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Analysis of Multilayered Printed Frequency Selective
Surfaces by the MoM/BI-RME Method
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Abstract—This paper presents an efficient method for the anal-
ysis of printed periodic structures, consisting of a multilayered
array of metal patches in a stratified dielectric medium, illumi-
nated by a uniform plane-wave. These structures are widely used
as frequency selective surfaces and mirrors. The analysis is based
on the solution of an integral equation by the method of moments
(MoM) with entire-domain basis functions. The basis functions
are calculated numerically by the boundary integral-resonant
mode expansion (BI-RME) method. The patches may have an
arbitrary shape, and both metal conductivity and dielectric losses
are considered. Some examples are reported to show the accuracy
and rapidity of the proposed method.

Index Terms—Coupling integrals, entire domain basis functions,
frequency selective surfaces, integral equation.

I. INTRODUCTION

PLANAR arrays of metal patches printed on a dielectric
substrate have been widely used as frequency selective

surfaces (FSSs) in the microwave and millimeter-wave re-
gion [1]–[3]. They find a variety of applications, including
quasioptical filters, antenna radomes, subreflectors for multi-
frequency reflector antennas, and polarizers. The transmission
and reflection performance of such structures depends on the
shape and size of the metal patches, the periodicity of the
array, the thickness and the dielectric characteristics of the
substrate. FSSs with patches located on two or more layers and
including a stratified dielectric medium (Fig. 1) have been also
proposed, with the aim of achieving better performance [1, Ch.
3]. Moreover, printed periodic structures backed by a metal
sheet have been used as mirrors [4], [5] and represent the basic
elements for the design of reflectarrays [6], [7].

Many methods were adopted for the analysis of FSSs with
patches on a dielectric substrate. Among them, the most
common technique is based on the formulation of an integral
equation, which is solved by the method of moments (MoM)
(see, for instance, [1, Ch. 2]). In the application of the MoM,
the electric current density on the metal patches is an unknown
quantity, which is expressed as a combination of basis func-
tions. The choice of the basis functions is a key-point for the
implementation of an efficient algorithm, since a large number
of basis functions leads to large matrix problems. In the case
of regular shapes (rectangular or circular), entire-domain basis
functions can be adopted, which span the entire domain of the
patch and satisfy the boundary conditions on its contour [8].
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Fig. 1. Frequency selective surface consisting of a periodic array of metal
patches with an arbitrary shape. The patches are located on different layers and
embedded in a stratified dielectric medium.

These functions are the electric modal vectors of a waveguide
with magnetic-wall boundary condition and with a cross-sec-
tion coincident with the shape of the patch, which correspond
to the magnetic modal vectors of a waveguide with elec-
tric-wall boundary condition. Whenever possible, the choice of
entire-domain basis functions is particularly convenient, since
few tens of functions are usually needed for a suitable represen-
tation of the unknown current density. Consequently, their use
leads to a very efficient implementation of the MoM algorithm.
Nevertheless, these functions are available in analytical form
only in the case of regular shapes. In a number of particular
cases (e.g., cross, tripole, Jerusalem cross) a suitable set of
specialized basis functions can be found [9]. In the general
case of arbitrary shapes, subdomain basis functions (roof-tops)
are typically adopted: they are linear functions defined on a
small rectangular or triangular portion of the domain. Such
functions are suitable to any kind of patch shape, but usually
many hundreds functions are needed [9], and this leads to
large MoM matrix problems. This problem becomes even more
critical when considering multilayered FSS, since in this case
the basis functions are defined on more patches. A partial
solution, however, can be found with the method presented
in [4], by dividing the structure into many elementary blocks
consisting of periodic metallizations between two different
dielectric media. The transmission/reflection properties of the
FSS are thus obtained by cascading the generalized scattering
matrices of each elementary block.

Recently, we proposed a novel algorithm, based on the use
of the MoM with entire-domain basis functions defined on ar-
bitrarily shaped domains. In the case of unconventional shapes,
the proper set of basis functions is efficiently calculated by the
boundary integral-resonant mode expansion (BI-RME) method
[10, Ch. 5]. This algorithm is named the MoM/BI-RME method,

0018-926X/03$17.00 © 2003 IEEE



BOZZI AND PERREGRINI: ANALYSIS OF MULTILAYERED PRINTED FREQUENCY SELECTIVE SURFACES 2831

Fig. 2. Elementary cell of the FSS shown in Fig. 1.

and was applied to the analysis of the FSSs consisting of thin
[11] or thick perforated metal screens [12], and of boxed mi-
crostrip circuits [13].

In this paper, we apply the MoM/BI-RME method to the anal-
ysis of printed periodic structures (Fig. 1), consisting of a multi-
layered array of metal patches in a stratified dielectric medium,
possibly grounded by a conductive sheet. The patches may have
an arbitrary shape. Losses in both the dielectric medium and the
conductors are accounted for.

II. M OM/BI-RME METHOD

The analysis of printed FSSs is performed under the hypoth-
esis of a multilayered infinite array of metal patches embedded
in a stratified dielectric medium. Patches on different layers may
have different shapes but must have the same periodicity. The in-
cident field at the frequency is a uniform plane wave traveling
along an arbitrary direction (, ), shown in Fig. 1. Under these
hypotheses, the analysis of the whole structure reduces to the
investigation of the unit cell with periodic boundary conditions
(Fig. 2).

A. Transmission and Reflection Coefficients

An arbitrarily polarized incident plane wave can be expressed
as the combination of the two fundamental Floquet modes:

(TM mode)

(TE mode)
(1)

in the case of oblique incidence ( ), or

(TEM mode)

(TEM mode)
(2)

in the case of normal incidence ( ). The scalar potentials
are eigenfunctions of the Helmholtz equation with periodic

boundary condition, and are the corre-
sponding eigenvalues, and are given by

(3)

(4)

(5)

where and are the dimensions of the elementary cell (Fig. 2),
is the skew angle (Fig. 1). Moreover, and are eigensolu-

tions of the Laplace equation with periodic boundary condition

(6)

Therefore, the FSS performance can be easily obtained from
matrices and , defined as

- -

- - (7)

- -

- - (8)

where , , and are the incident, reflected, and
transmitted electric field, respectively, and the superscripts
and indicate the TM mode and TE modes in the case of
oblique incidence, and the TEMand TEM modes in the case
of normal incidence.

B. Application of the MoM

A widely used approach for the analysis of printed periodic
structures is based on the formulation of an electric field inte-
gral equation, which is then solved by the MoM [1, Ch. 2]. This
method is briefly described in this section, both for sake of com-
pleteness and with the aim of introducing quantities useful for
the discussion to follow.

Let us consider a unit cell comprising a total ofmetallic
patches arbitrarily located at the interfaces of the stratified di-
electric medium including layers (Fig. 2). The analysis is
based on the solution of the following integral equations

(9)

obtained by enforcing the boundary condition on the surfaces
of all patches. In (9), is the transverse component of the
so-called “excitation field” on the th patch (i.e., the electric
field at the location of theth patch, in the absence of all patches
[4]), is the “sheet impedance” of the metallizations, in-
dicates the surface of theth patch, is the longitudinal co-
ordinate of the th patch, is the (unknown) current density

on . Finally, is the dyadic Green’s function which relates
the transverse electric delta current density in to the
transverse electric field in , given by [14]

(10)

where denotes the transverse electric modal vector of the
th Floquet mode (TE, TM, or TEM), the asterisk denotes the

complex conjugate, and functions are determined by con-
sidering the equivalent modal transmission lines for the layered
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medium in the periodic cell. Note that, for sake of simplicity, a
single subscript is used in the following to indicate the or-
dered Floquet modes.

Equation (9) is solved by applying the MoM in the Galerkin
form. The unknown current density is represented through a
set of basis functions defined on the th patch, namely

(11)

where are unknown coefficients.
By substituting (11) in (9) and testing the integral equations

by using as test functions , for each frequency we obtain

...
...

...

...
...

. . .
...

...
...

...
...

...
...

...
...

(12)

where

(13)

(14)

(15)

where is the Kronecker symbol. Once unknowns have
been calculated, the transmission and reflection coefficients (7)
and (8) can be obtained, following the lines of [8], through the
following expressions:

- -

(16)

- -

(17)

where , I, II, and - and - are the transmission
and reflection coefficient of the Floquet mode across the multi-
layered dielectric medium in the absence of the metal patches.
Expressions (16) and (17) can be easily extended to the reflec-
tion and transmission contribution of the fundamental Floquet
mode to higher order modes: in this case, superscriptrefers to
the considered upper mode.

C. Entire-Domain Basis Functions

A key feature of the present approach is the use of entire-do-
main basis functions, i.e., functions which span the entire do-
main and are tangent to its boundary (like the current
density ). More specifically, we consider as basis functions
the electric modal vectors of a waveguide with a cross-section

, bounded by magnetic walls. These modal vectors refers to
TM ( ), TE ( ), and, in the case of a multiply connected
surface , TEM ( ) modes. They can be defined in terms of
scalar potentials

(18)

(19)

(20)

where the pairs and are the eigensolu-
tions of the homogeneous Helmholtz equation in the domain
with Dirichelet and Neumann boundary condition, respectively.
In the case of -times connected surfaces, we have basis
functions of the type (20), which are obtained by solving the
Laplace equation for with the boundary condition
on an internal contour and elsewhere.

When considering arbitrarily shaped patches, the entire-do-
main basis functions must be determined numerically. The
efficiency of the numerical method used for their calculation
is of paramount importance, since it practically determines the
overall efficiency of the algorithm. For this reason, we use the
BI-RME method, which permits the calculation of some tens
of eigensolutions of the Helmoltz equation—and, therefore,
of basis functions (18) and (19)—in a very short computing
time (few seconds on a standard PC). Essentially, the BI-RME
method is a modified BI method (BIM), which permits to
transform the Helmoltz equation into a linear eigenvalue
problem [10, Ch. 5]. The solution of this problem yields, in a
single shot, all the eigenvalues and up to a prescribed
value , and the corresponding eigenfunctions
and over the boundary ( is the outward normal
derivative on ). From these boundary values, potentials

and can be calculated on the whole domain, and
therefore the basis functions can be obtained through (18) and
(19).

In the case of multiply-connected domains, the solution of the
Laplace equation by the standard BIM described in [15] pro-
vides on , and, finally, the basis functions (20).

As an example, Fig. 3 shows some basis functions and
in the case of a multiply-connected arbitrary domain, cal-

culated by the BI-RME method.

D. Coupling Integrals

The calculation of the MoM matrices (13) and (14) involves
the coupling coefficients

(21)



BOZZI AND PERREGRINI: ANALYSIS OF MULTILAYERED PRINTED FREQUENCY SELECTIVE SURFACES 2833

Fig. 3. Some of the first entire-domain vector basis functions used for
representing the electric current density on a multiply-connected patch with a
rounded cross shape.

between theth basis function on theth patch and the th Flo-
quet modal vector. Their evaluation can be directly performed
by a surface integration. However, such integration is a time con-
suming task, especially in cases of basis functions determined
by a BI method, since it requires an additional numerical effort
for evaluating the basis functions in many points within the in-
tegration domain .

By applying the Green’s identity and the properties of the
modal vectors used as basis functions (see [12, Appendix]), cou-
pling integrals (21) can be transformed from surface to line in-
tegrals. In particular, we have

(22)

(23)

(24)

(25)

(26)

(a)

(b)

Fig. 4. FSS consisting of cross-shaped patches on a dielectric substrate:
(a) side and front view of the unit cell and (b) reflection performance calculated
by the MoM/BI-RME method (solid line) compared with simulations reported
in the literature (markers).

(27)

(28)

(29)

(30)

where is the derivative along the boundary, namely in the
direction of .

The evident advantage of this transformation comes from the
possibility of calculating the coupling integrals by a one-dimen-
sional numerical integration. Furthermore, the contour integrals
involve , , and which are obtained
as the basic output of the BI-RME analysis. For this reason, the
use of the BI-RME method leads to a dramatic computational
advantage.

Finally, it is worthy observing that, in cases where
, expression (23) and (25) are not applicable. Recently, we

found a solution to this problem, deriving alternative line-inte-
gral expressions, which are applicable also in the cases where
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(a)

(b)

Fig. 5. Study of the convergence for the free-standing FSS in Fig. 4 when
varying the number of basis function (with 1150 Floquet modes) and the number
of Floquet modes (with 20 basis functions).

[16]. By applying this procedure in the case of Flo-
quet modes, we obtain

(31)

(32)

Function is a modified scalar potential, defined as

(33)

where and . More-
over when using in in (31), whereas
when using in in (32).

When and are very different, expressions (31) and (32)
still hold true, but their use is less convenient than (23) and
(25) from a computational point of view, due to the higher com-
plexity of the integrand function. Thus, the use of (23) and (25)
should be preferred.

(a)

(b)

Fig. 6. FSS comprising two centered square loops on a dielectric substrate:
(a) side and front view of the unit cell and (b) transmission performance
calculated by the MoM/BI-RME method (solid line) compared with
measurements (markers) for different dimensionsd of the inner loop (dielectric
constant" = 3).

III. V ALIDATION EXAMPLES

The MoM/BI-RME method described in the previous Section
was implemented in a computer code in Fortran language, run-
ning on PC Windows platform. In this Section, some examples
are reported, to validate the MoM/BI-RME method and to show
the performance of the implemented computer code.

The first example refers to a periodic array of cross-shaped
patches in a square grid [17], whose geometry is sketched in
Fig. 4(a). The FSS is illuminated by a uniform plane wave
incident from the normal direction. Different values of the
dielectric constant of the substrate were considered in the
analysis. By using the MoM/BI-RME method, the convergence
was achieved with 20 entire-domain basis functions and 1150
Floquet modes. The overall CPU time for the calculation of
the frequency response in 100 frequency points was 9 s on
a PC Pentium 4 @ 1.7 GHz (6 s for the calculation of the
basis functions, and 0.03 s for each frequency point). The
MoM/BI-RME results show and excellent agreement with the
simulations reported in [17] [Fig. 4(b)]. In the case of the
free-standing FSS, a convergence study of the MoM/BI-RME
method is also reported. The FSS was analyzed, varying the
number of basis functions with a fixed number of Floquet
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(a)

(b)

Fig. 7. Double layer FSS with dogbone-shaped patches with metal losses
(Z = 0:3331+ j 0:00888 
= ): (a) side and front view of the unit cell and
(b) power transmission of the FSS for different values of the spacing between
the layers (dielectric constant" = 3:8).

modes [Fig. 5(a)], and varying the number of Floquet modes
with a fixed number of basis functions [Fig. 5(b)].

The second example refers to a more complex structure,
which comprises two, multiply-connected patches per unit cell.
It consists of a square grid of two centered square loops located
on a dielectric substrate [Fig. 6(a)] [18]. The incident field
is a uniform plane wave incident from the normal direction.
Analyzes were performed by considering different dimensions

of the inner loop. The convergence of the analysis by the
MoM/BI-RME method was obtained by using 22 basis func-
tions and about 2000 Floquet modes. The symmetry of the
metal patches were exploited in the calculation of the basis
functions. The overall CPU time for the calculation of the
frequency response in 100 frequency points was 15 s on a PC
Pentium 4 @ 1.7 GHz. As shown in Fig. 6(b), the simulation
results obtained by the MoM/BI-RME method are in very good
agreement with measurements reported in [18].

The third example refers to a FSS with metal patches lo-
cated on two levels [Fig. 7(a)], firstly presented in [19]. The
patches have a dogbone shape and present a finite resistivity

. The FSS is illuminated by
a uniform plane wave, vertically polarized and incident from
the normal direction. Fig 7(b) reports the power transmission of
the structure for two different values of the spacingbetween

(a)

(b)

Fig. 8. Periodic array of rectangular patches on a grounded multilayered
dielectric medium: (a) side and front view of the unit cell and (b) reflection
coefficient of the fundamental mode versus frequency.

the two layers. The MoM/BI-RME results are compared with
simulations reported in [4], where the structure is analyzed by
using the MoM with subdomain basis functions, and exhibit a
very good agreement. The convergence of the MoM/BI-RME
method was obtained with 19 entire-domain basis functions on
each metallization and 570 Floquet modes. It is worthy ob-
serving that a 28 42 grid discretization was employed in [4],
resulting in more than 120 rooftop basis functions. The overall
CPU time for the calculation of the frequency response in 100
frequency points was 9 s on a PC Pentium 4 @ 1.7 GHz.

The last example refers to a reflection grating, firstly pre-
sented in [20], which suppresses the reflected wave of the funda-
mental mode, and maximizes the contribution to the first upper
mode. It consists of an array of rectangular patches on a strat-
ified dielectric substrate backed with a metal plane [Fig. 8(a)],
illuminated by a plane wave with oblique incidence ( ,

). The MoM/BI-RME method can be applied to the
analysis of reflection gratings by modifying in the
expression of the Green’s function (10). The analysis by the
MoM/BI-RME method was performed with 17 basis functions
and 880 Floquet modes. Fig. 8(b) reports the comparison be-
tween the MoM/BI-RME results and the simulation data re-
ported in [4]. The overall CPU time for the calculation of the
frequency response in 100 frequency points was 15 s on a PC
Pentium 4 @ 1.7 GHz.
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IV. CONCLUSION

This paper presented an efficient method for the analysis of
frequency selective surfaces, consisting of an array of arbitrarily
shaped metal patches in a multilayered dielectric medium. On
the one hand, the efficiency of the method depends on the use
of entire-domain basis functions in the MoM for representing
the unknown current density on the patches; on the other hand,
it is due to the very fast calculation of these functions by the
BI-RME method. Moreover, we reported new line-integral ex-
pressions for the evaluation of coupling integrals, which are par-
ticularly convenient when used in conjunction with the BI-RME
method (as well as with any other BI method). A set of exam-
ples showed the efficiency of the MoM/BI-RME method in the
analysis of different classes of structures, including a periodic
array of patches with a ground plane, which represents the basic
element in the design of reflectarrays.
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