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In this paper we discuss a number of representative techniques
for analyzing Frequency Selective Surfaces (FSSs), which comprise
periodic arrays of patches or apertures in a conducting screen and
find important applications as filters in microwaves and optics. We
review the basic properties of the FSSs and describe several differ-
ent approaches to predicting their frequency response character-
istics. Some recent developments in the treatment of truncated,
curved, and doubly periodic screens are mentioned and represen-
tative results are included.

[. INTRODUCTION

Frequency Selective Surfaces (FSSs), which find wide-
spread applications as filters for microwaves and optical
signals, have been the subject of extensive studies in recent
years. These surfaces comprise periodically arranged
metallic patch elements or aperture elements within a
metallic screen and exhibit total reflection (patches) or
transmission (apertures) in the neighborhood of the ele-
ment resonance. Typical FSS geometries are shown in Fig.
1. The reflection or transmission band is predicted by ana-
lyzing the surface using techniques which are efficient and
which can model a wide range of configurations. In this
paper, techniques currently used in this analysis are
reviewed. The techniques are used in the design of FSSs
and, as outlined in the last section of this paper, are the
basis for research into related structures.

Historically,” the understanding of the principles under-
lying the physics of frequency selective surfaces has directly
evolved from the investigation of diffraction gratings in
optics which are used to decompose a beam of non-
monochromatic light into its spectral orders. This filtering
process, as well as the diffraction grating itself, was dis-
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Fig. 1. Geometry of frequency selective screen. (a) Free-
standing FSS. (b) FSS with a dielectric substrate. (c) FSS with
both a dielectric substrate and a superstrate.

covered by the American physicist David Rittenhouse, as
documented by an engaging scientific exchange between
Francis Hopkinson and Rittenhouse published in 1786 [1].
The exchange began the previous year when Hopkinson,
writing Rittenhouse, described a curious phenomenon he
had recenty observed and requested that Mr. Rittenhouse
devote his attention to it. He wrote, 'Sitting at my door one
evening last summer, | took a silk handkerchief out of my
pocket, and stretching a portion of it tight between my two
hands, | held it up before my face and viewed, through the
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handkerchief, one of the street lamps which are about one
hundred yards distant; . . .1 observed the silk threads mag-
nified to the size of coarse wires; but was much surprised
to find that, although I moved the handkerchief to the right
and left before my eyes, the dark bars did not seem to move
at all, but remained permanent before the eye."” Ritten-
house, taking interest in this phenomenon, read his results
before the American Philosophical Society. He began, “The
experiment you mention, with a silk handkerchief and the
distant flame of a lamp, is much more curious than one
would at first imagine.”” Constructing his own apparatus
from equally spaced hairs Rittenhouse held the grating up
to light and observed, I saw three parallel lines, almost
equal in brightness, and on each side four or five others
much fainter and growing more faint, coloured and indis-
tinct.”” A more exacting grating was constructed, changing
the spacing of the hairs with the following results, “The
three middle lines of light were now not so bright as they
had been before, but the others were stronger and more
distinct, and I could count six on each side of the middle
line, seeming to be equally distant from each other, esti-
mating the distance from the centre of one to the centre of
the next . .. The others were more indistinct, and consisted
each of the prismatic colours." Rittenhouse was observing
the filtering of white light into distinct wavelength bands
(colored lines), which were equally spaced from the center
line of white (unfiltered) light—the spacing depending upon
the spacings between hairs. Because of the simplicity of this
filtering process, the diffraction grating and related struc-
tures have been extended to many areas of engineering and
science.

The phenomenon described by Rittenhouse is also fun-
damental to any screen consisting of periodically placed
patches or perforated periodically with holes. The change
of structure though increases the complexity in under-
standing and analyzing the screen which now varies in two
dimensions. The configuration of each element (either

-patch or aperture within an array of periodic cells), as well
as the spacing, will contribute to the form of the scattered
fields—transmitted or reflected. Similarly, because of the
finite nature of the element, the scattered field will exhibit
resonances as the excitation wavelength is varied, i.e., the
fields will either be totally reflected or transmitted for patch
or aperture screens, respectively, at a specific wavelength.
The resonances will generally occur when the size of the
element is an integer number of half wavelengths, with the
infinite array of elements modifying the spectral response
from what it would be if it were isolated. For wavelengths
near the first resonance, a distinct spectral response asso-
ciated with the element will be observed. At wavelengths
past the first resonance, the diffracted orders begin scat-
tering energy at regular angles as described above by Rit-
tenhouse for the grating, and as the wavelength is
decreased, repeated resonances occur. Finally, the fraction
of transmitted power approaches the fraction of the aper-
ture area within the periodic cell in the limit of zero wave-
length.

II. TypicAL APPLICATION OF FSSs

The applications of frequency selective surfaces are many
and varied, and they range over much of the electromag-
netic spectrum. In the microwave region, the frequency
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selective properties of periodic screens are exploited, for
example, to make a more efficient use of reflector antennas
[2]. Asshown in Fig.2, afrequency selective surface is placed
between two feeds, radiating at differing frequencies, and

Periodic Surface
~

~ (Frequency Selective)
~
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12 6hz 4 | N 64 Gre
Feed Feed

Fig. 2. Reflector antenna system using frequency selective
screen.

the main reflector. The screen is totally reflecting (or nearly
so) over the operating band of feed one, and conversely,
it is nearly totally transparent over the band of feed two.
Hence, in this configuration, two independent feeds may
share the same reflector antenna simultaneously, in a fre-
quency reuse mode. The desired spectral response of the
screen is shown in Fig. 3 for a single angle of incidence and
polarization of the incident field. Though this response may
meet the requirements of the reflector system when the
incident angle on the screen is near normal, changing the
angleof incidence or polarization of the feed excitation may
degrade the spectral response of the screen to a pointwhere
the antenna characteristics no longer meet the system
requirements. Hence, a patch geometry that produces a
response that is relatively insensitive to the angle of inci-
dence of the illuminating field is highly desired. The Jeru-
salem cross geometry [3] has been found to be one of the
promising candidates as an FSS element satisfying this cri-
terion.

A second example of the exploitation of the frequency
selective property of periodic screens in the microwave
region is the application in radome design [4]. The screen
can be tuned to provide a bandpass transmission charac-
teristic at the operating frequency of the antenna. At the
out-of-band frequencies, the screen can be made essen-
tially totally reflecting, and the radome can be designed to
blend with the skin of the vehicle such that minimal scat-
tering occurs at the joint between the radome and the skin.

In the far-infrared region, periodic screens are used as
polarizers, beam splitters, as well as mirrors for improving
the pumping efficiency in molecular lasers [5], [6]. A polar-
izer can be constructed from a diffraction grating such that
the fields polarized parallel to the grating are reflected,
while those with an orthogonal polarization are transmit-
ted. A cavity mirror used in a laser can be constructed from
afrequency selective surface such that it is totally reflecting
at the wavelength of the energy used to pump the cavity,
and partially transmitting (0-40 percent) at the lasing wave-
length. No energy used in optically pumping the laser is lost
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Fig. 3. Spectral response of screen used in Fig. 2.

at the mirror; hence, the efficiency of the system is
increased.

Another application of the FSS in this wavelength range
is in infrared sensors where, once again, the frequency
selective property of the FSS is used to absorb the desired
frequencies in the substrate material backing the screen,
while the out-of-band frequencies are rejected.

In the near-infrared and visible portions of the spectrum,
periodic screens have been proposed as solar selective sur-
faces to aid in the collection of solar energy [7]. A screen
can be designed such that it is essentially transparentin the
frequency band where the solar cells are most efficientand
is reflecting at frequencies outside this band. Finally, nat-
ural occurrences of periodic screens have been discovered
in entomological studies (8], e.g., in the corneas of insects—
the well-known fly-eye lens. More applications of FSSs can
be found in [8]-[12).

I1l.  FORMULATION OF THE FSS SCATTERING PROBLEM

The first step in formulating the problem of electromag-
netic scattering from a frequency selective surface is to
relate the fields scattered from the FSS to the surface cur-
rents induced on the screen by the incident field. Through-
out this paper, we will assume that the FSS is infinitesimally
thin, an assumption which is usually valid for most appli-
cations, even at optical frequencies. Initially, we consider
the case a freestanding, perfectly conducting FSS whose
geometry is shown in Fig. 1(a) [13}-[16]. Later in this paper
we indicate how this formulation can be modified to handle
an FSS on a dielectric substrate, and with a finite conduc-
tivity.

Let J be the induced surface current density on the FSS
and A be the magnetic vector potential due to this current.
In general, due to the planar nature of the FSS, the induced
surface currentf has only nonzero transverse components.
Assuming that the time convention is exp (jwt), one can
relate the transverse (to z) components of A and J as follows

Alx, y) = L, v
[ y]=G(X,y)*[ y] (n
Alx, y) 1%, y).
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where
T - &P (—jkon) i
Arr

r= 0+ y)",

ko = free-space wave number,
1= identity tensor,

and * is the convolution operator.

The next step is to express the transverse components of
the scattered electric field E° in the plane of the screen, i.e.,
atz =0, interms of thetransverse components of the vector
potential A. The relationship is given by

92 &

9 Lk O
[Ei] 1 ad T axdy {AX} (2)
E; Joseg 3? ks +k A, '

axdy ayr 0

In order to take full advantage of the periodicity of the
geometry, it is convenient to rewrite the above equation in
the spectral domain [3], [17]. To this end, we use Fourier
transform (2) to obtain

Efa, ® 1 kg — & —af = Jda, B
_ =— Glo, B .
Ea, B Jweo L -ap ke = 6 Jye, B
3
where
é(a/ By = 2 - 1

and « and B are the transform variables corresponding to
the xandy coordinates, respectively. When the FSSiis strictly
doubly periodic (which requires that it be of infinite extent),
the Fourier transform of the induced current J is nonzero
only for an infinite set of discrete values of the spectral
variables « and . These values, designated here as «,,, and
Bmn, are associated with the Floquet harmonics for the dou-
bly periodic screen, named after the nineteenth century
French mathematician Floquet who introduced the con-
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cepts of these harmonics in the context of his work on the
periodic solution of differential equations. The explicit
expressions for a,, and 8,,, are as follows:

2
amn=ﬂ+kosin0cosd>
a
2
B = 0 2T 0 + Ky sin 6 sin 6.
b sin a

where 6, ¢ are the angles of the incident plane wave. In Fig.
TaisT,,andbisT,.

Taking the inverse transform of (3) and enforcing the
boundary condition that the total field, i.e., the sum of the
scattered field and the incident field, be zero on the per-
fectly conducting surface of the FSS, we obtain the follow-
ing equation for the unknown induced currents on the
screen

2 2
1 < ko = @mn  —mnBmn
IO
jweg m 0|~ 8 ki — B2
mnimn ] mn

Jd@mns Bumn)

iy(amm Bmn)

.. [c" c.:xyMMamn, ﬁmn)]emww
GYY

m n
yX

Al

j| e;(amnx + Bmny)

(amn/ an) |:

I

G 1 @mns Brp)

{E'x(x, y)} W
Ex, |

I

The transformed derivatives and the constant 1/jwe, have
been incorporated into the individual components of G to
simplify the notation. Once theinduced currents have been
determined by solving the above set of equations, other
quantities of practical interest, e.g., reflection and trans-
mission coefficients for the dominant harmonics, as well as
the scattering matrix description for the screen, can be
readily calculated.

Foran aperture-type (inductive) FSS[18]-[20], we can apply
the concepts of duality to (4) by replacing E with H and ¢,
and g,. Furthermore, invoking the symmetry of the screen
geometry, and defining a magnetic current Kin terms of the
aperture field E? as

K=F x2 (5)

we can obtain the following equation for the transverse
components of F?

2 5 { AnnBmn k(% - Offnn

F(am B

—jwﬂ-o m.n 4k% + B?ﬂn _amnﬁmn
a i
. [E"(am"’ ﬁm")]ej(zxmnx+ﬁmny) - i:HX} (6)
E‘;(O‘mnr Bonn) Hly

The solution of the above equation yields the unknown field
distribution in the aperture of an inductive FSS. We hasten
to add, however, that the above equation is strictly valid
only foraperfectly conducting FSS. If the screen has afinite
conductivity, we must formulate the problem in terms of
the surface currents on the conducting portions of the
screen, rather than the fields in the aperture.

Of considerable practical interest are the extensions of
the formulations presented above for the patch and aper-

1596

ture-type FSSs to the cases of screens i) embedded in a
dielectric medium of finite thickness; ii) printed on a sub-
strate; and iii) with both a substrate and a superstrate [21]-
[24]. We now show below how these could be carried out
in arelatively straightforward manner by following the pro-
cedure outlined below. Consider an FSS structure with a
dielectric substrate and superstrate shown in Fig. 1(c). To
modify the operator equation derived earlier for the
induced current on the freestanding screen, we simply
replace the spectral dyadic Green’s function in (4) with a
new composite Green’s function which accounts for both
the substrate and the superstrate. The spectral dyadic
Green’s function for a layered dielectric medium can be
conveniently obtained via the spectral domain immittance
approach, which has been described in [25] in connection
with printed circuit transmission line problems.

Following the notation in [25], and again denoting the sur-
face current densities by J, and J,, the operator equation
relating the current densities and the transverse compo-
nents of the incident field on the conducting surface can
be written as

_[E',(x, y)] _sy [cix Giy”uamm Bmﬂe/mmww
E,x, v) m o0 LGy Gy lflamn, Bmn)
@)

where

I;G-ix Giy}
G G,
[Z—e cos? 8 + Z"sin? 8 (Z°¢ — ZM sin 6 cos 0}
)

(Z¢ = ZMsin 9 cos 6 7°sin’ 9 + Z" cos? &

1
Y+€,h + Y*E,h

e h e,h

Y9 + Yo" coth vty
Y$P coth vyt + V5

Z'e,h -
Y+e,/’l — Ys,h

Y5 + Y& coth yot,
Y5 coth y,t, + Y§©

Yfe,h Yg,h

R
Y’_9= _Iw Or/, Y,h= _ Yi

Vi jw#O,
Yi = (afzﬂn + B%nn - frr’k%)ﬂzr

Xmn Bmm

2 2 127 /2"
(amn + Bon) (afnn + Bfnn)‘lz

The transverse components of the incident field on the
conducting surface are derived by constructing the z-
directed vector potential in each of the dielectric layered
regions (see Fig. 4). Enforcing the appropriate continuity
conditions at each dielectric interface, we can obtain the
following two expressions for the incident field on the con-
ducting surface for the transverse electric (TE) and trans-

cos 6 = sinf =

air region 1
dielectric region 2
dielectric region 3
air region 4

Fig. 4. Stratified regions in which the vector potentials are
derived.
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verse magnetic (TM) cases, respectively:

E -8
[ = j(Ry + Ryefex*f —TE (9a)
E .

y

E; % . [0
[ = Ry ~ Ryel >+ —T™ (9b)
E'y WE 1Ep B8

'Yo(ewt‘/smh 71‘1)[(?% + 1071 + (vo + Y72 coth pti]

where

R, =

D
vole™/sinh yit)[(Y3 — vov1 + (o — Y172 COth yobto
R, = - 5
D = (v + ¥)7: coth maty + (v + ¥ 71

- coth yqty + (7% + _'Y‘%)'YO

+ 2vg¥1y2 coth yyt; coth vty

K {yl _TE }
’Yl = N
viler —TM

Using the above expressions for the incident fields and that
of the dyadic Green’s function given in (8) in the operator
equation for the induced current density, one obtains the
desired equation (7) to be solved for an FSS with substrates
and superstrates. Note that the format of this equation is
identical to that of the freestanding screen, although mod-
ifications are introduced by the expressions for theincident
field and the composite Green'’s function.

When the surface conductivity is finite, the total electric
field on the screen no longer vanishes, and it becomes nec-
essary to modify (4) and (7) in order to satisfy the new,
impedance type of boundary condition [26]-[29]. For a thin
surface, the total electric field on the surface is equal to the
product of the surface impedance and the surface current
density. This impedance boundary condition can be rep-
resented by the following equation:

+ - Zs =0 (10
gl LE Jy

where Z; is the sheet impedance of the infinitely thin sur-
face. Using the impedance boundary condition of (10), (4)
and (7) are modified to treat finite conductivity surfaces as
follows:

[f’,(x, y)} s [G nyﬂixmmm an>]
Ex,pl ™o LG, Gy llemn Bmn)
. e[(amnx+3mny) _ Z§|\Ile

Jy
—for the free-standing FSS (11)

_[E;(x, y)] _ss {G Gii‘y”/}(amm Gmﬂ
Eixop om0 LG GE L etimns B
. i+ Bmny) _ ZS[/"—I

)

—for FSS embedded in dielectrics.
(12)
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An approach to solving the operator equations for the
induced surface current or the aperture field, from which
useful parameters such as the transmission and reflection
coefficients of different FSS structures can be calculated
under various conditions of illumination, is to use the
method of moments [30] and convert them into matrix
equations. The details of this procedure are given in the
next section.

IV. SOLUTION OF OPERATOR EQUATION

In this section, we discuss the solution of the equations
governing the characteristics of FSS derived in the previous
section using the moment method.

As a first step we rewrite (11) and (12) in a symbolic form

Lxu=g (13)

where u represents either the unknown induced current J
or the aperture field E? (depending upon whether we are
solving the patch or aperture type FSS problem), g corre-
sponds to the known incident ForHifield,and Listhe oper-
ator relating the unknown u to the incident field. The
moment method begins by expressing the unknown u in
terms of a set of basis functions f’s as

u=2%Cf (14)

where the Cs are the unknown coefficients yet to be deter-
mined. Substituting (14) into (13) and using f's as the testing
functions, (13) is transformed into the following matrix
equation

{f,,Zc,L*f,]ﬂf,,g], =12 (15)
where the scalar product [a, b] is defined as
[a, b] = S a* - bds for patch
plate

[a, b] = S a* xb-z2ds for aperture
apenure
and a* is the complex conjugate of a.

The efficiency with which the solution of (11) and (12) can
be derived for a desired accuracy depends critically upon
the choice of the basis functions. It is helpful to consider
several factors in choosing these functions. First, in order
that the number of basis functions used to represent the
unknown current be minimal, and therefore the matrix size
be small, it is desirable that these functions satisfy the
appropriate edge condition [31]. Second, it is convenient
to choose the basis functions that are analytically Fourier
transformable so that the need to derive their transform
numerically is obviated when using the operator equations
(11) and (12) in the transform domain. Third, in order that
the scalar products appearing in the matrix elements be
calculable without an inordinately large investmentin com-
puter time, the transforms of the basis functions must decay
reasonably rapidly for large « and 8. A fourth factor to keep
in mind is that if the number of basis functions needed to
accurately represent the unknown current density (or aper-
ture field) becomes too large for the core memory of the
computer, then a solution scheme that is different from the
Gaussian elimination method, such as an iterative proce-
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dure, must be utilized, often at greatly increased cost in
terms of computer time.

In general, there are two categories of basis functions
used to represent the unknown function in the context of
the moment method, viz., the entire domain and subdo-
main basis functions and we discuss them both in the fol-
lowing. Consider the entire domain functions first. These
functions span the entire support of the unknown, the patch
or the aperture in an FSS cell, and are typically tailored for
the specific geometry of the region over which the unknown
is being expanded. Examples of such element geometries
are dipole, square patch, circular patch, cross, and Jeru-
salem cross, for which the entire domain functions have
been successfully applied [3], [13]-(17], [32]. Circular rings
and square loops are also studied extensively [33]-[37].
These element geometries are illustrated in Fig. 5.

(e) M ® (h)

Fig. 5. Some typical FSS unit cell geometries. (a) Square
patch. (b) Dipole. (c) Circular patch. (d) Cross dipole. (e) Jeru-
salem cross. (f) Square loop. (g) Circular loop. (h) Square
aperture.

The mostimportantadvantage of using the entire domain
type of basis functions is that the size of the resulting
moment method matrix is usually much smaller than that
for the subdomain functions; thus, it becomes possible to
solve problems for electrically large structures which could
not otherwise be handled using subdomain functions.
However, for an arbitrary patch or aperture geometries,
suitable entire domain basis functions are not available in
general. Furthermore, when the impedance loading on the
conducting surface is not uniform, the entire domain basis
functions that once proved useful for the perfectly con-
ducting FSS are no longer suitable. Thus, for treating FSS
screens comprised of arbitrarily-shaped apertures or
patches, and for screens with finite conductivities, sub-
domain basis functions have been found to be more ver-
satile than the entire domain functions [38]-[41], albeit at
an increased cost in computer time.

We proceed now to discuss two approaches to solving
the operator equation for the induced current (or aperture
field) distribution on the screen. Although the basic meth-
odology for solving these equations is the same whether
the entire domain or subdomain basis functions are
employed to reduce the operator equation to a matrix equa-
tion, it should be noted that the double summation appear-
ing in the operator equation, e.g., (11), is carried out dif-
ferently for these basis functions.

Consider the entire domain basis functions first. To con-
vert the operator equation (11) into a matrix equation, we
apply the Galerkin method [3], [30], i.e., choose the testing
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functions to be the same as the basis functions. Using a suit-
able set of basis and testing functions in (15) we obtain the
following matrix equation for the unknown coefficients C;

S ]:'E‘X ds ]-:I 0 Gxx CX
a4 4]
S/y*if‘y ds Pmr L0 JudlGy Gy

. {jxj(amm 6mn) 0 j”:cxlil
0 Ji@mne B ILC;

Cx; S ]:i]xj ds

_Zs ’ /=112/"'-

G 5 J5idy; ds
(16)

The numerical efficiency with which the elements of the
matrix in (16) can be computed depends upon the asymp-
totic behaviors of the transforms of the basis functions
which, in turn, determine the number of terms needed for
convergence of the doubly infinite summations appearing
in the expressions for the matrix elements. For some geom-
etries, e.g., a rectangular patch, the number of terms in the
double summation is easily related to the total entire
domain basis functions used. The minimum number of
terms needed to obtain accurate weighting coefficient Cs
in (16) is governed by the so-called ‘relative convergence’
criterion [42]-[45]. For other geometries, this criterion is not
as easily found. After the matrix elements are calculated by
a straightforward double summation, the integrals appear-
ing in (16) can be evaluated in the following manner. The
integrals on the left-hand side of (16) can be identified as
the Fourier transforms of the testing functions evaluated
at k,o and k. On the other hand, the integral on the right-
hand side can be evaluated efficiently using a numerical
integration technique such as the Gaussian quadrature.

The choices of entire domain basis functions for some
typical FSS geometries are listed below:

1) rectangular aperture or patch

3

a s . d
Epqx, y) = X W_f]wi sin [%‘ (y + E)} (17)

3

1- %x
2
. o b Ts(5y>
ESs(x, ¥y} = y sin {F (X + 5)} T 72 N\ (18)
- (3]

and

JyrsX, y) = YWWQ sin {%r (y + g)} (20)

PROCEEDINGS OF THE IEEE, VOL. 76, NO. 12, DECEMBER 1988



wherep,s=0,1,--+,q,r=1,2,--- ,and T;is the ith order

Chebyshev function of the first kind.

2) circular aperture or patch

2
J

Eppqlp, &) = [ < } — g e/ @1
24172
2 .
E¢r5 o, ¢ { <§ > J Ul((? p>6’5¢ (22)
172
2 2
Jorslo, @) = { <— >} Lh<5p>e“¢ 23)

gt

Jopg(ps @) = $—2—W8’q" (24)
1_ —
‘ (MH
wherep =0,1,2,+--,r=1,23,--+,q,5s=0, 1, £2,

-, and U, is the rth order Chebyshev function of the sec-
ond kind.

3) thin dipole or slot
Jyp = ¥ sin [p <y + L>]PX(0, W) P,(0, L) (25)

=0 (26)

E2, = § cos [? <y + %)lpx(o, w) PO, @7)

EE=0 (28)
wherep =1,2,---,9=0,1,2,---,and
D
1, Ix = x| = 5
Px(xo, D) = and
0, otherwise

L =y <2
c Yy =l =3

Py(yo, D) =
0, otherwise

+ sgn (x)B cos <% x>‘§

4) cross dipole or slot

R .| pm L
Jp = x{qu sin tT <x + §>

PO, L) P, (0, W) (29
L
Jyp = yzczq sin [p <y + ﬂ — sgn (y)B cos <% y>}
P,(0, W) P,(0, L} (30)
- T L T
Eiq = X{Cw cos qT <x + 5)} + sgn (x)B cos <Z x>}
- P(0, L) PO, W) (31)
. T L s
Eq = y{CZq cos (qT <y + §>J — sgn (y)B cos <I y)}
P0, W) PO, L) (32)
andp=1,2,---,andq=0,1,2, -
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5) Jerusalem cross

x-directed current:

% sin pr <x + é)]mo, 1) P,(0, W) (33)
_[pr( . D £l - W)

% sin D <x + 2>j|Px(0, D) Py<f, W> (34)
y-directed current:

g sin| 2T <y + >JPY(0, 1) P,(0, W) (35)
S | PT D (L - W)

y sin D <y + 2ﬂPy(O, D) P,< 2 , W) (36)

junction basis function:
)‘(sgn()sm P(O L) PO, W)+ y

: (L= W
sgn (y) cos D Px< T W)

1. Ty
- PO, D) — 37 s8n (y) cos D

-L w
- PX<T+, w) P,(0, D) 37)

y sgn (y) sin =X Py(O L) P,(0, W)

41
2
X
- X —P
X sgn (x) cos D < >
- PO, D) — ~ £ sgn (x) cos =
0, 2 X 58 cos 5

~ Py<ii5§}—!!,VV> P.(0, D) 38)

£ sin = P(O L) P, 0W)+ ysgn()

Ty w
+ COS B PX< 5 W> Py(O, D)

+ % y sgn (y) cos Ty P{#

D W> PO, D) (39

y sm y(O L) P.(0, W) %)2 sgn (x)

X

L-W
- cos - Py<—*2 , W> P.(0, D)
<—L + W

R X
% sgn (x) cos — P, >

1
+_
2 D

W> P.(0, D) (40)

X sgn (x) cos =X P 0, 1) P,(0, D) — y sgn (y)

- cos "Ty PO, W) P,0, 1). @n

Typically, the matrix size associated with (16) is on the order
of 20 x 20 (or less) when the entire domain basis functions
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are employed. In contrast, the number of subdomain basis
functions required to accurately represent the current or
the aperture field is often larger by an order of magnitude.
Moreover, the Fourier transforms of the subdomain basis
functions do not decay very rapidly until m and n are quite
large in «,,, and B,,,; hence, more Floquet harmonic terms
are needed for the double summation to converge. How-
ever, as described below, it is possible to accelerate the
summation by using the fast Fourier transform algorithm
(FFT). If one finds that the matrix size in (16) becomes pro-
hibitively large for subdomain functions and it becomes
impractical to use conventional elimination schemes to
solve the matrix equation, one may be forced to resort to
iterative techniques instead for this purpose.

One of the most frequently used subdomain basis func-
tions is the roof-top [38], [39], which has a triangular or
piecewise-linear dependenceinthedirection of the current
and a pulse or stepwise-constant dependence in the
orthogonal direction, as shown in Fig. 6. It is expedient to

Fig. 6. Rooftop basis functions used to represent current.

discretize the unit cell into an N x N grid and to employ
equal size roof-top basis functions. Such a discretization
schemethatallows the use of the FFT to carry outthe double
summation appears in the operator equation efficiently.
Details of this summing procedure will be given shortly.

Let us direct our attention to the more general problem
of solving for the current density distribution, which
appears as the unknown in (16). The representations for J,
and J, take the form

NIZ—=1 N2 -1

Jo= 2 2 I{m, n)BJ(m,n) (42)
~N/2 =Ni2
NI2—1 Ni2-1

Jy= % X I(m,nBm,n 43)
~NI2  =NI2

where B, and B, are the subdomain basis functions and /,
and /, are the unknown amplitudes of the current elements
corresponding to the subsections that reside within the
conducting or resistive surface. It is evident that the ele-
ment weights for the subdomains that fall outside of the
patches are to be set identically equal to zero.

The current basis functions are described by the follow-
ing equations:

B(m, n) = A(m + 3) I(n) (44)

B,(m, n) = A(m) I(n + 3) (45)

1600

where for the roof-top discretization, one has

1, |y — nAy| < %/
II(n) = (46)
0, elsewhere
[x — mAx|
1—A—X, [x — mAx| < Ax
Alm) = (47)
0, elsewhere

where dx = tx/N and dy = ty/N. For details of the discre-
tization procedure, the reader is referred to [38]-[40}], [46].
Denoting the testing and basis functions in (16) as T and
B, the resulting operator equation can be rewritten, after
rearranging the order of summations, as follows:

{Exof;*«), 0) P*(m + 3, n)}
EnT 0, 0) PXm, n + 3)

N2Z=1N2=1TG (b, q) G, (p, q)
[ S [ P Cylp q}
-Neo-ne LGLp, g Gy (p, Q)

. @ /ltkspp ~ kxmm)AX + (kyqq — kynn)Ay]j||:IX (m, n) ‘1 (48)
T,(m, n)

P(m, n) = e‘/(kxymAx+ky,nAy)

with

or
|:Ex07~':(0, 0) PX(m + 3, n>]
EnT 0, 0) PXm, n + 3)
NI2Z=1 Ni2—1 Cxx(m' n) Gx (m, n)
(2% [ G

=N2  —=NI2

Gy(m, n) G, (m, n)

Ni2Z—1 Ni2-1
. { b Z e_/(kSHVYAX+kvmmAy)|:IX(mI n)}z

=Ni2 =N Iy(m, n)
. e/'k&nﬂAX+k,.mmAy)} + Rs[Fx(mr n) 0 ]
0 F,(m, n).
I{m, n)
' : 49)

I(m, n)

[Exof:‘m, 0) P*m + 3, n)}
EoT;(0,0) PX(m, n + 3)

P*(m,n) 0 G(m, ny G, (m, n)
= FFT-Y| _ _ }
0 P*(m, n) Gy(m, n) G,,(m, n)
Pim,n) 0 I.(m, n)
- S FFT
0 P(m, n) Iy(m, n)

{Fx(m, ny 0 }{Ix(m, n)
+ R } (50)
0 F(m, n)ILI(m, n)

where
~ 1 o oo ~ _ _
Culm, ) = =5 2 2 Gulm', n) B, ) T, n)

N2 r=-0w §=-ow

(51)
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- 1T @ o = - -
Giytm, ) = 5 2 Z°° Cym', 0y Bm', m) THm', )

r=-0 §=—

-e Jlkxm(Ax/2) = kyn(Ay/2)) (52)

- 1 & S = < .
Gplm, n) = 15 % 2 Gum', n) B, n) Ty(m', n)

144

i
. e~/(kxm'(Ax/2)—km (Ay/2) (53)
®
Gimnm == 2 X G m, n B, T;m, n)
e e

N? 5=
(54)

B and T are the Fourier transforms of the basis and testing
functions, respectively. The asterisk represents the com-
plex conjugate operation. E,o and £, are the magnitudes of
the x and y components of the incident field, respectively.
Whenan N X NFFTisused, n"=n+rNand m = m +
sN; =N/2 < n, m < N/2 — 1. The resistance terms Fs which
appear in (48) and (50) will be defined shortly.

The unknown weight coefficients can be obtained either
by a direct solution of the matrix equation or by using an
iterative procedure, e.g., the conjugate gradient method
(CGM) [47], [48]. One distinct difference between the
numerical implementation of the direct matrix method and
the iterative procedure lies in the manner in which the dou-
ble summation is evaluated in these two schemes. in the
conventional direct matrix method [39], each matrix ele-
ment is a double summation with the index ranging from
—Ny to Ny, and the computation of these double sum-
mations is typically very time-consuming. A more efficient
way to evaluate the matrix elements is to first compute the
double summations in (51) to (54), and then carry out the
double summations in (48) via the use of the FFT. When the
matrix size becomes prohibitively large, (50) is cast in the
form suitable for applying the iterative procedure based
upon the conjugate gradient method (CGM).

V. FOURIER TRANSFORM OF THE BAsIS AND TESTING
FUNCTIONS

The rate of convergence of the iteration algorithm based
on CGM depends on the condition number of the operator
[49]1—the higher the condition number the slower the con-
vergence. The choice of the basis and testing functions plays
an important role in determining the condition number [41].
In this paper, we consider two different testing functions,
viz., the roof-top and the razor-blade functions, and com-
pare the convergence of the iterative procedures for these
two choices. The razor-blade function is defined as follows:

Ax
1, |x = mAx| = —andy — nAy =0
2
T.m, n) =
0, elsewhere

(55)
The Fourier transforms of the two testing functions are
rooftop
(kAN kynAy>
in {2222

) sin 5 >
= 6
I(m, n) Ko KBy (56)

2 2
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Tm, n) = ko Ax KnAy (57)
2 2
razor blade
. <kmxAx>
sin
T(m, n) = P (58)
k
sin ( ,,yAy>
_ 2
T,(m, n) = —F——7. 59
y KAy (59)
2

Substituting these basis and testing functions in (51) to
(54), one can obtain the relationship between the scattered
field and the unknown weighting coefficient, either in a
matrix form as shown in (48), or in an operator form as in
(50). Unlike the scattered field terms, the surface resistance
terms, Fs, in (49) and (50) consist of simple multiplication
operations instead of convolutions. Each of these resis-
tance terms Fs is the scalar product of the basis and testing
functions which can be carried out analytically. The resis-
tance functions F, and F, in (49) and (50) are given by

Fdm, n) = Cd(m — 1, n) + Cdm, n) + Cy(m + 1, n)
(60)
F,(m, n)y = Dd(m, n — 1) + D,6(m, n) + Dy(m, n + 1)
61)
where the Kronecker d function is defined as
1 whenm =randn=s
om, n) = (62)
0 elsewhere

and s and r are the indices of the current elements I(s, r) in
(42) and (43). In addition, some modifications are necessary
for the edge element for which m = —N/2 or N/2 - 1, and
n = —N/2or N/2 — 1. The é functions in (60) and (61) are to
be modified as follows:

N v
—-=  8m—1,n) - e/k"“5<—N— -1, n> (63)
2 2

m =
N )
m=z- 1 6m+1,n - e""""&(—%, n> (64)
N
n=-— ém,n—1 - e”“’“é(m, N_ 1) (65)
2 2
N
n=o—138mn+1- e*’k"‘va<m, -g) (66)

For roof-top basis and razor-blade testing, one has

AxA
C =D ==Y 67
8
3
C,=D,= ZAxAy. (68)
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On the other hand, for the same basis functions but roof-
top testing, the Cs and Ds read

Axa
C, =D, =222 (69)
6
2
G =D, = gAxAy. (70)

Next, we consider the problem of truncating the doubly
infinite summations in (51) through (54). When the trun-
cation criterion is chosen such that rand s in (51) to (54) are
both equal to zero, it is seen that only N X N Floquet har-
monics are retained in the doubly infinite summation when
an N x N FFT is employed. This approximation is used in
[29], [50], and [51] and is valid only if the contributions of
the remainder of the Floquet harmonics are negligible;
however, in most cases, this assumption usually leads to a
less accurate solution.

For the razor-blade testing function, the asymptotic
behavior of the summand in the infinite summation appears
in (51) to (54) and is given by

1

— 3 71
mn(m?* + n)"? 7y

Owing to the asymptotic behavior of the summand, the

convergence of the summation is refatively slow. However,

for the roof-top testing function, the asymptotic behavior

takes the form:

1
(mmAmE + M (72)
For this choice of testing functions, the series in (51) to (54)
converge considerably faster and the number of terms in
each of the summations can be reduced by about a factor
of two. As will be shown shortly, choosing atesting function
with a superior asymptotic behavior not only improves the
rate of convergence for the double summation, it also
accelerates the convergence of the iteration algorithm as
well.

Let us now consider the procedure for solving (50) using
the conjugate gradient method, which is briefly outlined
in the Appendix. As can be seen from the Appendix, it is
necessary in implementing CGM to construct an adjoint
operator and define an inner product. Consider the FFT as
a matrix operator. The complex conjugate transpose of the
FFT operation is simply equal to the inverse FFT operation
and vice versa. In view of this, the adjoint operators for (50)

can be written as
Cx Gy PO F, 0
.. ., |FFT + RY .
Gy Gy (U 0 F

Px 0 '
FFT!
0 pP* Xy 144

It should be noted from (60) to (70) that the complex con-
jugate transposes of the resistance matrix operations in (50)
involving Fs remain unchanged as shown in (73).

The unknowns of operator equation (50) are the ampli-
tudes of the basis functions; hence, the inner product can
be defined as

(73)

NI2—1 Ni2-1

Usdd = 2 2 |im, )l + Ihm, m*. 04

-Ni2
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Once the operator and the adjoint operator have been
identified for an equation to be solved and the inner prod-
uct has been defined, one can follow the procedure out-
lined in the Appendix to determine the unknown ampli-
tudes of the subdomain basis functions in (42) and (43).
However, if the number of unknowns is only moderate, one
can employ a direct matrix method for matrix solution, usu-
ally with a considerable amount of time saving as compared
to that for the iterative solution.

After determining the weighting coefficients of the basis
functions, the scattered electric field for a free-standing FSS
canbefoundusing (4). The transmission and reflection coef-
ficients for each of the incident and scattered modes are
found using [30, eqs. (3.86), (3.89)]. The transmission and
reflection coefficients of mode mn due to mode k/incident
are given by

. 12
/“’EOE; L’Ymn(ké + ‘Y?nn)]
™

Ty = - 75)
™7 kg + Yo | vtk + vE) (
172
i . YmolKG + Vi)
Tre == (E + ja E'){_ N 76
TE an X JomnYmnk 2 'Ykl(kg + ')‘EI) TE (76)
112
ijDE; 'Ymn(k(z) + 'Y%Tm)
Ry = N 77
™S+ v [ a3 + k) | ™ 77
1
j ’ : 'Ymn(k(z) + 7$nn)
R = (E; — ja ,,,,,E’){—— N 78
TE B X J%mnY z ’Ykl(kg T 'YE/) e (78)
where
t ,(amnEi’ + anE;) r .(O‘mnEiv + ﬁmnE;)
E=j————m—, £ =—-j——m—,
‘Ymn 7mn
ES = E, E =E;, forEj;
ES = E + F, E =E +E, forE.
{1 ™ incident} 1 TE incident
Ny = ’ = .
7o TE incident — TM incident

Mo

For an FSS embedded in a dielectric medium, we need
to evaluate the scattered field in (76) and (78) at the dielectric
and air interfaces. The relations between the scattered field
at the dielectric and air interfaces and the current density
on the FSS are given by
Fm] [Z'ﬁ,2 cos’ 6 + ZJ,sin* 0 (Z5, ~ Z ) sin 8 cos 9]

Eyn (Z5,— Zh)sinfcos® Z¢,sin*6 + Z!, cos’ 0
. |:jx]
Jy
Zgh = zen iz 79
n Y55 cosh vy atis + Y§" sinh yq 5ty 2

Unlike the free-standing case, the transmission and reflec-
tion coefficients of an FSS embedded in a dielectric layer
depend on the transmitted and reflected fields from the
dielectric layer, respectively, with the FSS removed. The
transmission and reflection coefficients can be obtained
using (75) to (78) with E* being replaced by

ES' =FE,+E, E =E,+E, forE (80)
ES = E, +E, E =E, +E, fork (81)
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where E and E} are the reflected and transmitted fields at

the upper and lower air-dielectric interfaces, respectively.
E} and F can be evaluated as follows:

El .
’: nj’ - L |:<1 - h>e‘ymk1 * (1 " E>877mR2]
£, 2 Yo Yo

el +ﬁY)|:vB} 82)

[o%

t .
EXZ = A 1+ " (R1e—‘vzt2 + Rze‘vzb)
E 2 Y2

+ <1 - 3)(&»3*”‘2 + R@”")}
¥

2

. ei(ozx+ﬁy)l:-6j} —TE (83)
o
Ex ) Y1 Y1
=20 (1 - D)enag, 4 (1 + L )erig,
Ey, wep Yo Yo
. ej\ax+ﬁy),:5] (84)
(23

E — v
=200 (14 B)Re ™t + Re™)
E! weg Y2

y2
¥ . B8
+ (1 - ?)(Rze”’“2 + R1e"2“)] eflext 5“[ —TM.
Y2 o

(85)

Substituting (82) to (85) into (75) to (78), the transmission and
reflection coefficients for the FSS embedded in dielectric
layers can be obtained.

VI. NUMERICAL RESULTS

In this section we present some numerical results that
itlustrate the application of the techniques, discussed
above, for computing the scattering charcteristics of FSSs.
For the first example, we consider the problem of free-
standing arrays of a perfectly conducting Jerusalem-cross
patch geometry, with or without four additional cross
dipoles. The unit cells of these FSSs are depicted in Fig. 7(a)
and (b). Because of the complexity of the geometries, (4) is
solved using the roof-top basis functions with Galerkin test-
ing. Since a fine resolution is required to discretize the
geometries, a 32 X 32 grid has been used. The number of
unknowns required for the geometries of Fig. 7(a) and (b)
are 696 and 584, respectively. In view of the large number
of unknowns, the CGM method is preferred over the direct
inversion method and is employed to solve the problem.
Figs. 8 and 9 show the magnitudes and phases of the reflec-
tion coefficients for the two structures described in Fig. 7(a)
and (b), respectively. When the angle of incidence is close
to normal, and the electric field is polarized in the y direc-
tion, no significant difference in the results are observed,
perhaps because the Jerusalem cross dominates the fre-
quency response characteristics of this type of FSS. It may
be of interest to mention that the criterion for terminating
the iterative procedure is that the boundary condition error

MITTRA et al.. ANALYZING FREQUENCY SELECTIVE SURFACES

All dimensions are in centimeter

7
7.7

(b)

Fig. 7. Unit cells of free-standing arrays of conducting
patches of complex geometries. (a) Jerusalem cross with four
additional cross dipoles. (b) Jerusalem cross.

\

N

O.Gr

" 1 L 1 s 1 i 1 L
o2 4 6 8 10 12

FREQUENCY (GHz)

MAGNITUDE OF REFLECTION COEFFICIENT

Fig. 8. Magnitude of reflection coefficient versus fre-
quency for the structures shown in Fig. 7(a) and (b). ~=--------
Jerusalem cross with four cross dipoles; - - - - - - Jerusalem
cross.

be reduced to 1 percent, and that the number of iterations
required to do this is typically between 100 and 220,
depending upon the frequency [41].

Next, we consider a rectangular slot backed by a thin
dielectric sheet as shown in Fig. 10. To analyze this struc-
ture, we need to solve for the current density using (7). The
composite Green'’s function can be derived from (8) by set-
ting ¢4 = 1, and letting t, assume any arbitrary value. For
normal incidence, the electric field is polarized in the x
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Fig. 9. Phase of reflection coefficient versus frequency for

the structures shown in Fig. 7(a) and (b). -——-— Jerusalem
cross with four cross dipoles; - - - - - - Jerusalem cross.
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T x
£ 3
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Fig. 10. Frequency selective surface with dielectric back-
ing. (a) Slot aperture unit cell. (b) A thin dielectric substrate.

direction. As shown in Fig. 11, for = 1°, i.e., for the case
when the incident angle is very close to normal, the struc-
ture resonates at 12.7 GHz. Itis found that the structure also
resonates at 26.7 GHz and that the bandwidth of this res-
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S b

) ; ATV

[ - e
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3 !

2 . i

kS i
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>
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25 30

Frequency (GHz)

Fig. 11. Frequency response of the FSS depicted in Fig. 10.
8 = 1°; TM incidence.

onance is extremely narrow. As the angle of the incident
field increases, the bandwidth of the first resonance
increases and the resonance frequency shifts slightly. How-
ever, the second resonance, which has a very narrow band-
width, shifts much closer to the lower resonance as 6
increases. It is found that when the direct matrix inverse
method is used to solve for the unknown expansion coef-
ficients of either the entire domain or the subdomain basis
functions, an abrupt increase in the condition number of
the matrix operator is observed as the frequency sweeps
through the second resonance that has the narrow band-
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width. As the frequency moves past the resonance, the con-
dition numbers revert back to lower values once again.
When the iterative method is used, the abrupt change in
the condition number of the operator is reflected in the
sudden increase in the number of iterations required to
terminate the iteration with the same truncation criterion.
In the next example, we will show how this secondary res-
onance can be eliminated by rearranging the array pattern,

Fig.12(a) shows an FSS embedded in a stratified dielectric
medium, and Fig. 12(b) and (c) show two different array pat-

0.25cm
—» J—
0.1cm

¥ 0

£ o = ¥
o Q Tl 1}

- 3 7y

* 0.1 cm

.
|

©

b

(b)

Fig. 12. FSS embedded in a dielectric medium. (a) Rect-
angular path unit cell. (b) Regular array. (c) Skewed array.

terns with the same unit cell geometry. The unit cell is a
rectangular patch with a sheet resistance of 1 ohm/J. The
incident field is polarized in the x direction for normal inci-
dence. As shown by the solid curve in Fig. 13, which cor-
responds to the array pattern in Fig. 12(b), two secondary
resonances occur at about 26 and 28 GHz. When we rear-
range the array geometry as in Fig. 12(c), the frequency
response of the FSS shifts, as shown in the dotted curve in
Fig. 13. It is noted that while the secondary resonances are
eliminated, the peak value of the reflection coefficient, the
bandwidth, and the resonance frequency are altered only
slightly. We also note that owing to the finite losses of the
screen, the power reflected by the FSS at resonance is not
100 percent.

Magnitude of reflection coefficient
(=}
a
|
!

L R e N

{ Il )
| JRLALENL L B (A S B B By S e

10 15 20
Frequency (GHz)

Fig. 13. Frequency response of the FSS dipicted in Fig. 12.
6 = 1°; TE incidence.
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Having presented a number of illustrative numerical
results for the single FSS screen, we next move on to the
problem of analyzing multiple screens. This topic is dis-
cussed in the next section.

VII. GENERALIZED SCATTERING MATRIX ANALYSIS OF
MULTIPLE SCREENS AND SCREENS EMBEDDED IN ONE OR
MoORe LAYERS OF DIELECTRIC MEDIUM

[n this section, we turn to the geometry of multiple
screens and develop a methodology based on cascading of
scattering matrices for the individual screens. The method
is also applicable to the problem of screens embedded in
one or more layers of dielectric medium that was discussed
earlier in Section IV and [52]-[65]. The material in this sec-
tion is based primarily on the discussion appearing in [40]
and [66]. The general configuration to which the cascade
analysis is applicable is shown in Fig. 14.

d

@ @
O O

e

d s 2 P

s 7 s
see “ P ~ s ese
e
,,’ & |- €, P €, Fah
r—u,—/——v PR ¢ 7L pyf—
periodic surface | periodic surface 2

Fig. 14. Diagram of general periodic screen.

A. The Vector Floquet Harmonics

We begin by representing the electric and magnetic
fields, which exhibit the periodic behavior in the transverse
(toz) direction introduced by the screens, in terms of vector
Floquet harmonics weighted by the complex amplitudes
{@pmn}- The representation reads

Ex,y, 2) = 2 aknle,,.(x y) + 2e,, (x, ylet s (86a)
pmn

(x, yletkm?  (86b)

Hix, y, 2) = 2 aktualhy,.(x, y) + 2h,,
pmn
where the fields are propagating in the +7 direction. The
summation is over an infinite number of vector harmonics
€, and h,,, (0 < m, n < =) and over both polarization
states (p = TE and TM). The wave numbers k,, are given
by
I
k,, = (k*— ki - ki)12

Zmn

where k is the propagation constant of the medium. The
positive imaginary branch of k,, is taken when k* < k},_ +
k... This amplitude sequence {a,m,} in (86), which is valid
inside the dielectric layer that contains the FSS, serves to
characterize the FSS and is used for cascading the screen
with other screens or dielectric layers. In (86), e, and h, are
transverse to boundaries with e,and h, are the components
normal to the boundaries. Let us define the transverse com-
ponent of the scalar Floquet harmonics [67]

1 X
¥o.(x, y) = m e /ftkamx +kyoy) (87)
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where t,and t, are the cell dimensions along xand y, respec-
tively, as the Z directed potential used in (86). (Note that this
formulation is for rectangular geometries; it is easily
extended to nonrectangular geometries.) Then the vector
harmonics may be expressed as

e[TE,mn(Xl V) = -V X Z\I’mn(xr y) (883)
htw,mn(xl y) =V X 2¥,,(x, y) (88b)

where the harmonics are divided into those TE and TM to
Z. From (87) and (88) we have

e mnlX, ¥) = —j(Rky, — Vi) Yrn(X, y) (89a)
h”M,nm(X’ y = /'()?kyn - kam) ¥ on(x, y). (89b)

Because of the plane-wave nature of the vector harmonics,
simple relations are found between the electric and mag-
netic vectors,

A Wi
X ey = 207 mafre ot Memn = (90a)
Zmn
) 1 Kz
htTan xXn=+= €41t mnt NM,mn = (90b)
NT™M, mn

wheren is the harmonicimpedance, and the fields are prop-
agating in the +1 direction. The Zcomponents are similarly
found:

1
hZTLmn(X’ y) =7 (k2 - kgmn)‘I’mn(X/ y) (91a)
jeou
1
eZTM,mn(X’ y) = (kz - k%mn)‘l’mn(x/ y) (91b)
Joe

The propagation vector also contains the medium propa-
gation constant and angles of incidence, but a simplifica-
tion results due to Snell’s law. The propagation vector com-
ponents are

Koy = (K* = k3, — k3 )"
27 )
ks, :t—m + k sin 6 cos ¢’
X
27

k,, = Tyn + k sin ¢ sin ¢'.

At a dielectric boundary, the tangential components of the
field must be continuous; hence, the phase as given by the
tangential components of the propagation vector mustalso
be continuous. For generality, the surface is embedded in
a medium identical to that of the lossless originating half
space. Therefore, by Snell’s law, the product k sin ¢’ is real
and constant throughout the structure, and the angle of
incidence #' of a harmonic in the originating half-space is
identical to the angle of incidence at the periodic surface.
If the surface were embedded in a medium different from
the originating half-space, the angle of incidence used in
the analysis of the periodic surface would have to be ini-
tially calculated for the given half-space, thus destroying
the generality of the cascade approach. Itis also noted that
since k, is a function of the medium propagation constant
k, which may be complex, the vector harmonics will prop-
agate with decaying amplitude in a lossy medium.

Many orthogonality relationships may be found for the
vector harmonics. One of interest that relates to the cal-
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culation of power in the harmonics is

TE harmonics:

1 % N
Se,xh?“(i-ﬁ)ds:—*Se,x(ﬁxe,)'nds
as n as

1
=— 1\ e e ds
T)* as
1 HZ _ ’ ’
= l€urmll, M, N =m,n
N TE,mn
0, m,n#* m’,n

92)

where the relation between electric and magnetic har-
monics (90a) has been used, and nonzero values are
obtained for harmonics of similar indices due to the orthog-
onality of the scalar harmonics. It is noted that since the
originating half-space is lossless, i.e., k is real, the tangential
components of the propagation vector are real; hence, the
vector harmonics are real throughout the dielectric struc-
ture, whether or not the dielectric layers are lossy. Because
of this, the harmonics are orthogonal as shown above. This
orthogonality would be lost if the product k sin 8 of adielec-
tric layer was imaginary. Similarly, for

TM harmonics:

Sa etw,mn X h;M,mn ) (tﬁ) dS
s

_ {"’M,mnuhmmn"zf mn = m"n} ©3)

0, m,n# m’, n’

where the relations between electric and magnetic har-
monics ((90b)) have again been used.

B. Normalized Floquet Voltage Waves

Central to the cascade connection of dielectric layers and
periodic surfaces is the calculation of the normalized Flo-
quet voltage waves. Extended to the Floquet vector har-
monics defined above, these traveling waves are identical
to the traveling waves defined for the guided modes used
in microwave circuit theory. The normalized voltage waves,
with amplitudes given by an element of the sequence
{a,mn }, are sufficient to describe the fields in any terminal
plane. These voltages are given by

1
. N j Kz
vina(2Z) = 3,§mn [ Sas €., X he - (xA) ds:l g F/fme

(94)

at a plane z, for fields propagating in the + 7 direction. The
units are the square root of power [ W 2]; hence, the square
of these waves may be interpreted as a propagating, eva-
nescent or decaying (power) wave depending upon the
propagation constant k,. The complex amplitude coeffi-
cientay,, has been deliberately left outside the square root
in order to preserve the phase of the wave associated with
each harmonic.

With the aid of the orthogonality relationship (90), the
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normalized voltage wave for each harmonic simplifies to

t+ + 1 i
vTE,mn (z) = are,mn T x 72 ” €16 mn " e kemn (95a)
(nTE,mn)

V%M,mn (Z) = aTtM,rnn (nTM,mn) vz ” h[TM‘mn " e fkamn (95'3)

where it is noted that
e nll = b, | = (i, + k)" (96)

The scattering parameters that will characterize a ter-
minal plane are defined in the usual manner

Vs =sV 97)
where V° and V' indicate the unknown scattered S and
known incident / normalized voltage wave vectors, respec-
tively. Each vector contains all the TEand TM waves outlined
above as elements with the appropriate direction of prop-

agation taken for either the incident or scattered wave. With
reference to Fig. 15, the vectors at a terminal plane z are

h VS

V= v S _ v
RV T s 38)

% V2

with the direction of propagation relative to # indicated by
the arrows in Fig. 15. Equation (97) then is

|iT/Sil I:Sﬂ slz:‘ [T/h
_|= - (99)
Vs $1 Sy v

I Iz
TE,Q0 TE,Q0
° o
o °
o °
1, Vi
™, MN ™, MN
S S2
TE, Q0 TE, 00
° °
o °
o o
Sy VSZ
TM, NN ™, MN
r
n

Fig. 15. Terminal plane defining normalized voltage waves.

where S has now been divided into submatrices. In general,
each submatrix may be rectangular, i.e., for / incident har-
monics, there will be / scattered harmonics resulting in the
submatrices having / columns and / rows. This may cor-
respond to a single harmonic incident upon a periodic sur-
face, scattering ideally into an infinite number (but trun-
cated finite number) of harmonics on each side of the
surface. Since, in general, each component will be consid-
ered as an arbitrary element of the screen where the num-
ber of incident and scattered harmonics is not known a
priori,and since the component may be cascaded with other
arbitrary components, the submatrices will be calculated
for an equal number of incident and scattered harmonics.
The submatrices will be of order 2MN, (M, N) being the total
number of harmonics in the (8, y) directions, with the factor
2accounting for the TEand TM states. The scattering param-
eters will now be outlined for the periodic surface and
dielectric boundary—the two components used to con-
struct a screen.
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C. Generalized Scattering Parameters of Periodic Surfaces
and Dielectric Boundaries

The scattering parameters of the first element of a peri-
odic screen (a periodic surface) are found from the Floquet
harmonic amplitudes {a,,,}. The term generalized is
applied because the parameters are calculated for both
propagating and evanescent harmonics [31]. The coeffi-
cients {a,.,} weight the vector harmonics incident upon
and scattered from the surface. When the surface is sym-
metric, S,, = S;, = T, and because of the reciprocal nature
of the surface, $;; = S = R. The coupling of an incident
harmonic into a forward scattered harmonic, i.e., trans-
mitted harmonic for a surface at some plane z, then is

vszmn
Thmm(z) = —M (100a)
v(pmn)r @

while the coupling into a backscattered harmonic, i.e.,
reflected harmonic is

Si
REM™(2) = Vigmn, (2) (100b)
v(;Jmn)r @)

where the subscript indicates incident harmonics, and the
superscript indicates scattered harmonics. Since both TE
and TM harmonics may be incident, and since the surface
allows coupling of energy from one polarization into
another, there will be four transmission and four reflection
coefficients associated with each pair of incident and
reflected harmonics. The coefficients are explicitly given in
Table 1 for a surface in the plane z = 0. The total fields are
the sum of the incident and scattered fields; hence, the

Table 1 Scattering Parameters of Surface Lying in Plane z = 0

Periodic Surface Scattering Parameters

Transmission Scattering Parameters

Copolarized
4 + * 1”2 =
7T, ateimm, Ounmuimm, t ATeumm, (%ﬂmm.) ”enmm ‘
TEHmny, = ' * =
ATEmm, Ntemn), (E-
+ N 142 =
TTMomm, aTrimm, Sennyimm, T A7asimm, <7’1M(mm\> thmw |
T™Mmn), = i Y
Ammn), Nrmunm, I B, I
Cross Polarized
. _
TTMems Armimn), ( * )2 “hnuwm [
TEmny = 7 \TMune MTEmny, —”7 I
ATEmny €41t1mm,
N _
TTEm. ArEimn), 1 “elmmrm}

TMimn), = 2R
Arpimen, Wragimm, MTemm.) I hﬂ\nmnn”

Reflection Scattering Parameters
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. * "2 (=
RIEmm. _ Aremny, <7Iu(mn),> ” exmmm,“
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e, o |
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ATemm, \MTEmn,

- 172
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RiEmm, = 7 ("77M(mn)‘n7'£\mn),) = ”
aATEmn), 120,
RTEmm, A7eimm, 1 H‘énmmn l
T™mm, =
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copolarized transmission and reflection coefficients con-
tain the extra weighting coefficient argmam, S¢mmymm, Which
is the addition of the incident field harmonicto the identical
forward scattered harmonic; §; is the Kronecker delta func-
tion. Thisadditional term does notenter into any other coef-
ficient due to the orthogonality of the harmonics. The scat-
tering parameters may be physically interpreted as the
coupling of energy from one harmonic into another, the
coupling being directly found from the ratio of harmonic
amplitudes modified by the impedance and norm of each
harmonic. This modification is necessary because of the
differing amounts of power associated with each harmonic.

The second element of an arbitrary screen is the bound-
ary separating two homogeneous dielectrics. Each har-
monic, having the form of a plane wave, will have scattering
parameters simply related to the transmission and reflec-
tion coefficients of the harmonic, and since there is no cou-
pling between harmonics at the interface, the scattering
parameter matrices are diagonal. For a dielectric boundary
between media 1 and 2 (see Fig. 15), the scattering matrix
is antireciprocal and symmetric, being related to the
medium impedances as follows:

Sy=-Sp=R
Tomn = Npmn .
Vamm©® _ ) o + e’
RPmn: — mn)s _ ] lpmn Npmn
oy, = Yy © (101a)
(pmn); 0, i+s
Sp=8=T
20y

S. '
T:pmnis - Vggzmms(o) _ Tlf)mn + 77;1Jmn
(p

mn)i T h -
V(pmni;(o) 0/ i£s

(101b)

With the scattering parameters of the two elements derived,
it only remains to outline the procedure to cascade an arbi-
trary number of elements to find the composite scattering
parameters of a multiple screen embedded in a multilay-
ered dielectric.

D. Cascaded Connection of Generalized Scattering
Parameters

The scattering parameters given by Table 1 and (101)
define the relationship between the incident and scattered
harmonics at a terminal plane. Being a set of linear equa-
tions, the manipulations of linear algebra may be directly
applied to find the composite scattering parameters of more
than one component. The formalism due to Sazonov et al.
[68] has been used and modified to account for the specific
components used (surfaces and dielectric layers).

A schematic illustrating the connection of two compo-
nentsis shown in Fig. 16. The components, being separated
by a distance d, are characterized, e.g., by a surface embed-
ded inamedium adistance d away from adielectric bound-
ary separating a second medium, or, e.g., by two dielectric
boundaries separating a dielectric layer of thickness d from
neighboring media. The normalized voltage waves to the
left of the composite structure are labeled «, to the right
v, and between elements 3, and 3,, respectively, at the ter-
minal planes of each element. Since the waves between ele-
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Fig. 16. Schematic showing cascade connection of scat-
tering matrices S’ and S".

ments are the combination of the incident and scattered
waves of each element, the individual incident and scat-
tered waves cannot be isolated; hence, the combination is
labeled V&4 and V47, respectively, at each terminal plane.

For the component characterized by §', the defining
equations for the scattered waves due to incident waves are

Vas Smx Suﬁ1 ‘_/ou
_ | = | (102)
Vg‘i sﬁm SB!B‘ V?i

and for the component characterized by §"

[Y% _ Tmz sﬁn:l E/g%] (103)
v Sy Sy LV
Since the normalized voltage waves at terminal planes are

traveling waves, the waves at terminal planes are simply
related as

V3 = PV (104a)
Vi = PV% (104b)

where P is a diagonal propagator matrix, with a diagonal
element being e /%9 for each mnth harmonic.

The relations between the normalized voltage waves of
each component may be combined to produce acomposite
scattering matrix defined as

ve| sk, sE][ve
=1, ,1l= (105)
v st st |Lvr

where L indicates the scattering matrices characterizing the
composite structure. An intermediate step in the matrix
combination is the calculation of the internal waves V;; and
V,1. The knowledge of these waves then allows the calcu-
lation of fields at any point in between the boundaries.
Combining (102) and (103) and using (104a) and (104b) give

I:i/%} _ [HZSBJ&PSBW H2Sﬁn } Iiilix} (106)
Vi1 LHiSs,  HSe S, | LV

Hy = (P = 8;35PS55)7"

where

H, = (P*1 - SBLHZPSB|B1)71'

Completing the matrix manipulations to find the composite
scattering parameters results in

Sirx =S t erﬂw H, Sﬁzﬁlpsﬁwz (107a)
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527 = 8o H2 S, (107b)
St = S.5,H:Ss0 (107¢)
S5 - Sy + Sy0.Hi85,,PSs,. (107d)

The resultant scattering matrices now characterize the
composite structure, and, as in the individual parameters,
are a function of frequency. A multicomponent screen may
be built by repeating the above procedure, using the com-
posite scattering parameters of the initial two components
of the screen as the first scattering parameter matrix, with
the scattering parameters of the next component being the
second matrix. By repeatedly adding components in this
fashion, a general screen is constructed from individual
components with the layering being arbitrary.

The composite scattering parameters may also be found
by other means. An alternative formulation involves the use
of the T or transfer parameters. In this approach, the scat-
tering parameters are first transformed to transfer param-
eters; the transfer parameters of many layers, or for mul-
tiple screens, are cascaded to find a composite transfer
matrix; the composite matrix is then transformed back to
a scattering matrix. A nearly equal number of matrix manip-
ulations are involved in each approach, and the final scat-
tering parameters calculated are identical. The direct
approach outlined here is somewhat preferable, however,
because the T-Matrix approach is sometimes numerically
unstable. In addition, the procedure outlined here lends
physical insightinto the analysis, and leads to an expression
for the composite scattering parameter that can be easily
interpreted. This may be seen by considering an example
where two elements are separated by a distance such that
only a single harmonic interacts between them, and there
is no coupling between TE and TM harmonics. This could
correspond to a periodic surface with rectangular patches
which is displaced from a dielectric layer by an appreciable
fraction of a wavelength. The composite reflection coeffi-
cient of the structure is given by (107a) and for the single
propagating harmonic, reduces to

e‘/‘@d
T b p A j2kd
T = RepRssie™
where R and T have been used as the reflection and trans-

mission coefficients of the propagating harmonic within
each matrix $. Fig. 17 diagrams the structure, showing the

RY = Ry + TosRo5Tsra (108)

a B 8. Y
1/2
| ——e TB|°p T pil2
Rgq *— Bja yB,
Ta oR Tag, P T8,aTy8, P2x
BiatBy By 'aBy Ba'yB,
2,2
T8, RB, B, TaB,PX S TBaTys, P X
o
o

— TaaTyB,P"*x"

T8,aRB, 8, TaB, PX" ] X*Rg,8R8,8P

p=eidnie
Fig. 17. Schematic showing multiple reflections of voltage
waves within a dielectric layer.
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wave suffering multiple reflections within the region
between dielectric boundaries and reflecting and trans-
mitting fractional amounts of the incident wave upon each
reflection. From this picture of the interactions, the com-
posite reflection coefficient may be derived, and when
allowed to be generalized to all harmonics, whether prop-
agating or evanescent, the matrix reflection scattering
parameters can be obtained. For the single harmonic pic-
tured, summing the reflected waves gives

RE = Row + TaﬁxRﬁzﬁzTﬂme_ﬂkld“ +x + XZ + oo+ X"
(109)

where
— —j2kzd
X = RﬁzﬂzR6|ﬁ1e !

In the limit of all reflections,

o2k

lim RY = Ry + Tog R Toe ™ 5=, (110)
n-o Sl 1- Rﬁzaszme 12ked

which is the reflection coefficient found using the cascade
analysis. The same analysis holds for the composite trans-
mission coefficient. Additional layers may be added, but a
physical picture quickly becomes muddled.

By examining the composite scattering matrices as given
by (107d), the relations between individual and composite
scattering parameters may also be easily seen. For example,
from the composite reflection matrix

Siu = S + Sa/}wHSﬁszPsﬁm'

itis observed that if the second component allows no reflec-
tion (Sg,5, = 0), the composite reflected waves will simply
be those of the first component and hence not be altered
by the second component. By examining individual har-
monics, it is observed that if the second component allows
no reflection into the (0, 0) harmonic, and also if the (0, 0)
harmonic reflects no energy into any other harmonic (cor-
responding to a zero row and column for each polarization
in 8,0,), then similarly, the composite reflected (0, 0) har-
monic will only be that of the first component. A similar
reasoning follows for the transmission parameters and may
be extended to multiple components. This line of reasoning
adds insight into the cascade formulation and can be ben-
eficial when attempting to cascade arbitrary elements to
produce a desired characteristic response.

E. Accuracy of the Cascade Connection

Because both propagating and higher-order harmonics
carry energy, the accuracy of either the resonant wave-
fength of the structure or power dissipated in the dielectric
as outlined in the previous sections will depend upon the
amplitude of truncated harmonics. The resonant wave-
length is affected by harmonics interacting with dielectric
interfaces. The strongest interaction—that at the surface
dielectric interface—can be isolated by backing the peri-
odic surface with a dielectric half-space. In the cascade
analysis, a gap of infinitesimal thickness is inserted between
the surface and dielectric and allowed to shrink to zero. In
the limit, an infinite number of harmonics would ideally be
necessary to characterize the interface. (As previously
noted, the total field at any plane is represented by the Flo-
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quet voltage waves; hence, a complete description of the
fields would require an infinite superposition of those
waves.) The accuracy of the characterization is then depen-
dentontheinteraction of higher-order harmonics and their
amplitudes decay relatively slowly for large ¢, The com-
posite Green’s function approach described in Section |V
is better-suited for handling the large ¢, case.

In order to illustrate the application of the cascade
approach, we consider a rectangular array of crossed
dipoles as shown in the inset of Fig. 18. Exciting the struc-
ture is normally incident plane wave with a y-directed elec-
tric field. The number of harmonics summed will be 2, 10,
18, 26, or 42, which are the numbers (TE and TM) contained
within concentric circles on the reciprocal lattice of the sur-
face. The resonant wavelength of the structure is plotted
in Fig. 18 for a dielectric half-space of ¢, = 2.0. The result
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Fig. 18. Harmonic convergence of the resonant wave-
lengths.

shows little change in the resonant wavelength when more
than 18 harmonics are summed. However, as pointed out
earlier, this number can increase substantially for larger e,.

Both the accuracy of the power dissipated at any point
and the interaction of higher-order harmonics with dielec-
tric-dielectric interfaces can be ascertained from the ampli-
tude of the harmonics as they propagate or decay with dis-
tance. Writing the normalized voltage wave (94) as

Vi(2) = aje (11

where rindicates the subscripts pmn included with the rth
concentric ring of the reciprocal lattice, and the prime indi-
cates that the normalization integral of (94) is included in
a;. Normalizing the voltage wave in ring r to the (single)
propagating (TE) harmonic in ring 1 gives

' V(2)
V4(0)

= —k, |z| +In 11 (112)
a4

the equation of a straight line. The slope is simply the neg-
ative of the attenuation constant (for the evanescent har-
monics) with the intercept the numerically found complex
amplitude. Equation (112} is plotted in Fig. 19 with the dis-
tance z in units of wavelength in the dielectric. The cell size
(t/N) is 0.57 where nearly 70-percent of the power is trans-
mitted into the dielectric. It is seen that a distance of 0.25
Mg, amplitudes of the voltage waves in the fourth ring have
decayed to nearly 0.01 percent of the propagating wave.
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Fig. 19. Decay of harmonics with distance within the
dielectric.

F. Numerical Results for Typical Cascaded Geometries

Because the combination of surface geometries, dielec-
tric layers, and number of cascaded surfaces may be quite
large, only the results for typical geometries showing the
effects of dielectric layering and lossy layers will be pre-
sented in this paper. The effect of dielectric backing of vary-
ing thicknesses on the crossed-dipole surface of the inset
of Fig. 18 is shown in Fig. 20. The dimensions now are in

EFFECT OF DIELECTRIC BACKING

0.7
4 &
A Periodic I
I Surface —»-
~< 4%
% 0.6
- 4
A 4
<
B 4
8 -
W 0.5—/— %
a —
N
& =40
0 4t b e e
2.0 2.1 0.2 2.3 2.4 2.5 2 6

D (cm)

Fig. 20. Effect of dielectric backing on periodic screen of
Fig. 18.

centimeters, and the resonant wavelength is plotted versus
dielectric thickness for dielectrics of permittivities ¢, = 2.0
and 4.0. A total of 18 harmonics was summed (the third ring
of the reciprocal lattice). It is seen that as the thickness is
increased the resonant wavelength approaches that of a
half-space, with a permittivity of ¢, = 4.0 having a greater
effect on the resonant wavelength as compared to that for
e, = 2.0.

The magnitude of the power reflection coefficient versus
cell size is plotted in Fig. 21 for the same crossed-dipole
surface backed with a 0.3-cm-thick dielectric layer. Shown
are curves for permittivities 2.0 and 4.0 compared to a free-
standing surface (d = 0). The resonant wavelength shifts to
lower wavelengths, with the resonant bandwidth generally
decreasing as the permittivity is increased.

A lossy structure is considered in Fig. 22. The structure
consists of a crossed-slot aperture backed by a lossy dielec-
tric layer of permittivity ¢, = 3 — j4 (see insert of Fig. 22(a)).
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Fig. 21. Spectral response of the periodic screen of Fig. 18
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Fig. 22. Periodic surface backed by lossy dielectric layer.
(a) Spectral response. (b) Contour plot of dissipated power.

Because of the high loss in the layer, no power is trans-
mitted through the structure, all energy being reflected or
dissipated within the layer. Plotted are the reflected power
and the fraction of total power dissipated in the dielectric
layer as a function of the cell size. For comparison, the mag-
nitude of the power reflection coefficient of the free-stand-
ing surface is shown (dotted line). The sharp null of the free-
standing surface is removed when the lossy layer is added
with aminimum in the reflection coefficient occurring near
t/ N =0.9.Fig.22(b)is acontour plot of the dissipated power
volume density normalized to the total incident power at
aplane0.1cminto the dielectric. The excitation wavelength
ist,/N\ = 0.9; the labels are scaled by 10 000 and the crossed
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slot is sketched on the plot. (The plot was elongated for
reproduction.) Theincident electric field is y-directed—bot-
tom to top on the page—producing amaximum electric field
in the horizontal slot, peaking at the center. Hence, the dis-
sipated power is maximum at the center with greater values
along the horizontal slotas compared to that for the vertical
slot.

G. Discussion of Results Derived by Using Cascade
Approach

The cascade formulation has been presented as a means
of cascading arbitrary elements to form a composite FSS.
The scattering parameters of periodic surfaces and dielec-
tric layers may be cascaded thus reducing the formulation
from one that treats the entire structure to one that treats
each element separately. This allows a simplification in the
analysis as long as the number of harmonics calculated and
included in the cascade connection was large enough to
give an accurate solution. The cascade connection also
allows a formal structuring of the fields which is used to
calculate the spatial distribution of dissipated power within
a lossy dielectric layer. In addition, more than one screen
and dielectric layer can be cascaded.

The use of the Floquet harmonics to form the scattering
parameters used in the cascade connection requires the
calculation of the fields scattered from the periodic surface
for multiple incident harmonics. The scattering parameters
of the surface are then stored to be used with any com-
bination of dielectric layers or other periodic surfaces.
Hence, the calculation of the periodic surface scattering
parameters must be easily performed for the cascade for-
mulation to be efficient. This is in contrast to the formu-
lations that analyze the screen inits entirety, where itis nec-
essary to consider only a single incident harmonic.
Therefore, where the cascade formulation gives the flexi-
bility of treating a general screen, it does so at the expense
of calculating the full set of surface scattering parameters.

VI, FiINiTE AND CURVED FREQUENCY SELECTIVE SURFACES

In many practical applications of the FSS, it is sufficiently
accurate to model it as a doubly-infinite, doubly-periodic,
planar structure, that allows one to reduce the problem to
one of finding the current (or aperture) distribution in just
one cell rather than over the entire surface. However, there
exist many other situations where it becomes necessary to
account for the finite size of the FSS and to assess the effect
of truncation in an accurate manner. Additionally, for many
radome applications the FSS is curved, and except for some
special geometry, e.g., a cylindrical surface, the FSS is no
longer doubly-periodic. As a consequence of the trunca-
tion, or the presence of a finite curvature, the current dis-
tribution on each patch becomes an independent quantity.
Thus one is forced to consider the problem in its entirety,
and to simultaneously solve for the currents on the indi-
vidual patches. Since the total number of patches is usually
very large, the number of unknowns needed to generate
the solution to the scattering problem of a finite or curved
FSSwith good accuracy can easily be on the order of several
thousands, particularly if the subdomain basis functions
are employed. Even with the entire domain basis functions,
that are almost always used for such problems because of
a significant reduction in the matrix size afforded by their
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choice, the size of the FSS that can be comfortably handled
is relatively small. Consequently, it becomes necessary to
employ certain approximations in order to render the trun-
cated FSS problem a manageable one. This point is further
elaborated on in the following.

Consider a finite, square FSS structure shown in Fig. 23.
Let the number of patches in the x and y directions be N,

Fig. 23. A finite frequence selective surface. Currents are
sampled along they =0,z = 0.

where N may be large. As a first step, one breaks the finite
FSS up into central, edge, and corner regions as shown in
the figure. Next, one assumes that the currents in the cen-
tral region of the finite FSS are essentially the same as they
would be in a doubly-periodic, doubly-infinite FSS. As for
an edge region, one assumes that the behavior of the cur-
rents near the edge is similar to the one that exists on the
edge patches of a singly-truncated FSS (i.e., truncated in
one direction and infinitely periodic in the other), one of
whose edges coincides with the edge of the finite FSS under
consideration. Obviously, a singly-truncated FSS is consid-
erably more tractable in a numerically rigorous manner than
is its doubly-truncated counterpart. Experience has shown
that the edge effects become insignificant when one pen-
etrates about seven or eight patches into the central region
away from the edge. This may be seen by examining the
results, given in Fig. 24, for the current distributions J,’s for
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Fig. 24. induced surface current on a finite-width fre-
quency selective surface of 31 cross dipoles: TM polariza-
tion, § = 45°, frequency = 10 GHz.

a singly-truncated FSS with 31 cross-shaped patches in the
x direction (see Fig. 23).

Returning to the edge patches of the doubly-truncated
FSS, one expresses the currents on these patches as super-
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positions of periodic and fringe solutions, the latter
extracted from the solution of the singly-truncated geom-
etry. Finally, the currents in the corner region can be
approximated by a superposition of the three compone-
nents, viz., the periodic, fringe, and corner currents. The
last one must be extracted from the solution of a doubly-
truncated FSS of manageable-size with, say, eight or so
patches on the side.

Let us now identify a crucial difference between the way
a doubly-periodic and singly- or doubty-truncated FSS are
numerically analyzed [69]. Recall that for the doubly-peri-
odic case the appropriate equation is (4), which, in turn, was
derived from (3) after discretizing the transform variables
aand Bto «,,, and 3,,,. When the FSS is truncated, the peri-
odicity in the direction of the truncation is lost, and the
summation must now be replaced by an integral over the
continuous transform variable. (For the doubly-truncated
case, both the transform variables become continuous.) The
evaluation of the matrix elements containing integrals
instead of summations becomes a considerably time-con-
suming process. Unfortunately, however, there is no short-
cut approach that would circumvent this problem.

As for the arbitrary, curved-surface FSS problem, the sit-
uation can be even more complicated because, except for
the special case of circularly cylindrical geometry, all peri-
odicity is typically lost when the surface is no longer planar.
Once again, to avoid having to deal with a very large num-
ber of unknowns, it becomes necessary to make suitable
approximations, e.g., assuming that the surface is locally
planar [69]. Under this approximation, one replaces the
curved surface locally by a tangential planar surface. Next,
one solves the doubly-infinite planar FSS problem for the
above tangential surface, and uses this solution to approx-
imate the currenton the tangential patch on the curved sur-
face. One then repeats the above procedure N times for
each of the N patches to obtain the approximate current
distribution on the entire curved FSS. One can also refine
this approximate current by adding the fringe currents for
the patches close to the edges, in the same manner as was
done for the finite, planar FSS.

The techniques described above for the approximate
analysis of doubly-truncated planar and curved FSS have
been utilized recently by Merewether and Mittra [70] and
Ko and Mittra [71], [72]. For further details the reader is
referred to the above publications.

APPENDIX
OUTLINE OF ITERATIVE ALGORITHMS

The linear equation to be solved using the conjugate gra-
dient (CG) technique is

Lj=F (A1)

where J is the unknown current on the patch and E’ is the
excitation field. The operator L though symmetric is not a
positive/negative definite, self-adjoint operator. Without
these properties, convergence cannot be guaranteed when
applying the C-G technique. A positive definite, self-adjoint
equivalent system may be formed by preoperating equa-
tion (A1) by the complex conjugate of the operator L*

L*Lj = L*F'. (A2)

A solution to (A2) is generated by using a given set of direc-
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tion functions { d, } 7, which satisfy the following property
(d, I*Id)y =0, i#j (A3)

where the inner product is defined as
(o, ¥) = Sa - yds,
and the norm is

ol = <o, 5.

Equation (A3) expresses the property that the set of direc-
tion functions is mutually conjugate, or simply orthogonal
with respect to the operator L*L. Expanding J in the basis
{d} 7 gives

J = ady + opdy + oydy + 0+ ad, (A4)

where the scalars { ¢}/ are the unknown weighting coef-
ficients. Substituting (A4) into (A2), premultiplying by d,,
and applying the mutual conjugate property result in

o {d, L*Ld)y = (d, L*E"),
or

_(d, L*ED
4T, tLd,y A3
The weighting coefficients have been found in terms of the
unknown set of direction functions. This set is recursively
generated using the C-G method.

Being an iterative process, the C-G technique succes-
sively generates the direction functions to minimize a pre-
scribed error functional. In minimization of the integrated
square error after application of the boundary conditions
on the patch, the resultant error functional is

ERF(]) = {r? (A6)

which is minimization in the range of L.

Minimizing the integrated square error in the difference
between the exact current and an approximation for the
current results in the error functional

ERF(J) = |17 = J.I? (A7)

where J, is the exact current. This is minimization in the
domain of L. The algorithms that generate the direction
functions and a solution for J are

RANGE DOMAIN

fo=1Lj, — E' fy =Ly~ E'

dy = L*7, dy = L*7,

ERFy = |7l ERFY = || 7|12

ap, = HL*—;”HZ <L >SS, = Hj””%
B T A S A

Joor =Ja + 0y d, Jov1 =Ja + and,

*7 ||4
ERF!, ., = ERF', = 'Jﬁi’#z Foo =1~ anld,
;noW:Frw‘anlarw ERF,‘.{H:H;”,JZ

PROCEEDINGS OF THE IEEE, VOL. 76, NO. 12, DECEMBER 1988




RANGE DOMAIN
_ler P 8 = 17, 1
S TS A
ar1+1 =L*, 4 + Bnan anﬂ = L*?n+__‘l
+ 5ndn
n=n+ 1loop 555555 << loopn=n+1.
ACKNOWLEDGMENT

The authors would like to take this opportunity to
acknowledge helpful discussions and collaborative inter-
actions over the past ten years with their colleagues at the
University of [llinois and at a number of industrial orga-
nizations, including LTV Aerospace and Hughes Aircraft
Company. Special thanks are due to K. Merewether of the
University of Illinois and Dr. W. L. Ko of the University of
South Florida for their contributions on finite and curved
FSSs.

REFERENCES

[1] D.Rittenhouse, “An optical problem, proposed by Mr. Hop-
kinson, and solved by Mr. Rittenhouse,” Trans. Amer. Phil.
Soc., vol. 2, pp. 201-206, 1786.

[2] F. O'Nians and J. Matson, “Antenna feed system utilizing
polarization independent frequency selective intermediate
reflector,” U.S. Patent 3-231-892, Jan. 1966.

[3] C. H. Tsao and R. Mittra, “‘Spectral-domain analysis of fre-
quency selective surfaces comprised of periodic arrays of
cross dipoles and Jerusalem crosses,”” IEEE Trans. Antennas
Propagat., vol. AP-32, no. 5, pp. 478-486, May 1984.

[4] S.W.Lee,“Scattering by dielectric-loaded screen,” IEEE Trans.
Antennas Propagat., vol. AP-19, no. 5, pp. 656-665, Sept. 1971.

{5] R. Ulrich, “Far-infrared properties of metallic mesh and its
complementary structure,” Infrared Phys., vol. 7, pp. 37-55,
1967.

[6] M. S. Durschlag and T. A. DeTemple, “Far-IR optical prop-
erties of freestanding and dielectrically backed metal
meshes,” Appl. Opt., vol. 20, no. 7, pp. 12451253, Apr. 1981.

[7]1 C. M. Horwitz, “A new solar selective surface,” Opt. Com-
mun., vol. 11, no. 2, pp. 210-212, June 1974.

[8] W. H. Miller, G. D. Bernard, and ). L. Allen, “The optics of
insect compound eyes,” Science, vol. 162, pp. 760-767, 1968.

[91 G.H.Schennum, ‘Frequency-selective surfaces for multiple-
frequency antennas,”” Microwave /., pp. 55-57, May 1973.

[10] L.Young, L. A. Robinson, and C. A. Hacking, “Meander-line
polarizer,”” IEEE Trans. Antennas Propagat., vol. AP-21, pp. 376~
378, 1973.

[11] ). A. Arnaud and F. A. Pelow, ‘‘Resonant-grid quasi-optical
diplexers,” Bell Syst. Tech. J., vol. 54, no. 2, pp. 263-283, Feb.
1975.

[12] V.D. Agrawal and W. A. Imbriale, “Design of a dichroic Cas-
egrain subreflector,” IEEE Trans. Antennas Propagat., vol. AP-
27, no. 4, pp. 466-473, July 1979.

[13] R. H. Ott, R. G. Kouyoumijian, and L. Peters, Jr., ““Scattering
by a two-dimensional periodic array of narrow plates,” Radio
Sci., vol. 2, no. 11, pp. 1327-1359, Nov. 1967.

{14] C. C. Chen, “Scattering by a two-dimensional periodic array
of conducting plates,” IEEE Trans. Antennas Propagat., vol.
AP-18, no. 5, pp. 660-665, Sept. 1970.

[15] —, “Transmission of microwave through perforated flat
plates,”” IEEE Trans. Microwave Theory Tech., vol. MTT-21, no.
1, pp. 1-6, Jan. 1973.

[16] E.L.Peltonand B. A. Munk, “Scattering from periodic arrays
of crossed dipoles,” IEEE Trans. Antennas Propagat., vol. AP-
27, pp. 323-330, May 1979.

[17} C. H. Tsao, “Spectral-domain approach for analyzing scat-
tering from frequency selective surface,” Ph.D. Dissertation,
University of lllinois, Urbana, IL, 1981.

[18] R. B.Kieburtz and A. Ishimaru, ‘‘Scattering by a periodically

MITTRA et al.: ANALYZING FREQUENCY SELECTIVE SURFACES

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[271

[28]

{29]

[30]

(31

[32]

[33]

(34]

[35]

[36]

[37]

(38]

(391

{40]

[41]

apertured conducting screen,” IRE Trans. Antennas Propa-
gat., vol. AP-9, no. 6, pp. 506-514, Nov. 1961.

C. C. Chen, “Transmission through a conducting screen per-
forated periodically with apertures,”” IEEE Trans. Microwave
Theory Tech., vol. MTT-18, no. 9, pp. 627-632, Sept. 1970.
——, "Diffraction of electromagnetic waves by a conducting
screen perforated periodically with circular holes,” IEEE Trans.
Microwave Theory Tech., vol. MTT-19, no. 5, pp. 475-481, May
1971.

B. A. Munk, R. G. Kouyoumijian, and L. Peters, Jr., “’Reflection
properties of periodic surfaces of loaded dipoles,”” IEEE Trans.
Antennas Propagat., vol. AP-19, pp. 612-617, Sept. 1971.

J. P. Montgomery, ““Scattering by an infinite periodic array of
thin conductors on a dielectric sheet,”” |EEE Trans. Antennas
Propagat., vol. AP-23, no. 1, pp. 70-75, Jan. 1975.

R. J. Luebbers and B. A. Munk, ““Some effects of dielectric
loading on periodic slot arrays,” IEEF Trans. Antennas Prop-
agat., vol. AP-26, no. 4, pp. 536-542, July 1978.

——, ""Cross polarization losses in periodic arrays of loaded
slots,” [EEE Trans. Antennas Propagat., vol. AP-23, pp. 159-164,
Mar. 1975.

T.Itoh, “Spectral domain immitance approach for dispersion
characteristics of generalized printed transmission lines,"”
IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 733-736,
July 1980.

K. M. Mitzner, “Effective boundary conditions for reflection
and transmission by an absorbing shell of arbitrary shape,”
IEEE Trans. Antennas Propagat., vol. AP-16, no. 8, pp. 706-712,
Nov. 1968.

R. C. Hall and R. Mittra, “‘Scattering from a periodic array
of resistive strips,” IEEE Trans. Antennas Propagat., vol. AP-
33, no. 9, pp. 1009-1011, Sept. 1985. .

R. Hall, “Electromagnetic scattering from periodic struc-
tures comprised of resistive sheet material,” Ph.D. Disser-
tation, University of lllinois, Urbana, IL, 1986,

T. A. Cwik and R. Mittra, “Scattering from a periodic array
of free-standing arbitrarily shaped perfectly conducting or
resistive patches,” IEEE Trans. Antennas Propagat., vol. AP-
35, no. 11, pp. 1226-1234, Nov. 1987.

R. F. Harrington, Field Computation by Moment Methods.
New York, NY: Macmillan, 1968.

R. Mittra and S. W. Lee, Analytical Techniques in the Theory
of Guided Waves. New York, NY: MacMillan, 1971.

R. Mittra, R. C. Hall, and C. H. Tsao, “Spectral-domain anal-
ysis of circular patch frequency selective surfaces,”” IEEE
Trans. Antennas Propagat., vol. AP-32, no. 5, pp. 533-536, May
1984.

E. A. Parker and S. M. A. Hamdy, "'Rings as elements for fre-
quency selective surfaces,” Electron. Lett., vol.17,no. 17, pp.
612-614, Aug. 1981.

R. Cahill and E. A. Parker, “Concentric ring and Jerusalem
cross arrays as frequency selective surfaces for a 45° inci-
dence diplexer,” Electron Lett., vol. 18, no. 8, pp. 313-314,
Apr. 1982,

S. M. A, Hamdy and E. A. Parker, “/Current distribution on
the elements of a square loop frequency selective surface,”
Electron. Lett., vol. 18, no. 14, pp. 624-626, 1982.

R. Cahill and E. A. Parker, “Crosspolar levels of ring arrays
in reflection at 45° incidence: influence of lattice spacing,”
Electron. Lett., vol. 18, no. 24, pp. 1060-1061, 1982.

R. J. Langley and E. A. Parker, “‘Double-square frequency-
selective surfaces and their equivalent circuit,”” Electron.
Lett., vol. 19, no. 17, pp. 675-677, Aug. 1983.
A.W.Glissonand D.R. Wilton, ““Simple and efficient numer-
ical methods for problems of electromagnetic radiation and
scattering from surfaces,”” IEEE Trans. Antennas Propagat.,
vol. AP-28, no. 5, pp. 593-603, Sept. 1980.

B. ). Rubinand H. L. Bertoni, “‘Reflection from a periodically
perforated plane using a subsectional current approxima-
tion,” IEEE Trans. Antennas Propagat., vol. AP-31, no. 6, pp-
829-836, Nov. 1983.

T. Cwik, “’Scattering from general periodic screens,” Ph.D.
Dissertation, University of {ilinois, Urbana, IL, 1986.

C. H. Chan, “Investigation of iterative and spectral Galerkin
techniques for solving electromagnetic boundary value
problems,” Ph.D. Dissertation, University of lflinois, Urbana,
IL, 1987.

1613




[42]

[43)

[44]

{45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[591

[60]

[61]

[62]

[63]

(64

1614

R. Mittra, “Relative convergence of the solution of a doubly
infinite set of equations,”” J. Res. Nat. Bur. Stand., vol. 67D,
no. 2, pp. 245-253, Mar.-Apr. 1963.

S. W. Lee, W.R. Jones, and J. ). Campbell, “Convergence of
numerical solutions of iris-type discontinuity problems,”
IEEE Trans. Microwave Theory Tech., vol. MTT-19, no. 6, pp.
528-536, June 1971.

R. Mittra, T. Itoh,and T. S. Li, “Analytical and numerical stud-
ies of the relative convergence phenomenon arising in the
solution of an integral equation by moment method,” IEEE
Trans. Microwave Theory Tech., vol. MTT-20, no. 2, pp. 96-
104, Feb. 1972.

N. Shuley, “A note on relative convergence for moment-
method solutions of integral equations of the first kind as
applied to dichroic problems,” Electron Lett., vol. 21, no. 3,
pp. 95-97, 1985.

L. W. Pearson, A technique for organizing large moment
calculations for use with iterative solution methods,"” IEEE
Trans. Antennas Propagat., vol. AP-33, pp. 1031-1033, Sept.
1985.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gra-
dient for solving linear systems,” /. Res. Nat. Bur. Stand., vol.
49, no. 6, pp. 409-436, Dec. 1952.

P. M. van den Berg, ““Iterative computational techniques in
scattering based upon the integrated square error crite-
rion,”” IEEE Trans. Antennas Propagat., vol. AP-32, no. 10, pp.
1063-1070, Oct. 1984.

A. Kas and E. L. Yip, “Preconditioned conjugate gradient
methods for solving electromagnetic problems,”” [EEE Trans.
Antennas Propagat., vol. AP-35, pp. 147-152, Feb. 1987.

). P. Montgomery and K. R. Davey, “The solution of planar
periodic structures using iterative methods,” Electromag-
netics, vol. 5, nos. 2-3, pp. 209-235, 1985.

C. G. Christodoulou and J. F. Kauffman, “On the electro-
magnetic scattering from infinite rectangular grids with finite
conductivity,”” IEEE Trans. Antennas Propagat., vol. AP-34, pp.
144-154, Feb. 1986.

J. P. Montgomery, “‘Scattering by an infinite periodic array
of thin conductors on a dielectric sheet,”” IEEE Trans. Anten-
nas Propagat., vol. AP-23, no. 1, pp. 70-75, Jan. 1975.

L. L. Tasi, T. K. Wu, and J. T. Mayhan, “'Scattering by mul-
tilayered lossy periodic strips with application to artificial
dielectrics,”” IEEE Trans. Antennas Propagat., vol. AP-26, no.
2, pp- 257-260, Mar. 1978.

T. K. Wu, “Analysis and application of multilayered periodic
strips,”” AEU, vol. 33, no, 4, pp. 144-148, 1979.

R.J. Luebbers and B. A. Munk, “Mode matching analysis of
biplanar slot arrays,” IEEE Trans. Antennas Propagat., vol. AP-
27, no. 3, pp. 441-443, 1979.

M. A. A. El-Morsy, E. A. Parker, and R. ). Langley, "4 layer
inductive grid FSS at 45° incidence,” Electron Lett., vol. 19,
no. 16, pp. 602-603, 1983.

L. Henderson, “The scattering of planar arrays of arbitrarily
shaped slot and/or wire elements in a stratified dielectric
medium,” Ph.D. Dissertation, The Ohio State University,
Columbus, OH, 1983.

E. C. Dufort, “Finite scattering matrix for an infinite antenna
array,” Radio Sci., vol. 2, no. 1, pp. 19-27, Jan. 1967.
S.ContuandR. Tascone, ““Scattering matrix of passive arrays
in a stratified dielectric,” CSELT Rapporti Tecnici, vol. X1, no.
6, pp. 361-364, Dec. 1983.

N.V.Shuley, “Higher-order mode interaction in planar peri-
odic structures,” Proc. IEE-H, vol. 131, no. 3, pp. 129-132, June
1984.

C. C. Chen, “Transmission of microwave through perfo-
rated flat plates of finite thickness,”” IEEE Trans. Microwave
Theory Tech., vol. MTT-21, pp. 1-6, Jan. 1973.

B. A. Munk, R. ]. Luebbers, and R. D. Fulton, “Transmission
through a two-layer array of loaded slots,”” JEEE Trans. Anten-
nas Propagat., vol. AP-22, pp. 804-809, Nov. 1974.
B.A.MunkandR.]. Luebbers, ‘Reflection properties of two-
layer dipole arrays,” IEEE Trans. Antennas Propagat., vol. AP-
22, pp. 766-773, Nov. 1974.

N. Shuley, ““Analysis of dichroic surfaces,’”” Ph.D. Disserta-
tion, Chalmers University of Technology, Gothenburg, Swe-
den, Jan. 1985.

[65] S. W. Lee, "Scattering by dielectric-loaded screen,” IEEE
Trans. Antennas Propagat., vol. AP-19, no. 5, pp. 656-665,
Sept. 1971,

[66] T. Cwik and R. Mittra, “The cascade connection of planar
periodic surfaces and lossy dielectric layers to form an arbi-
trary periodic screen,” IEEE Trans. Antennas Propagat., vol.
AP-35, pp. 1397-1405, Dec. 1987.

[671 N. Amitay, V. Galindo, and C. P. Wu, Theory and Analysis of
Phased Array Antennas. New York, NY: Wiley, 1972, pp. 310-
313.

[68] D.M.Sazanov, A.N. Gridin, and B. A. Michustin, Microwave
Circuits.  Moscow: Mir, 1982, pp. 154-178.

[69] T.Cwikand R. Mittra, “The effects of the truncation and cur-
vature of periodic surfaces: A strip grating,” IEEE Trans.
Antennas Propagat., vol. AP-36, pp. 612-622, May 1988.

[70] K. Merewether and R. Mittra, *‘Spectral domain analysis of
a finite frequency-selective surface with cross-shaped con-
ducting patches,” presented at IEEE-AP-S Int’| Symposium,
June 1988.

[711 W. L. Ko and R. Mittra, “‘Scattering by a truncated periodic
array,”” IEEE Trans. Antennas Propagat., vol. AP-36, pp. 496-
503, Apr. 1988.

, “Scattering by a conformal array of metallic patches,”

to be published.

[72]

Raj Mittra (Fellow, IEEE) received the M.S.
degree in radiophysics from the University
of Calcutta, India, and the Ph.D. degree in
electrical engineering from the University
of Toronto, Ontario, Canada.

He is the Director of the Electromagnetic
Communication Laboratory of the Electri-
caland Computer Engineering Department
and Research Professor of the Coordinated
Science Laboratory at the University of llli-
nois, Urbana. He is President of RM Asso-
ciates, which isa consulting organization providing services to sev-
eral industrial and governmental organizations. His professional
interests include the areas of analytical and computerated elec-
tromagnetics, high speed digital circuits, radar scattering, satellite
antennas, microwave and millimeter wave integrated circuits, fre-
quency selective surfaces, EMP and EMC analysis, and remote
sensing.

Dr. Mittra is a past President of the IEEE Antennas and Propa-
gation Society, and has served as Editor of the IEEE TRANSACTIONS
ON ANTENNAS AND PROPAGATION.

Chi H. Chan (Member, IEEE) was born in
Macao on April 16,1959. He attended Hong
Kong Polytechnic and the City College of
New York. He received the B.S. and M.S.
degrees in electrical engineering from the
Ohio State University, Columbus, in 1981
and 1982, respectively, and the Ph.D. degree
in electrical engineering from the Univer-
sity of Hlinois, in 1987.

From 1981 to 1982, he was a Graduate
Research Associate at the ElectroScience
Laboratory, Ohio State University. Since August 1982, he has been
with the Electromagnetic Communication Llaboratory in the
Department of Electrical and Computer Engineering at the Uni-
versity of lllinois, Urbana, where he is presently a Visiting Assistant
Professor. His research interests include numerical techniques in
electromagnetics, scattering from electrically large bodies, fre-
quency-selective surfaces, microwave integrated circuits, high-
speed digital circuits, and integrated optics.

PROCEEDINGS OF THE IEEE, VOL. 76, NO. 12, DECEMBER 1988




Tom Cwik was born in Chicago, IL, on July
4,1957.Hereceived the B.S.,M.S., and Ph.D.
degrees in electrical engineering from the
University of Illinois, Urbana-Champaign,
in 1979, 1981, and 1986, respectively.
After receiving the M.S. degree, he spent
a summer as an assistant at the Very Large
Array, National Radio Astronomy Labora-
tory in Socorro, NM. Following this he spent
a year with the National Bureau of Stan-
dards in Boulder, CO. Upon completion of

MITTRA et al.: ANALYZING FREQUENCY SELECTIVE SURFACES

the Ph.D. degree he was a postdoctoral fellow at ELAB, The Nor-
wegian Institute of Technology in Trondheim, Norway. Currently
he is a member of the technical staff at the Jet Propulsion Labo-
ratory, California Institute of Technology, Pasadena. His interests
include wave scattering, frequency selective surfaces, the appli-
cation of parallel processing to electromagnetic problems, and
asymptotic analysis in reflector systems.

1615




