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Abstract—The characterization of planar -electromagnetic
band-gap structures requires the calculation of the dispersion
diagram of the modes supported by the periodic structure and the
phase of the reflection coefficient under plane-wave illumination.
In this paper, we present a novel method for the calculation of
the dispersion diagram. The electromagnetic analysis is based
on the method of moments/boundary integral-resonant mode
expansion (MoM/BI-RME) method and leads to the formulation
of a homogeneous matrix problem. The solution of this problem
is performed by an iterative procedure: for a given value of the
propagation phase constant, the frequency range is scanned to
find the frequencies where the field equation has a nontrivial
solution. The search of these frequencies is based on the tracking
of the eigenvalues in the complex plane, and proved more efficient
than other classical methods (direct search of the determinant
zeros, singular value decomposition). The reflection coefficient
can be readily determined by using the MoM/BI-RME method,
already developed for the analysis of the scattering from frequency
selective surfaces. The method is applied to the characterization of
the classical uniplanar compact photonic-bandgap structure, and
analysis results show the accuracy of the method, its efficiency,
and its convergence properties.

Index Terms—Eigenvalues and eigenfunctions, electromagnetic
band-gap structures, integral equations, periodic structures.

1. INTRODUCTION

LECTROMAGNETIC band-gap (EBG) structures are

widely used for improving the electromagnetic perfor-
mance in microwave circuits and antennas [1]-[4]. Structures
operating in the microwave range commonly consist of peri-
odic arrays of metal patches patterned on a grounded dielectric
substrate, possibly connected to the ground plane through
metal pins. By properly choosing their geometrical properties,
these structures exhibit two different kinds of performance.
On the one hand, they can be used to prevent the propagation
of substrate waves in a frequency band (EBG behavior), thus
reducing the leakage in guided-wave circuits [1] and improving
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the efficiency of patch antennas [2]. On the other hand, they
can behave as an artificial perfect magnetic conductor (PMC),
reflecting an incident plane wave without phase reversal. This
permits the design of transverse electromagnetic TEM wave-
guides [3] and low-profile patch antennas [4].

Therefore, the analysis of electromagnetic band-gap struc-
tures should ideally provide two kinds of information: the dis-
persion diagram (DD) of the modes supported by the periodic
structure and the phase of the reflection coefficient of the struc-
ture under plane-wave illumination. However, in many practical
cases [4], the most useful information is the frequency range
where the propagation of electromagnetic waves is forbidden
(bandgap). This information can be retrieved by considering
only the boundary of the irriducible Brillouin zone [5], [6].

The phase of the reflection coefficient can be calculated like
the scattering from frequency selective surfaces (FSSs). Dif-
ferent numerical methods and hybrid techniques have been pro-
posed: the integral equation method (IEM) [7], the finite element
method (FEM) [8], the finite difference time domain (FDTD)
method [9], the method of moments/boundary integral-resonant
mode expansion (MoM/BI-RME) method [10], [11], and the fi-
nite element/boundary integral (FE/BI) method [12].

Most of the techniques used for the analysis of FSSs can
be adapted to the determination of the DD of EBG structures.
Anyway, there is a substantial difference between the two an-
alyzes: in the calculation of the plane-wave response of FSSs,
the fields inside the structure are generated by an incident plane
wave, whereas in the determination of the DD there is no in-
cident field, and the analysis leads to a homogeneous problem.
When using the FEM in conjunction with the perfectly matched
layer (PML), it is possible to determine all mode frequencies
through the solution of a single eigenvalue problem for each
value of the propagation constant [13]. However, it requires
a volume mesh, thus typically resulting in large matrix prob-
lems. When using the FDTD method, time iterations are re-
quired, until the steady-state is reached. The Fourier transform
of the steady-state solution yields a peak at the frequency of
each eigenmode [14]. The FEM and the FDTD method provide
flexibility in the geometry of the components, but can be time
consuming. Conversely, when using the [EM, the matrix of the
resulting homogeneous problem depends on both the propaga-
tion constant and the frequency, and it is not possible to sepa-
rate the two dependencies [15]. In this case, for a given value of
the propagation constant, a frequency iteration is needed to find
the nontrivial solutions of the problem and the resulting points
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of the dispersion diagram. The most common iterative strate-
gies are based either on the search of the determinant zeros of
the matrix [15] or on the search of its minimum singular value
[16]. However, these approaches require a fine frequency scan,
as discussed in Section III. Moreover, the identification of mul-
tiple zeros can be critical, and the human intervention can be
required for distinguishing real zeros from local minima.

In this paper, we present a novel approach for the efficient
characterization of planar metallo-dielectric EBG structures,
consisting of a periodic array of either isolated or interconnected
metal patches, printed on a dielectric substrate (Fig. 1). In the
calculation of the DD, the electromagnetic analysis is based on
the MoM/BI-RME method, which is described in Sections II-A
and B. The novelty of the proposed approach is the particular
technique used for the computation of the dispersion diagram,
which is based on the tracking of the eigenvalues in the complex
plane. This approach, discussed in Section II-C, is very reliable
and allows for a coarse frequency scanning, thus leading to
a limited number of electromagnetic full-wave analysis. As
far as the phase of the reflection coefficient is concerned, the
MoM/BI-RME method described in [10] and [11] is applied.
The proposed method is applied to the analysis of the classical
uniplanar compact photonic-bandgap (UC-PBG) structure [1].
Some results reported in Section III show the accuracy of the
method, its efficiency, and its convergence properties.

II. CALCULATION OF THE DISPERSION DIAGRAM

Let us consider a periodic structure, consisting of either an
array of arbitrarily-shaped isolated metal patches, patterned on
an (un)grounded dielectric substrate [Fig. 1(a)], or a period-
ically-perforated metal plate, with an (un)grounded dielectric
substrate underneath [Fig. 1(b)]. Due to the periodicity of the
structure, the Floquet theorem can be applied and the electro-
magnetic problem reduces to the investigation of the unit cell
of the periodic structure (Fig. 2). In our approach, the calcu-
lation is performed by choosing a propagation constant § =
Bty + Byiiy, (which determines the boundary conditions of the
unit cell), and scanning the frequency f, to find the pairs { ﬁ I}
that correspond to points of the DD.

A. Application of the IEM to EBG With Metal Patches

In the case of an array of metal patches [Fig. 2(a)], for a given
propagation constant 3 and frequency f, the boundary integral
equation is obtained by imposing the electric wall condition on
the metal patch with shape S [11]

/ Gr (z,y.2'.y) - J(&',y/)dS’ =0 on S (1)
S

where .J is the unknown electric current density on the patch
and G g is the Green’s function which relates the transverse-to-z
electric field at z = 0 to the transverse-to-z electric current
density on the patch, and is given by

—

G (2,9,7,9) =D Zmém(z, )0 y). ()
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Fig. 1. Examples of planar electromagnetic band-gap structures. (a) Array
of isolated metal patches on a grounded dielectric substrate. (b) Array of
interconnected metal patches on a grounded dielectric substrate.

periodic boundary condition

periodic boundary condilion

a b

Fig. 2. Unit cells of planar electromagnetic band-gap structures of Fig. 1.
(a) Array of metal patches. (b) Perforated metal plate.

In (2), fm is the electric modal vector of the mth Floquet mode
[17], the asterisk denotes the complex conjugate, and Z,, is
the parallel of the impedance seen by the mth Floquet mode,
looking from the section z = 0 in the positive and negative di-
rection of the z-axis.

The integral equation (1) is solved by using the MoM. The
electric current density is expressed as a combination of vector
basis functions €

]\T
T(w,y) =Y &(n.y) 3)
j=1

where {; are unknown coefficients. In our approach, entire-do-
main basis functions are adopted, which span the whole domain
S of the patch and are tangential to its boundary 05, thus sat-
isfying the same boundary condition as the current density J.
A suitable set of basis functions are the electric modal vec-
tors of a waveguide with cross-section S and magnetic-wall
boundary condition on 9S. In the case of arbitrarily-shaped
patches, the entire-domain basis functions are calculated nu-
merically by using the BI-RME method [18]. The advantage
of using entire-domain basis functions is that few tens of func-
tions are typically enough to guarantee the convergence of the
method, as will be shown in Section III.

By substituting (3) in (1) and testing the integral equation (1)
with the same set of functions ¢, the following matrix problem
is obtained

AX =0 “
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where X is the vector of the unknown coefficients ¢; and the
entries of A are given by

M=Z%/wmémmw

5
x/é'j(x'7y')-5;(:v’7y')d5’. 5)
5

Due to the particular choice of the basis functions, surface in-
tegrals appearing in (5) can be transformed into line integrals
[19], thus significantly increasing the computational efficiency
of the method.

B. Application of the IEM to EBG With Perforated Metal
Plates

In the case of a thin metal plate perforated with holes
[Fig. 2(b)], for a given propagation constant 3 and frequency
f, the boundary integral equation is obtained by imposing the
continuity of the tangential component of the fields across the
aperture with shape .S [10]. In particular, by applying the equiv-
alence theorem, the aperture is closed by a conductive sheet,
and the continuity of the tangential component of the electric
field is guaranteed by defining two unknown magnetic current
densities M and —M on the opposite sides of the conductive
sheet. Conversely, the continuity of the tangential component
of the magnetic field is enforced, thus obtaining

/ Gy (z,y,2' ) - M(z',y')dS’ =0 on$ (6)
s
where G is the Green’s function which relates the trans-

verse-to-z magnetic field at z = 0 to the transverse-to-z
magnetic current density on the aperture, and is given by

—

Gu (x,9,2,y) =Y Y Hum(z, ) Ho(2',y)  (7)

Scheme of the grid used for identifying the bandgap, in the case of a structure with a square lattice.

where H,, is the magnetic modal vector of the mth Floquet
mode, and Y, is the parallel of the admittance seen by the mnth
Floquet mode, looking from the section z = 0 in the positive
and negative direction of the z-axis.

In the application of the MoM, the magnetic current density
is expressed as a combination of vector basis functions l_ij

N
M(z,y) = &hi(ay) ®)
j=1

where {; are unknown coefficients, and ﬁj are entire-domain
basis functions, corresponding to the magnetic modal vectors
of a waveguide with the same cross-section S of the aperture
and electric-wall boundary condition on 95S.

The testing procedure by the same set of functions h; leads
to a matrix problem like (4), where

—

A =3 Von [ Talasn) - Fonla,)dS
m 5

x [ hi(a' ) Hi (2! y)dS". (9)
S

Also in this case, the transformation of surface integrals into line
integrals is applicable [19].

C. Search of the Points of the Dispersion Diagram

The approach proposed in this paper for finding the nontrivial
solutions of (4) is based on the tracking of the eigenvalues of
A( ﬁ , /) in the complex plane. A solution is found if one or more
eigenvalues cross the origin. .

By considering a given propagation constant (3;, the fre-
quency range fmin + fmax 1S scanned with a given frequency
step A f (Fig. 3). For each interval with extremes f, and f;, the
eigenvalues A, Ay and the eigenvectors V,, V,, of matrix A
at f, and f,, respectively, are calculated

A(fa7 ﬁb) = Vg*AaVa
A(fy, B:) = VAV,

(10)
(11
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where superscripts T denotes the transpose, and the eigenvectors
are normalized according to

VIvi=1 VIV;=1 (12)

and I is the identity matrix. Note that the computational effort
for finding eigenvalues and eigenvectors is very light, since the
dimension of matrix A is typically of few tens [10], [11].

In order to follow the path of the eigenvalues in the complex
plane from f, to f3, a correspondence between eigenvalues A,
and A, is needed. This is obtained by defining the matrix

P=VIvV; (13)

which exploits the correlation between the eigenvectors. In par-
ticular, due to the normalization condition (12), the element P;;
is close to unity if the ith eigenvector at f, slightly differs from
the jth eigenvector at f; and, therefore, there is a strong corre-
lation between A,; and Ap;. Conversely, P;; is close to zero if
there is no correlation between A,; and Ap;. A threshold proce-
dure applied to P leads to a correlation matrix, where any row
or column comprises one element equal to unity, being all other
elements equal to zero. This permits to track the path of each
eigenvalue on the complex plane when varying f and, eventu-
ally, to detect the zero-crossing of one or more of them.

It may happen that the entries of P cannot be clearly identified
as one or zero by the threshold procedure. Two different cases
may arise. If some modes (say D) are degenerate, an identical
number of eigenvalues cross the origin in the complex plane at
the same frequency, and the corresponding eigenvectors are gar-
bled. In this case, D? elements of P differ from zero or one, and
can be recognized as the elements of a rotation matrix. Applying
such a rotation to an eigenvector matrix (e.g., to V) and reusing
(13) permits to obtain, after the threshold procedure, a correla-
tion matrix whose entries are only one or zeros. The second case
happens when the frequency step A f is too large, and the eigen-
vectors are weakly correlated. In this case, a large number of
elements of P differ from zero or one. Therefore, the frequency
interval f, + f3 is subdivided in two identical parts, and the pro-
cedure is applied to each sub-interval. It is noted that both cases
are easily detected and solved in a fully automated way, with no
need of human intervention.

Once a zero-crossing is detected, the frequency f. of the
zero-crossing is estimated by a linear interpolation. Its accu-
racy is then automatically checked by a refinement procedure:
the frequency range f, + fp is divided into the sub-intervals
fa = f. and f. + f;, and the whole procedure is repeated for
each sub-interval. This requires the electromagnetic analysis at
f=, the calculation of the eigenvalues and eigenvectors of matrix
A at f., and the calculation of the correlation matrix P for the
two sub-intervals. The refinement stops when the relative dis-
tance between the new estimated zero-crossing frequency and
f~ is smaller than a prescribed value ¢ (typically ¢ = 0.1%). It
is worth observing that only few refinement steps (typically less
than three) are needed.

This iterative procedure is applied to all the values ﬁ_;, thus
obtaining a list of points on the dispersion diagram.

The same correlation concept can also be applied for inter-
connecting these points, in order to draw the dispersion curves
and find a possible bandgap. Also in this case, we exploit the
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6 8 10 12 14 16 18 20
frequency [GHz]
c

Fig. 4. Analysis of the UC-PBG structure. (a) Geometry of the unit cell
(dimensions: a = 3.048 mm, b = 2.794 mm, g = s = 0.254 mm,
h = 0.6985 mm). (b) Dispersion diagram; c) phase of the reflection
coefficient.

correlation of the eigenvectors by calculating matrix P for all
the zeros found for two closely spaced values of ﬁ (namely ﬁ_;
and (3;1). Note that this task is almost straightforward, since the
needed eigenvectors have been already calculated and stored.

III. NUMERICAL RESULTS

The classical UC-PBG structure [1] is used for validating the
proposed method. It consists of a dielectric layer metallized on
both sides (thickness ¢ = 0.635 mm, relative dielectric constant
e, = 10.2), with Jerusalem-cross shaped holes etched in the
top side [Fig. 4(a)]. Since the portion of metal is larger than
the holes, in the electromagnetic analysis it is more convenient
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number of basis functions in the calculation of the dispersion diagram of
Fig. 4(b).
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M Hy

to apply the theory described in Section II-B. Therefore, the
unit cell is the one shown in Fig. 4(a), and the unknown of the
problem is the magnetic current density defined on the hole.

The dispersion diagram was calculated by considering 30
basis functions and 1200 Floquet modes. The calculation was
performed in 30 points on the boundary of the irreducible Bril-
louin zone, the frequency step adopted in the zero-search was
Af = 1 GHz, and the required accuracy was € = 0.1%. The
overall process required about 1100 electromagnetic full-wave
analyzes: 900 analyzes for the preliminary grid scan (30 steps in
[ times 30 steps in f, Fig. 3) plus about 200 analyzes for the re-
finement procedure. The results obtained by the MoM/BI-RME
method are shown in Fig. 4(b) and compare well with the FDTD
simulation reported in [20]. The overall computing time was
about 18 min on a PC Pentium IV at 2.4 GHz.

The phase of the reflection coefficient in the case of normal
incidence was calculated by using the same number of basis
functions and Floquet modes, and is shown in Fig. 4(c). The
reference plane was set to the top side of the dielectric layer,
and this required to shift the measured phase reported in [3],
where the reference plane was set to the ground plane. A very
good agreement is found with the measurement results, whereas
a frequency shift is noted with respect to the FDTD simulations

33
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Fig. 7. Performance comparison between different technique for the
calculation of the dispersion diagram. (a) Search of the determinant zeros.
(b) Tracking of the path of some eigenvalues in the complex plane.

[3]. The overall computing time for calculating the phase of the
reflection coefficient in 70 frequency points was 9 s on a PC
Pentium IV at 2.4 GHz.

It is worth observing that the accuracy parameters used in
these analyzes were chosen after some convergence tests. In par-
ticular, the effect of the number of basis functions on the disper-
sion diagram (Fig. 5) shows that 30 basis functions permit to
reach the convergence. Actually, when using 15 functions, the
curves are correctly identified, but some spurious solutions ap-
pear.

An important test is related to the reliability and the accuracy
of the method, in the absence of the refinement procedure (i.e.,
by considering only the fixed frequency step A f and the linear
interpolation). To this aim, the M -point of the irreducible Bril-
louin zone [, = B, = m/a; see Fig. 4(b)] was considered.
This point is critical, since three modes are almost degenerate
around 26 GHz. The frequency scan was performed with dif-
ferent values of A f (namely, 4, 3,2, 1,0.5, and 0.1 GHz). Fig. 6
shows the relative error in the calculation of the mode frequen-
cies (the reference value used for calculating the relative error
is taken at a frequency step A f = 0.1 GHz). It is observed that,
even with a frequency step A f as large as 4 GHz, the first six
modes are found, and the accuracy is better than 6%. Moreover,
an accuracy better than 0.5% is obtained with Af = 1 GHz.

To better appreciate the robustness of the proposed method,
we performed the calculation of the mode frequencies at the
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M -point of the dispersion diagram by using the classical ap-
proach, based on the search of the zeros of the determinant of the
MoM matrix. Fig. 7(a) shows that a frequency step of 10 MHz is
required for identifying the zeros (in particular, the ones corre-
sponding to the fourth and fifth modes). Conversely, by tracking
the path of the MoM-matrix eigenvalues on the complex plane
[Fig. 7(b)], these modes can be easily identified by using a fre-
quency step of 1 GHz, even when their frequencies are almost
coincident.

IV. CONCLUSION

This paper presented a novel method for the efficient, reliable,
and fully automated calculation of the dispersion diagram of
planar electromagnetic band-gap structures.

The efficiency of the method depends on the particular tech-
nique adopted for finding the points of the dispersion diagram,
which requires a reduced number of electromagnetic analysis,
and on the use of the MoM/BI-RME method for the electro-
magnetic characterization of the periodic structure. In fact, the
MoM/BI-RME method yields the MoM matrix in a very short
time, thanks to the use of entire-domain basis functions and to
a special line-integral formulation of the entries of the matrix.
The use of entire-domain basis functions also leads to a MoM
matrix with small dimension, and therefore the calculation of its
eigenvalues and eigenvectors is extremely fast.

Moreover, the novel technique based on the tracking of the
eigenvalues in the complex plane takes advantage of some
information on the correlation between the eigenvectors at
different frequencies, which are not exploited in the classical
direct search of the determinant zeros. This permits to detect
the zeros even with a large frequency step, and to accurately
determine their frequency with few refinement steps. Further-
more, the information on the correlation of the eigenvectors
also permits to interconnect the points of the dispersion di-
agram at different values of the propagation constant, thus
automatically obtaining the identification of the modes.
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