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Systems of Units. Some Important Conversion Factors

The most important systems of units are shown in the table below. The mks system is also known as
the International System of Units (abbreviated S), and the abbreviations sec (instead of 9),
gm (instead of g), and nt (instead of N) are also used.

System of units Length Mass Time Force
cgs system centimeter (cm) gram (g) second () dyne
mks system meter (m) kilogram (kg) second () newton (nt)
Engineering system foot (ft) slug second () pound (Ib)
1linch (in.) = 2.540000 cm 1 foot (ft) = 12 in. = 30.480000 cm
1 yard (yd) = 3 ft = 91.440000 cm 1 statute mile (mi) = 5280 ft = 1.609344 km

1 nautical mile = 6080 ft = 1.853184 km

1 acre = 4840 yd® = 4046.8564 m> 1 mi% = 640 acres = 2.5899881 km?
1 fluid ounce = 1/128 U.S. gallon = 231/128 in.? = 29.573730 cm®

1 U.S. gallon = 4 quarts (liq) = 8 pints (liq) = 128 fl oz = 3785.4118 cm?

1 British Imperial and Canadian gallon = 1.200949 U.S. gallons = 4546.087 cm?®
1 slug = 14.59390 kg

1 pound (Ib) = 4.448444 nt 1 newton (nt) = 10° dynes
1 British thermal unit (Btu) = 1054.35 joules 1joule = 107 ergs

1 calorie (cal) = 4.1840 joules

1 kilowatt-hour (kWh) = 3414.4 Btu = 3.6 - 10° joules

1 horsepower (hp) = 2542.48 Btu/h = 178.298 cal/sec = 0.74570 kW

1 kilowatt (kW) = 1000 watts = 3414.43 Btu/h = 238.662 cal/s

°F=°C-18+ 32 1° = 60" = 3600" = 0.017453293 radian

For further details see, for example, D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. 9th ed., Hoboken,
N. J Wiley, 2011. See also AN American National Standard, ASTM/IEEE Standard Metric Practice, Institute of Electrical and
Electronics Engineers, Inc. (IEEE), 445 Hoes Lane, Piscataway, N. J. 08854, website at www.ieee.org.




Differentiation
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PREFACE

See also http://www.wiley.com/college/kreyszig

Purpose and Structure of the Book

This book provides a comprehensive, thorough, and up-to-date treatment of engineering
mathematics. It is intended to introduce students of engineering, physics, mathematics,
computer science, and related fields to those areas of applied mathematics that are most
relevant for solving practical problems. A course in elementary calculus is the sole
prerequisite. (However, a concise refresher of basic calculus for the student is included
on the inside cover and in Appendix 3.)

The subject matter is arranged into seven parts as follows:

Ordinary Differential Equations (ODEs) in Chapters 1-6

Linear Algebra. Vector Calculus. See Chapters 7-10

Fourier Analysis. Partial Differential Equations (PDEs). See Chapters 11 and 12
Complex Analysis in Chapters 13-18

Numeric Analysis in Chapters 19-21

Optimization, Graphs in Chapters 22 and 23

Probability, Statistics in Chapters 24 and 25.

These are followed by five appendices: 1. References, 2. Answers to Odd-Numbered
Problems, 3. Auxiliary Materials (see also inside covers of book), 4. Additional Proofs,
5. Table of Functions. This is shown in a block diagram on the next page.

The parts of the book are kept independent. In addition, individual chapters are kept as
independent as possible. (If so needed, any prerequisites—to the level of individual
sections of prior chapters—are clearly stated at the opening of each chapter.) We give the
instructor maximum flexibility in selecting the material and tailoring it to his or her
need. The book has helped to pave the way for the present development of engineering
mathematics. This new edition will prepare the student for the current tasks and the future
by a modern approach to the areas listed above. We provide the material and learning
tools for the students to get a good foundation of engineering mathematics that will help
them in their careers and in further studies.

OMmMON® >

General Features of the Book Include:

« Simplicity of examples to make the book teachable—why choose complicated
examples when simple ones are as instructive or even better?

* Independence of parts and blocks of chapters to provide flexibility in tailoring
courses to specific needs.

» Self-contained presentation, except for a few clearly marked places where a proof
would exceed the level of the book and a reference is given instead.

e Gradual increase in difficulty of material with no jumps or gaps to ensure an
enjoyable teaching and learning experience.

* Modern standard notation to help students with other courses, modern books, and
journals in mathematics, engineering, statistics, physics, computer science, and others.

Furthermore, we designed the book to be a single, self-contained, authoritative, and
convenient source for studying and teaching applied mathematics, eliminating the need
for time-consuming searches on the Internet or time-consuming trips to the library to get
a particular reference book.

vii
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Chaps. 19-21 Chaps. 22-23
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Maple Computer Guide
Mathematica Computer Guide

Chap. 24
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and Study Guide

* Chap. 25
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Four Underlying Themes of the Book

The driving force in engineering mathematics is the rapid growth of technology and the
sciences. New areas—often drawing from several disciplines—come into existence.
Electric cars, solar energy, wind energy, green manufacturing, nanotechnology, risk
management, biotechnology, biomedical engineering, computer vision, robotics, space
travel, communication systems, green logistics, transportation systems, financial
engineering, economics, and many other areas are advancing rapidly. What does this mean
for engineering mathematics? The engineer has to take a problem from any diverse area
and be able to model it. This leads to the first of four underlying themes of the book.

1. Modeling is the process in engineering, physics, computer science, biology,
chemistry, environmental science, economics, and other fields whereby a physical situation
or some other observation is translated into a mathematical model. This mathematical
model could be a system of differential equations, such as in population control (Sec. 4.5),
a probabilistic model (Chap. 24), such as in risk management, a linear programming
problem (Secs. 22.2-22.4) in minimizing environmental damage due to pollutants, a
financial problem of valuing a bond leading to an algebraic equation that has to be solved
by Newton’s method (Sec. 19.2), and many others.

The next step is solving the mathematical problem obtained by one of the many
techniques covered in Advanced Engineering Mathematics.

The third step is interpreting the mathematical result in physical or other terms to
see what it means in practice and any implications.

Finally, we may have to make a decision that may be of an industrial nature or
recommend a public policy. For example, the population control model may imply
the policy to stop fishing for 3 years. Or the valuation of the bond may lead to a
recommendation to buy. The variety is endless, but the underlying mathematics is
surprisingly powerful and able to provide advice leading to the achievement of goals
toward the betterment of society, for example, by recommending wise policies
concerning global warming, better allocation of resources in a manufacturing process,
or making statistical decisions (such as in Sec. 25.4 whether a drug is effective in treating
a disease).

While we cannot predict what the future holds, we do know that the student has to
practice modeling by being given problems from many different applications as is done
in this book. We teach modeling from scratch, right in Sec. 1.1, and give many examples
in Sec. 1.3, and continue to reinforce the modeling process throughout the book.

2. Judicious use of powerful software for numerics (listed in the beginning of Part E)
and statistics (Part G) is of growing importance. Projects in engineering and industrial
companies may involve large problems of modeling very complex systems with hundreds
of thousands of equations or even more. They require the use of such software. However,
our policy has always been to leave it up to the instructor to determine the degree of use of
computers, from none or little use to extensive use. More on this below.

3. The beauty of engineering mathematics. Engineering mathematics relies on
relatively few basic concepts and involves powerful unifying principles. We point them
out whenever they are clearly visible, such as in Sec. 4.1 where we “grow” a mixing
problem from one tank to two tanks and a circuit problem from one circuit to two circuits,
thereby also increasing the number of ODEs from one ODE to two ODEs. This is an
example of an attractive mathematical model because the “growth” in the problem is
reflected by an “increase” in ODEs.
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4. To clearly identify the conceptual structure of subject matters. For example,
complex analysis (in Part D) is a field that is not monolithic in structure but was formed
by three distinct schools of mathematics. Each gave a different approach, which we clearly
mark. The first approach is solving complex integrals by Cauchy’s integral formula (Chaps.
13 and 14), the second approach is to use the Laurent series and solve complex integrals
by residue integration (Chaps. 15 and 16), and finally we use a geometric approach of
conformal mapping to solve boundary value problems (Chaps. 17 and 18). Learning the
conceptual structure and terminology of the different areas of engineering mathematics is
very important for three reasons:

a. It allows the student to identify a new problem and put it into the right group of
problems. The areas of engineering mathematics are growing but most often retain their
conceptual structure.

b. The student can absorb new information more rapidly by being able to fit it into the
conceptual structure.

c. Knowledge of the conceptual structure and terminology is also important when using
the Internet to search for mathematical information. Since the search proceeds by putting
in key words (i.e., terms) into the search engine, the student has to remember the important
concepts (or be able to look them up in the book) that identify the application and area
of engineering mathematics.

Big Changes in This Edition

@ Problem Sets Changed

The problem sets have been revised and rebalanced with some problem sets having more
problems and some less, reflecting changes in engineering mathematics. There is a greater
emphasis on modeling. Now there are also problems on the discrete Fourier transform
(in Sec. 11.9).

@ Series Solutions of ODES, Special Functions and Fourier Analysis Reor ganized
Chap. 5, on series solutions of ODEs and special functions, has been shortened. Chap. 11
on Fourier Analysis now contains Sturm-Liouville problems, orthogonal functions, and
orthogonal eigenfunction expansions (Secs. 11.5, 11.6), where they fit better conceptually
(rather than in Chap. 5), being extensions of Fourier’s idea of using orthogonal functions.

9 Openings of Parts and Chapters Rewritten As Well As Parts of Sections

In order to give the student a better idea of the structure of the material (see Underlying
Theme 4 above), we have entirely rewritten the openings of parts and chapters.
Furthermore, large parts or individual paragraphs of sections have been rewritten or new
sentences inserted into the text. This should give the students a better intuitive
understanding of the material (see Theme 3 above), let them draw conclusions on their
own, and be able to tackle more advanced material. Overall, we feel that the book has
become more detailed and leisurely written.

9 Student Solutions Manual and Study Guide Enlar ged

Upon the explicit request of the users, the answers provided are more detailed and
complete. More explanations are given on how to learn the material effectively by pointing
out what is most important.

@ More Historical Footnotes, Some Enlarged
Historical footnotes are there to show the student that many people from different countries
working in different professions, such as surveyors, researchers in industry, etc., contributed
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to the field of engineering mathematics. It should encourage the students to be creative in
their own interests and careers and perhaps also to make contributions to engineering
mathematics.

Further Changes and New Features

Parts of Chap. 1 on first-order ODEs are rewritten. More emphasis on modeling, also
new block diagram explaining this concept in Sec. 1.1. Early introduction of Euler’s
method in Sec. 1.2 to familiarize student with basic numerics. More examples of
separable ODEs in Sec. 1.3.

For Chap. 2, on second-order ODEs, note the following changes: For ease of reading,
the first part of Sec. 2.4, which deals with setting up the mass-spring system, has
been rewritten; also some rewriting in Sec. 2.5 on the Euler—Cauchy equation.

Substantially shortened Chap. 5, Series Solutions of ODEs. Special Functions:
combined Secs. 5.1 and 5.2 into one section called “Power Series Method,” shortened
material in Sec. 5.4 Bessel’s Equation (of the first kind), removed Sec. 5.7
(Sturm-Liouville Problems) and Sec. 5.8 (Orthogonal Eigenfunction Expansions) and
moved material into Chap. 11 (see “Major Changes” above).

New equivalent definition of basis (Sec. 7.4).

In Sec. 7.9, completely new part on composition of linear transformations with
two new examples. Also, more detailed explanation of the role of axioms, in
connection with the definition of vector space.

New table of orientation (opening of Chap. 8 “Linear Algebra: Matrix Eigenvalue
Problems”) where eigenvalue problems occur in the book. More intuitive explanation
of what an eigenvalue is at the begining of Sec. 8.1.

Better definition of cross product (in vector differential calculus) by properly
identifying the degenerate case (in Sec. 9.3).

Chap. 11 on Fourier Analysis extensively rearranged: Secs. 11.2 and 11.3
combined into one section (Sec. 11.2), old Sec. 11.4 on complex Fourier Series
removed and new Secs. 11.5 (Sturm-Liouville Problems) and 11.6 (Orthogonal
Series) put in (see “Major Changes” above). New problems (new!) in problem set
11.9 on discrete Fourier transform.

New section 12.5 on modeling heat flow from a body in space by setting up the heat
equation. Modeling PDEs is more difficult so we separated the modeling process
from the solving process (in Sec. 12.6).

Introduction to Numerics rewritten for greater clarity and better presentation; new
Example 1 on how to round a number. Sec. 19.3 on interpolation shortened by
removing the less important central difference formula and giving a reference instead.

Large new footnote with historical details in Sec. 22.3, honoring George Dantzig,
the inventor of the simplex method.

Traveling salesman problem now described better as a “difficult” problem, typical
of combinatorial optimization (in Sec. 23.2). More careful explanation on how to
compute the capacity of a cut set in Sec. 23.6 (Flows on Networks).

In Chap. 24, material on data representation and characterization restructured in
terms of five examples and enlarged to include empirical rule on distribution of
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data, outliers, and the z-score (Sec. 24.1). Furthermore, new example on encription
(Sec. 24.4).

« Lists of software for numerics (Part E) and statistics (Part G) updated.

 References in Appendix 1 updated to include new editions and some references to
websites.

Use of Computers

The presentation in this book is adaptable to various degrees of use of software,
Computer Algebra Systems (CAS's), or programmable graphic calculators, ranging
from no use, very little use, medium use, to intensive use of such technology. The choice
of how much computer content the course should have is left up to the instructor, thereby
exhibiting our philosophy of maximum flexibility and adaptability. And, no matter what
the instructor decides, there will be no gaps or jumps in the text or problem set. Some
problems are clearly designed as routine and drill exercises and should be solved by
hand (paper and pencil, or typing on your computer). Other problems require more
thinking and can also be solved without computers. Then there are problems where the
computer can give the student a hand. And finally, the book has CAS projects, CAS
problems and CAS experiments, which do require a computer, and show its power in
solving problems that are difficult or impossible to access otherwise. Here our goal is
to combine intelligent computer use with high-quality mathematics. The computer
invites visualization, experimentation, and independent discovery work. In summary,
the high degree of flexibility of computer use for the book is possible since there are
plenty of problems to choose from and the CAS problems can be omitted if desired.

Note that information on software (what is available and where to order it) is at the
beginning of Part E on Numeric Analysis and Part G on Probability and Statistics. Since
Maple and Mathematica are popular Computer Algebra Systems, there are two computer
guides available that are specifically tailored to Advanced Engineering Mathematics:
E. Kreyszig and E.J. Norminton, Maple Computer Guide, 10th Edition and Mathematica
Computer Guide, 10th Edition. Their use is completely optional as the text in the book is
written without the guides in mind.

Suggestions for Courses: A Four-Semester Sequence

The material, when taken in sequence, is suitable for four consecutive semester courses,
meeting 3 to 4 hours a week:

1st Semester ODEs (Chaps. 1-5 or 1-6)

2nd Semester Linear Algebra. Vector Analysis (Chaps. 7-10)
3rd Semester Complex Analysis (Chaps. 13-18)

4th Semester Numeric Methods (Chaps. 19-21)

Suggestions for Independent One-Semester Courses

The book is also suitable for various independent one-semester courses meeting 3 hours
a week. For instance,

Introduction to ODEs (Chaps. 1-2, 21.1)
Laplace Transforms (Chap. 6)
Matrices and Linear Systems (Chaps. 7-8)
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Vector Algebra and Calculus (Chaps. 9-10)

Fourier Series and PDEs (Chaps. 11-12, Secs. 21.4-21.7)
Introduction to Complex Analysis (Chaps. 13-17)
Numeric Analysis (Chaps. 19, 21)

Numeric Linear Algebra (Chap. 20)

Optimization (Chaps. 22-23)

Graphs and Combinatorial Optimization (Chap. 23)
Probability and Statistics (Chaps. 24-25)
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PART A

Ordinary
Differential
Equations (ODEs)

First-Order ODEs

Second-Order Linear ODEs

Higher Order Linear ODEs

Systems of ODEs. Phase Plane. Qualitative Methods
Series Solutions of ODEs. Special Functions

Laplace Transforms

Many physical laws and relations can be expressed mathematically in the form of differential
equations. Thus it is natural that this book opens with the study of differential equations and
their solutions. Indeed, many engineering problems appear as differential equations.

The main objectives of Part A are twofold: the study of ordinary differential equations
and their most important methods for solving them and the study of modeling.

Ordinary differential equations (ODES) are differential equations that depend on a single
variable. The more difficult study of partial differential equations (PDEs), that is,
differential equations that depend on several variables, is covered in Part C.

Modeling is a crucial general process in engineering, physics, computer science, biology,
medicine, environmental science, chemistry, economics, and other fields that translates a
physical situation or some other observations into a “mathematical model.” Numerous
examples from engineering (e.g., mixing problem), physics (e.g., Newton’s law of cooling),
biology (e.g., Gompertz model), chemistry (e.g., radiocarbon dating), environmental science
(e.g., population control), etc. shall be given, whereby this process is explained in detail,
that is, how to set up the problems correctly in terms of differential equations.

For those interested in solving ODEs numerically on the computer, look at Secs. 21.1-21.3
of Chapter 21 of Part F, that is, numeric methods for ODEs. These sections are kept
independent by design of the other sections on numerics. This allows for the study of
numerics for ODEs directly after Chap. 1 or 2.
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CHAPTER-I

First-Order ODEs

Chapter 1 begins the study of ordinary differential equations (ODES) by deriving them from
physical or other problems (modeling), solving them by standard mathematical methods,
and interpreting solutions and their graphs in terms of a given problem. The simplest ODEs
to be discussed are ODEs of the first order because they involve only the first derivative
of the unknown function and no higher derivatives. These unknown functions will usually
be denoted by y(x) or y(t) when the independent variable denotes time t. The chapter ends
with a study of the existence and uniqueness of solutions of ODEs in Sec. 1.7.

Understanding the basics of ODEs requires solving problems by hand (paper and pencil,
or typing on your computer, but first without the aid of a CAS). In doing so, you will
gain an important conceptual understanding and feel for the basic terms, such as ODEs,
direction field, and initial value problem. If you wish, you can use your Computer Algebra
System (CAS) for checking solutions.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 21.1-21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
References and Answers to Problems: App. 1 Part A, and App. 2.

I Basic Concepts. Modeling

If we want to solve an engineering problem (usually of a physical nature), we first
have to formulate the problem as a mathematical expression in terms of variables,
functions, and equations. Such an expression is known as a mathematical model of the
given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or,
briefly, modeling.

Modeling needs experience, which we shall gain by discussing various examples and
problems. (Your computer may often help you in solving but rarely in setting up models.)

Now many physical concepts, such as velocity and acceleration, are derivatives. Hence
a model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution (a
function that satisfies the equation), explore its properties, graph it, find values of it, and
interpret it in physical terms so that we can understand the behavior of the physical system
in our given problem. However, before we can turn to methods of solution, we must first
define some basic concepts needed throughout this chapter.
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Basic Concepts. Modeling
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Fig. 2. Some applications of differential equations

An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call y(x) (or sometimes y(t) if the
independent variable is time t). The equation may also contain y itself, known functions
of x (or t), and constants. For example,

(1) y' = cos x
0 y' + 9y =e™

®) y'y" —3y?=0



EXAMPLE 1

CHAP.1 First-Order ODEs

are ordinary differential equations (ODEs). Here, as in calculus, y’ denotes dy/dx,
y” = d?y/dx?, etc. The term ordinary distinguishes them from partial differential
equations (PDEs), which involve partial derivatives of an unknown function of two
or more variables. For instance, a PDE with unknown function u of two variables x
andy is

?u  u
PRCIERC Ry
ax2 oy

PDEs have important engineering applications, but they are more complicated than ODEs;
they will be considered in Chap. 12.

An ODE is said to be of order n if the nth derivative of the unknown function y is the
highest derivative of y in the equation. The concept of order gives a useful classification
into ODEs of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODESs. Such equations contain only the
first derivative y’ and may contain y and any given functions of x. Hence we can write
them as

(4) Fx,y,y') =0
or often in the form
y' = f(xy).

This is called the explicit form, in contrast to the implicit form (4). For instance, the implicit
ODE x 3y’ — 4y? = 0 (where x # 0) can be written explicitly as y’ = 4x3y2.

Concept of Solution

A function

y = h(x)

is called a solution of a given ODE (4) on some open interval a < x < b if h(x) is
defined and differentiable throughout the interval and is such that the equation becomes
an identity if y and y” are replaced with h and h’, respectively. The curve (the graph) of
h is called a solution curve.

Here, open interval a < x < b means that the endpoints a and b are not regarded as
points belonging to the interval. Also,a < x < bincludes infinite intervals — < x < b,
a < Xx < oo, —o < x < oo (the real line) as special cases.

Verification of Solution

Verify that y = ¢/x (c an arbitrary constant) is a solution of the ODE xy’ = —y for all x # 0. Indeed, differentiate
y = ¢/x to gety’ = —c/x% Multiply this by x, obtaining xy’ = —c/x; thus, xy’ = —y, the given ODE. Ml
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EXAMPLE 2 Solution by Calculus. Solution Curves

The ODE y’ = dy/dx = cos x can be solved directly by integration on both sides. Indeed, using calculus,
we obtainy = [cos x dx = sinx + ¢, where c is an arbitrary constant. This is a family of solutions. Each value
of c, for instance, 2.75 or 0 or —8, gives one of these curves. Figure 3 shows some of them, for ¢ = —3, -2,
-1,0,1,23,4 [ |

(
(«

a
o
a
N
a
2]

>(<(
(

/

4

Fig. 3. Solutions y = sinx + c of the ODE y’ = cos x

EXAMPLE 3 (A)Exponential Growth. (B) Exponential Decay

From calculus we know that y = ce®2* has the derivative

r_ dy _ 0.2t _
y' = a 0.2e™" = 0.2y.

Hence y is a solution of y" = 0.2y (Fig. 4A). This ODE is of the form y’ = ky. With positive-constant k it can
model exponential growth, for instance, of colonies of bacteria or populations of animals. It also applies to
humans for small populations in a large country (e.g., the United States in early times) and is then known as

Malthus’s law.* We shall say more about this topic in Sec. 1.5.
(B) Similarly, y’ = —0.2 (with a minus on the right) has the solution y = ce™%2, (Fig. 4B) modeling
exponential decay, as, for instance, of a radioactive substance (see Example 5). [ |

2.0
1.5
1.0

0.5

%

t 0 2 4 6 8 10 12 14 ¢
Fig. 4A. Solutions of y' = 0.2y Fig. 4B. Solutions of y' = —0.2y
in Example 3 (exponential growth) in Example 3 (exponential decay)

INamed after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1834).



EXAMPLE 4

CHAP.1 First-Order ODEs

We see that each ODE in these examples has a solution that contains an arbitrary
constant c. Such a solution containing an arbitrary constant c is called a general solution
of the ODE.

(We shall see that ¢ is sometimes not completely arbitrary but must be restricted to some
interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniquely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific ¢ (e.g., ¢ = 6.45 or 0
or —2.01) we obtain what is called a particular solution of the ODE. A particular solution
does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary
constant is obtained as a particular solution by assigning a suitable value to c. Exceptions
to these rules occur but are of minor interest in applications; see Prob. 16 in Problem
Set 1.1.

Initial Value Problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(xo) = Yo, with given values
Xo and yo, that is used to determine a value of the arbitrary constant c. Geometrically
this condition means that the solution curve should pass through the point (X, Yo)
in the xy-plane. An ODE, together with an initial condition, is called an initial value
problem. Thus, if the ODE is explicit, y’ = f(x,y), the initial value problem is of
the form

(5) y' = f(xy), y(X0) = Yo.

Initial Value Problem

Solve the initial value problem

W

“x 3y, y(0) = 5.7.

y

Solution. The general solution is y(x) = ce3¥; see Example 3. From this solution and the initial condition
we obtain y(0) = ce® = ¢ = 5.7. Hence the initial value problem has the solution y(x) = 5.7e3*. This is a
particular solution. [ |

More on Modeling

The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the details of the typical steps of modeling. Step 1: the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2:
the solution by a mathematical method; and Step 3: the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CAS)
may perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work.
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EXAMPLE 5

And Step 2 requires a solid knowledge and good understanding of solution methods
available to you—you have to choose the method for your work by hand or by the
computer. Keep this in mind, and always check computer results for errors (which may
arise, for instance, from false inputs).

Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Information. Experiments show that at each instant a radioactive substance decomposes—and is thus
decaying in time—proportional to the amount of substance present.

Step 1. Setting up a mathematical model of the physical process. Denote by y(t) the amount of substance still
present at any time t. By the physical law, the time rate of change y’(t) = dy/dt is proportional to y(t). This
gives the first-order ODE

dyi

©) -

where the constant k is positive, so that, because of the minus, we do get decay (as in [B] of Example 3).
The value of k is known from experiments for various radioactive substances (e.g., k = 1.4 - 10~ sec™},
approximately, for radium 223 Ra).

Now the given initial amount is 0.5 g, and we can call the corresponding instant t = 0. Then we have the
initial condition y(0) = 0.5. This is the instant at which our observation of the process begins. It motivates
the term initial condition (which, however, is also used when the independent variable is not time or when
we choose a t other than t = 0). Hence the mathematical model of the physical process is the initial value
problem

dy
(7) P —ky,  y(0) = 05.

Step 2. Mathematical solution. As in (B) of Example 3 we conclude that the ODE (6) models exponential decay
and has the general solution (with arbitrary constant ¢ but definite given k)

8) y(t) = ce™"*,

We now determine ¢ by using the initial condition. Since y(0) = ¢ from (8), this gives y(0) = ¢ = 0.5. Hence
the particular solution governing our process is (cf. Fig. 5)

9) y(t) = 0.5e % (k > 0).

Always check your result—it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as y(0) = 0.5:

d
(T)t/ = —05ke ¥ = —k-05e7* = —ky,  y(0) = 0.5¢° = 0.5.

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time t. It starts from
the correct initial amount and decreases with time because k is positive. The limit of y as t — oo is zero. [ |

0.5
0.4
0.3
0.2
0.1

0 I I 1 !
0 0.5 1 1.5 2 2.5 3t

Fig. 5. Radioactivity (Exponential decay,
y = 0.5¢ ¥, with k = 15 as an example)
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CALCULUS

Solve the ODE by integration or by remembering a
differentiation formula.

1.y +2sin2mx=0

2.y +xe 2 =0
3.y =y

4, y' = —1.5y
5.y =4e "cosx
6. y" = -y

7. y' = cosh 5.13x
8, yl// — e—Ozx

[9-15] VERIFICATION. INITIAL VALUE
PROBLEM (IVP)

(a) Verify that y is a solution of the ODE. (b) Determine
from y the particular solution of the IVP. (c) Graph the
solution of the I\VVP.

9.y +4y=1.4, y=ce ™ +0.35 y(0)=2
10. y +5xy =0, y=ce 2 y0)=m
1.y =y +e*, y=x+ce% y0)=3
12. yy' =4x, y2—4x2=c(y > 0), y(l)=14
By =y—y Y= e Y0 =025
14. y'tanx =2y — 8, y=csin?x+4, yEm) =0

15. Find two constant solutions of the ODE in Prob. 13 by
inspection.

16. Singular solution. An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE y'2 — xy’ +y = 0 is of this kind. Show
by differentiation and substitution that it has the
general solutiony = cx — ¢ and the singular solution
y = x2/4. Explain Fig. 6.

Fig. 6. Particular solutions and singular

solution in Problem 16

PROBLEM SET 1.1

MODELING, APPLICATIONS

These problems will give you a first impression of modeling.
Many more problems on modeling follow throughout this
chapter.

17. Half-life. The half-life measures exponential decay.
It is the time in which half of the given amount of
radioactive substance will disappear. What is the half-
life of 22§Ra (in years) in Example 5?

18. Half-life. Radium 223Ra has a half-life of about
3.6 days.
(a) Given 1 gram, how much will still be present after
1 day?
(b) After 1 year?

19. Free fall. In dropping a stone or an iron ball, air
resistance is practically negligible. Experiments
show that the acceleration of the motion is constant
(equal to g = 9.80 m/sec® = 32 ft/sec? called the
acceleration of gravity). Model this as an ODE for
y(t), the distance fallen as a function of time t. If the
motion starts at time t = 0 from rest (i.e., with velocity
v =y’ = 0), show that you obtain the familiar law of
free fall

y = 30t%

20. Exponential decay. Subsonic flight. The efficiency
of the engines of subsonic airplanes depends on air
pressure and is usually maximum near 35,000 ft.
Find the air pressure y(x) at this height. Physical
information. The rate of change y’(x) is proportional
to the pressure. At 18,000 ft it is half its value
Yo = Y(0) at sea level. Hint. Remember from calculus
that if y = e, then y' = ke = ky. Can you see
without calculation that the answer should be close
to yo/4?
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1.2 Geometric Meaning of y' = f(x, y).
Direction Fields, Euler's Method

A first-order ODE
1) y' =f(xy)

has a simple geometric interpretation. From calculus you know that the derivative y’ (x) of
y(x) is the slope of y(x). Hence a solution curve of (1) that passes through a point (X, Yo)
must have, at that point, the slope y’(xo) equal to the value of f at that point; that is,

y' (Xo) = f(Xo, Yo).

Using this fact, we can develop graphic or numeric methods for obtaining approximate
solutions of ODEs (1). This will lead to a better conceptual understanding of an ODE (1).
Moreover, such methods are of practical importance since many ODEs have complicated
solution formulas or no solution formulas at all, whereby numeric methods are needed.

Graphic Method of Direction Fields. Practical Example Illustrated in Fig. 7. We
can show directions of solution curves of a given ODE (1) by drawing short straight-line
segments (lineal elements) in the xy-plane. This gives a direction field (or slope field)
into which you can then fit (approximate) solution curves. This may reveal typical
properties of the whole family of solutions.

Figure 7 shows a direction field for the ODE

) y =y +x

obtained by a CAS (Computer Algebra System) and some approximate solution curves
fitted in.

y
—o PSS TS
———— 2 ST

A Y
LA s

2\ 15 ~-1N-05--[~05 1=z
N R R ntatatatarel

N RN R S et

N N
AN AN AN NN NS
LALLM NN NN
VAL LN NN NN NN
LA AV VR U U N U U W VR
LA VAN VA N U U U W VR Y
LAULLL LU LN 2NN NNNY

N

NN S

Fig. 7. Direction field of y' = y + x, with three approximate solution
curves passing through (0, 1), (O, 0), (0, —1), respectively
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CHAP.1 First-Order ODEs

If you have no CAS, first draw a few level curves f(x, y) = const of f(x, y), then parallel
lineal elements along each such curve (which is also called an isocline, meaning a curve
of equal inclination), and finally draw approximation curves fit to the lineal elements.

We shall now illustrate how numeric methods work by applying the simplest numeric
method, that is Euler’s method, to an initial value problem involving ODE (2). First we
give a brief description of Euler’s method.

Numeric Method by Euler

Given an ODE (1) and an initial value y(x¢) = yo, Euler’s method yields approximate
solution values at equidistant x-values X¢, X; = Xg + h, Xg = Xo + 2h, -+, namely,

Y1 = Yo + hf(xo,Yo)  (Fig. 8)
y2 =Yy1 + hf(xq,y1),  etc.

In general,
Yo =Yn-1t hf(xn—la yn—l)

where the step h equals, e.g., 0.1 or 0.2 (as in Table 1.1) or a smaller value for greater
accuracy.

Yy
Solution curve
Yy b

I
I
I

} > Error of "
I
I
I
Y R I
I
I

| b R,

I
I
I
y ]
0 [ \
I I
I I
I I
I I
| h |
X

1 X

Fig. 8. First Euler step, showing a solution curve, its tangent at (xo, ¥o),
step h and increment hf(xo, y,) in the formula for y,

Table 1.1 shows the computation of n = 5 steps with step h = 0.2 for the ODE (2) and
initial condition y(0) = 0, corresponding to the middle curve in the direction field. We
shall solve the ODE exactly in Sec. 1.5. For the time being, verify that the initial value
problem has the solutiony = e” — x — 1. The solution curve and the values in Table 1.1
are shown in Fig. 9. These values are rather inaccurate. The errors y(x,,) — Y,, are shown
in Table 1.1 as well as in Fig. 9. Decreasing h would improve the values, but would soon
require an impractical amount of computation. Much better methods of a similar nature
will be discussed in Sec. 21.1.
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Table 1.1.  Euler method fory’ = y + x,y(0) = 0 for
x =0, --,1.0 with step h = 0.2
n Xn Yn Y(X5) Error
0 0.0 0.000 0.000 0.000
1 0.2 0.000 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152
5 1.0 0.488 0.718 0.230
y
0.7 -
0.5+ °
0.3+
0.1F °
& b4 | | |
0 0.2 0.4 0.6 0.8 1 x
Fig. 9. Euler method: Approximate values in Table 1.1 and solution curve

DIRECTION FIELDS, SOLUTION CURVES

Graph a direction field (by a CAS or by hand). In the field
graph several solution curves by hand, particularly those
passing through the given points (X, y).

Ly =1+y%2 (¢m1)

2. yy’ +4x =0, (1,1),(0,2)

3.y =1-y% (0,023

4.y =2y—y> (0,0),(0,1),(0,2),(0,3)
5.y =x-1/y, (1,3

6. y' =sin%y, (0, —0.4), (0, 1)

7.y =e¥*  (2,2), (3, 3)

8.y =-2xy, (0,3),(0,1),(0,2)

ACCURACY OF DIRECTION FIELDS

Direction fields are very useful because they can give you
an impression of all solutions without solving the ODE,
which may be difficult or even impossible. To get a feel for
the accuracy of the method, graph a field, sketch solution
curves in it, and compare them with the exact solutions.

9. y' = cos mx

10. y' = —5y12 (Sol. Vy + 3x = ¢)

11. Autonomous ODE. This means an ODE not showing
x (the independent variable) explicitly. (The ODEs in
Probs. 6 and 10 are autonomous.) What will the level
curves f(x, y) = const (also called isoclines = curves

PROBLEM SET 1.2

of equal inclination) of an autonomous ODE look like?
Give reason.

MOTIONS

Model the motion of a body B on a straight line with
velocity as given, y(t) being the distance of B from a point
y = 0 at time t. Graph a direction field of the model (the
ODE). In the field sketch the solution curve satisfying the
given initial condition.

12. Product of velocity times distance constant, equal to 2,
y(0) = 2.

13. Distance = Velocity X Time, y(1) =1

14. Square of the distance plus square of the velocity equal
to 1, initial distance 1/Vv2

15. Parachutist. Two forces act on a parachutist, the
attraction by the earth mg (m = mass of person plus
equipment, g = 9.8 m/seczthe acceleration of gravity)
and the air resistance, assumed to be proportional to the
square of the velocity v(t). Using Newton’s second law
of motion (mass X acceleration = resultant of the forces),
set up a model (an ODE for v(t)). Graph a direction field
(choosing m and the constant of proportionality equal to 1).
Assume that the parachute opens when v = 10 m/sec.
Graph the corresponding solution in the field. What is the
limiting velocity? Would the parachute still be sufficient
if the air resistance were only proportional to v(t)?
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CHAP.1 First-Order ODEs

16. CAS PROJECT. Direction Fields. Discuss direction

fields as follows.
(a) Graph portions of the direction field of the ODE (2)

(see Fig. 7), for instance, -5 =x=2, -1 =y =5.

Explain what you have gained by this enlargement of
the portion of the field.

(b) Using implicit differentiation, find an ODE with
the general solution x2 + 9y2 = ¢ (y > 0). Graph its
direction field. Does the field give the impression
that the solution curves may be semi-ellipses? Can you
do similar work for circles? Hyperbolas? Parabolas?
Other curves?

(c) Make a conjecture about the solutions of y’ = —x/y
from the direction field.

(d) Graph the direction field of y’ = —%y and some
solutions of your choice. How do they behave? Why
do they decrease fory > 0?

17-20 | EULER’S METHOD

This is the simplest method to explain numerically solving
an ODE, more precisely, an initial value problem (IVP).
(More accurate methods based on the same principle are
explained in Sec. 21.1.) Using the method, to get a feel for
numerics as well as for the nature of I\VPs, solve the IVP
numerically with a PC or a calculator, 10 steps. Graph the
computed values and the solution curve on the same
coordinate axes.

17.y" =y, y0) =1, h=0.1

18.y' =y, y0)=1, h=0.01

9.y =(y—-x?% y0)=0, h=0.1
Sol.y = x — tanh x

20. y' = —5x*%? y(0) =1, h=0.2
Sol.y = 1/(1 + x)°

1.3 Separable ODEs. Modeling

Many practically useful ODEs can be reduced to the form

(€N 9y) Y = f(x)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

) Jg(y) y'dx = Jf(x) dx + c.

On the left we can switch to y as the variable of integration. By calculus, y’dx = dy, so that

(3) Jg(y) dy = Jf(x) dx + c.

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

EXAMPLE 1 Separable ODE

The ODE y’ = 1 + y? is separable because it can be written

dy
1er2

= dx. By integration,

arctany = x + ¢ or y = tan (X + c).

It is very important to introduce the constant of integration immediately when the integration is performed.
If we wrote arctany = X, then y = tan x, and then introduced ¢, we would have obtained y = tan x + ¢, which

is not a solution (when ¢ # 0). Verify this.
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

Separable ODE
The ODE y’ = (x + 1)e~"y2 is separable; we obtain y~2dy = (x + 1)e " dx.

1
By integration,  —y~!'=—(x + 2)e™" + ¢, =——
yines y ) y (x+2e*—-c |
Initial Value Problem (IVP). Bell-Shaped Curve
Solve y’ = —2xy, y(0) = 1.8.
Solution. By separation and integration,
y 2, = —z?
7=—2xdx, Iny = —x“ + ¢, y=ce ".
This is the general golution. From it and the initial condition, y(0) = ce® = ¢ = 1.8. Hence the IVP has the
solution y = 1.8e™"". This is a particular solution, representing a bell-shaped curve (Fig. 10). [ |
¥
1+
| |
-2 -1 0 1 2 x

Fig. 10.  Solution in Example 3 (bell-shaped curve)

Modeling

The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

Radiocarbon Dating”

In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian—Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon 1&C to carbon 12C in
this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon ¢C (made
radioactive by cosmic rays) to ordinary carbon 2C is constant. When an organism dies, its absorption of 1&C
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive
carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of '&C, which
is 5715 years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11-52,
line 9).

Solution.  Modeling. Radioactive decay is governed by the ODE y’ = ky (see Sec. 1.1, Example 5). By
separation and integration (where t is time and yy is the initial ratio of 1&C to 2C)

d
Vy = kdt, Inly| =kt + c, y = yoekt (Yo = €.

2Method by WILLARD FRANK LIBBY (1908-1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.
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EXAMPLE 5

CHAP.1 First-Order ODEs

Next we use the half-life H = 5715 to determine k. When t = H, half of the original substance is still present. Thus,

 _In05 _ 0693

kH kH
=0. =0. =220~ 0.0001213.
Yoe 0.5yo, e 05, v 5715 — —0.0001213

Finally, we use the ratio 52.5% for determining the time t when Oetzi died (actually, was killed),

Kt _ g=00001213t _ 5o5 t= In0525 _ 5312,

¢ ~ ~0.0001213

=e Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is
due to a variation in that carbon ratio because of industrial pollution and other factors, such as nuclear testing. Bl

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 Ib of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

Solution. Step 1. Setting up a model. Let y(t) denote the amount of salt in the tank at time t. Its time rate
of change is
y" = Saltinflow rate — Salt outflow rate Balance law.

5 Ib times 10 gal gives an inflow of 50 Ib of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01
(= 1%) of the total brine content in the tank, hence 0.01 of the salt content y(t), that is, 0.01 y(t). Thus the
model is the ODE

() y' =50 — 0.0ly = —0.01(y — 5000).

Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

dy
— = -001 | — = —0.01t + c* _ — —04013_
, 5000~ ~001dt nly — 5000] = —0.01t + c*, y — 5000 = ce

Initially the tank contains 100 Ib of salt. Hence y(0) = 100 is the initial condition that will give the unique
solution. Substituting y = 100 and t = 0 in the last equation gives 100 — 5000 = ce® = ¢. Hence ¢ = —4900.
Hence the amount of salt in the tank at time t is

(5) y(t) = 5000 — 4900e =001,

This function shows an exponential approach to the limit 5000 Ib; see Fig. 11. Can you explain physically that
y(t) should increase with time? That its limit is 5000 Ib? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob. 35)
or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and the flow
rates (in and out) may be different and known only very roughly. [ |

Yy

5000

4000

s ——. 3000
n 2000

:Q_) 1000

100 I I I I I
0 100 200 300 400 500 ¢

Tank Salt content y(¢)

Fig. 1. Mixing problem in Example 5
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EXAMPLE 6

Heating an Office Building (Newton’s Law of Cooling?)

Suppose that in winter the daytime temperature in a certain office building is maintained at 70°F. The heating
is shut off at 10 p m. and turned on again at 6 A m. On a certain day the temperature inside the building at 2 A m.
was found to be 65°F. The outside temperature was 50°F at 10 p M. and had dropped to 40°F by 6 A M. What
was the temperature inside the building when the heat was turned on at 6 A m.?

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which
conducts heat well, for example, as a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution. Step 1. Setting up a model. Let T(t) be the temperature inside the building and T, the outside
temperature (assumed to be constant in Newton’s law). Then by Newton’s law,

dT
(6) S U]

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with calculations
from the model.

Step 2. General solution. We cannot solve (6) because we do not know T,, just that it varied between 50°F
and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function T 4 replaced with the average of the two known values, or 45°F. For physical
reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A m.

For constant T, = 45 (or any other constant value) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

dT
T 5~ Kdt In|T — 45| = kt + c*, T(t) = 45 + ce®t (c =e).

Step 3. Particular solution. We choose 10 p m. to be t = 0. Then the given initial condition is T(0) = 70 and
yields a particular solution, call it T,. By substitution,

T(0) = 45 + ce® = 70, ¢ =70 — 45 = 25, T,(t) = 45 + 25¢",

Step 4. Determination of k. We use T(4) = 65, where t = 4 is 2 A m. Solving algebraically for k and inserting
k into T,(t) gives (Fig. 12)

T,(4) = 45 + 25¢* = 65, e*t =08, k=%In0.8 = —0.056, T,(t) = 45 + 25¢70:056¢,

Fig. 12. Particular solution (temperature) in Example 6

3Sir ISAAC NEWTON (1642-1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTFRIED WILHELM LEIBNIZ (1646-1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calculus. His Philosophiae naturalis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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EXAMPLE 7

CHAP.1 First-Order ODEs

Step 5. Answer and interpretation. 6 A M. is t = 8 (namely, 8 hours after 10 p m.), and
T,(8) = 45 + 25¢700%6°8 = g1[°F].

Hence the temperature in the building dropped 9°F, a result that looks reasonable. [ |

Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 13). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

) v(t) = 0.600V 2gh(t) (Torricelli’s law?),

where h(t) is the height of the water above the hole at time t, and g = 980 cm/sec® = 32.17 ft/sec? is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an equation, we relate the decrease in water level h(t) to the
outflow. The volume AV of the outflow during a short time At is

AV = Av At (A = Area of hole).
AV must equal the change AV* of the volume of the water in the tank. Now
AV* = —B Ah (B = Cross-sectional area of tank)

where Ah (> 0) is the decrease of the height h(t) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV* gives

—B Ah = Av At.

We now express v according to Torricelli’s law and then let At (the length of the time interval considered)
approach 0—this is a standard way of obtaining an ODE as a model. That is, we have

Ah A A
Tt = —EU = —E 0.600V2gh(t)
and by letting At — 0 we obtain the ODE

dh A

— = —26.56 — Vh,

dt g VI
where 26.56 = 0.600V2 - 980. This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. A/B is constant. Separation and integration gives

dh A A

—— = —26.56 —dt 2Vh = ¢* — 26.56 —t.

uh 6.56 B d and vh=c¢ 6.56 5

Dividing by 2 and squaring givesh = (¢ — 13.28At/B)?. Inserting 13.28A/B = 13.28 - 0.5%7/100%7 = 0.000332
yields the general solution

h(t) = (c — 0.000332t)2.

4EVANGELISTA TORRICELLI (1608-1647), Italian physicist, pupil and successor of GALILEO GALILEI
(1564-1642) at Florence. The “contraction factor” 0.600 was introduced by J. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.
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Step 3. Particular solution. The initial height (the initial condition) is h(0) = 225 cm. Substitution of t = 0
and h = 225 gives from the general solution ¢c® = 225, ¢ = 15.00 and thus the particular solution (Fig. 13)

hp() = (15.00 — 0.000332t).

Step 4. Tank empty. h,(t) = 0 if t = 15.00/0.000332 = 45,181isecl = 12.6 [hours].
Here you see distinctly the importance of the choice of units—we have been working with the cgs system,
in which time is measured in seconds! We used g = 980 cm/sec?.

Step 5. Checking. Check the result. [ |

r—2.00 mﬂ

Water level
at time ¢

2.25m

Outflowing 0 | | | 1
¢ water 0 10000 30000 50000 ¢

Tank Water level A(¢) in tank

Fig. 13. Example 7. Outflow from a cylindrical tank (“leaking tank”).
Torricelli’s law

Extended Method: Reduction to Separable Form

Certain nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of practical
importance, namely, for equations

®) y = f<i>

Here, f is any (differentiable) function of y/x, such as sin(y/x), (y/x)*, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set y/x = u; thus,

9) y = UX and by product differentiation y' =u'x + u

Substitution into y' = f(y/x) then gives u’x + u = f(u) or u’x = f(u) — u. We see that
if f(u) — u # 0, this can be separated:

du dx
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1.

EXAMPLE 8

CHAP.1 First-Order ODEs

Reduction to Separable Form

Solve

2y’ =y? - x2

Solution. To get the usual explicit form, divide the given equation by 2xy,

2%y 2x 2y

Now substitute y and y” from (9) and then simplify by subtracting u on both sides,

u’erufE
2

1
2u’

u 1 —u?-1
2 2u u

You see that in the last equation you can now separate the variables,

2udu _  dx

1+ u? X’

By integration,

In@@+udH=-Inlx| +c*=1In

1
f‘ + c*.
X

Take exponents on both sides to get 1 + u® = ¢/x or 1 + (y/x)? = ¢/x. Multiply the last equation by x to

obtain (Fig. 14)

2 2
c 5 C

=] +y*=—
Thus (x 2) y 2

This general solution represents a family of circles passing through the origin with centers on the x-axis. M

Fig. 14. General solution (family of circles) in Example 8

PROBLEM SET 1.3

CAUTION! Constant of integration. Why is it
important to introduce the constant of integration
immediately when you integrate?

GENERAL SOLUTION

Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.

o 0~ w

8.y =(y+ 4x?

10.

vy +x3=0

y' = sec?y

y' sin 2arx = 11y cos 27X
yy' + 36x =0

" a20-1,2
y =¢€ y

xy' =y + 2x3sin2¥ (Sety/x = u)
(Sety + 4x = v)
xy' =y2+y (Sety/x = u)

xy' =x+y (Sety/x =u)

11-17 | INITIAL VALUE PROBLEMS (IVPs)

Solve the IVP. Show the steps of derivation, beginning with
the general solution.

11. xy' +y =0,
12. y' =1 + 4y?,

y(4) = 6
y1) =0

13. y'cosh®x = sin%y, y(0) =7
14. dr/dt = =2tr, r(0) =rg

15. y' = —4x/y, y(@) =3

16. y = (x +y—2)2 y(0) =2

(Setv =x+y—2)

17. xy' =y + 3x*cos? (y/x),
(Sety/x = u)

18. Particular solution. Introduce limits of integration in

(3) such that y obtained from (3) satisfies the initial
condition y(X¢) = Yo.

y(1)=10
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19-36| MODELING, APPLICATIONS

19.

20.

21.

22.

23.

24,

25.

26.

27.

Exponential growth. If the growth rate of the number
of bacteria at any time t is proportional to the number
present at t and doubles in 1 week, how many bacteria
can be expected after 2 weeks? After 4 weeks?

Another population model.

(a) If the birth rate and death rate of the number of
bacteria are proportional to the number of bacteria
present, what is the population as a function of time.
(b) What is the limiting situation for increasing time?
Interpret it.

Radiocarbon dating. What should be the 1&C content
(in percent of yo) of a fossilized tree that is claimed to
be 3000 years old? (See Example 4.)

Linear accelerators are used in physics for
accelerating charged particles. Suppose that an alpha
particle enters an accelerator and undergoes a constant
acceleration that increases the speed of the particle
from 10% m/sec to 10% m/secin 10 3sec. Find the
acceleration a and the distance traveled during that
period of 1073 sec.

Boyle-Mariotte’s law for ideal gases.® Experiments
show for a gas at low pressure p (and constant
temperature) the rate of change of the volume V(p)
equals —V/p. Solve the model.

Mixing problem. A tank contains 400 gal of brine
in which 100 Ib of salt are dissolved. Fresh water runs
into the tank at a rate of 2 gal/min.The mixture, kept
practically uniform by stirring, runs out at the same
rate. How much salt will there be in the tank at the
end of 1 hour?

Newton’s law of cooling. A thermometer, reading
5°C, is brought into a room whose temperature is 22°C.
One minute later the thermometer reading is 12°C.
How long does it take until the reading is practically
22°C, say, 21.9°C?

Gompertz growth in tumors. The Gompertz model
isy’ = —AyIny (A > 0), where y(t) is the mass of
tumor cells at time t. The model agrees well with
clinical observations. The declining growth rate with
increasing y > 1 corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients. Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

Dryer. If a wet sheet in a dryer loses its moisture at

a rate proportional to its moisture content, and if it
loses half of its moisture during the first 10 min of

28.

29.

30.

31.

32.

19

drying, when will it be practically dry, say, when will
it have lost 99% of its moisture? First guess, then
calculate.

Estimation. Could you see, practically without calcu-
lation, that the answer in Prob. 27 must lie between
60 and 70 min? Explain.

Alibi? Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check
the water temperature of his car (parked near the
entrance of the bar) at the instant of arrest and again
30 min later, obtaining the values 190°F and 110°F,
respectively. Do these results give Jack an alibi?
(Solve by inspection.)

Rocket. A rocket is shot straight up from the earth,
with a net acceleration (= acceleration by the rocket
engine minus gravitational pullback) of 7tm/sec?
during the initial stage of flight until the engine cut out
at t = 10 sec. How high will it go, air resistance
neglected?

Solution curves of y’' = g(y/x). Show that any
(nonvertical) straight line through the origin of the
xy-plane intersects all these curves of a given ODE at
the same angle.

Friction. If a body slides on a surface, it experiences
friction F (a force against the direction of motion).
Experiments show that |F| = w|N| (Coulomb’s® law of
kinetic friction without lubrication), where N is the
normal force (force that holds the two surfaces together;
see Fig. 15) and the constant of proportionality w is
called the coefficient of kinetic friction. In Fig. 15
assume that the body weighs 45 nt (about 10 Ib; see
front cover for conversion). u = 0.20 (corresponding
to steel on steel), a = 30°, the slide is 10 m long, the
initial velocity is zero, and air resistance is
negligible. Find the velocity of the body at the end
of the slide.

Problem 32

Fig. 15.

SROBERT BOYLE (1627-1691), English physicist and chemist, one of the founders of the Royal Society. EDME MARIOTTE (about
1620-1684), French physicist and prior of a monastry near Dijon. They found the law experimentally in 1662 and 1676, respectively.

SCHARLES AUGUSTIN DE COULOMB (1736-1806), French physicist and engineer.
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33.

34.

CHAP.1 First-Order ODEs

Rope. To tie a boat in a harbor, how many times
must a rope be wound around a bollard (a vertical
rough cylindrical post fixed on the ground) so that a
man holding one end of the rope can resist a force
exerted by the boat 1000 times greater than the man
can exert? First guess. Experiments show that the
change AS of the force S in a small portion of the
rope is proportional to S and to the small angle A¢
in Fig. 16. Take the proportionality constant 0.15.
The result should surprise you!

S Small
portion
of rope
S +AS

Fig. 16. Problem 33

TEAM PROJECT. Family of Curves. A family of
curves can often be characterized as the general
solution of y" = f(x, y).

(a) Show that for the circles with center at the origin
we gety’ = —x/y.

(b) Graph some of the hyperbolas xy = c. Find an
ODE for them.

(c) Find an ODE for the straight lines through the
origin.

(d) You will see that the product of the right sides of
the ODEs in (a) and (c) equals —1. Do you recognize

35.

36.

this as the condition for the two families to be
orthogonal (i.e., to intersect at right angles)? Do your
graphs confirm this?

(e) Sketch families of curves of your own choice and
find their ODEs. Can every family of curves be given
by an ODE?

CAS PROJECT. Graphing Solutions. A CAS can
usually graph solutions, even if they are integrals that
cannot be evaluated by the usual analytical methods of
calculus.

(a) Show this for the five initial value problems
y' = e‘xz, y(0) = 0, =1, =2 graphing all five curves
on the same axes.

(b) Graph approximate solution curves, using the first
few terms of the Maclaurin series (obtained by term-
wise integration of that of y') and compare with the
exact curves.

(c) Repeat the work in (a) for another ODE and initial
conditions of your own choice, leading to an integral
that cannot be evaluated as indicated.

TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 7 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm? cross-
sectional area at the bottom. (Make a sketch.) Set
up the model for outflow. Indicate what portion of
your work in Example 7 you can use (so that it can
become part of the general method independent of the
shape of the tank). Find the time t to empty the tank
(a) for any R, (b) for R = 1 m. Plot t as function of
R. Find the time when h = R/2 (a) for any R, (b) for
R=1m.

1.4 Exact ODEs. Integrating Factors

We recall from calculus that if a function u(x, y) has continuous partial derivatives, its
differential (also called its total differential) is

du = a—udx + %dy.
X ay

From this it follows that if u(x, y) = ¢ = const, then du = 0.
For example, if u = x + x?y® = ¢, then

du= (1 + 2xy®) dx + 3x%y2%dy = 0

or

!

dy _
dx

1+ 2xy3
ax2y?
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an ODE that we can solve by going backward. This idea leads to a powerful solution
method as follows.
A first-order ODE M(x, y) + N(x, y)y’ = 0, written as (use dy = y’dx as in Sec. 1.3)

Q) M(x, y) dx + N(x,y)dy =0

is called an exact differential equation if the differential form M(x, y) dx + N(x, y) dy
is exact, that is, this form is the differential

au Ju
2 = gy + =
2) du ox dx ay dy

of some function u(x, y). Then (1) can be written
du=0.

By integration we immediately obtain the general solution of (1) in the form
®) ux,y) = c.

This is called an implicit solution, in contrast to a solution y = h(x) as defined in Sec.
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for x* + y? = 1.) If this is not possible, your
CAS may graph a figure of the contour lines (3) of the function u(x, y) and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function u(x, y) such that

(4) @ =M 2—; N

From this we can derive a formula for checking whether (1) is exact or not, as follows.

Let M and N be continuous and have continuous first partial derivatives in a region in
the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

™ _
ay  dyox
N _
X oxay

By the assumption of continuity the two second partial derivaties are equal. Thus

M _aN

©) ay X
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EXAMPLE 1

CHAP.1 First-Order ODEs

This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books, for
instance, [GenRef 12], also contain a proof.)

If (1) is exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6) u= JM dx + k(y);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant”
of integration. To determine k(y), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k. (See Example 1, below.)

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then, instead of (6), we first have by integration with respect to y

(6%) u= JN dy + 1(x).

To determine I(x), we derive du/dx from (6*), use (4a) to get dl/dx, and integrate. We
illustrate all this by the following typical examples.

An Exact ODE

Solve
) cos (X + y) dx + (3y% + 2y + cos (x + y)) dy = 0.
Solution. Step 1. Test for exactness. Our equation is of the form (1) with

M = cos (x +y),
N = 3y2 + 2y + cos (X + ).
Thus
oM .
- = — +
ay sin (x + ),

oN .
—_ = = + .
o~ sin x+y)

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration
(8) u= JM dx + k(y) = Jcos (x +y)dx + k(y) = sin (x +y) + k(y).

To find k(y), we differentiate this formula with respect to y and use formula (4b), obtaining
au dk 5
— = +y)+-—=N= + 2y + +y).
ay cos (x +y) dy N = 3y“ + 2y + cos (x +y)

Hence dk/dy = 3y® + 2y. By integration, k = y® + y2 + c*. Inserting this result into (8) and observing (3),
we obtain the answer

ux,y) =sin(x +y) +y2 +y%2=c.
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EXAMPLE 2

EXAMPLE 3

Step 3. Checking an implicit solution. We can check by differentiating the implicit solution u(x,y) = ¢
implicitly and see whether this leads to the given ODE (7):

©) du= %dx + Z—;dy = cos (X + y) dx + (cos (x + y) + 3y + 2y) dy = O.
This completes the check. [ |
An Initial Value Problem
Solve the initial value problem
(10) (cosy sinh x + 1) dx — siny cosh xdy = 0, y(1) = 2.
Solution. You may verify that the given ODE is exact. We find u. For a change, let us use (6*),

u= — Isin y cosh x dy + I(x) = cosy cosh x + I(x).
Fromthis, du/ax = cosy sinh x + dl/dx = M = cosy sinh x + 1.Hencedl/dx = 1.By integration, I(x) = x + c*.
This gives the general solution u(x, y) = cosy cosh x + x = ¢. From the initial condition, cos2cosh1 + 1 =
0.358 = c. Hence the answer is cosy cosh x + x = 0.358. Figure 17 shows the particular solutions forc = 0, 0.358

(thicker curve), 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in Example 1.) Also check that the
initial condition is satisfied. |

y

2.5
2.0F
1.5
1.0

0.5

| | | | |
0 05 10 15 20 25 30 =«

Fig. 17. Particular solutions in Example 2

WARNING! Breakdown in the Case of Nonexactness

The equation —y dx + xdy = 0 is not exact because M = —y and N = X, so that in (5), oM/dy = —1 but
dN/ax = 1. Let us show that in such a case the present method does not work. From (6),

au dk
u= IM dx + k(y) = —xy + k(y), hence E = —X+ @

Now, du/dy should equal N = x, by (4b). However, this is impossible because k(y) can depend only on'y. Try
(6*); it will also fail. Solve the equation by another method that we have discussed.

Reduction to Exact Form. Integrating Factors

The ODE in Example 3 is —y dx + x dy = 0. It is not exact. However, if we multiply it
by 1/x2, we get an exact equation [check exactness by (5)!],

Zydx+xdy 1o (y>_
(11) 2 = X2dx+xdy—d » =0.

Integration of (11) then gives the general solution y/x = ¢ = const.
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EXAMPLE 4

CHAP.1 First-Order ODEs

This example gives the idea. All we did was to multiply a given nonexact equation, say,
(12) P(x,y) dx + Q(x, y) dy = 0,

by a function F that, in general, will be a function of both x and y. The result was an equation
(13) FPdx + FQdy =0

that is exact, so we can solve it as just discussed. Such a function F(x, y) is then called
an integrating factor of (12).

Integrating Factor

The integrating factor in (11) is F = 1/x2. Hence in this case the exact equation (13) is

—ydx + xdy <y
— =

FPdx + FQdy = d ;) =0. Solution % =cC.

These are straight lines y = cx through the origin. (Note that x = 0 is also a solution of —y dx + xdy = 0.)
It is remarkable that we can readily find other integrating factors for the equation —y dx + x dy = 0, namely,
1/y% 1/(xy), and 1/(x2 + y?), because

—ydx + xd —ydx + xd —ydx + xd
(14 % =d <E> LR A (In 5), % =d (arctan X). [ |
y y Xy y x* +y X

How to Find Integrating Factors

In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For M dx + N dy = 0 the exactness condition (5) is 9M/dy = aN/ox. Hence for (13),
FP dx + FQ dy = 0, the exactness condition is

(15) 5y FP) = Q)

By the product rule, with subscripts denoting partial derivatives, this gives
F,P + FP, = F,.Q + FQ,.

In the general case, this would be complicated and useless. So we follow the Golden Rule:
If you cannot solve your problem, try to solve a simpler one—the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable: fortunately, in many practical cases, there are such factors, as we shall
see. Thus, let F = F(x). Then F, = 0, and F,, = F' = dF/dx, so that (15) becomes

FP, = F'Q + FQ,.
Dividing by FQ and reshuffling terms, we have

) 10F _ (1)

~R, h R=—
F dx where Qlay o
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THEOREM 1

THEOREM 2

EXAMPLE 5

This proves the following theorem.

Integrating Factor F(x)

If (12) is such that the right side R of (16) depends only on x, then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking
exponents on both sides.

17) F(x) = exp J R(X) dx.

Similarly, if F* = F*(y), then instead of (16) we get

1 dF* 1/0Q oP
18 ——— =R* h R¥ = = — - —
(18) F* dy ' where P(ax ay>

and we have the companion

Integrating Factor F*(y)

If (12) is such that the right side R* of (18) depends only on y, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

19) F*(y) = exp J R*(y) dy.

Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem
(20) €Y +yedx + (xe¥ — 1)dy =0, y0)= -1
Solution. Step 1. Nonexactness. The exactness check fails:

P Q 9
=@ rye) ="V eV +ye? but = (xe¥ — 1) = e’
ay ay X X

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on
both x and y.

1/oP 3Q> 1
R=—|"——)=———E""Y+e+ye’—e".
Q(ay X xey—l( 4 )

Try Theorem 2. The right side of (18) is

1/9Q 9P 1
- = = = (pY _ Tty QY Yy — —
R* = P<ax ay)fe’”y+yey(e e eV —ye¥) = -1

Hence (19) gives the integrating factor F*(y) = e~Y. From this result and (20) you get the exact equation

E"+y)dx+ x—e¥dy=0.
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CHAP.1 First-Order ODEs

Test for exactness; you will get 1 on both sides of the exactness condition. By integration, using (4a),
u= J(ex+y)dx=e’”+xy+ k(y).
Differentiate this with respect to y and use (4b) to get

o dk dk

=X+ —=N=x— ‘y’
ay X dy X e dy

Hence the general solution is
ux,y) =e* +xy+e ¥ =c

Setp 3. Particular solution. The initial condition y(0) = —1 gives u(0, —1) =1 + 0 + e = 3.72. Hence the
answer ise” + xy + e”Y = 1 + e = 3.72. Figure 18 shows several particular solutions obtained as level curves
of u(x, y) = c, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial

condition.

<

Fig. 18.

PROBLEM SET 1.4

ODEs. INTEGRATING FACTORS

Test for exactness. If exact, solve. If not, use an integrating
factor as given or obtained by inspection or by the theorems
in the text. Also, if an initial condition is given, find the
corresponding particular solution.

1.

No ap~owbd

2xydx + x2dy = 0

x3dx + y3dy = 0

sinxcosydx + cos xsinydy = 0
e3%(dr + 3rdg) = 0

(2 + yHdx — 2xydy = 0

3(y + 1)dx = 2xdy, (y + 1)x*
2xtany dx + sec®ydy = 0

Particular solutions in Example 5

8. e"(cosydx —sinydy) =0

9. e®®(2 cosydx — sinydy) = 0,
10.

y(0) =0

ydx + [y +tan (x +y)]dy =0, cos(x + )

11. 2 cosh x cos y dx = sinh x siny dy

12. @xydx + dy)e™ =0, y(0) = 2

13. e Vdx + e (—e Y + 1)dy =0, F=¢""Y
14. (@ + 1)y dx + (b + 1)xdy =0, y(@1) =1,

15.

F=x%P°

Exactness. Under what conditions for the constants a,
b, k, lis (ax + by) dx + (kx + ly) dy = 0 exact? Solve
the exact ODE.
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17.
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TEAM PROJECT. Solution by Several Methods.
Show this as indicated. Compare the amount of work.

(@) e¥sinh xdx + cosh xdy) = Oas an exact ODE
and by separation.

(b) (1 + 2x)cosydx + dy/cosy = 0by Theorem 2
and by separation.

() (x2 + y®> dx — 2xy dy = 0by Theorem 1 or 2 and
by separation with v = y/x.

(d) 3x2ydx + 4x3dy = 0 by Theorems 1 and 2 and
by separation.

(e) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

WRITING PROJECT. Working Backward.
Working backward from the solution to the problem
is useful in many areas. Euler, Lagrange, and other
great masters did it. To get additional insight into
the idea of integrating factors, start from a u(x, y) of
your choice, find du = 0, destroy exactness by
division by some F(x,y), and see what ODE’s
solvable by integrating factors you can get. Can you
proceed systematically, beginning with the simplest

Fx, y)?

5 Linear ODEs.

Bernoulli Equation. Population Dynamics 27

18. CAS PROJECT. Graphing Particular Solutions.

Graph particular solutions of the following ODE,
proceeding as explained.

(21) dy — yZsinxdx = 0.

(a) Show that (21) is not exact. Find an integrating
factor using either Theorem 1 or 2. Solve (21).

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph the seven particular solutions satisfying the
following initial conditions y(0) = 1, y(7/2) = *3,
+2, +1 (see figure below).

(d) Which solution of (21) do we not get in (a) or (b)?

y
3L
Zj U

0 | | |

=T 2n | —3m—_|

T

Particular solutions in CAS Project 18

a
=

7

Bernoulli Equation.
Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be brought into the form

@)

y' + pXx)y = r(x),

by algebra, and nonlinear if it cannot be brought into this form.

The defining feature of the linear ODE (1) is that it is linear in both the unknown
function y and its derivative y’ = dy/dx, whereas p and r may be any given functions of
X. If in an application the independent variable is time, we write t instead of x.

If the first term is f(x)y” (instead of y"), divide the equation by f(x) to get the standard
form (1), with y’ as the first term, which is practical.

For instance, y' cosx + ysinx = x is a linear ODE, and its standard form is

y' + ytanx = X sec x.

The function r(x) on the right may be a force, and the solution y(x) a displacement in

a motion or an electrical current or some other physical quantity. In engineering, r(x) is
frequently called the input, and y(x) is called the output or the response to the input (and,
if given, to the initial condition).
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CHAP.1 First-Order ODEs

Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call
it J, and we begin with the simpler special case that r(x) is zero for all x in J. (This is
sometimes written r(x) = 0.) Then the ODE (1) becomes

) y' +pXy =0

and is called homogeneous. By separating variables and integrating we then obtain
dy
7 = —p(X)dX, thus In |y| = — p(X)dX + c*.

Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),

(3) y(x) = ce~/P@dx (c = e when y=0);

here we may also choose ¢ = 0 and obtain the trivial solution y(x) = 0 for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that r(x) in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating factor
depending only on x. We can find this factor F(x) by Theorem 1 in the previous section
or we can proceed directly, as follows. We multiply (1) by F(x), obtaining
(1% Fy' + pFy = rF.
The left side is the derivative (Fy)" = F'y + Fy’ of the product Fy if
pFy = F'y, thus pF = F'.

By separating variables, dF/F = p dx. By integration, writing h = [p dx,

In|F|=h = dex, thus F =el

With this F and h’ = p, Eq. (1*) becomes
ey’ + h'ety = ey’ + €™y = (")’ = re™
By integration,

ely = Jehr dx + c.

Dividing by e, we obtain the desired solution formula

(4) y(x) = e‘h<Jehr dx + c), h = Jp(x) dx.
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EXAMPLE 1

EXAMPLE 2

This reduces solving (1) to the generally simpler task of evaluating integrals. For ODEs
for which this is still difficult, you may have to use a numeric method for integrals from
Sec. 19.5 or for the ODE itself from Sec. 21.1. We mention that h has nothing to do with
h(x) in Sec. 1.1 and that the constant of integration in h does not matter; see Prob. 2.

The structure of (4) is interesting. The only quantity depending on a given initial
condition is c. Accordingly, writing (4) as a sum of two terms,

(4%) y(x) = e‘hJehr dx + ce™",
we see the following:

(5) Total Output = Response to the Input r + Response to the Initial Data.

First-Order ODE, General Solution, Initial Value Problem

Solve the initial value problem

y' +ytanx =sin2x, y(0) = 1.
Solution. Here p = tanx, r = sin 2x = 2 sin x cos x, and

h= Jp dx = Jtanxdx = In |sec x].

From this we see that in (4),
e" =secx, e =cosx, e'"r=(secx)(2sinxcosx) = 2sinx,

and the general solution of our equation is
y(x) = cos x(ZJsin xdx + c) = cosX — 2 cos>X.

From this and the initial condition, 1 = ¢ - 1 — 2 - 1%; thus ¢ = 3 and the solution of our initial value problem
isy = 3cosx — 2cos2x. Here 3 cos X is the response to the initial data, and —2 cosx is the response to the
input sin 2x. [ |

Electric Circuit

Model the RL-circuit in Fig. 19 and solve the resulting ODE for the current I(t) A (amperes), where t is
time. Assume that the circuit contains as an EMF E(t) (electromotive force) a battery of E = 48 V (volts), which
is constant, a resistor of R = 11 () (ohms), and an inductor of L = 0.1 H (henrys), and that the current is initially
zero.

Physical Laws. A current I in the circuit causes a voltage drop RI across the resistor (Ohm’s law) and
a voltage drop LI" = L dI/dt across the conductor, and the sum of these two voltage drops equals the EMF
(Kirchhoff’s Voltage Law, KVL).

Remark. In general, KVL states that “The voltage (the electromotive force EMF) impressed on a closed
loop is equal to the sum of the voltage drops across all the other elements of the loop.” For Kirchoff’s Current
Law (KCL) and historical information, see footnote 7 in Sec. 2.9.

Solution. According to these laws the model of the RL-circuit is LI’ + Rl = E(t), in standard form

(6) I’ +B|

_E®
L L
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EXAMPLE 3

CHAP.1 First-Order ODEs

We can solve this linear ODE by (4) with x = t,y = I, p = R/L, h = (R/L)t, obtaining the general solution
I = e_(R/L)t(Je(R/L”$dt + c).

By integration,

E e(R/L)t E
7 | = e~ (®/LX (—— +e)=— + ce ®LX
@ L R/L R

In our case, R/L = 11/0.1 = 110 and E(t) = 48/0.1 = 480 = const; thus,

| =498 + ce™ 11,

In modeling, one often gets better insight into the nature of a solution (and smaller roundoff errors) by inserting
given numeric data only near the end. Here, the general solution (7) shows that the current approaches the limit
E/R = 48/11 faster the larger R/L is, in our case, R/L = 11/0.1 = 110, and the approach is very fast, from
below if 1(0) < 48/11 or from above if 1(0) > 48/11. If 1(0) = 48/11, the solution is constant (48/11 A). See
Fig. 19.

The initial value 1(0) = 0 gives I1(0) = E/R + ¢ = 0, c = —E/R and the particular solution

E 48
8 I=—@1—e®h  thus  1=_—(1-e 1%,
8 R( ) 11( ) -
O)
8
R=110Q
/\/\/ 6
o 4
E=48V
@
2
AN ; ; / 0 1 1 1 1 1
L=0.1H 0.01 0.02  0.03 0.04  0.05 ¢
Circuit Current I(t)

Fig. 19. RL-circuit

Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution. Step 1. Setting up a model. Let y(t) be the hormone level at time t. Then the removal rate is Ky(t).
The input rate is A + B cos wt, where w = 271/24 = 7r/12 and A is the average input rate; here A = B to make
the input rate nonnegative. The constants A, B, K can be determined from measurements. Hence the model is the
linear ODE

y'() =In— Out=A+ Bcoswt — Ky(t), thus y" + Ky =A + Bcos wt.

The initial condition for a particular solution Ypa. i Ypari(0) = yo with t = 0 suitably chosen, for example,
6:00 A M.

Step 2. General solution. In (4) we have p = K = const, h = Kt, and r = A + B cos wt. Hence (4) gives the
general solution (evaluate [ e cos wt dt by integration by parts)
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y(t) = e‘mJeKt (A + B cos wt) dt + ce Xt

A
—Kt Kt
e Kl =y —— —
{K K2+w2<

A B amt  om . wt _Kt
=t 5 |Kcos—o + —sin—— |+ e
K K2+ (7/12)

K cos wt + w sin wt)} + ce™ K¢

The last term decreases to 0 as t increases, practically after a short time and regardless of c (that is, of the initial
condition). The other part of y(t) is called the steady-state solution because it consists of constant and periodic
terms. The entire solution is called the transient-state solution because it models the transition from rest to the
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3. Particular solution. Setting t = 0 in y(t) and choosing y, = 0, we have

>

B KB
K+c¢=0, thus c=

o =24 B 4 A___ KB
K K2+ @122 ™ K K2+ (/122

Inserting this result into y(t), we obtain the particular solution

Ypart) = Ay L(Kcoslt + lsinﬂ> - (A + L)e_’{
PR K2 + (m/12)2 12 127712 K K2+ (r/12)

with the steady-state part as before. To plot yp. we must specify values for the constants, say, A=B =1
and K = 0.05. Figure 20 shows this solution. Notice that the transition period is relatively short (although
K is small), and the curve soon looks sinusoidal; this is the response to the input A + B cos (& 7t) =
1 + cos (& ).

20 -
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Fig. 20. Particular solution in Example 3

Reduction to Linear Form. Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation”

9) y' + p(x)y = g(x)y* (a any real number).

“JAKOB BERNOULLI (1654-1705), Swiss mathematician, professor at Basel, also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bernoulli’s equation was discovered by
Leibniz in 1696. Jakob Bernoulli’s students included his nephew NIKLAUS BERNOULLI (1687-1759), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI (1667-1748),
who had profound influence on the development of calculus, became Jakob’s successor at Basel, and had among
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLI (1700-1782) is known for his basic work in fluid flow and the kinetic theory of gases.
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EXAMPLE 4

CHAP.1 First-Order ODEs

If a = 0ora =1, Equation (9) is linear. Otherwise it is nonlinear. Then we set

u(x) = [y()]' "
We differentiate this and substitute y" from (9), obtaining
u' = (1 —ay~Y =@ - ay “Qy* - py).
Simplification gives
u'=(L-a)g—py' "9,

where y1=% = u on the right, so that we get the linear ODE

(10) u 4+ (1 —a)pu = (1 — a)g.

For further ODEs reducible to linear form, see Ince’s classic [A11] listed in App. 1. See

also Team Project 30 in Problem Set 1.5.

Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation®):

(11) y' = Ay — By?

Solution. Write (11) in the form (9), that is,

y' — Ay = —By?

to see that a = 2, so that u = y'=® = y~1, Differentiate this u and substitute y’ from (11),
u'= -y %y = -y %Ay - By» =B — Ay L

1 = —Au. Hence we have obtained the linear ODE

The last term is —Ay~
u’ + Au = B.
The general solution is [by (4)]
u=ce 4 + B/A.

Since u = 1/y, this gives the general solution of (11),

1 1
12 == =
42 TR T B/A

Directly from (11) we see that y = 0 (y(t) = 0 for all t) is also a solution.

(Fig. 21)

8PIERRE-FRANCOIS VERHULST, Belgian statistician, who introduced Eq. (8) as a model for human

population growth in 1838.



SEC. 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics 33

EXAMPLE 5

Population y
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Fig. 21. Logistic population model. Curves (9) in Example 4 with A/B = 4

Population Dynamics

The logistic equation (11) plays an important role in population dynamics, a field
that models the evolution of populations of plants, animals, or humans over time t.
If B =0, then (11) is y’ = dy/dt = Ay. In this case its solution (12) is y = (1/c)e?
and gives exponential growth, as for a small population in a large country (the
United States in early times!). This is called Malthus’s law. (See also Example 3 in
Sec. 1.1))

The term —By?2 in (11) is a “braking term” that prevents the population from growing
without bound. Indeed, if we write y" = Ay[1 — (B/A)y], we see that if y < A/B, then
y" > 0, so that an initially small population keeps growing as long as y < A/B. But if
y > A/B, theny’ < 0 and the population is decreasing as long as y > A/B. The limit
is the same in both cases, namely, A/B. See Fig. 21.

We see that in the logistic equation (11) the independent variable t does not occur
explicitly. An ODE y’ = f(t, y) in which t does not occur explicitly is of the form

(13) y' = f(y)

and is called an autonomous ODE. Thus the logistic equation (11) is autonomous.

Equation (13) has constant solutions, called equilibrium solutions or equilibrium
points. These are determined by the zeros of f(y), because f(y) = 0 gives y’ = 0 by
(13); hence y = const. These zeros are known as critical points of (13). An
equilibrium solution is called stable if solutions close to it for some t remain close
to it for all further t. It is called unstable if solutions initially close to it do not remain
close to it as t increases. For instance, y = 0 in Fig. 21 is an unstable equilibrium
solution, and y = 4 is a stable one. Note that (11) has the critical points y = 0 and
y = A/B.

Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODEY" = (y — 1)(y — 2) has the stable equilibrium solutiony; = 1 and the unstable y, = 2, as the direction
field in Fig. 22 suggests. The values y; and y, are the zeros of the parabola f(y) = (y — 1)(y — 2) in the figure.
Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot” giving y; and
Yo, and the direction (upward or downward) of the arrows in the field, and thus giving information about the
stability or instability of the equilibrium solutions. [ |
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Fig. 22. Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f(y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark. Mathematical Bioeconomics: The
Mathematics of Conservation 3rd ed. Hoboken, NJ, Wiley, 2010.

Further applications of linear ODEs follow in the next section.

PROBLEM SET 1.5

1. CAUTION! Show that e ™% = 1/x (not —x) and
e—ln(sec ) _ COS X.

2. Integration constant. Give a reason why in (4) you may
choose the constant of integration in [p dx to be zero.

[3-13] GENERAL SOLUTION. INITIAL VALUE
PROBLEMS
Find the general solution. If an initial condition is given,

find also the corresponding particular solution and graph or
sketch it. (Show the details of your work.)

3.y —y=5.2

4.y =2y — 4x

5.y +ky=e "

6.y +2y=4cos2x, yGm) =3
7.xy" =2y + x3°

8.y +ytanx =e %% cosx, y(0)=0
9.y +ysinx =e®% y(0)=-25

10. y' cosx + (3y — 1)secx =0, y(im) = 4/3
11. y' = (y — 2) cotx
12. xy' + 4y = 8x%,  y(1) =2

13. y’ = 6(y — 2.5)tanh 1.5x

14. CASEXPERIMENT. (a) Solvethe ODEyY’ — y/x =
—x "1 cos (1/x).Find an initial condition for which the
arbitrary constant becomes zero. Graph the resulting
particular solution, experimenting to obtain a good
figure near x = 0.

(b) Generalizing (a) from n = 1to arbitrary n, solve the
ODE y' — ny/x = —x""2cos (1/x). Find an initial
condition as in (a) and experiment with the graph.

15-20| GENERAL PROPERTIES OF LINEAR ODEs

These properties are of practical and theoretical importance
because they enable us to obtain new solutions from given
ones. Thus in modeling, whenever possible, we prefer linear
ODEs over nonlinear ones, which have no similar properties.

Show that nonhomogeneous linear ODEs (1) and homo-
geneous linear ODEs (2) have the following properties.
Illustrate each property by a calculation for two or three
equations of your choice. Give proofs.

15. The sum y; + ys of two solutions y; and ys of the
homogeneous equation (2) is a solution of (2), and so is
a scalar multiple ay, for any constant a. These properties
are not true for (1)!
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16.

17.

18.
19.
20.

21.

y = 0 (that is, y(x) = 0 for all x, also written y(x) = 0)
is a solution of (2) [not of (1) if r(x) # 0!], called the
trivial solution.

The sum of a solution of (1) and a solution of (2) is a
solution of (1).

The difference of two solutions of (1) is a solution of (2).
If y; is a solution of (1), what can you say about cy;?
If y; and y, are solutions of y; + py; = r; and
Yo + Pys = o, respectively (with the same p!), what
can you say about the sum y; + ys?

Variation of parameter. Another method of obtaining
(4) results from the following idea. Write (3) as cy*,
where y* is the exponential function, which is a solution

of the homogeneous linear ODE y*' + py* = 0.

Replace the arbitrary constant ¢ in (3) with a function
u to be determined so that the resulting functiony = uy*
is a solution of the nonhomogeneous linear ODE

y +py=r

22-28 | NONLINEAR ODEs

Using a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

22.
23.
24.
25.
26.
27.
28.
29.

30.

y +y=y% y0)= -3}
y +xy=xy"' y0)=3
y Yy = —x/y

y' = 3.2y — 10y?

y' = (tany)/(x — 1), y(0) =37

y' = 1/(6e?¥ — 2x)

2xyy’ + (x — 1)y% = x%®  (Sety? = 2)

REPORT PROJECT. Transformation of ODEs.
We have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical exam-
ples of your choice for each transformation. Show each
step (not just the transformed ODE).

TEAM PROJECT. Riccati Equation. Clairaut
Equation. Singular Solution.

A Riccati equation is of the form

(14) y' + p(y = g()y* + h(x).
A Clairaut equation is of the form

(15) y=x/" +9(")

(@) Apply the transformation y =Y + 1/u to the
Riccati equation (14), where Y is a solution of (14), and
obtain for u the linear ODE u’ + (2Yg — p)u = —g.
Explain the effect of the transformation by writing it
asy=Y+v,v=1/u

Bernoulli Equation. Population Dynamics 35

(b) Show that y=Y =x is a solution of the ODE
y —(@2x3+1)y = —x%2 — x* — x + 1and solve this
Riccati equation, showing the details.

(c) Solve the Clairaut equation y’2 — xy’ +y = 0 as
follows. Differentiate it with respect to x, obtaining
y"(2y’ — x) = 0. Then solve (A) y" =0 and (B)
2y’ — x = Oseparately and substitute the two solutions
(@) and (b) of (A) and (B) into the given ODE. Thus
obtain (a) a general solution (straight lines) and (b) a
parabola for which those lines (a) are tangents (Fig. 6
in Prob. Set 1.1); so (b) is the envelope of (a). Such a
solution (b) that cannot be obtained from a general
solution is called a singular solution.

(d) Show that the Clairaut equation (15) has as
solutions a family of straight lines y = cx + g(c) and
a singular solution determined by g’(s) = —x, where
s =y, that forms the envelope of that family.

31-40 | MODELING. FURTHER APPLICATIONS

3L

32.

33.

34.

35.

Newton’s law of cooling. If the temperature of a cake
is 300°F when it leaves the oven and is 200°F ten
minutes later, when will it be practically equal to the
room temperature of 60°F, say, when will it be 61°F?

Heating and cooling of a building. Heating and
cooling of a building can be modeled by the ODE

T =ky(T—-T) +ko(T—T,) + P,

where T = T(t) is the temperature in the building at
time t, T, the outside temperature, T,, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and k; and
ko are (negative) constants. Solve this ODE, assuming
P = const, T,, = const, and T, varying sinusoidally
over 24 hours, say, T, = A — C cos(27/24)t.Discuss
the effect of each term of the equation on the solution.

Drug injection. Find and solve the model for drug
injection into the bloodstream if, beginning att = 0, a
constant amount A g/min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time t.

Epidemics. A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as t— o and explain
what it means.

Lake Erie. Lake Erie has a water volume of about
450 km3and a flow rate (in and out) of about 175 km?
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per year. If at some instant the lake has pollution y
concentration p = 0.04%, how long, approximately, 2
will it take to decrease it to p/2, assuming that the 18
inflow is much cleaner, say, it has pollution
concentration p/4, and the mixture is uniform (an 1.6
assumption that is only imperfectly true)? First guess. 1al
36. Harvesting renewable resources. Fishing. Suppose 1ok
that the population y(t) of a certain kind of fish is given ’
by the logistic equation (11), and fish are caught at a 1
rate Hy proportional to y. Solve this so-called Schaefer 0.8 | A A
model. Find the equilibrium solutions y; and y, (> 0) 0 2 4 6 8 ¢
when H < A. The expression Y = Hy, is called . . Lo
the equilibrium harvest or sustainable yield corre- Fig. 23. Fish population in Problem 38
sponding to H. Why? o o . )
39. Extinction vs. unlimited growth. If in a population
37. Harvesting. In Prob. 36 find and graph the solution y(t) the death rate is proportional to the population, and
satisfying y(0) = 2 when (for simplicity) A =B =1 the birth rate is proportional to the chance encounters
and H = 0.2.What is the limit? What does it mean? of meeting mates for reproduction, what will the model
What if there were no fishing? be? Without solving, find out what will eventually
38. Intermittent harvesting. In Prob. 36 assume that you happen to a small initial population. To a large one.
fish for 3 years, then fishing is banned for the next Then solve the model.
3 years. Thereafter you start again. And so on. This is 40. Air circulation. Inaroom containing 20,000 ft of air,

1.6 Orthogonal Trajectories.

called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
continued periodically. Find and graph the solution for
the first 9 years, assuming that A=B =1, H = 0.2,
and y(0) = 2.

600 ft3of fresh air flows in per minute, and the mixture
(made practically uniform by circulating fans) is
exhausted at a rate of 600 cubic feet per minute (cfm).
What is the amount of fresh air y(t) at any time if
y(0) = 0? After what time will 90% of the air be fresh?

Optional

An important type of problem in physics or geometry is to find a family of curves that
intersects a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential curves, curves of equal voltage—the ellipses in Fig. 24) and curves of
electric force (the parabolas in Fig. 24).

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. Orthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found using ODEs. In general, if we
consider G(x, y, ¢) = 0 to be a given family of curves in the xy-plane, then each value of
c gives a particular curve. Since c is one parameter, such a family is called a one-
parameter family of curves.

In detail, let us explain this method by a family of ellipses

(1) Ix2+y?=c¢ (c > 0)
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and illustrated in Fig. 24. We assume that this family of ellipses represents electric
equipotential curves between the two black ellipses (equipotential surfaces between two
elliptic cylinders in space, of which Fig. 24 shows a cross-section). We seek the
orthogonal trajectories, the curves of electric force. Equation (1) is a one-parameter family
with parameter c. Each value of ¢ (> 0) corresponds to one of these ellipses.

Step 1. Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter c. Differentiating (1), we have x + 2yy’ = 0.
Hence the ODE of the given curves is

@ Y =t y) = — o

Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space):
Elliptic equipotential curves (equipotential surfaces) and orthogonal
trajectories (parabolas)

Step 2. Find an ODE for the orthogonal trajectories y = y(x). This ODE is

1 2y

i) X

@) y =

with the same f as in (2). Why? Well, a given curve passing through a point (xg, Yo) has
slope (X, Yo) at that point, by (2). The trajectory through (X, Yo) has slope —1/f(Xq, Yo)
by (3). The product of these slopes is —1, as we see. From calculus it is known that this
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at
(X0, Yo)), hence of the curve and its orthogonal trajectory at (Xq, Yo).

Step 3. Solve (3) by separating variables, integrating, and taking exponents:

o

y d _ ~
fy=2—x, Inly] =2Inx + c, y = Cc'x%
y X

This is the family of orthogonal trajectories, the quadratic parabolas along which electrons
or other charged particles (of very small mass) would move in the electric field between
the black ellipses (elliptic cylinders).
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FAMILIES OF CURVES

Represent the given family of curves in the form
G(x, y; ¢) = 0and sketch some of the curves.

1. All ellipses with foci —3 and 3 on the x-axis.

2. All circles with centers on the cubic parabola y = x3
and passing through the origin (0, 0).

3. The catenaries obtained by translating the catenary
y = cosh xin the direction of the straight line y = x.

ORTHOGONAL TRAJECTORIES (OTs)

Sketch or graph some of the given curves. Guess what their
OTs may look like. Find these OTs.

4.y=x%2+c 5.y = cX
6. xy=c 7.y =¢/x?
8.y=Vx+c 9.y=ce_’62

10. x% + (y — ¢)®> = ¢?

APPLICATIONS, EXTENSIONS

11. Electric field. Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders with the z-axis in space be given by
u(x, y) = x2 + y2 = ¢ (these are circular cylinders in
the xyz-space). Using the method in the text, find their
orthogonal trajectories (the curves of electric force).

12. Electricfield. The lines of electric force of two opposite
charges of the same strength at (—1, 0) and (1, 0) are
the circles through (=1, 0)and (1, 0). Show that these
circles are given by x2 + (y — ¢)> = 1 + ¢ Show
that the equipotential lines (which are orthogonal
trajectories of those circles) are the circles given by
(x + c*)2 + §2 = ¢*2 — 1 (dashed in Fig. 25).

13.

14.

15.

16.

PROBLEM SET 1.6

Fig. 25. Electric field in Problem 12

Temperature field. Let the isotherms (curves of
constant temperature) in a body in the upper half-plane
y > 0 be given by 4x2 + 9y% = c. Find the ortho-
gonal trajectories (the curves along which heat will
flow in regions filled with heat-conducting material and
free of heat sources or heat sinks).

Conic sections. Find the conditions under which
the orthogonal trajectories of families of ellipses
x%/a% + y?/b% = c are again conic sections. Illustrate
your result graphically by sketches or by using your
CAS. What happens if a—0? If b—07?

Cauchy-Riemann equations. Show that for a family
u(x, y) = ¢ = const the orthogonal trajectories v(x, y) =
c¢* = const can be obtained from the following
Cauchy-Riemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of e” siny = const. (Here, sub-

scripts denote partial derivatives.)
Uy = Dy, Uy = —Uy

Congruent OTs. Ify’ = f(x) with f independent of v,
show that the curves of the corresponding family are
congruent, and so are their OTs.

1.7 Existence and Uniqueness of Solutions
for Initial Value Problems

The initial value problem

ly'l + Iyl =0,

y(0) =1

has no solution because y = 0 (that is, y(x) = 0 for all x) is the only solution of the ODE.

The initial value problem

2X, y(0) =1
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THEOREM 1

has precisely one solution, namely, y = x2 + 1. The initial value problem

xy' =y -1, y(0) =1
has infinitely many solutions, namely,y = 1 + cx, where c is an arbitrary constant because

y(0) = 1 for all c.
From these examples we see that an initial value problem

D y =fxy),  yXxo =Yo

may have no solution, precisely one solution, or more than one solution. This fact leads
to the following two fundamental questions.

Problem of Existence

Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples, we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of reality.

Existence Theorem

Let the right side f(x, y) of the ODE in the initial value problem
1) y' =fxy),  yXo =Yo
be continuous at all points (x, y) in some rectangle

R: [x — xol < a, ly —vol < b (Fig. 26)
and bounded in R; that is, there is a number K such that
(2 If(x,y)| = K for all (x,y) in R.
Then the initial value problem (1) has at least one solution y(x). This solution exists

at least for all x in the subinterval |x — xo| < «a of the interval |x — xo| < a;
here, « is the smaller of the two numbers a and b/K.
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Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function f(x, y) = x2 + y2 is bounded (with K = 2) in the
square |x| < 1,ly] < 1. The function f(x,y) =tan(x +y) is not bounded for
Ix +y| < 7/2. Explain!)

Uniqueness Theorem

Let f and its partial derivative f, = df/ay be continuous for all (x, y) in the rectangle
R (Fig. 26) and bounded, say,

(3) @ If(xy)l =K, b)) If,xyl=M for all (x,y) in R.
Then the initial value problem (1) has at most one solution y(x). Thus, by Theorem 1,

the problem has precisely one solution. This solution exists at least for all x in that
subinterval |x — Xo| < a.

Understanding These Theorems

These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, y)
is continuous in some region in the xy-plane containing the point (xo, Yo), then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative of/dy of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Read again what you have just read—these are entirely new ideas in our discussion.

Proofs of these theorems are beyond the level of this book (see Ref. [Al1] in App. 1);
however, the following remarks and examples may help you to a good understanding of
the theorems.

Since y' = f(x,y), the condition (2) implies that |y’| = K; that is, the slope of any
solution curve y(x) in R is at least —K and at most K. Hence a solution curve that passes
through the point (X, o) must lie in the colored region in Fig. 27 bounded by the lines
I, and |5 whose slopes are —K and K, respectively. Depending on the form of R, two
different cases may arise. In the first case, shown in Fig. 27a, we have b/K = a and
therefore « = a in the existence theorem, which then asserts that the solution exists for all
X between xo — a and xo + a. In the second case, shown in Fig. 27b, we have b/K < a.
Therefore, « = b/K < a, and all we can conclude from the theorems is that the solution
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EXAMPLE 1

exists for all x between xo — b/K and xo + b/K. For larger or smaller x’s the solution
curve may leave the rectangle R, and since nothing is assumed about f outside R, nothing
can be concluded about the solution for those larger or amaller x’s; that is, for such x’s
the solution may or may not exist—we don’t know.

y y

Yot b -

Yo

Yo—b
yo_b - oa=T<o

?a:a»«a:aej a a

(a) (b)

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with a large base (a long x-interval) will lead to the case in Fig. 27b.

Choice of a Rectangle
Consider the initial value problem

y =1+y? y(0) =0
and take the rectangle R; x| < 5, |y| < 3. Thena =5,b = 3, and

[fx, y)l = 11 +y?| =K = 10,

mfm I=M=6
oy —2WI=M=56
b
= — = . < .
a K 0.3 a

Indeed, the solution of the problem is y = tan x (see Sec. 1.3, Example 1). This solution is discontinuous at
+17/2, and there is no continuous solution valid in the entire interval |x| < 5 from which we started. [ |

The conditions in the two theorems are sufficient conditions rather than necessary ones,
and can be lessened. In particular, by the mean value theorem of differential calculus we
have

of
f(x, y2) — f(x, ¥y = (Y2 =y —
Wly-y

where (X, y;) and (X, yo) are assumed to be in R, and y is a suitable value between y,
and ys. From this and (3b) it follows that

(4) [f(x, y2) — f(x, yDI = Mlya — y4.
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It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.® However, continuity of f(x, y) is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.

EXAMPLE 2 Nonuniqueness

The initial value problem

y'=Vlyl.  y0)=0
has the two solutions
2/4 if x=0
y=0 and * = { XZ/ .
—x“/4 if x <0

although f(x, y) = V/|y| is continuous for all y. The Lipschitz condition (4) is violated in any region that includes
the line y = 0, because for y; = 0 and positive y, we have

[f00y) — foydl Ve 1
ly2 = yal Yo \/)72’

and this can be made as large as we please by choosing ys sufficiently small, whereas (4) requires that the
quotient on the left side of (5) should not exceed a fixed constant M.

PROBLEM SET 1.7

©) (Vs > 0)

1. Linear ODE. If p and r in y' + p(X)y = r(x) are (choosing b optimally) and comparing the result with the
continuous for all x in an interval |x — xo| = a, show actual solution.
that f(x, y) in this ODE satisfies the conditions of our . .
present theorems, so that a corresponding initial value ' .CAS PRO‘]ECT' P'C?rd Iteration. (a)_Show tha‘_[ _by
problem has a unique solution. Do you actually need |nteg_re}t|ng the OD.E in (1) and observing the initial
these theorems for this ODE? condition you obtain
2. Existence? Does the initial value problem X
(x — 2)y" =y, y(2) = 1 have a solution? Does your ©) y) = Yyo + J f(t y()dt.
result contradict our present theorems? 0
3. Vertical strip. If the assumptions of Theorems 1 and This form (6) of (1) suggests Picard’s Iteration Method"
2 are satisfied not merely in a rectangle but in a vertical which is defined by
infinite strip |[x — Xo| < a, in what interval will the X
solution of (1) exist? ) yuX) =yo + J ft,yp-1@®)dt, n=1,2,----
4. Change of initial condition. What happens in Prob. *o
2 if you replace y(2) = 1 with y(2) = k? It gives approximations y, ys, Ys, . . .0f the unknown
5. Length of x-interval. In most cases the solution of an solution y of (1). Indeed, you obtain y; by substituting

initial value problem (1) exists in an x-interval larger than
that guaranteed by the present theorems. Show this fact
for y’ = 2y2, y(1) = 1 by finding the best possible a

Yy = Yo on the right and integrating—this is the first
step—then ys by substituting y = y; on the right and
integrating—this is the second step—and so on. Write

SRUDOLF LIPSCHITZ (1832-1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.
EMILE PICARD (1856-1941). French mathematician, also known for his important contributions to

complex analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems 1 and 2
as well as the convergence of the sequence (7) to the solution of (1). In precomputer times, the iteration was of
little practical value because of the integrations.
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a program of the iteration that gives a printout of the
first approximations Yo, Y1, . - ., ynyas well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

(o) Apply the iteration to y’ = x + y, y(0) = 0. Also
solve the problem exactly.

(c) Apply the iteration to y’ = 2y2 y(0) = 1. Also
solve the problem exactly.

(d) Find all solutions of y’ = 2V/y, y(1) = 0.Which
of them does Picard’s iteration approximate?

(e) Experiment with the conjecture that Picard’s
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
Yo outside the integral as it is). Begin with a simple ODE
and see what happens. When you are reasonably sure,
take a slightly more complicated ODE and give it a try.

1. Explain the basic concepts ordinary and partial
differential equations (ODEs, PDEs), order, general
and particular solutions, initial value problems (I\VVPs).
Give examples.

2. What is a linear ODE? Why is it easier to solve than
a nonlinear ODE?

3. Does every first-order ODE have a solution? A solution
formula? Give examples.

4. What is a direction field? A numeric method for first-
order ODEs?

5. What is an exact ODE? Is f(x)dx + g(y)dy =0
always exact?

6. Explain the idea of an integrating factor. Give two
examples.

7. What other solution methods did we consider in this
chapter?

8. Can an ODE sometimes be solved by several methods?
Give three examples.

9. What does modeling mean? Can a CAS solve a model
given by a first-order ODE? Can a CAS set up a model?

10. Give problems from mechanics, heat conduction, and
population dynamics that can be modeled by first-order
ODEs.

11-16 | DIRECTION FIELD: NUMERIC SOLUTION

Graph a direction field (by a CAS or by hand) and sketch
some solution curves. Solve the ODE exactly and compare.
In Prob. 16 use Euler’s method.

11.y' +2y =0
12,y =1 -y?
13y =y — 4y?
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7. Maximum «. What is the largest possible « in
Example 1 in the text?

8. Lipschitz condition. Show that for a linear ODE
y' + p(X)y = r(x) with continuous p and r in
|x — xo| =a a Lipschitz condition holds. This is
remarkable because it means that for a linear ODE the
continuity of f(x, y) guarantees not only the existence
but also the uniqueness of the solution of an initial
value problem. (Of course, this also follows directly
from (4) in Sec. 1.5.)

9. Common points. Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?

10. Three possible cases. Find all initial conditions such
that (x> — x)y’ = (2x — 1)yhas no solution, precisely
one solution, and more than one solution.

CHAPTER 1T REVIEW QUESTIONS AND PROBLEMS

14. xy' =y + x2
15. y' +y = 1.01 cos 10x

16. Solve y' =y — y2 y(0) = 0.2 by Euler’s method
(10steps, h = 0.1). Solve exactly and compute the error.

GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

17. y' + 2.5y = 1.6x

18. y' — 0.4y = 29sinx

19. 25yy’ — 4x =0

20.y' =ay + by? (a#0)

21. (3xe¥ + 2y)dx + (x2e¥ + x)dy = 0

22-26| INITIAL VALUE PROBLEM (IVP)

Solve the IVP. Indicate the method used. Show the details
of your work.

2.y +4xy =e 2, y0)=-43

23y =V1-y% y0)=1/V2
24.y' +3y=Yy> y(0) =3

25. 3secydx + isecxdy =0, y(0) =0
26. xsinhydy = coshydx, y@B)=0

MODELING, APPLICATIONS

27. Exponential growth. If the growth rate of a culture
of bacteria is proportional to the number of bacteria
present and after 1 day is 1.25 times the original
number, within what interval of time will the number
of bacteria (a) double, (b) triple?
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28. Mixing problem. The tank in Fig. 28 contains 80 Ib 29, Half-life. If in a reactor, uranium 234U loses 10% of
of salt dissolved in 500 gal of water. The inflow per its weight within one day, what is its half-life? How
minute is 20 Ib of salt dissolved in 20 gal of water. The long would it take for 99% of the original amount to
outflow is 20 gal/min of the uniform mixture. Find the disappear?
time when the salt content y(t) in the tank reaches 95% 30. Newton’s law of cooling. A metal bar whose

of its limiting value (as t — ).

temperature is 20°C is placed in boiling water. How

long does it take to heat the bar to practically 100°C,
say, t0 99.9°C if the temperature of the bar after 1 min
of heating is 51.5°C?First guess, then calculate.

. % o
-
?/ e

Fig. 28. Tank in Problem 28

SUMMARY OF CHAPTER 1

First-Order ODEs

This chapter concerns ordinary differential equations (ODES) of first order and
their applications. These are equations of the form

) F(x,y,y') =0  orinexplicit form y" =f(x,y)

involving the derivative y’ = dy/dx of an unknown function y, given functions of
X, and, perhaps, y itself. If the independent variable x is time, we denote it by t.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

A first-order ODE usually has a general solution, that is, a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of ¢ from an initial condition y(Xo) = Yo.
Together with the ODE this is called an initial value problem
) y' =f(xy), yXo)=Yo (X0, Yogiven numbers)
and its solution is a particular solution of the ODE. Geometrically, a general
solution represents a family of curves, which can be graphed by using direction
fields (Sec. 1.2). And each particular solution corresponds to one of these curves.

A separable ODE is one that we can put into the form

(3) g(y) dy = f(x) dx (Sec. 1.3)
by algebraic manipulations (possibly combined with transformations, such as

y/x = u) and solve by integrating on both sides.
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An exact ODE is of the form
4) M(x, y) dx + N(x,y)dy =0 (Sec. 1.4)
where M dx + N dy is the differential
du = ug,dx + u, dy

of a function u(x, y), so that from du = 0 we immediately get the implicit general

solution u(x, y) = c. This method extends to nonexact ODEs that can be made exact

by multiplying them by some function F(x, y,), called an integrating factor (Sec. 1.4).
Linear ODEs

®) y' + p(y = r(x)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

y' 4 px)y = g(x)y* (Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard’s existence and uniqueness theorems are explained in Sec. 1.7 (and
Picard’s iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.




CHAPTER 2

Second-Order Linear ODEs

Many important applications in mechanical and electrical engineering, as shown in Secs.
2.4,2.8, and 2.9, are modeled by linear ordinary differential equations (linear ODES) of the
second order. Their theory is representative of all linear ODEs as is seen when compared
to linear ODEs of third and higher order, respectively. However, the solution formulas for
second-order linear ODEs are simpler than those of higher order, so it is a natural progression
to study ODEs of second order first in this chapter and then of higher order in Chap. 3.

Although ordinary differential equations (ODES) can be grouped into linear and nonlinear
ODEs, nonlinear ODEs are difficult to solve in contrast to linear ODEs for which many
beautiful standard methods exist.

Chapter 2 includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

For those interested in solution methods for Legendre’s, Bessel’s, and the hypergeometric
equations consult Chap. 5 and for Sturm-Liouville problems Chap. 11.

COMMENT. Numerics for second-order ODESs can be studied immediately after this
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19-21.

Prerequisite: Chap. 1, in particular, Sec. 1.5.
Sections that may be omitted in a shorter course: 2.3, 2.9, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

2.1 Homogeneous Linear ODEs of Second Order
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We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

1) y" +pX)y + ax)y = r(x)

and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is linear in y and its derivatives, whereas
the functions p, g, and r on the right may be any given functions of x. If the equation
begins with, say, f(x)y”, then divide by f(x) to have the standard form (1) with y” as the
first term.
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EXAMPLE 1

The definitions of homogeneous and nonhomogenous second-order linear ODEs are
very similar to those of first-order ODEs discussed in Sec. 1.5. Indeed, if r(x) = 0 (that
is, r(x) = 0 for all x considered; read “r(x) is identically zero™), then (1) reduces to

) y" + pX)y + a(x)y =0

and is called homogeneous. If r(x) # 0, then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.
An example of a nonhomogeneous linear ODE is

y” + 25y = e~ cos X,

and a homogeneous linear ODE is
xy" +y" +xy=0,  written instandard form  y” + %y' +y=0.

Finally, an example of a nonlinear ODE is
y'y +y?=0.

The functions p and q in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

y = h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval |
if h is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by h, the derivative y' by h’, and the
second derivative y” by h”. Examples are given below.

Homogeneous Linear ODEs: Superposition Principle

Sections 2.1-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linear ODEs.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

Homogeneous Linear ODEs: Superposition of Solutions
The functions y = cos x and y = sin x are solutions of the homogeneous linear ODE

y'+y=0
for all x. We verify this by differentiation and substitution. We obtain (cos x)” = —cos x; hence

y" +y=(cosx)” + cosx = —cosx + cosx = 0.
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PROOF

EXAMPLE 2

EXAMPLE 3

CHAP. 2 Second-Order Linear ODEs

Similarly for y = sin x (verify!). We can go an important step further. We multiply cos x by any constant, for
instance, 4.7, and sin x by, say, —2, and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

(4.7cosx — 2sinx)” + (4.7cosx — 2sinx) = —47cosx + 2sinx + 47cosx —2sinx =0. M
In this example we have obtained from y; (= cos x) and ys (= sin x) a function of the form
3) Yy = C1Y1 + CaYs (cq, co arbitrary constants).
This is called a linear combination of y; and y». In terms of this concept we can now

formulate the result suggested by our example, often called the superposition principle
or linearity principle.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval | is again a solution of (2) on I. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

Let y; and y5 be solutions of (2) on I. Then by substituting y = c;y; + C3yo and
its derivatives into (2), and using the familiar rule (c;y; + Cay2)' = C1yi + CoVa, €tC.,
we get

y" +py’ +ay = (C1y1 + Ca¥2)” + p(C1y1 + Caya)’ + A(C1y1 + CaYo)

C1y1 + C2Ya + P(C1y1 + Cays) + q(C1y1 + CaYa)

ci(y? + pyr + ay1) + ca(ys + py2 + ays) = 0,

since in the last line, (---) = 0 because y; and y» are solutions, by assumption. This shows
that y is a solution of (2) on I. |

CAUTION! Don’t forget that this highly important theorem holds for homogeneous
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as
the following two examples illustrate.

A Nonhomogeneous Linear ODE

Verify by substitution that the functionsy = 1 + cosxandy = 1 + sin x are solutions of the nonhomogeneous
linear ODE

y' +y=1

but their sum is not a solution. Neither is, for instance, 2(1 + cos x) or 5(1 + sin x). [ |

A Nonlinear ODE

Verify by substitution that the functions y = x2 and y = 1 are solutions of the nonlinear ODE
y'y —xy' =0,

but their sum is not a solution. Neither is —x2, so you cannot even multiply by —1! |
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Initial Value Problem. Basis. General Solution

Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition y(xo) = Yo. The initial condition is used to determine the
arbitrary constant c in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solution of the
ODE. These ideas extend to second-order ODEs as follows.

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

(4) Y(Xo) = Ko, y'(Xo) = Ki.

These conditions prescribe given values Kq and K of the solution and its first derivative
(the slope of its curve) at the same given X = Xq in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants ¢; and cs in a
general solution

(5) Yy = C1Y1 T CaY2

of the ODE; here, y; and ys, are suitable solutions of the ODE, with “suitable” to be
explained after the next example. This results in a unique solution, passing through the
point (xq, Ko) with K; as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

Initial Value Problem
Solve the initial value problem
y"+y=0 y0) =30 y'(0)=-05

Solution. Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example 1),
and we take

y = €1 COS X + CySinX.

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative y’ = —c; sin x + ¢y cos x. From this and the
initial values we obtain, since cos0 = 1 and sin 0 = 0,

Fig. 29.

y0)=¢; =30 and y'(0) =cy = —05.
This gives as the solution of our initial value problem the particular solution

y = 3.0cos x — 0.5sin x.

Particular solution

and initial tangent in Figure 29 shows that at x = 0 it has the value 3.0 and the slope —0.5, so that its tangent intersects

Example 4

the x-axis atx = 3.0/0.5 = 6.0 . (The scales on the axes differ!) [ |
Observation. Our choice of y; and ys was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutionsy; = cos x andys = k cos x,
so that y;/ys = 1/k = const. Then we can write y = ¢c1y; + CaYs in the form

Yy = €1 COS X + Co(k cos xX) = C cos x where C =c¢; + ook
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Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval 1 is a solution (5) in which
y1 and y» are solutions of (2) on | that are not proportional, and c¢; and ¢, are arbitrary
constants. These yp, Yo are called a basis (or a fundamental system) of solutions
of (2) on I.

A particular solution of (2) on | is obtained if we assign specific values to ¢;
and ¢, in (5).

For the definition of an interval see Sec. 1.1. Furthermore, as usual, y; and y5 are called
proportional on I if for all x on I,

(6) (@ y1=kys or () y2=1ly;

where k and | are numbers, zero or not. (Note that (a) implies (b) if and only if k # 0).

Actually, we can reformulate our definition of a basis by using a concept of general
importance. Namely, two functions y; and ys are called linearly independent on an
interval | where they are defined if

(M) kqyi(x) + kays(x) =0 everywhere on | implies ki = 0and ks = 0.
And y; and ys are called linearly dependent on 1 if (7) also holds for some constants k1,

ko not both zero. Then, if kq # 0 or ke # 0, we can divide and see that y; and ys are
proportional,

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

Basis (Reformulated)

A basis of solutions of (2) on an open interval | is a pair of linearly independent
solutions of (2) on I.

If the coefficients p and g of (2) are continuous on some open interval I, then (2) has a
general solution. It yields the unique solution of any initial value problem (2), (4). It
includes all solutions of (2) on I; hence (2) has no singular solutions (solutions not
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown
in Sec. 2.6.
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EXAMPLE 5

EXAMPLE 6

EXAMPLE 7

Basis, General Solution, Particular Solution

cos x and sinx in Example 4 form a basis of solutions of the ODE y” +y = 0 for all x because their
quotient is cot x # const (or tan x # const). Hence y = ¢; cos X + Cy sin X is a general solution. The solution
y = 3.0 cos x — 0.5 sin x of the initial value problem is a particular solution. [ |

Basis, General Solution, Particular Solution

Verify by substitution that y; = e* and y, = e~ are solutions of the ODE y” — y = 0. Then solve the initial
value problem

"

y"—y=0, y0)=6 y'(0) =-2

Solution. (%" — e*=0 and (7%)" — e~ = 0 show that e* and e™® are solutions. They are not
proportional, e¥/e~* = e2* # const. Hence &%, e =™ form a basis for all x. We now write down the corresponding
general solution and its derivative and equate their values at 0 to the given initial conditions,

X

y = c1e¥ + coe”, y' = ce” — e, y(0) =¢; + cy = 6, y'(0)=c¢ —c =—2.

By addition and subtraction, c; = 2, ¢, = 4, so that the answer isy = 2e” + 4e~7. This is the particular solution
satisfying the two initial conditions. [ |

Find a Basis if One Solution Is Known.
Reduction of Order

It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order.! We first show how this method works
in an example and then in general.

Reduction of Order if a Solution Is Known. Basis
Find a basis of solutions of the ODE
xZ2-=xy” —xy' +y=0.

Solution. Inspection shows that y; = x is a solution because y; = 1 and y} = 0, so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

y=uy;=ux, Yy =ux+u y' =u'x+2
into the ODE. This gives
(X2 = x)u"x + 2u’) — x(u'x + u) + ux = 0.
ux and —xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,
xZ—xu"x+2u)-x=' =0,  (xZ-xu” + (x—-2u =0.

This ODE is of first orderinv = u’, namely, (x — x)v’ + (x — 2)v = 0. Separation of variables and integration
gives

[x
= = X =
x2 —x

,1|
5

dv X—2 ( 1 2
X

— — |dx, In =In|x =1 = 2In|x| =In
-9 ol = In b~ 11— 21n

ICredited to the great mathematician JOSEPH LOUIS LAGRANGE (1736-1813), who was born in Turin,
of French extraction, got his first professorship when he was 19 (at the Military Academy of Turin), became
director of the mathematical section of the Berlin Academy in 1766, and moved to Paris in 1787. His important
major work was in the calculus of variations, celestial mechanics, general mechanics (Mécanique analytique,
Paris, 1788), differential equations, approximation theory, algebra, and number theory.
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We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

x—1 1
V=" :;_

1
X 2

X

1
u=Jvdx=In|x|+;, hence  y,=ux=xIn|[x| + 1

Since y; = xandy, = x In [x| + 1 are linearly independent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x. [ |

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]
y" + px)y’ + a(y = 0.

Note that we now take the ODE in standard form, with y”, not f(x)y”—this is essential
in applying our subsequent formulas. We assume a solution y; of (2), on an open interval
I, to be known and want to find a basis. For this we need a second linearly independent
solution ys of (2) on I. To get y,, we substitute

y=va=uy1, Y =ya=uyr+uy, Y =yz =u'y; + 20’y +uyT
into (2). This gives
G) u”y; + 2u'y; + uy1 + p(u'ys + uyr) + quy; = 0.
Collecting terms in u”, u’, and u, we have
u”yy + u'(2y1 + py1) + Ui + py1 + aya) = 0.
Now comes the main point. Since y; is a solution of (2), the expression in the last
parentheses is zero. Hence u is gone, and we are left with an ODE in u’ and u”. We divide

this remaining ODE by y; and setu’ = U, u” = U/,

U" + U’ zyi + PYy1

_ v (21 _
Vi =0, thus U +|—-—+pJUu=0.

Y1

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

2 !
au _ —<yl + p)dx and InjUl = —=21Inly;| — dex.
U Y1

By taking exponents we finally obtain

©) U= eird
Y1

Here U = u’, so that u = [U dx. Hence the desired second solution is

Yo = yiU = Y1JU dx.

The quotient yo/y; = u = [U dx cannot be constant (since U > 0), so that y; and y, form
a basis of solutions.
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REDUCTION OF ORDER is important because it
gives a simpler ODE. A general second-order ODE
F(x,y,y',y") =0, linear or not, can be reduced to first
order if y does not occur explicitly (Prob. 1) or if x does not
occur explicitly (Prob. 2) or if the ODE is homogeneous
linear and we know a solution (see the text).

1. Reduction. Show that F(x,y,y") =0 can be
reduced to first order in z = y" (from which y follows
by integration). Give two examples of your own.

2. Reduction. Show that F(y,y,y”) =0 can be
reduced to a first-order ODE with y as the independent
variable and y” = (dz/dy)z, where z = y"; derive this
by the chain rule. Give two examples.

REDUCTION OF ORDER
Reduce to first order and solve, showing each step in detail.

3. y" + y/ -0
4 2xy” _ 3y/

5. yyl/ — 3y/2

6. xy" +2y' +xy=0, y; = (cosx)/x
7.y +y3siny=0

8.y =1+y?2

9. x%y" —5xy' +9y =0, y; =x>

0. y" + @+ 1y)y'2=0

APPLICATIONS OF REDUCIBLE ODEs

11. Curve. Find the curve through the origin in the
xy-plane which satisfies y” = 2y’ and whose tangent
at the origin has slope 1.

12. Hanging cable. It can be shown that the curve y(x)
of an inextensible flexible homogeneous cable hanging
between two fixed points is obtained by solving

PROBLEM SET 2.1

y" = kV1 + y'2 where the constant k depends on the
weight. This curve is called catenary (from Latin
catena = the chain). Find and graph y(x), assuming that
k = 1 and those fixed points are (=1, 0) and (1, 0) in
a vertical xy-plane.

13. Motion. If, in the motion of a small body on a
straight line, the sum of velocity and acceleration equals
a positive constant, how will the distance y(t) depend
on the initial velocity and position?

14. Motion. In a straight-line motion, let the velocity be
the reciprocal of the acceleration. Find the distance y(t)
for arbitrary initial position and velocity.

GENERAL SOLUTION. INITIAL VALUE
PROBLEM (IVP)
(More in the next set.) (a) Verify that the given functions
are linearly independent and form a basis of solutions of
the given ODE. (b) Solve the IVP. Graph or sketch the
solution.
15. 4y" + 25y =0, y(0) =3.0, y'(0) = —25,

cos 2.5x, sin 2.5x
16. y" + 0.6y’ + 0.09y = 0, y(0) = 2.2, y'(0) = 0.14,

e—0.3x Xe—O.Sx

17. &x%" —3y =0, y@1) = -3, y'(1) =0,
X3/2, x—1/2

18. x%y" —xy’ +y =0, y(1) =43, y'(1)=05,
X, X In x

19. y" + 2y’ +2y =0, y(0) =0, y'(0) =15,
e *cosx, e "sinx

20. CAS PROJECT. Linear Independence. Write a
program for testing linear independence and depen-
dence. Try it out on some of the problems in this and
the next problem set and on examples of your own.

2.2 Homogeneous Linear ODEs
with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coefficients a and

b are constant,

@)

y" +ay’ + by =0.

These equations have important applications in mechanical and electrical vibrations, as
we shall see in Secs. 2.4, 2.8, and 2.9.
To solve (1), we recall from Sec. 1.5 that the solution of the first-order linear ODE with

a constant coefficient k

y +ky=0
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is an exponential function y = ce™"*. This gives us the idea to try as a solution of (1) the
function

(2) y = e
Substituting (2) and its derivatives
y' =2 and y" =A%
into our equation (1), we obtain
(A% + ax + b)e™ = 0.
Hence if A is a solution of the important characteristic equation (or auxiliary equation)

(3) M +ar+b=0

then the exponential function (2) is a solution of the ODE (1). Now from algebra we recall
that the roots of this quadratic equation (3) are

@ n=ica+ VaZ—ap),  a=i(-a- VaZ- ).
(3) and (4) will be basic because our derivation shows that the functions
) yp=e" and  y, =e™

are solutions of (1). Verify this by substituting (5) into (1).

From algebra we further know that the quadratic equation (3) may have three kinds of
roots, depending on the sign of the discriminant a2 — 4b, namely,

(Case 1)  Two real roots if a2 — 4b > 0,
(Case 1) A real double root if a2 — 4b = 0,
(Case I11) Complex conjugate roots if a> — 4b < 0.

Case |. Two Distinct Real-Roots A; and A,

In this case, a basis of solutions of (1) on any interval is
yp=eM"  and  y, = et

because y; and y, are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) y = &M% + coe,
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EXAMPLE 1