
the x axis.
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110. RIEMANN SURFACES

This and the following section constitute a brief introduction to the concept of a
mapping defined on a Riemann surface, which is a generalization of the complex
plane consisting of more than one sheet. The theory rests on the fact that at each point
on such a surface only one value of a given multiple-valued function is assigned.

Once a Riemann surface is devised for a given function, the function is single-
valued on the surface and the theory of single-valued functions applies there. Complex-
ities arising because the function is multiple-valued are thus relieved by a geometric
device. However, the description of those surfaces and the arrangement of proper con-
nections between the sheets can become quite involved. We limit our attention to fairly
simple examples and begin with a surface for log z.

EXAMPLE 1. Corresponding to each nonzero number z, the multiple-valued
function

(D logz=Inr +i6

has infinitely many values. To describe log z as a single-valued function, we replace the
z plane, with the origin deleted, by a surface on which a new point is located whenever
the argument of the number z is increased or decreased by 27, or an integral multiple
of 2.

We treat the z plane, with the origin deleted, as a thin sheet Ry which is cut along
the positive half of the real axis. On that sheet, let 6 range from O to 2. Let a second
sheet R be cut in the same way and placed in front of the sheet Ry. The lower edge
of the slit in Ry is then joined to the upper edge of the slit in R;. On Rj, the angle
6 ranges from 27 to 47; so, when z is represented by a point on R;, the imaginary
component of log z ranges from 27 to 4.

A sheet R; is then cut in the same way and placed in front of R;. The lower edge
of the slit in R, is joined to the upper edge of the slit in this new sheet, and similarly
for sheets R3, R4, ... . A sheet R_; on which 6 varies from 0 to —2 is cut and placed
behind Ry, with the lower edge of its slit connected to the upper edge of the slit in
Ry; the sheets R_,, R_3, ... are constructed in like manner. The coordinates r and 6
of a point on any sheet can be considered as polar coordinates of the projection of the
point onto the original z plane, the angular coordinate 6 being restricted to a definite
range of 27 radians on each sheet.

Consider any continuous curve on this connected surface of infinitely many sheets.
As a point z describes that curve, the values of log z vary continuously since 6, in
addition to r, varies continuously; and log z now assumes just one value corresponding
to each point on the curve. For example, as the point makes a complete cycle around
the origin on the sheet R over the path indicated in Fig. 142, the angle changes from
0 to 27. As it moves across the ray 6 = 2, the point passes to the sheet R; of the
surface. As the point completes a cycle in R, the angle 6 varies from 27 to 4sr; and
as it crosses the ray 6 = 4, the point passes to the sheet R;.
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FIGURE 142

The surface described here is a Riemann surface for log z. Itis a connected surface
of infinitely many sheets, arranged so that log z is a single-valued function of points
on it.

The transformation w = log z maps the whole Riemann surface in a one to one
manner onto the entire w plane. The image of the sheet Ry is the strip 0 < v < 27
(see Example 3, Sec. 102). As a point z moves onto the sheet R; over the arc shown in
Fig. 143, its image w moves upward across the line v = 27, as indicated in that figure.

y v
R, —
27 t
VR 4
o~ —:_ /RO %) I
: FIGURE 143

Note that log z, defined on the sheet R;, represents the analytic continuation
(Sec. 28) of the single-valued analytic function

f@)=Inr+i6 0 <6 <2m)

upward across the positive real axis. In this sense, log z is not only a single-valued
function of all points z on the Riemann surface but also an analytic function at all
points there.

The sheets could, of course, be cut along the negative real axis or along any other
ray from the origin, and properly joined along the slits, to form other Riemann surfaces
for log z.

EXAMPLE 2. Corresponding to each point in the z plane other than the origin,
the square root function

(2) Zl/z — \/;eiQ/Z

has two values. A Riemann surface for z'/2 is obtained by replacing the z plane with
a surface made up of two sheets Ry and R;, each cut along the positive real axis and
with R; placed in front of Ry. The lower edge of the slit in Ry is joined to the upper
edge of the slit in R;, and the lower edge of the slit in R; is joined to the upper edge
of the slit in Ry.
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As a point z starts from the upper edge of the slitin R, and describes a continuous
circuit around the origin in the counterclockwise direction (Fig. 144), the angle 6
increases from O to 2. The point then passes from the sheet R to the sheet Ry, where
60 increases from 27 to 4. As the point moves still further, it passes back to the sheet
Ry, where the values of 6 can vary from 47 to 677 or from 0 to 27, a choice that does
not affect the value of z!/2, etc. Note that the value of z!/2 at a point where the circuit
passes from the sheet Ry to the sheet R) is different from the value of z'/? at a point
where the circuit passes from the sheet R; to the sheet Ry.

FIGURE 144

We have thus constructed a Riemann surface on which z!/2 is single-valued for
each nonzero z. In that construction, the edges of the sheets Ry and R, are joined in
pairs in such a way that the resulting surface is closed and connected. The points where
two of the edges are joined are distinct from the points where the other two edges are
joined. Thus it is physically impossible to build a model of that Riemann surface. In
visualizing a Riemann surface, it is important to understand how we are to proceed
when we arrive at an edge of a slit.

The origin is a special point on this Riemann surface. It is common to both sheets,
and a curve around the origin on the surface must wind around it twice in order to be
a closed curve. A point of this kind on a Riemann surface is called a branch point.

The image of the sheet R, under the transformation w = z!/? is the upper half
of the w plane since the argument of w is 6/2 on Ry, where 0 < 6/2 < m. Likewise,
the image of the sheet R, is the lower half of the w plane. As defined on either sheet,
the function is the analytic continuation, across the cut, of the function defined on the
other sheet. In this respect, the single-valued function z!/? of points on the Riemann
surface is analytic at all points except the origin.

EXERCISES

1. Describe the Riemann surface for log z obtained by cutting the z plane along the negative
real axis. Compare this Riemann surface with the one obtained in Example 1, Sec. 110.

2. Determine the image under the transformation w = log z of the sheet R,, where 7 is an
arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 110.

3. Verify that under the transformation w = z'/2, the sheet R, of the Riemann surface for

z!/% given in Example 2, Sec. 110, is mapped onto the lower half of the w plane.
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4. Describe the curve, on a Riemann surface for z!/2, whose image is the entire circle

|w| = 1 under the transformation w = z'/2.

5. Let C denote the positively oriented circle |z — 2| = 1 on the Riemann surface described
in Example 2, Sec. 110, for z'/2, where the upper half of that circle lies on the sheet Ry
and the lower half on R;. Note that for each point z on C, one can write

22 = /re’®?  where 471—% <9<47r+%.

/zl/zdz =0.
c

Generalize this result to fit the case of the other simple closed curves that cross from one
sheet to another without enclosing the branch points. Generalize to other functions, thus
extending the Cauchy—Goursat theorem to integrals of multiple-valued functions.

State why it follows that

111. SURFACES FOR RELATED FUNCTIONS

We consider here Riemann surfaces for two composite functions involving simple
polynomials and the square root function.

EXAMPLE 1. Letus describe a Riemann surface for the double-valued function
i6,+6

(1) f@) =@ =D = rirexp %
where z — 1 = riexp(if;) and z + 1 = rpexp(if,). A branch of this function, with
the line segment P, P| between the branch points 7 = 1 serving as a branch cut
(Fig. 145), was described in Example 2, Sec. 109. That branch is as written above,
with the restrictions r, > 0,0 < 6, < 27 (k = 1,2) and r; + r, > 2. The branch is
not defined on the segment P, P;.

FIGURE 145

A Riemann surface for the double-valued function (1) must consist of two sheets
Ry and R;. Let both sheets be cut along the segment P> P;. The lower edge of the slit
in Ry is then joined to the upper edge of the slit in R;, and the lower edge in R; is
joined to the upper edge in Ry.

On the sheet Ry, let the angles #; and 6, range from O to 2. If a point
on the sheet R\ describes a simple closed curve that encloses the segment P, P; once in
the counterclockwise direction, then both 8; and 8, change by the amount 27t upon the



342 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

return of the point to its original position. The change in (6; +6,)/2 is also 2, and the
value of f is unchanged. If a point starting on the sheet R describes a path that passes
twice around just the branch point z = 1, it crosses from the sheet R, onto the sheet
R, and then back onto the sheet R\ before it returns to its original position. In this
case, the value of 0; changes by the amount 47, while the value of 6, does not change
at all. Similarly, for a circuit twice around the point z = —1, the value of 6, changes
by 4, while the value of 6, remains unchanged. Again, the change in (6; + 6,)/2 is
2m; and the value of f is unchanged. Thus, on the sheet Ry, the range of the angles 6,
and 6, may be extended by changing both 6, and 6, by the same integral multiple of
27 or by changing just one of the angles by a multiple of 4. In either case, the total
change in both angles is an even integral multiple of 2.

To obtain the range of values for 6, and 6, on the sheet R, we note that if a point
starts on the sheet Ry and describes a path around just one of the branch points once, it
crosses onto the sheet R; and does not return to the sheet Ry. In this case, the value of
one of the angles is changed by 27, while the value of the other remains unchanged.
Hence, on the sheet R;, one angle can range from 2m to 4, while the other ranges
from O to 27r. Their sum then ranges from 27 to 47, and the value of (6, + 6,)/2,
which is the argument of f(z), ranges from 7 to 27. Again, the range of the angles is
extended by changing the value of just one of the angles by an integral multiple of 47
or by changing the value of both angles by the same integral multiple of 2.

The double-valued function (1) may now be considered as a single-valued function
of the points on the Riemann surface just constructed. The transformation w = f(z)
maps each of the sheets used in the construction of that surface onto the entire w plane.

EXAMPLE 2. Consider the double-valued function

@ @) =[z(2> = DI'? = \/rriryexp W

(Fig. 146). The points z = 0, &1 are branch points of this function. We note that if the
point z describes a circuit that includes all three of those points, the argument of f(z)
changes by the angle 37 and the value of the function thus changes. Consequently, a
branch cut must run from one of those branch points to the point at infinity in order
to describe a single-valued branch of f. Hence the point at infinity is also a branch
point, as one can show by noting that the function f(1/z) has a branch point at z = 0.

Let two sheets be cut along the line segment L, from z = —1 to z = 0 and along
the part L; of the real axis to the right of the point z = 1. We specify that each of

FIGURE 146
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the three angles 6, 6, and 6, may range from O to 27 on the sheet Ry and from 27 to
47 on the sheet R;. We also specify that the angles corresponding to a point on either
sheet may be changed by integral multiples of 27 in such a way that the sum of the
three angles changes by an integral multiple of 4. The value of the function f is,
therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining the
lower edges in Ry of the slits along L; and L, to the upper edges in R; of the slits
along L, and L,, respectively. The lower edges in R; of the slits along L; and L, are
then joined to the upper edges in Ry of the slits along L; and L,, respectively. It is
readily verified with the aid of Fig. 146 that one branch of the function is represented
by its values at points on R and the other branch at points on R;.

EXERCISES

1. Describe a Riemann surface for the triple-valued function w = (z — 1)'/3, and point out
which third of the w plane represents the image of each sheet of that surface.

2. Corresponding to each point on the Riemann surface described in Example 2, Sec. 111,
for the function w = f(z) in that example, there is just one value of w. Show that
corresponding to each value of w, there are, in general, three points on the surface.

3. Describe a Riemann surface for the multiple-valued function

2
Fo) = (Z ) .
Z

4. Note that the Riemann surface described in Example 1, Sec. 111, for (z> — 1)'/? is also
a Riemann surface for the function

g@) =z+ - DV

Let f denote the branch of (z>—1)'/? defined on the sheet Ry, and show that the branches
go and g; of g on the two sheets are given by the equations

go(z) = =z + fo(2).

81(2)

5. In Exercise 4, the branch f; of (z> — 1)!/? can be described by means of the equation

o0 = 7 (o0 2) (0 2).
where 0 and 6, range from 0 to 27 and

z—1=rexp(if)), z+1=ryexp(i6,).
Note that

2z = ryexp(if)) + rp exp(i6,),
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and show that the branch gy of the function g(z) = z + (z> — 1)'/? can be written in the
form

1 i i0:\?
80(2) = 3 \/ﬁeXPT +\/66XP7 .

Find gy (z)m and note that r; +r, > 2 and cos[(6; —6,)/2] > 0 for all z, to prove that
|g0(z)| = 1. Then show that the transformation w = z 4 (z> — 1)'/?> maps the sheet Ry
of the Riemann surface onto the region |w| > 1, the sheet R; onto the region |w| < 1,
and the branch cut between the points z = +1 onto the circle |w| = 1. Note that the
transformation used here is an inverse of the transformation

l(+1)
=—(w+—).
‘ 2 w



CHAPTER

9

CONFORMAL MAPPING

In this chapter, we introduce and develop the concept of a conformal mapping, with
emphasis on connections between such mappings and harmonic functions (Sec. 27).
Applications to physical problems will follow in Chap. 10.

112. PRESERVATION OF ANGLES AND SCALE FACTORS
Let C be a smooth arc (Sec. 43), represented by the equation
z=2z(t) (a<t<bh),
and let f(z) be a function defined at all points z on C. The equation
w=flz(] (@a<t=<Db)

is a parametric representation of the image I' of C under the transformation w = f(z).

Suppose that C passes through a point zo = z(#p) (a < to < b) at which f is analytic
and that f'(z0) # 0. According to the chain rule, verified in Exercise 5, Sec. 43, if
w(r) = flz()], then

ey w'(to) = f'lz(to)1z' (t0);

and this means that (see Sec. 9)

(2) argw’(ty) = arg f'[z(ty)] + arg ' (o).

345
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Statement (2) is useful in relating the directions of C and I' at the points zo and
wo = f(z0), respectively.

To be specific, let 6y denote a value of arg 7' (#y) and let ¢y be a value of arg w'(z).
According to the discussion of unit tangent vectors T near the end of Sec. 43, the
number 6 is the angle of inclination of a directed line tangent to C at zy and ¢y is
the angle of inclination of a directed line tangent to I" at the point wy = f(z¢). (See
Fig. 147.) In view of statement (2), there is a value 1/ of arg f'[z(#)] such that

3) $o0 = Yo + bo.
Thus ¢y — 0y = ¥, and we find that the angles ¢, and 6, differ by the angle of rotation
“ Yo = arg f'(20).-

y v

FIGURE 147
¢o = Yo + 6.

Now let C; and C, be two smooth arcs passing through zg , and let 6, and 6, be
angles of inclination of directed lines tangent to C; and C,, respectively, at zo. We
know from the preceding paragraph that the quantities

o1 =vYo+01 and ¢ =Yo+ 0

are angles of inclination of directed lines tangent to the image curves I'; and I';,
respectively, at the point wy = f(z0). Thus ¢» — ¢ = 6, — 0;; that is, the angle
¢o — ¢ from I'; to ', is the same in magnitude and sense as the angle 6, — 6; from
C, to C,. Those angles are denoted by « in Fig. 148.

y v
G I,

o
T,
Wy

)

o x o u FIGURE 148

Because of this angle-preserving property, a transformation w = f(z) is said to
be conformal at a point zq if f is analytic there and f’(zo) # 0. Such a transformation
is actually conformal at each point in some neighborhood of z¢. For it must be analytic
in a neighborhood of zy (Sec. 25); and since its derivative f’ is continuous in that
neighborhood (Sec. 57), Theorem 2 in Sec. 18 tells us that there is also a neighborhood
of zg throughout which f’(z) # 0.
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A transformation w = f(z), defined on a domain D, is referred to as a conformal
transformation, or a conformal mapping, when it is conformal at each point in D.
That is, the mapping is conformal in D if f is analytic in D and its derivative f’ has
no zeros there. Each of the elementary functions studied in Chap. 3 can be used to
define a transformation that is conformal in some domain.

EXAMPLE 1. The mapping w = ¢° is conformal throughout the entire z plane
since (¢*)’ = e* # 0 for each z. Consider any two lines x = ¢ and y = ¢, in the
z plane, the first directed upward and the second directed to the right. According to
Example 1 in Sec. 103, their images under the mapping w = e* are a positively oriented
circle centered at the origin and a ray from the origin, respectively. As illustrated in
Fig. 124 (Sec. 103), the angle between the lines at their point of intersection is a right
angle in the negative direction, and the same is true of the angle between the circle and
the ray at the corresponding point in the w plane. The conformality of the mapping
w = e° is also illustrated in Figs. 7 and 8 of Appendix 2.

EXAMPLE 2. Consider two smooth arcs which are level curves u(x, y) = c;
and v(x, y) = ¢, of the real and imaginary components, respectively, of a function

f@) =ulx,y)+iv(x,y),

and suppose that they intersect at a point zo where f is analytic and f”(zg) # 0. The
transformation w = f(z) is conformal at zo and maps these arcs into the lines u = ¢
and v = ¢,, which are orthogonal at the point wg = f(zp). According to our theory,
then, the arcs must be orthogonal at zy. This has already been verified and illustrated
in Exercises 2 through 6 of Sec. 27.

A mapping that preserves the magnitude of the angle between two smooth arcs
but not necessarily the sense is called an isogonal mapping.

EXAMPLE 3. The transformation w = z, which is a reflection in the real axis,
is isogonal but not conformal. If it is followed by a conformal transformation, the
resulting transformation w = f (%) is also isogonal but not conformal.

Suppose that f is not a constant function and is analytic at a point z¢. If, in
addition, f'(zg) = 0, then zg is called a critical point of the transformation w = f(z).

EXAMPLE 4. The point zo = 0 is a critical point of the transformation
w=1+2,
which is a composition of the mappings
Z=7z> and w=1+2Z.

A ray 6 = « from the point zp = 0 is evidently mapped onto the ray from the point
wo = | whose angle of inclination is 2¢, and the angle between any two rays drawn
from zo = 0 is doubled by the transformation.
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More generally, it can be shown that if z¢ is a critical point of a transformation
w = f(z), there is an integer m (m > 2) such that the angle between any two smooth
arcs passing through z is multiplied by m under that transformation. The integer m is
the smallest positive integer such that £ (zo) # 0. Verification of these facts is left
to the exercises.

Another property of a transformation w = f(z) that is conformal at a point z is
obtained by considering the modulus of f’(zo). From the definition of derivative and a
property of limits involving moduli that was derived in Exercise 7, Sec. 18, we know
that

) ol = i L@y Q= GOl

—20 Z—20 7—>20 |z — zo|

Now |z — zo| is the length of a line segment joining zg and z, and | f (z) — f(zo)] is the
length of the line segment joining the points f(z9) and f(z) in the w plane. Evidently,
then, if z is near the point z(, the ratio

|f (@) — fzo)l

|z — 2ol

of the two lengths is approximately the number | f(z¢)|. Note that | f'(z¢)| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation arg f'(z) and the scale factor | f'(zo)| vary, in
general, from point to point, it follows from the continuity of f’ (see Sec. 57) that
their values are approximately arg f'(z¢) and | f'(zo)| at points z near zo. Hence the
image of a small region in a neighborhood of zy conforms to the original region in
the sense that it has approximately the same shape. A large region may, however, be
transformed into a region that bears no resemblance to the original one.

113. FURTHER EXAMPLES

The two examples that follow are closely related; and, in addition to illustrating the
material in the preceding section, they emphasize how the preservation of angles and
scale factors can change from point to point in the z plane.

EXAMPLE 1. The function

f@==x"—y +idxy

is entire, and its derivative f’(z) = 2z is zero only at the origin. Hence the transfor-
mation w = f(z) is conformal at the point 7o = 1 4 i, where the half lines

(1) y=x(x=0) and x=1(y=0)

intersect. We denote those half lines by C and C,, respectively, as shown in Fig. 149,
and we agree that their positive sense is upward. Observe that the angle from C; to C;
is r /4 at their point of intersection.
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o
IR

i 2i

1+1i

FIGURE 149
(0] 1 X o 1 u w=z2.

Since the image of a point z = (x, y) is a point in the w plane whose rectangular
coordinates are

2) u=x>—y> and v=2xy,
the half line C| is transformed into the curve I'; with parametric representation
3) u=0, v=2x" (0 < x < 00).

Thus I'; is the upper half v > 0 of the v axis. The half line Cj is transformed into the
curve I', represented by the equations

) u=1-y* v=2y (0<y<oo).
By eliminating the variable y in equations (3), we find that I"; is the upper half of the
parabola v?> = —4(u — 1). Note that in each case, the positive sense of the image curve
is upward.
If u and v are the variables in representation (4) for the image curve I',, then
dv _dv/dy 2 2
du  du/dy =2y v’
In particular, dv/du = —1 when v = 2. Consequently, the angle from the image

curve I'; to the image curve I'; at the point w = f (1 4+ i) = 2i is /4, as required by
the conformality of the mapping at z = 1 4+ i. The angle of rotation 7z /4 at the point
z =1+ is, of course, a value of

arg f'(1 +i) = arg[2(1 +i)] = % + 2nm (n=0,=£1,£2,...).
The scale factor at that point is the number

|f A+ =201 +i)] = 2V2.

EXAMPLE 2. Turning now to Fig. 150, we consider the same half line C, used
in Example 1 and the new one Cs that is shown in the figure. Those half lines intersect
at the point zp = 1, and their positive directions are as shown.

We also use the same transformation w = z? as in Example 1. Thus the image of
C, remains the same as in Example 1. In view of equations (2), and since y = 0 on
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y v
G ]\
T T
[MN\2 G N2 T5  FIGURE 150
0 1 X o 1 u w =72,
C3, the image I'; of Cs is
u=x> v=0 0 <x < ).

This tells us that the right angle between C, and Cs in the z plane is preserved in the
w plane.

Finally, we observe that the scale factor at the point of intersection zy = 1 of the
curves C, and C3 in Fig. 150 is | f'(1)| = 2.

114. LOCAL INVERSES

A transformation w = f(z) that is conformal at a point zy has a local inverse there.
Thatis, if wy = f(zo), then there exists a unique transformation z = g(w), which is de-
fined and analytic in a neighborhood N of wy, such that g(wg) = zp and f[g(w)] = w
for all points w in N. The derivative of g(w) is, moreover,

1
@)
We note from expression (1) that the transformation z = g(w) is itself conformal
at wy.
Assuming that w = f(z) is, in fact, conformal at zg, let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calculus.” As

noted in Sec. 112, the conformality of the transformation w = f(z) at zo implies that
there is some neighborhood of zy throughout which f is analytic. Hence if we write

6] g'(w) =

Z=x+iy, zo=xo+tiy, and [f(z)=u(x,y)+iv(x,y),

we know that there is a neighborhood of the point (xg, yg) throughout which the
functions u(x, y) and v(x, y), along with their partial derivatives of all orders, are
continuous (see Sec. 57).

*The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R.
Mann, Advanced Calculus, 3d ed., pp. 241-247, 1983.
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Now the pair of equations

2) u=u(x,y), v=uv(x,y)

represents a transformation from the neighborhood just mentioned into the uv plane.
Moreover, the determinant

Uy Uy
Uy Uy

J =

= UyVy — Vylly,

which is known as the Jacobian of the transformation, is nonzero at the point (xg, yo).
For, in view of the Cauchy—Riemann equations u, = v, and u, = —v,, one can write
J as

J =)+ ) =11 @

and f'(zp) # 0 since the transformation w = f(z) is conformal at z, . The above con-
tinuity conditions on the functions u(x, y) and v(x, y) and their derivatives, together
with this condition on the Jacobian, are sufficient to ensure the existence of a local
inverse of transformation (2) at (xg, yo). That is, if

3) uo = u(xp, yo) and vy = v(xo, Yo),

then there is a unique continuous transformation

4) x=x,v), y=yu,v),

defined on a neighborhood N of the point (1, vp) and mapping that point onto (xg, o),
such that equations (2) hold when equations (4) hold. Also, in addition to being con-
tinuous, the functions (4) have continuous first-order partial derivatives satisfying the
equations

1 1 1 1

(5) Xu = 7Uy, xv=_7My7 Yu = — Uy, Yo = FUx
throughout N.

If we write w = u + iv and wy = ug + ivy, as well as
(6) g(w) = x(u,v) +iy(u,v),
the transformation z = g(w) is evidently the local inverse of the original transformation
w = f(z) at zo. Transformations (2) and (4) can be written

u+iv=ulx,y)+iv(x,y) and x+iy=x(u,v)+iyu,v);

and these last two equations are the same as

w= f(z) and z=g(w),

where g has the desired properties. Equations (5) can be used to show that g is an-
alytic in N. Details are left to the exercises, where expression (1) for g’(w) is also
derived.
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EXAMPLE. We know from Example 1 in Sec. 112, that if f(z) = e, the
transformation w = f(z) is conformal everywhere in the z plane and, in particular, at
the point zp = 2mi. The image of this choice of zj is the point wy = 1. When points
in the w plane are expressed in the form w = p exp(i¢), the local inverse at z, can be
obtained by writing g(w) = log w, where log w denotes the branch

logw=1Inp+i¢ (p>0,m <6 <3m)

of the logarithmic function, restricted to any neighborhood of wy that does not contain
the origin. Observe that

g()=Inl1+i2r =2ni
and that when w is in the neighborhood,
Slg(w)] = exp(logw) = w.

Also

, d 1 1
gw)y=—Ilogw=—= ,
dw w  expz

in accordance with equation (1).
Note that if the point zo = 0 is chosen, one can use the principal branch

Logw=1Inp+i¢ (p>0,—mTm<¢p<m

of the logarithmic function to define g. In this case, g(1) = 0.

EXERCISES

1. Determine the angle of rotation at the point zo = 2 +i when w = z2, and illustrate it for
some particular curve. Show that the scale factor at that point is 2+/5.

2. What angle of rotation is produced by the transformation w = 1/z at the point
(@) zo=1; (b) zo =1i?
Ans. (a) w; (b)O.

3. Show that under the transformation w = 1/z, the images of the lines y = x — 1 and
y = O are the circle #? + v> — u — v = 0 and the line v = 0, respectively. Sketch all four
curves, determine corresponding directions along them, and verify the conformality of
the mapping at the point zp = 1.

4. Show that the angle of rotation at a nonzero point zo = ry exp(i6p) under the transforma-
tionw =z"(n=1,2,...)is (n — 1)6. Determine the scale factor of the transformation
at that point.

Ans. nr(')l_l.

5. Show that the transformation w = sin z is conformal at all points except

Z:%Jr,m (n=0,%1,42,...).
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10.

Note that this is in agreement with the mapping of directed line segments shown in
Figs. 9, 10, and 11 of Appendix 2.

. Find the local inverse of the transformation w = z° at the point

(@) z0=2; D) z0=-2; (€) z0=—
Ans. (@) w'? = /pe?? (p>0,-7 <¢ <71);
(w2 = /pe?? (p>021 <@ <4m).

. In Sec. 114, it was pointed out that the components x (u, v) and y(u, v) of the inverse

function g(w) defined by equation (6) there are continuous and have continuous first-
order partial derivatives in a neighborhood N. Use equations (5), Sec. 114, to show that
the Cauchy—Riemann equations x,, = y,, x, = —y, hold in N. Then conclude that g(w)
is analytic in that neighborhood.

. Show that if z = g(w) is the local inverse of a conformal transformation w = f(z) ata

point zg, then

g'(w) =

at points w in a neighborhood N where g is analytic (Exercise 7).
Suggestion: Start with the fact that f[g(w)] = w, and apply the chain rule for
differentiating composite functions.

Let C be a smooth arc lying in a domain D throughout which a transformation w = f(z)
is conformal, and let I denote the image of C under that transformation. Show that I" is
also a smooth arc.

Suppose that a function f is analytic at zo and that

@)= f"G@o) == f"@) =0, f™(z)#0
for some positive integer m (m > 1). Also, write wy = f(zo)-
(a) Use the Taylor series for f about the point zy to show that there is a neighborhood
of zo in which the difference f(z) — wg can be written

(m)
£ —wo = (= — 2 )'"f CO 14 g,

where g(z) is continuous at zo and g(zo) = 0.

(b) LetI' be the image of a smooth arc C under the transformation w = f(z), as shown
in Fig. 147 (Sec. 112), and note that the angles of inclination 8y and ¢y in that figure
are limits of arg(z — zo) and arg[ f (z) — wo] , respectively, as z approaches z( along
the arc C. Then use the result in part (a) to show that 6y and ¢, are related by the
equation

¢o = mby + arg ™ (z0).

(¢) Let o denote the angle between two smooth arcs C; and C, passing through zg,
as shown on the left in Fig. 148 (Sec. 112). Show how it follows from the relation
obtained in part (b) that the corresponding angle between the image curves I'} and
I, at the point wy = f(z0) is ma. (Note that the transformation is conformal at z,
when m = 1 and that z is a critical point when m > 2.)
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115. HARMONIC CONJUGATES

We saw in Sec. 27 that if a function

f@) =ulx,y)+iv(x,y)

is analytic in a domain D, then the real-valued functions u and v are harmonic in that
domain. That is, they have continuous partial derivatives of the first and second order
in D and satisfy Laplace’s equation there:

@)) Uyy Uy =0, Vi +vyy, =0.

Suppose now that two given functions u(x, y) and v(x, y) are harmonic in a
domain D and that their first-order partial derivatives satisfy the Cauchy—Riemann
equations

(2) Uy = Vy, Uy = — Uy

throughout D. Then v is said to be a harmonic conjugate of u. The meaning of the
word conjugate here is, of course, different from that in Sec. 6, where Z is defined.

The theorem just below connects the concepts of analytic functions and harmonic
conjugates.

Theorem. A function f(z) = u(x,y) + iv(x, y) is analytic in a domain D if
and only if v is a harmonic conjugate of u.

The proof is easy. If v is a harmonic conjugate of u in D, the Cauchy—Riemann
equations (2) must be satisfied. According to the theorem in Sec. 23, then, f is analytic
in D. Conversely, if f is analytic in D, we know from the first paragraph in this section
that u and v are harmonic in D; furthermore, in view of the theorem in Sec. 21, the
Cauchy—Riemann equations (2) are satisfied in D.

The following example shows that if v is a harmonic conjugate of u# in some
domain, it is not, in general, true that u is a harmonic conjugate of v there. (See also
Exercises 3 and 4.)

EXAMPLE 1. Suppose that
u(x,y) = X2 — y2 and v(x,y) = 2xy.

Since these are the real and imaginary components, respectively, of the entire function
f(z) = z%, we know that v is a harmonic conjugate of u throughout the plane. But u
cannot be a harmonic conjugate of v since, as verified in Exercise 2(b), Sec. 26, the
function 2xy + i (x> — y?) is not analytic anywhere.

We now illustrate one method for finding a harmonic conjugate of a given
harmonic function.

EXAMPLE 2. The function
3) u(x,y) =2x(l —y)=2x —2xy
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is readily seen to be harmonic throughout the entire xy plane. Since a harmonic
conjugate v(x, y) isrelated to u(x, y) by means of the Cauchy—Riemann equations (2),
the first of those equations, namely u, = v,, tells us that 2 — 2y = v,. That is,

vy(x,y) =2 —2y.

Holding x fixed and integrating each side here with respect to y, we find that

) v(x, y) =2y — y* +g),
where g is, at present, an arbitrary differentiable function of x.
Turning now to the relation u, = —v,, which is the second of equations (2), we

see that —2x = —g’(x), or g’(x) = 2x. Consequently, g(x) = x> + C, where C is an
arbitrary real number. According to expression (4), then, the function

5) v(x,y) =2y —y*+x*+C

is a harmonic conjugate of u(x, y).
The corresponding analytic function is

(©) f@=2x(1—y)+iRy—y" +x*+C).

The form f(z) = 2z +i(z> + C) of this function is easily verified and is suggested by
noting that when y = 0, expression (6) becomes f(x) = 2x + i (x> + C). Inasmuch
as v(x, y) is unique except for an arbitrary constant (see Exercise 5), it is customary
to write C = 0, so that f(z) = 2z +iz>.

The following theorem ensures the existence of a harmonic conjugate of any given
harmonic function u(x, y) that is defined on a simply connected domain (Sec. 52).
Thus, in such domains, every harmonic function is the real part of an analytic function

f(@).

Theorem. Ifaharmonicfunctionu(x, y) is defined on a simply connected domain
D, it always has a harmonic conjugate v(x, y) in D.

In order to prove this theorem, we first recall some important facts about line
integrals arising in advanced calculus.* Suppose that P(x, y) and Q(x, y) have con-
tinuous first-order partial derivatives in a simply connected domain D of the xy plane,
and let (xo, yo) and (x, y) be any two points in D. If P, = Q, everywhere in D, then
the line integral

/ P(s,t)ds + Q(s, t)dt
C

from (xg, yo) to (x, y) is independent of the contour C that is taken as long as the
contour lies entirely in D. Furthermore, when the point (xg, yo) is kept fixed and (x, y)

*See, for example, W. Kaplan, Advanced Mathematics for Engineers, pp. 546-550, 1992.
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is allowed to vary throughout D, the integral represents a single-valued function

(x,y)
7 F(x,y) =/ ' P(s,t)ds + Q(s, t)dt

(x0,y0)
of x and y whose first-order partial derivatives are given by the equations

(8) Fx(x’y)ZP(xvy)v F)'(xvy):Q(x’y)~

Note that the value of F' is changed by an additive constant when a different starting
point (xg, yo) is taken.

Returning to the given harmonic function u(x, y), observe how it follows from
Laplace’s equation u,, + u,, = 0 that

(_uy)y = (ux)x

everywhere in D. Also, the second-order partial derivatives of u are continuous in D;
and this means that the first-order partial derivatives of —u, and u, are continuous
there. Thus, if (xq, o) is a fixed point in D, the function

(x,y)
9 v(x,y) = / ’ —u; (s, t)ds + ug(s, t)dt
(

X0,Y0)

is well defined for all (x, y) in D; and, according to equations (8),

(10) Ux(x,)/)=—uy(x’}J)v Uy(x7y)=ux(xs y)

These are the Cauchy—Riemann equations. Since the first-order partial derivatives of
u are continuous, it is evident from equations (10) that those derivatives of v are also
continuous. Hence (Sec. 23) u(x, y) + i v(x, y) is an analytic function in D; and v is,
therefore, a harmonic conjugate of u.

The function v defined by equation (9) is, of course, not the only harmonic
conjugate of u, since the more general function v(x, y) + C, where C is any real
constant, is also one. But, just as we did in Example 2, we may write C = 0.

EXAMPLE 3. Consider the harmonic function
u(x,y) =2x —2xy,

whose harmonic conjugate has already been found in Example 2. According to
expression (9), the function

(x,y)
v(x,y) = / 2sds + (2 — 2t)dt
0,0)

is a harmonic conjugate of u(x, y) throughout the entire xy plane. The integral here is
readily evaluated by inspection. It can also be evaluated first along the horizontal path
from the origin (0, 0) to the point (x, 0) and then along the vertical path from (x, 0)
to the point (x, y) The result is

v(x,y) =x2 4+ 2y —y?) =2y — y* +x7,

which, along with an arbitrary constant, was obtained in Example 2.
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EXERCISES

1.

Show that u(x, y) is harmonic in some domain and follow the steps used in Example 2,
Sec. 115, to find a harmonic conjugate v(x, y) when

(@ u(x,y) =2x—x*+3xy%  (b) ulx,y) =sinhxsiny; () u(x,y) = 5.
X“+y
Ans. (a) v(x,y) =2y —3x%y 4+ y%

(b) v(x,y) = —coshx cosy;

X
() vix,y) = m

. In each case, show that the function u(x, y) is harmonic throughout the xy plane. Then,

using expression (9), Sec. 115, find its harmonic conjugate. Also, write the corresponding
function

f@) =ulx,y) +iv(x,y)
in terms of z:
(@) ulx,y)=xy; (b) ulx,y) =y —3x%y.
Ans. (a) v(x,y) = =32 —y?), f() =—4z%
) vix,y) = =3xy*+x3, f2) =iz’

. Suppose that v is a harmonic conjugate of u in a domain D and also that u is a harmonic

conjugate of v in D. Show how it follows that both u(x, y) and v(x, y) must be constant
throughout D.

. Use the theorem in Sec. 115 to show that v is a harmonic conjugate of # in a domain D

if and only if —u is a harmonic conjugate of v in D. (Compare with the result obtained
in Exercise 3.)

Suggestion: Observe that the function f(z) = u(x,y) + iv(x, y) is analytic in D
if and only if —i f(z) is analytic there.

. Show that if v and V are harmonic conjugates of u(x, y) in a domain D, then v(x, y)

and V (x, y) can differ at most by an additive constant.

. Verify that the function u(r, #) = Inr is harmonic in the domain » > 0,0 < 6§ < 27

by showing that it satisfies the polar form of Laplace’s equation, obtained in Exercise 1,
Sec. 27. Then use the technique in Example 2, Sec. 115, but involving the Cauchy—
Riemann equations in polar form (Sec. 24), to derive the harmonic conjugate v(r, 8) = 6.
(Compare with Exercise 6, Sec. 26.)

. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results in

Secs. 115 and 57, show that its partial derivatives of all orders are continuous throughout
that domain.

116. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The problem of finding a function that is harmonic in a specified domain and sat-
isfies prescribed conditions on the boundary of the domain is prominent in applied
mathematics. If the values of the function are prescribed along the boundary, the prob-
lem is known as a boundary value problem of the first kind, or a Dirichlet problem.
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If the values of the normal derivative of the function are prescribed on the bound-
ary, the boundary value problem is one of the second kind, or a Neumann problem.
Modifications and combinations of those types of boundary conditions also arise.

The domains most frequently encountered in the applications are simply con-
nected; and, since a function that is harmonic in a simply connected domain always
has a harmonic conjugate (Sec. 115), solutions of boundary value problems for such
domains are the real or imaginary components of analytic functions.

EXAMPLE 1. In Example 1, Sec. 27, we saw that the function
T(x,y)=e Vsinx

satisfies a certain Dirichlet problem for the strip 0 < x < 7, y > 0 and noted that it
represents a solution of a temperature problem. The function 7 (x, y), which is actually
harmonic throughout the xy plane, is the real component of the entire function

—ie"* = e Vsinx —ie” cosx.
It is also the imaginary component of the entire function e’
Sometimes a solution of a given boundary value problem can be discovered by
identifying it as the real or imaginary component of an analytic function. But the
success of that procedure depends on the simplicity of the problem and on one’s

familiarity with the real and imaginary components of a variety of analytic functions.
The following theorem is an important aid.

Theorem. Suppose that

(a) an analytic function
w=f(2) =ulx,y) +iv(x,y)
maps a domain D, in the z plane onto a domain D, in the w plane;

(b) h(u, v) is a harmonic function defined on D,,,.

It follows that the function
H(x,y) = hlu(x, y), v(x, y)]

is harmonic in D,.
We first prove the theorem for the case in which the domain D, is simply con-

nected. According to Sec. 104, that property of D, ensures that the given harmonic
function 4 (u, v) has a harmonic conjugate g(u, v). Hence the function

() D(w) =h(u,v)+ig(u,v)

is analytic in D,,. Since the function f(z) is analytic in D,, the composite function
@[ f(z)] is also analytic in D,. Consequently, the real part h[u(x, y), v(x, y)] of this
composition is harmonic in D;.
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If D, is not simply connected, we observe that each point wgy in D, has a
neighborhood |w — wy| < € lying entirely in D,,. Since that neighborhood is simply
connected, a function of the type (1) is analytic in it. Furthermore, since f is continuous
atapoint zp in D, whose image is wy, there is a neighborhood |z —z¢| < § whose image
is contained in the neighborhood |w — wy| < €. Hence it follows that the composition
@[ f(z)] is analytic in the neighborhood |z — zg| < &, and we may conclude that
hlu(x,y), v(x, y)] is harmonic there. Finally, since wy was arbitrarily chosen in D,,
and since each point in D, is mapped onto such a point under the transformation
w = f(2), the function h[u(x, y), v(x, y)] must be harmonic throughout D,.

The proof of the theorem for the general case in which D,, is not necessarily
simply connected can also be accomplished directly by means of the chain rule for
partial derivatives. The computations are, however, somewhat involved (see Exercise 8,
Sec. 117).

EXAMPLE 2. The transformation
w=¢" =e‘cosy+iesiny
maps the horizontal strip 0 < y < 7 onto the upper half plane v > 0, as we saw in
Example 3 in Sec. 103. Also, since w? is analytic in that half plane, the function

h(u,v) = Re(w?) = u? — v*

is harmonic there. According to our theorem, then, the following function is harmonic
throughout the strip 0 < y < m:

H(x,y) = (¢* cos y)? — (¢* sin y)? = ¢*(cos’ y — sin® y);
and this simplifies to

H(x,y) = ¢ cos2y.

EXAMPLE 3. For another example, consider the transformation

=L =1 | © ( 0, —— ® —)
=1lo =Inr + < < .
w g2 r 1 r >V,

In rectangular coordinates, it takes the form
w = Logz = In/x2 + y2 + i arctan (X) ,
X

where —m/2 < arctant < /2. This transformation maps the right half plane onto
the horizontal strip —m/2 < v < 7/2 (see Exercise 3, Sec. 117). Finally, since the
function

h(u,v) =Imw =v
is harmonic in that strip, our theorem tells us that the function
H(x,y) = arctan (X)
X

is harmonic in the half plane x > 0.
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117. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal derivative have prescribed values along
the boundary of a domain in which it is harmonic are the most common, although not
the only, important types of boundary conditions. In this section, we show that certain
of these conditions remain unaltered under the change of variables associated with a
conformal transformation. These results will be used in Chap. 10 to solve boundary
value problems. The basic technique there is to transform a given boundary value
problem in the xy plane into a simpler one in the uv plane and then to use the theorems
of this and Sec. 116 to write the solution of the original problem in terms of the solution
obtained for the simpler one.

Theorem. Suppose that

(a) a transformation
w = f(2) =ulx,y) +iv(x,y)
is conformal at each point of a smooth arc C and that T is the image of C under
that transformation;

(b) h(u,v) is a function that satisfies one of the conditions
dh
h=hy and — =0
dn

at points on I'', where hy is a real constant and dh/dn denotes directional deriva-
tives of h normal to T.

It follows that the function
H(x,y) = hlu(x, y),v(x, y)]
satisfies the corresponding condition
dH
e
dN
at points on C, where dH /d N denotes directional derivatives of H normal to C.

H=hy or

It should be emphasized that in the applications, C may be the entire boundary
of a domain or just part of it.

To show that the condition iz = k¢ on I' implies that H = hy on C, we note from
the expression for H (x, y) in the statement of the theorem that the value of H at any
point (x, y) on C is the same as the value of & at the image (u, v) of (x, y) under the
transformation w = f(z). Since the image point (u, v) lies on I' and since h = hy
along that curve, it follows that H = h along C.

Suppose, on the other hand, that di/dn = 0 on I". From calculus, we know that

dh
(D — = (grad ) - n,
dn

where grad i denotes the gradient of / at a point (#, v) on I' and n is a unit vector
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normal to I' at (u, v). Since dh/dn = 0 at (u, v), equation (1) tells us that grad £ is
orthogonal to n at (u, v). That is, grad & is tangent to I there (Fig. 151). But gradients
are orthogonal to level curves; and, because grad # is tangent to I, we see that I is
orthogonal to a level curve h(u, v) = c passing through (u, v).

Now, according to the expression for H(x, y) in the theorem, the level curve
H(x, y) = cin the z plane can be written

hlu(x,y),v(x, y)] =c.

Hence it is transformed into the level curve h(u, v) = c under the transformation
w = f(z). Furthermore, since C is transformed into I" and since I" is orthogonal to
the level curve h(u, v) = ¢, as demonstrated in the preceding paragraph, it follows
from the conformality of the transformation w = f(z) that C is orthogonal to the
level curve H (x, y) = c at the point (x, y) corresponding to («, v). Because gradients
are orthogonal to level curves, this means that grad H is tangent to C at (x, y) (see
Fig. 151). Consequently, if N denotes a unit vector normal to C at (x, y), grad H is
orthogonal to N. That is,

2) (grad H) -N = 0.

Finally, since

dH—( dH)-N
dN_gra ) )

we may conclude from equation (2) that d H/d N = 0 at points on C.

y v

C

Hx,y)=c¢ n
grad h
N
) v T
grad H h(u,v) = c

o x o u FIGURE 151

In this discussion, we have tacitly assumed that grad 4 # 0. If grad h = 0, it
follows from the identity

lgrad H (x, y)| = |grad h(u, v)|| f'(2)I,
derived in Exercise 10(a) of this section, that grad H = 0; hence dh/dn and the
corresponding normal derivative d H /d N are both zero. We have also assumed that
(a) grad h and grad H always exist;
(b) the level curve H (x, y) = c is smooth when grad /& # 0 at (u, v).
Condition (b) ensures that angles between arcs are preserved by the transforma-

tion w = f(z) in the theorem when it is conformal. In all of our applications, both
conditions (a) and (b) will be satisfied.
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EXAMPLE. Consider, for instance, the function 4 (u, v) = v + 2. The transfor-
mation
w=iz2=i(x+iy)’ = 2xy+i(x>—y?
is conformal when z # 0. It maps the half line y = x (x > 0) onto the negative u
axis, where & = 2, and the positive x axis onto the positive v axis, where the normal
derivative £, is O (Fig. 152). According to the above theorem, the function

H(x,y)=x*—y"+2

must satisfy the condition H = 2 along the half line y = x (x > 0) and H, = 0 along
the positive x axis, as one can verify directly.

Cx A h=2 I|B u FIGURE 152

A boundary condition that is not of one of the two types mentioned in the theorem
may be transformed into a condition that is substantially different from the original
one (see Exercise 6). New boundary conditions for the transformed problem can be
obtained for a particular transformation in any case. It is interesting to note that under
a conformal transformation, the ratio of a directional derivative of H along a smooth
arc C in the z plane to the directional derivative of & along the image curve I" at the
corresponding point in the w plane is | f/(z)|; usually, this ratio is not constant along
a given arc. (See Exercise 10.)

EXERCISES

1. In Example 2, Sec. 116, we used the theorem in that section to show that the function
H(x,y) = e cos2y
is harmonic in the horizontal strip 0 < y < 7 of the z plane. Verify this result directly.

2. The function h(u, v) = e~ Vsinu is harmonic throughout the entire uv plane and, in
particular, in the upper half plane

Dy:v>0

(see Example 1 in Sec. 116). Using the theorem in Sec. 116, together with the fact that
the function w = z> maps the quadrant

D;:x>0,y>0
onto that half plane (see Example 2, Sec. 14), point out how it follows that the function
H(x,y) =e *sin(x* — y%)

is harmonic in the quadrant D,.
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3. Example 3, Sec. 116, used the fact that the transformation w = Log z maps the right
half plane onto the horizontal strip —m/2 < v < /2. Verity this fact with the aid of
Fig. 153.

v
g n.
I 5!
g P
! Qi
|
1 0 u
v Ne P O
0. x _I; FIGURE 153
! 2 w = Logz.

4. Under the transformation w = exp z, the image of the segment 0 < y < 7 of the y axis

is the semicircle u% 4+ v2 = 1, v > 0 (see Sec. 103). Also, the function

|
h(u,v)=Rel2—-w+— | =2—-u+ ———
(@, v) ( w) T + v2
is harmonic everywhere in the w plane except for the origin; and it assumes the value
h = 2 on the semicircle. Write an explicit expression for the function H(x, y) in the
theorem of Sec. 117. Then illustrate the theorem by showing directly that H = 2 along
the segment 0 < y < 7 of the y axis.

5. The transformation w = z> maps the positive x and y axes and the origin in the z plane

onto the u axis in the w plane. Consider the harmonic function
h(u,v) =Re(e™™) = e “cosv,

and observe that its normal derivative %, along the u axis is zero. Then illustrate the
theorem in Sec. 117 when f(z) = z> by showing directly that the normal derivative of
the function H (x, y) defined in that theorem is zero along both positive axes in the z
plane. (Note that the transformation w = z? is not conformal at the origin.)

6. Replace the function % (u, v) in Exercise 5 by the harmonic function

h(u,v) = Re(=2iw+e ") =2v+e “cosv.

Then show that 4, = 2 along the u axis but that H, = 4x along the positive x axis and
H, = 4y along the positive y axis. This illustrates how a condition of the type

dh
=y #0
T 0F#

is not necessarily transformed into a condition of the type d H/dN = hy.

7. Show that if a function H (x, y) is a solution of a Neumann problem (Sec. 116), then

H(x, y) + A, where A is any real constant, is also a solution of that problem.

8. Suppose that an analytic function w = f(z) = u(x, y) +iv(x, y) maps a domain D, in

the z plane onto a domain D,, in the w plane; and let a function % (u, v), with continuous
partial derivatives of the first and second order, be defined on D,,. Use the chain rule for
partial derivatives to show that if H (x, y) = hlu(x, y), v(x, y)], then

Hxx(xv Y) + Hyy(xv Y) = [huu(”, v) + hvv(u, v)] |f/(Z)|2~
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Conclude that the function H (x, y) is harmonic in D, when A (u, v) is harmonic in D,,.
This is an alternative proof of the theorem in Sec. 116, even when the domain D,, is
multiply connected.

Suggestion: In the simplifications, it is important to note that since f is analytic,
the Cauchy—Riemann equations u, = vy, u, = —v, hold and that the functions u and v
both satisfy Laplace’s equation. Also, the continuity conditions on the derivatives of /
ensure that i, = hy,.

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second
order and satisfies Poisson’s equation

puu(’/h U) + pvu(uv U) - q)(u» U)

in a domain D,, of the w plane, where @ is a prescribed function. Show how it follows
from the identity obtained in Exercise 8 that if an analytic function

w = f(2) =ulx,y) +iv(x,y)

maps a domain D, onto the domain D,,, then the function

P(x,y) = plu(x,y), v(x, y)]

satisfies the Poisson equation

Pro(x, ) + Py (x, y) = ®lulx, ), v(x, N11F @)
in D,.

10. Suppose that w = f(z) = u(x, y) +iv(x, y) is a conformal mapping of a smooth arc C
onto a smooth arc I' in the w plane. Let the function £ (u, v) be defined on I', and write

H(x,y) = hlu(x, y), v(x, y)].

(a) From calculus, we know that the x and y components of grad H are the partial
derivatives H, and H,, respectively; likewise, grad h has components 4, and h,,.
By applying the chain rule for partial derivatives and using the Cauchy—Riemann
equations, show that if (x, y) is a point on C and (u, v) is its image on I", then

lgrad H (x, y)| = |grad h(u, v)|| f'(2)].

(b) Show that the angle from the arc C to grad H at a point (x, y) on C is equal to the
angle from I to grad / at the image (u, v) of the point (x, y).

(c) Let s and o denote distance along the arcs C and T, respectively; and let t and
denote unit tangent vectors at a point (x, y) on C and its image (u, v), in the direction
of increasing distance. With the aid of the results in parts (a) and (b) and using the
fact that

dH dh
— =(grad H)-t and — = (gradh) -,
ds do

show that the directional derivative along the arc I is transformed as follows:

d—H—ﬁlf/()l
ds do "



CHAPTER

10

APPLICATIONS OF
CONFORMAL MAPPING

We now use conformal mapping to solve a number of physical problems involving
Laplace’s equation in two independent variables. Problems in heat conduction, elec-
trostatic potential, and fluid flow will be treated. Since these problems are intended to
illustrate methods, they will be kept on a fairly elementary level.

118. STEADY TEMPERATURES

In the theory of heat conduction, the flux across a surface within a solid body at a
point on that surface is the quantity of heat flowing in a specified direction normal to
the surface per unit time per unit area at the point. Flux is, therefore, measured in such
units as calories per second per square centimeter. It is denoted here by @, and it varies
with the normal derivative of the temperature 7 at the point on the surface:
(1) 0] K dr (K >0)

=—K— > 0).

dN

Relation (1) is known as Fourier’s law and the constant K is called the thermal
conductivity of the material of the solid, which is assumed to be homogeneous.*

*The law is named for the French mathematical physicist Joseph Fourier (1768-1830). His book, cited
in Appendix 1, is a classic in the theory of heat conduction.

365
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The points in the solid can be assigned rectangular coordinates in three-
dimensional space, and we restrict our attention to those cases in which the tem-
perature T varies with only the x and y coordinates. Since 7' does not vary with the
coordinate along the axis perpendicular to the xy plane, the flow of heat is, then, two-
dimensional and parallel to that plane. We agree, moreover, that the flow is in a steady
state; that is, 7 does not vary with time.

It is assumed that no thermal energy is created or destroyed within the solid.
That is, no heat sources or sinks are present there. Also, the temperature function
T (x, y) and its partial derivatives of the first and second order are continuous at each
point interior to the solid. This statement and expression (1) for the flux of heat are
postulates in the mathematical theory of heat conduction, postulates that also apply at
points within a solid containing a continuous distribution of sources or sinks.

Consider now an element of volume that is interior to the solid and has the shape
of a rectangular prism of unit height perpendicular to the xy plane, with base Ax by
Ay in the plane (Fig. 154). The time rate of flow of heat toward the right across the
left-hand face is —K T (x, y)Ay; and toward the right across the right-hand face, it
is =K T,(x + Ax, y)Ay. Subtracting the first rate from the second, we obtain the net
rate of heat loss from the element through those two faces. This resultant rate can be
written

K T.(x + Ax,Ay) — T (x,y) AxAy.
X

or
(2) _KTxx(x’ )’)AXA)’

if Ax is very small. Expression (2) is, of course, an approximation whose accuracy
increases as Ax and Ay are made smaller.

y

Ax
1Ay

(x.y)
AN \—/ X
In like manner, the resultant rate of heat loss through the other two faces perpen-

dicular to the xy plane is found to be

3) —KT,,(x, y)AxAy.

FIGURE 154

Heat enters or leaves the element only through these four faces, and the temperatures
within the element are steady. Hence the sum of expressions (2) and (3) is zero; that is,

4) Tox(x, y)+Tyy(x: y):()
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The temperature function thus satisfies Laplace’s equation at each interior point of the
solid.

In view of equation (4) and the continuity of the temperature function and its
partial derivatives, T is a harmonic function of x and y in the domain representing the
interior of the solid body.

The surfaces T (x, y) = ¢, where ¢y is any real constant, are the isotherms within
the solid. They can also be considered as curves in the xy plane; then T (x, y) can be
interpreted as the temperature at a point (x, y) in a thin sheet of material in that plane,
with the faces of the sheet thermally insulated. The isotherms are the level curves of
the function 7'.

The gradient of T is perpendicular to an isotherm at each point on it, and the
maximum flux at such a point is in the direction of the gradient there. If T (x, y)
denotes temperatures in a thin sheet and if S is a harmonic conjugate of the function
T, then a curve S(x, y) = c; has the gradient of 7 as a tangent vector at each point
where the analytic function 7' (x, y) +iS(x, y) is conformal (see Exercise 2, Sec. 27).
The curves S(x, y) = c; are called lines of flow.

If the normal derivative dT'/d N is zero along any part of the boundary of the sheet,
then the flux of heat across that part is zero. That is, the part is thermally insulated and
is, therefore, a line of flow.

The function T may also denote the concentration of a substance that is diffusing
through a solid. In that case, K is the diffusion constant. The above discussion and the
derivation of equation (4) apply as well to steady-state diffusion.

119. STEADY TEMPERATURES IN A HALF PLANE

Let us find an expression for the steady temperatures 7 (x, y) in a thin semi-infinite
plate y > O whose faces are insulated and whose edge y = 01is kept at temperature zero
except for the segment —1 < x < 1, where it is kept at temperature unity (Fig. 155).
The function T (x, y) is to be bounded; this condition is natural if we consider the
given plate as the limiting case of the plate 0 < y < y, whose upper edge is kept at
a fixed temperature as yy is increased. In fact, it would be physically reasonable to
stipulate that 7' (x, y) approach zero as y tends to infinity.

A T=0

FIGURE 155

) z—1 (n 0 T 0 6 3
w=lo —>0,—— <0 —6 < — ).
1 \n ;S T=5




368 APPLICATIONS OF CONFORMAL MAPPING CHAP. 10

The boundary value problem to be solved can be written

(1) Txx(an)+Ty)r(x’y)=O (_00<x<007y>0)7
1 when |x| < 1,

2 T(x,0)=
0 when |x| > 1;

also, |T'(x, y)| < M where M is some positive constant. This is a Dirichlet problem
(Sec. 116) for the upper half plane y > 0. Our method of solution will be to obtain a new
Dirichlet problem for a region in the #v plane. That region will be the image of the half
plane under a transformation w = f(z) that is analytic in the domain y > 0 and con-
formal along the boundary y = 0 except at the points (+1, 0), where f(z) is undefined.
It will be a simple matter to discover a bounded harmonic function satisfying the new
problem. The two theorems in Chap. 9 will then be applied to transform the solution
of the problem in the #v plane into a solution of the original problem in the xy plane.
Specifically, a harmonic function of # and v will be transformed into a harmonic func-
tion of x and y, and the boundary conditions in the v plane will be preserved on corre-
sponding portions of the boundary in the xy plane. There should be no confusion if we
use the same symbol 7" to denote the different temperature functions in the two planes.
Let us write

z—1l=rexp(if)) and z+ 1= ryexp(i6s),

where 0 < 6; < (k = 1, 2). The transformation

3 log > — 1 46, -0 AN LA A
(3) w_ogz+l_ng+l(l_2) (g>,—§<1—2<7>
is defined on the upper half plane y > 0, except for the two points z = =+1, since
0 <6 —6, <m wheny > 0. (See Fig. 155.) Now the value of the logarithm is the
principal value when 0 < 6; — 6, < &, and we recall from Example 3 in Sec. 102 that
the upper half plane y > 0 is then mapped onto the horizontal strip 0 < v < 7 in the
w plane. As already noted in that example, the mapping is shown with corresponding
boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure which suggested
transformation (3) here. The segment of the x axis between z = —1 and z = 1, where
0, —6, = m,is mapped onto the upper edge of the strip; and the rest of the x axis, where
01 — 6, = 0, is mapped onto the lower edge. The required analyticity and conformality
conditions are evidently satisfied by transformation (3).

A bounded harmonic function of u# and v that is zero on the edge v = 0 of the
strip and unity on the edge v = r is clearly

4 T =—v;
T

it is harmonic since it is the imaginary component of the entire function (1/m)w.
Changing to x and y coordinates by means of the equation

z—1’+, (z—l)
i ar ,
z+1 g z+1

) w=1In
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we find that

[(z—l)(Z—Fl)} [x2+y2—l+i2y}
= ar R — = ar N
z+D@E+1D (x + 12+ y?

or

2y
v =arctan| ————— |.
x24+y2—1

The range of the arctangent function here is from O to 7 since

(z—l) 0 o
ar’ _— = —
g z+1 ! :

and 0 < 0; — 6, < 7. Expression (4) now takes the form

(6) T = l arctan(zzy) (0 < arctanr < 7).
big x2+y2—1

Since the function (4) is harmonic in the strip 0 < v < 7 and since transformation
(3)is analytic in the half plane y > 0, we may apply the theorem in Sec. 116 to conclude
that the function (6) is harmonic in that half plane. The boundary conditions for the
two harmonic functions are the same on corresponding parts of the boundaries because
they are of the type i = hy, treated in the theorem of Sec. 117. The bounded function
(6) is, therefore, the desired solution of the original problem. One can, of course, verify
directly that the function (6) satisfies Laplace’s equation and has the values tending to
those indicated on the left in Fig. 155 as the point (x, y) approaches the x axis from
above.

The isotherms 7' (x, y) = c¢; (0 < ¢; < 1) are arcs of the circles

x? + (y — cot we)? =cesc? ey,

passing through the points (41, 0) and with centers on the y axis.
Finally, we note that since the product of a harmonic function by a constant is
also harmonic, the function

Ty 2y

T = — arctan| ————— (0 < arctant < m)
b x24+y2—1

represents steady temperatures in the given half plane when the temperature 7 = 1

along the segment —1 < x < 1 of the x axis is replaced by any constant temperature

T =T,.

120. A RELATED PROBLEM

Consider a semi-infinite slab in the three-dimensional space bounded by the planes
x = £m/2 and y = 0 when the first two surfaces are kept at temperature zero and
the third at temperature unity. We wish to find a formula for the temperature 7 (x, y)
at any interior point of the slab. The problem is also that of finding temperatures in a
thin plate having the form of a semi-infinite strip —7/2 < x < /2, y > 0 when the
faces of the plate are perfectly insulated (Fig. 156).
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T T X
2 2 FIGURE 156

The boundary value problem here is

(1) Tor(x, ) + Tyy(x, ) = 0 (—% <x < %,y > o),
@ r(-3.v)=7(33)=0 =0
3) T(x,0) =1 (—% <x< %)

where T (x, y) is bounded.
In view of the example in Sec. 104, as well as Fig. 9 of Appendix 2, the mapping

4) w =sinz

transforms this boundary value problem into the one posed in Sec. 119 (Fig. 155).
Hence, according to solution (6) in that section,

u? +v2 -1

The change of variables indicated in equation (4) can be written (see Sec. 37)

1 2v
®)] T =— arctan<> (0 < arctant < ).
b4

u =sinxcoshy, v =cosxsinhy;

and the harmonic function (5) becomes

1 2cos x sinh y
T = —arctan| — 5 — .
b1t sin” x cosh® y + cos? x sinh” y — 1

Since the denominator here reduces to sinh®> y — cos? x, the quotient can be put in the
form

2cosx sinh y 2(cos x/ sinh y)
5 = - 5> = tan2a,
sinh®y —cos2x 1 — (cosx/sinhy)
where tan o« = cos x/ sinh y. Hence T = (2/m)«; that is,
2 Cos X T
(6) T = — arctan| — (0 < arctant < —).
b4 sinh y 2

This arctangent function has the range 0 to 7 /2 because its argument is nonnegative.
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Since sin z is entire and the function (5) is harmonic in the half plane v > 0, the
function (6) is harmonic in the strip —7/2 < x < 7/2,y > 0. Also, the function
(5) satisfies the boundary condition 7 = 1 when |u| < 1 and v = 0, as well as the
condition 7 = 0 when |¢| > 1 and v = 0. The function (6) thus satisfies boundary
conditions (2) and (3). Moreover, |T (x, y)| < 1 throughout the strip. Expression (6)
is, therefore, the temperature formula that is sought.

The isotherms 7' (x, y) = c¢; (0 < ¢; < 1) are the portions of the surfaces

TCy .
CoOsSXx = tan(7> sinh y

within the slab, each surface passing through the points (£ /2, 0) in the xy plane. If
K is the thermal conductivity, the flux of heat into the slab through the surface lying
in the plane y = 0 is

2K (

—KT,(x,0) =
7T COS X

b4 JT)
——<x< ).
2 2

The flux outward through the surface lying in the plane x = /2 is

KT <7‘r ) 2K
\ > y)=

The boundary value problem posed in this section can also be solved by the

method of separation of variables. That method is more direct, but it gives the solution

in the form of an infinite series.*

0).
7 sinh y >0

121. TEMPERATURES IN A QUADRANT

Let us find the steady temperatures in a thin plate having the form of a quadrant if a
segment at the end of one edge is insulated, if the rest of that edge is kept at a fixed
temperature, and if the second edge is kept at another fixed temperature. The surfaces
are insulated, and so the problem is two-dimensional.

The temperature scale and the unit of length can be chosen so that the boundary
value problem for the temperature function 7 becomes

(1 Tix(x,y) + Tyy(x,y) =0 (x >0,y >0),
{Ty(x,O) =0 when0<x <1,
T(x,0)=1 whenx > 1,
(3 ro,y)=0 (y>0),

where T (x, y) is bounded in the quadrant. The plate and its boundary conditions
are shown on the left in Fig. 157. Conditions (2) prescribe the values of the normal

2)

*A similar problem is treated in the authors’ Fourier Series and Boundary Value Problems, 8th ed.,
pp- 133-134, 2012. Also, a short discussion of the uniqueness of solutions to boundary value problems
can be found in Chap. 11 of that book.
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Tou
2 FIGURE 157

derivative of the function T over a part of a boundary line and the values of the function
itself over another part of that line. The separation of variables method mentioned at
the end of Sec. 120 is not adapted to such problems with different types of conditions
along the same boundary line.

As indicated in Fig. 10 of Appendix 2, the transformation

4) z=sinw

is a one to one mapping of the semi-infinite strip 0 < u < w/2,v > 0 onto the
quadrant x > 0, y > 0. Observe that the existence of an inverse is ensured by the fact
that the given transformation is both one to one and onto. Since transformation (4)
is conformal throughout the strip except at the point w = /2, the inverse transfor-
mation must be conformal throughout the quadrant except at the point z = 1. That
inverse transformation maps the segment 0 < x < 1 of the x axis onto the base of the
strip and the rest of the boundary onto the sides of the strip as shown in Fig. 157.

Since the inverse of transformation (4) is conformal in the quadrant, except when
z = 1, the solution to the given problem can be obtained by finding a function that
is harmonic in the strip and satisfies the boundary conditions shown on the right
in Fig. 157. Observe that these boundary conditions are of the types 2 = h( and
dh/dn = 0 in the theorem of Sec. 117.

The required temperature function 7' for the new boundary value problem is
clearly

(5 T =—u,
b4

the function (2/m)u being the real component of the entire function (2/7)w. We must
now express 7 in terms of x and y.

To obtain u in terms of x and y, we first note that according to equation (4) and
Sec. 37,

(6) x =sinucoshv, y = cosusinhv.

When 0 < u < 7/2, both sin « and cos u are nonzero; and, consequently,

x2 y2

sinu  cos?u

)
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Now it is convenient to observe that for each fixed u, hyperbola (7) has foci at the
points

7 =+Vsin®u +coslu = +1

and that the length of the transverse axis, which is the line segment joining the two
vertices (&£ sin u, 0), is 2 sin u. Thus the absolute value of the difference of the distances
between the foci and a point (x, y) lying on the part of the hyperbola in the first quadrant
is

VE+ D24 y2 = /(x — 1)2 4 y2 = 2sinu.

It follows directly from equations (6) that this relation also holds when u = 0 or
u = 7 /2. In view of equation (5), then, the required temperature function is

) D2+ 2 — 1212
(8) T = = arcsin Va2 ty 5 Va1 4y
b

where, since 0 < u < 7/2, the arcsine function has the range O to 77 /2.

If we wish to verify that this function satisfies boundary conditions (2), we must
remember that \/(x — 1)2 denotes x — 1 when x > 1 and 1 — x when 0 < x < 1,
the square roots being positive. Note, too, that the temperature at any point along the
insulated part of the lower edge of the plate is

2
T(x,0) = — arcsin x O<x<1).
T

It can be seen from equation (5) that the isotherms 7T (x,y) =¢; (0 < ¢; < 1)
are the parts of the confocal hyperbolas (7), where u = mc;/2, which lie in the first
quadrant. Since the function (2/m)v is a harmonic conjugate of the function (5), the
lines of flow are quarters of the confocal ellipses obtained by holding v constant in
equations (6).

EXERCISES

1. Usethe function Log z to find an expression for the bounded steady temperatures in a plate
having the form of a quadrant x > 0, y > 0 (Fig. 158) if its faces are perfectly insulated
and its edges have temperatures 7' (x, 0) = O and 7'(0, y) = 1. Find the isotherms and
lines of flow, and draw some of them.

2 y
Ans. T = — arctan| = |.
T X

T=0 X FIGURE 158



374 APPLICATIONS OF CONFORMAL MAPPING CHAP. 10

2. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 159):

He (x,y)+Hyy(x,y) =0 O<x<m/2,y>0),
H((x,0)=0 O <x<m/2),
H@O,y)=1, H(m/2,y)=0 (y >0,

where 0 < H(x,y) < 1.
Suggestion: This problem can be transformed into the one in Exercise 1.

2 tanh y
Ans. H = — arctan .
T tan x

H=0nmx x
p) FIGURE 159
3. Derive an expression for temperatures 7'(r, ) in a semicircular plater < 1,0 <60 <rw
with insulated faces if T = 1 along the radial edge 6 =0 (0 < r < 1) and T = 0 on the
rest of the boundary.
Suggestion: This problem can be transformed into the one in Exercise 2.

2 1—r 0
Ans. T = — arctan cot — |.
T 1+r 2

4. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge
if its boundary planes # = 0 and 8 = 6y (0 < r < r¢) are kept at constant temperatures
zero and Tp, respectively, and if its surface r = ro (0 < 6 < @) is perfectly insulated
(Fig. 160).

T
Ans. T = 20 arctan(z).
90 X

r=0 7 X  FIGURE 160

5. Find the bounded steady temperatures 7 (x, y) in the semi-infinite solid y > 0if 7 =0
on the part x < —1 (y = 0) of the boundary, if 7 = 1 on the part x > 1 (y = 0), and if
the strip —1 < x < 1 (y = 0) of the boundary is insulated (Fig. 161).

X FIGURE 161
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L VEFD Y -V - D2 4y
2

1 1
Ans. T = — + — arcsi
2 7w

(—m/2 < arcsint < 1 /2).

6. The portions x < 0 (y = 0) and x < 0 (y = ) of the edges of an infinite horizontal
plate 0 < y < m are thermally insulated, as are the faces of the plate. Also, the conditions
T(x,0) =1 and T (x, ) = 0 are maintained when x > 0 (Fig. 162). Find the steady
temperatures in the plate.

Suggestion: This problem can be transformed into the one in Exercise 5.

ylm’T:O
[

T=1 X FIGURE 162

7. Find the bounded steady temperatures in the solid x > 0, y > 0 when the boundary
surfaces are kept at fixed temperatures except for insulated strips of equal width at the
corner, as shown in Fig. 163.

Suggestion: This problem can be transformed into the one in Exercise 5.

VO =y + D7+ Q) = V2 — )2 — 12+ Qxy)?
2

1 1
Ans. T = - + — arcsin{
2 7

(—m/2 < arctant < 1 /2).

1 T=1 X FIGURE 163

8. Solve the boundary value problem for the plate x > 0, y > 0 in the z plane when the
faces are insulated and the boundary conditions are those indicated in Fig. 164.
Suggestion: Use the mapping
i iz
w=-=—-:
7 z?

to transform this problem into the one posed in Sec. 121 (Fig. 157).

T=0 X FIGURE 164
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9. In the problem of the semi-infinite plate shown on the left in Fig. 155 (Sec. 119), obtain
a harmonic conjugate of the temperature function 7'(x, y) from equation (5), Sec. 119,
and find the lines of flow of heat. Show that those lines of flow consist of the upper half
of the y axis and the upper halves of certain circles on either side of that axis, the centers
of the circles lying on the segment AB or C D of the x axis.

10. Show that if the function 7 in Sec. 119 is not required to be bounded, the harmonic
function (4) in that section can be replaced by the harmonic function

1 1
T :Im(—w—i—Acoshw) = —v + Asinhusinv,
T T

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet problem
for the strip in the uv plane (Fig. 155) would not, then, be unique.

11. Suppose that the condition that 7 be bounded is omitted from the problem for temper-
atures in the semi-infinite slab of Sec. 120 (Fig. 156). Show that an infinite number of
solutions are then possible by noting the effect of adding to the solution found there the
imaginary part of the function A sin z, where A is an arbitrary real constant.

12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region
enclosed by an ellipse with foci (£1, 0). The temperature on the elliptical part of its
boundary is T = 1. The temperature along the segment —1 < x < 1 of the x axis is
T = 0, and the rest of the boundary along the x axis is insulated. With the aid of Fig. 11
in Appendix 2, find the lines of flow of heat.

13. According to Sec. 59 and Exercise 5 of that section, if f(z) = u(x,y) +iv(x,y) is
continuous on a closed bounded region R and analytic and not constant in the interior of
R, then the function u(x, y) reaches its maximum and minimum values on the boundary
of R, and never in the interior. By interpreting u(x, y) as a steady temperature, state a
physical reason why that property of maximum and minimum values should hold true.

122. ELECTROSTATIC POTENTIAL

In an electrostatic force field, the field intensity at a point is a vector representing the
force exerted on a unit positive charge placed at that point. The electrostatic potential
is a scalar function of the space coordinates such that, at each point, its directional
derivative in any direction is the negative of the component of the field intensity in
that direction.

For two stationary charged particles, the magnitude of the force of attraction or
repulsion exerted by one particle on the other is directly proportional to the product
of the charges and inversely proportional to the square of the distance between those
particles. From this inverse-square law, it can be shown that the potential at a point
due to a single particle in space is inversely proportional to the distance between the
point and the particle. In any region free of charges, the potential due to a distribution
of charges outside that region can be shown to satisfy Laplace’s equation for three-
dimensional space.

If conditions are such that the potential V is the same in all planes parallel to
the xy plane, then in regions free of charges V' is a harmonic function of just the two
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variables x and y:
Vi (x, y) + Vyy(xs y) =0.

The field intensity vector at each point is parallel to the xy plane, with x and y
components —V,(x, y) and —V,(x, y), respectively. That vector is, therefore, the
negative of the gradient of V (x, y).

A surface along which V (x, y) is constant is an equipotential surface. The tan-
gential component of the field intensity vector at a point on a conducting surface is
zero in the static case since charges are free to move on such a surface. Hence V (x, y)
is constant along the surface of a conductor, and that surface is an equipotential.

If U is a harmonic conjugate of V, the curves U(x, y) = c; in the xy plane are
called flux lines. When such a curve intersects an equipotential curve V (x, y) = ¢ at
a point where the derivative of the analytic function V (x, y) + iU (x, y) is not zero,
the two curves are orthogonal at that point and the field intensity is tangent to the flux
line there.

Boundary value problems for the potential V are the same mathematical problems
as those for steady temperatures 7'; and, as in the case of steady temperatures, the
methods of complex variables are limited to two-dimensional problems. The problem
posed in Sec. 120 (see Fig. 156), for instance, can be interpreted as that of finding the
two-dimensional electrostatic potential in the empty space

T b4
—— <x<—,y>0
2 2
bounded by the conducting planes x = £ /2and y = 0, insulated at their intersections,
when the first two surfaces are kept at potential zero and the third at potential unity.
The potential in the steady flow of electricity in a conducting sheet lying in a
plane is also a harmonic function at points free from sources and sinks. Gravitational
potential is a further example of a harmonic function in physics.

123. EXAMPLES

The two examples here illustrate how conformal mappings can often be used in solving
potential problems.

EXAMPLE 1. A long hollow circular cylinder is made out of a thin sheet of
conducting material, and the cylinder is split lengthwise to form two equal parts.
Those parts are separated by slender strips of insulating material and are used as
electrodes, one of which is grounded at potential zero and the other kept at a different
fixed potential. We take the coordinate axes and units of length and potential difference
as indicated on the left in Fig. 165. We then interpret the electrostatic potential V (x, y)
over any cross section of the enclosed space that is distant from the ends of the cylinder
as a harmonic function inside the circle x> + y*> = 1 in the xy plane. Note that V = 0
on the upper half of the circle and that V = 1 on the lower half.
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y
V=0

D

“ ; i “  FIGURE 165
V=1 wm‘ili

A linear fractional transformation that maps the upper half plane onto the interior
of the unit circle centered at the origin, the positive real axis onto the upper half of
the circle, and the negative real axis onto the lower half of the circle is verified in
Exercise 1, Sec. 102. The result is given in Fig. 13 of Appendix 2; interchanging z and
w there, we find that the inverse of the transformation

i—w
i+ w
gives us a new problem for V in a half plane, indicated on the right in Fig. 165.
Now the imaginary component of

1 1 1
) —Logw=—Inp+i—¢ (p>0,0<¢<m)
n n m

(1) 7=

is a bounded function of u and v that assumes the required constant values on the two
parts ¢ = 0 and ¢ = 7 of the u axis. Hence the desired harmonic function for the half
plane is

1 v
3) V = —arctan( — |,
4 u
where the values of the arctangent function range from O to 7.
The inverse of transformation (1) is

11—z
l ’
1 +z

from which « and v can be expressed in terms of x and y. Equation (3) then becomes

“) w =

1 1 —x2— y2
5) V = —arctan| —— (0 < arctant < m).

b4 2y
The function (5) is the potential function for the space enclosed by the cylindrical
electrodes since it is harmonic inside the circle and assumes the required values on the
semicircles. If we wish to verify this solution, we must note that

lir{)l arctant =0 and limarctant = 7.
1— t—0

t>0 <0
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The equipotential curves V(x, y) = ¢; (0 < ¢; < 1) in the circular region are
arcs of the circles

x>+ (y + tanmey)? = sec’ ey,

with each circle passing through the points (£1, 0). Also, the segment of the x axis
between those points is the equipotential V (x, y) = 1/2. A harmonic conjugate U
of V is —(1/m) In p, or the imaginary part of the function —(i /m)Log w. In view of
equation (4), U may be written

1 11—

U:-m‘ <
b4 14z

From this equation, it can be seen that the flux lines U (x, y) = ¢, are arcs of circles

with centers on the x axis. The segment of the y axis between the electrodes is also a
flux line.

EXAMPLE 2. Let r(y denote any real number greater than unity. The Dirichlet
problem shown on the left in Fig. 166 can be solved using the solution of the one on
the right in that figure. The following series solution of the one on the right can be
found by the method of separation of variables, mentioned in Sec. 120:*

4 & sinh(a,v)  sin(oy,u)
6 V = — .
©) n; sinh(a, )  2n—1
where

2n — 1
7 g, = DT

In ro
V=1
- FIGURE 166

o 3
V=0 1nr, u w=logz <r>0,—%<9<7n>.

In order to solve the first boundary value problem in Fig. 166, we now introduce
the branch

3
(8) logz = Inr + i0 <r>Q—%<9<—;>

of the logarithmic function. By examining the images of appropriate portions of rays
from the origin in the z plane, one can readily see that transformation (8) is a one to

*See the authors’ Fourier Series and Boundary Value Problems, 8th ed., pp. 131-133, 2012.
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one mapping of the semicircular region in Fig. 166 onto the rectangular region there.
Also, corresponding points on the two boundaries are as indicated.

The theorems in Secs. 116 and 117 now tell us that since the real and imaginary
parts u and v of the function (8) are harmonic in the rectangle in the w plane,

&) V(r,0) = %i sinh(x,0) sin(a, Inr)

< sinh(o,m) 21— 1

where the numbers «,, are defined by equation (7).

EXERCISES

1. The harmonic function (3) of Sec. 123 is bounded in the half plane v > 0 and satisfies
the boundary conditions indicated on the right in Fig. 165. Show that if the imaginary
component of Ae”, where A is any real constant, is added to that function, then the
resulting function satisfies all the requirements except for the boundedness condition.

2. Show that transformation (4) of Sec. 123 maps the upper half of the circular region shown
on the left in Fig. 165 onto the first quadrant of the w plane and the diameter CE onto
the positive v axis. Then find the electrostatic potential V in the space enclosed by the
half cylinder x> + y> = 1,y > 0 and the plane y = 0 when V = 0 on the cylindrical
surface and V = 1 on the planar surface (Fig. 167).

2 1—x2— y2
Ans. V = —arctan| — |.
2y

-1 v=1 1 ~* FIGURE 167

3. Find the electrostatic potential V (r, 0) in the space 0 < r < 1,0 < 6 < 7/4, bounded
by the half planes & = 0 and & = 7/4 and the portion 0 < 6 < 7/4 of the cylindrical
surface r = 1, when V = 1 on the planar surfaces and V = 0 on the cylindrical one.
(See Exercise 2.) Verity that the function obtained satisfies the boundary conditions.

4. Note that all branches of logz have the same real component, which is harmonic
everywhere except at the origin. Then write an expression for the electrostatic potential
V (x, y) in the space between two coaxial conducting cylindrical surfaces x> 4 y> = 1
and x2 +y? = rg (ro # 1) when V = 0 on the first surface and V = 1 on the second.
In(x? + y?)

Ans. 'V
21n ro

5. Find the bounded electrostatic potential V (x, y) in the space y > 0 bounded by an
infinite conducting plane y = 0 one strip (—a < x < a, y = 0) of which is insulated
from the rest of the plane and kept at potential V = 1, while V = 0 on the rest (Fig. 168).
Verify that the function obtained satisfies the stated boundary conditions.
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2ay

1
Ans. V = — arctan| ————
T <x2 +y? —a?

) (0 < arctant < ).

V=0 V=1 V=0 X FIGURE 168

6. Derive an expression for the electrostatic potential in a semi-infinite space that is bounded
by two half planes and a half cylinder, as shown in Fig. 169, when V' = 1 on the cylindrical
surface and V' = 0 on the planar surfaces. Draw some of the equipotential curves in the

xy plane.
2 2y
Ans. V = —arctan| ——— |.
T x2+y2—1
V=0 V=0 X FIGURE 169

7. Find the potential V in the space between the planes y = 0 and y = 7 when V = 0 on
the parts of those planes where x > 0 and V = 1 on the parts where x < 0 (Fig. 170).
Verify that the result satisfies the boundary conditions.

1 sin y
Ans. V = — arctan| — (0 < arctanr < ).
T sinh x
y
V=1 V=0
A
V=1 V=0 X FIGURE 170

8. Derive an expression for the electrostatic potential V' in the space interior to a long
cylinder » = 1 when V = 0 on the first quadrant (r = 1,0 < 6 < m/2) of the
cylindrical surface and V = 1 on the rest (r = 1, 7/2 < 0 < 2m) of that surface. (See
Exercise 5, Sec. 102, and Fig. 123 there.) Show that V = 3/4 on the axis of the cylinder.
Verify that the result satisfies the boundary conditions.

9. Using Fig. 20 of Appendix 2, find a temperature function 7 (x, y) that is harmonic in the
shaded domain of the xy plane shown there and assumes the values T = 0 along the arc
ABC and T = 1 along the line segment DEF'. Verify that the function obtained satisfies
the required boundary conditions. (See Exercise 2.)
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10. The solution of the Dirichlet problem on the right in Fig. 171 is*

4 sinh mu .
V= —Z ——————— sinmv
T m sinh(m Inry)

where m = 2n — 1. By using the branch

2

of the logarithmic function, derive the following solution of the Dirichlet problem on the
left in Fig. 171:

. T 3
log=1Inr +i6 <r>0, -7 <9<—>

V(r, 0) = ;Z

n=1

—m

m
g — Ty nm

4 (r’” — r"”) sinmé

where m = 2n — 1.

FIGURE 171

) 0 T 0 3
w = lo; r>0—=<0<—|.
gz 2 2

124. TWO-DIMENSIONAL FLUID FLOW

Harmonic functions play an important role in hydrodynamics and aerodynamics.
Again, we consider only the two-dimensional steady-state type of problem. That is,
the motion of the fluid is assumed to be the same in all planes parallel to the xy plane,
the velocity being parallel to that plane and independent of time. It is, then, sufficient
to consider the motion of a sheet of fluid in the xy plane.

We let the vector representing the complex number

V=p+iqg

denote the velocity of a particle of the fluid at any point (x, y); hence the x and
y components of the velocity vector are p(x, y) and g(x, y), respectively. At points
interior to aregion of flow in which no sources or sinks of the fluid occur, the real-valued
functions p(x, y) and g (x, y) and their first-order partial derivatives are assumed to
be continuous.

The circulation of the fluid along any contour C is defined as the line integral
with respect to arc length o of the tangential component V7 (x, y) of the velocity vector

*See the reference to the authors’ book in the footnote with Example 2, Sec. 123.



SEC. 124 TwO-DIMENSIONAL FLUID FLOW 383

along C:
(1) / Vr(x. y) do.
C

The ratio of the circulation along C to the length of C is, therefore, a mean speed of
the fluid along that contour. It is shown in advanced calculus that such an integral can
be written®

@) /cvroc,y)do:/cp(x,y) dx +q(x. y) dy.

When C is a positively oriented simple closed contour lying in a simply connected
domain of flow containing no sources or sinks, Green’s theorem (see Sec. 50) enables
us to write

/Cp(x,y) dx +q(x,y)dy =//R[qx(x,y)—py(x,y)]dA,

where R is the closed region consisting of points interior to and on C. Thus

3) /Cvr<x,y>do =//R[qx(x,y>—py<x,y)]dA

for such a contour

A physical interpretation of the integrand on the right in expression (3) for the
circulation along the simple closed contour C is readily given. We let C denote a circle
of radius r which is centered at a point (xg, yo) and taken counterclockwise. The mean
speed along C is then found by dividing the circulation by the circumference 2xr,
and the corresponding mean angular speed of the fluid about the center of the circle is
obtained by dividing that mean speed by r:

[ 1
s //R J12(53) = py (6, V)1 dA.

Now this is also an expression for the mean value of the function

1
“4) w(x,y) = E[qx(x,y) = py(x, y)]

over the circular region R bounded by C. Its limit as » tends to zero is the value of
o at the point (xg, yp). Hence the function w(x, y), called the rotation of the fluid,
represents the limiting angular speed of a circular element of the fluid as the circle
shrinks to its center (x, y), the point at which w is evaluated.

If w(x,y) = 0 at each point in some simply connected domain, the flow is
irrotational in that domain. We consider only irrotational flows here, and we also
assume that the fluid is incompressible and free from viscosity. Under our assumption
of steady irrotational flow of fluids with uniform density p, it can be shown that the

*Properties of line integrals in advanced calculus that are used in this and the following section are to
be found in, for instance, W. Kaplan, Advanced Mathematics for Engineers, Chap. 10, 1992.
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fluid pressure P (x, y) satisfies the following special case of Bernoulli’s equation:

P N 1
p 2

where c is a constant. Note that the pressure is greatest where the speed |V | is least.
Let D be a simply connected domain in which the flow is irrotational. According

to equation (4), p, = g, throughout D. This relation between partial derivatives
implies that the line integral

2
[VI* =c,

/ p(s.t)ds +q(s, 1) dt
C

along a contour C lying entirely in D and joining any two points (xg, yo) and (x, y)
in D is actually independent of path. Thus, if (xg, yg) is fixed, the function

(x,y)
&) d(x,y) = / p(s,1) ds +q(s, 1) dt
(x0.y0)
is well defined on D; and, by taking partial derivatives on each side of this equation,
we find that

(6) du(x,y) =px,y), ¢y(x,y)=qx,y).

From equations (6), we see that the velocity vector V = p + iq is the gradient
of ¢; and the directional derivative of ¢ in any direction represents the component of
the velocity of flow in that direction.

The function ¢ (x, y) is called the velocity potential. From equation (5), it is
evident that ¢ (x, y) changes by an additive constant when the reference point (xg, o)
is changed. The level curves ¢ (x, y) = c; are called equipotentials. Because it is the
gradient of ¢ (x, y), the velocity vector V is normal to an equipotential at any point
where V is not the zero vector.

Just as in the case of the flow of heat, the condition that the incompressible fluid
enter or leave an element of volume only by flowing through the boundary of that
element requires that ¢ (x, y) must satisfy Laplace’s equation

Gux(x, y) + ¢y_y(x, y)=0

in a domain where the fluid is free from sources or sinks. In view of equations (6)
and the continuity of the functions p and ¢ and their first-order partial derivatives, it
follows that the partial derivatives of the first and second order of ¢ are continuous in
such a domain. Hence the velocity potential ¢ is a harmonic function in that domain.

125. THE STREAM FUNCTION

According to Sec. 124, the velocity vector

(D V =px,y)+igx,y)
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for a simply connected domain in which the flow is irrotational can be written

2) V=¢:(x,y) +idy(x,y) = grad ¢(x, y),

where ¢ is the velocity potential. When the velocity vector is not the zero vector, it
is normal to an equipotential passing through the point (x, y). If, moreover, ¥ (x, y)
denotes a harmonic conjugate of ¢ (x, y) (see Sec. 115), the velocity vector is tangent
to a curve ¥ (x, y) = c3. The curves ¥ (x, y) = c; are called the streamlines of the
flow, and the function v is the stream function. In particular, a boundary across which
fluid cannot flow is a streamline.

The analytic function

Fz)=¢(x,y) +iv(x,y)
is called the complex potential of the flow. Note that

F'(2) = ¢ (x, y) +ithe(x, y)

and, in view of the Cauchy—Riemann equations,
F'(z) = ¢u(x, y) —ipy(x, y).
Expression (2) for the velocity thus becomes
3) V =F'(2).
The speed, or magnitude of the velocity, is obtained by writing
VI=IF(@)I

According to equation (9), Sec. 115, if ¢ is harmonic in a simply connected
domain D, a harmonic conjugate of ¢ there can be written

)
W(x,y)=/ } —¢i(s, 1) ds + ¢s(s, 1) dt,

(x0,y0)
where the integration is independent of path. With the aid of equations (6), Sec. 124,
we can, therefore, write

4 Yix,y) = /C 4G5, 1) ds + p(s. 1) dr,

where C is any contour in D from (xg, yo) to (x, y).

Now it is shown in advanced calculus that the right-hand side of equation (4)
represents the integral with respect to arc length o along C of the normal component
Vi (x, y) of the vector whose x and y components are p(x, y) and g (x, y), respectively.
So expression (4) can be written

5) V(x.y) = /C Vi (s. 1) do.

Physically, then, ¥ (x, y) represents the time rate of flow of the fluid across C. More
precisely, ¥ (x, y) denotes the rate of flow, by volume, across a surface of unit height
standing perpendicular to the xy plane on the curve C.
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EXAMPLE. When the complex potential is the function

(6) F(z) = Az,
where A is a positive real constant,
(7 ¢(x,y) =Ax and Y(x,y) = Ay.

The streamlines ¥ (x, y) = ¢, are the horizontal lines y = ¢;/A, and the velocity at
any point is

V=F(z) = A.

Here a point (xg, yo) at which ¥ (x, y) = 0 is any point on the x axis. If the point
(x0, ¥o) is taken as the origin, then ¥ (x, y) is the rate of flow across any contour drawn
from the origin to the point (x, y) (Fig. 172). The flow is uniform and to the right. It can
be interpreted as the uniform flow in the upper half plane bounded by the x axis, which
is a streamline, or as the uniform flow between two parallel lines y = y; and y = y».

X FIGURE 172

The stream function ¥ characterizes a definite flow in a region. The question of
whether just one such function exists corresponding to a given region, except possibly
for a constant factor or an additive constant, is not examined here. Sometimes, when
the velocity is uniform far from the obstruction or when sources and sinks are involved
(Chap. 11), the physical situation indicates that the flow is uniquely determined by the
conditions given in the problem.

A harmonic function is not always uniquely determined, even up to a constant
factor, by simply prescribing its values on the boundary of a region. In the example
above, the function ¥ (x, y) = Ay is harmonic in the half plane y > 0 and has
zero values on the boundary. The function v|(x, y) = Be*siny also satisfies those
conditions. However, the streamline ¥| (x, y) = 0 consists not only of the line y = 0
but also of the lines y = nw (n = 1,2, ...). Here the function F(z) = Be® is the
complex potential for the flow in the strip between the lines y = 0 and y = 7, both
lines making up the streamline ¥ (x, y) = 0; if B > 0, the fluid flows to the right
along the lower line and to the left along the upper one.

126. FLOWS AROUND A CORNER
AND AROUND A CYLINDER
In analyzing a flow in the xy, or z, plane, it is often simpler to consider a corresponding

flow in the uv, or w, plane. Then, if ¢ is a velocity potential and v a stream function
for the flow in the uv plane, results in Secs. 116 and 117 can be applied to these
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harmonic functions. That is, when the domain of flow D,, in the uv plane is the image
of a domain D, under a transformation

w = f(z) =ulx,y) +iv(x,y),
where f is analytic, the functions

Glulx, y), v(x,y)] and  Ylu(x,y), v(x, y)l
are harmonic in D,. These new functions may be interpreted as velocity potential and
stream function in the xy plane. A streamline or natural boundary ¥ (u, v) = ¢; in the
uv plane corresponds to a streamline or natural boundary ¥ [u(x, y), v(x, y)] = ¢, in
the xy plane.

In using this technique, it is often most efficient to first write the complex potential
function for the region in the w plane and then obtain from that the velocity potential
and stream function for the corresponding region in the xy plane. More precisely, if
the potential function in the uv plane is

F(w) = ¢, v) +iy(u,v),
the composite function
FIf @] = ¢lulx,y), vix, W]+ ivlulx, y), vix, y)l
is the desired complex potential in the xy plane.

In order to avoid an excess of notation, we use the same symbols F, ¢, and i for
the complex potential, etc., in both the xy and the uv planes.

EXAMPLE 1. Consider a flow in the first quadrant x > 0, y > 0 that comes
in downward parallel to the y axis but is forced to turn a corner near the origin, as
shown in Fig. 173. To determine the flow, we recall (Example 2, Sec. 14) that the
transformation

w=z>=x>—y>+i2xy
maps the first quadrant onto the upper half of the uv plane and the boundary of the
quadrant onto the entire u axis.
y

o X FIGURE 173

From the example in Sec. 125, we know that the complex potential for a uniform
flow to the right in the upper half of the w plane is F = Aw, where A is a positive real
constant. The potential in the quadrant is, therefore,

(1) F = Az = A(x®> — y?) + i2Axy;
and it follows that the stream function for the flow there is

2) Y =2Axy.
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This stream function is, of course, harmonic in the first quadrant, and it vanishes on
the boundary.
The streamlines are branches of the rectangular hyperbolas

2Axy = c;.
According to equation (3), Sec. 125, the velocity of the fluid is
V =2Az =2A(x —iy).

Observe that the speed

V| = 2A/x2 + y2

of a particle is directly proportional to its distance from the origin. The value of the
stream function (2) at a point (x, y) can be interpreted as the rate of flow across a line
segment extending from the origin to that point.

EXAMPLE 2. Letalong circular cylinder of unit radius be placed in a large body
of fluid flowing with a uniform velocity, the axis of the cylinder being perpendicular to
the direction of flow. To determine the steady flow around the cylinder, we represent
the cylinder by the circle x> + y? = 1 and let the flow distant from it be parallel to the
x axis and to the right (Fig. 174). Symmetry shows that points on the x axis exterior
to the circle may be treated as boundary points, and so we need to consider only the
upper part of the figure as the region of flow.

yi
I —
| 1%
ﬁ
) i

M FIGURE 174

The boundary of this region of flow, consisting of the upper semicircle and the parts
of the x axis exterior to the circle, is mapped onto the entire u axis by the transformation

1
w=z+—.
2z
The region itself is mapped onto the upper half plane v > 0, as indicated in Fig. 17,
Appendix 2. The complex potential for the corresponding uniform flow in that half

plane is F = Aw, where A is a positive real constant. Hence the complex potential
for the region exterior to the circle and above the x axis is

3) F=AG+1>
Z

The velocity

(4) V:AO—%)
Z
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approaches A as |z| increases. Thus the flow is nearly uniform and parallel to the
x axis at points distant from the circle, as one would expect. From expression (4), we
see that V(z) = V(z); hence that expression also represents velocities of flow in the
lower region, the lower semicircle being a streamline.

According to equation (3), the stream function for the given problem is, in polar
coordinates,

5) w:A(r_l) Sin.

r

1
A(r — —) sinf = ¢y
r

are symmetric to the y axis and have asymptotes parallel to the x axis. Note that when
¢ = 0, the streamline consists of the circle r = 1 and the parts of the x axis exterior
to the circle.

The streamlines

EXERCISES

1. State why the components of velocity can be obtained from the stream function by means
of the equations
P(X»Y):V/y(xv)’), Q(X,Y):_lffx(x,)’)'

2. At an interior point of a region of flow and under the conditions that we have assumed,
the fluid pressure cannot be less than the pressure at all other points in a neighborhood
of that point. Justify this statement with the aid of statements in Secs. 124, 125, and 59.

3. For the flow around a corner described in Example 1, Sec. 126, at what point of the
region x > 0, y > 0 is the fluid pressure greatest?

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2, Sec. 126,
is 2A] sin 0] and also that the fluid pressure on the cylinder is greatest at the points z = £1
and least at the points z = +i.

5. Write the complex potential for the flow around a cylinder r = ry when the velocity V
at a point z approaches a real constant A as the point recedes from the cylinder.

6. Obtain the stream function ¥ = Ar*sin4é for a flow in the angular region
b4
r>0,0<6<—
4

that is shown in Fig. 175. Sketch a few of the streamlines in the interior of that region.

X FIGURE 175
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7.

8.

10.

11.
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Obtain the complex potential F = A sin z for a flow inside the semi-infinite region

— <x < — > ()
X B =
- _2}1

oS

that is shown in Fig. 176. Write the equations of the streamlines.

Y

\/

wls

T X
2 FIGURE 176

Show that if the velocity potential is ¢ = Alnr (A > 0) for flow in the region r > r,
then the streamlines are the half lines 6 = ¢ (r > ry) and the rate of flow outward through
each complete circle about the origin is 2A, corresponding to a source of that strength

at the origin.
, 1
F=Alz"+ )
z

for a flow in the region r > 1,0 < 6 < /2. Write expressions for V and 1. Note how
the speed |V| varies along the boundary of the region, and verify that ¥ (x, y) = 0 on
the boundary.

Obtain the complex potential

Suppose that the flow at an infinite distance from the cylinder of unit radius in Example 2,
Sec. 126, is uniform in a direction making an angle « with the x axis; that is,

lim V = A¢e'™® (A > 0).

|z| > 00

Find the complex potential.

. 1 .
Ans. F = A (zef’“ + - e’o‘).
z

Write
z—2=r1exp(it)), z+42=ryexp(ith),
and
@Z =7 = mep(iel ;92),
where

0<6, <27 and 0<06, <2m.
The function (z> — 4)!/? is then single-valued and analytic everywhere except on the

branch cut consisting of the segment of the x axis joining the points z = £2. We know,
moreover, from Exercise 13, Sec. 98, that the transformation

1
Z=w+ —
w
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12.

13.

14.

15.

maps the circle |w| = 1 onto the line segment from z = —2 to z = 2 and that it maps the
domain outside the circle onto the rest of the z plane. Use all of the observations above
to show that the inverse transformation, where |w| > 1 for every point not on the branch
cut, can be written

1

1 i0 i6,\?
w=§[z+(z2—4>‘/2]=Z(ﬁexp71+ﬁexp72) :

The transformation and this inverse establish a one to one correspondence between points
in the two domains.

With the aid of the results found in Exercises 10 and 11, derive the expression
F = Alzcosa —i(z> —4)?sina]

for the complex potential of the steady flow around a long plate whose width is 4 and
whose cross section is the line segment joining the two points z = =£2 in Fig. 177,
assuming that the velocity of the fluid at an infinite distance from the plate is A exp(ic)
where A > 0. The branch of (z> — 4)!/? that is used is the one described in Exercise 11.

FIGURE 177

Show that if sin « # 0 in Exercise 12, then the speed of the fluid along the line segment
joining the points z = =£2 is infinite at the ends and is equal to A| cos «| at the midpoint.

For the sake of simplicity, suppose that 0 < o < 7/2 in Exercise 12. Then show that
the velocity of the fluid along the upper side of the line segment representing the plate
in Fig. 177 is zero at the point x = 2 cos « and that the velocity along the lower side of
the segment is zero at the point x = —2 cos .

A circle with its center at a point xo (0 < xo < 1) on the x axis and passing through the
point z = —1 is subjected to the transformation

1
w=z+ —.
z
Individual nonzero points z can be mapped geometrically by adding the vectors
representing
i0 L
z=re” and - =-—e
z r

i6

Indicate by mapping some points that the image of the circle is a profile of the type
shown in Fig. 178 and that points exterior to the circle map onto points exterior to the
profile. This is a special case of the profile of a Joukowski airfoil. (See also Exercises 16
and 17 below.)
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- FIGURE 178

16. (a) Show that the mapping of the circle in Exercise 15 is conformal except at z = —1.
(b) Let the complex numbers

Aw

t = and 7= lim —
Aw—0 |Au)|

= lim —

Az—0 |AZ|
represent unit vectors tangent to a smooth directed arc at z = —1 and that arc’s
image, respectively, under the transformation

1
w=z+ —.
Z

Show that T = —¢2 and hence that the Joukowski profile in Fig. 178 has a cusp at
the point w = —2, the angle between the tangents at the cusp being zero.

17. Find the complex potential for the flow around the airfoil in Exercise 15 when the velocity
V of the fluid at an infinite distance from the origin is a real constant A. Recall that the
inverse of the transformation

1
w=z++ -
Z

used in Exercise 15 is given, with z and w interchanged, in Exercise 11.

18. Note that under the transformation w = e° + z, both halves, where x > 0 and x < O,
of the line y = m are mapped onto the half line v = 7w (1 < —1). Similarly, the line
y = —m is mapped onto the half line v = —7 (u < —1); and the strip —7 < y < 7 is
mapped onto the w plane. Also, note that the change of directions, arg(dw/dz), under
this transformation approaches zero as x tends to —oo. Show that the streamlines of a
fluid flowing through the open channel formed by the half lines in the w plane (Fig. 179)
are the images of the lines y = ¢; in the strip. These streamlines also represent the
equipotential curves of the electrostatic field near the edge of a parallel-plate capacitor.

FIGURE 179




CHAPTER

11

THE SCHWARZ~-CHRISTOFFEL
TRANSFORMATION

In this chapter, we construct a transformation, known as the Schwarz—Christoffel
transformation, which maps the x axis and the upper half of the z plane onto a given
simple closed polygon and its interior in the w plane. Applications are made to the
solution of problems in fluid flow and electrostatic potential theory.

127. MAPPING THE REAL AXIS ONTO A POLYGON

We represent the unit vector which is tangent to a smooth arc C at a point zy by the
complex number ¢, and we let the number t denote the unit vector tangent to the image
I of C at the corresponding point wy under a transformation w = f(z). We assume
that f is analytic at zo and that f’(zp) # 0. According to Sec. 112,

(1) arg T = arg f'(zo) + argt.

In particular, if C is a segment of the x axis with positive sense to the right, then s = 1
and arg ¢ = 0 at each point zp = x on C. In that case, equation (1) becomes

2) arg T = arg f’(x).

If f/(z) has a constant argument along that segment, it follows that arg T is constant.
Hence the image I' of C is also a segment of a straight line.

393
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Let us now construct a transformation w = f(z) that maps the whole x axis onto
a polygon of n sides, where xy, xs, ..., X,_1, and co are the points on that axis whose
images are to be the vertices of the polygon and where

X < Xp < -0 < Xp—1.

The vertices are the n points w; = f(x;) (j =1,2,...,n—1)and w, = f(oc0). The
function f should be such that arg f'(z) jumps from one constant value to another at
the points z = x; as the point z traces out the x axis (Fig. 180).

y v

o7
/
/
AR
X1 X, X Xy X u
FIGURE 180

If the function f is chosen such that
3 fl@) =A@ - Xl)_k' (z — )cz)_k2 N — xn_l)_kn—l’

where A is a complex constant and each k; is a real constant, then the argument of
f'(z) changes in the prescribed manner as z describes the real axis. This is seen by
writing the argument of the derivative (3) as

“4) arg f'(z) = arg A — ky arg(z — x1)
—kyarg(z —x3) — -+ — ky_yarg(z — x,_1).
When z = x and x < x,
arg(z —xp) = arg(z — xp) = - - - = arg(z — X,—1) = 7.

When x| < x < x», the argument arg(z — x;) is 0 and each of the other arguments is
7. According to equation (4), then, arg f’(z) increases abruptly by the angle k7 as z
moves to the right through the point z = x;. It again jumps in value, by the amount
ko, as z passes through the point x,, etc.

In view of equation (2), the unit vector 7 is constant in direction as z moves from
Xj—1 to x;; the point w thus moves in that fixed direction along a straight line. The
direction of 7 changes abruptly, by the angle k;m, at the image point w; of x;, as
shown in Fig. 180. Those angles k ;7 are the exterior angles of the polygon described
by the point w.

The exterior angles can be limited to angles between —n and 7, in which case
—1 < k; < 1. We assume that the sides of the polygon never cross one another and
that the polygon is given a positive, or counterclockwise, orientation. The sum of the
exterior angles of a closed polygon is, then, 27 ; and the exterior angle at the vertex w,,,
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which is the image of the point z = oo, can be written
kyw =2m — (ki + ko 4+ -+ + k1),
Thus the numbers k; must necessarily satisfy the conditions
(5) ki +ky+- -+ koo +k, =2, -1<kj<1 (=012,...,n).
Note that k, = 0 if
(6) ki +ky 4+ + kg =2,

This means that the direction of 7 does not change at the point w,. So w, is not a
vertex, and the polygon has n — 1 sides.

The existence of a mapping function f whose derivative is given by equation (3)
will be established in the next section.

128. SCHWARZ-CHRISTOFFEL TRANSFORMATION

In our expression (Sec. 127)
ey @ =AC—x) M M@—x) @ —x)

for the derivative of a function that is to map the x axis onto a polygon, let the factors
(z — x_,-)‘"-f (j=1,2,...,n— 1) represent branches of power functions with branch
cuts extending below that axis. To be specific, write

(z —x))™% = exp[—k; log(z — x;)] = exp[—k;(In |z — x;| +i0))]

and then

—k: —k; . T 37'[
() (z—x))"" = |z —x;|7" exp(—ik;0;) ) < 6; <5 )
where§; = arg(z —x;)and j =1, 2, ..., n — 1. This makes f'(z) analytic everywhere
in the half plane y > 0 except at the n — 1 branch points x;.
If zp is a point in that region of analyticity, denoted here by R, then the function

3) F(z)=/ f'(s) ds

is single-valued and analytic throughout the same region, where the path of integration
from zg to z is any contour lying within R. Moreover, F’'(z) = f’(z) (see Sec. 48).
To define the function F' at the point z = x; so that it is continuous there, we note
that (z — x;) % is the only factor in expression (1) that is not analytic at x;. Hence if
¢ (z) denotes the product of the rest of the factors in that expression, ¢ (z) is analytic
at the point x; and is represented throughout an open disk |z — x;| < R; by its Taylor
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series about x;. So we can write

@ =@E—x)"¢@)

=™ s+ B @+ S w24,
or
o) 1@ = G —x0™ + G —x)' ),

where ¥ is analytic and therefore continuous throughout the entire open disk. Since
1 — k; > 0, the last term on the right in equation (4) thus represents a continuous
function of z throughout the upper half of the disk, where Im z > 0, if we assign it the
value zero at z = x;. It follows that the integral

Z(S —x) My (s) ds
Z,

of that last term along a contour from Z; to z, where Z; and the contour lie in the half
disk, is a continuous function of z at z = x;. The integral

Z
—ki —
g (s —x1) " ds -
along the same path also represents a continuous function of z at x| if we define the
value of the integral there as its limit as z approaches x; in the half disk. The integral
of the function (4) along the stated path from Z; to z is, then, continuous at z = x;
and the same is true of integral (3) since it can be written as an integral along a contour
in R from z to Z, plus the integral from Z; to z.
The above argument applies at each of the n — 1 points x; to make F* continuous
throughout the region y > 0.
From equation (1), we can show that for a sufficiently large positive number R,
a positive constant M exists such that if Im z > 0, then

[(@—x)'"™ =z —x)'h]

M
(5) '@ < 5 whenever |z| > R.
|z|==
Since 2 —k, > 1, this order property of the integrand in equation (3) ensures the
existence of the limit of the integral there as z tends to infinity; that is, a number W,
exists such that

(6) lim Fz) =W,  (Imz=0).

Details of the argument are left to Exercises 1 and 2.
Our mapping function, whose derivative is given by equation (1), can be written
f () = F(z) + B, where B is a complex constant. The resulting transformation,

Z
(7) w=A/®—erwahmm—Mm%Hw+&

20
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is the Schwarz—Christoffel transformation, named in honor of the two German math-
ematicians H. A. Schwarz (1843-1921) and E. B. Christoffel (1829-1900) who dis-
covered it independently.

Transformation (7) is continuous throughout the half plane y > 0 and is con-
formal there except for the points x;. We have assumed that the numbers k; satisfy
conditions (5), Sec. 127. In addition, we suppose that the constants x; and k; are such
that the sides of the polygon do not cross, so that it is a simple closed contour. Then,
according to Sec. 127, as the point z describes the x axis in the positive direction, its
image w describes the polygon P in the positive sense; and there is a one to one cor-
respondence between points on that axis and points on P. According to condition (6),
the image w,, of the point z = oo exists and w,, = W,, 4+ B.

If z is an interior point of the upper half plane y > 0 and x, is any point on the
x axis other than one of the x;, then the angle from the vector ¢ at xo up to the line
segment joining x( and z is positive and less than = (Fig. 180). At the image w of
Xo, the corresponding angle from the vector 7 to the image of the line segment joining
xo and z has that same value. Thus the images of interior points in the half plane
lie to the left of the sides of the polygon, taken counterclockwise. A proof that the
transformation establishes a one to one correspondence between the interior points of
the half plane and the points within the polygon is left to the reader (Exercise 3).

Given a specific polygon P, let us examine the number of constants in the
Schwarz—Christoffel transformation that must be determined in order to map the x
axis onto P. For this purpose, we may write zo = 0, A = 1, and B = 0 and simply
require that the x axis be mapped onto some polygon P’ similar to P. The size and
position of P’ can then be adjusted to match those of P by introducing the appropriate
constants A and B.

The numbers k; are all determined from the exterior angles at the vertices of P.
The n — 1 constants x; remain to be chosen. The image of the x axis is some polygon
P’ that has the same angles as P. But if P’ is to be similar to P, then n — 2 connected
sides must have a common ratio to the corresponding sides of P; this condition is
expressed by means of n — 3 equations in the n — 1 real unknowns x ;. Thus two of the
numbers x j, or two relations between them, can be chosen arbitrarily, provided those
n — 3 equations in the remaining n — 3 unknowns have real-valued solutions.

When a finite point z = x,, on the x axis, instead of the point at infinity, represents
the point whose image is the vertex w,, it follows from Sec. 127 that the Schwarz—
Christoffel transformation takes the form

®) w=A4 /Z(S —x) (s —x) e (s —x,) " ds + B,

where k; + ko + --- + k, = 2. The exponents k; are determined from the exterior
angles of the polygon. But, in this case, there are n real constants x; that must satisfy
the n — 3 equations noted above. Thus three of the numbers x j, or three conditions on
those n numbers, can be chosen arbitrarily when transformation (8) is used to map
the x axis onto a given polygon.
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EXERCISES

1. Obtain inequality (5), Sec. 128.
Suggestion: Let R be larger than the numbers |x;| (j = 1,2, ..., n — 1). Note that
if R is sufficiently large, the inequalities |z]|/2 < |z — x| < 2|z| hold for each x; when
|z] > R. Then use expression (1), Sec. 128, along with conditions (5), Sec. 127.

2. Use condition (5), Sec. 128, and sufficient conditions for the existence of improper
integrals of real-valued functions to show that F(x) has some limit W, as x tends to
infinity, where F'(z) is defined by equation (3) in that section. Also, show that the integral
of f’(z) over each arc of a semicircle |z] = R (Imz > 0) approaches 0 as R tends to co.
Then deduce that

lim F(z) =W, (Imz > 0),
7—>00

as stated in equation (6) of Sec. 128.

3. According to Sec. 93, the expression

1 g' @) d

~ 27i Je g(2)

can be used to determine the number (V) of zeros of a function g interior to a positively
oriented simple closed contour C when g(z) # 0 on C and when C lies in a simply
connected domain D throughout which g is analytic and g’(z) is never zero. In that
expression, write g(z) = f(z) — wo, where f(z) is the Schwarz—Christoffel mapping
function (7), Sec. 128, and the point wy is either interior to or exterior to the polygon P
that is the image of the x axis; thus f(z) # wy. Let the contour C consist of the upper
half of a circle |z] = R and a segment —R < x < R of the x axis that contains all n — 1
points x;, except that a small segment about each point x; is replaced by the upper half
of acircle |z — x;| = p; with that segment as its diameter. Then the number of points z
interior to C such that f(z) = wy is

_ L@
2ri Je f(z) — wo
Note that f(z) — wo approaches the nonzero point W,, — wy when |z| = R and R tends

to 0o, and recall the order property (5), Sec. 128, for | f'(z)|. Let the p; tend to zero, and
prove that the number of points in the upper half of the z plane at which f(z) = wy is

Nc

R ’
N =— lim / 7'}0 )
27wi R—oo J_g f(x) — wy

R !
/ dw__ lim/ RSO
P wW— Wy R—o00 J_p f(x) — Wy

N = 1if wyg is interior to P and that N = 0 if wy is exterior to P. Thus show that the
mapping of the half plane Im z > 0 onto the interior of P is one to one.

Deduce that since
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129. TRIANGLES AND RECTANGLES

The Schwarz—Christoffel transformation is written in terms of the points x; and not
in terms of their images, which are the vertices of the polygon. No more than three of
those points can be chosen arbitrarily; so, when the given polygon has more than three
sides, some of the points x; must be determined in order to make the given polygon,
or any polygon similar to it, be the image of the x axis. The selection of conditions
for the determination of those constants that are convenient to use often requires
ingenuity.

Another limitation in using the transformation is due to the integration that is
involved. Often the integral cannot be evaluated in terms of a finite number of elemen-
tary functions. In such cases, the solution of problems by means of the transformation
can become quite involved.

If the polygon is a triangle with vertices at the points w;, w,, and w3 (Fig. 181),
the transformation can be written

(D w=A /Z(s —x1) (s —x2) (s —x3) ™™ ds + B,

20

where ki + k> + k3 = 2. In terms of the interior angles 6;,
1

ki=1—-—6; (J=1,2,3).
bid

Here we have taken all three points x; as finite points on the x axis. Arbitrary values
can be assigned to each of them. The complex constants A and B, which are associated
with the size and position of the triangle, can be determined so that the upper half plane
is mapped onto the given triangular region.

k7t
W, ¥ buw

o \

ky
Wi FIGURE 181

If we take the vertex ws as the image of the point at infinity, the transformation
becomes

2) w =A/Z(s—x1)_k‘(s—x2)_k2 ds + B,

where arbitrary real values can be assigned to x; and x,.

The integrals in equations (1) and (2) do not represent elementary functions un-
less the triangle is degenerate with one or two of its vertices at infinity. The integral in
equation (2) becomes an elliptic integral when the triangle is equilateral or when it is
aright triangle with one of its angles equal to either 7 /3 or 7 /4.
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EXAMPLE 1. For an equilateral triangle, k; = k, = k3 = 2/3. It is convenient
to write x; = —1, x, = 1, and x3 = oo and to use equation (2), with zg = 1, A =1,
and B = 0. The transformation then becomes

®) w= /Z(s + 1) (s — 1) ds.
1

The image of the point z = 1 is clearly w = 0; that is, wy = 0. If z = —1 in this
integral, one can write s = x, where —1 < x < 1. Then

x+1>0 and arg(x+1)=0,

while
x —1|=1—x and arg(x—1) =m.
Hence
- -2/3 -2/3 i
@ w = (x+1) (1—x) exp — dx
1
. i /1 2dx
= X — —_—
P\3 ) b a=a2m
when z = —1. With the substitution x = /7, the last integral here reduces to a special

case of the one used in defining the beta function (Exercise 5, Sec. 91). Let b denote
its value, which is positive:

b 2dx ' 11
— — [ a2 =p(- =
5) b_/o TR /Ot (1 -0~ dr 3(2,3>.

The vertex w; is, therefore, the point (Fig. 182)

6) wq :bexp%.

The vertex w3 is on the positive u axis because

o0 o0 d
w3 = / x4+ D -1)"Pdx = / :
1 1

(xz _ 1)2/3 :

W

wlq

* wy wy; % FIGURE 182
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But the value of wj is also represented by integral (3) when z tends to infinity along
the negative x axis; that is,

—1 2 .
w3 =/ (Ix + 1jx — 1))~/ exp(—é”) dx
1

—00 4 .
+/ (b + 1|x — 123 exp(—;”) dx.

1

In view of the first of expressions (4) for wy, then,

4mi -
w3 = wp + exp(—%) / (Ix 4+ 1jx = 1)~ 3dx
—1

b i n i /°° dx
=bexp — +exp| —— -
P37 \73 ) ) a2—1h

i i
w3 =bexp? + ws exp -3 )

or

Solving for w3, we find that
(N w3 = b.

We have thus verified that the image of the x axis is the equilateral triangle of side b
shown in Fig. 182. We can also see that

b i h 0
= —exp — when =0.
w > p3 z

When the polygon is a rectangle, each k; = 1/2. If we choose &1 and +a as the
points x; whose images are the vertices and write

(8) g =Gc+a) P+ )= —a)7?

where 0 < arg(z — x;) < m, the Schwarz—Christoffel transformation becomes

©) w = —/Z 2(s) ds.
0

except for a transformation W = Aw + B to adjust the size and position of the
rectangle. Integral (9) is a constant times the elliptic integral

@ 1
/ (1 =520 —k*»H 12 ds (k = —),
0 a

but the form (8) of the integrand indicates more clearly the appropriate branches of
the power functions involved.
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EXAMPLE 2. Let us locate the vertices of the rectangle when a > 1. As shown
inFig. 183, x| = —a,x, = —1,x3 = 1, and x4 = a. All four vertices can be described
in terms of two positive numbers b and ¢ that depend on the value of a in the following
manner:

1 1 dx
10 b: d = s
(10) | senar= | N
(11) c-/ﬂ(ﬂMx—/a dx
—hE N @ D@ =)

If -1 < x <0, then
arg(x +a) =arg(x +1) =0 and arg(x — 1) = arg(x —a) = m;

hence

7i\1?
gx) = [eXp<—7)] lg(x)| = —]g(x)].

If —a < x < —1, then

7i\1? .
g(x) = [CXP<—7>} lg() =ilg(x)].

—a -1 —a
m=—/ ﬂmw=—/ mmw—/ g(x) dx
0 0 —1

—1 —a
= / lg(x)] dx — i/ lg(x)| dx = —b +ic.
0 —1

It is left to the exercises to show that

Thus

(12) wy = —b, w3 = b, wys =b+ic.
The position and dimensions of the rectangle are shown in Fig. 183.

v

y
Wy ic Wa
ﬁ_— ’m -b . b
XX O xy ox, X w, o ws *  FIGURE 183

130. DEGENERATE POLYGONS

We now apply the Schwarz—Christoffel transformation to some degenerate polygons
whose integrals represent elementary functions. For purposes of illustration, the ex-
amples here result in transformations that we have already seen in Chap. 8.
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EXAMPLE 1. Let us map the half plane y > 0 onto the semi-infinite strip
—— <u=< —,
2 - T2
We consider the strip as the limiting form of a triangle with vertices w;, w,, and w;
(Fig. 184) as the imaginary part of w3 tends to infinity.

v > 0.

y
X Xy
I1 T i x
- FIGURE 184
The limiting values of the exterior angles are
/4
kim = ko = ) and kym = .
We choose the points x; = —1, x, = 1, and x3 = oo as the points whose images are

the vertices. Then the derivative of the mapping function can be written
dw
I = A+ D - = A=A

Hence w = A’sin"! z 4 B. If we write A’ = 1/a and B = b/a, it follows that
z = sin(aw — b).

This transformation from the w to the z plane satisfies the conditions z = —1
when w = —n/2 and z = 1 when w = /2 if a = 1 and b = 0. The resulting
transformation is

zZ =sinw,

which we have already verified (Sec. 104), with the z and w planes interchanged, as
one that maps the strip onto the half plane.

EXAMPLE 2. Consider the strip 0 < v < 7 as the limiting form of a rhombus
with vertices at the points w; = i, wy, ws = 0, and wy as the points w, and wy
are moved infinitely far to the left and right, respectively (Fig. 185). In the limit, the

w3 FIGURE 185
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exterior angles become
k17T=O, szT:JT, k371'=0, k47T:7[.

We leave x; to be determined and choose the values x, = 0, x3 = 1, and x4 = c0. The
derivative of the Schwarz—Christoffel mapping function then becomes

dw A

——=AC-)'7 @ - =

dz Z
thus

w=ALogz+ B.

Now B = 0 because w = 0 when z = 1. The constant A must be real because
the point w lies on the real axis when z = x and x > 0. The point w = i is the image
of the point z = x;, where x; is a negative number; consequently,

wi =ALogx; = Aln|x||+ Ami.

By identifying real and imaginary parts here, we see that |x;| = 1 and A = 1. Hence
the transformation becomes

w = Log z;

also, x; = —1. We already know from Example 3 in Sec. 102 that this transformation
maps the half plane onto the strip.

The procedure used in these two examples is not rigorous because limiting values
of angles and coordinates were not introduced in an orderly way. Limiting values were
used whenever it seemed expedient to do so. But if we verify the mapping obtained,
it is not essential that we justify the steps in our derivation of the mapping function.
The formal method used here is shorter and less tedious than rigorous methods.

EXERCISES
1. In transformation (1), Sec. 129, write zo = 0, B = 0, and
i
A=exp%, xp = —1, xy =0, x3=1,
k= 3 kr = ! ks = 3
= 2= 5 3T

to map the x axis onto an isosceles right triangle. Show that the vertices of that triangle
are the points

wp = bl, Wy = 0, and w3 = b,

where b is the positive constant

1
b :/ (1 — x2)734x=12 gx.
0
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Also, show that

(1 1)
2b=B(-,-),
44

where B is the beta function that was defined in Exercise 5, Sec. 91.

2. Obtain expressions (12) in Sec. 129 for the rest of the vertices of the rectangle shown in
Fig. 183.

3. Show that when 0 < a < 1 in expression (8), Sec. 129, the vertices of the rectangle are
those shown in Fig. 183, where b and ¢ now have the values

a 1
b=/0 18(0)] dx. c=/a 18(0)] dx.

4. Show that the special case
w=i /"(s + )2 (s = 1) V25712 g
0

of the Schwarz—Christoffel transformation (7), Sec. 128, maps the x axis onto the square
with vertices

w]:bi, wQZO, W3:b, w4:b—|—ib,
where the (positive) number b is related to the beta function, used in Exercise 1:
11
2b=B(-, - |.
(3'3)
5. Use the Schwarz—Christoffel transformation to arrive at the transformation
w=z" 0O<m<]l)),

which maps the half plane y > 0 onto the wedge |w| > 0,0 < argw < mm and
transforms the point z = 1 into the point w = 1. Consider the wedge as the limiting case
of the triangular region shown in Fig. 186 as the angle « there tends to O.

/
7
mir /\O(

1 u FIGURE 186

6. Refer to Fig. 26 in Appendix 2. As a point z moves to the right along the negative real
axis, its image point w is to move to the right along the entire u axis. As z describes the
segment 0 < x < 1 of the real axis, its image point w is to move to the left along the
half line v = wi (u > 1); and, as z moves to the right along that part of the positive
real axis where x > 1, its image point w is to move to the right along the same half line
v =i (u > 1). Note the changes in direction of the motion of w at the images of the
points z = 0 and z = 1. These changes suggest that the derivative of a mapping function
should be

@ =A-0""'z-1),
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where A is some constant; thus obtain formally the mapping function
w=umi+z—Logz,

which can be verified as one that maps the half plane Re z > 0 as indicated in the figure.

7. As a point z moves to the right along that part of the negative real axis where x < —1,
its image point is to move to the right along the negative real axis in the w plane. As
z moves on the real axis to the right along the segment —1 < x < 0 and then along the
segment 0 < x < 1, its image point w is to move in the direction of increasing v along
the segment 0 < v < 1 of the v axis and then in the direction of decreasing v along the
same segment. Finally, as z moves to the right along that part of the positive real axis
where x > 1, its image point is to move to the right along the positive real axis in the
w plane. Note the changes in direction of the motion of w at the images of the points
z=—1,z=0,and z = 1. A mapping function whose derivative is

f@=Ac+ D=0z — 1772
where A is some constant, is thus indicated. Obtain formally the mapping function
w=Vvz2-1,
where 0 < arg \/zz——l < . By considering the successive mappings
Z=2%, W=Z-1, and w=+W,

verify that the resulting transformation maps the right half plane Re z > 0 onto the upper
half plane Im w > 0, with a cut along the segment 0 < v < 1 of the v axis.
8. The inverse of the linear fractional transformation
i—z
i+z

maps the unit disk | Z| < 1 conformally, except at the point Z = —1, onto the half plane
Imz > 0. (See Fig. 13, Appendix 2.) Let Z; be points on the circle |Z| = 1 whose
images are the points z = x; (j = 1, 2, ..., n) that are used in the Schwarz—Christoffel
transformation (8), Sec. 128. Show formally, without determining the branches of the
power functions, that

dw

—=AZ-Z) Mz -2z (2 =2),
77 ( D7 2) ( )

where A’ is a constant. Thus show that the transformation
z
w=A / S—zpy ™ S -2z *..(S-z)"ds+B
Jo

maps the interior of the circle |Z| = 1 onto the interior of a polygon, the vertices of the
polygon being the images of the points Z; on the circle.

9. In the integral of Exercise 8, let the numbers Z; (j = 1,2, ..., n) be the nth roots of
unity. Write w = exp(2ri/n)and Z, = 1,2, = w, ..., Z, = """ (see Sec. 10). Let
each of the numbers k; (j = 1, 2, ..., n) have the value 2/n. The integral in Exercise 8
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then becomes

W /Z ds +B
w= —_ .
0 ( Sno— 1)2/n

Show that when A’ = 1 and B = 0, this transformation maps the interior of the unit
circle |Z| = 1 onto the interior of a regular polygon of n sides and that the center of the
polygon is the point w = 0.

Suggestion: The image of each of the points Z; (j = 1,2, ..., n) is a vertex of
some polygon with an exterior angle of 277 /n at that vertex. Write

/" ds
wy = —_—,
"o (s =1y

where the path of the integration is along the positive real axis from Z = 0to Z = 1 and
the principal value of the nth root of (" — 1)? is to be taken. Then show that the images
of the points Z, = w, ..., Z, = """ are the points wwy, ..., ®" 'w, respectively.

Thus verify that the polygon is regular and is centered at w = 0.

131. FLUID FLOW IN A CHANNEL THROUGH A SLIT

We now present a further example of the idealized steady flow treated in Chap. 10, an
example that will help show how sources and sinks can be accounted for in problems
of fluid flow. In this and the following two sections, the problems are posed in the uv
plane, rather than the xy plane. That allows us to refer directly to earlier results in this
chapter without interchanging the planes.

Consider the two-dimensional steady flow of fluid between two parallel planes
v = 0 and v = 7 when the fluid is entering through a narrow slit along the line in the
first plane that is perpendicular to the uv plane at the origin (Fig. 187). Let the rate of
flow of fluid into the channel through the slit be Q units of volume per unit time for
each unit of depth of the channel, where the depth is measured perpendicular to the
uv plane. The rate of flow out at either end is, then, O /2.

y v
lm’
wrrie — N\
0 x 1 x X u; O Uy u
FIGURE 187

The transformation w = Log z is a one to one mapping of the upper half y > 0
of the z plane onto the strip 0 < v < 7 in the w plane (see Example 2 in Sec. 130).
The inverse transformation
(1 z=¢e" =¢"e

maps the strip onto the half plane (see Example 3, Sec. 103). Under transformation (1),
the image of the u axis is the positive half of the x axis, and the image of the linev = 7
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is the negative half of the x axis. Hence the boundary of the strip is transformed into
the boundary of the half plane.

The image of the point w = 0 is the point z = 1. The image of a point w = uy,
where 1 > 0, is a point z = xg, where xog > 1. The rate of flow of fluid across a curve
joining the point w = u to a point (u, v) within the strip is a stream function ¥ (u, v)
for the flow (Sec. 125). If u, is a negative real number, then the rate of flow into the
channel through the slit can be written

Y(ur,0) = Q.

Now, under a conformal transformation, the function v is transformed into a function
of x and y that represents the stream function for the flow in the corresponding region
of the z plane; that is, the rate of flow is the same across corresponding curves in the
two planes. As in Chap. 10, the same symbol 1 is used to represent the different stream
functions in the two planes. Since the image of the point w = u; is a point z = x,
where 0 < x; < 1, the rate of flow across any curve connecting the points z = x( and
z = x1 and lying in the upper half of the z plane is also equal to Q. Hence there is a
source at the point z = 1 equal to the source at w = 0.

The same argument applies in general to show that under a conformal transfor-
mation, a source or sink at a given point corresponds to an equal source or sink at the
image of that point.

As Re w tends to —oo, the image of w approaches the point z = 0. A sink of
strength Q/2 at the latter point corresponds to the sink infinitely far to the left in the
strip. To apply the argument in this case, we consider the rate of flow across a curve
connecting the boundary lines v = 0 and v = 7 of the left-hand part of the strip and
the rate of flow across the image of that curve in the z plane.

The sink at the right-hand end of the strip is transformed into a sink at infinity in
the z plane.

The stream function  for the flow in the upper half of the z plane in this case
must be a function whose values are constant along each of the three parts of the x
axis. Moreover, its value must increase by Q as the point z moves around the point
z =1 from the position z = x to the position z = x, and its value must decrease by
Q/2 as z moves about the origin in the corresponding manner. We see that the function

0 1
== {Arg(z —1) — ~Arg Z]
T 2

satisfies those requirements. Furthermore, this function is harmonic in the half plane
Imz > 0 because it is the imaginary component of the function

1
F = Q [Log (z—1)—zLog z} = gLog (' —z71%).
b4 2 b4

The function F is a complex potential function for the flow in the upper half
of the z plane. Since z = ", a complex potential function F(w) for the flow in the
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channel is
F(w) = gLog (e"/? —e7/?y,
T

By dropping an additive constant, one can write

@) F(w) = %Log ( sinh l;) .

We have used the same symbol F to denote three distinct functions, once in the z plane
and twice in the w plane.
The velocity vector is

3) V = F'(w) 0 th w
= w) = — coth —.
21 2
From this, it can be seen that
lim V = g
|u| =00 21

Also, the point w = i is a stagnation point; that is, the velocity is zero there. Hence
the fluid pressure along the wall v = 7 of the channel is greatest at points opposite
the slit.

The stream function ¥ (u, v) for the channel is the imaginary component of the
function F'(w) given by equation (2). The streamlines ¥ (u, v) = ¢, are, therefore, the

curves
gArg( sinh E) = ).
b4 2

4 tan — = ¢tanh E,
2 2

This equation reduces to

where c is any real constant. Some of these streamlines are indicated in Fig. 187.

132. FLOW IN A CHANNEL WITH AN OFFSET

To further illustrate the use of the Schwarz—Christoffel transformation, let us find the
complex potential for the flow of a fluid in a channel with an abrupt change in its
breadth (Fig. 188). We take our unit of length such that the breadth of the wide part
of the channel is 7 units; then hm, where 0 < h < 1, represents the breadth of the
narrow part. Let the real constant Vj denote the velocity of the fluid far from the offset
in the wide part; thus

lim V =V,

u——00

where the complex variable V represents the velocity vector. The rate of flow per unit
depth through the channel, or the strength of the source on the left and of the sink on
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v
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FIGURE 188

the right, is then

ey 0 =nV,.

The cross section of the channel can be considered as the limiting case of the
quadrilateral with the vertices w;, w,, ws, and wy shown in Fig. 188 as the first and
last of these vertices are moved infinitely far to the left and right, respectively. In the
limit, the exterior angles become

kim =m, kot = kym = —%, kg = .

Es
As before, we proceed formally, using limiting values whenever it is convenient to
do so. If we write x; = 0, x3 = 1, x4 = 00 and leave x; to be determined, where
0 < xp < 1, the derivative of the mapping function becomes

dw = Az 'z —x) VP - D2
dz
To simplify the determination of the constants A and x, here, we proceed at once
to the complex potential of the flow. The source of the flow in the channel infinitely
far to the left corresponds to an equal source at z = 0 (Sec. 131). The entire boundary
of the cross section of the channel is the image of the x axis. In view of equation (1),
then, the function

2

3) F=VyLogz=Vylnr+iVy0

is the potential for the flow in the upper half of the z plane, with the required source at
the origin. Here the stream function is ¥ = V; 6. It increases in value from 0 to Vo
over each semicircle z = Re?(0 < 6 < m) as @ varies from 0 to 7. [Compare with
equation (5), Sec. 125, and Exercise 8, Sec. 126.]
The complex conjugate of the velocity V in the w plane can be written
- dF dF d
Vw)=— = ——Z
dw dz dw

Thus, by referring to equations (2) and (3), we can see that

— W (z—x 12
4) V(w_A<Z—1> .

~
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At the limiting position of the point w;, which corresponds to z = 0, the velocity
is the real constant V;. So it follows from equation (4) that

Vo
X«/X—z.

At the limiting position of w4, which corresponds to z = oo, let the real number V4
denote the velocity. Now it seems plausible that as a vertical line segment spanning
the narrow part of the channel is moved infinitely far to the right, V approaches V; at
each point on that segment. We could establish this conjecture as a fact by first finding
w as the function of z from equation (2); but, to shorten our discussion, we assume
that this is true, Then, since the flow is steady,

Vo =

ﬂhV4=7TV()= Q,

or V4 = Vy/h. Letting 7 tend to infinity in equation (4), we find that

o_ W

A A
Thus
(5) A =h, X, = h?
and

_ Vo 71— K2 12

6 V(w) = — )
® - o (1)

From equation (6), we know that the magnitude |V| of the velocity becomes
infinite at the corner ws of the offset since it is the image of the point z = 1. Also, the
corner w, is a stagnation point, a point where V = 0. Hence, along the boundary of
the channel, the fluid pressure is greatest at w, and least at ws.

To write the relation between the potential and the variable w, we must integrate
equation (2), which can now be written

- dw_h<z—1yﬂ
dz  z\z—-h?)
By substituting a new variable s, where
—h?
Z _ s
z—1

one can show that equation (7) reduces to
dw o 1 1
ds 1—s2 h2—s2)

I+ Lo h+s
1—s gh—s'

Hence

() w = h Log
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The constant of integration here is zero because when z = h?, the quantity s is zero
and so, therefore, is w.
In terms of s, the potential F of equation (3) becomes

h? — 52
F=VyL ;
0 L.Og 1 — S2
consequently,
exp(F/ Vo) — h?
© S

oexp(F/ Vo) —1°

By substituting s from this equation into equation (8), we obtain an implicit relation
that defines the potential F as a function of w.

133. ELECTROSTATIC POTENTIAL ABOUT AN EDGE
OF A CONDUCTING PLATE

Two parallel conducting plates of infinite extent are kept at the electrostatic potential
V =0, and a parallel semi-infinite plate, placed midway between them, is kept at the
potential V = 1. The coordinate system and the unit of length are chosen so that the
plates lie in the planes v = 0, v = &, and v = /2 (Fig. 189). Let us determine the
potential function V (u, v) in the region between those plates.

The cross section of that region in the uv plane has the limiting form of the
quadrilateral bounded by the dashed lines in Fig. 189 as the points w; and w3 move
out to the right and wjy to the left. In applying the Schwarz—Christoffel transformation
here, we let the point x4, corresponding to the vertex wy, be the point at infinity. We
choose the points x; = —1, x3 = 1 and leave x; to be determined. The limiting values
of the exterior angles of the quadrilateral are

kym =, ko = —m, kym = kg = 7.
Thus
dw _ _ 77— X3 A1+ x 1 —xo
— =AG+ Dz - -DH'=4 == ,
i E+D (z—x)(z—-1) (ZQ_I) 2<Z+1+Z_1>
y v
V=0 |m Ws
S 7_{17};:,// V=1
T
—1 1 TTm-—_Ixo

X, X, x5 X V=0 Wi % FIGURE 189
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and so the transformation of the upper half of the z plane into the divided strip in the
w plane has the form

(1) w= g[(l—i-xz)Log(z—i-l)%-(l—xz)Log(z—l)]—i—B.

Let A;, A; and By, B; denote the real and imaginary parts of the constants A and
B. When z = x, the point w lies on the boundary of the divided strip; and, according
to equation (1),
. Al +iA; .
2) u+zv=T{(l—l—xz)[lnlx—i-ll—l—larg(x—i-1)]
+ (1 —=x)[In|x — 1| +iarg(x — D]} + B, +iB>.

To determine the constants here, we first note that the limiting position of the line
segment joining the points w; and wy is the u axis. That segment is the image of the
part of the x axis to the left of the point x; = —1; this is because the line segment
joining w3 and wy is the image of the part of the x axis to the right of x3 = 1, and
the other two sides of the quadrilateral are the images of the remaining two segments
of the x axis. Hence when v = 0 and u tends to infinity through positive values, the
corresponding point x approaches the point z = —1 from the left. Thus

arg(x + 1) = m, arg(x — 1) =m,

and In|x + 1] tends to —oo. Also, since —1 < x, < 1, the real part of the quantity
inside the braces in equation (2) tends to —oo. Since v = 0, it readily follows that
A, = 0; for, otherwise, the imaginary part on the right would become infinite. By
equating imaginary parts on the two sides, we now see that

A
0= 2 +x)m + (1~ x)7] + By,
Hence
(3) —7TA1 = Bz, A2 =0.

The limiting position of the line segment joining the points w; and wy is the half
line v = /2 (u > 0). Points on that half line are images of the points z = x, where
—1 < x < xp; consequently,

arg(x + 1) =0, arg(x — 1) =m.

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at the
relation
b A]
4) 5= 7(1 —x2)7 + Bs.
Finally, the limiting positions of the points on the line segment joining w3 to wy
are the points u 4 i, which are the images of the points x when x > 1. By identifying,
for those points, the imaginary parts in equation (2), we find that

JTZBQ.
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Then, in view of equations (3) and (4),
A] = —1, Xy = 0.

Thus x = 0 is the point whose image is the vertex w = i /2; and, upon substituting
these values into equation (2) and identifying real parts, we see that B; = 0.
Transformation (1) now becomes

1

(5) w:—E[Log(z—i—l)—{—Log(z—1)]+m’,
or

(6) =1+,

Under this transformation, the required harmonic function V (u, v) becomes a
harmonic function of x and y in the half plane y > 0; and the boundary conditions
indicated in Fig. 190 are satisfied. Note that x, = 0 now. The harmonic function in that
half plane which assumes those values on the boundary is the imaginary component
of the analytic function

1 z—1 1 r i

— Log =—In—+ —(6) —62),

T z+1 7 rn =«
where 6 and 6, range from O to 7. Writing the tangents of these angles as functions
of x and y and simplifying, we find that

2y

7 tanzV =tan(6; — 6h) = —F5—.
7 an 7w an(6, — 6,) [

V=0 -1 V= 1 Vv=0X FIGURE 190

Equation (6) furnishes expressions for x> + y? and x> — y? in terms of u and
v. Then, from equation (7), we find that the relation between the potential V and the
coordinates u and v can be written

1

8) tangV = —e 4 — 52,
s
where
s=—14+114+2e2cos2v+ e,
EXERCISES

1. Use the Schwarz—Christoffel transformation to obtain formally the mapping function given
with Fig. 22, Appendix 2.
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2. Explain why the solution of the problem of flow in a channel with a semi-infinite rect-
angular obstruction (Fig. 191) is included in the solution of the problem treated in
Sec. 121.

——

FIGURE 191

3. Refer to Fig. 29, Appendix 2. As a point z moves to the right along the negative part of
the real axis where x < —1, its image point w is to move to the right along the half line
v = h (u < 0). As the point z moves to the right along the segment —1 < x < 1 of the
X axis, its image point w is to move in the direction of decreasing v along the segment
0 < v < h of the v axis. Finally, as z moves to the right along the positive part of the real
axis where x > 1, its image point w is to move to the right along the positive real axis.
Note the changes in the direction of motion of w at the images of the points z = —1 and
z = 1. These changes indicate that the derivative of a mapping function might be

dw z+ 1\

__:A( ,

dz z—1
where A is some constant. Thus obtain formally the transformation given with the figure.
Verify that the transformation, written in the form

w= g{(z + D@ = D" +Loglz + (e + D2 = ']}

where 0 < arg(z + 1) < m, maps the boundary in the manner indicated in the figure.

4. Let T (u, v) denote the bounded steady-state temperatures in the shaded region of the w
plane in Fig. 29, Appendix 2, with the boundary conditions 7 (u, h) = 1 when u < 0 and
T = 0 onthe rest (B’C’'D") of the boundary. Using the parameter «, where 0 < o < 7/2,
show that the image of each point z = i tan « on the positive y axis is the point

h
w=— {ln(tana + sec o) +i(% + seca)]
T

(see Exercise 3) and that the temperature at that point w is

o b4
T(u,v)=— <0<a<5>.
b4

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in the bed
of a deep stream represented by the shaded region of the w plane in Fig. 29, Appendix 2,
where the fluid velocity V approaches a real constant Vj as |w| tends to infinity in that
region. The transformation that maps the upper half of the z plane onto the region is noted
in Exercise 3. Use the chain rule

dF dF dz
dw  dz dw
to show that

Vw) = Voz — D2z + 172
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and, in terms of the points z = x whose images are the points along the bed of the stream,
show that

V1= [Vl

x—1
x+1]

Note that the speed increases from | Vy| along A’B’ until |V | = oo at B’, then diminishes
to zero at C’, and increases toward | V| from C’ to D’; note, too, that the speed is | V] at

the point
(o)
w=il=-+—|h,
2 7

between B’ and C’.



CHAPTER

12

INTEGRAL FORMULAS OF THE
POISSON TYPE

In this chapter, we develop a theory that enables us to solve a variety of boundary value
problems whose solutions are expressed in terms of definite or improper integrals.
Many of the integrals occurring are then readily evaluated.

134. POISSON INTEGRAL FORMULA

Let Cy denote a positively oriented circle, centered at the origin, and suppose that a
function f is analytic inside and on Cy. The Cauchy integral formula (Sec. 54)

1 d
(1) floy = [ L6)ds

2mi Je, §—z

expresses the value of f at any point z interior to Cy in terms of the values of f at
points s on Cy. In this section, we shall obtain from formula (1) a corresponding one
for the real component of the function f; and, in Sec. 135, we shall use that result to
solve the Dirichlet problem (Sec. 116) for the disk bounded by Cy.

We let ry denote the radius of Cy and write z = rexp(if), where 0 < r < ry
(Fig. 192). The inverse of the nonzero point z with respect to the circle is the point z;
lying on the same ray from the origin as z and satisfying the condition |z||z| = r3.
(Such inverse points, when ry = 1, have already been used in Sec. 97.) Because

417
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2
G, S

FIGURE 192

2
rO ro

|zil=— = 1| —)ro>ro;
|z] r

and this means that z; is exterior to the circle Cy. According to the Cauchy—Goursat
theorem (Sec. 50), then,

(ro/r) > 1,

f(s)ds

Ccy, § — 121

=0.

Hence

2mi s—2z S§—12Z

1 1 1
f(@) = — . ( — )f(s)ds;

and, using the parametric representation s = rgexp(i¢) (0 < ¢ < 2m) for Cy, we
have

@) f()—i/zﬂ( U )f()dqb
Z_Zn 0 s—z §—2 g

where, for convenience, we retain the s to denote ryexp(i¢). Now

2 2 <
_To e o _ S8,
3 =—_—€ = 0 = =

r re”! Z
and, in view of this expression for z, the quantity inside the parentheses in equation (2)
can be written

3

) s ) z rg—r2

_ = + = .
s—z s—s5G5/2) s—z 5-7 |s—z?
An alternative form of the Cauchy integral formula (1) is, therefore,

2 1’2 2 f(roei¢)

) fre?y ="

de

27 Jo s —z|?
when 0 < r < ry. This form is also valid when r = 0; in that case, it reduces directly to

1 2 )
fQ0) = o f(roe'®) d¢,
T Jo

which is just the parametric form of equation (1) when z = 0.



SEC. 134 POISSON INTEGRAL FORMULA 419
The quantity |s — z| is the distance between the points s and z, and the law of
cosines can be used to write (see Fig. 192)
2 _ 2 2
5) ls —z|" =ry —2rorcos(¢p —6) +r-.

Hence, if u is the real component of the analytic function f, it follows from formula (4)
that

2 2 2
! / (ro d )u(ro,¢) do (r <ro).
0

6 ,0) = —
©) u(r, 9) 27 ré — 2ror cos(¢p — 6) + r?

This is the Poisson integral formula for the harmonic function u in the open disk
bounded by the circle r = ry.

Formula (6) defines a linear integral transformation of u(ry, ¢) into u(r, 6). The
kernel of the transformation is, except for the factor 1/(2m), the real-valued function

2 2
rg —7r

Q) Plro.r.¢ = 0) = rd — 2ror cos(¢p — ) +r?’

which is known as the Poisson kernel. In view of equation (5), we can also write

r2 — 2
8) P(ro,r,p — 0) = :
ls —z|?

Let us now verify the following properties of P, where r < ry:

(a) P is a positive function;
(b) P(ro,r.¢ —0) = Re<s+z);
s —z
(¢) P(rg,r, ¢ —6) is a harmonic function of » and 6 interior to the circle Cy for each
fixed s on Cy;
(d) P(ro,r,¢ —0) is an even periodic function of ¢ — 6, with period 2r;
(e) P(ro,0,¢—0)=1;

2
@) P(ro,r, ¢ —0)dep = 1 whenr < ry.

27 Jo

Property (a) is true because of expression (8) since r < ry. Also, since z/(s — z)
and its complex conjugate z7/(s — z) have the same real parts, expression (8) and the
second of equations (3) tells us that

P(ro,r,¢—9)=Re< I )zRe(S+Z).

S —Z S —Z s —Z

Thus P has property (b); and since the real part of an analytic function is harmonic, P
has property (c). As for properties () and (e), we find from expression (7) that P has
those properties. Finally, property ( f) follows by writing u(r, ) = 1 in equation (6)
and then referring to expression (7).
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We conclude this introduction to the Poisson integral formula by writing expres-
sion (6) as

1 2
©) u(r,0) = E/o P(ro,r,¢ — Oulro, @) d¢  (r <ro).

We have assumed that f is analytic not only interior to Cy but also on Cy itself and
that u is, therefore, harmonic in a domain which includes all points on that circle. In
particular, u is continuous on Cy. The conditions will now be relaxed.

135. DIRICHLET PROBLEM FOR A DISK

Let F be a piecewise continuous function (Sec. 42) of 6 on the interval 0 < 6 < 2x.
The Poisson integral transform of F is defined in terms of the Poisson kernel
P(ro, r, ¢ — 0), introduced in Sec. 134, by means of the equation

1 2
(1) U 6) = E/o P(ro.rd—OF(@) dd  (r < ro).

In this section, we shall prove that the function U (r, ) is harmonic inside the
circle r = ry and

2 lim U(r, 0) = F(0)

r<rg

Sforeach fixed 6 at which F is continuous. Thus U is a solution of the Dirichlet problem
for the disk » < ry in the sense that U (r, ) is harmonic and approaches the boundary
value F'(0) as the point (r, ) approaches (r¢, #) along a radius, except at the finite
number of points (ry, #) where discontinuities of F' may occur.

Applications of the solution will be made in Sec. 136. Turning now to the proof that
the function U (r, 0) defined by equation (1) satisfies the stated Dirichlet problem, we
note first that U is harmonic inside the circle » = ry because P is a harmonic function
of r and 6 there. More precisely, since F' is piecewise continuous, integral (1) can be
written as the sum of a finite number of definite integrals each of which has an integrand
that is continuous in 7, 6, and ¢. The partial derivatives of those integrands with respect
to r and 6 are also continuous. Since the order of integration and differentiation with
respect to r and 6 can, then, be interchanged and since P satisfies Laplace’s equation

r2Py + 1P 4 Pgg =0

in the polar coordinates r and 6 (Exercise 1, Sec. 27), it follows that U satisfies that
equation too.

In order to verify limit (2), we need to show that if F' is continuous at 6, there
corresponds to each positive number ¢ a positive number § such that

3) |U(r,0) — F(9)] <¢ whenever O<rg—r <.
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We start by referring to property ( f), Sec. 134, of the Poisson kernel and writing

2
U, 0)—F() = 2171/0 P(ro,r, ¢ —0) [F(¢) — F(8)] do.
For convenience, we let F be extended periodically, with period 27, so that the in-
tegrand here is periodic in ¢ with that same period. Also, we agree that 0 < r < r¢
because of the nature of the limit to be established.

Next, we observe that since F is continuous at 6, there is a small positive number
« such that

(4) |F($) — F(0)] < % whenever  |¢ — 6] < a.
Assume now that |¢ — 0| < a and write
(%) U(r,0) — F(0) = Li(r) + L(r)

where

1 O+a
=5 / P(ro.r, ¢ — 0) [F () — F(0)] db,
T Jo

—o

1 0—a+2w
L(r) = */9 P(ro,r,¢ —0)[F(¢) — F(0)]d¢.

2m +o

The fact that P is a positive function (Sec. 134), together with the first of in-
equalities (4) just above and property (f), Sec. 134, of that function, enables us to
write

1 0+
|11 (r)] < 2—/ P(ro,r,¢ —0) |F(¢) — F(0)|d¢
JT

0—a
T P do="
< — ro, 7y — = .
47 Jo 0 2
As for the integral I,(r), one can see from Fig. 192 in Sec. 134 that the denominator
|s — z|* in expression (8) for P(rg, r, ¢ — @) in that section has a (positive) minimum
value m as the argument ¢ of s varies over the closed interval

O+o<¢p<6—a-+2m.

So, if M denotes an upper bound of the piecewise continuous function |F(¢) — F ()|
on the interval 0 < ¢ < 27, it follows that

r— rz)M

2M 2M
) < o el Nsg=*

2w (ro—r) < 8:5

2nrm
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whenever ro — r < § where

me
6 = .
( ) 4Mr0
Finally, the results in the two preceding paragraphs tell us that
e €
UG 0) - FOI =L+ LM <5 +5=¢

whenever ryp — r < §, where § is the positive number defined by equation (6). That is,
statement (3) holds when that choice of § is made.
According to expression (1), and since P(ry,0,¢ —0) =1,

1 2
vo.0)= 5 [ F@)de.
T Jo
Thus the value of a harmonic function at the center of the circle r = ry is the average
of the boundary values on the circle.

It is left to the exercises to prove that P and U can be represented by series
involving the elementary harmonic functions »” cos n6 and r" sinné as follows:*

e} r n

(7 P(ro,r,p — 0) = 1+2Z(r—> cosn(p —0) (r <ro)
n=l1 0

and

1 >~ /r\ .
(8) U(r,0) = 3 ap + Z — ) (a,cosnf + b, sinnf) (r <rp),

n=1 10
where
® anzg/an(@cosn(pd(p n=0,1,2,...),
1 Ozn
(10) bnzg/o F(¢)sinng do n=1,2,...).

136. EXAMPLES

The examples here illustrate much of the material in the last two sections.

EXAMPLE 1. Let us find the potential V (r, 6) inside a long hollow circular
cylinder of unit radius, split lengthwise into two equal parts, when V = 1 on one of
the parts and V = 0 on the other. This problem was solved by conformal mapping in
Example 1, Sec. 123; and we recall how it was interpreted there as a Dirichlet problem

*These results are obtained, in somewhat different notation, when ry = 1 by the method of separation
of variables in the authors’ Fourier Series and Boundary Value Problems, 8th ed., Sec. 49, 2012.



SEC. 136 EXAMPLES 423

for the disk r < 1, where V = 0 on the upper half of the boundary r = 1 and V =1
on the lower half. (See Fig. 193.)

V=1 FIGURE 193

In equation (1), Sec. 135, write V for U, ro = 1, and

_JO when 0O0<¢<m,
F¢) = {1 when 7w < ¢ <27

to obtain

1 2w
0 Voo = [ Pare-0ds.

27 Jx
where (see Sec.134)

1 —r2
P(l,r,¢—0)=

14+7r2—2rcos(p —0)
An antiderivative of P(1, r, ) is

2) /P(l,r, w)dw=2arctan<i+rtan%>,
—r

the integrand here being the derivative with respect to i of the function on the right
(see Exercise 3). So it follows from expression (1) that

1+ 27 — 6 1+r T —0
'V (r,0) = arctan 1 tan 5 — arctan tan .

—r 1—r 2
After simplifying the expression for tan[z V (r, 6)] obtained from this last equation
(see Exercise 4), we find that

1 1 —r2
3) V(r,0) = — arctan - (0 < arctant < ),

b4 2r sinf
where the stated restriction on the values of the arctangent function is physically
evident. When expressed in rectangular coordinates, the solution here is the same as
solution (5) in Sec. 123.
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EXAMPLE 2. In Sec. 135 expression (8), with coefficients (9) and (10), can be
used to find the steady temperatures 7 (r, ) in a solid cylinder r < r( of infinite length
when there is a constant A such that

T (rg,0) = Acosf.
Using 7T instead of U, we find that

1 = /r\" .

(@) T(r,0) = —ap+ Z — ) (a,cosnB + b, sinnb) (r < rp)
2 el ro

where

A 2
ao=*/ cospdp =0
T Jo

and, whenn =1,2, ...,

s Aifn=1
a"_;/o cos¢cosn¢d¢_{oifn>1-

A 2
b, = —/ cos ¢ sinn¢ d¢ = 0 for all n.
T Jo

(See Exercise 8, where these last two integrals are evaluated.)
If we substitute these values for the coefficients in series (4), we arrive at the
desired temperature function:

A A
(®)] T(r,0) = —(rcosbH) = —x.
ro ro
Note that (see Sec. 118) no heat flows across the plane y = 0, since a7 /dy = 0
there.

EXERCISES
1. Use the Poisson integral transform (1), Sec. 135, to derive the expression

1—)62—y2
=D+ G- DT —1

1
V(x,y) = — arctan (0 < arctant < 1)
b4

for the electrostatic potential interior to a cylinder x> + y?> = 1 when V = 1 on the first
quadrant (x > 0, y > 0) of the cylindrical surface and V = 0 on the rest of that surface.
Also, point out why 1 — V is the solution to Exercise 8, Sec. 123.

2. Let T denote the steady temperatures in a disk » < 1, with insulated faces, when 7" = 1
onthearc 0 < 0 < 20y (0 < 6y < /2) of the edge r = 1 and T = 0 on the rest of the
edge. Use the Poisson integral transform (1), Sec. 135, to show that

(1 —x*=y")yo
(x = D24 (y = y0)> — ¥

where yy = tan 6, . Verify that this function T satisfies the boundary conditions.

1
T (x,y) = — arctan (0 < arctant < ),
T
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3. Verify integration formula (2) in Example 1, Sec. 136, by differentiating the right-hand
side there with respect to .
Suggestion: The trigonometric identities

» ¥ T+cosy .o l—cosy
cos" — = ——, sin" —= ———
2 2 2 2

are useful in this verification.
4. With the aid of the trigonometric identities
tana — tan 8
1 +tanatan B’

show how solution (3) in the example in Sec. 135 is obtained from the expression for
7V (r, 0) just prior to that solution.

5. Let I denote this finite unit impulse function (Fig. 194):

1/h when6y <6 <6y+h,

0 when0 <6 <6yorfy+h <6 <2m,
where £ is a positive number and 0 < 6y < 6y + h < 2x. Note that

tan(oe — B) =

tano + cota = — s
sin 2«

1(h,0 — ) ={

Oo+h
/ I(h,0 —6y) do = 1.

o

I(h,0 - 6,)

1

Z | | |
| |
| |
| |
| |
| |
| |
5 A

0] 6, O+ h 21 ¢  FIGURE 194

With the aid of a mean value theorem for definite integrals, show that

2 Oo+h
/0 P(ro,r,¢—9)1<h,¢—eo)d¢=P(ro,r,c—m/e 1h, ¢ — 60) do.

where 6y < ¢ < 0y + h, and hence that

2
lim P(ro,r, —0)I(h,¢p —0y) dp = P(ro, 1,0 — 0y) (r < rp).

h—0
h=>0

Thus the Poisson kernel P (rg, r, 0 — 6p) is the limit, as 4 approaches O through positive
values, of the harmonic function inside the circle »r = ry whose boundary values are
represented by the impulse function 2 1 (h, 6 — 6)).

6. Show that the expression in Exercise 7(b), Sec. 68, for the sum of a certain cosine series
can be written
1 —a?

o0
1+2 n 0= — -
+ Za cos 1 —2acos 6 + a?

n=1

Thus show that the Poisson kernel (7), Sec. 134, has the series representation (7), Sec. 135.

(-l <a<l).
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7. Show that the series in representation (7), Sec. 135, for the Poisson kernel converges
uniformly with respect to ¢. Then obtain from formula (1) of that section the series
representation (8) for U (r, 6) there.

8. Evaluate the integrals

2 2
/ cos¢pcosnpdp and / cos ¢ sinngde
0 0

in Example 2, Sec. 136.
Suggestion: Use the trigonometric identities

2cos Acos B =cos(A — B) +cos(A + B)
and
2 cos Asin B = sin(A + B) — sin(A — B).

137. RELATED BOUNDARY VALUE PROBLEMS

Details of proofs of results given in this section are left to the exercises. The function
F representing boundary values on the circle » = ry is assumed to be piecewise
continuous.

Suppose that F(2r —0) = — F(0). The Poisson integral transform (1) in Sec. 135
then becomes

1 T
(1) U(r,0) = E/o [P(ro, 1, & — 6) — P(ro, r, ¢ + 6)1F ($) déb.

This function U has zero values on the horizontal radii & = 0 and & = 7 of the circle,
as one would expect when U is interpreted as a steady temperature. Expression (1)
thus solves the Dirichlet problem for the semicircular regionr < ry, 0 < 6 < m,
where U = 0 on the diameter AB shown in Fig. 195 and

2) ILII(} U(r,0) =F() O<6<m)

r<rgy

for each fixed 6 at which F is continuous.

X FIGURE 195
If FQr —6) = F(6), then

1 s
3) Ur,0) = g/o [P(ro,r,¢ —0) + P(ro,r, ¢ + 0)1F(9) do;

and Uy(r,0) = 0 when 6 = 0 or & = 7. Hence expression (3) furnishes a function U
that is harmonic in the semicircular region r < rg, 0 < 0 < 7 and satisfies condi-
tion (2) as well as the condition that its normal derivative be zero on the diameter AB
shown in Fig. 195.
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The analytic function z = r§/Z maps the circle |Z| = rq in the Z plane onto the
circle |z] = r¢ in the z plane, and it maps the exterior of the first circle onto the interior
of the second (see Sec. 97). Writing

z=re? and Z = Re'Y,
we see that

0
= — d 0 = 2 —_ .
r R an T —

The harmonic function U (r, 6) represented by expression (1), Sec. 135, is, then, trans-
formed into the function

U(rg 2m—v) == ; o — & F($)dg
o, & — = T3 5
R 2w Jo 13 —2rgRcos(¢p + ) + R?

which is harmonic in the domain R > ry. Now, in general, if u(r, 6) is harmonic, so
is u(r, —0). [See Exercise 4.] Hence the function

2
H(R,¥) = U(%’,w —271) ,

or

1 2
“) HR,¥) = _E/o P(ro, R, ¢ —Y)F(p)dp (R > ro),

is also harmonic. For each fixed v at which F () is continuous, we find from condi-
tion (2), Sec. 135, that
(%) lim H(R, ¥) = F(¥).

R—r
R>rg

Thus expression (4) solves the Dirichlet problem for the region exterior to the
circle R = ry in the Z plane (Fig. 196). We note from expression (8), Sec. 134, that
the Poisson kernel P (ry, R, ¢ — V) is negative when R > ry. Also,

1 2
©) [ PeoRG-wap=-1  (R>n)
T Jo
and
1 2
™ Jim HR) =5 / F(¢) dg.
—00 T Jo

FIGURE 196
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EXERCISES

1. Obtain the special case

1 b1
(@ H(R,¥) = E/o [P(ro, R, ¢+ V) — P(ro, R, ¢ — Y)|F(¢) do;

1 g
(b) H(R, V) = _E/o [P(ro, R, ¢ +¥)+ P(ro, R, ¢ — ¥)]F(¢) do

of expression (4), Sec. 137, for the harmonic function H (R, ¥) in the unbounded region
R > ro9, 0 < ¢ < m, shown in Fig. 197, if that function satisfies the boundary condition

lim HR.y) = F(p) (O <v <)

on the semicircle and (a) it is zero on the rays BA and DE; (b) its normal derivative is
zero on the rays BA and DE.

C .
o
B D E X FIGURE 197

2. Give the details needed in establishing expression (1) in Sec. 137 as a solution of the
Dirichlet problem stated there for the region shown in Fig. 195.

3. Give the details needed in establishing expression (3) in Sec. 137 as a solution of the
boundary value problem stated there.

4. Obtain expression (4), Sec. 137, as a solution of the Dirichlet problem for the region
exterior to a circle (Fig. 196). To show that u(r, — ) is harmonic when u (, 0) is harmonic,
use the polar form

72Uy, (r,0) + ru, (r, 0) + uge (r, 0) = 0
of Laplace’s equation.
5. State why equation (6), Sec. 137, is valid.
6. Establish limit (7), Sec. 137.

138. SCHWARZ INTEGRAL FORMULA

Let f be an analytic function of z throughout the half plane Imz > 0 such that for
some positive constants @ and M, the order property

e)) 1f@I <M (mz=0)

is satisfied. For a fixed point z above the real axis, let Cg denote the upper half of a
positively oriented circle of radius R centered at the origin, where R > |z| (Fig. 198).
Then, according to the Cauchy integral formula (Sec. 54),

1 f(s)ds 1 Rf(t) dt
2 f@) == +

2mi Je, s—z  2miJog t—z
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X FIGURE 198

We find that the first of these integrals approaches 0 as R tends to oo since, in
view of condition (1),

f(s)ds M M
TR = .
cr S—2 RY(R — |z]) R(1 —|z|/R)
Thus
3) f2) = L AR (Imz > 0).
2mi J_ o t— 2

Condition (1) also ensures that the improper integral here converges.” The number
to which it converges is the same as its Cauchy principal value (see Sec. 85), and
representation (3) is a Cauchy integral formula for the half plane Im z > 0.

When the point z lies below the real axis, the right-hand side of equation (2) is
zero; hence integral (3) is zero for such a point. Thus, when z is above the real axis,
we have the following expression, where ¢ is an arbitrary complex constant:

1 o 1 c
“) f@) == (— + —)f(t)dt (Imz > 0).
2wt J oo\t —2z t—7%

In the two cases ¢ = —1 and ¢ = 1, this reduces, respectively, to

L[ yf@
5) f@:—/ YO 40

T ) It — 2|
and

L= @-x)f@
©) ro=— [ T e oo
i) oo |t —Z]

If f(z) = u(x,y) + iv(x,y), it follows from equations (5) and (6) that the
harmonic functions # and v are represented in the half plane y > 0 in terms of the

boundary values of u by the expressions

% u(x,y):%/.oo yu(t’o)dtzl/oont (y > 0)

—oo t—2I? T oo (t —x)% 4 y?

*See, for instance, A. E. Taylor and W. R. Mann, Advanced Calculus, 3d ed., Chap. 22, 1983.
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and

B i ® (x — Hu(t, 0)
®) v(x, y) = /m e

b4

Expression (7) is known as the Schwarz integral formula, or the Poisson integral
formula for the half plane. In the next section, we shall relax the conditions for the
validity of expressions (7) and (8).

dt (y > 0).

139. DIRICHLET PROBLEM FOR A HALF PLANE

Let F denote a real-valued function of x that is bounded for all x and continuous
except for at most a finite number of finite jumps. When y > ¢ and |x| < 1/e, where
€ is any positive constant, the integral

©  F(t)dt
o= [ ey

converges uniformly with respect to x and y, as do the integrals of the partial deriva-
tives of the integrand with respect to x and y. Each of these integrals is the sum of a
finite number of improper or definite integrals over intervals on which F is continuous;
hence the integrand of each component integral is a continuous function of 7, x, and
y when y > ¢. Consequently, each partial derivative of / (x, y) is represented by the
integral of the corresponding derivative of the integrand whenever y > 0.

If we write

Ulx,y) = %I(x, )

then U is the Schwarz integral transform of F, suggested by expression (7), Sec. 138:

M) vey=— [ 2D a g0

X,y)=— — > 0).

R BN TR g
Except for the factor 1/, the kernel here is y/|t — z|>. It is the imaginary component
of the function 1/(¢ — z), which is analytic in z when y > 0. It follows that the kernel
is harmonic, and so it satisfies Laplace’s equation in x and y. Because the order of
differentiation and integration can be interchanged, the function (1) then satisfies that
equation. Consequently, U is harmonic when y > 0.
To prove that

@) limU(r.y) = F(x)

for each fixed x at which F is continuous, we substitute # = x + y tan 7 in integral (1)
and write

/2
3) U(x,y):%/ /2F(x+ytant)dr (y > 0).

As a consequence, if

Gx,y,1)=F(x+ytant) — F(x)
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and « is some small positive constant,

/2
“) m[U(x,y) — F(x)] = K Gix,y,v)dt =6L(y)+ L)+ L)

where

(—m/2)4a (/2)—a
L) = / Glr.y. 1) dr,  Ly) = / G(x.y. 1) dr.
- (=7 /2)+a

/2
L) = / G(x.y. 1) dr.
(/2)—a

If M denotes an upper bound for |F(x)|, then |G(x, y, 7)| < 2M. For a given
positive number &, we select o so that 6M«a < ¢; and this means that

€ )
[(y)| <2Ma < 3 and ()| <2Ma < 3
We next show that corresponding to ¢, there is a positive number § such that

[L(y)] < % whenever 0<y<é.

To do this, we observe that since F is continuous at x, there is a positive number y
such that

3
|G(x,y, 1) < i whenever 0 < y|tant| < y.
T

Now the maximum value of |tan 7| as t ranges from
is

Hence, if we write § = y tan «, it follows that
I3 e
|LL(y)] < —(r —2a) < = whenever 0 <y <34.
3 3
We have thus shown that

LD+ LD+ 13(y)| <& whenever 0 <y <.

Condition (2) now follows from this result and equation (4).

Expression (1) therefore solves the Dirichlet problem for the half plane y > 0,
with the boundary condition (2). It is evident from the form (3) of expression (1) that
|U (x, y)| < M in the half plane, where M is an upper bound of |F(x)|; that is, U is
bounded. We note that U (x, y) = Fy when F(x) = Fy, where Fj is a constant.
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According to expression (8) of Sec. 138, under certain conditions on F' the
function

1/°° (c—DF@) =0

© R A s

T
is a harmonic conjugate of the function U given by equation (1). Actually, equation (5)
furnishes a harmonic conjugate of U if F is everywhere continuous, except for at most
a finite number of finite jumps, and if F satisfies an order property

[x“F(x)| <M (a > 0).

For, under those conditions, we find that U and V satisfy the Cauchy—Riemann equa-
tions when y > 0.

Special cases of expression (1) when F is an odd or an even function are left to
the exercises.

EXERCISES

1. Obtain as a special case of expression (1), Sec. 139, the expression

U _2 [T ! : F(t)di 0,y>0
=2 [(t_x)2+y2—(t+x)2+y2 (hdi x>0,y >0)

for a bounded function U that is harmonic in the first quadrant and satisfies the boundary
conditions

lirrolU(x,y):F(x) (x > 0,x #x)),

o
where F is bounded for all positive x and continuous except for at most a finite number
of finite jumps at the points x; (j =1,2,...,n).

2. Let T'(x, y) denote the bounded steady temperatures in a plate x > 0,y > 0, with

insulated faces, when

ImT(ey) =FE (>0,

¥=0

lim 7' (x, y) = F2(y) (y>0)

x>0

(Fig. 199). Here F and F, are bounded and continuous except for at most a finite number
of finite jumps. Write x 4+ iy = z and show with the aid of the expression obtained in
Exercise 1 that

T(X»Y)=T1(X»Y)+T2(xa)’) (-X>07y>0)

T=Fyy)

T=F(x) X  FIGURE 199
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where

Ti(x,y) = Z/Oo (L—%)Fl(z)dr,
7Jo \lt—z> |t+z?

Tz(X,y)=X/OO(. Lol )Fz(f)dl-
7 Jo lit —z|2 it +z|?

3. Obtain as a special case of expression (1), Sec. 139, the expression

oy I 1
U(x,y)—n/O {(l‘—x)z—i-yz+(t+x)2+y2}F(t)dt x>0,y >0)

for a bounded function U that is harmonic in the first quadrant and satisfies the boundary
conditions

U:0,y)=0 (y>0),

11r1()1U(x,y)=F(x) (x > 0,x # x)),

y=0

where F is bounded for all positive x and continuous except possibly for finite jumps at
a finite number of points x = x; (j =1,2,...,n).

4. Interchange the x and y axes in Sec. 139 to write the solution
1 [ xF(t)
Ux,y)=— ——— dt 0
(x,7) n[w(t_y)2+x2 (x > 0)
of the Dirichlet problem for the half plane x > 0. Then write

1 when |y| < 1,

Fy) = {0 when |y| > 1,

and obtain these expressions for U and its harmonic conjugate —V:
y— x2 + (y + 1)2
x4 (y—1)?

— arctan

1 1 1 1
U(x,y) = —<arctany+ ), Vix,y)=—1n
T 21

where —m /2 < arctant < 7 /2. Also, show that
1
Vx,y)+iU(x,y) = ;[Log(z +i) — Log(z — i)],

where z = x + iy.

140. NEUMANN PROBLEMS
As in Sec. 134 and Fig. 192, we write

s=roexp(i¢) and z=rexp(if) (r <ry).
When s is fixed, the function

(1)  Q(ro,r,¢ —0) = —2rgIn|s — z| = —roIn [r§ — 2ror cos(¢ — 0) + r?]
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is harmonic interior to the circle |z| = r( because it is the real component of
—2rglog(z — s),

where the branch cut of log(z — s) is an outward ray from the point s. If, moreover,

r #£0,
ro [ 2r* — 2rorcos(¢p — 6)
2 r s Iy —0)=——
2) Q:(ro. 7. ¢ — 0) r L = 2ror cos(¢p — 0) +r?

ro
27[P(r07r7¢_9)_1]

where P is the Poisson kernel (7) of Sec. 134.

These observations suggest that the function Q may be used to write an integral
representation for a harmonic function U whose normal derivative U, on the circle
r = ro assumes prescribed values G (9).

If G is piecewise continuous and Uj is an arbitrary constant, the function

2

1
3 veno) =~ A Q(ro,r,¢ —0)G(p)dp+ Uy (r <ro)

is harmonic because the integrand is a harmonic function of r and 6. If the mean value
of G over the circle |z| = ry is zero, so that

27
4) ; G(¢) do =0,
then, in view of equation (2),
1 2
U0 =5 [ iPeorg—0) - 1G4 do
T Jo r
ro 1 2
= "I P(r()vrv(p_e)G((p)dd)
r 2w 0

Now, according to equations (1) and (2) in Sec. 135,

1 2
mP—/ P(ro.r. — 0) G(@®) dd = G(O).
2 2m Jo
Hence
) lim U, (+,6) = G©)

r<rq

for each value of 0 at which G is continuous.
When G is piecewise continuous and satisfies condition (4), the expression

2
6) U(,0) = —2%/0 In [rg — 2ror cos(¢p — 0) +r*] G(p)de + Uy (r < o),

therefore, solves the Neumann problem for the region interior to the circle r = ry,
where G (0) is the normal derivative of the harmonic function U (r, 8) at the boundary
in the sense of condition (5). Note how it follows from equations (4) and (6) that since
In rg is constant, Uy is the value of U at the center r = 0 of the circle r = ry.
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The values U(r, #) may represent steady temperatures in a disk r < ry with
insulated faces. In that case, condition (5) states that the flux of heat into the disk through
its edge is proportional to G (8). Condition (4) is the natural physical requirement that
the total rate of flow of heat into the disk be zero, since temperatures do not vary
with time.

A corresponding expression for a harmonic function A in the region exterior to
the circle r = ry can be written in terms of Q as

2

1
(7 HR,y) = "o o Q(ro. R, ¢ —Y)G(p)dp+ Hy (R > ro),

where H is a constant. As before, we assume that G is piecewise continuous and that
condition (4) holds. Then

Hy = Rlim H(R, )
and
3 ,1333 Hr(R, V) = G(¥)

R>rg

for each point i at which G is continuous. Verification of expression (7), as well as

special cases of expression (3) that apply to semicircular regions, is left to the exercises.
Turning now to a half plane, we let G(x) be continuous for all real x, except

possibly for a finite number of finite jumps, and let it satisfy an order property

9) x‘Gx)| <M (a>1)

when —oo < x < oo. For each fixed real number ¢, the function Log|z —¢| is harmonic
in the half plane Im z > 0. Consequently, the function

o0

(10)  Ux,y) = %/ Injz — | G(t) dt + U,

o0
== In[(r — x)* + y*1 G (1) dt + Uy (y >0,
21 J_o
where U is a real constant, is harmonic in that half plane.
The function (10) was written with the Schwarz integral transform (1), Sec. 139,
in mind; for it follows from expression (10) that

L [~ yG@

11 U,(x,y) = — —— 0).
(1 (6 ¥) n/_oo(t—x)z—i-yz (v > 0)
In view of equations (1) and (2) in Sec. 139, then,

(12) lim Uy (x. y) = G(x)

y=0

at each point x where G is continuous.

Expression (10) evidently solves the Neumann problem for the half plane y > 0,
with boundary condition (12). But we have not presented conditions on G which are
sufficient to ensure that the harmonic function U is bounded as |z| increases.
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When G is an odd function, expression (10) can be written

N N
(13) U(x, y) = E/O ln[m} G(t)dt (x >0, y > 0).

This represents a function that is harmonic in the first quadrant x > 0,y > 0 and
satisfies the boundary conditions

(14) uo,y=0 (>0,
(15) lim,-o Uy(x,y) = G(x) (x> 0).
EXERCISES

1. Establish expression (7), Sec. 140, as a solution of the Neumann problem for the region
exterior to a circle r = rg, using earlier results found in that section.

2. Obtain as a special case of expression (3), Sec. 140, the expression

] T
Ur,0) = Z/o [Q(ro.r, ¢ —0) — Q(ro, 1, ¢ +0)]G(P) d§

for a function U that is harmonic in the semicircular region r < ro,0 < 0 < m and
satisfies the boundary conditions

Ur,00)=U@,7t)=0 (r <rp),

11}13 U,.(r,0) = G() 0<6<m)

r<rg
for each 0 at which G is continuous.
3. Obtain as a special case of expression (3), Sec. 140, the expression
1 e
U(r,0) = E/o [Q(ro,r, ¢ —0) + Q(ro, 1, ¢ + )1 G(¢) dop + Uy
for a function U that is harmonic in the semicircular region r < ro,0 < 0 < m and
satisfies the boundary conditions
Ug(r,0) = Us(r,m) =0 (r <ro),
ang U,(r,0) = G(9) 0O<06<m)

r<rg

for each 0 at which G is continuous, provided that

/0” G($) dp = 0.

4. Let T (x, y) denote the steady temperatures in a plate x > 0, y > 0. The faces of the plate
are insulated, and 7 = 0 on the edge x = 0. The flux of heat (Sec. 118) into the plate
along the segment 0 < x < 1 of the edge y = 0 is a constant A, and the rest of that edge
is insulated. Use expression (13), Sec. 140, to show that the flux out of the plate along the

edge x =0is
A 1
0 Yy
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FIGURE 12
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FIGURE 19
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FIGURE 20
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FIGURE 21
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*See Exercise 3, Sec. 133.
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Note: Page numbers followed by n refer to footnotes.

Absolute convergence, 183-184, 208-211
Absolute value, 9, 373
Accumulation points, 34
Additive identity, 3
Additive inverse, 4, 6
Additive property, 20
Aerodynamics, 382
Algebraic properties, of complex numbers,
34
Analytic continuation, 82, 84, 85
Analytic functions
Cauchy—Goursat theorem adopted to
integrals of, 199
composition of, 73
derivatives of, 168—170
explanation of, 72-76, 227, 229
isolated, 250
properties of, 74-76
reflection principle and, 82-84
residue and, 235
simply connected domains and, 155
uniquely determined, 80-82
zeros of, 248-250, 290
Analyticity, 72, 74-76, 189, 214, 227, 395
Angle of inclination, 123, 346, 347
Angle of rotation, 346, 348, 349
Angles, preservation of, 345-348
Antiderivatives
analytic functions and, 156
of continuous function, 140-144
explanation of, 140-144
fundamental theorem of calculus and, 117
Arc
differentiable, 122
explanation of, 120
Jordan, 120, 123

simple, 120

smooth, 123, 129, 144
Argument

principle value of, 17-18, 39

of products and quotients, 21-23
Argument principle, 287-290
Associative laws, 3

Bernoulli’s equation, 384
Bessel functions, 2071
Beta function, 283, 400
Bilinear transformation, 307
Binomial formula, 7, 8
Boas, R. P,, 173n, 240n, 310n
Bolzano-Weierstrass theorem, 255
Boundary conditions, transformations of,
360-362
Boundary of S, 32
Boundary points, 32-33, 317, 323, 325
Boundary value problems, 357-358, 360, 368,
370-372, 375, 377, 379, 426-427
Bounded functions, 172-173
Bounded sets, 32
Branch cuts
contour integrals and, 131-132
explanation of, 94, 395
integration along, 280282
Branches
of double-valued function, 328, 332-333, 336
integrands and, 143, 144, 147
of logarithmic functions, 93-95, 142,
228-230, 316, 352
of multiple-valued function, 94, 280,
283,284
principal, 94, 102, 228
of square root function, 326, 328-330
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Branch point
explanation of, 94, 340
indentation around, 277-280
Bromwich integral, 295
Brown, G. H., 267n
Brown, J. W., 78n, 207n, 269n, 276n, 371n,
382n,422n
Buck, J. R., 207n

Casorati—Weierstrass theorem, 257
Cauchy, A. L., 64
Cauchy—Goursat theorem
adaptation to multiply connected domains,
156-158
applied to multiply connected domains,
156-158
applied to simply connected domains,
154-156
explanation of, 149, 227, 276, 418
proof of, 150-154
residue and, 233-235
Cauchy integral formula
consequences of extension of, 168—170
explanation of, 162-163, 418
extension of, 164-168, 217, 247
for half plane, 428-429
Taylor’s theorem and, 187
Cauchy principal value, 259-260
Cauchy product, 222
Cauchy—Riemann equations
analyticity and, 75
in complex form, 72
explanation of, 64-65, 351
harmonic conjugate and, 354-356, 432
partial derivatives and, 64, 66, 68, 69,
83,356
in polar form, 69, 71, 94
sufficiency of, 65-68
Cauchy’s inequality, 170, 172
Cauchy’s residue theorem, 233-235, 262,
267,271-272, 278, 280, 281, 283, 285,
289, 290
Chain rule, 60, 68, 71, 73, 100, 345, 359,
415416
Chebyshev polynomials, 25n
Christoffel, E. B., 397
Churchill, R.V., 78n, 207n, 267n, 269n, 276n,
295n, 371n, 382n, 422n

Circle of convergence, 209, 210,
213,215
Circles
parametric representation of, 19
transformations of, 301-305
Circulation of fluid, 382-383
Closed contour, simple, 24, 123, 148
Closed disk, 275
Closed polygons, 393, 394
Closed set, 32
Closure, 32
Coincidence principle, 81
Commutative laws, 3
Complex conjugates, 14-16, 410
Complex numbers
algebraic properties of, 3—4
arguments of products and quotients of,
21-23
complex conjugates of, 14-16
convergence of series of, 182
explanation of, 1
exponential form of, 17-18
imaginary part of, 2
polar form of, 17-18
products and powers in exponential form,
20-21
real part of, 2
roots of, 25-30
sums and products of, 1-3
vectors and moduli of, 8-10
Complex plane, 1
extended, 50
point at infinity and, 50
Complex potential, 385, 386, 388, 389
Complex variables
functions of, 37-40
integrals of complex-valued functions
of, 120
Composition of functions, 52, 60, 73
Conformal mapping
example of, 422423
explanation of, 347
harmonic conjugates and, 354-356
local inverses and, 350-352
preservation of angles and scale factors and,
345-350
transformations of boundary conditions
and, 360-362
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transformations of harmonic functions and, ~ Definite integrals
357-359 of functions, 117-119
Conformal mapping applications involving sines and cosines, 284-287
electrostatic potential and, 376-377 mean value theorem for, 425
flows around corner and around cylinder Deformation of paths principle, 157, 159-160,
and, 386-389 235-236
potential and, 377-380 Degenerate polygons, 402—404
steady temperatures and, 365-367 Deleted neighborhood, 32, 250, 256, 257-258
steady temperatures in half plane and, de Moivre’s formula, 21
367-371 Derivatives
stream function and, 384-386 of branch of z¢, 100-101
temperatures in quadrant and, 371-373 directional, 73
two-dimensional fluid flow and, 382-384 first-order partial, 6264, 68, 69
Conjugates of functions, 55-59
complex, 14-16 of logarithms, 93-95
harmonic, 354-356 of mapping function, 395-396, 403406,
Continuous functions 410, 415
antiderivative of, 140-144 Differentiability, 65-68
derivative and, 58 Differentiable arc, 122
explanation of, 52-54, 395, 396 Differentiable functions, 55-56, 58
Contour integrals Differentiation, 59-60, 72, 74, 107
branch cuts and, 131-132 Differentiation formulas, 107-108
examples of, 127-132 Diffusion, 367
explanation of, 125-127 Directional derivative, 73
upper bounds for moduli of, 135-138 Dirichlet problem
value of, 140 for disk, 420422
Contours explanation of, 357, 358
in Cauchy—Goursat theorem, 154—155 for half plane, 430—432
explanation of, 123 for region exterior to circle, 427
simple closed, 123, 148 for region in half plane, 368
Convergence for semicircular region, 426
absolute, 183-184, 208-211 for semi-infinite strip, 374
circle of, 209, 210, 213, 215 Discrete-time linear systems, 207n
of sequences, 179-181 Disk
of series, 182—-185, 208-211, 249 closed, 275
uniform, 209-211 Dirichlet problem for, 420-423
Conway, J. B., 310n open, 291
Cosecant, 106-107, 111 punctured, 32, 33, 198, 202, 223-224, 230,
Cosines, 284-287 232,237,239, 243, 274
definite integrals involving, 284287 Distributive law, 3
explanation of, 103-106 Division, of power series, 221-224
hyperbolic, 109-110 Domains
Cotangent, 106-107, 111 of analytic functions, 80, 81, 84
Critical point, of transformations, 347-348 of definition of function, 37, 82, 330,
Cross ratios, 310n 334-336
Curves explanation of, 33, 34
finding images for, 4041 of harmonic functions, 76-79

level, 79, 80 multiply connected, 156-158
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Domains (continued)
reflection principle and, 82, 83
simply connected, 154-156
union of, 82
Double-valued functions, 328, 332-333, 336

Electrostatic potential
about edge of conducting plate, 412414
explanation of, 376-377
Elements of function, 82
Ellipse, 322-324
Elliptic integral, 399, 401
Entire function, 72, 76
Entire functions, 72, 172, 173
Equipotentials, 377, 379, 381, 384, 385
Essential singular points, 240, 257-258
Euler numbers, 226
Euler’s formula, 18, 19, 29, 87, 103-104
Even functions, 120
Expansion
Fourier series, 208
Maclaurin series, 190-193, 231
Exponential form, of complex numbers, 17-18
Exponential functions
additive property of, 20
with base ¢, 101
explanation of, 87-89
mapping by, 318-320
Extended complex plane, 50
Exterior points, 32

Field intensity, 376-377
Finite unit impulse function, 425
First-order partial derivatives
Cauchy—Riemann equations and, 64, 66,
68, 69
explanation of, 62-64
Fixed point, of transformation, 312
Fluid flow
around corner and around cylinder, 386-389
in channel through slit, 407-409
circulation of, 382-383
complex potential of, 385-386
incompressible, 383
irrotational, 383
in quadrant, 387
two-dimensional, 382-384
velocity of, 384-386

Flux, 3737
Flux lines, 377, 379
Formulas
binomial, 7, 8
Cauchy integral, 162-163, 199, 217
de Moivre’s, 21
differentiation, 107, 111
Euler’s, 18, 19, 29, 103
extension of Cauchy integral, 164—170
integration, 265, 266, 274, 278-279, 282,
284-287
Poisson integral, 417-420
quadratic, 31, 285
Schwarz integral, 428-430
summation, 185, 206
Fourier, Joseph, 365n
Fourier integral, 276n
Fourier series, 208
Fourier series expansion, 208
Fourier’s law, 365
Fractional transformations, linear, 307-310,
313-316, 406
Free from viscosity fluid, 383
Fresnel integrals, 273
Functions. See also specific types of functions
analytic, 72-76, 80-82, 155, 168-170, 229,
235, 248-250
antiderivative of, 156
behavior near isolated singular points,
255-258
Bessel, 207n
bounded, 172-173
branch of, 94, 228
Cauchy—Riemann equations and, 62-64
of complex variables, 37-40
composition of, 52, 60, 73
conditions for differentiability and, 65-68
continuous, 52-54, 58, 140-144, 395, 396
definite integrals of, 117-119
derivatives of, 55-59, 115-117
differentiable, 55-56, 58
domain of definition of, 37, 82, 330,
334-336
double-valued, 328, 332-333, 336, 341-343
elements of, 82
entire, 72, 172, 173
even, 120
exponential, 19, 87-89, 101



gamma, 280
graphs of, 39
harmonic, 77-79, 357-359
holomorphic, 72n
hyperbolic, 109-114
inverse, 112-114
limits of, 44-47
logarithmic, 90-93, 97-99, 142
meromorphic, 287-288
multiple-valued, 38-39, 245, 280,
283,284
near isolated singular points, 255-258
odd, 120
piecewise continuous, 117, 125-126,
135-136, 420, 421, 426, 434, 435
polar coordinates and, 68—70
power, 100-102
principal part of, 239
range of, 39
rational, 38, 261
real-valued, 38-39, 47, 49, 55, 57-58, 68,
71, 208
regular, 72n
single-valued, 338-340, 342, 390
square root, 339, 341
stream, 388-389
trigonometric, 103-107, 112-114
uniquely determined, 80—82
Functions, zeros of, 105-107
Fundamental theorem of algebra, 172-173,
292
Fundamental theorem of calculus, 118, 140,
144, 145

Gamma function, 280

Gauss’s mean value theorem, 174
Goursat, E., 149

Graphs, of functions, 39

Green'’s theorem, 148-149

Half plane
Cauchy integral formula in, 429
Dirichlet problem in, 430432
mappings of upper, 313-317
Neumann problems for, 435-436
Poisson integral formula for,

428-429

steady temperatures in, 367-371
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Harmonic conjugates
explanation of, 354-356
harmonic functions and, 355-356, 432
Harmonic functions
applications for, 428, 429, 434, 435
circles and, 420-422
explanation of, 77-79
harmonic conjugate and, 355
Poisson integral formula for, 418-420
real-valued, 77
in semicircular region, 426
theories as source of, 78-79
transformations of, 357-359, 414
two-dimensional fluid flow and, 382-384
Heat conduction, 365. See also Steady
temperatures
Hille, E., 123n
Holomorphic functions, 72n
Hydrodynamics, 382
Hyperbolas, 40-41, 321, 322, 373, 388
Hyperbolic functions
explanation of, 109-111
inverse of, 112-114

Identities
additive, 3
involving logarithms, 97-99
Lagrange’s trigonometric, 24
multiplicative, 3
Image of point, 39
Imaginary axis, 1
Improper integrals
evaluation of, 259-264
explanation of, 259
from Fourier analysis, 267-269
Impulse function, finite unit, 425
Incompressible fluid, 383
Indented paths
branch points and, 277-280
explanation of, 274-277
Independence of path, 140, 144-147
Inequality
Cauchy’s, 170, 172
involving contour integrals, 135-136
Jordan’s, 270-271
triangle, 11-13, 171
Infinite sequences, 179
Infinite series, 182, 296
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Infinite sets, 296
Infinity
limits involving point at, 50-52
residue at, 235-237
Integral formulas
boundary value problems and, 426428
Cauchy, 162-163
Dirichlet problem for disk and, 420-424
Dirichlet problem for half plane and,
430-432
Neumann problems and, 433-436
Poisson, 417-420
Schwarz, 428430
Integrals
antiderivatives and, 140-144
Bromwich, 295
Cauchy—Goursat theorem and, 148-154
Cauchy integral formula and, 162-170,
199, 217
Cauchy principal value of, 259-260
contour, 120-123, 125-127, 140
definite, 117-119, 284-287
elliptic, 399, 401
Fresnel, 273
improper, 259-264, 267-269
line, 125, 126, 355
Liouville’s theorem and fundamental
theorem of algebra and, 172-173
maximum modulus principle and, 173-177
mean value theorem for, 116-117
multiply connected domains and, 156-158
simply connected domains and, 154-156
theory of, 115
Integral transformations, 419, 420,
424, 426
Integration
along branch cuts, 280-282
constant of, 412
Integration formula, 265, 266, 274, 278-279,
282, 284-287
Interior points, 32
Inverse
of linear fractional transforms, 406
local, 350-352
of nonzero point, 417
Inverse functions, 112-114
Inverse hyperbolic functions, 112-114
Inverse image, of point, 39

Inverse Laplace transforms, 294-296
Inverse transformation, 308, 344, 372, 378,
391, 392, 406, 407
Inverse trigonometric functions, 112-114
Inverse z-transform, 207
Irrotational flow, 383-384
Isogonal mapping, 347
Isolated singular points
behavior of functions near, 255-258
explanation of, 227-229
types of, 238-242
Isolated zeros, 249
Isotherms, 367

Jacobian, 351

Jordan, C., 120n

Jordan arc, 120, 123

Jordan curve theorem, 123
Jordan’s inequality, 270-271
Jordan’s lemma, 269-272, 277
Joukowski airfoil, 391

Kaplan, W., 66n, 355n, 383n

Lagrange’s trigonometric identity, 24
Laplace’s equation
harmonic conjugates and, 354, 356
harmonic functions and, 77, 430
polar form of, 79, 420
Laplace’s first integral form, 140n
Laplace transforms
explanation of, 295-296
inverse, 294-296
Laurent series
coefficients in, 202
examples illustrating, 202-205, 229-230,
235, 243-245, 277
explanation of, 198
indented path and, 274, 275
removable singularity and, 257
residue and, 236, 238, 245
uniqueness of, 216-218
Laurent’s theorem
explanation of, 197-198
proof of, 199-201
Legendre polynomials, 62n, 140n, 171
Leibniz’s rule, 222, 225-226
Level curves, 79, 80



Limits
definition of, 44
of function, 44—47
involving point at infinity, 50-52
of real-valued functions, 47, 49
of sequence, 179-181
theorems on, 47-49
Linear combination, 76
Linear transformations
explanation of, 299-301
fractional, 307-310, 313-316, 406
Line integral, 125, 126, 355
Lines of flow, 367
Liouville’s theorem, 172, 173, 292
Local inverses, 350-352
Logarithmic functions
branches and derivatives of, 93-95, 142,
228-230, 352
explanation of, 90-91
identities involving, 97-99
mapping by, 316, 329
principal value of, 91-92, 101
Riemann surface for, 341-343

Maclaurin series
examples illustrating, 193-195, 231, 234
explanation of, 187, 203, 204
Taylor’s theorem and, 189
Maclaurin series expansions, 190-193,
202,231
Mann, W. R, 54n, 78n, 136n, 160n,
350n, 429n
Mappings. See also Transformations
by branches of z'/2, 328-330
byl/z, 303-305
of circles, 388
conformal, 345-362, 422 (See also
Conformal mapping)
explanation of, 40-43, 299
by exponential functions, 318-320
of horizontal line segments by w = sin z,
322-324
implicit form and, 310-311
isogonal, 347
linear fractional transformations and,
307-310
linear transformations and, 299-301
by logarithmic function, 316, 329
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one to one, 40, 42, 43, 308, 315, 316, 319,
321-324, 326, 329, 330, 335, 339
by other functions related to sine function,
324-325
polar coordinates to analyze, 42—43
of real axis onto polygon, 393-395
on Riemann surfaces, 338-343
of square roots of polynomials, 332-336
transformation w = 1/z and, 301-303
of upper half plane, 313-317
of vertical line segments by w = sin z,
320-322
by 22, 326-328
Markushevich, A. 1., 155n, 168n, 240n
Maximum and minimum values, 175-177
Maximum modulus principle, 175-177
Mean value theorem, 116-117, 425
Meromorphic functions, 287-288
Mobius transformation, 307-310
Moduli
of contour integrals, 135-138
explanation of, 9-10
Morera, E., 169
Morera’s theorem, 169, 214
Multiple-valued functions, 38-39, 94, 245,
280, 283, 284
Multiplication, of power series, 221-224
Multiplicative identity, 3
Multiplicative inverse, 4, 5, 20
Multiply connected domains, 156-158

Negative powers, of (z — zp), 193-195
Neighborhood
deleted, 32, 250, 256, 257-258
explanation of, 32
of point at infinity, 50
Nested intervals, 161
Nested squares, 162
Neumann problems
explanation of, 358, 433—436
for half plane, 435436
Newman, M.H.A., 123n
Nonempty open set, 33
Numbers
complex, 1-34
pure imaginary, 1
real, 101
winding, 288
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Odd functions, 120
One to one mapping, 40, 42, 43, 308, 315, 316,
319, 321-324, 326, 329, 330, 335, 339
Open set
analytic in, 72
connected, 80
explanation of, 33
Oppenheim, A. V., 207n

Parabolas, 327, 331
Partial derivatives
Cauchy—-Riemann equations and, 64, 66,
68,69, 71,78, 83
first-order, 62-64
second-order, 356
Partial sums, sequence of, 182
Picard’s theorem, 240, 241
Piecewise continuous functions, 117,
125-126, 135-136, 421, 422, 426,
434,435
Point at infinity
limits involving, 50-52
neighborhood of, 50
residue at, 235-237
Poisson integral formula
for disk, 420422
explanation of, 419420
for half plane, 428-429
Poisson integral transform, 419, 420, 424, 426
Poisson kernel, 419, 420, 425-427, 434
Poisson’s equation, 364
Polar coordinates
to analyze mappings, 42-43, 319, 328, 338
explanation of, 17
functions and, 38, 68-70
Polar form
of Cauchy—Riemann equations, 69, 71, 94
of complex numbers, 17-18
of Laplace’s equation, 79, 420
Poles
of functions, 248
of order m, 239-240, 258
residues at, 242-244, 251
simple, 240, 251
zeros and, 251-253
Polygonal lines, 33
Polygons
closed, 393, 394

degenerate, 402-404
mapping real axis onto, 393-395
Polynomials
Chebysheyv, 251
of degree n, 38
as entire function, 72, 76
fundamental theorem of algebra and, 173
Legendre, 140n, 171
quotients of, 38
square roots of, 332-336
zeros of, 172, 265, 292
Positively oriented curve, 120
Potential
complex, 386.387
in cylindrical space, 377-378
electrostatic, 365, 376-380, 412414
velocity, 384, 385, 387
Potential problems, conformal mapping to
solve, 377-380
Power functions, 100-102
Powers, of complex numbers, 21
Power series
absolute and uniform convergence of,
208-211
continuity of sums of, 211-213
explanation of, 184
integration and differentiation of,
213-216
multiplication and division of, 221-224
Principal branch
of double-valued function, 328-329
of function, 94, 102, 228
of logarithmic function, 352
of z¢, 101
Principal part of function, 239
Principal root, 27
Principal value
of argument, 17-18, 39
Cauchy, 259-260
of logarithm, 91-92, 101
of powers, 102
Punctured disk, 32, 33, 198, 202, 223-224
Punctured disks, 230, 232, 237, 239, 243
Pure imaginary numbers, 1
Pure imaginary zeros, 285

Quadrant, temperatures in, 371-373
Quadratic formula, 31, 285



Radio-frequency heating, 266
Range of function, 39
Rational functions, 38, 261
Ratios, cross, 310n
Real axis, 1, 393-395
Real numbers, 101
Real-valued functions
differentiation of, 68
example of, 57-58
explanation of, 38-39
Fourier series expansion of, 208
harmonic, 77
limits of, 47, 49, 55, 57
properties of, 39
Rectangles, Schwarz—Christoffel
transformation and, 399402
Rectangular form, 21, 31
Reflection, 39
Reflection principle, 82-84
Regions
in complex plane, 32-34
explanation of, 32
table of transformations of, 441-449
Regular functions, 72n
Remainder, 184-185
Removable singular point, 240, 256
Residue applications
argument principle and, 287-290
convergent improper integral evaluation
and, 267-269
definite integrals involving sines and
cosines and, 284-287

improper integral evaluation and, 259-264

improper integrals from Fourier analysis
and, 267-269

indentation around branch point and,
277-280

indented paths and, 274-277

integration along branch cut and, 280-282

inverse Laplace transforms and, 294-296

Jordan’s lemma and, 269-272

Rouché’s theorem and, 290-292

Residues

Cauchy’s theorem of, 233-235, 262, 267,
271, 278, 280, 281, 283, 285, 289, 290

explanation of, 229-232

infinite series of, 296

at infinity, 235-237
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at poles, 242-246
poles and, 251-253
sums of, 261
Riemann, G.EB., 64
Riemann sphere, 50
Riemann’s theorem, 256
Riemann surfaces
for double-valued function, 341-343
explanation of, 338-340
Roots
of complex numbers, 25-30
principal, 27
of unity, 28-29
Rotation
explanation of, 39-40
fluid, 383
Rouché’s theorem, 290-292

Scale factors, 348
Schafer, R. W., 207n
Schwarz, H. A., 397
Schwarz—Christoffel transformation
degenerate polygons and, 402-404
electrostatic potential about edge of
conducting plate and, 412-414
explanation of, 393, 395-397
fluid flow in channel through slit and,
407-409
fluid flow in channel with offset and,
409412
triangles and rectangles and, 399-402
Schwarz integral formula, 428-430
Schwarz integral transform, 430, 435
Secant, 106-107, 111
Second-order partial derivatives, 356

Separation of variables method, 371-372, 379

Sequences
convergence of, 179-181
explanation of, 179
limit of, 179-181
Series. See also specific type of series
convergence of, 182-185, 208-211, 249
explanation of, 182, 183
Fourier, 208
Laurent, 197-205, 216-218, 224,
229-230, 235
Maclaurin, 190-196, 203, 204, 215,
231,234
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Series (continued)
power, 208-216, 221-224
Taylor, 186-189, 216-218, 223
uniqueness of representations of,
216-218
Simple arc, 120
Simple closed contour, 123, 148, 233
Simple poles, 240, 251
Simply connected domains, 154-156
Sine function
definite integrals involving, 284-287
explanation of, 103-106
hyperbolic, 109-110
Single-valued functions, 338-340, 342, 390
Singular points
essential, 240, 257-258
explanation of, 74
isolated, 227-229, 238-242, 246,
255-258
removable, 240, 256
Sink, 407410
Smooth arc, 123, 129, 144
Square root function, branches of, 326
Square roots, of polynomials, 332-336
Squares, 150
Stagnation point, 409
Steady temperatures
conformal mapping and, 365-367
example to find, 424
in half plane, 367-369
Stereographic projection, 50
Stream function, 384-386, 388-389,
408-409
Streamlines, 385-386, 388, 389, 409
Summation formula, 185, 206
Sums
of power series, 211-213
of residues, 261

Tangent
explanation of, 106-107
hyperbolic, 111
Taylor, A. E., 54n, 78n, 136n, 160n,
350n, 429n
Taylor series, 242
examples illustrating, 189-193, 249, 250
explanation of, 186-187
uniqueness of, 216-218

Taylor series expansion, 191, 192, 221
Taylor’s theorem
explanation of, 186
proof of, 187-189
Temperatures
in half plane, 367-369
in quadrant, 371-373
steady, 365-369, 424
in thin plate, 369-371
Thermal conductivity, 365
Thron, W. J., 123n
Transformations. See also Mappings
argument principle and, 288-289
bilinear, 307
of boundary conditions, 360-362
of circles, 301-305, 388
conformal, 346-362, 422 (See also
Conformal mapping)
critical point of, 347-348
explanation of, 39
fixed point of, 312
of harmonic functions, 357-359
integral, 419, 420, 424, 426
inverse, 308, 344, 372, 378, 391, 392,
406, 407
Jacobian of, 351
linear, 299-301
linear fractional, 307-311, 313-316, 406
Schwarz—Christoffel, 393-414 (See also
Schwarz—Christoffel transformation)
table of, 441-449
w = sine z, 320-322
w=1/z,310-305
Transforms
inverse Laplace, 294-296
inverse z-, 207
Poisson integral, 419, 420, 424, 426
Schwarz integral, 430, 435
z-, 207
Translation, 39
Triangle inequality, 11-13, 171
Triangles, 399-400
Trigonometric functions
definite integrals involving, 284-287
explanation of, 104
identities for, 104—105, 107
inverse of, 112-114
periodicity of, 107



sin and cos, 103-105
zeros and singularities of, 105-107
Two-dimensional fluid flow, 382-384

Unbounded sets, 33
Uniform convergence, 209-211
Unity

nth roots of, 28-29

radius, 19

Value

absolute, 9

maximum and minimum, 175-177
Vector field, 44
Vectors, 8—10
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Velocity potential, 384
Viscosity, 383

Winding number, 288
Wunsch, A. D., 240n

Zero of order m, 248-250, 252, 254
Zeros

of analytic functions, 248-250, 290

isolated, 249

poles and, 251-253

of polynomials, 172, 265, 292

pure imaginary, 285

in trigonometric functions, 105-107
z-transform, 207
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