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Preface

This software package is developed by Shangping Guo independently during his stay in
Department of Electrical & Computer Engineering at Old Dominion University. Thisis a
part of his PhD dissertation work. Y ou can use the software fredly, but you have to keep
those author informations.

This manual is based on my implementation of PWM (Plane wave method) using matlab.
| am not going to list al source files here, they are pretty short and can be easily modified
for your own purpose if you know a little bit knowledge about matlab programming. |
show how | deal with the 1D, 2D and 3D cases, so you can deal with other problems in
any dimensions. Y ou can download this pdf file and related source file from my personal
homepage: http://www.lions.odu.edu/~sgquox002

1. Theory of PWM

Considering electromagnetic wave in materials with:

a.  Sourcefreespace: r(r)=0,3(r)=0,

b. Lossless medium: e(r) isreal in our interested region

c. Linear and time-invariant: we can use plane wave theory or Fourier theory
d.  Magnetic uniform: rT(r) = congt.

The full macroscopic Maxwell’ s equations can be described below:

N-D(r,t)=r(r,t)

|
]
TR F() =10, 56 ) ®
|
l

| It
In general, E and H are complicated functions of time and space, using the trick of using
complex valued field for mathematical convenience, remembering to take the real part to
obtain the physical fields.
Assuming we impose a field oscillating sinusoidally with time, i.e., we can write the
mode as:
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Using D(r)=eqe(r)E(r),B(r)=mH(r) and o ® W )

., o . = ©)
N~ H(r) = jweoe(r)E(r)
f R E()=- wmHA()
N- H =N- D=0 means 1) there is no charge or current source. 2). H and D are
built up of transverse plane waves, i.e., each of the plane wave is perpendicular to
itsk-vector,i.e. K- H =0 and k- D=0, but E is not necessarily transverse. We
need to force this transversality to satisfy these two equations.
D and H field continues everywhere. E is not necessarily continuous.
Electromagnetic field is essentiadly vectoriad and the vector nature is very
important for us to obtain the correct results.
For H, we get the next eigen value equation:

o001 . - W -
N ——N" H(r)=—H 4
) HE)=5HE) 2
For E, we get the next eigen value equation:
N R E(r)=—e(r)E(r) (5)

C
For D, we get the following eigen value equation:

“oe, 1 W2 -
N N° —DI(r)=—DlIr 6
o) (r)=—0(r) (6)
For e(r) is a highly discontinuous function, and E will be also discontinuous, so E is not
proper for calculation. H and D are convenient for calculations. Once one is solved, the
other one can be obtained by the following relation:
_ 1 -
E(r)=——=N"H(r) @

jwee(r)

- 1 .~ -
H = N E 8
(r) e (r) ©)

It can be seen, for E is discontinuous, it is much more convenient to use H to get E,
instead of using E to get H. So we use the H eigen equation (4) and (7) to solve this
problem.

According to J D Joannopoulos, (4) has some important features, and more important, it
holds for general condition, requiring only real dielectric function:

1. The operator X =N~ 1R isalinear operator, if H; is amode and H, is also a
e

mode, then Hy+H; is also a mode.
2. The operator isan Hermitian operator, i.e., (f,Xg) = (Xf,g)

2/32
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3. The operator must have real eigen values only if the dielectric function is positive
everywhere. This gives the theory support that our algorithm will get rea eigen
values.

4. Any two different modes will be orthogond, i.e., (Hi,Hj):dij. Degenerate
modes are not necessary orthogonal. This is also a way to determine if a mode is
the same as other mode. Degenerate modes are generally caused by system
Symmetry.

1 1 2 1 2

5. Modeenergy: E, =— ¢ D(r)°dr and E, =— r)-dr

y: Ep 8|Oo(Ir)l()l ' aoCbH()I

6. Symmetry property in crystal. Symmetry operator commutes with the magnetic
operator and means that mode and mode operated by symmetry operation will be
the same.

7. Scaling properties, those properties can be extended to any frequency region.
Note here we assume the dielectric constants of these materials in these regions
are constants. This is valid for most optical materials in the visible and infrared

region.

2. Periodic dielectric function

So far, nothing is related with the periodic property. In periodic structure, according to

Bloch theorem, a plane wave in a periodic structure will be modulated by the periodicity.

So, the complex-valued magnetic field H can be expressed as:
H(r) = e*h(r)e,

n(r) =hir +R)
where R is an arbitrary lattice vector, € is an unit vectors perpendicular to the vector k

and paralel to the H vector. We use the description of semiconductor crystal in solid-
state physics here.
Any periodic function can be expanded using Fourier series, soisfor e and h:

©)

e(r)=4 e(éi )e‘G* (10)
1 _ 2 | 1~ LG
Al % e (Gi)e (11)
and h(r)=§ h(G )e®" (12)
G
o, |:| (r) = é'k(:"”af é. h(Gi )eié"F = é. h(Gi 3y )ei(hé).r: k+G; (13)
G G|

In (13), the transverse property is used to decompose the wave into sum of a set of plane
waves, which is the heart of this method. € .. is the unit vector perpendicular to k+G

and h(éi,l ) is the component amplitude along the unit vector. K +G, &,.c, & .c
forms a Cartesian triad. G; is the frequency component, | represents the two axes in the
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perpendicular plane and € is the unit vector along the axis. All the G; forms the
reciprocal lattice. All the R forms the crystal lattice:

R =18 +1,a,+1,a, (14)
l1, I2, I3 are any integers, &,,d,,8, are caled the primitive lattice vectors to describe the
|attice.

G, =hb, +h,b, +h;b, (15)
where Bl,Bz,Qare called the primitive reciprocal lattice vectors and hy, hp, hs are any
integers.

The two sets of base vectors are orthogonal to each other, and they are related by:
bi . éj = Zpdij (16)
- P PP
== b, =— b, =— 17
Vazaebz Vasaibs, Vaiaz 17)

=

WhereV isthevolume, V =4, - d,” &,
Therelation for 2D and 1D can be simplified using the above expressions.
For 2D problems, & =¢&and can be omitted from the above equations.

a1:(><1,yl),a”2:(x2,y2), the reciprocal base vector can be expressed as:
2p

=2y, )5, =2 (- %), Aisthearea A=|a” 3.
For 1D problems, &, =8,,8,=§6,, & =ag,,and b = Eé
Substitute (13) and (11) into eigen equation (4):
S~ - = 2 e =
& oG R R &, ekele =2 &1l . a9
G Gl ’ C g,
Movethe N” operator into the sum:
N g et(B R a NG, R elele =Y A nG, 1 e )
G G ’ C g,
Since N”uA=Ru” A+uN” A (20)

And the second item for r-independent vector is zero:

N'ée @ ke ahG,,I Rekel & =2 gn,.1 )0 . @

C G
Since Ne* ™ =ike*" (22)
) N . 2 o
N etG e anG. ke)ik+6) & . =& NG e e,
G G| C g,
(23)
) o ~ 2 -
N8 &eBgsnc. eta)ik+6) & . =2-anc.1ekele
Gl Go C G
(24)
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Movethe N~ operator into the sum again:

2 S,
8 & hG,. e GR [eFetikea) & |- & . eFele
Gl G¢ C g, ’
(29)
Write G, + G¢® G¢, then
& & ne)e (6o o fFik+c) e, J= L &)t
Gl Gt G ' C G, '
(26)

2 Lo
aa hG.k (G¢ G )9 k+qﬁ)r k+G© [ él R+G]:W_2§. h(G .| )ei(“Gi)'ré% k4G
Gi,| G¢ G, ' Cc G '

(27)

Use the transverse property, the above equation can be written as:
& 8 &nel ke o bt fkec) &, ) krcd=" g nc 1 b,
G.IGeG, I¢ ' C” G '
(28)
l(IZ +G ) § ,miJ’ (‘ZJ’G@:{K‘Z +G ) & .k+GJ' [(E‘Léi(g' é,k+G¢J}é keae  (29)
After equating the items of the right hand side and left hand side, the final equation is
listed below:

alkrc) e [krod ekc-chlon )= “hGl) @

wherel (= 1,2 , and G isany reciprocal lattice vector.
The equivalent form of (30) is:

o 4 66,68 - &efehtl_w? énu
k+Glk +G G-GOa - ¢ 31
afk+clk+Cf ( G)S- 68 Gat el < &l D

Thisisastandard eigen value problem, which can be implemented by numerical method.
However, we cannot use infinite number of G vectors and we can only use finite number
of them. This is smilar to the truncation of high frequency components in signd
processing, if the number of frequencies is large enough, we can approach the true signal
very well. Here, we also use finite number of G vectors, corresponding to those lower
gpatial frequencies.

For N G vectors (or N grid points in the reciprocal space are included), this is an 2N
eguations with 2N unknown. In matrix form, the coefficient matrix dimension will be 2N
by 2N.

The matrix form is too large to fit here, just pick the ith equation. Assuming we have
chosen N G vectors and named them as G,,G, ---G, -Gy, :
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ko) oG- [k+6) G G- anle)s
[(k+Gi), el(Gi)]' [(k"'Gz)’ el(Gz)]ehl(Gi - Gz)hl(Gz)+

k+G) 66 [k+Gy)’ Gk G - GG )+

k+6) 66 [k+6.) e G - 6.+ @)
[(k+Gi), el(Gi)]' [

et

[k+6) &) [k+6.) e(6)k*G - 6, (6.)=%n()

[k+G) e(G)] [k+c) e )G - 6)n(G)+

[(k+Gi ) ez(Gi)]' [(k"'Gz)’ el(Gz)]ehl(Gi B Gz)hl(G2)+

[k+G) &(G)]-[(k+G,) &Gy )G - Gy )Gy )+

(k+c) &G [k+G) &G )e (G - G)n(G)+ 33
[(k+Gi), ez(Gi)]' [(k"'Gz)’ ez(Gz)e (G Gz)hz(Gz)+

et
2
[k+6) e [k+G.) a6l (6 - G n(e,)=h(G)
In matrix form [M][H]:L [H], it would be:
gmn ULPEEAA ULPIY Lehl( ) u ?hl(Gl) u
g1 My o U ué . 3 g 5 3
e : - P Uéh (GN )l:I w? € N(GN)O
e . 0é j=— & ( (34
é - vé (Gl)g ng 2(61)3
e : .o e a0 & o
e e u @ v
gMny Moy o0 o M,y 2n BN, (GN )Q eh, (GN )Q

So far, the problem is solved from general meaning, but there is still a way from
implementing it on computer, also, there can be great simplification for some special
case.

Here is the general step according to above derivation:

given ak point to solve the associating frequency w.

Find the reciprocal lattice and choose the reciprocal vector G set.

Find each of the Fourier transform coefficient e *(G - G9
Find the K +G and the two unit vector sets.

Form the matrix M.
Calculate the eigen value.

Sk WNE
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3. Forming the band structure

k-w relation for periodic structure is called the band structure. In periodic structure,
according to Bloch's theorem, the relation is also periodic, so it should be enough to only
calculate only those k-points in the so-called first Brillouin zone. All other k’'s outside the
1BZ are the same mode asak in 1BZ.

Using the symmetry properties, we only need to calculate k-w relation in a zone with no
symmetry property called irreducible Brillouin zone IBZ.

In the IBZ zone, we give a k point, and will get a series of eigen values, i.e.,, a set of w
points. Continuously changing the k points, we'll get continuously changed w points for
the same band. So usually, we only calculate those points on the IBZ edge, the boundary
value, since those other frequencies for those k-points inside the IBZ will fal inside the
band region.

4. Numerical considerations

Fourier transform and eigen solver are the two fundamental problems to solve. To
understand better about them helps alot in doing numerical analysis.

Fourier transform of the dielectric function:

The dielectric function can be 1D, 2D or 3D. Some points are very important:

1. When Fourier transform is performed, selection of the integration region is
important, i.e., how to select unit cell will affect Fourier transform. Generally, if it
has some symmetry properties, like inversion symmetry, the Fourier transform
will be pure redl.

2. If inversion symmetry cannot be satisfied, Fourier transform would be complex.

3. The rearranged FT matrix e *(G - G9 should be a symmetric matrix. If FT is
pure real, then it isareal symmetric matrix, else it is a complex symmetric matrix.

4. The find form [M][H]=L [H], whether [M] is symmetric or not, the eigen vaue
should be real, but the eigen vector will not necessarily to be real.

5. The fina field, from experiment, only take the real part is proven to be not
enough. There is a random phase for the real and imaginary part. | found away to
fix this phase.

Implementation details

See the paper: A simple plane wave implementation method for photonic crystal
calculations, Shangping Guo, Sarcharia Albin. In this paper, the stability and
mathematics behind the implementation is discussed.

5. Examples and source code samples

One-dimensional problems
Typica problem: Multilayer system, including the FBG case.

7132
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Normal incidence:
K and G have only two directions +x and -, and &,,&, can be constantly set to: 21 ::Z
and the eigen equation can be simplified to aN by N equation group: 2
& lk+al +Gle (G - Goh(Ge)= Vg—:h(é) (35)
G

Inthiscase, D and H arein the y-z plane and TE and TM are the same.
Here is the source file in d:\pbg\1d\photold3.m

%086 this programis designed for solving the one-dinensional photonic structure
%WBofor 1D nultilayer structure using data in book, it get correct results.
%86 Phot oni ¢ crystals, J D Joannopol ous 1995, p42

cl ear

war ni ng of f

epsa=13;

epsb=1;

a=1.0;

R=0. 2* a;

al=a,

b1=2*pi/ a;

9%n=i nput (' pl ease input n: ");

n=24;

Number of PWE( 2* n+1) ;

count =1,
G=(-n:n).*bl,;
r=(-n:n);

N=2* Nurrber of PWHL;

m=f | oor (N*R/ a) +1;

%8t his is very inportant to expand the epsilon function like this
%®even expansion, so that the imag part is zero

epsl=[ epsb*ones((N-m /2, 1); epsa*ones(m 1); epsb*ones((N-m/2,1)];
eps20=(fftshift(fft(epsl)./N));

%MNow we get the FFT matrix for the dielectric function.
%M need to get the E(GG) natrix
%4 his matrix include the frequency all we need

for x=1: Nunber of PW
for y=x:Nunmber of PW
b=r (x)-r(y)+(2*n+1) +1;
eps2( x, y) =eps20(b);
eps2(y, x) =eps2( x,y);
end
end

kO=-pi /a: 2*pi/al/ 30: pi / a;
eps2=i nv(eps2);
counter =1,

for ii=1:1ength(k0),
k=kO(ii);
Meabs((k+G ) *(k+Q)) . *(eps2);
E=sort (abs(eig(M));
freq(:,counter)=sqgrt(abs(E(1:10))).*a./2./pi;
di splay(sprintf('calculation of k=% is finished, 6 k));
count er =count er +1;
end
t npx=1: | engt h(kO0) ;
plot(tmpx,freq,'linew dth', 2)
title('Band structure of a 1D square photonic band structure')
x| abel (' wave vector')
yl abel (" wa/ 2\ pic')
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grid on
axis([1 31 0 1])

The calculation is pretty fast and is done in just one minute. The fina results are in the
a,

following graph, note the frequency is normalized according to % or equally I

Band structure of a 1D square photonic band structure

1

a 10 15 20 25 30
wave vector

Figurel: Band structurefor a 1D multilayer system

The comments in the program should help the understanding, since the program is pretty
short. Here is some more brief explanation of the program:

epsa is the dielectric constants for the atom;

epsb is the dielectric constants for the background material;

aisthe actual period of the PBG material;

Ris the width of the atom in a period;

N is the number of gridsin the reciprocal space aong the +x direction (the same number
isused for —x direction);

G isthe grid vectors in the reciproca space;

epsl is the matrix containing the dielectric function in one period in the real space;
eps20 is the Fourier transformed matrix of epsl,;

eps2 is the matrix e (G - G9.

Note in the step to obtain e *(G - G9 from the FT matrix, | used asmall trick. The FFT

matrix contains all the frequency components for e'l(G - G(I) and | just picked them all
out.

The [M] matrix formation is alittle bit trick in MATLAB. The .* operation is very useful,
and the details are not discussed here. But the expression correctly formed the matrix, the
fina results proves this.

Non-nor mal incidence:

k has y-z component, the problem is like a 2D problem, the TE and TM is different.
Conventionally, it is called s and p polarization.
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This can be used to anayze the FBG and TFBG, note that FBG is a kind of photonic
crystal in x direction and light is bound by TIR in the transverse direction. We can get
some hints from FBG. TFBG corresponds to the non-normal incidence PBG case.

Some other important 1D cases are very important, like the air-bridge case. This can be
done by atwo dimensional program.

| am not going to list the source file here, you can download these files from my website
or just modify the 2D TM/TE program for off-plane applications.

Band structure for off-plane propagation for TE: d:\pbg\1d\offplaneldte.m

Band structure for off-plane propagation for TM: d:\pbg\1ld\offplaneldtm.m

Chigrin’s 1D omni-reflection structure simulation: d:\pbg\ld\gapkyte.m,
d:\pbg\1d\gapkytm.m, see IEEE Journal of lightwave technology, Nov. 1999.

Two-dimensional problems

| n-plane propagation:
K and G are in the same x-y plane, so K+G is aso in x-y plane, and one of the unit
vectors can be constantly set to: &,,,; =z, the other unit vector €, ,,; is dso in the x-y
plane. This also leads some important simplifications:
é ={cosq,snq,0),&, =(0,01), then:
cesp e 4 0 U
& 22 L 2ta=
& &8¢ &y & coda-ady
i.e., the 2N by 2N equation group is decoupled into two equation groups: the TE and TM.
One group only contains H componentsalong €, , no componentsaong €, =2, and o is

called TM wave. The other group only contains H component dlong €, =2, and E has no
component along z, so is caled TE wave.

(36)

™: & [f+ Gl 6 (6- 6dn(cd="5ne) (37)
G¢
TE: 3 [+ -Gt (e- S ath, (69="2 1, ) (39)
The equation for TE can be rewritten as:
3 (k+c)- [cde(e- Gh,(64="5h,(c) (39)

which makes the two unit vectors set unnecessary.

Example 1. Squarelattice: d:\pbg\2d\square\sgideal.m

9o 2D PBG Square | attice
9% Shangpi ng Guo

9o sqgi deal . m

clear all

war ni ng of f;
epsa=8.9; Y%mterial for the atom alunina

epsb=1; %raterial of the background

a=1.0; % attice constant

R=0.20*a; % adius of the 'atom or the radius of the cylinder
i=sqrt(-1);
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f =pi *R"2/ a"2;
Nunber of Cel | =1;
al=a;

az2=a*i ;

b1=2*pi / a/ Nunber of Cel | ;

b2=2*pi / a/ Nunber of Cel | *i ;

n=i nput (' pl ease input n:');

display(' Fourier transfornming..... DR
tic;

Nunber of PWE( 2* n+1) A2;

m nd=(-2*n: 2*n)"' +2* n+1;

m nd=m nd(:, ones(1, size(mnd)))-2*n-1,
GG=mi nd' *bl+m nd*b2;

%l ear m nd;

Y%supercel | size=1X1
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eps21=2*f *( epsa- epsb) *bessel j (1, abs( G5 .*R)./ (abs(E5.*R);

eps21(2*n+l, 2*n+1) =epsb+f *(epsa- epsh) ;
%z=[0,0]*[al a2]."'; %use 1X1 supercell
9%X5 super cell

zz=

-2 -2,-2-1,-20;,-2 1;-2 2;
-1-2;-1-1;-10;-11;-1 2

0-2, 0-1; 01, 0,2

1-2; 1-1;, 10, 11, 12

2,-2; 2,-1; 20; 2,1; 2,2]*[al a2].";
zz=[0,0]*[al a2]."';%se 1X1 supercell
%z=[0 0; 0 1;1 0;1 1]*[al a2]."'
Y%zz=[-1 -1;-1 0;-

eps20=zeros(l ength(eps21));
for x=1l:length(zz),

to verify the algorithm

to verify the algorithm
; 9@X2 supercel |
11;0-1;00;0 1;1 -2;1 0;1 1]*[al a2].";

eps20=eps20+exp(i *(real (G5 .*real (zz(x))+ mag( Gy . *i mag(zz(x)))) . *eps21;

end

ff=pi *R*"2*1 engt h(zz) / (Nunber of Cel | *2*a"2) ;

eps20=eps20. / Nunber of Cel | 72;

eps20(2*n+l, 2* n+1) =epsh+f f *( epsa- epsh) ;

count =1;
for y=-n:n,
for x=-n:n;
G count ) =x*bl+y*b2;
r(count,:)=[ x,y];
count =count +1;
end
end

display('Building eps(G QG matrix fromthe FFT

for x=1: Nunber of PW
for y=x: Nunber of PW
b=r(x,:)-r(y,:)+2*n+1;
eps2(x,y)=eps20(b(2),b(1));
eps2(y, x) =eps2(X,y);
end

end

k1=2*pi/a*0.5.*(0:0.1:1);;

k2=2*pi /a*(0.5+(0.1: 0. 1: 1). *0.5*i);
k3=2*pi /a*(0.5+0. 5% ).*(0.9:-0.1:0);
kO=[ k1 k2 k3] ./ Nunberof Cel | ;

di spl ay(' Now cal cul ate the eigen values.."');

eps2=i nv(eps2);

if max(max(real (eps2))) > 1077*max(max(i nag(eps2)))
display(' Your lattice is inversion symetric');

eps2=real (eps2);
el se

display(' | nmaginary part of FFT is not zero');

stop;

%here we only denonstrate the inversion symetric case
nonsymetric case is al so supported

%bhowever ,
end
opti ons. di sp=0;
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count er =1;
for ii=1:1ength(kO0),
k=kO(ii);
%k=kO;
Me(real (k+G ') *real (k+G +i mag( k+G ') *i mag( k+Q ). *eps2; %E wave
WEabs(k+G ') *abs( k+Q . *eps2; %M wave
E=sort (abs(eig(M));
%=abs(ei gs(M 20, "' sm , options)); %used to cal cul ate only several smallest eigenval ues
freq(:,counter)=sqrt(abs(E)).*a./2./pi;
di splay(sprintf('calculation of k=% +%1i is finished ,real(k),img(k)));
count er =count er +1,;
end
toc;
[max(freq(l,:)),mn(freq(2,:))]
t mpx=1: | engt h(kO) ;
plot(tmpx,freq,' o-',"linewidth', 2)
title(' TM Band structure of a 2D square PBG with a point defect (5X5)')
x| abel (' wave vector')
yl abel (" wa/ 2\ pic')
grid on
axis([1 31 0 1])
Y% np=ifft2(ifftshift(eps20));
Ysurf(fftshift(real (tnp))), shading interp, view 2)
%40 get the lattice, use tnmp=ifft2(ifftshift(eps20));

—
Ead

k.l’ﬁ’

Figure2: TE/TM band structure for a 2D square lattice with aluminarodsin air, the solid line
represents TM, the dotted line represents TE mode.

Note to the program:

Similar to the 1D program, there is some modifications for this 2D implementations.

It supports supercell calculations and finds a successful way to treat them the same way.
In the program, | gave the position of those individual atomsin a supercell in terms of the
primitive vectors. If atom positions cannot be expressed as sum of the two primitive
vectors, minor modifications need be used and is not shown here.

Here, for convenience, the vector in 2D is represented by a complex number: the real part
represents the x-component and the imaginary part represents the y-component.

How to get the Fourier transform is the key of this program. Here | used the analytical
form for the circular cylinder and used the shift property to get the Fourier transform for
more complicated system consisting of finite number of individual ‘atoms'.

Density of states (DOS)
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The band structure shows all possible frequency for various k-vectors. Density of states
shows how many k-vectors will correspond to a frequency. Thisis calculated the number
of k-vectorsin the 1BZ for a certain frequency. Note thisis easy for a square lattice, but
for other geometry, how to divide the 1BZ and reserve the system symmetry is a
problem. Here | only showed the graph.

2D square lattice: Th band structure using 101101 k-vectors in 1BZ

Mormalized f:af,

WDDD EIZIDD SDDD rlIZII]D 5000 BIZII]I] ?IZII]I] BDDD QDDD 1IZII]DD
In-plane k-vectors

Figure 3: Band structure using 10100 k-vectorsin 1BZ for a 2D square lattice with aluminarodsin
air

2D square lattice: Density of states for TM mode

=
m

Maorralized DOS
) ) ) )
[N w T n

=

[am]

a 0.1 oz 03 04 05 06 07 08 08 1
Marmalized f.a/h

Figure4: Density of statesfor a 2D square lattice with aluminarodsin air

Next we show the same program can be modified alittle bit to solve the triangular lattice.

Example2: Triangular latticewith air holesin Si or GaAs material

Implementation of 2D PBG is of great meaning. Here is a typical example of triangular
lattice: d:\ksp\pbg\triangle\photo2dtm.m. dielectric constants are 1 and 13, R=0.48a.

% this programis designed for solving the two di nensional photonic structure
% we are using the parameters fromone of the paper

cl ear

war ni ng of f
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epsa=1;

epsb=13;

a=1. 0,

% =0. 8358;
U=sqrt(sqrt(3).*f/(2*pi)*ar2);
R=0. 48* a;

i=sqrt(-1);

f=2*pi /sqrt(3)*R*2/ a"2;
b1=2*pi/a*(1-sqrt(3)/3*i);
b2=2*pi / a*2*sqrt (3)/ 3*i ;

n=i nput (' pl ease input n: ');
Nunber of PWE( 2* n+1) A2;

count =1;
for x=-n:n,
for y=-n:n,
G count ) =x*bl+y*b2;
count =count +1;
end
end

for x=1: Nunber of PW
for y=x+1: Nurmber of PW
eps2(x,y)=(epsa-epsh)*2*f*bessel j (1, abs(E x)-Fy))*R ./ (abs(Ex)-Ty))*R;
eps2(y, x) =eps2(x, y);
end
eps2(x, x) =f *epsa+(1-f)* epsb;
end

k1=(0:0.1:1.0)/sqrt(3).*i*2*pi/a;
k2=((0.1:0.1:1.0)./3+1/sqrt(3)*i).*2. *pi ./ a;
k3=(0.9:-0.1:0).*(1.0/3.0+1/sqrt (3)*i).*2. *pi . /a;% (1/ 3+1/sqrt(3)*i)*2*pi/a;
kO=[ k1 k2 k3];
%k0=k1;
%0=(1/3+1/sqrt(3)*i).*2*pi/a;
counter =1,
eps2=i nv(eps2);
for ii=1:1ength(kO0),
k=kO(ii);
Mrabs(k+G ') *abs(k+Q . *(eps2); %86 or TM wave
WBAE(real (k+G ') *real (k+Q +i nmag( k+G ') *i mag( k+Q ). *(eps2); %886 or TE wave
E=sort (abs(eig(M));
freq(:,counter)=sqrt(abs(E(1:15))).*a./2./pi;
di splay(sprintf('calculation of k=%+%1i is finished ,real(k),img(k)));
count er =count er +1;
end
t npx=1: | engt h(kO0) ;
%l ot(n,freq,' 0" ),hold on
plot(tmpx,freq,':'," ' linew dth',?2)
title(' TM Band structure of a 2D triangul ar photonic band structure')
x| abel (' wave vector')
yl abel (" wa/ 2\ pic")
grid on
axi s([ 0, ength(kO)+1,0,1.4])

The calculation is aso very fast, only about 100 plane waves are enough to produce exact
results, There is a band gap for TM from 0.4301-0.5213 between the 2" and 3" band, and
a band gap for TE from 0.3600-0.5212 between the £ and 2 band. There exists a
complete band gap from 0.4301-0.5212.

14/32



PWM manual 1.00 by Shangping Guo

Department of Electrical & Computer Engineering,

Old Dominion University, Norfolk VA 23529
Shangpingguo@hotmail.com, http://www.lions.odu.edu/~sguox002
757-6834231 (O)(Fax)

Band structure of a 20 triangular photonic band structure

r " wave vector M r

Figure5: TE/TM band structure of a 2D triangular lattice with air holesin GaAs

Something to discuss:

1. How to make sure we get the correct lattice. For non-square lattice, like the
triangular lattice, inverse FFT cannot give exact shape, and it needs to
reconfigure. For square lattice, inverse FFT can give exact shape.

2. Weget the e(G- G() directly by using analytical integration. Note this is only
applicable to some simple and symmetric shape. If we cannot get the analytical
expression for the integration, FFT is still needed.

3. FFT of a unit cell. The selection of a unit cell can be different, however, it is
important to keep some symmetry, else the FFT matrix will be complex, then the
yielded eigen value cannot be guaranteed to be redl. (in that case, we need to use
the complex matrix, else the result will be incorrect)

Theory in Fourier transform of periodic structure

For simple shaped atoms (unit cell), such as the cylinder, sphere, square, Fourier

transform has an analytical form. For ideal infinite periodic structure, there is a

relation between a single atom and the lattice. We use this theory, and greatly reduce

the calculation relating to FFT.

Considering a unit cell with an area of A, an circular atom which is inversion

symmetric is located in the center which ensures the Fourier transform is redl. If the

unit cell is represented by function f(r), the Fourier transform of it is defined:

F(k) == gt (r)e ™ ds (40)
AA
_le,--r<R_ ie,-e,r<R
f(r)_%eb---r>R_eb+} 0r>R (1)

So the integration can be solved like below:
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F(k) = ebd(k) +%©err (‘50 (ea - e, )e- ke cosf ¢

= ebd (k)+ (ea - eb)%\Qerr 6'3 e—ikr cosf df
(42)
=e,d(k)+(e, - eb)%\(‘SZprJo(kr)dr

_ 20R* J,(kR)
= + - g AN T
et ()+ (e, - &) 22
This assumes periodicity, treating it like one period in 1D problem. For infinite
periodic lattice, only those reciprocal lattice point has frequency component, just like
1D periodic signal has discrete frequency components. So the Fourier transform for
the whole lattice would be:

2
F(6)=e,d(6)+ e, - )% 2OR) o i)+ 2fe, - ) 2OV (g
GE GR
f isafraction parameter, f =% (44)
Area

This principle is proved very useful in treating periodic structure. Same procedure can
be used for sguare atom, sphere atom etc. Note there is a point which is very
important here, the unit cell shape is not included in the above derivation, that means
it has nothing to do with the Fourier transform, which guarantee the same FT results
used in different lattice.
Another important property of Fourier transform is very important to supercell
structure, that is the shifting property:

fr+n)« e Fk) (45)
Other points which need to pay attention to when using Fourier transform are:
The choosing of a unit cedl is very important. Inversion symmetry will get real
Fourier transform, else complex results will get. If only real part is used, errors will
occur.
Complex Fourier transform in this plane wave method does occur when a super cell
cannot satisfy inversion symmetry. In this case, whether there exist real eigen vaues
isstill aquestion. (maybe it is worthwhile to look into it.)
From the Fourier transform matrix to get the dielectric function may cause some
confusions:
Generaly, we need use complex FT matrix to IFFT to get the origina function, else
there will be mistakes. If the FFT matrix is real, then only use the real part.
IFFT matrix will be generaly complex, if so, absolute value can be used to get the
original function. If it is pure real, only real part is used.
Generdly, IFFTSHIFT should be used to get original function, this also show haf a
atom or a quarter atom at symmetric positions can be combined.
Numerical FFT: FFT of a unit cell will get al the required Fourier transform
coefficients. For non-square lattice, this is not the case. The way how to dea with
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non-square unit cell by FFT is not solved yet and analytical expression is the only

way to get the numerical results.

Mode field distribution calculation:

Example 1. Square lattice with Aluminarodsin air

Rod radius R=0.2a, dielectric for Aluminarod is 8.9, for air is 1.0.

After we solved the problem, we get the eigenvalue and associated eigen vector, the eigen
value is rea and eigen vector is not necessary to be real. Here is some features in
calculation:

1) For the square lattice, the field distribution has still some problems to solve. The
real and imaginary parts are both solution of field pattern, but there is a random
phase aong with it, the way to fix the phase is shown in the next section.

2) All the eigen vectors are normalized, i.e, (h,h)=1 and different eigen vectors

for a same k are orthogonal to each other, (h,hj):dij the information on

amplitude for each mode is not present.

3) To get the magnetic field we use (13), and the results are complex-valued. Which
part should be used then is determined by the requirement that: (h,(r),h,(r)) =0.
This requirement forces us to take real part for one mode, and take the imaginary
part for the neighboring mode. Take one example, the integration in a unit cell is:

(ReH,(r).ReH ,(r)) = 2.069;(ReH,(r),ImH,(r)) = - 1.3e- 18
(ImH,(r),ReH,(r)) =-8e- 13(ImH,(r),ImH,(r)) = - 2.769

4) There still remains one problem: for a given mode, which one should be taken, the
real or the imaginary part? This should be determined by the fact that the
integration (H,H) =1 inaunit cell.

5) Thered and imaginary part of the field are actually the same field at different
time, i.e, Re(r)= Ar)cosd, Im(r)=A(r)snd . Trying to solve the A(r) from
the real and imaginary parts will not be successful, for the phase=0 will gives a
problem. There might be some way to fix this problem.

This point is very important so that we can get the right answer for H field. (01/07/2001)
What about the D and E field since there are no similar normalized & orthogond

relations? We can use this fact that: E, = (‘)L|D(r)|2dr =1 to determine which part we
e(r

(r)

need to use. To make it easy, in a unit cell, the integration (’|D(r)|2dr will be a little bit

greater than 1 and we can use it as a standard to determine which one should be used.

But this method may be hard to apply to other non-square lattice for the integration is
hard to evauate.

Finally, the D field distribution using (7) would be complex. The calculation method can
be derived as below:

For TM wave, the H field is in-plane, the D field is dong z direction, so it is convenient
toplot D
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H!(r)= & h(G)ae e (46)
Dx”(_r)-e(r)E(r)=e(r)V;e'(°r)N H(r)
- %é hGli(k+G) &eter (47)

1 +G
|—a k + Gl (G)e™

Note we only need the real part of the D field.
For TE wave, the D, E field are in-plane, H field isin z-direction, so H field is convenient

for plotting:
H(r)= an( Jae e (48)
w - - -1C « w
D)= e(JE(r)=elr) iy HE ()
=212 i(k +G) 28t (49)
W g
1 |k+G|e k+G

Note, these fields are all complex, we only need the real part, based on the definition of
these complex waves, the imaginary part is the field after half a period and cannot be
zero.

Off-plane propagation

For off-plane propagation, k has 3 components in x, y and z. TE and TM are not
decoupled any more, we need to use the most general form of (39). The most typical
example of this is the photonic crystal fiber. The source file s
D:\ksp\pbg\pcf\findmode.m

% this programis designed for solving the two di mensional photonic structure
% we are using the paraneters fromone of the paper
cl ear

war ni ng of f

epsa=1,;

%epsh=13;

epsb=1.46"2; 9%4&i |ica glass air system

a=1. 0,

f=0.7;

R—sqrt (sqrt (3).*f/(2*pi)*ar2);

R=0. 4

'-sqrt( 1);

% =2*pi / sqrt (3)*R 2/ a"2;

Y1=2*pi/a*(1-sqrt(3)/3*i);

Yh2=2*pi [a*2*sqrt (3)/3*i;

bl=2*pi/a*[1 -1/sqrt(3) 0O];

b2=2*pi/a*[0 2/sqrt(3) 0];

%n=i nput (' pl ease input n: ');

n=5;

Nunber of PWE( 2* n+1) A2;
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count =1;
for x=-n:n,
for y=-n:n,
G count, ;) =x*bl+y*b2;
count =count +1;
end
end

for x=1: Nunber of PW
for y=x+1: Nurmber of PW
eps2(x,y)=(epsa-epsh)*2*f*bessel j (1, norm{ G x,:)-Fy,:))*R./(norm{(Ex,:)-qy,:))*R;
eps2(y, xX) =eps2(x,Y);
end
eps2(x, x) =f *epsa+(1-f)* epsb;
end

Uk1=(0:0.21:1.0)/sqrt(3).*i*2*pi/ a;
%%2=((0.1:0.1:1.0)./3+1/sqrt(3)*i).*2. *pi ./ a;
%%3=(0.9:-0.1:0).*(1.0/3.0+1/sqrt(3)*i).*2. *pi./a; % (1/ 3+1/sqrt (3) *i)*2*pi/ a;
9%0=[ k1 k2 Kk3];

%0=k1;

Uk0=(1/3+1/sqrt(3)*i).*2*pi/ a;

kO=zeros(l engt h(0: 0. 1: 1) +l engt h( 0. 1: 0. 1: 1) +l engt h(0. 9: - 0. 1: 0), 3);
mO=| engt h(0: 0. 1: 1) ;

kO(1: m©O, 2) =2*pi/a/sqrt(3).*(0:0.1:1)";

mO=| engt h(0: 0. 1: 1) ;

mil=l engt h(0. 1: 0. 1: 1) ;

kO( mO+1: mO+m, 1) =2*pi /a/3.*(0.1:0.1:1)";

kO( nmO+1: mO+nm, 2) =2*pi / a/ sqrt (3);

mO=mO+m+1;

mil=l engt h(0.9:-0.1:0);

kO( m®O: mO+m- 1, 1) =2*pi/al/3.*(0.9:-0.1:0)";

kO( mO: mO+mml- 1, 2) =2*pi/a/sqrt(3).*(0.9:-0.1:0)";

%O0( :, 3)=9.0;

%band=zer os( 3, 100) ;

bandcount =1;

eps2=i nv(eps2);

for xx=7:0.5: 15,
kO(:, 3)=xx;
count er =1;
for ii=1:size(k0,1),
k=kO(ii,:);
K(:,1)=k(1)+F:,1);
K(:,2)=k(2)+q:, 2);
K(:, 3)=0;
9%84Gind the unit cell perpendicular to it in xy plane
%8be sure to deal with the case of nodul us(k)=0
9%8MNaN in this case
9884 0 save conputing tine, use absk=nodul us(K)
absk=nodul us(K);
el=[K(:,2)./absk, -K(:,1)./absk, zeros(l ength(K), 1)];
el(isnan(el))=1/sqrt(2); 9%@then Kz is not zero, kx,ky is zero choose arbitrary el
K(:,3)=k(3)+{:, 3);
%464 i nd the other perpendicular unit cell
%8be sure to deal with the case of nodul us(k)=0
9%8MNaN in this case
absk=nodul us(K);
e2=cross(el, K);
e2=[e2(:,1)./absk, e2(:,2)./absk, e2(:,3)./absk];
e2(isnan(e2))=0;
988G ormthe equation natrix, it should be 2N by 2N
%86 n this case we will have no TE and TM decoupling

ML=([ absk. *e2(:, 1), absk. *e2(:, 2), absk. *e2(:, 3)] *[absk. *e2(:, 1), absk. *e2(:, 2), absk. *e2(:,3
)1") . *eps2;

Me=([ absk. *el(:, 1),absk. *el(:, 2), absk. *el(:, 3)] *[absk. *e2(:, 1), absk.*e2(:, 2), absk.*e2(:,3
)1') . *epsz;
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MB=([ absk. *e2(:, 1), absk. *e2(:, 2), absk. *e2(:, 3)] *[absk. *el(:, 1), absk. *el(:, 2), absk. *el(:, 3
)1") . *eps2;

Mi=([ absk. *el(:, 1),absk. *el(:, 2), absk. *el(:, 3)]*[absk. *el(:, 1), absk. *el(:, 2), absk.*el(:,3
)]1') . *eps2;
Me[ ML, MB; M2, MA] ;
E=sort (abs(eig(M));
freq(:,counter)=sqgrt(abs(E(1:20))).*a./2./pi;
% display(sprintf('calculation of k=[%,%,%] is finished ,6k(1),k(2),k(3)));
count er =count er +1,;
end
9864 ooki ng for the band gap and save theminto band
di spl ay( sprintf(' Searching bandgap for beta=%", xx));
for ii=1:19,
if mn(freq(ii+1,:)) > max(freq(ii,:))+0.005 %46ind a band gap, save these val ues
band( 1, bandcount ) =xx;
band( 2, bandcount ) =nax(freq(ii,:));
band( 3, bandcount)=m n(freq(ii+1,:));
band( 4, bandcount) =i i ;
di splay(sprintf('find a band (% 9%
% ):',band(1, bandcount), band(2, bandcount), band( 3, bandcount)));
bandcount =bandcount +1;
end
end
end
%®mow plotting the variation of the band gap, divide the array data according to the
band nunber
abl=band;
count 1=1;
whi | e | engt h(band) >0,
ab(:, 1, count 1) =band(:, 1);
band(:,1)=[];
count 2=1;
ii=1;
whi |l e ii<=size(band, 2),
%li splay(sprintf('ii=% band(4,ii)=%",ii,band(4,ii)));
if band(4,ii)==ab(4,1,countl),
count 2=count 2+1;
ab(:, count 2, count 1) =band(:,ii);

band(:,ii)=[];
el se
ii=ii+1;
end
end
count 1=count 1+1;
end

plot(ab(1,:,1),ab(2,:,1)*2*pi," ' +',ab(1,:,1), ab(3,:,1)*2*pi, ' 0-")
hol d on

plot(ab(1,1:6,2),ab(2,1:6,2)*2*pi," +',ab(1,1:6,2),ab(3,1:6,2)*2*pi, " ' 0-")
plot(ab(1,1:6,3),ab(2,1:6,3)*2*pi," +',ab(1,1:6,3),ab(3,1:6,3)*2*pi, " ' 0-")
plot(ab(1,1:5,4),ab(2,1:5,4)*2*pi," +',ab(1,1:5,4),ab(3,1:5,4)*2*pi, " '0-")
plot(ab(1,1:4,5),ab(2,1:4,5)*2*pi," +',ab(1,1:4,5),ab(3,1:4,5)*2*pi, " ' 0-")

9%l ot (ab(1, 1:3,3), ab(2, 1: 3,3)*2*pi, '+ ', ab(1, 1: 3,3),ab(3, 1: 3, 3) *2*pi, ' 0-")
XX=7:15;

pl ot (xx,xx, 'r--","linew dth',1);

nav=sqrt (epsh) +f *(sqrt ( epsa)-sqrt (epsbh));

plot (kO(3,:),k0(3,:)/ nav,"'r--","linewidth',1);

pl ot (xx, xx/sqrt(epsb), r:',"linenwidth' ,1);

hol d of f

title('band gap variation of a 2D triangular SiQ2-Air PBG)
x| abel (' wave vector k_za')

yl abel (' ka or wa/c")

grid on

%xis([0,!ength(k0)+1,0,1.4])
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This file solve the triangular silica-air photonic crystal fiber with air filling factor 70%.

The band gap variation is shown below graph:

‘variation of band gap in siice-air 20 system
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The glass-tube photonic crystal fiber
Using laboratory facilities, glass-tube structure is shown to be able to manufacture. Here,
we offer the numerical analysis.

Three dimensional problems

3D diamond lattice:
The diamond lattice is a complex FCC lattice with two spherical atoms in the unit cell.
Assuming the length of the smple cubic sideis a, the primitive lattice vector basis are:
a =[0114a/2,a, =[104]a/2,4, = [110]a/2. Thelocations of the two atoms in the primitive
cell are: 7, =[- 1-1,-1]a/4and r, =[111]a/4. The basis vector in the reciprocal lattice is
calculated according to:
£ & & o _ a4 8 - _ a’ &
=2 = = - = =2 = = - = - = = 7 =
e a Pia e Paa s
Assuming the radius of the sphere is R, the Fourier coefficient at the reciprocal lattice
grid is expressed as.

e(é)=3f e, - eb)?nGR(_G(;;COSGRgcos(G- r"o)

21/32



PWM manual 1.00 by Shangping Guo

Department of Electrical & Computer Engineering,

Old Dominion University, Norfolk VA 23529
Shangpingguo@hotmail.com, http://www.lions.odu.edu/~sguox002
757-6834231 (O)(Fax)

using the shift property and Fourier transform for a sphere, where ¢ :24PR3/3 ad
v

V=33 &.

We show the band gap for r=./3/8a using our simple program with 7° = 343 plane waves.
The graph shows excellent agreement with the result in PRL 65-25, 3152 even that we
used avery small amount of plane waves.
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Figure6: Band structurefor a 3D diamond lattice

Note for the 2D honeycomb lattice, each primitive unit cell contains two atoms too. The
same way applies when obtaining the Fourier coefficients.
See diamond.m.

% 3D Dianond Lattice

%  Shangpi ng Guo

% Ref erence data: K MHo et al, PRL 65-25

% Also see S G Johnson's webpage on his software

% The kO along the 1BZ is obtained fromhis website.
% This programyields accurate results,

cl ear
war ni ng of f
%epsa=11. 56;

epsa=3. 6"2;

epsb=1; %

a=1.0;

tic;

R=sqrt (3)/8*a; % is the I ength of the cubic unit cell
i=sqrt(-1);

%define the lattice vectors
al=[0 1 1]*al2;

a2=[1 0 1]*al2;

a3=[1 1 0]*a/2;

%al cul ate the reciprocal lattice vectors
vol cel | =dot (al, cross(a2, a3));
b1=2*pi *cross(a2, a3)/ vol cel | ;
b2=2*pi *cross(a3, al)/ vol cel | ;
b3=2*pi *cross(al, a2)/ vol cel | ;
%n=i nput (' pl ease input n: ');
f=2*(4*pi *R*3/3)/vol cel | ;

n=i nput (" I nput n:"');

%n=3;

Nunber of PWe( 2* n+1) A 3;
di splay(' Form ng G vectors...");
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count =1,
for x=-n:n,
for y=-n:n,
for z=-n:n,
G count, : ) =x*bl+y*b2+z*b3;
count =count +1;
end
end
end
di splay(' Calculating eps(GQ...");
r0=[0.125 0.125 0.125]; %[ al; a2 a3]/ nodul us(al);
for x=1: Number of PW
for y=x+1: Nunber of PW
tmpG=nor (& x,:)-Qy,:));
eps2( x, y) =(epsa- epsh) *3*f*(si n(t mpG*'R) -
tnpG R*cos(tnpGR))/ (tmpGR) *3*cos(dot (& X,:)-Fy,:),r0));
%his is problemetic, for we add two spheres together,the f alrady contains it
eps2(y, xX) =eps2(Xx,y):
end
eps2(x, x) =f *epsa+(1-f)* epsb;
end
eps2=i nv(eps2);
% ormng the list of k-vectors on the edge of the 1BZ
di spl ay(' Form ng k-vector array ")
kl=interpolate([0 0.5 0.5]*[ b1, b2 b3],[0 0.625 0.375] *[ bl; b2; b3], 4, 0);
k2=i nterpol ate([0 0.625 0.375]*[bl; b2;b3],[0 0.5 0] *[bl;b2;b3], 4, 0);
k3=interpolate([0 0.5 0] *[bl;b2;b3],[0 O 0] *[bl;b2;b3], 4,0);
k4=i nterpolate([0 O 0] *[bl;b2;b3],[0 0.5 0.5]*[ bl; b2;b3], 4,0);
k5=i nterpol ate([0 0.5 0.5]*[bl;b2;b3],[0.25 0.5 0.75]*[bl; b2;b3], 4,0);
k6=i nterpol ate([0.25 0.5 0.75]*[bl; b2;b3],[0.375 0.375 0.75]*[bl;b2;b3],4,1);
kO=[ k1; k2; k3; k4; k5; k6] ;
di splay(' Cal cul ating eigen frequency..."');

counter =1,

for ii=1:size(k0,1),
tic;
k=kO(ii,:);

K(:,1)=k(1)+E:,1);

K(:,2)=k(2)+{:, 2);

K(:, 3)=0;

9%84ind the unit cell perpendicular to it in xy plane

%8be sure to deal with the case of nodul us(k)=0

9%8MNaN in this case

el=[K(:, 2)./nodul us(K), -K(:,1)./modul us(K), zeros(l ength(K), 1)];
el(isnan(el))=1/sqgrt(2); %@then Kz is not zero, kx,ky is zero choose arbitrary el
K(:, 3)=k(3)+:, 3);

98484 ind the other perpendicular unit cell

%8be sure to deal with the case of nmodul us(k)=

%8MNaN in this case

e2=cross(el, K);

e2=[e2(:,1). /m)dul us(e2),e2(:,2)./modul us(e2), e2(:,3)./nodul us(e2)];
e2(i snan(eZ))

9864 orm t he equation matrix, it should be 2N by 2N

%86 n this case we will have no TE and TM decoupling

nK=nmodul us(K) ;
M=([ K *e2(:, 1), K *e2( ), K *e2(:,3)]1*[ nK *e2(:,1), nK *e2(:,2),nK *e2(:,3)]").*eps2;
Me=([ nK. *el(:, 1),nK *el( ), nK *el(:,3)]*[ K *e2(:,1), nK *e2(:,2),nK *e2(:,3)]").*eps2;
M3=([ K. *e2(:, 1), K *e2( ), K *e2(:,3)]1*[ nK *el(:,1), nK *el(:,2),nK *el(:,3)]").*eps2;
Mi=([ nK *el(:, 1),nK *el( ), nK *el(:,3)]*[ nK *el(:,1), nK *el(:,2),nK *el(:,3)]").*eps2;
Me[ ML, MB; M2, MA] ;

E=sort (abs(eig(M));
freq(:,counter)=sqgrt(abs(E(1:10))).*a./2./pi;
() di splay(sprintf('calculation of k=[%,%,%] is finished ,6 k(1),k(2),k(3)));
di splay(sprintf('%l/ %l is conpleted: % s used',counter,!|ength(kO),toc));
count er =count er +1;
save diafreg3 freq; % ong time nay needed
end
t mpx=1: 1 engt h(kO) ;

X
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plot(tmpx,freq,'o-',"linewidth',2)

title('Full band structure of a 3D dianmond photonic crystal')
x| abel (' wave vector k')

yl abel (" wa/ 2\ pi c")

grid on

%axi s([0, | engt h(kO) +1, 0, 1. 4])

toc

Supercell method to calculate defect

Supercell method is very important to model some more complicated system.
Point defect in a 2D square lattice

A rod is removed from the center of a 5X5 supercell lattice. See sqdef5.m
%% 2D PBG Square lattice

%% Shangpi ng Guo

%% sgband. m

clear all

war ni ng of f

tic;

epsa=8.9;

epsb=1;

a=1.0;

R=0. 2*a; ;

i=sqgrt(-1);

f=pi *R*2/ a"2;

Nurber of Cel | =5;

al=a;

az2=a*i ;

b1=2*pi / a/ Nunber of Cel | ;

b2=2*pi / a/ Nurber of Cel | * i ;

n=i nput (' pl ease input n:');

di splay(' Fourier transformng..... DR

Nunber of PWE( 2* n+1) A2;

m nd=( - Nurber of PW Nunber of PW ' +Nunber of PW+1;

m nd=m nd(:, ones(1, si ze(m nd))) - Nunber of PW 1;

GG=ni nd' *b1+m nd*b2;

%l ear m nd;

eps21=2*f *( epsa- epsb) *bessel j (1, abs( G5 .*R)./ (abs(G5.*R);
eps21( Nunmber of PW1, Nunber of PW1) =epsb+f * (epsa- epsb) ;
%z=[0,0]*[al a2]."'; %use 1X1 supercell to verify the algorithm
9%X5 super cell

zz=[
-2 -2;-2-1;,-20;-21;-2 2
-1-2;-1-1;-10;-11;-1 2
0-2, 0-1; 01; 0,2;
1-2;,1-1; 10; 11; 12
2,-2; 2,-1; 20; 2,1; 2,2]*[al a2].
eps20=zeros(l ength(eps21));
for x=1l:length(zz),
eps20=eps20+exp(i *(real (G5 .*real (zz(x))+ mag( Gy . *i mag(zz(x)))) . *eps21;

end

ff=pi *R*"2*1 engt h(zz) / (Nunber of Cel | *2*a"2) ;
eps20=eps20. / Nunber of Cel | 72;

eps20( Nunmber of PW1, Nunber of PW1) =epsb+f f * ( epsa- epsb) ;

%l ear GG
count =1;
r =ones( 2* n* Nunber of Cel | +1, 2) ;
for y=-n:n,
for x=-n:n;
G count) =x*bl+y*b2;
r(count,:)=[ x,y];
count =count +1;
end
end

display('Building eps(GGQ matrix fromthe FFT matrix');
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for x=1: Nunber of PW
for y=x: Nunber of PW
b=r(x,:)-r(y,:)+(2*n+l) "2+1;
eps2(x,y)=eps20(b(1),b(2));
eps2(y, x) =eps2( x,y);
end
end

k1=2*pi/a*0.5.*(0:0.1:1);;

k2=2*pi /a*(0.5+(0.1:0.1:1).*0.5*%i);

k3=2*pi / a* (0. 5+0.5*i).*(0.9:-0.1:0);

kO=[ k1 k2 k3] ./ Nunberof Cel | ;

di spl ay(' Now cal cul ate the eigen values.."');

eps2=i nv(eps2);

if max(max(real (eps2))) > 1077*max(max(i nag(eps2)))
display(' Your lattice is inversion symetric');
eps2=real (eps2);

el se

display('Inmaginary part of FFT is not zero');

st op;

%here we only denonstrate the inversion symetric case
%bmowever, nonsymretric case is al so supported

end

count er=1;

for ii=1:1ength(kO0),
k=kO(ii);
%k=kO;

%E(real (k+G ') *real (k+GQ + mag(k+G ') *i mag(k+G ). *eps2; YE wave
Mrabs(k+G ') *abs(k+Q . *eps2; %M wave
E=sort (abs(eig(M));
freq(:,counter)=sqrt(abs(E)).*a./2./pi;
di splay(sprintf('calculation of k=04+%i is finished ,real (k),inmg(k)));
count er =count er +1,
end
t mpx=1: | engt h(kO) ;
plot(tmpx,freq,'|inew dth', 2)
title(' TM Band structure of a 2D square PBG with a point defect (5X5)')
x| abel (' wave vector')
yl abel (" wa/ 2\ pic")
grid on
axis([1 31 0.3 0.5])
tmp=i fft2(ifftshift(eps20));
Ysurf(fftshift(real (tnp))), shading interp, view 2)
%% 0 get the lattice, use tnp=ifft2(ifftshift(eps20));

Supercell method is very similar to the method used in dealing with the ideal PBG.
The following program lists how to obtain the mode field, see sgptdef5fld.m

%% Square lattice with a |inear wavegui de al ong X
%% Shangpi ng Guo

%% Finally revised Jan 01 2001

%% sgwavegd. m

clear all

war ni ng of f

tic;

epsa=11. 56; 98. 9;
epsb=1;

a=1.0;

R=0. 2*a; ;

i=sqgrt(-1);

f=pi *R*2/ a"2;

Nurber of Cel | =5;

al=a;

az=a*i ;

b1=2*pi / a/ Nunber of Cel | ;
b2=2*pi / a/ Nurber of Cel | * i ;
n=9;
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Nunber of PWe( 2* n+1) A2;

di splay(' Forming regular Fourier matrix...");
m nd=( - Nunber of PW Nunber of PW ' +Nunber of PW+1;
m nd=m nd(:, ones(1, si ze(m nd))) - Nunber of PW 1;
GG=nmi nd' *bl+m nd*b2;

eps21=2*f *( epsa- epsb) *bessel j (1, abs( G5 .*R)./ (abs(E5.*R);
eps21( Nunmber of PW1, Nunber of PW1) =epsb+f * (epsa- epsb) ;
9B X5

°o oo

-2 - 1;-2
-1 - 1;-1
;0 - 1, O
;1 1 1
2, - 1; 2
e eps21

2 2;
1 2;
0 2;
1 2;
2 2]*[al a2]."';
( )

- — s

=z ros(length 25
x=1:1ength(zz),
eps20=eps20+exp(i *(real (G5 . *real (zz(x))+ mag( G . *i mag(zz(x)))) . *eps21;

end

di spl ay(' Modifying the defect matrix..."');

R00=0. 80* a;

f 00=pi *RO0"2/ a"2;

eps00=2*f 00* ( epsa- epsh) *bessel j (1, abs( G5 . *R00) ./ (abs( G5 . *R00) ;
eps00( Nunber of PW1, Nunber of PW1) =epsb+f 00* ( epsa- epsb) ;
eps20=eps20+eps00;

ff=(pi *R*2*| engt h( zz) +pi *RO0"2) / ( Nunber of Cel | 22*a"2);
eps20=eps20. / Nunber of Cel | 72;

eps20( Nunber of PW1, Nunber of PW1) =epsb+f f *( epsa- epsb) ;

clear GG
count =1;
r =ones( 2* n* Nunber of Cel | +1, 2) ;
for y=-n:n,
for x=-n:n;
G count ) =x*bl+y*b2;
r(count,:)=[ x,y];
count =count +1;
end
end

di splay('Building eps(G G matrix fromthe FFT matrix');
for x=1: Nunber of PW
for y=x: Nunber of PW
b=r(x,:)-r(y,:)+(2*n+1)"2+1;
eps2(x, y)=eps20(b(1),b(2));
eps2(y, X) =eps2(X,y);
end
% eps2(x, x)=f*epsa+(1-f)*epsb;
end

k1=2*pi/a*0.5.*(0:0.1:1);;

k2=2*pi /a*(0.5+(0.1:0.1:1).*0.5*%i);

k3=2*pi / a* (0. 5+0.5*).*(0.9:-0.1:0);

kO=[ k1 k2 k3] ./ Nunberof Cel | ;

k0=0;

di spl ay(' Now cal cul ate the eigen values..");
eps2=i nv(eps2);

if max(max(real (eps2))) > 1077~ max(max(i mag(epsZ)))
di splay("' Your lattice is inversion symetric');
eps2=real (eps2);

el se

di splay(' | maginary part of FFT is not zero');
end

counter=1;

for ii=1:1ength(kO0),
k=kO(ii);
%k=kO;
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%vE(real (k+G ") *real (k+GQ +i mag(k+G ') *i mag(k+Q ). *eps2; YE wave
Mrabs(k+G ') *abs(k+Q . *eps2; %M wave
[V. F] =ei g(M);
E=di ag(F);
% req(:,counter)=sqrt(abs(E(1:10))).*a./2./pi;
di splay(sprintf('calculation of k=%+%i is finished ,real(k),img(k)));
count er =count er +1,;
end
[l anda, i ndex] =sort (E);
hg0=V(:,index(31))";
hgl=V(:,index(32))";
hg2=V(:,index(33))";
hg3=V(:,index(34))";
hg4=V(:,index(35))";
hg5=V(:, i ndex(36))";
for x=(-2:0.02:2).*a,
for y=(-2:0.02:2).*a,
f1dOo(x/0.02+101, y/ 0. 02+101) =exp(i *(real (k+G *x+i mag(k+Q *y)) *(hg0. *abs( k+Q )" ;
fl1d1(x/0.02+101, y/ 0. 02+101) =exp(i *(real (k+Q *x+i mag(k+Q *y)) *(hgl. *abs( k+Q)";
fld2(x/0.02+101, y/ 0. 02+101) =exp(i *(real (k+G *x+i mag( k+G *y)) *(hg2. *abs( k+Q)";
f1d3(x/0.02+101, y/ 0. 02+101) =exp(i *(real (k+Q *x+i mag(k+GQ *y) ) *(hg3. *abs(k+Q )" ;
fld4(x/0.02+101, y/ 0. 02+101) =exp( i *(real ( k+Q * x+i mag( k+Q *y) ) *(hg4. *abs(k+Q )" ;
f1d5(x/0.02+101, y/ 0. 02+101) =exp(i *(real (k+Q *x+i mag(k+Q *y)) *(hg5. *abs( k+Q )" ;
end
end
f 1 do=fi xphase(fld0);
f1dl=fixphase(fldl);
fl d2=fi xphase(fld2);
f1d3=fi xphase(fld3);
fl d4=fi xphase(fld4);
f1d5=fi xphase(fl d5);
subplot(2,2,1),surf(real (fl do+f1d1)), shading interp, view 2), axis image, axi s
off,title(' R=0. 8a, degenerated | evel 31,32");
subpl ot (2, 2,2),surf(real (fl d2+f1d3)), shading i nterp, view 2), axi s i mage, axi s
off,title(' R=0.8a, degenerated | evel 33,34");
subpl ot (2, 2,3),surf(real (fld4)), shading interp, view2),axis imge, axi s
off,title(' R=0.8a,level 35);
subpl ot (2,2,4),surf(real (fld5)), shading interp, view2), axi s i mage, axi s
off,title(' R=0.8a,level 36");

Here fixphase.m is a supporting function to fix the random phase together with the red

and imaginary part:

function z=fixphase(f)

sO=sum(sum(real (f)."2-imag(f)."2));

sl=sunm(sun(2.*real (f).*imag(f)));

t het a=0. 5*at an2(-s1, s0);

di spl ay(sprintf(' Phase is:%"',theta));

trmpr=real (f)*cos(theta)-imag(f)*sin(theta);

tmpi =real (f)*sin(theta)-i mag(f)*cos(theta);
z=tnpr+sqrt(-1)*tnpi;

Below is a graph shown the center rod is enlarged to 0.6a.
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Figure7: Modefield in a 2D square lattice with the center rod being removed

Linear defect: waveguide

The way to deal with linear waveguide (defect mode frequency and mode field) is the
same as point defect. The band structure calculated of the defect mode will also be
periodic (not a straight line any more)

We need to use the principle of the band structure, stretch the periodic band structure into
agraph like below. Also, we need to project the band structure to the waveguide
direction.

The source file for the projection is list as below:
% this programis designed for solving the two dinmensional photonic structure
% we are using the paraneters fromone of the paper
% The structure is a square 2d periodic structure
% the higher index rod is in the background of air
cl ear

war ni ng of f

epsa=8. 9;

epsb=1;

a=1.0;

R=0. 2* a;

i=sqrt(-1);

f=pi *R*2/ a"2;

al=a,

a2=a*i ;

b1=2*pi/ a;

b2=2*pi / a*i ;

9%n=i nput (' pl ease input n: ");

n=5;

Nunber of PWs( 2% n+1) ~2;

count =1;
for x=-n:n,
for y=-n:n,
G count ) =x*bl+y*b2;
count =count +1;
end
end

for x=1: Nunber of PW

for y=x+1: Nunber of PW
eps2(x,y)=(epsa-epsbh) *2*f*bessel j (1, abs(Ex)-Fy))*R ./ (abs(Ex)-Ty))*R;
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eps2(y, x) =eps2(x,Y);
end
eps2(x, x) =f *epsa+(1-f)* epsb;

end
eps2=i nv(eps2);
count 1=1;

for aa=(0:0.1:1)*pi/a,
bb=(0: 0. 1: 1) *pi / a;
kO=aa+bb*i ;
counter =1,
for ii=1:1ength(kO0),
k=kO(ii);
Mrabs(k+G ') *abs(k+Q . *(eps2);
E=sort (abs(eig(M));
freq(:,counter)=sqgrt(abs(E(1:20))).*a./2./pi;
% display(sprintf('calculation of k=%4+%i is finished 6 real(k),img(k)));
count er =count er +1,
end
m nl(countl)=m n(freq(l,:
max1(count 1) =max(freq(1,:
m n2(count1)=m n(freq(2,:
max2(count 1) =max(freq(2,:
count 1=count 1+1;
end
t mpx=(0:0.1:1)/2;
%pl ot (t npx, m nl, t npx, max1, tnpx, m n2,'linew dth', 2)
hol d on

~—— — —
~— — — —

fill([tnpx,rot90(tnpx)'],[tnpx,rot90(max2)'], g ,'erasenode' ,'none')
fill([tnpx,rot90(tnpx)'],[m n2,rot90(max2)'], 'r',"' erasenode' ,' none')
fill([tnpx,rot90(tnpx)'],[mnl, rot90(max1)'], 'r',"' erasenode' ,'none')
fill([tnpx,rot90(tnpx)"'], [m n(maxl,tnpx),rot90(max1)'], " 'b' ,' erasenode',' none')
fill([tnmpx,rot90(tnpx)'], [max(m n2,tnpx),rot90(max2)'], 'b',"'erasenode' ,'none')
axis([0 0.5 0 0.5])

x| abel (" ka/ 2\ pi ")

yl abel (" wa/ 2\ pic or a/\lanbda')

title(' The projected band for constant-x surface of a square Al rod')

[ h1 h2] =l egend(' ED states',' DE states','EE states')

set (h2(2),' facecolor','g")

set (h2(3),"' facecolor','r")

set (h2(4),' facecolor','b")
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The projected band for constant-x surface of a souare Al rod
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Asis shown, Plane wave method is able to deal with alot of PBG related problems. We
have verified our program using a lot of published results. Minor modifications needed to
tailor them for other applications. For various applications and the divergence see my
previous paper.

Convergence and stability

Sizetest. m

#of plane 5X5 X7 9X9 11X11 13X13 15X15 17X17 19X19

waves
6 169 0.403069 0.410824 0.418774 | 0.429622
7 225 0.397684 0.407251 0.414597 | 0.421022
8 289 0.396169 0.405432 0.410860 | 0.417016
9 361 0.394902 0.404108 0.407977 | 0.413684
10 441 0.394326 0.399563 0.406205 | 0.410681 0.415767
11 529 0.394169 0.398201 0.405243 | 0.408290 0.412992
12 625 0.397168 0.403696 | 0.406652 | 0.410508
13 729 0.396306 0.399946 | 0.405695 0.408477
14 841 0.395868 0.398680 | 0.404899 | 0.406981
15 961 0.395736 0.397886 | 0.403183 0.406020 0.408608
16 1089 0.397093 | 0.400051 0.405367 0.407242
17 1225 0.396476 | 0.398873 0.404526 0.406297 | 0.408707 0.411785
18 1369 0.396130 | 0.398225 0.402755 0.405660 | 0.407456 0.410178
19 1521 0.397558 | 0.400091 0.405090 | 0.406540 | 0.408786
20 1681 0.396945 0.398997 0.404164 | 0.405899 0.407633
21 1849 0.396476 0.398433 0.402417 | 0.405404 0.406754
22 2025 0.396191 0.397874 0.400111 | 0.404826 0.406112
23 2209 0.397318 0.399095 | 0.403831 0.405633
24 2401 0.396831 0.398579 | 0.402149 0.405187
25 2601 0.396456 0.398101 | 0.400123 0.404571
26 2809 0.397612 | 0.399178 | 0.403531
27 3025 0.397148 | 0.398691 0.401935
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28 3249 0.396748 | 0.398272 0.400131
29 3481 0.396438 | 0.397842 0.399250
30 3721 0.397416 0.398781
31 3969 0.397023 0.398405
32 4225 0.398024
0.42 5 ——oxs
0.415 T \\' —8—7X7
0.41 AN 9x9
o 11X11
© 0.405 7 >
= 0\ —*—13X13
0.4 % —®—15Xx15
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0.39 : : : : : —=—19X19
12 22 32 42 52 62
sqrt(Npw)

Figure 8: Convergence of defect frequency for TM mode using different supercell sizein a square
lattice with the center rod being removed

There is an apparent oscillation, thisis due to the Gibbs phenomena.

Plane wave method is proved successful for photonic band gap calculations. The
algorithm is simple and fast for simple case, and it is generally stable and it provides
accurate and complete band information of a PBG. There are some weaknesses in this
method:

1. Huge computations for large supercell, large number of plane waves, high
accuracy calculations. Desktop PC and workstation is not sufficient to cover such
kind of computation work. Parallel computing is needed.

2. Assuming the dielectric is constant in the region of interest. No dispersionis
considered, though some plasma-like dispersion can be incorporated into PWM
method.

3. Material lossis not considered in this method.

4. Only dedal with infinite large photonic crystal. To deal with finite PBG, it is not
good.

5. Cannot deal with dynamicsin PBG devices, which limits the usage of this
method. FDTD is far better than PWM in this point.

6. Provides no reflection and transmission property of a PBG material. FDTD and
TMM (Transfer Matrix Method) can give transmission spectrum.

7. Both FDTD and TMM are not safe in providing band structure information
because of mode coupling mechanism. These methods are also suffering by
stability and accuracy problem. In this point of view, these 3 methods should be
combined together to get the complete information of a PBG.

For TMM simulation tool, see homepage of University of Glasgow. | am going to post
my FDTD code soon.

FAQ: Frequently asked questions

*** Please send your comments to shangpingguo@hotmail.com. Thanks a lot.***
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