
Techniques for Analyzing Frequency 
Selective Surfaces-A Review 

In this paper we discuss a number o f  representative techniques 
for analyzing Frequency Selective Surfaces (FSSs), which comprise 
periodic arrays o f  patches or apertures in a conducting screen and 
find important applications as filters in microwaves and optics. We 
review the basic properties o f  the FSSs and describe several differ- 
ent approaches to predicting their frequency response character- 
istics. Some recent developments in the treatment o f  truncated, 
curved, and doubly periodic screens are mentioned and represen- 
tative results are included. 

I. INTRODUCTION 

Frequency Selective Surfaces (FSSs), which f ind wide- 
spread applications as filters for microwaves and optical 
signals, have been the subject of extensive studies in recent 
years. These surfaces comprise periodically arranged 
metallic patch elements or aperture elements within a 
metallic screen and exhibit total reflection (patches) or 
transmission (apertures) in the neighborhood of the ele- 
ment resonance. Typical FSS geometries are shown in  Fig. 
1. The reflection or transmission band is predicted by ana- 
lyzing the surface using techniques which are efficient and 
which can model a wide range of configurations. I n  this 
paper, techniques currently used in this analysis are 
reviewed. The techniques are used in the design of FSSs 
and, as outl ined in the last section of this paper, are the 
basis for research into related structures. 

Historically,’ the understanding of the principles under- 
lying the physics of frequencyselective surfaces has directly 
evolved from the investigation of diffraction gratings in 
optics which are used to  decompose a beam of non- 
monochromatic light into its spectral orders. This filtering 
process, as well as the diffraction grating itself, was dis- 
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Fig. 1. Geometry of frequency selective screen. (a) Free- 
standing FSS. (b) FSS with a dielectric substrate. (c) FSS with 
both a dielectric substrate and a superstrate. 

covered by the American physicist David Rittenhouse, as 
documented by an engaging scientific exchange between 
Francis Hopkinson and Rittenhouse published in  1786 [I]. 
The exchange began the previous year when Hopkinson, 
writ ing Rittenhouse, described a curious phenomenon he 
had recenty observed and requested that Mr.  Rittenhouse 
devote his attention to  it. He wrote, “Sitting at my door one 
evening last summer, I took a silk handkerchief out  o f  my  
pocket, and stretching a port ion o f  i t  t ight between my two 
hands, I he ld  i t  up before my face and viewed, through the 
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handkerchief, one o f  the street lamps which are about one 
hundred yards distant; . . .I observed the silk threads mag- 
nif ied to the size o f  coarse wires; bu t  was much surprised 
to find that, although I moved the handkerchief to the right 
and left before m y  eyes, the dark bars did not  seem to move 
at all, b u t  remained permanent before the eye.” Ritten- 
house, taking interest i n  this phenomenon, read his results 
before the American Philosophical Society. He began,”The 
experiment you mention, with a silk handkerchief and the 
distant flame o f  a lamp, is  much more curious than one 
would at first imagine.” Constructing his own  apparatus 
from equally spaced hairs Rittenhouse held the grating u p  
to  light and observed, “I saw three parallel lines, almost 
equal in brightness, and o n  each side four or five others 
much fainter and growing more faint, coloured and  indis- 
tinct.” A more exacting grating was constructed, changing 
the spacing of the hairs with the following results, “The 
three middle lines o f  light were now not  so bright as they 
had been before, b u t  the others were stronger and more 
distinct, and I could count six on each side o f  the middle 
line, seeming to be  equally distant from each other, esti- 
mating the distance from the centre o f  one to the centre o f  
the next. . . The others were more indistinct, and consisted 
each o f  the prismatic colours.” Rittenhouse was observing 
the filtering of white light into distinct wavelength bands 
(colored lines), which were equally spaced from the center 
line of white (unfiltered) light-the spacing depending upon 
the spacings between hairs. Because of the simplicityof this 
filtering process, the diffraction grating and related struc- 
tures have been extended t o  many areas of engineering and 
science. 

The phenomenon described by Rittenhouse i s  also fun- 
damental t o  any screen consisting of periodically placed 
patches or perforated periodically with holes. The change 
of structure though increases the complexity in under- 
standing and analyzing the screen which now varies in two  
dimensions. The configuration of each element (either 
patch or aperture wi th in  an array of periodic cells), as well 
as the spacing, wi l l  contribute to  the form of the scattered 
fields-transmitted or reflected. Similarly, because of the 
finite nature of the element, the scattered field wil l  exhibit 
resonances as the excitation wavelength i s  varied, i.e., the 
fields wil l  either be totally reflected or transmitted for patch 
or aperture screens, respectively, at a specific wavelength. 
The resonances wil l  generally occur when the size of the 
element i s  an integer number of half wavelengths, with the 
infinite array of elements modifying the spectral response 
from what it would be if it were isolated. For wavelengths 
near the first resonance, a distinct spectral response asso- 
ciated with the element wil l  be observed. At wavelengths 
past the first resonance, the diffracted orders begin scat- 
tering energy at regular angles as described above by Rit- 
tenhouse for the grating, and as the wavelength is 
decreased, repeated resonances occur. Finally, the fraction 
of transmitted power approaches the fraction of the aper- 
ture area within the periodic cell in the l imit of zero wave- 
length. 

11. TYPICAL APPLICATION OF FSSS 

The applications of frequency selective surfaces are many 
and varied, and they range over much of the electromag- 
netic spectrum. In the microwave region, the frequency 

selective properties of periodic screens are exploited, for 
example, t o  make a more efficient use of reflector antennas 
[ 2 ] .  As shown in Fig. 2, afrequency selective surface is placed 
between two feeds, radiating at differing frequencies, and 

14/12 GHz 
Feed Feed 

Fig. 2. Reflector antenna system using frequency selective 
screen. 

the main reflector. The screen i s  totally reflecting (or nearly 
so) over the operating band of feed one, and conversely, 
it i s  nearly totally transparent over the band of feed two. 
Hence, in this configuration, two independent feeds may 
share the same reflector antenna simultaneously, i n  a fre- 
quency reuse mode. The desired spectral response of the 
screen i s  shown in  Fig. 3 for a single angle of incidence and 
polarization of the incident field. Though this response may 
meet the requirements of the reflector system when the 
incident angle on the screen i s  near normal, changing the 
angle of incidence or polarization of the feed excitation may 
degrade the spectral response of the screen to  a point where 
the antenna characteristics no  longer meet the system 
requirements. Hence, a patch geometry that produces a 
response that is relatively insensitive to  the angle of inci- 
dence of the i l luminating field i s  highly desired. The Jeru- 
salem cross geometry [3] has been found to  be one of the 
promising candidates as an FSS element satisfying this cri- 
terion. 

A second example of the exploitation of the frequency 
selective property of periodic screens in the microwave 
region i s  the application i n  radome design [4]. The screen 
can be tuned to  provide a bandpass transmission charac- 
teristic at the operating frequency of the antenna. At the 
out-of-band frequencies, the screen can be made essen- 
tially totally reflecting, and the radome can be designed to  
blend with the skin of the vehicle such that minimal scat- 
tering occurs at the joint between the radome and the skin. 

In the far-infrared region, periodic screens are used as 
polarizers, beam splitters, as well as mirrors for improving 
the pumping efficiency in molecular lasers [5], [61. A polar- 
izer can be constructed from a diff raction grating such that 
the fields polarized parallel t o  the grating are reflected, 
while those with an orthogonal polarization are transmit- 
ted. A cavity mirror used in a laser can be constructed f rom 
a frequency selective surface such that it i s  totally reflecting 
at the wavelength of the energy used to pump the cavity, 
and partially transmitting (0-40 percent) at the lasing wave- 
length. No energy used in optically pumping the laser i s  lost 
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Fig. 3. Spectral response of screen used in Fig. 2. 

at the mirror; hence, the efficiency of the system i s  
increased. 

Another application of the FSS i n  this wavelength range 
is in infrared sensors where, once again, the frequency 
selective property of the FSS i s  used to  absorb the desired 
frequencies in the substrate material backing the screen, 
while the out-of-band frequencies are rejected. 

In the near-infrared and visible portions of the spectrum, 
periodic screens have been proposed as solar selective sur- 
faces to  aid in the collection of solar energy [;7. A screen 
can bedesigned such that it is  essentiallytransparent in the 
frequency band where the sofar cells are most efficient and 
is reflecting at frequencies outside this band. Finally, nat- 
ural occurrences of periodic screens have been discovered 
in entomological studies [8], e.g., in the corneas of insects- 
the well-known fly-eye lens. More applications of FSSs can 
be found in  [8]-[12]. 

I l l .  FORMULATION OF THE FSS S C A ~ E R I N C  PROBLEM 

The first step in formulating the problem of electromag- 
netic scattering from a frequency selective surface i s  t o  
relate the fields scattered from the FSS to the surface cur- 
rents induced on the screen by the incident field. Through- 
out this paper, we wil l  assume that the FSS i s  infinitesimally 
thin, an assumption which is  usually valid for most appli- 
cations, even at optical frequencies. Initially, we consider 
the case a freestanding, perfectly conducting FSS whose 
geometry i s  shown in  Fig. l(a) [13]-[16]. Later in this paper 
we indicate how this formulation can be modified to  handle 
an FSS on a dielectric substrate, and wi th  a finite conduc- 
tivity. 

Let ] be the induced surface current density o n  the FSS 
and A be the magnetic vector potential due to  this current. 
In general, due to the planar nature of the FSS, the induced 
surface current ] has only nonzero transverse components. 
Assuming that the t ime convention i s  exp (jut), one can 
relate the transverse (to z) components of A and )as follows 

FREOUENCY,GHz 

where 

= exp ( - jkor) = 
I ,  r = (x2 + y2)"*, G =  

47rr 

ko = free-space wave number, 

I = identity tensor, 

and * is the convolution operator. 
The next step is t o  express the transverse components of 

the scattered electric field E' in the plane of the screen, i.e., 
a tz  = 0, in termsof thetransversecomponentsof thevector 
potential A. The relationship is given by 

In  order to  take ful l  advantage of the periodicity of the 
geometry, it i s  convenient t o  rewrite the above equation in 
the spectral domain [3], [17]. To this end, we use Fourier 
transform (2) to  obtain 

(3) 

where 

and CY and P are the transform variables corresponding to  
thexandycoordinates, respectively. When the FSS is strictly 
doublyperiodic (which requiresthat it beof  infiniteextent), 
the Fourier transform of the induced current) i s  nonzero 
only for an infinite set of discrete values of the spectral 
variables CY and 0. These values, designated here as CY,,," and 
om,, are associated w i th  the Floquet harmonics for the dou- 
bly periodic screen, named after the nineteenth century 
French mathematician Floquet who  introduced the con- 
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cepts of these harmonics in the context of his work o n  the 
periodic solution of differential equations. The explicit 
expressions for amn and Om, are as follows: 

2an 2sm p,, = - - __ cot D + ko sin 8 sin 4. 
b sin Q a 

where 8,4 are the angles of the incident plane wave. In Fig. 
1 a is  Tq,, and b i s  Tq2. 

Taking the inverse transform of (3) and enforcing the 
boundary condition that the total field, i.e., the sum of the 
scattered field and the incident field, be zero on the per- 
fectly conducting surface of the FSS, we obtain the follow- 
ing equation for the unknown induced currents on the 
screen 

(4) 

The transformed derivatives and the constant l/jwco Lave 
been incorporated into the individual components of t o  
simplifythe notation. Once the induced currents have been 
determined by solving the above set of equations, other 
quantities of practical interest, e.g., reflection and trans- 
mission coefficients for the dominant harmonics, as well as 
the scattering matrix description for the screen, can be 
readily calculated. 

For an aperture-type (inductive) FSS [la]-[20], wecan apply 
the concepts of duality t o  (4) by replacing E with H and eo 
and po. Furthermore, invoking the symmetry of the screen 
geometry, and defining a magnetic current K i n  terms of the 
aperture field Ea as 

K = E a X 2  (5) 

we can obtain the fol lowing equation for the transverse 
components of Ea 

- jwpo m n 

The solution of the above equation yields the unknown field 
distribution in the aperture of an inductive FSS. We hasten 
to  add, however, that the above equation is strictly valid 
onlyfor a perfectly conducting FSS. If the screen has a finite 
conductivity, we must formulate the problem in  terms of 
the surface currents o n  the conducting portions of the 
screen, rather than the fields i n  the aperture. 

Of  considerable practical interest are the extensions of 
the formulations presented above for the patch and aper- 

ture-type FSSs to  the cases of screens i) embedded in a 
dielectric medium of finite thickness; ii) printed on a sub- 
strate; and iii) wi th  both a substrate and a superstrate [21]- 
[24]. We now show below how these could be carried out 
in a relatively straightforward manner by following the pro- 
cedure outl ined below. Consider an FSS structure with a 
dielectric substrate and superstrate shown in Fig. l(c). To 
modify the operator equation derived earlier for the 
induced current on the freestanding screen, we simply 
replace the spectral dyadic Green's function i n  (4) with a 
new composite Green's function which accounts for both 
the substrate and the superstrate. The spectral dyadic 
Green's function for a layered dielectric medium can be 
conveniently obtained via the spectral domain immittance 
approach, which has been described in [25] in connection 
with printed circuit transmission l ine problems. 

Following the notation i n  [25], and again denoting the sur- 
face current densities by jX and j y ,  the operator equation 
relating the current densities and the transverse compo- 
nents of the incident field o n  the conducting surface can 
be written as 

where 

Z e  cos2 8 + .?' sin2 8 (2' - ?') sin 8 cos 8 =I (2' - fh)  sin 0 cos 8 2' sin2 8 + Zh cos2 8 

The transverse components of the incident field o n  the 
conducting surface are derived by  constructing the z- 
directed vector potential in each of the dielectric layered 
regions (see Fig. 4). Enforcing the appropriate continuity 
conditions at each dielectric interface, we can obtain the 
following two  expressions for the incident field on the con- 
ducting surface for the transverse electric (TE) and trans- 

air region 1 

region 3 dielectric 

air region 4 

Fig. 4. 
derived. 

Stratified regions in which the vector potentials are 
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verse magnetic (TM) cases, respectively: 

Using the above expressions for the incident fields and that 
of the dyadic Green’s function given in (8) in the operator 
equation for the induced current density, one obtains the 
desired equation (7) t o  be solved for an FSS with substrates 
and superstrates. Note that the format o f  this equation i s  
identical t o  that of the freestanding screen, although mod- 
ifications are introduced bythe expressions for the incident 
field and the composite Green’s function. 

When the surface conductivity i s  finite, the total electric 
field on the screen no  longer vanishes, and it becomes nec- 
essary to  modify (4) and (7) i n  order to  satisfy the new, 
impedance type of boundary condition [26]-[29]. For a th in  
surface, the total electric field o n  the surface i s  equal t o  the 
product of the surface impedance and the surface current 
density. This impedance boundary condition can be rep- 
resented by the following equation: 

(1 0) 

where Z, is  the sheet impedance of the infinitely thin sur- 
face. Using the impedance boundary condition of (IO), (4) 
and (7) are modified to  treat finite conductivity surfaces as 
follows: 

-for the free-standing FSS (11) 

-for FSS embedded in dielectrics. 

(1 2) 

An approach to  solving the operator equations for the 
induced surface current or the aperture field, from which 
useful parameters such as the transmission and reflection 
coefficients of different FSS structures can be calculated 
under various conditions of illumination, i s  t o  use the 
method of moments [30] and convert them into matrix 
equations. The details of this procedure are given in the 
next section. 

Iv. SOLUTION OF OPERATOR EQUATION 

I n  this section, we discuss the solution of the equations 
governing the characteristics of FSS derived in the previous 
section using the moment method. 

As a first step we rewrite (11) and (12) i n  a symbolic form 

L * u = g  (1 3) 

where U represents either the unknown induced current 
or the aperture field E” (depending upon whether we are 
solving the patch or aperture type FSS problem), g corre- 
spondstothe known incident€’orH’field,and L istheoper- 
ator relating the unknown U t o  the incident field. The 
moment method begins by  expressing the unknown U in 
terms of a set of basis functions f’s as 

U = c C,f, (14) 

where the Cs are the unknown coefficients yet to be deter- 
mined. Substituting (14) into (13) and usingf’s as the testing 
functions, (13) i s  transformed into the following matrix 
equation 

I 

where the scalar product [a, b] i s  defined as 

for patch 

[a ,  b] = ~,pe,,u,e a* x b . i ds for aperture 

and a* i s  the complex conjugate of a .  
The efficiency wi th  which the solution of (11) and (12) can 

be derived for a desired accuracy depends critically upon 
the choice of the basis functions. It is helpful t o  consider 
several factors in choosing these functions. First, in order 
that the number of basis functions used to  represent the 
unknown current be minimal, and therefore the matrix size 
be small, it is desirable that these functions satisfy the 
appropriate edge condit ion [31]. Second, it is  convenient 
t o  choose the basis functions that are analytically Fourier 
transformable so that the need to  derive their transform 
numerically is obviated when using the operator equations 
(11)  and (12) in the transform domain. Third, in order that 
the scalar products appearing in the matrix elements be 
calculablewithout an inordinately large investment in com- 
puter time, the transforms of the basis functions must decay 
reasonably rapidly for large CY and P. A fourth factor t o  keep 
in mind i s  that if the number of basis functions needed t o  
accurately represent the unknown current density (or aper- 
ture field) becomes too large for the core memory of the 
computer, then a solution scheme that is different f rom the 
Gaussian elimination method, such as an iterative proce- 
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dure, must be utilized, often at greatly increased cost in 
terms of computer time. 

In general, there are two categories of basis functions 
used to represent the unknown function in the context of 
the moment method, viz., the entire domain and subdo- 
main basis functions and we discuss them both in the fol- 
lowing. Consider the entire domain functions first. These 
functions span theent i resupportof the unknown,thepatch 
or the aperture in an FSS cell, and are typically tailored for 
the specific geometryof the region overwhich the unknown 
is being expanded. Examples of such element geometries 
are dipole, square patch, circular patch, cross, and Jeru- 
salem cross, for which the entire domain functions have 
been successfully applied [3], [13]-[17], [32]. Circular rings 
and square loops are also studied extensively [33]-[37]. 
These element geometries are illustrated in  Fig. 5. 

(e) (f ) (g) (h) 

Fig. 5. Some typical FSS unit cell geometries. (a) Square 
patch. (b) Dipole. (c) Circular patch. (d)Crossdipole. (e) Jeru- 
salem cross. ( f )  Square loop. (g) Circular loop. (h) Square 
aperture. 

The most importantadvantageof usingtheentiredomain 
type of basis functions is that the size of the resulting 
moment method matrix is usually much smaller than that 
for the subdomain functions; thus, it becomes possible to 
solve problems for electrically large structures which could 
not otherwise be handled using subdomain functions. 
However, for an arbitrary patch or aperture geometries, 
suitable entire domain basis functions are not available in  
general. Furthermore, when the impedance loading on the 
conducting surface is not uniform, the entire domain basis 
functions that once proved useful for the perfectly con- 
ducting FSS are no longer suitable. Thus, for treating FSS 
screens comprised of arbitrarily-shaped apertures or 
patches, and for screens with finite conductivities, sub- 
domain basis functions have been found to be more ver- 
satile than the entire domain functions [38]-[41], albeit at 
an increased cost in computer time. 

We proceed now to discuss two approaches to solving 
the operator equation for the induced current (or aperture 
field) distribution on the screen. Although the basic meth- 
odology for solving these equations is the same whether 
the entire domain or subdomain basis functions are 
employed to reduce the operator equation to a matrixequa- 
tion, it should be noted that the double summation appear- 
ing in the operator equation, e.g., (II), is carried out dif- 
ferently for these basis functions. 

Consider the entire domain basis functions first. To con- 
vert the operator equation (11)  into a matrix equation, we 
apply the Calerkin method [3], [30], i.e., choose the testing 

functionsto bethe sameasthe basisfunctions. Usingasuit- 
able set of basis and testing functions in (15) we obtain the 
following matrix equation for the unknown coefficients C, 
r n  1 

J 
(16) 

The numerical efficiency with which the elements of the 
matrix in (16) can be computed depends upon the asymp- 
totic behaviors of the transforms of the basis functions 
which, in turn, determine the number of terms needed for 
convergence of the doubly infinite summations appearing 
in the expressions for the matrix elements. For some geom- 
etries, e.g., a rectangular patch, the number of terms in  the 
double summation is easily related to the total entire 
domain basis functions used. The minimum number of 
terms needed to obtain accurate weighting coefficient Cs 
in (16) is governed by the so-called 'relative convergence' 
criterion [42]-[45]. For other geometries, this criterion is  not 
as easily found. After the matrix elements are calculated by 
a straightforward double summation, the integrals appear- 
ing in (16) can be evaluated in the following manner. The 
integrals on the left-hand side of (16) can be identified as 
the Fourier transforms of the testing functions evaluated 
at k,, and k,. On the other hand, the integral on the right- 
hand side can be evaluated efficiently using a numerical 
integration technique such as the Gaussian quadrature. 

The choices of entire domain basis functions for some 
typical FSS geometries are listed below: 

1) rectangular aperture or patch 

G,,(x, y )  = 

fayrs(x, y) = p sin 

d y  
lxpq(x, y )  = 2 sin 

L 

and 

(Y + ;)I 
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wherep, s = 0,1, . . . , q, r = 1,2, . . . , and T, i s  the ith order 
Chebyshev function of the first kind. 

2) circular aperture or patch 

E,,,(P, 4) = r; (21 ) 

wherep=0 ,1 ,2 ;~~ , r=1 ,2 ,3 ;~~ ,q ,s=0 ,+1 ,+2 ,  
. . . , and U, i s  the rth order Chebyshev function of the sec- 
ond kind. 

3) thin dipole or  slot 

I ,  = 0 (26) 

EFq = p C O S  [ y  ( y  + i ) ] P x ( O ,  W )  P,(O, L) (27) 

Ea, = 0 (28) 

wherep  = 1,2, . . . , q = 0,1,2, . . . ,and  

1, ( x  - xoI 5 - 

0, otherwise 
P,(xo, D)  = [ '1 and 

4) cross dipole or slot 

E:q = g k , ,  cos [ y ( x  + i)] + sgn ( x ) B  cos (; x ) ]  

. PJO, W )  P,(O, L )  

andp=1,2;..,andq=0,1,2;.. . 

5) Jerusalem cross 

x-d irected current: 

2 sin [ y  ( x  + :)]P,(o, L )  P,(O, W )  

i sin [ (x + y)]P,(O, D D) Pi(,-, +(L  - W )  w) (34) 

p sin [ 7 ( y  + : ) ] P ~ ( o ,  L) PJO, W )  

(33) 

y-directed current: 

(35) 

W )  (36) 
+(L - W )  p sin [ (y + : ) ] P ~ ( o .  D) pX( 7, 

junction basis function: 

T X  1 
L 2 

2 sgn ( x )  sin - PJO,  L) P,(O, W )  + - p 

1 "Y . P,(O, D)  - - p sgn Cy) cos 
2 

. P , ( - L f W .  2 W )  Py(O, D )  

1 *X . P,(O, D) - - 2 sgn ( x )  cos - 
2 D 

(37) 

T X  L - W  
. cos - D P y  (7 W )  Px(O,  D)  

Tx ( , W Px(O, D )  (40) - L + W  1 + - 2 sgn (x) cos - P, ~ 

2 D 

T X  
2 sgn ( x )  cos - PJO,  L) Py(O, D)  - p sgn Cy) 

L 

. cos 'y PJO,  W )  PY(O, L). (41 1 
L 

Typically, the matrix size associated wi th  (16) is on the order 
of 20 x 20 (or less) when the entire domain basis functions 
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are employed. In  contrast, the number of subdomain basis 
functions required to  accurately represent the current or  
the aperture field i s  often larger by an order of magnitude. 
Moreover, the Fourier transforms of the subdomain basis 
functions d o  not decay very rapidly unti l  m and n are quite 
large in amn and Dmn; hence, more Floquet harmonic terms 
are needed for the double summation to  converge. How- 
ever, as described below, it is possible to  accelerate the 
summation by using the fast Fourier transform algorithm 
(FFT). If one finds that the matrix size in (16) becomes pro- 
hibitively large for subdomain functions and it becomes 
impractical t o  use conventional elimination schemes to  
solve the matrix equation, one may be forced to  resort t o  
iterative techniques instead for this purpose. 

One of the most frequently used subdomain basis func- 
tions i s  the roof-top [38], [39], which has a triangular or 
piecewise-linear dependence in  thedirect ion of thecurrent 
and a pulse or stepwise-constant dependence in the 
orthogonal direction, as shown in Fig. 6. It i s  expedient t o  

T' . . . .  I X  . . . .  

. . .  
J. 

I I @ 
9 

JY ' 

:RI: 
. . . .  

J Y  

Fig. 6. Rooftop basis functions used to represent current. 

discretize the unit cell into an N x N grid and to  employ 
equal size roof-top basis functions. Such a discretization 
schemethat allows the useof the FFTtocarryoutthedouble 

where for the roof-top discretization, one has 

(0, elsewhere ) (46) 

, I X  - mAxl < AX 
A x  L- I x  - mAx' elsewhere 

where dx = tx/N and dy = ty/N. For details of the discre- 
tization procedure, the reader i s  referred t o  [38]-[40], [46]. 

Denoting the testing and basis functions in (16) as T and 
B,  the resulting operator equation can be rewritten, after 
rearranging the order of summations, as follows: 

A(m) = 

1 -1 E&(O, 0 )  P*(m, n + f) 
€,,I;(O, 0 )  P*(m + f, n) 

1 [P € I*  v (  0, 0)  P*(m, n + ;) 
€xoI;(o, 0 )  P*(m + ;, n)  

- 

summation appears i n  the operator equation efficiently. 

Let us direct our  attention t o  the more general problem 
of solving for the current density distribution, which 
appears as the unknown in (16). The representations for J X  

and 1, take the form 

Details of this summing procedure wil l  be given shortly. . ,/(k,,nAx+ kLmrnAy) 

(49) 

N I ? - 1  N l 7 - 1  . _  . . _  . 

1 Cxx(m,  n)  Cxy(m, n)  

Cyx(m,  n)  Cyy(m, n)  
] F I T 1 [ [  

1, = -22 -g2 /,b, n)  B,(m, n )  (43) 

where B, and By are the subdomain basis functions and I, 
and /,are the unknown amplitudes of the current elements 
corresponding to  the subsections that reside within the 
conducting or resistive surface. It i s  evident that the ele- 
ment weights for the subdomains that fall outside of the 
patches are to  be set identically equal t o  zero. 

The current basis functions are described by the follow- 
ing equations: where 

P*(m, n) 0 

= I o  P*(m, n) 

. [FFT[[yml n, O 1Ymr "'1111 
+ Rt(m' n, O 

rm' "'1 P(m, n) /,(m, n)  

F,(m, n)  /,(m, n)  

1 " "  
Bx(m, n)  = A(m + 1) n(n) (44) C;,(m, n )  = 7 c c Cxx(m,, n') B,(m,, n') I;(m,, n')  N r =  -m s =  -m 
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- m  m 

(54) 

B and Tare the Fourier transforms of the basis and testing 
functions, respectively. The asterisk represents the com- 
plex conjugate operation. E,, and E,, are the magnitudes of 
the x and y components of the incident field, respectively. 
When an N x N FFT is used, n' = n + rN and m' = m + 
sN; -NI2 5 n, m 5 NI2 - 1. The resistance terms Fs which 
appear in (48) and (50) wil l  be defined shortly. 

The unknown weight coefficients can be obtained either 
by a direct solution of the matrix equation or by using an 
iterative procedure, e.g., the conjugate gradient method 
(CGM) [471, [48]. One distinct difference between the 
numerical implementation of the direct matrix method and 
the iterative procedure lies i n  the manner in which the dou- 
ble summation is  evaluated i n  these two  schemes. In  the 
conventional direct matrix method [39], each matrix ele- 
ment i s  a double summation with the index ranging f rom 
-NN to  NN, and the computation of these double sum- 
mations is typically very time-consuming. A more efficient 
way to  evaluate the matrix elements is  t o  first compute the 
double summations in (51) t o  (54), and then carry out  the 
double summations i n  (48) via the use of the FFT. When the 
matrix size becomes prohibit ively large, (50) is cast i n  the 
form suitable for applying the iterative procedure based 
upon the conjugate gradient method (CGM). 

V. FOURIER TRANSFORM OF THE BASIS AND TESTING 
FUNCTIONS 

The rate of convergence of the iteration algorithm based 
on CGM depends on thecondit ion number of theoperator 
[49]-the higher the condit ion number the slower the con- 
vergence. Thechoiceof the basis and testing functions plays 
an important role i n  determiningthecondition number [41]. 
I n  this paper, we consider two  different testing functions, 
viz., the roof-top and the razor-blade functions, and com- 
pare the convergence of the iterative procedures for these 
two choices. The razor-blade function is defined as follows: 

1. A x  
2 1, Ix - mAxl  5 -and  y - n A y  = 0 

0, elsewhere 

(55) 

The Fourier transforms of the two  testing functions are 

rooftop 

i TAm, n) = 

razor blade 

L 

sin (y) 
T,(m, n) = 

2 

Substituting these basis and testing functions in (51) to  
(54), one can obtain the relationship between the scattered 
field and the unknown weighting coefficient, either i n  a 
matrix form as shown in (48), or in an operator form as in 
(50). Unlike the scattered field terms, the surface resistance 
terms, Fs,  in (49) and (50) consist of simple multiplication 
operations instead of convolutions. Each of these resis- 
tance terms Fs i s  the scalar product of the basis and testing 
functions which can be carried out  analytically. The resis- 
tance functions F, and fy in (49) and (50) are given by 

F,(m, n )  = C,6(m - 1, n) + C&m, n)  + C,(m + 1, n) 

(60) 

F,(m, n) = D,6(m, n - 1) + D&m, n) + D,(m, n + 1) 

(61) 

where the Kronecker d function is defined as 

1 (62) 

and s and ra re  the indices of the current elements I (s,  r )  i n  
(42) and (43). I n  addition, some modifications are necessary 
for the edge element for which m = -NI2 or NI2 - 1, and 
n = -NI2 or NI2 - 1. The 6 functions in (60) and (61) are t o  
be modified as follows: 

1 when m = r a n d  n = s i 0 elsewhere 
6(m, n) = 

For roof-top basis and razor-blade testing, one has 

A x A y  
C, = D, = - 

8 

3 
C, = D - - A x A y .  

2 - 4  
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O n  the other hand, for the same basis functions but  roof- 
top testing, the Cs and Ds read 

(69) 
A x A y  

6 
C, = Dl = - 

C2 = D - AxAy.  (70) 

Next, we consider the problem of truncating the doubly 
infinite summations in (51) through (54). When the trun- 
cation criterion i s  chosen such that r a n d  s i n  (51) t o  (54) are 
both equal t o  zero, it i s  seen that only N x N Floquet har- 
monics are retained in  thedoubly infinitesummation when 
an N x N FFT is employed. This approximation i s  used in 
[29], [50], and [51] and i s  valid only if the contributions of 
the remainder of the Floquet harmonics are negligible; 
however, in most cases, this assumption usually leads to  a 
less accurate solution. 

For the razor-blade testing function, the asymptotic 
behavior of the summand in  the infinite summation appears 
i n  (51) to  (54) and i s  given by 

2 - 3  

1 
mn(m2 + n2)112' 

Owing to the asymptotic behavior of the summand, the 
convergence of the summation is relatively slow. However, 
for the roof-top testing function, the asymptotic behavior 
takes the form: 

I 

(mn)2(m2 + n2)li2' 

For this choice of testing functions, the series in (51) to  (54) 
converge considerably faster and the number of terms in 
each of the summations can be reduced by about a factor 
oftwo.Aswil I  beshown shortly,choosingatestingfunction 
with a superior asymptotic behavior not only improves the 
rate of convergence for the double summation, it also 
accelerates the convergence of the iteration algorithm as 
well. 

Let us now consider the procedure for solving (50) using 
the conjugate gradient method, which i s  briefly outl ined 
in the Appendix. As can be seen from the Appendix, it i s  
necessary in implementing CGM t o  construct an adjoint 
operator and define an inner product. Consider the FFT as 
a matrix operator. The complex conjugate transpose of the 
FFT operation is  simply equal t o  the inverse FFT operation 
and vice versa. In view of this, the adjoint operators for (50) 
can be written as 

(73) 

It should be noted from (60) t o  (70) that the complex con- 
jugate transposes of the resistance matrix operations i n  (50) 
involving F s  remain unchanged as shown in  (73). 

The unknowns of operator equation (50) are the ampli- 
tudes of the basis functions; hence, the inner product can 
be defined as 

N12-1 N L - 1  

Once the operator and the adjoint operator have been 
identif ied for an equation t o  be solved and the inner prod- 
uct has been defined, one can fol low the procedure out- 
l ined in the Appendix to  determine the unknown ampli- 
tudes of the subdomain basis functions in (42) and (43). 
However, if the number of unknowns i s  only moderate,one 
can employadirect matrix method for matrix solution, usu- 
al lywith a considerable amount of t ime saving as compared 
to  that for the iterative solution. 

After determining the weighting coefficients of the basis 
functions, the scattered electric field for afree-standing FSS 
can befound using(4).The transmission and reflection coef- 
ficients for each of the incident and scattered modes are 
found using [30, eqs. (3.86), (3.89)]. The transmission and 
reflection coefficients of mode mn due to  mode kl incident 
are given by 

(75) 

(77) 

where 

For an FSS embedded in  a dielectric medium, we need 
toevaluatethescattered field i n  (76)and (78) atthedielectric 
and air interfaces. The relations between the scattered field 
at the dielectric and air interfaces and the current density 
on the FSS are given by 

y e . h  

. (79) z e , h  = 2 e . h  1,2 

Y;;," cosh Y1,2t1,2 + YEsh sinh ~ ~ , ~ t ~ , ~  f1.I 

Unlike the free-standing case, the transmission and reflec- 
t ion coefficients of an FSS embedded in  a dielectric layer 
depend o n  the transmitted and reflected fields from the 
dielectric layer, respectively, wi th  the FSS removed. The 
transmission and reflection coefficients can be obtained 
using (75) to  (78) with E'' being replaced by 
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where E; and E: are the reflected and transmitted fields at 
the upper and lower air-dielectric interfaces, respectively. 
F, and €5 can be evaluated as follows: 

(82) 

(85) 

Substituting(82) to(85) into(75) to(78), thetransmissionand 
reflection coefficients for the FSS embedded in dielectric 
layers can be obtained. 

VI. NUMERICAL RESULTS 

in this section we  present some numerical results that 
illustrate the application of the techniques, discussed 
above, for computing the scattering charcteristics of FSSs. 
For the first example, we  consider the problem of free- 
standing arrays of a perfectly conducting Jerusalem-cross 
patch geometry, wi th  or without four additional cross 
dipoles. The unit cells of these FSSs are depicted i n  Fig. 7(a) 
and (b). Because of the complexity of the geometries, (4) i s  
solved using the roof-top basis functions wi th  Galerkin test- 
ing. Since a fine resolution i s  required to  discretize the 
geometries, a 32 x 32 grid has been used. The number of 
unknowns required for the geometries of Fig. 7(a) and (b) 
are 696 and 584, respectively. I n  view of the large number 
of unknowns, the CGM method is  preferred over the direct 
inversion method and is employed to  solve the problem. 
Figs. 8 and 9 show the magnitudes and phases of the reflec- 
t ion coefficients for the two  structures described in Fig. 7(a) 
and (b), respectively. When the angle of incidence i s  close 
to  normal, and the electric field i s  polarized in the y direc- 
tion, no  significant difference in the results are observed, 
perhaps because the Jerusalem cross dominates the fre- 
quency response characteristics of this type of FSS. It may 
be of interest t o  mention that the criterion for terminating 
the iterative procedure is that the boundarycondit ion error 

T I  

All  dlmenslons are in centimeter 

I 

I I 

(b) 
Fig. 7. Unit cells of free-standing arrays of conducting 
patches of complex geometries. (a) Jerusalem cross with four 
additional cross dipoles. (b) Jerusalem cross. 

FREQUENCY ( G H z l  1 

Fig. 8. Magnitude of reflection coefficient versus fre- 
quency for the structures shown in Fig. 7(a) and (b). ---------- 
Jerusalem cross with four cross dipoles; - - - - - - Jerusalem 
cross. 

be reduced to  1 percent, and that the number of iterations 
required to d o  this i s  typically between 100 and 220, 
depending upon the frequency [41]. 

Next, we consider a rectangular slot backed by a th in  
dielectric sheet as shown in Fig. IO. To analyze this struc- 
ture, we need to solve for the current density using (7). The 
composite Green's function can be derived from (8) by set- 
t ing t,, = 1, and letting tl assume any arbitrary value. For 
normal incidence, the electric field is polarized i n  the x 

M l n R A  et al.: ANALYZING FREQUENCY SELECTIVE SURFACES 1603 

 
 

 



5 300 

0 200 w 

LL 
W K 

t~ 150 
0 
W m 

i 

FREOUENCY ( G H r )  

Fig. 9. Phase of reflection coefficient versus frequency for 
the structures shown in Fig. 7(a) and (b). ----------Jerusalem 
cross with four cross dipoles; - - - - - - Jerusalem cross. 

0.1875 crn 
-Hk- 

(a) (b) 

Fig. 10. Frequency selective surface with dielectric back- 
ing. (a) Slot aperture unit cell. (b) A thin dielectric substrate. 

direction. As shown in  Fig. 11, for 0 = lo ,  i.e., for the case 
when the incident angle is very close to  normal, the struc- 
ture resonatesat 12.7GHz. I t  is  found thatthestructurealso 
resonates at 26.7 GHz and that the bandwidth of this res- 

0 4-- 

0 2-- 

Frequency (GH2) 

Fig. 1 1 .  Frequency response of the FSS depicted in Fig. IO. 
0 = Io;  T M  incidence. 

onance i s  extremely narrow. As the angle of the incident 
field increases, the bandwidth of the first resonance 
increases and the resonance frequency shifts slightly. How- 
ever, the second resonance, which has a very narrow band- 
width, shifts much closer to  the lower resonance as 0 
increases. I t  i s  found that when the direct matrix inverse 
method i s  used to  solve for the unknown expansion coef- 
ficients of either the entire domain or the subdomain basis 
functions, an abrupt increase in the condition number of 
the matrix operator i s  observed as the frequency sweeps 
through the second resonance that has the narrow band- 

width. As the frequency moves past the resonance, the con- 
dit ion numbers revert back to  lower values once again. 
When the iterative method is used, the abrupt change in 
the condition number of the operator i s  reflected i n  the 
sudden increase in the number of iterations required to  
terminate the iteration with the same truncation criterion. 
I n  the next example, we wil l  show how this secondary res- 
onance can be eliminated by rearranging the array pattern. 

Fig. 12(a) showsan FSS embedded in  a stratified dielectric 
medium, and Fig. 12(b) and (c) show two different array pat- 

0.25 cm 
+I le . I -  - ,  

,430 

(b) (C) 

Fig. 12. FSS embedded in a dielectric medium. (a) Rect- 
angular path unit cell. (b) Regular array. (c) Skewed array. 

terns with the same unit cell geometry. The unit cell i s  a 
rectangular patch wi th  a sheet resistance of 1 ohm/O. The 
incident field i s  polarized i n  the x direction for normal inci- 
dence. As shown by the solid curve i n  Fig. 13, which cor- 
responds to  the array pattern in Fig. 12(b), two secondary 
resonances occur at about 26 and 28 GHz. When we rear- 
range the array geometry as i n  Fig. 12(c), the frequency 
response of the FSS shifts, as shown in the dotted curve i n  
Fig. 13. It is noted that while the secondary resonances are 
eliminated, the peak value of the reflection coefficient, the 
bandwidth, and the resonance frequency are altered only 
slightly. We also note that owing to  the finite losses of the 
screen, the power reflected by the FSS at resonance is not 
100 percent. 

0 5 10 15 20 25 

Frequency (GHr) 

Fig. 13. Frequency response of the FSS dipicted in Fig. 12. 
0 = Io; TE incidence. 

B 
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Having presented a number of illustrative numerical 
results for the single FSS screen, we next move on to  the 
problem of analyzing mult iple screens. This topic i s  dis- 
cussed in  the next section. 

VII. GENERALIZED SCATTERING MATRIX ANALYSIS O F  

MULTIPLE SCREENS AND SCREENS EMBEDDED IN ONE OR 

MORE LAYERS OF DIELECTRIC MEDIUM 

In this section, we  turn t o  the geometry of mult iple 
screens and develop a methodology based o n  cascading of 
scattering matrices for the individual screens. The method 
i s  also applicable to  the problem o f  screens embedded in  
one or more layers of dielectric medium that was discussed 
earlier in Section IV and [52]-[65]. The material in this sec- 
t ion is based primarily o n  the discussion appearing in [40] 
and [66]. The general configuration to  which the cascade 
analysis i s  applicable i s  shown in Fig. 14. 

periodic suriace I periadic surface 2 

Diagram of general periodic screen. Fig. 14. 

A. The Vector Floquet Harmonics 

We begin by representing the electric and magnetic 
fields, which exhibit the periodic behavior in thetransverse 
(toz)direction introduced bythe screens, in termsof vector 
Floquet harmonics weighted by the complex amplitudes 
{ap,,,,,}. The representation reads 

~ ( x ,  y, z) = X a;,,,,,[etp ",,, (x ,  y) + >ez,,! ,,,, (x, y ) ~ e * ' ~ ~ ~ ~ ~  (86a) 

H ( x ,  y, z) = c a~,,, , ,[hfprno(x, y) + ihlpm,,(x, y)]e"k7"r'' (86b) 

where the fields are propagating in the fr? direction. The 
summation i s  over an infinite number of vector harmonics 
etp ,",, and h, ",,, (03 < m, n < 00) and over both polarization 
states ( p  = TE and TM). The wave numbers k,,,," are given 

Pm" 

Pmn 

by 
k,,,, = (k2  - k:,n - k;n)"2 

where k is the propagation constant of the medium. The 
positive imaginary branch of k,",,, i s  taken when k 2  < k; ,  + 
k:". This amplitude sequence {ap,,,,,} i n  (86), which is valid 
inside the dielectric layer that contains the FSS, serves t o  
characterize the FSS and i s  used for cascading the screen 
with other screens or dielectric layers. I n  (86), e, and h, are 
transverse to  boundaries wi th  e, and h, are the components 
normal t o  the boundaries. Let us define the transverse com- 
ponent of the scalar Floquet harmonics [67] 

wheret,and t,arethecell dimensions alongxand y, respec- 
tively, asthe id i rected potential used in (86). (Notethat this 
formulation i s  for rectangular geometries; it is easily 
extended to  nonrectangular geometries.) Then the vector 
harmonics may be expressed as 

etrE,mn(xr y) = - V  x i*,,,(x, y) (88a) 

h,,,,,(X, Y) = v x i q r n n ( X ,  y )  (88b) 

where the harmonics are divided into those TE and T M  to  
2. From (87) and (88) we have 

e,TE,,,,n(x, y) = --/WYn - pk,,,,) *rnn(xt y) (89a) 

h,,M,,,,n(x, y )  = j W Y n  - pk,,) *,,,,,(x, y). (8%) 

Because of the plane-wave nature of the vector harmonics, 
simple relations are found between the electric and mag- 
netic vectors, 

where7 isthe harmonic impedance, andthe fieldsare prop- 
agating in the kfi direction. Theicomponents are similarly 
found: 

The propagation vector also contains the medium propa- 
gation constant and angles of incidence, but  a simplifica- 
t ion results due t o  Snell's law. The propagation vector com- 
ponents are 

2n 

tx 

27r 

tY 

kXm = - m + k sin 0' cos 4' 

kYn = - n + k sin 0' sin 4'. 

At a dielectric boundary, the tangential components of the 
field must be continuous; hence, the phase as given by the 
tangential components of the propagation vector must also 
be continuous. For generality, the surface is embedded in 
a medium identical t o  that of the lossless originating half 
space. Therefore, by Snell's law, the product k sin 0' i s  real 
and constant throughout the structure, and the angle of 
incidence 0' of a harmonic in the originating half-space i s  
identical t o  the angle of incidence at the periodic surface. 
I f  the surface were embedded in a medium different from 
the originating half-space, the angle of incidence used in  
the analysis of the periodic surface would have to  be ini- 
tially calculated for the given half-space, thus destroying 
the generality of the cascade approach. It i s  also noted that 
since k,  i s  a function of the medium propagation constant 
k,  which may be  complex, the vector harmonics wil l  prop- 
agate wi th  decaying amplitude in  a lossy medium. 

Many orthogonality relationships may be found for the 
vector harmonics. One of interest that relates to  the cal- 
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culation of power in the harmonics i s  

TE harmonics: 

e:) . A ds 

1 
D* as 

= - et . e: ds 

m, n = m', n' 

m, n # m', n' 

(92) 

where the relation between electric and magnetic har- 
monics (90a) has been used, and nonzero values are 
obtained for harmonics of similar indices due to  theorthog- 
onality of the scalar harmonics. It i s  noted that since the 
originating half-space is lossless, i.e., k is  real, the tangential 
components of the propagation vector are real; hence, the 
vector harmonics are real throughout the dielectric struc- 
ture, whether or  not  the dielectric layers are lossy. Because 
of this, the harmonics are orthogonal as shown above. This 
orthogonalitywould be lost if the product ksinf l 'of adielec- 
tric layer was imaginary. Similarly, for 

TM harmonics: 

j (93) 
1)JM,mn\lhtrM,mnl12r m, n = m', n' 

m, n # m', n' = io.  
where the relations between electric and magnetic har- 
monics ((gob)) have again been used. 

B. Normalized Floquet Voltage Waves 

Central t o  the cascade connection of dielectric layers and 
periodic surfaces i s  the calculation of the normalized Flo- 
quet voltage waves. Extended to  the Floquet vector har- 
monics defined above, these traveling waves are identical 
t o  the traveling waves defined for the guided modes used 
in  microwavecircuit theory. The normalized voltagewaves, 
with amplitudes given by an element o f  the sequence 
{ apmn}, are sufficient to describe the fields in any terminal 
plane. These voltages are given by 

(94) 

at a plane z, for fields propagating in the A direction. The 
units are the square root of power [ W112]; hence, the square 
of these waves may be interpreted as a propagating, eva- 
nescent or decaying (power) wave depending upon the 
propagation constant k,. The complex amplitude coeffi- 
cient apmn has been deliberately left outside the square root 
in order t o  preserve the phase of the wave associated with 
each harmonic. 

With the aid of the orthogonality relationship (90), the 

normalized voltage wave for each harmonic simplifies to 

vh,mn(z) = a~M,mn(1)JM,mn)112 llhtFM,,,,n ( le * / k z m n  (95b) 

where it i s  noted that 

(96) 

The scattering parameters that wi l l  characterize a ter- 

II etrr,mn II = llhTM,mnll = (kZ, + kY") 2 112 . 

minal plane are defined in the usual manner 
- 

v s  SV' (97) 

where Vs and v' indicate the unknown scattered S and 
known incident I normalized voltage wave vectors, respec- 
tively. Each vector contains all theTEandTM wavesoutlined 
above as elements wi th  the appropriate direction of prop- 
agation taken for either the incident or scattered wave. With 
reference t o  Fig. 15, the vectors at a terminal plane z are 

with the direction of propagation relative to  A indicated by 
the arrows in  Fig. 15. Equation (97) then i s  

I -  . -. 

(99) 

17 
Fig. 15. Terminal plane defining normalizedvoltagewaves. 

where S has now been divided into submatrices. In general, 
each submatrix may be rectangular, i.e., for I incident har- 
monics, there wi l l  be /  scattered harmonics resulting i n  the 
submatrices having I columns and 1 rows. This may cor- 
respond to  a single harmonic incident upon a periodic sur- 
face, scattering ideally into an infinite number (but trun- 
cated finite number) of harmonics on each side of the 
surface. Since, in general, each component wil l  be ccnsid- 
ered as an arbitrary element of the screen where the num- 
ber of incident and scattered harmonics i s  not known a 
priori, and since the component may be cascaded with other 
arbitrary components, the submatrices wil l  be calculated 
for an equal number of incident and scattered harmonics. 
The submatriceswill be of order 2MN, (M, N )  being the total 
numberof harmonics i n  the(i,)i)directions,with thefactor 
2 accounting for the TE and T M  states. The scattering param- 
eters wil l  now be outl ined for the periodic surface and 
dielectric boundary-the two  components used to  con- 
struct a screen. 
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C. Generalized Scattering Parameters o f  Periodic Surfaces 
and Dielectric Boundaries 

The scattering parameters of the first element of a peri- 
odic screen (a periodic surface) are found from the Floquet 
harmonic amplitudes {apnln}. The term generalized i s  
applied because the parameters are calculated for both 
propagating and evanescent harmonics [31]. The coeffi- 
cients {apmn} weight the vector harmonics incident upon 
and scattered from the surface. When the surface is sym- 
metric, S21 = SI2 = T ,  and because of the reciprocal nature 
of the surface, Sll = S22 = R.  The coupling of an incident 
harmonic into a forward scattered harmonic, i.e., trans- 
mitted harmonic for a surface at some plane z, then is 

(100a) 

while the coupling into a backscattered harmonic, i.e., 
reflected harmonic is 

(100b) 

where the subscript indicates incident harmonics, and the 
superscript indicates scattered harmonics. Since both TE 
and TM harmonics may be incident, and since the surface 
allows coupling of energy from one polarization into 
another, there wil l  be four transmission and four reflection 
coefficients associated with each pair of incident and 
reflected harmonics. The coefficients are explicitly given in  
Table 1 for a surface in the plane z = 0. The total fields are 
the sum of the incident and scattered fields; hence, the 

Table 1 Scattering Parameters of Surface Lying in Plane z = 0 

Periodic Surface Scattering Parameters 

Transmission Scattering Parameters 

Copolarized 

Cross Polarized 

Reflection Scattering Parameters 

Copolarized 

Cross Polarized 

copolarized transmission and reflection coefficients con- 
tain the extra weighting coefficient a&,n), 6(mn),(mn),, which 
i s  theaddition of the incident field harmonic to the identical 
forward scattered harmonic; 6,, is  the Kronecker delta func- 
tion.This additional term does notenter into anyothercoef- 
ficient due to  the orthogonalityof the harmonics. The scat- 
tering parameters may be physically interpreted as the 
coupling of energy from one harmonic into another, the 
coupling being directly found from the ratio of harmonic 
amplitudes modified by the impedance and norm of each 
harmonic. This modification is necessary because of the 
differing amounts of power associated wi th  each harmonic. 

The second element of an arbitrary screen i s  the bound- 
ary separating two  homogeneous dielectrics. Each har- 
monic, having the form of a planewave, wil l  have scattering 
parameters simply related to the transmission and reflec- 
t ion coefficients of the harmonic, and since there i s  no  cou- 
pl ing between harmonics at the interface, the scattering 
parameter matrices are diagonal. For a dielectric boundary 
between media 1 and 2 (see Fig. 15), the scattering matrix 
is antireciprocal and symmetric, being related t o  the 
medium impedances as follows: 

Si1 = -S22 = R: 

s,2 = SZ1 = 1 

(101b) 

With the scattering parameters of the two elements derived, 
it only remains to  outl ine the procedure to cascade an arbi- 
trary number of elements to  find the composite scattering 
parameters of a multiple screen embedded in a multilay- 
ered dielectric. 

D. Cascaded Connection o f  Generalized Scattering 
Parameters 

The scattering parameters given by Table 1 and (101) 
define the relationship between the incident and scattered 
harmonics at a terminal plane. Being a set of linear equa- 
tions, the manipulations of linear algebra may be directly 
applied to find the composite scattering parameters of more 
than one component. The formalism due to  Sazonov et al. 
[68] has been used and modified to account for the specific 
components used (surfaces and dielectric layers). 

A schematic illustrating the connection of two compo- 
nents i s  shown in Fig. 16. Thecomponents, being separated 
by a distanced, are characterized, e.g., by a surface embed- 
ded in a medium adistancedawayfrom adielectric bound- 
ary separating a second medium, or, e.g., by two dielectric 
boundaries separating a dielectric layer of thickness d from 
neighboring media. The normalized voltage waves to  the 
left of the composite structure are labeled a,  t o  the right 
y, and between elements & and p2, respectively, at the ter- 
minal planes of each element. Since thewaves between ele- 
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Fig. 16. Schematic showing cascade connection of scat- 
tering matrices s' and s''. 

ments are the combination of the incident and scattered 
waves of each element, the individual incident and scat- 
tered waves cannot be isolated; hence, the combination i s  
labeled vf/L and vi?, respectively, at each terminal plane. 

For the component characterized by S', the defining 
equations for the scattered waves due to  incident waves are 

and for the component characterized by S" 

Since the normalized voltage waves at terminal planes are 
traveling waves, the waves at terminal planes are simply 
related as 

vp; = P q ;  (104a) 
- 

where P is a diagonal propagator matrix, wi th  a diagonal 
element being e- 'kz"~~~d for each mnth harmonic. 

The relations between the normalized voltage waves of 
each component may becombined t o  produceacomposite 
scattering matrix defined as 

where E indicates the scattering matrices characterizing the 
composite structure. An intermediate step in the matrix 
- combination is the calculation of the internal wavesv,, and 
V2,. The knowledge of these waves then allows the calcu- 
lation of fields at any point in between the boundaries. 
Combining (102) and (103) and using (104a) and (104b) give 

where 

H, = (P - '  - S011jlPSi1(2&1 

H2 = ( P - l  - SBlo2PSs1,j1)-1. 

Completing the matrix manipulations to  find thecomposite 
scattering parameters results in 

si = s,, + S,BlH2S4,P,PS131a (1 07a) 

The resultant scattering matrices now characterize the 
composite structure, and, as i n  the individual parameters, 
are afunction of frequency. A multicomponent screen may 
be built by repeating the above procedure, using the com- 
posite scattering parameters of the initial two components 
of the screen as the first scattering parameter matrix, with 
the scattering parameters of the next component being the 
second matrix. By repeatedly adding components i n  this 
fashion, a general screen i s  constructed from individual 
components with the layering being arbitrary. 

The composite scattering parameters may also be found 
by other means. An alternative formulation involves the use 
of the T o r  transfer parameters. I n  this approach, the scat- 
tering parameters are first transformed to  transfer param- 
eters; the transfer parameters of many layers, or for mul- 
tiple screens, are cascaded to  f ind a composite transfer 
matrix; the composite matrix i s  then transformed back to  
a scattering matrix. A nearly equal number of matrix manip- 
ulations are involved in each approach, and the final scat- 
tering parameters calculated are identical. The direct 
approach outl ined here i s  somewhat preferable, however, 
because the T-Matrix approach is sometimes numerically 
unstable. I n  addition, the procedure outl ined here lends 
physical insight into the analysis, and leads toan expression 
for the composite scattering parameter that can be easily 
interpreted. This may be seen by considering an example 
where two elements are separated by a distance such that 
only a single harmonic interacts between them, and there 
i s  no  coupling between TE and T M  harmonics. This could 
correspond to  a periodic surface wi th  rectangular patches 
which i s  displaced from a dielectric layer by an appreciable 
fraction of a wavelength. The composite reflection coeffi- 
cient of the structure is given by (107a) and for the single 
propagating harmonic, reduces to  

where Rand  T have been used as the reflection and trans- 
mission coefficients of the propagating harmonic within 
each matrix S. Fig. 17 diagrams the structure, showing the 

a PI Pz Y 

p Z k z d  

Fig. 17. Schematic showing multiple reflections of voltage 
waves within a dielectric layer. 
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wave suffering mult iple reflections within the region 
between dielectric boundaries and reflecting and trans- 
mitt ing fractional amounts of the incident wave upon each 
reflection. From this picture of the interactions, the com- 
posite reflection coefficient may be derived, and when 
allowed to  be generalized to  all harmonics, whether prop- 
agating or  evanescent, the matrix reflection scattering 
parameters can be obtained. For the single harmonic pic- 
tured, summing the reflected waves gives 

where 

x = RBLo,RplBle-'2kzd 

In the limit of all reflections, 

,-f2kZd 

which i s  the reflection coefficient found using the cascade 
analysis. The same analysis holds for the composite trans- 
mission coefficient. Additional layers may be added, but  a 
physical picture quickly becomes muddled. 

By examining the composite scattering matrices as given 
by (107d), the relations between individual and composite 
scattering parameters may also be easily seen. For example, 
from the composite reflection matrix 

it i s  observed that if the second component allows no  reflec- 
t ion (SP2B2 = 0), the composite reflected waves wil l  simply 
be those of the first component and hence not be altered 
by the second component. By examining individual har- 
monics, it is observed that if the second component allows 
no  reflection into the (0, 0) harmonic, and also if the (0, 0) 
harmonic reflects no  energy into any other harmonic (cor- 
responding to  a zero row and column for each polarization 
in SB2B2), then similarly, the composite reflected (0, 0)  har- 
monic wil l  only be that of the first component. A similar 
reasoning follows for the transmission parameters and may 
beextended to  mult iple components.This l ineof reasoning 
adds insight into the cascade formulation and can be ben- 
eficial when attempting to cascade arbitrary elements t o  
produce a desired characteristic response. 

E. Accuracy of the Cascade Connection 

Because both propagating and higher-order harmonics 
carry energy, the accuracy of either the resonant wave- 
length of the structure or power dissipated in the dielectric 
as outl ined in the previous sections wil l  depend upon the 
amplitude of truncated harmonics. The resonant wave- 
length i s  affected by harmonics interacting with dielectric 
interfaces. The strongest interaction-that at the surface 
dielectric interface-can be isolated by backing the peri- 
odic surface wi th  a dielectric half-space. I n  the cascade 
analysis, agap of infinitesimal thickness i s  inserted between 
the surface and dielectric and allowed to  shrink to  zero. In 
the limit, an infinite number of harmonics would ideally be 
necessary to  characterize the interface. (As previously 
noted, the total field at any plane is represented by the Flo- 

quet voltage waves; hence, a complete description of the 
fields would require an infinite superposition of those 
waves.) The accuracy of the characterization is then depen- 
dent on the interaction of higher-order harmonics and their 
amplitudes decay relatively slowly for large E,. The com- 
posite Green's function approach described in Section IV 
is better-suited for handling the large E ,  case. 

In order t o  illustrate the application of the cascade 
approach, we consider a rectangular array of crossed 
dipoles as shown in the inset of Fig. 18. Exciting the struc- 
ture i s  normally incident plane wave wi th  a 9-directed elec- 
tric field. The number of harmonics summed wil l  be 2, I O ,  
18,26, or 42, which are the numbers (TE and TM) contained 
within concentric circles on the reciprocal lattice of the sur- 
face. The resonant wavelength of the structure is  plotted 
i n  Fig. 18 for a dielectric half-space of E, = 2.0. The result 

0.681 

5 IO 15 20  25 30 35 40 45 
0600" I I I 

NUMBER OF HARMONICS 

Fig. 18. Harmonic convergence of t h e  resonant wave- 
lengths. 

shows little change in  the resonant wavelength when more 
than 18 harmonics are summed. However, as pointed out  
earlier, this number can increase substantially for larger E,. 

Both the accuracy of the power dissipated at any point 
and the interaction of higher-order harmonics with dielec- 
tric-dielectric interfaces can be ascertained from the ampli- 
tude of the harmonics as they propagate or  decay with dis- 
tance. Writ ing the normalized voltage wave (94) as 

V,(z) = a;e-/k'J (111) 

where r indicates the subscripts pmn included with the rth 
concentric r ing of the reciprocal lattice, and the prime indi- 
cates that the normalization integral o f  (94) is  included in 
a;. Normalizing the voltage wave in r ing r to  the (single) 
propagating (TE) harmonic i n  r ing 1 gives 

(112) 

the equation of a straight line. The slope is simply the neg- 
ative of the attenuation constant (for the evanescent har- 
monics) with the intercept the numerically found complex 
amplitude. Equation (112) is plotted i n  Fig. 19 with the dis- 
t a n c e ~  in units of wavelength in the dielectric. Thecell size 
(t,lh) is 0.57 where nearly 70-percent of the power is trans- 
mitted into the dielectric. i t  is  seen that a distance of 0.25 
Ad,  amplitudes of the voltage waves in  the fourth r ing have 
decayed to nearly 0.01 percent of the propagating wave. 
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Fig. 19. Decay of harmonics with distance within the 
dielectric. 

F. Numerical Results for Typical Cascaded Geometries 

Because the combination of  surface geometries, dielec- 
tric layers, and number of cascaded surfaces may be quite 
large, only the results for typical geometries showing the 
effects of  dielectric layering and lossy layers wi l l  be pre- 
sented in this paper. The effect of dielectric backing of vary- 
ing thicknesses o n  the crossed-dipole surface of the inset 
of Fig. 18 is shown in Fig. 20. The dimensions now are in  

EFFECTOF DIELECTRIC BACKING 
a ? .  

2 0  
~ 

D (cm) 

Fig. 20. Effect of dielectric backing on periodic screen of 
Fig. 18. 

6 

centimeters, and the resonant wavelength i s  plotted versus 
dielectric thickness for dielectrics of permittivities t, = 2.0 
and 4.0. A total of 18 harmonics was summed (the thi rd r ing 
of the reciprocal lattice). I t  is seen that as the thickness i s  
increased the resonant wavelength approaches that of  a 
half-space, wi th a permittivity of e, = 4.0 having a greater 
effect o n  the resonant wavelength as compared t o  that for 
€, = 2.0. 

The magnitude of the power reflection coefficient versus 
cell size is plotted in Fig. 21 for the same crossed-dipole 
surface backed with a 0.3-cm-thick dielectric layer. Shown 
are curves for permittivities 2.0 and 4.0 compared t o  a free- 
standing surface (d = 0). The resonant wavelength shifts t o  
lower wavelengths, wi th the resonant bandwidth generally 
decreasing as the permittivity i s  increased. 

A lossy structure i s  considered in  Fig. 22. The structure 
consists of a crossed-slot aperture backed by a lossy dielec- 
tric layer of  permittivity E ,  = 3 - j 4  (see insert of Fig. 22(a)). 

DIELECTRIC BACKED SURFACE 

0 3  0.4 0.5 0.6 0.7 
TX I LPMBDA 

Fig. 21. Spectral response of the periodic screen of Fig. 18 
with dielectric backing. 

0.30 0.40 0.50 0.60 0.70 0.80 0.90 
T X / L A M  DA 

(a) 

8 

Fig. 22. Periodic surface backed by lossy dielectric layer. 
(a) Spectral response. (b) Contour plot of dissipated power. 

Because of  the high loss in the layer, n o  power i s  trans- 
mitted through the structure, all energy being reflected or 
dissipated within the layer. Plotted are the reflected power 
and the fraction of total power dissipated in  the dielectric 
layer as a function of the cell size. For comparison, the mag- 
nitude of  the power reflection coefficient of the free-stand- 
ingsurfaceisshown(dotted line).Thesharpnullofthefree- 
standing surface is removed when the lossy layer is added 
with a minimum in  the reflection coefficient occurring near 
t,lX = 0.9. Fig.22(b)isacontour plotofthedissipated power 
volume density normalized t o  the total incident power at 
a planeO.l cm intothedielectric.Theexcitation wavelength 
is t,lh = 0.9; the labels are scaled by 10 000 and the crossed 
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slot i s  sketched on the plot. (The plot was elongated for 
reproduction.)The incident electric field i s  7-directed-bot- 
tom to  top on the page-producing a maximum electric field 
in the horizontal slot, peaking at the center. Hence, the dis- 
sipated power i s  maximum at the center with greater values 
along the horizontal slot as compared to that for the vertical 
slot. 

G. Discussion of Results Derived by Using Cascade 
Approach 

The cascade formulation has been presented as a means 
of cascading arbitrary elements to  form a composite FSS. 
The scattering parameters o f  periodic surfaces and dielec- 
tric layers may be cascaded thus reducing the formulation 
from one that treats the entire structure to  one that treats 
each element separately. This allows a simplification in the 
analysis as long as the number of harmonics calculated and 
included in the cascade connection was large enough to  
give an accurate solution. The cascade connection also 
allows a formal structuring of the fields which is  used t o  
calculate the spatial distribution of dissipated power within 
a lossy dielectric layer. In addition, more than one screen 
and dielectric layer can be cascaded. 

The use of the Floquet harmonics to  form the scattering 
parameters used in the cascade connection requires the 
calculation of the fields scattered from the periodic surface 
for multiple incident harmonics. The scattering parameters 
of the surface are then stored to  be used with any com- 
bination of dielectric layers or other periodic surfaces. 
Hence, the calculation of the periodic surface scattering 
parameters must be easily performed for the cascade for- 
mulation to  be efficient. This i s  in contrast t o  the formu- 
lations that analyze the screen in its entirety, where it i s  nec- 
essary to  consider only a single incident harmonic. 
Therefore, where the cascade formulation gives the flexi- 
bility of treating a general screen, it does so at the expense 
of calculating the ful l  set of surface scattering parameters. 

VI1 I. FINITE AND CURVED FREQUENCY SELECTIVE SURFACES 

In many practical applications of the FSS, i t  is sufficiently 
accurate to  model it as a doubly-infinite, doubly-periodic, 
planar structure, that allows one to reduce the problem to  
one of f inding the current (or aperture) distribution i n  just 
one cell rather than over the entire surface. However, there 
exist many other situations where it becomes necessary to  
account for the finite size of the FSS and to  assess the effect 
of truncation i n  an accurate manner. Additionally, for many 
radome applications the FSS is  curved, and except for some 
special geometry, e.g., a cylindrical surface, the FSS i s  no  
longer doubly-periodic. As a consequence of the trunca- 
tion, or the presence of a finite curvature, the current dis- 
tr ibution on each patch becomes an independent quantity. 
Thus one i s  forced t o  consider the problem in  i t s  entirety, 
and to  simultaneously solve for the currents on the indi- 
vidual patches. Since the total number of patches is usually 
very large, the number of unknowns needed to generate 
the solution to  the scattering problem of a finite or curved 
FSS with good accuracy can easily be on the order of several 
thousands, particularly i f  the subdomain basis functions 
are employed. Even wi th  the entire domain basis functions, 
that are almost always used for such problems because of 
a significant reduction i n  the matrix size afforded by  their 

choice, the size of the FSS that can be  comfortably handled 
i s  relatively small. Consequently, it becomes necessary t o  
employ certain approximations in order to  render the trun- 
cated FSS problem a manageable one. This point is further 
elaborated o n  in the following. 

Consider a finite, square FSS structure shown in Fig. 23. 
Let the number of patches i n  the x and y directions be N, 

7. r-------- - - - I  

-t 
x 

+ A 4  

Fig. 23. A finite frequence selective surface. Currents are 
sampled along the y = 0, z = 0. 

where N may be large. As a first step, one breaks the finite 
FSS up  into central, edge, and corner regions as shown in  
the figure. Next, one assumes that the currents in the cen- 
tral region of the finite FSS are essentially the same as they 
would be i n  a doubly-periodic, doubly-infinite FSS. As for 
an edge region, one assumes that the behavior of the cur- 
rents near the edge is similar t o  the one that exists on the 
edge patches o f  a singly-truncated FSS (i.e., truncated in 
one direction and infinitely periodic i n  the other), one of 
whoseedgescoincideswith theedgeofthefinite FSS under 
consideration. Obviously, a singly-truncated FSS is  consid- 
erably more tractable in a numerically rigorous manner than 
is  i ts doubly-truncated counterpart. Experience has shown 
that the edge effects become insignificant when one pen- 
etrates about seven or eight patches into the central region 
away from the edge. This may be seen by examining the 
results, given in Fig. 24, for the current distributions/,’s for 
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I2  

I1 

IO 

9 

8 

7 

- 
x 6  

5 

4 

3 

2 

I 

0 
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Fig. 24. Induced surface current on a finite-width fre- 
quency selective surface of 31 cross dipoles: T M  polariza- 
tion, 0 = 45O, frequency = 10 CHz. 

a singly-truncated FSS with 31 cross-shaped patches in the 
x direction (see Fig. 23). 

Returning to the edge patches of the doubly-truncated 
FSS, one expresses the currents on these patches as super- 
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positions ot periodic- and tringe solutions, the latter 
extracted from the solution ot the singly-truncated geom- 
etry. Finally, the currents in the corner region can be 
approximated by a superposition ot the three compone- 
nents, viz., the periodic, tringe, and corner currents. The 
last one must be extracted trom the solution of a doubly- 
truncated FSS of manageable-size with, say, eight or so 
patches o n  the side. 

Let us now identity a crucial difference between the way 
a doubly-periodic and singly- or  doubly-truncated FSS are 
numerically analyzed [69]. Recall that for the doubly-peri- 
odiccasetheappropriateequation is(4), which, in turn, was 
derived from (3) after d i scret izi ng the t ran sform variables 
a and t o  a,,,, and PI,,,. When the FSS i s  truncated, the peri- 
odicity in the direction of the truncation is lost, and the 
summation must now be replaced by an integral over the 
continuous transform variable. (For the doubly-truncated 
case, both the transform variables become continuous.) The 
evaluation of the matrix elements containing integrals 
instead of summations becomes a considerably time-con- 
suming process. Unfortunately, however, there is no short- 
cut approach that would circumvent this problem. 

As for the arbitrary, curved-surface FSS problem, the sit- 
uation can be even more complicated because, except for 
the special case of circularly cylindrical geometry, al l  peri- 
odicity is typically lost when the surface i s  n o  longer planar. 
Once again, to avoid having to deal wi th a very large num- 
ber of unknowns, it becomes necessary to make suitable 
approximations, e.g., assuming that the surface is locally 
planar [69]. Under this approximation, one replaces the 
curved surface locally by a tangential planar surface. Next, 
one solves the doubly-infinite planar FSS problem for the 
above tangential surface, and uses this solution to approx- 
imate the current o n  the tangential patch o n  the curved sur- 
face. One then repeats the above procedure N times for 
each of the N patches to obtain the approximate current 
distribution o n  the entire curved FSS. One can also refine 
this approximate current by adding the fringe currents tor 
the patches close to the edges, in the same manner as was 
done for the finite, planar FSS. 

The techniques described above for the approximate 
analysis of doubly-truncated planar and curved FSS have 
been utilized recently by Merewether and Mittra [70] and 
KO and Mit t ra [71], [72]. For further details the reader is 
referred to the above publications. 

APPENDIX 
OUTLINE OF ITEKATIV~ AI GOKI I H M L  

The linear equation t o  be solved using the conjugate gra- 

L j  = ? I  (AI )  

where 5 is the unknown current o n  the patch and ? I  is the 
excitation field. The operator L though symmetric is not a 
positiveinegative definite, self-adjoint operator. Without 
these properties, convergence cannot be guaranteed when 
applying the C-G technique. A positive definite, self-adjoint 
equivalent system may be formed by preoperating equa- 
t ion (AI)  by the complex conjugate of the operator L* 

dient (CG) technique i s  

r * r j  = L * ? I .  (A21 

A solution to (A2) is generated by using a given set of direc- 

t ion functions {a,}:=, which satisfy the fol lowing property 

(a,, L * L ~ / )  = 0, i + j (A3) 

where the inner product is defined as 

and the norm is 

1 1 $ 1 1 2  = (?, G ) .  
Equation (A31 expresses the property that the set of direc- 
t ion functions is mutually conjugate, or simply orthogonal 
with respect to the operator L * L .  Expanding j in the basis 
{ d r }  :=, gives 

7 = ala, + aLd2 + aIa3 + . . . + and,, (A4) 

where the scalars { a , } : = ,  are the unknown weighting coef- 
ficients. Substituting (A41 into (A2), premult iplying by d,, 
and applying the mutual conjugate property result in  

( d,, L * L ~ , )  = (a,, L*?' ), 

or 

(al, L * P )  
(a!, L * L ~ , ) '  

a, = 

The weighting coefficients have been found in terms of the 
unknown set of direction functions. This set i s  recursively 
generated using the C-G method. 

Being an iterative process, the C-C technique succes- 
sively generates the direction functions to minimize a pre- 
scribed error functional. In minimization of the integrated 
square error after application of the boundary conditions 
on the patch, the resultant error tunctional i s  

E R F ' ( / )  = Ilrl12 (A61 

which is minimization in the range of L. 
Minimizing the integrated square error in  the difference 

between the exact current and an approximation for the 
current results in the error functional 

where j c .  is the exact current. This i s  minimization in the 
domain of L .  The algorithms that generate the direction 
functions and a solution for are 

DOMAIN 

i, = L J ,  - E'  

d ,  = L * i ( ,  

E R F ;  = Ilioll' 

- -  

- 
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