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Foreword

It was the autumn of 1982 and my final year undergraduate project was on
surface plasmons. I had no idea that this topic would still have me fascinated
almost a quarter of a century later, let alone have become a life-time career.
Time really does fly. The invitation to write a foreword to this book with the
instruction that it include a historical perspective set me thinking of my own
first encounter with surface plasmons. My project supervisor was Roy Sambles
- little did I realise how lucky I was. Without knowing it I became hooked
on physics; not just studying it but doing it - I was off. The field of surface
plasmons has changed enormously in the intervening years; indeed, in its new
guise as plasmonics, interest has soared and many more people have joined the
field.

But for those new to the topic, where to begin? A good book can act as a
guide and companion - it can make all the difference. When I started in 1982
the newest book was a monster, a compilation called "Electromagnetic Surface
Waves", edited by Alan Boardman. Together with Kevin Welford, I had joined
Roy Sambles to do a PhD - as beginners we found this book a daunting yet
valuable resource – we plundered it, before long the pages became dog-eared
and the covers fell off. I left things plasmonic in 1986, not to rejoin until
1992. In the meantime Hans Raether published "Surface Plasmons". With his
wonderful combination of simplicity and insight, especially in the introduc-
tory sections, a classic emerged. Now almost twenty years later it is still very
much in use but, inevitably, it has become increasingly out of date as the field
continues to rapidly expand. Whilst several specialist volumes have emerged,
we have been acutely aware of the need for a more up-to-date introduction and
overview of the field at a glance. Now we have it - thank you Stefan.

But what is plasmonics? "You just have Maxwell’s equations, some material
properties and some boundary conditions, all classical stuff - what’s new about
that?" Well, would you have predicted that just by imposing appropriate struc-
ture on a metal one could make a synthetic material that would turn Snell’s law



xx Foreword

on its head? Or that you could squeeze light into places less that one hundredth
of a wavelength in size? No new fundamental particles, no new cosmology -
but surprises, adventure, the quest to understand - yes, we have all of those,
and more.

It seems that four elements underlie research in plasmonics today. The first
is the ready availability of state-of-the-art fabrication methods, particularly for
implementing nanostructure. Second, there are a wealth of high-sensitivity
optical characterisation techniques, which one can buy pretty much off-the-
shelf. Third, the rapid advance in computing power and speed have allowed
us to implement powerful numerical modelling tools on little more than a lap-
top computer. The fact that many researchers can gain access to these things
enables the expansion of the field of plasmonics, but what has motivated that
expansion?

The cynic might argue fashion. However, the fourth element, the one miss-
ing from the list above, is the wide range of potential applications - solar cells,
high-resolution microscopy, drug design and many more. Applications are in-
deed strong motivators, but I think there is more to it than that. I know I am
biased, but for me and I suspect many others it’s the adventure, the role of the
imagination, the wish to be the one to find something new, to explain the unex-
plained - in short its science, simple as that. Perhaps amazingly there are still
many topics in which one can do all of these things without the need to observe
gravity waves, build particle accelerators, or even work out how the brain that
loves to do such things works. Plasmonics is one of those small-scale topics
where good people can do interesting things with modest resources, that too is
one of the lures.

Roughly speaking the field is a hundred years old. Around the turn of the last
century the same four elements as described above applied - albeit in a different
way. The relevant state-of-the-art fabrication was that of ruled diffraction grat-
ings, optical characterisation was provided by the same gratings - to give spec-
troscopy. Computation was based on, among others, Rayleigh’s work on dif-
fraction and Zenneck’s and Sommerfeld’s work on surface waves - all analyt-
ical, but still valuable today. There was in addition an improved understanding
of metals, particularly from Drude’s treatment. So what was missing? Perhaps
most importantly these different activities were not really recognised as hav-
ing a commonality in the concept of surface plasmons. Now we are in a very
different situation, one in which the relevant underlying science is much better
understood - but where, as we continue to see, there are still many surprises.

Looking back it seems clear that the 1998 paper in Nature by Thomas Ebbe-
sen and colleagues on the extraordinary transmission of light through metallic
hole-arrays triggered many to enter the field. With an avalanche of develop-
ments in spectral ranges from the microwave, through THz, IR and visible, and
into the UV the need for an entry point has become more acute. Well, here it is.



Foreword xxi

It can’t possibly be comprehensive, but Stefan Maier’s addition gives an up-to-
date introduction and a great overview of the present situation. Who knows
what new concepts might emerge and where the important applications will
be? Maybe none of us know yet, that’s the beauty - it could be you.

Bill Barnes,
School of Physics, University of Exeter,
June 2006



Preface

Plasmonics forms a major part of the fascinating field of nanophotonics,
which explores how electromagnetic fields can be confined over dimensions on
the order of or smaller than the wavelength. It is based on interaction processes
between electromagnetic radiation and conduction electrons at metallic inter-
faces or in small metallic nanostructures, leading to an enhanced optical near
field of sub-wavelength dimension.

Research in this area demonstrates how a distinct and often unexpected be-
havior can occur (even with for modern optical studies seemingly uninteresting
materials such as metals!) if discontinuities or sub-wavelength structure is im-
posed. Another beauty of this field is that it is firmly grounded in classical
physics, so that a solid background knowledge in electromagnetism at under-
graduate level is sufficient to understand main aspects of the topic.

However, history has shown that despite the fact that the two main ingre-
dients of plasmonics - surface plasmon polaritons and localized surface plas-
mons - have been clearly described as early as 1900, it is often far from trivial
to appreciate the interlinked nature of many of the phenomena and applications
of this field. This is compounded by the fact that throughout the 20th century,
surface plasmon polaritons have been rediscovered in a variety of different
contexts.

The mathematical description of these surface waves was established around
the turn of the 20th century in the context of radio waves propagating along
the surface of a conductor of finite conductivity [Sommerfeld, 1899, Zenneck,
1907]. In the visible domain, the observation of anomalous intensity drops in
spectra produced when visible light reflects at metallic gratings [Wood, 1902]
was not connected with the earlier theoretical work until mid-century [Fano,
1941]. Around this time, loss phenomena associated with interactions tak-
ing place at metallic surfaces were also recorded via the diffraction of electron
beams at thin metallic foils [Ritchie, 1957], which was in the 1960s then linked
with the original work on diffraction gratings in the optical domain [Ritchie
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et al., 1968]. By that time, the excitation of Sommerfeld’s surface waves
with visible light using prism coupling had been achieved [Kretschmann and
Raether, 1968], and a unified description of all these phenomena in the form of
surface plasmon polaritons was established.

From then on, research in this field was so firmly grounded in the visible
region of the spectrum, that several rediscoveries in the microwave and the ter-
ahertz domain took place at the turn of the 21st century, closing the circle with
the original work from 100 years earlier. The history of localized surface plas-
mons in metal nanostructures is less turbulent, with the application of metallic
nanoparticles for the staining of glass dating back to Roman times. Here, the
clear mathematical foundation was also established around 1900 [Mie, 1908].

It is with this rich history of the field in mind that this book is written. It is
aimed both at students with a basic undergraduate knowledge in electromag-
netism or applied optics that want to start exploring the field, and at researchers
as a hopefully valuable desk reference. Naturally, this necessitates an exten-
sive reference section. Throughout the book, the original studies described and
cited were selected either because they provided to the author’s knowledge the
first description of a particular effect or application, or due to their didactic
suitability at the point in question. In many cases, it is clear that also different
articles could have been chosen, and in some sections of the book only a small
number of studies taken from a pool of qualitatively similar work had to be
selected.

The first part of this text should provide a solid introduction into the field,
starting with an elementary description of classic electromagnetism, with par-
ticular focus on the description of conductive materials. Subsequent chapters
describe both surface plasmon polaritons and localized plasmons in the visible
domain, and electromagnetic surface modes at lower frequencies. In the sec-
ond part, this knowledge is applied to a number of different applications, such
as plasmon waveguides, aperture arrays for enhanced light transmission, and
various geometries for surface-enhanced sensing. The book closes with a short
description of metallic metamaterials.

I hope this text will serve its purpose and provide a useful tool for both
current and future participants in this area, and will strengthen a feeling of
community between the different sub-fields. Comments and suggestions are
very much appreciated.

Stefan Maier
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PART I

FUNDAMENTALS OF PLASMONICS



Introduction

Research in plasmonics is currently taking place at a breathtaking pace, and
we can expect that many more will join the game in the near future. But for
the newcomer, where to start? Before diving into particular sub-fields, funda-
mental or application-driven, a solid basis for an understanding of the more
specialized literature is clearly desirable. This part of the text aims to help in
building such a core knowledge. The first chapter sets the groundwork by de-
scribing the optical properties of metals, starting with Maxwell’s equations and
the derivation of the dielectric function of the free electron gas. The following
three chapters introduce surface plasmon polaritons both at single interfaces
and in multilayer structures, and describe experimental techniques for their ex-
citation and observation. Chapter 5 adds the second important ingredient of
the game, localized surface plasmons in metallic nanostructures. The first part
of the book closes by describing electromagnetic modes at low frequencies,
where surface plasmon polaritons based on metals become highly delocalized,
and surface structuring must be employed to create more confined modes.



Chapter 1

ELECTROMAGNETICS OF METALS

While the optical properties of metals are discussed in most textbooks on
condensed matter physics, for convenience this chapter summarizes the most
important facts and phenomena that form the basis for a study of surface plas-
mon polaritons. Starting with a cursory review of Maxwell’s equations, we
describe the electromagnetic response both of idealized and real metals over a
wide frequency range, and introduce the fundamental excitation of the conduc-
tion electron sea in bulk metals: volume plasmons. The chapter closes with a
discussion of the electromagnetic energy density in dispersive media.

1.1 Maxwell’s Equations and Electromagnetic Wave
Propagation

The interaction of metals with electromagnetic fields can be firmly under-
stood in a classical framework based on Maxwell’s equations. Even metallic
nanostructures down to sizes on the order of a few nanometres can be described
without a need to resort to quantum mechanics, since the high density of free
carriers results in minute spacings of the electron energy levels compared to
thermal excitations of energy kBT at room temperature. The optics of met-
als described in this book thus falls within the realms of the classical theory.
However, this does not prevent a rich and often unexpected variety of optical
phenomena from occurring, due to the strong dependence of the optical prop-
erties on frequency.

As is well known from everyday experience, for frequencies up to the vis-
ible part of the spectrum metals are highly reflective and do not allow elec-
tromagnetic waves to propagate through them. Metals are thus traditionally
employed as cladding layers for the construction of waveguides and resonators
for electromagnetic radiation at microwave and far-infrared frequencies. In this
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low-frequency regime, the perfect or good conductor approximation of infinite
or fixed finite conductivity is valid for most purposes, since only a negligible
fraction of the impinging electromagnetic waves penetrates into the metal. At
higher frequencies towards the near-infrared and visible part of the spectrum,
field penetration increases significantly, leading to increased dissipation, and
prohibiting a simple size scaling of photonic devices that work well at low
frequencies to this regime. Finally, at ultraviolet frequencies, metals acquire
dielectric character and allow the propagation of electromagnetic waves, albeit
with varying degrees of attenuation, depending on the details of the electronic
band structure. Alkali metals such as sodium have an almost free-electron-like
response and thus exhibit an ultraviolet transparency. For noble metals such
as gold or silver on the other hand, transitions between electronic bands lead
to strong absorption in this regime.

These dispersive properties can be described via a complex dielectric func-
tion ε(ω), which provides the basis of all phenomena discussed in this text.
The underlying physics behind this strong frequency dependence of the optical
response is a change in the phase of the induced currents with respect to the
driving field for frequencies approaching the reciprocal of the characteristic
electron relaxation time τ of the metal, as will be discussed in section 1.2.

Before presenting an elementary description of the optical properties of met-
als, we recall the basic equations governing the electromagnetic response, the
macroscopic Maxwell equations. The advantage of this phenomenological ap-
proach is that details of the fundamental interactions between charged parti-
cles inside media and electromagnetic fields need not be taken into account,
since the rapidly varying microscopic fields are averaged over distances much
larger than the underlying microstructure. Specifics about the transition from
a microscopic to a macroscopic description of the electromagnetic response of
continuous media can be found in most textbooks on electromagnetics such as
[Jackson, 1999].

We thus take as a starting point Maxwell’s equations of macroscopic elec-
tromagnetism in the following form:

∇ · D = ρext (1.1a)

∇ · B = 0 (1.1b)

∇ × E = −∂B
∂t

(1.1c)

∇ × H = Jext + ∂D
∂t

. (1.1d)

These equations link the four macroscopic fields D (the dielectric displace-
ment), E (the electric field), H (the magnetic field), and B (the magnetic induc-
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tion or magnetic flux density) with the external charge and current densities
ρext and Jext. Note that we do not follow the usual procedure of presenting the
macroscopic equations via dividing the total charge and current densities ρtot

and Jtot into free and bound sets, which is an arbitrary division [Illinskii and
Keldysh, 1994] and can (especially in the case of metallic interfaces) confuse
the application of the boundary condition for the dielectric displacement. In-
stead, we distinguish between external (ρext, Jext) and internal (ρ, J) charge
and current densities, so that in total ρtot = ρext + ρ and Jtot = Jext + J. The
external set drives the system, while the internal set responds to the external
stimuli [Marder, 2000].

The four macroscopic fields are further linked via the polarization P and
magnetization M by

D = ε0E + P (1.2a)

H = 1

μ0
B − M, (1.2b)

where ε0 and μ0 are the electric permittivity1 and magnetic permeability2 of
vacuum, respectively. Since we will in this text only treat nonmagnetic me-
dia, we need not consider a magnetic response represented by M, but can limit
our description to electric polarization effects. P describes the electric dipole
moment per unit volume inside the material, caused by the alignment of micro-
scopic dipoles with the electric field. It is related to the internal charge density
via ∇ · P = −ρ. Charge conservation (∇ · J = −∂ρ/∂t) further requires that
the internal charge and current densities are linked via

J = ∂P
∂t

. (1.3)

The great advantage of this approach is that the macroscopic electric field
includes all polarization effects: In other words, both the external and the in-
duced fields are absorbed into it. This can be shown via inserting (1.2a) into
(1.1a), leading to

∇ · E = ρtot

ε0
. (1.4)

In the following, we will limit ourselves to linear, isotropic and nonmagnetic
media. One can define the constitutive relations

D = ε0εE (1.5a)

B = μ0μH. (1.5b)

1ε0 ≈ 8.854 × 10−12 F/m
2μ0 ≈ 1.257 × 10−6 H/m
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ε is called the dielectric constant or relative permittivity and μ = 1 the rela-
tive permeability of the nonmagnetic medium. The linear relationship (1.5a)
between D and E is often also implicitly defined using the dielectric suscepti-
bility χ (particularly in quantum mechanical treatments of the optical response
[Boyd, 2003]), which describes the linear relationship between P and E via

P = ε0χE. (1.6)

Inserting (1.2a) and (1.6) into (1.5a) yields ε = 1 + χ .
The last important constitutive linear relationship we need to mention is that

between the internal current density J and the electric field E, defined via the
conductivity σ by

J = σE. (1.7)

We will now show that there is an intimate relationship between ε and σ ,
and that electromagnetic phenomena with metals can in fact be described using
either quantity. Historically, at low frequencies (and in fact in many theoretical
considerations) preference is given to the conductivity, while experimentalists
usually express observations at optical frequencies in terms of the dielectric
constant. However, before embarking on this we have to point out that the
statements (1.5a) and (1.7) are only correct for linear media that do not exhibit
temporal or spatial dispersion. Since the optical response of metals clearly
depends on frequency (possibly also on wave vector), we have to take account
of the non-locality in time and space by generalizing the linear relationships to

D(r, t) = ε0

∫
dt ′dr′ε(r − r′, t − t ′)E(r′, t ′) (1.8a)

J(r, t) =
∫

dt ′dr′σ(r − r′, t − t ′)E(r′, t ′). (1.8b)

ε0ε and σ therefore describe the impulse response of the respective linear re-
lationship. Note that we have implicitly assumed that all length scales are
significantly larger than the lattice spacing of the material, ensuring homo-
geneity, i.e. the impulse response functions do not depend on absolute spatial
and temporal coordinates, but only their differences. For a local response, the
functional form of the impulse response functions is that of a δ-function, and
(1.5a) and (1.7) are recovered.

Equations (1.8) simplify significantly by taking the Fourier transform with
respect to

∫
dtdrei(K·r−ωt), turning the convolutions into multiplications. We

are thus decomposing the fields into individual plane-wave components of
wave vector K and angular frequency ω. This leads to the constitutive rela-
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tions in the Fourier domain

D(K, ω) = ε0ε(K, ω)E(K, ω) (1.9a)

J(K, ω) = σ(K, ω)E(K, ω). (1.9b)

Using equations (1.2a), (1.3) and (1.9) and recognizing that in the Fourier do-
main ∂/∂t → −iω, we finally arrive at the fundamental relationship between
the relative permittivity (from now on called the dielectric function) and the
conductivity

ε(K, ω) = 1 + iσ (K, ω)

ε0ω
. (1.10)

In the interaction of light with metals, the general form of the dielectric re-
sponse ε(ω, K) can be simplified to the limit of a spatially local response via
ε(K = 0, ω) = ε(ω). The simplification is valid as long as the wavelength λ

in the material is significantly longer than all characteristic dimensions such as
the size of the unit cell or the mean free path of the electrons. This is in general
still fulfilled at ultraviolet frequencies3.

Equation (1.10) reflects a certain arbitrariness in the separation of charges
into bound and free sets, which is entirely due to convention. At low frequen-
cies, ε is usually used for the description of the response of bound charges to a
driving field, leading to an electric polarization, while σ describes the contri-
bution of free charges to the current flow. At optical frequencies however, the
distinction between bound and free charges is blurred. For example, for highly-
doped semiconductors, the response of the bound valence electrons could be
lumped into a static dielectric constant δε, and the response of the conduction
electrons into σ ′, leading to a dielectric function ε(ω) = δε + iσ ′(ω)

ε0ω
. A simple

redefinition δε → 1 and σ ′ → σ ′ + ε0ω

i
δε will then result in the general form

(1.10) [Ashcroft and Mermin, 1976].
In general, ε(ω) = ε1(ω)+iε2(ω) and σ(ω) = σ1(ω)+iσ2(ω) are complex-

valued functions of angular frequency ω, linked via (1.10). At optical frequen-
cies, ε can be experimentally determined for example via reflectivity studies
and the determination of the complex refractive index ñ(ω) = n(ω) + iκ(ω)

of the medium, defined as ñ = √
ε. Explicitly, this yields

3However, spatial dispersion effects can lead to small corrections for surface plasmons polaritons in metallic
nanostructures significantly smaller than the electron mean free path, which can arise for example at the tip
of metallic cones (see chapter 7).
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ε1 = n2 − κ2 (1.11a)

ε2 = 2nκ (1.11b)

n2 = ε1

2
+ 1

2

√
ε2

1 + ε2
2 (1.11c)

κ = ε2

2n
. (1.11d)

κ is called the extinction coefficient and determines the optical absorption of
electromagnetic waves propagating through the medium. It is linked to the
absorption coefficient α of Beer’s law (describing the exponential attenuation
of the intensity of a beam propagating through the medium via I (x) = I0e

−αx)
by the relation

α(ω) = 2κ(ω)ω

c
. (1.12)

Therefore, the imaginary part ε2 of the dielectric function determines the
amount of absorption inside the medium. For |ε1| � |ε2|, the real part n

of the refractive index, quantifying the lowering of the phase velocity of the
propagating waves due to polarization of the material, is mainly determined by
ε1. Examination of (1.10) thus reveals that the real part of σ determines the
amount of absorption, while the imaginary part contributes to ε1 and therefore
to the amount of polarization.

We close this section by examining traveling-wave solutions of Maxwell’s
equations in the absence of external stimuli. Combining the curl equations
(1.1c), (1.1d) leads to the wave equation

∇ × ∇ × E = −μ0
∂2D
∂t2

(1.13a)

K(K · E) − K2E = −ε(K, ω)
ω2

c2
E, (1.13b)

in the time and Fourier domains, respectively. c = 1√
ε0μ0

is the speed of light
in vacuum. Two cases need to be distinguished, depending on the polarization
direction of the electric field vector. For transverse waves, K · E = 0, yielding
the generic dispersion relation

K2 = ε(K, ω)
ω2

c2
. (1.14)

For longitudinal waves, (1.13b) implies that

ε(K, ω) = 0, (1.15)
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signifying that longitudinal collective oscillations can only occur at frequencies
corresponding to zeros of ε(ω). We will return to this point in the discussion
of volume plasmons in section 1.3.

1.2 The Dielectric Function of the Free Electron Gas
Over a wide frequency range, the optical properties of metals can be ex-

plained by a plasma model, where a gas of free electrons of number density
n moves against a fixed background of positive ion cores. For alkali metals,
this range extends up to the ultraviolet, while for noble metals interband transi-
tions occur at visible frequencies, limiting the validity of this approach. In the
plasma model, details of the lattice potential and electron-electron interactions
are not taken into account. Instead, one simply assumes that some aspects of
the band structure are incorporated into the effective optical mass m of each
electron. The electrons oscillate in response to the applied electromagnetic
field, and their motion is damped via collisions occurring with a characteristic
collision frequency γ = 1/τ . τ is known as the relaxation time of the free
electron gas, which is typically on the order of 10−14 s at room temperature,
corresponding to γ = 100 THz.

One can write a simple equation of motion for an electron of the plasma sea
subjected to an external electric field E:

mẍ + mγ ẋ = −eE (1.16)

If we assume a harmonic time dependence E(t) = E0e−iωt of the driving field,
a particular solution of this equation describing the oscillation of the electron
is x(t) = x0e−iωt . The complex amplitude x0 incorporates any phase shifts
between driving field and response via

x(t) = e

m(ω2 + iγ ω)
E(t). (1.17)

The displaced electrons contribute to the macroscopic polarization P = −nex,
explicitly given by

P = − ne2

m(ω2 + iγ ω)
E. (1.18)

Inserting this expression for P into equation (1.2a) yields

D = ε0(1 − ω2
p

ω2 + iγ ω
)E, (1.19)

where ω2
p = ne2

ε0m
is the plasma frequency of the free electron gas. Therefore we

arrive at the desired result, the dielectric function of the free electron gas:
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ε(ω) = 1 − ω2
p

ω2 + iγ ω
. (1.20)

The real and imaginary components of this complex dielectric function ε(ω) =
ε1(ω) + iε2(ω) are given by

ε1(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
(1.21a)

ε2(ω) = ω2
pτ

ω(1 + ω2τ 2)
, (1.21b)

where we have used γ = 1/τ . It is insightful to study (1.20) for a variety of
different frequency regimes with respect to the collision frequency γ . We will
limit ourselves here to frequencies ω < ωp, where metals retain their metallic
character. For large frequencies close to ωp, the product ωτ � 1, leading to
negligible damping. Here, ε(ω) is predominantly real, and

ε(ω) = 1 − ω2
p

ω2
(1.22)

can be taken as the dielectric function of the undamped free electron plasma.
Note that the behavior of noble metals in this frequency region is completely
altered by interband transitions, leading to an increase in ε2. The examples of
gold and silver will be discussed below and in section 1.4.

We consider next the regime of very low frequencies, where ω � τ−1.
Hence, ε2 � ε1, and the real and the imaginary part of the complex refractive
index are of comparable magnitude with

n ≈ κ =
√

ε2

2
=

√
τω2

p

2ω
. (1.23)

In this region, metals are mainly absorbing, with an absorption coefficient of

α =
(

2ω2
pτω

c2

)1/2

. (1.24)

By introducing the dc-conductivity σ0, this expression can be recast using
σ0 = ne2τ

m
= ω2

pτε0 to

α = √
2σ0ωμ0. (1.25)

The application of Beer’s law of absorption implies that for low frequencies
the fields fall off inside the metal as e−z/δ, where δ is the skin depth
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δ = 2

α
= c

κω
=

√
2

σ0ωμ0
. (1.26)

A more rigorous discussion of the low-frequency behavior based on the
Boltzmann transport equation [Marder, 2000] shows that this description is
indeed valid as long as the mean free path of the electrons l = vFτ � δ, where
vF is the Fermi velocity. At room temperature, for typical metals l ≈ 10 nm
and δ ≈ 100 nm, thus justifying the free-electron model. At low temperatures
however, the mean free path can increase by many orders of magnitude, lead-
ing to changes in the penetration depth. This phenomenon is known as the
anomalous skin effect.

If we use σ instead of ε for the description of the dielectric response of
metals, we recognize that in the absorbing regime it is predominantly real, and
the free charge velocity responds in phase with the driving field, as can be seen
by integrating (1.17). At DC, relaxation effects of free charges are therefore
conveniently described via the real DC-conductivity σ0, whereas the response
of bound charges is put into a dielectric constant εB, as discussed above in the
examination of the interlinked nature between ε and σ .

At higher frequencies (1 ≤ ωτ ≤ ωpτ ), the complex refractive index is
predominantly imaginary (leading to a reflection coefficient R ≈ 1 [Jackson,
1999]), and σ acquires more and more complex character, blurring the boundary
between free and bound charges. In terms of the optical response, σ(ω) enters
expressions only in the combination (1.10) [Ashcroft and Mermin, 1976], due
to the arbitrariness of the division between free and bound sets discussed above.

Whereas our description up to this point has assumed an ideal free-electron
metal, we will now briefly compare the model with an example of a real metal
important in the field of plasmonics (an extended discussion can be found in
section 1.4). In the free-electron model, ε → 1 at ω � ωp. For the noble
metals (e.g. Au, Ag, Cu), an extension to this model is needed in the region
ω > ωp (where the response is dominated by free s electrons), since the filled
d band close to the Fermi surface causes a highly polarized environment. This
residual polarization due to the positive background of the ion cores can be
described by adding the term P∞ = ε0(ε∞ − 1)E to (1.2a), where P now
represents solely the polarization (1.18) due to free electrons. This effect is
therefore described by a dielectric constant ε∞ (usually 1 ≤ ε∞ ≤ 10), and we
can write

ε(ω) = ε∞ − ω2
p

ω2 + iγ ω
. (1.27)

The validity limits of the free-electron description (1.27) are illustrated for
the case of gold in Fig. 1.1. It shows the real and imaginary components ε1 and
ε2 for a dielectric function of this type, fitted to the experimentally determined
dielectric function of gold [Johnson and Christy, 1972]. Clearly, at visible
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Figure 1.1. Dielectric function ε(ω) (1.27) of the free electron gas (solid line) fitted to the
literature values of the dielectric data for gold [Johnson and Christy, 1972] (dots). Interband
transitions limit the validity of this model at visible and higher frequencies.

frequencies the applicability of the free-electron model breaks down due to
the occurrence of interband transitions, leading to an increase in ε2. This will
be discussed in more detail in section 1.4. The components of the complex
refractive index corresponding to the fits presented in Fig. 1.1 are shown in
Fig. 1.2.

It is instructive to link the dielectric function of the free electron plasma
(1.20) to the classical Drude model [Drude, 1900] for the AC conductivity
σ(ω) of metals. This can be achieved by recognizing that equation (1.16) can
be rewritten as

ṗ = −p
τ

− eE, (1.28)

where p = mẋ is the momentum of an individual free electron. Via the same
arguments presented above, we arrive at the following expression for the AC
conductivity σ = nep

m
,
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Figure 1.2. Complex refractive index corresponding to the free-electron dielectric function in
Fig. 1.1.
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σ(ω) = σ0

1 − iωτ
. (1.29)

By comparing equation (1.20) and (1.29), we get

ε(ω) = 1 + iσ (ω)

ε0ω
, (1.30)

recovering the previous, general result of equation 1.10. The dielectric function
of the free electron gas (1.20) is thus also known as the Drude model of the
optical response of metals.

1.3 The Dispersion of the Free Electron Gas and Volume
Plasmons

We now turn to a description of the thus-far omitted transparency regime
ω > ωp of the free electron gas model. Using equation (1.22) in (1.14), the
dispersion relation of traveling waves evaluates to

ω2 = ω2
p + K2c2. (1.31)

This relation is plotted for a generic free electron metal in Fig. 1.3. As can
be seen, for ω < ωp the propagation of transverse electromagnetic waves is
forbidden inside the metal plasma. For ω > ωp however, the plasma supports
transverse waves propagating with a group velocity vg = dω/dK < c.

The significance of the plasma frequency ωp can be further elucidated by
recognizing that in the small damping limit, ε(ωp) = 0 (for K = 0). This ex-
citation must therefore correspond to a collective longitudinal mode as shown
in the discussion leading to (1.15). In this case, D = 0 = ε0E + P. We see that
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Figure 1.3. The dispersion relation of the free electron gas. Electromagnetic wave propagation
is only allowed for ω > ωp.
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Figure 1.4. Longitudinal collective oscillations of the conduction electrons of a metal: Volume
plasmons

at the plasma frequency the electric field is a pure depolarization field, with
E = −P

ε0
.

The physical significance of the excitation at ωp can be understood by con-
sidering the collective longitudinal oscillation of the conduction electron gas
versus the fixed positive background of the ion cores in a plasma slab. Schemat-
ically indicated in Fig. 1.4, a collective displacement of the electron cloud by a
distance u leads to a surface charge density σ = ±neu at the slab boundaries.
This establishes a homogeneous electric field E = neu

ε0
inside the slab. Thus,

the displaced electrons experience a restoring force, and their movement can
be described by the equation of motion nmü = −neE. Inserting the expression
for the electric field, this leads to

nmü = −n2e2u

ε0
(1.32a)

ü + ω2
pu = 0. (1.32b)

The plasma frequency ωp can thus be recognized as the natural frequency of a
free oscillation of the electron sea. Note that our derivation has assumed that all
electrons move in phase, thus ωp corresponds to the oscillation frequency in the
long-wavelength limit where K = 0. The quanta of these charge oscillations
are called plasmons (or volume plasmons, to distinguish them from surface and
localized plasmons, which will be discussed in the remainder of this text). Due
to the longitudinal nature of the excitation, volume plasmons do not couple to
transverse electromagnetic waves, and can only be excited by particle impact.
Another consequence of this is that their decay occurs only via energy transfer
to single electrons, a process known as Landau damping.

Experimentally, the plasma frequency of metals typically is determined via
electron loss spectroscopy experiments, where electrons are passed through
thin metallic foils. For most metals, the plasma frequency is in the ultravio-
let regime: ωp is on the order of 5 − 15 eV, depending on details of the band
structure [Kittel, 1996]. As an aside, we want to note that such longitudinal os-
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cillations can also be excited in dielectrics, in which case the valence electrons
oscillate collectively with respect to the ion cores.

In addition to the in-phase oscillation at ωp, there exists a whole class of lon-
gitudinal oscillations at higher frequencies with finite wavevectors, for which
(1.15) is fulfilled. The derivation of the dispersion relation of volume plasmons
is beyond the scope of this treatment and can be found in many textbooks on
condensed matter physics [Marder, 2000, Kittel, 1996]. Up to quadratic order
in K,

ω2 = ω2
p + 6EFK

2

5m
, (1.33)

where EF is the Fermi energy. Practically, the dispersion can be measured us-
ing inelastic scattering experiments such as electron energy loss spectroscopy
(EELS).

1.4 Real Metals and Interband Transitions
We have already on several occasions stated that the dielectric function

(1.20) of the Drude model adequately describes the optical response of metals
only for photon energies below the threshold of transitions between electronic
bands. For some of the noble metals, interband effects already start to occur
for energies in excess of 1 eV (corresponding to a wavelength λ ≈ 1 μm). As
examples, Figs. 1.1 and 1.5 show the real and the imaginary parts ε1(ω), ε2(ω)

of the dielectric function for gold and silver [Johnson and Christy, 1972] and
Drude model fits to the data. Clearly, this model is not adequate for describing
either ε1 or ε2 at high frequencies, and in the case of gold, its validity breaks
down already at the boundary between the near-infrared and the visible.

We limit this comparison between the Drude model and the dielectric re-
sponse of real metals to the cases of gold and silver, the most important metals
for plasmonic studies in the visible and near-infrared. Above their respective
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Figure 1.5. The real and imaginary part of ε(ω) for silver determined by Johnson and
Christy [Johnson and Christy, 1972] (dots) and a Drude model fit to the data.
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band edge thresholds, photons are very efficient in inducing interband tran-
sitions, where electrons from the filled band below the Fermi surface are ex-
cited to higher bands. Theoretically, these can be described using the same ap-
proach used for direct band transitions in semiconductors [Ashcroft and Mer-
min, 1976, Marder, 2000], and we will not embark on a more detailed discus-
sion. The main consequence of these processes concerning surface plasmon
polaritons is an increased damping and competition between the two excita-
tions at visible frequencies.

For practical purposes, a big advantage of the Drude model is that it can
easily be incorporated into time-domain based numerical solvers for Maxwell’s
equations, such as the finite-difference time-domain (FDTD) scheme [Kashiwa
and Fukai, 1990], via the direct calculation of the induced currents using (1.16).
Its inadequacy in describing the optical properties of gold and silver at visible
frequencies can be overcome by replacing (1.16) by

mẍ + mγ ẋ + mω2
0x = −eE. (1.34)

Interband transitions are thus described using the classical picture of a bound
electron with resonance frequency ω0, and (1.34) can then be used to calculate
the resulting polarization. We note that a number of equations of this form
might have to be solved (each resulting in a separate contribution to the total
polarization) in order to model ε(ω) for noble metals accurately. Each of these
equations leads to a Lorentz-oscillator term of the form Ai

ω2
i −ω2−iγiω

added to

the free-electron result (1.20) [Vial et al., 2005].

1.5 The Energy of the Electromagnetic Field in Metals
We finish this chapter by taking a brief look at the energy of the electro-

magnetic field inside metals, or more generally inside dispersive media. Since
the amount of field localization is often quantified in terms of the electromag-
netic energy distribution, a careful consideration of the effects of dispersion is
necessary. For a linear medium with no dispersion or losses (i.e. (1.5) holds),
the total energy density of the electromagnetic field can be written as [Jackson,
1999]

u = 1

2
(E · D + B · H). (1.35)

This expression enters together with the Poynting vector of energy flow S =
E × H into the conservation law

∂u

∂t
+ ∇ · S = −J · E, (1.36)

relating changes in electromagnetic energy density to energy flow and absorp-
tion inside the material.
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In the following, we will concentrate on the contribution uE of the electric
field E to the total electromagnetic energy density. In metals, ε is complex and
frequency-dependent due to dispersion, and (1.35) does not apply. For a field
consisting of monochromatic components, Landau and Lifshitz have shown
that the conservation law (1.36) can be held up if uE is replaced by an effective
electric energy density ueff, defined as

ueff = 1

2
Re

[
d(ωε)

dω

]
ω0

〈E(r, t) · E(r, t)〉 , (1.37)

where 〈E(r, t) · E(r, t)〉 signifies field-averaging over one optical cycle, and
ω0 is the frequency of interest. This expression is valid if E is only apprecia-
ble in a narrow frequency range around ω0, and the fields are slowly-varying
compared to a timescale 1/ω0. Furthermore, it is assumed that |ε2| � |ε1|,
so that absorption is small. We note that additional care must be taken with
the correct calculation of absorption on the right side of (1.36), where J · E
should be replaced by ω0Im [ε(ω0)] 〈E(r, t) · E(r, t)〉 if the dielectric response
of the metal is completely described via ε(ω) [Jackson, 1999], in line with the
discussion surrounding (1.10).

The requirement of low absorption limits (1.37) to visible and near-infrared
frequencies, but not to lower frequencies or the regime of interband effects
where |ε2| > |ε1|. However, the electric field energy can also be determined by
taking the electric polarization explicitly into account, in the form described by
(1.16) [Loudon, 1970, Ruppin, 2002]. The obtained expression for the electric
field energy of a material described by a free-electron-type dielectric function
ε = ε1 + iε2 of the form (1.20) is

ueff = ε0

4

(
ε1 + 2ωε2

γ

)
|E|2 , (1.38)

where an additional factor 1/2 is included due to an implicit assumption of
harmonic time dependence of the oscillating fields. For negligible ε2, it can be
shown that (1.38) reduces as expected to (1.37) for time-harmonic fields. We
will use (1.38) in chapter 2 when discussing the amount of energy localization
in fields localized at metallic surfaces.



Chapter 2

SURFACE PLASMON POLARITONS AT METAL /
INSULATOR INTERFACES

Surface plasmon polaritons are electromagnetic excitations propagating at
the interface between a dielectric and a conductor, evanescently confined in
the perpendicular direction. These electromagnetic surface waves arise via
the coupling of the electromagnetic fields to oscillations of the conductor’s
electron plasma. Taking the wave equation as a starting point, this chapter
describes the fundamentals of surface plasmon polaritons both at single, flat
interfaces and in metal/dielectric multilayer structures. The surface excitations
are characterized in terms of their dispersion and spatial profile, together with
a detailed discussion of the quantification of field confinement. Applications
of surface plasmon polaritons in waveguiding will be deferred to chapter 7.

2.1 The Wave Equation
In order to investigate the physical properties of surface plasmon polaritons

(SPPs), we have to apply Maxwell’s equations (1.1) to the flat interface be-
tween a conductor and a dielectric. To present this discussion most clearly, it
is advantageous to cast the equations first in a general form applicable to the
guiding of electromagnetic waves, the wave equation.

As we have seen in chapter 1, in the absence of external charge and current
densities, the curl equations (1.1c, 1.1d) can be combined to yield

∇ × ∇ × E = −μ0
∂2D
∂t2

. (2.1)

Using the identities ∇ × ∇ × E ≡ ∇(∇ · E) − ∇2E as well as ∇ · (εE) ≡
E · ∇ε + ε∇ · E, and remembering that due to the absence of external stimuli
∇ · D = 0, (2.1) can be rewritten as
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∇
(

−1

ε
E · ∇ε

)
− ∇2E = −μ0ε0ε

∂2E
∂t2

. (2.2)

For negligible variation of the dielectric profile ε = ε(r) over distances on
the order of one optical wavelength, (2.2) simplifies to the central equation of
electromagnetic wave theory,

∇2E − ε

c2

∂2E
∂t2

= 0. (2.3)

Practically, this equation has to be solved separately in regions of constant ε,
and the obtained solutions have to been matched using appropriate boundary
conditions. To cast (2.3) in a form suitable for the description of confined
propagating waves, we proceed in two steps. First, we assume in all generality
a harmonic time dependence E(r, t) = E(r)e−iωt of the electric field. Inserted
into (2.3), this yields

∇2E + k2
0εE = 0, (2.4)

where k0 = ω
c

is the wave vector of the propagating wave in vacuum. Equation
(2.4) is known as the Helmholtz equation.

Next, we have to define the propagation geometry. We assume for sim-
plicity a one-dimensional problem, i.e. ε depends only on one spatial coor-
dinate. Specifically, the waves propagate along the x-direction of a cartesian
coordinate system, and show no spatial variation in the perpendicular, in-plane
y-direction (see Fig. 2.1); therefore ε = ε(z). Applied to electromagnetic
surface problems, the plane z = 0 coincides with the interface sustaining the

x (direction of propagation)

y

z

Figure 2.1. Definition of a planar waveguide geometry. The waves propagate along the x-
direction in a cartesian coordinate system.
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propagating waves,which can now be described as E(x, y, z) = E(z)eiβx . The
complex parameter β = kx is called the propagation constant of the traveling
waves and corresponds to the component of the wave vector in the direction of
propagation. Inserting this expression into (2.4) yields the desired form of the
wave equation

∂2E(z)

∂z2
+ (

k2
0ε − β2

)
E = 0. (2.5)

Naturally, a similar equation exists for the magnetic field H.
Equation (2.5) is the starting point for the general analysis of guided elec-

tromagnetic modes in waveguides, and an extended discussion of its properties
and applications can be found in [Yariv, 1997] and similar treatments of pho-
tonics and optoelectronics. In order to use the wave equation for determining
the spatial field profile and dispersion of propagating waves, we now need to
find explicit expressions for the different field components of E and H. This
can be achieved in a straightforward way using the curl equations (1.1c, 1.1d).

For harmonic time dependence
(

∂
∂t

= −iω
)
, we arrive at the following set

of coupled equations

∂Ez

∂y
− ∂Ey

∂z
= iωμ0Hx (2.6a)

∂Ex

∂z
− ∂Ez

∂x
= iωμ0Hy (2.6b)

∂Ey

∂x
− ∂Ex

∂y
= iωμ0Hz (2.6c)

∂Hz

∂y
− ∂Hy

∂z
= −iωε0εEx (2.6d)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εEy (2.6e)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz. (2.6f)

For propagation along the x-direction
(

∂
∂x

= iβ
)

and homogeneity in the y-

direction
(

∂
∂y

= 0
)

, this system of equation simplifies to
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∂Ey

∂z
= −iωμ0Hx (2.7a)

∂Ex

∂z
− iβEz = iωμ0Hy (2.7b)

iβEy = iωμ0Hz (2.7c)
∂Hy

∂z
= iωε0εEx (2.7d)

∂Hx

∂z
− iβHz = −iωε0εEy (2.7e)

iβHy = −iωε0εEz. (2.7f)

It can easily be shown that this system allows two sets of self-consistent
solutions with different polarization properties of the propagating waves. The
first set are the transverse magnetic (TM or p) modes, where only the field
components Ex , Ez and Hy are nonzero, and the second set the transverse
electric (TE or s) modes, with only Hx , Hz and Ey being nonzero.

For TM modes, the system of governing equations (2.7) reduces to

Ex = −i
1

ωε0ε

∂Hy

∂z
(2.8a)

Ez = − β

ωε0ε
Hy, (2.8b)

and the wave equation for TM modes is

∂2Hy

∂z2
+ (

k2
0ε − β2

)
Hy = 0. (2.8c)

For TE modes the analogous set is

Hx = i
1

ωμ0

∂Ey

∂z
(2.9a)

Hz = β

ωμ0
Ey, (2.9b)

with the TE wave equation

∂2Ey

∂z2
+ (

k2
0ε − β2

)
Ey = 0. (2.9c)

With these equations at our disposal, we are now in a position to embark on
the description of surface plasmon polaritons.
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2.2 Surface Plasmon Polaritons at a Single Interface
The most simple geometry sustaining SPPs is that of a single, flat interface

(Fig. 2.2) between a dielectric, non-absorbing half space (z > 0) with positive
real dielectric constant ε2 and an adjacent conducting half space (z < 0) de-
scribed via a dielectric function ε1(ω). The requirement of metallic character
implies that Re [ε1] < 0. As shown in chapter 1, for metals this condition is
fulfilled at frequencies below the bulk plasmon frequency ωp. We want to look
for propagating wave solutions confined to the interface, i.e. with evanescent
decay in the perpendicular z-direction.

Let us first look at TM solutions. Using the equation set (2.8) in both half
spaces yields

Hy(z) = A2eiβxe−k2z (2.10a)

Ex(z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (2.10b)

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z (2.10c)

for z > 0 and

Hy(z) = A1eiβxek1z (2.11a)

Ex(z) = −iA1
1

ωε0ε1
k1e

iβxek1z (2.11b)

Ez(z) = −A1
β

ωε0ε1
eiβxek1z (2.11c)

for z < 0. ki ≡ kz,i(i = 1, 2) is the component of the wave vector perpen-
dicular to the interface in the two media. Its reciprocal value, ẑ = 1/ |kz|,
defines the evanescent decay length of the fields perpendicular to the interface,

Metal

Dielectricx

z

Figure 2.2. Geometry for SPP propagation at a single interface between a metal and a dielec-
tric.
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which quantifies the confinement of the wave. Continuity of Hy and εiEz at
the interface requires that A1 = A2 and

k2

k1
= −ε2

ε1
. (2.12)

Note that with our convention of the signs in the exponents in (2.10,2.11),
confinement to the surface demands Re [ε1] < 0 if ε2 > 0 - the surface waves
exist only at interfaces between materials with opposite signs of the real part
of their dielectric permittivities, i.e. between a conductor and an insulator. The
expression for Hy further has to fulfill the wave equation (2.8c), yielding

k2
1 = β2 − k2

0ε1 (2.13a)

k2
2 = β2 − k2

0ε2. (2.13b)

Combining this and (2.12) we arrive at the central result of this section, the
dispersion relation of SPPs propagating at the interface between the two half
spaces

β = k0

√
ε1ε2

ε1 + ε2
. (2.14)

This expression is valid for both real and complex ε1, i.e. for conductors with-
out and with attenuation.

Before discussing the properties of the dispersion relation (2.14) in more
detail, we now briefly analyze the possibility of TE surface modes. Using
(2.9), the respective expressions for the field components are

Ey(z) = A2eiβxe−k2z (2.15a)

Hx(z) = −iA2
1

ωμ0
k2e

iβxe−k2z (2.15b)

Hz(z) = A2
β

ωμ0
eiβxe−k2z (2.15c)

for z > 0 and

Ey(z) = A1eiβxek1z (2.16a)

Hx(z) = iA1
1

ωμ0
k1e

iβxek1z (2.16b)

Hz(z) = A1
β

ωμ0
eiβxek1z (2.16c)
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Figure 2.3. Dispersion relation of SPPs at the interface between a Drude metal with negligible
collision frequency and air (gray curves) and silica (black curves).

for z < 0. Continuity of Ey and Hx at the interface leads to the condition

A1 (k1 + k2) = 0. (2.17)

Since confinement to the surface requires Re [k1] > 0 and Re [k2] > 0, this
condition is only fulfilled if A1 = 0, so that also A2 = A1 = 0. Thus, no
surface modes exist for TE polarization. Surface plasmon polaritons only exist
for TM polarization.

We now want to examine the properties of SPPs by taking a closer look at
their dispersion relation. Fig. 2.3 shows plots of (2.14) for a metal with negli-
gible damping described by the real Drude dielectric function (1.22) for an air
(ε2 = 1) and a fused silica (ε2 = 2.25) interface. In this plot, the frequency ω is
normalized to the plasma frequency ωp, and both the real (continuous curves)
and the imaginary part (broken curves) of the wave vector β are shown. Due
to their bound nature, the SPP excitations correspond to the part of the dis-
persion curves lying to the right of the respective light lines of air and silica.
Thus, special phase-matching techniques such as grating or prism coupling are
required for their excitation via three-dimensional beams, which will be dis-
cussed in chapter 3. Radiation into the metal occurs in the transparency regime
ω > ωp as mentioned in chapter 1. Between the regime of the bound and
radiative modes, a frequency gap region with purely imaginary β prohibiting
propagation exists.

For small wave vectors corresponding to low (mid-infrared or lower) fre-
quencies, the SPP propagation constant is close to k0 at the light line, and the
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waves extend over many wavelengths into the dielectric space. In this regime,
SPPs therefore acquire the nature of a grazing-incidence light field, and are
also known as Sommerfeld-Zenneck waves [Goubau, 1950].

In the opposite regime of large wave vectors, the frequency of the SPPs
approaches the characteristic surface plasmon frequency

ωsp = ωp√
1 + ε2

, (2.18)

as can be shown by inserting the free-electron dielectric function (1.20) into
(2.14). In the limit of negligible damping of the conduction electron oscillation
(implying Im [ε1(ω)] = 0), the wave vector β goes to infinity as the frequency
approaches ωsp, and the group velocity vg → 0. The mode thus acquires
electrostatic character, and is known as the surface plasmon. It can indeed be
obtained via a straightforward solution of the Laplace equation ∇2φ = 0 for
the single interface geometry of Fig. 2.2, where φ is the electric potential. A
solution that is wavelike in the x-direction and exponentially decaying in the
z-direction is given by

φ(z) = A2eiβxe−k2z (2.19)

for z > 0 and

φ(z) = A1eiβxek1z (2.20)

for z < 0. ∇2φ = 0 requires that k1 = k2 = β: the exponential decay
lengths

∣∣ẑ∣∣ = 1/kz into the dielectric and into the metal are equal. Continuity
of φ and ε∂φ/∂z ensure continuity of the tangential field components and the
normal components of the dielectric displacement and require that A1 = A2

and additionally

ε1(ω) + ε2 = 0. (2.21)

For a metal described by a dielectric function of the form (1.22), this condi-
tion is fulfilled at ωsp. Comparison of (2.21) and (2.14) show that the surface
plasmon is indeed the limiting form of a SPP as β → ∞.

The above discussions of Fig. 2.3 have assumed an ideal conductor with
Im [ε1] = 0. Excitations of the conduction electrons of real metals however
suffer both from free-electron and interband damping. Therefore, ε1(ω) is
complex, and with it also the SPP propagation constant β. The traveling SPPs
are damped with an energy attenuation length (also called propagation length)
L = (2Im

[
β
]
)−1, typically between 10 and 100 μm in the visible regime,

depending upon the metal/dielectric configuration in question.
Fig. 2.4 shows as an example the dispersion relation of SPPs propagating at

a silver/air and silver/silica interface, with the dielectric function ε1(ω) of silver
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Figure 2.4. Dispersion relation of SPPs at a silver/air (gray curve) and silver/silica (black
curve) interface. Due to the damping, the wave vector of the bound SPPs approaches a finite
limit at the surface plasmon frequency.

taken from the data obtained by Johnson and Christy [Johnson and Christy,
1972]. Compared with the dispersion relation of completely undamped SPPs
depicted in Fig. 2.3, it can be seen that the bound SPPs approach now a maxi-
mum, finite wave vector at the the surface plasmon frequency ωsp of the system.
This limitation puts a lower bound both on the wavelength λsp = 2π/Re

[
β
]

of the surface plasmon and also on the amount of mode confinement perpen-
dicular to the interface, since the SPP fields in the dielectric fall off as e−|kz||z|

with kz =
√

β2 − ε2
(

ω
c

)2
. Also, the quasibound, leaky part of the dispersion

relation between ωsp and ωp is now allowed, in contrast to the case of an ideal
conductor, where Re

[
β
] = 0 in this regime (Fig. 2.3).

We finish this section by providing an example of the propagation length L

and the energy confinement (quantified by ẑ) in the dielectric. As is evident
from the dispersion relation, both show a strong dependence on frequency.
SPPs at frequencies close to ωsp exhibit large field confinement to the inter-
face and a subsequent small propagation distance due to increased damping.
Using the theoretical treatment outlined above, we see that SPPs at a silver/air
interface at λ0 = 450 nm for example have L ≈ 16 μm and ẑ ≈ 180 nm.
At λ0 ≈ 1.5 μm however, L ≈ 1080 μm and ẑ ≈ 2.6 μm. The better the
confinement, the lower the propagation length. This characteristic trade-off
between localization and loss is typical for plasmonics. We note that field-
confinement below the diffraction limit of half the wavelength in the dielectric
can be achieved close to ωsp. In the metal itself, the fields fall off over distances



30 Surface Plasmon Polaritons at Metal / Insulator Interfaces

on the order of 20 nm over a wide frequency range spanning from the visible
to the infrared.

2.3 Multilayer Systems
We now turn our attention to SPPs in multilayers consisting of alternating

conducting and dielectric thin films. In such a system, each single interface
can sustain bound SPPs. When the separation between adjacent interfaces is
comparable to or smaller than the decay length ẑ of the interface mode, in-
teractions between SPPs give rise to coupled modes. In order to elucidate
the general properties of coupled SPPs, we will focus on two specific three-
layer systems of the geometry depicted in Fig. 2.5: Firstly, a thin metallic
layer (I) sandwiched between two (infinitely) thick dielectric claddings (II,
III), an insulator/metal/insulator (IMI) heterostructure, and secondly a thin di-
electric core layer (I) sandwiched between two metallic claddings (II, III), a
metal/insulator/metal (MIM) heterostructure.

Since we are here only interested in the lowest-order bound modes, we
start with a general description of TM modes that are non-oscillatory in the
z-direction normal to the interfaces using (2.8). For z > a, the field compo-
nents are

Hy = Aeiβxe−k3z (2.22a)

Ex = iA
1

ωε0ε3
k3eiβxe−k3z (2.22b)

Ez = −A
β

ωε0ε3
eiβxe−k3z, (2.22c)

while for z < −a we get

x

z

a

-a

III

I

II

Figure 2.5. Geometry of a three-layer system consisting of a thin layer I sandwiched between
two infinite half spaces II and III.
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Hy = Beiβxek2z (2.23a)

Ex = −iB
1

ωε0ε2
k2eiβxek2z (2.23b)

Ez = −B
β

ωε0ε2
eiβxek2z. (2.23c)

Thus, we demand that the fields decay exponentially in the claddings (II) and
(III). Note that for simplicity as before we denote the component of the wave
vector perpendicular to the interfaces simply as ki ≡ kz,i .

In the core region −a < z < a, the modes localized at the bottom and top
interface couple, yielding

Hy = Ceiβxek1z + Deiβxe−k1z (2.24a)

Ex = −iC
1

ωε0ε1
k1eiβxek1z + iD

1

ωε0ε1
k1eiβxe−k1z (2.24b)

Ez = C
β

ωε0ε1
eiβxek1z + D

β

ωε0ε1
eiβxe−k1z. (2.24c)

The requirement of continutity of Hy and Ex leads to

Ae−k3a = Cek1a + De−k1a (2.25a)
A

ε3
k3e−k3a = −C

ε1
k1ek1a + D

ε1
k1e−k1a (2.25b)

at z = a and

Be−k2a = Ce−k1a + Dek1a (2.26a)

−B

ε2
k2e−k2a = −C

ε1
k1e−k1a + D

ε1
k1ek1a (2.26b)

at z = −a, a linear system of four coupled equations. Hy further has to fulfill
the wave equation (2.8c) in the three distinct regions, via

k2
i = β2 − k2

0εi (2.27)

for i = 1, 2, 3. Solving this system of linear equations results in an implicit
expression for the dispersion relation linking β and ω via

e−4k1a = k1/ε1 + k2/ε2

k1/ε1 − k2/ε2

k1/ε1 + k3/ε3

k1/ε1 − k3/ε3
. (2.28)
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We note that for infinite thickness (a → ∞), (2.28) reduces to (2.12), the
equation of two uncoupled SPP at the respective interfaces.

We will from this point onwards consider the interesting special case where
the sub- and the superstrates (II) and (III) are equal in terms of their dielectric
response, i.e. ε2 = ε3 and thus k2 = k3. In this case, the dispersion relation
(2.28) can be split into a pair of equations, namely

tanh k1a = −k2ε1

k1ε2
(2.29a)

tanh k1a = −k1ε2

k2ε1
. (2.29b)

It can be shown that equation (2.29a) describes modes of odd vector parity
(Ex(z) is odd, Hy(z) and Ez(z) are even functions), while (2.29b) describes
modes of even vector parity (Ex(z) is even function, Hy(z) and Ez(z) are odd).

The dispersion relations (2.29a, 2.29b) can now be applied to IMI and MIM
structures to investigate the properties of the coupled SPP modes in these two
systems. We first start with the IMI geometry - a thin metallic film of thick-
ness 2a sandwiched between two insulating layers. In this case ε1 = ε1(ω)

represents the dielectric function of the metal, and ε2 the positive, real dielec-
tric constant of the insulating sub- and superstrates. As an example, Fig. 2.6
shows the dispersion relations of the odd and even modes (2.29a, 2.29b) for an
air/silver/air geometry for two different thicknesses of the silver thin film. For
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Figure 2.6. Dispersion relation of the coupled odd and even modes for an air/silver/air mul-
tilayer with a metal core of thickness 100 nm (dashed gray curves) and 50 nm (dashed black
curves). Also shown is the dispersion of a single silver/air interface (gray curve). Silver is
modeled as a Drude metal with negligible damping.
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simplicity, here the dielectric function of silver is approximated via a Drude
model with negligible damping (ε(ω) real and of the form (1.22)), so that
Im

[
β
] = 0.

As can be seen, the odd modes have frequencies ω+ higher than the respec-
tive frequencies for a single interface SPP, and the even modes lower frequen-
cies ω−. For large wave vectors β (which are only achievable if Im [ε(ω)] = 0),
the limiting frequencies are

ω+ = ωp√
1 + ε2

√
1 + 2ε2e−2βa

1 + ε2
(2.30a)

ω− = ωp√
1 + ε2

√
1 − 2ε2e−2βa

1 + ε2
. (2.30b)

Odd modes have the interesting property that upon decreasing metal film
thickness, the confinement of the coupled SPP to the metal film decreases as
the mode evolves into a plane wave supported by the homogeneous dielectric
environment. For real, absorptive metals described via a complex ε(ω), this
implies a drastically increased SPP propagation length [Sarid, 1981]. These
long-ranging SPPs will be further discussed in chapter 7. The even modes
exhibit the opposite behavior - their confinement to the metal increases with
decreasing metal film thickness, resulting in a reduction in propagation length.

Moving on to MIM geometries, we now set ε2 = ε2(ω) as the dielectric
function of the metal and ε1 as the dielectric constant of the insulating core
in equations (2.29a, 2.29b). From an energy confinement point of view, the
most interesting mode is the fundamental odd mode of the system, which does
not exhibit a cut-off for vanishing core layer thickness [Prade et al., 1991].
Fig. 2.7 shows the dispersion relation of this mode for a silver/air/silver het-
erostructure. This time, the dielectric function ε(ω) was taken as a complex fit
to the dielectric data of silver obtained by Johnson and Christy [Johnson and
Christy, 1972]. Thus β does not go to infinity as the surface plasmon frequency
is approached, but folds back and eventually crosses the light line, as for SPPs
propagating at single interfaces.

It is apparent that large propagation constants β can be achieved even for
excitation well below ωsp, provided that the width of the dielectric core is cho-
sen sufficiently small. The ability to access such large wave vectors and thus
small penetration lengths ẑ into the metallic layers by adjusting the geometry
indicates that localization effects that for a single interface can only be sus-
tained at excitations near ωsp, can for such MIM structures also be attained for
excitation out in the the infrared. An analysis of various other MIM structures,
for example concentric shells, has given similar results [Takahara et al., 1997].
Geometries amendable to easy fabrication such as triangular metal V-grooves
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Figure 2.7. Dispersion relation of the fundamental coupled SPP modes of a silver/air/silver
multilayer geometry for an air core of size 100 nm (broken gray curve), 50 nm (broken black
curve), and 25 nm (continuous black curve). Also shown is the dispersion of a SPP at a single
silver/air interface (gray curve) and the air light line (gray line).

on a flat metal surface have already shown great promise for applications in
waveguiding, which will be presented in chapter 7.

We have limited our discussion of coupled SPPs in three-layer structures
to the fundamental bound modes of the system, with a view on applications
in waveguiding and confinement of electromagnetic energy. It is important to
note that the family of modes supported by this geometry is much richer than
described in this treatment. For example, for IMI structures, we have omitted a
discussion of leaky modes, and MIM layers can also exhibit oscillatory modes
for sufficient thickness of the dielectric core. Additionally, the coupling be-
tween SPPs at the two core/cladding interfaces changes significantly when the
dielectric constants of the sub- and superstrates are different, so that ε2 �= ε3,
prohibiting phase-matching between the modes located at the two interfaces.
A detailed treatment of these cases can be found in [Economou, 1969, Burke
and Stegeman, 1986, Prade et al., 1991].

2.4 Energy Confinement and the Effective Mode Length
In chapter 5 we will see that using localized surface plasmons in metal

nanoparticles, electromagnetic energy can be confined or squeezed into vol-
umes smaller than the diffraction limit (λ0/2n)3, where n = √

ε is the re-
fractive index of the surrounding medium. This high confinement leads to a
concomitant field enhancement and is of prime importance in plasmonics, en-
abling a great variety of applications in optical sensing, as will be discussed
in chapter 9. In the essentially one-dimensional cases of single interfaces and
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Figure 2.8. Energy confinement in a gold/air/gold MIM structure. (a) Real (solid curve) and
imaginary (dashed curve) part of the normalized propagation constant β versus gap size at
λ0 = 850nm. (b) Fraction of electric field energy residing inside the metallic half spaces as
a function of normalized gap size for excitation at λ0 = 600 nm (thick curve), 850nm (black
curve), 1.5 μm (gray curve), 10 μm (broken black curve), and 100 μm (broken gray curve). (c)
Effective mode length Leff normalized to free-space wavelength λ0 as a function of gap size.
Adapted from [Maier, 2006b].

multilayer structures presented above that support propagating SPPs, energy
localization below the diffraction limit perpendicular to the interface(s) is also
possible. We have already hinted at this phenomenon when stating that the field
decay length ẑ in the dielectric layers can be significantly smaller than λ0/n.

However, care must be taken when quantifying energy confinement, since
a sub-wavelength field decay length ẑ on the dielectric side of the interface
implies that a significant amount of the total electric field energy of the SPP
mode resides inside the metal. This energy must be taken into account using
(1.38) when calculating the spatial distribution of the electric energy density,
since for the quantification of the strength of interactions between light and
matter (e.g. a molecule placed into the field), the field strength per unit energy
(i.e., single photon) is of importance.

Taking a gold/air/gold MIM heterostructure as an example, Fig. 2.8(a) shows
the evolution of both the real and imaginary parts of the propagation constant
β of the fundamental SPP mode with varying gap size for excitation at a free
space wavelength of λ0 = 850 nm, calculated using Drude fits to the dielectric
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function of gold [Johnson and Christy, 1972, Ordal et al., 1983]. Both parts
increase with decreasing gap size, since the mode is becoming more electron-
plasma in character, suggesting that the electromagnetic energy is residing in-
creasingly in the metal half-spaces. A plot of the fractional amount of the
electric field energy inside the metal regions is shown in Fig. 2.8(b) for exci-
tation at wavelengths λ0 = 600 nm, 850 nm, 1.5 μm, 10 μm, and 100 μm
(= 3 THz). For a gap of 20 nm for example, at λ0 = 850 nm this fraction al-
ready reaches 40%. Note that the gap size is normalized to the respective free
space wavelength. It is apparent that along with the increased localization of
the field to the gold/air interface, either via small gap sizes or excitation closer
to ωsp, comes a shift of the energy into the metal regions.

In order to get a better handle on the consequences of increasing fractions
of the total energy of the mode entering the metallic cladding upon decreasing
size of the dielectric gap, we can define in analogy to the effective mode volume
Veff used to quantify the strength of light-matter interactions in cavity quantum
electrodynamics [Andreani et al., 1999] an effective mode length Leff, with

Leff(z0)ueff(z0) =
∫

ueff(z)dz. (2.31)

ueff(z0) represents the electric field energy density at a position z0 of interest
within the air core (e.g. the location of an emitter). In this one-dimensional
picture, the effective mode length is therefore given as the ratio of the total
energy of the SPP mode divided by the energy density (energy per unit length)
at the position of interest, which is often taken as the position of highest field.
In a quantized picture for normalized total energy, the inverse of the effective
mode length thus quantifies the field strength per single SPP excitation. More
details can be found in [Maier, 2006b].

A determination of the effective mode length of MIM structures allows an
examination how the electric field strength per SPP excitation in the air gap
scales as a function of the gap size. Fig. 2.8(c) shows the variation of L̄eff

(normalized to the free-space wavelength λ0) with normalized gap size. z0 is
taken to be at the air side of the air/gold boundary, where the electric field
strength is maximum. The mode lengths drop well below λ0/2, demonstrating
that plasmonic metal structures can indeed sustain effective as well as physical
mode lengths below the diffraction limit of light. The trend in Leff with gap size
tends to scale with the physical extent of the air gap. For large normalized gap
sizes and low frequencies, this is due to the delocalized nature of the surface
plasmon, leading to smaller mode lengths for excitation closer to the surface
plasmon frequency ωsp for the same normalized gap size.

As the gap size is reduced to a point where the dispersion curve of the SPP
mode turns over (see Fig. 2.7) and energy begins to enter the metallic half
spaces, the continued reduction in mode length is due to an increase in field
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localization to the metal-air interface. In this regime, excitations with lower
frequencies show smaller mode lengths for the same normalized gap size than
excitations closer to the plasmon resonance, due to the fact that more energy
resides inside the metal for the latter. We note that for very small gaps with
2a < 2 nm, the effects of local fields due to unscreened surface electrons
become important [Larkin et al., 2004], leading to a further decrease in Leff.
This cannot be captured using the dielectric function approach.

To summarize, we see that despite the penetration of a significant amount
of energy of a SPP mode into the conducting medium (for excitation near ωsp

or in small gap structures), the associated large propagation constants β ensure
that the effective extent of the mode perpendicular to the interface(s) drops
well below the diffraction limit.



Chapter 3

EXCITATION OF SURFACE PLASMON
POLARITONS AT PLANAR INTERFACES

Surface plasmon polaritons propagating at the flat interface between a con-
ductor and a dielectric are essentially two-dimensional electromagnetic waves.
Confinement is achieved since the propagation constant β is greater than the
wave vector k in the dielectric, leading to evanescent decay on both sides of the
interface. The SPP dispersion curve therefore lies to the right of the light line
of the dielectric (given by ω = ck), and excitation by three-dimensional light
beams is not possible unless special techniques for phase-matching are em-
ployed. Alternatively, thin film geometries such as insulator-metal-insulator
heterostructures sustaining weakly confined SPPs are amenable to end-fire
coupling, relying on spatial mode-matching rather than phase-matching.

This chapter reviews the most common techniques for SPP excitation. After
a discussion of excitation using charged particles, various optical techniques
for phase-matching such as prism and grating coupling as well as excitation
using highly focused beams will be presented. Wave vectors in excess of |k|
can also be achieved using illumination in the near-field, making use of evanes-
cent waves in the immediate vicinity of a sub-wavelength aperture. The chapter
closes with a brief look at the excitation of SPPs in nanoparticle waveguides
and multilayer structures using optical fiber tapers or end-fire excitation. This
allows coupling of SPPs to modes in conventional dielectric waveguides. Tech-
niques for the excitation and investigation of localized plasmons in metallic
nanostructures such as various forms of microscopy and cathodoluminescence
will be presented in chapter 10.

3.1 Excitation upon Charged Particle Impact
Surface plasmons - the non-propagating, quasi-static electromagnetic sur-

faces modes at ωsp described by (2.21) - were theoretically investigated by
Ritchie in the context of loss spectra of low-energy electron beams undergoing
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Figure 3.1. Electron energy loss spectra of a thin magnesium film in progressive stages of
oxidation. Reprinted with permission from [Powell and Swan, 1960]. Copyright 1960 by the
American Physical Society.

diffraction at thin metallic films [Ritchie, 1957]. Apart from the expected vol-
ume plasmon excitation of energy h̄ωp, this study predicted an additional loss
at a lower energy h̄ωp/

√
2, subsequently termed low-lying energy loss. While

loss spectroscopy of electron diffraction at metal films was traditionally em-
ployed for the excitation of longitudinal volume plasmons, Powell and Swan
observed the additional peak in electron energy loss spectra of magnesium and
aluminum in reflection (Fig. 3.1) [Powell and Swan, 1960]. A shift of the peak
to lower energies during oxidation of the metal films suggested it being associ-
ated with an electromagnetic excitation at the metal/air surface, which during
the experiment was slowly evolving into a metal/oxide interface.

The energy loss at h̄ωp/
√

2 indeed turned out to be due to the surface excita-
tion previously predicted by Ritchie for a metal/air interface. It corresponds to
the surface plasmon excitation described in the previous chapter. Subsequent
theoretical investigations of surface plasmon waves in the context of electron
loss spectroscopy confirmed the ωsp = ωp√

1+ε
dependence of the resonance fre-

quency on the dielectric coating (explaining the influence of an oxide layer),
and the possibility of even and odd coupled modes akin to (2.29) sustained by
thin metallic films [Stern and Ferrell, 1960].

While low-energy electron diffraction experiments can only detect excita-
tions at the asymptotic surface plasmon energy h̄ωsp, an analysis of the change
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Figure 3.2. Direct map of the SPP dispersion formed via energy-loss spectra for transmission
of a 75-keV electron beam through a 16 nm aluminum film at normal incidence. Exposure
times are 15 minutes (a) and 3 minutes (b). Reprinted with permission from [Pettit et al., 1975].
Copyright 1975 by the American Physical Society.

in energy and momentum of fast electrons transmitted through thin metal films
enables a study of the full dispersion relation of SPPs, as long as the angular
divergence of the beam is low. Using this method, the dispersion of SPPs,
including the radiative branch above ωp, was analyzed in a number of early
studies [Vincent and Silcox, 1973, Pettit et al., 1975]. For example, Pettit
and co-workers demonstrated the splitting of the SPP mode into even and odd
modes in a thin (16 nm) oxidized aluminum film by studying the transmission

Figure 3.3. Comparison of the experimental data presented in Fig. 3.2(dots) with the theoret-
ical dispersion curves of the two coupled modes. For the theoretical analysis see Fig. 2.6. For
the calculations, the aluminum film has been assumed to be embedded into amorphous alumina
(dashed curves) or alumina in its α-phase (continuous curves). Reprinted with permission from
[Pettit et al., 1975]. Copyright 1975 by the American Physical Society.
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of a 75-keV electron beam [Pettit et al., 1975]. Using a Wien filter spectrom-
eter, a direct image of the dispersion relations could be obtained, shown in
Fig. 3.2. The bright central spots correspond to undeflected electrons, and the
two horizontal lines to volume plasmon excitations (upper line) and phonon
and elastic scattering (lower lines). Additionally, the characteristic dispersion
of the high- and low-frequency modes ω+ and ω− is clearly visible, and com-
pares favorably with a theoretical study of the thin film (Fig. 3.3).

3.2 Prism Coupling
Surface plasmon polaritons on a flat metal/dielectric interface cannot be ex-

cited directly by light beams since β > k, where k is the wave vector of light on
the dielectric side of the interface. Therefore, the projection along the interface
of the momentum kx = k sin θ of photons impinging under an angle θ to the
surface normal is always smaller than the SPP propagation constant β, even at
grazing incidence, prohibiting phase-matching. We have already expanded on
this fact when noting that the SPP dispersion curve (2.14) lies outside the light
cone of the dielectric.

However, phase-matching to SPPs can be achieved in a three-layer system
consisting of a thin metal film sandwitched between two insulators of different
dielectric constants. For simplicity, we will take one of the insulators to be
air (ε = 1). A beam reflected at the interface between the insulator of higher
dielectric constant ε, usually in the form of a prism (see Fig. 3.4), and the
metal will have an in-plane momentum kx = k

√
ε sin θ , which is sufficient to

excite SPPs at the interface between the metal and the lower-index dielectric,
i.e. in this case at the metal/air interface. This way, SPPs with propagation
constants β between the light lines of air and the higher-index dielectric can be
excited (Fig. 3.5). SPP excitation manifests itself as a minimum in the reflected
beam intensity. Note that phase-matching to SPPs at the prism/metal interface
cannot be achieved, since the respective SPP dispersion lies outside the prism
light cone (Fig. 3.5).

This coupling scheme - also known as attenuated total internal reflection -
therefore involves tunneling of the fields of the excitation beam to the metal/air

Figure 3.4. Prism coupling to SPPs using attenuated total internal reflection in the
Kretschmann (left) and Otto (right) configuration. Also drawn are possible lightpaths for exci-
tation.
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Figure 3.5. Prism coupling and SPP dispersion. Only propagation constants between the light
lines of air and the prism (usually glass) are accessible, resulting in additional SPP damping
due to leakage radiation into the latter: the excited SPPs have propagation constants inside the
prism light cone.

interface where SPP excitation takes place. Two different geometries for prism
coupling are possible, depicted in Fig. 3.4. The most common configuration
is the Kretschmann method [Kretschmann and Raether, 1968], in which a thin
metal film is evaporated on top of a glass prism. Photons from a beam imping-
ing from the glass side at an angle greater than the critical angle of total internal
reflection tunnel through the metal film and excite SPPs at the metal/air inter-
face. Another geometry is the Otto configuration [Otto, 1968], in which the
prism is separated from the metal film by a thin air gap. Total internal reflec-
tion takes place at the prism/air interface, exciting SPPs via tunneling to the
air/metal interface. This configuration is preferable when direct contact with
the metal surface is undesirable, for example for studies of surface quality.

We want to stress that SPPs excited using phase-matching via β = k
√

ε sin θ

are inherently leaky waves, i.e. they lose energy not only due to the inherent
absorption inside the metal, but also due to leakage of radiation into the prism:
the excited propagation constants lie within the prism light cone (Fig. 3.5).
The minimum in the intensity of the reflected beam is due to destructive inter-
ference between this leakage radiation and the reflected part of the excitation
beam. For an optimum metal film thickness, the destructive interference can
be perfect, providing a zero in the reflected beam intensity, so that leakage
radiation cannot be detected.

Using an analysis of this system based on the Fresnel equations
[Kretschmann, 1971, Raether, 1988], it can be shown that this optimum case
is achieved if the damping �LR due to leakage radiation is equal to the damp-
ing �abs due to absorption (critical coupling). �abs = Im

[
β0

]
, where β0 is the

SPP propagation constant of the single interface calculated via (2.14). For
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a metal layer with a dielectric function ε1(ω) fulfilling |Re [ε1]| � 1 and
|Im [ε1]| � |Re [ε1]|, the reflection coefficient can be approximated via the
Lorentzian

R = 1 − 4�LR�abs[
β − (β0 + �β)

]2 + (�LK + �abs)
2
. (3.1)

It is apparent that the SPP propagation constant β of the prism/metal/air system
is shifted by an amount

∣∣Re
[
�β

]∣∣ from the single interface value β0. The
imaginary part Im

[
�β

] ≡ �LK describes the contribution of radiation damping
to the total loss. �β can be expressed via a calculation of the Fresnel reflection
coefficients and depends on the thickness of the metal layer [Kretschmann,
1971, Raether, 1988].

The prism coupling technique is also suitable for exciting coupled SPP
modes in MIM or IMI three-layer systems. By using appropriate index-
matching oils, both the long-ranging high frequency mode ω+ and the low
frequency mode ω− of higher attenuation have been excited for oil/silver/silica
and also oil/aluminum/silica IMI structures brought into contact with a prism
[Quail et al., 1983]. For the long-ranging mode, a reduction of the angular
spread of the reflection minimum by an order of magnitude compared to the
uncoupled mode at a single interface has been confirmed. This sharpening of
the resonant feature is due to the decreased amount of energy in the metal film
and thus decreased attenuation of the coupled SPP.

3.3 Grating Coupling
The mismatch in wave vector between the in-plane momentom kx = k sin θ

of impinging photons and β can also be overcome by patterning the metal
surface with a shallow grating of grooves or holes with lattice constant a. For
the simple one-dimensional grating of grooves depicted in Fig. 3.6, phase-
matching takes place whenever the condition

Figure 3.6. Phase-matching of light to SPPs using a grating.
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Figure 3.7. (a) SEM image of two microhole arrays with period 760 nm and hole diameter
250 nm separated by 30 μm used for sourcing (right array) and probing (left array) of SPPs.
The inset shows a close-up of individual holes. (b) Normal-incidence white light transmission
spectrum of the arrays. Reprinted with permission from [Devaux et al., 2003]. Copyright 2003,
American Institute of Physics.

β = k sin θ ± νg (3.2)

is fulfilled, where g = 2π
a

is the reciprocal vector of the grating, and ν =
(1, 2, 3 . . .). As with prism coupling, excitation of SPPs is detected as a mini-
mum in the reflected light.

The reverse process can also take place: SPPs propagating along a surface
modulated with a grating can couple to light and thus radiate. The gratings
need not be milled directly into the metal surface, but can also consist of di-
electric material. For example, Park and co-workers have demonstrated out-
coupling of SPPs using a dielectric grating of a depth of only several nanome-
tres with an efficiency of about 50% [Park et al., 2003]. By designing the
shape of the grating, the propagation direction of SPPs can be influenced and
even focusing can be achieved, which was shown by Offerhaus and colleagues
using noncollinear phase-matching [Offerhaus et al., 2005]. Some studies of
manipulation of SPP propagation using modulated surfaces will be presented
in chapter 7 on waveguiding.

As an example of SPP excitation and their decoupling via gratings, Fig. 3.7a
shows a scanning electron microscopy (SEM) image of a flat metal film pat-
terned with two arrays of sub-wavelength holes [Devaux et al., 2003]. In this
study, the small array on the right was used for the excitation of SPPs via a
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Figure 3.8. (a) Near-field optical image of the pattern presented in Fig. 3.7 when the illu-
minating laser is focused on the small array on the right with the electric field polarised in
the x-direction. (b) Detail of image (a) showing propagating SPPs and the edge of the left
outcoupling array. A wavelength λ = 800 nm was chosen so as to coincide with the airside
transmission peak in Fig. 3.7. Reprinted with permission from [Devaux et al., 2003]. Copyright
2003, American Institute of Physics.

normally-incident beam, while the larger array on the left decoupled the prop-
agating SPPs to the radiation continuum. The wavelengths of phase-matching
are revealed via a normal-incidence transmission spectrum, with in this case
yielded a peak at λ = 815 nm due to excitation of a SPP mode at the metal/air
interface (Fig. 3.7b). Near-field optical images of the excitation and detection
region as well as of the propagating SPPs are shown in Fig. 3.8. The streak
between the two arrays corresponds to the propagating SPPs, showing rapid
attenuation as the left hole array used for decoupling is encountered.

For one-dimensional gratings, significant changes to the SPP dispersion re-
lation occur if the gratings are sufficiently deep so that the modulation can
no longer be treated as a small perturbation of the flat interface. Appreciable
band gaps appear already for a groove depth on the order of 20 nm for metal-
lic gratings. For even larger depths, localized modes inside the grooves lead
to distortions of the first higher-order band folded back at the Brillouin zone
boundary, enabling coupling even for short pitches a < λ/2 upon normal in-
cidence due to a lowering in frequency of the modified SPP dispersion curve.
For more details on these effects we refer to the study by Hooper and Sambles
[Hooper and Sambles, 2002]. The influence of surface structure on the dis-
persion of SPPs will also be further elucidated in chapter 6 on SPPs at lower
frequencies.
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More generally, SPPs can also be excited on films in areas with random sur-
face roughness or manufactured localized scatterers. Momentum components
�kx are provided via scattering, so that the phase-matching condition

β = k sin θ ± �kx (3.3)

can be fulfilled. The efficiency of coupling can be assessed by for example
measuring the leakage radiation into a glass prism situated underneath the
metal film, which was demonstrated by Ditlbacher and co-workers for a flat
film with a small number of ridges to couple a normal-incidence beam to prop-
agating SPPs [Ditlbacher et al., 2002a]. We note that (3.3) implies that random
surface roughness also constitutes an additional loss channel for SPP propaga-
tion via coupling to radiation.

3.4 Excitation Using Highly Focused Optical Beams
As a variant of the traditional prism coupling technique described in section

3.2, a microscope objective of high numerical aperture can be used for SPP
excitation. Fig 3.9 shows a typical setup [Bouhelier and Wiederrecht, 2005].
An oil-immersion objective is brought into contact with the glass substrate (of
refractive index n) of a thin metal film via a layer of index-matched immersion
oil. The high numerical aperture of the objective ensures a large angular spread
of the focused excitation beam, including angles θ > θc greater than the critical
angle of total internal reflection at a glass/air interface.

This way, wave vectors kx = β are available for phase-matching to SPPs at
the metal/air interface at the corresponding angle θSPP = arcsin(β/nk0) > θc.
Off-axis entrance of the excitation beam into the objective can further ensure
an intensity distribution preferentially around θSPP, thus reducing the amount

Figure 3.9. Schematic of the excitation of a white-light continuum of SPPs and their observa-
tion via detection of the leakage radiation using an index-matched oil immersion lens. Reprinted
with permission from [Bouhelier and Wiederrecht, 2005]. Copyright 2005 by the Optical Soci-
ety of America.
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Figure 3.10. (a) Leakage radiation intensity distribution for a TM polarized white-light con-
tinuum excitation beam, showing SPPs propagating away from the excitation spot. (b) No SPP
excitation is observed for TE polarization. Reprinted with permission from [Bouhelier and
Wiederrecht, 2005]. Copyright 2005 by the Optical Society of America.

of directly transmitted and reflected light. The highly focused beam also allows
for localized excitation in a diffraction-limited spot area.

The excited SPPs will radiate back into the glass substrate in the form of
leakage radiation at an angle θSPP > θc, which can be collected through the im-
mersion oil layer via the objective. Fig. 3.10 shows images of leakage radiation
for SPP excited using a white-light continuum, tracing the path of the excited
SPPs (in TM polarization only), since the intensity of the leakage radiation is
proportional to the intensity of the SPPs themselves. This scheme is especially
convenient for the excitation of a continuum of SPPs at different frequencies
and the subsequent determination of their propagation lenghts.

3.5 Near-Field Excitation
Excitation schemes such as prism or grating coupling excite SPPs over a

macroscopic area defined by the dimensions of the (at best diffraction-limited)
spot of the coupling beam of wavelength λ0. In contrast, near-field optical
microscopy techniques allow for the local excitation of SPPs over an area
a << λ0, and can thus act as a point source for SPPs [Hecht et al., 1996].
Fig. 3.11 sketches the typical geometry: a small probe tip of aperture size
a � λSPP � λ0 illuminates the surface of a metal film in the near field. Due to
the small aperture size, the light ensuing from the tip will consist of wave vec-
tor components k � β � k0, thus allowing phase-matched excitation of SPPs
with propagation constant β. Due to the ease of lateral positioning of such
probes in scanning near-field optical microscopes, SPPs at different locations
of the metal surface can be excited.

A typical near-field optical setup suitable for local SPP excitation is shown
in Fig. 3.12. SPPs propagating from the illumination spot can be conveniently
imaged by collecting the leakage radiation into the substrate of refracting index
n occurring at the SPP angle θSPP defined earlier. Called forbidden light by the
authors of this study [Hecht et al., 1996] due to the fact that it is radiated outside
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Figure 3.11. Local excitation of SPPs using near-field illumination with a sub-wavelength
aperture.

the air light cone, this radiation can be either collected using a suitable mirror
arrangement, or by using a collection objective with a high numerical aperture.

Fig. 3.13 shows two typical images of SPPs propagating away from the local
illumination area. The two light jets emerging from the illumination spot are
in the direction of the polarization of the electric field, due to the character of
the SPPs as a mainly longitudinal electromagnetic surface wave for excitation
close to ωsp. The intensity variation of the SPPs can be fitted by

ISPP ∝ e−ρ/L

ρ
cos2 φ, (3.4)

Figure 3.12. Near-field optical excitation of SPPs. (a) Scanning electron microscopy image of
the aperture of a near-field fiber probe. (b) and (c) Two optical setups of the excitation of SPPs
and the collection of light radiated into the substrate in the far field. (d) Topography of a silver
film used as a sample (roughness 1 nm, height of protrusions 40 nm). More details about the
setup can be found in [Hecht et al., 1996]. Reprinted with permission from [Hecht et al., 1996].
Copyright 1996 by the American Physical Society.
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Figure 3.13. Spatial intensity distribution of SPPs on a silver film at λ = 633 nm. (a), (b)
are 50μm × 70μm images collected in the far field corresponding to two different locations
of the exciting near-field probe. (c) Cross section through the intensity profile along the main
symmetry axes of the spots and analytical fit using (3.4). Reprinted with permission from [Hecht
et al., 1996]. Copyright 1996 by the American Physical Society.

where ρ and φ are polar coordinates and L the intensity decay constant of
the propagating SPP. As expected, the intensity distribution resembles that of
damped radiation from a two-dimensional point dipole.

Using this local excitation scheme, the effect of surface roughness on the
SPP propagation and the scattering at individual surface defects can be studied
with high spatial resolution. Apart from the excitation of propagating SPPs,
near-field illumination also allows for the excitation and spectral analysis of
localized surface plasmon modes in individual metal nanostructures, which
will be discussed in chapter 10.

3.6 Coupling Schemes Suitable for Integration with
Conventional Photonic Elements

While the optical excitation schemes described above are suitable for the
investigation of SPP propagation and functional plasmonic structures in proof-
of-concept characterizations, practical applications of SPPs in integrated pho-
tonic circuits will require high-efficiency (and ideally high-bandwidth) cou-
pling schemes. Preferably, the plasmonic components should allow efficient
matching with conventional dielectric optical waveguides and fibers, which
would in such a scenario be used to channel energy over large distances to
plasmon waveguides and cavities. The latter will then enable high-confinement
guiding and localized field-enhancement [Maier et al., 2001], for example for
the routing of radiation to single molecules.
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Figure 3.14. Excitation of SPPs propagating on a metal nanoparticle plasmon waveguide situ-
ated on a thin silicon membrane using a fiber taper (sketch in inset). The transmission spectrum
shows the power transmitted through the taper past the coupling region, demonstrating a power
transfer efficiency of 75% at λ0 = 1590 nm due to phase-matching. Reprinted with permission
from [Maier et al., 2005]. Copyright 2005, American Institute of Physics.

One such coupling scheme is end-fire coupling, in which a free-space op-
tical beam is focused on the end-facet of the desired waveguide. Rather than
relying on phase-matching, this scheme operates via matching the spatial field
distribution of the waveguide as much as possible by adjusting the beam width.
For SPPs propagating at a single interface, Stegeman and co-workers demon-
strated coupling efficiencies up to 90% using this technique [Stegeman et al.,
1983]. In contrast to prism coupling, end-fire excitation allows for the exci-
tation of truly bound modes that do not radiate into the substrate. End-fire
coupling is also particularly useful and efficient for exciting the long-ranging
SPP mode propagating along thin metal films embedded in a symmetric di-
electric host. Due to the delocalized nature of this mode (see chapters 2 and 7),
spatial mode matching works especially well in this case. Naturally however,
for geometries showing field-localization below the diffraction limit such as
metal/insulator/metal waveguides with a deep sub-wavelength dielectric core,
the overlap between the excitation beam and the coupled SPP mode is very
small, leading to low excitation efficiencies.

For SPPs with larger confinement, a convenient interfacing scheme makes
use of optical fiber tapers brought into the immediate vicinity of the waveguide
to enable phase-matched power transfer via evanescent coupling [Maier et al.,
2004]. Fig. 3.14 shows as an example the spectral dependence of the power
transmitted past the coupling region between a fiber taper and a metal nanopar-
ticle waveguide fabricated on top of a thin silicon membrane. The drop in de-
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tected power at the end of the fiber at λ = 1590 nm is due to power transfer to
the plasmon waveguide, in this case with a coupling efficiency of about 75%
[Maier et al., 2005]. More details about this particular fiber-accessible plasmon
waveguide can be found in chapter 7.



Chapter 4

IMAGING SURFACE PLASMON
POLARITON PROPAGATION

After the presentation of various approaches to optically launch surface plas-
mon polaritons, we move on to a description of ways to image the confined
fields and their propagation along the interface. While the successful excita-
tion of SPPs using optical techniques such as prism or grating coupling can be
deduced from a decrease in the intensity of the reflected light beam (chapter 3),
a direct visualization of the SPPs propagating away from the excitation region
is highly desirable. This way, the propagation length L can be determined,
influenced both by the amount of absorption inside the metal and leakage radi-
ation (if present). Also, the amount of in-plane confinement can be assessed.
An investigation of the out-of-plane confinement allows the determination of ẑ,
the extent to which the evanescent fields penetrate inside the dielectric side of
the interface. We have already mentioned the fundamental trade-off between
propagation length and confinement, which is of tantamount importance in the
design of plasmon waveguides (chapter 7).

This chapter discusses four prominent approaches for SPP imaging - near-
field optical microscopy, imaging based on either fluorescence or leakage radia-
tion detection, as well as the related observation of scattered light. Of these four
techniques, only near-field optical microscopy provides the sub-wavelength
resolution required for the accurate determination of the loss/confinement ratio
for spatially highly localized SPPs excited near ωsp or in appropriate multilayer
structures. Cathodoluminescence imaging will be discussed in chapter 10 on
localized plasmon spectroscopy.

4.1 Near-Field Microscopy
A powerful technique to investigate SPPs propagating at the interface of

a thin metal film and air with sub-wavelength resolution is near-field optical
microscopy in collection mode, also called photon scanning tunneling mi-
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croscopy. The latter term highlights the conceptual similarity with the scan-
ning tunneling microscope (STM). In both cases, a sharp tip is brought into the
immediate vicinity of the surface under study (Fig. 4.1) using an appropriate
feedback-loop technique. Whereas a STM measures the current (induced by
an applied voltage) caused by electron tunneling between the surface and an
atomically sharp metal tip, a photon scanning tunneling microscope (PSTM)
collects photons by coupling the evanescent near field above the surface to
propagating modes inside a tapered optical fiber. The near-field optical tip
(also called the probe) is usually fabricated by pulling or etching an optical
fiber taper, and is often metalized at the end in order to suppress the coupling
of diffracted light fields. The resolution of this technique is limited by the size
of the tip’s aperture, which can reach dimensions of only 50 nm or even less
using etching (or more recently also microfabrication) techniques. In addition
to metal-coated probes, uncoated probes are also frequently used, which have
a higher collection efficiency and have been shown to image different com-
ponents of the electromagnetic field around nanostructures than probes coated
with a conductive layer [Dereux et al., 2001].

In order to study the confinement and propagation of SPPs using this scheme,
the tip has to be brought within a sufficiently close distance to the flat metal
surface so that it is immersed in the evanescent tail of the SPP field, i.e. within a
distance ẑ (calculated using (2.12)). For studies of gold or silver films at visible
frequencies, this requires a gap between the probe and the film on the order of
100 nm or less, which can be easily achieved using feedback techniques such
as non-contact mode atomic force microscopy, shear or tuning force feedback,
or by using the intensity of the collected light field itself as the feedback signal

Apertured fiber probe

propagating 
mode

evanescent 
near-field

Figure 4.1. A typical setup for near-field optical imaging of SPP fields at a metal/air interface.
The evanescent tail of the fields penetrating into the air is coupled to propagating modes in a
tapered optical fiber tip. The SPPs can for example be excited via prism coupling (shown), a
tightly focused beam, or particle impact.
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Figure 4.2. Near-field image of a HeNe laser beam (λ = 633 nm) internally incident on an
uncoated (a) prism face and a prism face coated with a 53 nm thick silver film (b) at an angle
greater than the critical angle (scan range 40x40 μm). The exponentially decaying tail in (b)
is due to SPP propagation away from the excitation region. Reprinted with permission from
[Dawson et al., 1994]. Copyright 1994 by the American Physical Society.

(akin to the STM, where the tunneling current proportional to the amount of
collected electrons is used for this purpose).

In order not to interfere with the detection scheme, optical excitation of SPPs
takes usually place via either prism coupling (Fig. 4.1) or tightly focused beams
using an oil-immersion objective of high numerical aperture on the bottom side
of the substrate. We note that the prism coupling scheme is not suitable for
exciting SPPs of all possible propagation constants β, but only those within
the window of leaky modes as discussed in chapter 3.

The very first studies of the physical properties of SPPs using near-field op-
tical microscopy investigated the mode confinement at the interface of a thin
silver film with air. SPPs were excited in prism coupling geometry, and the
evanescent field on the air side probed via an apertured optical fiber tip. With-
out actually imaging the propagating fields using raster scanning, approaching
and retracting the fiber probe confirmed the localization and corresponding
enhancement of the electromagnetic field in the near-field region close to the
surface [Marti et al., 1993]. Monitoring of the collected signal intensity at dif-
ferent heights above the surface allowed the determination of the penetration
of the SPP fields into the air above the surface, confirming the spatial extent of
the exponentially decaying field [Adam et al., 1993].

In addition to the investigation of out-of-plane confinement, the combina-
tion of near-field collection with raster scanning techniques enables the direct
visualization of propagating SPPs. Dawson and co-workers used a PSTM to
spatially image the propagation of SPPs excited using prism coupling on a thin
silver film [Dawson et al., 1994]. Fig. 4.2b shows a three-dimensional render-
ing of the intensity collected in the near-field above the film surface. An excita-
tion wavelength λ0 = 633 nm in the visible regime ensured good confinement
to the interface (ẑ ≈ 420 nm calculated using (2.12)). As a control experiment,
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Fig. 4.2a shows the evanescent field above a bare prism surface under the same
excitation conditions. Clearly, for the silver-coated prism propagation of elec-
tromagnetic energy away from the excitation spot is visible. Experiments such
as this enable the direct determination of the SPP propagation length L by fit-
ting the exponential tail starting at the SPP launching point. In this case, the
propagation length of the silver/air SPP was determined to be 13.2 μm, in good
agreement with theoretical modeling. Also, the in-plane spread of the SPP as
it propagates away from the excitation region can be monitored.

Collection-mode near-field optical microscopy has ever since these initial
investigations been extensively employed for studies of SPP propagation, most
prominently in a context of waveguiding along metal stripes, where the trans-
verse extent of the SPP is limited by the stripe width (chapter 7). This has
enabled the determination of the trade-off between propagation length and
out-of-plane as well as lateral confinement, and additionally investigations of
functional waveguide devices such as reflectors or Bragg mirrors. For exam-
ple, near-field imaging allowed the direct visualization of interference patterns
between co- and counterpropagating SPP waves. Some of these studies will be
presented in chapter 7 on plasmon waveguides.

Near-field probing has also proved very useful for the assessment of scat-
tering losses on structured metal surfaces [Bouhelier et al., 2001] as well as
for the determination of the dispersion properties of SPPs at curved surfaces
[Passian et al., 2004]. It has to be noted that the presence of the probing tip can
influence the dispersion, but for dielectric tips this effect can often be neglected
[Passian et al., 2005].

As might be expected, near-field optical microscopy is also often the method
of choice for studies of localized surface plasmons in metal nanoparticles or
ensembles of metal nanostructures (chapter 5). In these experiments, the light
path is usually reversed: By not collecting but illuminating the metal structure
under study via light emanating through the sub-wavelength aperture of a fiber
tip, near-field optical spectroscopy of the localized modes is possible, in addi-
tion to imaging of the spatial field distribution. Examples will be presented in
chapter 10 on spectroscopy and sensing.

In this illumination mode, the fiber probe effectively acts as a local dipolar
source for the excitation of surface plasmons (or propagating SPPs as described
in the previous chapter). Information about the electromagnetic structure of
the surface can be extracted from the transmitted or reflected light collected
using an objective in the far field. Apart from photon collection in the far field,
the metal film structure under investigation can also be directly mounted on
the photodiode itself, as shown by Dragnea and co-workers , which used this
geometry for the study of SPP propagation in sub-wavelength slits on a flat
metal film [Dragnea et al., 2003].
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4.2 Fluorescence Imaging
Instead of locally collecting the optical near field of SPPs using the aper-

tured fiber tip of a near-field optical microscope, emitters such as quantum
dots or fluorescent molecules can be directly placed into the evanescent tail of
the SPP field. If the frequency of the propagating SPPs lies within the broad
spectral absorption band of the emitters, their excitation via SPPs is possible,
and the intensity of the emitted fluorescence radiation is proportional to the
intensity of the local field at the position of the emitters. Therefore, SPP prop-
agation on a metal/air interface can be mapped by coating the surface with a
dielectric film doped with emitters. If the layer is sufficiently thin and of low
refractive index (e.g. quantum dots embedded in a polymer, or monolayers of
fluorescent molecules), the alteration of the SPP dispersion due to the covering
layer is small.

As will be discussed in more detail in chapter 9, fluorescent molecules
placed into the near field of propagating SPPs (and also that of localized plas-
mons) show an enhancement of their fluorescence yield if care is taken to coun-
teract non-radiative quenching. This can be achieved by inserting a thin spacer
layer on the order of a few nanometers between the metal film sustaining the
SPPs and the fluorescent molecules to inhibit non-radiative energy transfer.

Ditlbacher and co-workers used this concept for the imaging of SPPs excited
on a 70 nm thin silver film by focusing a laser beam (λ0 = 514 nm, P =

Figure 4.3. Fluorescence imaging of SPP fields. A SPP on a 70 nm silver film is excited via
illumination of a nanoparticle (phase-matching via a defect) using a 100× objective, and the
field distribution of the mode imaged by detecting the fluorescent emission of a coating layer
doped with Rhodamin 6G. Reprinted with permission from [Ditlbacher et al., 2002a]. Copyright
2002, American Institute of Physics.
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5 mW) on wire or nanoparticle surface defects created using electron beam
lithography (Fig. 4.3) [Ditlbacher et al., 2002a]. The metal film was coated
with a sub-monolayer of Rhodamine 6G molecules to enable the determination
of the spatial structure of the SPP fields. In order to reduce quenching due to
intermolecular interactions and non-radiative transitions to the metal film, the
molecular density was chosen to be sufficiently small and a 10 nm thin SiO2

spacer layer inserted between the molecular film and the silver substrate. CCD
images of the fluorescence signal collected via a dichroic mirror are shown in
Fig. 4.4. The intensity distribution correlates well with the pathways expected
for SPPs excited via surface defects (compare with [Hecht et al., 1996] and
Fig. 3.13 of chapter 3).

Using this scheme, information about the lateral spatial confinement, the
propagation distance and interference effects can be extracted in analogy to the
direct probing of the near field using an apertured probe, albeit with a resolu-
tion of at best the diffraction limit. However, the effect of bleaching in regions
of high field intensity has to be carefully taken into account for quantitative
analysis.

Figure 4.4. Fluorescence images of the intensity distribution of SPPs excited by illumination
of (a) a silver nanoparticle (diameter 200 nm, height 60 nm), and (b) a silver nanowire (width
200 nm, height 60 nm, length 20 μm). The particles are situated on a continuous silver film
supporting SPPs. Reprinted with permission from [Ditlbacher et al., 2002a]. Copyright 2002,
American Institute of Physics.
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4.3 Leakage Radiation
The dispersion curve of SPPs excited at the air interface of a metal film

lies outside the light cone defined by k = nairω/c, and the mode does not
suffer radiation loss into the air region (for a perfectly flat interface neglecting
roughness). However, energy can be lost into a supporting substrate of higher
index ns. This radiation loss occurs at all points of the dispersion curve that
lie to the left of the light line of the substrate ks = nsω/c, as indicated in
Figure 4.5. Therefore, for SPP excited in the region of propagation constants
β defined by

k0 < β < k0ns, (4.1)

leakage radiation into the substrate provides a second loss channel in addition
to the inherent absorptive losses.

We have seen in the preceding chapter that leaky SPPs are inherently excited
using prism coupling, and that the leakage radiation into the prism interferes
with the directly reflected beam. As pointed out, a zero reflection ensues only
under the condition of critical coupling (see (3.1)), when the absorptive losses
exactly equal the radiative losses, and all power is absorbed in the metal film.
This is only achieved for a critical thickness of the metal film.

Apart from monitoring the efficiency of prism coupling, leakage radiation
collection can be used for investigating SPPs excited by other means, such as
tightly focused beams or gratings, as long as the excited wave vectors β lie
within the substrate light cone, fulfilling (4.1).

A typical setup for the collection of leakage radiation is shown in Fig. 4.6
[Ditlbacher et al., 2003]. In this study, the intensity of the leakage radiation
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Figure 4.5. Generic dispersion relation of a SPP at a metal/air interface. In the region enclosed
by the light lines of air and of the higher index substrate, the propagating SPPs lose energy via
leakage radiation into the substrate light cone, which can be collected for imaging purposes.



60 Imaging Surface Plasmon Polariton Propagation

Figure 4.6. Experimental setup for leakage radiation imaging of SPP fields. Here, SPPs are
excited using grating coupling, and the ensuing leakage radiation into the underlying prism col-
lected using a photodiode. Reprinted with permission from [Ditlbacher et al., 2003]. Copyright
2003, American Institute of Physics.

was used to quantify the coupling efficiency of light to SPPs via a grating-like
excitation scheme with a variable number of ridges spaced by a lattice constant
�. We note that in this collection geometry, only half of the ensuing leakage
radiation is collected via the underlying prism. With this technique, spatial
intensity profiles can be obtained by varying the position of the sample with
respect to the exciting laser beam. The amount of leakage radiation collected
for films with one (a) and three coupling ridges of different lattice constants (b-
d) is shown in Fig. 4.7. A maximum light-SPP coupling efficiency of 15% was
achieved for a three-ridge sample of appropriate lattice constant. Naturally,

Figure 4.7. Quantifying coupling efficiency of a finite metal grating via collection of leakage
radiation. The graphs show the experimentally observed distribution of leakage radiation vs.
sample position (Fig. 4.6) for a single-ridge sample (a) and samples with three ridges of different
lattice constants (b-d). The maximum intensity profile in (a) was normalized to 1. Reprinted
with permission from [Ditlbacher et al., 2003]. Copyright 2003, American Institute of Physics.
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the same setup can also be used to quantify the coupling efficiency of other
methods, such as highly focused beams or coupling via inherent or designed
surface roughness (chapter 3).

Leakage radiation also has to be considered in the design of plasmon
waveguides. For example, all studies of laterally confined SPP propagation
in metal stripes or nanowires where prism-coupling excitation has been em-
ployed inherently only investigate modes in the leaky region (4.1) described
above. These leaky waveguides will be discussed in detail in chapter 7.

Apart from the observation of SPP propagation, leakage radiation imag-
ing can also be used for the direct visualization of the SPP dispersion rela-
tion, which was demonstrated by Giannattasio and Barnes [Giannattasio and
Barnes, 2005]. In this work, SPPs at the air interface of a 50 nm thick silver
film were excited via a focused light beam using scattering from random sur-
face roughness for phase-matching (Fig. 4.8). Leakage radiation into the silica
substrate was directly imaged using a CCD camera glued to the underside of
the substrate. For a flat film (Fig. 4.8a), the radiation is emitted within a cone
of surface plasmon angle θSPP defined by nsk0 sin θSPP = β, which intersects
the plane of the CCD in a circular pattern. Light of different frequencies can
be used for excitation, and the resulting wave vector β within the region (4.1)
determined by the computation of the angle θSPP of leakage radiation from the
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Figure 4.8. Experimental geometry of leakage radiation imaging for the determination of the
SPP dispersion relation. (a) Planar silver surface: a single cone of light is emitted into the silica
substrate. (b) Corrugated silver surface: the central cone is now intersected by other light cones
due to SPPs scattered by the grating with Bragg vector G. Reproduced with permission from
[Giannattasio and Barnes, 2005]. Copyright 2005, Optical Society of America.
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a) b)

Scattered Ag/air SPP

Scattered Ag/glass SPP Stop band

Figure 4.9. Direct image of the conical radiation in k-space sketched in Fig. 4.8 recorded by
a CCD array. (a) Planar sample. (b) Imaging of the stop band emerging at the intersection
between the two cones in k-space. Reproduced with permission from [Giannattasio and Barnes,
2005]. Copyright 2005, Optical Society of America.

radius of the imaged circle. Fig. 4.9a shows an image of parts of the circumfer-
ence of the cone obtained by collecting the leakage radiation, confirming the
usefulness of this method for the determination of the SPP dispersion relation.

This scheme allows a convenient way for the determination of the more
complex dispersion relation of a structured metal surface. For a surface with
regular, one-dimensional corrugations with grating constant a (corresponding
to a reciprocal grating vector G = 2π/a), perpendicular incidence of the excit-
ing laser light leads to leakage radiation into a central light cone (correspond-
ing to zero-order scattering) intersected by other cones ensuing from scatter-
ing SPPs with wave vectors k ± G (Fig. 4.8b). This leads to the formation of
band gaps for SPP propagation at the intersection of adjacent cones, which are
clearly visible in Fig. 4.9b as disruptions of the central circle. Additionally,
scattering pathways both into the air and substrate layers are visible in these
images, in the form of straight, jet-like lines.

4.4 Scattered Light Imaging
The propagation of SPPs at the air interface of metal films can often be sim-

ply imaged by collecting the light lost to radiation due to scattering at random
(or indeed designed) surface protrusions. Scattering at these localized bumps
allows SPPs with wave vector β > k0 to acquire a momentum component
�kx , which can lower β into the region within the air light cone (see equation
(3.3)), leading to coupling to the radiation continuum and thus the emission of
photons. For increasingly flat films with good surface quality, the amount of
scattering is reduced, making a detailed determination of the properties of the
SPPs such as their propagation length difficult.
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Figure 4.10. Experimental setup for the observation of the diffuse scattering background.
Reprinted with permission from [Depine and Ledesma, 2004]. Copyright 2004, Optical So-
ciety of America.

The observation of light scattering from random roughness can also be used
to map out the dispersion relation of SPPs on modulated surfaces. Depine and
Ledesma used this method to determine the band gaps of SPPs for a metal
surface corrugated with a blazed grating, by observing the so-called diffuse
light bands [Depine and Ledesma, 2004]. These arise due to scattering from
the random roughness of the grating. The experimental setup is very simple
and shown in Fig. 4.10. A SPP is excited by focusing a laser beam under
an angle θ to the surface normal onto the grating, and the scattered light is
projected onto a screen parallel to the substrate.

It has been shown that a blazed grating leads to polarization conversion of
the incoming and reflected light beam, mediated via SPPs, even when β is
completely parallel to the grooves of the grating [Watts and Sambles, 1997]. A
map of the reciprocal space (i.e., a two-dimensional plot of the in-plane com-
ponents of β ) is obtained by recording the intensity of the specular reflection
versus incidence angle θ and the angle φ between β and the Bragg vector of
the grating.

Depine and Ledesma have shown that the observation of the diffuse back-
ground does not necessitate such angular scanning in φ, which is now provided
by scattering at the inherent surface roughness.

The obtained intensity maps of the in-plane components of β are presented
in Fig. 4.11 both for light incident under TM (a) and TE (b) polarization. The
observed structure corresponds well to a calculation of the reciprocal space of
the electromagnetic modes sustained by this system, and to an experimental
determination using angular scanning [Watts and Sambles, 1997]. In these
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Figure 4.11. Reciprocal-space map of SPPs excited on a blazed grating for TM (a) and TE (b)
polarized excitation beams. For details see text. Reprinted with permission from [Depine and
Ledesma, 2004]. Copyright 2004, Optical Society of America.

pictures, the band gap can be determined by recording the minimum distance
between the dark edges of forbidden β.



Chapter 5

LOCALIZED SURFACE PLASMONS

Here we introduce the second fundamental excitation of plasmonics - local-
ized surface plasmons. We have seen in the preceding chapters that SPPs are
propagating, dispersive electromagnetic waves coupled to the electron plasma
of a conductor at a dielectric interface. Localized surface plasmons on the other
hand are non-propagating excitations of the conduction electrons of metallic
nanostructures coupled to the electromagnetic field. We will see that these
modes arise naturally from the scattering problem of a small, sub-wavelength
conductive nanoparticle in an oscillating electromagnetic field. The curved sur-
face of the particle excerts an effective restoring force on the driven electrons,
so that a resonance can arise, leading to field amplification both inside and in
the near-field zone outside the particle. This resonance is called the localized
surface plasmon or short localized plasmon resonance. Another consequence
of the curved surface is that plasmon resonances can be excited by direct light
illumination, in contrast to propagating SPPs, where the phase-matching tech-
niques described in chapter 3 have to be employed.

We explore the physics of localized surface plasmons by first considering
the interaction of metal nanoparticles with an electromagnetic wave in order
to arrive at the resonance condition. Subsequent sections discuss damping
processes, studies of plasmon resonances in particles of a variety of different
shapes and sizes, and the effects of interactions between particles in ensembles.
Other important nanostructures apart from solid particles that support localized
plasmons are dielectric inclusions in metal bodies or surfaces, and nanoshells.
The chapter closes with a brief look at the interaction of metal particles with
gain media.

For gold and silver nanoparticles, the resonance falls into the visible region
of the electromagnetic spectrum. A striking consequence of this are the bright
colors exhibited by particles both in transmitted and reflected light, due to res-
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onantly enhanced absorption and scattering. This effect has found applications
for many hundreds of years, for example in the staining of glass for windows
or ornamental cups. We will look at a number of more modern applications
of localized plasmon resonances such as emission enhancement and optical
sensing in chapters 9 and 10.

5.1 Normal Modes of Sub-Wavelength Metal Particles
The interaction of a particle of size d with the electromagnetic field can be

analyzed using the simple quasi-static approximation provided that d � λ,
i.e. the particle is much smaller than the wavelength of light in the surrounding
medium. In this case, the phase of the harmonically oscillating electromagnetic
field is practically constant over the particle volume, so that one can calculate
the spatial field distribution by assuming the simplified problem of a particle in
an electrostatic field. The harmonic time dependence can then be added to the
solution once the field distributions are known. As we will show below, this
lowest-order approximation of the full scattering problem describes the optical
properties of nanoparticles of dimensions below 100 nm adequately for many
purposes.

We start with the most convenient geometry for an analytical treatment: a
homogeneous, isotropic sphere of radius a located at the origin in a uniform,
static electric field E = E0ẑ (Fig. 5.1). The surrounding medium is isotropic
and non-absorbing with dielectric constant εm, and the field lines are parallel to
the z-direction at sufficient distance from the sphere. The dielectric response
of the sphere is further described by the dielectric function ε (ω), which we
take for the moment as a simple complex number ε.

In the electrostatic approach, we are interested in a solution of the Laplace
equation for the potential, ∇2� = 0, from which we will be able to calculate
the electric field E = −∇�. Due to the azimuthal symmetry of the problem,
the general solution is of the form [Jackson, 1999]

E0

ε(ω)

εm

z

a

P

θ

Figure 5.1. Sketch of a homogeneous sphere placed into an electrostatic field.
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�(r, θ) =
∞∑
l=0

[
Alr

l + Blr
−(l+1)

]
Pl (cos θ), (5.1)

where Pl (cos θ) are the Legendre Polynomials of order l, and θ the angle
between the position vector r at point P and the z-axis (Fig. 5.1). Due to the
requirement that the potentials remain finite at the origin, the solution for the
potentials �in inside and �out outside the sphere can be written as

�in (r, θ) =
∞∑
l=0

Alr
lPl (cos θ) (5.2a)

�out (r, θ) =
∞∑
l=0

[
Blr

l + Clr
−(l+1)

]
Pl (cos θ). (5.2b)

The coefficients Al , Bl and Cl can now be determined from the boundary
conditions at r → ∞ and at the sphere surface r = a. The requirement that
�out → −E0z = −E0r cos θ as r → ∞ demands that B1 = −E0 and Bl = 0
for l �= 1. The remaining coefficients Al and Cl are defined by the boundary
conditions at r = a. Equality of the tangential components of the electric field
demands that

−1

a

∂�in

∂θ

∣∣∣
r=a

= −1

a

∂�out

∂θ

∣∣∣
r=a

, (5.3)

and the equality of the normal components of the displacement field

−ε0ε
∂�in

∂r

∣∣∣
r=a

= −ε0εm
∂�out

∂r

∣∣∣
r=a

. (5.4)

Application of these boundary conditions leads to Al = Cl = 0 for l �= 1,
and via the calculation of the remaining coefficients A1 and C1 the potentials
evaluate to [Jackson, 1999]

�in = − 3εm

ε + 2εm

E0r cos θ (5.5a)

�out = −E0r cos θ + ε − εm

ε + 2εm

E0a
3 cos θ

r2
. (5.5b)

It is interesting to interpret equation (5.5b) physically: �out describes the
superposition of the applied field and that of a dipole located at the particle
center. We can rewrite �out by introducing the dipole moment p as
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�out = −E0r cos θ + p · r
4πε0εmr3

(5.6a)

p = 4πε0εma3 ε − εm

ε + 2εm

E0. (5.6b)

We therefore see that the applied field induces a dipole moment inside the
sphere of magnitude proportional to |E0|. If we introduce the polarizability α,
defined via p = ε0εmαE0, we arrive at

α = 4πa3 ε − εm

ε + 2εm

. (5.7)

Equation (5.7) is the central result of this section, the (complex) polariz-
ability of a small sphere of sub-wavelength diameter in the electrostatic ap-
proximation. We note that it shows the same functional form as the Clausius-
Mossotti relation [Jackson, 1999].

Fig. 5.2 shows the absolute value and phase of α with respect to frequency
ω (in energy units) for a dielectric constant varying as ε(ω) of the Drude
form (1.20), in this case fitted to the dielectric response of silver [Johnson
and Christy, 1972]. It is apparent that the polarizability experiences a resonant
enhancement under the condition that |ε + 2εm| is a minimum, which for the
case of small or slowly-varying Im [ε] around the resonance simplifies to

Re [ε (ω)] = −2εm. (5.8)

This relationship is called the Fröhlich condition and the associated mode (in
an oscillating field) the dipole surface plasmon of the metal nanoparticle. For
a sphere consisting of a Drude metal with a dielectric function (1.20) located
in air, the Fröhlich criterion is met at the frequency ω0 = ωp/

√
3. (5.8) further

expresses the strong dependence of the resonance frequency on the dielectric
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Figure 5.2. Absolute value and phase of the polarizability α (5.7) of a sub-wavelength metal
nanoparticle with respect to the frequency of the driving field (expressed in eV units). Here,
ε(ω) is taken as a Drude fit to the dielectric function of silver [Johnson and Christy, 1972].
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environment: The resonance red-shifts as εm is increased. Metal nanoparti-
cles are thus ideal platforms for optical sensing of changes in refractive index,
which will be discussed in chapter 10.

We note that the magnitude of α at resonance is limited by the incomplete
vanishing of its denominator, due to Im [ε(ω)] �= 0. This will be elaborated in
the last section of this chapter on nanoparticles in gain media.

The distribution of the electric field E = −∇� can be evaluated from the
potentials (5.5) to

Ein = 3εm

ε + 2εm

E0 (5.9a)

Eout = E0 + 3n (n · p) − p
4πε0εm

1

r3
. (5.9b)

As expected, the resonance in α also implies a resonant enhancement of both
the internal and dipolar fields. It is this field-enhancement at the plasmon res-
onance on which many of the prominent applications of metal nanoparticles in
optical devices and sensors rely.

Up to this point, we have been on the firm ground of electrostatics, which
we will now leave when turning our attention to the electromagnetic fields
radiated by a small particle excited at its plasmon resonance. For a small sphere
with a � λ, its representation as an ideal dipole is valid in the quasi-static
regime, i.e. allowing for time-varying fields but neglecting spatial retardation
effects over the particle volume. Under plane-wave illumination with E(r, t) =
E0e

−iωt , the fields induce an oscillating dipole moment p (t) = ε0εmαE0e
−iωt ,

with α given by the electrostatic result (5.7). The radiation of this dipole leads
to scattering of the plane wave by the sphere, which can be represented as
radiation by a point dipole.

It is useful to briefly review the basics of the electromagnetic fields asso-
ciated with an oscillating electric dipole. The total fields H(t) = He−iωt and
E(t) = Ee−iωt in the near, intermediate and radiation zones of a dipole can be
written as [Jackson, 1999]

H = ck2

4π
(n × p)

eikr

r

(
1 − 1

ikr

)
(5.10a)

E = 1

4πε0εm

{
k2 (n × p) × n

eikr

r
+ [

3n (n · p) − p
] (

1

r3
− ik

r2

)
eikr

}
,

(5.10b)
with k = 2π/λ and n the unit vector in the direction of the point P of interest.
In the near zone (kr � 1), the electrostatic result (5.9b) for the electric field is
recovered,
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E = 3n (n · p) − p
4πε0εm

1

r3
(5.11a)

and the accompanying magnetic field present for oscillating fields amounts to

H = iω

4π
(n × p)

1

r2
. (5.11b)

We can see that within the near field, the fields are predominantly electric in
nature, since the magnitude of the magnetic field is about a factor

√
ε0/μ0 (kr)

smaller than that of the electric field. For static fields (kr → 0), the magnetic
field vanishes.

In the opposite limit of the radiation zone, defined by kr � 1, the dipole
fields are of the well-known spherical-wave form

H = ck2

4π
(n × p)

eikr

r
(5.12a)

E =
√

μ0

ε0εm

H × n. (5.12b)

We will now leave this short summary of the properties of dipolar radiation,
and refer to standard textbooks on electromagnetism such as [Jackson, 1999]
for further particulars. From the viewpoint of optics, it is much more interest-
ing to note that another consequence of the resonantly enhanced polarization α

is a concomitant enhancement in the efficiency with which a metal nanoparticle
scatters and absorbs light. The corresponding cross sections for scattering and
absorption Csca and Cabs can be calculated via the Poynting-vector determined
from (5.10) [Bohren and Huffman, 1983] to

Csca = k4

6π
|α|2 = 8π

3
k4a6

∣∣∣∣ ε − εm

ε + 2εm

∣∣∣∣
2

(5.13a)

Cabs = kIm [α] = 4πka3Im

[
ε − εm

ε + 2εm

]
. (5.13b)

For small particles with a � λ, the efficiency of absorption, scaling with a3,
dominates over the scattering efficiency, which scales with a6. We point out
that no explicit assumptions were made in our derivations so far that the sphere
is indeed metallic. The expressions for the cross sections (5.13) are thus valid
also for dielectric scatterers, and demonstrate a very important problem for
practical purposes. Due to the rapid scaling of Csca ∝ a6, it is very diffi-
cult to pick out small objects from a background of larger scatterers. Imaging
of nanoparticles with dimensions below 40 nm immersed in a background of
larger scatterers can thus usually only be achieved using photothermal tech-
niques relying on the slower scaling of the absorption cross section with size
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Figure 5.3. Extinction cross section calculated using (5.14) for a silver sphere in air (black
curve) and silica (gray curve), with the dielectric data taken from [Johnson and Christy, 1972].

[Boyer et al., 2002], which will be elaborated on in chapter 10. Equations
(5.13) also shows that indeed for metal nanoparticles both absorption and scat-
tering (and thus extinction) are resonantly enhanced at the dipole particle plas-
mon resonance, i.e. when the Frölich condition (5.8) is met [Kreibig and
Vollmer, 1995]. For a sphere of volume V and dielectric function ε = ε1 + iε2

in the quasi-static limit, the explicit expression for the extinction cross section
Cext = Cabs + Csca is

Cext = 9
ω

c
ε3/2
m V

ε2

[ε1 + 2εm]2 + ε2
2

. (5.14)

Fig. 5.3 shows the extinction cross section of a silver sphere in the quasi-static
approximation calculated using this formula for immersion in two different
media.

We now relax the assumption of a spherical nanoparticle shape. However,
it has to be pointed out that the basic physics of the localized surface plasmon
resonance of a sub-wavelength metallic nanostructure is well described by this
special case. A slightly more general geometry amenable to analytical treat-
ment in the electrostatic approximation is that of an ellipsoid with semiaxes
a1 ≤ a2 ≤ a3, specified by x2

a2
1

+ y2

a2
2

+ z2

a2
3

= 1. A treatment of the scat-

tering problem in ellipsoidal coordinates [Bohren and Huffman, 1983] leads
to the following expression for the polarizabilities αi along the principal axes
(i = 1, 2, 3):

αi = 4πa1a2a3
ε (ω) − εm

3εm + 3Li (ε (ω) − εm)
(5.15)

Li is a geometrical factor given by
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Li = a1a2a3

2

∫ ∞

0

dq(
a2

i + q
)
f (q)

, (5.16)

where f (q) =
√(

q + a2
1

) (
q + a2

2

) (
q + a2

3

)
. The geometrical factors satisfy∑

Li = 1, and for a sphere L1 = L2 = L3 = 1
3 . As an alternative, the po-

larizability of ellipsoids is also often expressed in terms of the depolarization
factors L̃i , defined via E1i = E0i − L̃iP1i , where E1i and P1i are the electric
field and polarization induced inside the particle by the applied field E0i along
a principal axis i, respectively. L̃ is linked to L via

L̃i = ε − εm

ε − 1

Li

ε0εm

. (5.17)

An important special class of ellipsoids are spheroids. For prolate spher-
oids, the two minor axes are equal (a2 = a3), while for oblate spheroids, the
two major axes are of same size (a1 = a2). An examination of (5.15) reveals
that a spheroidal metal nanoparticle exhibits two spectrally separated plasmon
resonances, corresponding to oscillations of its conduction electrons along the
major or minor axis, respectively. The resonance due to oscillations along the
major axis can show a significant spectral red-shift compared to the plasmon
resonance of a sphere of the same volume. Thus, plasmon resonances can be
lowered in frequency into the near-infrared region of the spectrum using metal-
lic nanoparticles with large aspect ratio. For a quantitative treatment, we note
however that (5.15) is only strictly valid as long as the major axis is signifi-
cantly smaller than the excitation wavelength.

Using a similar analysis, the problem of spheres or ellipsoids coated with
a concentric layer of a different material can be addressed. Since core/shell
particles consisting of a dielectric core and a thin, concentric metallic shell
have recently attracted a great amount of interest in plasmonics due to the
wide tunability of the plasmon resonance, we want to state the result for the
polarizability of a coated sub-wavelength sphere with inner radius a1, material
ε1 (ω) and outer radius a2, material ε2 (ω) [Bohren and Huffman, 1983]. The
polarizability evaluates to

α = 4πa3
2

(ε2 − εm) (ε1 + 2ε2) + f (ε1 − ε2) (εm + 2ε2)

(ε2 + 2εm) (ε1 + 2εm) + f (2ε2 − 2εm) (ε1 − ε2)
, (5.18)

with f = a3
1/a

3
2 being the fraction of the total particle volume occupied by the

inner sphere.

5.2 Mie Theory
We have seen that the theory of scattering and absorption of radiation by a

small sphere predicts a resonant field enhancement due to a resonance of the
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polarizability α (5.7) if the Frölich condition (5.8) is satisfied. Under these
circumstances, the nanoparticle acts as an electric dipole, resonantly absorbing
and scattering electromagnetic fields. This theory of the dipole particle plas-
mon resonance is strictly valid only for vanishingly small particles; however,
in practice the calculations outlined above provide a reasonably good approx-
imation for spherical or ellipsoidal particles with dimensions below 100 nm
illuminated with visible or near-infrared radiation.

However, for particles of larger dimensions, where the quasi-static approx-
imation is not justified due to significant phase-changes of the driving field
over the particle volume, a rigorous electrodynamic approach is required. In
a seminal paper, Mie in 1908 developed a complete theory of the scattering
and absorption of electromagnetic radiation by a sphere, in order to understand
the colors of colloidal gold particles in solution [Mie, 1908]. The approach of
what is now know as Mie theory is to expand the internal and scattered fields
into a set of normal modes described by vector harmonics. The quasi-static
results valid for sub-wavelength spheres are then recovered by a power series
expansion of the absorption and scattering coefficients and retaining only the
first term.

Since Mie theory is treated in a variety of books such as [Bohren and Huff-
man, 1983, Kreibig and Vollmer, 1995] and a detailed knowledge of the higher
order terms is not required for our purpose, we will not present it in this treat-
ment, but rather examine the physical consequences of the first-order correc-
tions to the quasi-static approximation.

5.3 Beyond the Quasi-Static Approximation and Plasmon
Lifetime

Having obtained the general expressions (5.7) and (5.15) for the polariz-
ability of a metal sphere and an ellipsoid in the quasi-static approximation, we
will now analyze changes to the spectral position and width of the plasmon
resonance with particle size not captured by this theory. Two regimes will be
considered: Firstly, that of larger particles where the quasi-static approxima-
tion breaks down due to retardation effects, and secondly the regime of very
small metal particles of radius a < 10 nm, where the particle dimensions are
appreciably smaller than the mean free path of its oscillating electrons.

Starting with larger particles, a straight-forward expansion of the first TM
mode of Mie theory yields for the polarizability of a sphere of volume V the
expression [Meier and Wokaun, 1983, Kuwata et al., 2003]

αSphere = 1 − (
1
10

)
(ε + εm) x2 + O

(
x4

)
(

1
3 + εm

ε−εm

)
− 1

30 (ε + 10εm) x2 − i
4π2ε

3/2
m

3
V

λ3
0
+ O

(
x4

)V, (5.19)
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Figure 5.4. Schematic of radiative (left) and non-radiative (right) decay of particle plasmons.

where x = πa
λ0

is the so called size parameter, relating the radius to the free-
space wavelength. Compared to the simple quasi-static solution (5.7), a num-
ber of additional terms appear in the numerator and denominator of (5.19),
each having a distinct physical significance. The term quadratic in x in the
numerator includes the effect of retardation of the exciting field over the vol-
ume of the sphere, leading to a shift in the plasmon resonance. The quadratic
term in the denominator also causes an energy shift of the resonance, due to
the retardation of the depolarization field [Meier and Wokaun, 1983] inside the
particle. For Drude and the noble metals, the overall shift is towards lower en-
ergies: the spectral position of the dipole resonance red-shifts with increasing
particle size. Intuitively, this can be understood by recognizing that the dis-
tance between the charges at opposite interfaces of the particle increases with
its size, thus leading to a smaller restoring force and therefore a lowering of the
resonance frequency. This red-shift also implies that effects of interband tran-
sitions (described by an increase in Im [ε2]) not captured by the Drude theory
decrease as the plasmon resonance moves away from the interband transition
edge.

The quadratic term in the denominator also increases the magnitude of the
polarization, and thus inherently lessens the influence of the absorption due to
the imaginary part of ε. However, this increase in strength is counteracted by
the third, completely imaginary term in the denominator, which accounts for
radiation damping. An inclusion of terms of higher order in expression (5.19)
will lead to the occurance of higher-order resonances, which will be touched
upon in the next section.

Radiation damping is caused by a direct radiative decay route of the coher-
ent electron oscillation into photons [Kokkinakis and Alexopoulos, 1972], and
is the main cause of the weakening of the strength of the dipole plasmon res-
onance as the particle volume increases [Wokaun et al., 1982]. Thus, despite
the fact that an increase in particle volume decreases the strength of the non-
radiative decay pathway (namely absorption), a significant broadening of the
plasmon resonance sets in.

We can summarize that the plasmon resonance of particles beyond the quasi-
static regime is damped by two competing processes (Fig. 5.4): a radiative



Beyond the Quasi-Static Approximation and Plasmon Lifetime 75

decay process into photons, dominating for larger particles, and a non-radiative
process due to absorption. The non-radiative decay is due to the creation of
electron-hole pairs via either intraband excitations within the conduction band
or interband transitions from lower-lying d-bands to the sp conduction band
(for noble metal particles). More details on the physics of the damping can be
found in [Link and El-Sayed, 2000, Sönnichsen et al., 2002b].

In order to arrive at a quantitative description, these two damping processes
can be incorporated into a simple two-level model of the plasmon resonance,
developed by Heilweil and Hochstrasser [Heilweil and Hochstrasser, 1985].
Using it, the homogeneous linewidth � of the plasmon resonance, which can
be determined using for example extinction spectroscopy, can be related to the
internal damping processes via the introduction of a dephasing time T2. In
energy units, the relation between � and T2 is

� = 2h̄

T2
. (5.20)

We note that in analogy to dielectric resonators, the strength of a plasmon
resonance can also be expressed using the notion of a quality factor Q, given
by Q = Eres/�, where Eres is the resonant energy.

In this theory, dephasing of the coherent excitation is either due to energy
decay, or scattering events that do not change the electron energy but its mo-
mentum. This can be expressed by relating T2 to a population relaxation or de-
cay time T1, describing both radiative and non-radiative energy loss processes,
and a pure dephasing time T ∗

2 resulting from elastic collisions:

1

T2
= 1

2T1
+ 1

T ∗
2

. (5.21)

Via an examination of the details of plasmon decay, for example with pump-
probe experiments [Link and El-Sayed, 2000], it can be shown that in general
T ∗

2 � T1 [Link and El-Sayed, 2000], so that T2 = 2T1. For small gold and
silver nanoparticles, in general 5 fs ≤ T2 ≤ 10 fs, depending on size and
the surrounding host material. Fig. 5.5 shows observed dephasing times for
gold and silver nanospheres of varying diameter investigated using dark-field
microscopy. In this figure, the magnitude of the plasmon decay is plotted in
terms of � and T2, related via (5.20). As apparent, in the case of gold the
observed decay times can be well explained using Mie theory and the measured
dielectric data [Johnson and Christy, 1972]. In the case of silver however, the
agreement is less good, and especially for small silver spheres a significant
decrease in dephasing time is observed, possibly due to damping processes at
the particle surface.

The relative contributions of radiative and non-radiative pathways to the de-
cay time T1 is of importance for applications where sample heating or quench-
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Figure 5.5. Linewidth of plasmon resonances of gold (a) and silver (b) nanospheres measured
using dark-field microscopy, compared with predictions from Mie theory [Sönnichsen et al.,
2002a]. Copyright 2002, Institute of Physics.

ing of fluorescence of molecules in the vicinity of the metal nanostructures are
to be avoided. In this case, the radiative decay pathway should dominate. In
order to achieve this, Sönnichsen and co-workers performed a study aimed at
maximizing the radiative contribution T1,r to the total decay time over the non-
radiative contribution T1,nr in gold nanorods of different aspect ratios [Sön-
nichsen et al., 2002b]. This corresponds to the maximization of the quantum
efficiency η for resonant light scattering, given by

η = T −1
1,r

T −1
1

= T −1
1,r

T −1
1,r + T −1

1,nr

. (5.22)

In this study, the decay time of nanorods approached a limiting value T2 ≈
18 fs for a rod aspect ratio of 3:1, which is significantly larger than the dephas-
ing time of gold nanospheres of similar volume (see Fig. 5.5). This is mainly
due to a decrease in non-radiative damping caused by the change from the
spherical to the spheroidal geometry: the long-axis mode shifts towards lower
energies, thus limiting the influence of interband transitions.

We now turn the attention to the regime of very small metallic particles. For
gold and silver particles of radius a < 10 nm, an additional damping process,
loosely termed chemical interface damping, must be considered. Here, the rate
of dephasing of the coherent oscillation is increased due to elastic scattering at
the particle surface, since the size of the particle is substantially smaller than
the electron mean free path (of the order of 30-50 nm). This could explain the
observed decrease in decay time for small silver particles presented in Fig. 5.5.
Empirically, the associated broadening of the experimentally observed plas-
mon linewidth �obs can be modeled via [Kreibig and Vollmer, 1995]

�obs (R) = �0 + AvF

R
. (5.23)
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Here, �0 describes the plasmon linewidth of particles that are outside the
regimes where interface damping or radiation damping dominate, i.e. where
� is defined by Im [ε(ω)] alone. vF the Fermi velocity of the electrons, and
A ≈ 1 a factor incorporating details of the scattering process [Hövel et al.,
1993]. In addition to the broadening of the resonance, shifts in resonance en-
ergy have also been reported for particles of dimensions below 10 nm. How-
ever, the direction of this shift seems to depend strongly on the chemical ter-
mination of the particle surface, and both blue- and red-shifts have been exper-
imentally observed (for an overview see [Kreibig and Vollmer, 1995]).

While up to now our treatment of the interaction of a small metal particle
with an incident electromagnetic wave has been purely classical, for particles
with a radius of the order of or below 1 nm, quantum effects begin to set in. The
reason that the quantized nature of the energy levels can be discarded down to
this size scale is the large concentration of conduction electrons n ≈ 1023 cm−3

in metals. However, for small absolute numbers of electrons Ne = nV , the
amount of energy gained by individual electrons per incident photon excitation,
�E ≈ h̄ω

Ne
, becomes significant compared to kBT . In this regime the notion of

a plasmon as a coherent electron oscillation breaks down, and the problem
has to be treated using the quantum mechanical picture of a multiple-particle
excitation. A description of these processes [Kreibig and Vollmer, 1995] lies
outside the scope of this book.

5.4 Real Particles: Observations of Particle Plasmons
Localized plasmon resonances can readily be observed using far-field ex-

tinction microscopy on colloidal or nanofabricated metal nanostructures under
illumination with visible light. A convenient way to create particles with a
variety of shapes, albeit of an inherently planar nature, is electron beam litho-
graphy followed by a metal lift-off process. If far-field extinction microscopy
is employed, the small size of nanoparticles with d � λ0 compared to the
at-best diffraction-limited illumination spot requires excitation of plasmons in
arrays of particles of equal shape in order to achieve an acceptable signal-to-
noise ratio in the extinction spectra. Typically, the particles are arranged on
a square grid [Craighead and Niklasson, 1984], with a sufficiently large in-
terparticle spacing to prevent interactions via dipolar coupling, which will be
discussed in the next section. Despite the fact that the attenuation of the exci-
tation beam is caused by absorption (and to a lesser degree scattering as long
as a � λ0) by multiple particles, the high reproducibility of particle shapes
offered by electron beam lithography enables observations of resonance line-
shapes approaching that of the homogeneous lineshape of a single particle.

Fig. 5.6 shows an example of extinction spectra of gold nanowires of various
lengths fabricated using electron beam lithography and arranged in grids as
described above. Since the nanowire length d is comparable or greater than λ0,
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several resonances due to the excitation of higher-order oscillation modes are
clearly visible. Due to the retardation effects outlined in the preceding section,
the dipole resonance has experienced a profound red-shift to energies lower
than those covered by the spectral range of the illumination source.

In contrast to far-field extinction microscopy techniques, far-field dark-field
optical microscopy and near-field optical extinction microscopy enable the ob-
servation of plasmon resonances of a single particle. In dark-field optical mi-
croscopy, only the light scattered by the structure under study is collected in
the detection path, while the directly transmitted light is blocked using a dark-
field condenser. This enables the study of single particles dilutely dispersed
on a substrate. Fig. 5.7 shows as an example the dipolar plasmon lineshapes
of colloidal silver particles of different shapes. Other studies have investi-
gated resonances in metal nanowires composed of segments of different metals
[Mock et al., 2002b] and the influence of the refractive index on the plasmon
resonance [Mock et al., 2003]. This scheme is particularly useful for biolog-
ical sensing purposes, where resonance shifts due to binding events on single
particles are monitored, which will be discussed in more detail in chapter 10.

In near-field optical spectroscopy, a thin (metalized or uncoated) fiber tip
with an aperture on the order of 100 nm is brought into close proximity of the
particle using an appropriate feedback scheme. The plasmon resonances can
then be mapped out using either illumination through the tip and collection
in the far-field, or evanescent illumination from the substrate side and light
collection via the tip. For example, such investigations have enabled the deter-
mination of both the homogeneous linewidth � of a single nanoparticle [Klar
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Figure 5.6. SEM images (left) and corresponding spectra (right) of gold nanowires excited
with light polarized along their long axis of 790 nm (a), 940 nm (b), and 1090 nm (c). The
length of the short axis and the height are 85 nm and 25 nm, respectively. Numbers at the
spectral peaks indicate the order of the multipolar excitation. Reprinted with permission from
[Krenn et al., 2000]. Copyright 2000, American Institute of Physics.
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Figure 5.7. Scattering spectra of single silver nanoparticles of different shapes obtained in
dark-field configuration. Reprinted with permission from [Mock et al., 2002a]. Copyright 2002,
American Institute of Physics.

Figure 5.8. Optical dark field images together with SEM images of individual gold nanopar-
ticles (a) and corresponding scattering spectra (b) for an incident light polarization along the
long particle axis. Lines are experimental data, and circles cross sections calculated using the
empirical formula (5.24). Reprinted with permission from [Kuwata et al., 2003]. Copyright
2003, American Institute of Physics.

et al., 1998] and the direct imaging of multipolar fields [Hohenau et al., 2005a],
as well as the dispersion relation of gold nanorods [Imura et al., 2005]. More
details of typical setups can be found in chapter 10 on spectroscopy.
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We want to finish this section by presenting results from a comprehen-
sive study of the influence of aspect ratio on the dipolar plasmon resonance
in nanorods performed using dark-field optical spectroscopy [Kuwata et al.,
2003]. Fig. 5.8 shows scattered light images and plasmon lineshapes (solid
lines) of a variety of gold nanoparticles. Using this data, Kuwata and co-
workers established an empirical extension of the formula for the polarizability
for spherical particles (5.19) to ellipsoidal structures. For particles with vol-
ume V and size parameter x, the polarizability along the principal axis with
geometrical factor L can be expressed as

α ≈ V(
L + εm

ε−εm

)
+ Aεmx2 + Bε2

mx4 − i
4π2ε

3/2
m

3
V

λ3
0

. (5.24)

Using the empirical data of spectra akin to Fig. 5.8, the following dependencies
of A and B on L have been obtained:

A(L) = −0.4865L − 1.046L2 + 0.8481L3 (5.25a)

B(L) = 0.01909L + 0.1999L2 + 0.6077L3 (5.25b)

The data points in the spectra of Fig. 5.8 correspond to the extinction calculated
using (5.24). We note that, perhaps surprisingly, these expressions seem to be
equally valid both for gold and silver particles.

5.5 Coupling Between Localized Plasmons
We have seen that the localized plasmon resonance of a single metallic

nanoparticle can be shifted in frequency from the Fröhlich frequency defined
by (5.8) via alterations in particle shape and size. In particle ensembles, addi-
tional shifts are expected to occur due to electromagnetic interactions between
the localized modes. For small particles, these interactions are essentially of a
dipolar nature, and the particle ensemble can in a first approximation be treated
as an ensemble of interacting dipoles.

We will now describe the effects of such interactions in ordered metal nano-
particle arrays. Electromagnetic coupling in disordered arrays, where interest-
ing localization effects can occur for closely spaced particles, will be touched
upon in chapter 9 when discussing enhancement processes due to field lo-
calization in particle junctions. Here, we assume that the particles of size a

are arranged within ordered one- or two-dimensional arrays with interparticle
spacing d. We further assume that a � d, so that the dipolar approximation is
justified, and the particles can be treated as point dipoles.

Two regimes have to be distinguished, depending on the magnitude of the
interparticle distance d. For closely spaced particles, d � λ, near-field inter-
actions with a distance dependence of d−3 dominate, and the particle array can
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be described as an array of point dipoles interacting via their near-field (see
(5.11)). In this case, strong field localization in nano-sized gaps between ad-
jacent particles has been observed for regular one-dimensional particle chains
[Krenn et al., 1999]. The field localization is due to a suppression of scatter-
ing into the far-field via excitation of plasmon modes in particles along the
chain axis, mediated by near-field coupling. Fig. 5.9 illustrates this fact by
showing the experimentally observed (a, c) and simulated (b, d) distribution
of the electric field above single gold nanoparticles and a particle chain. In
this study by Krenn and co-workers, the structures were excited using prism
coupling from the substrate side and the optical near-field was probed by near-
field microscopy in collection mode. From the images, it can clearly be seen
that scattering is drastically suppressed for closely spaced particles, and that
the fields are instead highly localized at interstitial sites. Interparticle junc-
tions such as these therefore serve as hot-spots for field enhancement, which
will be further discussed in chapter 9 in a context of surface-enhanced Raman
scattering (SERS).

One can intuitively see that interparticle coupling will lead to shifts in the
spectral position of the plasmon resonance compared to the case of an iso-
lated particle. Using the simple approximation of an array of interacting point
dipoles, the direction of the resonance shifts for in-phase illumination can be
determined by considering the Coulomb forces associated with the polarization
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Figure 5.9. Experimentally observed (a, c) and simulated (b, d) intensity distribution of the op-
tical near-field above an ensemble of well-separated gold particles (a, b) and a chain of closely
spaced gold nanoparticles (c, d). While for separated particles interference effects of the scat-
tered fields are visible, in the particle chain the fields are closely confined in gaps between
adjacent particles. Plasmon resonances were excited using prism coupling with the direction of
the in-plane moment component as outlined in the pictures. Reprinted with permission from
[Krenn et al., 2001]. Copyright 2001 by Blackwell Publishing.
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Figure 5.10. Schematic of near-field coupling between metallic nanoparticles for the two dif-
ferent polarizations.

of the particles. As sketched in Fig. 5.10, the restoring force acting on the oscil-
lating electrons of each particle in the chain is either increased or decreased by
the charge distribution of neighboring particles. Depending on the polarization
direction of the exciting light, this leads to a blue-shift of the plasmon reso-
nance for the excitation of transverse modes, and a red-shift for longitudinal
modes.

Using one-dimensional arrays of 50 nm gold particles with varying interpar-
ticle distance (Fig. 5.11a), these shifts in resonance energy were experimentally
demonstrated using far-field extinction spectroscopy [Maier et al., 2002a]. The
dependence of the spectral position of the plasmon resonance on interparticle
distance is shown in Fig. 5.11b both for longitudinal and transverse polariza-
tion. Due to the strong scaling of the interaction strength with d−3 (see (5.11)),
particle separations in excess of 150 nm are sufficient to recover the behavior
of essentially isolated particles.

The spatial extent of near-field interactions can further be quantified by an-
alyzing the dependence of the resonance shifts on the length of the particle ar-
rays [Maier et al., 2002b]. Fig. 5.12 shows results from finite-difference time-
domain (FDTD) calculations and comparisons to experimental shifts obtained
for chains of gold nanoparticles with fixed interparticle distance and varying
chain lengths. In the FDTD simulations, the time-dependence of the electric
field was monitored at the center of a particle of a chain consisting of seven
50 nm gold spheres separated by 75 nm in air (left panel). The upper inset
shows the distribution of the initial electric field around the structure upon in-
phase excitation with longitudinal polarization, and the lower inset the Fourier
transform of the time-domain data, peaking at the longitudinal resonance fre-
quency EL. A comparison with chains fabricated on a silica substrate using
electron beam lithography is shown in the right panel (a). As apparent, the col-
lective plasmon resonance energies for both longitudinal (EL) and transverse



Coupling Between Localized Plasmons 83

(a) (b)

75 100 125
3.10

3.12

3.14

3.16

3.18

3.20

3.22

3.24

 

 

P
la

s
m

o
n

 p
e

a
k

 (
1

0
1

5
 r

a
d

/s
)

Spacing d (nm)

0Tω

0Lω

0ω

Longitudinal modes

Transverse modes

Figure 5.11. SEM image of arrays of closely spaced gold nanoparticles (a) and dependence of
the spectral position of the dipole plasmon resonance on interparticle spacing (b). The dotted
lines show a fit to the d−3 dependence of the coupling expected from a point-dipole model.
Reprinted with permission from [Maier et al., 2002a]. Copyright 2002 by the American Physical
Society.

(ET ) excitations for gold nanoparticle arrays of different lengths asymptote al-
ready for a chain length of about 5 particles due to the near-field nature of the
coupling. The coupling strength between adjacent particles can be increased by
changing the geometry to spheroidal particles (Fig. 5.12b). We point out that
due to near-field interactions, a linear array of closely-spaced metal nanopar-
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Figure 5.12. Left: Time-dependence of the electric field monitored at the center of a particle of
a chain consisting of seven 50 nm gold spheres separated by 75 nm in air obtained using FDTD.
For details see text. Right: a) Collective plasmon resonance energies for both longitudinal
(EL) and transverse (ET ) excitations for gold nanoparticle arrays (of the same geometry as
in the left panel) obtained via far-field spectroscopy on fabricated arrays (circles) and FDTD
simulations (stars). b) Simulation results for the collective plasmon resonance energies for
transverse excitation of gold spheroids with aspect ratios 3:1 (diamonds). Reproduced with
permission from [Maier et al., 2002b]. Copyright 2002, American Institute of Physics.
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ticles can therefore be viewed as a chain of interacting dipoles, which sup-
ports traveling polarization waves. This suggests applications of metal particle
chains as waveguides with high field-confinement, which will be discussed in
chapter 7, together with corrections to the simple point-dipole model described
here.

After these initial investigations, a number of different studies using both
near- and far-field detection techniques have confirmed the distance-depen-
dence of near-field interactions in particle arrays [Wurtz et al., 2003] as well
as particle pairs [Su et al., 2003, Sundaramurthy et al., 2005]. For a detailed
analysis of near-field interactions in particle ensembles of various lengths and
shapes using Mie theory, we refer to the treatment by Quinten and Kreibig
[Quinten and Kreibig, 1993]. Also, near-field coupling can influence plasmon
resonances sustained by a single particle of complex shape, for example cres-
cent moon structures with two sharp edges in small proximity of each other
[Kim et al., 2005].

For larger particle separations, far-field dipolar coupling with a distance de-
pendence of d−1 (see (5.12)) dominates. This coupling via diffraction has
been analyzed for both two-dimensional arrays akin to gratings [Lamprecht
et al., 2000, Haynes et al., 2003], and one-dimensional chains with interparti-
cle distances larger than those for which near-field coupling is observed [Hicks
et al., 2005]. For the example of two-dimensional gratings of gold nanoparti-
cles with various lattice constants, Fig. 5.13 shows that far-field coupling has
pronounced influences on the plasmon lineshape, both in terms of resonance
frequency as well as spectral width. The latter is due to a drastic dependence
of the decay time T2 on the grating constant via its influence on the amount
of radiative damping as successive grating orders change from evanescent to
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Figure 5.13. (a) Extinction spectra for square two-dimensional gratings of gold nanoparticles
(height 14 nm, diameter 150 nm) with grating constant d situated on a glass substrate. (b)
Plasmon decay time versus grating constant observed using a time-resolved measurement. The
solid curve is a guide to the eye. Reproduced with permission from [Lamprecht et al., 2000].
Copyright 2000 by the American Physical Society.
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radiative in character. In this study, the decay time of the plasmon oscillations
has been determined directly using time-resolved measurements.

We note that interactions between metal nanoparticles can be further en-
hanced by providing additional coupling pathways, for example in the form
of propagating SPPs for particle arrays fabricated on a conductive substrate
[Félidj et al., 2002].

5.6 Void Plasmons and Metallic Nanoshells
We take now a step back and continue our previous discussion of plasmon

resonances in single particles by taking a closer look at localized modes in
metallic structures containing dielectric inclusions of characteristic dimension
a � λ. The simplest such structure is a spherical inclusion of dielectric con-
stant εm in a homogeneous metallic body described by the dielectric function
ε (ω), as pictured in Fig. 5.14. Such a nanovoid can sustain an electromagnetic
dipole resonance akin to that of a metallic nanoparticle. In fact, the result for
the dipole moment of the void can be obtained from that for a sphere by sim-
ply carrying out the substitutions ε (ω) → εm and εm → ε (ω) in (5.7). The
polarizability of the nanovoid is thus

α = 4πa3 εm − ε

εm + 2ε
. (5.26)

Note that contrary to metal nanoparticles, the induced dipole moment is in this
case oriented antiparallel to the applied outside field. The Fröhlich condition
now takes the form

Re [ε (ω)] = −1

2
εm. (5.27)

An important example of a three-dimensional void resonance is that of a
core/shell particle consisting of a dielectric core (usually silica) and a thin
metallic shell (for example gold). The polarizability of this core/shell sys-
tem can be described using quasistatic Mie theory by (5.18). In an illuminat-
ing analysis, Prodan and co-workers demonstrated that the two fundamental
dipolar modes of a core/shell nanoparticle can be thought to arise via the hy-

a

ε(ω)
εm

Figure 5.14. Spherical dielectric inclusion in a homogeneous metal.
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bridization of the dipolar modes of a metallic sphere and a dielectric void in a
metallic substrate (Fig. 5.15) [Prodan et al., 2003b]. In this picture, the two dis-
tinct nanoshell resonances are due to bonding and anti-bonding combinations
of the fundamental sphere and void modes. The validity of this model has
been confirmed using quantum-mechanical calculations [Prodan and Nordlan-
der, 2003, Prodan et al., 2003a] as well as finite-difference time-domain simu-
lations [Oubre and Nordlander, 2004].

For a quantitative description of plasmon hybridization applied to the geom-
etry presented in Fig. 5.15, the particle plasmon can be described as an incom-
pressible deformation of the conduction electron gas of the metallic nanos-
tructure [Prodan et al., 2003b]. Such deformations can be expressed using
spherical harmonics of order l, and as the outcome of this study, the resonance
frequencies ωl,± of the two hybridized modes for each order l > 0 can be
written as

ω2
l,± = ω2

p

2

[
1 ± 1

2l + 1

√
1 + 4l (l + 1)

(
a

b

2l+1
)]

, (5.28)

where a and b are the inner and outer radius of the shell, respectively. The
hybridization model has also successfully been applied to the calculation of
the resonance frequencies of nanoparticle dimers [Nordlander et al., 2004].

The extra degrees of freedom over the control of the plasmon dipole reso-
nance in the nanoshell geometry enable both shifts of the resonance frequen-
cies into the near-infrared region of the spectrum, and additionally reduced
plasmon linewidths [Teperik and Popov, 2004, Westcott et al., 2002]. The

Figure 5.15. Schematic of plasmon hybridization in metallic nanoshells. Note that ωB ≡ ωp.
Reprinted with permission from [Prodan et al., 2003b]. Copyright 2003, AAAS.
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latter fact suggests that nanoshells are superior to solid metal nanoparticles
for refractive index sensing applications [Raschke et al., 2004, Tam et al.,
2004]. Strong localized plasmon resonances in the near-infrared region of the
spectrum are of interest for biomedical applications, e.g. for the treatment
of nanoparticle-filled tumors, which can be destroyed via absorption-induced
heating [Hirsch et al., 2003].

While the above voids have been three-dimensional in nature, essentially
two-dimensional holes in thin metallic films can also support localized plas-
mon modes. Such structures can for example be fabricated using focused
ion beam milling, and be investigated using near-field optical spectroscopy
[Prikulis et al., 2004, Yin et al., 2004]. This geometry is also promising from
a sensing viewpoint [Rindzevicius et al., 2005]. We will take a closer look on
the fascinating properties of these systems in chapter 8.

5.7 Localized Plasmons and Gain Media

We want to finish this section by taking a brief look at an emerging appli-
cation in plasmonics, namely the interaction of localized resonances with gain
media. The motivation for this application is twofold: the field enhancement
sustained by the metallic nanostructures upon resonant excitation can lead to
a reduction in the threshold for achieving inversion in the optically active sur-
rounding medium, and the presence of gain can counteract the inherent ab-
sorption losses in the metal. While this strengthening of plasmon resonances
in gain media has up to this point not been experimentally confirmed, amplifi-
cation of fluorescence due to field enhancement in mixtures of laser dyes with
metal nanoparticles has recently been observed [Dice et al., 2005].

In its simplest form, the problem of a gain-induced increase in the strength
of the plasmon resonance can be treated by analyzing the case of a sub-
wavelength metal nanosphere embedded in a homogeneous medium exhibit-
ing optical gain. The quasi-static approach presented at the beginning of this
chapter can be followed, and the presence of gain incorporated by replacing
the real dielectric constant εm of the insulator surrounding the sphere with a
complex dielectric function ε2(ω).

Using this straightforward analytical model, Lawandy has shown that the
presence of gain, expressed by Im [ε2] < 0, can lead to a significant strength-
ening of the plasmon resonance [Lawandy, 2004]. This is due to the fact that
in addition to the cancellation of the real part of the denominator of the po-
larizability α (5.7), the positive imaginary part of ε2 can in principle lead to a
complete cancellation of the terms in the denominator and thus to an infinite
magnitude of the resonant polarizability. Taking as a starting point the expres-
sions for the electric fields (5.9), the depolarization field Epol = Ein −E0 inside
the particle is given by
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Epol = ε2 − ε

ε + 2ε2
E0. (5.29)

For a Drude metal with ε given by (1.20) in the small-damping limit with
electron scattering rate γ � ω, the incomplete vanishing of the denominator
in (5.29) upon resonance can be overcome by optical gain. Ignoring gain satu-
ration, it can be shown that the critical gain value αc at the plasmon resonance
ω0 for the singularity to occur can be approximated as

αc = γ (2Re [ε(ω0)] + 1)

2c
√

Re [ε(ω0)]
. (5.30)

For silver and gold particles, this results in αc ≈ 103 cm−1. Of course, in
real examples the divergence in field amplification will be suppressed due to
gain saturation, and we refer the reader to [Lawandy, 2004] for more details.
Further comments on the interaction of gain media with plasmons in a context
of waveguiding will be presented in chapter 7.



Chapter 6

ELECTROMAGNETIC SURFACE MODES
AT LOW FREQUENCIES

We have seen in previous chapters that surface plasmon polaritons can con-
fine electromagnetic fields to the interface between a dielectric and a conductor
over length scales significantly smaller than the wavelength. This high field
localization occurs as long as the fields oscillate at frequencies close to the in-
trinsic plasma frequency of the conductor. The most promising applications of
plasmonics based on metals, such as highly localized waveguiding and optical
sensing with unprecedented sensitivity (which will be discussed in part II of
this book), have therefore been limited to the visible or near-infrared part of
the spectrum. At lower frequencies, a brief look at the SPP dispersion relation
reveals that the confinement to the interface breaks down as the propagation
constant rapidly decreases towards the wave vector in the dielectric.

Therefore, for typical metals such as gold or silver, SPPs evolve into graz-
ing incidence light fields as the frequency is lowered, extending over a great
number of wavelengths into the dielectric space above the interface. The un-
derlying physics of this evolution from a highly confined surface excitation to
an essentially homogeneous light field in the dielectric, propagating along the
interface with the same phase velocity as unbound radiation, is the decrease in
field penetration into the conductor at lower frequencies, due to the large (neg-
ative) real and (positive) imaginary parts of the permittivity. Since an appre-
ciable field amplitude inside the metal is essential for providing the non-zero
component of the electric field parallel to the surface necessary for the estab-
lishment of an oscillating spatial charge distribution, SPPs vanish in the limit
of a perfect electrical conductor. Highly doped semiconductors however can
exhibit plasma frequencies at mid- and far-infrared frequencies, and thus allow
SPP propagation akin to metals at visible frequencies, albeit with high losses.

Taking the technologically important THz spectral regime (0.5 THz ≤ f ≤
5 THz) as an example, this chapter first briefly examines the propagation of
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SPPs at flat metal or semiconducting interfaces. We then show that even per-
fect conductors can support electromagnetic surface waves closely resembling
SPPs provided that the surface is textured. These designer or spoof plasmons
show a rich physics and could have a number of important applications, specif-
ically for highly sensitive biological sensing and near-field imaging using THz
waves. While not directly related to plasmonics, the chapter closes with a
short look at surface phonon polaritons, coupled excitations of the electro-
magnetic field and phonon modes of polar materials such as SiC occurring at
mid-infrared frequencies.

6.1 Surface Plasmon Polaritons at THz Frequencies
As discussed in detail in chapter 2, the localization and concomitant field en-

hancement offered by SPPs at the interface between a conductor and a dielec-
tric with refractive index n is due to a large SPP propagation constant β > k0n,
leading to evanescent decay of the fields perpendicular to the interface. The
amount of confinement increases with β according to (2.13). Conversely, lo-
calization significantly decreases for frequencies ω � ωp, where β → k0n.

Due to their large free electron density ne ≈ 1023 cm−3, metals support
well-confined SPPs only at visible and near-infrared frequencies. As shown
in Fig. 6.1 for the example of a silver/air interface, β ≈ k0 at far-infrared
frequencies in the THz regime, in fact to an accuracy of about 1 part in 105.
This is due to the large complex permittivity |ε| ≈ 105, leading to negligible
field penetration into the conductor and thus highly delocalized fields. For
metals, SPPs at these frequencies therefore nearly resemble a homogeneous
light field in air incident under a grazing angle to the interface, and are also
known as Sommerfeld-Zenneck waves [Goubau, 1950, Wait, 1998]. We note
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that all expressions derived in the discussion of SPPs at visible frequencies in
chapter 2 are also valid in the low-frequency regime if the appropriate dielectric
data for metals is used, for example those obtained in [Ordal et al., 1983].

Fig. 6.1 also shows the SPP dispersion relation for the interface between air
and a highly doped semiconductor, in this case InSb with ne ≈ 1017 cm−3. As
can be seen, due to the lower free electron density, such semiconductors can
exhibit a SPP propagation constant β > k0n and thus field-localization at THz
frequencies resembling that for metals at visible frequencies, however with ac-
companying large absorption. Plasmon propagation of broadband THz pulses
at the interface of a highly doped silicon grating has indeed been observed
[Gómez-Rivas et al., 2004]. One intriguing aspect of using semiconductors for
low-frequency SPP propagation apart from the enhanced confinement is the
possibility to tune the carrier density and thus ωp by either thermal excitation,
photocarrier generation or direct carrier injection. Thus, active devices for
switching applications seem possible. As a first step in this direction, Gómez-
Rivas and co-workers have demonstrated the modification of Bragg scatter-
ing of THz SPPs on a InSb grating using thermal tuning [Gómez-Rivas et al.,
2006]. We will in the following mostly focus on metals however, because of
the interesting possibility to engineer the dispersion of surfaces waves at will
using a geometry-based approach.

The excitation and detection of broadband THz pulses, also known as THz
time-domain spectroscopy, usually employs a coherent generation and detec-
tion scheme [van Exter and Grischkowsky, 1990]. This allows a direct investi-
gation of both amplitude and phase of the propagating SPPs. A typical setup is

Figure 6.2. Typical setup for the generation and detection of broadband THz pulses. Input
coupling to SPPs is achieved using scattering at a small gap between the guiding structure and
a sharp edge. Reprinted with permission from Macmillan Publishers Ltd: Nature [Wang and
Mittleman, 2005], copyright 2004.
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a) b)

Figure 6.3. THz SPP propagation on a bare stainless-steel wire. a) Time-domain electric field
waveform 3 mm above and below the wire. b) Experimental and simulated spatial mode profile.
The radial nature of the mode is evident. Reprinted with permission from Macmillan Publishers
Ltd: Nature [Wang and Mittleman, 2005], copyright 2004.

shown in Fig. 6.2. Short light pulses generated by a femtosecond laser are split
into two lightpaths using a semitransparent mirror. The pulses propagating in
the generation pathway create photocarriers in a THz transmitter consisting of
two biased electrodes on a semiconductor substrate, leading to a current surge
between the electrodes and the radiation of THz waves. Conversely, the pulses
in the detection pathway are used for photocarrier generation in the unbiased
receiver, and sampling of the THz waveform is enabled by introducing a vari-
able time delay between the two pathways. Conversion of a fraction of the
power carried by the generated free-space THz pulse into SPPs is conveniently
accomplished using edge or aperture coupling: the pulse is focused on a small
gap of size of the order of or smaller than the wavelength (λ ≈ 300 μm at 1
THz) between a razor blade and the structure supporting SPPs. Scattering at
this edge provides the additional wave vector components necessary for phase-
matching, albeit with generally low efficiency.

The propagation of THz SPPs on flat metal films has been investigated using
these broadband techniques, confirming the highly delocalized nature of the
modes. For example, their penetration into the air space above a gold film
up to distances of multiple centimeters has been demonstrated for frequencies
around 1 THz [Saxler et al., 2004]. We note that the slow decay of the wave
into the dielectric medium is not the only consequence of β = k0n. Also, the
phase velocity of the surface waves is equal to that of the waves propagating
in free space used to excite the pulse. Therefore, power can be transfered back
and forth between the two waves if they are allowed to co-propagate along
the interface, which makes the detailed investigation of THz SPPs challenging.
This is highlighted by the fact that discrepancies on the order of 1-2 magnitudes
between the spatial extent and attenuation length predicted from theory and
experimental investigations have been reported for THz SPPs propagating on
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a thin aluminum sheet [Jeon and Grischkowsky, 2006]. An explanation of this
fact could lie in the difficulties in exciting a pure Sommerfeld-Zenneck wave,
due to its highly unconfined nature.

In addition to flat films, also cylindrical structures such as metallic wires
can efficiently guide delocalized THz SPPs. Using a typical time-domain spec-
troscopy setup (Fig. 6.2), Wang and Mittleman investigated the propagation of
SPPs on a thin stainless-steel wire [Wang and Mittleman, 2005] and demon-
strated the potential usefulness of this simple geometry for practical applica-
tions in THz waveguiding technology. In this study, an attenuation constant of
only α = 0.03 cm−1 has been determined, and the radial nature of the mode
confirmed. This is illustrated in Fig. 6.3, which compares the mode profile
determined via sampling of the time-domain electric field waveforms around
the wire with the mode profile expected from Sommerfeld theory [Goubau,
1950]. The agreement between the theoretically and experimentally obtained
intensity distributions has been corroborated in further studies [Wachter et al.,
2005]. Apart from low damping, β = k0 further leads to an extremely low
group velocity dispersion, allowing essentially undistorted pulse propagation.
However, a detrimental consequence of the highly delocalized nature of the
propagating modes are significant radiation losses at bends [Jeon et al., 2005]
or irregularities, limiting practical applications.

Recent studies have also revealed that localized plasmons can be excited at
THz frequencies. For example, micron-sized silicon particles support dipolar
plasmon resonances akin to the Fröhlich modes presented in chapter 5, with a
frequency depending on the concentration of free carriers ne due to the scal-
ing ωp ∝ √

ne [Nienhuys and Sundström, 2005]. Localized modes have also
been observed in ensembles of randomly distributed metallic particles in the
context of enhanced transmission of THz radiation [Chau et al., 2005]. Since
the physics of the localization process is essentially equal to that discussed for
nanoparticles at optical frequencies, we will not embark on a detailed discus-
sion.

6.2 Designer Surface Plasmon Polaritons on Corrugated
Surfaces

We have seen that due to the large permittivity of metals at THz frequen-
cies, SPPs in this regime are highly delocalized. Physically, this is due to the
negligible field penetration into the metal - only a vanishingly small fraction
of the total electric field energy of the SPP mode resides inside the conductor.
In the limit of a perfect conductor, the internal fields are identically zero. Per-
fect metals thus do not support electromagnetic surface modes, forbidding the
existence of SPPs.

However, Pendry and co-workers have shown that bound electromagnetic
surface waves mimicking SPPs can be sustained even by a perfect conduc-
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Figure 6.4. (a) One-dimensional array of grooves of width a and depth h with lattice constant
d. (b) The effective medium approximation of the structure. Reprinted with permission from
[García-Vidal et al., 2005a]. Copyright 2005, Institute of Physics.

tor, provided that its surface is periodically corrugated [Pendry et al., 2004].
For real metals with finite conductivity, these designer or spoof SPPs should
dominate over the delocalized Sommerfeld-Zenneck waves. If the size and
spacing of the corrugations is much smaller than the wavelength λ0, the pho-
tonic response of the surface can be described by an effective medium dielectric
function ε (ω) of the plasma form, with ωp determined by the geometry. Thus,
the dispersion relation of the surface mode can be engineered via the geome-
try of the surface, allowing tailoring to particular frequencies. In the effective
medium model, the establishment of surface waves can be physically under-
stood by realizing that the surface modulations allow for an average finite field
penetration into the effective surface layer, akin to the field penetration into
real metals at visible frequencies leading to the formation of confined SPPs. A
material with sub-wavelength structure exhibiting such an effective photonic
response is also known as a metamaterial.

While it can be shown that any periodic modulation of the flat surface of
a perfect conductor will lead to the formation of bound surface states, we
present here two prominent geometries, closely following the reasoning and
notation by García-Vidal and co-workers [García-Vidal et al., 2005a] - a one-
dimensional array of grooves and a two-dimensional hole array. The approach
here should be generally applicable for the investigation of surface modes. We
note that the frequencies of the supported modes scale with the geometrical
size of the corrugations in the perfect conductor approximation.

Fig. 6.4a shows the geometry of a one-dimensional array of grooves of width
a and depth h separated by a lattice constant d on the surface of a perfect con-
ductor. The dispersion relation ω (kx) of the surface mode with propagation
constant kx = β sustained by the modulated interface can be calculated by
examining the reflectance of a TM-polarized incident wave. The reasoning be-
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Figure 6.5. Dispersion relation (6.4) of the SPP-like mode of a groove array for the case
a/d = 0.2 and h = d. Reprinted with permission from [García-Vidal et al., 2005a]. Copyright
2005, Institute of Physics.

hind this technique is that the surface mode resonance corresponds to a diver-
gence in the reflectivity - the mode can exist for a vanishingly small excitation.
For the calculation of the reflectivity, the total field above the surface in the
vacuum region is written as a sum of the incident field and the reflected fields
of diffraction order n, and the fields inside the grooves are expanded into the
fundamental forward and backward propagating TE-modes (in the z-direction
perpendicular to the surface). The restriction to the fundamental TE-mode is
valid for λ0 � a, i.e. a groove width much smaller than the free-space wave-
length. By matching the appropriate boundary conditions for the electric and
magnetic fields, the reflection coefficients for diffraction order n calculate to

ρn = − 2i tan (k0h) S0Snk0/kz

1 − i tan (k0h)
∑∞

n=−∞ S2
nk0/k

(n)
z

, (6.1)

where k0 = ω/c and k(n)
z =

√
k2

0 −
(
k

(n)
x

)2
with k(n)

x = kx + 2πn/d for

diffraction order n. Sn is the overlap integral between the nth-order plane wave
and the fundamental TE mode and evaluates to

Sn =
√

a

d

sin
(
k(n)

x a/2
)

k
(n)
x a/2

. (6.2)

The dispersion relation of surface modes is now determined by the poles
of the reflection coefficients (6.1). Assuming that λ0 � d so that only the
specular reflection order with coefficient ρ0 needs to be taken into account,
and additionally that kx > kz (since we are interested in a mode confined to the
surface), the dispersion relation of the bound state can be expressed as
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Figure 6.6. Dispersion relation (a) and electric field distribution in the unit cell at the band
edge (b) for a SPP-like surface mode for h = d = 50μm and a = 10μ calculated using
finite-difference time-domain simulations.

√
k2

x − k2
0

k0
= S2

0 tan k0h. (6.3)

This relation is valid for λ0 � a, d (effective medium approximation).
The similarity of the excitations described by (6.3) to SPPs can be eluci-

dated by relating the dispersion relation to that of electromagnetic waves at
the surface of a homogeneous anisotropic dielectric of height h on top of the
perfectly conducting substrate (Fig. 6.4b). If we define its permittivity such
that εx = d/a, εy = εz = ∞, a straight-forward analysis of light propaga-
tion inside the grooves shows that the corresponding magnetic permeability is
μx = 1 and μy = μz = a/d. Using a similar analysis of the reflection coef-
ficient as presented above, the dispersion relation of the surface mode of this
anisotropic structure is

√
k2

x − k2
0

k0
= a

d
tan k0h, (6.4)

which corresponds to (6.3) for kxa � 1.
Fig. 6.5 shows a plot of (6.4) for a/d = 0.2 and h = d. As can be seen, the

dispersion curve is similar to that of a SPP at the interface between a dielectric
and a real metal. However, ωp is determined by the surface geometry: For
large kx , the angular frequency approaches ω → πc/2h. In order to physically
interpret the formation of this surface mode, we note that this frequency corre-
sponds to that of the fundamental cavity waveguide mode inside the groove in
the limit a/d → 0. These resonances arise due to interference between modes
propagating in the forward and backward z-direction. The surface mode is
then established due to coupling between cavity modes localized in individual
grooves.
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Figure 6.7. Two-dimensional square lattice of square holes of size a with lattice constant d in
a semi-infinite perfect conductor. Reprinted with permission from [García-Vidal et al., 2005a].
Copyright 2005, Institute of Physics.

A more exact calculation of the dispersion relation and mode profile of
designer surface plasmons supported by this geometry is provided by finite-
difference time-domain calculations. As an example, Fig. 6.6 shows the dis-
persion (a) and mode profile (b), i.e. the distribution of |E|, of the SPP-like
surface mode for a groove array on a perfect conductor with h = d = 50μm
and a = 10μm. The mode profile shows the distribution of the electric field for
the surface mode at the band edge kx = π/d. Note the high confinement of the
mode to the surface. We point out that as long as both a, d � λ0, the agree-
ment between the quasi-analytical theory outlined here and finite-difference
time-domain calculations is remarkable.

The second structure examined by García-Vidal and co-workers is a square
lattice of square holes of side a with lattice constant d milled into a flat film
(Fig. 6.7). We start by analyzing a semi-infinite structure with infinite hole
depth h. The holes are filled with a non-absorbing dielectric of relative permit-
tivity εh. In analogy to the discussion above, the surface modes emerge at the
divergences of the reflection coefficient of a TM-polarized wave incident on
the perforated surface. In the long-wavelength limit λ0 � d, only the specular
reflection has to be taken into account, and if we additionally impose λ0 � a

so that the fundamental (decaying) eigenmode inside the holes dominates (all
other modes decay much more strongly), the specular reflection coefficient ρ0

evaluates to

ρ0 = k2
0S

2
0 − qzkz

k2
0S

2
0 + qzkz

, (6.5)

where qz =
√

εhk
2
0 − π2/a2 is the propagation constant of the fundamental

mode inside the holes and S0 its overlap integral with the incident plane wave.
Explicitly,

S0 = 2
√

2a sin (kxa/2)

πdkxa/2
. (6.6)
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Figure 6.8. Dispersion relation (6.9) of the SPP-like bound mode at the interface between a
perforated perfect conductor and vacuum for a/d = 0.6 and εh = 9. Reprinted with permission
from [García-Vidal et al., 2005a]. Copyright 2005, Institute of Physics.

By examining the divergence of ρ0 for kx > kz, the dispersion relation of
the SPP-like bound modes evaluates to√

k2
x − k2

0

k0
= S2

0k0√
π2/a2 − εhk

2
0

. (6.7)

As in the discussion of the one-dimensional groove array, (6.7) can be shown
to correspond to that of a homogeneous effective anisotropic semi-infinite layer
in the long wavelength limit kxa � 1. An analysis of the reflection coefficient
reveals that for this system εz = μz = ∞, μx = μy = S2

0 and

εx = εy = εh

S2
0

(
1 − π2c2

0

a2εhω2

)
, (6.8)

which is of the form (1.22) with an effective plasma frequency ωp = πc/
√

εha.
It is illuminating to point out that this is the cut-off frequency of a perfect metal
waveguide of square cross section with side a filled with a dielectric material
of relative permittivity εh. Below this frequency, the electromagnetic field is
exponentially decaying inside the holes, which is here the requirement for the
existence of the surface state.

The dispersion relation of the surface mode supported by the interface be-
tween this effective medium and vacuum can be calculated by inserting (6.8)
into expression (2.12), relating the perpendicular wave vector components kz

on both sides of the interface. We obtain
√

k2
x − k2

0

k0
= 8a2k0

π2d2
√

π2/a2 − εhk
2
0

, (6.9)
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Figure 6.9. Dispersion relation of the SPP-like mode of a prefect conductor perforated with
square holes of side a = 150μm and depth h = 200μm arranged on a square lattice with lattice
constant d = 200μm. The distribution of the electric field at the band edge is also shown.

which is equal to (6.7) for kxa � 1. Fig. 6.8 shows a plot of (6.9) for the
case a/d = 0.6 and εh = 9. The size of the holes determines the amount of
confinement - the smaller the holes are, the closer the dispersion will lie to the
light line.

The procedure for calculating (6.9) can be extended to the case of finite
holes of depth h in a straightforward manner by considering both the forward
and the backward decaying modes inside the holes. The dispersion relation for
this case is given by√

k2
x − k2

0

k0
= 8a2k0

π2d2
√

π2/a2 − εhk
2
0

1 − e−2|qz|h

1 + e−2|qz|h (6.10)

with qz = i

√
π2/a2 − εhk

2
0 as above. For vanishing depth h → 0, the bound

mode disappears as (kx → k0), and for infinite depth h → ∞ (6.10) evolves
into (6.9). We point out that corrections to (6.9) for the long-wavelength region
of the dispersion close to the light line have been suggested, due to effects of
non-locality of the dielectric response [de Abajo and Sáenz, 2005]. However,
as in the case of one-dimensional grooves discussed above, as long as the ef-
fective medium approximation is justified, also in this case the agreement with
finite-difference time-domain simulations is very good.

In addition to this fundamental mode, for sufficient but finite hole depth h,
confined surface modes with low group velocity (akin to coupled cavity modes)
above the cut-off frequency ωp for propagating modes inside the cavity holes
can exist, due to the excitation of cavity resonances. These modes penetrate
deeply into the holes [Qiu, 2005].

We want to stress that the theory as presented here is only valid in the limit
λ0 � d and λ0 � a, due to the fact that only the lowest order mode inside the
holes is taken into account. For a hole size and lattice spacing not fulfilling the



100 Electromagnetic Surface Modes at Low Frequencies

(a) (b)

Figure 6.10. (a) Photograph of a two-dimensional array of hollow square brass tubes with
side length d = 9.525 mm, inner dimension a = 6.960 mm and depth h = 45 mm covered
with a one-dimensional array of cylindrical rods used for diffractive coupling and zone-folding.
(b) Dispersion relation of the surface mode obtained via the angle-dependence of the reflectivity
dips (see inset). Reprinted with permission from [Hibbins et al., 2005]. Copyright 2005, AAAS.

requirements of the effective medium approximation, finite-difference time-
domain simulations are a convenient method to calculate the dispersion, taking
into account the decay of higher order modes inside the holes and radiative
losses. As an example, Fig. 6.9 shows the dispersion relation and mode profile
of the surface modes of a perfect conductor perforated with square holes of
size a = 150μm and depth h = 200μm on a square lattice with d = 200μm.

The ability to engineer the dispersion of the plasmon-like surface state of
a metal interface via modulations is not restricted to perfect conductors alone.
Also, for real metals the introduction of modulations will lead to a lowering of
the effective plasmon frequency ωp via increasing penetration of the mode into
the effective surface layer. This opens up the possibility of creating structured
surfaces with functional components such as waveguides or lenses by vary-
ing the refractive index nspp = kxc/ωsp of the SPP-like mode in a controlled
manner.

Hibbens and co-workers experimentally demonstrated designer plasmon
surface modes supported by a two-dimensional hole array in the microwave
regime using periodically arranged hollow brass tubes [Hibbins et al., 2005]
(Fig. 6.10a). The existence of the surface mode was established via a study of
the angle dependence of the microwave reflectivity of the structure, which al-
lowed the determination of the dispersion relation of the surface modes via the
observation of angle-dependent reflectivity dips (Fig. 6.10 inset). The intro-
duction of a one-dimensional layer of cylindrical rods spaced by a distance 2d

facilitated diffractive coupling and lead to zone-folding of the surface modes
back into the radiative region. In Fig. 6.10b, the dispersion is therefore modi-
fied from the canonical form (6.10) via zone folding at kx = π/2d. The surface
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nature of the observed mode (which is below the first-order diffracted light line
associated with the rod array) is clearly confirmed.

We note that apart from planar guiding, designer SPPs also play an impor-
tant role in the enhanced transmission through hole arrays for hole sizes below
the cut-off of the propagating mode [Hibbins et al., 2006], which will be dis-
cussed in more detail in chapter 8.

6.3 Surface Phonon Polaritons
We have seen that at low frequencies a strong localization of the electromag-

netic field with metallic structures can only be achieved for corrugated surfaces
in the form of designer plasmons. While enabling sub-wavelength scale con-
finement even for flat surfaces, the use of conductors with lower carrier densi-
ties such as doped semiconductors suffers from the problem of high attenuation
due to inherent material absorption. In this section we briefly present an inter-
esting third option for field confinement and enhancement, which is particu-
larly amenable to frequencies in the mid-infrared: surface phonon polaritons.

Surface phonon polaritons arise due to the coupling of the electromagnetic
field to lattice vibrations of polar dielectrics at infrared frequencies. The physics
of these excitations is conceptually similar to that of both propagating and
localized surface plasmons, and the formulas derived in chapters 2 and 5 apply.

Let us give a couple of examples of both localized and propagating surface
phonons. Fig. 6.11 shows a comparison of the calculated enhancement of the
electric field at the Fröhlich resonance frequency for three 10 nm spheres: one
consisting of SiC , and two noble metal (gold, silver) spheres [Hillenbrand
et al., 2002]. It is apparent that the localized phonon resonance, situated around

Figure 6.11. Calculated field enhancement of the polarizability of a 10 nm SiC sphere at the
Fröhlich frequency defined by (5.8), compared to spheres consisting of gold or silver. Reprinted
by permission from McMillan Publishers Ltd: Nature [Hillenbrand et al., 2002], copyright
2002.
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Figure 6.12. Experimental setup (a) and images (b, c) of a SiC structure surrounded by a gold
film obtained with an apertureless near-field optical microscope working the mid-infrared. The
topography is shown in panel (b), and near-field images in panel (c). The strong dependence of
the optical contrast of the central SiC structure on wavelength is due to a resonant interaction
with the probing tip at 929 cm−1. Reprinted by permission from McMillan Publishers Ltd:
Nature [Hillenbrand et al., 2002], copyright 2002.

a wavelength λ ≈ 10 μm, is significantly stronger than those of localized
plasmons in the noble metals, due to the lower damping: Im [ε] is smaller for
SiC compared to gold or silver at the resonance frequency.

This suggests that photonics with phonons at mid-infrared frequencies is
a promising route to sub-wavelength energy localization, in the same way as
plasmonics at visible and near-infrared frequencies, with potentially smaller
energy attenuation in waveguides and larger field enhancement in resonator
structures. As an example of localized resonance probing, Fig. 6.12 shows the
topography and near-field images of a thin SiC film surrounded by a flat gold
film probed using scattering of mid-infrared radiation from a sharp platinum tip
scanned over the structure [Hillenbrand et al., 2002]. As apparent, the intensity
of the SiC region depends drastically on the wavelength of illumination, which
is due to a resonant near-field interaction process between the structure and the
tip [Renger et al., 2005].

In addition to the examination of localized phonon resonances, this tech-
nique can also be used for near-field optical imaging of surface phonon polari-
tons propagating on a SiC film [Huber et al., 2005]. In a study by Huber and
co-workers, the propagating surface waves were excited using coupling to a
free-space beam at the edge of a thin gold overlayer (Fig. 6.13a). The evanes-
cent tail of the surface waves interacted with the probe tip, leading to scattering
into the far-field and the establishment of an interference pattern (Fig. 6.13b).
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Figure 6.13. (a) Experimental setup for near-field imaging of propagating surface phonon po-
laritons traveling on SiC excited via edge coupling. (b) Calculated dependence of the interfer-
ence pattern on excitation wavelength. Reprinted with permission from [Huber et al., 2005].
Copyright 2005, American Institute of Physics.

The use of a phase-sensitive detection technique enabled the determination of
the propagation constant β and the attenuation length L via an examination of

Figure 6.14. Topography (a) and near-field optical images (b) for surface phonon polariton
propagation acquired using the setup of Fig. 6.13. Reprinted with permission from [Huber
et al., 2005]. Copyright 2005, American Institute of Physics.
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the dependence of the periodicity in intensity contrast in the obtained images
on the illumination wavelength. Representative images are shown in Fig. 6.14.
In this study, propagation lengths 30 μm ≤ L ≤ 200 μm were achieved, vary-
ing with the level of confinement. It has further recently been shown that the
propagation can be tailored by small changes in surface topography [Ocelic
and Hillenbrand, 2004].

After these promising studies, one can expect that concepts borrowed from
plasmonics at visible frequencies can and will be successfully applied in the
mid-infrared using phonon excitations.



PART II

APPLICATIONS



Introduction

Armed with a sufficient background knowledge, this second part presents
five prominent research areas in plasmonics. We start with an overview of
different efforts to exert control over the propagation of surface plasmon po-
laritons. The promise behind plasmon waveguides is a new, highly integrated
photonic infrastructure that might close the size gap with electronic devices.
Control over the transmission of light through sub-wavelength apertures via
plasmon excitations is an equally exciting area, which has spurred a tremen-
dous amount of research ever since the initial description in 1998 of enhanced
transmission of light encountered in aperture arrays. The next two chapters
describe how highly localized fields around metallic nanostructures can lead
to dramatic enhancements of the emission of molecules placed into these hot
spots, and different methods for spectroscopy of localized modes. These chap-
ters also include a cursory discussion of biological sensing and labeling using
surface plasmons. We close with a short introduction into the field of metallic
metamaterials, artificial constructs with sub-wavelength structure that exhibit
novel optical phenomena such as artificial magnetism or indeed a negative re-
fractive index.



Chapter 7

PLASMON WAVEGUIDES

Having described the basics of surface plasmon polaritons in chapter 2, we
continue the discussion by providing a number of examples of control over
their propagation in the context of waveguiding. Here, the trade-off between
confinement and loss demands a judicious choice of geometry, depending on
the length scale over which energy is to be transferred. For example, thin
metallic slabs embedded in a homogeneous dielectric medium can guide SPPs
over distances of many centimeters at near-infrared frequencies, but the associ-
ated fields are only weakly confined in the perpendicular direction. In the other
extreme, metal nanowire or nanoparticle waveguides exhibit a transverse mode
confinement below the diffraction limit in the surrounding host, but with large
attenuation losses, leading to propagation lengths on the order of micrometers
or below.

Routing of SPPs on planar interfaces can be achieved by locally modifying
their dispersion via surface modulations, which will be described in the first
two sections of this chapter. We then focus on studies of lateral confinement
in metal stripe and wire waveguides, including focusing of SPPs in conical
structures. The inverse structure to metal stripes, namely metal/insulator/metal
heterostructures, also show high promise for waveguiding with good confine-
ment and acceptable propagation length, especially in V-groove geometries.
Towards the end of this chapter, we show that localized plasmon excitations
in metal nanoparticles can also be used as waveguiding modalities, since en-
ergy is transferred via near-field coupling between adjacent particles in linear
chains. The chapter closes with a description of emerging efforts to combat
attenuation via optical gain media as waveguide hosts.
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7.1 Planar Elements for Surface Plasmon Polariton
Propagation

The propagation direction of SPPs at the interface of a metal film and a
dielectric superstrate (air or dielectric) can be controlled via scattering of the
propagating, two-dimensional waves at locally created defects in the otherwise
planar film. The scatterers can be introduced in the form of surface undula-
tions such as nanoscale particle-like structures, or by the milling of holes into
the film. Their controlled positioning enables the generation of functional el-
ements such as Bragg mirrors for reflecting SPPs [Ditlbacher et al., 2002b],
or focusing elements for increasing lateral confinement [Yin et al., 2005, Liu
et al., 2005]. This way, a planar two-dimensional photonic infrastructure for
the guiding of SPPs can be created.

A simple and compelling example of control over SPP propagation via
scattering from height modulations was demonstrated by Ditlbacher and co-
workers [Ditlbacher et al., 2002b]. Using electron beam lithography and chem-
ical vapor deposition, silica nanostructures such as particles and wires of 70 nm
height were deposited on a silica substrate, and the height-modulated film sub-
sequently coated with a 70 nm thick silver film (Figure 7.1). In order to excite
SPPs, the method of phase-matching via scattering of the excitation beam (in
this case a Ti:sapphire laser beam with λ0 = 750 nm) at a nanowire-shaped de-
fect was used (see chapter 3). The SPP propagation pathway was monitored by
coating the film with a polymer layer containing fluorescent dyes (see chapter
4). This also enabled an estimate of the 1/e propagation distance of the SPPs
at the silver/polymer film, here of the order of 10 μm.

Figure 7.1. Routing of SPPs on a planar silver film using surface modulations. A laser beam
focused on a nanowire or nanoparticle defect for phase-matching acts as a local source for SPPs.
The micrograph shows a Bragg reflector consisting of lines of regularly spaced, particle-like
undulations (Fig. 7.2). Reprinted with permission from [Ditlbacher et al., 2002b]. Copyright
2002, American Institute of Physics.
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Figure 7.2. (a) SEM image of a SPP Bragg reflector consisting of ordered particle arrays
on a metal film substrate. (b) SPP propagation imaged via monitoring of the emission of a
fluorescent superstrate. Reprinted with permission from [Ditlbacher et al., 2002b]. Copyright
2002, American Institute of Physics.

Fig. 7.2 shows a Bragg reflector based on this principle, consisting of par-
allel lines of particles with diameter 140 nm. An interline spacing of 350 nm
(Fig. 7.2a) fulfilled the Bragg condition for SPPs impinging at a 60◦ angle on
the array and thus lead to the specular reflection of the SPP wave (fluorescent
image in Fig. 7.2b). In this case, the reflection coefficient of a Bragg mirror
consisting of 5 lines was estimated to be 90%, with the remaining fraction
being scattered out of the plane into radiation. This proof-of-principle study
suggests that planar passive optical elements for the routing of SPP propaga-
tion can be fabricated in an easy manner. We will show in the next section
that the lateral extent of SPPs can be controlled by extending the Bragg mirror
concept to create surface plasmon photonic cyrstals exhibiting band gaps for
propagation in desired frequency regions.

Another approach for controlling SPP propagation at a single metal inter-
face is the spatial modification of the SPP dispersion and thus phase veloc-
ity via dielectric nanostructures deposited on top of the film [Hohenau et al.,
2005b], by analogy to the conventional routing of free-space beams with di-
electric components such as lenses. Figure 7.3 shows the calculated dispersion
relations of SPPs in a glass/gold/superstrate multilayer system for both the s

modes (magnetic fields on the two metal interfaces in phase) and the a modes
(magnetic fields at the two metal interfaces out of phase) for varying dielectric
constants ε3 of the superstrate. It is evident that an increase in ε3 leads to an
increase in SPP wave vector, as discussed in chapter 2. This implies that the
phase velocity of the propagating waves can be locally decreased by introduc-
ing dielectric structures on top of the metal film. By adjusting the geometric
shape of the dielectric perturbations and thus the regions of reduced phase ve-
locity, it is therefore possible to fabricate optical components such as lenses
and waveguides for SPP propagation, albeit with increased attenuation due to
the closer confinement of the mode to the metal surface.

Figure 7.4 demonstrates that via this concept, the focusing (top row) and
refraction/reflection (bottom row) of SPPs can be achieved using cylindrical- or
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Figure 7.3. Calculated SPP dispersion relations for a glass/gold/superstrate three-layer system
for both the s mode (open symbols) and the a mode (filled symbols). Increasing the dielectric
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in propagation constant and thus a decrease in phase velocity of the SPP. For ε1 = ε3, these two
modes would evolve into the symmetric (s) or asymmetric (a) mode. Reprinted with permission
from [Hohenau et al., 2005b]. Copyright 2005, Optical Society of America.

triangular-shaped particles, by direct analogy to the three-dimensional optical
elements of conventional free-space optics.

In their study, Hohenau and co-workers excited the SPPs with an immersion
oil objective and observed SPP propagation via monitoring of leakage radia-
tion (Fig. 7.4 a, b, d, e) and near-field optical microscopy (Fig. 7.4 c, f). The
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Figure 7.4. Focusing (top row) or reflection and refraction (bottom row) of SPPs via a cylin-
drical or triangular 40 nm thick dielectric structure deposited on top of a gold film. Images of
the leakage radiation (a, b, d, e) and of the optical near field (e, f) clearly show the modification
of SPP propagation for SPPs impinging on the dielectric structures (b, c, e, f). Reprinted with
permission from [Hohenau et al., 2005b]. Copyright 2005, Optical Society of America.
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Figure 7.5. Experimental setup of the excitation and near-field imaging for SPP focusing on
a holey metal film (left). (a) SEM and (b) near-field optical image of the nanohole focusing
array which couples the launched SPPs into a 250 nm wide silver stripe guide. Reprinted with
permission from [Yin et al., 2005]. Copyright 2005, American Chemical Society.

same concept should also allow for the creation of the SPP analogue of dielec-
tric waveguides via the creation of one-dimensional regions of reduced phase
velocity, which was experimentally confirmed using one-dimensional polymer
nanostructures on a gold layer [Smolyaninov et al., 2005].

We will conclude this section by presenting two recent studies of focusing
using holes and grooves directly milled into the metallic film sustaining the
SPPs. Figure 7.5 shows how constructive interference between SPPs launched
locally using illumination of nineteen 200 nm holes arranged on a quarter circle
of radius 5 μm in a 50 nm silver film gives rise to a tight focus spot in the center
of the circle [Yin et al., 2005]. As an application, Yin et al. used their focusing
element for coupling SPPs into a 250 nm wide stripe waveguide (see images a
and b in Fig. 7.5).

Excitation and subsequent focusing of SPPs can also be achieved using cir-
cular or elliptical sub-wavelength slits milled into a metallic film [Liu et al.,
2005]. In this case, the edge of the circular slit acts as a point source for
SPPs upon illumination of the slit structure, in regions where the exciting elec-
tric field is polarized perpendicular to the slit, and the generated SPPs will be
launched and focused towards the center of the circle. The non-resonant nature
of this process makes this scheme suitable for focusing SPPs excited at dif-
ferent frequencies throughout the visible spectrum, albeit with low efficiency.
Fig. 7.6a shows SPP focusing using a circular slit structure of radius 14 μm and
width 280 nm, milled into a 150 nm thick silver film. The near-field pattern for
excitation with linearly polarized light was recorded using near-field optical
microscopy. As apparent, only two opposite regions of the circle, where the
electric field is polarized perpendicular to the slit, act as SPP sources. Illumi-
nation with unpolarized light however leads to SPP generation throughout the
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Figure 7.6. Generation and focusing of SPPs via illumination of circular or elliptic slits milled
into a metallic film. The SPP intensity is monitored via near-field microscopy (a,c) or the
exposure of a photoresist superstrate (b, d). Reprinted with permission from [Liu et al., 2005]
Copyright 2005, American Chemical Society.

circumference, shown in Fig. 7.6 for an ellipse of axes 4 μm and 2 μm cut into
a 70 nm thick aluminum film. In this case, the near-field pattern was recorded
via the exposure of a photoresist layer.

It can be anticipated that the combination of functional elements such as the
ones discussed in this section will enable planar photonic circuits working at
optical or near-infrared frequencies, with propagation distances below 100 μm.

7.2 Surface Plasmon Polariton Band Gap Structures
The concept of constructively reflecting SPPs on a metal film via Bragg re-

flectors created using periodically arranged metallic nanoparticles presented in
Figs. 7.1 and 7.2 can be extended to the creation of band gaps for SPP prop-
agation using regular metal nanoparticle lattices deposited on a metal film.
Bozhevolnyi and co-workers demonstrated that a triangular lattice of gold dots
on a thin gold film establishes a band gap for SPP propagation [Bozhevolnyi
et al., 2001]. An example of such a structure is shown in Fig. 7.7 for a tri-
angular lattice of gold scatters fabricated on a 40 nm thin gold film. In this
case, the lattice constant was chosen to be 900 nm, and the individual scatters
are 378 nm wide and 100 nm high, resulting in the formation of a band gap in
the telecommunication window (wavelengths around λ = 1.5 μm) [Marquart
et al., 2005]. The penetration of SPPs (excited via prism coupling on the flat
parts of the film) incident on this structure can be monitored using near-field
optical microscopy, and examples of near-field images obtained at two differ-
ent wavelengths are shown in panels (b) and (c). This way, the band gap for
SPP propagation can be determined for a given direction of the incident SPPs
by determining the penetration distance of the surface waves into the lattice
structure.
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Figure 7.7. Topography (a) and near-field optical images (b,c) of a 35×35 μm2 SPP band gap
structure consisting of a 900 nm triangular lattice of 378 nm wide and 100 nm high gold dots on
a 40 nm thick gold film. SPPs excited via prism coupling of radiation of wavelength 1550 nm
(b) or 1600 nm (c) propagate from the right into the lattice structure in the �K direction, and
are strongly attenuated if their frequency is inside the band gap (c). Reprinted with permission
from [Marquart et al., 2005]. Copyright 2005, Optical Society of America.

An application of this concept in waveguiding is obvious: by creating mi-
cron-wide line defects where the triangular lattice of scatters is locally re-
moved, SPPs can be laterally confined in channel waveguides, akin to well
established concepts in planar dielectric photonic crystals. Figure 7.8 shows a
near-field optical image of SPPs excited at λ0 = 1550 nm via prism coupling,
guided within a channel defect waveguide in a triangular lattice of gold dots
separated by a period 950 nm. Note that in this case parts of the guided SPPs

a b

10 m 

100 %

80 %

60 %

40 %

20 %

0 %

Figure 7.8. Topographical (a) and near-field optical (b) image of a channel defect waveguide
in a triangular lattice of period 950 nm consisting of 438 nm wide and 80 nm high gold scatters
on an gold film. A SPP excited at λ0 = 1515 nm incident from the right propagates through
the channel. Reprinted with permission from [Marquart et al., 2005]. Copyright 2005, Optical
Society of America.
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inside the channel leak into the surrounding lattice at the channel bend, since
the band gaps for different directions in the irreducible Brillouin zone do not
overlap. Because in waveguides based upon this principle the lateral confine-
ment given by the channel width is of the order of the vacuum wavelength,
the 1/e decay length of the guided SPP waves is comparable to that of the
unmodulated, flat interface of the respective metal/dielectric system.

7.3 Surface Plasmon Polariton Propagation Along Metal
Stripes

We now move on to multilayer structures and their use in waveguiding appli-
cations. In this section we present a particularly simple concept of a waveguide
for SPPs with controlled lateral confinement. It is based upon the insula-
tor/metal/insulator multilayer system described in chapter 2 and consists of
a thin metal stripe sandwiched between two thick dielectric cladding layers
(Fig. 2.5). We have seen that for a sufficiently thin metallic core layer of thick-
ness t , interactions between SPPs on the bottom and top interfaces lead to the
occurrence of coupled modes. For a symmetric system with equal dielectric
sub- and superstrate, the modes are of well-defined symmetries, and the odd
mode (defined as in chapter 2) displays the intriguing property of dramatically
decreased attenuation with a reduction in metal thickness. As described previ-
ously, this is due to decreasing confinement of the mode as it evolves into the
TEM mode propagating in the homogeneous background dielectric for t → 0.

Whereas our treatment in chapter 2 dealt exclusively with multilayer struc-
tures of infinite width w, here we will present a number of studies of coupled
SPP modes guided along metallic stripes of finite width. We will restrict our
discussions to waveguides of cross sections with w/t � 1, where only the
vertical dimension t is sub-wavelength (see sketch in Fig. 7.9). Guiding along
nanowires where additionally w < λ0 will be discussed in the next section.
Before presenting the case of a metallic stripe on a dielectric substrate with air
as the superstrate, we will first address the important case of metallic stripes
embedded in a homogeneous dielectric environment. We have already seen in
chapter 2 that a long-ranging SPP mode is supported for infinitely wide struc-
tures. This is also true for stripes of appreciable but finite w, which is the

w

t

Figure 7.9. Cross section of a metal stripe waveguide of finite width. The dashed lines depict
the symmetry planes.
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reason that this geometry has received a great amount of attention for practical
applications in waveguiding.

Berini presented a theoretical study of bound modes supported by such a
thin metal stripe embedded in a homogeneous dielectric host [Berini, 2000].
As well as two fundamental modes of opposite symmetries, which retain much
in character of the two coupled modes of the infinite layer system, his study
comprehensively analyzes the different higher-order bound modes sustained
by this structure. The bound modes are classified by two letters describing the
symmetry of the electric field component perpendicular to the long stripe edges
with respect to the two symmetry planes of the stripe (dashed lines in Fig. 7.9),
and a number denoting how many field nodes are encountered along the stripe
width. In this notation, the fundamental bound mode we want to focus on is
denoted as ss0

b . It closely resembles the odd bound mode of the infinitely wide
symmetric structure (in this notation called sb rather than ab due to different
conventions of classifying symmetry either with respect to the component of
the electric field perpendicular to the long edges as in this case, or with respect
to the component parallel to the direction of propagation as in the description
of chapter 2).

The calculated dispersion of the first four modes of a silver stripe of width
w = 1 μm with thickness t for a symmetric host material with ε = 4 is shown
in Fig. 7.10 for excitation at a vacuum wavelength λ0 = 633 nm, together
with the results for the two modes sb and ab sustained by the infinitely wide
multilayer geometry. The evolution of the real part of the propagation con-
stant β (normalized to the free space value β0) is shown in Fig. 7.10a, while
Fig. 7.10b shows the imaginary part of β, representing the attenuation suffered
by the traveling coupled SPP waves. We will not describe the evolution of
the modes in detail, but want to draw attention on the fundamental ss0

b mode,
which is seen to evolve similarly to the (long-ranging) sb mode of the infinite
structure. This mode does not show a cut-off thickness, and its attenuation
dramatically decreases over many orders of magnitude with decreasing stripe
thickness. In analogy to the infinitely wide slab [Sarid, 1981], this mode is
called the long-ranging SPP mode of the stripe.

As we can expect after the discussion of the long-ranging mode for the in-
finitely wide system in chapter 2, the decrease in attenuation with film thick-
ness is accompanied by an equally dramatic loss in confinement, as the mode
evolves into the TEM mode of the host for vanishing stripe thickness: the
mode extends over many wavelengths into the dielectric host medium as its
confinement (defined by the fraction of the power flowing through the stripe
itself to the total power in the mode) decreases with thickness. This loss in
confinement seems to be exacerbated for stripes with widths below λ0. From
the point of view of strong confinement and high integration density, insu-
lator/metal/insulator waveguides are thus clearly not the favorable geometry
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Figure 7.10. Evolution of the propagation constant for the first four modes of a 1 μm wide
silver stripe embedded in a homogeneous medium with dielectric constant ε = 4 for excitation
at a vacuum wavelength λ0 = 633 nm. Also shown are the symmetric and antisymmetric
modes of the infinitely wide interface (denoted as metal slab). (a) normalized phase constant.
(b) normalized attenuation constant. Reprinted with permission from [Berini, 1999]. Copyright
1999, Optical Society of America.

of choice [Zia et al., 2005c]. We refer the reader to the original publica-
tion [Berini, 2000] presenting a detailed analysis of the evolution of the long-
ranging mode with w, the dielectric constant of the host, and excitation wave-
length. Also, in a follow-up on his original work, Berini analyzed stripes em-
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bedded in an asymmetric environment, demonstrating that the long-ranging
mode is absent in this case, due to the phase mismatch between the SPPs at the
two different metal/insulator interfaces [Berini, 2001].

The properties of the long-ranging mode serve us as a good demonstration
of the general principle of the trade-off between localization and loss occur-
ring in plasmon waveguides, which we will encounter throughout this chapter.
Since tight field localization to the metal interfaces necessarily implies that a
significant amount of the total mode energy resides inside the metal itself, the
propagation loss increases due to Ohmic heating. Thus, as we will see, guiding
of electromagnetic energy with sub-wavelength mode confinement will imply
micron or even sub-micron propagation lengths. The long-ranging SPP modes
of metal stripes on the other hand can show 1/e attenuation lengths approach-
ing 1 cm in the near-infrared, due to the low confinement for a film thickness
on the order of 20 nm.

From an application point of view, the long-ranging mode exhibits the ad-
ditional desirable property that its spatial field profile exhibits a Gaussian-like

a)

b)

Figure 7.11. Mode profile of the real part of the Poynting vector for the long-ranging ss0
b

mode at λ0 = 633 nm of a 100 nm (a) or 40 nm (b) thick and 1 μm wide silver stripe, showing
the Gaussian-like mode shape for small film thickness. Reprinted with permission from [Berini,
1999]. Copyright 1999, Optical Society of America.
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lateral distribution for small thickness t [Berini, 2000]. Fig. 7.11 shows the
spatial distribution of the real part of the Poynting vector for a 100 nm (a) and
40 nm (b) thin stripe. For the thick stripe, the energy is mostly guided along
the edges (Fig. 7.11a), while for the thin stripe, the Gaussian shape (Fig. 7.11b)
enables efficient end-fire coupling via spatial mode-matching.

The first experimental demonstration of the long-ranging mode employed a
t =20 nm thick and w=8 μm wide gold stripe embedded in glass, and guiding
over multiple millimeters was demonstrated [Charbonneau et al., 2000]. More
quantitative studies of its propagation characteristics followed. For 10 nm thick
stripes of similar widths embedded in a polymer host, a propagation loss of
only 6 − 8 dB/cm at λ0 = 1550 nm has been experimentally confirmed [Niko-
lajsen et al., 2004a]. Also, long-range SPP propagation along sub-wavelength
nanowires has been observed [Leosson et al., 2006], albeit with the mode ex-
tending appreciably into the homogeneous dielectric background as expected.

The long propagation distances and micron-sized widths (allowing lateral
structuring) of stripe waveguides have already enabled the demonstration of
useful optical elements such as bends and couplers [Charbonneau et al., 2005],
Bragg mirrors engraved directly on the waveguide [Jette-Charbonneau et al.,
2005], and integrated power monitors based on direct detection of Ohmic heat
generation [Bozhevolnyi et al., 2005a]. Also, active switches and modulators
operating on the same thermal principle have been demonstrated [Nikolajsen
et al., 2004b]. It remains to be seen at which point these waveguides will find
their first commercial applications.

We will now discuss a second important stripe waveguide geometry, namely
that of a metal stripe layer on a dielectric substrate surrounded by air. Due to
the large dielectric asymmetry between the substrate and the superstrate, in
this geometry the long-ranging mode is absent. A comprehensive survey of
the propagation lengths exhibited by such stripes has been performed by Lam-
precht and co-workers, who studied SPP propagation along 70 nm thick gold
and silver stripes with widths 1 ≤ w ≤ 54 μm [Lamprecht et al., 2001]. SPPs
on the top metal/air interface were excited using a prism coupling arrangement
with a shielding layer to prevent direct excitations along the length of the stripe
(Fig. 7.12), and SPP propagation was monitored via the collection of the light
scattered via surface roughness. A dramatic decrease in propagation length
with decreasing stripe width was observed as the width of the stripe became
comparable with the wavelength of excitation (Fig. 7.13, data points).

Apart from the significantly smaller propagation length in comparison to
the SPP modes sustained by the stripes embedded in a homogeneous medium
discussed above, it is important to note that the modes excited on the metal/air
interface in stripes using prism coupling are inherently leaky modes, as dis-
cussed in chapter 3. The propagating modes are not only attenuated due to
absorption, but also due to re-radiation into the higher-index substrate. End-
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Figure 7.12. Prism coupling setup for the excitation of leaky SPPs propagating on thin metal
stripes (left). The aluminum screen shields the stripe from direct excitation along its length.
(a) AFM image of a 3 μm wide stripe. (b) Scattered light image showing the propagating SPP
excited at λ0 = 633 nm. Reprinted with permission from [Lamprecht et al., 2001]. Copyright
2001, American Institute of Physics.

fire excitation of stripe modes in a homogeneous medium on the other hand
can excite the truly bound modes of the system.

Using a full-vectorial, magnetic finite-difference method, Zia and co-workers
solved for the fundamental and higher-order leaky modes sustained by metal-
lic stripes that are excited in prism coupling experiments [Zia et al., 2005b].
As shown in Fig. 7.13, the computed propagation lengths of the lowest-order

Figure 7.13. Comparison of experimental results (data points) for the SPP propagation length
of thin silver stripes [Lamprecht et al., 2001] with numerical modeling of lowest-order, quasi-
TM leaky modes (curves). Reprinted with permission from [Zia et al., 2005b]. Copyright 2005
by the American Physical Society.
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Figure 7.14. Transverse magnetic field profiles (first and second column) and electric field
intensities (third column) for leaky, quasi-TM SPP modes of gold stripe waveguides (t = 55 nm,
λ0 = 800 nm) for (a) w = 1.5 μm (sole, lowest-order mode), (b) w = 2.5 μm (sole, lowest-
order mode), (c) w = 3.5 μm (lowest-order mode) and (d) w = 3.5 μm (second-order mode).
Reprinted with permission from [Zia et al., 2005b]. Copyright 2005 by the American Physical
Society.

quasi-TM (i.e., the mode that is of TM polarization in the symmetry plane)
leaky mode are in good agreement with the experimental results obtained by
Lamprecht and colleagues [Lamprecht et al., 2001] when the shielding layer is
taken into account. The calculated mode profile of the fundamental and first
higher-order quasi-TM leaky modes for gold stripes of different widths are de-
picted in Fig. 7.14, together with cross cuts of the near-field intensity profile
above the stripes. The numerically determined intensity distribution compares
well with experimental near-field optical investigations using prism coupling
and collecting the near field using an apertured fiber tip [Weeber et al., 2003].
As an example, Fig. 7.15 shows topographical images and the collected near
field above gold stripes of height 55 nm and widths 3.5 μm or 2.5 μm, clearly
visualizing the propagating SPP waves. Transverse cuts through the near-field
intensity distribution (Fig. 7.16) are similar to the calculated distribution of the
electric field (Fig. 7.14, third column). We note that since the apertured tips
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Figure 7.15. AFM (a and c) and near-field optical (b and d) images of gold stripes of height
55 nm and width w = 3.5 μm (a and b) or w = 2.5 μm (c and d). Reprinted with permission
from [Weeber et al., 2003]. Copyright 2003 by the American Physical Society.

used for collecting the fields in this study were coated with a thin chromium
layer (exhibiting only negligible conductivity at the excitation frequency), the
collected near-field images are indeed expected to follow the distribution of the
electric field plotted in the third column of Fig. 7.14.

Apart from explaining the observed near-field distribution and therefore the
mode structure of leaky modes excited via prism coupling, another significant
outcome of this numerical study is the existence of a lower bound to the stripe
width below which no propagating leaky modes exist for this geometry. The
numerical studies are further corroborated by an intuitive dielectric waveguide
model of SPP stripe waveguides [Zia et al., 2005a], which shows that the well-
established treatment of dielectric waveguides [Saleh and Teich, 1991] can
be applied to SPP waveguides if the effective index neff is calculated via the
SPP dispersion as neff = β

k0
. This suggests that the transverse dimensions of

SPP stripe waveguides have to obey a diffraction limit �x ≥ λ0
2neff

, limiting
the amount of transverse confinement and thus the integration density of such
waveguides. However, experimental evidence for SPP propagation with large
confinement along nanowires has been obtained by a number of groups (see
next section), so that further clarification of the constraints on transverse con-
finement of stripe waveguides is needed.



124 Plasmon Waveguides

Observation plane

Z

xY

W

p=580nm

p=440nm

W=2500nm

W=1500nm p=530nm

p=480nm

W=3500nm p=580nmW=4000nm

W=3000nm

W=2000nm

W=4500nm

p=520nm

Figure 7.16. Cross-cuts through the near-field intensity of various stripes of width w (see
Fig. 7.15). p denotes the distance between the peaks. Compare with the calculated profiles in
the third column of Fig. 7.13. Reprinted with permission from [Weeber et al., 2003]. Copyright
2003 by the American Physical Society.

As with the long-range SPP waveguides discussed above, first demonstra-
tions of functional elements placed directly on stripe waveguides are emerging,
such as Bragg mirrors [Weeber et al., 2004] or triangular shaped terminations
for modest SPP field focusing [Weeber et al., 2001]. Integration with conven-
tional silicon waveguides has also been demonstrated [Hochberg et al., 1985],
and the use of SPP stripe waveguides to guide energy around sharp bends cou-
pled to to Si waveguides has been suggested.

7.4 Metal Nanowires and Conical Tapers for
High-Confinement Guiding and Focusing

The fact that metal waveguides of a cross section substantially below the
square of the wavelength λ of the guided radiation can exhibit transverse mode
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confinement below the diffraction limit in the surrounding dielectric can be
easily derived using the uncertainty relation between the transverse compo-
nents of the wave vector and the corresponding transverse spatial coordinates
[Takahara et al., 1997]. To see this, we recall the simple argument why the
mode size of waves guided along the core of a dielectric waveguide is limited
by diffraction. For propagation along the z-direction, the relationship between
propagation constant β, the transverse components of the wave vector kx, ky

and the frequency ω of the guided radiation is given by

β2 + k2
x + k2

y = εcore
ω2

c2
. (7.1)

Since in a dielectric waveguide εcore > 0 and kx, ky are real, (7.1) implies that
β, kx, ky ≤ √

εcoreω/c = 2πncore/λ0. According to the uncertainty relation
between wave vector and spatial coordinates, the mode size of such three-
dimensional optical waves is thus limited by the effective wavelength in the
core medium:

dx, dy ≥ λ0

2ncore
(7.2)

However, if the guiding medium in the core is of metallic character, then
εcore < 0 (ignoring for simplicity attenuation). In order for (7.1) to be fulfilled,
either one or both of the transverse wave vector components kx, ky must be
imaginary - the guided waves are two- or one-dimensional, respectively. In
this case, relation (7.2) does not apply, and the mode size can be substantially
below the diffraction limit of the surrounding dielectric cladding. As our dis-
cussion in chapter 2 has shown, we can expect that also the effective mode area,
taking into account the energy of the mode in the metal itself, should be below
the diffraction limit. We point out however that metallic guiding structures of
sub-wavelength cross section do not necessarily support such highly confined
modes, as was pointed out in our discussion of the long-ranging SPP modes
earlier on.

Studies of metal nanowire waveguides - essentially the same type of metal
stripe waveguides on a dielectric substrate discussed above, but with a sub-
wavelength width - have indeed provided evidence for leaky mode propaga-
tion of SPPs excited in prism-coupling geometries using both conventional
[Dickson and Lyon, 2000] and collection-mode near-field optical microscopy
[Krenn et al., 2002] to image the guided surface waves. To illustrate the guid-
ing capabilities of such structures, Fig. 7.17 shows the topography (a) and a
near-field optical image (b) of a 20 μm long gold nanowire with w = 200 μm
and t = 50 nm [Krenn et al., 2002]. A leaky SPP mode was excited on the wire
at λ0 = 800 nm using the same prism coupling launch-pad technique depicted
in Fig. 7.12. The collected near-field intensity above the wire is indicative
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Figure 7.17. Topography (a) and optical near-field intensity (b) of a 20 μm long gold nanowire
of width w = 200 nm excited at λ0 = 800 nm. The arrows mark the position of data-cut 1
shown in Fig. 7.18. Reproduced with permission from [Krenn et al., 2002]. Copyright 2002,
Institute of Physics.

of electromagnetic energy transfered along the wire axis. Fig. 7.18a shows a
cross-cut through the near-field intensity along the wire axis (solid line), which
can be fitted by an exponential decay with attenuation constant L = 2.5 μm
(dashed line). The deduced SPP propagation length is significantly shorter than
that of stripes with widths in excess of a couple of micrometers, in line with
the steep decline in propagation length observed in Fig. 7.13 [Lamprecht et al.,
2001]. If the length of the wire is shortened, an oscillation in near-field inten-
sity is established, indicative of standing waves due to reflection of the SPPs at
the end-facet (Fig. 7.18a, inset). In order to judge the transverse confinement,
Fig. 7.18b shows a cross-cut through the optical near-field intensity perpendic-
ular to the wire axis. As can be seen, the fields are essentially localized to the
physical extent of the wire.

It has to be pointed out that the apparent observation of SPP guiding in the
prism-excited leaky mode is in contradiction to the theoretical work by Zia and
co-workers (discussed in the previous section) that claimed that the fundamen-
tal leaky mode sustained by the stripe is cut off below a certain width. Since as
pointed out above their study showed remarkable agreement with near-field op-
tical investigations of stripes with w ≥ 1 μm, the nature of the mode observed
in the study by Krenn and colleagues requires further theoretical clarification.

In addition to the excitation of a leaky mode along a nanowire, a truly bound
mode outside the light cone of the substrate can be excited by changing the ex-
citation condition from prism-coupling to coupling using a high-NA objective.
Ditlbacher and co-workers have used this technique to excite a bound SPP
propagating along a 18.6 μm long silver wire with w = 120 nm [Ditlbacher
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Figure 7.18. (a) Curve 1: optical near-field intensity along the axis of the 20 μm long nanowire
of Fig. 7.17 (solid line) and exponential fit with decay constant L = 2.5 μm (dashed line).
Curve 2: ditto for a 8 μm long wire, showing an interference pattern due to reflections. (b)
Cross-cut of the optical near-field intensity (solid line) perpendicular to the wire axis and topog-
raphy profile as determined by SEM (dotted line). Reproduced with permission from [Krenn
et al., 2002]. Copyright 2002, Institute of Physics.

et al., 2005]. Using far- and near-field optical microscopy, a comparatively
large SPP propagation length L ≈ 10 μm has been confirmed. This hugely
increased propagation length compared to the initial nanowire study can pos-
sibly be attributed to the fact that the mode excited using focused illumination
is a bound mode, thus not suffering losses due to leakage radiation into the
supporting substrate. Additionally, the nanowires under study were prepared
using a chemical synthesis method instead of electron beam lithography, re-
sulting in a highly crystalline structure, further decreasing losses. Reflection
of the SPPs at the end facet of the nanowire lead to a resonant structure under
white light illumination, with the short nanowire acting as a SPP resonant cav-
ity with sub-wavelength transverse cross section. The fact that nanostructures
synthesized by chemical means show an improvement in guiding performance
seems highly promising.

These encouraging results in terms of transverse mode confinement with yet
appreciable propagation lengths in excess of 1 μm suggest that metal nanowires
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Figure 7.19. Distribution of the electric field around a tapered silica fiber coated with a silver
layer of thickness 40 nm. The full taper angle is 6◦, and the initial radius of the silica taper is
160 nm. The apex is terminated with a 10 nm semi-sphere. Transfer of energy from the fiber to
the plasmon mode and energy concentration is visible (λ0 = 1.3 μm).

can be used for creating minituarized photonic circuits for electromagnetic en-
ergy transport at visible frequencies [Takahara et al., 1997, Dickson and Lyon,
2000]. It remains to be seen whether this geometry or the metal/insulator/metal
gap waveguide geometry discussed in the next section will be more amenable
for practical applications.

Before moving on, we want to briefly discuss the possibility of adiabatically
increasing the transverse mode confinement along a wire. It can be intuitively
expected that the high localization of the optical energy to the surface of a
metal nanowire opens up the possibility of further field focusing by creating
conically shaped nanowire tapers (Fig. 7.19). Using an analytical boundary
problem analysis of the conical geometry of a metal tip, Babadjanyan and co-
workers suggested that the shortening of the wavelength as the SPPs propagate
along the taper to regions of ever-decreasing diameter enables nanofocusing,
with accompanying giant field enhancement at the apex [Babadjanyan et al.,
2000]. This was further corroborated using a WKB analysis of the problem,
also suggesting that the travel time of SPPs to an infinitely sharp tip should be
logarithmically divergent [Stockman, 2004]. A careful analysis of non-local
effects on the SPP dispersion occurring in regions with small taper diameter
on the order of a few nm close to the apex has further confirmed the focus-
ing properties of such tapers [Ruppin, 2005]. Apart from applications in pla-
nar geometries, the experimental realization of such superfocusing structures
could potentially be of great use in optical investigation of surfaces in near-
field optical microscopy. As an example, Fig. 7.19 shows the electric field
distribution of a radially symmetric mode of a nanotaper in cross-cut along its
axis, demonstrating the reduction in wavelength and accompanying increased
localization and thus field-enhancement as the tip is approached. In this case,
the nanotaper consists of a conventional silica fiber taper coated with a thin
silver film. Power transfer from the fiber to the plasmon mode takes place, and
the energy is then further concentrated as the mode propagates to the apex.
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7.5 Localized Modes in Gaps and Grooves
In our discussion of metallic stripes embedded into a homogeneous host, we

have only focused on the long-ranging SPP mode with low field localization.
Other modes such as the asymmetric sa0

b or aa0
b offer sub-wavelength con-

finement perpendicular to the interfaces (Fig. 7.10) [Berini, 2000]. Also, the
investigations of metallic nanowires presented in the preceding section suggest
that such structures allow a transverse mode area smaller than the diffraction
limit. An additional and easily amenable structure (both analytically and ex-
perimentally) offering sub-wavelength confinement are metal/insulator/metal
waveguides, where the mode is confined to the dielectric core in the form of
a coupled gap-SPP between the two interfaces. We have analyzed the sub-
wavelength energy localization offered by the fundamental mode sustained by
this structure in chapter 2, demonstrating that even though upon decreasing
gap-size an appreciable fraction of the total mode energy resides inside the
metal, increased localization to the interface leads to a high electric field inside
the dielectric core, pushing the effective mode length of the one-dimensional
system into the deep sub-wavelength region. Therefore, the mode confinement
below the diffraction limit of metal/insulator/metal waveguides could enable
integrated photonic chips with a high packing density of waveguiding modali-
ties [Zia et al., 2005c].

Two-dimensionally localized modes in SPP gap waveguides have been an-
alyzed analytically both in vertical geometries [Tanaka and Tanaka, 2003] -
resembling the discussion in chapter 2 - and in planar analogues [Veronis and
Fan, 2005, Pile et al., 2005]. An experimental proof-of-concept realization
of the latter gap geometry has further established that end-fire coupling to
waveguides with even sub-wavelength slot widths is possible [Pile et al., 2005].

Another simple geometry of SPP gap waveguides are grooves of triangular
shape milled into a metal surface. Analytical [Novikov and Maradudin, 2002]
and FDTD studies [Pile and Gramotnev, 2004] have suggested that a bound
SPP mode exists at the bottom of the groove, offering sub-wavelength mode
confinement. Due to the phase mismatch between the SPP modes propagating
at the bottom of the groove and the inclined plane boundaries, the mode stays
confined at the bottom without spreading laterally upwards. Qualitatively, the
dispersion of the mode is similar to that in planar structures [Bozhevolnyi
et al., 2005b]. Experimentally, it was shown that 0.6 μm wide and 1 μm deep
grooves milled into a gold surface (using a focused ion beam) guide a bound
SPP mode in the near-infrared telecommunications window with a propagation
length on the order of 100 μm and a mode width of about 1.1 μm [Bozhevol-
nyi et al., 2005b]. The appreciable propagation length offered by this geometry
allows the creation of functional photonic structures. Examples of SPP prop-
agation at λ0 = 1500 nm are shown in Figs. 7.20 and 7.21 for a number of
functional structures such as waveguide splitters, interferometers and couplers



130 Plasmon Waveguides

Figure 7.20. SEM (a, d), topographical (b, e) and near-field optical (c, f) images of SPP groove
waveguides milled into a metal film. Reprinted by permission from Macmillan Publishers Ltd:
Nature [Bozhevolnyi et al., 2006], copyright 2006.

Figure 7.21. SEM (a), topographical (b) and near-field optical images (c) of a channel drop
filter based on a V-groove waveguide and a ring resonator. Panel (d) shows normalized cross
sections of the input and output channel obtained from (c) for two different wavelengths, demon-
strating the extinction ratio on resonance. Reprinted by permission from Macmillan Publishers
Ltd: Nature [Bozhevolnyi et al., 2006], copyright 2006.
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to ring-waveguides for filtering [Bozhevolnyi et al., 2006]. However, in this
study the dimensions of the groove and the guided modes are not appreciably
sub-wavelength, explaining the relatively large propagation length compared
to those found in nanowires or particle chain waveguides, which will be pre-
sented next.

7.6 Metal Nanoparticle Waveguides
Another concept for guiding electromagnetic waves with a transverse con-

finement below the diffraction limit is based on near-field coupling between
closely spaced metallic nanoparticles. As we have seen in chapter 5, a one-
dimensional particle array can exhibit coupled modes due to near-field inter-
actions between adjacent nanoparticles. For a center-to-center spacing d � λ,
where λ is the wavelength of illumination in the surrounding dielectric, neigh-
boring particles couple via dipolar interactions, with the near-field term scaling
as d−3 dominating.

Due to the coupling, the nanoparticle chain supports one longitudinal and
two transverse modes of propagating polarization waves. The transport of en-
ergy along such a chain has been analyzed in a number of approximations,
starting with the initial study by Quinten and co-workers based on Mie scat-
tering theory [Quinten et al., 1998]. While this study hinted at the possibility
of energy transfer and arrived at estimates of sub-micron energy propagation
lengths, subsequent studies concentrated on the dispersion properties. A rep-
resentation of the particles as point-dipoles allowed the computation of the
quasi-static dispersion relation, shown as solid curves in Fig. 7.22 for both
longitudinal and transverse polarisation [Brongersma et al., 2000]. The group
velocity for energy transport, given by the slope of the dispersion curves, is
highest for excitation at the single particle plasmon frequency, occurring at the
center of the first Brillouin zone. Corrections to this solution by considering
higher order multipoles - albeit still in the quasi-static approximation - have
also been obtained [Park and Stroud, 2004].

Solutions for the dispersion relations using the full set of Maxwell’s equa-
tions, thus overcoming the quasi-static approximation, have revealed a signif-
icant change in the dispersion relation for the transverse mode near the light
line (Fig. 7.22), due to phase-matching between the transverse dipolar mode to
photons propagating along the waveguide at the same frequency [Weber and
Ford, 2004, Citrin, 2005b, Citrin, 2004]. For longidutinal modes, this coupling
cannot take place, and the obtained curves are similar to the quasistatic re-
sult. Examples of the electric field distribution of the guided modes are shown
in Fig. 7.23, which depicts results from finite-difference time-domain simula-
tions of pulse propagation through a chain of 50 nm gold spheres separated by
a center-to-center distance of 75 nm in air. These simulations have also con-
firmed the negative phase velocity of transverse modes [Maier et al., 2003a].
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Figure 7.22. Dispersion of longitudinal (left panel) and transverse (right panel) modes sus-
tained by an infinite chain of spherical particles in the quasi-static approximation (solid lines,
[Brongersma et al., 2000]), for a finite 20-sphere chain in the quasi-static approximation (full
circles), and for the fully retarded solution with a lossy metal (squares) and for a lossless
metal (triangles). Differences between the models are pronounced for transverse polarization.
Reprinted with permission from [Weber and Ford, 2004]. Copyright 2004 by the American
Physical Society.

Figure 7.23. Finite-difference time-domain simulation of a pulse propagating through a chain
of 50 nm gold spheres with a 75 nm center-to-center distance. (a) Position of the peak of a
pulse centered around the single particle resonance frequency with time as it propagates through
the chain for longitudinal (squares) and transverse (triangles) polarization. The insets show
snapshots of the electric field distribution. (b) Snapshots of the electric field distribution of a
transverse mode traveling with negative phase velocity. The arrow denotes the movement of a
particular phase front. Reprinted with permission from [Maier et al., 2003a]. Copyright 2003
by the American Physical Society.
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The excitation of traveling waves at the point of highest group velocity re-
quires a local excitation scheme, since far-field excitation only excites modes
around the k = 0 point in the dispersion diagram. By analysing the shift
of the plasmon resonance compared to that of a single particle (or an array of
sufficiently separated particles), due to interparticle coupling upon in-phase ex-
citation (as presented in chapter 5), the strength of the coupling can be judged.
Fig. 7.24 shows as an example a waveguide consisting of silver rods of aspect
ratio 90 × 30 × 30 nm3 separated by a gap of 50 nm, and far-field exctinc-
tion spectra of the chain as well as of well-separated particles. A significant
blue-shift shift due to particle coupling is apparent for the chain.

In order to locally excite a traveling wave on this structure, the tip of a near-
field optical microscope was used as a local illumination source, and the en-
ergy transport along the particle array detected via fluorescent polymer beads
(Fig. 7.25a) [Maier et al., 2003b]. In this study, the tip of the near-field micro-
scope was scanned over an ensemble of waveguides (panel b), and the recorded
fluorescent spots in the obtained near-field images compared between beads
situated at a distance from the waveguides (panel c) and those deposited on top
of them (panel d). The latter showed an elongation of the spot profile along
the direction of the waveguide due to excitation at a distance via the particle
waveguide: energy is transfered from the tip to the waveguide, and channeled
to the fluorescent particle (see scheme in panel a). Representative cross cuts
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Figure 7.24. Experimentally observed plasmon resonance for single silver rods and a chain of
closely-spaced rods under transverse illumination (along the long axis of the rods). The blue-
shift between the two spectra is due to near-field interactions between particles in the chain.
Reprinted by permission of Macmillan Publishers Ltd: Nature Materials [Maier et al., 2003b],
copyright 2003.
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Figure 7.25. Local excitation and detection of energy transport in metal nanoparticle plasmon
waveguides. Schematic of the experiment (a), SEM images of plasmon waveguides (b), and
images of the topography and fluorescence (c, d). The images presented in (c) show fluorescent
spheres deposited in a region without waveguides, while (d) shows spheres deposited on top of
the ends of four nanoparticle chains. The circles and lines mark the fluorescent spots analyzed
in Fig. 7.26. Reprinted by permission of Macmillan Publishers Ltd: Nature Materials [Maier
et al., 2003b], copyright 2003.

through the fluorescent spots are shown in Fig. 7.26, suggesting energy trans-
port along the particle chain over a distance of 500 nm. A numerical analysis
has confirmed the major aspects of this coupling scheme [Girard and Quidant,
2004].

Due to the resonant excitation at the particle plasmon resonance frequency,
the fields are highly confined to the waveguide structure, akin to the nanowires
presented in the preceding section. This implies high losses, with propagation
lengths on the order of 1 μm or below, depending on the wavelength of opera-
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Figure 7.26. Intensity of the fluorescence signal along the cross-cuts indicated in Fig. 7.25c,d
for control fluorescent spheres located away from waveguides (squares) and spheres located
on top of particle waveguides (triangles). The increase in width of the fluorescence peaks for
the latter is indicative of excitation at a distance via the particle waveguides (see sketch in
Fig. 7.25a). Reprinted by permission of Macmillan Publishers Ltd: Nature Materials [Maier
et al., 2003b], copyright 2003.

tion and the dielectric constant of the surrounding host material. Applications
such as condensers for channeling energy have been demonstrated [Nomura
et al., 2005], and the possibility to use short structures of self-similar spheres
as nanolenses for near-field focusing akin to the conical tapers presented in the
previous section has been suggested [Li et al., 2003].

Significantly longer propagation lengths can be achieved by using non-
resonant particle excitation at lower frequencies. However, while the absorp-
tive losses are lowered, now radiative losses begin to overwhelm the guid-
ing, and a different approach than one-dimensional chains is needed to keep
the energy confined to the waveguide. A promising approach to achieve this
was demonstrated in the form of a nanoparticle plasmon waveguide operat-
ing in the telecommunications window at λ0 = 1.5 μm [Maier et al., 2004,
Maier et al., 2005]. The new design exhibited a confinement superior to the
long-ranging stripe waveguides discussed in section 7.3, while still exhibit-
ing propagation lengths of the order of 100 μm. The waveguide is based
on a two-dimensional lattice of metal nanoparticles on a thin, undercut sil-
icon membrane (Fig. 7.27d). Vertical confinement is achieved by a hybrid
plasmon/membrane-waveguide mode, while transverse confinement can be
achieved by using a lateral grading of nanoparticle size, thus in a sense creating
a higher effective refractive index in the waveguide center. This way, the mode
is confined to the higher-index region, leading to wavelength-scale transverse



136 Plasmon Waveguides

Figure 7.27. Dispersion relation (a) and mode profiles in top (b) and side (c) view of a metal
nanoparticle plasmon waveguide on a thin Si membrane operating in the near-infrared. (d) SEM
picture of a fabricated device. Reprinted with permission from [Maier et al., 2004]. Copyright
2004, American Institute of Physics.

confinement and sub-wavelength scale vertical confinement (Fig. 7.27b,c). We
point out that this concept for engineering the electromagnetic response via a
particle lattice is akin to that of designer plasmons presented in chapter 6.

Due to the periodicity in the propagation direction, the plasmon mode is
zone-folded back into the first Brillouin zone (Fig. 7.27a). This suggests a con-
venient scheme for excitation using fiber tapers placed on top of the waveguide
(see Fig. 3.14): contra-directional phase-matched evanescent coupling between
the fiber taper and the plasmon mode can take place.

The fiber taper is also a convenient means to investigate both the spatial and
the dispersive properties of the nanoparticle waveguide. For a spatial mapping
of the guided modes, the fiber simply has to be moved over the waveguide in
the transverse direction, and the wavelength-dependent power transferred past
the coupling region monitored. As an example, Fig. 7.28a shows the power
transmitted past the coupling region vs. wavelength and transverse location
of the taper over the waveguide. Both the fundamental and the first higher-
order mode of the plasmon waveguide manifest themselves via power drops at
1590 nm and 1570 nm (Fig. 7.28b,c), depending on whether the taper is located
over the waveguide center or at its edges. The spatial resolution is of course
limited by the diameter of the taper, which in this case was about 1.5 μm.

Translation of the taper in the direction of the waveguide moves the point of
phase-matching via a change in taper diameter. This can be used to map out the
dispersion relation, and confirm the contra-directional nature of the coupling
(Fig. 7.29a): As the diameter of the taper is increased (and thus its dispersion
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Figure 7.28. (a) Power transferred past the coupling region vs. wavelength and transverse
taper position. Both the fundamental and the first-order mode are shown in data cuts (b).
Reprinted with permission from [Maier et al., 2005]. Copyright 2005, American Institute of
Physics.

curve moves closer to the silica light line), the point of phase-matching shows
a red-shift. A look at the dispersion diagram of Fig. 7.27a confirms that this
is only the case for coupling to the zone-folded upper band. The maximum
power transfer efficiency demonstrated experimentally using this geometry is
about 75% (Fig. 7.29b).

Figure 7.29. (a) Spectral position of the phase matching point vs. taper position as the taper is
moved along the waveguide axis, demonstrating the contra-directional nature of the coupling.
(b) Power transmitted past the coupling region for the condition of optimum coupling, demon-
strating transfer efficiencies of about 75%. The inset shows the evolution of the coupling profile
as the gap between the taper and the waveguide is descreased. Reprinted with permission from
[Maier et al., 2005]. Copyright 2005, American Institute of Physics.
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These low-loss metal nanoparticle waveguides could be employed in ap-
plications for coupling radiation transmitted through optical fibers into two-
dimensional SPP modes with high efficiency. After the coupling region, guid-
ing to desired structures on a chip for sensing is possible, perhaps after inter-
facing with higher-confinement waveguides for field focusing.

7.7 Overcoming Losses Using Gain Media
We have already discussed in chapter 5 the possibility of overcoming the

inherent attenuation losses (due to Ohmic heating) in metallic structures by
embedding them into media with optical gain. For particles, optical gain re-
sults in an increase of the magnitude of the polarization (5.7) and a concomitant
decrease in the linewidth of the resonant mode, limited by gain saturation. Ap-
plied to waveguides, an analytical study of particle chains (akin to the nanopar-
ticle plasmon waveguides discussed in the preceding section) embedded in a
gain medium suggests that the accompanying increase in interparticle coupling
strength can lead to greatly enhanced propagation distances, particularly for
confined transverse modes close to the light line [Citrin, 2005a].

In the wider context of waveguiding using propagating SPPs at flat inter-
faces, one can therefore expect that the presence of gain media will result
in an increase of the propagation length L. More surprisingly, it can also
easily be shown that the localization of the fields to the interface will be in-
creased [Avrutsky, 2004], contrary to the trade-off between confinement and
loss present in the absence of gain. To demonstrate this, one can define the
effective index of the SPP at an interface between a metal and a dielectric via
the dispersion relation (2.14) as

neff =
√

εεd

ε + εd

, (7.3)

where εd is the permittivity of the insulating layer. As in the discussion of
localized plasmons, we see that in the resonant limit of surface plasmons, de-
fined by Re [ε] = −εd , the effective index and thus the amount of localization
is limited by the non-vanishing imaginary part of ε due to attenuation. How-
ever, in analogue to the discussion in chapter 5, the presence of gain can lead
to a complete vanishing of the denominator of (7.3), and thus a large effective
index (limited only by gain saturation).

While the effect of this increase in neff on SPP propagation in waveguides
has not been analyzed in detail up to this point, various analytical and numer-
ical studies have focused on the increase in propagation length offered, both
for metal stripe [Nezhad et al., 2004] and gap waveguides [Maier, 2006a]. For
both geometries with excitation at near-infrared frequencies, the gain coeffi-
cients required for lossless propagation are at the boundary of what is cur-
rently achievable using quantum-well or quantum-dot media. Taking a simple
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of a
gold/dielectric/gold waveguide with decreasing core size for cores consisting of air (broken
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show the energy propagation length of the mode. As the critical gain for which Im
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approached, L → ∞ (inset). Reprinted from publication [Maier, 2006a], copyright 2006, with
permission from Elsevier.

one-dimensional gold-semiconductor-gold gap waveguide as an example, loss-
less propagation at λ0 = 1500 nm for a core size of only 50 nm is expected
for a gain coefficient γ = 4830 cm−1 in a core layer with n = 3.4. This is
demonstrated in Fig. 7.30, which shows the evolution of the imaginary part of
the propagation constant Im

[
β
]

with decreasing core size for waveguides with
cores consisting of air (broken gray line) or a semiconductor material (n = 3.4)
with zero gain (broken black line), or gain coefficients γ = 1625 cm−1 (gray
line) or γ = 4830 cm−1 (black line), respectively. Note that Im

[
β
]

< 0 im-
plies an exponential increase of the energy of the guided wave. As expected,
the propagation distance increases with the amount of gain present, shown in
the inset.

After these promising theoretical studies, it remains to be seen if the large
gain coefficients necessary for low-loss or even lossless propagation are indeed
achievable in close vicinity of metallic guiding structures.



Chapter 8

TRANSMISSION OF RADIATION THROUGH
APERTURES AND FILMS

Up to this point, our discussion of surface plasmon polaritons has focused
on their excitation and guiding along a planar interface. In the previous chap-
ter, we have seen how control over the propagation of these two-dimensional
waves for waveguiding applications can be achieved by surface patterning.
Here, we move in the perpendicular direction and take a look at the transmis-
sion of electromagnetic energy through thin metallic films, aided by near-field
effects. If the film is patterned with a regular array of holes, or surface corru-
gations surrounding a single hole, phenomena such as enhanced transmission
and directional beaming can occur, which have triggered an enormous amount
of interest ever since their first description in 1998.

To lay the foundations for the discussion of these effects, we begin by re-
viewing the basic physics of the transmission of light through a sub-wavelength
circular hole in a thin conductive screen. Subsequent chapters treat the trans-
mission enhancement encountered in hole arrays and the directional control
over the transmitted beam via surface corrugations at the exit side of the in-
terface. The role of SPPs and localized plasmons in the transmission of light
through a single hole surrounded by regular corrugations is also addressed. The
chapter closes with a look at first applications of these effects and a discussion
of light transmission through unperforated films mediated by coupled SPPs.

8.1 Theory of Diffraction by Sub-Wavelength Apertures
The physics of the transmission of light through a single hole in an opaque

screen, also called an aperture, has been a topic of intense research for well
more than a hundred years. Due to the wave nature of light, its transmission
through an aperture is accompanied by diffraction. Therefore, this process,
which even in the simplest of geometries is very complex, can be described us-
ing various approximations developed in classical diffraction theory. A review
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2r
θ

Figure 8.1. Transmission of light through a circular aperture or radius r in an infinitely thin
opaque screen.

of different aspects of this theory can be found in basic textbooks on electro-
dynamics such as [Jackson, 1999], and (from the point of view of the trans-
mission problem presented in this chapter) in the review article by Bouwkamp
[Bouwkamp, 1954]. A geometry that has received particular attention in these
treatments, due to its relative easy tractability, is that of a circular aperture of
radius r in an infinitely thin, perfectly conducting screen (Fig. 8.1).

For an aperture with a radius r significantly larger than the wavelength of
the impinging radiation (r � λ0), this problem can be treated quite success-
fully using the Huygens-Fresnel principle and its mathematical formulation,
the scalar diffraction theory by Kirchhoff [Jackson, 1999]. Since this theory
is based on the scalar wave equation, it does not take into account effects due
to the polarization of light. For normally-incident plane-wave light, it can be
shown that the transmitted intensity per unit solid angle in the far field (known
as the limit of Fraunhofer diffraction) is given by

I (θ) ∼= I0
k2r2

4π

∣∣∣∣2J1 (kr sin θ)

kr sin θ

∣∣∣∣
2

, (8.1)

where I0 is the total intensity impinging on the aperture area πr2, k = 2π/λ0

the wavenumber, θ the angle between the aperture normal and the direction of
the re-emitted radiation, and J1 (kr sin θ) the Bessel function of the first kind.
The functional form described by (8.1) is that of the well-known Airy pattern
of a central bright spot surrounded by concentric rings of decreasing intensity,
caused by angle-dependent destructive and constructive interference of rays
originating from inside the aperture. The ratio of the total transmitted intensity
to I0, given by

T =
∫

I (θ) d�

I0
, (8.2)
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is called the transmission coefficient. For apertures with r � λ0, in which
case the treatment outlined here is valid, T ≈ 1. In this regime, more exact
calculations of the diffraction problem give semi-quantitatively essentially the
same result as (8.1).

Since we are interested in the influence of surface waves such as SPPs on
the transmission process, the regime of sub-wavelength apertures r � λ0 is
much more interesting, because near-field effects are expected to dominate
the response (due to the absence of propagating modes in apertures in films
of finite thickness). However, even an approximate analysis of an infinitely
thin perfectly conducting screen requires an approach using the full vector-
ial description via Maxwell’s equations. The basic assumption of Kirchhoff’s
method is that the electromagnetic field in the aperture is the same as if the
opaque screen were not present, which does not fulfill the boundary condition
of zero tangential electric field on the screen. For large holes, this basic failure
is less severe, since the diffracted fields are relatively small compared to the
directly-transmitted field. For sub-wavelength apertures on the other hand, this
approximation is inadequate even as a first-order treatment of the problem.

Assuming that the incident light intensity I0 is constant over the area of the
aperture, Bethe and Bouwkamp arrived at an exact analytical solution for light
transmission through a sub-wavelength circular hole in a perfectly conducting,
infinitely thin screen [Bethe, 1944, Bouwkamp, 1950a, Bouwkamp, 1950b].
For normal incidence, the aperture can be described as a small magnetic dipole
located in the plane of the hole. The transmission coefficient for an incident
plane wave is then given by

T = 64

27π2
(kr)4 ∝

(
r

λ0

)4

. (8.3)

The scaling with (r/λ0)
4 implies very weak total transmission (smaller by

an amount of the order of (r/λ0)
2 compared to Kirchhoff theory) for a sub-

wavelength aperture, as can intuitively be expected. Also, the scaling T ∝ λ−4
0

is in agreement with Rayleigh’s theory of the scattering by small objects. We
note that (8.3) is valid for normally-incident radiation both in TE and TM po-
larization. For radiation impinging on the aperture at an angle, an additional
electric dipole in the normal direction is needed to describe the transmission
process. In this case, more radiation is transmitted for TM than for TE polar-
ization [Bethe, 1944].

The Bethe-Bouwkamp description of transmission through a circular aper-
ture in a screen relies on two major approximations. The thickness of the con-
ducting screen is assumed to be infinitely thin, yet the screen is still perfectly
opaque due to the infinite conductivity. Relaxing the first assumption and thus
treating screens of finite thickness h requires numerical simulations for solving
of the problem. Two regimes have to be considered, depending on whether the
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waveguide defined by the sub-wavelength aperture allows a propagating mode
to exist or not. The Bethe-Bouwkamp model is only applicable to apertures
which allow only decaying modes. For a circular (square) hole of diameter d

in a perfect screen, this condition is fulfilled in the regime where d � 0.3λ0

(d ≤ λ0/2), which can be calculated via a boundary analysis at the rim of the
aperture waveguide. The transmission coefficient T then decreases exponen-
tially with h [Roberts, 1987]. This is of course the behavior characteristic of a
tunneling process. For sub-wavelength apertures allowing propagating modes,
the theory outlined here is not applicable and T is much higher due to the
waveguide behavior of the aperture. Prominent examples of such waveguide
apertures are circular holes with diameters above the cut-off [de Abajo, 2002],
the well-known one-dimensional slit (which has a TEM mode without cut-off),
annular-shaped apertures [Baida and van Labeke, 2002], and apertures in the
form of a C-shape [Shi et al., 2003].

Apart from the finite screen thickness, when discussing the transmission
properties of real apertures the finite conductivity of the metal screen should
be taken into account. For optically thin films, the screen is thus not perfectly
opaque, and comparisons with the Bethe-Bouwkamp theory are not justified.
On the other hand, an optically thick film of a real metal satisfies the condition
of opacity if h is on the order of several skin depths, thus preventing radiation
tunnelling through the screen. For apertures fulfilling this condition, it has been
shown that localized surface plasmons significantly influence the transmission
process [Degiron et al., 2004]. This will be discussed in more detail in a later
section, after a description of the role of SPPs excited via phase-matching on
the input side of the screen in the tunneling process.

8.2 Extraordinary Transmission Through
Sub-Wavelength Apertures

The transmission of light through a sub-wavelength aperture of a geometry
such as a circle or a square that does not allow a propagating mode can be
dramatically enhanced by structuring the screen with a regular, periodic lattice.
This way, SPPs can be excited due to grating coupling, leading to an enhanced
light field on top of the aperture. After tunneling through the aperture, the
energy in the SPP field is scattered into the far field on the other side.

The phase-matching condition imposed by the grating leads to a well-defined
structuring of the transmission spectrum T (λ0) of the system, with peaks at
the wavelengths where excitation of SPPs takes place. At these wavelengths,
T > 1 is possible - more light can tunnel through the aperture than incident
on its area, since light impinging on the metal screen is channeled through the
aperture via SPPs. This extraordinary transmission property was first demon-
strated by Ebbesen and co-workers for a square array of circular apertures in a
thin silver screen [Ebbesen et al., 1998].
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Figure 8.2. Normal-incidence transmission spectrum for a silver screen perforated with a
square array of holes of diameter d = 150 nm and lattice constant a0 = 900 nm. The thick-
ness of the screen is 200 nm. Reprinted by permission from Macmillan Publishers Ltd: Nature
[Ebbesen et al., 1998], copyright 1998.

As a typical example, Fig. 8.2 shows the transmission spectrum for normally-
incident light on a silver screen of thickness t = 200 nm perforated with an
array of circular holes of diameter d = 150 nm arranged on a square lattice
with period a0 = 900 nm. Apart from a sharp peak in the ultraviolet region
only observable for very thin films, the spectrum shows a number of distinct,
relatively broad peaks, two of which occur at wavelengths above the grating
constant a0. The origin of these peaks cannot be explained by a simple dif-
fraction analysis without assuming the contribution of surface modes, and the
fact that T > 1 suggests that the transmission is mediated via SPPs excited
via grating-coupling at the periodic aperture lattice: This way, also light im-
pinging on opaque regions between the apertures can be channeled to the other
side via propagating SPPs. We note however that experimentally the exact de-
termination of the transmission enhancement is difficult, due to the problem of
normalization: the transmission calculated using the Bethe formula (8.3) re-
quires a highly accurate determination of the aperture dimensions, due to the
strong dependence of T ∝ r4 on the aperture radius. We note that in the initial
studies, the normally-incident light was not polarized, and that in fact due to
the square symmetry of the aperture arrays identical transmission spectra occur
for TM and TE polarization [Barnes et al., 2004].

A study of the dependence of the peak positions on incidence angle of the
radiation allows the mapping of the dispersion relation of the waves involved in
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Figure 8.3. Dispersion relation of grating-coupled SPPs along the [10] direction of the aper-
ture array extracted from spectra such as Fig. 8.2 for different incidence angles (solid dots).
Reprinted by permission from Macmillan Publishers Ltd: Nature [Ebbesen et al., 1998], copy-
right 1998.

the transmission process. An example is shown in Fig. 8.3. The typical form of
the SPP dispersion relation (2.14), displaced by the grating vector G = 2π/a0,
can be clearly discerned. The crossing of the dispersion curves with the kx = 0-
axis defines the points of phase-matching for normal-incidence of the exciting
light beam, and thus the position of the transmission maxima in Fig. 8.2.

The observed structure of T (λ) can therefore be explained by assuming that
grating coupling to SPPs takes place, with the phase matching condition

β = kx ± nGx ± mGy = k0 sin θ ± (n + m)
2π

a0
, (8.4)

where β is the SPP propagation constant. For phase-matching via a square
lattice, it can easily be shown by combining (8.4) and (2.14) that for normally-
incident light the transmission maxima occur at wavelengths fulfilling the con-
dition [Ghaemi et al., 1998]

λSPP (n, m) = nSPPa0√
n2 + m2

. (8.5)

nSPP = βc/ω is the effective index of the SPP, which is for the single inter-
face between a metal and a dielectric calculated using (2.14). This simplified
description often serves as a good first approximation.

Since phase-matching of the incident radiation to SPPs is crucial for trans-
mission enhancement via SPP tunneling, the same process should occur for a
single hole surrounded by a regular array of opaque surface corrugations. This
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was indeed confirmed in a follow-up study with only one aperture, where dim-
ples instead of holes in the screen served as the grating for coupling [Grupp
et al., 1999]. Apart from a two-dimensional square lattice of apertures or dim-
ples, concentric circles surrounding the aperture can also be used to achieve
phase-matching of the incident light beam with SPPs. Fig. 8.4 shows trans-
mission spectra for such a bull’s eye structure with sets of concentric rings
of different groove height h (A), and also for a two-dimensional dimple array
(B). Transmission enhancement compared to the values calculated using (8.3)
is present in both cases, and for the bull’s eye structure additionally T > 1
occurs at the wavelengths of phase-matching. It is apparent from Fig. 8.4a
that the height h of the undulations responsible for coupling determines the
efficiency of SPP coupling, and therefore the magnitude of the transmission
enhancement.

We now want to qualitatively describe the physics of the transmission process
in more detail. Similar to a single aperture in an unpatterned screen, transmis-
sion through an aperture in a regularly patterned surface occurs via tunneling,
leading to an approximately exponential dependence of the transmitted inten-
sity on the thickness t of the metal screen. However, if t is of the order of the
skin depth, coupling between SPPs at the front and back interface takes place

Figure 8.4. Transmission through a single circular aperture (d = 440 nm) surrounded by
concentric rings with sinusoidal cross section (A) or a square array of dimples (B) of height h

milled into a 430 nm thick Ag/NiAg screen. Reprinted with permission from [Thio et al., 2001].
Copyright 2001, Optical Society of America.
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Figure 8.5. Schematic of a single slit aperture cut into a perfectly conducting screen, with and
without a surrounding groove array on the input side. Courtesy of Francisco García-Vidal, Uni-
versidad Autónoma de Madrid. Figure similar to that in [García-Vidal et al., 2003a], Copyright
2003 by the American Physical Society.

if the adjacent dielectric media are equal, enabling phase-matching. Degiron
and co-workers have shown that this leads to a saturation of the transmission
coefficient for small screen thickness [Degiron et al., 2002]. A great number
of studies have since then either experimentally or numerically studied the in-
fluence of geometrical parameters such as metal film thickness [Shou et al.,
2005], hole size [van der Molen et al., 2004] or symmetry of the hole arrays
[Wang et al., 2005] on the transmission spectra. Crucially, a comprehensive,
polarization-resolved study of the angular dependence of the transmission, re-
flection and absorption of light by a metal film perforated with an array of sub-
wavelength holes has confirmed the role of SPPs, excited via diffraction of the
impinging light beam in the transmission process [Ghaemi et al., 1998, Barnes
et al., 2004].

The complexity of the transmission process significantly increases for aper-
tures allowing a propagating mode, such as an essentially one-dimensional
slit structure, where the fundamental TEM mode does not exhibit a cut-off
width. In this case, the transmission can be modulated via resonances of the
fundamental slit waveguide mode, controlled by the thickness of the metal
film. Transmission resonances have indeed been observed for arrays of paral-
lel, sub-wavelength slits [Porto et al., 1999]. In analogy with the discussion
of extraordinary transmission through apertures via tunneling, periodic surface
corrugations around a single slit, shown in Fig. 8.5, significantly increase the
transmission and allow T (λ) > 1 due to the excitation of SPPs.

The fact that even perfect metals can sustain surface waves in the form of
designer plasmons on patterned interfaces as described in chapter 6 leads to
enhanced transmission phenomena also in this limit. Using a modal expansion
technique similar to that presented in chapter 6 for describing designer SPPs at
low frequencies, García-Vidal and co-workers have shown that the transmis-
sion spectrum T (λ) for a slit aperture surrounded by parallel grooves is addi-
tionally influenced by the existence of coupled cavity modes in the grooves, the
frequencies of which are defined by their depth h. Also, in-phase re-emission
from the array, controlled via the period d, takes place [García-Vidal et al.,
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Figure 8.6. Normalized transmittance T (λ) of the slit structure depicted in Fig. 8.5 for a =
40 nm, d = 500 nm, w = 350 nm and groove depth h = 100 nm. The number of grooves
patterned either on the input side (a) or the exit side (b) is 2N . Transmission enhancement
is only present for patterning of the input side (a), and only a small number of grooves are
necessary to establish a significant enhancement, while patterning of the exit surface does not
lead to (b) nor significantly influence (inset in b) the magnitude of T (λ). Courtesy of Francisco
García-Vidal, Universidad Autónoma de Madrid. Figure similar to that in [García-Vidal et al.,
2003a], Copyright 2003 by the American Physical Society.

2003a, Marquier et al., 2005]. Fig. 8.6 shows theoretical calculations of the
dependence of T (λ) on the number of grooves based on this model (a), further
demonstrating that only surface patterning on the entrance side has significant
influence on the maxima in T (λ) (b).

For the geometrical parameters chosen in this calculations, the two trans-
mission maxima around 400 nm and 850 nm not influenced by the patterning
correspond to slit waveguide resonances, while the strong and sharp maxi-
mum at λ = 560 nm is due to the establishment of groove cavity modes and
in-phase groove reemission with increasing number of grooves, mediated by
designer surface plasmons. The main results of this study have been confirmed
independently by using a different approach based on scattering theory from
quantum mechanics [Borisov et al., 2005]. Furthermore, control of the phase
of the re-emitted radiation allows selective suppression of transmission, as has
been confirmed with suitable phase-gratings in the THz regime [Cao et al.,
2005]. A recent study has further shown that even a one-dimensional array
of sub-wavelength apertures exhibits many of the features present in the two-
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dimensional patterning studies [Bravo-Abad et al., 2004a]. We note that ex-
traordinary transmission via excitation of SPPs has not only been observed for
visible light using metallic screens, but also for highly doped semiconductors
and polymer films at THz frequencies [Matsui et al., 2006].

While the patterning of the input surface of the aperture screen determines
the spectral dependence T (λ) of the transmission process, structuring of the
exit surface allows control of the re-emission of the transferred radiation, which
will be discussed in the next section.

8.3 Directional Emission Via Exit Surface Patterning
We have seen above that the tunneling of light through a sub-wavelength

aperture below cut-off can be significantly enhanced by patterning the input
side of the screen to allow phase-matching to SPPs. In a similar fashion, the
emission on the exit side of the screen can be controlled via surface patterning
as well. While not increasing T (λ) (see Fig. 8.6b), imposing a regular grating

Figure 8.7. (a) Focused ion beam image of a bull’s eye structure surrounding a circular sub-
wavelength aperture in a 300 nm thick silver film. (b) Transmission spectra recorded at various
collection angles, demonstrating the small divergence of the emerging beam (groove periodicity
600 nm, groove depth 60 nm, aperture diameter 300 nm). (c) Optical image of the directional
emission at the wavelength of peak transmission. (d) Angular intensity distribution of the emit-
ted beam at the wavelength of maximum transmission. Reprinted with permission from [Lezec
et al., 2002]. Copyright 2002, AAAS.
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Figure 8.8. FIB image (A) and transmission spectrum for various collection angles (B) of a
single sub-wavelength slit surrounded by parallel grooves cut into a 300 nm thick silver film (slit
widh 40 nm, slit length 4400 nm, groove periodicity 500 nm, groove depth 60 nm). The inset
in (B) shows the dispersion curve of the periodic structure (black dots) as well as the position
of the spectral peaks (gray dots). (C) Optical image. (D) Angular intensity distribution of the
emission at two selected wavelengths. Reprinted with permission from [Lezec et al., 2002].
Copyright 2002, AAAS.

structure on this side can lead to a highly directional emission with narrow
beaming angle, first described by Lezec and co-workers [Lezec et al., 2002].
A patterning of both input and exit side of the screen can therefore lead to both
enhanced transmission and directional emission.

Figures 8.7 and 8.8 show examples of this phenomenon for both a circular
aperture surrounded by concentric grooves and a slit surrounded by a regular
array of parallel grooves. The patterns is present on both sides of the film.
While the position and amplitude of the transmission maxima T (λ0) are con-
trolled by the phase-matching condition imposed by the pattern on the input
side, the beam waist and direction of the emitted beam is governed by the exit
side pattern. Highly directional emission with a angular divergence of approx-
imately ±3◦ was observed. This phenomenon can be understood by assuming
a SPP traveling from the exit side of the aperture along the screen towards the
grooves and undergoing directional emission, defined by the groove period. In-
triguingly, as a consequence light of different wavelengths can be emitted un-
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Figure 8.9. Schematic (a) and FIB image (b) of the exit surface of a screen with a single
slit aperture surrounded by 10 parallel grooves on each side (slit width 40 nm, groove pe-
riod 500 nm, and groove height 100 nm). Courtesy of Francisco García-Vidal, Universidad
Autónoma de Madrid. Figure similar to that in [Martín-Moreno et al., 2003], Copyright 2003
by the American Physical Society.

der different angles (Fig. 8.8d), thus imposing a filtering property. In the study
presented in these two figures, the groove periodicity was d = 600 nm or d =
500 nm, respectively, and the groove depth h = 60 nm. Fabrication was carried
out using focused ion beam milling of a 300 nm thick free-standing silver film.

This intuitive picture of how the directional emission arises was corrobo-
rated by a theoretical analysis of the beaming profile for a slit aperture sur-
rounded by a parallel array of grooves akin to that depicted in Fig. 8.8. The

Figure 8.10. Theoretically predicted intensity profiles (angular intensity distribution) of the
beam transmitted in the forward direction for the slit geometry of Fig. 8.9 for varying number
2N of grooves and geometrical parameters similar to those of Fig. 8.8. The legend also shows
the angular divergence of the transmitted beam for each N . In the calculations, the groove
depth has been adjusted for varying N in order to obtain similar total transmitted intensities.
Courtesy of Francisco García-Vidal, Universidad Autónoma de Madrid. Figure similar to that
in [Martín-Moreno et al., 2003], Copyright 2003 by the American Physical Society.
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geometry of the system is defined in more detail in Fig. 8.9. Using a modal
expansion of the fields in the slit and groove regions akin to the treatment
described in chapter 6, Martín-Moreno and co-workers showed that beaming
arises from tight-binding-like coupling between localized groove modes and
the interference of their diffracted wave patterns [Martín-Moreno et al., 2003].
An example of the intensity profile I (θ) of the transmitted beam obtained using
this model is shown in Fig. 8.10. A similar calculation for the exact parameters
of the structure presented in Fig. 8.8 has demonstrated very good agreement be-
tween experiment and theory, both for the beam undergoing narrow transmis-
sion in the forward direction and the beam experiencing directional emission
at an angle. Additionally, the theoretical treatment confirmed that only a small
number of grooves N ≈10 is needed for establishing the narrow beam profile.

The angular intensity distribution can thus be arranged almost at will by
careful patterning of the exit surface of the screen, and it was even suggested
that focusing at well-defined wavelengths could occur, with the screen effec-
tively acting as a flat, wavelength-selective lens [García-Vidal et al., 2003b].

8.4 Localized Surface Plasmons and Light Transmission
Through Single Apertures

As pointed out in the discussion of the limitations of the Bethe-Bouwkamp
theory, even for an optically thick (and thus opaque) metal film the finite con-
ductivity of the real metal should be taken into account to correctly analyze the
transmission properties of a single aperture in a flat film. Penetration of the
incident field inside the screen enables the excitation of localized surface plas-
mons on the rim of the aperture [Degiron et al., 2004], akin to the description
in chapter 5 of localized modes in voids of a metallic film. One might expect
that also propagating SPPs can be excited by viewing the aperture as a local-
ized defect in the flat metal surface (see chapter 3). However, a detailed study
of SPP excitation by a single aperture defect is still awaiting demonstration.

The excitation of localized surface plasmons at a single sub-wavelength
aperture has two important consequences affecting the transmission T (λ). Not
surprisingly, due to the finite penetration of the fields into the rim of the aper-
ture, its effective diameter is increased. This in turn leads to a substantial
increase in the cut-off wavelength λmax of the fundamental waveguide mode,
compared to the physical diameter of the hole. Analytical and numerical stud-
ies have demonstrated an increase in λmax of up to 41% [Gordon and Brolo,
2005], which has to be taken into account when studying apertures with a di-
ameter just below the cut-off diameter for a perfectly-conducting screen, in
light of the problem of correct normalization of the transmission coefficient
mentioned earlier. Furthermore, theoretical studies of the transmission prob-
lem of a circular hole in a metal screen described by a free-electron dielectric



154 Transmission of Radiation Through Apertures and Films

Figure 8.11. Transmission of light through a single sub-wavelength hole milled into a free-
standing silver film (a). The transmission peak for small screen thickness h (b) is due to local-
ized surface plasmons. Reprinted from [Degiron et al., 2004], copyright 2004, with permission
from Elsevier.

function akin to (1.20) have suggested that a propagating mode exists below the
plasma frequency even for arbitrarily small hole size [Shin et al., 2005, Webb
and Li, 2006]. The influence of this mode on the transmission properties of
sub-wavelength circular apertures has yet to be clarified experimentally.

A second important point we have to consider is that the spectral posi-
tion of the localized surface plasmon mode will depend on the dimensions
and geometrical form of the aperture. By analogy to the discussion of local-
ized modes in metal nanoparticles and nanovoids in chapter 5, a significant
field-enhancement at the aperture rim can be expected, which will increase the
transmission at the wavelength where the localized mode is excited. It is only
recently that advancements in the fabrication of single holes in free-standing
metal films using focused ion beam milling have enabled careful studies of this
phenomenon. Using this technique, Degiron and co-workers confirmed the sig-
nature of a localized plasmon mode in a single circular hole in a free-standing
silver film (Fig. 8.11a) [Degiron et al., 2004]. For a relatively thin yet opaque
metal film where appreciable tunneling through the aperture can take place, a
peak in transmission was observed (Fig. 8.11b), and attributed to the excitation
of a localized mode. Furthermore, the spatial structure and spectral signature
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Figure 8.12. Electron-beam induced surface plasmon emission of light. (a) Cathodolumi-
nescence image for two different polarizations. (b) Corresponding spectrum. Reprinted from
[Degiron et al., 2004], copyright 2004, with permission from Elsevier.

of the localized plasmon mode could be established using excitation with a
high-energy electron beam. Fig. 8.12 shows the beam-induced light emission
(a) and corresponding spectrum (b), which shows good agreement with the
spectral dependency T (λ). Furthermore, the same study also presented first
evidence of narrow beaming-effects due to a localized mode at the exit side of
the screen.

(a) (b)

Figure 8.13. Transmission through a single rectangular aperture in a perfectly conducting
screen. (a) Sketch of the geometry. (b) Normalized transmittance T versus wavelength for
a normal incident plane wave impinging on apertures of different aspect ratio ay/ax . The thick-
ness of the metal is h = ay/3. The inset compares the transmission between a single square
and circular aperture. Courtesy of Francisco García-Vidal, Universidad Autónoma de Madrid.
Reprinted with permission from [García-Vidal et al., 2005b]. Copyright 2005 by the American
Physical Society.
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Figure 8.14. Enhancement of the electric field |E| with respect to the incident field for a rec-
tangular aperture of Fig. 8.13 with ay/ax = 3 and h = ay/3 at the resonant wavelength. The
top panel shows a cut through the center of the aperture, and the lower panel the field distri-
bution at the entrance surface. Reprinted with permission from [García-Vidal et al., 2005b].
Copyright 2005 by the American Physical Society.

A recent study has suggested that localized modes also play a role in the
transmission through periodic arrays of sub-wavelength apertures [Degiron and
Ebbesen, 2005]; however, compared to the importance of propagating SPPs
discussed above, the localized modes incur only minor changes [de Abajo
et al., 2006, Chang et al., 2005].

A related work by García-Vidal and colleagues analyzed the transmission
resonances occurring for a rectangular aperture of varying aspect ratios ay/ax

as depicted in Fig. 8.13a [García-Vidal et al., 2005b]. In an important differ-
ence to the experimental work [Degiron et al., 2004], the metal screen was
modeled as a perfect conductor. Thus, excitation of a localized surface plas-
mon mode was excluded by the boundary conditions along the rim of the hole,
just as in our discussion of perfect conductor modeling in the low frequency
regime presented in chapter 6. A modal analysis of the fields in the half spaces
above and below the screen, as well as in the aperture region of depth h, re-
vealed a resonance in T (λ) (Fig. 8.13b) near cut-off that increased in strength
with ay/ax and the amount of dielectric filling of the hole. As in the optical
study, this enhancement is due to a resonance, depicted in Fig. 8.14, which is
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however not of the nature of a surface plasmon. The rich physics of the trans-
mission process in the cross-over regime between decaying and propagating
modes has been revealed in a similar study [Bravo-Abad et al., 2004b].

To conclude this section, we want to point out that field tunneling through
a single aperture mediated via SPPs can be enhanced by strengthening the
coupling between the input and exit interfaces, for example by the introduction
of a multilayer structure into the metallic screen [Chan et al., 2006, Zayats
and Smolyaninov, 2006], or by filling the hole with a high-index dielectric
[Olkkonen et al., 2005].

8.5 Emerging Applications of Extraordinary Transmission
Frequency-selective enhanced light transmission (through aperture arrays

and even single apertures mediated by SPPs, localized surface plasmons or
aperture waveguide resonances) is of course not only intriguing from a funda-
mental standpoint, but also for use in practical applications. A number of the-
oretical and recently also experimental studies have exploited the associated
heightened fields at the maxima of T (λ) for applications in optical switching
using a suitable non-linear filling material [Porto et al., 2004], or for the en-
hancement of fluorescent emission from molecules located inside the aperture
[Rigneault et al., 2005]. The goal of the nonlinear work is the demonstration of
all-optical, electrical or thermal switching of the transmission. The physics of
emission enhancement in the near-field of metallic structures will be covered
in chapter 9.

A boost in the light transmission through nanoscale apertures is further
of immediate interest for applications in near-field optics. While the Bethe-
Bouwkamp treatment has recently been adapted to the conical geomtery of a
typical near-field optical probe [Drezet et al., 2001], it is up to now not clear
how lessons learned for a planar geometry can be applied to the design of more
efficient near-field probes.

Schouten and co-workers have recently demonstrated the consequences of
plasmon-assisted transmission on the classic Young’s experiment of diffraction
of light by a double slit [Schouten et al., 2005]. Another noteworthy exten-
sion of the principles presented here is the prediction of resonant transmission
of cold atoms through sub-wavelength apertures in a screen sustaining matter
waves [Moreno et al., 2005].

8.6 Transmission of Light Through a Film Without
Apertures

At the end of this chapter, we want to briefly touch on the subject of light
transmission mediated by surface plasmons through a metal film without holes.
Chapter 2 described how for a metal film of a thickness smaller than the skin
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depth, interaction between SPPs sustained at the top and bottom interface takes
place, leading to the establishment of coupled bound and leaky SPP modes.
For infinitely wide thin metal layers embedded in a symmetric dielectric host,
the two bound coupled modes are of distinct parities and have the opposite
behavior regarding field confinement with vanishing layer thickness. If both
surfaces are additionally modulated via a grating structure, SPPs can be excited
on one side of the interface by direct light illumination via grating coupling,
tunnel through the film, and be re-emitted on the other side if the period and
height of the gratings on both sides are equal. This form of light transmission
through a corrugated, unperforated metal film is accompanied by strong energy
localization in the grooves of the grating at the input and the exit side [Tan
et al., 2000].

While we might naively expect that the transmission efficiency monotoni-
cally increases with decreasing thickness of the metal film due to the increase
in overlap between the SPP modes at the two interfaces, for metal films situ-
ated on a high-index substrate such as a prism the transmission coefficient can
in fact show a maximum for a certain film thickness dcrit. This is due to the
competing effects of increased absorption and but also increased optical field
enhancement with increasing d: the reduction in leakage radiation into the
prism more than offsets the increase in absorption, which was demonstrated
using direct illumination with grating coupling [Giannattasio et al., 2004], and
local excitation using a superstrate doped with fluorescent dyes [Winter and
Barnes, 2006].

Hooper and Sambles demonstrated that a rich new physics evolves if the
gratings on both sides of the film are dissimilar [Hooper and Sambles, 2004a].
For certain conditions, extraordinary transmission similar to that occurring in
metal films perforated with apertures can take place, and applications to en-
hance the external quantum efficiency of (for example) organic light emitting
diodes have been suggested [Wedge et al., 2004]. Similar phenomena were
shown to appear in two-dimensionally corrugated metal films [Bonod et al.,
2003, Bai et al., 2005].

All these studies have effectively focused on coupled SPP modes in di-
electric/metal/dielectric three-layer structures. Enhanced transmission can also
take place via the bound mode in the opposite metal/dielectric/metal structure,
where a highly localized mode is excited in the gap between two metal sur-
faces. A recent study using near-field imaging has provided first confirmation
of these effects [Bakker et al., 2004]. We will return to the discussion of light
transmission through a flat metal film in a context of imaging in chapter 11.



Chapter 9

ENHANCEMENT OF EMISSIVE PROCESSES
AND NONLINEARITIES

One of the most spectacular applications of plasmonics to date is surface
enhanced Raman scattering (SERS), which exploits the generation of highly
localized light fields in the near-field of metallic nanostructures for enhancing
spontaneous Raman scattering of suitable molecules. Using chemically rough-
ened silver surfaces, Raman scattering events of single molecules have been
recorded [Kneipp et al., 1997, Nie and Emery, 1997], with estimated enhance-
ments of the scattering cross section by factors up to 1014. The majority of
this enhancement is believed to arise from the highly enhanced fields in metal
nanoparticle junctions due to localized surface plasmon resonances. Termed
hot spots, these highly confined fields also enable an increase of fluorescent
emission, albeit with more modest enhancement factors. A proper understand-
ing and control over the generation of these hot spots, for example in the form
of nanoscale plasmonic cavities, is currently one of the major driving forces
behind the design of nanoparticle ensembles with tuned optical properties.

This chapter will focus mainly on the fundamentals and geometries for
SERS due to localized plasmon modes in metal nanostructures. Theoretical
modeling based on scattering-type calculations will be reviewed, and addition-
ally a cavity model for SERS presented, which aims to provide a general de-
sign principle and scaling law for this light-matter interaction. The related en-
hancement of fluorescence from emitters placed into the near-field of metallic
nanostructures, as well as quenching processes due to non-radiative transitions,
are treated as well. Enhancement of the intrinsic luminescence of noble metal
nanoparticles and nonlinear processes are discussed at the end of this chapter.

9.1 SERS Fundamentals
The Raman effect (in the context of molecules) describes the inelastic scat-

tering process between a photon and a molecule, mediated by a fundamental
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vibrational or rotational mode of the latter, as depicted in Fig. 9.1a. Due to en-
ergy exchange between the scattering partners, the incoming photon of energy
hνL is shifted in energy by the characteristic energy of vibration hνM . These
shifts can be in both directions, depending on whether the molecule in question
is in its vibrational ground state or in an excited state. In the first case, the pho-
ton loses energy by excitation of a vibrational mode (Stokes scattering). In the
second case, additionally energy gains by de-excitation of such a mode (anti-
Stokes scattering) are possible. The frequencies of these two Raman bands are
therefore

νS = νL − νM (9.1a)

νaS = νL + νM. (9.1b)

Fig. 9.1b shows a comparison between a typical fluorescence and a Ra-
man spectrum. As can be seen, whereas the former spectrum is usually rel-
atively broad due to nonelastic electron relaxation to the lower edge of the
excited level (see schematic), Raman transitions are much sharper, thus en-
abling a detailed analysis of the molecule under study. In general, the pho-
tons involved in Raman transitions are not in resonance with the molecule,
and the excitation takes place via virtual levels. No absorption or emission
of photons is involved, and the transition is a pure scattering process. This
is true even in the case where the incoming photon is in resonance with an
electronic transition. This resonant Raman scattering is stronger than normal
Raman scattering, but its efficiency is still much weaker than that of fluo-
rescent transitions. Typical Raman scattering cross sections σRS are usually
more than ten orders of magnitude smaller than those of a fluorescent process:
10−31 cm2/molecule ≤ σRS ≤ 10−29 cm2/molecule, depending on whether the
scattering is non-resonant or resonant.

The Raman scattering described here is a spontaneous (as opposed to stim-
ulated) scattering event and thus a linear process: The total power of the in-
elastically scattered beam scales linearly with the intensity of the incoming ex-
citation beam. We will in the following discuss the Stokes process, for which
the power of the scattered beam can be expressed as

PS (νS) = NσRSI (νL) , (9.2)

where N is the number of Stokes-active scatterers within the excitation spot,
σRS is the scattering cross section, and I (νL) the intensity of the excitation
beam.

SERS describes the enhancement of this process, accomplished by placing
the Raman-active molecules within the near-field of a metallic nanostructure.
The nanostructure can consist of metal colloids, specifically designed nanopar-
ticle ensembles, or the topography of a roughened surface. The enhancement
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Figure 9.1. Schematic depiction of Raman scattering and fluorescence. (a) Generation of
Stokes and anti-Stokes radiation via scattering events. (b) Fluorescence and Raman scattering
in energy level pictures and representative spectra. Reprinted with permission from [Kneipp
et al., 2002]. Copyright 2002, Institute of Physics.

of PS is due to two effects. Firstly, the Raman cross section σRS is modified,
due to a change in environment of the molecule. This change to σSERS > σRS

is often called the chemical or electronic contribution to the Raman enhance-
ment. Theoretical modeling suggests that the maximum enhancement due to
the change in cross section is of the order of 100.

A much more important factor in the total enhancement of PS is the in-
creased electromagnetic field due to excitations of localized surface plasmons
and a crowding of the electric field lines (lightning rod effect) at the metal
interface [Kerker et al., 1980, Gersten and Nitzan, 1980, Weitz et al., 1983].
This leads to an enhancement of both the incoming and emitted light fields, ex-
pressed via L (ν) = |Eloc (ν)| / |E0|, where |Eloc| is the local field amplitude at
the Raman active site. L (ν) is called the electromagnetic enhancement factor.
The total power of the Stokes beam under SERS conditions is
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PS (νS) = NσSERSL (νL)2 L (νS)
2 I (νL) . (9.3)

Since the difference in frequency �ν = νL − νS between the incoming and
scattered photons is in general much smaller than the linewidth � of a localized
surface plasmon mode, |L (νL)| ≈ |L (νS)|, which brings us to the important
result that the electromagnetic contribution to the total SERS enhancement is
proportional to the fourth power of the field enhancement factor. The com-
monly used expression [Kerker et al., 1980] for the enhancement of the power
of the Stokes beam is therefore

R = |Eloc|4
|E0|4 . (9.4)

We will not expand upon this elementary discussion of SERS, but concentrate
on the field enhancement factor L (ν). The reader interested in a more detailed
and rigorous discussion of SERS is instead referred to appropriate review arti-
cles [Kneipp et al., 2002, Moskovits, 1985].

The physical basis of the electromagnetic enhancement consists of two main
contributions - the enhancement due to the resonant excitation of localized
surface plasmons in metallic nanostructures, and the lightning rod effect [Ger-
sten and Nitzan, 1980, Kerker et al., 1980, Liao and Wokaun, 1982]. Of the
two phenomena, only the plasmon resonance shows a strong frequency depen-
dence, while the lightning rod effect is due to the purely geometric phenom-
enon of field line crowding and the accompanying enhancement near sharp
metallic features. Thus, we can write that L (ν) = LSP (ν) LLR. This descrip-
tion can be applied to both Raman, resonant-Raman, and fluorescent enhance-
ment near metallic nanostructures.

The functional form of LSP is essentially that of the polarizability α of the
metallic nanostructure of a given geometrical shape. For a spherical nanopar-
ticle of sub-wavelength diameter, we can thus write by recollecting (5.7)

LSP (ω) ∝ ε (ω) − 1

ε (ω) + 2
. (9.5)

Similarly, for ellipsoidal particles the appropriate form of the polarizability
presented in chapter 5 has to be used, and LSP describes then the field en-
hancement averaged over the particle surface. In this case, the additional field
enhancement occurring at the tips of prolate ellipsoids due to the continuity of
the dielectric displacement field is described via the lightning rod factor LLR,
scaling with the ratio of the permittivities of the metal and the surrounding
dielectric (usually air). For more complex geometries, in general the enhance-
ment factors have to be calculated numerically.
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9.2 SERS in the Picture of Cavity Field Enhancement

A slightly different view of SERS describes the enhancement process via the
interaction between the molecule and an electromagnetic cavity mode. This
cavity can for example be formed by the junction between two closely spaced
metal nanoparticles, which is believed to be the site for hot-spots in experi-
ments where single-molecule SERS was observed [Kneipp et al., 1997, Nie
and Emery, 1997]. The enhancement of the electromagnetic field in such a
cavity can be expressed via its quality factor Q, describing the spectral mode
energy density, and its effective mode volume Veff, describing the spatial mode
energy density. We have seen in chapter 2 that SPPs propagating in a gap be-
tween two closely spaced metallic surfaces can show an effective mode length
smaller than the diffraction limit of the dielectric filling medium. The same
is true for the effective mode volume in plasmon cavities composed of such
structures, and for localized modes in metal nanoparticles.

Using the concept of waveguide-to-cavity coupling to analyze the enhance-
ment of an incoming beam by a metallic nanostructure [Maier, 2006b], a spon-
taneous Raman scattering process can be described by an incoming excita-
tion beam of intensity |Ei (ω0)|2/2η (η is the impedance of free space) and
frequency ω0, exciting a Raman active molecule in a cavity to emit Stokes
photons at frequency ω via a scattering event. As mentioned in the preced-
ing chapter, due to the small Stokes emission shift, one can assume equal en-
hancement of the exciting field and the outgoing Stokes field. In a context
of field enhancement in a cavity, we can therefore write Q(ω0)=Q(ω)=Q and
Veff(ω0)=Veff(ω)=Veff, assuming that both the incoming and the emitted pho-
tons are resonant with the cavity. In order to calculate the enhancement, we
want to obtain an expression for R, defined via (9.4), in terms of Q and Veff.

With |s+|2 = |Ei |2Ai/2η being the power carried by the incident beam
of cross section Ai , the evolution of the on-resonance mode amplitude u in-
side the cavity can be calculated using the relation u̇(t) = − γ

2 u(t) + κs+
[Haus, 1984], where u2 represents the total time-averaged energy in the cavity.
γ = γrad + γabs is the energy decay rate due to radiation (γrad) and absorption
(γabs), and κ is the coupling coefficient to the external input, which depends
on the size and shape of the excitation beam. κ can be expressed as κ = √

γi ,
where γi is the contribution of the excitation channel to the total radiative decay
rate [Haus, 1984]. For a symmetric two-sided cavity, in a first approximation
one can estimate γi = (γrad/2)(Ac/Ai), with Ac corresponding to an effective
radiation cross-section of the resonant cavity mode (its radiation field imaged
back into the near-field of the cavity). Note that Ai has been assumed to be
larger than Ac in the above relation, and that Ac can be no smaller than the
diffraction limited area Ad (Ad ≤ Ac ≤ Ai). Putting everything together, in
steady state the mode amplitude can be expressed as [Maier, 2006b]



164 Enhancement of Emissive Processes and Nonlinearities

u =
√

2γradAc/Ai |s+|
γrad + γabs

=
√

γradAc|Ei |√
η(γrad + γabs)

, (9.6)

which for fixed incoming power is maximum upon spatial mode matching
(Ac = Ai).

Due to the different contributions of radiative and absorptive damping, we
now have to distinguish between dielectric and metallic cavities. For a dielec-
tric cavity (γrad � γabs), u ∝ 1/

√
γrad ∝ √

Q, while for a metallic cavity
(γabs � γrad) u ∝ 1/γabs ∝ Q, explaining the different scaling laws for field
enhancement in dielectric [Spillane et al., 2002] and metallic [Klar et al., 1998]
resonators encountered in the literature.

Since the effective mode volume relates the local field to the total electric
field energy of the cavity (see the discussion of the effective mode length in
chapter 2), we can write the resonant mode amplitude as u = √

ε0|Eloc|√Veff.
Therefore, using (9.6) the enhancement of the incoming radiation in a metallic
cavity evaluates to

√
R = |Eloc|2

|Ei |2 = γradAc

4π2c2ηε0λ0

Q2

V̄eff
. (9.7)

A similar scaling law has been obtained for plasmonic energy localization
in fractal-like metal nanoparticle aggregates on metal surfaces [Shubin et al.,
1999].

We can now use this expression to estimate R for a crevice between two
silver nanoparticles separated by a nanoscale gap, a configuration which is be-
lieved to sustain SERS hot-spots with R ∼ 1011 upon resonance. The crevice
can be approximately modeled as a metal/air/metal heterostructure treated in
chapter 2, with the lateral widths fulfilling a Fabry-Perot-like resonance con-
dition: the fundamental resonance occurs when half the wavelength of the
coupled SPP mode fits inside the cavity. Its effective dimensions are thus
the effective mode length Lz of the gap structure, calculated using the pro-
cedure outlined in chapter 2, and Ly ∼ Lx=λSPP/2 = π/β. Using the sim-
plified analytical treatment of a one-dimensional silver/air/silver structure with
a 1 nm air gap for the calculation of β and Lz, Ac=Ad , and (Q, γrad) esti-
mated from FDTD calculations, (9.7) yields R ∼ 2.7 × 1010 for excitation at
λ0 = 400nm, in good agreement with full-field three-dimensional simulations
of the enhancement for this coupled particle geometry [Xu et al., 2000].

The total observable enhancement of the Stokes emission can be estimated
as the product of the field enhancement of the incoming radiation and the en-
hanced radiative decay rate at the Stokes frequency. As is well known, a dipole
oscillator placed inside a metallic cavity shows an increase in its total decay
rate γ /γ0 = (3/4π2)(Q/V̄eff)[Hinds, 1994].
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However, we have to note that the dominance of absorption over radiation
as loss channels has to be taken into account. For collection of light emission
outside the cavity, the overall cavity enhancement must therefore be weighted
with an extraction efficiency, Q/Qrad [Barnes, 1999, Vuckovic et al., 2000].
The emission enhancement at the peak emission frequency of the Stokes line
can then be written as (3/4π2)(Q2/V̄eff)(Q/Qrad). Incorporating the relation
for the enhancement of the excitation field (9.7), the overall enhancement is
estimated to be 1.5 × 1012 for the crevice example, similar to observed values
[Nie and Emery, 1997, Kneipp et al., 1997]. More details on this model can be
found in [Maier, 2006b].

9.3 SERS Geometries
In this section we will discuss a number of important geometries where large

enhancements of Raman scattering have been experimentally observed. Since
in order to achieve local field enhancement, a surface showing strong localized
plasmons is desirable, ensembles of metallic nanostructures with interstitial
gaps of the order of only a few nanometers are preferable. Furthermore, the
intrinsic response of the metal, expressed via its dielectric function ε (ω), has
to allow for the resonances to occur in the spectral regime of interest. Since
up to now most studies have been limited to gold and silver, SERS with high
enhancement factors is mostly reported for work in the visible regime of the
spectrum.

As already mentioned at a number of occasions, the highest enhancements
recorded to date have been achieved on roughened silver surfaces and are on
the order of 1014 [Kneipp et al., 1997, Nie and Emery, 1997]. It is believed
that the electromagnetic effect provides for a factor of up to 1012 to this total
enhancement. Taking the scaling of the Raman enhancement with the local
field amplitude (9.4) into account, the rough surface must therefore support
hot spots with field enhancement factors L (ν) on the order of 1000.

García-Vidal and Pendry modeled this geometry as a collection of closely
spaced semicylinders on a flat surface (Fig. 9.2, left) [García-Vidal and Pendry,
1996]. The SERS enhancement provided by this topography was calculated us-
ing a scattering analysis, which yielded R ≈ 108 for interstitial sites between
touching cylinders (Fig. 9.2, right). The highly localized field at such a site
is depicted in Fig. 9.3, and is seen to arise from a localized plasmon mode in
the gap region between the two metallic surfaces. The conduction electrons
in the two touching cylinders move as to create an opposite charge density
distribution on neighboring surfaces; thus, the mode is related to the coupled
SPP mode in a metal/air/metal heterostructure, described in chapter 2 and the
preceding section. The importance of localized gap-modes for SERS was fur-
ther corroborated in comprehensive numerical electromagnetic studies of inter-
stitial sites between metal nanoparticles, which confirmed that enhancements
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Figure 9.2. Sketch of a rough metal surface modeled via a chain of silver semicylinders placed
upon a flat silver surface (left) and the local enhancement evaluated at the crevices between the
semicylinders (right) for varying gap sizes. Reprinted with permission from [García-Vidal and
Pendry, 1996]. Copyright 1996 by the American Physical Society.

enabling single-molecule detection are possible [Xu et al., 2000]. These inves-
tigations have also confirmed enhanced optical forces polarizing the molecules
and attracting them into the gaps via the strong field gradient [Xu et al., 2002].

The realization that localized plasmons play a crucial role in the Raman
enhancement of molecules at a metal surface has triggered a great amount of

Figure 9.3. Distribution of the electric field (upper figure) and its divergence (lower figure) at
the junction between two semicylinders for the geometry depicted in Fig. 9.2. Reprinted with
permission from [García-Vidal and Pendry, 1996]. Copyright 1996 by the American Physical
Society.
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research into the design and fabrication of SERS substrates with controlled sur-
face structure optimized for field enhancement. Topographies based on closely
spaced nanoparticles (in a sense mimicking a surface with controlled, regular
roughness), specially shaped nanostructures or nanovoids have been analyzed
for their effectiveness as SERS substrates.

For example, SERS based on isolated metallic nanoparticles has been char-
acterized using far-field Raman spectroscopy of regular particle arrays situated
on a metal film substrate, where the localized surface plasmon resonance is
mediated by far-field coupling between the particles [Félidj et al., 2004, Lau-
rent et al., 2005a] as described in chapter 5. Studies of nanoparticles of various
shapes have confirmed the crucial role of localized surface plasmon modes
on the Raman enhancement [Grand et al., 2005], and multipolar excitations
in elongated particles have also been shown to contribute to SERS [Laurent
et al., 2005b]. Another promising particle geometry are metallic nanoshells
[Xu, 2004, Talley et al., 2005], which can show large field-enhancements due
to reduced plasmon linewidths at near-infrared frequencies. The field enhance-
ment due to localized surface plasmon resonances can further be increased by
placing the particles into a microcavity [Kim et al., 2005], or by coupling the
localized plasmon to propagating SPPs on a continuous metal film [Daniels
and Chumanov, 2005].

An example of a flat metal film structured with a nanovoid lattice is shown in
Fig. 9.4 [Baumberg et al., 2005]. In this case, the voids support localized plas-
mon resonances and further act as a lattice for phase-matching for the excita-
tion of SPPs (Fig. 9.4b). The plasmon is then Raman-scattered by the molecule
into a plasmon of lower frequency, which is subsequently scattered into a pho-
ton. However, in their current form the electromagnetic field enhancement of

Figure 9.4. SERS using a nanovoid metal film. (a) SEM of the structured flat surface. (b)
Schematic of the SERS process. (c) Example SERS spectrum. Reprinted with permission from
[Baumberg et al., 2005]. Copyright 2005, American Chemical Society.
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Figure 9.5. Fabrication process of crescent moon structures (left) and electric field profile
(right) showing hot-spots at the tips of the moon structure. Reprinted with permission from [Lu
et al., 2005]. Copyright 2005, American Chemical Society.

these nanovoid-decorated flat films is lower than that of rough surfaces where
single-molecule Raman was observed.

In order to achieve an electromagnetic field enhancement of the order of
1000 necessary for single-molecule Raman with nanofabricated structures,
nanometric gaps between metallic surfaces akin to those naturally occuring on
rough surfaces have to be achieved. One strategy involves the fabrication of
metal nanoparticles in the form of a crescent moon with two sharp tips spaced
by only a small gap [Lu et al., 2005]. Lu and co-workers realized the fabri-
cation of such particles via angled metallization of nanospheres (Fig. 9.5 left).
Electromagnetic simulations show a high field-enhancement at the sharp tip
(Fig. 9.5 right), which is believed to be due to localized plasmon resonances
and the lightning rod effect. The field enhancement at the tips is in excess
of 100, leading to a Stokes enhancement of the order of 1010. Similar en-
hancements can be achieved in small gaps between opposing nanotriangles
[Sundaramurthy et al., 2005].

Another promising geometry for reliable SERS substrates are aligned, high-
aspect nanowires fabricated using a porous templating process. Fig. 9.6 shows
an example of a SERS spectrum and SEM of a silver nanowire array fabricated
using a porous alumina template [Sauer et al., 2005]. Also, the use of porous
silicon as a substrate for the generation of dentritic metal structures has been
demonstrated [Lin et al., 2004].

Most SERS studies using substrates with nanostructured topographies have
focused on the metals gold and silver, which show a localized plasmon reso-
nance in the visible or near-infrared regime (for elongated particles), and are
thus suitable for Raman in this spectral region. In order to extend SERS into
different frequency regimes, particularly the ultraviolet region, a number of
different metals have recently started to be investigated, amongst them nickel
[Sauer et al., 2006]. Additionally, rhodium and ruthenium seem to show partic-
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a)

b)

Figure 9.6. SERS spectra (a) and SEM image (b) of a gold nanowire array in a porous alu-
mina matrix. Reprinted with permission from [Sauer et al., 2005]. Copyright 2005, American
Institute of Physics.

ular promise for applications in the UV [Ren et al., 2003, Tian and Ren, 2004],
albeit with modest enhancement factors.

While metallic surfaces with a topography suitable for SERS show a high
promise as platforms for biological and chemical sensing, many applications
(especially in materials science) use Raman scattering to investigate, not sin-
gle molecules, but thin-film samples of semiconductors and adsorbed species.
In this case, spatially resolved Raman spectra are desirable, which are usually
generated by scanning the excitation beam over the film under study using an
optical microscope. To enable the enhancement of the Raman signal using
this geometry, tip-enhanced Raman scattering [Lu, 2005] is required. In this
case, a sharp metal tip is scanned over the surface using feedback akin either
to STM, AFM or tuning-fork feedback. The tip is illuminated from the outside
via a focused laser beam, thus creating an enhanced field at its apex due to lo-
calized resonances and the lightning rod effect. In order to observe a high field
enhancement at the apex of the tip, the illumination condition has to be chosen
such as to create a longitudinal dipolar charge distribution. Using illumina-
tion from the bottom, this requires highly focused Gaussian beams [Hayazawa
et al., 2004] or the use of Hermite-Gaussian beams, which show a strong lon-
gitudinal field component. We note that on metalized tips of conical shapes,
field enhancement can arise both from localized modes at the (spherical) apex,
as well as from surface modes sustained by the surface of cone. As an ex-
ample, Fig. 9.7 shows the electric field enhancement at a metal tip calculated
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Figure 9.7. FDTD calculations of the electric field enhancement at a silver cone of semiangle
30◦ terminated with a spherical apex of radius 20 nm. The upper row shows the field distribution
at the resonance frequency of the apex when the tip is situated 2 nm above a glass substrate. In
the pictures in the lower row the tip is illuminated at the surface plasmon resonance frequency
of the silver cone. (a) Frontal view from the glass substrate side. (b) Side-view cut through
the symmetry plane of the cone. Reprinted with permission from [Milner and Richards, 2001].
Copyright 2001, Blackwell Publishing.

using finite-difference time-domain modeling for illumination at an angle at
the frequency ωp/

√
3 of the localized apex mode (upper row), and for normal

illumination at the frequency ωp/
√

2 of the surface plasmon mode of the cone
surface (lower row) [Milner and Richards, 2001].

Apart from the intrinsic enhancement at the apex of a sharp metal tip dis-
cussed in the context of SPP focusing in chapter 7, it is currently believed
that the enhanced field in the tip-sample cavity contributes to the observed en-
hancements. These techniques have for example been applied to investigations
of nucleotides [Watanabe et al., 2004] and small carbon-based molecules [Pet-
tinger et al., 2004]. Resolution on the order of 25 nm has been demonstrated
for carbon nanotube substrates [Hartschuh et al., 2003].

9.4 Enhancement of Fluorescence
The heightened electromagnetic fields near metallic surfaces due to local-

ized plasmon resonances and propagating SPPs also enhance the emission of
fluorescent species placed in the near field. However, for molecules in contact
with the metallic surface, care has to be taken in order not to quench the flu-
orescence via non-radiative transitions. Thus, for the observation of enhanced
fluorescence, often a nanometer-thin dielectric spacer layer is required to pro-
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hibit non-radiative excitation transfer from the molecule to the metal. We have
already hinted at this point in chapter 4 when discussing fluorescence imaging
of SPP propagation.

Let us briefly illustrate the complexity of the interaction process by fo-
cusing on one particular investigation. Anger and co-workers performed a
comprehensive study of the enhancement and quenching of emission from a
single fluorescent molecule near a sub-wavelength gold sphere [Anger et al.,
2006]. Fluorescence results from excitation of the molecule by the incident
field - which can show significant enhancement due to a plasmon resonance of
the gold particle - and the subsequent emission of radiation by the molecule,
which is determined by the balance between radiative and non-radiative de-
cay processes. Since non-radiative energy transfer to the nanoparticle can take
place for small distances between the molecule and the sphere, a decrease in
emission probability can be expected, despite an increase in excitation rate due
to the enhanced local field.

For weak excitation, the fluorescence emission rate γem can be related to the
excitation rate γexc and the total decay rate γ = γr + γnr via

γem = γexc
γr

γ
, (9.8)

where γr is the radiative and γnr the non-radiative decay rate. The emission
probability qa = γr/γ is also called the quantum yield of the emission process.
The fluorescence process can then be treated by assuming a two-level model of
the molecular transition, and a description of the modified electromagnetic en-
vironment due to the presence of the gold nanoparticle using a Green’s function
approach. In this study, a profound difference was found for short separations
z between the emitter and the sphere between treatments of the particle as a
simple dipole, and a description involving multipolar orders. Fig. 9.8 shows
results for the quantum yield qa and the normalized excitation and fluorecent
emission rates γexc and γem as a function of the distance between the mole-
cule and gold spheres of different sub-wavelength sizes. Taking into account
higher order interactions (apart from simple dipolar coupling) confirms the ex-
perimentally observed emission quenching for small gaps between the emitter
and the metallic structure, due to non-radiative energy transfer (Fig. 9.8b). It is
interesting to note that since γnr is proportional to the amount of Ohmic heat-
ing, the maximum in fluorescence enhancement does not necessarily occur for
excitation at the plasmon resonance frequency.

An experimental setup suitable for the observation of the predicted distance
dependence of the fluorescent emission is shown in Fig. 9.9a. The gold sphere
is attached to the scanning tip of a near-field optical microscope to allow the
controlled variation of the distance to the molecule, which is placed on a planar
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Figure 9.8. Calculated quantum yield qa , excitation rate γexc and fluorescence rate γem for a
single molecule located in a distance z from a gold sphere of diameter 80 nm (a) or as indicated
in figure (b). Excitation takes place at λ = 650 nm, which was assumed to coincide with
the peak of the emission spectrum, and all rates are normalized to their respective free-space
values. The dashed lines correspond to a dipole model of the particle, and the continuous lines
to a model taking higher multipoles into account. Reprinted with permission from [Anger et al.,
2006]. Copyright 2006 by the American Physical Society.

substrate. Fig. 9.9b shows the calculated field distribution in the sphere-surface
cavity.

A study of the single molecule emission rate versus vertical position of the
tip revealed a functional dependence in agreement with the theoretical pre-

Figure 9.9. Experimental setup (a) and calculated field distribution for an emitter located on
a glass substrate at a distance z = 60 nm below a gold particle (b) for the study of single-
molecule fluorescence near a gold sphere. Reprinted with permission from [Anger et al., 2006].
Copyright 2006 by the American Physical Society.
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Figure 9.10. Experimentally determined emission rate (dots) and comparison with the theoret-
ical curve of Fig. 9.8b) (a) and near-field image (b) of a fluorescent molecule near a gold sphere.
A theoretical calculation of the emission intensity is shown in (c). Reprinted with permission
from [Anger et al., 2006]. Copyright 2006 by the American Physical Society.

diction (Fig. 9.10a). Experimentally observed and calculated pictures of the
single molecule emission are shown in panels b) and c) of this figure, and are
in good agreement with each other. It is interesting to note that the decrease in
quantum yield has not only been attributed to an increase in the non-radiative
decay rate, but also to phase-induced decreases of the radiative decay process
for small emitter-particle separations [Dulkeith et al., 2002]. While near-field
optical microscopy is a convenient means to investigate the enhancement and
quenching of fluorescent emission in a controlled fashion, also other promising
geometries are emerging, such as for example metallic tunnel junctions filled
with an organic layer with embedded molecules [Liu et al., 2006].

Xu and co-workers have shown that the enhancement of Raman scattering
and fluorescence near a metallic surface or nanoparticle can be described using
a unified treatment [Xu et al., 2004, Johannsson et al., 2005]. We will not
carry the description of fluorescence further, but instead use the remainder of
this chapter for a brief look at the enhancement of other emissive processes.

9.5 Luminescence of Metal Nanostructures
Photoluminescence from bulk noble metal samples was first observed by

Mooradian using gold and copper samples excited by a strong (2 W) cw argon-
ion laser beam [Mooradian, 1969]. The luminescence is due to the excitation
of d-electrons into the sp-conduction band and subsequent direct radiative re-
combination, resulting in the peak of the luminescence spectrum being cen-
tered around the interband absorption edge. However, due to the dominance
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of nonradiative relaxation processes, the quantum efficiency of this process is
very low, on the order of 10−10 for smooth metallic films.

Significant enhancements of the photoluminescence yield (up to 106) have
been achieved using rough metal films [Boyd, 2003] and metallic nanoparti-
cles [Link and El-Sayed, 2000, Wilcoxon and Martin, 1998, Dulkeith et al.,
2004], akin to similar enhancements observed for Raman scattering. The en-
hancement can be explained with the model of enhanced localized fields due
to plasmon excitation and the lightning rod effect, using the enhancement fac-
tor L (ν) introduced at the beginning of this chapter. Following the argument
leading to the scaling of the Raman enhancement (9.3), the increase of photo-
luminescence in the local field model is expected to scale as

Plum ∝ L (ωexc)
2L (ωem)2, (9.9)

where ωexc and ωem are the frequency of excitation and emission, respectively.
This model naturally explains the observation that the broad luminescence
band is significantly enhanced only at the spectral position of the spectrally
sharper plasmon resonance, as confirmed by Link and co-workers by studying
gold nanorods of different aspect ratios [Link and El-Sayed, 2000].

In the local field picture, the photoluminescence process is not inherently
altered from that on flat surfaces, in the sense that light emission is caused
by direct recombination between the sp and d bands, albeit in heightened lo-
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Figure 9.11. (a) Optical density (black line) and photoluminescence spectrum (gray line) for
gold nanoparticles of radius 6 nm. The dashed-dotted line shows an extinction spectrum cal-
culated using Mie theory. The inset shows the peak position of the optical density (triangles)
and photoluminescence spectra (circles) for gold nanoparticles of different radii in solution.
(b) Schematic of the plasmon-mediated photoluminescence process. After the initial excita-
tion, the holes in the d-band may either radiatively recombine with electrons in the sp band,
or non-radiatively via the creation of a particle plasmon, which decays either radiatively on
non-radiatively. Reprinted with permission from [Dulkeith et al., 2004]. Copyright 2004 by the
American Physical Society.
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cal fields. A different model for the enhancement process was recently pro-
posed by Dulkeith and co-workers in a study of the photoluminescence of gold
nanospheres [Dulkeith et al., 2004]. As in the earlier studies, their observed
luminescence spectrum closely followed that of the localized plasmon mode of
the nanospheres (Fig. 9.11a). However, the obtained efficiency of 10−6 could
not be explained using the local field model. Instead, a different model was
proposed whereby a significant portion of the excited sp electrons decay into
plasmons (Fig. 9.11b). The dominance of the plasmon decay channel was at-
tributed to the large polarizability of the particle plasmon mode, leading to a
greater radiative decay rate than that of a direct interband recombination. In
this picture, the radiative decay of the plasmon into photons gives rise to the
observed photoluminescence enhancement.

The luminescence processes discussed above are inherently linear or one-
photon processes. Significant enhancement can also be achieved by using
multi-photon absorption [Farrer et al., 2005], a description of which is how-
ever outside the scope of this book.

9.6 Enhancement of Nonlinear Processes
We want to conclude this chapter by presenting another category of emissive

processes enhanced due to plasmonic field localization, namely that of nonlin-
ear light generation. After the discussions above, it should come as no surprise
that also nonlinear processes such as second or third harmonic generation can
be strongly enhanced due to localized surface plasmons, as described by the
local field model.

In principle, two different configurations exist, depending on whether the
nonlinear effects are due to the intrinsic nonlinear susceptibility of the metal
nanostructure itself, or caused by a nonlinear surrounding host. Both nonlinear
processes are enhanced at frequencies within the lineshape of the localized
plasmon. We will focus here on a brief description of the former process in the
form of second harmonic generation from the metal nanostructures themselves.

The fact that metallic surfaces can emit second harmonic radiation in reflec-
tion despite the cubic symmetry of the metallic lattice is due to the breaking
of the symmetry at the surface [Bloembergen et al., 1968, Rudnick and Stern,
1971, Sipe et al., 1980]. This process can be enhanced by the coupling to sur-
face plasmons on flat films [Simon et al., 1974] or on films inscribed with a
grating [Coutaz et al., 1985]. In the latter study, an enhancement factor of 36
compared with the flat film case was found. As with luminescence, significant
enhancement of the second harmonic radiation can also be observed on rough
metal surfaces [Chen et al., 1983], explained by the local field model. In this
case, we expect the power PSH of the second harmonic radiation to scale as

PSH ∝ |L (2ω)|2 ∣∣L2 (ω)
∣∣2

. (9.10)
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For the calculation of the enhancement of a general, n-th order nonlinear
process, one must simply replace each field E (ω) in the calculation of the
nonlinear polarization by the local field Eloc (ω) = L (ω) E (ω), with an addi-
tional enhancement factor for the emitted radiation at frequency nω.

Rough metal films can be viewed as a specific example of the more general
case of composite optical materials with inherent randomness. The nonlinear
optical properties of these small-particle composites are generally described
within the framework of the Maxwell-Garnett model [Shalaev et al., 1996, Sipe
et al., 1980]. A discussion of this theory is beyond the bounds of this book, but
the interested reader is referred to the text by Shalaev on this topic [Shalaev,
2000].

Detailed studies of the enhanced second harmonic generation from rough
metal films using laser scanning optical microscopy have revealed that the
origin of the enhancement is indeed due to hot spots with high fields caused
by localized modes [Bozhevolnyi et al., 2003]. For metal nanoparticles, de-
tailed studies of the nonlinear properties have revealed important information
about the inherent plasmon lifetime [Heilweil and Hochstrasser, 1985, Lam-
precht et al., 1999] and the susceptibilities [Antoine et al., 1997, Ganeev et al.,
2004, Lippitz et al., 2005].



Chapter 10

SPECTROSCOPY AND SENSING

The main part of this chapter describes different techniques for spectro-
scopic investigations of localized plasmon resonances in single metal nanopar-
ticles, with a view to applications in sensing. The basic principle of single-
particle sensors is the exploitation of the fact that the spectral position of their
resonances depends on the dielectric environment within the electromagnetic
near field. Applied to biological sensing, adsorption of molecules on a func-
tionalized metal surface leads to spectral changes of the sustained plasmon
modes. Due to the very localized nature and therefore high energy concentra-
tion in the near field of surface plasmons, even molecular monolayers can lead
to discernible spectral changes. This high sensitivity has allowed surface plas-
mon sensors to become established as an analytical sensing technology over
the last two decades.

The most important challenge encountered in almost any biosensor design
is that of ensuring selectivity. In the case of surface-plasmon-based sensors,
this is achieved via functionalization of the metallic surface to ensure only se-
lective binding of the agent to be sensed. We will not focus on this aspect of
sensor design here, but only mention that the surface chemistry of gold de-
serves special attention due to the relative ease of establishing sulfur bonds be-
tween gold atoms and organic molecules. Therefore, gold has emerged as the
metal of choice for almost all practical optical sensing applications, including
those based on surface plasmons. An important consequence is that due to the
permittivity of gold, sensing is usually limited to the visible and near-infrared
part of the spectrum.

We provide an overview of different excitation geometries for the investiga-
tion of localized surface plasmons, which is related to the analogous discussion
of SPP excitation in chapter 3. The second part of this chapter aimes to give
a flavor for different aspects of sensors based on propagating SPPs, relying on
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changes to the dispersion relation and the condition of phase-matching upon
refractive index changes at flat metal interfaces. We will limit the discussion
to two prominent excitation geometries, based on prism coupling and coupling
using optical fibers coated with a metal film. However, we will not embark on
a discussion of sensor performance in terms of selectivity and sensitivity. As
a starting point for the exploration of important omitted aspects such as these,
the reader is referred to the review by Homola [Homola et al., 1999].

10.1 Single-Particle Spectroscopy
This section continues the discussion of excitation mechanisms, presented

in chapter 3 for propagating SPPs, by describing different excitation pathways
for localized plasmon resonances in metal nanoparticles. We have seen in the
description of the fundamentals of localized resonances in chapter 5 that the
frequencies of the resonant modes of regular particle ensembles can be deter-
mined using conventional far-field extinction spectroscopy. Upon resonance
the extinction cross sections of individual particles are resonantly enhanced,
and for a sufficient spacing the extinction peak of the ensembles coincides with
the localized plasmon frequency of an individual particle. However, due to
slight differences in particle shape, inhomogeneous broadening of the extinc-
tion line shape can occur. Spectroscopy of single nanoparticles requires more
sensitive detection techniques (due to the large background of radiation directly
passing from the source to the detector), which will be outlined in this section.

The investigation of plasmon resonances of single particles is not only rele-
vant from a fundamental point of view (e.g. the determination of the homoge-
neous linewidth �), but also potentially for practical applications in sensing. In
this context, single metal nanoparticle sensors operate via the detection of fre-
quency shifts of the dipolar plasmon resonance upon binding of molecules to
the nanoparticle surface, which can be detected using spectroscopic techniques
suitable for single-particle investigation.

Let us briefly review: for a spherical particle of a sub-wavelength diameter
d � λ0, the resonance frequency of the dipole mode for small damping is
given by the Fröhlich condition

ε
(
ωsp

) = −2εm. (10.1)

Here, ε (ω) is the dielectric function of the metal, and εm the dielectric con-
stant of the insulating host. Whereas the derivation of (10.1) in chapter 5 has
assumed an infinite extent of the surrounding host medium, the sub-wavelength
localization of the dipolar plasmon mode means that ωsp is only determined by
the dielectric environment within the tail of the evanescent near field of the
particle. Changes in εm, induced for example via adsorption of a molecular
monolayer on the particle surface, can then be detected via changes in the
dipolar resonance frequency ωsp.
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While sensing in this manner can be easily performed using far-field extinc-
tion spectroscopy if a large amount of particles arranged in a regular array is
used as the sensing template, sensors based on a single metallic nanostructure
are highly desirable. Firstly, interrogation of a single particle does not suf-
fer from the inhomogeneous broadening of the resonant line shape observed
in far-field spectroscopy. This, together with the fact that binding events are
monitored in a local manner, leads to an increased sensitivity, expressed via
observed peak-shift with quantity of agent binding. Also, sensors based on in-
dividual particles of submicron dimensions enable at least in principle a high
integration density of sensing sites for assay-like studies with high through-
put. However, for this vision to come true, a suitable, parallelized addressing
scheme for individual, closely spaced particles has first to be developed.

Proof-of-concept studies of single-particle sensors therefore rely on the spec-
troscopic determination of the plasmon resonance of an individual, sub-wave-
length metallic nanoparticle. In the following, we will present four prominent
optical excitation techniques suitable for this purpose - total internal reflection
spectroscopy, near-field microscopy and dark-field microscopy, and photother-
mal imaging of very small particles with dimensions below 10 nm.

In total internal reflection spectroscopy, metallic nanostructures are deposit-
ed on top of a prism, and excitation takes place using illumination under to-
tal internal reflection conditions. Similar to the excitation of SPPs on a flat
metal film described in chapter 3, the evanescent field above the prism acts
as a local excitation source for modes at the interface, leading to resonantly
enhanced scattering. This way, the frequency of spatially confined modes in

Figure 10.1. Setup for single-particle spectroscopy using evanescent excitation via total inter-
nal reflection at a prism and the monitoring of scattered light. Reprinted with permission from
[Sönnichsen et al., 2000]. Copyright 2000, American Institute of Physics.
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Figure 10.2. Shift of particle plasmon resonance detected using prism excitation. Reprinted
with permission from [Sönnichsen et al., 2000]. Copyright 2000, American Institute of Physics.

metal nanoparticles can be determined using white light illumination and de-
tection of the scattered light via far-field collection from the top (Fig. 10.1).

Examples of plasmon spectra of a single gold particle collected in this man-
ner are shown in Fig. 10.2. As expected from (10.1), the resonance peak of
the dipole plasmon mode red-shifts upon immersion of the particle into a high-
index environment such as water or oil. The expected spectral variation of the
collected intensity can in a first approximation be calculated via the formulae
for the cross sections of first-order Mie theory (5.13), using the appropriate di-
electric data ε(ω) for the metal. For a metal particle on a glass prism immersed
in an external medium, the effective dielectric constant of the host can often
simply be approximated as 1/2

(
εprism + εm

)
.

Single-particle spectroscopy can also be performed using near-field optical
microscopy, i.e. by placing an apertured fiber tip into the near field of the parti-
cle under study. In its simplest form, spectroscopic information is obtained by
monitoring the spectral intensity distribution of radiation collected in the far
field (either in transmission or reflection) ensuing from local illumination of
the particle with white light. This way, the resonance frequencies and homo-
geneous lineshapes of plasmon modes in single particles can be determined.
Pioneering spectroscopic studies of single particles have been performed using
both transmission near-field optical microscopy with near-field illumination
and far-field collection [Klar et al., 1998], and collection-mode near-field opti-
cal microscopy with prism-coupling illumination as described above, but with
near-field instead of far-field collection [Markel et al., 1999].

In a more recent study, Mikhailovsky and co-workers have shown that trans-
mission mode near-field optical microscopy with local white light illumination
through the sub-wavelength aperture enables a high sensitivity for determining
the plasmon resonance of an individual particle due to phase information en-
coded into the intensity collected in the far field [Mikhailovsky et al., 2004].
This is based on the fact that the light scattered by the particle in the forward
direction interferes either constructively or destructively with the light directly
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Figure 10.3. Sketch of excitation geometry (a) and experimental setup (b) for white-light illu-
mination mode near-field optical microscopy. (c) Spectrum of the white light supercontinuum
at the output of the fiber tip. Reprinted with permission from [Mikhailovsky et al., 2003]. Copy-
right 2003, Optical Society of America.

collected from the aperture [Batchelder and Taubenblatt, 1989]. Fig. 10.3
shows a sketch of the experimental setup and a spectra of a white light su-
percontinuum passing through an apertured tip. Typical examples of images
of both the topography and the optical near field of gold nanoparticles are pre-
sented in Fig. 10.4a.

An investigation of the scattering and absorption process using the model
of a driven damped harmonic oscillator predicts a contrast reversal of the near-
field image due to the transition from destructive to constructive interference
at ωsp (Fig. 10.4b). We recollect from chapter 5 that, in the vicinity of the
resonance, a phase shift φ between the driving field and the response of the
electrons of π occurs, with φ

(
ωsp

) = π/2. An analysis of near-field images
obtained at different frequencies therefore enables the determination of ωsp for
particles of various sizes (Fig. 10.4c).

While near-field optical extinction microscopy provides unprecedented spa-
tial resolution for local spectroscopy, the optical probe placed in the near field
of the particle poses a difficult constraint for practical sensing applications.
Agent binding is additionally often monitored in a liquid environment, which
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Figure 10.4. (a) Topography and near-field image of a 50 nm gold sphere. (b) Near-field
extinction spectrum (solid gray curve) compared with interference (black curve) and phase
(dashed curve) spectra for a single 50 nm gold particle calculated using a forced harmonic
oscillator model. (c) Dependence of resonance frequency on particle size inferred from the
spectra. Reprinted with permission from [Mikhailovsky et al., 2003]. Copyright 2003, Optical
Society of America.

poses serious stability problems for the probe movement. Moreover, since
near-field optical microscopy only allows the determination of optical prop-
erties near a surface, in situ measurements of metal nanoparticles within cell
bodies are generally not possible. A more suitable geometry for such purposes
is dark-field optical microscopy, which is a far-field technique where only light
scattered by the nanoparticle is collected. Here, use of a dark-field condenser
prevents the collection of the directly transmitted light. Therefore, in dark-field
images metal nanoparticles appear in bright colors, defined by the resonance
frequency ωsp of their scattering cross section (5.13). A typical dark-field im-
age of single gold nanoparticles is shown in Fig. 10.5c. We note that due to the
constraint of the diffraction limit for focusing of the illumination spot, single-
particle sensitivity can only be achieved for well-separated nanoparticles.

An example of the monitoring of a molecular binding event is shown in
Figs. 10.5 and 10.6 [Raschke et al., 2003]. The coating of a gold nanoparti-
cle with a BSA-complex leads to a slight red-shift of ωsp, which is increased
upon the selective binding of streptavidin molecules (Fig. 10.5b). The binding
can be monitored in real-time via a recording of the resonance shift with time
(Fig. 10.6), and saturation is achieved upon complete coating of the particle.
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Figure 10.5. (a) Principle of a single nanoparticle biosensor monitoring the selective bind-
ing of streptavidin on an BSA-decoared gold nanoparticle. (b) Mie-theory calculations of the
scattering spectra for the undecorated particle and the particle with BSA and BSA-streptavidin
coating, demonstrating red-shifts of the resonance with each coating layer. (c) Dark-field pic-
tures and sketch of the detection pathway. Reprinted with permission from [Raschke et al.,
2003]. Copyright 2003, American Chemical Society.

A similar study based on single silver nanoparticles demonstrated that a sensi-
tivity on the order of zeptomoles can be achieved, and first applications using
medically-relevant assay studies are emerging [Haes et al., 2004].

Figure 10.6. Resonance shift versus incubation time for streptavidin-BSA binding for differ-
ent streptavidin concentrations C added at t = 0, and control experiments. Reprinted with
permission from [Raschke et al., 2003]. Copyright 2003, American Chemical Society.
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Further improvements in sensitivity have been predicted for single-particle
sensors employing resonance line shape design, which can either be achieved
using metallic nanoshells [Raschke et al., 2004], designed particle arrays with
near-field coupling for hot spot generation [Enoch et al., 2004], or by using
a particle-on-extended film approach to couple the particle plasmon to propa-
gating SPPs [Chen et al., 2004]. Also, the use of elongated nanoparticles has
enabled polarization-sensitive orientation sensing [Sönnichsen and Alivisatos,
2005].

The good biocompatability and well-developed surface chemistry of gold
nanoparticles has further lead to their wide use in cellular imaging. In these
studies, the nanoparticles mainly serve as a labeling agent for the tracking of
single molecules or molecular complexes. Optical microscopy techniques such
as the aforementioned dark-field illumination, differential interference contrast
or total internal reflection illumination can be used for image acquisition. First
in vivo studies extracting spectroscopic information akin to the particle-based
studies outlined above are emerging [El-Sayed et al., 2005].

However, dark-field microscopy and other techniques relying on the detec-
tion of scattered light are not suitable for very small metal nanoparticles with
diameters d � 40 nm immersed in a background of scatters, such as for ex-
ample a biological cell. This is due to the fact that the scattering cross section
decreases as d6 with particle diameter as discussed in chapter 5. Thus, the scat-
tering signal of particles in this small size regime is usually completely over-
whelmed by larger scatterers. In order to optically pick out the signature of par-
ticles of these small sizes, a different microscopy method relying on absorption
instead of scattering is required. Since according to Mie theory the absorption
cross section scales with size only as d3, sub-10 nm particles can be picked out
of a background of bigger particles using a photothermal imaging technique
[Boyer et al., 2002]. Fig. 10.7 shows the optical setup used in this imaging
technique, consisting of a heating beam and a second, weaker probe beam
detecting the absorption-induced thermal changes around the metal nanoparti-
cles. The red probe beam is split in two parts of orthogonal polarization, and
both beams are subsequently focused onto the sample to diffraction-limited
spots spaced at a distance on the order of 1 μm from each other. The heating
beam only overlaps with one of the probe beams, resulting in a heat-induced
change in its polarization. Recombination of the two probe beams therefore
leads to an intensity modulation, and via a scanning system an image of the
sample under study can be constructed. In-vivo images acquired using this
technique are shown in Fig. 10.8, and compared with scattering and fluores-
cence images for biological cells with incorporated gold nanoparticles, demon-
strating the improved spatial resolution due to the detection of single particles.

Before moving on, we want to briefly mention another promising technique
for the spectroscopic investigation of localized surface plasmons, based on ex-
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Figure 10.7. Experimental setup for photothermal imaging of very small nanoparticles. For
a description see main text. Reprinted with permission from [Cognet et al., 2003]. Copyright
2003, National Academy of Sciences, U.S.A.

Figure 10.8. Scattering (A, D, G), fluorescence (B, E, H) and photothermal images (C, F, I)
of cells. All cells are transfected with gold nanoparticles functionalized to a membrane protein
(A-F in concentration 10 μg/l and for G-I the concentration is 0.5 μg/l). A-C show cells not
expressing this protein, and D-I cells expressing it and thus binding the particles. The resolution
is highest in pictures F and I obtained with photothermal imaging. Reprinted with permission
from [Cognet et al., 2003]. Copyright 2003, National Academy of Sciences, U.S.A.
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citation using electron impact. In cathodoluminescence, photon emission of
the metal nanostructure under investigation is induced via a high-energy elec-
tron beam, and collected using a suitable detection pathway [Yamamoto et al.,
2001]. As an example, Fig. 10.9 (upper part) shows the spectrum of a 140 nm
silver particle excited via grazing-incidence of a 200 keV electron beam, to-
gether with a comparison with theory. Due to the large size of the particle,
the signatures of both a quadrupolar and a dipolar mode are discernible. A
nice feature of this technique is that by scanning of the electron beam over the
particle surface, the spatial profile of the modes can be mapped out via light
collection at the respective peak wavelength (Fig. 10.9, lower part). The same
technique can also be used for the excitation and investigation of propagating
SPPs.

All the aforementioned single-particle spectroscopy techniques are based
on microscopy and thus generally not suitable for field-based sensing, e.g. in a
context of environmental monitoring. Sensors based on localized particle plas-
mon spectroscopy amenable for such applications have been developed in the
context of optical-fiber-based sensing. In a typical geometry, metal nanoparti-
cles are spatially fixed at the end facet of an optical fiber, and the reflected light

             

      

            

λ=   420 nm   
E 

300 350 400 450 500 550 600
0.00

0.05

0.10

0.15

          

      

quadrupole

dipole

C
l i

n
te

n
si

ty
 [a

.u
.]

Emission wavelengh [nm]

experiment

theory

SEM CL experiment CL theory

100 nm

Figure 10.9. Cathodoluminescence imaging and spectroscopy of localized surface plasmons.
Upper part: cathodoluminescence (CL) from a 140 nm silver particle induced by the passage
of 200 keV electrons in a grazing trajectory (barely touching the particle surface). Dipolar
and quadrupolar components can be separated in the spectrum. Lower part, from left to right:
SEM image of the particle under consideration; CL rate as a function of the position of the
electron beam, which is scanned over the particle, for an emission wavelength corresponding to
the dipolar feature of the spectrum; theoretical prediction for the latter. Figure courtesy of N.
Yamamoto and F. J. García de Abajo, personal communication.
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Figure 10.10. Optical setup for measuring the scattering of a single nanoparticle in various
solvents through an optical fiber. The inset shows a SEM image of a nanoparticle attached to
the fiber tip. Reprinted with permission from [Eah et al., 2005]. Copyright 2005, American
Institute of Physics.

upon white-light illumination collected through the fiber in reflection using an
inperfect splice and spectrally resolved [Mitsui et al., 2004]. Immersion of
the particle-decorated end facet into the environment under study then allows
refractive index sensing of gaseous or liquid agents.

Figure 10.11. (a) Normalized scattering spectra of a single gold nanoparticle in various sol-
vents measured through the fiber. (b) Dependence of the resonance position on the index of
refraction of the solvent. Reprinted with permission from [Eah et al., 2005]. Copyright 2005,
American Institute of Physics.
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Eah and co-workers have recently demonstrated single-particle sensitivity
using this technique [Eah et al., 2005]. Fig. 10.10 shown a schematic of the
optical setup. A single gold nanoparticle is fixed at the end facet of a sharp
fiber tip via direct pick-up from a flat surface covered with metal colloids. In
this study, external illumination was used via a second multimode fiber, and
the scattered signal collected via the fiber tip. Typical spectra for immersion in
a variety of solutions of different refractive index are shown in Fig. 10.11.

10.2 Surface-Plasmon-Polariton-Based Sensors
The vast majority of surface plasmon sensing work carried out so far has

not been based on the spectroscopic determination of the particle plasmon res-
onance, but on the interrogation of propagating SPP waves at a metal/air inter-
face. Using surface functionalization, agent-specific binding can be achieved,
changing the refractive index of the metal surface superstrate and thus the dis-
persion relation of the propagating SPPs. Binding events can then be monitored
by studying the changing phase-matching condition via either wavelength-
or angular interrogation. Historically, for sensing applications both prism-
coupling and grating-coupling techniques as described in chapter 3 have been
preferred for SPP excitation via light beams. A review of these techniques in
a sensing context was recently conducted by Homola and colleagues [Homola
et al., 1999].

Since both grating and prism coupling have been extensively discussed in
chapter 3, and due to the simplicity of their employment in sensing applia-
tions, we only want to comment here on a few extensions of these standard
techniques, with particular promise in terms of enhancement of sensing sen-
sitivity. In general, the performance of a SPP-based sensor increases with the
amount of field confinement, and also the magnitude of the attenuation length
L (note that an increase in one leads to a decrease in the other). As an ex-
ample of the use of structures with low SPP attenuation, multilayer geometries
have proved highly useful for sensing purposes, and enhanced sensitivity using
long-ranging modes excited via prism coupling geometries have been reported
[Nenninger et al., 2001].

A further improvement in sensitivity can be achieved by exploiting the fact
that in the prism coupling geometry, the phase of the reflected field changes as
the phase-matching condition for SPP excitation is transversed, in analogy to
the discussion of phase-sensitive near-field imaging of localized modes in the
previous section. Using an input consisting of both TE and TM beam compo-
nents, Hooper and Sambles demonstrated a highly sensitive device capable of
measuring refractive index changes of 2×10−7 [Hooper and Sambles, 2004b].
The experimental setup, based on polarization dithering of the input beam to
enable a differential detection of changes to the polarization ellipse, is shown in
Fig. 10.12. In this case, phase changes of the TM-polarized component of the
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Figure 10.12. Experimental setup for differential ellipsometric detection of refractive index
changes using SPPs on a metal film excited via prism coupling. Reprinted with permission
[Hooper and Sambles, 2004b]. Copyright 2004, American Institute of Physics.

input beam induced by changes in the refractive index of the superstrate mani-
fest themselves via polarization changes in the reflected light beam. Fig. 10.13
shows results on the obtained polarization rotation, depending upon the ratio
of two gases in a mixture.

While SPP excitation using prism or grating coupling is a convenient method
of choice for proof-of-concept demonstrations of SPP sensors, waveguide SPP
sensors employing phase-matching between a waveguide mode in a guiding

a) b)

Figure 10.13. (a) Polarization rotation for varying gas ratios. (b) Polarization rotation as a
function of refractive index. Reprinted with permission from [Hooper and Sambles, 2004b].
Copyright 2004, American Institute of Physics.
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(a)

(b)

Figure 10.14. SPP sensor based on a multimode optical fiber. (a) Sketch of the sensing system
consisting of side-polished sensing and reference fibers. (b) Sketch of the side-polished fibers.
Reprinted with permission from [Tsai et al., 2005]. Copyright 2005, Optical Society of America.

layer beneath the exposed metal surface are favorable from an integration point
of view. A particularly interesting device with possibilities for field-use is the
optical fiber SPP resonance sensor [Slavik et al., 1999]. In its usual form, such
a sensor consists of a (single- or multimode) optical fiber, one side of which has
been polished away to expose the core. The coating of this region with a thin
metal layer then allows the excitation of SPPs via the core-guided mode(s), and
their signature can be detected by monitoring the light guided past the interac-
tion region [Homola et al., 1997]. The simplicity of this approach has made
fiber excitation the method of choice for many SPP sensing studies.

A sketch of a typical sensing region cut into a multimode optical fiber is
shown in Fig. 10.14b. Exposure of the core can be accomplished via the
aforementioned polishing, or etching and also tapering techniques. Using a
white light illumination source and thus wavelength selectivity is a particu-
larly appealing approach, since modern sources such as fiber-based supercon-
tinuum sources allow for easy integration directly into the sensing fiber. In
order to improve the sensitivity, a combination of a reference and sensing fiber
(Fig. 10.14a) can be employed to enable either interferometric detection or
difference-signal analysis [Tsai et al., 2005].

In the example presented here, both the sensing and the reference fiber are
side-polished and metalized with a 40 nm gold layer. The reference fiber is
immersed into distilled water, and the sensing fiber in a liquid of different re-
fractive index. SPP spectra from both arms are recorded, and the difference
in light intensity versus wavelength determined (Fig. 10.15a). A difference
of zero corresponds to the crossing point between the two SPP curves, which
exhibits a strong dependence on the refractive index difference, as shown in
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Figure 10.15. (a) Difference in light intensity between the sensing and the reference arm vs.
optical wavelength using the SPP fiber sensor structure of Fig. 10.14. Here, the sensing arm
is immersed in alcohol, and the reference fiber in distilled water. (b) Experimental results for
the shift in crossing-point wavelength of the two SPP spectra versus refractive index. Reprinted
with permission from [Tsai et al., 2005]. Copyright 2005, Optical Society of America.

Fig. 10.15b. A high sensitivity for refractive index sensing on the order of
10−6 can be achieved. Improved designs of the geometry of the sensing re-
gion enabled by advancements in polishing [Zhang et al., 2005] and tapering
techniques [Kim et al., 2005] continuously push the obtained sensitivity limits,
placing SPP sensors at the forefront of optical sensing techniques.

SPPs can also be excited using optical fibers coated homogeneously with
a concentric metal layer. For thin tapers, this lead to the generation of hybrid
fiber-SPP modes with interesting properties [Al-Bader and Imtaar, 1993, Prade
and Vinet, 1994]. We cannot go into the details of these hybrid modes here,
but want to point out that they have indeed been recently observed [Diez et al.,
1999], and that applications as sensors have been demonstrated [Monzon-
Hernandez et al., 2004].



Chapter 11

METAMATERIALS AND IMAGING
WITH SURFACE PLASMON POLARITONS

The notion that the electromagnetic response of a material can be engineered
via periodic variations in structure and composition has been extensively inves-
tigated over the last two decades. A well-known example are photonic crystals,
dielectric materials with a periodic modulation of their (real) refractive index
n = √

ε, achieved via the inclusion of scattering elements such as holes of
different dielectric constant into the embedding host. This way, the dispersion
relation for electromagnetic waves propagating through the artificial crystal
can be engineered, and band gaps in frequency space established that inhibit
propagation. In photonic crystals, both the size and the periodicity of the in-
dex modulations are of the order of the wavelength λ in the material. We have
seen in chapter 7 that the SPP analogue of this concept, a metal surface with a
periodic lattice of surface protrusions, enables control over SPP propagation.

An equally intriguing possibility for designing artificial materials with a
controlled photonic response are metamaterials. In contrast to photonic crys-
tals, in this case both the size and the periodicity of the scattering elements
are significantly smaller than λ. Therefore, they can in a sense be viewed as
microscopic building blocks of an artificial material, in analogy to atoms in
conventional materials found in nature. Using the same reasoning applied to
the transitioning from the microscopic to the macroscopic form of Maxwell’s
equations, the electromagnetic response of a metamaterial can be described
via both an effective permittivity ε(ω) and permeability μ(ω). Since on the
sub-wavelength scale the electric and the magnetic fields are essentially de-
coupled, ε(ω) and μ(ω) can often be controlled independently by the use of
appropriately shaped scatterers.

The corrugated perfectly-conducting surfaces described in chapter 6 are an
example of a metamaterial with an engineered electric response ε(ω). We have
seen that such an interface can be described as an effective medium, with a
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plasma frequency ωp controlled by the geometry. In the first part of the current
chapter, we will briefly describe other prominent examples of metamaterials,
specifically focusing on how a magnetic response can be achieved using sub-
wavelength arrangements of non-magnetic constituents. Appropriate materials
design allows both ε(ω) and μ(ω) to be negative in a certain frequency range,
leading to a negative refractive index n = √

με1.
The rich physics of metamaterials and specifically those with a negative

refractive index will only be briefly discussed, with a view to the challenges of
creating n < 0 at optical frequencies. We will see that arrangements of metal
nanoparticles sustaining localized plasmon resonances are a promising route
for creating such structures. For a more detailed exploration of metamaterials,
we refer the reader to specialized reviews such as [Smith et al., 2004] as a
starting point.

One of the most intriguing possibilities of negative index materials is imag-
ing with sub-wavelength resolution, which has become known under the par-
adigm of the perfect lens. The second part of this chapter addresses efforts to
demonstrate this effect at optical frequencies via the use of SPP excitations in
thin metal films.

11.1 Metamaterials and Negative Index at Optical
Frequencies

The metamaterial concept of creating composites with desired electromag-
netic properties has already enabled new possibilities for the control of electro-
magnetic radiation in the THz and microwave region of the spectrum. We have
discussed in chapter 6 in detail how appropriate sub-wavelength structuring of
a metal surface can lead to a geometry-defined plasma frequency ωp in this
frequency region. Another prominent example of a metamaterial sustaining
low-frequency plasmons is a regular three-dimensional lattice of metal wires
with micron-size diameter [Pendry et al., 1996]. It can be shown that the elec-
tric response of such a structure can be viewed as that of an effective medium
with a free electron density determined by the fraction of space occupied by the
wires. As with the structures described in chapter 6, the effective ε(ω) of the
wire lattice is of the plasma form (1.20), with ωp lowered into the microwave
range for an appropriate mesh size. The dielectric response of the wire lattice
to microwave radiation is similar to that of a metal at optical frequencies.

One motivation of metamaterials design is therefore to shift electric reso-
nances of natural materials (particularly metals), expressed via ε(ω), to lower
frequencies. The other motivation is in the opposite direction: The creation

1It can be shown that the negative sign of the square root has to be chosen, since in such a material the phase
and group velocities of the transmitted radiation point in opposite directions.
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Figure 11.1. Sketch of a split ring resonator for engineering the magnetic permeability μ(ω)

of a metamaterial.

of magnetic resonances, described by μ(ω), at frequencies higher than those
present in naturally-occurring magnetic materials. More specifically, the re-
gion of interest lies between the THz and the visible parts of the spectrum.

Whereas the magnetism of inherently magnetic materials is caused by un-
paired electron spins [Kittel, 1996], the magnetism of metamaterials is en-
tirely due to geometry-induced resonances or plasmonic effects of their sub-
wavelength building blocks. A particularly useful geometry is that of the split
ring resonator, depicted in Fig. 11.1 in its most simple form. It consists of two
planar concentric conductive rings, each with a gap. Pendry and co-workers
have shown that a regular array of these structures, with both structure size
and lattice constant of dimensions much smaller than the wavelength region of
interest, can exhibit a magnetic response [Pendry et al., 1999].

In a simplified view, a time-varying magnetic field induces a magnetic mo-
ment in a split ring resonator via the induction of currents flowing in circu-
lar paths. This inherently weak response is magnified via a resonance: the
structure acts as a sub-wavelength LC circuit with inductance L and capac-
itance C. Therefore, the magnetic permeability μ exhibits a resonance at
ωLC = 1/

√
LC. Intriguingly, as is typical for a resonant process, for fre-

quencies right above ωLC, μ < 0. As will be discussed below, combined with
wire arrays this allows the creation of metamaterials exhibiting both negative
permittivity and permeability, and thus a negative refractive index as described
in the introduction.

Following initial demonstrations for microwave frequencies (reviewed in
[Smith et al., 2004]), metamaterials with a magnetic response engineered using
split ring resonators were demonstrated in the THz regime by Yen and co-
workers [Yen et al., 2004]. The effective permeability of the metamaterial
determined from measurements can be described using a Lorentz term

μ(ω) = 1 − Fω2

ω2 − ω2
LC + i�ω

, (11.1)
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where ωLC is the resonance frequency and F a geometrical factor. � describes
resistive losses in the split ring resonator. As for a typical resonance process,
for ω � ωLC the induced magnetic dipole is in phase with the excitation field.
In this region, the metamaterial therefore exhibits a paramagnetic response.
For increasing frequencies, the currents start to lag behind the driving field,
and for ω � ωLC the dipole response is completely out of phase with the
driving field. In this region, the metamaterial is diamagnetic (μ < 1). For
the frequency region just above ωLC, the permeability is negative (μ < 0).
We note that the magnetic dipole is an induced dipole only - no permanent
magnetic moment is present.

This discussion of metamaterials with an engineered electric or magnetic
response suggests that a material consisting of a lattice of both split ring res-
onators and metal wires or rods should exhibit a frequency region where both
ε < 0 and μ < 0, implying n < 0. Shelby and co-workers demonstrated such
a negative-index metamaterial at microwave frequencies [Shelby et al., 2001].
Using a wedge-shaped structure, negative refraction (a consequence of a nega-
tive refractive index) was confirmed [Smith et al., 2004]. While the metamater-
ial used in this study was of a three-dimensional nature, inherently planar struc-
tures consisting of split ring resonators and rods working at THz frequencies
have been successfully fabricated using microfabrication techniques [Moser
et al., 2005].

For microwave and THz frequencies, metamaterials such as the ones de-
scribed above consisting of conductive materials show a simple size scaling of
their resonance frequencies, i.e. ωLC ∝ 1/a, where a is the typical size of a
split ring resonator. However, this scaling breaks down for higher frequencies,
where the response of the metal becomes less and less ideal, and the kinetic
energy of the electrons needs to be taken into account. Theoretical investiga-
tions have suggested that this leads to a saturation of the increase of ωLC with
frequency for f > 100 THz (λ0 < 3 μm) [Zhou et al., 2005]. Using gold split
ring resonators of a minimum feature size of 35 nm, Klein and co-workers have
shown that the resonance in μ can be pushed down to a wavelength λ=900 nm
in the near-infrared. It is at this point not clear how much the resonance fre-
quency can be increased into the visible regime using this concept.

Apart from split ring resonators, rod-shaped structures can also be used to
create a material with negative refractive index in the near-infrared. Shalaev
and co-workers demonstrated n = −0.3 at λ = 1.5 μm using a metamater-
ial consisting of rod-shaped gold/insulator/gold sandwich structures [Shalaev
et al., 2005]. Fig. 11.2 shows a schematic and a SEM image of the compos-
ite rod structure and the metamaterial lattice. Each rod consists of a 50 nm
SiO2 layer sandwiched between two 50 nm gold layers. As in our discussion
of split ring resonators, the magnetic response can be thought to arise from
a resonance in the LC circuit consisting of the bottom and top gold layer, as
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Figure 11.2. (a) Schematic and (b) SEM image of a planar metamaterial consisting of pairs of
parallel gold nanorods. (c) Sketch of the unit cell of this structure. Reprinted with permission
from [Shalaev et al., 2005]. Copyright 2005, Optical Society of America.
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Figure 11.3. (a) Real and imaginary parts n′, n′′ of the refractive index for the metamaterial
of Fig. 11.2 determined using simulations. (b) Comparison between simulations (triangles) and
experimentally determined values (circles) of the real part of the refractive index. The inset
shows a magnified view of the region of negative refractive index. Copyright with permission
from [Shalaev et al., 2005]. Copyright 2005, Optical Society of America.
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symbolized in Fig. 11.2a. The metal rods provide the inductance, and the insu-
lating spacer layer the capacitance. The refractive index of this metamaterial
in the near-infrared range of the spectrum is shown in Fig. 11.3. Around the
telecommunication window at λ = 1500 nm, n < 0. We note that contrary to
the metamaterials discussed so far, the dimensions of the unit cell (Fig. 11.2c)
are of the order of the wavelength. Also, as with split ring resonators, a simple
linear scaling with size towards higher frequencies in the visible regime should
be prevented both by increasing losses and the importance of plasmonic effects.

In another study, a metamaterial with negative permeability in the visible
part of the spectrum was demonstrated by Grigorenko and co-workers. In
this case, the metamaterial consists of pairs of dome-shaped gold nanoparti-
cles [Grigorenko et al., 2005]. The pairs essentially act as small bar magnets,
and antisymmetric coupling of the localized plasmon resonances gives rise to
cancellation of the magnetic component of the incident field, thus yielding
μ < 0. Also, an approach has recently been suggested based on U-shaped
metal nanoparticles, making active use of the plasmonic response instead of
LC-effects, which should provide n < 0 at optical frequencies [Sarychev et al.,
2006]. Research in this field is going on at a breathtaking pace, and we can ex-
pect significant advances in the coming years.

11.2 The Perfect Lens, Imaging and Lithography
We want to finish this chapter by briefly discussing another fascinating con-

sequence of materials with a negative index of refraction, namely the possi-
bility of a perfect lens [Pendry, 2000, Smith et al., 2004]. In 2000, Pendry
showed that a slab of an ideal (lossless) material with n = −1 can reproduce
a perfect image of an object placed into the near-field on one side of the slab
at an equal distance on the other side. Due to the property of negative refrac-
tion, it can easily be shown that light from a point source on one side of the

Negative-indes slab

Object Image

Figure 11.4. Schematic of the planar negative-index lens. Light diverging from a point source
converges back towards a point in the negative-index medium due to negative refraction. On the
other side of the planar slab, another focus is formed.
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negative-index slab should come to a focus on the other side, as sketched in
Fig. 11.4. It is more suprising however that all Fourier components of the two-
dimensional object, not only those fulfilling the condition k2

x + k2
y < ω2/c2,

can be reproduced in the image plane. This is due to resonant amplification of
the evanescently decaying components of the image via surface modes of the
negative-index slab [Pendry, 2000].

At optical frequencies and for a slab thickness d � λ, the electrostatic
limit applies and the electric and magnetic fields are essentially decoupled. It
can be shown that in this case the requirement μ < 0 can be relaxed, and
sub-resolution imaging thus achieved using materials where only Re [ε] < 0,
namely metals. Note however that due to attenuation (Im [ε] > 0), some of the
high-resolution information is expected to get lost during the imaging process,
and the image will thus not be perfect anymore. It was suggested that this poor
man’s lens could be achieved with a thin film of silver.

Here, the evanescent components of the object fields are resonantly ampli-
fied via coupling to SPPs sustained by the silver film. An experimental setup
for demonstrating sub-wavelength imaging is shown in Fig. 11.5. In this study,
an image etched into a chrome mask is transferred onto a photoresist via a thin
silver layer [Fang et al., 2005]. Images demonstrating the achieved resolution
and results from a control experiment where the silver film was replaced by a
polymer layer are presented in Fig. 11.6. While the 40 nm width of the object
letters was not reproduced, a significant increase in resolution in the presence
of the silver layer is apparent. Additional studies of both single [Melville and

Figure 11.5. Schematic of an optical superlens. A 35 nm thin silver imaging layer is separated
from a chrome mask via a 40 nm polymer layer. Upon illumination of the chrome mask with
UV light, an image mediated by the silver layer is recorded in a thin photoresist film. Reprinted
with permission from [Fang et al., 2005]. Copyright 2005, AAAS.
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Figure 11.6. (a) FIB image of the object plane. The linewidth of the letters is about 40 nm.
(b,c) AFM image of the developed photoresist with the silver imaging layer (Fig. 11.5) present
(b) or replaced (c) by a PMMA layer. (d) Averaged cross section of the letter "A" with and
without the lens. Reprinted with permission from [Fang et al., 2005]. Copyright 2005, AAAS.

Blaikie, 2005] and double-layer [Melville and Blaikie, 2006] silver structures
have confirmed the resolution-enhancing properties.

It is anticipated that this concept could be of use for applications in litho-
graphy, where direct contact between the photoresist layer and the object mask
is often undesirable. However, given the resolution constraints imposed by the
conductive losses in the imaging layer, it is an open question whether this will
be viable in a technological context. As a last note, we want to point out that
also the design of masks with features sustaining localized plasmon resonances
[Srituravanich et al., 2004, Luo and Ishihara, 2004] has been suggested for
lithography beyond the classical resolution limit imposed by diffraction. In
this case, the enhanced near field due to the localized modes leads to enhanced
exposure of an adjacent resist layer.



Chapter 12

CONCLUDING REMARKS

Plasmonics is a fascinating and currently vastly expanding area of research,
and hopefully reading through this text has provided the interested reader not
only with an overview, but also with a solid foundation for own explorations.
Clearly, the diversity of emerging and potential applications of sub-wavelength
optics with metals together with successful proof-of-concept studies suggest
that interest in the field will be soaring for many years to come.

So where to go from here? For virtually all aspects of plasmonics described
in this book, specialized review articles exist within the scientific literature. Es-
pecially for areas such as sensing or metamaterials that could only be described
without going into a great amount of detail, the excellent reviews available
should be consulted. Apart from that, original publications such as the ones
cited in the reference section are an invaluable resource for further literature
studies.

I very much hope that this book will serve its purpose to educate and at-
tract people to this fascinating area of nanophotonics. Any suggestions for
improvements of this text are most welcome.
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