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Preface

The first edition of Antenna Theory and Design was published in 1981 and the second in
1998. This three-decade span has seen major expansions of antenna application areas,
mainly in wireless communications. Along with technology advances has come public
awareness of the presence and importance of antennas. Base station antennas are now
visible in all urban and rural areas. Wireless telephones such as smart phones have
put antennas into the consumer’s hand. Personal and fleet vehicles have many wireless
features such as satellite navigation (e.g., GPS), satellite and broadcast radio, cellular
telephone, remote keyless entry, wireless toll tags, remote tire pressure monitoring, and
many more.

This third edition has 16 chapters, which is an increase of 4 chapters over the second
edition, representing both introduction of new material and reorganization of previous
topics. The third edition has several new sections of material specifically addressing
modern wireless applications for antennas. Chapter 11 on low-profile antennas and per-
sonal communication antennas includes an expanded treatment of microstrip antennas
and arrays, and new material on leaky wave antennas, fundamental limits on antenna size,
antennas for compact devices, radio frequency identification (RFID) antennas, dielectric
resonator antennas, near fields for large antennas, effects of the human body on antenna
performance, and biohazards of RF exposure.

Chapter 12 on terminal and base station antennas has new material on satellite terminal
antennas, base station antennas, vehicular antennas, smart antennas, and adaptive antennas.

The book organization has changed slightly to reflect new emphasis on wireless
applications. The new Chapter 1 has a greatly expanded discussion of the history of
wireless communications with emphasis on antennas. This provides a setting for the
applications for antennas and a motivation for pursuing the fundamentals needed to
design antennas for specific applications. Chapter 1 also includes a detailed overview of
antenna parameters and antenna types. Chapter 4 on system aspects allows students to
evaluate antennas as used in systems earlier in the book than in previous editions. Chapter
4 includes an introduction to array antennas, and the detailed treatment of arrays is now in
Chapter 8 and includes several practical aspects of antenna arrays such as feed networks
and wideband phased arrays.

The number of problems at the end of the chapters has increased from 504 in the
second edition to 591 in this third edition. Many of the new problems include simulation
aspects to encourage the student to perform high-level quantitative investigations of
antennas. Problems involving open-ended projects have also been added.

This book is a textbook and finds its widest use in the college classroom. Thus, the
primary purpose is to emphasize the understanding of principles and the development of
techniques for examining and designing antenna systems. The book is used by practicing
engineers as well as students. This is because of the applied nature of the material and
because it provides a coherent development of basic topics that are directly useable for
analyzing practical antennas. Handbooks with data on many antennas are available. But,
handbooks and special topics books typically do not provide sufficient background for
full understanding of antennas, which can lead to the dangerous practice of “formula
lifting” that can end in inappropriate use of a formula.

Antenna Theory and Design covers antennas from three perspectives: antenna
fundamentals, antenna techniques, and the design of popular antennas. The first four
chapters stress antenna fundamentals. It is assumed that the student has no previous
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exposure to antennas, and thus all basic physical and mathematical principles are pre-
sented early, in Chapters 1, 2, and 3. This includes Maxwell’s equations along with a
physical explanation of how antennas radiate. The four types of antenna elements are
treated in the following places in the book:

Electrically small antennas—Sec. 3.1

Resonant antennas—Chapters 3 and 6

Broadband antennas—Chapter 7

Aperture antennas—Chapter 9

Also, arrays are introduced in Sec. 3.5 and covered in detail in Chapter 8. The use of
antennas as devices in systems is covered in Chapter 4. The synthesis of arrays and
continuous antennas for low side lobe or shaped main beam applications is presented in
Chapter 10. Chapters 11 and 12 treat low-profile and terminal antennas. Antenna mea-
surements are treated in Chapter 13. Chapters 14 to 16 introduce computational elec-
tromagnetic methods (CEM) for evaluating simple antenna elements as well as large
complex antenna systems. There are now a wide variety of antenna-specific computer
codes and general mathematics applications packages available for antenna computations
(see Appendix G).

The level assumed for this book is that of a typical senior in electrical engineering. It is
assumed the reader has had a basic course in electromagnetics, such as commonly
required of electrical engineering and physics majors. Essential mathematics includes
complex numbers, trigonometry, vector algebra, and coordinate systems (rectangular,
cylindrical, and spherical). Vector calculus is used at various points, and scalar integration
is frequently used.

SUGGESTIONS FOR ACADEMIC COURSES

This book can be readily adapted to various academic programs at both introductory and
advanced levels. The first course in antennas is usually either a one-semester senior elective
or an entry level graduate course. For a one-semester introductory course, Chapters 1 to 7 and
some of 8 and 9 are covered. For a master’s level course, parts of Chapters 8 and 9 can be
added. Topics from later chapters such as synthesis (Chapter 10), low-profile antennas
(Chapter 11), and terminal antennas (Chapter 12) can be treated alongwith the early chapters.
For example, PIFA antennas in Sec. 11.6.3 are a good fit with wire antennas of Chapter 6.

A second course can focus on advanced design, synthesis, and computational methods
using Chapters 10 to 16. Alternatively, a second course can specialize on computational
methods using Chapters 14 to 16.

LEARNING APPROACH

This text adopts a general approach to the treatment of antenna types and specific
antennas. After a general discussion of the principles, design formulas are derived and
explained using sample calculations and detailed examples. Often some details are left
as student exercises or problems at the end of the chapter. This is done to keep the
amount of material from overwhelming the reader. For the same reason, while many
antennas for wireless applications are presented, it is not an exhaustive treatment that is
better left to handbooks and focused-topic books. As appropriate, data are presented
using numerical or experimental models or computations based on theoretical for-
mulations. In addition, empirical formulas are often presented for easy evaluation of
performance parameters.
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SIMULATIONS AS A LEARNING AID

Literature describing how to write antenna computational programs and commercial
simulation packages for antennas are now widely available (see Appendix H.10). There-
fore, throughout this book results from numerical simulations are presented, often in
association with analytical calculations to explore the accuracy of approximate formulas.
Many problems at the end of each chapter, or parts of problems, require the use of simu-
lations to obtain numerical values. Most include the notation “Simulation.” These problems
greatly enhance the learning experience and give confidence in using simulations. Of
course, these problems can be skipped or postponed until computational methods are
treated in Chapters 14 to 16. Alternatively, computational material can be covered as
needed while going through the early chapters. In any case, the reader should obtain at least
one simulation package and use it while studying antennas. Many commercial codes have
excellent user interfaces that handle three-dimensional geometries and also have well-
organized outputs. The first choice for a code would be a moment method-based, wire
antenna simulation package. There is further discussion of computing tools for antennas
and specific suggestions of available simulation packages given in Appendix G.

LEARNING RESOURCE MATERIALS

Several features are included to aid in learning and in preparation for further self-study.
There are many terms that are specific to the field of antennas, and the terms used in this
book follow the IEEE standard definitions. Numbered literature references are found at the
end of each chapter for further reading. In addition, the bibliography in Appendix H lists
nearly all antenna books published in English, arranged by technical topic. Included are the
many books that have appeared since the second edition, mostly on specific antenna topics.
Citations to these books are made in the text using the following format: “[H.x.y: Author,
page number]”. The other appendices give information on the radio spectrum, material
data, and many mathematical relations used in antenna analysis.
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Chapter1

Introduction

Fundamental principles will be presented in this textbook in a manner that students can
readily apply to the analysis and design of antennas. The physics principles of electro-
magnetism are used to understand how antennas operate. Antenna design problems are
solved using the physics principles together with mathematics and computational
methods, but the emphasis is on reducing the physics and mathematics to an under-
standable level. Before developing mathematical tools for designing antennas in subse-
quent chapters, this chapter provides a background to the field of antennas along with a
glimpse of the basic principles, terminology, and application areas. We begin with a brief
history of antennas and related technology developments.

References to specific literature works are found at the end of each chapter in which
the citation occurs. In addition, a list of antenna books in Appendix H is grouped by their
topical coverage to aid the student in locating further details. Citations to books in
Appendix H are of the following form: [H.x.y: Author, page nos.]. The IEEE definitions
of antenna terms [H.2: IEEE] are followed closely in this book.

1.1 THE HISTORY OF ANTENNAS

Antennas are mainly found in communication applications, with most uses in tele-
communications, which means distant communications and has roots in the Greek word
“tele” meaning “at a distance.” References 1 through 6 and [1–6; H.8.2: Visser, Chaps. 1
and 2] are general treatments on the history of technology related to antennas. A highly
recommended work is Sarkar, Mailloux, Oliner, Salazar-Palma, and Sengupta [2], which
provides a chronological summary of historical milestones in electricity, magnetism,
light, and wireless communications, including antennas, and provides comprehensive
discussions of key wireless-related technology developments.

1.1.1 Overview of the History of Communications

Antennas are most widely used in the field of communications, but electronic commu-
nication, including wireless communication, is a recent development in human history. In
fact, of the 4.5 billion years of the Earth’s existence, modern humans have been present
for only 200,000 years, whereas electronic communication is less than 200 years old.
Ancient long-distance communication employed couriers to deliver messages. Early
messages used pictures and symbols. The Greek alphabet was developed around 500 BC.
The word “alphabet” comes from the first two letters of the Greek alphabet, “alpha” and
“beta.” [3] Couriers were used extensively by the Romans to deliver hand-written mes-
sages. Message delivery was reinvented in the 19th century in North America with
horseback riders (e.g., the Pony Express), who delivered messages coast to coast in ten
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days, which was fast for the era. Carrier pigeons were also used to transport written
messages.

Table 1-1 gives the historical timeline of significant events in communications with
emphasis on wireless communications. Communication during the pre-modern civiliza-
tion period used optical communications such as flags for line-of-sight and smoke signals
for non-line-of-sight, as well as devices such as drums for non-line-of-sight acoustical
communications. Signal flags are still in use today for ship-to-ship communications.
Drum beats traveled through the ground for up to 10 km. [3]. Smoke signals in the
daylight and fire signals at night were used extensively in antiquity. It is very interesting
to note that all of these early long-distance communication mechanisms made use of
digital techniques. The dawn of electronic communication in 1844 was also digital via
Morse code over the first telegraph transmission line from Baltimore to Washington, DC,
carrying the now famous message: “What hath God wrought?” The telegraph, invented by
Samuel Morse (1791–1872), used “dots” and “dashes” generated by hand using a tele-
graph key and received by a operator listening at the other end for audible sounds. The

Table 1-1 Timeline of Significant Events in the History of Antennas and Communications

Pre-modern civilization (up to 2 million years ago)
Optical communications: Smoke signals, flags
Acoustical communications: Drums

1844 Telegraph—The beginning of electronic communication
Samuel Morse

1864 Maxwell’s equations—Principles of radio waves and the electromagnetic spectrum
James Clerk Maxwell

1866 First lasting transatlantic telegraph cable
1876 Telephone—Wireline analog communication over long distance

Alexander Bell
1887 First Antenna

Heinrich Hertz
1897 First practical wireless (radio) systems

Guglielmo Marconi
1901 First transatlantic radio

Guglielmo Marconi
1920 First broadcast radio station

World War II Development of radar; horn, reflector, and array antennas

1950s Broadcast television in wide use
1960s Satellite communications and fiber optics
1980s Wireless reinvented with widespread use of cellular telephones

Electromagnetics
Pioneer

James Clerk Maxwell

Antenna
Pioneer

Heinrich Hertz

Wireless
Pioneer

Guglielmo Marconi
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first underwater telegraph cable in 1851 spanned the English Channel. An interesting side
note is that the cable suddenly stopped functioning due to a fisherman who had snagged
the cable, pulled it up, and hacked it apart, thinking it was a sea serpent. [3, p. 32] After a
few failed attempts at a transatlantic telegraph cable, the first lasting connection was
completed in 1866, but had initial usage rates of $1 per letter! With the invention of the
telephone by Alexander Graham Bell (1847–1922) in 1876, electronic communication
began a long period of analog communication before digital communication returned,
rather recently.

The mathematical and physical foundations for electromagnetic waves were presented
by James Clerk Maxwell in 1864 and are now referred to as Maxwell’s equations.
Wireless (radio) telegraphy was made possible with the inventions of antennas and radio
systems in 1887 by Heinrich Hertz and in 1897 by Guglielmo Marconi, respectively. In
1901, Marconi performed the first transatlantic radio transmission. During the early part
of the 20th century there were several advances in electronics that enabled more
sophisticated radio systems. This culminated during World War II with development of
microwave devices, enabling, for example, radar systems. A new form of tethered
communication returned in the 1960s with the maturing of optical fiber cable. Finally,
massive deployment of radio communications was launched in the 1980s, which turned
out to be the reinvention of wireless communications about a century after its first
deployments. We now give some details on key science and technology milestones in the
history of communications, with emphasis on antennas.

1.1.2 The Significant Contributions to the Understanding
of Electromagnetic Waves

Electromagnetic waves, which enable wireless communication, are composed of electric
and magnetic fields. Electric and magnetic fields are associated with electric and mag-
netic forces which are two of the four forces of nature,1 with gravitational and nuclear
(weak and strong) being the other two. Common forces arising from, for example, friction
or spring tension are actually manifestations of electric and magnetic forces. The early
investigations of electromagnetics treated electricity and magnetism as separate unrelated
phenomena, which we now know is true only in the static case.

In 1600, English physicist and physician to Queen Elizabeth I, William Gilbert (1544–
1603) published a book on electricity and magnetism. In 1772, English chemist and
physicist Sir Henry Cavendish (1731–1810) derived the now well-known inverse distance
square law of force between electric charges, which French physicist Charles Augustin
Coulomb (1736–1806) experimentally verified in 1785, and now the law bears his name.
The invention of the electric battery by Italian physicist Alessandro Volta (1745–1827) in
1800 provided the first continuous source of electricity, which was the key to subsequent
experimental discoveries. In 1819, Danish physicist Hans Oersted (1777–1851) acciden-
tally observed in a classroom demonstration to his students that a compass needle is
deflected when brought near a current-carrying wire, laying the foundation for electro-
magnetism. Oersted did not fully realize that the current produced a magnetic field which
interacted with the magnetic field of the compass needle, but French mathematician and
physicist Andre Marie Ampere (1775–1836) did. A week after Oersted announced his
results, Ampere confirmed the findings and introduced the “right-hand rule,” which gives
the direction of the magnetic field as that of the curled fingers when the thumb is along the
current direction. Ampere also showed that parallel current-carrying wires attract (repel) if

1 Physicists often include magnetic forces with electric forces because they arise from electrical charge
motion.
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the current directions are the same (opposite). Ampere postulated that magnetic materials
consist of aligned tiny electric current loops, which was shown to be true decades later.

The full connection between electricity and magnetism was finally established in 1831
by English physicist and chemist Michael Faraday (1791–1867) when he discovered
electrical induction (i.e., creation of an electric field from a changing magnetic field) and
transformer action; he constructed the first electric generator to provide steady current
without using a battery. Faraday formulated “lines of force” based on his observations of
iron filing alignments along the magnet fields from a permanent magnet. Faraday used
lines of force, now called field lines, to visualize field direction and intensity (lines are
more closely spaced lines for stronger fields), and he even believed that fields were
physically real. Field theory finally explained “action-at-a-distance” in electric, magnetic,
and gravitational phenomena. Maxwell later further refined the use of fields.

In 1842, Joseph Henry (1797–1878) of Princeton University performed perhaps the
first radiation experiment. He “threw a spark” in a circuit in an upper room and observed
that needles were magnetized by the current in a receiving circuit located in the cellar.
This experiment was extended to a distance of over a kilometer. Henry also detected
lightning flashes with a vertical wire on the roof of his house. These experiments marked
the beginning of wire antennas.

Based on his observations in 1875 that telegraph key closures radiate, Thomas Edison
patented a communication system in 1885 that employed top-loaded, vertical antennas.

The theoretical foundations for antennas rest on Maxwell’s equations, which Scottish
mathematician and physicist James Clerk Maxwell (1831–1879)2 presented before the
Royal Society in 1864, which unify electric and magnetic fields into a single theory of
electromagnetism. Maxwell used the laws of Ampere, Gauss, and Faraday and introduced
displacement current to form a single set of electromagnetic theory equations. Maxwell
also predicted that light is explained by electromagnetics and that light and electro-
magnetic disturbances both travel at the same speed; he actually derived a value for the
speed of light that was very close to what is now known to be correct, 33 108m/s.
However, Gustav Kirchhoff (1824–1887) was the first to discover that electrical signals
propagate at the speed of light in 1857. Maxwell introduced the notion that electro-
magnetic phenomena reside in the space around electrified bodies as well as in the bodies.
Although Maxwell incorrectly believed in the existence of an ether material in space that
supports action-at-a-distance, and he rejected the notion that electricity has a particle
nature, his equations have endured. In spite of Maxwell being a capable experimentalist,
he performed no measurements to validate his theories, nor did he even propose an
experiment. He published the two-volume set Treatise on Electricity and Magnetism in
1873, but it was hard for his followers to understand. Interestingly, Maxwell developed
the basics for color photography and made the first color photograph in 1861. He died in
1879 at the age of 48 from stomach cancer before his theories were experimentally
verified by Hertz.

Maxwell’s work was not immediately accepted, probably because it was customary at
the time for physicists to connect their work to that of Newton by including mechanical
laws, which Maxwell did not do; also, unlike Newton, Maxwell was not an aggressive
self-promoter. [9] Many physicists, in fact, held out for decades that a mechanical sub-
structure would be found for Maxwell’s theory, but when relativity and quantum theories
took hold, the quest for a unified physics foundation was abandoned. [10, p. 100] Albert
Einstein’s (1879–1955) special theory of relativity in 1905 showed that Newtonian
mechanics requires modification when relativistic speeds (i.e., approaching the speed of
light) are involved, whereas Maxwell’s equations already are relativistic and require no
modification for cases of charges moving at relativistic speeds.

2 References focusing on Maxwell’s life are [7–9].
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The importance of the contributions of several of the pioneers in electromagnetism,
which enabled wireless technology to eventually flourish, has been recognized by naming
units of electrical quantities after these giants:

Unit Honoree Quantity Symbol

Ampere Andre Ampere Current A
Coulomb Charles Coulomb Charge C
Farad Michael Faraday Capacitance F
Henry Joseph Henry Inductance H
Hertz Heinrich Hertz Frequency Hz
Volt Alessandro Volta Voltage (emf) V

1.1.3 Key Developments in Communication Technology

In 1872, American dentist Mahlon Loomis (1826–1886) obtained the first patent on
wireless telegraphy. He performed crude demonstrations using kite wires 200 m long at
two mountain-top sites in the Blue Ridge Mountains of Virginia separated by 22 km. By
grounding one end, a disturbance of the atmospheric electricity caused a deflection in a
current meter at the other end. [2, p. 69 and p. 251] But Loomis believed that he was
controlling a conducting layer in the lower atmosphere, so the basic premise of his patent
was flawed.

In 1884, John Henry Poynting (1852–1914) showed that Maxwell’s theory can be used
to predict that energy flows through empty space calculated using the electric and
magnetic fields. Heaviside independently at nearly the same time came upon the same
discovery. [1, p. 313]

The German physicist Heinrich Hertz (1857–1894)3 was able to verify experimentally
in 1886 (published in 1887) Maxwell’s claim that electromagnetic actions propagate
through air at the speed of light. Hertz received his Ph.D. at the University of Berlin in 1880
studying under Gustav Kirchhoff, who is well known to students of electrical engineering
through his contributions to circuit theory (he also discovered and coined the term for
blackbody radiation). Hertz also studied under Hermann Helmholtz (1821–1894), who has
been credited with the concept of conservation of energy and who suggested that Hertz look
for radiation above the visible region. Hertz built what can be considered to be the first
radio system, which included the first dipole antenna and first loop antenna, as shown in
Fig. 1-1.4 The primary source of electrical disturbances was a spark gap generator con-
sisting of two metal plates in the same plane, each with a wire connected to an induction
coil. This early antenna is similar to the capacitor-plate dipole antenna, which will be
described in Sec. 3.1, and was called a “Hertzian dipole.” Hertz discovered that electrical
disturbances could be detected via visually observed sparks with a single wire loop of
the proper dimensions for resonance and an air gap for the sparks to occur. By moving the
detector between the transmitter and a large conducting plate acting as a reflector, he
created standing waves and calculated the wavelength as 6 m, corresponding to 50 MHz.
Hertz’s understanding of electromagnetic waves was so thorough that he varied the loop
perimeter dimension in increments to maximize the induced spark length, thereby tuning
the loop to half-wavelength resonance at a perimeter of 4.3 m, corresponding to a wave-
length of about 8.6 m for a resonant frequency of about 35 MHz. [11,12]

3Articles on Hertz’s life and contributions are found in [11–13].
4 Although Henry used wire antennas more than 40 years earlier, Hertz was the first to fully understand
their operation and use.
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Hertz was the first to demonstrate conclusively the existence of electromagnetic
waves. With this laboratory radio system, Hertz made several key discoveries, including
standing waves, reflection, refraction, and polarization. Based on Maxwell’s prediction
that light is an electromagnetic wave, Hertz used ray optics principles, well known at the
time, to design a more directive antenna. This was necessary because he experimented
indoors and realized that he needed a directive antenna to reduce signal reflections off the
walls. In 1888, he constructed a parabolic cylinder reflector antenna from a sheet of zinc;
see Fig. 1-2. It was fed with a dipole along the focal line and operated at 455 MHz.
Although the aperture extent was only 1.8 wavelengths (1.2 m) in the horizontal dimension
and only 3 wavelengths (2 m) in the vertical dimension, this was sufficient to produce a
narrow directional beam that was 35� wide and 80� in the vertical plane. [14] Hertz
published what is probably the first book on antennas, Electric Waves [H.3: Hertz], in
1893. He also investigated the skin effect and the photoelectric effect. Hertz died of
complications from a dental abscess at the early age of 36. [15]

In 1888, English physicist and electrical engineer Oliver Heaviside (1850–1925), who
did not complete college, extended Maxwell’s work. He reduced the 20 equations of
Maxwell that were in scalar form and introduced vector notation, yielding the compact set
of 4 equations we use today. In his three-volume work, Electromagnetic Theory, he
predicted the existence of the charged layer in the upper atmosphere, called the iono-
sphere or Heaviside layer, which is responsible for long-distance communications via
reflection from the layer. He also proposed inductive loading on transmission lines to
produce distortionless signal propagation, making practical long-distance wire commu-
nication possible. Heaviside is often called the father of telecommunication.

English physicist Oliver Lodge (1851–1940) in the 1890s conducted experiments
similar to those of Hertz and Marconi but at higher frequencies. His U.S. Patent 609,154
of Aug. 16, 1898, includes implementations of “Hertzian-wave telegraphy,” loaded
dipoles, biconical antennas (see Sec. 7.4), dielectric lenses (see Sec. 9.8), and even
frequency division multiplexing. He also coined the term “impedance” and correctly

3 m

Spark
generator

0.25 m 0.25 m

Visible
spark

Loop antenna
(receiving)

Dipole antenna
(transmitting)

Figure 1-1 The first complete radio system, built and tested by Heinrich Hertz in 1886. It
includes a dipole source antenna and a loop receiving antenna. Both antennas were the first of
their kind.
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suggested that the sun emits radio waves. After 1910, Lodge shifted his efforts from
technology to other areas, such as communicating with the dead.

Indian physicist J. Bose (1858–1937) performed extensive investigations of phe-
nomena and devices at microwave and millimeter wave frequencies up to 60 GHz. In
1896, he developed the first pyramidal horn antenna (see Sec. 9.4.3) which he called a
collecting funnel; it was an extension of an open-ended waveguide radiator (see
Sec. 9.2.2) that Lodge developed. He also investigated polarization and polarizers.

1.1.4 Long-Distance Wireless Communications

Guglielmo Marconi (1874–1937), an Italian electrical engineer, studied the work of Hertz
and concluded that electromagnetic waves could be used for telegraph purposes. After
first experimenting with detecting lightning over kilometer distances, he built a micro-
wave parabolic cylinder like the one used by Hertz in Fig. 1-2 in 1895 for code trans-
missions over very short distances at 1.2 GHz. He then reduced the frequency of
operation and employed monopole antennas. Like most of the antenna designers of his
day, Marconi did not use theory to guide his experiments, but instead proceeded largely
on an empirical basis. He did not fully understand why lower frequencies were better for
long-distance communication, and he did not know that his monopole operated best for a
quarter wavelength height. But, the ability to communicate great distances both at night
and during the day resulted in HF-band and lower frequencies being used heavily for
decades. Failing to obtain support from the Italian government for his work, Marconi
moved to England in 1896 and teamed with the British Post Office in subsequent
experiments. In 1901, Marconi received British Patent Number 7777 (often referred to as
the “four sevens patent”) for a tunable radio system, allowing for multiple systems to
operate on different frequencies. Contrary to popular belief at the time, Marconi believed
that radio signals would follow the curvature of the earth at low frequencies. To prove this
dramatically, he set up a 3,500 km link with the transmitter in Poldhu in Cornwall,
England, and receiver in St. Johns, Newfoundland, Canada. The transmitting antenna for
the first transatlantic radio communication in 1901 consisted of a spark transmitter
connected between the ground and a system of 54 fanned out wires 1 meter apart at the

Figure 1-2 The 455-MHz cylindrical-parabolic reflector antenna invented by Hertz in 1888.
The parabolic shape in the horizontal direction has an aperture width of 1.2 m and the linear
shape in the vertical direction is 2 m long.
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top and supported on 45.7-m tall masts; see Fig. 1-3. The antenna resembled a variation of
a planar monocone antenna (see Sec. 7.4). The receiving antenna was a 122-m long
copper wire suspended by a kite. The exact operating frequency remains a subject of
controversy. Reproductions of the experiment (scaled up in frequency) and numerical
simulations indicate that Marconi used a frequency of 500 kHz. [2, Chap. 12] The Morse
code letter “s” (three dots) was sent repeatedly, and Marconi logged three successful
receptions in his laboratory notebook. Although many of the elements of his success were
known before his work, he is credited with inventing wireless telegraphy because he
combined the many elements into a commercially feasible system. Reliable transatlantic
wireless telegraphy service began in 1907. The Marconi Wireless Telegraph Company of
America started in 1899 and evolved into the Radio Corporation of America (RCA) in
1919. As a historical note, the passenger ship SS Titanic that sank the night of April 14,
1912, had a Marconi wireless set on board and transmitted distress calls. But the radio
operator on duty on a nearby ship, the California, was asleep at the time of the sinking
and distress calls from the Titanic were not received.5 A distant ship, the Carpathia, did
receive the distress call and arrived four hours later at the Titanic to rescue 706 survivors
of the 2,233 people aboard.

The term wireless was used until 1920 when broadcast radio began. The popular
meaning of the term radio remains in use today for the application of broadcast AM and
FM. With the widespread use of cellular telephones, the term wireless has regained
popularity and now is applied to a variety of untethered communication systems that do
not use wires. The term radio may have evolved from the word radii because the waves
propagate radially outward from the transmitter [2, p. 107], or may simply be a con-
traction derived from electromagnetic radiation. The IRE (Institute of Radio Engineers)
officially adopted the term radio in 1913.

The Russian physicist Alexander Popov (1859–1905) also recognized the importance
of Hertz’s discovery of radio waves and began working on ways of receiving radio waves
a year before Marconi. He is sometimes credited with using the first antenna in the first
radio system by sending a signal over a 3-mile ship-to-shore path in 1897. Popov used
the first elevated wire antenna, which Marconi also used. The elevated wire antenna
was the primary antenna used for the next three decades. Although Popov was first, it was
Marconi who developed radio commercially and also pioneered transoceanic radio
communication. Marconi is considered to be the father of wireless.

Canadian-American physicist Reginald Fessenden (1866–1932) in 1906 demonstrated
modulation onto a carrier by sending and receiving music, thus creating wireless tele-
phony and amplitude modulation (AM). Fessenden obtained 500 patents but was not a

Figure 1-3 The fan monopole transmitting antenna used by Marconi at 500 kHz in the first
transatlantic radio link.

5 A very readable reference with details on the equipment Marconi used is [H.8.2: Visser, Chap. 2].
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serious challenge to Thomas Edison’s world record 1093 patents. Fessenden patented the
heterodyne method of reception in 1902 and superhetrodyne reception in 1905.

Efficient signal detection technology developments occurred in the early 1900s,
starting with patents by English electrical engineer John Fleming (1849–1945) and
American Lee De Forest (1873–1961) on the vacuum tube diode (referred to as electric
valve then) in 1904 and 1905, respectively. In 1906, De Forest patented the triode tube
(“Audion”) which remained the primary means of detection in radios until the appearance
of the transistor decades later and enabled wide-spread implementation of wireless voice
communication. American electrical engineer Edwin Armstrong (1890–1954) invented
the superhetrodyne radio receiver using eight tubes in 1918, which permitted tuning of a
radio receiver by merely rotating a dial. Armstrong also invented frequency modulation
(FM), which became popular after World War II. Although he earned millions of dollars
from his patents, Armstrong had considerable business and legal troubles and committed
suicide in 1954.

In 1912, the IRE was formed from the merger of the Wireless Institute and the Society
of Radio Engineers.6 The importance of antennas is punctuated by the fact that the first
article of the first issue of the journal Proceedings of the IRE was on an antenna topic,
how to measure radiation resistance. [16] The term antenna was introduced by Marconi
and has its origins in the wooden poles used to support wire antennas; the Italian word for
pole is antenna. [H.8.2: Visser, p. 31; 15] The term aerial was also popular and remains in
use. The term antennae is sometimes encountered in the literature and is the plural of
antenna in Latin. The term antenna is also used for the “feelers” on the heads of insects
and crustaceans such as lobsters.

Antenna developments in the early part of the 20th century were limited by the
availability of signal generators, which for the most part operated in the low MHz range
and below. Resonant length antennas (e.g., a half-wavelength dipole) were physically
large and of low directivity. The need for secure communication in World War I provided
motivation to aggressively pursue directive antennas, which are more easily realized at
higher frequencies in the HF range (3 to 30 MHz, often called short waves) and above.
In 1916, Marconi developed a cylindrical parabolic reflector with a monopole feed at
150 MHz.

Commercial broadcast radio by Westinghouse Company started in 1920 in Pittsburgh,
Pennsylvania, at KDKA-AM when continuous programming of speech and music
intended for the public was launched. [17, Chap. 15] Westinghouse sold home-use AM
receivers starting in 1921. The use of directional broadcast antennas was introduced in
1932 in the United States. FM broadcasting began in 1940 in the United States and
operated in the 42 to 50 MHz band until 1945. Popularity of FM broadcast waned in the
mid 1950s due to rapid growth of broadcast television (TV ), but revived in the late 1950s.
Regular television broadcasting with black and white pictures began in England in 1939
and in the United States in 1941, with most growth in the 1948 to 1952 period. By
the early 1960s all the networks were broadcasting color TV programming using the RCA
tri-color system.

1.1.5 The Modern Era of Wireless

Mobile telephone, invented by Bell Telephone Company, was introduced into New York
City police cars in 1924. In 1926, the Yagi antenna was developed in Japan (see Sec. 6.3).
In 1934, commercial telephone microwave links began and used parabolic reflector
antennas.

6 The IRE merged with the American Institute of Electrical Engineers (AIEE) to form the Institute of
Electrical and Electronic Engineers (IEEE) in 1963.
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Microwave antennas operating at low GHz frequencies were investigated before 1900
by Bose and Lodge, but did not find applications until the 1930s when signal generators at
these frequencies appeared. The term microwaves (now defined as 0.3 to 300 GHz fre-
quencies) was first used in 1932. [18] The first commercial microwave radio telephone
system in 1934 was operated between England and France at 1.8 GHz. The cavity
magnetron and reflex klystron microwave sources were developed in 1937 and 1939,
respectively. The magnetron is used for high-power microwave generation such as in
microwave ovens. With microwave sources available and new applications stimulated
by World War II military needs, horn antennas (see Sec. 9.4) and reflector antennas
(see Sec. 9.6) invented many years earlier finally found widespread use and remain
popular today for both communication and the new application, radar (see Sec. 4.6).7

A U.S. government sponsored think tank for microwave technology development called
MIT Radiation Laboratory operated during WW II and resulted in publication of
28 volumes, including 1 volume on antennas [H.3: Silver], mainly aperture antennas.
Also, practical array antennas (see Chap. 8) started a long development process which
continues today.

In the post WW II period, three major wireless application areas grew to maturity. Full
mechanical scanning of reflector antennas mainly for radar was gradually replaced by
feed-only mechanical scan and phased arrays with no mechanical moving parts other than
mechanical phase shifters. [5] Broadcast television exploded in the 1948 to 1952 period
much like broadcast radio in the early 1920s. Satellite communications began in the
1960s and now provide both wide-bandwidth interconnections of large nodes for voice,
video, and data, as well as user links like mobile satellite telephones and satellite mobile
broadcast radio. Finally, cellular terrestrial land-mobile radio began in the 1980s and
spawned many innovations in small antennas for handsets (Chap. 11). Also, two
completely new types of antennas were introduced, frequency independent antennas and
microstrip antennas (see Table 1-4, Chap. 7, and Sec. 11.2). Beginning in the 1960s,
computational methods for electromagnetic problems began the transition from a research
area to an easy-to-use tool for the practicing engineer; see Chaps. 14 through 16. Now
many commercial software packages are available for simulating complex antenna sys-
tems. Currently, antenna design is evolving from a purely device level approach in two
directions: design in concert with full system requirements and integration of new
materials. Antennas via wireless are a part of the growing deployments of mixed-mode
communications which combines wire, coaxial cable, fiber optical cable, the Internet, and
wireless.

1.2 WHAT IS AN ANTENNA AND WHEN IS IT USED?

1.2.1 What Is an Antenna?

Electrical signals are carried between points in one of two ways: via transmission line or
through empty space using antennas at the terminals. A transmission line confines the
electrical signals and the energy of the associated electromagnetic waves to the region
near, or inside, the transmission line. This is also the situation for conventional circuits
where no energy appears distant from the circuit. Transmission lines often use a balanced
system of conductors or a metallic enclosure to confine the energy to either entirely
internal to the transmission line or very nearby. An antenna has the opposite purpose—to
encourage electrical signals to reach large distances from the antenna: to radiate. For
example, a good transmitting antenna will produce power densities that are detectable at
great distances from the source. The IEEE defines an antenna as “that part of a trans-
mitting or receiving system that is designed to radiate or to receive electromagnetic

7 See [H.8.2: Visser, Sec. 2.4] for a historical discussion of radar.
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waves.” [Sec. H.2: “IEEE Standard Definitions of Terms for Antenna”] A transmission
line requires a guiding structure (typically at least one conductor), whereas an antenna
requires no guiding structure. Examples of RF (radio frequency) transmission lines are
coaxial cables, parallel-wire lines, and hollow pipe waveguides (see Fig. 6-31). It is
appropriate to view an antenna as a transducer that converts a guided (or bound) wave on
a transmission line to a free-space electromagnetic wave (for the transmitting case) or
vice versa (for the receiving case).

For an antenna to be efficient, it must have a physical extent that is at least an
appreciable fraction of a wavelength at the operating frequency. Table 1-2 summarizes the
electromagnetic spectrum showing common frequency bands and the corresponding
wavelength values; more details on the spectrum are found in Appendix A. Conventional
circuits that are smaller than 1 meter in extent, for example, are much smaller than a
wavelength in size for operating frequencies up to many MHz and thus do not radiate.
Conventional circuit analysis uses a lumped element model where the elements (resistors,
capacitors, and inductors) are assumed to have all fields confined to the element extent.
Transmission lines, on the other hand, are often a sizable fraction of a wavelength and

Table 1-2 The Electromagnetic Spectrum

Band Designation Frequency Wavelength Example Uses

ELF (Extremely
Low Frequency)

3 to 30 Hz 100 to 10 Mm

SLF (Super Low
Frequency)

30 to 300 Hz 10 to 1 Mm Power lines

ULF (Ultra Low
Frequency)

300 to 3 kHz 1 Mm to 100 km

VLF (Very Low
Frequency)

3 to 30 kHz 100 to 10 km Submarine comm.

LF (Low Frequency) 30 to 300 kHz 10 to 1 km RFID
MF (Medium
Frequency)

300 kHz to 3 MHz 1 km to 100 m AM broadcast

HF (High Frequency) 3 to 30 MHz 100 to 10 m Shortwave broadcast
VHF (Very High
Frequency)

30 to 300 MHz 10 to 1 m FM and TV broadcast

UHF (Ultra High
Frequency)

300 MHz to 3 GHz 1 m to 10 cm TV, WLAN, GPS, Microwave
ovens

SHF (Super High
Frequency)

3 to 30 GHz 10 to 1 cm Radar, WLAN, Satellite comm.

EHF (Extremely High
Frequency)

30 to 300 GHz 10 to 1 mm Radar, Radio astronomy, Point-
to-point high rate data links,
Satellite comm.

Microwaves 1 to 300 GHz 30 cm to 1 mm
Millimeter waves 30 to 300 GHz 10 to 1 mm
Submillimeter waves .300 GHz ,1 mm

Frequency-to-Wavelength Conversions

l ¼ c=f

lðmÞ ¼ 33 108=f ðHzÞ
lðmÞ ¼ 300=f ðMHzÞ
lðcmÞ ¼ 30=f ðGHzÞ
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require what is called distributed element analysis, whereby the electrical characteristics
are expressed per unit length quantities such as Farads/meter. It should be mentioned
that radiation can be unintended, creating interference. The design of high-speed digital
circuits and high-frequency devices includes techniques for minimizing radiation
(see Sec. 4.7).

1.2.2 When Is an Antenna Used?

In contrast to a transmission line, an antenna requires no guiding structure. However,
the waves are radiated in all directions away from a transmitting antenna, albeit not
uniformly. For a transmitter-receiver spacing of r, the power loss of a signal traveling in

a transmission line is proportional to e�αrð Þ2 where α is the attenuation constant of the
transmission line, whereas for antennas used in a line-of-sight configuration the power loss
is proportional to 1/r2. This prompts the question of how to choose between using a cable
or an antenna, which is the same as asking whether a transmission line or a radio should be
used. Many factors other than propagation loss enter into this decision. Generally
speaking, transmission lines are used at low frequencies and for short distances. But high
frequencies are popular for communication applications because of the available wide
bandwidth. So as the distance or frequency increases, the signal losses and costs of using
transmission lines increase, and the decision is often to use antennas. For long distances,
radio communication using transmit and receive antennas is more appropriate and much
less expensive than using a transmission line.

Antennas must be used in several applications. For example, mobile communications
involving aircraft, spacecraft, ships, or land vehicles require antennas. Antennas are also
popular in broadcast situations where one transmit terminal can serve an unlimited
number of receivers, which can be mobile (e.g., car radio). Non-broadcast radio appli-
cations such as municipal radio (police, fire, rescue), amateur radio, and wireless personal
communications also require antennas. There are also many non-communication appli-
cations for antennas. These include remote sensing and industrial applications. Remote
sensing systems are either active (e.g., radar) or passive (e.g., radiometry) and receive
scattered energy or inherent emissions from objects, respectively; see Secs. 4.5 and 4.6.
The received signals are processed to infer information about the objects or scenes.
Industrial examples are cooking and drying with microwaves.

Other factors that influence the choice of the type of transmission system include
historical reasons, security, and reliability. Telephone companies provided wireline
communications before radio technology was available, and telephone infrastructure
continues to be used, although consumers continue to shift to wireless personal com-
munications. Telephone companies employ microwave radio and fiber optic transmission
lines for long-distance telephone calls. Satellite radio links are used for international
telephone calls and for distributing television program material to affiliate stations. Also,
many millions of homes receive television programs from direct broadcast satellites. Very
small aperture terminals (VSAT) are widely used in private data networks to interconnect,
for example, gas stations and retail stores via satellite, mainly for credit card authori-
zation. Although transmission lines inherently offer more security than radio, radio links
can be secured with coding techniques.

Reliability is an additional factor impacting the decision between wired and wireless
interconnectivity. Radio signals are affected by environmental conditions such as struc-
tures along the signal path, the ionosphere, and weather. Furthermore, interference is
always a threat to radio systems. On the other hand, cables are vulnerable to being
damaged, most often by storms (for elevated cables) and by accidentally digging up
buried cables. All of these factors must be examined together with the costs associated
with using transmission lines or antennas. Cable-based systems usually require the pur-
chase or lease of land right-of-way, which can be expensive. Radio-based systems only
have costs associated with antenna sites and benefit from improved reliability and
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reduced equipment costs as technology advances. Cable and radio communication
systems will continue to be used in the future with the choice depending on the specific
application.

The next two sections of this first chapter provide a basic understanding of
how antennas operate and an overview of the types of antennas encountered in practice.

1.3 HOW ANTENNAS RADIATE

In this section, we explain the basic principles of radiation using some examples
explained with simplified physics in preparation for the full mathematical development of
antennas in the next chapter. The mathematical foundation is needed for subsequent
analysis and design of antennas. Radiation is a disturbance of the electromagnetic fields
that propagates away from the source of the disturbance so that the total power in the
wave does not decay with distance. This disturbance is created by a time-varying current
source, which has an accelerated charge distribution associated with it. We, therefore,
begin our discussion of radiation with a single accelerated charge.

Consider the single electric charge of Fig. 1-4 moving with constant velocity in the
z-direction. We know from electrostatic principles that the electric field (often called the
Coulomb field) of a charge terminates either on an oppositely signed charge or at infinity.
Thus, prior to arrival at point A ðt , 0Þ, the static electric field lines extend radially away
from the charge to infinity and move with the charge. When the charge reaches point A at
time t ¼ 0 the charge begins to be accelerated (i.e., velocity is increased) until reaching

B

q

z

Et

Er

rB rA

A Δz

Δr

Figure 1-4 Illustration of how an accelerated charged particle radiates. Charge q moves with
constant velocity in the þz-direction until it reaches point A (time t¼ 0) after which it
accelerates to point B (time t¼Δt) and then maintains its velocity. The electric field lines
shown here are for a time rB/c after the charge passed point B.
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point B at time t ¼ Δt where it continues on at the acquired velocity for all time t > Δt.
The radial field lines outside the circle of radius rA in Fig. 1-4 originated when the charge
was at point A. The circle of radius rB is centered on point B, which is the charge position
at the end of the acceleration period Δt and the electric field lines extend radially away
from point B interior to the circle or radius rB. The distance between the circles is the
distance light would travel in time Δt, or Δr ¼ rB � rA ¼ Δt=c. Because the charge
moves slowly compared to the speed of light (c), Δz � Δr and the circles are nearly
concentric. The distance Δz in Fig. 1-4 is shown large relative to Δr for clarity. The
electric field lines in the Δr region are joined together because of the required continuity
of electric field lines in the absence of charges. This region is obviously one of disturbed
field structure and was caused by acceleration of the charge which ended a time rB/c
earlier than the instant represented in Fig. 1-4. This disturbance propagates outward at the
speed of light. The electric field lines in the Δr region have a “kink” in them which
introduces a transverse component Et in addition to a radial component. As we shall see,
the presence of the transverse field component is a characteristic of radiated fields, and
the disturbance propagates to infinity.

The important physical principle in this example is that accelerated charges radiate.
Acceleration, in general, occurs through change of speed or change of direction of a
charge. For antennas the primary mechanism of radiation is via charges (i.e., charge
disturbances) moving back and forth on a wire, or oscillating in response to an oscillating
generator. Charge direction is reversed at the ends of the wire, which is an acceleration
and results in radiation.

The fact that radiation is a disturbance is directly analogous to a transient wave created
by a stone dropped into a calm lake where the disturbance of the lake surface continues to
propagate radially away from the impact point long after the stone has disappeared.
Another useful analogy of wave behavior, credited to Leonardo da Vinci (1452–1519), is
the waves moving across the tops of a wind-swept field of wheat while the base of the stalks
remain stationary. [H.3: Schelkunoff and Friis, p. 10] Accelerated charges are necessary for
creating radiation, but not for sustaining the wave. Once a wave is started, the electric field
lines that close on themselves (because no charges are present for the lines to terminate on)
and propagate outward away from the original source at the speed of light. The helpful
mechanical analogy here is that of a rope with one end fixed and a kink is generated at the
other end by a flick of the wrist, creating a propagating kink.

The directional properties of radiation are evident in the accelerated charge example.
The disturbance in Fig. 1-4 is maximum in a direction perpendicular to the charge
acceleration direction where the transverse electric field component is maximum. We will
show in the next chapter that maximum radiation occurs perpendicular to a straight wire
antenna which carries the accelerated charges.

The transient excitation example of a single accelerated charge is the most elementary
radiation case. The common situation is steady-state (usually sinusoidal) charge oscil-
lations. The frequency of the charge oscillations determines the frequency of the radiated
wave. This is illustrated with a pair of equal but stationary, oppositely signed charges
separated by a distance much smaller than the wavelength of the oscillation frequency of
the charges. That is, the two charges oscillate in amplitude sinusoidally and in phase,
other than the opposite sign difference. Conceptually, the oscillation of charges back and
forth between the ends occurs by an oscillating uniform current called an ideal dipole.
The fields created by this oscillating charge dipole for a few instants of time are shown
in Fig. 1-5. [H.3: Hertz, pp. 144–145; H.3: Schelkunoff and Friis, Sec. 4.17] Awire dipole
antenna is shown also to indicate that the radiation is the same as that of a small dipole
antenna to be discussed in Sec. 2.3. The dipole provides a current path to allow charge
distributions to alternate back and forth as shown later for the ideal dipole of Fig. 3-2.
In Fig. 1-5, an oscillating current of frequency f (and period T ¼ 1/f ) was turned on
a quarter period before t ¼ 0. The upward-flowing current creates an excess of
charges on the upper half of the dipole and a deficit of charges on the lower half.
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Peak charge build-up occurs at t¼ 0 as shown in Fig. 1-5a and produces a voltage between
the dipole halves. The positive charges on the top are attracted to the negative charges
on the bottom half of the dipole, creating a current. The current is maximum at t ¼ T/4 as
shown in Fig. 1-5b, at which time the charges have been neutralized and there are no longer
charges for termination of electric field lines, which form closed loops near the dipole.
During the next quarter cycle, negative charges accumulate at the top end of the dipole as
shown in Fig. 1-5c. Near the dipole, the fields are most intense normal to the oscillating
charges on the dipole, just as we found with the single accelerated charge. As time pro-
gresses, the electric field lines detach from the dipole, forming closed loops in space, and
spread outward from the dipole as time progresses. Viewed in terms of current, the con-
duction current on the antenna converts to a displacement current in space, consisting of
longitudinal fields near the antenna and solenoidal (as created by wire loops) fields away
from the antenna. Thus, continuity is satisfied. This process continues, producing radiation
via electric field components that are transverse to the radial direction and propagate to
large distances from the antenna. This example illustrates the general principle that if
charges are accelerated back and forth (i.e., oscillate), a regular disturbance is created and
radiation is continuous. Antennas are designed to support charge oscillations.

This oscillating dipole example assumes that the charge separation distance is small
compared to a wavelength. For dipoles that are not of infinitesimal length, radiation
occurs continuously along the wire [19]; dipoles of various lengths are addressed in
Sec. 6.1. Another important simplification assumed in the oscillating dipole model is that

+

+

–

–

I = 0

I = 0

I

t = 0(a) t = T/4(b)

t = T/2

λ/2

(c)

Figure 1-5 Fields of an oscillating charge dipole for various instants of time. Electric field
lines are shown on one side of the dipole but exist everywhere around the dipole. The
oscillations are of frequency f with a period of T ¼ 1/f. The separation between the equal,
opposite-sign charges is much smaller than the wavelength of the oscillations. A dipole
antenna is shown to indicate that the radiation is the same as that for an ideal dipole antenna.
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charges actually move to the dipole ends. For finite length antennas, the charges barely
move at all and are only displaced enough to support the disturbance created by the
generator [20]; again the wind waves in the wheat field help to visualize the situation.
Another helpful analogy is a row of collapsing dominoes, where the dominoes fall at a
speed much less than the wave propagating across the tops of the dominoes while the
bases of the dominoes remain stationary. However, it is convenient to treat charge dis-
turbances resulting in an effective current as if charges actually move along the length of
the antenna.8 The same assumption is also employed in conventional circuit analysis.

We will see in Sec. 2.3 that the mathematical solution of the oscillating dipole produces
the property required for successful radiation: that fields die off with distance as 1/r. In
contrast, the electric fields of an electrostatic dipole die off as 1/r3. The time-space behavior
of fields from an antenna are revisited in Chap. 15.

The key to understanding how an antenna radiates lies in Maxwell’s discovery that a
transmission line acts as a guide for waves associated with the fields surrounding the
transmission line. An antenna is a structure that encourages waves to extend out into
the space surrounding the antenna rather than being bound to it. We exploit this concept

8 From this point forward, for simplification, we will adopt the traditional model for antenna currents as
that of charge transport along the antenna, where the current is understood to be an effective current
representing charge displacements from equilibrium transferred to neighboring charges.
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(a) Open-circuited transmission line showing currents, charges, and fields. The electric fields are indicated
with lines and the magnetic fields with arrow heads and tails, solid (dashed) for those arising from the top
(bottom) wire. (Note: The separation between the wires is larger than for a normal transmission line to permit
showing the interior fields.)

(b) Peak currents and fields of a half-wavelength dipole created by bending out the ends of the transmission line.

Figure 1-6 Evolution of a dipole antenna from an open-circuited transmission line.
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in the next example that begins with the open-circuited transmission line of Fig. 1-6a. The
open-circuit termination presents large discontinuity that creates reflections which
interact with the incident wave, producing a standing wave pattern with a zero current
magnitude at the wire end and nulls every half wavelength from the end. The currents are
in opposite directions on the transmission line wires, as indicated by arrows in Fig. 1-6a.
In transmission lines, the conductors guide the waves and the power resides in the region
surrounding the conductors as manifested by the electric and magnetic fields shown in
Fig. 1-6a. The electric fields originate from or terminate on charges on the wires and are
perpendicular to the wires, and the magnetic fields encircle the wires. Note that all fields
reinforce between the wires and cancel elsewhere. This is true for a wire spacing that is
much smaller than a wavelength, which is usually the case. If the ends of the wires are
bent outward as shown in Fig. 1-6b, the reinforced fields between the wires are exposed to
open space. Note that the currents on the vertical wire halves, which are each a quarter-
wavelength long in this case, are no longer opposed as with the transmission line, but are
both upwardly directed for this instant of time. In reality, the dipole current envelopes
are approximately sinusoidal as shown, but the transmission line currents are not pure
standing waves because the impedance presented by the antenna is a better match to the
characteristic impedance of the transmission line compared to the open circuit discon-
tinuity of the open circuited transmission line. Fig. 1-6b shows the peak envelope of the
current. As time proceeds, the current oscillates and disturbances are created which
propagate away from the wire, much as for the accelerated single charge case. The field
structure for this half-wave dipole resembles that of the ideal dipole of Fig. 1-5. Wire
antennas will be discussed in detail in Chap. 6.

1.4 THE FOUR ANTENNA TYPES

Most antennas are reciprocal devices and behave the same on transmit as receive, so
antennas are treated as transmitting or receiving as appropriate for the best understanding
of the particular situation. In the receiving mode, antennas act to collect incoming waves
and direct them to a common feed point where a transmission line is attached. In some
cases, antennas focus radio waves just as lenses focus optical waves. In all cases, antennas
have directional characteristics; that is, electromagnetic power density is radiated from a
transmitting antenna with varying intensity around the antenna.

In this section, we introduce the parameters used to evaluate antennas and then discuss
the four types of antennas. Antenna performance parameters are listed in Table 1-3 and
will be defined and developed in more detail in the next chapter. The radiation pattern (or
simply, pattern) gives the variation of radiation with angle around an antenna when the
antenna is transmitting. When receiving, the antenna responds to an incoming wave from
a given direction according to the pattern value in that direction. The typical pattern in
Fig. 1-7 shows the pattern main beam and side lobes. Radiation is quantified by noting the
value of power density S at a fixed distance r from the antenna. A directive antenna has a
single narrow main beam, which is the example shown in Fig. 1-7, and finds application
in point-to-point communications. In some applications, the shape of the main beam is
important. In others, an omnidirectional pattern with constant radiation in one plane is
used in broadcast situations to achieve uniform coverage in all directions in the horizontal
plane around the antenna.

An antenna is essentially a spatial amplifier, and directivity expresses how much
greater the peak radiation level is for an antenna than it would be if all the radiated power
were distributed uniformly around the antenna. Fig. 1-7 shows the radiation pattern of a
real antenna compared to an isotropic spatial distribution; also see later Fig. 2-14. The
radiation enhancement in preferred directions that can be achieved by an antenna is
evident. Gain G is directivity reduced by the losses on the antenna.

The third parameter of polarization describes the vector nature of electric fields
radiated by an antenna. The figure traced out with time by the tip of the instantaneous
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electric field vector determines the polarization of the wave. A straight-wire transmitting
antenna produces a wave with linear polarization parallel to the wire. Another popular
polarization is circular. In general, polarization is elliptical. A dual-polarized antenna
enables the doubling of communication capacity by carrying separate information on
orthogonal polarizations over the same physical link on the same frequency.

Table 1-3 Antenna Performance Parameters

� Radiation Pattern, F(θ,φ): Angular variation of radiation around the antenna,
including:

Directive single or multiple narrow beams
Omnidirectional (uniform radiation in one plane)
Shaped main beam

� Directivity, D: Ratio of power density in the direction of the pattern peak to the
average power density at the same distance from the antenna.

� Gain, G (or radiation efficiency er , where G5 erD): Directivity reduced by the
losses on the antenna.

� Polarization: The figure traced out with time by the instantaneous electric field vector
associated with the radiation from an antenna when transmitting. Antenna polariza-
tions: Linear, Circular, Elliptical

� Impedance, ZA: The input impedance at the antenna terminals.
� Bandwidth: Range of frequencies over which important performance parameters are

acceptable.
� Scanning: Movement of the radiation pattern in space. Scanning is accomplished by

mechanical movement or by electronic means such as adjustment of antenna current
phase.

� System Considerations: Mechanical considerations (size, weight, aerodynamics,
vibration, positioning accuracy), environmental aspects (effects of wind, rain, tem-
perature, altitude), scattering/radar cross section, esthetic appearance.

� Special Considerations for transmitting antennas: Power handling, intermodula-
tion, radiation hazards.

� Special Considerations for receiving antennas: Noise.

Main beam

Side lobe

Isotropic
pattern

Pattern F(  ,   ) of
a real antenna

D = S

S

Si

Si

θ φ

Figure 1-7 Illustration of radiation pattern F θ, φð Þ and directivity D. The power densities at
the same distance are S and Si for the isotropic and real antennas, respectively.
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The input impedance of an antenna is the ratio of the voltage to current at the antenna
terminals. The usual goal is to match antenna input impedance to the characteristic
impedance of the connecting transmission line. Bandwidth is the range of frequencies
with acceptable antenna performance as measured by one or more of the performance
parameters; see Sec. 7.1 for commonly used definitions of bandwidth. Finally, it is often
desired to scan the main beam of an antenna over a region of space. This can be
accomplished by mechanically rotating the entire antenna, by electronic scanning, or by a
combination of mechanical and electronic scanning.

There are tradeoffs among parameter values. Usually performance cannot be improved
significantly for one parameter without sacrificing one or more of the other parameter
levels. This is the antenna design challenge.

Antennas can be divided into four basic types by their major performance char-
acteristics. These antenna types are introduced so that the common features can be
grasped early in the study of antennas. When you encounter a new antenna, try to
determine which type it is. The four antenna types are listed in Table 1-4 in the order
that they are commonly used by frequency range. Electrically small antennas are used at
VHF frequencies and below. Resonant antennas are mainly used from HF to low GHz
frequencies. Broadband antennas are mainly used from VHF to middle GHz frequencies.
Aperture antennas are mainly used at UHF and above. This discussion serves as an
overview and should be referred to from time to time as your knowledge of antennas
builds.

Electrically small (or simply, small) antennas are much less than a wavelength in
extent. They are simple in structure and their properties are not sensitive to construction
details. The vertical monopole used for AM reception on cars is a good example. It is
about 0.003 l long and has a pattern that is nearly omnidirectional in the horizontal plane.
This is often a desirable property, but its low input resistance and high input reactance are
serious disadvantages. Also, small antennas are inefficient because of significant ohmic
losses on the structure.

Resonant antennas are popular when a simple structure with good input impedance over
a narrow band of frequencies is needed. It has a broadmain beam and low ormoderate (a few
dB) gain. The half-wave dipole is a prominent example.

Many applications require an antenna that operates over a wide frequency range. A
broadband antenna has acceptable performance as measured with one or more para-
meters (pattern, gain, and/or impedance) over a 2:1 bandwidth ratio of upper to lower
operating frequency. A broadband antenna is characterized by an active region. Propa-
gating (or traveling) waves originate at the feed point and travel without radiation to the
active region where most of the power is radiated. A broadband antenna with circular
geometry has an active region where the circumference is one wavelength and produces
circular polarization. An example is the spiral antenna illustrated in, Fig. 1-8 which can
have a 20:1 bandwidth. A broadband antenna made up of linear elements or straight edges
has an active region where the elements are about a half-wavelength in extent and pro-
duces linearly polarized radiation parallel to the linear elements. Because only a portion
of a broadband antenna is responsible for radiation at a given frequency, the gain is low.
But it may be an advantage in many applications to have gain that is nearly constant with
frequency, although low. Also, the traveling wave nature of a broadband antenna means
that it has a real-valued input impedance that is easily matched to the connecting
transmission line.

Aperture antennas have an opening through which propagating electromagnetic waves
flow. The horn antenna shown in Fig. 1-8 is a good example; it acts as a “funnel” for
waves. The aperture is usually several wavelengths long in one or more dimensions. The
pattern usually has a narrow main beam, leading to high gain. Bandwidth is moderate (as
much as 2:1). One property that can be a disadvantage is that the pattern main beam
narrows with increasing frequency for a fixed physical aperture size.
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Table 1-4 Types of Antennas

� Electrically Small Antennas: The extent of the antenna structure is much less than a
wavelength λ.

Properties:
Low directivity
Low input resistance
High input reactance
Low radiation efficiency

Examples:

<< λ << λ

Short dipole Small loop

� Resonant Antennas: The antenna operates well at a single or selected narrow fre-
quency bands.

Properties:
Low to moderate gain
Real input impedance
Narrow bandwidth

Examples:

Half-wave dipole Microstrip patch Yagi

2
~

λ

2
~

λ

2
~

λ

� Broadband Antennas: The pattern, gain, and impedance remain acceptable and are
nearly constant over a wide frequency range.

Characterized by an active region with a circumference of one wavelength or an extent
of a half-wavelength, which relocates on the antenna as frequency changes.

Properties:
Low to moderate gain
Constant gain
Real input impedance
Wide bandwidth

Examples:

Spiral Log Periodic Dipole Array

∼
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A common design situation is the search to find an antenna to achieve a desired gain
value. The list below provides a guide in this selection process.9

� 5 dB or less
Electrically small antennas
Loops
Dipoles/monopoles

� 5 dB to 8 dB
Microstrip patches
Planar frequency-independent antennas (e.g. spirals)

� 8 dB to 15 dB
Yagi-Uda
Helix (axial mode)
Log periodic dipole array

� 15 dB and more
Aperture antennas

Horns
Reflectors

Also, multiple elements can be used in an array configuration to increase gain.
What is the future for antenna engineering? An interesting aspect of the field of

antennas is that new antenna innovations generally do not replace existing antenna types,
as is often the case in electronics and computers. Long-used antennas will find new
applications along with the latest innovative solutions. Fundamental physics limitations
prevent unlimited miniaturization of conventionally designed antennas, which is often the
case in electronic devices through higher scale integration. But the demand is for more
pervasive communications to enable each person and device to be free of wire connec-
tions. An often quoted goal is be able to reach any person or device worldwide without
connections. A “wireless” society is possible only through the use of antennas. Indeed,
the future of antenna engineering is very bright. Sec. 4.5 will give a technical overview of
antennas in wireless communications.

Table 1-4 Continued

� Aperture Antennas: Has a physical aperture (opening) through which waves flow.
Properties:
High gain
Gain increases with frequency
Moderate bandwidth

Examples:

Horn

Aperture Aperture

Reflector

9 Gain in dB is 10 log of the gain as a power ratio.
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PROBLEMS

1.3-1 Show that the decay of power density for a wave radiated by an antenna (1/r2) results
from the increase in the area of a sphere centered on the antenna and the fact that the total
radiated power is conserved.
1.3-2 Consider an ideal dipole of length L � l. If charge carriers actually moved along the
full length of the wire in half cycle, T/2, show that the speed of the charges is much less than
the speed of light (i.e., ν � c).
1.4-1 Project: Antenna hunt. (a) Locate one representative antenna for each of the four major
antenna type categories. Preferably the antennas will be in your community and be actively
used. Take a photograph, or make a sketch, of the antenna and its surroundings. If you cannot
find an example in your community, you can use other sources such as a catalog, magazine, or
the Internet. (b) Prepare a brief report that shows each of the four antennas and includes
information about the antenna such as the type of antenna, operating frequency, purpose and
use, and any other information you can determine.
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Chapter2

Antenna Fundamentals

The overview of the principles of electromagnetics and the application to antennas pre-
sented in the first chapter is followed in the first two sections of this chapter with a
presentation of the fundamental principles of electromagnetics in a mathematical form
suitable for direct application to antenna analysis and design. The principles are applied
in Sec. 2.3 to the important classical problem of an ideal dipole. The remaining
sections in the chapter introduce the student to the basic antenna quantities of pattern,
directivity and gain, impedance, efficiency, and polarization.

2.1 FUNDAMENTALS OF ELECTROMAGNETICS

The formulations of electromagnetics for antenna problems are in vector form and usually
expressed in spherical coordinates. This is because electromagnetic fields, unlike scalar
fields such as sound waves, have polarization, and vectors are a convenient way to rep-
resent polarization, which can be simplistically described as the orientation of the electric
field. Spherical coordinates are required because antennas radiate in all directions (i.e.,
three dimensions) and the fields are expressed as a function of the spherical coordinate
angles θ and φ around the antenna. Although antenna problems involve vectors and
spherical coordinates, nonlinear conditions rarely arise as they often do in mechanical
engineering problems. In fact, applications of electromagnetics are primarily to linear,
homogeneous, isotropic systems, thus avoiding several mathematical complications.

This section is a concise review of material treated in electromagnetic fields courses in
electrical engineering or physics. Any basic electromagnetics textbook can be consulted
for more details.

The fundamental electromagnetic equations in the time domain are1

∇3E ¼ � @B

@t
ð2-1Þ

∇3H ¼ @

@t
DþIT ð2-2Þ

∇ � D ¼ ρTðtÞ ð2-3Þ
∇ � B ¼ 0 ð2-4Þ

∇ � IT ¼ � @

@t
ρTðtÞ ð2-5Þ

1 Time-varying quantities will be denoted with script quantities, for example, E ¼ Eðx, y, z, tÞ.
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The first four of these differential equations are frequently referred to as
Maxwell’s equations and the last as the continuity equation. The curl equations together
with the continuity equation are equivalent to the curl and divergence equations. In time-
varying field problems, the curl equations with the continuity equation is the most con-
venient formulation. Each of these differential equations has an integral counterpart.

If the sources ρTðtÞ and JTðtÞ vary sinusoidally with time at radian frequency ω, the
fields will also vary sinusoidally and are frequently called time-harmonic fields. The
fundamental electromagnetic equations and their solutions are considerably simplified if
phasor fields are introduced as follows2:

E ¼ ReðEejωtÞ, H ¼ ReðHejωtÞ, etc: ð2-6Þ
where phasor quantities E, H, D, B, ρT , and JT are complex-valued functions of spatial
coordinates only (i.e., time dependence is not shown). Using the phasor definitions of the
electromagnetic quantities from (2-6) in (2-1) to (2-5) and eliminating the ejωt factors that
appear on both sides of the equations yields

∇3E ¼ �jωB ð2-7Þ
∇3H ¼ jωDþ JT ð2-8Þ
∇ � D ¼ ρT ð2-9Þ
∇ � B ¼ 0 ð2-10Þ
∇ � JT ¼ �jωρT ð2-11Þ

The time derivatives in (2-l) to (2-5) have been replaced by a jω factor in (2-7) to (2-11)
and time-varying electromagnetic quantities have been replaced by their phasor coun-
terpart. This process is similar to the solution of circuit equations where the time-
dependent differential equations are Laplace-transformed and the time derivatives are
thus replaced by jω (or s). Eqs. (2-7) to (2-10) are often referred to as the time-harmonic
form of Maxwell’s equations because they apply to sinusoidally varying (i.e., time-
harmonic) fields.

If more than one frequency is present, the time-varying forms of the electromagnetic
quantities can be found by inverse transforms after (2-7) to (2-11) have been solved for
the phasor quantities as a function of radian frequency ω. This is again analogous to the
procedure used to solve circuit problems. Fortunately, this is not usually necessary in
antenna problems because the bandwidth of the signals is usually very small. In the
typical case, a carrier frequency is accompanied by some form of modulation giving a
spread of frequencies around the carrier. For analysis purposes, we use a single frequency
equal to the carrier frequency. Thus, unless otherwise noted, subsequent material in this
book will assume time-harmonic fields.

The total current density JT is composed of an impressed, or source, current J and a
conduction current density term σE, which occurs in response to the impressed current:

JT ¼ σEþ J ð2-12Þ
The role played by the impressed current density is that of a known quantity. It is quite
frequently an assumed current density on an antenna, but as far as the field equations are
concerned, it is a known function. The current density σE is a current density flowing on a
nearby conductor due to the fields created by source J and can be computed after the field

2 The student is cautioned that some authors use e�jωt, which leads to sign differences in subsequent
developments.
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equations are solved for E. In addition to conductivity σ, a material is further charac-
terized by permittivity ε and permeability μ, where3

D ¼ εE ð2-13Þ
and

B ¼ μH ð2-14Þ
We now rewrite the field equations in preparation for their solution. Substituting (2-12)

and (2-13) into (2-8) gives

∇3H ¼ jω εþ σ
jω

� �
Eþ J ¼ jωε0 Eþ J ð2-15Þ

where we have defined ε0 ¼ ε� jðσ=ωÞ. For antenna problems, we are usually solving for
the fields in air surrounding an antenna where σ ¼ 0 and ε0 ¼ ε. We therefore use ε
instead of ε0 in subsequent developments. However, if the conductivity is nonzero, ε can
be replaced by ε0 ¼ ε� jðσ=ωÞ. Note also that E and H are the fields of primary interest in
antennas.4 They are referred to as electric and magnetic fields and have units of V/m and
A/m, respectively.

Let ρ be the source charge corresponding to the source current density J. Then using
(2-12) to (2-14) in (2-7) and (2-9) to (2-11), and repeating (2-15) permits Maxwell’s
equations to be expressed in terms of E and H (see Prob. 2.1-2 for (2-18)):

∇3E ¼ �jωμH ð2-16Þ
∇3H ¼ jωεEþ J ð2-17Þ
∇ � E ¼ ρ

ε
ð2-18Þ

∇ � H ¼ 0 ð2-19Þ
∇ � J ¼ �jωρ ð2-20Þ

These are the time-harmonic electromagnetic field equations with source current density
J and source charge density ρ shown explicitly. Sometimes, it is convenient to introduce a
fictitious magnetic current density M. Then (2-16) becomes

∇3E ¼ �jωμH�M ð2-21Þ
Magnetic currents are useful as equivalent sources that replace complicated electric fields.

The solution of the fundamental electromagnetic equations is not complete until the
boundary conditions are satisfied. A sufficient set of boundary conditions in the time-
harmonic form is

n̂3 ðH2 �H1Þ ¼ Js ð2-22Þ
ðE2 � E1Þ3 n̂ ¼ Ms ð2-23Þ

where the electric and magnetic surface currents Js and Ms flow on the boundary between
two homogeneous media with constitutive parameters ε1, μ1, and σ1, and ε2, μ2, σ2. Ms is

3 In general, ε and μ can be complex, but in most antenna problems they can be approximated as real
constants.
4 Sometimes fields other than E and H are used as the two fundamental field quantities, such as E and B.
[1]
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zero unless an equivalent magnetic current sheet is used. The unit normal to the boundary
surface n̂ is directed from Medium 1 into Medium 2. The cross products with the unit
normal form the tangential components to the boundary, and these equations can be
written as

Htan 2 ¼ Htan 1 þ Js ð2-24Þ
Etan 2 ¼ Etan 1 þMs ð2-25Þ

These boundary conditions are derived from the integral form of (2-17) and (2-21). If one
side is a perfect electrical conductor, the boundary conditions become

Htan¼ Js ð2-26Þ
Etan ¼ 0 ð2-27Þ

The tangential boundary conditions on the magnetic field intensity are illustrated in
Fig. 2-1 for the general case and for the case where Medium 1 is a perfect conductor. It is
important to note that all field quantities in the boundary condition equations are eval-
uated at the boundary and the equations apply to each point along the boundary.

Also derivable from Maxwell’s curl equations is a conservation of power equation, or
Poynting’s theorem. Consider a volume υ bounded by a closed surface s. The complex
power Ps delivered by the sources in υ equals the sum of the power Pf flowing out of s, the
time-average power Pdav dissipated in υ, plus the time-average stored power in υ:

Ps ¼ Pf þ Pdav þ j2ωðWmav �WeavÞ ð2-28Þ
The complex power flowing out through closed surface s is found from

Pf ¼ 1

2

ZZ
�

s

E3H* � ds ð2-29Þ

where ds ¼ dsn̂ and n̂ is the unit normal to the surface directed out from the surface. Note
that E and H are peak phasors, not rms, leading to 1/2 in power expressions. The inte-
grand inside this integral is defined as the Poynting vector:

S ¼ 1
2
E3H* ð2-30Þ

which is a power density with units of W/m2.
The time-average dissipated power in volume υ bounded by closed surface s is

Pdav ¼
1

2

ZZ
υ

Z
σjEj2dυ ð2-31Þ

The time-average stored magnetic energy is

Wmav ¼
1

2

ZZ
υ

Z
1

2
μjHj2dυ ð2-32Þ

The time-average stored electric energy is

Weav ¼
1

2

ZZ
υ

Z
1

2
εjEj2dυ ð2-33Þ

If the source power is not known explicitly, it can be calculated from the volume current
density as follows:
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Ps ¼ � 1

2

ZZ
υ

Z
E � J* dυ ð2-34Þ

If magnetic current density is present, the term H* �M is added to the integrand in this
equation.

From (2-29), we see that the integral of the complex Poynting vector 1
2
E3H* over a

closed surface s gives the total complex power flowing out through the surface s. It is
assumed that the complex Poynting vector represents the complex power density in watts
per square meter at a point. Then the complex power through any surface s (not neces-
sarily closed) can be found by integrating the complex Poynting vector over that surface.
We are particularly interested in real power, which is the real component of the complex
power that represents the electric and magnetic field intensities being in-phase. The real
power flowing through surface s is

P ¼ Re

�ZZ
s

S � ds

�
¼ 1

2
Re

�ZZ
s

E3H* � ds

�
ð2-35Þ

The reference direction for this average power flow is that of the specified unit normal n̂
contained in ds ¼ dsn̂.

2.2 SOLUTION OF MAXWELL’S EQUATIONS
FOR RADIATION PROBLEMS

This section develops procedures for finding fields radiated by an antenna based on
Maxwell’s equations. Subsequent antenna analysis in this book begins with these basic
relations, and it is usually not necessary to return to Maxwell’s equations.

The antenna problem consists of solving for the fields that are created by an impressed
current distribution J. In the simplest approach, this current distribution is obtained
during the solution process. How to obtain the current distribution will be discussed at
various points in the book, but for the moment suppose we have the current distribution
and wish to determine the fields E and H. As mentioned in the previous section, we need
only work with the two curl equations of Maxwell’s equations as given by (2-16) and
(2-17). These are two coupled, linear, first-order differential equations. They are coupled
because the unknown functions E and H appear in both equations. Thus, these equations

H ta
n 

2

H ta
n 

1

H tan

Medium 2

Medium 1
n

(a) General case. (b) One medium a perfect conductor.

∞=σ

Js Jsˆ

Figure 2-1 Magnetic field intensity boundary condition.
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must be solved simultaneously. In order to simplify the solution for E and H with a given
J, we introduce the scalar and vector potential functions Φ and A.

The vector potential is introduced by noting from (2-19) that the divergence of H is
zero. Therefore, the vector field H has only circulation; for this reason, it is often called a
solenoidal field. Because it possesses only a circulation, it can be represented by the curl
of some other vector function as follows:

H ¼ 1

μ
∇3A ð2-36Þ

where A is the (magnetic) vector potential. To be more precise, (2-36) is possible because
it satisfies (2-19) identically; that is, from (C-9)∇ �∇3A � 0 for anyA. The curl of A is
defined by (2-36), but its divergence needs to be specified for a complete definition of A.

The scalar potential is introduced by substituting (2-36) into (2-16), which gives

∇3 ðEþ jωAÞ ¼ 0 ð2-37Þ
The expression in parentheses is an electric field, and because its curl is zero, it is a
conservative field and behaves as a static electric field. The (electric) scalar potential Φ is
defined from

Eþ jωA ¼ �∇Φ ð2-38Þ
because this definition satisfies (2-37) identically; that is, from (C-10) ∇3∇Φ � 0 for
any Φ. Solving (2-38) for the total electric field gives

E ¼ �jωA�∇Φ ð2-39Þ
which may be a familiar result.

The field E and H are now expressed in terms of potential functions by (2-36) and
(2-39). If we knew the potential functions, then the fields could be obtained.

The solution for the potential functions begins by substituting (2-36) into (2-17) to
give

∇3H ¼ 1

μ
∇3∇3A ¼ jωεEþ J ð2-40Þ

Using the following vector identity, from (C-17),

∇3∇3A � ∇ð∇ � AÞ �∇2A ð2-41Þ
and (2-39) in (2-40) yields

∇ð∇ � AÞ �∇2A ¼ jωμεð�jωA�∇ΦÞ þ μJ ð2-42Þ
or

∇2Aþ ω2μεA�∇ð jωμεΦþ∇ � AÞ ¼ �μJ ð2-43Þ
As we mentioned previously, the divergence of A is yet to be specified. A convenient
choice would be one that eliminates the third term of (2-43). It is the Lorentz condition (but
more properly attributed to L. Lorenz rather than H. Lorentz [2]):

∇ � A ¼ �jωμεΦ: ð2-44Þ
Then (2-43) reduces to

∇2Aþ ω2μεA ¼ �μJ ð2-45Þ
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The choice of (2-44) leads to a decoupling of variables: that is, (2-45) involves A and
not Φ. This is the vector wave equation. It is a differential equation that can be solved for
A after the impressed current J is specified. The fields are then found from (2-36) and
from

E ¼ �jωA� j
∇ð∇ � AÞ

ωμε
ð2-46Þ

where this equation was obtained from (2-39) and (2-44). Notice that only a knowledge of
A is required. A more cumbersome approach would be to solve the scalar wave equation

∇2Φþ ω2μεΦ ¼ � ρ
ε

ð2-47Þ

in addition to the vector wave equation. It is left as a problem to-derive (2-47). If this
approach is used, E is found from (2-39). Note that ρ in (2-47) is related to J in (2-45) by
the continuity equation of (2-20).

The vector wave equation (2-45) is solved by forming three scalar equations. This
begins by decomposing A into rectangular components using (C-18):

∇2A ¼ x̂∇2Ax þ ŷ∇2Ay þ ẑ∇2Az ð2-48Þ
Rectangular components are used because the unit vectors in rectangular components
can be factored out of the Laplacian, ∇2( ), since they are not themselves functions of
coordinates. This feature is unique to the rectangular coordinate system. Although A is
always decomposed into rectangular components, the Laplacian of each component of A
is expressed in a coordinate system appropriate to the geometry of the problem. The
solution proceeds by substituting (2-48) into (2-45) and equating rectangular components:

∇2Ax þ β2Ax ¼ �μJx
∇2Ay þ β2Ay ¼ �μJy
∇2Az þ β2Az ¼ �μJz

ð2-49Þ

where β2¼ω2με. The real-valued constant

β ¼ ω
ffiffiffiffiffiffi
με

p ð2-50Þ
is recognized as the phase constant for a propagating wave. It is a measure of the shift in
phase per unit distance, of wave travel. By definition a wave shifts 2π radians of phase for
one full cycle, i.e., one wavelength, so

β ¼ 2π
l

ð2-51Þ

The velocity5 of electromagnetic waves is actually contained in (2-50) as

c ¼ 1ffiffiffiffiffiffi
με

p

5 It is common to use the term velocity in this context and it is understood that the magnitude is intended
without direction being indicated; what is meant is speed.
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Maxwell found this result, concluding correctly that the velocity is a finite constant and
that this result also applies to light because light is an electromagnetic wave. Combining
(2-50) and (2-52) gives

β ¼ ω
c
¼ 2πf

c
ð2-53Þ

and again with (2-51)

c ¼ fl ð2-54Þ

In free space (and in air), c ¼ 1=
ffiffiffiffiffiffiffiffiffiμ0ε0

p � 3� 108 m=s where μ0 and ε0 are the perme-

ability and permittivity of free space. This relationship is used to compute wavelength
from frequency for all electromagnetic waves. Hertz experimentally determined
the velocity of light in his laboratory by measuring distance between adjacent nulls of the
standing wave (which is a half wavelength) created by reflections off a sheet of metal to
find the wavelength value and then using (2-54).

In the time domain, the non-infinite propagation velocity is responsible for the delay
in arrival time of waves traveling distance Δr, the so-called retarded time given by
Δt¼Δr/c. The corresponding phase change is found from the fraction of the period
T (¼1/f ) of the time delay:

Δphase ¼ βΔr ¼ 2πf
c
ðcΔtÞ ¼ 2πΔt

T
: For example, a propagation distance of

Δr ¼ l=4 corresponds to a retarded time of Δt ¼ Δr
c
¼ l

4
1
f l ¼ T

4
and a phase increment

of Δphase ¼ 2π T=4
T

¼ π
2
¼ 90�.

The three equations in (2-49) are identical in form. After solving one of these
equations, the other two are easily solved. We first find the solution for a point source.
This unit impulse response solution can then be used to form a general solution by
viewing an arbitrary source as a collection of point sources. The differential equation for a
point source is

∇2ψþ β2ψ ¼ �δðxÞ δðyÞ δðzÞ ð2-55Þ
where ψ is the response to a point source at the origin, and δ( ) is the unit impulse
function, or Dirac delta function (see Appendix F.l). In spite of the fact that the point
source is of infinitesimal extent, its associated current has a direction. This is because in
solving practical problems, the point source represents a small subdivision of current that
does have a direction. If the point source current is taken as z-directed, then

ψ ¼ Az ð2-56Þ
Because the point source is zero everywhere except at the origin, (2-55) becomes

∇2ψþ β2ψ ¼ 0 ð2-57Þ
away from the origin.

This is the complex scalar wave equation or Helmholtz equation. Because of spherical
symmetry, the Laplacian is written in spherical coordinates and ψ has only radial
dependence. The two solutions to (2-57) are e�jβr=r and eþjβr=r. These correspond to
waves propagating radially outward and inward, respectively. The physically meaningful
solution is the one for waves traveling away from the point source. Evaluating the
constant of proportionality (see Prob. 2.2-3), we have for the point source solution:

ψ ¼ e�jβr

4πr
ð2-58Þ
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This is the solution to (2-55) and is the magnitude and phase variation with distance r
away from a point source located at the origin. If the source were positioned at an
arbitrary location, we must compute the distance R between the source location and
observation point P (see Fig. 2-2). Then

ψ ¼ e�jβR

4πR
ð2-59Þ

The point source serves as a starting point for the ideal dipole antenna solution, which is
discussed in the next section.

For an arbitrary z-directed current density, the vector potential is also z-directed. If we
consider the source to be a collection of point sources weighted by the distribution Jz,
the response Az is a sum of the point source responses of (2-59). This is expressed by the
integral over the source volume υ0:

Az ¼
ZZ
υ 0

Z
μJz

e�jβR

4πR
dυ 0 ð2-60Þ

Similar equations hold for the x- and y-components. The total solution is then the sum of
all components, which is

A ¼
ZZ
υ 0

Z
μJ

e�jβR

4πR
dυ 0 ð2-61Þ

This is the solution to the vector wave equation (2-45). The geometry is shown in Fig. 2-2.
The coordinate system shown is used to describe both the source point and field point. r 0
is the vector from the coordinate origin to the source point, and rp is the vector from the
coordinate origin to the field point P. The vector R is the vector from the source point to
the field point and is given by rp � r 0. This notation is standard and will be used here.

We can summarize rather simply the procedure for finding the fields generated by a
current distribution J. First, A is found from (2-61). The H field is found from (2-36). The
E field can be found from (2-46), but frequently it is simpler to find E from (2-17) as

E ¼ 1

jωε
ð∇3H� JÞ ð2-62Þ

in the source region, or from

E ¼ 1

jωε
∇3H ð2-63Þ

if the field point is removed in distance from the source; that is, if J¼ 0 at point P.

r� rp

J

R � rp � r�

Source volume v�

P, field point

Figure 2-2 Vectors used to solve
radiation problems.
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2.3 THE IDEAL DIPOLE

The principles presented in the previous section are used in this section to find the fields
of an infinitesimal element of current. We shall use the term ideal dipole for a uniform
amplitude current that is electrically small with Δz	l. It is ideal in the sense that the
current is uniform in both magnitude and phase over the radiating element extent. Such a
discontinuous current is difficult to realize in practice; practical realizations that
approximate the ideal dipole are presented in Sec. 3.1. The term current element is often
used for the ideal dipole to describe its application as a section of a larger current
associated with an actual antenna. Thus, any practical antenna can first be decomposed
into filaments of continuous current that are then subdivided into ideal dipoles. The fields
from the antenna are then found by summing contributions from the ideal dipoles. Other
terms used for the ideal dipole are Hertzian electric dipole, electric dipole, infinitesimal
dipole, and doublet. An electrically small, center-fed wire antenna has a current distri-
bution that tapers to zero from the center to the ends of the wire. This short dipole antenna
has the same pattern as an ideal dipole and is discussed further in Secs. 2.7 and 3.1.

Consider an element of current of length Δz along the z-axis centered on the coor-
dinate origin. It is of constant amplitude I. In this case, the volume integral of (2-61) for
vector potential reduces to the one-dimensional integral6

A ¼ ẑμI
Z Δz=2

�Δz=2

e�jβR

4πR
dz0 ð2-64Þ

The lengthΔz is very small compared to a wavelength and to the distance R; see Fig. 2-3.
Because Δz is very small, the distance R from points on the current element to the field
point P approximately equals the distance r from the origin to the field point. Substituting
r for R in (2-64) and integrating gives

6 The result in (2-64) could also be obtained by representing the current density on the dipole as

J ¼ I δðx0Þ δðy0Þẑ for �Δz

2
, z0 ,

Δz

2

Substituting this into (2-61) yields

A ¼ ẑμI
Z N

�N
δðx0Þdx0

Z N

�N
δðy0Þ dy0

Z Δz=2

�Δz=2

e�jβR

4πR
dz0

from which (2-64) follows.

Δz

z

R

I

r

y

x

P

Figure 2-3 The ideal dipole. The
current I is uniform, Δz{ l, and
R� r.
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A ¼ μIe�jβr

4πr
Δz ẑ ð2-65Þ

This is exactly true for a point current element and is approximately true for a small
(Δz	l and Δz	R) but finite uniform current element. The vector potential Az for a
point source was also derived in the previous section; see (2-58) in which IΔz ¼ 1. For
many current sources, we can readily make the substitution of r for R in the denominator
of the integrand in (2-64), but usually cannot make the same substitution in the exponent.
However, in the case of a very small source, we can use r for R in both the denominator
and exponent.

We are now ready to calculate the electromagnetic fields created by the ideal dipole.
The magnetic field is found from (2-36) as

H ¼ 1

μ
∇3A ¼ 1

μ
∇3 ðAzẑÞ ð2-66Þ

If we apply the vector identity (C-16), the preceding equation becomes

H ¼ 1

μ
ð∇AzÞ3 ẑþ 1

μ
Azð∇3 ẑÞ ¼ 1

μ
ð∇AzÞ3 ẑ ð2-67Þ

The second term is zero because the curl of a constant vector is zero. Substituting (2-65)
into (2-67), we have

H ¼ ∇
IΔze�jβr

4πr

� �
3 ẑ ð2-68Þ

Applying the gradient in spherical coordinates from (C-33) gives

H¼ IΔz

4π
@

@r

e�jβr

r

0
@

1
Ar̂3 ẑ

¼ IΔz

4π
�jβe�jβr

r
� e�jβr

r2

2
4

3
5r̂3 ẑ

ð2-69Þ

From (C-3), we have

r̂3 ẑ ¼ r̂3 ðr̂ cos θ� θ̂ sin θÞ ¼ �f̂ sin θ ð2-70Þ
Substituting (2-70) into (2-69) gives

H ¼ IΔz

4π
jβ
r
þ 1

r2

� �
e�jβrsin θ f̂ ð2-71Þ

The electric field can be obtained from (2-63) as

E ¼ IΔz

4π
jωμ
r

þ
ffiffiffi
μ
ε

s
1

r2
þ 1

jωεr3

2
4

3
5e�jβrsin θ θ̂

þ IΔz

2π

ffiffiffi
μ
ε

s
1

r2
þ 1

jωε
1

r3

2
4

3
5e�jβrcos θ r̂

ð2-72Þ
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Eqs. (2-71) and (2-72) can be written as

H ¼ IΔz

4π
jβ 1þ 1

jβr

� �
e�jβr

r
sin θ f̂ ð2-73aÞ

E ¼ IΔz

4π
jωμ 1þ 1

jβr
� 1

ðβrÞ2

2
4

3
5 e�jβr

r
sin θ θ̂

þ IΔz

2π
η

1

r
� j

1

βr2

2
4

3
5 e�jβr

r
cos θ r̂

ð2-73bÞ

Even the simplest of antennas, the ideal dipole, has a complicated field structure at
distances close to the antenna where 1=r2 and 1=r3 terms are not negligible. The electric
field expression of (2-73b) has transverse (θ) and radial (r) components. The associated
power density near the ideal dipole has a real-valued (dissipative) outward-directed
radial (r) component and an imaginary-valued (reactive) transverse (θ) component; see
Prob. 2.3-3 and (2-79) below. If βr is large (i.e., βr
1, or r
l because β ¼ 2π=l),
then all terms having inverse powers of jβr are small compared to unity, and (2-73)
reduces to:

E ¼ IΔz

4π
jωμ

e�jβr

r
sin θ θ̂ ð2:74aÞ

H ¼ IΔz

4π
jβ

e�jβr

r
sin θ f̂ ð2:74bÞ

These are the fields at large distances from the dipole that are called the radiation fields of
the ideal dipole. The ratio of these electric and magnetic field components is

Eθ

Hφ
¼ ωμ

β
¼ ωμ

ω
ffiffiffiffiffiffi
με

p ¼
ffiffiffi
μ
ε

r
¼ η ð2-75Þ

where η ¼ ffiffiffiffiffiffiffiffi
μ=ε

p
is the intrinsic impedance of the medium (for free space

η0 ¼ 376:7Ω � 120πΩ). This is a property of plane waves. Also, as we shall see, at large
distances from any antenna the fields are related in this manner.

Using the fields of (2-74) in (2-30) gives an expression for the complex power density
flowing out of a sphere of radius r surrounding the ideal dipole:

S ¼ 1

2
E3H*

¼ 1

2

IΔz

4π

0
@

1
A

2

jωμ
e�jβr

r
sin θ θ̂3 ð� jβÞ e

þjβr

r
sin θ f̂

¼ 1

2

IΔz

4π

0
@

1
A

2

ωμβ
sin 2θ
r2

r̂

ð2-76Þ

which is real-valued and radially directed, both characteristics of radiation. The total power
flowing out through a sphere of radius r surrounding the ideal dipole using (2-29) is
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Pf ¼
ZZ

S � ds ¼ 1

2

IΔz

4π

0
@

1
A

2

ωμβ
Z 2π

0

dφ
Z π

0

sin3θ dθ

¼ 1

2

IΔz

4π

0
@

1
A

2

ωμβ2π
4

3

¼ ωμβ
12π

ðIΔzÞ2

ð2-77Þ

This is a real quantity, and real power indicates dissipated power. It is dissipated in the
sense that it travels away from the source, never to return. In fact, the average power
going out through a sphere of radius r can be found as indicated in (2-35) by taking the
real part of (2-77), which leaves it unchanged. This power expression is independent of r,
and thus if we integrate over a sphere of larger radius, we still have the same total power
streaming through it. We refer to this type of power as radiated power.

The general field expressions of (2-73) are valid at any distance from an ideal dipole
and are important in some applications and for understanding the input impedance of a
dipole. For distances so close to the dipole that βr	1, or r	l, only the dominant terms
with the largest inverse powers of r need be retained in each component of (2-73):

Hnf ¼ IΔze�jβr

4πr2
sin θ f̂ ð2-78aÞ

Enf ¼ �jη
IΔz

4πβ
e�jβr

r3
sin θ θ̂� j η

IΔz

2πβ
e�jβr

r3
cos θ r̂ ð2-78bÞ

These are referred to as the near fields of the antenna. Actually, the magnetic field of
(2-78a) which varies as 1=r2 is that of a short, steady or slowly oscillating current, that is,
an induction field. The electric fields of (2-78b) vary as 1=r3 and are those of an elec-
trostatic or quasi-static dipole with charges of þq and –q spaced Δz apart. Note that the

electric field components E
nf
θ and Enf

r are in-phase, but are in phase-quadrature with

the magnetic field H
nf
φ , indicating reactive power. This can be shown directly using these

near fields in the complex Poynting vector expression of (2-30):

Snf ¼ 1

2
½Enf

θ H
nf*
φ r̂� Enf

r H
nf*
φ θ̂�

¼ � jη
2β

�
IΔz

4π

�2
1

r5
ðsin2θ r̂� sin 2θ θ̂Þ

ð2-79Þ

Note that this power density vector is imaginary and therefore has no time-average radial
power flow. The radiation fields, in contrast, are in-phase giving a real-valued Poynting
vector that is radially directed; see (2-74) and (2-76). The imaginary power density cor-
responds to standing waves, rather than traveling waves associated with radiation, and
indicate stored energy as in a reactive device. The quadrature phase relationship between
the electric and magnetic field components of (2-78) indicates that energy is interchanged
between these fields with time. That is, at one instant of time the electric fields are strong
near the dipole close tomaximum charge regions, and a quarter-period later energy is stored
in the magnetic field, primarily close to the center of the dipole where the current
is maximum.

The imaginary power density in the near field is manifested by a reactive component of
the antenna input impedance. The real part of the input impedance represents radiation if
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ohmic losses on the antenna structure can be neglected. Antenna impedance will be
discussed further in Sec. 2.6. The power density associated with radiation exists every-
where and passes through the near field. The radiated power density from (2-76) and the
near-field power density from (2-79) are both maximum for θ¼ 90�. The distance for
which the maximum radiated and reactive powers are equal for the ideal dipole is
r ¼ l=2π; see Prob. 2.3-5. That is, interior to this radius reactive power dominates. This
region is sometimes referred to as the radiansphere.

At large distances (r
l=2π) from an antenna, called the far-field region, all power is
radiated power. The far field is further characterized by the fact that the angular distri-
bution around the antenna (i.e., the radiation pattern) is independent of distance from the
antenna. Field regions and the distance away from an antenna where the far field begins
are discussed further in Sec. 2.4.3

2.4 RADIATION PATTERNS

We briefly introduced the concept of a radiation pattern in Sec. 1.4 as a description of the
angular variation of radiation level around an antenna. The purpose of an antenna is to
transmit, or receive, signals preferentially in various directions. An antenna’s radiation
pattern is perhaps its most important characteristic. In this section, we present several
definitions associated with patterns and develop the procedural steps for calculating
radiation patterns.

2.4.1 Radiation Pattern Basics

A radiation pattern (also called an antenna pattern) is a graphical representation of the
radiation (far-field) properties of an antenna; a general example radiation pattern is shown
in Fig. 1-7. We saw from the analysis in the previous section that the radiation fields from
a transmitting ideal dipole antenna vary inversely with distance, e.g., 1/r. This is a general
property for antennas of all types; that is, the radiated fields observed far from any
antenna decay with distance as a spherical wave. The variation with observation angles
(θ, φ), however, depends on the size and construction details of the antenna. In fact, the
relationship of an antenna to its radiation pattern forms a large part of antenna
investigations.

A helpful way to understand the concept of radiation pattern is to visualize a spherical
ball of bread dough. The ball represents the hypothetical isotropic radiation pattern (see
Fig. 1-7) that radiates equally in all directions. Squeezing on the dough ball distorts the
shape, representing more radiation in some directions and less in others. The total power
radiated in all directions is same, but the power density (in W/m2) at points on a distant
spherical surface varies with direction in proportion to the square of the pattern (square is
used because the pattern is a field quantity, unless otherwise noted).

Radiation patterns are determined from the calculated or measured fields radiated from
the antenna. We illustrate with the ideal dipole shown in Fig. 2-4. The length and ori-
entation of the field vectors in Fig. 2-4a follow from (2-74) and are shown for an instant
of time for which the fields are peak. An electric field probe antenna moved over the
sphere surface and oriented parallel to Eθ will have an output proportional to sin θ; see
Fig. 13-4. The relative variation of both Eθ and Hφ over the sphere is sin θ, as displayed in
Fig. 2-4b. This radiation pattern graphically represents unit-less, normalized values over
the surface of a sphere of radius r which is in the far field. Any plane containing the z-axis
has the same radiation pattern because there is no φ-variation in the fields, which is noted
by the constant variation in the xy-plane shown in Fig. 2-4c. A pattern taken in one of the
planes through the z-axis is called an E-plane pattern because it contains the electric
vector. A pattern taken in a plane perpendicular to an E-plane and cutting across the test
antenna (the xy-plane in this case) is called an H-plane pattern because it contains the
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magnetic field Hφ. The E- and H-plane patterns, in general for linearly polarized antenna,
are referred to as principal plane patterns. The E- and H-plane patterns for the ideal
dipole shown in Fig. 2-4b and c, respectively, are polar plots in which the distance from
the origin to the curve is proportional to the field intensity; they are often referred to as a
polar pattern. For patterns that have a single unidirectional beam, the principal planes are
taken to be two orthogonal planes passing through the beam peak.

The complete 3D pattern for the ideal dipole is shown in isometric view with a slice
removed in Fig. 2-4d. This solid radiation pattern resembles a “doughnut.” It is referred to as
an omnidirectional pattern because it is uniform in one plane, the xy-plane. Omnidirectional
antennas are very popular in ground-based applications where the omnidirectional-pattern
plane is horizontal (parallel to the ground). When encountering new antennas the reader
should attempt to visualize the complete pattern in three dimensions.

2.4.2 Radiation from Line Currents

Radiation patterns in general can be calculated in a manner similar to that used for the
ideal dipole if the current distribution on the antenna is known. This is done by first
finding the vector potential given in (2-61). As a simple example, consider a filament of
current along the z-axis and located near the origin. Many antennas can be modeled by

z

(d )(c)

(b)

y
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x

sin

HP � 90°

θ
θ

θ
z
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E - plane
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Figure 2-4 Radiation from an ideal dipole, (a) Field components. (b) E-plane radiation pattern
polar plot of |Eθ| or |Hφ|. (c) H-plane radiation pattern polar plot of |Eθ| or |Hφ|. (d) Three-
dimensional plot of radiation pattern.
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this line source; straight wire antennas are good examples. In this case, the vector
potential has only a z-component and the vector potential integral is one-dimensional7:

Az ¼ μ
Z

Iðz0Þ e
�jβR

4πR
dz0 ð2-80Þ

Due to the symmetry of the source, we expect that the radiation fields will not vary with
φ. This is because as an observer moves around the source such that r and z are constant,
the appearance of the source remains the same; thus, its radiation fields are also
unchanged. Therefore, for simplicity we will confine the observation point to a fixed φ in
the yz-plane (φ¼ 90�) as shown in Fig. 2-5. From Fig. 2-5 we see that

r2 ¼ y2 þ z2 ð2-81Þ
z ¼ rcos θ ð2-82Þ
y ¼ r sin θ ð2-83Þ

If we apply the general geometry of Fig. 2-2 to this case, rp ¼ r ¼ yŷþ zẑ and r 0 ¼ z 0ẑ
lead to R ¼ rp � r 0 ¼ yŷþ ðz� z 0Þẑ, and then

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðz� z0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2 � 2zz0 þ ðz0Þ2

q
ð2-84Þ

Substituting (2-81) and (2-82) into (2-83), to put all field point coordinates into the
spherical coordinate system, gives

R ¼ fr2 þ ½�2r cos θ z 0 þ ðz 0Þ2�g1=2 ð2-85Þ
In order to develop approximate expressions for R, we expand (2-85) using the

binomial theorem (F-4):

R ¼ ðr2Þ1=2 þ 1

2
ðr2Þ�1=2½�2r cos θ z0 þ ðz0Þ2� þ

1

2

�
� 1

2

�
2

ðr2Þ�3=2

� ½�2r cos θ z0 þ ðz0Þ2�2 þ � � �

¼ r � z0 cos θþ ðz0Þ2 sin 2θ
2r

þ ðz0Þ3sin 2θ cos θ
2r2

þ � � � ð2-86Þ

7 This result could also be obtained by using Jzðr0Þ ¼ Iðz0Þ δðx0Þ δðy0Þ in (2-60) where dv0 ¼ dx0 dy0 dz0.
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Figure 2-5 Geometry used for field
calculations of a line source along the
z-axis.
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Successive terms in this series decrease as the power of z0 increases if z0 is small com-
pared to r. This expression for R is used in the radiation integral (2-80) to different
degrees of approximation. In the denominator (which affects only the amplitude), we let

R � r ð2-87Þ
We can do this because in the far field r is very large compared to the antenna size, so
r
z0 $ z0 cos θ. In the phase term �βR, we must be more accurate when computing the
distance from points along the line source to the observation point.

The integral (2-80) sums the contributions from all the points along the line source.
Although the amplitude of waves due to each source point is essentially the same, the
phase can be different if the path length differences are a sizable fraction of a wavelength.
We, therefore, include the first two terms of the series in (2-86) for the R in the numerator
of (2-80), giving

R � r � z0 cos θ ð2-88Þ
Using the far-field approximations (2-87) and (2-88) in (2-80) yields

Az ¼ μ
Z

Iðz0Þ e
�jβðr�z0cos θÞ

4πr
dz0 ¼ μ

e�jβr

4πr

Z
Iðz0Þejβz0cos θdz0 ð2-89Þ

where the integral is over the extent of the line source. This may be recognized as a
Fourier-transform-type integral; see Sec. 5.3. [H.3: Silver, Sec. 6.3] The Fourier trans-
form relationship between the antenna current distribution and its radiation pattern will be
revisited for linear antennas in Sec. 5.3 and for aperture antennas in Sec. 9.1. The integral
is referred to as the radiation integral or diffraction integral.

The magnetic field for the line source is found using (2-36):

H ¼ 1

μ
∇3A ¼ 1

μ
∇3 ðAzẑÞ

¼ 1

μ
∇3 ð�Az sin θ θ̂þ Az cos θ r̂Þ

ð2-90Þ

where (C-3) was used. Since Az is a function of r and θ, the curl in spherical coordinates,
as given by (C-35), leads to

H ¼ f̂
1

μ
1

r

@

@t
ð�rAz sin θÞ � @

@θ
ðAz cos θÞ

� �
ð2-91Þ

Substitution of (2-89) into the above gives

H¼ f̂
1

μ
μ
�sin θ
4πr

Z
Iðz0Þejβz0cos θdz0 @

@r
e�jβr � e�jβr

4πr2
@

@θ

8<
:

�
�
μ cos θ

Z
Iðz0Þejβz0cos θ dz0

�	

¼ f̂
1

μ
e�jβr

4πr



jβ μ sin θ

Z
Iðz0Þejβz0cos θdz0

� 1

r

@

@θ

�
μ cos θ

Z
Iðz0Þejβz0cos θdz0

�	
ð2-92Þ

The ratio of the first term to the second term is of the order βr. If βr
1, the second term
is small compared to the first and can be neglected, as we did for the far-field approxi-
mation of the ideal dipole. Thus, (2-92) becomes
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H ¼ f̂
jβ
μ
sin θ μ

e�jβr

4πr

Z
Iðz0Þejβz0cos θdz0 ¼ jβ

μ
sin θAzf̂ ð2-93Þ

The electric field is found from (2-46), which is

E ¼ �jωA� j
∇ð∇ � AÞ

ωμε
ð2-94Þ

Using (2-80) in (2-81) and retaining only the r�1 term (and assuming βr
1) lead to the
far-field approximation

E ¼ �jωAθθ̂ ¼ jω sin θAzθ̂ ð2-95Þ
Note that this result is the portion of the first term of (2-94) that is transverse to r̂ because
�jωA ¼ �jωð�Az sin θ θ̂þ Az cos θ r̂Þ: This is an important general result that is not
restricted to line sources.

The radiation fields from a z-directed line source (any z-directed current source in
general) are Hφ and Eθ,, and are found from (2-93) and (2-95). The only remaining
problem is to calculate Az, which is given by (2-60) in general and by (2-89) for z-directed
line sources. The calculation of Az is the focal point of antenna analysis. We will return to
this topic after pausing to further examine the characteristics of the far-field region.

The ratio of the radiation field components in (2-93) and (2-95) yields

Eθ ¼ ωμ
β

Hφ ¼ ωμ
ω

ffiffiffiffiffiffi
με

p Hφ ¼ ηHφ ð2-96Þ

where η ¼ ffiffiffiffiffiffiffiffi
μ=ε

p
is the intrinsic impedance of the medium. Thus, the radiation fields are

perpendicular to each other and to the direction of propagation r̂ and their magnitudes
are related by (2-96). These are the familiar properties of a plane wave. They also hold for
the general form of a “transverse electromagnetic (TEM) wave” that has both the electric
and magnetic fields transverse to the direction of propagation. In general, radiation from a
finite antenna is a special case of a TEM wave, called a “spherical wave,” that propagates
radially outward from the antenna and the radiation fields have no radial components.
Spherical wave behavior is also characterized by the e�jβr=4πr factor in the field
expressions; see (2-93). The e�jβr phase factor indicates a traveling wave propagating
radially outward from the origin and the 1/r magnitude dependence leads to constant
power flow just as with the infinitesimal dipole. In fact, the radiation fields of all antennas
of finite extent display this dependence with distance from the antenna.

Another way to view radiation field behavior is to note that spherical waves appear to
an observer in the far field to be a plane wave. This “local plane wave behavior” occurs
because the radius of curvature of the spherical wave is so large that the phase front is
nearly planar over a local region.

2.4.3 Far-Field Conditions and Field Regions

The results for the line current from the previous section are easily generalized to an
arbitrary, but finite-sized, antenna. In the far field of an antenna, the fields exhibit local
plane wave behavior and have 1/r magnitude dependence. In this section, we develop the
conditions for determining the minimum distance from an antenna for far-field behavior.
This begins with a geometric interpretation for far-field approximations.

If parallel lines (or rays) are drawn from each point on a line current as shown in
Fig. 2-6, the distance R to the far field is geometrically related to r by (2-88), which was
derived by neglecting high-order terms in the expression for R in (2-86). The parallel ray
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assumption is exact only when the observation point is at infinity, but it is a good
approximation in the far field. Radiation calculations often start by assuming parallel rays
and then determining R for the phase by geometrical techniques. From the general source
shown in Fig. 2-7, we see that

R ¼ r � r0 cosα ð2-97Þ
Using the definition of dot product, we have

R ¼ r � r0
r � r0

rr0

or

z

z�

r

P

R �
 r �

 z� 
cos

z� cos

θ

θ

θ

θ

Figure 2-6 Parallel ray approximation for far-field calculations of a line source.

r

J

r�

R

Pv�

dv�

r� c
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α

Figure 2-7 Parallel ray approximation for far-field calculations of a general source.
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R ¼ r � r̂ � r0 ð2-98Þ

This is a general approximation toR for the phase factor in the radiation integral. Notice that
if r0 ¼ z0 ẑ, as for line sources along the z-axis, (2-98) reduces to (2-86).

The definition of the distance from the source where the far field begins is where errors
due to the parallel ray approximation become insignificant. The distance where the far
field begins, rff, is taken to be that value of r for which the path length deviation due to
neglecting the third term of (2-86) is a sixteenth of a wavelength. This corresponds to a
phase error of 2π/λ � l/16¼π/8 rad¼ 22.5�.

If D is the length of the line source, rff is found by equating the maximum value of the
third term of (2-86), which occurs for z0 ¼ D=2 and θ¼ 90�, to a sixteenth of a wave-
length, or ðD=2Þ2=2rff ¼ l=16. Solving for rff gives

rff ¼ 2D2

l
ð2-99Þ

The far-field region is r$ rff and rff is called the far-field distance, or Rayleigh distance.
The general far field condition of (2-99) is not sufficiently large if the antenna size is
small compared to a wavelength. Additional considerations are necessary and will be
developed after first discussing the field regions in more detail.

The region interior to the far field, called the near field, is divided into the reactive near
field where the reactive fields dominate over the radiation (real-valued) fields and
the radiating near field where the radiation fields dominate over the reactive fields. For the
ideal dipole, the boundary between the reactive and radiating near field regions occurs for
r ¼ l=2π which is the radius of the radiansphere introduced at the end of Sec. 2.3. This
result follows from the general field expressions for the ideal dipole in (2-73). There are
terms with radial dependencies of 1/r, 1/r2, and 1/r3. With increasing distance from the
dipole, first the 1/r3 term diminishes compared to other terms, then the 1/r2 term dimin-
ishes, and only the 1/r term is significant in the far field. The real and imaginary parts of the
vector components are equal for βr ¼ l, or r ¼ l=2π ¼ 0:16l, defining the reactive-
radiating near field boundary; see Prob. 2.4-3. We found the same result in Prob. 2.3-5 by
examining the power density expression. The conditions on the derivation of the ideal
dipole fields in Sec. 2.3 were that l
Δz and r
Δz. The ratio of radiated to reactive
power density is 1=ðβrÞ3, as derived in Prob. 2.3-5. So, if βr ¼ 10 the radiated power
density will be 1000 times (30 dB) greater than the reactive power density. Thus,
r ¼ 10=β ¼ 1:6l forms the far-field boundary for an ideal dipole. It turns out that the
boundary value of βr ¼ 10 also corresponds to the point where the wave impedance (ratio
of transverse field components) converges to the intrinsic impedance of free space, η,
indicating that a free space wave is well formed; see Prob. 2.4-4. A more conservative
condition of r ¼ 5l arises based on the error in magnitude of the Eθ component of
(2-73b) being 30 dB down compared to the far-field approximation field of (2-74a); see
Prob. 2.4-5. [3]. Fig. 2-8a summarizes the field regions for the ideal dipole as: the reactive
near field extends from r¼ 0 to 0.16l, the radiating near field from 0.16l to 5l, and the far
field is beyond 5l. These results also apply to any electrically small antenna, which is
defined as fitting inside a sphere of radius a equal to or less than 0.16l.

The reactive-radiating near field boundary changes for radiating sources other than an
ideal dipole. For a line source, this region extends to a distance 0:62

ffiffiffiffiffiffiffiffiffiffiffi
D3=l

p
from the

antenna (see Prob. 2.4-6). [H.8.8: Walter, (2-109)] As noted in (2-99), the far field starts
at 2D2=l. An additional far-field distance condition is that r be greater than D, which
was mentioned in association with the approximation R � r of (2-87) for use in the
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magnitude dependence. Specifically we require r to be greater than 5 D, which is based
on the maximum error in the distance to the far field being 10% see Prob. 2.4-7. In
addition, the condition r
l follows from βr ¼ ð2πr=lÞ
1 which was used to reduce
(2-92) to (2-93). Often this limit is chosen to be r. 1:6l based on reasoning similar to
that used for the ideal dipole. The conditions on the far-field distance for line sources of
length D are summarized as:

r.
2D2

l
ð2-100aÞ

r. 5D far-field conditions ð2-100bÞ
r. 1:6l ð2-100cÞ

The far-field distance criterion of 2D2=l is usually the limiting condition for antennas
operating in the UHF region and above. At lower frequencies, where the antenna can be
small compared to the operating wavelength, the far-field distance may have to be greater

Far field—
all radiation

(a) Small antennas (a << λ).

r = 5λ

Radiating near
field—radiating
fields dominateReactive near

field—reactive
fields dominate

a

r = = 0.16λλ
2π

(b) Large antennas (D > 2.5λ).

Far field

Radiating
near field

Reactive
near field

D

r =
λ

2D2

λ
r = 0.62 D3

Figure 2-8 Summary of field
regions (not to scale).
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than 2D2=l in order to satisfy all conditions in (2-100); see Prob. 2.4-8. We will return to
the topic of far-field distance in Sec. 13.2.

The radiated fields (i.e., in the far field) are found by summing up all contributions due
to tiny subdivisions of the current distributions (i.e., integrating). The resulting radiation
pattern is independent of distance from the antenna, r, and varies only with angle around
the antenna. For example, the sin θ pattern of an ideal dipole is valid anywhere in its far
field. This result is a consequence of approximating rays from parts of the source as being
parallel. Then distance in the far field is irrelevant and only angles matter. A further
general principle for all antennas is that in the far field the only field components present
are transverse to the radial direction (i.e., the θ- and φ- components).

Fig. 2-8b summarizes the field regions for antennas that are not electrically small. The
reactive near field extends from r¼ 0 to 0:62

ffiffiffiffiffiffiffiffiffiffi
D3=l

p
. The far field lies at distances beyond

the largest of 2D2=l, 5D, or 1:6l. The radiating near field lies between the reactive near
field and the far-field distance. The 5D and 2D2=l criteria are equal for D ¼ 2:5l, so in the
context of far-field distance an antenna is considered large if D. 2:5l.

2.4.4 Steps in the Evaluation of Radiation Fields

The derivation for the fields radiated by a line source in Sec. 2.4.2 can be generalized for
application to any antenna. Fortunately, the derivation itself need not be repeated each
time an antenna is analyzed. That is, it is not necessary to return to Maxwell’s equation
with each new antenna system. Instead, we work from the results of the line source and its
generalizations, which can be reduced to the three-step procedure detailed below.

1. Find A. Select a coordinate system most compatible with the geometry of the
antenna, using the notation of Fig. 2-2. In general, use (2-61) with R � r in
the magnitude factor and the parallel ray approximation of (2-98) for determining
phase differences over the antenna. These yield

A ¼ μ
e�jβr

4πr

ZZ
υ0

Z
Jejβr̂

� r0 dυ0 ð2-101Þ

For z-directed volumetric sources,

A ¼ ẑμ
e�jβr

4πr

ZZ
υ0

Z
Jze

jβr̂ � r0 dυ0 ð2-102Þ

For z-directed line sources on the z-axis,

A ¼ ẑμ
e�jβr

4πr

Z
Iðz0Þejβz0cos θ dz0 ð2-103Þ

which is (2-89).

2. Find E. Use the component of

E ¼ �jωA ð2-104Þ
which is transverse to the direction of propagation r̂. This is expressed formally as

E ¼ �jωA� ð�jωA � r̂Þr̂ ¼ �jωðAθθ̂þ Aφf̂Þ ð2-105Þ
which arises from the component of A tangent to the far-field sphere. For z-directed
sources,

E ¼ jω sin θAzθ̂ ð2-106Þ
which is (2-95).
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3. Find H. Use the plane wave relation.

H ¼ 1

η
r̂3E: ð2-107Þ

This equation expresses the fact that in the far field, the directions of E and H are
perpendicular to each other and to the direction of propagation, and also that their
magnitudes are related by η. For z-directed sources,

Hφ ¼ Eθ

η
ð2-108Þ

which is (2-75).

The most difficult step is the first, calculating the radiation integral. This topic will be
discussed many times throughout the book, but to immediately develop an appreciation for
the process, we will present an example. This uniform line source example also provides a
specific setting for introducing general radiation pattern concepts and definitions.

EXAMPLE 2-1 The Uniform Line Source

The uniform line source is a line source for which the current is constant along its extent.
If we use a z-directed uniform line source centered on the origin and along the z-axis, the
current is

Iðz0Þ ¼
Io x0 ¼ 0, y ¼ 0, jz0j# L

2

0 elsewhere

8><
>: ð2-109Þ

where L is the length of the line source; see Fig. 2-9. We first find Az from (2-103) as follows:

Az ¼ μ
e�jβr

4πr

Z L=2

�L=2

Ioe
jβz0cos θ dz0

¼ μ
e�jβr

4πr
Io

ejβðL=2Þ cos θ � e�jβðL=2Þ cos θ

jβ cos θ

2
4

3
5

¼ μ
IoLe

�jβr

4πr
sin ½ðβL=2Þcos θ�
ðβL=2Þ cos θ :

ð2-110Þ

z
z

θ

P

L
2

(a) Antenna geometry. (b) Current distribution.

� L
2�

L
2

L Io

I(z)

2

Figure 2-9 The uniform line source (Example 2-1).
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The electric field from (2-106) is then

E ¼ jω sin θAzθ̂ ¼ jωμIoLe�jβr

4πr
sin θ

sin ½ðβL=2Þ cos θ�
ðβL=2Þcos θ θ̂ ð2-111Þ

The magnetic field is simply found from this using Hφ¼Eθ/η.

2.4.5 Radiation Pattern Definitions

Since the radiation pattern is the variation of the radiated electric field over a sphere
centered on the antenna, r is constant and we have only θ and φ variations of the field. It is
convenient to normalize the field expression such that its maximum value is unity. This
is accomplished as follows for a z-directed source that has only a θ-component of E:

Fðθ,φÞ ¼ Eθ

EθðmaxÞ ð2-112Þ

where F(θ, φ) is the normalized field pattern and Eθ(max) is the maximum value of the
magnitude of Eθ over a sphere of radius r. Here the pattern is real-valued and the mag-
nitude refers to taking the sign to be positive. Also in this case, the pattern is relative to
linear polarization in the θ-orientation. Patterns, in general, can be referenced to any
polarization state; see Sec. 13.4 for more details.

In general, Eθ can be complex-valued and, therefore, so can F(θ, φ). In this case, the
phase is usually set to zero at the same point the magnitude is normalized to unity. This is
appropriate because we are only interested in relative phase behavior. The pattern
magnitude is obtained by taking the absolute value of (2-112).

An element of current on the z-axis has a normalized field pattern from (2-74a) of

FðθÞ ¼ ðIΔz=4πÞjωμðe�jβr=rÞsin θ
ðIΔz=4πÞjωμðe�jβr=rÞ ¼ sin θ ð2-113Þ

and there is no φ variation.
The normalized field pattern for the uniform fine source is from (2-111) in (2-112)

FðθÞ ¼ sin θ
sin ½ðβL=2Þ cos θ�
ðβL=2Þ cos θ ð2-114Þ

and again there is no φ variation. The second factor of this expression is the function
sin(u)/u and we will encounter it frequently. It has a maximum value of unity at u¼ 0;
this corresponds to θ¼ 90�, where u¼ (βL/2) cos θ. Substituting θ¼ 90� in (2-114) gives
unity and we see that F(θ) is properly normalized.

In general, a normalized field pattern can be written as the product

Fðθ,φÞ ¼ gðθ,φÞf ðθ,φÞ ð2-115Þ

where g(θ,φ) is the element factor and f(θ,φ) the pattern factor. The pattern factor comes
from the integral over the current and is strictly due to the distribution of current in space.
The element factor is the pattern of an infinitesimal current element in the current dis-
tribution. For example, we found for a z-directed current element that FðθÞ ¼ sin θ. This
is, obviously, also the element factor, so

gðθÞ ¼ sin θ ð2-116Þ
for a z-directed current element. Actually, this factor originates from (2-95) and can be
interpreted as the projection of the current element in the θ-direction. In other words,
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at θ¼ 90� we see the maximum length of the current, whereas at θ¼ 0� or 180� we see the
end view of an infinitesimal current that yields no radiation. The sin θ factor expresses the
fraction of the size of the current as seen from the observation angle θ. On the other hand,
the pattern factor f(θ,φ) represents the integrated effect of radiation contributions
from the current distribution, which can be treated as being made up of many current
elements. The pattern value in a specific direction is then found by summing the parallel
rays from each current element to the far field with the magnitude and phase of each
included. The radiation integral of (2-101) sums the far-field contributions from
the current elements and when normalized yields the pattern factor. Antenna analysis is
usually easier to understand by considering the antenna to be transmitting as we have
here. However, most antennas are reciprocal and thus their radiation properties are
identical when used for reception; see Sec. 13.1.

A typical pattern is shown in Fig. 2-10 as a polar plot and in 3D. The rays from various
parts of an antenna arrive in the far fieldwith differentmagnitude and phase due to variations

Main beam maximum direction

Main beam

Half-power point (right)Half-power point (left)

Half-power bandwidth (HP)

Beamwidth between first nulls (BWFN)

Minor
lobes

0.707

1.0

(a) Polar plot in relative field intensity.

(b) Three-dimensional view.

Figure 2-10 A typical radiation pattern.
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in the current where the ray originated on the antenna and due to phase changes arising from
path length differences to the far field. These rays interfere, as computed through the
radiation integral and produce a “lobing” effect.

The radiation lobe containing the direction of maximum radiation shows the angle
with the highest radiation intensity and is caused by the fact that the rays from various
parts of the antenna arrive in the far field more nearly in-phase than they do for other
directions. For a source with constant phase, all rays arrive in-phase in the direction
normal to the antenna and the pattern is maximum there. For the ideal dipole, we have
said that the source is so small that there are essentially no phase differences for rays
along the source and thus the pattern factor is unity.

For the z-directed uniform line source pattern of (2-114), we can identify the factors as

gðθÞ ¼ sin θ ð2-117Þ
and

f ðθÞ ¼ sin ½ðβL=2Þ cos θ�
ðβL=2Þ cos θ ð2-118Þ

For long line sources ðL
lÞ, the pattern factor of (2-118) is much sharper than the
element factor sin θ, and the total pattern is approximately that of (2-118); that is,
FðθÞ � f ðθÞ. Hence, in many cases we need only work with f(θ), which is obtained from
(2-103). If we allow the beam to be scanned (this will be discussed in Sec. 2.4.6), the
element factor becomes important as the pattern maximum approaches the z-axis.

Frequently, the directional properties of the radiation from an antenna are described by
another form of radiation pattern, the power pattern. The power pattern gives angular
dependence of the power density and is found from the θ, φ variation of the r-component
of the Poynting vector. For z-directed sources, Hφ ¼ Eθ=η so the r-component of the
Poynting vector is (1/2) EθHφ* ¼ jEθj2=2η and the normalized power pattern is simply
the square of its field pattern magnitude PðθÞ ¼ jFðθÞj2. The general normalized power
pattern is

Pðθ,φÞ ¼ jFðθ,φÞj2 ð2-119Þ

The normalized power pattern for a z-directed current element is

PðθÞ ¼ sin2 θ ð2-120Þ
and for a z-directed uniform line source is

PðθÞ ¼ sin θ
sin ½ðβL=2Þcos θ�
ðβL=2Þ cos θ


 	2

ð2-121Þ

Frequently, patterns are plotted in decibels. It is important to recognize that the field
(magnitude) pattern and power pattern are the same in decibels. This follows directly
from the definitions. From the field pattern in decibels,

jFðθ,φÞjdB ¼ 20 logjFðθ,φÞj ð2-122Þ
and the power pattern in decibels,

Pðθ,φÞdB ¼ 10 logPðθ,φÞ ¼ 10 logjFðθ,φÞj2 ¼ 20 logjFðθ,φÞj ð2-123Þ
we see that

Pðθ,φÞdB ¼ jFðθ,φÞjdB ð2-124Þ
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Fig. 13-6 shows the same antenna pattern plotted in the four common pattern plot
formats.

2.4.6 Radiation Pattern Parameters

A typical radiation pattern shown in Fig. 2-10a is a polar plot in linear units (rather than
decibels). It consists of several lobes. The main beam (or main lobe or major lobe) is the
lobe containing the direction of maximum radiation. There is also usually a series of lobes
smaller than the main lobe. Any lobe other than the main lobe is called a minor lobe.
Minor lobes are composed of side lobes and back lobes. Back lobes are directly opposite
the main lobe, or sometimes they are taken to be the lobes in the half-space opposite the
main lobe. The term side lobe is sometimes reserved for those minor lobes near the main
lobe, but is most often taken to be synonymous with minor lobe; we will use the latter
convention.

The radiation from an antenna is represented mathematically through the radiation
pattern function, F(θ, φ) for field and P(θ, φ) for power. This angular distribution of
radiation is visualized through various graphical representations of the pattern, which we
discuss in this section. Graphical representations also are used to introduce definitions of
pattern parameters that are commonly used to quantify radiation pattern characteristics.

A three-dimensional plot as in Fig. 2-10b gives a good overall impression of the entire
radiation pattern, but cannot convey accurate quantitative information. Cuts through this
pattern in various planes are the most popular pattern plots. They usually include the
E- and H-plane patterns; see Figs. 2-4b and 2-4c. Pattern cuts are often given for fixed
φ values, leaving the pattern a function of θ alone; we will assume that is the case here.
Typically, the side lobes are alternately positive- and negative-valued; see Fig. 5-1a. In
fact, a pattern in its most general form can be complex-valued. Then we use the mag-
nitude of the field pattern |F(θ)| or the power pattern P(θ).

A measure of how well the power is concentrated into the main lobe is the (relative)
side lobe level, which is the ratio of the pattern value of a side lobe peak to the pattern
value of the main lobe. The largest side lobe level for the whole pattern is the maximum
(relative) side lobe level, frequently abbreviated as SLL. In decibels, it is given by

SLLdB ¼ 20 log
jFðSLLÞj
jFðmaxÞj ð2-125Þ

where jFðmaxÞj is the maximum value of the pattern magnitude and jFðSLLÞj is the
pattern value of the maximum of the highest side lobe magnitude. For a normalized
pattern, FðmaxÞ ¼ 1.

The width of the main beam is quantified through half-power beamwidth HP, which is
the angular separation of the points where the main beam of the power pattern equals one-
half the maximum value:

HP ¼ jθHP left � θHP rightj ð2-126Þ
where θHP left and θHP right are points to the “left” and “right” of the main beam maximum
for which the normalized power pattern has a value of one-half (see Fig. 2-10). On the

field pattern jFðθÞj, these points correspond to the value 1=
ffiffiffi
2

p
. For example, the sin θ

pattern of an ideal dipole has a value of 1=
ffiffiffi
2

p
for θ values of θHP left ¼ 135� and

θHP right ¼ 45�. Then HPj135� � 45�j ¼ 90�. This is shown in Fig. 2-4b. Note that
the definition of HP is the magnitude of the difference of the half-power points and the
assignment of left and right can be interchanged without changing HP. In three dimensions,
the radiation pattern major lobe becomes a solid object and the half-power contour is a
continuous curve. If this curve is essentially elliptical, the pattern cuts that contain themajor
and minor axes of the ellipse determine what the IEEE defines as the principal half-power
beamwidths.
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Antennas are often referred to by the type of pattern they produce. An isotropic
antenna, which is hypothetical, radiates equally in all directions giving a con-
stant radiation pattern. An omnidirectional antenna produces a pattern that is constant in
one plane; the ideal dipole of Fig. 2-4 is an example. The pattern shape resembles a
“doughnut.” In contrast to the unrealizable isotropic pattern, the omnidirectional pattern
is achievable, and it has many practical applications. For example, antennas in cellular
telephone handsets should respond equally in all directions around the handset in the
horizontal plane because of their arbitrary orientation when held by a human operator. A
second application that often requires an omnidirectional pattern is a base station antenna,
where uniform coverage is needed to serve users on the ground anywhere around the
tower.

We often refer to a directive antenna as being broadside or endfire. A broadside
antenna is one for which the main beam maximum is in a direction normal to the plane
containing the antenna. An endfire antenna is one for which the main beam is in the
plane containing the antenna. For a linear current on the z-axis, the broadside direction is
θ¼ 90� and the endfire directions are 0� and 180�. For example, an ideal dipole is a
broadside antenna. For z-directed line sources, several patterns are possible. Fig. 2-11
illustrates a few j f ðθÞj patterns. The entire pattern in three dimensions is imagined by
rotating the pattern about the z-axis. The full pattern can then be generated from the
E-plane patterns shown. The broadside pattern of Fig. 2-11a is called a fan beam. The full
three-dimensional endfire pattern for Fig. 2-11b has a single lobe in the endfire direction.
This single lobe is referred to as a pencil beam. Note that the sin θ element factor, which
must multiply these patterns to obtain the total pattern, will have a significant effect on the
endfire pattern.

2.5 DIRECTIVITY AND GAIN

One very important quantitative description of an antenna is how much it concentrates
energy in one direction in preference to radiation in other directions. This characteristic of
an antenna is called directivity and is equal to its gain if the antenna is 100% efficient.
Gain is expressed relative to an isotropic radiator or sometimes a half-wavelength dipole.

Toward the definition of directivity, let us begin by recalling that the power radiated by
an antenna from (2-29) is

P ¼
ZZ

S � ds ¼ 1

2
Re

ZZ
ðE3H*Þ � ds ð2-127Þ

¼ 1

2
Re

Z 2π

0

Z π

0

ðEθH

φ � EθH


φÞr2 sin θ dθ dφ ð2-128Þ

z

(a) Broadside (b) Intermediate (c) Endfire

z

z

Figure 2-11 Polar plots of uniform line source patterns j f ðθÞj.
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In general, there will be both θ- and φ-components of the radiation fields. From (2-107),
we find that

Hφ ¼ Eθ

η
and Hθ ¼ �Eφ

η
ð2-129Þ

Using these in (2-128) gives

P ¼ 1

2η

ZZ
ðjEθj2 þ jEφj2Þr2 dΩ ð2-130Þ

where dΩ¼ element of solid angle¼ sin θ dθ dφ, which is shown in Fig. 2-12. The
integral can be evaluated over any surface enclosing the antenna; however, for simplicity
a spherical surface centered on the origin is usually used. Since the magnitude variations
of the radiation fields are 1/r, we find it convenient to introduce radiation intensity, which
is defined from

Uðθ,φÞ ¼ 1
2
ReðE3H*Þ � r2r̂ ¼ Sðθ,φÞr2 ð2-131Þ

Radiation intensity is the power radiated in a given direction per unit solid angle and has
units of watts per square radian (or steradian, sr). The advantage to using radiation
intensity is that it is independent of distance r. Radiation intensity can be expressed as

Uðθ,φÞ ¼ UmjFðθ,φÞj2 ð2-132Þ
where Um is the maximum radiation intensity, and jFðθ,φÞj2 is the power pattern nor-
malized to a maximum value of unity in the direction ðθmax,φmaxÞ, and

Um ¼ Uðθmax,φmaxÞ ð2-133Þ
The total power radiated is obtained by integrating the radiation intensity over all angles
around the antenna:

P ¼
ZZ

Uðθ,φÞ dΩ ¼ Um

ZZ
jFðθ,φÞj2 dΩ ð2-134Þ

An isotropic source with uniform radiation in all directions is only hypothetical but is
sometimes a useful concept. The radiation intensity of an isotropic source is constant over
all space, at a value of Uave. Then P ¼ RR

Uave dΩ ¼ Uave

RR
dΩ ¼ 4πUave since there are

4π sr in all space (see Prob. 2.5-1). For nonisotropic sources, the radiation intensity is not
constant throughout space, but an average power per steradian can be defined as

Uave ¼ 1

4π

ZZ
Uðθ,φÞ dΩ ¼ P

4π
ð2-135Þ

The average radiation intensity Uave equals the radiation intensity Uðθ,φÞ that an iso-
tropic source with the same input power P would radiate.

dΩ = sin dθ θ

dθ
θ

dφ

sinθ dφ Figure 2-12 Element of solid angle dΩ.
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As an example, consider the ideal dipole again; we find from (2-74) and (2-131) that

Uðθ,φÞ ¼ 1

2

IΔz

4π

� �2

βωμ sin 2 θ ð2-136Þ

so

Um ¼ 1

2

IΔz

4π

� �2

βωμ ð2-137Þ

and

Fðθ,φÞ ¼ sin θ ð2-138Þ
The average radiation intensity follows from the total radiated power expression (2-77)
for an ideal dipole as

Uave ¼ P

4π
¼ ðβωμ=12πÞðIΔzÞ2

4π
¼ 1

3

IΔz

4π

0
@

1
A

2

βωμ

¼ 2

3
Um ideal dipole

ð2-139Þ

Thus, Um ¼ 1:5Uave for the ideal dipole, which means that in the direction of maximum
radiation, the radiation intensity is 50% more than that which would occur from an
isotropic source radiating the same total power.

Directivity. Directivity is defined as the ratio of the radiation intensity in a certain
direction to the average radiation intensity. The reference direction is usually taken to be
that of the maximum radiation, giving

D ¼ Um

Uave

¼ Um

P=4π
ð2-140Þ

Unless otherwise stated, directivity will be assumed to be this maximum directivity value.
If both the numerator and denominator are divided by r2, then (2-140) becomes a ratio of
power densities at distance r from the antenna:

D ¼ U=r2

Uave=r2
¼

1
2
max½ReðE3H*Þ � r̂�

P=4πr2
ð2-141Þ

Thus, directivity has two interpretations, as a ratio of maximum to average radiation
intensities (which are dimensionless) and as a ratio of maximum to average power
densities (which have units of W/m2).

Directivity can be tied more directly to the pattern function. First, we define beam
solid angle, ΩA:

ΩA ¼
Z Z

sphere

jFðθ,φÞj2 dΩ beam solid angle ð2-142Þ

As illustrated in Fig. 2-13, beam solid angle of the actual radiation pattern has the same
solid angle as constant radiation of a level equal to the maximum value radiation intensity
over all the beam area, or

P ¼ Um ΩA ð2-143Þ
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This also follows from (2-134) and (2-142). Finally, substituting (2-135) in (2-140) along
with (2-142) gives

D ¼ 4π
ΩA

directivity ð2-144Þ

These results show that directivity is entirely determined by the pattern shape; it is
independent of the details of the antenna hardware. Directivity as a function of pattern
angle is expressed simply as the directivity multiplied by the power pattern:

Dðθ,φÞ ¼ DjFðθ,φÞj2 ð2-145Þ

Since |F(θ, φ|2 has a maximum value of unity, the maximum value of directivity as a
function of angle is D.

The concept of directivity is illustrated in Fig. 2-14. If the radiated power were dis-
tributed isotropically over all of space, the radiation intensity would have a maximum
value equal to its average value as shown in Fig. 2-14a, that is, Um ¼ Uave or ΩA ¼ 4π.
Thus, the directivity of this isotropic pattern is unity. The distribution of radiation
intensity Uðθ,φÞ for an actual antenna is shown in Fig. 2-14b. It has a maximum
radiation intensity in the direction ðθmax,φmaxÞ of Um ¼ DUave and an average radiation
intensity of Uave ¼ P=4π. There is D times as much power density in the direction
ðθmax,φmaxÞ as there would be if the same total power were radiated by an isotropic
source. Thus, by directing the radiated power P in a preferred direction (the maximum
radiation direction) the radiation intensity is increased in that direction by a factor of D
over what it would be if the same radiated power had been isotropically radiated.

Um

Actual pattern

(a) (b)

Um

ΩA Figure 2-13 Antenna beam solid angle ΩA. (a) Plot
of radiation intensity U(θ, φ) from an actual antenna. (b)
Plot of radiation intensity with all radiation from the
actual antenna concentrated into a cone of solid angle ΩA

with constant radiation intensity equal to the maximum
of the actual pattern.

Uave

Uave

Um = DUave

(a) Radiation intensity distributed
 isotropically.

(b) Radiation intensity
 from an actual antenna.

Figure 2-14 Illustration of directivity.

c02 7 April 2012; 8:41:55

2.5 Directivity and Gain 53



EXAMPLE 2-2 Directivity of an Ideal Dipole

The directivity of an ideal dipole can now be easily calculated using (2-139) in (2-140)

D ¼ Um

Uave

¼ Um

2

3
Um

¼ 3

2
ideal dipole ð2-146Þ

Usually directivity is calculated directly from (2-144) and the directivity calculation reduces to
one of finding the beam solid angle. To illustrate, we use the ideal dipole. Substituting (2-138)
in (2-142) leads to

ΩA ¼
Z 2π

0

Z π

0

jsin θj2sin θ dθ dφ ¼ 2π
4

3
¼ 8π

3
ð2-147Þ

and we obtain the same value of directivity from

D ¼ 4π
ΩA

¼ 4π
8π=3

¼ 3

2
ð2-148Þ

Thus, the directivity of an ideal dipole is 50% greater than that of an isotropic source, which
has a directivity of 1.

EXAMPLE 2-3 Directivity of a Sector Omnidirectional Pattern

An ideal omnidirectional antenna would have constant radiation in the horizontal plane (θ ¼ 90�)
and would fall rapidly to zero outside that plane. Suppose that the pattern in the vertical plane is
constant out to 6 π

6
ð630�Þ from horizontal. The pattern expression is then written as

FðθÞ ¼
1

1

3
π , θ ,

2

3
π

0 elsewhere

8><
>: ð2-149Þ

The solid angle of the pattern from (2-142) is

ΩA ¼
Z Z

jFðθ,φÞj dΩ ¼
Z 2π

0

Z 2π=3

π=3
sin θ dθ dφ

¼ ð2πÞ½�cos θ�2π=3π=3 ¼ ð2πÞð0:5þ 0:5Þ ¼ 2π

ð2-150Þ

The directivity from (2-144) is

D ¼ 4π
ΩA

¼ 4π
2π

¼ 2: ð2-151Þ

Gain. Asnoted, directivity is solelydeterminedby the radiationpatternof anantenna.When
an antenna is used in a system (say as a transmitting antenna) we are interested in how effi-
ciently theantenna transformsavailablepower at its input terminals into radiatedpower, aswell
as its directive properties.Toquantify this,gain is defined as4π times the ratio of themaximum
radiation intensity to the net power accepted by the antenna from the connected transmitter, or

G ¼ 4πUm

Pm

gain ð2-152Þ

This is a power quantity and is sometimes referred to as power gain. This definition does not
include losses due tomismatchesof impedance or polarization,which are discussed inSec. 4.2.
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Gain can be expressed as a function of angle by including the power pattern as
Gðθ,φÞ ¼ GjFðθ,φÞj2. Gain can also be given as a value in a specific direction. If no
direction is specified and the gain value is not given as a function of θ and φ, it is assumed
to be the maximum gain.

Directivity from (2-140) is D¼ 4πUm/P. Comparing this with (2-152), we see that the
only difference between gain and directivity is the power value used. Directivity can be
viewed as the gain an antenna would have if all input power appeared as radiated power,
that is, Pin¼P. Gain includes the fact that real antennas do not behave in this fashion and
some of the input power is lost on the antenna. The portion of input power Pin that does
not appear as radiated power is absorbed on the antenna and nearby structures. This
prompts us to define radiation efficiency, er, as

er ¼ P

Pin

radiation efficiency ð2-153Þ

Radiation efficiency is bounded as

0 # er # 1 ð2-154Þ
Many antennas are highly efficient, with radiation efficiency close to unity. However,
electrically small antennas are very inefficient, and radiation efficiency is much less than
unity.

Using P¼erPin from (2-153) in (2-140) leads to

G ¼ erD ð2-155Þ

Thus, the gain of an antenna is equal to its purely directional characteristic of directivity
multiplied by radiation efficiency. The term absolute gain, which is synonymous with
gain, is sometimes used.

Units for Directivity and Gain. Because gain is a power ratio it can be calculated in
decibels as follows:

GdB ¼ 10 log G ð2-156Þ
Similarly for directivity:

DdB ¼ 10 log D ð2-157Þ
For example, the directivity in decibels of an ideal dipole is

DdB ¼ 10 log 1:5 ¼ 1:76 dB ideal dipole directivity ð2-158Þ
Frequently gain is used to describe the performance of the antenna relative to some

standard reference antenna. This relative gain is defined as the ratio of the maximum
radiation intensity from the antenna Um to the maximum radiation intensity from a ref-
erence antenna Um, ref with the same input power, or

Gref ¼ Um

Um, ref

ð2-159Þ

This is a convenient definition from a measurement standpoint. The formal definition of
gain employs a lossless isotropic antenna as a reference antenna. This can be shown by
noting that the lossless isotropic reference antenna has a maximum radiation intensity
of Pin /4π because all of its input power is radiated, and substituting this into (2-159) for
Um,ref leads to (2-152).
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It is common at frequencies below 1 GHz to quote gain values relative to that of a half-
wave dipole because a half-wave dipole is the usual reference antenna used in gain
measurements at these frequencies; see Sec. 13.3. The directivity of a half-wave dipole is
1.64 or 2.15 dB; see Sec. 3.2. Gain relative to a half-wave dipole carries the units of dBd
and is related to gain relative to the normal implied reference of a lossless, isotropic
antenna as

GðdBdÞ ¼ GðdBÞ � 2:15 ð2-160Þ
The unit of gain is sometimes denoted as dBi instead of just dB to emphasize that an
isotropic antenna is used as the reference. As a numerical example, the following forms
are equivalent gain values for an antenna with 6.1 dB gain:

G ¼ 6:1 dB ¼ 6:1 dBi ¼ 3:95 dBd ð2-161Þ
As a note of caution, sometimes the unit of dB is used in antenna specifications when dBd
is intended, especially in the land mobile industry below 1 GHz.

2.6 ANTENNA IMPEDANCE

The primary function of a transmitting antenna is to convert a bound wave to an unbound
(i.e., radiated) wave, and vice versa for a receiving antenna. Whereas the transmission
line connected to an antenna binds the wave and prevents it from radiating, the antenna
itself should instead enable radio waves to leave the structure. The antenna is an interface
between wave phenomena on and beyond the antenna to the connecting circuit hardware.
The antenna input terminals form the interface point and the circuit parameter of
impedance is used to characterize the input to the antenna. The input impedance of an
antenna (or simply antenna impedance) will be affected by other antennas or objects that
are nearby, but the discussion here assumes an isolated antenna.

As with conventional circuits, antenna impedance is composed of real and imaginary
parts.

ZA ¼ RA þ jXA input impedance ð2-162Þ

Fig. 2-15a shows the general antenna model and Fig. 2-15b shows the equivalent model
for a transmitting antenna. As a consequence of reciprocity, the impedance of an antenna
is identical for receiving and transmitting operation. Receiving antennas and models for
them are discussed in Sec. 4.2. The input resistance, RA, represents dissipation which
occurs in two ways. Power that leaves the antenna and never returns (i.e., radiation) is one

Transmitter
or

Receiver

(a) General antenna model.

(b) Equivalent model for a transmitting antenna.

Rg Ro RA

RrVg ~
Xg XA

Figure 2-15 Antenna models.
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part of the dissipation. There are also ohmic losses just as in a lumped resistor. Electri-
cally small antennas can have significant ohmic losses but other antennas usually have
ohmic losses that are small compared to their radiation dissipation. The input reactance,
XA, represents power stored in the near fields of the antenna.

First, we discuss the input resistance. The average power dissipated in an antenna is

Pin ¼ 1

2
RAjIAj2 ð2-163Þ

where IA is the current at the input terminals. Note that a factor of 1
2
is present because

current IA is the peak value in the time waveform. Separating the dissipated power into
radiative and ohmic losses gives

Pin ¼ Pþ Po

1

2
RAjIAj2 ¼ 1

2
RrjIAj2 þ 1

2
RojIAj2 ð2-164Þ

where we define the radiation resistance of an antenna referred to the input terminals as

Rr ¼ 2P

jIAj2
ð2-165Þ

It follows from (2-164) that

RA ¼ Rr þ Ro ð2-166Þ
where Ro is the resistance associated with ohmic losses that include the directly driven
part of the antenna as well as losses in other portions of the antenna structure such as a
ground plane. Ohmic resistance of an antenna is defined as

Ro ¼ 2Po

jIAj2
¼ 2ðPin � PÞ

jIAj2
ð2-167Þ

The radiated power is found using (1-35):

P ¼ 1

2

ZZ
sff

ðE3H*Þ � ds ð2-168Þ

where sff is a surface in the far field, usually spherical. P is real-valued because the power
density S ¼ 1

2
E3H* is real-valued in the far field.

Radiation resistance can be defined relative to the current at any point on the antenna,
but we reserve Rr for radiation resistance referred to the input terminals. Radiation
resistance relative to the maximum current Im that occurs on the antenna Rrm is obtained
by using Im in place of IA in (2-165). In this section, we discuss center-fed electrically
short antennas, which always have a current maximum at the input, so Rr ¼ Rrm. We
discuss this topic again in Sec. 6.1.

The power radiated from an ideal dipole of length Δz	l and input current IA ¼ I is
given by (2-77) which together with (2-165) gives the radiation resistance:

Rr ¼ 2P

jIAj2
¼ 2

I2
ωμβ
12π

ðIΔzÞ2 ¼
ffiffiffiffiffiffi
μω

p ffiffiffi
μ

p ffiffiffi
ε

pffiffiffi
ε

p
6π

βðΔzÞ2

¼ η
β2

6π
ðΔzÞ2 ¼ η

2

3
π
�
Δz

l

�2

Rr ¼ 80π2

�
Δz

l

�2
Ω ideal dipole ð2-169Þ
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For ideal dipoles, Rr is very small since Δz	l.
Except for low frequencies, the skin depth δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ωμσ
p

is much smaller than the
conductor radius and then the ohmic resistance for an antenna of length L that carries an
axially uniform current is directly proportional to the wire length and inversely propor-
tional to the wire circumference:

Ro � L

2πa
Rs ð2-170Þ

where L is the length of the wire, a the wire radius, and Rs the surface resistance:

Rs ¼
ffiffiffiffiffiffi
ωμ
2σ

r
ð2-171Þ

The ideal dipole has a uniform current as shown in Fig. 2-16a. In reality, the current on
a straight wire antenna must smoothly go to zero at the wire ends. The current distribution
on a center-fed wire dipole of length Δz	l, called a short dipole, is approximately
triangular in shape as illustrated in Fig. 2-16b. If end loading such as with metal plates
(see Fig. 3-3) is added to the short dipole, the radial current reduces to zero at the edge of
the plates, giving a nearly uniform current on the vertical portion of the dipole, which
permits use of the ideal dipole model. More will be said about short dipoles in Sec. 3.1.

Pattern calculations for the ideal dipole were performed in Sec. 2.3 assuming that the
magnitude and phase differences of rays coming from points on the wire due to different
path lengths were negligible. Since the short dipole also satisfies Δz	l, the pattern will
also be the same sin θ radiation pattern as the ideal dipole. In addition, the ideal dipole
and short dipole will have the same directivity value of 1.5 because pattern shape
completely determines directivity.

The triangular current distribution of the short dipole leads to an equivalent length that
is one-half that of its physical length. This is because the equivalent length is proportional
to the area under the current versus distance curves shown in Fig. 2-16, which follows
from the radiation integral of (2-103) with expð jβz0 cos θÞ � 1 for short dipoles. The
radiated fields are, in turn, proportional to this equivalent length. Because the radiation
resistance is proportional to the integral of the far-zone electric field squared and the
patterns of the ideal and short dipoles are the same, the radiation resistances are pro-
portional to the equivalent lengths squared. The area of the triangle-shape current on the
short dipole is one-half that of the uniform current shape, so the radiation resistance is one
fourth that of the ideal dipole. Dividing (2-169) by 4 gives

Δz ΔzI(z)

(a) Ideal dipole. (b) Short dipole.

IA
z

z

IA

I(z)

Figure 2-16 The ideal dipole and short dipole with current distributions; Δz	l. IA is the
value of the input current at the terminals in the center of each antenna. The short dipole of (b)
is that which is encountered in practice.
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Rr ¼ 20π2 Δz

l

� �2

Ω short dipole ð2-172Þ

The ohmic resistance for the short dipole is less than that of the ideal dipole. The ohmic
resistance of a short dipole is found by first determining the power dissipation from ohmic
losses, which at any point along the antenna is proportional to the current squared. In fact,
in general the total power dissipated is evaluated by integrating the current squared over
the wire antenna, which together with (2-167) yields

Ro ¼ 2Po

jIAj2
¼ 1

jIAj2
Rs

2πa

Z L=2

�L:2

jIðzÞj2 dz: ð2-173Þ

It is easy to show that this reduces to (2-170) for a uniform current of length L ¼ Δz. The
short dipole triangular current of Fig. 2-16b can be written as a function of position along
the wire as

IðzÞ ¼ IA 1� 2jzj
Δz

� �
, jzj # Δz

2
ð2-174Þ

Using this in (2-173) yields

Ro ¼ Δz

2πa
Rs

3
short dipole ð2-175Þ

Notice that this is one-third that for an ideal dipole of the same length Δz given by
(2-170). Since the radiation resistance for the short dipole is one-fourth that of an ideal
dipole, the radiation resistance is decreased more relative to the ohmic resistance, and
thus the efficiency is lower for the short dipole than it is for an ideal dipole of the same
length.

In contrast to radiated power that contributes to the real part of the input impedance,
the reactive part of the input impedance represents power stored in the near field. This
behavior is very similar to a complex load impedance in circuit theory. Antennas that are
electrically small (i.e., much smaller than a wavelength) have a large input reactance, in
addition to a small radiation resistance. For example, the short dipole has a capacitive
reactance, whereas an electrically small loop antenna has an inductive reactance. This
is an expected result from low-frequency circuit theory. The reactance of a short dipole is
approximated by [H.6: Ant. Eng. Hdbk., 4th ed., p. 4–5].

XA ¼ � 120

π
Δz

l

ln
Δz

2a

� �
� 1

� �
Ω short dipole ð2-176Þ

This gives a large capacitive reactance for very short dipoles. The total input impedance
of the short dipole is Rr þ Ro þ jXA, where XA is given above, Rr is given by (2-172), and
Ro is given by (2-175).

Antenna impedance is important to the transfer of power from a transmitter to an
antenna or from an antenna to a receiver. For example, to maximize the power transferred
from a receiving antenna, the receiver impedance should be a conjugate match to the
antenna impedance (equal resistances, equal magnitude and opposite sign reactances).
Receivers have real-valued impedance, typically 50 Ω, so it is necessary to “tune out” the
antenna reactance with a matching network. There are two disadvantages to using
matching networks: Ohmic losses in the network components such as tuning coils reduce
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efficiency, and second, a matching network provides a match only over a narrow band of
frequencies, which reduces the operational bandwidth. Impedance-matching techniques
are discussed in Sec. 6.4.

2.7 RADIATION EFFICIENCY

In general, an efficiency factor is the ratio of wanted power to total power supplied.
The radiation efficiency er of an antenna, which was introduced in Sec. 2.5 and defined in
(2-153), is the ratio of radiated power (which is the wanted power) to the net power
accepted by the antenna:

er ¼ P

Pin

¼ P

Pþ Po

ð2-177Þ
where

P¼ power radiated
Po¼ power dissipated in ohmic losses on the antenna
Pin¼PþPo¼ input power¼ power accepted by the antenna

We can derive an expression for the radiation efficiency of an antenna totally in terms of
resistances by substituting (2-164) and (2-165) into (2-177):

er ¼
1

2
RrjIAj2

1

2
RrjIAj2 þ 1

2
RojIAj2

¼ Rr

Rr þ Ro

¼ Rr

RA

ð2-178Þ

where (2-166) was used. Thus, the radiation resistance relative to the total input resistance
gives the radiation efficiency (often referred to just as efficiency). This fundamental
equation contains the obvious result that for a fixed radiation resistance as the ohmic
resistance increases, the efficiency decreases. For many antennas radiation efficiency is
nearly 100%, but electrically small antennas often have very low radiation efficiency.
Low radiation efficiency is acceptable for receiving and for low-power transmitting
applications. However, radiation efficiency must be as close to 100% as possible in high-
power transmitting antennas for two reasons: the ohmic losses cost money in power
consumption and the heat generated can possibly damage or destroy the antenna. The
following example illustrates calculation of impedance and efficiency.

EXAMPLE 2-4 Impedance and Radiation Efficiency of a Car Radio Whip Antenna

The 31-in-long (h¼ 0.787m) fender-mount whip antenna was used on cars for reception of
AM and FM radio signals for many decades. Current production cars mainly use on-glass
antennas, which are discussed further in Sec. 12.3. The fender-mount whip antenna in this
example, however, provides a point of reference and usually has near maximum performance.
For simplicity, we assume that the fender provides a good ground plane for the monopole. The
whip is made of steel 1/8-in in diameter (a¼ 0.15875 cm). For an operating frequency in the
AM band of 1 MHz (l¼ 300 m) the electrical length is h¼ 0.0026 l, indicating that the whip
is definitely an electrically small antenna. Using the short monopole model as will be
developed in (3-15), the radiation resistance is

Rr ¼ 40π2 0:787

300

� �2

¼ 0:00271Ω ð2-179Þ

Using the conductivity of stainless steel (see App. B.l) in (2-171) gives
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Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π� 106 � 4π� 10�7

2 � 2� 106

s
¼ 1:405� 10�3 Ω ð2-180Þ

The ohmic resistance from (2-175) is

Ro ¼ h

2πa
Rs

3
¼ 0:787

2π � 1:5875� 10�3

1:40� 10�3

3
¼ 0:0370Ω ð2-181Þ

The radiation efficiency from (2-178), (2-179), and (2-181) is

er ¼ Rr

Rr þ Ro

¼ 0:00271

0:00271þ 0:0370
¼ 6:82% ð2-182Þ

The low efficiency in this broadcast reception application is overcome by using a high-power
transmitter operating into a tall, efficient antenna. Thus, the cost and complexity of the system
are concentrated into the transmitting station, allowing for inexpensive and simple receiving
antennas. The gain is calculated from (2-155) as G¼ erD¼ 0.0682(1.5)¼ 0.1023¼�9.9 dB.
So the gain drops from 1.76 to �9.9 dB when loss is included for a net loss of 11.7 dB, which
is 10 log (0.0682). The input reactance is found using the above parameter values in (2-176),
giving XA¼�37,882 Ω; also see Fig. 6-6. This is a very large capacitive reactance, leading to
a severe impedance mismatch. The total input impedance is

ZA ¼ Rr þ Ro þ jXA ¼ 0:00271� j37, 882Ω ð2-183Þ
Full numerical simulation of the wire dipole model in this example using the method of
moments discussed in Chap. 14 gives values very close to all of those found above.

In addition to reduction in radiation efficiency, antenna ohmic losses have another
undesirable effect. As with any resistive element in an electrical system, ohmic losses on
antennas are noise sources. For receiving applications above 1 MHz when the signal is
low, internal noise can swamp out a signal. Receiving antennas also pick up external
noise. For frequencies around 1 MHz and below, external noise, mainly due to lightning,
is significant and always present. This external noise picked up by the antenna via the
radiation resistance is usually larger than the internal noise and antenna loss can be
tolerated. Antenna noise is discussed further in Sec. 4.3.

The low efficiency associated with electrically small antennas can be increased greatly
by using superconducting material. However, practical superconducting antennas oper-
ating at room temperature remain an immature technology in most applications. Hansen
[see H.8.11] discusses superconducting antennas in some depth.

There are several other efficiency factors in antenna theory and they are discussed in
Sec. 9.3. The measurement of radiation efficiency is discussed in Sec. 13.3.4.

2.8 ANTENNA POLARIZATION

A monochromatic electromagnetic wave, which varies sinusoidally with time, is char-
acterized at an observation point by its frequency, magnitude, phase, and polarization.
The first three of these are familiar parameters, but polarization is often not well
understood by students and practicing engineers. The polarization of an antenna is the
polarization of the wave radiated in a given direction by the antenna when transmitting. In
this section, we first discuss the possible polarizations of an electromagnetic wave, and
then antenna polarization will follow directly from wave polarization. A complete dis-
cussion of wave and antenna polarization is found in [H.11.1: Stutzman].

The phase front (surface of constant phase) of a wave radiated by a finite-sized radiator
becomes nearly planar over small observation regions. This wave is referred to as a plane
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wave and its electric and magnetic fields lie in a plane. The polarization of a plane wave
is the figure the instantaneous electric field traces out with time at a fixed observation
point. An example is the vertical, linearly polarized wave in Fig. 2-17, which shows
the spatial variation of the electric field at a fixed instant of time. As time progresses, the
electric field (Ex) at a fixed point oscillates back and forth along a vertical line. For a
completely polarized wave, the figure traced out is, in general, an ellipse. As indicated in
Fig. 2-17, the temporal and spatial variations of the magnetic field are similar to those for
the electric field, except that the magnetic field is perpendicular to the electric field.
Waves can have a nonperiodic behavior, but we will not consider such randomly polarized
wave components because antennas cannot generate them; noise is randomly polarized.

There are some important special cases of the polarization ellipse. If the electric
field vector moves back and forth along a line, it is said to be linearly polarized; see
Figs. 2-18a and 2-18b. An example is the electric field from an ideal dipole or any
linear current. If the electric field vector remains constant in length but rotates around
in a circular path, it is circularly polarized. Rotation at radian frequency ω is in one of
two directions, referred to as the sense of rotation. If the wave is traveling toward the
observer and the vector rotates clockwise, it is left-hand polarized. The left-hand rule
applies here: With the thumb of the left hand in the direction of propagation, the fingers
will curl in the direction of rotation of the instantaneous electric field E. If it rotates
counterclockwise, it is right-hand polarized. Left- and right-hand circularly polarized
waves are shown in Figs. 2-18c and 2-18d. A helix antenna produces circularly
polarized waves and the sense of rotation of the wave is the same as that of the helix
windings; for example, a right-hand wound helix produces a right-hand circularly
polarized wave; see Sec. 7.3. Finally, Figs. 2-18e and 2-18f show the most general
cases of left-hand and right-hand sensed elliptical polarizations.

The time-space behavior of the important special case of circular polarization is dif-
ficult to visualize. Fig. 2-19 provides a space perspective view of a left-hand circularly
polarized wave. As the vector pattern translates along the þz-axis, the electric field at a
fixed point appears to rotate clockwise in the xy-plane (yielding a left-hand circularly
polarized wave). This is illustrated with the time sequence of vectors in the fixed plane
shown in Fig. 2-19.

A general polarization ellipse is shown in Fig. 2-20 with a reference axis system. The
wave associated with this polarization ellipse is traveling in the þz-direction. The sense
of rotation can be either left or right. The instantaneous electric field vector E has
components Ex and Ey along the x- and y-axes. The peak values of these components are
E1 and E2. The angle γ describes the relative values of E1 and E2 from

z

�x

�y

Figure 2-17 The spatial behavior of the electric (solid) and magnetic (dashed) fields of a
linearly (vertical) polarized wave for a fixed instant of time. (Reproduced by permission from
[H.11.1: Stutzman]. ª 1993 by Artech House, Inc., Norwood, MA.)

c02 7 April 2012; 8:41:58

62 Chapter 2 Antenna Fundamentals



�

�

�

�

(a) Vertical linear polarization. (b) Horizontal linear polarization.

(d ) Right-hand circular polarization.

(f) Right-hand elliptical polarization.

(c) Left-hand circular polarization.

(e) Left-hand elliptical polarization.

ω
ω �

ω
�ω

Figure 2-18 Some wave polarization states. The wave is approaching.

Time sequence of
electric field vectors
in a fixed plane

Spatial sequence of
electric field vectors

t4

t1

t2
t3

z

y x

Figure 2-19 Perspective view of a left-hand circularly polarized wave shown at a fixed instant
of time and the time sequence of electric field vectors as the wave passes through a fixed
plane in the þz-direction. (Reproduced by permission from [H.11.1: Stutzman]. ª 1993 by
Artech House, Inc., Norwood, MA.)
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γ ¼ tan�1 E2

E1

, 0� # γ # 90� ð2-184Þ

The tilt angle of the ellipse τ is the angle between the x-axis (horizontal) and the major
axis of the ellipse. The angle ε is seen from Fig. 2-20 to be

ε ¼ cot�1ð�ARÞ, 1 # jARj #N, � 45� # ε # 45� ð2-185Þ
where the axial ratio of the ellipse jARj is the ratio of the major axis electric field
component to that along the minor axis. A linearly polarized wave has AR¼N and
(2-185) gives ε¼ 0�. The sign of AR is positive for right-hand sense and negative for left-
hand sense. Axial ratio is often expressed in dB as 20 log jARj.

The instantaneous electric field for the wave of Fig. 2-20 can be written as (with z¼ 0
for simplicity)

E ¼ Exx̂þ Eyŷ ¼ E1 cosωt x̂þ E2 cos ðωt þ δÞŷ ð2-186Þ
where δ is the phase by which the y-component leads the x-component. This represen-
tation describes the ellipse shape as time t progresses. If the components are in-phase
(δ¼ 0), the net vector is linearly polarized. The orientation of the linear polarization
depends on the relative values of E1 and E2, For example, if E1¼ 0, vertical linear
polarization results; if E2¼ 0, horizontal linear results; if E1¼ E2, the polarization is
linear at 45� with respect to the axes. Linear polarization is a collapsed ellipse with
infinite axial ratio. If δ is nonzero, the axial ratio is finite. When δ. 0, Ey leads Ex in
phase and the sense of rotation is left-hand. For δ, 0, the sense is right-hand. If E1¼ E2

(thus, γ¼ 45�) and δ¼690�, the polarization is circular (þ90� is left-hand and �90� is
right-hand). The axial ratio magnitude of a circularly polarized wave is unity.

The phasor form of (2-186) is

E ¼ E1x̂þ E2e
jδŷ ð2-187Þ

which can be written as (see Prob. 2.8-3)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

q
ðcos γ x̂þ sinγ ejδŷÞ ¼ jEjê ð2-188Þ

E1

�x

�y

�

y

x

τγ
ε

E2

Figure 2-20 The general polarization ellipse. The wave direction is out of the page in
theþ z-direction. The tip of the instantaneous electric field vector E traces out the ellipse.
(Reproduced by permission from [H.11.1: Stutzman]. ª 1993 by Artech House, Inc.,
Norwood, MA.)
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The factor |E| is the field magnitude and ê is the complex vector representation for
the field and is normalized to unity magnitude. Thus, γ and δ completely specify the
polarization state of the wave. In fact, either pair of angles (ε, τ) or (γ, δ) uniquely define
the polarization state of a wave. The transformations between these angles are

γ ¼ 1

2
cos�1ðcos 2ε cos 2τÞ ð2-189Þ

δ ¼ tan�1 tan 2ε
sin 2τ

� �
ð2-190Þ

As an example, a linearly polarized wave tilted 45� relative to the x-axis ðτ ¼ 45�Þ
has E1¼ E2¼ 1=

ffiffiffi
2

p
and AR ¼N. From (2-185), ε ¼ cot�1ðNÞ¼ 0�. Then (2-189) and

(2-190) yield γ ¼ 45� and δ ¼ 0�, which are correct
The polarization of an antenna is the polarization of the wave radiated by the antenna

when transmitting. Therefore, all of the above discussions on wave polarization apply
directly to antenna polarization. The polarization of waves radiated by an antenna vary
with angle around the antenna; if no angle is specified when the polarization of an
antenna is stated, it is assumed to be in the direction of the beam peak. Usually the
polarization characteristics of an antenna remain fairly constant over the main beam.
However, radiation from side lobes can differ significantly in polarization from that of the
main beam. When measuring polarization of an antenna over its pattern, the magnitude
and relative phase of two orthogonal components are measured, often Eθ and Eφ. The
principal plane patterns of a linearly polarized antenna, such as a dipole along the z-axis,
are completely specified when a linearly polarized probe antenna is oriented to respond to
the Eθ-component in the E- and H-planes. On the other hand, the principal plane patterns
for a circularly polarized (CP) antenna are not the E- and H-planes because these planes
are not uniquely defined in this case. Instead, the principal planes of a CP antenna are two
orthogonal planes referenced to some stated and fixed physical direction, often denoted as
the φ¼ 0� and φ¼ 90� planes.

Reciprocal antennas have identical radiation patterns on transmit and receive, and this
extends to the vector nature of the radiation including polarization. Thus, a transmit
antenna is polarization matched to a receive antenna if they have the same polarization
states; that is, they have the same polarization ellipse axial ratio, sense, and major axis
orientation. For example, a right-hand circularly polarized receiving antenna is polari-
zation matched to a right circularly polarized wave. As a mechanical analogy, a right-
hand threaded rod corresponds to a right-hand circularly polarized (RHCP) wave and a
right-hand tapped hole represents a RHCP antenna. The rod and hole are matched when
screwed either in or out, corresponding to reception or transmission. More will be said
about the important topic of reception of polarized waves in Sec. 4.2.

Good examples of the application of antenna polarization are found in broadcast FM
radio and TV. Originally FM and TV broadcast transmitting antennas in the U.S. were
horizontally polarized. [H.6: Ant. Eng. Hdbk., 3rd ed., p. 28-4] In the 1960s, the
Federal Communications Commission (FCC) allowed FM broadcasters to transmit ver-
tical as well as horizontal polarization (or CP), which improved reception in vehicles
using a vertically polarized whip antenna. In practice, FM radio broadcasters commonly
use distorted dipoles that produce elliptical polarization, which provides an increased
vertical component but not one equal to the horizontal signal strength. In 1977, the FCC
permitted TV broadcasters to use CP (right-hand) by allowing transmitters to maintain the
maximum EIRP in horizontal polarization and add the same amount to vertical polari-
zation. This makes the receivers less sensitive to the orientation of their linearly polarized
antenna and to ghosts caused by reflected waves that arrive at the receiver with the
opposite sense (i.e., left-handed).

Certain antennas are naturally circularly polarized, such as helices and spirals; see
Chap. 7. Circular polarization can also be generated by feed network design. An example
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is two perpendicular half-wave dipoles fed from a common transmission line such that the
magnitudes are the same and with an extra quarter-wavelength of line (which gives a 90�
phase shift) to one dipole as shown in Fig. 4-6b. This will produce circular polarization
normal to the plane of the antennas with the sense determined by which leg has the
delay line.

The principles and terminology introduced in this chapter will be applied to some
important simple radiating systems in the next chapter.
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PROBLEMS

2.1-1 Use (2-6) in (2-1) to derive (2-7).
2.1-2 Use (2-13) in (2-19) together with (2-11), (2-12), and (2-20) to derive a form of (2-18)
that includes loss through σ.
2.1-3 Assuming ε and μ are real and M¼ 0, derive (2-28) through (2-34) using the identity
(C-19).
2.1-4 Write the complex power equation for a series RLC network driven by a voltage gen-
erator in a form analogous to the Poynting theorem.
2.2-1 Derive (2-47) starting with (2-18).
2.2-2 Including time variation, the phase expression for a wave propagating in the z-direction
is ωt � βz. For a constant phase point on the wave, this expression is constant; take the time
derivative to derive velocity expression in (2-53).
2.2-3 (a) Show that ψ ¼ Ce�jβr=r satisfies (2-57) at all points except the origin. (b) By inte-
grating (2-55) over a small volume containing the origin, substituting ψ ¼ Ce�jβr=r, and letting
r approach zero, show that C ¼ ð4πÞ�1

, thus proving (2-58).
2.3-1 Show that (2-73b) follows from (2-72).
2.3-2 Derive the general electric field expression of (2-73b) valid in all regions in the fol-
lowing two ways. (a) Use the magnetic field expression (2-73a) in (2-63). (b) Use the vector
potential expression (2-65) in (2-46).
2.3-3 For the ideal dipole of a z-directed current element I Δz in free space and located at the
origin of a spherical coordinate system: (a) Find the complex Poynting vector “expression”
in the general case, where r can be in the near-field region. Use the fields of (2-73). (b) Then
find the expression for the time-average power flowing out through a sphere of radius r
enclosing the current element. Your answer will be that of (2-77). Why? (c) Use the results
from (a) to derive (2-79).
2.3-4 Show that the electric field for the ideal dipole in (2-73b) satisfies Maxwell’s equation
∇ � E ¼ 0.
2.3-5 Prove that in the near field of an ideal dipole the ratio of the real to reactive power
density magnitudes is ðβrÞ3 thereby verifying that the real and reactive power densities are
equal for βr ¼ 1, or r ¼ l=2π. Hint: Use (2-76) and (2-79).
2.4-1 Prove (2-95) by using (2-89) in (2-94) and retaining only 1/r terms; that is, using βr
1.
2.4-2 Eq. (2-98) can be derived without initially assuming that the rays are parallel. Derive (2-
98) by writing R ¼ ½ðr� r0Þ ðr� r0Þ�1=2, expanding, factoring out an r, neglecting the smallest
term, and using the first two terms of the binomial expansion.
2.4-3 By examining only the r variation in (2-73), show that the real and imaginary parts of
each field component are equal for βr ¼ 1. For the Eθ, first develop a reactive near field form,
βr	1, by neglecting the first term.
2.4-4 (a) Derive an expression for the wave impedance ðEθ=HφÞ for an ideal dipole.
(b) Evaluate and plot this equation for βr from 0 to 20. Note the value for βr ¼ 10ðr ¼ 1:6lÞ
compared to the intrinsic impedance of free space.
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2.4-5 Plot the error in Eθ magnitude for an ideal dipole in (2-73b) relative to the far-field value
in (2-74a). What is the value for r¼ 5l?
2.4-6 (a) Derive the reactive-radiating near field boundary criterion of r ¼ 0:62

ffiffiffiffiffiffiffiffiffiffiffi
D3=l

p
for a

length D. Do this by first deriving the value of θ to be 54.7� for which the fourth term of (2-86)
is maximum; then find the r value of the maximum of the fourth term corresponding to a phase
error of π/8 radians, (b) Find the line source length for which this boundary criterion equals
that based on an ideal dipole, i.e., r ¼ 0.16l.
2.4-7 Show that a line source of length D will have a maximum error (R¼ r�D/2) in the
distance to the far field relative to the distance from the center of the line source, r, of 10%
when r¼ 5D by using R¼ 0.9r.
2.4-8 Using the far-field boundary criterion of rff¼ 2D2/l for a linear antenna of length D, find
rff for the following antenna lengths: D¼ 5l, a half-wave dipole (D¼ l/2), and a short dipole
(D¼ 0.01l). Is the far-field distance you computed valid in each case; if not, why not?
2.4-9 Use the far-field distance criteria in (2-100) to make a single graph of r/l (vertical axis)
versus D/l showing each far-field boundary criterion. Indicate the region of the graph cor-
responding to the far field.
2.4-10 Examine the far-field criteria for a 31-in. (0.787m) long fender-mount car radio
antenna at 1 MHz. Which criterion is the limiting condition? The graph in Prob. 2.4-9 will be a
help.
2.5-1 Show that there is 4π sr in all space by integrating dΩ over a sphere.
2.5-2 A power pattern is given by jcosn θj for 0 , θ , π=2 and is zero for π=2 , θ , π.
(a) Calculate the directivity for n ¼ 1, 2, and 3. (b) Find the HP values in degrees for each n.
(c) Sketch the patterns for the n values on one polar plot and comment on the them. (d) Explain
the directivity value for the case of n¼ 0.
2.5-3 An antenna has a far-field pattern which is independent of φ but which varies with θ as
follows:

F ¼ 1 for 0� # θ # 30�

F ¼ 0:5 for 60� # θ # 120�

F ¼ 0:707 for 150� # θ # 180�

F ¼ 0 for 30� , θ , 60� and 120� , θ , 150�

Find the directivity. Also find the directivity in the direction θ¼ 90�.
2.5-4 For a single-lobed pattern the beam solid angle is approximately given by

ΩA � HPEHPH

where HPE and HPH are the half-power beamwidths in radians of the main beam in the E and
H planes. Show that

D � 41, 253

HPE� �HPH�

where HPE� and HPH� are the E and H plane half-power beamwidths in degrees.
2.5-5 A horn antenna with low side lobes has half-power beamwidths of 29� in both principal
planes. Use the approximate expression in Prob. 2.5-4 to compute the directivity of the horn in
decibels.
2.5-6 A sector pattern has uniform radiation intensity over a specified angular region and is
zero elsewhere. An example is

FðθÞ ¼
1

π
2
� α , θ ,

π
2
þ α

0 elsewhere

8<
:

Derive an expression for the directivity corresponding to this pattern.
Evaluate this expression for the specific case in Example 2-3.

2.5-7 An airplane is flying parallel to the ground (in the z-direction). For a surface search radar
an antenna is required that uniformly illuminates the ground over some region. The so-called
cosecant pattern will do this. From the figure we see that h ¼ r cos π

2
� θ

� �
or
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r ¼ h

sin θ
¼ h csc θ:

This expresses how much farther the radiation must travel to reach the ground as θ is deceased.
The radiation pattern

FðθÞ ¼ csc θ,

will just compensate for the 1/r field variation with distance. If, in addition, the φ variation is a
sector pattern of small angular extent φ0, then

Fðθ, φÞ ¼
csc θ θ1 , θ ,

π
2
, 0 , φ , φ0

0 elsewhere

8<
:

Derive an expression for the directivity.

h

θ

θ
r

F(  )

z

x

θ1

2.5-8 Gaussian Pattern. A circularly symmetric, narrow beam antenna pattern is frequently
modeled by a Gaussian shape given by

FðθÞ ¼ e�4 ln
� ffiffi

2
p �

ðθ =HPÞ2

Derive expressions for the directivity associated with this pattern in terms of the half-power
beamwidth HP in radians and in degrees. Do this by approximating sin θ by θ in the integration
for ΩA and extending the integration limit to infinity.
2.5-9 An antenna has a directivity of 20 and a radiation efficiency of 90%. Compute the gain
in dB.
2.5-10 Compute the gain of an antenna which has a radiation efficiency of 95% and the
following radiation pattern:

FðθÞ ¼
1 0 # θ , 20�

0:707 20� # θ , 120�

0 120� # θ , 180�

8><
>:

2.6-1 Use the ohmic resistance formula (2-173) to verify the expression for Ro for: (a)
A uniform current distribution given by (2-170). (b) A triangular current distribution given by
(2-175).
2.6-1 A tuned transmit antenna. (a) Using the equivalent circuit of Fig. 2-15 and assuming
reactive tuning (XL¼�XA), derive expressions for the power delivered to radiation, P, and to
ohmic losses in Rg and Ro, Pg and Po respectively. (b) If in addition to reactive tuning the
generator and antenna resistances are matched, Rg¼RrþRo, reduce the power expressions
derived in (a) and determine what fraction of the power supplied is dissipated in the generator
resistance.
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2.7-1 A 2-m-long dipole made of 6.35-mm (0.25-in.) diameter aluminum is operated at
500 kHz. Compute its radiation efficiency, assuming: (a) the current is uniform; (b) the current
is triangular.
2.7-2 A citizen’s band radio at 27 MHz uses a half-wavelength long antenna that has a
radiation resistance of 70 Ω. Compute the radiation efficiency if the antenna is made with 6.35-
mm-diameter aluminum wire. As a rough approximation assume that the current is triangular.
2.7-3 A cordless telephone operating at 50 MHz has a 38-cm long monopole antenna made of
4-mm diameter aluminum tubing. Compute the radiation efficiency. Use (3-13) to find the
monopole resistance values from the dipole values.
2.7-4 Design of a short dipole antenna to achieve a specified efficiency. (a) Derive an
expression for the ratio of radiation resistance to ohmic resistance for a short dipole, r¼Rr/Ro.
(b) Validate the expression by calculating the efficiency for the case of Example 2-4.
(c) Calculate the length of a short dipole corresponding to 90% radiation efficiency for the case
No. 18 copper wire and operation at 100 MHz.
2.8-1 The instantaneous electric field components of an elliptically polarized wave
are Ex ¼ E1 cos ðωt � βzÞ and Ey ¼ E2 cos ðωt � βzþ δÞ. Specify El, E2, and δ for the fol-
lowing polarizations:

(a) Linear with E1 6¼ 0 and E2 6¼ 0.
(b) Right circular.
(c) Left circular.

2.8-2 Write the frequency domain form of the total vector electric fields given in Prob. 2.8-1.
2.8-3 Start with (2-187) and prove (2-188). Use the fact that the magnitude of E follows from
|E|2¼E �E*. Also note that γ in Fig. 2-20 is in a trianglewith sidesE1 andE2 and hypotenuse |E|.
2.8-4 Prove that a RHCP wave normally incident on a plane perfect conductor changes to
LHCP upon reflection.
2.8-5 Feed network to generate CP. (a) Use parallel wire transmission lines in a sketch of the
wiring feeding two orthogonal dipoles, oriented along the x- and y-axes, to produce RHCP
in the þz-direction. Clearly show the extra quarter-wavelength of transmission line. (b) What
is the polarization of radiation in the �z-direction?
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Chapter3

Simple Radiating Systems

The previous chapter introduced the mathematical principles of antennas and illustrated
them with a few elementary radiators. This chapter extends and uses the principles to treat
some popular simple antenna elements and arrays. We leave the many variations and the
derivational details to subsequent chapters when we revisit each radiating system. Spe-
cifically, we discuss electrically small dipoles, half-wave dipoles, monopoles, electrically
small loops, and two-element arrays. Not only are these antennas fundamental to antenna
practice, but they are the basic building units found in most antenna systems. In addition,
complicated antenna systems are understood by examining their component parts, which
are usually one or more of these canonical simple antennas. Image theory is also pre-
sented in this chapter for use in examining antennas operated in the presence of a ground
plane.

3.1 ELECTRICALLY SMALL DIPOLES

An antenna whose dimensions are small compared to the wavelength at the frequency of
operation is an electrically small antenna, which was first mentioned in Sec. 1.4. How
much smaller than a wavelength an electrically small antenna must be depends on the
application, but generally is taken to be on the order of a tenth of a wavelength in extent
or less; more will be said on this topic in Sec. 11.5. Electrical size and physical size can
be quite different. An antenna operating at low frequencies can be physically large but
electrically small—i.e., a small fraction of a wavelength in extent. This is especially true
for frequencies in the low MHz range and below. We saw in Sec. 2.7 that electrically
small antennas are inherently inefficient.

However, this often is not a serious problem in receiving systems and physically small
antennas offer advantages in size, weight, cost, and mobility. In this section, we revisit
two electrically small antennas introduced in Secs. 2.3 and 2.7, the ideal dipole and the
short dipole. We also discuss practical forms of electrically small dipoles.

The simplest practical electrically small antenna is the short dipole shown in Fig. 3-1a
as a wire with a feed point in the center. The resemblance of the arms of the dipole to the
feelers of an insect has been attributed to the origin of the term antenna [H.3: Schelkunoff
and Friis, p. 5]. The current distribution of the short dipole is nearly triangular in shape as
modeled in Figs. 2-16b and 3-1c. This is because the current distribution on thin wire
antennas (diameter �l) is approximately sinusoidal and also must be zero at the wire
ends. Because the arms of the short dipole are a fraction of a wavelength long, only a
small portion of the sine wave current appears on the arm and is therefore nearly linear;
see Fig. 3-lc.

The decreasing current toward the wire ends requires that charges peel off and appear
on the wire surface as shown in Fig. 3-1a. The current and charge distributions shown

c03 7 April 2012; 8:50:36

70



in Fig. 3-1b are for an instant of time when the input current at the dipole terminals is
maximum. Because the input current is changing sinusoidally with time, the current and
charge distributions on the dipole do also. This charge accumulation leads to a displace-
ment current density jωεE in the space surrounding the dipole. The displacement current
density, in turn, gives rise to an electromagnetic wave that propagates outward from the
source as illustrated in Fig. 1-5. Displacement current in space couples a transmitting
antenna to a receiving antenna, much as a conduction current provides coupling between
lumped elements in a circuit. The radiation pattern of all forms of the electrically small
dipole (with its radiating portion along the z-axis) is sin θ as shown in Fig. 2-4.

In the ideal dipole, all charge accumulates at the ends of the antenna. In fact, the ideal
dipole can be analyzed as either a uniform current or two point charges oscillating at
radian frequency ω (see Prob. 3.1-1) as shown in Fig. 3-2. The charge dipole model shows
that charge accumulates at the ends of the antenna, leading to a higher radiation resis-
tance. In fact, the ideal dipole radiation resistance of (2-169) is four times that of the short
dipole given by (2-172).

The input reactance of a short dipole is capacitive. This can be seen by visualizing the
antenna as an open-circuited transmission line as in Fig. 1-6. When the distance from
the end of the antenna to the feed point is much less than a quarter wavelength, the input
impedance is capacitive, because from transmission line theory the impedance a distance
s from an open-circuit termination is �jZo cosðβsÞ. Simple transmission line theory only
gives qualitative results when radiation is present. An approximate expression for the
capacitive reactance of the short dipole is given in (2-176). Moment method computation
techniques are used for accurate impedance evaluation; see Chap. 14. Loading coils are
frequently used to tune out this capacitance.

Ideal dipole

(c)(b)(a)

z z

Δz
2

I
I (z)E

I
Im
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Actual
Triangle approx

Δz−
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−
−
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−
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+

+
+
+
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++

2

Figure 3-1 Short dipole, Δz � l: (a) Current on the antenna and the electric fields surrounding it. (b)
Current and charge distributions. (c) Short dipole current distribution and its triangular approximation
compared to the ideal dipole current distribution.

Ie j   t

(a) (b)

ω

qej   tω

−qej   tω

Figure 3-2 Ideal dipole models. (a) Uniform current model. (b) Charge dipole model with
I ¼ jωq.

c03 7 April 2012; 8:50:36

3.1 Electrically Small Dipoles 71



The larger radiation resistance associated with the uniform current of the ideal dipole
can be realized in practice by providing a mechanism for charge accumulation at the wire
ends. One method of accomplishing this is to place metal plates at the ends of the wire.
This is called a capacitor-plate antenna, or top-hat-loaded dipole antenna. Fig. 3-3
shows the construction of the antenna and the current and charges on it. If Δz � l,
the radial currents on the plates produce fields that almost cancel in the far field, since the
currents are opposite-directed and the phase difference due to separation is small
ðβΔz � 2πÞ. If, in addition,Δz � Δr, the plates provide for charge storage such that the
current on the wire is constant. The capacitor-plate antenna then closely approximates
the uniform current ideal dipole model. Frequently in practice, radial wires are used
for the top loading in place of the solid plates.

Another small antenna used to approximate the ideal dipole is the transmission line
loaded antenna as shown in Fig. 3-4a. The results of transmission line theory can be
borrowed to determine the current distribution. The current is essentially sinusoidal along
the wire with a zero at the ends. This current distribution is sketched in Fig. 3-4b for
L , l=4. If Δz � l, the fields from the currents on the horizontal wires essentially
cancel in the far field. If also Δz � L, the horizontal wires provide an effective place for
the charge to be stored and the current on the vertical section is nearly constant, as
illustrated in Fig. 3-4b. Then radiation comes from a short section over which the current
is nearly constant and the antenna approximates an ideal dipole.

The monopole form of the transmission line loaded dipole shown in Fig. 3-4c is called
the inverted-L antenna (ILA). The small ILA has a total wire length that is much less
than a wavelength. The inverted-L antenna is popular for narrowband applications. The
ILA is a popular antenna for garage door transmitter units (see Example 11-3).
The reactance of the ILA antenna can be reduced by adding more horizontal wires. For
example, an additional horizontal wire added to the left side in Fig. 3-4a will have the
reactance by the paralleling of identical capacitive elements. As more horizontal wires are
added, the reactance is further reduced and the structure approaches that of the capacitor
plate antenna of Fig. 3-3. Evolutionary forms of the inverted-L antenna have larger
bandwidth and have found widespread use in small handheld radio units where the wire
length is near a quarter wavelength; these antennas will be discussed in Sec. 11.6.3.

At different portions of the frequency spectrum, electrically small antennas are used
for different reasons. For instance, in the VLF region where wavelength is very large, an
electrically short vertical radiator is used with a large top-hat load. The top-hat loading
makes the antenna appear like the capacitor-plate antenna of Fig. 3-3. Further up the
spectrum, such as in the AM broadcast band, receiving antennas are usually small
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+
+
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Figure 3-3 Capacitor-plate antenna. The arrows on the antenna
indicate current. The charges on the plates are also shown.

c03 7 April 2012; 8:50:37

72 Chapter 3 Simple Radiating Systems



electrically, as we saw in Sec. 2.7. AM transmitting antennas are not small, but are of
resonant size as discussed in the next section. At VHF frequencies and above, electrically
small antennas are only used in special situations.

One of the lowest-frequency communication systems ever implemented was the U.S.
Navy’s Project ELF for communicating with submerged submarines. Two transmitter
sites, which operated in Wisconsin and Michigan from 1985 to 2004, had multiple
conductors in lengths of from 22.5 to 45 km (14 to 28 mi) supported by power line poles.
The ELF frequency of 76 Hz was selected to avoid the high loss of seawater, which
increases rapidly with frequency. The purpose of this narrowband communication system
was only to transmit a simple coded signal with a message instructing submarines to
surface and use another communication system to conduct full two-way communications
in air. The very long free space wavelength of 3950 km (2450 mi) at this frequency means
that the 45-km conductor length corresponds to only 0.01 wavelength, leading to a very
inefficient system.

3.2 HALF-WAVE DIPOLES

One of the most popular antennas, both as a modeling building block and in direct
application, is the half-wave dipole. The half-wave dipole is realized with a straight wire
fed in the center. The simple and accurate model is that of a linear current whose
amplitude distribution is sinusoidal with a maximum at the center as shown in Fig. 3-5a.
The half-wave dipole is in widespread use because of its simple physical structure and, as

~

L

(a) Transmission line loaded dipole.

(c) The inverted-L antenna (ILA).

(b) Current on the transmission line loaded dipole with
      the wire folded out. The dashed line indicates current
      on the horizontal section.
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Figure 3-4 Transmission line loaded antennas.
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a resonant antenna, it has zero input reactance as well as a desirable input resistance.
The input impedance of an infinitely thin dipole of exactly one-half wavelength is
ZA ¼ 73 þ j42:5Ω. The input impedance of wire dipoles is discussed in detail in
Sec. 6.1, but for now it is sufficient to point out that tuning of a wire half-wave dipole
antenna is accomplished by trimming the wire ends until a zero input reactance is
achieved, with more shortening required for thicker wire diameter; see Prob. 3.2-7 and
data in Sec. 14.5. The tuned half-wave dipole then has an input impedance of about
70 þ j0Ω. Thus, the half-wave dipole has the advantages of being naturally well-
matched in impedance to common devices. Additionally, it has a radiation efficiency very
close to 100% for common wire materials.

The evolution of the half-wave dipole antenna from an open-circuited parallel wire
transmission line by bending the two conductors outward was developed in Sec. 1.3 and
Fig. 1-6. Essentially the bent ends allow the internal fields of the transmission line to be
exposed to space and radiate. The sinusoidal current distribution on the transmission line is
assumed to also exist on the dipole. More sophisticated analytical and numerical analysis
methods (see Chap. 14 for the latter) reveal that wire antennas have a current distribution
very close to sinusoidal in shape and that differences in pattern calculations based on a pure
sinusoidal current are negligible, especially for a half-wave wire dipole with a diameter
small compared to the operating wavelength. The sinusoidal current distribution for the
half-wave dipole along and centered on the z-axis as shown in Fig. 3-5a is given by

IðzÞ ¼ Im sin β
l
4
� jzj

0
@

1
A

2
4

3
5, jzj# l

4
ð3-1Þ

where β ¼ 2π=l. This equation yields the required zero current condition at the ends of
the dipole where z ¼ 6l=4 and a maximum value Im at the center ðz ¼ 0Þ, as shown in
Fig. 3-5a. The radiated electric field pattern is found using the steps for a z-directed line
source in (2-103) to (2-106), leading to

Eθ ¼ jωμ
2Im

β
e�jβr

4πr
sin θ

cos½ðπ=2Þcos θ�
sin2 θ

ð3-2Þ

In this expression, we identify the element factor of gðθÞ ¼ sin θ and the normalized
pattern factor:

f ðθÞ ¼ cos½ðπ=2Þ cos θ�
sin2 θ

ð3-3Þ

λ /2

z

Im

(a) (b)

I (z)

F(θ)
z

0.707

78°

1.0

Figure 3-5 The half-wave dipole. (a) Current distribution IðzÞ. (b) Radiation pattern FðθÞ.
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Both gðθÞ and f ðθÞ have a maximum of unity for θ ¼ π=2. The complete far-field pattern,
normalized to unity maximum (see (2-115)) is

FðθÞ ¼ gðθÞf ðθÞ ¼ cos½ðπ=2Þ cos θ�
sin θ

half -wave dipole ð3-4Þ

The E-plane pattern is plotted in Fig. 3-5b in linear, polar form. The radiation is uniform
(in the H-plane) around the dipole because the pattern function in (3-4) is not a function
of φ; this is expected because of the symmetry of the dipole structure. The three-
dimensional pattern is donut shaped similar to the short dipole. We return to the topic of
dipole pattern evaluation in Sec. 6.1.

So far we have introduced three dipole antennas: the ideal, short, and half-wave
dipoles. The characteristics and performance of these dipoles are listed in Table 3-2 in
Sec. 3-4. The ideal and short dipoles, with uniform and triangular current distributions,
respectively, have identical patterns. Both have a half-power beamwidth of 90� and
a directivity of 1.5; see Fig. 2-4. The half-wave dipole has a narrower beamwidth of
78� and, thus, a higher directivity value of 1.64 or 2.15 dB, which will be derived
in Sec. 6.1.

The length of the half-wave dipole is large enough electrically that radiation con-
tributions from current elements along its extent will have significant phase variation in
the far field as a function of angle around the antenna due to the difference in path
length from the current elements to the far field. In the broadside direction ðθ ¼ π=2Þ all
path lengths are equal and there is full phasor addition and a pattern maximum. For
other directions, there is partial cancellation due to phase differences between current
elements that are as large as 180� from the dipole ends in the endfire directions
ðθ ¼ 0,πÞ. The major influence on the endfire direction is the element factor
f ðθÞ ¼ sin θ, which is zero caused by the vanishing projected area of the antenna in end
view. As the dipole length is increased beyond a wavelength, the current element
contributions in the far field are increasingly out of phase, leading to partial or total
cancellation in the far field in the broadside direction and reinforcement in off-broadside
directions, forming multiple lobes in the E-plane; see Figs. 6-3 and 6-4. This explains
why practical center-fed wire antennas are less than a wavelength long.

3.3 MONOPOLES AND IMAGE THEORY

So far we have assumed that antennas have been isolated and in a free space environment.
However, the environment surrounding an antenna will affect its performance, especially
pattern and impedance. Environmental effects are small for a high-gain antenna that is
elevated above the terrain. But effects may be large on a broad-beam antenna with objects
nearby. The most common object near an antenna is a ground plane. The ideal form of a
ground plane is the perfect ground plane which is planar, infinite in extent, and perfectly
conducting. A real ground plane that is flat compared to a wavelength (i.e., surface
deviations �l) introduces small deviations from the planar assumptions. The perfectly
conducting assumption is mild, and any good conductor such as aluminum or copper is
very accurately modeled as a perfect conductor. The infinite extent assumption, however,
can lead to errors. But, in most cases a perfect ground plane is well approximated by a
solid metal plate or a planar wire grid system that is large compared to the size of the
antenna. In this section, we introduce image theory as a useful tool to model an antenna
operating in the presence of a perfect ground plane and then image theory is used to
analyze monopole antennas. Antennas operating in the presence of imperfect ground
planes are treated at appropriate points in this book: wire antennas close to finite gro-
und planes are addressed in Sec. 6.6; the real earth as a ground plane is discussed in
Sec. 6.7; and antennas operating in the presence of the human body are discussed
in Sec. 11.9. Antennas in the presence of imperfect ground planes can be accurately
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evaluated using simulation tools based on Moment Method or Geometrical Theory of
Diffraction techniques, which are discussed in Chaps. 14 and 16, respectively.

3.3.1 Image Theory

An antenna operating in the presence of a perfect ground plane produces two rays at each
observation angle, a direct ray from the antenna and a second ray due to reflection from
the ground plane such that Snell’s law of reflection is satisfied. This is the approach used
in Secs. 6.6 and 6.7 to analyze antennas above perfect and imperfect ground planes. Here,
we develop the solution from first principles and it will be seen that the image antenna
acts as an equivalent source for the reflected ray.

Consider first an ideal dipole near a perfect ground plane and oriented perpendicular to
the ground plane as shown in Fig. 3-6a. Ground planes are usually horizontal, so this
situation is referred to as a vertical ideal dipole above a perfect ground plane. We wish to
find the fields E and H above the plane PP0. The uniqueness of the solution to a dif-
ferential equation (the wave equation) plus its boundary conditions permits introduction
of an equivalent system that is different below PP0 but satisfies the same boundary
conditions on PP0 and has the same sources above PP0. Such an equivalent system, which
produces the same fields above PP0 as the original system, has an image source the same
distance below the plane PP0 and similarly directed. In this case, the image source is the
virtual ideal dipole as shown in Fig. 3-6b.

It is a simple matter to prove that the boundary condition of zero tangential electric
field along plane PP0 is satisfied by this source configuration. To do this, we examine
the electric field expression for an ideal dipole given by (2-73b). The complete
expression must be used because the ground plane can be, and usually is, in the near
field of the antenna. The radial component varies as cos θ and the θ-component varies
as sin θ, where θ is the angle from the axis along the direction of the current element.
Let θ1 and θ2 be the angles from the line of the current elements to a point on the plane
PP0 for the primary source and its image, respectively. The radial components from the
sources are then

Er1 ¼ C cos θ1 ð3-5Þ
Er2 ¼ C cos θ2 ð3-6Þ

The constant C is the same for each field component since the amplitude of the sources
is the same and points on the boundary are equidistant from the current elements. From
Fig. 3-7a we see that

θ1 þ θ2 ¼ 180� ð3-7Þ

(a) Physical model. (b) Equivalent model using image theory.

d d

d
= ∞σ

IΔz IΔz

IΔz

P′P P P′

Figure 3-6 Ideal dipole above and perpendicular to a perfectly conducting ground plane.
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so,

Er1 ¼ C cosð180� � θ2Þ ¼ �C cos θ2 ð3-8Þ
Comparing this to (3-6), we see that

Er1 ¼ �Er2 along boundary ð3-9Þ
Thus along the plane PP0, the radial components are equal in magnitude and opposite in
phase. Er2 is directed radially out from the image source since θ2 is less than 90�, and then
cos θ2 is positive. On the other hand, Er1 is radially inward toward the primary source
since (3-8) is negative. Fig. 3-7a illustrates this and shows that the projections of each
along PP0 will cancel. A similar line of reasoning for the θ-components leads to

Eθ1 ¼ D sin θ1 ¼ D sin θ2 ð3-10Þ
Eθ2 ¼ D sin θ2 ð3-11Þ

where D is a constant and thus

Eθ1 ¼ Eθ2 along boundary ð3-12Þ
Fig. 3-7b demonstrates that the net projection of these θ-components along plane PP0 is
zero.

We have shown that the total tangential electric field intensity is zero along the image
plane PP0 for an ideal dipole perpendicular to the plane and its image was acting together.
Therefore, since the source configuration above the plane and the boundary conditions
were not altered, the system of Fig. 3-6b is equivalent to the original problem of
Fig. 3-6a. The systems are equivalent in the sense that the fields above the plane PP0
are identical. The above derivation can be reversed by starting with the two sources of
Fig. 3-6b and then introducing a perfect ground plane with its surface along plane PP0,
thus arriving at Fig. 3-6a. The essential feature to remember is that the fields above a
perfect ground plane from a primary source acting in the presence of the perfect ground
plane are found by summing the contributions of the primary source and its image, each
acting in free space.

An ideal dipole oriented parallel to a perfect ground plane (i.e., horizontal) has an image
that again is equidistant below the image plane, but in this case the image is oppositely
directed as shown in Fig. 3-8. The equivalentmodel of Fig. 3-8b, which gives the same fields
above planePP0 as the physicalmodel of Fig. 3-8a, can be proved by simple sketches similar
to those of Fig. 3-7.

d

d

d

d
Cancel

Er2Er1

θ1

θ2

P PP′ P′
Cancel

Eθ1 Eθ2

(a) Radial components. (b) Theta components.

Figure 3-7 The ideal dipole and its image in a ground plane of Fig. 3-6. The source and its image acting
together give zero tangential electric field intensity along the plane PP0 where the original perfect ground
plane was located.
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The image of a current element oriented in any direction with respect to a perfect
ground plane can be found by decomposing it into perpendicular and parallel compo-
nents, forming the images of the components, and constructing the image from these
image components. An example is shown in Fig. 3-9. The image of an arbitrary current
distribution is obtained in a similar fashion. The current is decomposed into perpendicular
and parallel current elements whose images are readily found. The image current dis-
tribution is then the vector sum of these image current elements.

3.3.2 Monopoles

The principles of image theory are illustrated in this section with several forms of the
monopole antenna. A monopole is a dipole that has been divided in half at its center feed
point and fed against a ground plane. Three monopoles and their images in a perfect
ground plane are shown in Fig. 3-10. High-frequency monopoles are often fed from
coaxial cables behind the ground plane as shown in Fig. 3-11a.

The currents and charges on a monopole are the same as on the upper half of its dipole
counterpart, but the terminal voltage is only half that of the dipole. The voltage is half
because the gap width of the input terminals is half that of the dipole, and the same electric
field over half the distance gives half the voltage. The input impedance for a monopole is
therefore half that of its dipole counterpart, or

ZA,mono ¼ VA,mono

IA,mono

¼
1
2
VA,dipole

IA,dipole
¼ 1

2
ZA,diople ð3-13Þ

This is easily demonstrated for the radiation resistance. Because the fields only extend
over a hemisphere, the power radiated is only half that of a dipole with the same current.
Therefore, the radiation resistance of a monopole is given by

Rr,mono ¼ Pmono

1
2
jIA,monoj2

¼
1
2
Pdipole

1
2
jIA,dipolej2

¼ 1

2
Rr,dipole ð3-14Þ

For example, the radiation resistance of a short monopole is from (2-172)

(a) Physical model. (b) Equivalent model using image theory.

σ = ∞

Figure 3-9 Ideal dipole above and obliquely oriented relative to a perfect ground plane.

(a) Physical model. (b) Equivalent model using image theory.

d d

dσ = ∞

IΔz
IΔz

IΔz

P′P P P′

Figure 3-8 Ideal dipole above and parallel to a perfect ground plane.
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(a) Monopole fed against a large
 solid ground plane.

(b) Equivalent dipole model
      shown with currents.

Image currents

Quarter-wave
   monopole current

Short monopole current

(c) Practical monopole antenna with radial wires to simulate a ground plane.

Figure 3-11 Monopole antennas fed against a ground plane with a coaxial cable.

(a) Monopole antenna. (b) Capacitor plate monopole.

(c) Transmission line monopole (inverted-L antenna).

Figure 3-10 Monopole antennas over perfect ground planes with their images (dashed).
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Rr,mono ¼ 40π2

�
h

l

�2

for h � l ð3-15Þ

where h is the length of the monopole and Δz ¼ 2h.
The radiation pattern of a monopole above a perfect ground plane, as in Fig. 3-11, is

the same as that of a dipole similarly positioned in free space since the fields above the
image plane are the same. Therefore, a monopole fed against a perfect ground plane
radiates one-half the total power of a similar dipole in free space because the power is
distributed in the same fashion but only over half as much space. As a result, the beam
solid angle of a monopole above a perfect ground plane is one-half that of a similar dipole
in free space, leading to a doubling of the directivity:

Dmono ¼ 4π
ΩA,mono

¼ 4π
1
2
ΩA,dipole

¼ 2Ddipole ð3-16Þ

This can be shown in another way. If a dipole in free space has a maximum radiation
intensity of Um, a monopole of half the length above a perfect ground plane with the same
current will have same value of Um because the fields are the same. The total radiated
power for the dipole is P, so the power radiated from the monopole is 1

2
P. The directivity

from (2-140) for the two antennas is

Dmono ¼ Um

1
2
P=4π

¼ 2Ddipole ð3-17Þ

The directivity increase does not come from an increase in the radiation intensity (and,
hence, field intensity) but rather from a decrease in average radiation intensity. This, in
turn, comes about because only half the power radiated by a dipole is radiated by a
monopole. The directivity of a short monopole, for example, is 2ð1:5Þ ¼ 3.

The directivity of a quarter-wave monopole is twice that of a half-wave dipole in free
space; that is, from Table 3-2 and (3-17)

D ¼ 2ð1:64Þ ¼ 3:28 ¼ 5:16 dB l=4-monopole ð3-18Þ

The input impedance of an infinitesimally thin quarter-wave monopole from Table 3-2
and (3-13) is

ZA ¼ 1

2
ð72 þ j42:5Þ ¼ 36 þ j21:3Ω l=4-monopole ð3-19Þ

In frequency bands below VHF, a quarter-wave monopole will be physically large. For
example, in the standard AM radio broadcast band, a quarter-wavelength vertical
monopole antenna will be 75 m (246 ft) tall at 1 MHz. Such large structures are usually
not self-supporting. Guy wires are added for mechanical support with insulators spaced
along the guy wires as shown in Fig. 3-12a to break up currents that would run onto the
guy wires from the tower. Tower height can be reduced below a quarter wavelength by
using the guy wires for top loading as shown in Fig. 3-12b. The currents on this umbrella-
loaded monopole antenna continue from the top of the tower onto the guys, leading to a
more uniform current on the tower and thus increasing the radiation resistance. However,
the currents on the guys introduce a partial cancelling effect on the tower current. To
provide adequate structural support for wind loading, the guy wires are spaced 120�
around the tower top, as well as at one or two more levels for tall towers; see [H.6:
Ant. Eng. Hdbk., 4th ed., Chap. 27] for more details on tower antennas. As noted in
Sec. 2.6, the radiation resistance is proportional to the area under the current versus
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distance curve. Using this fact and assuming, as usual, that the current distribution is sinu-
soidal shaped, the modified radiation resistance formula for a top-loaded monopole is [1]

Rr ¼ 40π2

�
h

l

�2
ð1 þ cos βhÞ2 top-loaded monopole ð3-20Þ

For a quarter-wave monopole βh ¼ π=2 and cos βh ¼ 0 and this expression reduces to
the expected result of (3-15), which holds for a short monopole less than 0:15l tall and
with zero current on top (i.e., a linear current distribution). Measured data for umbrella-
loaded monopoles are presented in [2].

3.4 SMALL LOOP ANTENNAS AND DUALITY

A closed loop current whose maximum dimension is less than about a tenth of a wave-
length is called a small loop antenna. Again, small is interpreted as meaning, electrically
small, or small compared to a wavelength. In this section, we use two methods to solve
for the radiation properties of small loop antennas. First, we show that the small loop is
the dual of an ideal dipole, and by observing the duality contained in Maxwell’s equa-
tions, we use the results previously derived for the ideal dipole to write the fields of a
small loop. Next, we derive the fields of a small loop directly and show that the results are
the same as those obtained using duality.

3.4.1 Duality

Frequently, an antenna problem arises for which the structure is the dual of an antenna
whose solution is known. If antenna structures are duals, it is possible to write the fields
for one antenna from the field expressions of the other by interchanging parameters using
the principle of duality. Before examining the small loop, we discuss the general principle
of duality as applied to antennas.

Dual antenna structures are similar to dual networks. For example, consider a simple
network of a voltage source applied to a series connection of a resistor R and an inductor
L as in Fig. 3-13a. The dual network of Fig. 3-13b is a current source I ð¼ÞV applied to
the parallel combination of conductance G ð¼ÞR and capacitance C ð¼ÞL. The symbol
‘‘ð¼Þ’’ means replace the quantity on the left with the quantity on the right, much as the
equal sign in a computer program statement. Since the networks are duals, the solutions
are duals. In this example, the original series network can be described by the mesh
equation

V ¼ RI þ jωLI ð3-21Þ
The dual of this mesh equation is a node equation obtained by replacing V by I, R by G,
and L by C. The node equation for the dual parallel network is then

(a) Monopole with insulators to
      reduce currents in guys.

(b) Umbrella-loaded monopole
      with a top loading effect.

Figure 3-12 Monopoles with supporting guy wires.
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I ¼ GV þ jωCV ð3-22Þ
Returning to the antenna problem, suppose we have an electric current source with

current density J1 and boundary conditions on materials present ðε1, μ1, σ1Þ. Maxwell’s
equations for this system from (2-16) and (2-15) are

∇3E1 ¼ �jωμ1H1 ð3-23Þ
∇3H1 ¼ �jωε01 E1 þ J1 ð3-24Þ

where E1 and H1 are the fields generated by J1 with materials ðε1,μ1,σ1Þ present. Now
suppose a fictitious magnetic current source with magnetic current density M2 exists with
materials ðε2,μ2,σ2Þ present.Maxwell’s equations for this system from (2-15) and (2-21) are

∇3H2 ¼ jωε02 E2 ð3-25Þ
∇3E2 ¼ �jωμ2 H2�M2 ð3-26Þ

where E2 and H2 are the fields arising from M2.

The electric and magnetic systems are duals if the procedure in Table 3-1 can be
performed. This is easy to demonstrate. To see if (3-25) and (3-26) are the duals of
(3-23) and (3-24), we substitute the quantities in the left-hand column of Table 3-1
into (3-25) and (3-26) for the corresponding quantities of the right-hand column:

∇3E1 ¼ jωμ1ð�H1Þ ð3-27Þ
∇3 ð�H1Þ ¼ �jωε01 E1� J1 ð3-28Þ

Thus, the equations of the electric system, (3-23) and (3-24), are dual to the equations
of the magnetic system, (3-25) and (3-26), just as (3-21) and (3-22) are dual equations.
Since the equations of the systems are dual, the solutions will be also. Before illustrating
this, we summarize the principle of duality:

V

R L

I G C

(a) Original network. (b) Dual network.

Figure 3-13 Dual networks: I ð¼ÞV ,G ð¼ÞR,C ð¼ÞL.

Table 3-1 Dual Radiating Systems. Radiating System #1 with
Electric Currents and System #2 with Magnetic Currents Are

Duals If One Can:

Replace the Following
in System #2

By the Following
in System #1

M2 J1
ε02 μ1

μ2 ε01
E2 �H1

H2 E1

c03 7 April 2012; 8:50:39

82 Chapter 3 Simple Radiating Systems



If the sources of two systems are duals, that is,

M2 ð¼Þ J1 ð3-29Þ
and if the boundary conditions are also dual,1 that is,

μ2 ð¼Þ ε01, ε02 ð¼Þμ1 ð3-30Þ
then the fields of system #2 can be found from the solution of system #1 by the
substitutions

E2 ð¼Þ �H1, H2 ð¼ÞE1 ð3-31Þ
in the field expressions for system #1 along with the substitutions in (3-30).

Now we use duality to find the fields of a small current loop from a knowledge of the
fields of an ideal electric dipole. A current loop can be represented as a fictitious (ideal)
magnetic dipole with uniform magnetic current Im and length Δz. The sources are duals
as required by (3-29) if we let

Im ð¼Þ Ie ð3-32Þ
where Ie is the current of an ideal electric dipole of length Δz. Since no materials are
present, there are no boundary conditions. The ideal electric dipole has field solutions of
the form

E1 ¼ Eθ1θ̂ þ Er1r̂ ð3-33Þ
H1 ¼ Hφ1f̂ ð3-34Þ

The fields of the dual magnetic dipole are then found from (3-31) as

E2 ð¼Þ �H1 ¼ �Hφ1f̂ ð3-35Þ
H2 ð¼Þ E1 ¼ Eθ1θ̂ þ Er1r̂ ð3-36Þ

if we make the substitutions

μ2 ¼ μ ð¼Þ ε01 ¼ ε and ε02 ¼ ε ð¼Þμ1 ¼ μ ð3-37Þ
which follow from (3-30) and the fact that in both systems the surrounding medium is a
homogeneous material of μ and ε. Note that β remains the same since replacing μ by ε
and ε by μ in ω

ffiffiffiffiffiffi
με

p
yields ω

ffiffiffiffiffiffi
εμ

p
. Now, using and (3-32) and (3-37) in the ideal electric

dipole field expressions of (2-73) together with (3-35) and (3-36) gives

E2 ¼ ImΔz

4π
jβ 1 þ 1

jβr

� �
e�jβr

r
sin θ f̂ ð3-38Þ

H2 ¼ ImΔz

4π
jωε 1 þ 1

jβr
þ 1

ð jβrÞ2

2
4

3
5 e�jβr

r
sin θ θ̂

þ ImΔz

2π
jωε

1

jβr
þ 1

ðjβrÞ2

2
4

3
5 e�jβr

r
cos θ r̂ ð3-39Þ

1 Note that ε01 ¼ ε1 � jðσ1=ωÞ. If magnetic conductors of magnetic conductivity σm
2 were assumed to

exist in system #2, then μ2 would become μ0
2 ¼ μ2 � jðσm

2 =ωÞ and ε01 would be replaced by μ0
2, or

equivalently σ1 replaced by σm
2 .
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These are the complete field expressions (valid in the near-field region) for a small loop of
electric current. The far-field components are obtained by retaining only those terms that
vary as r�1, giving

E2 ¼ �Im Δz jβ
e�jβr

4πr
sin θ f̂ ð3-40Þ

H2 ¼ Im Δz jωε
e�jβr

4πr
sin θ θ̂ ð3-41Þ

These radiation fields as well as those of the ideal electric dipole are shown in Fig. 3-14.
Both antennas have the same radiation pattern, sin θ. The magnetic field component Hφ of
the ideal electric dipole is easily remembered by use of the right-hand rule. Place the
thumb of your right hand along the current of the dipole and pointing in the direction of
current flow. Your fingers will then curl in the direction of the magnetic field. This
statement is implicit in Ampere’s law of (3-24). A similar relationship holds for the
magnetic dipole, except the left-hand rule is used and the field obtained is the electric
field component �Eφ. This follows from (3-26).

3.4.2 The Small Loop Antenna

Using duality, we found the field expressions for a small loop of uniform current.
However, these expressions contain the equivalent magnetic dipole current amplitude Im.
By solving the small loop problem directly, we can establish the relationship between the
current I in the loop and Im. This can be accomplished by dealing only with the far-field
region.

It turns out that the radiation fields of small loops are independent of the shape of the
loop and depend only on the area of the loop. Therefore, we will select a square loop as
shown in Fig. 3-15a to simplify the mathematics. The current has constant amplitude I
and zero phase around the loop. Each side of the square loop is a short uniform electric
current segment that is modeled as an ideal dipole. The two sides parallel to the x-axis
have a total vector potential that is x-directed and is given by

Ax ¼ μI‘
4π

e�jβR1

R1

� e�jβR3

R3

� �
ð3-42Þ

which follows from (2–65). The minus sign in the second term arises because the current
in side 3 is negative x-directed. Similarly for sides 2 and 4, we find

Ay ¼ μI‘
4π

e�jβR2

R2

� e�jβR4

R4

� �
ð3-43Þ

Im

I

z

– Eφ

Hθ

(a) Small current loop and
      equivalent magnetic dipole.

(b) Ideal electric dipole.

Ie

z

Hφ

Eθ

Figure 3-14 Radiation field components of ideal magnetic and electric dipoles.
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The far-field approximation is that the distances used for amplitude variations are nearly
equal (i.e., R1 � R2 � R3 � R4 � r) and the phase differences are found from assuming
parallel rays emanating from each side. By comparing the parallel path lengths, we find
from geometrical considerations that

R1 ¼ r þ ‘

2
sin θ sinφ, R2 ¼ r � ‘

2
sin θ cosφ

R3 ¼ r � ‘

2
sin θ sinφ, R4 ¼ r þ ‘

2
sin θ cosφ

ð3-44Þ

Substituting these into the exponents and r into the denominators of (3-42) and (3-43), we
have

Ax ¼ μI‘e�jβr

4πr
ðe�jβð‘=2Þsin θ sinφ � eþ jβð‘=2Þsin θ sinφÞ

Ay ¼ μI‘e�jβr

4πr
ðeþ jβð‘=2Þsin θ cosφ � e�jβð‘=2Þsin θ cosφÞ

or

Ax ¼ �2j
μI‘e�jβr

4πr
sin

β‘
2
sin θ sinφ

0
@

1
A

Ay ¼ 2j
μI‘e�jβr

4πr
sin

β‘
2
sin θ cosφ

0
@

1
A

ð3-45Þ

Since the loop is small compared to a wavelength, β‘ ¼ 2π‘=l is also small and the sine
functions in (3-45) can be replaced by their arguments, giving

z

θ |Ε  |, |Ηθ|φ

HP = 90°

sinθ

(b) Small loop radiation pattern.(a) Geometry for a square loop.

R1

R4

R2r

z

θ

φ

R3

I

x

y

�

�

Figure 3-15 The small loop antenna.
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Ax � �j
μIe�jβr

4πr
β‘2 sin θ sinφ

Ay � j
μIe�jβr

4πr
β‘2 sin θ cosφ

ð3-46Þ

Combining components to form the total vector potential gives

A ¼ Axx̂ þ Ayŷ ¼ jβ‘2
μIe�jβr

4πr
sin θ ð�sinφx̂ þ cosφŷÞ ð3-47Þ

The term in parentheses is the unit vector f̂ in (C-6), so

A ¼ jβS
μIe�jβr

4πr
sin θ f̂ ð3-48Þ

where S is the area of the loop. All of A is transverse to the direction of propagation, so
the radiation electric field from (2-104) is �jωA, giving

E ¼ ηβ2S
Ie�jβr

4πr
sin θ f̂ ð3-49Þ

since ωμβ ¼ ω2μ
ffiffiffiffiffi
μs

p ¼ ffiffiffiffiffiffiffiffi
μ=ε

p
ω2με ¼ ηβ2. The radiation magnetic field is

H ¼ 1

η
r̂3E ¼ �β2S

Ie�jβr

4πr
sin θ θ̂ ð3-50Þ

Comparing (3-49) or (3-50) to the magnetic dipole radiation fields of (3-40) or (3-41), we
find that

ImΔz ¼ jωμIS ð3-51Þ
This completes the relationship between the small current loop and its equivalent mag-
netic dipole. The complete field expressions for a small loop of magnetic moment IS are
found from (3-38) and (3-39) using (3-51). The fields depend only on the magnetic
moment (current and area) and not the loop shape. And the radiation pattern for a small
loop, independent of its shape, equals that of an ideal electric dipole; see Fig. 3-15b. The
radiation fields from a large loop are derived in Sec. 6.8.

Another realization for a magnetic dipole in addition to the small loop is a narrow slot
in a ground plane, with the fields being found from an equivalent magnetic current along
the long axis of the slot. The slot antenna is discussed further in Secs. 8.10 and 16.7.

The loop antenna has been used since. Hertz first used it as a receiver in his
experiments in 1886; see Fig. 1-1. It has an omnidirectional doughnut radiation pattern
that is needed in many applications. The horizontal small loop (in the xy-plane) and
vertical (z-directed) short dipole both have uniform radiation in the horizontal ðxyÞ
plane, but the loop provides horizontal polarization ðEφÞ, whereas the dipole is verti-
cally polarized ðEθÞ: Next we discuss the impedance properties of the small loop and
introduce the multiturn loop and ferrite core loop.

The impedance of a small loop antenna is quite different from its ideal dipole dual.
Whereas the ideal dipole is capacitive, the small loop is inductive. We discuss the input
resistance first. The radiation resistance is found by calculating the power radiated using
the small loop radiation fields with (2-128), which yields

P ¼ 10I2ðβ2SÞ2 ð3-52Þ
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The radiation resistance is then

Rr ¼ 2P

I2
¼ 20ðβ2SÞ2 � 31,200

�
S

l2

�2
Ω small loop antenna ð3-53Þ

This result provides a reasonable approximation to the radiation resistance of an actual
small loop antenna for a loop perimeter less than about three-tenths of a wavelength.

The radiation resistance of a loop antenna can be increased significantly by using
multiple turns. The magnetic moment of an N turn loop is NIS, where S is the area of a
single turn. The radiation resistance is then

Rr ¼ 20ðβ2NSÞ2 � 31,200

�
NS

l2

�2
Ω small multiturn loop antenna ð3-54Þ

Note that radiation resistance depends on the square of the number of turns, N2. Provided
the total wire length of the multitum loop is small compared to a wavelength (less than
about 0:1l), the current remains nearly constant over the wire length and previous small
loop analysis applies so that the pattern is the same as a single turn loop as in Fig. 3-15.

Another popular way to enhance the radiation resistance of a loop antenna is to wind
the turns around a ferrite core forming the ferrite rod antenna (also called a loop-stick
antenna or ferrite-core multiturn loop) which is used up to VHF frequencies, where
usually losses become excessive. The radiation resistance is found from (3-54) but the
phase velocity is less than that of the ferrite core because it is of finite extent. Thus,
the relative permeability of the bulk ferrite material is replaced by an effective (relative)

permeability, μeff , and β ¼ ω
ffiffiffiffiffiffi
με

p ¼ 2π
l

ffiffiffiffiffiffiffiffiffiμoεo
p ffiffiffiffiffiffiffiffiμeff

p
:

Modifying (3-54) to include this effect gives the radiation resistance for a loop-stick
antenna as

Rr � 31,200

�
Nμeff

S

l2

�2
Ω ferrite rod antenna ð3-55Þ

The effective permeability depends not only on the permeability of the core material but
also on the core geometry as a function of the relative core length (length-to-diameter
ratio), R, in the following way [3, 4]:

μeff ¼
μr

1 þ Dðμr � 1Þ ð3-56aÞ

where [4]

D ¼ demagnetization factor ¼ 0:37R�1:44 ð3-56bÞ
This equation reveals that μeff is always less than μr but for longer/thinner cores (larger
R values) μeff approaches μr. This expression assumes the core is much longer than the
winding on it; for other casesμeff is reduced, reaching 0.7 times that value in (3-56) for a core
equal in length to thewinding.Receivers forAMbroadcast radio around1MHzare a popular
application for the ferrite rod antenna with typical values in a wide range around 50 for μeff

and 10 for R. Ferrites being lossy eliminates them for use in transmitters.
Small loop antennas also have ohmic resistance. For a rectangular loop of wire by ‘1

by ‘2, the ohmic resistance of the wire is given approximately by

Rw ¼ 2‘1‘2

πð2aÞ2 Rs

1

½ð‘1=2aÞ2 � 1�1=2
þ 1

½ð‘2=2aÞ2 � 1�1=2
( )

ð3-57Þ

c03 7 April 2012; 8:50:41

3.4 Small Loop Antennas and Duality 87



where a is the wire radius and Rs is the surface resistance of (2-171). If and ‘1 and ‘2 are
much larger than a (i.e., the wire is thin), then (3-57) reduces to

Rw ¼ 2ð‘1 þ ‘2Þ
2πa

Rs ð3-58Þ

This formula can be generalized to loops of arbitrary shape as follows:

Rw ¼ Lm

2πa
Rs ð3-59Þ

where Lm is the mean length of the wire loop, i.e., the perimeter.
For a circular loop, this becomes

Rw ¼ 2πb
2πa

Rs ¼ b

a
Rs circular loop ð3-60Þ

where b is the mean loop radius and a is the wire radius; see (2-170).
As mentioned previously, the small loop antenna is inherently inductive. The induc-

tance of a small by ‘1 by ‘2 rectangular loop is given by

L ¼ μ
π

‘2 cosh
�1 ‘1

2a
þ ‘1 cosh

�1 ‘2
2a

0
@

1
A rectangular loop ð3-61Þ

For a small circular loop of radius b, the inductance for a � b is

L ¼ μb ln

�
8b

a

�
� 2

2
4

3
5 circular loop ð3-62Þ

The loss and inductance of an N-turn loop must be multiplied by N2. Ferrite rod antennas
will also have losses in the ferrite core, but often they are smaller than coil losses.
See [H.8.1: Miron] for a method and program to compute core losses.

Radiation resistance decreases much faster with decreasing frequency for a small loop
ðRrNf�4Þ than for a short dipole ðRrNf�2Þ. Multiturn loops are used to increase radi-
ation resistance; see (3-55). But wire losses can be reduced by decreasing the number of
turns in a loop and using a ferrite core (i.e., loop-stick antenna) to maintain radiation
resistance. In practice, a variable capacitor placed in parallel with the loop is used to tune
out inductance.

Small loop antennas have several applications, especially as a receiving antenna. For
example, single turn small loop antennas have been popular in pagers. As already
mentioned, multiturn small loops are popular in AM broadcast receivers. Small loop
antennas are also used in direction finding receivers and for field strength probes.

EXAMPLE 3-1 A Small Circular Loop Antenna

A circular loop antenna has a single turn of 4-mm diameter copper wire. The loop circum-
ference of 0.8 m is 0:08l at the operating frequency of 30 MHz ðl ¼ 10mÞ, which qualifies
the antenna as electrically small. We wish to compute the input impedance and radiation
efficiency. First, the radiation resistance from (3-54) is
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Rr ¼ 31,200
S

l2

� �2

¼ 31,200
0:0509

102

� �2

¼ 8:09310�3 Ω ð3-63Þ

where the loop area is S ¼ πb2 ¼ 0:0509m2 based on the radius b ¼ 0:8=π ¼ 0:127m. The
surface resistance found from (2-171) with the copper conductivity of σ ¼ 5:83107 S=m from
Appendix B.1

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πfμo

2σ

r
¼ 1:43310�3 Ω ð3-64Þ

in (3-60) gives the wire loss resistance as

Rw ¼ b

a
Rs ¼ 0:127

0:002
1:43310�3 ¼ 0:0910 Ω ð3-65Þ

The total input resistance is then RA ¼ Rr þ Rw ¼ 8:09310�3 þ 0:091 ¼ 0:0991Ω and the
radiation efficiency is

er ¼ Rr

RA

¼ 8:09310�3

0:0991
¼ 0:082 ¼ 8:2% ð3-66Þ

The inductance from (3-62) is L ¼ 6:77310�7 H and XA ¼ 2πL ¼ 127Ω; thus, the input
impedance is ZA ¼ RA þ jXA ¼ 0:0991 þ j127Ω. This compares favorably to the moment
method simulation result that includes wire loss of ZA ¼ 0:105 þ j131Ω. We note two things:
the wire loss is much greater than the radiation resistance and the inductive reactance is much
greater than the real part of the input impedance. This indicates that a small loop behaves
largely as a radiating inductor.

The basic antenna elements that are used both conceptually and as physical elements
in complex antenna systems have now been introduced. The characteristics of these
elements are summarized in Table 3-2. All patterns are of the donut shape (omnidirec-
tional) with uniform radiation in plane perpendicular to the dipole family of elements and
uniform in the plane of the loop of the small loop antennas.

3.5 TWO-ELEMENT ARRAYS

There is no ability to control the radiation patterns of the individual element antennas we
have discussed so far. However, combining the outputs of multiple antenna elements
provides the possible of significantly changing the pattern, including pattern adjustment
in response to time changing requirements. Such a configuration of multiple radiating
elements is referred to as an array antenna, or simply, an array. In this section, we
discuss the most basic form of an array, the two-element array. Larger arrays and the
many applications for arrays are in Chap. 8.

Array analysis begins using elements that radiate equally in all directions, called an
isotropic point source (or isotropic source, isotropic radiator, isotropic element, or point
source). An isotropic transmitting (receiving) element transmits (receives) equally in all
directions in three dimensions; see Fig. 2-14a for the pattern of an isotropic radiator.
Although hypothetical, isotropic radiators provide a simple initial problem formulation.
The full pattern with the effects of the real antennas used as elements can then be
included by a simple multiplication process. Full array analysis involves summation of
the phasors representing the amplitude and phase of each element and will be presented in
detail in Chap. 8. In this section, we use an approach called the inspection method fol-
lowed by a phasor summation approach illustrated with examples. We begin with iso-
tropic element examples. The pattern of an array of isotropic elements is called the array
factor. The term “factor” is included to indicate that in real arrays one must multiple the
array factor by the element pattern to obtain the full array pattern. The examples use a
transmit viewpoint, but by reciprocity the obtained pattern is the same on reception.
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Table 3-2 Summary of Characteristics of Some Common Antenna Elements

Antenna Type
Wire
Length Current Pattern HP D D[dB] Rr ½Ω�

Loss
res. ½Ω� Reactance

Isotropic* — — isotropic 360� 1 0 — — —

Ideal Dipole L � l Uniform sin θ 90� 1.5 1.76 80π2 L

l

� �2
Rs

2πa
L Capacitive

Short Dipole L � l Triangle sin θ 90� 1.5 1.76 20π2 L

l

� �2
Rs

2πa
L

3
Capacitive; see (2-176)

Half-wave Dipole L ¼ 0:5 l Sinusoid
cos π

2
cos θ

� �
sin θ

78� 1.64 2.15 B70
Rs

2πa
l
4

Zero if trimmed to tune

Quarter-wave Monopole h ¼ 0:25 l Sinusoid
cos π

2
cos θ

� �
sin θ

� 3.68 5.15 B35
Rs

πa
l
4

Zero if trimmed to tune

Small loop Lm � l Uniform sin θ 90� 1.5 1.76 31,200
S

l2

� �
Lm

2πa
Rs Inductive; see (3-61),(3-62)

*Hypothetical reference pattern
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EXAMPLE 3-2 Two Isotropic Point Sources with Identical Amplitude and Phase Currents,
and Spaced One-Half Wavelength Apart (Fig. 3-16)

Fig. 3-16a shows how the pattern of this example can be approximated by inspection. At
points in the far field along the perpendicular bisector of the line joining the point sources
(x-axis), path lengths from each point source are equal. Since the amplitudes and phases of
each source are also equal, the waves arrive in phase and equal in amplitude in the far
field along the x-axis. Thus, the total field is double that for one source. The situation is
different along the axis of the array (z-axis). If we look to the right along the þ z-axis, waves
coming from the left source must travel one-half wavelength before reaching the source on the
right. This amounts to a 180� phase lag. The waves then continue traveling to the right along
the þ z-axis and maintain this same phase relationship on out to the far field. Thus, in the far
field, waves from the two sources traveling in the þz-direction arrive 180� out-of-phase (due
to the one-half wavelength separation of the sources) and are equal in amplitude (since the

x

z

zz

z

θ

Add: double

Add: double

Cancel: zero
Cancel:

zero

(a) Inspection method.

(b) Polar plot of the array factor
      f(  ) = cos[(  /2) cos   ].

(d) Geometry for pattern calculation using rays.

d

(c) 3D polar pattern.

1111
1

2

–1

–1

λ

cos2

d d

d
2

θ θπ

θ
cosθ

θ

2 2

Figure 3-16 Two isotropic point sources with identical amplitude and phase currents, and
spaced one-half wavelength apart (Example 3-2).
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sources are). Therefore, there is a perfect cancellation and the total field is zero. The same
reasoning can be used to see the effect in the �z-direction. The total pattern has a relative
value of 2 in the 6x-directions, 0 in the 6z-directions, and a smooth variation in between
(because the phase difference between waves from two sources changes smoothly from 0 to
180� as the observer moves from the broadside direction to the axial direction along a constant
radius from the array center). This pattern is sketched in Fig. 3-16b. The pattern in three
dimensions can be imagined by holding the z-axis in your fingertips and spinning the pattern
shown to sweep out the total pattern. The three-dimensional pattern in Fig. 3-16c is a
doughnut-type pattern similar to that for an ideal dipole.

We can also calculate the array factor exactly. If we use phases corresponding to the path
length differences shown in Fig. 3-16d, the array factor is the sum of two phasors:

AF ¼ 1e�jβðd=2Þcos θ þ 1ejβðd=2Þcos θ ¼ 2 cos β
d

2
cos θ

� �
ð3-67Þ

The distance between the elements is d ¼ l=2, so βd=2 ¼ π=2 and (3-67) becomes

AF ¼ 2 cos
π
2
cos θ

� �
ð3-68Þ

Normalizing the array factor for a maximum value of unity gives

f ðθÞ ¼ cos
π
2
cos θ

� �
ð3-69Þ

This is maximum for θ ¼ π=2 since cos ½ðπ=2Þ U 0� ¼ 1 and zero for θ ¼ 0
since cos ½ðπ=2Þ 1� ¼ 0. This result agrees with the inspection method that leads to Fig. 3-16b.

EXAMPLE 3-3 Two Isotropic Point Sources with Identical Amplitudes and Opposite
Phases, and Spaced One-Half Wavelength Apart (Fig. 3-17)

If we consider the array to be transmitting, the gross features of the pattern can be determined
by inspection as shown in Fig. 3-17a. The path lengths from each point source to a point on the
x-axis are the same. But the left source is 180� out-of-phase with respect to the right source;
thus, waves arriving at points on the x-axis are 180� out-of-phase and equal in amplitude,
giving a zero field. Along the z-axis (in both directions), the 180� phase difference in the
currents is compensated for by the half-wavelength path difference between waves from
the two sources. For example, in the þ z-direction the waves from the left source arrive at the
location of the right source, lagging the phase of waves from the right source by 360� (180�
from the distance traveled and 180� from the excitation lag). This is an in-phase condition and
thus the waves add in the far field, giving a relative maximum. From these few pattern values,
the entire pattern can be sketched, yielding a plot similar to that of Fig. 3-17b. The three-
dimensional polar plot of the pattern shown in Fig. 3-17c has the shape of a dumbbell.

We calculate the array factor exactly by phasor addition and Fig. 3-16d as

AF ¼ �1e�jβðd=2Þcos θ þ 1ejβðd=2Þcos θ ¼ 2j sin β
d

2
cos θ

� �
ð3-70Þ

Using d ¼ l=2 and normalizing, we have

f ðθÞ ¼ sin
π
2
cos θ

� �
ð3-71Þ

Plotting this pattern, we obtain the same result as with the inspectionmethod (see Fig. 3-17b).
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EXAMPLE 3-4 Two Isotropic Point Sources with Identical Amplitudes and 90� Out-of-Phase,
and Spaced a Quarter-Wavelength Apart (Fig. 3-18)

Waves leaving the left source of the transmitting array in Fig. 3-18 and traveling in the
þ z-direction arrive at the right source delayed by 90� due to the quarter-wavelength path. But
the excitation of the right source lags the left source by 90� so waves in the þ z-direction are in
step and add in the far field. For waves leaving the right-hand source and traveling in the
�z-direction, the phase at the location of the left source is 180� with respect to the wave from
the left source (90� from the path difference and 90� from the excitation). See Fig. 3-18b. At
angles between θ ¼ 0� ðþ z-directionÞ and 180� ð�z-directionÞ, there is a smooth pattern
variation from 2 (perfect addition) to 0 (perfect cancellation). This pattern is shown in
Fig. 3-18c and is the so-called cardioid pattern. It is used frequently in the area of acoustics for
microphone patterns. The response is strong in the direction of the microphone input and weak
in the direction where the speakers are aimed to reduce feedback.

The phasor addition method yields the array factor expression as follows:

AF ¼ 1e�jβðd=2Þcos θ þ 1e�jðπ=2Þejβðd=2Þcos θ

¼ e�jðπ=4Þ e�j½βðd=2Þcos θ�π=4
h i

þ ej½βðd=2Þcos θ�π=4� ¼ e�jðπ=4Þ2 cos
βd
2
cos θ� π

4

� �
ð3-72Þ

Substituting d ¼ l=4 and normalizing give

f ðθÞ ¼ cos
π
2
ðcos θ� 1Þ

h i
ð3-73Þ
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(a) Inspection method.

(b) Polar plot of the array factor magnitude
      | f(  )| = |sin[(  /2) cos   ]|.

(c) 3D polar pattern.
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Figure 3-17 Two isotropic point sources with identical amplitudes and opposite phases, and
spaced one-half wavelength apart (Example 3-3).
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This function has a maximum value of unity for θ ¼ 0�,1=
ffiffiffi
2

p
for θ ¼ 90�, and 0 for θ ¼ 180�.

This agrees with the pattern of Fig. 3-18c obtained by inspection.

Array factor plots for arrays of two elements of equal amplitude excitations for various
combinations of excitation phase, α, and element spacing, d, are shown in Fig. 3-19; the
first such pattern display was in 1937 by Brown [5]. The absolute field strength has been
preserved to allow comparison. Also shown is a unit circle representing the radiation from
a hypothetical isotropic point source with the same input current. The reader should
locate the plots for Examples 3-2 to 3-4 on the figure. Fig. 3-19 shows how phase control
can significantly change the shape of an array factor, even for spacings as small as
d ¼ l=8. The topic of phased arrays is treated in Sec. 8.9

Example 3-5 that follows serves to illustrate both how to obtain the full pattern of an
array and to introduce the practical implementation of ground plane backing of a single
element to produce an array effect. As indicated in Fig. 3-20, this arrangement produces
what is effectively a two-element array but requires only one physical antenna. There are
many practical implementations of ground-plane backed antennas; see Secs. 6.6 and 12.2.

EXAMPLE 3-5 A Half-Wave Dipole, One-Quarter Wavelength in Front of a Ground Plane

Fig. 3-20 shows a half-wave dipole spaced parallel to and a quarter wavelength in front of a
ground plane ðs ¼ l=4Þ. Image theory of Sec. 3.3 can be applied to this geometry to deal with
the presence of the ground plane. Image theory is used to create the equivalent problem yielding
the same fields for z > 0 by removing the ground plane and introducing an image dipole of the

(b) Inspection method.

(a) Array configuration.

Add

4
λ

Cancel

e j0

e −j(  /2) −j(  /2)π π
e −j(  /2)π

e−j(  /2)π

e −j(  /2)π

z

z

θ

(c) Polar plot of the array factor 
      f (  ) = cos[(  /4)(cos   − 1)].

(d) 3D polar pattern.

1 1
z

z

θ θπ

Figure 3-18 Two isotropic point sources with identical amplitudes and the right element
lagging the left by 90�, and spaced a quarter-wavelength apart (Example 3-4). This pattern
shape is called a cardioid pattern.
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same length that is parallel to the source dipole and equidistant from the ground plane, thus
d ¼ l=2. The principle in Fig. 3-8 indicates that the image dipole will have an amplitude of
excitation equal to the source dipole and be 180� out of phase, which is essentially the array

geometry of Example 3-3. So the array factor is given by (3-71) as f ðθÞ ¼ sin π
2
cos θ

� �
. The

element is a half-wave dipole, but not oriented along the z-axis as usual, but along the x-axis.

The element pattern is given by (see Example 8-7) gaðθ,φÞ ¼ cos ððπ=2Þsin ðθÞcosφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θ cos 2φ

p . As

mentioned earlier and as will be detailed in Sec. 8.4, the complete array pattern is obtained by
multiplying the array factor by the element pattern, giving

d

1∠0

α = 0° α = 45° α = 90° α = 135° α = 180°

z

z

z

z

z

1∠α

θ

z

d = λ
8

d = λ
4

d = λ
2

d =3λ
4

d = λ

Figure 3-19 Array factor plots for arrays of two isotropic elements with equal current
amplitudes, and various combinations of excitation phase, α, and element spacing, d. Also
shown is a unit circle representing the radiation from a hypothetical isotropic point source with
the same input current.
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Fðθ, φÞ ¼ gaðθ, φÞ f ðθÞ ð3-74aÞ

¼ cos ððπ=2Þsin ðθÞcosφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θ cos2φ

p sin
π
2
cos ðθÞ

� �
ð3-74bÞ

The principal plane patterns using this function are plotted in Fig. 3-20b and c. The radiation in
the back half plane ðz , 0Þ is not plotted because the fields are zero there due to the shorting
effect of the ground plane. Note that the E-plane pattern is narrower than the H-plane pattern
ðHPE ¼ 72�, HPH ¼ 120�Þ because the element pattern is omnidirectional in the H-plane, i.e.,
gaðθ, φ ¼ 90�Þ ¼ 1. Also note that a unidirectional beam is formed by this array using only a
single antenna element. This is a very desirable pattern with many applications. The directivity
obtained by integrating the pattern of (3-74b) to find the beam solid angle, ΩA, and then using
D ¼ 4π=ΩA yields 7.5 dB. This increase in directivity over that for the isolated half-wave
dipole (2.15 dB) is due to the array effect with the image and to eliminating the radiation in the
back half-space. Prob. 3.5-5 revisits this configuration using simulation.

Image
dipole

d

x

Driven
dipole

z1∠0�1∠180�

Ground
plane

(a)

(b) (c)

s

z z

x y

Figure 3-20 A half-wave dipole parallel to and a quarter wavelength in front of a ground
plane ðs ¼ l=4Þ. The image is parallel to the source, equal in amplitude, 180� out of phase and
equispaced to the ground plane, so that d ¼ l=2 (Example 3-5). (a) The geometry. (b) The
E-plane pattern. (c) The H-plane pattern.
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PROBLEMS

3.1-1 Use the oscillating charge model for an ideal dipole as shown in Fig. 3-2b to derive the
electric field expressions of (2-73b). Hints: The far-field scalar potential function for this
problem is

Φ ¼ q

4πε3
e�jβðr�ðΔz=2Þcos θÞ

r � ðΔz=2Þcos θ�
e�jβðrþðΔz=2Þcos θÞ

r þ ðΔz=2Þ cos θ
	 


where the parallel ray approximation was used and the ejwt time dependence was suppressed.
Use rcΔz, lcΔz, and I ¼ jωq to show that

Φ ¼ e�jβr

4πr2
IΔz

jωε3
ð1 þ jβrÞcos θ

Then make use of (2-39).
3.1-2 The current density on an actual short dipole antenna of Fig. 3-1b can be written as

J ¼ ẑJo sin β
Δz

2
� zj j

� �	 


Find an expression for the associated charge density.
3.1-3 Show that the capacitance of the capacitor of the capacitor-plate antenna of Fig. 2-3 is
given by

C ¼ πðΔrÞ2εo
Δz

Assume that capacitance is entirely due to the end plates and neglect fringing.
3.1-4 (a) Using the capacitance formula in Prob. 3.1-3, calculate the capacitive reactance of a
capacitor-plate dipole for which Δr ¼ 0:01 l and Δz ¼ 0:02 l. (b) Calculate the radiation
resistance of this antenna.
3.2-1 Sketch the current distribution on a half-wave dipole for various instants during the time
cycle of the current oscillation.
3.2-2 Show that the pattern factor for half-wave dipole in (3-3) is normalized to unity at
θ ¼ π=2.
3.2-3 Calculate and plot the radiation pattern FðθÞ for a half-wave dipole in (3-4) for
0 # θ # 180�. Plot in linear, polar form as shown in Fig. 3-5b.
3.2-4 Show that the ohmic resistance of a half-wave dipole from (2-173) is given by

Ro ¼ Rs

2πa
l
4

3.2-5 Use the results of Prob. 3.2-4 to calculate the radiation efficiency of a half-wave dipole
at 100 MHz if it is made of aluminum wire 6.35 mm (0.25 in.) in diameter. Assume the
radiation resistance to be 70Ω.
3.2-6 Derive the far-field electric field expression of (3-2) for a half-wave dipole.
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3.2-7 Simulation Use a simulation code (a method of moments code is most appropriate; see
Chap. 14 and App. G.1) to compute the input impedance of half-wave dipole that is 0:48 l long
made of 0:0003 l radius wire. Neglect conductor losses.
3.3-1 Show that the image theory model of Fig. 3-8b for an ideal dipole parallel to a perfect
ground plane yields zero tangential electric field along plane PP0.
3.3-2 For a thin monopole as shown in Fig. 3-10a that is a quarter wavelength long:

(a) Rough sketch the radiation pattern in polar form as a function of θ, if the monopole is
along the z-axis.

(b) What is the directivity?
(c) What is the input impedance?

3.3-3 Umbrella-loaded monopole antenna Calculate the radiation resistance of an umbrella-
loaded monopole that is 0:2 l tall using (3-20). Compare to values obtained from the short
dipole formula (3-15) and the perfect quarter-wave monopole result of (3-19), and comment.
3.3-4 Simulation (a) Use a simulation code to compute the input impedance and gain of a half-
wave dipole that is 0:49 l long made of 0:0001 l radius wire. Neglect conductor losses. (b)
Repeat (a) for the quarter-wave monopole version of the dipole with a perfect ground plane.
Compare to the results in (a) and comment.
3.4-1 Use (2–98) to derive the far-field distance expressions (3-44) for the small square loop.
3.4-2 Verify that the power radiated from a small loop is given by (3-52).
3.4-3 Show that (3-58) follows from (3-57).
3.4-4 Find the input impedance of a circular loop antenna of wire radius a ¼ 0:0005 l for loop
perimeters of 0:01 l, 0:05 l, and 0:1 l, and a frequency of 300 MHz. Assume the wire to be
lossless. (a) Compute the radiation resistance and reactance values using (3-53) and (3-62). (b)
Simulation Use a simulation code to evaluate radiation resistance and reactance values and
compare to the values found in (a).
3.4-5 Repeat Prob. 3.4–4 for the case of a square loop antenna, comparing to radiation
resistance and reactance formulas of (3-53) and (3-61).
3.4-6 Find the input impedance neglecting ohmic losses of a small square loop antenna with
the same area as the loop in Example 3-1 also operating at 30 MHz and using a lossless wire of
4 mm diameter. (a) Use appropriate formulas to calculate the impedance. (b) Simulation Use a
simulation code to find the impedance and compare to the values in part (a) and to the cal-
culated values in Example 3-1. What are the gain and HP values?
3.4-7 A single-turn circular loop antenna with a radius 0.5 m and made of No. 8 AWG copper
wire operates at 10 MHz. Calculate: (a) radiation resistance, (b) ohmic resistance, (c) radiation
efficiency, and (d) input reactance. (e) Simulation Perform a numerical simulation including
wire loss to determine the same quantities and compare them. Also, compare gain values.
3.4-8 A single-turn circular loop antenna with a radius 0.15 m and made of No. 20 AWG
copper wire operates at 1 MHz. Calculate: (a) radiation resistance, (b) ohmic resistance, (c)
radiation efficiency, and (d) input reactance. (e) Simulation Perform a numerical simulation
including wire loss to determine the same quantities and compare them. Also, compare gain
values.
3.4-9 An AM broadcast receiver operating at 1200 kHz uses a ferrite rod antenna with 1000
turns of No. 30 copper wire wound evenly on a rod core of ferrite with μr ¼ 50 that is 30 mm
long and 8 mm in diameter. Find the radiation resistance, the radiation efficiency neglecting
ferrite core losses, and the reactance.
3.4-10 An AM broadcast receiver operating at 1 MHz uses a ferrite rod antenna with 500 turns
of No. 30 copper wire wound on a core of ferrite with μr ¼ 38 that is 25 mm long and with a
cross-section that is 1 cm by 3 mm. Find the radiation resistance and the radiation efficiency
neglecting ferrite core losses.
3.4-11 A single-turn square loop antenna that is 0.5 m on each side operates at 30 MHz. The
wire is aluminum with a diameter of 2 cm. Compute: (a) radiation resistance, (b) input
impedance, and (c) radiation efficiency.
3.4-12 (a) Derive an expression for the wave impedance ðEφ=HθÞ for a magnetic dipole using
(3-38) and (3-39). (b) Evaluate and plot this equation for βr from 0 to 20. Note the value for
βr ¼ 10 ðr ¼ 1:6 lÞ compared to the intrinsic impedance of free space.
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3.5-1 Write a computer program to evaluate and plot the polar diagram radiation patterns in
Examples 3-2 to 3-4.
3.5-2 A two-element array consists of center-fed, short dipoles both along the z-axis and
spaced 0.4l apart center-to-center. They are driven with equal amplitude and phase voltage
sources. (a) Derive the analytical pattern expression, (b) Simulation Use a computer code to
simulate the array assuming L ¼ 0:08 l and a ¼ 0:001 l with f ¼ 300MHz. Plot the radiation
pattern. Compare the half-power beam width values to those based on (a).
3.5-3 Repeat Prob. 3.5-2 for d ¼ 0:8 l.
3.5-4 A two-element array consists of two resonated, center-fed, half-wave dipoles both along
the z-axis and spaced (center-to-center) 1 l apart. They are driven with equal amplitude and
phase voltage sources. (a) Derive the analytical pattern expression. (b) Simulation Use a
computer code to simulate the array assuming L ¼ 0:48 l and a ¼ 0:0005 l with
f ¼ 300MHz. Plot the radiation pattern. Compare the half-power beam width values to those
based on (a).
3.5-5 Simulation (a) Use a simulation code to evaluate the dipole in front of a ground plane
case of Example 3-5. The dipole operating at 300 MHz and its image have L ¼ 0:47 l and
a ¼ 0:001 l. Give the input impedance and gain values. Plot the radiation patterns in the two
principal planes and compare the half-power beamwidth values to those based on the pattern of
(3-74b). (b) Use numerical integration of the pattern of (3-74b) to find the directivity and
compare to the simulation result.
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Chapter4

System Applications
for Antennas

4.1 INTRODUCTION

An antenna is a device that interfaces the RF circuits of the transmitter/receiver to free
space. At the beginning of a system design project, the antenna specifications should be
developed in concert with the full system specifications. If the system is designed without
consideration for the antenna, there may not be adequate volume allocated to the antenna
for it to meet performance specifications. An analogy to the system/device tradeoff is a
patient visiting a doctor and asking for an antibiotic. The doctor will, of course, not
immediately write a prescription, but will instead ask the patient about his/her symptoms
and will perform appropriate tests to evaluate the whole-body status. Similarly, the
antenna engineer must gather information on the system parameters, and should partic-
ipate in system specification writing for the project at hand. The electrical, mechanical,
and environment specifications for the antenna subsystem flow directly from the full
system design phase. With the current evolution of antenna technology toward func-
tionality distributed through the system, there will be increasing involvement of the
antenna engineer in system design.

As mentioned in Sec. 1.2, antenna application areas are communications, sensing and
imaging (passive and active), and industrial uses (e.g., control, medical, cooking). An
example of a non communication wireless application is an implantable “microchip”
RFID tag under the skin of a pet. In this chapter, we focus on antennas in communication
systems because of the major importance of communication applications. However,
nearly all material in the chapter is applicable to all of the application areas. Also
included are topics in noise that are necessary for communication systems and for
radiometry.

4.2 RECEIVING PROPERTIES OF ANTENNAS

A receiving antenna converts the power density arriving from a distant source to a current
on the connecting transmission line. It is important to carefully account for all losses
because the received signals are weak. Essential to this is proper modeling of the
receiving antenna. This section addresses various receiving antenna models and discusses
losses associated with the system configuration, including polarization and impedance
mismatch losses.
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A receiving antenna collects power from an incoming plane wave.1 There are two
ways to compute the received power, one based on the incident electric field intensity and
one on the incident power density. We will use both approaches because of the important
relationships that arise in the derivations, and the resulting quantities are both used in
practice. Beginning with the field approach, the receiving antenna converts the incident
wave electric field Ei to an open-circuit voltage VA through the effective length h (also
called effective height) of the receiving antenna that is defined as

h ¼ VA

Ei
effective length of an antenna ð4-1Þ

So, effective length is the ratio of the induced voltage to incident electric field. VA is the
open-circuit voltage across the antenna terminals as shown in Fig. 4-1; that is, with ZL
infinite. The quantities VA and Ei are peak values rather than rms. This effective length is
referred to by the IEEE as the “effective length of a linearly polarized antenna.” We
generalize the effective length concept to arbitrary wave and antenna polarizations, and
also include phase by defining vector effective length h through the relation:

VA ¼ Ei � h* ð4-2Þ
The complexconjugate in (4-2)will beexplained in associationwith the polarizationmismatch
discussion below; if either the wave or the antenna is linearly polarized, it can be omitted.

The vector effective length expression can also be derived from basic electromagnetics
by making use of reciprocity. ½1� It is an intuitive relationship with the dot product
representing the projection of the incident field vector, Ei, in volts per meter onto the
vector effective length h in meters, resulting in an output voltage VA in volts. h contains
the receiving antenna pattern information and is often written as hðθ,φÞ. When only a
single value for h is quoted, the assumption is that it is for the pattern maximum direction.
Maximum output voltage occurs when the wave arrives from a direction of peak receive
antenna pattern response and is matched to the polarization of the receive antenna.

EXAMPLE 4-1 Vector Effective Length of an Ideal Dipole

As an example, consider the radiation electric field of an ideal dipole, which from (2-74a) is

E ¼ jωμ I

4π
e�jβr

r
Δz sin θ θ̂ ð4-3Þ

Incident
wave with
power
density, S
and
field Ei

ZL

(a) (b)

ZLVL

IA

VA

ZA Figure 4-1 Equivalent circuit for a
receiving antenna. (a) Receive
antenna connected to a receiver with
load impedance ZL. (b) Equivalent
circuit.

1 The wave at the receiver behaves as a plane wave over the extent of the receiving antenna because the
spherical wave from a distant source arrives with a large radius of curvature. This is sometimes called
local plane wave behavior.
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Since h contains information on the size of the antenna and the angular dependence of the
radiation pattern, then we can write

E ¼ jωμ
4π

e�jβr

r
h ð4-4Þ

where

h ¼ Δz sin θ θ̂ ð4-5Þ
Note that the dimension of h is length, and for the ideal dipole, the effective length is the same
as the projection of the physical length viewed from angle θ. This is not, however, true
in general. Polarization information for the wave and antenna are contained in Ei and h,
respectively; the topics of polarization and polarization mismatch are discussed below in
Secs. 4.4.4 and 4.4.5. The vector effective length of a small loop antenna is treated in Prob. 4.2-1.

In the incident power density approach, the receiving antenna is viewed as converting
the incident power density (also called the time-average flux density) S into received
power by the “collecting area” of the receiving antenna, called maximum effective
aperture (or area), Aem, as expressed by the defining relation:

Prm ¼ S Aem ð4-6Þ
The maximum available received power Prm will be realized if the antenna is directed for
maximum response (i.e., the main beam peak is in the direction of the incoming wave), is
polarization matched to the wave, and is impedance matched to its load. The “maximum”
refers to assumption that there are no ohmic losses on the antenna.

We can now connect the two antenna-wave interaction formulations. Maximum power
will be received when the load impedance is conjugate matched to the antenna impedance
ðRL ¼ RA and XL ¼ �XAÞ:

ZL ¼ RL þ jXL ¼ RA � jXA conjugate match for maximum power transfer ð4-7Þ
The received power obtained by examining the circuit in Fig. 4-1:

Prm ¼ 1

2
jIAj2 RL ¼ 1

2

jVAj2
ðRA þ RLÞ2 þ ðXA þ XLÞ2

RL ð4-8Þ

For a conjugate match this reduces to

Prm ¼ 1

8

jVAj2
RA

impedance-matched case ð4-9Þ

Using the voltage for the case of a linearly polarized antenna from (4-1) for simplicity in
(4-9) and equating to (4-6) gives

Prm ¼ 1

8

jVAj2
RA

¼ 1

8

jEihj2
RA

¼ SAem ¼ 1

2

jEij2
η

Aem ð4-10Þ

where the power density expression for the incomingwave (Poyntingvectormagnitude)was

S ¼ 1

2
jE3H*j ¼ 1

2

jEij2
η

ð4-11Þ

which follows from (2-30) for a plane wave. Solving (4-10) for h gives the desired
effective length result [H.11.1: Stutzman, p. 141]:

h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RAAem

η

s
ð4-12Þ
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Effective length is proportional to the square root of the maximum effective area and thus
has units of meters, as would be anticipated. In practice, effective length is used in
association with linear antennas such as dipoles and effective aperture is used with
aperture antennas such as parabolic reflectors.

EXAMPLE 4-2 Maximum Effective Aperture of an Ideal Dipole

Maximum effective aperture for the ideal dipole is found using (4-9) and (4-10) with (4-5):

Aem ¼ Prm

S
¼

1
8

jVAj2
Rr

1
2
jEij2
η

¼ 1

4

η
Rr

jEij2ðΔzÞ2
jEij2 ¼ 1

4

η
Rr

ðΔzÞ2 ¼ 1

4

ηðΔzÞ2
η 2
3
π Δz

l

� �2 ¼ 3

8π
l2

¼ 0:119 l2 ð4-14Þ
where the ideal dipole radiation resistance value from (2-169) was used. This result is
counterintuitive because it shows that the maximum effective aperture of an ideal dipole is
independent of its length Δz (as long as Δz � l). But the dipole length cannot be reduced
arbitrarily without penalty. Rr is proportional to ðΔz=lÞ2 so that even though Aem remains
constant as the dipole is shortened, its radiation resistance decreases rapidly and the maximum
effective aperture will probably not be realized because of the difficulty in achieving the
required conjugate impedance match of the receiver to the antenna.

Another quantity used to characterize a receiving antenna is antenna factor, K, defined as

K ¼ Ei

VL

antenna factor ð4-13Þ

Antenna factor gives the output voltage VL across a load, usually for a standard load such
as a 50 Ω, caused by the incident field intensity Ei. Antenna factor has units of m�1. It
includes impedance mismatches but not transmission line losses. If a high-impedance
load is used, the voltage in (4-13) is an open-circuit voltage and equals the inverse of the
effective length in (4-1); that is, K ¼ 1=h. Antenna factor is used to determine electric
field by measuring the voltage received with a probe and multiplying by the antenna
factor of the probe antenna, as will be explained in Sec. 13.5. Antenna factor will also be
applied electromagnetic compatibility measurements in Sec. 4.7.

4.3 ANTENNA NOISE AND RADIOMETRY

Noise corrupts all types of receiving systems and in a given direction receiving antennas
receive noise just as well as they receive signals. The signal arrives in one or a few direc-
tions, whereas noise arrives from all directions as indicated in Fig. 4-2a. The peak of the
receive antenna beam is directed toward the signal arrival direction and the pattern, as much
as possible, is controlled to reduce response to noise. Any materials in the environment
surrounding the antenna will radiate electromagnetic waves, as dictated by blackbody
radiation theory. The antenna sums the arriving noise radiation, through its antenna pattern,
because noise is incoherent and noise powers add, producing a noise contribution to the
output along with the signal. The equivalent terminal behavior is modeled in Fig. 4-2b by
considering the radiation resistance of the antenna to be a noisy resistor at temperature TA
such that the same output noise power from the antenna in the actual environment is pro-
duced. The antenna temperature TA is not the actual physical temperature of the antenna but
is an equivalent temperature that produces same noise power, PNA, as the antenna operating
in its surroundings. Antenna noise temperature is often much larger than the ambient
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temperature of an antenna. From noise theory, the noise power available from a noise
resistor in bandwidth Δ f at temperature T is

PN ¼ k T Δf ð4-15Þ

where
PN ¼ available power due to noise ½W�
k ¼ Boltzmann’s constant ¼ 1:383 10�23 JK�1

T ¼ noise temperature ½K�
Δf ¼ receiver bandwidth ½Hz�

Such noise is referred to as Nyquist noise or Johnson noise. The antenna output noise
power, PNA, is found from this equation using the antenna noise temperature, TA. The total
system noise power is the sum of the antenna output noise and the input receiver noise
power. The noise temperatures add also and the total system noise temperature is found as

Tsys ¼ TA þ Tr ð4-16Þ
where Tr is the receiver input noise temperature.

There are two motivations for studying the noise performance of antennas: for noise
corruption to communications and to active remote-sensing systems, and for noise cal-
culations of passive remote-sensing systems. In most communications and active remote-
sensing systems, the noise power must be sufficiently below the signal power for proper
operation. This is especially true in long-distance communication systems where the
arriving signals are weak. In these cases, the system is evaluated using “carrier-to-noise
ratio” CNR, which is the ratio of the signal power to the system noise power:

CNR ¼ PD

PNsys

carrier-to-noise ratio ð4-17Þ

where
PD ¼ carrier power delivered from the antenna ½W�

PNsys ¼ system noise power ¼ k Tsys Δf ½W�

Pn (  ,  )

TA

Temperature distribution
T (  ,  )θ φ

θ φ

(  ,   )θ φ

Power pattern

(a) Antenna receiving noise from directions (b) Equivalent model.

producing antenna temperature TA.

TA

TA

Rr

Figure 4-2 Antenna temperature.
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and Tsys is found from (4-16). PD is the average modulated carrier power. The parameter
closely related to CNR is signal-to-noise ratio SNR which uses the signal power after
demodulation; however, the term SNR is often used where CNR is intended.

A radiometer is a receiving system used to measure noise in passive remote-sensing
applications. It picks up noise from “hot” objects and can form an image by scanning
through a noise scene, usually with a narrow-beam antenna. This is an unusual situation
where an instrument tries to distinguish noise radiated by a desired object from other noise
that is unwanted. An example is a satellite microwave radiometer viewing precipitation
on Earth’s surface from space. Water particles are lossy and produce noise just as a resistor
does. The outline and intensity of a storm is imaged by detecting noise from the storm
which is distinguished from the background by its different noise temperature. Radio-
meters are also used in radio astronomy to measure noise from celestial objects such as the
sun, planets, stars, and galaxies, referred to as “radio stars.” Many celestial objects have
radiation over a continuous large band of frequencies and the power density is quantified
in a unit that includes per Hz called a jansky ð¼ 10�26 Wm�2 Hz�1Þ in honor of Karl
Jansky (1905–1950), who first measured extraterrestrial noise during an accidental radio
astronomy observation in 1933.

Noise power is found by first evaluating antenna temperature. As seen in Fig. 4-2a, TA
is found by the antenna collecting noise through the scene temperature distribution Tðθ,φÞ
weighted by the response function of the antenna, the normalized power pattern Pnðθ,φÞ;
a power pattern is used because noise adds on a power basis. This is expressed mathe-
matically by integrating over the temperature distribution:

TA ¼ 1

ΩA

Zπ

0

Z2π
0

Tðθ,φÞPnðθ,φÞd Ω antenna temperature ð4-18Þ

Fig. 4-2a shows an Earth terminal antenna looking at the sky but (4-18) is completely
general. If the scene is of constant temperature To over all angles, To comes outside the
integral in (4-18) and TA ¼ To, which is an expected result. In this case, the antenna is
completely surrounded by noise of temperature To and its output antenna temperature
equals To independent of the antenna pattern shape. Consider the case of a discrete source
of small solid angular extent Ωs with constant temperature Ts and observed with an
antenna beam directed toward its center that is broad compared to the source. Then
Pnðθ,φÞ � 1 over the source and (4-18) reduces to

TA ¼ Ωs

ΩA

Ts small discrete source ð4-19Þ

For a circularly symmetric source or circularly symmetric antenna beam, the solid angles
ΩS and ΩA are proportional to the angular extent of the source squared and HP2,
respectively.

The antenna noise power PNA is found from (4-15) using TA from (4-18) once the
temperature distribution Tðθ,φÞ is determined. Of course, this depends on the scene, but
in general Tðθ,φÞ consists of two components: sky noise and ground noise. The noise
temperature of ground in most situations is well approximated by 290 K, but is much less
for reflecting surfaces and smooth surfaces at or near grazing incidence angles.

Unlike ground noise, sky noise is a strong function of frequency as shown in Fig. 4-3,
which is the noise temperature available from an antenna, not including losses on the
antenna and ground noise pickup, as a function of frequency. Sky noise is made up of
atmospheric, cosmic (extraterrestrial), and manmade noise; see [2] for a review of
natural noise. “Galactic noise” from our own Milky Way galaxy is especially strong in
directions toward the galactic center. Below about 10 MHz external noise is very strong
and usually exceeds the internal noise of a receiver, so antenna efficiency and directivity
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have little effect on signal-to-noise ratio. Thus, inefficient antennas are acceptable for
reception, such as the ferrite loop antenna used in the AM radio band. At these fre-
quencies, the dominant source of noise is atmospheric, arising mainly from lightning,
which propagates over large distances via reflection from the ionosphere. Manmade
noise produced by power lines, electric motors, and so on also can be significant, espe-
cially in urban areas. From 10 to 100MHz, natural noise is a combination of atmospheric
and cosmic noise (galactic and solar). From 100MHz to 1 GHz, cosmic noise dominates.
The band between 1 and 10 GHz is the lowest noise regime and noise increases with
decreasing elevation angle due to the finite height of the atmosphere with the path length
through the atmosphere becoming longer for lower elevation angles. Above 10 GHz
atmospheric noise again dominates, increasing with frequency due to water vapor and
hydrometeor absorption, which vary with season and location. Atmospheric gases also are
noise sources and include strong, broad spectral lines, most notably the water vapor and
oxygen lines at 22 and 60 GHz, respectively.

The important observation from Fig. 4-3 is the “bathtub” type dip from 1 to 10 GHz.
The low noise, along with wide available signal bandwidth as well, makes this frequency
region very desirable for many wireless applications. Also evident in this band is the
irreducible sky background temperature of 3 K, which is theorized to be the residual
effect of a “big bang” explosion that created the universe. This observation was made by
Arthur Penzias and Robert Wilson in 1965 while doing radio astronomy at 4 GHz; they
won the Nobel Prize for the work. An interesting side note is that searches for extra-
terrestrial life focus on these frequencies under the theory that extraterrestrial beings
would know that humans should have receivers operating in this range because of low
noise and low atmospheric loss.

Of course, the antenna pattern shape and direction strongly influence antenna tem-
perature as seen in (4-18). The ground noise temperature contribution to antenna noise is
very low for high-gain antennas pointed skyward and with low side lobes in the direction
of the earth. Broad beam antennas, on the other hand, pick up a significant amount of
ground noise as well as sky noise.
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There are applications for radiometry for both military and civilian use. An example is
detection of vehicles under tree cover, even at night, from an airborne platform by
observing either high radiation from a hot engine or low radiation from the metallic body,
in comparison to the soil background radiation. A second example is a millimeter-wave
radiometer used in an airport for imaging passengers to detect concealed weapons.

EXAMPLE 4-3 Direct Broadcast Satellite Reception

Reception of high-quality television channels at home with an inexpensive, small terminal is
possible as the result of many years of technology development, including new antenna
designs. DirecTv (trademark of Hughes Network Services) transmits from 12.2 to 12:7 GHz
with 120 W of power and an EIRP of about 55 dBW in each 24-MHz transponder that handles
five compressed digital video channels. The receiver uses a 67-K noise temperature low-noise
block down-converter and when combined with antenna noise gives a system noise temper-
ature of 125 K. Here we do the noise analysis for this satellite link and will use the result in the
link calculation of Example 4-4. The needed parameter values are:

Δf ¼ effective signal bandwidth ¼ 20MHz
Tsys ¼ 125 K
PD ¼ �116:9 dBW, from Example 4-4

The noise power is evaluated using (4-15) with the system noise temperature:

PNsys ¼ kTsysΔf ¼ 1:383 10�23 � 125 � 203 106 ¼ 2:453 10�14 ¼ �134:6 dBW ð4-20Þ
Thus, the carrier to noise ratio from (4-17) is

CNRðdBÞ ¼ PDðdBWÞ � PNsysðdBWÞ ¼ �116:9� ð�134:9Þ ¼ 17:7 dB ð4-21Þ
which is a reasonable margin for proper operation.

4.4 ANTENNAS IN COMMUNICATION SYSTEMS

It is important to have an appreciation for the role played by antennas in their primary
application area of communication links. The basic communication link model is shown in
Fig. 4-4. In Sec. 4.2, we introduced methods for calculating the power output from a
receiving antenna usingmaximumeffective aperture. In this section, wemodel the complete
link, including the distance of separation between the source and receiver, alongwith several
loss mechanisms encountered in a typical link. We begin by revisiting the important para-
meters of antenna directivity and gain, and establishing some fundamental relationships.

4.4.1 Directivity, Gain, and Effective Aperture

For system calculations it is usually easier to work with directivity rather than its
equivalent, maximum effective aperture. Directivity is directly proportional to maximum
effective aperture and the formula connecting the two can be derived in a variety of ways.
Here, we develop the relationship for a dipole, but the developed relationship is true for

Transmitter Receiver

R
Figure 4-4 A communication
link.
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any antenna. A derivation for aperture antennas will be presented in Sec. 9.3. Other
derivations can be found in [1] and [H.4: Collin]. Proceeding with the dipole-based
derivation, the directivity of the ideal dipole, 1.5, can be written in the following manner:

D ¼ 3

2
¼ 4π

l2
3

8π
l2 ð4-22Þ

Grouping factors this way permits identification of Aem from (4-14), giving

D ¼ 4π
l2

Aem ð4-23Þ

Comparing this to D ¼ 4π=ΩA from (2-144), we find

l2 ¼ Aem ΩA ð4-24Þ

which is a general relationship that applies to any antenna. There are some interesting
implications hidden in this simple formula. For a fixed wavelength (i.e., operating fre-
quency) Aem and ΩA are inversely proportional; that is, as the maximum effective aperture
increases (usually as a result of increasing its physical size) the beam solid angle
decreases, which means power is more concentrated in angular space. In other words, the
beam solid angle decreases and as a result directivity goes up, which also follows from
D ¼ 4π=ΩA. Equation (4-24) also shows that for a fixed maximum effective aperture (i.e.,
antenna size), as wavelength decreases (frequency increases) the beam solid angle
decreases, leading to increased directivity.

In practice, antennas are not completely lossless. In Sec. 2.5, we saw that the power
received by an antenna is reduced by the fraction er (radiation efficiency) from what it
would be if the antenna were lossless. Ohmic loss is included in aperture area calculations
by defining effective aperture (or, effective area) as

Ae ¼ er Aem effective aperture ð4-25Þ
The expression (4-6) is generalized to include losses on the receiving antenna by replacing
maximum effective aperture by effective aperture, giving the available power, PA, as

PA ¼ S Ae ð4-26Þ
Again it is assumed that the peak of the receiving antenna pattern is in the direction of the
incoming wave. This simple equation is very intuitive and indicates that a receiving
antenna with effective aperture area Ae with units of m2 converts incident power (flux)
density in W=m2 into power delivered to the load in W.

Gain was introduced to include losses with directivity; that is, G ¼ er D from (2-155).
We can form a gain expression from the directivity expression by multiplying both sides
of (4-23) by er and using (4-25) to obtain

G ¼ erD ¼ 4π
l2

erAem ¼ 4π
l2

Ae

or

G ¼ 4π
l2

Ae ð4-27Þ
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Ohmic losses on the antenna are included in gain, but losses associated with mismatch
between the polarizations of the incident wave and receiving antenna as well as
impedance mismatch between the antenna and load are accounted for separately because
they are associated with how the antenna is used and are not inherent antenna
characteristics.

The IEEE [H.2] defines effective area (aperture) to be in a given direction; so in
general, effective aperture contains power pattern information: Aeðθ,φÞ ¼ AejFðθ,φÞj2.
Similarly, gain is often stated as a function of direction:

Gðθ,φÞ ¼ 4π
l2

Aeðθ,φÞ ¼ 4π
l2

AejFðθ,φÞj2 ð4-28Þ

If effective aperture or gain is stated without mention of direction, it is assumed to be the
maximum value. Sometimes the term absolute gain is used to denote maximum gain.
We will show in Sec. 9.3 that effective aperture is equal to or less than the physical
aperture area of the antenna Ap through aperture efficiency εap:

Ae ¼ εap Ap ð4-29Þ
where εap � 1. It is important to note that although the foregoing general relationships
were developed for receiving antennas, but they also apply to transmitting antennas as
ensured by reciprocity which is discussed in Sec. 13.1. Note that the effective length
result in (4-12) is modified to include ohmic losses by replacing Aem by Ae. The foregoing
relationships are used in communication system computations, which we consider next.

4.4.2 Communication Links

We are now ready to describe the power transfer in the communication link of Fig. 4-4. If
the transmitting antenna were isotropic, the power density at distance R would be

S ¼ Uave

R2
¼ Pt

4πR2
ð4-30Þ

where Pt is the time-average input power accepted by the antenna, and the 1=R2 spherical
spreading loss factor from (2-131) and (2-135) were used. In practice, the transmitting
antenna with gain Gt is usually pointed in the direction of the receiver. Then the power
density incident on the receiving antenna is increased from that in (4-30) by the gain,
giving

S ¼ Gt Uave

R2
¼ Gt Pt

4πR2
ð4-31Þ

Using this in (4-26) gives the available received power as

Pr ¼ SAer ¼ Gt Pt Aer

4πR2
ð4-32Þ

where Aer is the effective aperture of the receiving antenna and we assume the receiving
antenna is also pointed and polarized for maximum response. Modifying the formula to
explicitly show both antenna gains by using (4-27), Aer ¼ Gr l

2=4π gives

Pr ¼ Pt

Gt Gr l
2

ð4πRÞ2 Friis transmission formula ð4-33Þ

This formula gives the available power in terms of the transmitted power, antenna gains,
and wavelength. It is the most popular form of the Friis transmission formula and is the
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basis for communications analysis. There are several built-in assumptions. The most
significant assumption is a clear line-of-sight (LOS) path with no secondary wave paths
caused by reflections from objects (free-space conditions). It assumes the antennas are
aimed toward each other to realize the maximum gain of each. It also assumes that the
transmitting and receiving antennas are matched in impedance to their connecting
transmission lines, and have identical and aligned polarizations. A real communication
link rarely meets all of these assumptions, but it is a simple matter to correct for the loss
introduced by impedance mismatch, polarization mismatch, or antenna misalignment.
Accurate inclusion of non–free space propagation conditions is more involved.

A convenient dB-form of the link equation (4-33) is obtained by taking 10 log of both
sides:

PrðdBmÞ ¼ PtðdBmÞ þ GtðdBÞ þ GrðdBÞ � 20 log RðkmÞ
� 20 log f ðMHzÞ � 32:44

ð4-34Þ

The unit dBm is power in decibels above a milliwatt; for example, 30 dBm is 1W.
Often the powers in this equation are expressed in units of decibels above a watt, dBW.
GtðdBÞ and GrðdBÞ are the transmit and receive antenna gains in decibels, RðkmÞ is the
distance between the transmitter and receiver in kilometers, and f ðMHzÞ is the frequency in
megahertz. Often the factors l2=ð4πRÞ2 in (4-33) are taken as a whole and defined to be free
space loss. The dB form of free space loss is Lfs ¼ 20 RðkmÞ � 20 log f ðMHzÞ � 32:44,
which is the last three terms in (4-34). Free space loss contains the 1=R2 factor associated
with spherical spreading loss of a free spacewave.However, it also contains l2 andwe know
free space is not frequency-dependent; thus, the term free space loss is misleading. Free
space loss includes all losses in the basic link equation of (4-34) for the case of isotropic
antennas (i.e., the antenna gains are both 0 dB).

Antenna misalignment is included in the Friis equation by using the gain value in the
direction toward the other antenna using (4-28) for each antenna. The effect of polari-
zation and impedance mismatch are contained in multiplicative constants; thus, the power
delivered to the terminating impedance is given by

PD ¼ pq Pr ð4-35Þ

where
PD ¼ power delivered from the antenna
Pr ¼ power available from the receiving antenna
p ¼ polarization efficiency (or polarization mismatch factor), 0 � p � 1
q ¼ impedance mismatch factor, 0 � q � 1

It is convenient to express (4-34) in dB form:

PDðdBmÞ ¼ 10 log pþ 10 log qþ PrðdBmÞ ð4-36Þ

These mismatch losses will be discussed in detail following the topic of EIRP. The term
realized gain is used to include impedance mismatch loss in antenna gain and equals qG.

4.4.3 Effective Isotropically Radiated Power (EIRP)

A frequently used concept in communication systems is that of effective (or equivalent)
isotropically radiated power, EIRP, which is the amount of power emitted from an iso-
tropic antenna to obtain the same power density in the direction of the antenna pattern
peak with gain Gt. EIRP is simply the gain of the transmitting antenna multiplied by the
net power accepted by the antenna from the connected transmitter:
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EIRP ¼ PtGt ð4-37Þ
As illustrated in Fig. 4-5a, the maximum radiation intensity Um from a transmitting
antenna with input power Pt is in the direction of maximum radiation; see (2-133). The
gain of the antenna from (2-152) is Gt ¼ 4πUm=Pt, so EIRP ¼ Ptð4πUm=PtÞ ¼ 4πUm.
The same radiation intensity Um would be obtained from a lossless isotropic antenna
(gain Gt ¼ 1) with input power PtGt as illustrated in Fig. 4-5b. In other words, to obtain
the same radiation intensity produced by the directional antenna in its pattern maximum
direction, an isotropic antenna would have to have an input power Gt times greater. The
term effective radiated power, ERP is used in the broadcast industry (FM and TV)
referenced to a half-wave dipole and includes losses in the transmission line from the
transmitter to the antenna. However, ERP is often used in place of EIRP as defined
above. For example, an FM radio station with a 100,000-W transmitter feeding a 7 dB
gain antenna through a transmission line with 5 dB loss will have an ERP of 50� 5þ 7�
2:15 ¼ 49:85 dBW. EIRP is commonly used in the satellite communications industry, as
illustrated in the following example.

EXAMPLE 4-4 Direct Broadcast Satellite Reception (continued)

This example completes the satellite TV receiver case study of Example 4-3 in which the noise
power was calculated. Each 24-MHz transponder handles several compressed digital video
channels and transmits 120W of power from the satellite. The EIRP is stated to be 55 dBW.
The receiving system uses a 0:46 m ð18 inÞ diameter offset fed reflector antenna. Here, we
find the received signal power using the following link parameter values:

f ¼ 12:45 GHz ðmiddle of the 12:2 to 12:7 GHz bandÞ
PtðdBWÞ ¼ 20:8 dBWð120WÞ

GtðdBÞ ¼ EIRPðdBWÞ � PtðdBWÞ ¼ 55� 20:8 ¼ 34:2 dB using ð4-37Þ
R ¼ 38,000 km ðtypical slant path lengthÞ

Gr ¼ 4π
l2

εapAp ¼ 4π
ð0:024Þ2 0:7

�
π
0:46

4

�2

¼ 2538 ¼ 34 dB ð70% aperture efficiencyÞ

The power delivered from the antenna assuming matched conditions from (4-34) is

PDðdBWÞ ¼ PtðdBWÞ þ GtðdBÞ þ GrðdBÞ � 20 log RðkmÞ � 20 log f ðMHzÞ � 32:44

¼ 20:8þ 34:2þ 34� 20 logð38,000Þ � 20 logð12450Þ � 32:44

¼ 20:8þ 34:2þ 34� 91:6� 81:9� 32:4

¼ �116:9 dBW ð4-38Þ

Um Um

(a) Directional antenna with
      input power Pt and gain Gt.

(b) Isotropic antenna with input
      power PtGt and unity gain.

Figure 4-5 Illustration of
effective isotropically radiated
power, EIRP. In both (a) and
(b), EIRP ¼ 4πUm.
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This is a power level of only 23 10�12 W! Without the high gains of the antennas (68:2 dB
combined) this signal would be hopelessly lost in noise.

4.4.4 Impedance Mismatch

The maximum power received occurs for the load impedance matched to the antenna
impedance, which is the model of Fig. 4-1b for conditions in (4-9). For a general load
impedance condition, (4-8) applies. The ratio of these gives the impedance mismatch
factor q:

q ¼ Prm

Prm,matched

¼ 4RARL

ðRA þ RLÞ2 þ ðXA þ XLÞ2
ð4-39Þ

For the matched-impedance case of (4-7), this reduces to q ¼ 1 giving no mismatch loss
as expected. In the usual situation of a transmission line of characteristic impedance Zo
connected to the antenna

q ¼ 4RAZo

ðRA þ ZoÞ2 þ X2
A

ðRT ¼ Zo, XT ¼ 0Þ ð4-40Þ

In many cases it is convenient to obtain q by first finding the voltage reflection
coefficient, Γ , by noting that the received power is the incident power (normalized to
unity) less the relative reflected power:

q ¼ 1� jΓ j2 ð4-41Þ
And Γ is found either from measurement or from calculation using

Γ ¼ ZL � Z*
A

ZL þ ZA
ð4-42Þ

For an antenna that is conjugate matched to the load as in (4-7), the preceding two
equations reduce to the expected results of Γ ¼ 0 and q ¼ 1, and there is no mismatch
loss. The magnitude of the reflection coefficient can also be found from measurement of
the voltage standing wave ratio, VSWR:

jΓ j ¼ VSWR� 1

VSWRþ 1
ð4-43Þ

When the antenna is matched to the transmission line, VSWR ¼ 1 and then q ¼ 1. When
there is a large mismatch, VSWR is large and q approaches zero. Measurement instru-
ments commonly display return loss, RL, as a way to quantify reflections. It has units of
dB and is related to reflection coefficient as

RL ¼ �20 log jΓ j ½dB� return loss ð4-44Þ
For matched conditions Γ ¼ 0 and RL ¼ N; and infinite return loss means that all
reflections of the antenna signal are “lost” in the load. A typical impedance match
antenna specification is VSWR � 2, corresponding to jΓ j � 0:333 and RL 	 9:5 dB. By
reciprocity, the impedance mismatch results are equally applicable to transmitting and
receiving cases. Reemphasizing an important point, impedance mismatch is not included
in gain or effective aperture but is calculated separately because it is not inherent to the
antenna but instead depends on how the antenna is used. If, for example, gain assumed a
connecting 50-Ω load, it would be difficult to compute gain if other loads were used.
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4.4.5 Polarization Mismatch

Just as with impedance mismatch, gain and effective aperture do not include polarization
mismatch, and it must be evaluated separately. Polarization principles were introduced in
Sec. 2.8 and we can use them to make antenna-wave interaction calculations; for com-
plete details see [H.11.1: Stutzman, Chap. 6]. Stating the obvious, the polarization of a
radiated wave is that of the transmitting antenna, which in general varies with pattern
angle. The wave that arrives at a receiving antenna is matched to the polarization of
the receiving antenna if the wave and the antenna polarizations have the following the
same: axial ratios, senses (of polarization rotation), and tilt angles (i.e., the same spatial
orientation of their polarization ellipse major axes). The polarization efficiency (or
polarization mismatch factor), p, varies from 0 to 1 as the incoming wave and receiving
antenna vary from completely mismatched in polarization to completely matched,
respectively. A complete match ðp ¼ 1Þ exists when the wave and antenna polarization
states are identical. A complete mismatch ðp ¼ 0Þ occurs when the wave and antenna are
cross-polarized. Fig. 13-14 illustrates co- and cross-polarized situations. Examples of
cross-polarized states are orthogonal linear states such as horizontal and vertical linear
polarizations, and right- and left-hand circular polarizations. Polarization mismatch is a
loss in the sense that less power is captured from the wave when the antenna is polari-
zation mismatched to the wave compared to when matched. In some cases, the loss can be
recovered by adjustment. For example, matching polarizations of the transmit and receive
antennas on a link that have the same sense and axial ratio is simply a matter of rotating
one antenna until the polarization ellipse major axes are aligned. Polarization information
for the wave and antenna are contained in the wave field Ei and the receiving antenna
vector effective length h, respectively. The available received power is proportional to

the received terminal voltage squared, which from (4-2) is jEi � h*j2. Normalizing by the
maximum of this expression yields the fraction of power received gives p:

p ¼ jEi � h*j2
jEij2 � jh*j2 ¼ jêi � ĥ*j2 ð4-45Þ

where êi and ĥ* are the complex unit vectors for the incident wave and the receiving
antenna vector effective length, respectively. êi equals the polarization of the distant
transmitting antenna, ĥt, if there is a clear-line-of-sight and the intervening propagation
medium does not depolarize the wave. Antenna vector effective length is defined for the
transmitting situation. The conjugate in (4-45) essentially reverses the direction of travel
for the receive antenna polarization reference frame and acts to place both the wave and
the receiving antenna in the same receive-antenna coordinate system. If the conjugate is
not used, a separate manipulation is required to account for this effect, making the cal-
culation error prone. When using (4-45) one can write the antenna vector effective length
as if the antenna were transmitting. A helpful analogy for this use of relative coordinate
systems is two people shaking hands. Facing each other, they are “matched” when both
use their right hands to shake even though the hands are on opposite sides. In the same
fashion, a right-hand circularly polarized (RHCP) wave is matched to a RHCP receiving
antenna. A classic example of confusing the senses of CP occurred with first transatlantic
TV transmission on July 11, 1962, with the Telstar satellite. Receiving stations in England
and France were both attempting to receive the CP signal transmitted from an Earth
station in the state of Maine, in the United States. The English misunderstood the CP
sense and were mismatched in polarization, but the French receiving station was properly
polarized, and they received the signal first.

The wave and the antenna polarization unit vectors are written using the coordinate
system of Fig. 4-6 and following the form of (2-188):

ê ¼ cos γix̂þ sin γie
jδi ŷ ð4-46aÞ
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ĥ ¼ cos γx̂þ sin γejδŷ ð4-46bÞ
where ðγi,δiÞ and ðγ,δÞ are the polarization angles for the incoming wave and for the
antenna in the arrival direction; see Fig. 2-20. The process of evaluating polarization
efficiency is illustrated in the following examples.

EXAMPLE 4-5 Reception of an LP Wave with an LP Antenna

A linearly polarized (LP) incident wave with a tilt angle of τi illuminates a LP antenna at tilt
angle τ as shown in Fig. 4-6a where a dipole is used to illustrate a general LP antenna. The
wave arrives normal to the plane of the dipole antenna ðxy-planeÞ, corresponding to the usual
operating situation for a receiving antenna. For the LP case, γi ¼ τi and γ ¼ τ, which follow
from (2-189) with ε ¼ 0 and εi ¼ 0. From (2-190), δi ¼ 0 and δ ¼ 0. Substituting these values
in (4-46) permits evaluation of (4-45):

p ¼ jêi � ĥ
*j ¼ jðcos τi x̂þ sin τi ŷÞ � ðcos τ x̂þ sin τ ŷÞj2

¼ jcos τi cos τ þ sin τi sin τj2 ¼ cos 2ðτi � τÞ ¼ cos 2ðΔτÞ ð4-47Þ

Thus, polarization efficiency is a function only of the relative tilt angle Δτ for the case when
both the wave and antenna are linearly polarized. When Δτ ¼ 0
 the wave and antenna are
aligned (e.g., Ei is parallel to the dipole), and the wave and antenna are co-polarized (i.e.,
polarization matched) and p ¼ 1. When the wave and the antenna are orthogonal, Δτ ¼ 90
,
(4-47) yields p ¼ 0. Then the receiving antenna produces no output and the wave and antenna
are cross-polarized. In practice, antennas are not perfectly polarized, and there will be a

τ
τ

Δτ
x

x

z z

y y
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Wave

Wave

Receiving antenna (LP) Incoming wave (LP)

(a) LP antenna and LP wave

V z

x

y

4
λ

1 ∠ –90°

1 ∠ 0°

Receiving antenna (RHCP) Incoming wave (RHCP)

(b) RHCP antenna and RHCP wave

Figure 4-6 Illustration of
reception of an incident wave
with electric field Ei by a
receiving antenna.
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response, albeit small, to a wave state that is nominally cross-polarized to the antenna
polarization state.

EXAMPLE 4-6 Reception of CP Wave with a CP Antenna

Calculations with circular polarization (CP) on a link reveal the value of the complex vector
formation of polarization states and the role of the complex conjugate in (4-45). Consider a
right-hand circularly polarized (RHCP) receiving antenna illustrated in Fig. 4-6b as crossed
dipoles with a quarter-wave delay line. When operated as a transmitting antenna, this
antenna has a polarization state in the þz-direction given by

ĥ ¼ 1ffiffiffi
2

p ðx̂� jŷÞ RHCP ð4-48Þ

because the magnitudes of the x- and y-components are equal and the y-component lags the
x-component by 90
. This result also follows from (4-46b) with γ ¼ 45
, δ ¼ �90
; see
Sec. 2.8. Similarly, for a RHCP incident wave

êi ¼ 1ffiffiffi
2

p ðx̂� jŷÞ RHCP ð4-49Þ

The polarization efficiency from (4-45) is then

p ¼ jêi � ĥ*j ¼ 1ffiffiffi
2

p ðx̂� jŷÞ �
1ffiffiffi
2

p ðx̂� jŷÞ*
����

���� ¼ 1 ð4-50Þ

and thewave is perfectly matched to the antenna. This result can also be explained by examining
how the antenna responds to the incomingwave. The x-dipole produces a voltage of 1+180
; the
180
 is included because of the opposite reference direction of the x-axes of the wave and
antenna. The y-dipole is excited by 1+90
 and its output is delayed by 90
 due to the quarter-
wavelength transmission line section, producing a net 1+180
 excitation at the connecting
transmission line terminals. Combining the voltages from the two dipoles gives 2+180
,
indicating complete reinforcement of the x- and y-components. Therefore, the antenna is mat-
ched to the wave. Note that if the wave is left-hand CP, then the phase of the y-component of the
wave is þ90
 rather than �90
 and there is complete cancellation at the transmission line. The
sign of the ŷ-term in (4-49) would be positive and p ¼ 0, indicating a cross-polarized situation.

EXAMPLE 4-7 Reception of an LP wave by a CP antenna

The LP wave of Fig. 4-6a incident on the CP antenna of Fig. 4-6b has a polarization efficiency
evaluated using êi from Example 4.5 and ĥ from Example 4-6:

p ¼ jêi � ĥ
�j2 ¼ ðcos τi x̂þ sin τi ŷÞ �

1ffiffiffi
2

p ðx̂� jŷÞ�
����

����
2

¼ 1

2
jcos τi þ j sin τij2 ¼ 1

2
ð4-51Þ

Thus, one half of the power available from an LP wave is lost when received by a CP antenna.
The same is true for a CP wave and LP antenna. In many system applications, a 3-dB loss is
significant and an antenna matched to the wave must be used. On the other hand, there are
operational links with one antenna linear and the other circular. For example, the wave from a
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linearly polarized antenna on a spacecraft will rotate due to spacecraft motion or Faraday
rotation in the ionosphere, but if a circularly polarized receive antenna is used, the incoming
linearly polarized wave orientation angle will not lead to power level fluctuations. Even though
a 3-dB signal loss is encountered, the received signal remains constant. If two linearly
polarized antennas are used as in Example 4-5 on a satellite-to-earth link, there is the pos-
sibility of significant polarization loss because p varies from 1 to 0 as Δτ varies from 0
 to
90
, or a polarization tracking system must be used to maintain alignment.

4.5 ANTENNAS IN WIRELESS COMMUNICATION SYSTEMS

Wireless communications, or simply wireless, is a broad term including any electronic
communication means that does not employ wires connecting the terminals. Radio
communications refers to systems employing radios and is part of wireless commu-
nications, although the terms are often used interchangeably. In the general setting, the
term wireless is intended to include systems not using radio technology such as those
using infrared or ultrasonic techniques. Originally the term wireless was popular in its
infancy, over a hundred years ago, followed by the term radio that lasted through most of
the 20th century only to see wireless return to popularity at the end of the century (see
Sec. 1.1 for a history of radio and wireless communications). The term radio is also used
to mean a device such as an electronic receiver or transceiver.

Major application areas for wireless are: communication of voice, video, and data;
position location; identification; paging; control; and medical. So-called location-based
services expanded rapidly with the deployment of satellite constellations that provide
signals for inexpensive mobile terminals to self-determine their location at no recurring
cost. GPS (Global Positioning Satellite) is an example. Such services provide low-cost
determination of position, but the position is only known at the terminal. A return link
must be added to communicate the terminal’s position to another location. Common ways
to do this are to use a cellular or satellite link. Many innovative wireless applications
continue to emerge in great numbers. One interesting example application in the medical
profession is wireless capsule endoscopy that uses a swallowable pill with a camera for
imaging the intestinal tract and telemetering the data to a body-worn receiving array.

4.5.1 Spatial Frequency Reuse and Cellular Systems

The frequency spectrum is the natural resource for wireless technology. It is finite and
must be shared and reused to maximize coverage and capacity on the network. Fre-
quencies can be reused by using different locations, angles, or polarizations at the same
time on the same frequency, but the most common method for reusing frequencies is to
separate same-frequency channels spatially (spatial frequency reuse), which is a tech-
nique referred to as cellular wireless communications.

Terminals can be fixed, portable, or mobile. Fixed terminals are stationary, whereas
mobile terminals communicate on the move. Traditionally, the term portable is used for
terminals that can easily be moved between operating sites. In wireless communications,
portable refers to a handheld terminal used by an operator whilewalking andmobile implies
operation at vehicular speeds. Platforms for terminals can be terrestrial, air, ship, or satellite.

Fig. 4-7 shows that the sizes of the individual cells vary greatly in serving regions
spanning large-size scales, as required for the universal goal of global connectivity
anywhere, anytime with anyone. [3, 4] Wireless is undergoing a convergence of services
in various devices. Smart cell phones, for example, include multiple voice and data bands
(cellular, GSM, DCS, PCS), position location (GPS), wireless local area network (WiFi),
mobile TV, satellite communications, and so on. Of course, antennas are required for each
of these physical communication links. Especially challenging is the antenna design for
small handheld terminals required to support several communication bands and services.
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This topic and cellular base stations are discussed in detail in Chap. 12. Examples of the
cell size scales listed below are depicted in Fig. 4-7.

� Megacell
A megacell serves areas as large as continents using a satellite platform as the

“base station.” Terminals can be on planes, ships, or land (mobile, portable, or
fixed).

� Macrocell (for WWAN, wireless wide area networks)
Macrocellar is conventional cellular service used in rural and urban areas with

base station antennas on large towers or buildings above the surrounding terrain.
The coverage radius can be as much as 30 km.

� Microcell (for WMAN, wireless metropolitan area networks)
Microcellar base stations have lower power and smaller cells than macrocells

and are found in urban areas. Often the antennas are mounted on the side of a
building or on a utility pole. The cells have a radius on the order of 1 km or less.
Example services are for campuses and malls.

� Picocell (for WLAN, wireless local area networks)
Buildings, small campuses, airports, train cars, and airplane interiors are

examples of picocells. Wi-Fi (Wireless Fidelity) systems are probably the most
prominent application for picocells.

� Femtocell
Traditional cell phone service is extended to homes and other small in-building

areas with a femtocell.
� Personal Area Cell (for WPAN, wireless personal area networks)

Personal area cells are used primarily for communicating among computing
equipment, cell phones, and so on. The range is only a few meters. Example
implementing technologies are Bluetooth and UWB (Ultra Wideband).

� Body Area Cell (for WBAN, wireless body area networks)
Wearable and implantable wireless devices are used in WBAN for monitoring

body parameters and transmitting data to nearby terminals. The technology is
emerging and many applications will evolve.

One-way links that have a single transmitter and multiple receivers are referred to as
broadcast communications. AM and FM Broadcast radio are good examples. Broadcast
involves a large, fixed, expensive transmitter and inexpensive receivers that can even be
mobile. Communication links that are two-way are called duplex systems. One or more
base stations that serve many transceivers in both directions are referred to as point-to-
multipoint communications, such as cellular telephone. Finally, point-to-point commu-
nications is used to connect two sites directly, either one-way or two-way. A garage door
opener is an example of one-way point-to-point communications. Other important
terminology for links is forward and reverse links for base station-to-user and user-to-
base station, respectively. Alternate terminology with origins in satellite communications
is downlink and uplink for base station-to-user and user-to-base station, respectively.

Predicting the future in any technical field is always risky, but future wireless systems
will certainly emphasize spectral efficiency through spectrum co-use and reuse. Modu-
lation and coding improvements continue to be emphasized, but the physical side of
wireless is involved as well. For example, the antenna function will continue its spread
into more subsystem functions. In some of today’s digital radios, it is hard to define
exactly where the antenna is in the system. For example, in software radio the same
hardware is reprogrammed or reconfigured for different functions at different times. This
is accomplished substantially through software and the physical layer can be controlled
by software. Multiple antennas will become more prevalent for use as either adaptive
arrays or as multiple sensors for diversity or in a MIMO (multiple-input, multiple-output)
configuration. In advanced configurations, a cognitive radio will sense its operating
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environment and adjust to it, such as by changing operating frequency. New antennas will
be required to support these and other innovations.

4.5.2 Propagation Effects on Communication Links

The basic communications principles in Sec. 4.4 assumed a clear LOS and no deleterious
propagation effects. However, real wireless systems are a complicated interplay between
the antenna and propagation effects, especially for mobile and portable applications
where there is a dynamic propagation environment. Handheld portable terminals present
special complications of antenna interaction with the small radio platform, the human
operator, and themanynearby objectswhen indoors or in urban areas. The impact of antenna
and propagation factors on systems is illustrated in Table 4-1, which compares typical
mobile and portablewireless communication situations. The mobile case assumes a 5-dB
gain rooftop-mounted antenna such as a 5/8-over 1/4-wavelength collinear antenna (see
Sec. 12.3). The mobile case is representative of all early cellular communications and
much of today’s land mobile communications used by commercial and government
vehicles. The portable unit is handheld and operates with low power and with a low-
gain antenna because of its small size. In addition, portable terminals often are operated
inside buildings and thus experience many more dB loss than the mobile terminal. The
net loss experienced by the portable terminal compared to the mobile terminal in
the example of Table 4-1 is 26 dB. Modern cellular systems make up for this reduced
signal by using smaller cell sizes.

Path effects are included by expanding the link equation (4-34) to generalize the
propagation loss, include mismatch losses, and add losses for other effects:

PDðdBmÞ ¼ PtðdBmÞ þ GtðdBÞ þ GrðdBÞ � 10n log RðkmÞ � 20m log f ðMHzÞ
� 32:44þ 10 logðpÞ þ 10 logðqÞ �

X
i

Li ð4-52Þ

where
PDðdBmÞ ¼ power delivered to the receiver in dBm
PtðdBmÞ ¼ power output from the transmitter in dBm
GtðdBÞ,GtðdBÞ ¼ gains in dB of the transmit and receive antennas, respectively
RðkmÞ ¼ distance between the transmitter and receiver in km
n ¼ power on distance variation (n ¼ 2 for free space)
f ðMHzÞ ¼ operating frequency in MHz
m ¼ power on frequency variation (m ¼ 2 for free space)

p, q ¼ polarization and impedance mismatch factors, respectively
L1, L2 ¼ loss in dB associated with heights of transmit and receive antennas, h1 and h2
L3 ¼ clear air absorption loss in dB
L4 ¼ hydrometeor (e.g. rain) absorption loss in dB
L5 ¼ loss for outdoor-to-indoor building loss in dB

Table 4-1 Comparison of Mobile and Personal Wireless Communication
Terminal Performance

Quantity
Mobile

Communications
Portable

Communications
Net Loss Using
Portable Comm.

Antenna gain 5 dB �4 dB 9 dB
Transmit power 3W 0:6W 7 dB
Building penetration loss - 10 dB 10 dB
Total net loss for portable comm. - - 26 dB
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For free space paths, n ¼ 2,m ¼ 2, and Li ¼ 0. For non–free space conditions, the powers
n and m and losses L1 and L2 are found from models that are site-specific for known
propagation environments, or, more commonly, from average models based on statistics
of variations over location and time. A moving terminal and objects moving near the link
cause variable fading by summing at the receiver of the multiple signals arriving via
different paths. Average models are based on empirical data, analysis, or both. Here we
give a brief discussion of some of the loss factors. More details are available in references
listed in Secs. H.4 and H.9.1, and in [5].

A typical value for n is 4 for outdoor propagation and higher for shadowed or
obstructed LOS paths. The increase from 2 for free space to 4 is extreme because of its
exponential nature. For example, this increase corresponds to an additional loss of 26 dB
on a 20-km path. For most models m is 2, the free space value. In the HF band and below,
ionospheric effects must be considered. Clear-air absorption, L3, is small below a few
GHz, but increases as frequency increases with high attenuation in the water vapor and
oxygen bands near 22 and 60 GHz, respectively. Rain absorption, L4, is small below a few
GHz, but is significant above 10 GHz; see [6] for a simplemodel for rain attenuation and [7]
for experimental data in the 10 to 30 GHz range. Propagation losses for a signal passing
from outside to inside a building can be several additional dB depending on the building
material and frequency. [H.4: Siwiak] Polarization also influences propagation. Ground
reflections are polarization dependent, which affects the indirect multipath components;
see Sec. 6.7. Circular polarization can offer the advantage of natural multipath rejection
because the reflected waves are of opposite sense to the incident wave and thus do not
destructively interfere with the direct wave. [H.11.1: Stutzman, Sec. 8.2.3] Note that
impedance mismatch can occur on both ends of a link.

4.5.3 Gain Estimation

An especially useful tool in antenna and communication system analysis is a technique to
estimate antenna gain. Gain can be calculated and estimated in a variety of ways as will
be treated in detail in Sec. 9.3. As we shall see, the technique that includes the most
information about the particular antenna provides the most accurate gain value. But for
now we present one very simple, yet powerful, estimation method.

Directivity depends only on the antenna pattern and thus can be calculated or esti-
mated based only on pattern data. Directivity varies inversely with beam solid angle:
D ¼ 4π=ΩA from (2-144). Beam solid angle is found by integrating the power pattern
over all angles using (2-142). It is possible to measure or calculate many pattern cuts and
numerically integrate to find ΩA and then D. The simple approach we develop here is to
use the principal plane pattern half-power beamwidths to estimate beam solid angle. This
begins by defining beam efficiency, εM , as the ratio of the solid angle only in the main
beam, ΩM , to the solid angle of the entire pattern, ΩA:

εM ¼ ΩM

ΩA

¼

ZZ
main beam

��Fðθ,φÞ��2dΩ
ZZ
4π

��Fðθ,φÞ��2dΩ beam efficiency ð4-53Þ

The main beam solid angle is well approximated in many cases by the product of the
half-power beamwidths in the principal plane patterns that pass through the main
beam peak:

Ωm � HPEHPH ð4-54Þ
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The directivity is then estimated by combining these results:

D ¼ 4π
ΩA

¼ 4πεM
ΩM

� 4πεM
HPEHPH

¼ 41,253 εM
HPE
HPH


ð4-55Þ

where HPE
 and HPH
 are the half-power beamwidths in the E- and H-planes in degrees.
If the pattern has no side lobes (i.e., no power outside the main beam), εM ¼ 1 and

D � 41,253

HPE
HPH

no side lobes ð4-56Þ

This formula works well for low-directivity antennas. For example, a half-wave dipole
has HPE
 ¼ 78 and HPH
 ¼ 360, and (4-56) yields D � 1:47, which is close to the correct
value of 1.64.

Antennas other than simple elements (e.g., small antennas and half-wave dipoles) have
lobes outside the main beam. A typical beam efficiency value for such antennas is about
0.63. If no loss is present (or is accounted for separately), er ¼ 1 and the gain for typical
antennas in practice is estimated, based on (4-55) with εM ¼ 0:63, using:

D ¼ erD � D � 26,000

HPE
HPH

general use ð4-57Þ

It must be emphasized that accompanying such a simple formula is the risk of misuse and lack
of accuracy. It is usedforestimates andusuallyonlywhen just thebeamwidthvaluesareknown.

EXAMPLE 4-8 A Cell Phone Reverse Link

Here we consider a typical cell phone reverse link (uplink) from a handset to a base station
with a sector antenna. The handset transmits at 1900MHz with 300 mW of power into a
�1-dB gain, vertically-polarized omnidirectional antenna with a VSWR of 3. The antenna on
a base station tower 8 km away has a slant 45
 linear polarization, a 6
 elevation beamwidth,
and a 90
 azimuth beamwidth. It is desired to calculate the power available from the receive
antenna. First, the base station receive antenna gain is found using (4-57) to be Gr ¼ 16:8 dB
and is impedance matched. The impedance mismatch loss at the transmitter from (4-43) in
(4-41) is q ¼ 0:75 and the polarization mismatch loss from (4-47) is p ¼ 0:5 Using a 1=R4

distance variation, which is typical for many propagation scenarios, in (4-52) gives

PDðdBmÞ ¼ PtðdBmÞ þ GtðdBÞ þ GrðdBÞ � 40 logRðkmÞ � 20 log f ðMHzÞ � 32:44
þ 10 logð0:5Þ þ 10 logð0:75Þ

¼ 24:8� 1þ 16:8� 36:1� 65:6� 32:44� 3� 1:25 ¼ �97:8 dBm ð4-58Þ

We can also compute the noise and CNR. From Fig. 4-3, the sky noise is very low at this
frequency, and most antenna noise comes from ground pickup. Assuming an antenna noise of
200 K and a receiver noise of 250 K, the system noise is Tsys ¼ 450 K. A channel bandwidth
of 1:5MHz then gives a noise power using (4-15) of

PNsys ¼ kTsysΔf ¼ 1:383 10�23ð450Þ1:53 106 ¼ 9:323 10�15 ¼ �140:3 dBW
¼ �110:3 dBm ð4-59Þ

The carrier-to-noise ratio from (4-17) is

CNR ¼ PD

PNsys

¼ PDðdBmÞ � PNsysðdBmÞ ¼ �97:8� ð�110:3Þ ¼ 12:5 dB ð4-60Þ
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4.6 ANTENNAS IN RADAR SYSTEMS

We now turn our attention to radar. Suppose an airplane is the target of a radar as shown
in Fig. 4-8. We assume that the transmit and receive antennas are collocated, forming a
monostatic radar, and are pointed such that the pattern maxima are directed toward the
target. The power density incident on the target is then

Si ¼ Pt

4πR2
Gt ¼ PtAet

l2R2
ð4-61Þ

where (4-27) and (4-31) were used. The power intercepted by the target is proportional to
the incident power density, so

Pi ¼ σSi ð4-62Þ
where the proportionality constant σ is the radar cross section RCS ðm2Þ and is the
equivalent area of the target based on the target reradiating the incident power iso-
tropically. Although the incident power Pi is not really scattered isotropically, we are only
concerned about the power scattered in the direction of the receiver and can assume the
target scatters isotropically. Because Pi appears to be scattered isotropically, the power
density arriving at the receiver is

Ss ¼ Pi

4πR2
ð4-63Þ

The power available at the receiver from (4-32) is

Pr ¼ AerS
s ð4-64Þ

Combining the above four equations gives

Pr ¼ Aer

σSi

4πR2
¼ Pt

AerAet σ
4πR4 l2

ð4-65Þ

which is referred to as the radar equation. Using (4-27), we can rewrite this equation in a
convenient form as

Pr ¼ Pt

l2GrGtσ
ð4πÞ3R4

ð4-66Þ

This is a basic form of the radar range equation adequate for continuous wave (CW)
radars. If the transmitting and receiving antennas are the same antenna, as is usually the
case, GrGt ¼ G2.

Combining (4-62) and (4-63) forms a definition of radar cross section, σ:

σ ¼ 4πR2SS

Si
, R >>> l ð4-67Þ

Transmitter

Receiver

Target

R Figure 4-8 Radar example.
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This is the ratio of 4π times the radiation intensity R2SS in the receiver direction, to the
incident power density from the transmitter direction. The multiplication by R2 makes σ
independent of range. This is because the scattered power varies inversely with R2

whereas the incident field is evaluated at the target.
Radar cross section for complex shaped scattering objects is a function of many

variables, including incidence angle, scattering angle, frequency, polarization, and
material composition. Some examples of these are in Sec. 16.16. The RCS does not bear
either a direct or a simple relationship to the physical size of the radar target.

EXAMPLE 4-9 Range of a Monostatic Radar

Police radars are typically simple low-power CW Doppler radars that operate approximately at
either 10, 24, or 35 GHz. Consider a police radar unit with the following parameters. The
transmitter employs a Gunn-effect diode with a maximum output of 50 mW. The receiver
employs low-noise Schottky barrier mixer diodes and requires a minimum received power of
�120 dBm for proper detection. The antenna is a CP conical horn of 2.5 in. diameter with a
gain of 23 dB and a HP of 12
. An example motor vehicle has a RCS of 100 m2. What is the
maximum range of this radar for measuring the speed of the motor vehicle? From (4-66)

R ¼ Pt

l2G2σ
ð4πÞ3Pr

¼ ð503 10�3Þ ð0:83 10�2Þ2ð23 102Þ2ð102Þ
ð4πÞ3ð10�15Þ ¼ 1:59 km

In this case the maximum range for speed measurement is slightly less than one mile, which is
typical for this class of radar equipment.

4.7 ANTENNAS AS UNINTENTIONAL RADIATORS

A time-varying current on a conductor will radiate. This book is mostly concerned with
conductors that facilitate either transmitted RF radiation or received RF radiation. We
refer to these conductors as antennas, implying they radiate and/or receive intended
electromagnetic fields. However, there are also unintended electromagnetic fields that
have the potential to cause electromagnetic interference or EMI. The study of EMI, its
causes and its cures, is the field of electromagnetic compatibility (EMC).

Of particular interest in the 21st century are digital devices. The electromagnetic fields
emitted by a digital electronic device are required by government regulation to be below a
specified minimum level at a specified distance from the device. This sets emission limits.
The device is also required to not be susceptible to performance degradation from
exposure to unwanted electromagnetic fields. This determines susceptibility limits.

EMC has become more and more important as the result of three technological trends.
First, faster processor speeds dictate that pulse rise times are shorter. This increases the
energy content at increasingly higher frequencies which emit over larger distances. (Recall
that displacement current is proportional to frequency). Second, solid state digital logic
and signal processing circuits utilize low threshold voltages, making them susceptible
to EMI. Third, physical equipment is largely built of plastic-type material, thereby
decreasing the shielding inherent in the equipment itself compared to a metal case.

Electronic equipment cannot be sold unless they meet certain regulatory emission and
susceptibility standards. The most cost-effective way to meet these standards is to
incorporate principles in the design process that frustrate unwanted radiation and
unwanted reception. An understanding of antennas is essential to this process so that
costly post-design “fixes” are not required. Some examples of things to be avoided are
shown in Fig. 4-9, which shows examples of unintentional antenna elements.
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An example from Paul [8] illustrates the difficulty caused by a small, unintentional
current loop on a printed circuit board (PCB). Consider a 1 cm by 1 cm current loop on a
PCB carrying a current of 100 mA at a frequency of 50 MHz. At the standard FCC Class
B measurement distance of 3 m, the maximum value of the electric field from this current
loop is 40:8 dBμV=m. The FCC Class B limit at this frequency is 40:8 dBμV=m. Thus,
an electronic product containing a current loop such as this one would fail to comply with
the FCC limit and could not be sold. The PCB designer with knowledge of antennas
would know how to avoid having such a current loop in his design. (See Prob. 4.7-2.)

In the performance of emission measurements, a receiver such as a spectrum analyzer,
a network analyzer, or an RF voltmeter is used. Its reading at a particular frequency
will be in terms of microvolts usually expressed in units of dBμV (decibels above
1 microvolt). What is needed, however, is the value of the electric field, Ei, present at the
measuring antenna because regulatory requirements are expressed in terms of Ei.
The relationship between the antenna terminal voltage, VL, and Ei, is expressed in (4-13)
by the antenna factor, K. Antenna factor is used to quantify the emission and suscepti-
bility of equipment to stray fields (i.e., interference). For emission testing, a probe
antenna with known antenna factor receives the signal from a device under test (DUT)
when transmitting at rated power output. The probe is oriented for maximum response.
Calibrated antenna factor data is usually supplied with the measurement antenna because
analytical determination of the antenna factor (or vector effective length) for most
antennas is not easy. Typically, calibrated probe data is provided from 30MHz to 1 GHz
(see Sec. 7.9). In general, the spectrum analyzer voltage, Vr, from (4-13) expressed in dB
form and including cable loss, Lc is (also see Sec. 13.5)

Analog Gnd.
Vo

Power
SupplyDigital Gnd.

PCB With Separate
Analog & Digital Gnds.

PCB Separated From Chassis &
Connected With a Ground Wire

Ground
Wire

Chassis

PCB

Signal

Ground

Clocks on PCBs

PCB

PCB With Cables

(a) Unintentional dipoles.

Mother/Daughter Board

Daughter Board

Mother Board

(b) Unintentional monopoles.

(c) Unintentional loop.

Figure 4-9 Examples of unintentional radiating elements.
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VrðdBμVÞ ¼ VLðdBμVÞ � LcðdBÞ ¼ EiðdBμVm�1Þ � KðdBm�1Þ � LcðdBÞ ð4-68Þ

EXAMPLE 4-10 Antenna Factor Used in EMC Testing

An electronic device emits an unwanted electric field at 100MHz that produces a voltage at
the terminals of an EMC measuring antenna. The strength of the electric field at the surface
of the antenna is the FCC Class B limit of 43:5 dBμV=m, or Ei ¼ 149:62 μV=m, measured at
the standard distance of 3 m from the device under test (DUT). The antenna factor of the
antenna, as supplied by the antenna manufacturer, is 14 dBm�1. The antenna is connected to a
spectrum analyzer by 25 feet of RG-58U coaxial cable that has 4:5 dB of loss per 100 feet.
What is the voltage reading of the spectrum analyzer?

The voltage at the antenna terminals is found using (4-68) as

VrðdBμVÞ ¼ EiðdBμVm�1Þ � KðdBm�1Þ � LcðdBÞ ¼ 43:5� 14� 253 4:5=100
¼ 28:375 dBμV

Thus, this electronic device needs to have its emission level reduced such that the voltage
reading at the spectrum analyzer is reduced below 28:375 dBμV in order to satisfy the FCC
requirement and have a margin of safety to allow for various uncertainties.
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PROBLEMS

4.2-1 Vector effective length of a small loop antenna (a) Derive the following vector effective
length expression starting with (3-49).

h ¼ �jβμeffNS sin θ f̂

for a small loop antenna oriented in the xy-plane with N turns, effective relative permeability
μeff , and area S of a single turn. (b) Find an expression for the ratio of the effective length of a
small loop antenna to that for a short dipole antenna. (c) Evaluate the expression in (b) for the
case of a single-turn loop of 0:3 m in diameter and a short dipole 0:3 m in length, both
operating at 1:5MHz. Comment on the results.
4.2-2 A ferrite rod antenna has 22 wire turns wound on a ferrite core with μeff ¼ 38
and diameter 1:17 cm. Evaluate the effective length (maximum) using the expression in
Prob. 4.2-1a at 1 MHz.
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4.2-3 (a) Use (4-8) and (4-10) to derive a general expression for Aem. (b) Show that the
expression reduces to (4-12) for a conjugate match.
4.2-4 (a) Write an equation in dB form for antenna factor based on (4-13), and (b) Use the
formula to calculate the antenna factor value in dB=m of a receiving antenna connected to a
spectrum analyzer by a cable with 8 dB loss. The voltage measured at the spectrum analyzer
(with a 50-Ohm input impedance) is 40 dBμV. The incident wave is matched to the antenna
and has an intensity of 60 dBμV=m.
4.3-1 An Earth-based radiometer has an antenna beamwidth of HP ¼ 0:079
 that when
centered on Mars measures an antenna temperature of 0:8 K at 9:5 GHz. Mars appears as a
circular disk subtending an angle of 0:005
. Find the equivalent source temperature of Mars.
4.3-2 The main beam of an antenna with directivity of 40 dB is aimed and centered on the sun,
which subtends an angle of 0:5
. Calculate the contribution to antenna temperature from the
sun at 12 GHz, where the noise temperature of the sun is about 6,000 K.
4.3-3 Calculate the noise power in dBW out of an antenna at 5 GHz in a bandwidth of
1:5MHz for the limiting conditions of elevation angles of 0
 and 90
.
4.4-1 Derive an expression for the maximum effective aperture for an isotropic antenna.
Compare to that for a short dipole.
4.4-2 (a) Derive an expression for antenna effective length based on (4-12) that uses direc-
tivity instead of maximum effective aperture. Note that antenna ohmic losses are included by
using gain in place of directivity. (b) Evaluate the expression for an ideal dipole. (c) Evaluate
the effective length of a half-wave dipole at 100MHz. Compare to the actual physical length.
4.4-3 (a) Find the effective aperture expression in terms of l2 for a lossless isotropic antenna.
(b) Repeat (a) for a short dipole and compare to the Example 4.2 result. (c) Repeat (a) for a
half-wave dipole. (d) Evaluate the effective aperture for a half-wave dipole at 100MHz and
compare to its physical area assuming a 3-mm wire diameter.
4.4-4 Calculate the beam solid angle ΩA for an ideal dipole in steradians (square radians) and
in square degrees. Use the fact that Aem ¼ 0:119 l2 for an ideal dipole.
4.4-5 Suppose a transmitting antenna produces a maximum far-zone electric field in a certain

direction given by E ¼ 90 I e
�jβr
r

where I is the peak value of the terminal current. The input

resistance of the lossless antenna is 50Ω. Find the maximum effective aperture of the antenna,
Aem. Your answer will be a number times wavelength squared.
4.4-6 A parabolic reflector antenna with a circular aperture of 3:66-m diameter has a 6:30 m2

effective aperture area. Compute the gain in dB at 11:7 GHz.
4.4-7 The effective aperture of a 1:22-m diameter parabolic reflector antenna is 55% of the
physical aperture area. Compute the gain in dB at 20 GHz.
4.4-8 Compute the gain in dB of 0:3-m circular diameter aperture antennas with 70% aperture
efficiency at 5, 10, and 20 GHz. This problem approximates the performance of a small sat-
ellite earth terminal antenna over the range of commonly used frequencies and quantifies the
frequency dependence of gain for a fixed aperture size.
4.4-9 Derive the dB form of the power transmission equation (4-34) from (4-33).
4.4-10 Write a power transfer equation similar to (4-34) but with distance R in units of miles.
4.4-11 An FM broadcast radio station has a 2-dB gain antenna system and 100 kW of transmit
power. Calculate the effective isotropically radiated power in kW.
4.4-12 Derive a power transfer equation in a form involving the effective isotropically radi-
ated power of the transmitter, the effective aperture of the receiving antenna, and free space
spreading loss, 1=4πR2. Start with (4-33).
4.4-13 Calculate the received power in watts for the DBS system of Example 4-4 using (4-33).
4.4-14 A 150-MHzVHF transmitter delivers 20W into an antenna with 10 dB gain. Compute
the power in W available from a 3-dB gain receiving antenna 50 km away.
4.4-15 We wish to examine the received power on communication links with the same
terminal separation distance but with different terminal configurations. Examine the ratio of
the received to transmitted power, Pr=Pt, for a basic communication link to extract the fre-
quency dependence for the following terminal antenna conditions: (a) Both have constant gain
with frequency. (b) A constant-gain transmit antenna and a constant effective-aperture receive
antenna. (c) Both have constant effective aperture.
4.4-16 Derive (4-39) using (4-41a).
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4.4-17 A transmitting antenna is not matched to the impedance of a connecting transmission
line. The radiation intensity, or equivalently the power density at a fixed distance, is reduced
from the perfect impedance match case. Compute this reduction in dB for mismatch situations
that produce VSWR values on the transmission line of 1.01, 1.2, 2, and 10. Also calculate the
return losses.
4.4-18 Find the complex-valued unit vector for a right-hand elliptically polarized wave with
an axial ratio of 2 dB and tilt angle τ ¼ 45
. Then compute the polarization efficiency for
receiving antennas with the following polarizations: (a) Horizontal linear. (b) Vertical linear.
(c) Right-hand circular. (d) Left-hand circular. (e) Right-hand elliptical with AR ¼ 2 dB and
τ ¼ 45
. (f) Left-hand elliptical with AR ¼ 2 dB and τ ¼ 135
.
4.5-1 A low Earth orbit (LEO) satellite system transmits at 1:62 GHz using a 29-dB gain
antenna with spot beams directed toward users on the Earth that are a maximum of 1500 km
away. Find the required satellite transmit power in order for the power received by a user at the
maximum distance to be at least �100 dBm if the user has a 1-dB gain antenna directed toward
the satellite.
4.5-2 A cellular telephone base station transmitter at 850MHz delivers 20W into a 10-dB
gain antenna. Compute the power in W available from a 3-dB gain mobile receiving antenna
20 km away assuming free space propagation conditions.
4.5-3 This problem compares the performance of the wireless system of Prob. 4.4-14 to wire
line systems using coaxial and fiber optic cables.
(a) Compute the coaxial cable loss in dB for the 50 km distance using an attenuation of

0:1 dB=m.
(b) What is the net loss for the wireless system of Prob. 4.4-14; that is, find the net loss

between the transmit and receive antenna input ports.
(c) Would repeater amplifiers be necessary in the cable system?
(d) Repeat (a) and (b) for the case of a 500-m path length.
(e) Repeat (a) and (b) for a 500-m path at 300MHz for a cable attenuation of 0:14 dB=m.

The antenna gains are the same.
(f) Compute the loss in dB for distances of 50 km and 500 m of a fiber optic cable with an

attenuation of 1 dB=km.
(g) Tabulate numerical results.

4.5-4 A pager receiver operating at 152:65MHz uses a loop antenna constructed of a copper
band with rectangular cross-section 3:65 mm3 0:70 mm in a single turn that is 41:6 mm long
and 13 mm wide. (a) Compute the radiation efficiency. (b) Compute the effective aperture after
first finding the gain. (c) Compute the power output from the antenna for an input electric field
intensity of 13 μV=m.
4.5-5 Perform the calculations for the forward link of Example 4-8 also for operation at
1900MHz. Assume the base station transmits 20W and the handheld terminal has an antenna
temperature of 290 K and a receiver input noise temperature of 1500 K. Assume the transmit
antenna is impedance matched to its transmission line.
4.6-1 Amonostatic radar detects a 10 m2 target at a range of 266:4 km. It transmits 100 kW at a
frequency of 3 GHz. The antenna gain is 40 dB and the received power is�100 dBm or 10�13W.
At what range would a stealthy target with an RCS of �30 dBsmð10�3m2Þ be detected?
4.7-1 The voltage, VL, induced at the terminals of an antenna is 0:2 V for every V=m of the
incident electric field. What voltage level in dBμV at the base of the antenna would correspond
to the FCC Class B limit of 43:5 dBμV=m for the incident electric field at 144MHz?
4.7-2 Suggest two ways to reduce the radiated emission level of the 1 cm by 1 cm loop dis-
cussed in the Sec. 4.7.
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Chapter5

Line Sources

The line source has been introduced in Sec. 2.4.4. It was called a line current. It can also
be thought of as a current filament. It is not an actual antenna, but it can be used to model
many antennas, and this is the motivation for studying it here. For example, consider the
4l by 2l aperture in Fig. 5-1, where an electric field is directed across the narrow
dimension of the aperture, and there is a cosine variation across the wide dimension. What
are the side lobe levels in the E-plane and in the H-plane, and what are the half-power
beamwidths in both of these principal planes? The material in this chapter will enable us
to easily answer these questions concerning the radiation pattern.

5.1 THE UNIFORM LINE SOURCE

We begin our discussion of line sources by considering an important special case, that of
the uniform line source. A uniform line source has a current distribution with uniform
amplitude and linear phase progression given by

Iðz0Þ ¼
Ioe

jβoz0 � L

2
, z0 ,

L

2

0 elsewhere

8><
>: ð5-1Þ

where βo is the phase shift per unit length along the line source. The free space wave
number, β, and the guided wave number, βo, are usually not the same, although they
can be.

E

4λ

y

x2λ

Figure 5-1 Rectangular aperture with a cosine electric field distribution.
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The unnormalized pattern factor of the uniform line source is

funðuÞ ¼
Z L=2

�L=2

Iðz0Þejβz0 cos θdz0 ¼ IoL
sin u

u
ð5-2Þ

where

u ¼ ðβ cos θþ βoÞ
L

2
ð5-3Þ

The evaluation of (5-2) is similar to that given in (2-110) for a broadside uniform line
source.

It is convenient to introduce an angle θo (see Prob. 5.4-1) such that

βo ¼ �β cos θo ð5-4Þ
Then (5-3) becomes

u ¼ βL
2
ðcos θ� cos θoÞ ð5-5Þ

The far-zone electric field from (2-106) and (5-2) is

Eθ ¼ jωμe�jβr

4πr
IoL sin θ

sin u

u
ð5-6Þ

The pattern factor of this uniform line source field expression is

f ðuÞ ¼ sin u

u
ð5-7Þ

The pattern factor is shown in Fig. 5-2 without using absolute values. The maximum
occurs for u ¼ 0 and is unity (0 dB) there. The nulls occur at multiples of π and are
separated by π, except for the beamwidth between first nulls, which is 2π.

1.0

f (u) = sin u
u

0.6

0.4

0.2

−0.2

−4 −2 2
u

−

0.8

−3 π 3π 4πππππ π

Figure 5-2 Pattern factor of the uniform line source of length L and u ¼ ðβL=2Þ cos θ.
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The half-power beamwidth of the uniform line source pattern factor is found from
solving

1ffiffiffi
2

p ¼ sin uHP

uHP
ð5-8Þ

The solutions to this are uHP ¼ 61:39. Then from (5-5)

θHP ¼ cos�1 2

βL
uHP þ cos θo

� �
¼ cos�1 60:443

l
L
þ cos θo

� �
ð5-9Þ

The plus sign corresponds to the half-power point on the right of the main beam maxi-
mum and the minus sign to the left half-power point. So from (2-126),

HP ¼ θHP left � θHP right

�� ��
¼ cos�1 �0:443

l
L
þ cos θo

� �
� cos �1 0:443

l
L
þ cos θo

� �����
���� ð5-10Þ

This formula is general but useful only when both half-power points appear in the visible
region ð0# θ# 180�Þ, which in turn requires that the arguments of the arccosines in
(5-10) are between �1 and þ1. For a broadside uniform line source, θo ¼ 90� and (5-10)
reduces to (see Prob. 5.1-1)

HP ¼ 2 sin�1 0:443
l
L

� �
ðθo ¼ 90�Þ ð5-11Þ

For long ðL�lÞ line sources, this is approximately

HP � 0:886
l
L
rad ¼ 50:8

l
L
degrees ðθo ¼ 90�Þ ð5-12Þ

since sin �1ðxÞ � x for x � 1. For an endfire uniform line source, only one half-power
point appears in the visible region and then

HP ¼ 2 cos�1 1� 0:443
l
L

� �
ðθo ¼ 0� or 180�Þ ð5-13Þ

For long ðL�lÞ line sources, this may be approximated (see Prob. 5.1-2) as

HP � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:886

l
L

r
rad ðθo ¼ 0� or 180�Þ ð5-14Þ

Since (5-14) leads to wider beamwidths than does (5-12), we conclude that beamwidth
increases as the pattern is scanned away from broadside (see Fig. 5-4).

The half-power beamwidth expression HP ¼ 0:886ðl=LÞ for the broadside uniform line
source was developed using two approximations. The effect of the element factor sin θwas
neglected, and also it was assumed that the line source was long. With a few examples,
we can see how these approximations affect the beamwidth. In Table 5-1, half-power
beamwidth values for three uniform line sources are presented for various levels of
approximation. The first column is the HP found from the complete pattern expression

FðθÞ ¼ sin θ
sin ½ðβL=2Þ cos θ�
ðβL=2Þ cos θ

ðθo ¼ 90�Þ ð5-15Þ
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The third column is the HP obtained from only the pattern factor of (5-7). The last column is
that of (5-12). Note that even for five wavelengths, all values are in very close agreement. We
can also see that as the length increases, the approximations; improve.

The largest side lobe is the first one (i.e., the one closest to the main beam). The side
lobe maxima locations are found by differentiating (5-7) and setting it equal to zero. This
leads to

uSL ¼ tan uSL ð5-16Þ
The intersections of the straight-line curve uSL with the curve tan uSL give the side lobe
maximum locations (themain beammaximum is at uSL0 ¼ 0). The first side lobemaximum
occurs for uSL1 ¼ 61:43π. This is not precisely midway between the pattern nulls at π and
2π. The side lobe maxima are slightly closer to the main beam than midway between their
nulls. Evaluating (5-7) at the first side lobe maximum location gives 0.217 or �13:3dB.

The polar plot of the pattern factor of a uniform line source can be obtained graphi-
cally from a universal pattern factor. The uniform line source universal pattern factor
is shown in Fig. 5-3a. It is used for all source lengths L and scan angles θo. A typical case
is shown in Fig. 5-3b. The transformation (5-5) between u and θ is illustrated graphically
by the dashed lines. Pattern values for a given value of θ can be found from the universal
pattern factor using this graphical transformation. The radius of the circle used in the
transformation is βL=2 and its origin is at the value of u equal to �ðβL=2Þ cos θo.

As an example, consider a three-wavelength uniform line source. The universal pattern
factor is shown in Fig. 5-4a. The polar plot for the broadside case is illustrated in
Fig. 5-4b. The pattern factor for a main beam maximum angle of 45� is polar-plotted
in Fig. 5-4c. The endfire case is shown in Fig. 5-4d. Notice that the main beam (and also
the side lobes) widen near endfire, as pointed out earlier. The current distributions
required to produce those patterns are shown in Fig. 5-5. The amplitudes are constant in
all cases, as illustrated in Fig. 5-5a. The required linear phase distributions for main beam
scanning are depicted in Fig. 5-5b.

The effects of the element factor on the total pattern are shown in Fig. 5-6 for the
three-wavelength uniform line source. In the broadside case of Fig. 5-6a, the element
factor has a relatively minor effect. However, in the endfire case of Fig. 5-6b where the
pattern factor alone produces a single endfire beam, the element factor effect on the total
pattern produces a null in the endfire direction, thus bifurcating the main beam.

Next, we consider the directivity of the uniform line source. The directivity can be
found easily if the element factor is assumed to have a negligible effect on the pattern.
Then, we can work with the pattern factor f alone. First, the beam solid angle is from
(2-142) and (5-7):

ΩA ¼
Z 2π

0

Z π

0

sin u

u

����
����
2

sin θ dθ dφ ð5-17Þ

Table 5-1 Half-Power Beamwidth Evaluation for Broadside Uniform
Line Sources

Value from

Exact Value from Pattern Factor Value from
Length Complete Pattern F

f ¼ sin u

u
HP¼ 0:886

λ
LL of (5-15)

2l 24.766� 25.591� 25.382�
5l 10.112� 10.166� 10.153�
10l 5.071� 5.080� 5.076�
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with the element factor g set to unity. If we change the θ integration variable to u as given
by (5-3), then du ¼ �ðβL=2Þ sin θ dθ and (5-17) becomes

ΩA ¼
Z 2π

0

dφ
Z ð�βþβoÞL=2

ðβþβoÞL=2

sin 2u

u2
du

�ðβL=2Þ

¼ 2
l
L

Z ðβoþβÞL=2

ðβo�βÞL=2

sin 2u

u2
du

ð5-18Þ

θ

βL
2

θo

u
0

(a) Universal pattern factor.

(b) Polar plot of pattern factor for L = 4λ.

f (u)   = sin u

1.0
u

βL
2 cos θ

�
βL
2 cos θo

βL
2

(cos θ − cos θo)

2ππ 3π 4π 5π−2 −ππ−3π−4π−5π−6π

Figure 5-3 Illustration of obtaining a polar plot from the universal factor of a uniform line
source.
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(d) Polar plot of pattern factor for βo L/2 = −β L/2 = −3  , (θo = 0°).

f (u)

1.0

sin u
u=

u
0

(a) Universal pattern factor.

(b) Polar plot of pattern factor for βo L/2 = 0, (θo = 90°).

(c) Polar plot of pattern factor for βo L/2 = −2.12   , (θo = 45°).π

π

θo = 90°

θo = 45°

−π π−2π−3π−4π−5π−6π 2π 3π 4π 5π

Figure 5-4 Pattern factors for a three-wavelength long ðL ¼ 3lÞ uniform line source for
various scan conditions.
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The evaluation of this expression for the general case is discussed in Prob. 5.1-7. For the
broadside case ðβo ¼ 0Þ, the limits on the integral are �βL=2 to βL=2. If further L�l,
then βL=2�1 and we approximate the limits as �N to þN, and if we use (F-12), the
definite integral has a value of π. Thus, ΩA � 2lπ=L and D ¼ 4π=ΩA yields

Du ¼ 2
L

l
ðbroadside, L � lÞ ð5-19Þ

where the subscript u indicates a uniform line source. For the endfire case ðβo ¼ 6βÞ, the
integral limits are 0 and βL=2 that are approximated as 0 andN when L�l; this yields a
value of π=2 for the integral. So, ΩA � lπ=L and

Du ¼ 4
L

l
ðendfire, L � lÞ ð5-20Þ

The uniform line source exhibits the most directivity that can be obtained from a linear
phase source of fixed length. Other current distributions will yield lower directivities as
will be shown in the next section.

From the beamwidth and directivity relationships presented here for the uniform line
source, we can begin to get a feel for the pattern changes as a function of source length
and scan angle. First, consider the pattern factor alone. As the length increases, the
beamwidth decreases and the directivity increases. The side lobe level (if the line source
is long enough for the first side lobe maximum to be visible) remains constant with

I (z′)

Io

Phase [I (z)] = βoz = −βz cos θo.

βo = 0, θo = 90°

, θo = 0°

βo =  −

βo =  −

z
λ 3λ

2
λ
2

λ�λ
2

0

3π

2π

π

π

z
λ/2 3λ

2
λ�λ

λ

−

π−2

π−3

(a) Current amplitude distribution.

(b) Current phase distributions.

�3λ
2

�

, θo = 45°2 π

2π
λ

3λ
2

λ
2

��

Figure 5-5 Current distributions for the three-wavelength uniform line source patterns of
Fig. 5-4.
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length variations; it is always �13.3 dB for a uniform line source. For a scanned line
source, the beamwidth increases as the main beam is scanned away from broadside.
However, the total main beam volume (obtained by rotating the E-plane pattern about
thez-axis) decreases and, consequently, ΩA decreases, which in turn leads to an increase
in directivity. The beamwidth and directivity change slowly for scan angles near
broadside but change rapidly near endfire. The complete pattern must include the ele-
ment factor effects. For long sources ðL�lÞ, the pattern factor f ðθÞ has a much nar-
rower pattern than the element factor gðθÞ ¼ sin θ and the total pattern obtained from
gðθÞ f ðθÞ is closely approximated by f ðθÞ. The side lobe level, beamwidth, and direc-
tivity values are then accurately determined from the pattern factor f ðθÞ alone, except
near endfire where the element factor becomes significant since it forces the total pattern
to zero in the θ ¼ 0 and 180� directions, as illustrated in Fig. 5-6b.

EXAMPLE 5-1 Plane Wave Incident on a Slit

A simple physical example of a uniform line source is a long narrow slit in a good conductor
that has a uniform plane wave incident on it, as illustrated in Fig. 5-7. Phase fronts (planes of
constant phase) are indicated by the parallel lines. In Fig. 5-7a, the wave is normally incident
on the slit. Thus, the slit has a uniform amplitude excitation and also has uniform phase since

Element
factor

  g(θ) = sinθ

Pattern
factor
f(θ)

(a) Broadside case (θo = 90°,  βo = 0). Pattern factor is from Fig. 5-4b.

(b) Endfire case (θo = 0°,  βoL/2 = −3  ). Pattern factor is from Fig. 5-4d.π

z z

z z

Total
pattern

F(θ)

z�

× =

=

z

Figure 5-6 Total patterns for a three-wavelength uniform line source.
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the phase fronts are parallel to the slit. The slit then behaves as a uniform line source with
uniform phase across it. This equivalence of a field distribution to a current distribution will
be discussed further in Sec. 9.1. It is obvious, however, that the maximum radiation on the
right-hand side of the slit will be primarily in the direction of propagation of the incident wave
coming from the left, that is, θo ¼ 90�. For a line source, the phase shift, along the source
is related to the direction of maximum radiation θo by βo ¼ �β cos θo, where in this case β is
the phase constant of the incident plane wave. Since θo ¼ 90�, βo ¼ �β cos 90� ¼ 0. This
says that there is no phase shift along the slit. We already observed that this must be true for a
plane wave normally incident on the slit.

(a) Broadside case: θo = 90° and βo = −βcos 90° = 0.

(b) Intermediate case: βo = −β cos θo.

(c) Endfire case: θo = 0 and βo = −β.

z

z

z

θo

Δz
Δr

Figure 5-7 Example of a uniform line
source: an infinitely long slit of width L in a
good conductor illuminated by a uniform
plane wave from the left.
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If the direction of propagation of the plane wave makes an angle θo with the slit plane, there
will be a phase shift along the slit due to different arrival times of the wave. In fact; this phase
shift is given by βoz

0, where βo is the phase shift per meter along the slit and we have assumed
zero phase at z0 ¼ 0. But the phase shifts β rad/m in the direction of propagation, so the phase
shift for distance Δr along the direction of propagation is Δφ ¼ �β Δr (since the wave
propagates as e�jβr). The same phase shift is encountered in the distance Δz along the slit, or
Δφ ¼ βo Δz (see Fig. 5-7b). But Δr ¼ Δz cos θo, and since the phase shifts are equal, we
have Δφ ¼ �β Δz cos θo ¼ βo Δz. Thus, βo ¼ �β cos θo as given by (5-4), which was
then a convenient definition. It is obvious from Fig. 5-7b that the maximum radiation from the
slit or its equivalent line source will occur in the direction of propagation of the wave θ ¼ θo.

In Fig. 5-7c the incident wave is traveling parallel to the slit. The phase shift per meter along
the slit is obviously equal to the negative of the wave phase constant. This also follows from
βo ¼ �β cos θo ¼ �β for θo ¼ 0�. The radiated wave on the right side is endfire in this case.

5.2 TAPERED LINE SOURCES

Many antennas that can be modeled by line sources are designed to have tapered dis-
tributions. This is because if the current amplitude decreases toward the ends of a line
source, the pattern side lobes are lowered and the main beam widens. In many applica-
tions, low side lobes are necessary and a wider main beam is accepted as a consequence.
This tradeoff between side lobe level and half-power beamwidth is a major consideration
to the antenna engineer.

As an example, consider a current distribution with the so-called cosine taper, where

Iðz0Þ ¼ Io cos
π
L
z0

0
@

1
Aejβoz

0 � L

2
, z0 ,

L

2

0 elsewhere

8>><
>>: ð5-21Þ

The shape of this current distribution is plotted in Fig. 5-8a. The unnormalized pattern
factor is then found as follows:

funðθÞ ¼ Io

Z L=2

�L=2

cos
π
L
z0

� �
ejðβ cos θþβoÞz0dz0

¼ Io

2

Z L=2

�L=2

½ejðπ=Lþβ cos θþβoÞz0 þ e�jðπ=L�β cos θ�βoÞz0 �dz0

¼ Io

2

ejðπ=Lþβ cos θþβoÞz0

jðπ=Lþ β cos θþ βoÞ
þ e�jðπ=L�β cos θ�βoÞz0

�jðπ=L� β cos θ� βoÞ

" #L=2

�L=2

ð5-22Þ

Evaluating the above expression leads to

funðθÞ ¼ Io
2L

π
cos ½ðβ cos θþ βoÞL=2�
1� ½ðβ cos θþ βoÞL=π�2

ð5-23Þ

Using βo ¼ �β cos θo as in (5-4) and normalizing such that the pattern factor is unity for
θ ¼ θo gives

f ðθÞ ¼ cos ½ðβL=2ðcos θ� cos θoÞ�
1� ½ðβL=πÞðcos θ� cos θoÞ�2

ð5-24Þ
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This pattern can be written in terms of u using (5-5) as

f ðuÞ ¼ cos u

1� ð2u=πÞ2 ð5-25Þ

This pattern is plotted in Fig. 5-8b. Compare the side lobe level to that of Fig. 5-12a for the
uniform line source.

The side lobe level for the cosine-tapered line source is �23:0 dB and the beamwidth
is given by

HP � 1:19
l
L
rad ¼ 68:2

l
L
degrees ð5-26Þ

for the broadside case. The side lobe level is 10 dB lower and the beamwidth is 38%
greater than a uniform line source of the same length. Although the side lobes are reduced
from those of the uniform line source, the main beam widening leads to smaller direc-
tivity than obtained from a uniform line source. The ratio D=Du is used to compare the
directivity of a tapered line source to that of a uniform line source of the same length. For
the cosine taper, D=Du ¼ 0:810. The actual directivity D from (5-19) is then

D ¼ 0:810Du ¼ 1:620
L

l
ðbroadside, L � lÞ ð5-27Þ

1.0

(a) Current distribution amplitude.

L
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(b) Pattern Factor.
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2u
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π

Figure 5-8 Current distribution and pattern factor for a cosine-tapered line source.
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If the current amplitude taper is increased as in the case of a cosine-squared taper, the side
lobes are reduced evenmore and the beamwidth is further widened. The pattern parameters
of the cosine-squared case, as well as many other important cases, are summarized in
Table 5-2 [1; H.6: Hansen, Vol. I, Chap. 1; H.3: Silver, p. 187].

As a further example, consider the triangular current taper given in Table 5-2a. The
pattern ðsin u=uÞ2 is the square of the uniform line source pattern. This property is
apparent when the pattern of Fig. 5-9 for the triangular line source is compared to that of
the uniform line source in Fig. 5-2. The first nulls of the triangular line source are twice as
far out as for the uniform line source pattern. Thus, the beamwidth between first nulls is
twice as large. The half-power beamwidth is 44% larger (from 0:886l=L to 1:28l=L).
Also, the side lobes of the triangular line source are twice as wide in the variable u and the
side lobe level in decibels is twice as small, �13:3dB for the uniform line source and
�26:6dB for the triangular line source. The directivity (from Table 5-2a) is 75% of the
uniform line source value.

From Table 5-2, we can generalize and make some statements about current amplitude
distributions and their influence on the far-field pattern. We assume that the current is of
constant phase. As the taper of the current amplitude from the center to the edges of a line
source becomes more severe, the side lobes decrease and the beamwidth increases.
Consequently, the directivity decreases. There is then a tradeoff between the side lobe
level and the beamwidth. The antenna engineer must decide on a compromise between
beamwidth and side lobe level for each specific design problem.

EXAMPLE 5-2 A Cosine Tapered Rectangular Aperture

Consider the aperture in Fig. 5-1. Determine the side lobe level in the E- and H-planes. Also
determine the half-power beamwidths (HP).

First we note that the electric field distribution is that of a cosine in the x-direction. In the
y-direction, the distribution is uniform because the electric field lines are lines of uniform
intensity. Consulting Table 5-2, we see that the cosine distribution in the H-plane gives a
�23dB side lobe level and the uniform distribution in the E-plane gives a �13:3dB side lobe
level. The side lobe levels are independent of aperture size and depend only on the distribution
of the electric field in the aperture.

Again from Table 5-2, the HP in the H-plane is 1:19=4 ¼ 0:3 rad or 17�. In the E-plane, the
HP is 0:886=2 ¼ 0:443 rad or 25:4�. The half-power beamwidths depend on both the aperture
size and the aperture distribution.
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Figure 5-9 Pattern factor of a triangular tapered line source.
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Table 5-2 Characteristics of Tapered Line Source Distributions

a. Triangular taper

IðzÞ ¼ 1� 2

L
jzj jzj# L

2

f ðuÞ ¼ sin ðu=2Þ
u=2

2
4

3
5
2

1.0

I (z)

z

02− L
2
L

Side Lobe Level

HP (rad) (dB) D=Du

1:28ðl=LÞ �26:6 0:75

b. Cosine tapers

1.0

2− L
2
L

z

n = 0
n = 1
n = 2

I (z)

IðzÞ ¼ cos n
πz
L

0
@

1
A jzj# L

2

f ðuÞ ¼ sin u

u
n ¼ 0

f ðuÞ ¼ cos u

1� ð2u=πÞ2 n ¼ 1

f ðuÞ ¼ 1

1� ðu=πÞ2
sin u

u
n ¼ 2

Side Lobe Level

n HP (rad) (dB) D=Du Type

0 0:886
l
L

�13:3 1.00 Uniform line source

1 1:19
l
L

�23:0 0.810 Cosine taper

2 1:44
l
L

�31:7 0.667 Cosine-squared taper

c. Cosine on a pedestal

IðzÞ ¼ C þ ð1� CÞ cos
πz
L

f ðuÞ ¼
C
sin u

u
þ ð1� CÞ 2

π
cos u

1� ð2u=πÞ2

C þ ð1� CÞ 2
π

1.0

C

I (z)

z
L
2

L
2 0�
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EXAMPLE 5-3 A Cylindrical Parabolic Reflector Antenna

A cylindrical parabolic reflector antenna (see Fig. 5-10) can be modeled by line sources.
Suppose the parabolic surface is 10l across at the edges of the reflector (i.e., the aperture) in
Fig. 5-10 and that the field distribution in the aperture in the y-direction is that of a cosine on a
pedestal with �15dB edge illumination. Then from Table 5-2c, the half-power beamwidth is

HP ¼ 1:08l=L ¼ 0:108 rad ¼ 6:2�

and the side lobe level is �22 dB. Fig. 16-21 shows a pattern calculated via a one-
dimensional aperture integration for an aperture distribution that is nearly a cosine on

y

x

z

Feed (slotted waveguide)

Cylindrical
parabolic surface

Figure 5-10 Parabolic cylindrical reflector with x-polarized feed along the axis of the
cylinder.

Table 5-2 Continued

Edge Illumination

C
�20 log C
(dB) HP (rad)

Side Lobe Level
(dB) D=Du

0.3162 �10
1:03

l
L

�20 0.92

0.1778 �15
1:08

l
L

�22 0.88

0 �N
1:19

l
L

�23 0.81

Note 1: The pattern expressions are valid for any value of u ¼ ðβL=2Þðcos θ� cos θoÞ. However, the half-power
beamwidth values and directivities are approximations for broadside line sources θo ¼ 90� and u ¼ ðβL=2Þ cos θ) and
L�l.

Note 2: The directivity for each line source is found from the ratio D=Du as D ¼ D

Du

Du ¼ D

Du

2
L

l
for broadside line

sources with L�l.

Note 3: The element factor sin θ has been neglected in the calculations leading to the values in this table. For long,
broadside line sources, its effect is minimal at or near broadside.

c05 26 March 2012; 19:59:40

5.2 Tapered Line Sources 141



a pedestal (Fig. 16-22). It has �22dB side lobes and a half-power beamwidth of 6:2� in
the H-plane. There is no E-plane data because the antenna in Sec. 16.6 is infinite in the
x-direction (i.e., a two-dimensional rather than a three-dimensional problem). Suppose,
however, that the antenna is also 10l in the x-direction (E-plane), as implied by Fig. 5-10,
and the aperture distribution is uniform in the E-plane. The E-plane pattern would then be
modeled by a uniform line source. Aperture directivity can be calculated from line source
formulas if the principal plane distributions are separable; see (9-86). Much more will be
said about aperture antennas in Chap. 9, where, as in this example, linesource results will
play an important role.

5.3 FOURIER TRANSFORM RELATIONS BETWEEN THE FAR-FIELD
PATTERN AND THE SOURCE DISTRIBUTION

The far-field pattern and its (nonperiodic) source distribution form a Fourier transform
pair. To see this, consider (2-103) and (2-106) where Iðz0Þ ¼ Iðz0Þj jejβoz0 and write

FunðθÞ ¼ sin θ
Z L=2

�L=2

Iðz0Þj jejðβ cos θþβoÞz0dz0 ð5-28Þ

or

funðθÞ ¼ FunðθÞ
sin θ

¼
Z L=2

�L=2

Iðz0Þj jejðβ cos θþβoÞz0dz0 ð5-29Þ

where once again, the element pattern sin θ has been absorbed into the far field of the line
source. Thus, funðθÞ can be viewed as the far field of a line source in which the element
pattern is isotropic. Since Iðz0Þ is zero for z0 > L=2 and z0, �L=2, the limits on (5-29)
may be extended to infinity. Thus,

funðθÞ ¼
Z N

�N
Iðz0Þj jejðβ cos θþβoÞz0dz0 ð5-30Þ

which is recognized as one-half of a Fourier transform pair. The other half of the
(antenna) pair is

Iðz0Þ ¼ 1

2π

Z N

�N
funðθÞe�jz0β cos θ dðβ cos θÞ ð5-31Þ

From circuit theory, the Fourier transform (circuit) pair can be written as

f ðtÞ ¼ 1

2π

Z N

�N
gðωÞejωt dω ð5-32Þ

and

gðωÞ ¼
Z N

�N
f ðtÞe�jωt dt ð5-33Þ

If we let cos θ and βz0 correspond to t and ω, respectively, then z0=l corresponds to frequency
f . The quantity z0=l is called spatial frequency with units of hertz per radian. For real values
of θ and cos θj j# 1, the field distribution associated with funðθÞ represents radiated power,
whereas for cos θj j > 1, it represents reactive or stored power (e.g., see Sec. 2.4.3). The
pattern funðθÞ, or angular spectrum, represents an angular distribution of Plane waves.
For jcos θj# 1, the angular spectrum is the same as the far-field pattern funðθÞ.
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In circuit theory, a very narrow pulse (in time) has a large or wide-frequency spectrum.
To pass such a pulse through a filter requires that the filter have a wide passband. Sim-
ilarly, an antenna with a very narrow far-field pattern must pass a wide band of spatial
frequencies. That is, the antenna must be electrically large. Thus, the antenna may be
viewed as a spatial filter, a concept widely used in radiometry and radio astronomy.

Probably the greatest value in recognizing that the source and far-field function form a
Fourier transform pair is that one can utilize the vast amount of information available
on Fourier transform theory, particularly in circuit theory. For example, Table 5-3 shows
some, common Fourier transform pairs found in antenna theory. Some of these also
appear in Table 5-2 that was constructed without reliance on a knowledge of Fourier
transforms. The pairs in Table 5-3 work in either direction. That is, the source distribu-
tions and far-field patterns in Table 5-3 may be interchanged, at least theoretically. In
some cases, however, the resulting distributions are not practical as far-field patterns or as
source distributions. And finally, although our familiarity with (5-30) may imply that the
application of (5-31) is equally straightforward, it is not. Application (5-31) leads to
techniques in antenna synthesis. Antenna synthesis is discussed in Chap. 10.

5.4 FAST WAVE AND SLOW WAVE DISTRIBUTIONS

Previously in this chapter we considered the phase progression on a line source and
described it by ejβoz

0
. This exponential form satisfies the frequency domain wave equation

and is therefore a mathematical description of a wave traveling along the z-axis (see
Prob. 2.2-2). The wave number, βo, is either more or less than the free space wave
number, β ¼ 2π=l, depending on the properties of the actual antenna structure supporting
the wave that the line source represents. Thus, we write

βo ¼ 2π=lg ð5-34Þ
where lg is the guided wavelength associated with a phase velocity, v, on the actual
antenna. Since v ¼ flg it follows that

cos θo ¼ �βo

β
¼ � l

lg
¼ �c

v
ð5-35Þ

Previously in this chapter we saw that the phase progression determined the angle of
maximum radiation. Alternatively from (5-35) we see that the angle of maximum radi-
ation depends upon the ratio of the velocity of light in free space to the phase velocity on
the antenna being modeled. Thus, the current of a uniform line source may also be
expressed as

Iðz0Þ ¼ Ioe
jβðc=vÞz0 � L

2
, z0 ,

L

2 ð5-36Þ

and we may classify the wave as either fast or slow according to

Fast wave, c=v , 1

Slow wave, c=v > 1

For a wave to be a fast wave, v must be greater than c. Consider a sinusoidal plane wave
incident upon a large perfectly conducting sheet. At normal incidence, the crest of a
wave strikes the sheet everywhere at the same instant, and c=v is zero because v is infinite.
If the plane wave is traveling parallel to the sheet, c ¼ v and the wave is neither fast nor
slow. To have a slow wave, v must be less than c, which is not possible in this example
situation but is possible in some guided wave antennas such as the Yagi-Uda and axial
mode helix.
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Table 5-3 Some Common Fourier Transform Pairs

L
2

� L
2

0 z′

0 z′

I (z′)

I (z′)

I (z′)

I (z′)

I (z′)

I (z′)

I (z′)

e�  z ′

f (u)

f (u)

f (u)

f (u)

f (u)

−(β cos θ)2

4π

f (u)

e

u

f (u)

sin (  z′/L)
z′/L

0 u

0 u

0 u

0 u

0 u

00

0

u

L
2

� L

βo z′
2

Cosine

Cosine
squared

Unit impulse
(ideal point source)

Gaussian

Isotropic
pattern

0 z′

z′

z′

z′0

sin u
u

sin u
u

sin u
u

cos u
1 − (2 u/  )2

1
1 − (u/  )2π

π

π

π
π

2

1(b)

2(b)

3(b)

4(b)

5(b)

6(b)

7(b)

2(a)

3(a)

4(a)

5(a)

6(a)

7(a)

1(a)

5(a)

6(a)

7(a)
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Fig. 5-11 shows the relative directivity, Du=ðL=lÞ, of the pattern factor for 2l and 10l
line sources versus c=v. Note how well both curves agree with (5-19) and (5-20) even
though the 2l line source is not�l. Also note that the directivities in both cases exceed
the endfire ðc=v ¼ 1Þ directivity when the phase velocity is slowed to less than c. The
peak value in the curves occurs when the phase velocity is slowed such that the phase
delay along the line source exceeds that of ordinary endfire by 2.94 radians (sometimes
approximated by π radians for convenience). This is called the Hansen-Woodyard
increased directivity condition. We will study two antennas that adopt this condition
naturally, the Yagi-Uda in Chap. 6 and the helix in Chap. 7.

Note that the directivity in Fig. 5-11 does not include the effect of the sin θ element
factor in (5-6). This is of little consequence in the broadside case as Fig. 5-6a indicates.
In the endfire case, it is of consequence if the antenna element factor is similar to sin θ.
However, in some cases the element factor may be quite different for endfire antennas
such as the Yagi-Uda and axial mode helix.

5.5 SUPERDIRECTIVE LINE SOURCES

We have seen in Table 5-2 that themaximum (ordinary) directivity from a line source occurs
when the amplitude distribution is uniform. It is, however, possible to obtain greater direc-
tivity under certain conditions that result in superdirectivity. In general, linear sources with
L > l are superdirective if the directivity is higher than that obtained using a phase distri-
bution e6jβoz0 with cos θoj j# 1 or c=v# 1. Thus, the Hansen-Woodyard condition of the
previous section is a superdirective condition because c=v > 1 implying that cos θoj j > 1.

Superdirectivity is produced by an interference process whereby the main beam is
scanned into the invisible region (see Fig. 5-12), where juj > πL=l or cos θoj j > 1. This
causes energy to be stored in the near field, resulting in a large antenna Q. The reactive
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Figure 5-11 Relative directivity as a function of length and phase velocity.

c05 26 March 2012; 19:59:41

5.5 Superdirective Line Sources 145



power is found approximately by integrating over the invisible region and the radiated
power is found, of course, by integrating the pattern factor over the visible region (where
juj # πL=l). To quantify superdirectivity, a superdirective ratio RSD may be defined as
the ratio of radiated power plus reactive power to radiated power, which for a broadside
line source is [2]

RSD ¼

Z N

�N
f ðuÞj j2 duZ πL=l

�πL=l
f ðuÞj j2 du

ð5-37Þ
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Figure 5-12 Far-field patterns for a 10l line source: The corresponding superdirective ratios
are found in Table 5-4.
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For other than broadside, the limits in the denominator change (see Probs. 5.5-1 and 5.5-2).

Since the Q may be expressed as the ratio of reactive power to radiated power,

Q �

Z �πL=l

�N
f ðuÞj j2 duþ

Z N

πL=l
f ðuÞj j2 du

Z πL=l

�πL=A
f ðuÞj j2 du

ð5-38Þ

Comparing the previous two equations gives RSD � 1þ Q. If the line source is electri-
cally small, L � l, the element factor sin θ must be included in (5-38) to determine the
radiation Q [2].

To investigate superdirectivity for a uniform line source, the directivity can be
written as

Du C RSD

2L

l
ð5-39Þ

Comparing (5-19) and (5-20) for long line sources, we conclude that RSD ¼ 1 for the
broadside line source and RSD ¼ 2 for the ordinary endfire line source. For a 10l line
source, this is approximately true as Table 5-4 shows. The exact values for RSD in the table
were obtained using (5-37). Table 5-4 indicates that for the Hansen-Woodyard case,
moderate levels of superdirectivity are achievable. The value of RSD ¼ 2:01 for the ordi-
nary endfire case does not indicate a superdirective condition since RSD was achieved with
the linear phase distribution e6jβoz0 and cos θoj j# 1. In the broadside case, superdirectivity
ratios even modestly greater than unity are not practical since rapid precisely controlled
variations of phase are required. Even if such rapid phase variations could be achieved in
practice, the resulting superdirectivity would not result in supergain because of a decrease
in er , the radiation efficiency, due to the ohmic losses that would inevitably occur.

EXAMPLE 5-4 Superdirectivity of a 10λ Broadside Line Source

It is desired to calculate RSD for a broadside line source when L ¼ 10l:

f ðuÞ ¼ sin u

u
where u ¼ βL

2
cos θ since θo ¼ 90�

The superdirective ratio is found using (5-37). The numerator of (5-37) has a value of π from
(F-12). The denominator of (5-37) is evaluated using integration by parts. Let

dy ¼ 1

u2
du and x ¼ sin 2 u

so that

Table 5-4 Superdirectivity for a 10λ
Line Source

Case RSD

Broadside 1.01
Ordinary endfire 2.01
Hansen-Woodyard 8.03
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y ¼ � 1

u
and dx ¼ 2 sin u cos u du

Now Z
x dy ¼ xy�

Z
y dx

or in this case,

Z 10π

�10π

sin 2 u

u2
du ¼ � sin 2 u

u

����
10π

�10π
�
Z 10π

�10π

�1

u

0
@

1
A2 sin u cos u du

¼ 0þ
Z 10π

�10π

sin 2u

2u
dð2uÞ ¼ 2 Sið20πÞ

where the sine integral of (F-13) has been used. Thus,

RSD ¼ π
2 Sið20πÞ ¼

3:14159

3:10976
¼ 1:01

and the broadside entry in Table 5-4 has been confirmed.
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PROBLEMS

5.1-1 Show that

cos�1ð�xÞ � cos�1ðxÞ ¼ 2 sin�1ðxÞ
thereby proving (5-11). To do this, introduce α such that x ¼ sinα and use
cos ðα6 π=2Þ ¼ 7 sinα
5.1-2 Prove the half-power beamwidth expression for an endfire, uniform line source. Start
with (5-13) and derive (5-14). Hint: Let α ¼ cos �1ð1� yÞ where y ¼ 0:443ðl=LÞ, then form,
cos 2 α, neglect y2, expand 1 as cos 2 αþ sin 2 α, and use sinα � α.
5.1-3 Show that the far-zone electric field expression Eθ for a broadside, uniform line source
approximates that of an ideal dipole for short line sources ðL � lÞ.
5.1-4 Compute the half-power beamwidths (in degrees) and the directivities (in decibels) for

the following uniform fine sources:

(a) Eight-wavelength broadside, uniform line source
(b) Eight-wavelength endfire, uniform line source
(c) Sixteen-wavelength broadside, uniform line source
(d) Sixteen-wavelength endfire, uniform line source

5.1-5 (a) Use the universal pattern factor for a uniform line source to obtain polar plots of a
four-wavelength uniform line source for two cases: broadside and endfire ðθo ¼ 0�Þ.

(b) Measure the half-power beamwidths from the polar plots obtained in part (a).
(c) Calculate the half-power beamwidths in degrees using (5-12) and (5-14). The agree-

ment between these results and those of (b) depends mainly on how accurately you
constructed the polar plot.
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5.1-6 Verify the half-power beamwidth values in Table 5-1 for the three levels of approxi-
mation for uniform line sources with the following lengths: (a) 2l, (b) 5l, and (c) 10l.
5.1-7 Uniform line source directivity.

(a) Show that (5-18) leads to the expression

βL
Du

¼ cos a� 1

a
þ cos b� 1

b
þ SiðaÞ þ SiðbÞ

where Du is the directivity of a uniform line source with excitation phase shift per unit
lengthy of βo, a ¼ ðβ � βoÞL, b ¼ ðβ þ βoÞL, and Si is the sine integral function defined
in (F-13).

(b) Plot the directivity relative to that of the broadside, very long, uniform line source case,
that is, Du=ð2L=lÞ, for βL ¼ 10 and βL ¼ 100 as a function of θo from 90� to 0�.

(c) What does the expression in part (a) reduce to for the broadside case ðθo ¼ 90�Þ?
(d) AsL becomesmuch larger than awavelength, show that your result in part (c) gives (5-19).
(e) Use the result from part (c) and plot the directivity relative to that of a broadside, very

long, uniform line source (i.e., lDu=2L) for βL from 1 to 10. This result shows how
well the long line-source directivity approximation behaves.

5.2-1 Verify for the cosine-tapered line source pattern of (5-25) that (a) HP ¼ 1:19ðl=LÞ in the
broadside case for L�l, and (b) the side lobe level is �23:0dB.
5.2-2 Construct the linear, polar plot of the pattern factor for a broadside cosine-tapered line source
that is three wavelengths long. Proceed as in Fig. 5-4.

5.2-3 A 3-m long, broadside line source operating at 1 GHz has a cosine-squared tapered

current distribution.

(a) Compute the half-power beamwidth in degrees.
(b) Compute the directivity in decibels.

5.2-4 Evaluate the half-power beamwidths in degrees and the directivities in decibels of 10l
long line sources with the following current distributions: (a) uniform, (b) triangular, (c)
cosine, (d) cosine-squared, and (e) cosine on a �10-dB pedestal.

5.2-5 Triangular current-tapered line source.

(a) From the current distribution in Table 5-2a, derive the normalized pattern factor f ðuÞ.
(b) Verify that the half-power beamwidth is given by 1:28ðl=LÞ for L�l and the side lobe

level is �26:6 dB. You may do this by substitution, and also you may find some of the
results from the uniform line source helpful.

5.2-6 The pattern from a triangular-tapered current distribution is the square of that of the
uniform current distribution. From Fourier transform theory, how are the current distributions
related?

5.2-7 Dipole antennas with lengths less than a half-wavelength have current distributions that

are nearly triangular (see Fig. 2-16b).

(a) Write the complete electric field expression Eθ in the far field for a broadside line
source with a triangular current distribution.

(b) Approximate the expression of part (a) for short dipoles ðL � lÞ.
(c) Compare this to the far-field expression for Eθ of an ideal dipole. Discuss.

5.2-8 Derive the pattern factor expression in Table 5-2 for a cosine-squared line source current
distribution. Also verify the half-power beamwidth expression.
5.2-9 A broadside line source has a cosine on a �10-dB pedestal current distribution.
It operates at 200MHz and has a length of 20m. Compute (a) the half-power beamwidth in
degrees and (b) the directivity in decibels.
5.2-10 Derive the pattern factor expression in Table 5-2 for a cosine on a pedestal current
distribution for a line source.

5.2-11 The directivity of a broadside line source can be calculated from

D ¼ 2

l

R L=2

�L=2IðzÞ dz
��� ���2R L=2

�L=2 IðzÞj j2 dz
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This is the one-dimensional analogy of (9-66). Use this formula to:

(a) Derive Du ¼ 2L=l, the directivity of a uniform line source.
(b) Derive an expression for D=Du of a cosine on a pedestal current distribution. Evaluate

for C ¼ 1, 0:3162, 0:1778, and 0.

5.4-1 Substitute (5-1) into (5-2) and set the partial derivative of the exponential term with
respect to z0 equal to zero to derive (5-35). This is called determining the angle of maximum
radiation by the principle of stationary phase (see Sec. 16.15).

5.4-2 An array of wires is composed of wires each parallel to the y-axis with their centers on

the z-axis. The wires are spaced a quarter wavelength apart. The first wire is located at the

coordinate origin, the next at z ¼ l=4, and so on. A wave is traveling in the þz-direction over

the wires and induces currents in them.

(a) If the current phases, starting at the origin, are 0�, �80�, �160�,�240�, �320�, etc.,
is the wave fast or slow?

(b) If the current phases, starting at the origin, are 0�, �100�, �200�, �300�, �400�, etc.,
is the wave fast or slow?

5.5-1 Verify the ordinary endfire value for RSD in Table 5-4. Note: u ¼ ðβL=2Þðcos θ� 1Þ.
5.5-2 Verify the Hansen–Woodyard value for RSD in Table 5-4. Note: u ¼ 0:5 ½βLðcos θ� 1Þ�
2:94�.
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Chapter6

Wire Antennas

In this chapter, we discuss the important topic of wire antennas. Wire antennas are the
oldest and still the most prevalent of all antenna forms. Just about every imaginable shape
and configuration of wires has a useful antenna application. Wire antennas can be made
from either solid wire or tubular conductors. They are relatively simple in concept, easy
to construct and very inexpensive.

To obtain completely accurate solutions for wire antennas, the current on the wire must
be solved for, subject to the boundary condition that the tangential electric field is zero
along the wire. This approach gives rise to an integral equation, for which many
approximate solutions have been reported over the last several decades [1]. These clas-
sical solutions are rather tedious and limited to a few simple wire shapes. On the other
hand, modern numerical methods implemented on the digital computer are rather simple
in concept and applicable to many wire antenna configurations. These numerical
(moment method) techniques are discussed in Chap. 14. In this chapter, we adopt a simple
approach to solving for the properties of wire antennas. This affords a conceptual
understanding of how wire antennas operate, as well as yielding surprisingly accurate
engineering results. For example, during the discussion of the loop antenna in Sec. 6.8
a detailed comparison of results from simple theory and the more exact numerical
methods demonstrates the accuracy of simple theory.

In this chapter, we discuss several resonantwire antennas such as straightwire dipoles, vee
dipoles, folded dipoles, Yagi-Uda arrays, and loops. A resonant antenna is a standing wave
antenna (e.g., a dipole) with zero input reactance at resonance.

Other wire antennas that are broadband, such as traveling-wave antennas, the helix,
and log-periodic, are presented in the next chapter. Methods of feeding wire antennas and
their performance in the presence of an imperfect ground plane are included here. Most of
the developments in this chapter utilize the principles set forth thus far. Design data and
guidelines for the construction and use of wire antennas are emphasized.

6.1 DIPOLE ANTENNAS

We have discussed short dipoles in Secs. 2.3 and 3.1 and the half-wave dipole in Sec. 3.2.
In this section, dipoles of arbitrary length are examined. The dipole antenna has received
intensive study [1]. We will use a simple but effective approach that involves an assumed
form for the current distribution. The radiation integral may then be evaluated and thus
also the pattern parameters. For dipoles, we assume that the current distribution is
sinusoidal. This is a good approximation verified by measurements. The current must, of
course, be zero at the ends. We are, in effect, using the current distribution that is found
on an open-circuited parallel wire transmission line. It is assumed that if the end of such a
transmission line is bent out to form a wire antenna, the current distribution along the bent
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portion is essentially unchanged. Although this is not strictly true, it is a good approxi-
mation for thin antennas, for which the conductor diameter is on the order of 0:01l or
smaller.

6.1.1 Straight Wire Dipoles

A straight dipole antenna is shown in Fig. 6-1 oriented along the z-axis. It is fed at the
center from a balanced two-wire transmission line, that is, the currents on each wire are
equal in magnitude and opposite in direction. The current distribution along the antenna is
assumed to be sinusoidal and can be written as

IðzÞ ¼ Im sin

"
β
�
L

2
� jzj

�#
, jzj , L

2
ð6-1Þ

The dipole is surrounded by free space, thus, the phase constant is that of free space, β.
It is helpful to visualize the current distribution on an antenna. Fig. 6-2 shows the

current on a dipole for L , l=2. The solid lines indicate actual currents on the antenna
and the dotted lines indicate extensions of the sine wave function. As a note of caution
with this visualization, the dotted portion of the current distribution does not appear on
the transmission line. For this case, Im in (6-1) is not the maximum current attained on the
antenna. The maximum current on the antenna shown in Fig. 6-2 is at the input terminals
where z ¼ 0 and is of a value ImsinðβL=2Þ. The arrows in Fig. 6-2 show the current
direction. The currents on the top and bottom halves of the antenna are in the same

z

I
θ

L

I

Figure 6-1 The dipole antenna.

z

I (z)
Im

Figure 6-2 Current distribution on a dipole of length
L , l=2.
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direction at any instant of time, and thus the radiation effects from each half reinforce.
The transmission line, however, has oppositely directed currents that have canceling
radiation effects for typical close conductor spacings. (See Fig. 3-4a.)

In Fig. 6-3, current distributions on various dipoles are plotted together with the
antennas used to generate them. The sinusoidal curves superimposed on the antennas
indicate the intensity of the current on the wire—that is, the value of the curve at point z is
the current value on the wire at the same point z. Again, the arrows indicate current
directions. To construct plots such as these, begin on the z-axis at one end of the wire
where the current is zero and draw a sine wave while moving toward the feed point. The
current on the other half is then the mirror image. For dipoles longer than one wavelength,
the currents on the antenna are not all in the same direction. Over a half-wave section, the
current is in-phase and adjacent half-wave sections are of opposite phase. We would then
expect to see some large canceling effects in the radiation pattern. This will be shown
later to be precisely what happens. For all the current distributions presented, the plots
represent the maximum excitation state. It is assumed that a sinusoidal waveform gen-
erator of radian frequency ω ¼ 2πc=l is connected to the input transmission line. The
standing wave pattern of the current at any instant of time is obtained by multiplying (6-1)
by cos ωt, which follows from (2-6).

To obtain the dipole radiation pattern, we first evaluate the radiation integral

fun ¼
Z L=2

�L=2

Iðz0Þ e jβz0 cos θ dz0 ð6-2Þ

Substituting the current expression from (6-1) gives

fun ¼
Z 0

�L=2

Im sin β
L

2
þ z0

� �� �
ejβz

0 cos θ dz0

þ
Z L=2

0

Im sin β
L

2
� z0

� �� �
ejβz

0 cos θ dz0 ð6-3Þ

L 2= λ
L 4= 3 λ

L 4= 5 λ
L 2= 3 λ

L = λ

Figure 6-3 Current distributions for various center-fed dipoles. Arrows indicate relative
current directions for these maximum current conditions.
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Evaluating these integrals (see Prob. 3.2-6) gives the unnormalized pattern

fun ¼ 2Im

β
cos½ðβL=2Þ cos θ� � cosðβL=2Þ

sin2θ
ð6-4Þ

Using this in (2-103) and (2-106) leads to the complete far-zone electric field

Eθ ¼ jωμ sin θ
e�jβr

4πr
2Im

β
cos½ðβL=2Þ cos θ� � cosðβL=2Þ

sin2θ
ð6-5Þ

Noting that ωμ=β ¼ η, we see that this expression simplifies to

Eθ ¼ jη
e�jβr

2πr
Im

cos½ðβL=2Þ cos θ� � cosðβL=2Þ
sin θ

ð6-6Þ

The θ-variation of this function determines the far-field pattern. For L ¼ l=2, it is

FðθÞ ¼ cos½ðπ=2Þ cos θ�
sin θ

ðL ¼ l=2Þ ð6-7Þ

This expression was also derived in Sec. 3.2; see (3-4). This is the normalized electric
field pattern of a half-wave dipole. The half-power beamwidth is 78� and its pattern plot
is shown in Fig. 6-4a.

1.0 1.0
0.707

0.707 0.707
1.0

1.0

0.707

HP = 78°

HP = 32°

HP = 47°

L =(a)

(c)

(b)

(d)

Z

Z Z

Z

2
λ

L =
4
5 λ L =

2
3 λ

L = λ

Figure 6-4 Radiation patterns of center-fed straight dipole antennas of length L.
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For a center-fed dipole with L ¼ l, the normalized electric field pattern from (6-6) is

FðθÞ ¼ cosðπ cos θÞ þ 1

2 sin θ
ðL ¼ lÞ ð6-8Þ

The half-power beamwidth for this full-wave dipole is 47�. Its pattern is shown in
Fig. 6-4b. If L ¼ 3

2
l, the pattern function is

FðθÞ ¼ 0:7148
cos
�
3
2
π cos θ

�
sin θ

�
L ¼ 3

2
l
�

ð6-9Þ

The factor 0.7148 is the normalization constant. As predicted earlier for dipoles of length
greater than one wavelength, the pattern of the three-halves wavelength dipole shown in
Fig. 6-4d has a multiple lobe structure due to the canceling effect of oppositely directed

currents on the antenna. This effect is also visible in the 5
4
wavelength case.

As L=l becomes very small, the dipole pattern variation in (6-6) approaches sin θ. Thus,
we see again that the pattern of a short dipole along the z-axis is sin θ. Recall that the short
dipole pattern has a 90� half-power beamwidth; see Fig. 2-4b.

To obtain the radiation resistance, first the radiated power must be found. Substituting
(6-6) into (2-130) gives

P ¼ 1

2η

Z 2π

0

Z π

0

η2
I2m

ð2πrÞ2
cos½ðβL=2Þ cos θ� � cosðβL=2Þ

sin θ

� 	2

r2 sin θ dθ dφ

¼ η
8π2

I2m

Z 2π

0

dφ 2

Z π=2

0

fcos½ðβL=2Þ cos θ� � cosðβL=2Þg2
sin θ

dθ ð6-10Þ

Changing the integration variable to τ ¼ cos θ, dτ ¼ �sin θ dθ, gives

P ¼ η
2π

I2m

Z 0

1

fcos½ðβL=2Þτ� � cosðβL=2Þg2
1� τ2

ð�dτÞ

¼ η
4π

I2m

Z 1

0

fcos½ðβL=2Þτ� � cosðβL=2Þg2
1þ τ

0
@

þ fcos½ðβL=2Þτ� � cosðβL=2Þg2
1� τ

1
A dτ ð6-11Þ

where in the last expression the identity

1

1� u2
¼ 1

2

1

1þ u
þ 1

1� u

� �
ð6-12Þ

was used. Eq. (6-11) can be evaluated in terms of sine and cosine integral functions; see
(F-13) and (F-14). A simpler expression for the special case of the half-wave dipole is
obtainable in terms of a single cosine integral function. Thus, when βL=2 ¼ π=2, (6-11)
becomes

P ¼ η
4π

I2m

Z 1

0

cos2ðπτ=2Þ
1þ τ

þ cos2ðπτ=2Þ
1� τ

� �
dτ ð6-13Þ
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Changing variables again as v ¼ 1� τ and w ¼ 1þ τ and substituting into (6-13)

P ¼ η
4π

I2m

Z 0

1

�sin2ðπv=2Þ
v

dvþ
Z 2

1

sin2ðπw=2Þ
w

dw

� �
¼ η

4π
I2m

Z 2

0

sin2ðπv=2Þ
v

dv

¼ η
4π

I2m

Z 2

0

1� cosπv
2v

dv ð6-14Þ

Changing the variable of integration to t ¼ πv leads to

P ¼ η
8π

I2m

Z 2π

0

1� cos t

t
dt ¼ η

8π
I2m Cinð2πÞ ¼ η

8π
I2mð2:44Þ ð6-15Þ

where CinðxÞ is related to the cosine integral function by (F-16) and is tabulated in [2]. In
this case, Cinð2πÞ ¼ 2:44. Using this and η ¼ 120π in (6-l5) leads to the radiation
resistance for a half-wave dipole as

Rr ¼ 2P

I2m
¼ 2ð15 I2m 2:44Þ

I2m
¼ 73Ω L ¼ l

2

� �
ð6-16Þ

The infinitely thin dipole antenna also has a reactive impedance component. For the
half-wave dipole, the reactance is inductive, and the complete input impedance is

ZA ¼ 73þ j42:5Ω
�
L ¼ l

2

�
ð6-17Þ

This can be calculated for an infinitely thin dipole by a classical procedure known as the
induced emf method [H.4: Jordan & Balmain, Chap. 14]. However, the input impedance
of dipoles with finite wire diameter can be calculated using the moment method of
Chap. 14, where the form of the current is not assumed. The results of such a calculation
for the input resistance and reactance of a small-diameter, center-fed dipole are given in
Figs. 6-5 and 6-6. The resonance effects are evident in these plots. Note that the input
reactance is capacitive for small lengths, as we pointed out in Sec. 3.l.

The dotted curve in Fig. 6-5 is the input resistance from (2-169) for an ideal dipole
with uniform current. It does not give good results for an actual wire dipole as shown
by the solid curve of Fig. 6-5. However, the triangular current approximation with
Rri ¼ 20π2ðL=lÞ2 from (2-172) does give a good approximation to the input radiation
resistance for short dipoles as demonstrated by the dashed curve of Fig. 6-5. Some simple
formulas that approximate the input resistance of wire dipoles are given in Table 6-1 [3].
For example, using the second formula for L ¼ l=2 gives Rri ¼ 24:7ðπ=2Þ2:4 ¼ 73:0Ω,
which agrees with (6-17). The values obtained from Table 6-1 also agree closely with those
of Fig. 6-5.

Input resistance is related to radiation resistance. There are several ways to define
radiation resistance by using different current reference points. Usually, radiation resis-
tance is defined using the current distribution maximum Im, whether or not it actually
occurs on the antenna. We shall use the symbol Rrm for this definition. It is also useful to
refer the radiation resistance to the input terminal point. In this case, the symbol Rri is
used. These definitions can be related by writing the radiated power as

P ¼ 1

2
I2mRrm ¼ 1

2
I2ARri ð6-18Þ

For dipoles that are odd integer multiples of a half-wavelength long, Im ¼ IA and
Rrm ¼ Rri. A third radiation resistance, denoted by Rr, is often used; it is the radiation
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resistance relative to the maximum current that occurs on the antenna. For dipoles less
than a half-wavelength long, the current maximum on the antenna always occurs at the
center, and then Rri ¼ Rr for center-fed dipoles; this was discussed in Sec. 2.6. In
practice, we are interested in input resistance, so Rri is of primary importance. It is related
to Rrm for center-fed dipoles by setting z ¼ 0 in (6-1), giving

Wire radius a = 0.0005λ

Dipole length (L/λ)

1200

900

600

300

−300

−600

−900

−1200

−1500

0
0.2

Im
 [

Z
A

],
 Ω

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 6-6 Calculated input reac-
tance of center-fed wire dipole of
radius 0:0005l as a function of
length L.
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0 0.2 0.4 0.6 0.8 1.0

Dipole length (L/λ)

Short dipole

Ideal
dipole

Wire radius a = 0.0005λ

R
e 

[Z
A

],
 Ω

1.2 1.4 1.6 1.8 2.0

Figure 6-5 Calculated input resis-
tance of a center-fed wire dipole of
0:0005l radius as a function of
length L (solid curve). Also shown is
the input resistance
Rri ¼ 80π2ðL=lÞ2 of an ideal dipole
with a uniform current distribution
(dotted curve) and the input resis-
tance Rri ¼ 20π2ðL=lÞ2 of a short
dipole with a triangular current dis-
tribution approximation (dashed
curve).
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IA ¼ Im sin
βL
2

ð6-19Þ

and substituting into (6-18), which yields

Rri ¼ I2m
I2A

Rrm ¼ Rrm

sin2ðβL=2Þ ð6-20Þ

Rri is the component of input resistance due to radiation and equals the total input
resistance RA if ohmic losses are neglected, which we shall do unless otherwise indicated.

For dipole lengths, L ¼ l, 2l, 3l, : : : , βL=2 ¼ π, 2π, 3π, : : : , and Rri from (6-20) is
infinite. For example, the one-wavelength dipole of Fig. 6-3c has a current zero at its feed
point and thus an infinite input impedance. This, of course, is based on the perfect sine wave
current distribution.Dipoles of finite thickness have large but finite values of input impedance
for lengths near integer multiples of wavelength, as seen in Fig. 6-5. This effect arises from
the deviation of the current distribution from that of (6-1) for dipole lengths near integer
multiples of the wavelength: there is always a finite input current on an actual dipole. For
other-length dipoles, the sinusoidal current distribution is a good approximation for thin-wire
dipole antennas.

By reducing the length of the half-wave dipole slightly, the antenna can be made to
resonate ðXA ¼ 0Þ. The input impedance of the infinitely thin half-wave dipole is then
about 70þ j0Ω. In Fig. 5-6, the dipole of radius 0:0005l resonates for lengths corre-
sponding to the intersections with the horizontal ðXA ¼ 0Þ axis. The first intersection is
the half-wave dipole case and the resonant length is slightly less than l=2. It turns out that
as the wire thickness increases, the dipole must be shortened more to obtain resonance.
Approximate length values for resonance are given in Table 6-2. For the dipole of
0:0005l wire radius, the length-to-diameter ratio, L=2a, is 500 for the half-wave case.
From Table 6-2, we see that about 4% shortening ðL ¼ 0:48lÞ would be required to
produce resonance. This agrees closely with the resonance point from Fig. 6-6. In
practice, wire antennas are constructed slightly longer than required. Then a transmitter
is connected to the antenna and the standing wave ratio (or reflected power) is monitored
on the feed transmission line. The ends of the antenna are trimmed until a low value of
standing wave ratio is obtained. Note that as the length is reduced to obtain resonance, the
input resistance also decreases. For example, for a thin dipole with L=2a ¼ 50 and
L ¼ 0:475l, the second formula of Table 6-1 gives RA ¼ 64:5Ω; the reactance is, of
course, zero.

Table 6-1 Simple Formulas for the Input
Resistance of Dipoles

Input
Length Resistance
L (Rri),Ω

0 , L ,
l
4

20π2 L

l

� �2

l
4
, L ,

l
2

24:7 π
L

l

� �2:4

l
2
, L , 0:637l 11:14 π

L

l

� �4:17
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Since dipoles are resonant-type structures, their bandwidth is low. The VSWR as a
function of frequency for a half-wave dipole is shown in Fig. 6-7. In general, bandwidth is
defined as “the range of frequencies within which the performance of the antenna,
with respect to some characteristic, conforms to a specified standard” [4]. In this case,
let the specified standard be a VSWR less than 2.0:1. From Fig. 6-7, we see that
the bandwidths are 310� 262 ¼ 48 MHz and 304� 280 ¼ 24 MHz, respectively, for
a ¼ 0:005 m ðL=2a ¼ 50Þ and a ¼ 0:0001 m ðL=2a ¼ 2500Þ. In terms of percent rel-
ative to the design frequency (300 MHz), the bandwidths are 16% and 8%. It is an
important general principle that the thicker the dipole, the wider is its bandwidth. Also,
note that the minimum VSWR for the thicker dipole occurs at a lower frequency than for
the thinner one. In fact, if we use the rules in Table 6-2, the resonant frequencies are
calculated to be 285 and 294 MHz for wire radii of 0.005 and 0.0001 m. These values
agree well with the minimum points of the curves in Fig. 6-7.

The improved bandwidth offered by the thick circularly cylindrical dipole in Fig. 6-7
can also be achieved with a fiat metallic strip as Fig. 6-8 indicates. The relationship
between the circularly cylindrical dipole radius and the width of the metallic strip for
equivalent performance under certain conditions is a ¼ 0:25w [5]. The advantage of the
flat strip dipole is primarily ease of construction.

Finally, the directivity of a half-wave dipole is found from D ¼ 4πUm=P. The radiated
power P was evaluated in (6-15). Using the far-zone electric field of (6-6) leads to the
maximum radiation intensity as

15

13

11

2a

Frequency ( f ), MHz

a = 0.0001 m

a = 0.005 m

0.5 m
Zo = 72 ohms

V
SW

R 9

7

5

3

1
250 270 290 310 330 350

Figure 6-7 Calculated VSWR as a function of frequency for dipoles of different wire
diameters.

Table 6-2 Wire Lengths Required to Produce a Resonant
Half-Wave Dipole for a Wire Diameter of 2a and Length L

Length to Percent Dipole
Diameter Ratio, Shortening Resonant Thickness
L/2a Required Length L Class

5000 2 0.49l Very thin
50 5 0.475l Thin
10 9 0.455l Thick
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Um ¼ r2

2η
Eθj j2max ¼

1

2η
η2I2m
ð2πÞ2 ¼

η
8π2

I2m ð6-21Þ

So,

Dðl=2Þ dipole ¼ 4πUm

P
¼ 4πðη=8π2ÞI2m

ðη=8πÞI2mð2:44Þ
¼ 1:64 ¼ 2:15 dB ð6-22Þ

This is only slightly greater than the directivity value of 1.5 for an ideal dipole with
uniform current. So for very short dipoles, the directivity is 1.5 and increases to 1.64 as
the length is increased to a half-wavelength. As length is increased further, directivity also
increases. A full-wave dipole has a directivity of 2.41. Even more directivity is obtained
for a length of about 1:25l. As the length is increased further, the pattern begins to break
up (see Fig. 6-4d ) and directivity drops sharply. See Prob. 6.1-12.

6.1.2 The Vee Dipole

Wire dipole antennas that are not straight also appear in practice. One such antenna is the
vee dipole shown in Fig. 6-9. This antenna may be visualized as an open-circuited trans-
mission line that has been bent so that ends of length h have an included angle of γ. The
angle γ for which the directivity is greatest in the direction of the bisector of γ is given by

γ ¼ 152

�
h

l

�2

� 388

�
h

l

�
þ 324, 0:5 #

h

l
, 1:5

γ ¼ 11:5

�
h

l

�2

� 70:5

�
h

l

�
þ 162, 1:5 #

h

l
# 3:0

ð6-23Þ

where the resulting angle γ is in degrees. The corresponding directivity is

D ¼ 2:95

�
h

l

�
þ 1:15 ð6-24Þ

L
2

L

w a

a = 0.25w
a = Equivalent radius
w     L
w     λ

2

End viewSide view

Figure 6-8 Thin metal strip dipole.

γ

φ
h

Figure 6-9 The vee dipole antenna.
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These equations were empirically derived for antennas with 0:5# h=l# 3:0 using the
computational methods (MoM) of Chap. 14.

The directivity of a vee dipole can be greater than that of a straight dipole. This can be
seen from the pattern in Fig. 6-10 where h ¼ 0:75l and l from (6-23) is 118:5�. Notice that
the direction of maximum radiation is φ ¼ 90� while radiation in the φ ¼ 270� direction is
about 2 dB less. Even more significant is the low level of the side lobes. For the most part,
it is the reduced side lobe levels of the vee dipole that give it a greater directivity than
the straight dipole version (see Fig. 6-4d). The directivity for the vee dipole of Fig. 6-10
from (6-24) is D ¼ 2:94ð0:75Þþ 1:15 ¼ 3:355 ¼ 5:26 dBi. The directivity of a 1:5l long
straight wire dipole is about 2.2, or 3.4 dBi.

The input impedance of a vee dipole antenna is generally less than that of a straight
dipole of the same length. For example, the input impedance of the vee dipole in Fig. 6-10
is 106þ j17Ω, which is less than for the straight dipole version ðL ¼ 1:5lÞ as found from
Figs. 6-5 and 6-6.

6.2 FOLDED DIPOLE ANTENNAS

An extremely practical wire antenna is the folded dipole. It consists of two parallel
dipoles connected at the ends forming a narrow wire loop, as shown in Fig. 6-11 with
dimension d much smaller than L and much smaller than a wavelength. The feed point is
at the center of one side. The folded dipole is essentially an unbalanced transmission line
with unequal currents. Its operation is analyzed by considering the current to be com-
posed of two modes: the transmission line mode and the antenna mode. The currents for
these modes are illustrated in Fig. 6-12.

The currents in the transmission line mode have fields that tend to cancel in the far
field since d is small. The input impedance Zt for this mode is given by the equation for a
transmission line with a short circuit load (see Prob. 6.2-3)

Zt ¼ jZo tan β
L

2
ð6-25Þ

where Zo is the characteristic impedance of the transmission line.
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Figure 6-10 Far-field pattern of
a vee dipole shown in Fig. 6-9
with arm length h ¼ 0:75l,
γ ¼ 118:5�, and a ¼ 0:0005l.

c06 4 April 2012; 16:51:6

6.2 Folded Dipole Antennas 161



In the antenna mode, the fields from the currents in each vertical section reinforce in the
far field since they are similarly directed. In this mode the charges “go around the corner” at
the end, instead of being reflected back toward the input as in an ordinary dipole, which leads
to a doubling of the input current for resonant lengths. The result of this is that the antenna
mode has an input current that is half that of a dipole of resonant length.

Suppose a voltage V is applied across the input terminals of a folded dipole. The total
behavior is determined by the superposition of the equivalent circuits for each mode in
Fig. 6-13. Note that if the figures for each mode are superimposed and the voltages are
added, the total on the left is V and on the right is zero, as it should be. The transmission
line mode current is

It ¼ V

2Zt
ð6-26Þ

d

L

Figure 6-11 The folded dipole antenna.

(a) Transmission line mode. (b) Antenna mode.
Figure 6-12 The current modes on a fol-
ded dipole antenna.

V

(a) Transmission line mode. (b) Antenna mode.

It It

Ia

2

2

V
2

+

+ ++
V
2

V
2

Ia
2

Figure 6-13 Mode excitation and current for a
voltage V applied to the terminals of a folded
dipole. Superposition of these modes gives the
complete folded dipole model.
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For the antenna mode, the total current is the sum of each side, or Iα. The excitation for
this current is V=2; thus, the antenna current is

Iα ¼ V

2Zd
ð6-27Þ

where to a first-order approximation Zd is the input impedance for an ordinary dipole of
the same wire size. The total current on the left is It þ 1

2
Iα and the total voltage is V , so

the input impedance of the folded dipole is

ZA ¼ V

It þ 1
2
Ia

ð6-28Þ

Substituting (6-26) and (6-27) in (6-28) yields

ZA ¼ 4ZtZd

Zt þ 2Zd
ð6-29Þ

As an example, consider the popular half-wave folded dipole. From (6-25) with
L ¼ l=2, Zt ¼ jZo tan½ð2π=lÞðl=4Þ� ¼ jZo tanðπ=2Þ ¼ N. Then (6-29) gives

ZA ¼ 4Zd

�
L ¼ l

2

�
ð6-30Þ

Thus, the half-wave folded dipole provides a four-fold increase in impedance over its
dipole version. Since the half-wave dipole (at resonance) has a real input impedance, the
half-wave folded dipole has also.

The current on the half-wave folded dipole is particularly easy to visualize. We will
discuss this current and also rederive the impedance. If the vertical wire section on the
right in Fig. 6-11 were cut directly across from the feed point and the wire folded out
without disturbing the current, it would appear as shown in Fig. 6-14. The current is not
zero at the ends, because they are actually connected. Perhaps a better way to view this is
to fold the current back down and note that currents on the folded part are now upside
down, as shown in Fig. 6-15a. The same total current (and thus the same pattern) is
obtained with both the folded and the ordinary dipoles in Fig. 6-15. The difference is that
the folded dipole has two closely spaced currents equal in value, whereas in the ordinary
dipole they are combined on one wire. From this, it is easy to see that the input currents in
the two cases are related as

If ¼ 1

2
Id

�
L ¼ l

2

�
ð6-31Þ

λ

Figure 6-14 Current for the antenna mode of a half-wave folded
dipole that has been folded out without disturbing the current.
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The input powers are

Pf ¼ 1

2
ZA I

2
f ðfolded dipoleÞ ð6-32Þ

and

Pd ¼ 1

2
Zd I

2
d ðdipoleÞ ð6-33Þ

Since the total currents are the same in the half-wave case, the radiated powers are also.
Equating (6-32) and (6-33) and using (6-31) give

1

2
Zd I

2
d ¼ 1

2
ZA

1

4
I2d

or

ZA ¼ 4Zd

�
L ¼ l

2

�
ð6-34Þ

This result is an independent confirmation of the result in (6-30).
The input impedance of a half-wave folded dipole (at resonance) is four times that of

an ordinary dipole. A resonant half-wave dipole has about 70Ω of input resistance, so a
half-wave folded dipole then has an input impedance of

Zf ¼ 4ð70Þ ¼ 280Ω ðhalf-waveÞ ð6-35Þ
This impedance is very close to the 300Ω of common twin-lead transmission line.

The input resistance curve for a folded dipole of finitewire thickness are given in Fig. 6-16
as a function of folded dipole length. The solid curves were obtained from the transmission
line model. The wire spacing d ¼ 12:5a is such that the characteristic impedance corre-
sponds to a 300Ω transmission line ½Zo ¼ ðη=πÞ lnðd=aÞ ¼ 120 lnð12:5a=aÞ � 300Ω�.
The folded dipole input impedance is then found from (6-25) and (6-29). As an example,
consider a folded dipole of length L ¼ 0:8l, spacing d ¼ 12:5a, and radius a ¼ 0:0005l.
From (6-25),

Zt ¼ j300 tan 0:8π ¼ �j218Ω ð6-36Þ
From Figs. 6-5 and 6-6,

Zd ¼ 950þ j950 ð6-37Þ

(a) Folded dipole. (b) Dipole.

IdIf

Figure 6-15 Currents on half-wave dipoles.
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Using these in (6-29) yields

ZA ¼ 28� j461 Ω ðL ¼ 0:8lÞ ð6-38Þ
This result agrees with the value shown in Fig. 6-16 for RA.

Also shown in Fig. 6-16 as dashed curves is the input impedance calculated using the
moment methods of Chap. 14. The agreement between the simple transmission line model
and the simulation results is quite good. Both methods show that the real part of the input
impedance is slightly less than 300Ω at the first resonance ðL � 0:48lÞ and slightly larger
than 300Ω at the second resonance ðL � 1:47lÞ. It is this characteristic of the folded
dipole that makes it useful at harmonically related frequencies. Note, too, the very low
value of ZA when L � l, 2l, : : : . This can easily be explained from the transmission line
model, since then tanðβL=2Þ � tan π ¼ 0 and thus Zt ¼ 0 and ZA from (6-29) is zero.

The folded dipole is used as an FM broadcast band receiving antenna, and it can be
simply constructed by cutting a piece of 300Ω twin-lead transmission line about a half-
wavelength long (1.5 m at 100 MHz). The ends are soldered together such that the overall
length L is slightly less than a half-wavelength at the desired frequency (usually 100
MHz). One wire is then cut in the middle and connected to the twin-lead transmission line
feeding the receiver.

Occasionally, two different wire sizes are used for a folded dipole as shown in
Fig. 6-17. The input impedance for the half-wave case is given by

ZA ¼ ð1þ cÞ2Zd
�
L ¼ l

2

�
ð6-39Þ

Transmission line model
Moment method model
2a = 0.001λ
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Figure 6-16 Input impedance of a folded dipole. The solid curves are calculated from the
transmission line model. The dashed curves are calculated from more accurate moment
methods. The wire radius a is 0:0005l and wire spacing d is 12.5a.
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For given values of d, a1 and a2, the value of c can be found [H.6: Ant. Eng. Hdbk.,
4th ed., pg. 4-16]. As is frequently the case, if a1 and a2 are much less than d, c is
approximately given by

c � lnðd=a1Þ
lnðd=a2Þ ð6-40Þ

The folded dipole antenna is a very popular wire antenna. The reasons for this are its
impedance properties, ease of construction, and structural rigidity. The equal-size con-
ductor half-wave folded dipole has an input impedance very close to that of a 300-ohm
twin-lead-type transmission line as seen from Fig. 6-16. Also, by changing the conductor
radii, the input impedance can be changed. In addition to having desirable impedance
properties, the half-wave folded dipole has a wider bandwidth than an ordinary half-wave
dipole. In part for these reasons, a folded dipole is frequently used as a feed antenna for
Yagi-Uda arrays and other popular antennas.

6.3 YAGI-UDA ANTENNAS

One way to obtain more gain out of dipole type antennas is to use more than one in an
array configuration. Usually arrays have all elements identical and are active, requiring a
direct connection to each element by a feed network. This kind of array is studied in
Chap. 8, whereas the array configuration studied in this section usually has only one
element directly connected to a transmitter and/or receiver while the other elements are
parasitic. Such an array is referred to as a parasitic array. The elements that are not
directly driven (called parasitic elements) receive their excitation by near-field electro-
magnetic coupling from the driven element. A parasitic linear array of parallel dipoles is
called a Yagi-Uda antenna, a Yagi-Uda array, or simply “Yagi.” Yagi-Uda antennas are
very popular because of their simplicity and relatively high gain. In this section, the
principles of operation and design data for Yagis will be presented [6].

The first research done on the Yagi-Uda antenna was performed by Shintaro Uda at
Tohoku University in Sendai, Japan in 1926 and was published in Japanese in 1926 and
1927. The work was reviewed in an article written in English by Uda’s professor, H. Yagi,
in 1928 [7]. The Yagi antenna, as it is popularly called, was used by the British in their
pre–World War II VHF radars before the availability of high-power microwave sources
made possible radar at microwave frequencies. The Yagi remains a popular HF and VHF
antenna today for non-radar use.

The basic unit of a Yagi consists of three elements. To understand the principles of
operation for a three-element Yagi, we begin with a driven element (or “driver”) and add
parasites to the array. Consider a driven element that is a resonant half-wave dipole. If a
parasitic element is positioned very close to it, the field incident on the parasite element is
that of the field leaving the driver:

d

2a1

(b) End view.(a) Side view.

2a2

Figure 6-17 Folded dipole antenna con-
structed from two different size conductors.
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Eincident ¼ Edriver ð6-41Þ
The current excited on the parasite and the resulting radiated electric field, Eparasite,

also tangent to the wire, is almost equal in amplitude and opposite in phase to the
incident wave from the driver due to the small separation distance between them. This is
because the electric field arriving at the parasite from the driver is tangential to it and
the total electric field tangential to a perfect electric conductor is zero. Thus, the field
radiated by the parasite is such that the total tangential field on the parasite is zero, or
0 ¼ Eincident þ Eparasite. Combining this fact with (6-41) gives

Eparasite ¼ �Eincident ¼ �Edriver ð6-42Þ
From the two-element array theory in Sec. 3.5, we know that two closely spaced equal

amplitude, opposite phase elements will have an endfire pattern; for example, see
Fig. 3-17 for d ¼ l=8 and α ¼ 180�. The difficult-to-simulate pattern of the two-element
parasitic array for (impractical) 0:04l spacing is shown in Fig. 6-18b. The gain of the
array in Fig. 6-18a is exceedingly low because of the considerable amount of destructive
inference between the fields radiated by the two elements. The array is very
superdirective.

A feature of the Yagi is that different lengths of parasitic elements behave in sub-
stantially different ways. If the parasitic element is longer than resonant length, LR, it acts
like a reflecting element. If the parasitic element is shorter than resonant length, LD, it can
act as a directing element, or director, because it directs radiation along the z-axis in
Fig. 6-19. These effects can be simulated for the close spacing used in Fig. 6-18 but are
better done with more realistic reflector spacing, SR, and director spacing, SD.

Fig. 6-20 shows the E-plane pattern for a two-element array consisting of only the
reflector element and driver in Fig. 6-19 with spacings of 0:2l. The driver length, L, is
0:47l, and LR is 0:482l. The radiation pattern shows the reflecting action of the longer
parasitic element. Fig. 6-21 shows the E-plane pattern for a two-element array consisting
of only one director element and driver, L ¼ 0:47l, in Fig. 6-19. The director length,
LD, is 0:42l. The radiation pattern shows the directing action of the shorter element.
The patterns in Figs. 6-20 and 6-21 suggest that further enhancement in radiation in the
z-direction might be obtained by using both a reflector element and a director element.

x

z

x

z

0.04λ
(a) Array configuration.

0 dB

�5

�10

�15

(b) H-plane pattern computed from simple array theory.

Figure 6-18 Two-element array of half-wave resonant dipoles, one a driver and the other a
parasite. The currents are idealized according to (6-41).
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This is indeed the case. In Fig. 6-22 is the pattern of a three-element array using the
parameters of Figs. 6-20 and 6-21, except that the director used in Fig. 6-22 is 0:442l
instead of 0:420l. The 0:442l length is near optimum for the three-element array but does
not work very well in the two-element array. We will see that yet further enhancement
in radiation in the z-direction can be obtained by using more than one director as in
Fig. 6-19.

The maximum directivity obtainable from a three-element Yagi is about 9 dBi or 7 dBd
[8]. Optimum reflector spacing SR (for maximum directivity) is between 0.15 and 0.25
wavelengths as Fig. 6-23 shows. Note that the gain above an isolated dipole is more than
2.5 dBd, whereas if a flat plate were used, instead of a simple wirelike element, the gain
would be 3 dBd. Thus, a single wire-like reflector element is almost as effective as a flat
plate in enhancing the gain of a dipole.

Director-to-director spacings are typically 0.2 to 0.35 wavelength with the larger
spacings being more common for long arrays and closer spacings for shorter arrays.
Typically, the reflector length is 0:5l and the driver is of resonant length when no par-
asitic elements are present [9]. The director lengths are typically 10–20% shorter than
their resonant length, the exact length being rather sensitive to the number of directors ND

and the interdirector spacing SD.

x

z

0 dB D � 6.4 dBi

(b) E-plane pattern computed from
a moment method code.

�5

�10

�15
x

z

(a) Array configuration.

Figure 6-20 Two-element Yagi-Uda antenna consisting of a driver of length L ¼ 0:47l and a
reflector of length 0:482l, spaced 0:2l apart. The wire radius for both is 0:00425l.

x

zLLR

SD

LD

SR

h Figure 6-19 Configuration for a general
Yagi-Uda antenna.
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The gain of the Yagi is related to its boom length as our study of uniform line sources
in the previous chapter suggests, but for a parasitic array such as the Yagi, there is a
smaller increase in gain per element as directors are added to the array (if we assume SD
is fixed) since the Yagi is not uniformly excited (see Fig. 6-27). In fact, the addition of
directors up to about five or six provides a significant increase in gain expressed in dB,
whereas the addition of more directors is beyond the “point of diminishing returns” as

x

z

0 dB D � 5.5 dBi

(b) E-plane pattern computed from
a moment method code.

�5

�10

�15

x

z

(a) Array configuration.

Figure 6-21 Two-element Yagi-Uda antenna consisting of a driver of length L ¼ 0:47l and a
director of length 0:42l spaced 0:2l apart. The wire radius for both is 0:00425l.

x

z

0 dB
D � 9.6 dBi

(b) E-plane pattern computed from
a moment method code.

�5

�10

�15
x

z

(a) Array configuration.

Figure 6-22 Three-element Yagi-Uda antenna consisting of a driver of length L ¼ 0:47l, a
reflector of length 0:482l, and a director of length 0:442l, spaced 0:2l apart. The wire radius
for all is 0:00425l. (See Table 6-3.)
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Fig. 6-24 shows. Fig. 6-24 plots the gain versus the number of elements N in the array
(including one reflector and one driver) [10] for an interelement spacing for all elements
of SR ¼ SD ¼ 0:15l. Note that adding one director to increase N from 3 to 4 gives about a
1-dB gain increase, whereas adding one director to increase N from 9 to 10 yields only
about an additional 0.2-dB gain.

The addition of more reflector elements results in a fractional dB increase in gain and
is usually not done. The main effects of the reflector are on the driving point impedance at
the feed point and on the back lobe of the array. Pattern shape, and therefore gain, are
mostly controlled by the director elements. The director spacing and director length are
interrelated, but the more sensitive parameter is the director length, which becomes more
critical as the boom length increases.

An extensive decade-long experimental investigation by Viezbicke [11] at the National
Bureau of Standards (now NIST) has produced a wealth of information on Yagi-Uda
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spacings SR ¼ SD ¼ 0:15l. The conductor dia-
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Green [10] ª 1966 The Institute of Engineers,
Australia.)

c06 4 April 2012; 16:51:8

170 Chapter 6 Wire Antennas



antenna design. An objective of the experimental investigation, conducted several
wavelengths above the ground, was to determine optimum designs for a specified boom
length, LB ¼ SR þ h. Boom lengths from 0.2 to 4:2l were included in the study. Some of
Viezbicke’s work is summarized in Table 6-3, which can be used for design purposes.
Viezbicke’s work and its summaries in [12] and [13] show how to correct the free-space
parasitic element lengths for both the diameter of the conductors used (see Fig. 6-25) and
the diameter of a metal boom (see Fig. 6-26), if a metal boom is used. A metal boom can
be used because the voltage distribution on the parasitic elements goes through a zero at
the element center. Ideally, an infinitely thin metallic boom down the center of the array
would not change the voltage distribution. However, metallic booms of practical size do
have an effect that must be compensated for by increasing the parasitic element lengths.
Alternatively, the parasitic elements can be insulated from the boom, in which case no
compensation is required.

The Yagi-Uda antenna with at least several directors can be viewed as an endfire
traveling wave antenna the supports a surface wave of the slow wave type (i.e., c=v > 1).
That is, the driver-reflector pair launches a wave onto the directors that slows the wave
down to a velocity, v, where v , c. Or, in terms of phase delay, the phase delay per unit
distance along the axis of the array in the forward direction is greater than that of the
ordinary endfire condition. One might expect that the additional phase delay beyond
ordinary endfire required for maximum gain is that of the Hansen-Woodyard condition
for a uniform line source (see Sec. 5.4). If the boom length is quite long, this is
approximately true.

Table 6-3 Optimized Lengths of Parasitic Dipoles for Yagi-Uda Array Antennas
of Six Different Boom Lengths, LB

d/λ5 0.0085
Boom Length of Yagi-Uda Array, λ

SR 5 0.2λ 0.4 0.8 1.20 2.2 3.2 4.2

Length of reflector, LR=l 0.482 0.482 0.482 0.482 0.482 0.475

L
en
g
th

o
f
d
ir
ec
to
r,
L
D
n
=
l

D1 0.442 0.428 0.428 0.432 0.428 0.424
D2 0.424 0.420 0.415 0.420 0.424
D3 0.428 0.420 0.407 0.407 0.420
D4 0.428 0.398 0.398 0.407
D5 0.390 0.394 0.403
D6 0.390 0.390 0.398
D7 0.390 0.386 0.394
D8 0.390 0.386 0.390
D9 0.398 0.386 0.390
D10 0.407 0.386 0.390
D11 0.386 0.390
D12 0.386 0.390
D13 0.386 0.390
D14 0.386
D15 0.386

Spacing between directors ðSD=lÞ 0.20 0.20 0.25 0.20 0.20 0.308
Gain relative to half-wave dipole, dBd 7.1 9.2 10.2 12.25 13.4 14.2
Design curve (Fig. 6-25) ðAÞ ðCÞ ðCÞ ðBÞ ðCÞ ðDÞ
Front-to-back ratio, dB 8 15 19 23 22 20

Source: P.P. Viezbicke, “Yagi Antenna Design,” NBS Tech. Note 688, National Bureau of Standards, Washington, DC,
Dec. 1968.
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The director currents on a well-designed Yagi are nearly equal as Fig. 6-27 indicates
[6]. If the partial boom length h, as measured from the driver to the furthest director (see
Fig. 6-22), is long ðh�lÞ, the Hansen-Woodyard condition requires that the phase dif-
ference between the surface wave and a freespace wave at the director furthest from the
driver (the terminal director) be approximately 180�. Thus,
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Figure 6-26 Graph showing effect of supporting metal boom on the length of Yagi parasitic
elements. (From [11]. P. Viezbicke, “Yagi Antenna Design,” NBS Technical Note 688, U.S.
Government Printing Office, Washington, DC, Dec. 1976.)
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hβg � hβ ¼ π ð6-43Þ
or

l=lg ¼ c=v ¼ 1þ l=2h ð6-44Þ
where βg is a guided phase constant, or wavenumber, along the forward axis of the array,
lg represents the corresponding guided wavelength, and l is the unguided (free-space)
wavelength. Note that βg ¼ �β cos θo � �βðc=vÞ and recall that c=v > 1 implies
cos θoj j > 1. Eq. (6-44) is plotted as the upper dashed line in Fig. 6-28.
Experimental work by Ehrenspeck and Poehler [9] showed that the optimum terminal

phase difference is about 60� for short Yagis, rising to about 120� for 4l , h , 8l, and
then approaching 180� for h > 20l. This is the solid curve in Fig. 6-28. Various data for
Yagis and other endfire structures indicate that the optimum c=v values lie on or just
below the solid curve in the shaded area. Other surface wave structures, with more
efficient surface wave excitation than the Yagi, can have optimum c=v values that lie in
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Figure 6-27 Relative current amplitudes for a 27-element Yagi array (Used with permission
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the shaded region nearer to the dashed lower bound, LB, curve but all of these surface
wave structures approach the Hansen-Woodyard condition if they are very long.

Viewing the directors as a reactive surface over which the surface wave travels, and
noting from Table 6-3 that director lengths tend to be shorter for longer boom lengths,
lead us to surmise that the surface wave couples less to the reactive surface for long
boom lengths so that the total phase delay is not excessive and falls on the solid curve in
Fig. 6-28. Examining Table 6-3 for those arrays with a director spacing SD ¼ 0:2l shows
that indeed the directors tend to be shorter for longer boom lengths.

The Yagi is one of the more popular antennas used in the HF–VHF–UHF frequency
range. It provides moderately high gain while offering low weight and low cost. It has a
relatively narrow bandwidth (e.g., a few percent), which may be improved somewhat by
using feeds other than a dipole, such as a folded dipole. The folded dipole also provides a
higher input impedance than a dipole even though the driving point impedance of both are
usually reduced considerably from their self-impedances by mutual coupling effects.
Further, increased gain can be obtained by arraying or “stacking” Yagi antennas. Maxi-
mum gain results for a separation of almost one wavelength (see Fig. 8-16). Thus, for a
given application, if a somewhat narrow bandwidth can be tolerated, the Yagi-Uda
antenna can provide good gain (e. g., 9–12 dB) at low cost.

EXAMPLE 6-1 TV Channel 12 Yagi Antenna Design

A 12-element Yagi for TV channel 12 at 205.25 MHz is to be designed using 1-cm-diameter
elements insulated from a metallic boom [21]. The boom length is to be 2:2l. Table 6-3
indicates that 0:2l spacing is required. The wavelength at 205.25 MHz is 1.46 m. Thus, the
spacing between all elements is 29.2 cm. To obtain the element lengths, the following four
steps are followed:

1. Plot the element lengths from Table 6-3 on the design curves “B” in Fig. 6-25. The
design curves are for conductor diameters of 0:0085l.

2. Since the 1-cm conductor to be used is 0:0065l in diameter, the element lengths in the
table must be increased slightly. This is accomplished by drawing a vertical line at
0:0065l on the horizontal axis. This line intersects the two applicable design curves,
which gives the compensated lengths of the reflector and first director:

LR ¼ 0:483 l, LD1 ¼ 0:4375l

Notice the distance along the director “B” curve between the intersection of the vertical
line at 0:0065l and the location of the first director length from step 1 above. All the
directors must be increased in length by an amount that is determined by this distance.

3. With a pair of dividers, measure the distance on the B director curve between the initial
length and corrected length of the first director. Slide each of the other director lengths
to the left by this amount to determine their compensated lengths:

LD2
¼ 0:421l

LD3
¼ LD10

¼ 0:414l

LD4
¼ LD9

¼ 0:405l

LD5
¼ LD6

¼ LD7
¼ LD8

¼ 0:398l

4. The fourth step generally is to correct the lengths for the metallic boom using Fig. 6-26, if
one is used. In this case, the boom ismetallic, but the elements are insulated from it and no
correction factor is required. (See Prob. 6.4-5.)
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Calculated patterns for Example 6-1 using numerical methods (e.g., Chap. 14) are
shown in Fig. 6-29 and the calculated directivity is 11.82 dBd, which agrees well with the
gain value of 12.25 dBd in Table 6-3. The calculated input impedance for a dipole driver
is 26:5þ j23:7Ω. The calculated front-to-back ratio is 38.5 dB, owing to the almost total
absence of a back lobe in the calculated pattern.

6.4 FEEDING WIRE ANTENNAS

There are several questions that arise when connecting an antenna to a transmitter or
receiver. What sort of transmission line is best to use? What is the best way to “match”
impedances between the antenna, the transmission line and the transmitter or receiver? Is
it necessary to transform an unbalanced transmission line to a balanced antenna? This
section will provide answers to these questions.

6.4.1 Transmission Lines

Consider an antenna operating in the transmission mode as in Fig. 6-30. Both antenna
systems in Fig. 6-30 employ a transmission line of characteristic impedance Zo between
generator and antenna. Wire antennas are most commonly fed with either coaxial cable or
some form of parallel wire transmission line as shown in Fig. 6-31.

The most common value for Zo of a circular coaxial line is 50 Ohms (real). This is a
compromise among several factors. Zo for maximum power handling in a coaxial line is
about 30 Ohms, for maximum voltage about 60 Ohms, and for minimum conductor losses
Zo is about 77 Ohms [14]. The characteristic impedance of a coaxial cable is primarily
determined by the ratio of the inner and outer diameters according to

Zo ¼ 60ffiffiffiffi
εr

p ln
b

a

� �
ð6-45Þ

Parallel wire transmission lines tend to have higher characteristic impedances with 75 and
300 ohms being common for “twin-lead” and 450 and 600 Ohms being common for open
(i.e., mostly air between conductors, εr ¼ 1) wire transmission line. The spacing between
conductors is the primarily practical determinant for the value of Zo as seen in
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Figure 6-29 Simulated patterns for the 12-element Yagi of Example 6-1.
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Zo ¼ 120ffiffiffiffi
εr

p cosh�1 d

2a

� �
¼ 120ffiffiffiffi

εr
p ln

d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � ð2aÞ2

q
2a

0
@

1
A ð6-46Þ

The advantages of the open-wire line are high-power handling capability and low loss.
At VHF and above, parallel wire lines are seldom used because the spacing between
conductors becomes electrically large enough to disturb the transmission line behavior of
the line. That is, radiation by the transmission line may occur. Parallel wire lines are
balanced transmission lines, whereas coaxial lines are unbalanced lines, as will be
explained in Sec. 6.4.3.

6.4.2 Matching Networks

Consider an antenna in the transmission mode as in the equivalent circuit of Fig. 2-15.
From circuit theory we know that maximum transfer of power from the generator to the
real part of the load provided by the antenna, RA ¼ Ro þ Rr, will occur when the load
impedance, ZA, on the right is the conjugate match of the source impedance, Zg, on the
left. In other words, ZA ¼ Zg for maximum power transfer. For resonant size antennas,
Rr�Ro and thus RA � Rr.

Fig. 6-30 is an extension of Fig. 2-15. Fig. 2-15 is a useful equivalent circuit of an
antenna system that does not show the transmission line connecting the antenna to a
source (transmitter or receiver). When the separation between the antenna and the source
is greater than only about 0.1λ, the connection between the source and antenna must be
treated by transmission line theory. Separations of many wavelengths are common.

Maximum power transfer is not the only consideration when feeding an antenna. Two
other considerations are (1) achieving a minimum amount of power reflected from the
load and (2) achieving a desired current distribution. In general, maximum power transfer
does not guarantee zero reflection from the load.

Minimum reflection at the load can be particularly important when a high-power trans-
mitter is being used. Reflected power results in a standing wave of voltage, VSWR, and of
current, ISWR, on the transmission line. The VSWR produces a voltage, Vmax, on the line
which is greater than the transmitter output voltage,Vo. Thismay result involtage breakdown
on the line in the form of arcing. Further, the reflected power can cause damage to the
transmitter’s output final amplifier and/or cause “frequency pulling” which is a change from
the desired transmission frequency. In cases where high power is not involved, a low VSWR
may be a luxury and not a necessity. This is demonstrated in Table 6-4. For example, a VSWR
of 2:1 leads to 89% power transmission. An 11% reduction in radiated or received power
would not be noticeable on most commercial and amateur communication links.

So how do we achieve a system with a low VSWR on the transmission line, and/or
maximum power transfer? Consider Fig. 6-30a, which shows a single matching network
that provides for a conjugate match at a single frequency. The matching network may be
placed anywhere on the line. In 6-30b, the matching network on the right provides for a
reflectionless match between the antenna impedance, ZA, and the characteristic imped-
ance, Zo, of the line. The matching network on the left provides for a conjugate match
between the source and the transmission line. If the transmission line has very low loss and
the characteristic impedance of the line is essentially pure real, the system in Fig. 6-30 can
provide both a conjugate match for maximum power transfer and zero reflection from the
load. This is the ideal situation. The system in Fig. 6-30a is potentially broader band than
that in Fig. 6-30b.

Matching networks have disadvantages. For example, if a matching network is
designed to obtain a near-perfect match, it will usually be narrow-band. If the matching
network is designed to be broadband, it will not usually yield a near-perfect match at all
frequencies over the band, and sometimes not at any frequencies over the band. Matching
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networks add cost, weight, and power loss to a system and can decrease the bandwidth of
the antenna system. Fortunately, the advantages of using matching networks usually
outweigh the disadvantages.

The radiation quality factor of an antenna,QA, is the approximate inverse of the antenna
bandwidth provided QA > 10. That is, the bandwidth as a percent, Bp, is

Bp � 1

QA

3 100% provided QA > 10 ð6-47Þ

For the system in Fig. 6-41a, the system Q, Qs, comprised of the antenna radiation Q, QA,
and the matching network Q, Qm, is

1

Qs

¼ 1

QA

þ 1

Qm

ð6-48Þ

For example, if QA and Qm ¼ 10 (each individually have a bandwidth of 10%), then the
bandwidth of the system, Qs, is 5%. The desirability for using wideband matching net-
works in many applications is readily apparent.

Since an antenna of efficiency er and a matching network of efficiency em are in series,
the efficiency of the system, es, is the product of the two efficiencies. For example, if the
antenna efficiency is 0.98 and the matching network efficiency is 0.92, the system effi-
ciency is 0.89 and the power loss due to the two efficiencies is about 0.5 dB. The system
Q can be decreased (and bandwidth increased) by introducing loss into the matching
network. But the penalty in doing this is a decrease in system efficiency.

Low-loss broadband matching networks are a challenging design problem and are
beyond the scope of this text. The most general broadband matching problem is the
matching of an arbitrary impedance to another arbitrary impedance over a specified
frequency range within a specified deviation from perfect match. However, the antenna
designer is unlikely to be faced with such an arbitrary problem, because at least one of
the impedances involved, Zo, will be nearly resistive and not very frequency, sensitive.
For serious discussion of broadband matching, the reader is referred to [H.8.2: Munk,
pp. 288-305; H.6: Ant. Eng. Hdbk., 4th ed., Chap. 52].

Table 6-4 VSWR and Transmitted Power for a Mismatched Antenna

VSWR

Percent
Reflected Power
5 Γj j2 3 100

5
VSWR2 1

VSWR1 1

� �2
3 100

Percent Transmitted
Power

5q3 100
5ð12 Γj j2Þ3 100

Maximum Voltage on
Transmission line

5ð11 Γj jÞVo

Return Loss
5 220 log (Γ)

1.0 0.0 100.0 1:00 Vo N dB
1.1 0.2 99.8 1:09 Vo 26:4 dB
1.2 0.8 99.2 1:17 Vo 20:9 dB
1.5 4.0 96.0 1:20 Vo 14:0 dB
2.0 11.1 88.9 1:33 Vo 9:54 dB
3.0 25.0 75.0 1:50 Vo 6:02 dB
4.0 36.0 64.0 1:60 Vo 4:47 dB
5.0 44.4 55.6 1:67 Vo 3:52 dB
5.83 50.0 50.0 1:71 Vo 3:01 dB
10.0 66.9 33.1 1:82 Vo 1:74 dB
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Matching networks employ different hardware at high and low frequencies. At UHF and
low microwave frequencies, distributed tuning devices such as stubs are introduced to
transform the real part of an impedance to that of the transmission line as well as tuning out
the reactive component. At low frequencies reactive tuning is accomplished with variable
capacitors and coils because the electrical dimensions of these lumped elements are small
with respect to the wavelength. One way impedance levels can be changed is with air-filled
coils functioning as a transformer.

Examples of using lumped elements at low frequencies are the L-network and the
Pi-network shown in Fig. 6-32. The L-network uses only reactive elements to provide a
conjugate match between two complex impedances, but the necessary component values
may be difficult to realize in some cases. The Pi-network provides a more flexible
arrangement, in part because there are three variables instead of two [H.6: Ant. Eng. Hdbk.,
4th ed., Chap. 52]. The Pi-network can be used to match a low impedance to a rather high
one, say 50 ohms to many hundred ohms, or 50 ohms to a low impedance of just a few
Ohms. The Pi-network also provides somewhat more control over the (narrow) bandwidth.

Some examples of matching networks used at higher frequencies include stubs, quarter-
wave transformers, cascaded quarter-wave transformers,Chebyshev transformers, binomial
transformers, combinations of transformers and stubs, and tapered lines. A discussion of
these techniques can be found in [H.6: Ant. Eng. Hdbk., 4th ed., Chap. 52].

There are also ways to change the input impedance of an antenna without using a
matching network. For example, the input impedance of a dipole can be changed by
displacing the feed point off-center. If the feed point is a distance zf from the center of the
dipole, the current at the input terminals is

(a) L-section network.

Z2

Z1

(b) Inverted L-section network.

Z1

Z2

(c) Pi-network.

Z1 Z2

Z3

Figure 6-32 Some lumped element matching networks.
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IA ¼ Im sin β
L

2
� zf
�� ��� �� �

ð6-49Þ

In the case of a half-wave dipole as shown in Fig. 6-33, βL=2 ¼ π=2, and this reduces to

IA ¼ Im cos βzf ð6-50Þ
The input resistance (not including ohmic losses) is found from (6-50) in (6-20), giving

RA ¼ I2m
I2A

Rrm ¼ Rm

cos2 βzf

�
L ¼ l

2

�
ð6-51Þ

As the feed point approaches the end of the wire, this result indicates that the input
resistance increases toward infinity. In practice, the input resistance becomes very large as
the feed point moves out. The pattern is essentially unchanged as the feed point shifts. For
longer dipoles, the pattern and impedance differ significantly from the center-fed case as
the feed point is displaced. For example, a full-wave dipole fed a quarter-wavelength
from one end, as shown in Fig. 6-34, will have a current distribution that is significantly
different from the center-fed full-wave dipole of Fig. 6-3c and that has a broadside null in
the pattern.

The off-center feed arrangement is unsymmetrical and can lead to undesirable phase
reversals in the antenna, as shown in Fig. 6-34. A symmetrical feed that increases the
input resistance with increasing distance from the center point of the wire antenna is
the shunt feed. A few forms of shunt matching are shown in Fig. 6-35. We will discuss the
operation of the tee match; the remaining shunt matches behave in a similar fashion.
The center section of the tee match may be viewed as being a shorted transmission line in
parallel with a dipole of wide feed gap spacing. The shorted transmission line is less than
a quarter-wavelength long and thus its impedance is inductive. Capacitance can be
introduced to tune out this inductance by either shortening the dipole length or placing
variable capacitors in the shunt legs. As the distance D is increased, the input impedance
increases and peaks for a D of about half of the dipole length. As D is increased further,
the impedance decreases and finally equals the folded dipole value when D equals the

zf

IA

Im

Figure 6-33 Half-wave dipole with displaced feed.

L = λ

λ/4 Figure 6-34 Current distribution on a full wave dipole for an
off-center feed.
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dipole length. The exact impedance value depends on the distances C and D, and the ratio
of the dipole wire diameter to the shunt arm wire diameter (similar to the folded dipole
behavior). In practice, sliding contacts are made between the shunt arms and the dipole
for impedance adjustment. Shunt matches will radiate, and do so in an undesirable
fashion.

6.4.3 Baluns

We now turn our attention to a separate but related problem of balancing currents on wire
antennas. Many wire antennas are symmetrical in nature, and thus, the currents should
also be symmetrical (or balanced). An example of balanced and unbalanced operation of
a half-wave dipole is shown in Fig. 6-36. In the balanced case, the currents on the
transmission line are equal in magnitude and opposite in direction, which yields very
small radiation from the transmission line for closely spaced conductors. For unbalanced
operation, as illustrated in Fig. 6-36b, the current I1 is greater than I2 and there is a net
current flow on the transmission line leading to uncontrolled radiation that is not in
the desired direction or of the desired polarization. Also, the unbalanced current on the
antenna will change the radiation pattern from the balanced case. Thus, it is clear that
balanced operation is desirable.

Transmission lines are referred to as balanced or unbalanced. Parallel wire lines are
inherently balanced in that if an incident wave (with balanced currents) is launched down
the line, it will excite balanced currents on a symmetrical antenna. On the other hand, a
coaxial transmission line is not balanced. A wave traveling down the coax may have a
balanced current mode, that is, the currents on the inner conductor and the inside of the
outer conductor are equal in magnitude and opposite in direction. However, when this wave
reaches a symmetrical antenna, a current may flow back on the outside of the outer con-
ductor, which unbalances the antenna and transmission line. This is illustrated in Fig. 6-37.
Note that the currents on the two halves of the dipole are unbalanced. The current I3
flowing on the outside of the coax will radiate. The currents I1 and I2 in the coax are
shielded from the external world by the thickness of the outer conductor. They could
actually be unbalanced with no resulting radiation; it is the current on the outside surface of
the outer conductor that must be suppressed. To suppress this outside surface current, a
balun (contraction for “balanced to unbalanced transformer”) is used.

(a) Delta match. (b) Tee match.

C

D

(c) Gamma match.
Figure 6-35 Shunt matching
configurations.

I1

I2

I1

I2

(a) Balanced currents, I1 = I2. (b) Unbalanced currents, I1 > I2.

Figure 6-36 Balanced and unbal-
anced operation of a center-fed half-
wave dipole.
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The situation in Fig. 6-37 may be understood by examining the voltages that exist at
the terminals of the antenna. These voltages are equal in magnitude but opposite in phase
(i.e., Va ¼ �Vb). Both voltages act to cause a current to flow on the outside of the coaxial
line. If the magnitude of the currents on the outside of the coax produced by both voltages
are equal, the net current would be zero. However, since one antenna terminal is directly
connected to the outer conductor, its voltage Vb produces a much stronger current than the
other voltage Va.

In other words, the current I2, upon reaching terminal “b” in Fig. 6-37, splits with
I2 � I3 going onto the dipole arm and I3 going down the outside of the coax. What a balun
does is force I3 to zero or nearly so, such that the currents on the two arms of the dipole
are the same or nearly so. Thus, a balun transforms the balanced input impedance of the
dipole to the unbalanced impedance of the coaxial line such that there is no net current on
the outer conductor of the coax.

To illustrate how a balun works, consider the sleeve (or bazooka) balun in Fig. 6-38.
The sleeve and outer conductor of the coaxial line form another coaxial line of charac-
teristic impedance Z 0

o that is shorted a quarter-wavelength away from its input at the
antenna terminals. The equivalent circuit for Fig. 6-37 is that of Fig. 6-39a. The equiv-
alent circuit of Fig. 6-38 is that of Fig. 6-39b, which shows that both terminals see a very
high impedance to ground. Thus, the situation in Fig. 6-39b is equivalent to the balanced
condition of Fig. 6-39c wherein the currents I1 and I2 are equal.

V

Vb

a

I1

I1I2

I3

I2 − I3

Figure 6-37 Cross section of a coaxial trans-
mission line feeding a dipole antenna at its
center.

I1

I1

I2

I2

4
λ

Vb

Va

Zo

Figure 6-38 Cross section of a sleeve balun
feeding a dipole at its center.
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An easily constructed balun form is the folded balun shown in Fig. 6-40. The quarter-
wavelength of coax from the a terminal to the outer conductor of the transmission
line does not affect the antenna impedance ZA. The extra quarter-wavelength of coax
together with the outer conductor of the main transmission line forms another equivalent
transmission line, which is a quarter-wavelength long and is shorted at C. Therefore, the
short circuit at C is (ideally) transformed to an infinite impedance at the antenna term-
inals, which is in parallel with ZA, leaving the input impedance unchanged. The quarter-
wavelength line induces a cancelling current on the outside of the coaxial transmission
line, so that the net current on the outside of the main coax below point C is zero, as
shown in Fig. 6-40a.

The split-coax balun in Fig. 6-40b functions in the same way as the folded balun. The
sleeve, folded and split-coax baluns are, of course, not broadband because of the quarter-
wavelength involved in their construction.

Broadband baluns can be constructed by tapering a balanced transmission line to an
unbalanced one over at least several wavelengths of transmission line length as indicated
in Fig. 6-41. Fig. 6-41a shows a balanced transmission line tapering to an unbalanced
microstrip line and Fig. 6-41b illustrates a balanced line tapering to an unbalanced
coaxial line.

The baluns we have considered thus far are useful from microwave frequencies down
to VHF. From VHF down to lower frequencies, it is impractical in many cases to employ
these configurations and transformers are used as Fig. 6-42 indicates. Fig. 6-42a is an air
core transformer arrangement useful at lower frequencies. Fig. 6-42b is bifilar wound
ferrite core balun that can be used from VLF through UHF.

Impedance transformation can also be included in a balun for matching purposes. For
example the “four to one” balun in Fig. 6-43 will transform an unbalanced 75-Ω
impedance to one that is 300-Ω balanced. Such a balun is useful with a folded dipole.

VaVb ZA

ZL

Zo Zo

(a) Equivalent circuit of coax-fed dipole in Fig. 6-37.

I2(I2 − I3)
I1

+− VaVb ZA

ZL

Zo

Zo

Zo

(b) Equivalent circuit of sleeve balun-fed dipole in Fig. 6-38.

I2

4
λ

I1

+−

VaVb ZA

ZL

Zo Zo

(c) Final equivalent circuit for Fig. 6-38 with quarter-wave
      transmission line removed, I1 = I2.

I2
I1

+−

Figure 6-39 Equivalent circuits for a dipole fed from a coaxial transmission line of characteristic impedance Zo
and load impedance ZL.
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To understand how the 4:1 balun works, consider Fig. 6-43a, which shows the 300-Ω load
split into two 150-Ω impedances in series and still balanced. Note that the midpoint
between the two terminals is at zero potential with respect to ground and therefore may be
grounded as in Fig. 6-43b. Also in Fig. 6-43b, a half-wavelength of coax is used to
transform the negative terminal to a positive terminal which is then connected to the
upper positive terminal. This places the two 150-Ω impedances in parallel and unbalanced

Unbalanced
line

Balanced
line

Unbalanced
line

(a) Tapered microstrip balun. (b) Tapered coaxial balun.

E-E

D-D

C-C

B-B

A-A

DD

E E

CC

BB

AA

Figure 6-41 Broadband baluns.

(a) Folded balun. (b) Split-coax balun.

λ
4

Vb Va

C

λ
4

Figure 6-40 The folded balun and the split-coax balun equivalent.
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Shield

Balanced
line

Unbalanced
line

Unbalanced
line

(a) Air core transformer
      balun.

(b) Ferrite core bifilar
      wound wire balun.

Balanced
line

Figure 6-42 Baluns used at lower frequencies.

(Unbalanced to ground)

300 Ω balanced to ground

300 Ω balanced to ground

150 Ω

150 Ω

Zero to ground

300 Ω (Balanced)

(Unbalanced)

(a) 300 Ω load replaced with
 two 150 Ω loads in series.

(b) λ/2 line puts two 150 Ω loads in
 parallel, transforming 300 Ω
      balanced to 75 Ω unbalanced.

(c) Half-wave balun.

75 Ω

75 Ω

75 Ω

� �

�

�
�
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�
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�

λ
2

λ
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Figure 6-43 A half-wave balun that provides an impedance setup ratio of 4:1.
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as seen from the coaxial line on the left. The antenna load still sees 300-Ω balanced. Thus
we have a 4:1 balun as shown in Fig. 6-43c. A balun that leaves the impedance unchanged
is often referred to as a “one to one” balun.

6.5 LOADED WIRE ANTENNAS

The characteristics of a wire antenna can be altered by incorporating resistance, induc-
tance, and/or capacitance into the wire. This is called “loading” and can be accomplished
either distributively or discretely with lumped R, L, and/or C elements.

6.5.1 Lumped Loaded Wire Antennas

Lumped loading is usually employed for one of several reasons: (1) to obtain multi-band
operation, (2) to alter the current distribution for purposes of pattern control (e.g., phase
shifter), (3) to physically shorten the antenna.

Multi-band operation can be achieved by means of a “tuned trap” which is a resonant
parallel LC circuit. Fig. 6-44 achieves two-band operation at high and low frequencies fH
and fL, respectively through the use of a trap resonant at fH. When operation takes place at
fH, the trap has a very high impedance effectively isolating the upper section of the
antenna from the lower section, thereby producing a l=4 monopole at the higher fre-
quency. With the trap resonant at fH, the trap behaves as an inductor when operation takes
place at fL, physically lengthening the antenna at the lower frequency. The amount of
physical lengthening at fL depends on the L=C ratio of the trap elements [H.8.1: ARRL
Antenna Book]. Without the trap, the monopole is about one-half wavelength at the
higher frequency, fH, and is very difficult to impedance match because of the current
minimum at the antenna input (see Prob. 6.1-4).

In many instances it is desirable to obtain more gain from a (vertical) monopole than
that provided by a quarter-wavelength monopole. To obtain more gain, a 3l=4 or 7l=8
monopole may be used as Fig. 6-45 illustrates. In practice, the l=4 stub is usually
replaced by an inductor. Both the stub and its inductor substitute provide the necessary
phase shift to place the current on the upper and lower portions of the monopole in phase
as indicated. Alternatively, the inductor may be roughly thought of as the wire in the stub
coiled into a coil.

The purpose of the series inductance at the base of the 3l=4 monopole is to improve
the VSWR. Fig. 6-46a shows the input impedance with the base inductor in place. Note

L
λL/4

λH/4

C

1

LC√—–fH �

Figure 6-44 A trap monopole antenna.
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that a zero reactance occurs at 860 MHz. Fig. 6-46b shows the VSWR referenced to 50
Ohms. The VSWR curve could be made more symmetrical by slightly increasing the
inductance at the base.

The far-field pattern is shown in Fig. 6-46c. Note the strong broadside radiation
compared to the 3l=2 dipole case in Fig. 6-4. The gain of the 3l=4 monopole is at least
3dB greater than the l=4 monopole, or about 8 to 9 dBi [H.3: Kraus, 3rd ed., p. 824].

Another form of common lumped loading is the top-loaded monopole shown in
Fig. 6-47 (see also Fig. 3-10b). If the monopole is without top loading and h , l=5, its
radiation resistance will be half of (2-172) for the short dipole whose current goes to zero
at the free space end, or

Rr ¼ 40π2 h

l

� �2

ð6-52Þ

Recall that the total length of the dipole is Δz whereas the height of the monopole is h
(i.e., Δz ¼ 2h). If we can make the current on the monopole be uniform, then the radi-
ation resistance will be four times greater since the radiation resistance of a monopole
with uniform distribution will be half that of (2-169), or

Rr ¼ 160π2 h

l

� �2

ð6-53Þ

as given in (3-15) and discussed in Sec. 3.3.1.
The uniform current distribution can be achieved, or nearly achieved, by the incor-

poration of the top load in Fig. 6-47. The top load contains that portion of the current that
goes to zero at the end of a linear non-loaded monopole thereby rendering the vertical
current portion nearly uniform. With the addition of the top load, the radiation resistance
is increased by at least a factor of four, and the reactance is less capacitive because the

0.48λ

0.24λ

4

L

a = 0.00254 m
f = 860 MHz
L = 0.0156   H
δ

μ
50 Ω

2a

λ
δ

= 12 a Figure 6-45 Three-quarter wavelength loaded
monopole with series loading.
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monopole appears to be electrically longer. That is, the longer-appearing monopole is
more inductive.

Theoretically, we could use an inductor or coil of wire at the very end of the monopole
to accomplish a similar result to that of the top load. For practical reasons, this is not
often done.

Disc

(a)

h

(b)

h

Figure 6-47 Loaded and unloaded monopoles. (a) End loaded monopole. (b) Unloaded
monopole.
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Figure 6-46 Performance of the three-quarter wavelength loaded monopole in Fig. 6-45.
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6.5.2 Distributively Loaded Wire Antennas and Fractals

One form of distributive loading is resistive. The addition of resistance to the antenna
conductor will lower the radiation Q but increase the bandwidth at the expense of antenna
efficiency. In part because there are other more efficient ways of increasing antenna
bandwidth, resistive loading of an antenna is seldom used.

A more common form of distributive loading is to use inductance to shorten the
physical antenna length while preserving electrical length as we saw with lumped
loading. Fractal geometries provide a way of naturally introducing inductive loading into
an antenna. A fractal geometry is generated via the successive iteration of a generator
shape. For example, in Fig. 6-48a the first iteration is the application of the generator
shape (i.e., the triangle-like perturbation in the arm of the monopole). The second iter-
ation is obtained from the first by applying the generator shape to the straight segments of
the first iteration, and so on to higher-order iterations. Another example is the Sierpinski
gasket monopole in Fig. 6-48b, which uses triangular voids as the generator shape in the
original solid triangular plate.

Examination of Fig. 6-48a suggests distributive loading. That is, the deviation from
straight wire geometry to the Koch fractal shape increases primarily the inductance
between various parts of the Koch monopole. The increase in inductance allows the
monopole to be shorter than the corresponding linear monopole and still be resonant.

Some fractals possess a property called self-similarity, wherein small regions of the
geometry duplicate the overall geometry on a reduced scale. This property can lead to
multi-band operation of the antenna. Such is the case with the Sierpinski gasket monopole
of Fig. 6-48b. The overall size of the Sierpinski monopole determines the lowest
frequency of operation while the individual voids help determine one or more higher
frequencies of operation. The voids are a form of distributive loading.

Fractals were introduced to the antenna community in 1996 and have generated a bit
of controversy. Originally fractals were thought to be broadband, but it now known that
they can only be multiband. Fractals do indeed work but not necessarily better than
other known antenna geometries [H.6: Modern Antenna Hdbk, Chap. 10; H.8.11: Hansen,
pp. 74–81]. This is shown by Best in [H.6: Modern Antenna Hdbk, Chap. 10], where he
shows that for the same wire length, the normal mode helix (see Fig. 7-12) has a lower

0 1 2 3

first iteration

(a) Koch monopole, three iterations.

(b) Sierpinski gasket monopole, first and fourth iterations.

fourth iteration
Figure 6-48 Two examples of fractal
antennas.
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resonant frequency than the Koch monopole because it is, in effect, a better inductor. In
the case of the Sierpinski monopole, Best shows that the multiple resonances are not due
to the details of the fractal geometry but can be duplicated by nonfractal slit voids in the
triangular plate. In summary, fractal geometries through distributive loading can provide
benefits such as reduced antenna size and possibly multi-band operation, but probably not
in an optimum way [16].

Another form of distributive loading is dielectric loading. If an antenna such as a
resonant quarter-wave monopole is embedded in an infinite dielectric, its resonant length
is shortened by 1=

ffiffiffiffi
εr

p
. If the medium is not infinite, and the outer medium is air, the

shortening will be less. Further, the larger εr, the more the radiation resistance is reduced
with implications for impedance matching complexities and reduced matching circuit
efficiency. And finally, bandwidth is also reduced as εr is increased. Lumped loading
techniques are usually preferred over dielectric loading [H.9.1: Fujimoto, Chap. 3].

6.6 GROUND PLANE BACKED WIRE ANTENNAS

Earlier in the chapter we saw that the impedance bandwidth of a wire antenna could be
improved by making a wire thicker. In this section, three ways of improving the gain of a
wire antenna using flat metal plates are presented. The first way employs a single flat
plate, and the next two each employ two flat plates. In the first two antennas, the flat
plates function as a reflector to provide unidirectional radiation. In the third case, which
also provides unidirectional radiation, one of the plates functions as a reflector and the
other provides for a cavity-like resonance. These kinds of reflector antennas are simple to
construct and cost effective. They sometimes are referred to as aperiodic reflectors. There
is, of course, another major kind of reflector that uses curved surfaces, the most common
one being the focused parabolic reflector. The parabolic reflector is treated in detail in
Chap. 9.

6.6.1 The Flat Plate Reflector

The simplest reflector system is a dipole parallel to a large flat plate and positioned a
distance, s, from it as shown in Fig. 6-49. When the flat plate is infinite, the method of
images (Sec. 2.3) can be used to replace the dipole and infinite flat plate by two
parallel dipoles a distance 2s apart. The image element will differ in phase by 180�
from the original dipole and thus the pair will be a two-element endfire array giving us

l2

l1

2L

z

x

y

s

Figure 6-49 Dipole parallel to a flat rectangular
plate.
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the radiation pattern in the half-space x > 0. The pattern in the H-plane is given by
(3-71) and is illustrated in Fig. 3-20. The pattern in the E-plane is (3-71) multiplied
by (3-3) and results in the narrower pattern in Fig. 3-20.

The two-element array model in Sec. 3.5 is an ordinary endfire array when s ¼ l=4.
For s , 0:25l some superdirectivity will occur because the phase delay from image to
dipole exceeds that of ordinary endfire. For s , 0:25l the directivity can exceed
2:15 dBiþ 3:0 dB ¼ 5:15 dBi as in Fig. 6-50 for the lossless Ro ¼ 0 case [H.3: Wolff,
p. 297]. When ohmic losses, Ro, are included, the gain peaks at about s ¼ 0:15l but is still
above 5.15 dBi. Fig. 6-50 is an example of superdirectivity not being the same as
supergain because of ohmic losses (see Sec. 5.5).

The proximity of the dipole to the plate affects not just the gain but the input
impedance of the dipole as well. This is because there is a coupling (see Sec. 8.7) between
the dipole and the plate (or alternatively between the dipole and its image). The input
resistance of the dipole as a function of the distance s is shown in Fig. 6-51. The deviation
in input resistance from the 73Ω value given in (6-17) is due to the interaction of the
dipole with the flat plate.

When the plate is not infinite, its finite sizewill affect the pattern, affect the gain some, and
have a very minor effect on the input impedance. These effects are not just due to the size of
the plate but diffraction (see Sec. 16.7) from the edges of the plate. The half-power (HP)
beamwidth is noticeably affected by the diffraction. Consider a half-wavelength dipole a
quarter-wavelength in front of a flat plate. Then for a plate 1l by 1l, HP in theH-plane is 93�,
for a 2l by 2l plate HP is 113�, and for a 3l by 3lHP is 111� [H.3:Milligan, 2nd. ed., p. 227].
By contrast, the half-power beamwidth for the infinite ground plane is 120� (see Ex. 3-5 and
Prob. 3.5-5).

The size of the plate and its diffraction determine the front-to-back ratio. For example,
for a plate 1l by 1l, the front-to-back ratio is about 16 dB, for 2l by 2l about 22 dB, and
for 3l by 3l about 28 dB [H.3: Milligan, 2nd ed., p. 227]. For most applications, a 1.5l
by 1.5l plate is adequate. The plate does not have to be solid, but instead can be replaced
with a grid of wires or rods in the same plane as the incident electric field vector.

Fig. 6-52 presents a nomograph for determining the transmission through a grid of
wires. The nomograph applies to the component of the electric field tangential to the
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Figure 6-50 Calculated gain of a half-wavelength dipole vs. distance from a flat plate
reflector. (Reproduced by permission from [H.3: Wolff], Norwood, MA: Artech House, Inc.
1988 ª by Artech House, Inc.)
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wires in the grid. The wires are of diameter 2a with a spacing s between centers of the
wires. To use the nomograph, a straight construction line is drawn from a location on the
left corresponding to the spacing in wavelengths to a second point on the right corre-
sponding to the ratio of the spacing to the wire radius. Where the construction line crosses
the line in the middle labeled “Transmitted Power (dB)” determines the transmitted
power. The formula used to construct the nomograph may be found in [17]. The accuracy
of the nomograph was found to be better than �1dB when compared with transmitted
power experimental data. The nomograph also applies to a grid of perpendicular wires by
separately treating the other orthogonal set of parallel wires forming the mesh.

As an example, Fig. 6-52 predicts that for a wire spacing of 0:15l, and a spacing to
wire radius ratio of 12.5, the transmitted power is �13� 1 dB, corresponding to a
reflected power between approximately 94% and 96% of the incident power. This
represents a small loss in reflected power of between about 0.3 and 0.2 dB, respectively, a
negligible uncertainty for most applications. Thus, the nomograph provides reasonable
guidance for wire grid reflector design. The use of a wire grid reduces the weight and
wind loading of the antenna while providing an efficient reflecting surface.

6.6.2 Corner Reflector Antennas

Another practical antenna that produces a gain of 10 to 12 dB over a half-wave dipole is
the corner reflector antenna invented by J. D. Kraus in 1938 [4]. His first experimental
model was a 90� corner reflector. Although other corner angles can be used, the 90�
corner illustrated in Fig. 6-53 is the most practical and the one that will be discussed here.
The corner reflector is used as a gain standard at UHF frequencies.

The corner reflector antenna can be easily analyzed using the method of images and
array theory. Consider Fig. 6-54 that shows the source and its three images. The array
factor contribution from the feed element 1 and image from 4 from (3-67) is
2 cos½βs cosðφÞ�. The contribution from images 2 and 3 will be the same but rotated 90�
and of opposite phase, or �2 cos½βs cos ð90��φÞ�. Thus, if we assume that the con-
ducting reflecting sheets are infinite in extent, the array factor in the xy-plane (H-plane)
valid in the region �45�#φ# 45� is

AFðθ ¼ 90�, φÞ ¼ 2 cosðβs cosφÞ � 2 cosðβs sinφÞ ð6-54Þ
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It follows that in the xz-plane or E-plane, the array factor may be constructed by a
somewhat similar reasoning process:

AFðθ,φ ¼ 0�Þ ¼ f�2þ 2 cos½βs cosð90� � θÞ�ggðθÞ ð6-55Þ
where the element factor gðθÞ is usually that of a half-wave dipole.

The pattern shape, gain, and feed point impedance will all be a function of the feed-to-
corner spacing s (see Fig. 6-55a). For the 90� corner reflector, the pattern will have no
minor lobes within �45�#φ# 45� and good directivity if 0:25l# s# 0:75l. The
directivity will be greatest at s ¼ 0:5l [35] when the conducting plates are of infinite
extent, but the input impedance of a dipole feed will be high (i.e., around 125Ω).
Reducing the spacing to 0:35l will in theory produce a 70-Ω input impedance with a
negligible decrease in gain. Often, a bow tie (see Fig. 7-34) is used for the feed because it
has superior impedance bandwidth properties compared to an ordinary linear dipole.

Making the conducting plates of finite extent is, of course, necessary for a practical
design. It can be shown by ray tracing that a length value of L ¼ 2s is a reasonable
minimum length so that the main beam is not degraded by the finite extent of the
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conducting plates. The dimension H is usually chosen to be from 1.2 to 1.5 times the
length of the feed so as to minimize the direct radiation by the dipole feed into the back
region. The finite extent of the plates will result in a pattern broader than that predicted
for infinite plates as in, for example, Fig. 6-55. The effect of the finite plate size on the
feed driving point impedance is usually negligible. Additional discussion of the corner
reflector can be found in [H.3: Miligan, 2nd ed., pp. 237–241].

6.6.3 Backfire Antennas

The short backfire antenna (SBFA) is an efficient antenna that is simple and compact. The
SBFA consists of two flat parallel reflectors of different sizes, usually spaced about 0:5l
apart as shown in Fig. 6-56. The dipole is usually positioned midway between the
reflectors. The arrangement is sometimes called a leaky cavity resonator, but its radiation
mechanism is not completely understood, in part because two or more radiation
mechanisms are involved. The primary radiation direction from the SBFA is normal to the
smaller reflector.
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Figure 6-54 Right-angle corner reflector
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for reflections.
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The SBFA is of interest because of its several advantages: simple to design and
construct; lightweight and compact; high gain for its size; low side lobes and back lobes;
dual polarization and circular polarization capability; easy to impedance match; and high-
power capability [H.8.11: Kumar, Chap. 5]. SBFAs are good candidates for use in antenna
arrays and for applications where low weight is a strong consideration, such as on
satellites and missiles.
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Figure 6-55 Principal plane patterns, jAFj, for a right angle corner reflector composed of two
(semi-infinite) half-planes and a l=2 dipole feed. (Only the 3l=4 spacing is used in the E-plane.)

Crossed sleeve dipole

Small reflector

Rim
Large reflector

Figure 6-56 A short backfire antenna with crossed dipoles between the small and large
reflectors. (Reproduced by permission from [H.8.12: Kumar and Hristov] Norwood, MA:
Artech House, Inc. 1989 ª by Artech House, Inc.)
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Dod [18] performed an experimental investigation of the SBFA shown in Fig. 6-56.
His investigation shows the effect of the small disc size on half-power beamwidth, HP,
and side lobe level, SLL, when the large reflector is 2:0l in diameter. As the size of the
small reflector is increased, HP is reduced and SLL increases. This behavior may suggest
that the small reflector is acting like a director element in a Yagi because the small
reflector diameter is less than its resonant diameter of about 0:58l. This behavior is
similar to the Yagi directors in Sec. 6.3 being shorter than their resonant length. Dod also
experimented with the large reflector 1:5l in diameter. In this case the same trends were
found, but HP was smaller and SLL higher than for the larger diameter large reflector.

Fig. 6-57 shows the gain dependency on the size of the small reflector [18]. The curves
tend to peak near the resonant size of the disc. The gain for the 2:0l large reflector gives a
higher gain than the 1:5l large reflector when the small reflector diameter is near resonant
size. The H-plane HP is about 37� and the E-plane HP about 34� when the large and small
reflectors are 2:0l and 0:5l, respectively. If a rim 0:5l high had been used, the gains
would have been higher than in Fig. 6-57.

Fig. 6-58 shows the VSWR for the SBFA when the large reflector is 2:0l in diameter
[18]. Using VSWR ¼ 2 :1, the impedance bandwidth for this design is only about 3:3%.
The low VSWR at 1.5 GHz was largely obtained by adjusting the length of the sleeves
(see Sec. 7.5) on the dipoles and adjusting the length of the dipoles themselves. The
impedance bandwidth can be improved at some expense to the gain by adjusting
the dipole location relative to the large reflector [19, 20].

The curve in Fig. 6-58 is indicative of resonance behavior that may be interpreted
either as a cavity resonance, or possibly a Yagi type resonance if one views the SBFA as
behaving like a three-element Yagi with a single director and a super reflector. The
parameters in Fig. 6-58 are typical ones for the SBFA except for the rim height which
often is larger. Fig. 6-59 shows a typical SBFA pattern. The principal plane patterns are
usually very similar. Side lobes are typically �20 dB or lower and back lobes about
�30 dB. The pattern bandwidth is normally much larger than the impedance bandwidth
for a typical design.
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The rim on the large reflector in Fig. 6-56 has a strong effect on the side and back lobes
as well as the gain. It has been found that a rim height on the order of 0:5 to 0:6l can add
as much as 5 dB to the gain [22] compared to no rim at all. Define an antenna aperture for
the SBFA as being a plane area the size of the large reflector and resting on its rim.
Assuming the circular aperture in Fig. 6-56 is the effective aperture, and then using (4-27)
with Ae ¼ Ap, where Ap is the physical aperture, the gain of the antenna would be

G ¼ 4π
l2

Ap ¼ 4π
l2

ðπ � 1:0l2Þ ¼ 39:48 ¼ 16 dBi ð6-56Þ
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This is consistent with measured gains reported in [21]. The assumption that the physical
aperture is the effective aperture implies a uniform aperture distribution and represents a
difficult to achieve upper bound on the gain. (Recall that the maximum directivity of the
broadside line source in Chap. 5 occurred when the line source had a uniform distribu-
tion.) However, near field measurements have indicated that the aperture has a cosinu-
soidal distribution and that this distribution extends beyond the rim creating a virtual
aperture larger than the physical aperture [22]. This helps explain the unexpectedly high
values of gain. The extension of the aperture fields beyond the edge of the rim can be
explained by diffraction theory in Chap. 16. Diffraction theory can also explain why the
best rim height is 0:5 to 0:6l:

The SBFA is easier and more economical to build than a parabolic dish and can produce
somewhat better gains for the same diameter and less depth. Further, the SBFA produces as
much gain as a Yagi 10 times longer in the boom length [23]. Thus, it is not surprising that a
SBFAwas used for communications in the Apollo spacecraft program, where a compact,
lightweight, high-gain antenna was required on the command module.

6.7 WIRE ANTENNAS ABOVE AN IMPERFECT GROUND PLANE

The operation of low-frequency (roughly VHF and below) antennas is affected signifi-
cantly by the presence of typical environmental surroundings, such as the Earth, build-
ings, and so forth. In Sec. 2.3, we discussed the principles for analyzing antennas above a
perfect ground plane. A perfect ground plane in its ideal form is an infinite, plane, perfect
conductor. It is well approximated in practice by a planar good conductor that is large
relative to the antenna extent. Image theory from Sec. 3.3 reveals that an antenna above a
perfect ground plane, or an approximation of it, has an equivalent form that is an array.
Array theory can then be used to obtain the radiation pattern above the ground plane.

In this section, we consider ground planes that are not well approximated by a perfect
ground plane. Since low-frequency antennas are most affected by their surroundings and
low-frequency antennas are usually wire antennas, the illustrations will be for wire
antennas above a ground plane. The general principles can, however, be applied to many
antenna types.

A ground plane can takemany forms, such as radial wires around amonopole, the roof of
a car, or the real Earth. In many situations, the Earth is well approximated as being infinite
and planar, but it is a poor conductor. Good conductors have conductivities on the order of
107 S=m. Earth conductivity varies greatly, but is typically 10�3 to 123 10�3 S=m with
rich soil at the high end and rocky or sandy soil at the low end. With these low conduc-
tivities, electric fields generated by a nearby antenna penetrate into the Earth and excite
currents that, in turn, give rise to σjEj2 ohmic losses. This loss appears as an increase in the
input ohmic resistance and thus lowers the radiation efficiency of the antenna.

6.7.1 Pattern Effects of a Real Earth Ground Plane

The pattern of an antenna over a real Earth is different from the pattern when the antenna is
operated over a perfect ground plane. Approximate patterns can be obtained by using
image theory. The same principles discussed in Sec. 3.3.4 for images in perfect ground
planes apply, except that the strength of the image in a real ground will be reduced from
that of the perfect ground plane case (equal amplitude and equal phase for vertical ele-
ments, and opposite phase for horizontal elements). The strength of the image can be
approximated by weighting it with the plane wave reflection coefficient for the appropriate
polarization of the field arriving at the ground plane. To illustrate, consider a short vertical
dipole a distance h above a ground plane, shown in Fig. 6-60 together with its image. There
is a direct and a reflected ray arriving in the far field. As can be seen, the reflected ray
appears to be coming from the image antenna. The primary source and its image form an
array. The electric field above the ground plane for this example, using (2-74a), is
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Eθ ¼ jωμ sin θ IL
e�jβR1

4πR1

þ ΓVIL
e�jβR2

4πR2

� �
ð6-57Þ

where L is the length of the short dipole and ΓVI is the current for the image dipole. ΓV is
the plane wave reflection coefficient for a planar Earth and vertical incident polarization,
when E is in the plane of incidence defined by a normal to the Earth and the ray from the
source to the normal at the Earth. Using parallel rays for far-field calculations gives the
far-field distance expressions

R1 ¼ r � h cos θ and R2 ¼ r þ h cos θ ð6-58Þ
Then (6-57) reduces to

Eθ ¼ jωμ
IL

4π
e�jβr

r
sin θðejβh cos θ þ ΓVe

�jβh cos θÞ ð6-59Þ

where R1 � R2 � r was used in the denominator. This expression is valid above the
ground plane. It contains an element pattern sin θ and an array factor, in the brackets, for a
two-element array with elements spaced 2h apart.

Similarly for a horizontally oriented short dipole as shown in Fig. 6-61, we have (in the
xz-plane)

Eθ ¼ jωμ
IL

4π
e�jβr

r
cos θðejβh cos θ þ ΓVe

�jβh cos θÞ ð6-60Þ

where the minus sign appears because the image current is in the opposite direction. This
expression is valid only in the xz-plane. ΓV is used because E is in the plane of incidence.
The field in the yz-plane is given by

Eφ ¼ jωμ
IL

4π
e�jβr

r
ðejβh cos θ þ ΓHe

�jβh cos θÞ ð6-61Þ
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Figure 6-60 A short vertical dipole of current L above a real Earth ground plane, together
with its image of current ΓVI.
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The element pattern is unity because a dipole has an omnidirectional pattern in the plane
normal to the dipole axis. The horizontal reflection coefficientΓH is used in this case because
the electric field is perpendicular to the plane of incidence.

There is no minus sign in the second term of (6-61) because of the definition of ΓH ,
which is [H.4: Jordan, Chap. 16].

ΓH ¼
cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0r � sin2θ

q
cos θþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0r � sin2

q
θ

ð6-62Þ

This is the plane wave reflection coefficient for an incident electric field perpendicular to
the plane of polarization (i.e., the plane formed by the surface normal and the direction of
propagation). Further, for ΓV we have [H.4: Jordan, Chap. 16].

ΓV ¼
ε0r cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0r � sin2θ

q
ε0r cos θþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0r � sin2

q
θ

ð6-63Þ

This is the plane wave reflection coefficient for an incident electric field parallel to the
plane of polarization. ε0r is the relative complex effective dielectric constant (see Sec. 2.1)
for the ground and is given by

ε0r ¼
ε0

εo
¼ εr � j

σ
ωεo

ð6-64Þ

εr and σ are the relative dielectric constant and conductivity of the ground plane. The
Earth has an average value of εr ¼ 15. Ground conductivities across the United States
vary from 10�3 to 123 10�3 S=m [H.4: Jordan, Chap. 16].

It is convenient to express the imaginary part of ε0r as

σ
ω εo

¼ 183 103
σ

fMHz

ð6-65Þ
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Figure 6-61 A short horizontal dipole of current I above a real Earth ground plane together
with its image of current ΓVI for the xz-plane. The image current in the yz-plane is ΓHI.
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At low frequencies (e.g., 1 MHz and below), the imaginary part or loss-producing part of
the complex permitivity dominates. At high frequencies (e.g., 100 MHz and above), the
real part dominates.

The reflection coefficients are shown in Fig. 6-62 for a typical ground conductivity
σ ¼ 123 10�3. There is a great deal of information in these curves. First, we note that ΓH is
close to�1 at low elevation angles ðθB90�Þ for all frequencies and ground conductivities.
The situation is much different for ΓV where both the magnitude and phase usually vary
rapidly at low elevation angles due to the presence of the pseudo-Brewster angle when
+ΓV ¼ �90�. This behavior does not occur when either σ-N or ω-0 since ΓVj j-1 as
can be shown from (6-63) and (6-64).

The use of plane wave reflection coefficients to obtain the image strength is only an
approximation since antennas near a ground plane do not form plane waves incident on
the ground plane. In addition to the radiation we have described above, there is a surface
wave that propagates along the ground plane surface. For HF and VHF frequencies, the
surface wave attenuates very rapidly. For grazing angles (θ near 90�), ΓV � �1 and
vertical antennas close to a real Earth have zero radiation for θ ¼ 90�; see (6-59). In this
case, the surface wave accounts for all propagation, as in daylight standard broadcast AM.
The effect of neglecting the surface wave, and using the procedure given above, has been
found not to be critical for vertical antennas [24]. For horizontal antennas, the antenna
should be at least 0:2l above the Earth for the plane wave reflection coefficient method to
be valid [25].

The elevation pattern for a short vertical dipole at the surface of various ground
planes is shown in Fig. 6-63. When the ground plane is perfect ðσ ¼ NÞ, the pattern
above the ground plane is the same as that of a short dipole in free space, sin θ. Thus,
in the perfect ground plane case, radiation is maximum along the ground plane, whereas
for a real Earth ground plane, the radiation maximum is tilted up away from the ground

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 MHz

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 MHz

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 MHz

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 MHz

1

0.8

0.6

0.4

0.2

0
90° 75° 60° 30°45° 15° 0°

θ

90° 75° 60° 30°45° 15° 0°
θ

90° 75° 60° 30°45° 15° 0°
θ

90°

0°

−30°

−60°

−90°

−120°

−150°

−180°

195°

190°

185°

180°

75° 60° 30°

z

z

Er

Er

Ei

Ei

45° 15° 0°
θ

ΓV

1

0.9

0.8

0.7

0.6

ΓH ΓH

ΓV

Figure 6-62 Magnitude and phase of ΓV and ΓH at four frequencies. Note that the horizon is at θ ¼ 90�.
σ ¼ 123 10�3 S=m and εr ¼ 15.

c06 4 April 2012; 16:51:17

6.7 Wire Antennas Above an Imperfect Ground Plane 201



plane and is reduced in intensity, for the same input power, due to reduced efficiency.
This is a general trend. The effect of a lossy Earth on vertical antennas is to tilt the
radiation pattern upward. A good radial ground system (to be discussed in Sec. 6.7.2)
makes the pattern behave more nearly like that for a perfect ground plane, that is,
increase the low angle radiation (along the ground plane). Low angle radiation is par-
ticularly important for long-distance communication links that rely on ionospheric
reflection (skip).

A short vertical dipole that is l=4 above the ground plane forms a l=2 spaced array
with its image. For the perfect ground plane, ε0r ¼ N and ΓV from (6-63) is þ1. The array
is then a l=2 spaced, equally excited, in-phase collinear array. The pattern for this is
plotted in Fig. 6-64a ðσ ¼ NÞ. For a real Earth ground plane, ΓV � �1 at grazing angles
(θ near 90�). The array contributions thus cancel, giving a null along the ground plane as
shown in Fig. 6-64a. As the height h is increased to l=2, the equivalent array of Fig. 6-60
has a l spacing and multiple lobes appear in addition to the effects described for h ¼ l=4.
The elevation patterns for h ¼ l=2 are plotted in Fig. 6-64b.

For a horizontal short dipole as shown in Fig. 6-61, the radiation is not the same for all
planes through the z-axis, as for vertical antennas. In the yz-plane (perpendicular to the
axis of the dipole), the radiation electric field is given by (6-61). The reflection coefficient
ΓH is exactly �1 for a perfect ground plane and approximately �1 for real Earth ground
planes at all angles θ if the frequency is low. The element pattern is isotropic since the
elements are seen in end view in the H-plane (yz-plane). Thus, the array factor completely
determines the pattern. The low elevation pattern effects of finite conductivity are much
less pronounced for horizontal antennas than for vertical antennas.

The field expressions of (6-59) to (6-61) for short dipoles above a ground plane can be
used for other antenna types by using the appropriate element pattern. In particular, sin θ
in (6-59) and cos θ in (6-61) are replaced by the free space pattern of the antenna
considered.

6.7.2 Ground Plane Construction

The previous section illustrates the effect of an imperfect Earth ground plane on the
performance of an antenna in proximity to the air-Earth interface. These effects can be
overcome by using a highly conducting ground plane. An excellent ground plane is one
constructed by using a metallic sheet that is much larger than the antenna extent. For
example, consider the monopoles on finite size perfectly conducting ground planes in
Fig. 16-27. For such ground planes the only departure from an ideal pattern, such as that

f = 100 kHz
30°

60°
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90°
0 0.25 0.50 0.75 1.0
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 = ∞σ

θ

Figure 6-63 Elevation plane patterns
of a vertical short dipole at the
surface of a flat Earth with εr ¼ 15
and σ ¼ 1:23 10�2 S=m for three
frequencies compared to the perfect
ground plane ðσ ¼NÞ case.
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in Fig. 6-63 for σ ¼ N, is caused by the finite size of the ground plane. The pattern for
0 , θ , 90� in Fig. 16-28 is an example of finite ground plane size on the radiation
pattern when compared to Fig. 6-63. The edges of the ground plane can have an effect on
the antenna input impedance as well. This effect is illustrated in Fig. 16-41.

A solid metallic ground plane is impractical at low frequencies because of the mini-
mum required radial dimension of a quarter-wavelength. In this section techniques are
discussed for increasing the apparent conductivity of the real Earth ground to minimize
the effects of the Earth upon the radiation pattern and the power lost in the Earth.

Consider a vertical monopole antenna with its base at ground level. (See Sec. 3.3 for a
discussion of monopoles over a perfect ground plane.) Currents flowing up the antenna
leave the antenna and form displacement currents in air. Upon entering the Earth, con-
duction currents are formed that converge toward the base of the antenna. Losses in an
Earth ground can be reduced by providing a highly conductive return path. This is
commonly achieved with a radial ground system. The size of the wires used is not critical
and is determined by the mechanical strength required. Number 8 AWG wire is typical.
They need not be buried, but it is usually convenient to do so. However, they should not
be buried too deep in order to minimize the extent of Earth through which the fields must
pass. Sometimes, the radial wires are linked together at the base of the monopole by a
ring-shaped ground strap. Occasionally, one or more stakes are driven into the ground
near the base of the monopole.

The ohmic resistance of the radial system and Earth ground adds in series to the ohmic
resistance of the monopole structure to determine the total ohmic resistance of the input
impedance. The ohmic losses in the ground plane, with or without radials, can be

60°

60°

90°

90°

1.00.750.50

(a) Short dipole λ/4 above the ground, h = λ/4.

f = 100 kHz
f = 1 MHz
f = 100 MHz

= ∞σ

f = 100 kHz
f = 1 MHz
f = 100 MHz

= ∞σ
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Figure 6-64 Elevation plane patterns of a vertical short dipole a distance h above a flat Earth
(Fig. 6-60) with εr ¼ 15 and σ ¼ 1:23 10�2 S=m for three frequencies compared to the
perfect ground plane ðσ ¼ NÞ case.
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separated into H-field and E-field losses, calculated individually, and then simply added
together [27]. The H-field loss is associated with the tangential magnetic field on the
ground surface whereas the E-field loss is due to the vertical electric field immediately
above the ground plane. The H-field loss is usually much greater than the E-field loss.
The ohmic losses in the ground plane radial wires are negligible compared to the two
ohmic losses in the Earth itself [27].

Especially for high-power transmitting antennas, it is important to have a well-designed
radial system to achieve high efficiency. On the other hand, for a simple monopole structure
in free space, as few as three equally spaced radial wires form an adequate radial system.
Often these radials slant downward so that the maximum radiation is in the horizontal
plane. (Fig. 16-28 is a monopole on a flat ground plane whose maximum radiation is at
θ , 90� due to the finiteness of the ground plane.) For a monopole on the lossy Earth, an
additional benefit of a good radial system is maximum radiation being near the horizon
instead of being elevated as in Fig. 6-63.

The most sophisticated ground system, such as used with a standard broadcast AM-
transmitting antenna, is 120 radial wires spaced equally 3� apart, around the tower out to a
distance of about a quarter-wavelength from the tower. In general, the length of the radials is
roughly equal to the height of the monopole antenna. The value of the total ohmic resistance
of a ground system with 120 radials for typical soils is plotted in Fig. 6-65 for a few fre-
quencies as a function of radial length [26]. Note that at 3 MHz a ground system with
120 radials that are about a quarter-wavelength long (25m) gives a ground system
resistance of about 1.6 Ω. Since the surface resistance of the Earth varies as the square
root of frequency [see (2-171)], the ground system resistance will be constant for lower
frequencies if the length of the radials is increased in proportion to the square root of
wavelength. For frequencies above 3 MHz, the curve for radial length in Fig. 6-65 is
only slightly to the right of the 3-MHz curve. This is because after the radials reach a
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length of about a quarter-wavelength, most of the large current densities occur within the
region of the radials and further length increase is of no major consequence.

The construction principles for a radial wire ground system on top of or in the Earth
can be summarized rather simply. The function of a radial system is to prevent the
electromagnetic fields from the antenna from penetrating into the ground and exciting
currents that, in turn, lead to σ Ej j2 ohmic loss. As can be seen from the discussion, if 120
quarter-wavelength-long radials are employed, the ohmic resistance introduced by the
ground system will be at most a few ohms, and usually well under an ohm. In most
applications, it is impractical to install as many as 120 radials. Generally speaking, 50
radials about a quarter-wavelength-long will reduce Earth losses to a few ohms. When
only a few radials are used, the added resistance of the ground can be several ohms. Also
if the radial lengths (almost independent of the number used) are reduced below a tenth of
a wavelength, the ground system resistance will increase significantly.1 The radial wires
can be laid on top of the ground or buried slightly (but never deeply buried). Wire
selection is largely determined by mechanical considerations. As the number of radials is
increased, the less current each one will have to carry and thus the smaller the wire
diameter required. At the base of the antenna, the radials should be connected together
and to one or more ground stakes.

6.8 LARGE LOOP ANTENNAS

The topic of this section is electrically large loop antennas which have a loop perimeter L
that is about a tenth of a wavelength or more. Before discussing large loops, we review
small loops. Electrically small loop antennas, with a perimeter much less than a wave-
length, have a doughnut-shaped pattern that is omnidirectional in the plane of the loop and
polarized in the plane of the loop (the xy-plane of Fig. 3-15). The pattern of a small dipole
along the z-axis is also omnidirectional in the xy-plane, but has a radiated electric field that
is polarized perpendicular to the xy-plane; see Fig. 2-4. We found in Sec. 3.4 that the
pattern and radiation resistance of electrically small loop antennas are insensitive to loop
shape and depend only on the loop area. The doughnut pattern with a maximum in the
plane of the small loop and with zero radiation along the axis normal to the loop is a
consequence of the current amplitude and phase being constant around the loop. Electri-
cally small loops antennas have low radiation resistance and high inductive reactance,
making them unsuitable for transmitting applications.

Large loops have a current amplitude and phase that vary with position around the
loop, causing the impedance and pattern to depend on loop size. There is a pattern
maximum perpendicular to the plane of the loop if its perimeter is about a wavelength
or more. Large loop antennas are used in direction finding (DF) systems that make use
of the sharp null in the horizontal plane (along the x-axis) when the loop is oriented with
the y-axis vertical in Fig. 6-66. This allows accurate angle-of-arrival determination in the
horizontal plane, which is the most common application. The performance of a fixed
physical size large loop antenna will change with varying frequency, which is charac-
teristic of a resonant antenna. Large loop antennas usually have either a circular or square
shape. At low frequencies where physical sizes are large, loops are often square because
they are more easily constructed by using crossed, diagonal wooden support members to
maintain the wire shape square. Self-supporting circular loops are common at UHF
frequencies and above. Both circular and square loops are usually operated near the first
resonance point, which occurs for a perimeter of slightly greater than one wavelength.
Storer [28] provides analytical expressions for the current distribution and impedance of

1More details and references for ground system design are available in [H.3: Weeks, Sec. 2.6].
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circular loops, accompanied by extensive tables and plots. Also available in the literature
for circular loop antennas are general far-field expressions [29] and approximate formulas
for the directivity and radiation resistance [30]. A good summary of circular loops is
found in [H.3: Burberry, Chap. 4]. The uniform current circular loop is addressed in Prob.
6.8-1. A specially configured square loop antenna, called the Alford loop antenna, with a
perimeter of about 1l achieves close to a uniform current and thus produces nearly
omnidirectional, horizontally-polarized radiation in the horizontal plane (with the loop in
the horizontal plane), which is hard to achieve with other antennas in a compact form
factor and with reasonable impedance and efficiency. Large circular and square loops
with the same perimeter have similar performance; see Prob. 6.8-5.

First, we analyze the one-wavelength square loop antenna using the same techniques
that we used for other resonant wire antennas by assuming a sinusoidal current distribution.
The assumption of sinusoidal current distribution has been verified to a good approximation
through experiment [31]. Next, accurate numerical method results are compared to the
approximate analysis results. Finally, computed impedance values are given for the square
loop as a function of perimeter size.

The one-wavelength square loop antenna has the assumed sinusoidal current distri-
bution shown in Fig. 6-66 (solid curve) that is continuous around the loop, starting with a
maximum at the feed point at the center of the side parallel to the x-axis. Each side has a
quarter-wavelength of current that is expressed as

I1 ¼ I2 ¼ �x̂Io cosðβx0Þ, x0j j # l
8

ð6-66Þ

I4 ¼ �I3 ¼ �ŷIo sinðβy0Þ, y0j j # l
8

The solution for the radiation properties proceeds in the usual manner. First, the vector
potential from (2-101) is

A ¼ μ
e�jβr

4πr

Z
loop

Ie jβr̂ � r0 dl ð6-67Þ

To find the phase delay function, the expressions for vectors from the origin to arbitrary
positions on each side must be written. They are

y

x

I4
I1

I3

I2

Figure 6-66 The one-wavelength square loop
antenna. Each side is of length l=4. The solid curve
is the sinusoidal current distribution of (6-66). The
dashed curve is the current magnitude obtained from
more exact numerical methods.
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r01 ¼ x0x̂� l
8
ŷ r02 ¼ x0x̂þ l

8
ŷ

r03 ¼ � l
8
x̂þ y0ŷ r04 ¼

l
8
x̂þ y0ŷ

ð6-68Þ

where the numbered subscripts indicate the corresponding loop side. Using the expansion
of r̂ from (C-4) and (6-68) in (6-67) with the loop integral broken into integrals over each
side gives

A ¼ μ
e�jβr

4πr
Io �x̂

Z l=8

�l=8
cosðβx0Þejβx0 sin θ cos φðe�jðπ=4Þ sin θ sin φ þ ejðπ=4Þ sin θ sin φÞ dx0

"

þ ŷ
Rl=8
�l=8 sinðβy0Þe jβy

0 sin θ sin φð�e�jðπ=4Þ sin θ cos φ þ ejðπ=4Þ sin θ cos φÞ dy0
�

¼ μ
e�jβr

4πr
Io �x̂2 cos

π
4
sin θ sinφ

0
@

1
AZ l=8

�l=8
cosðβx0Þejβx0 sin θ cos φ dx0

2
4

þ ŷ2j sin
π
4
sin θ cosφ

0
@

1
AZ l=8

�l=8
sinðβy0Þejβx0 sin θ sin φ dy0

#
ð6-69Þ

The first factors in each of the above two terms in brackets are the array factors for the
pairs of sides 1, 2 and 3, 4, respectively. Evaluation of the integrals and subsequent
simplification (see Prob. 6.8-2) lead to

A¼ μ
e�jβr

4πr
2
ffiffiffi
2

p
Io

β
x̂
cos½ðπ=4Þ cosΩ�

sin2 γ
cos γ sin

π
4
cos γ

0
@

1
A� cos

π
4

cos γ

0
@

1
A

2
4

3
5

8<
:

� ŷ
sin½ðπ=4Þ cos γ

sin2 Ω
cosΩ cos

π
4
cosΩ

0
@

1
A� sin

π
4

cosΩ

0
@

1
A

2
4

3
5
9=
; ð6-70Þ

where

cos γ ¼ sin θ cosφ and cos Ω ¼ sin θ sinφ ð6-71Þ

The angles γ and Ω have a geometrical interpretation; they are the spherical polar angles
(similar to θ) for the x- and y-axes; see (C-4).

The far-zone electric field components are

Eθ ¼ �jωAθ ¼ �jωA � θ̂ ¼ �jωðAxx̂ � θ̂ þ Ayŷ � θ̂ Þ
¼ �jωðAx cos θ cosφþ Ay cos θ sinφÞ ð6-72aÞ

Eφ ¼ �jωA � f̂ ¼ �jωð�Ax sinφþ Ay cosφÞ ð6-72bÞ

Substituting Ax and Ay from (6-70) gives
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Eθ ¼ jIoηe�jβrffiffiffi
2

p
πr

cos θ
sinφ sin½ðπ=4Þ sin θ cosφ�

1� sin2 θ sin2 φ

8<
:

: sin θ sinφ cos
π
4
sin θ sinφ

0
@

1
A� sin

π
4
sin θ sinφ

0
@

1
A

2
4

3
5

� cosφ cos½ðπ=4Þ sin θ sinφ�
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: sin θ cosφ sin
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sin θ cosφ
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; ð6-73aÞ

Eφ ¼ jIoηe�jβrffiffiffi
2

p
πr

cosφ sin½ðπ=4Þ sin θ cosφ�
1� sin2θ sin2φ
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: sin θ sinφ cos
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sin θ sinφ
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9=
; ð6-73bÞ

These expressions are rather involved but were derived in a straightforward fashion using
the principles set forth in Sec. 2.4.

The far-field expressions simplify somewhat in the principal planes. In the xy-plane,
which is the plane of the loop (an E-plane), θ ¼ 90� and then (6-73) reduces to

Eθ θ ¼ π
2

� �
¼ 0 ð6-74aÞ

Eφ θ¼ π
2

0
@

1
A¼ jIoηe�jβrffiffiffi
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1
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4
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0
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1
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4

3
5
9=
; ð6-74bÞ

The Eφ expression is plotted in Fig. 6-67a (solid curve) in normalized form. Along the
x-axis (φ ¼ 0� and 180�), Eφ ¼ 0. This is true because the sides 3 and 4 alone each have
patterns that are zero in the broadside direction since the current distributions on these
sides are odd about their midpoints. Along the y-axis, (6-74b) reduces to
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Eφ θ ¼ π
2
, φ ¼ π

2

� �
¼ jIoηe�jβrffiffiffi

2
p

πr
1ffiffiffi
2

p ð6-75Þ

In the xz-plane, which is an E-plane, (6-73) yields

Eφðφ ¼ 0Þ ¼ 0 ð6-76aÞ

Eθðφ ¼ 0Þ ¼ jIoηe�jβrffiffiffi
2

p
πr

sin θ sin½ðπ=4Þ sin θ� � cos½ðπ=4Þ sin θ�
cos θ

ð6-76bÞ

The normalized form of this Eθ expression is plotted in Fig. 6-67b (solid curve). It can be
shown that (6-76b) goes to zero for θ ¼ 90�, as it should by (6-74a).

In the yz-plane, which is the H-plane, (6-73a) reduces to

Eθ φ ¼ π
2

� �
¼ 0 ð6-77aÞ

Eφ φ ¼ π
2

� �
¼ � jIoηe�jβrffiffiffi

2
p

πr
cos

π
4
sin θ

� �
ð6-77bÞ

Fig. 6-67c (solid curve) gives the plot of the normalized form of this Eφ expression. The
cos½ðπ=4Þ sin θ� pattern is the array factor for two point sources at the midpoints of sides
1 and 2. Note that in the z-direction, (6-76) and (6-77) give the same result (for θ ¼ 0�):
an electric field parallel to the x-axis given by

Ex ¼ � jIoηe�jβrffiffiffi
2

p
πr

ð6-78Þ

which is a factor of
ffiffiffi
2

p
greater than Ex in the y-direction given in (6-75). This can be seen

from the pattern in Fig. 6-67c where the value is 0.707 in the y-direction wand is unity in
the z-direction: Fig. 6-67a also shows this result because the xy-plane pattern is shown
relative to the peak of the entire 3D pattern, which is in the z-direction.
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Figure 6-67 Principal plane patterns for one-wavelength square loop antenna. The solid curves are the
patterns based on a sinusoidal current distribution of Fig. 6-66. The dashed curves are the patterns arising
from the current distribution obtained by the more exact numerical methods.
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From the patterns in Fig. 6-67, we can make some general conclusions about the
radiation properties of the one-wavelength square loop antenna. Radiation is maximum
normal to the plane of the loop (along the z-axis) and in that direction is polarized parallel
to the loop side containing the feed (x-direction). In the plane of the loop, there is a null in
the direction parallel to the side containing the feed point (x-direction) and a lobe peak
perpendicular to the null direction (y-direction). These results are quite different from the
small loop, which has a null perpendicular to the plane of the loop, and maximum
radiation in the plane of the loop where the pattern is omnidirectional.

We now use the square loop to examine the accuracy of the sinusoidal current dis-
tribution assumption by comparing to moment method simulation results, which solve for
the actual current; see Chap. 14 and App. G. The current distribution obtained by sim-
ulation for the square loop of wire radius of 0:001l, shown in Fig. 6-66 as the dashed
curve, agrees closely with the assumed sinusoidal current (solid curve). The effects of the
slight differences between the currents on the radiation patterns are revealed in Fig. 6-67.
The patterns calculated from the pattern expressions developed in this section (solid
curves) agree closely with those obtained through simulations (dashed curves). Simula-
tions are capable of including the asymmetry introduced by the feed, which causes the
simulated current to be asymmetric and, as a consequence, the pattern to be asymmetric
in the xy-plane. The half-power beamwidths in this plane are 99� and 103� based on
simple theory and simulation, respectively. The calculated and simulated patterns in the
xz-plane are in full agreement and have a beamwidth of 85�; for reference, a half-wave
dipole has a beamwidth of 78�. This detailed comparison of numerical to approximate
analytical results demonstrates that simple theory using an assumed current, as employed
thus far in this book, provides good engineering results.

The impedance of the square loop antenna calculated using moment method numerical
techniques is plotted as a function of perimeter size for a wire radius of 0:001l in
Fig. 6-68. As would be expected for a loop antenna, the reactance is inductive below a
perimeter of about 0:4l after which it becomes capacitive and alternates between the two
for larger perimeters. This behavior is similar to the impedance for a dipole in Fig. 6-6
except the dipole begins as capacitive for short lengths. Also note in comparing the loop
to the dipole that for increasing loop perimeter anti-resonance (large reactance) is
encountered first, followed by resonance (zero reactance), whereas the dipole has the
reverse sequence. Input impedance values calculated based on the constant current
assumption used in Sec. 3.4.2 lose accuracy as the perimeter becomes about 0.1l or
greater, indicating that the uniform current assumption is no longer valid and large loop
theory is required; Prob. 6.8-3 addresses this in detail. Storer [28] found the same result
for circular loops. Fig. 6-68 indicates the general conclusion that large loop antennas
exhibit reasonable input impedance values for perimeters greater than about 0:7l.

For a one-wavelength perimeter, the input impedance is 102� j142Ω and the gain2 is
3.1 dB. Resonance occurs at about L ¼ 1:1l where the impedance is 133Ω (real), as can
be seen in Fig. 6-68. The gain of the resonated one-wavelength square loop (L ¼ 1:1l)
with a ¼ 0:001l is 3.41dB, which is 1.26 dB higher than that of a resonated half-wave
dipole (3.41� 2.15 dB). The peak gain for the large square loop is 4.01 dB at L ¼ 1:4l,
but the impedance is 657 þ j669 Ω. The best design approach for most applications is to
size the loop for resonance at the middle of the operating frequency band to facilitate
impedance matching over as broad of bandwidth as possible. Simulations for circular
loops using the same wire radius of 0:001l give similar results; see Prob. 6.8-5. For a one-
wavelength circumference circular loop, the impedance is 121� j95Ω and the gain is
3.45 dB. Resonance occurs for a circumference of 1:06 l where the impedance is 142Ω
(real) with a gain of 3.67 dB, which are close to the square loop values. The peak gain of a

2Although lossless wire is assumed in the simulations, the loss is very low and gain is assumed to equal
directivity as with any electrically large antenna.
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large circular loop is 4.46 dB at a circumference of 1:42l. We can conclude that the
circular loop has a few tenths of a dB more gain than a similar-sized square loop. If
thicker wire is used, the gain increases. Also, resonance occurs at a larger perimeter value
and the input resistance is larger for thicker wire.
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PROBLEMS

6.1-1 Use the integral from (F-11) in (6-3) to prove (6-4).
6.1-2 Starting with (6-6), show that for L 	 l, the radiation pattern of a dipole reduces to that
of a short dipole, sin θ.
6.1-3 (a) The outputs from two collinear, closely spaced, half-wave dipoles are added together
as indicated by a summing device in the figure below. The transmission lines from the
antennas to the summer are of equal length. Write the pattern FaðθÞ of this antenna system
using array techniques.

λ

+

2 z

λ
2

(b) Now consider a center-fed, full-wave dipole that is along the z-axis. Write its pattern
expression FbðθÞ.
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(c) Now draw the current distributions IaðzÞ and IbðzÞ for both antennas. From these current
distributions, can you make a statement about the patterns from the two antennas? Return to
the pattern expressions and prove your statement mathematically.
6.1-4 The center-fed, full-wave dipole is rarely used because it has a current minimum at the
feed point. If it is instead fed as shown below, sketch the current distribution. Also, rough
sketch how you think the pattern should look, and explain how you obtained it.

λ
4

3λ
4 z

6.1-5 (a) The array of Prob. 6.1-3a is parallel fed, in-phase array. Show how the parallel wire
transmission lines are connected to perform the summing function. Also put current arrows on
each wire.
(b) Consider an array similar to that of part (a) except now the array elements (half-wave
dipoles) are fed 180�out-of-phase. Show how the transmission lines are arranged to accom-
plish this subtraction function. Again, show the currents on each wire.
6.1-6 Use the results of the cosine-tapered current distribution in Sec. 5.2 to derive the pattern
of a half-wave dipole in (6-7).
6.1-7 Verify that the normalization constant in (6-9) is 0.7148 for the pattern of a 3l=2 dipole.
What are the angles θo in degrees for maximum radiation?
6.1-8 Aresonant half-wavedipole is tobemade for receivingTVChannel 7of frequency177MHz.
If 1

2
-in.-diameter tubular aluminum is used, how long (in centimeters) should the antenna be?

6.1-9 Use (6-1) and (6-4) to calculate and plot the current distribution and far-field pattern for
dipoles of length 2.0 and 2:5l. Compare with Figs. 6-3 and 6-4.
6.1-10 (a) Show that the power radiated by a center-fed dipole of arbitrary length L with a
sinusoidal current is

P ¼ ηI2m
4π

0:5772þ lnðβLÞ � CiðβLÞ þ 1

2
sinðβLÞ Sið2βLÞ � 2 SiðβLÞ½ �

8<
:

þ 1

2
cosðβLÞ

"
0:5772þ ln

�
βL
2

�
þ Cið2βLÞ � 2 CiðβLÞ

#9=
;

(b) Derive an expression for the directivity and then plot directivity as a function of dipole
length for L from 0 to 3l.
6.1-11 Use the length reduction procedure for half-wave resonance in Table 6-2 to calculate
the resonant frequencies of the two dipoles in Fig. 6-7.
6.1-12 Design an optimum directivity vee dipole to have a directivity of 6 dB.
6.1-13 To show that the vee dipole results of (6-23) and (6-24) give roughly the correct results
for a full-wave straight wire dipole, use D ¼ 2:41 and determine γ.
6.1-14 A formula for the shortening factor of a nominal half-wave dipole is

Lres ¼ 0:5 1� 0:2257

ln 2 L
2a

� � 1

 !
where Lres is the resonant length of a half-wave dipole of radius

“a” and L ¼ l=2. Calculate values for the resonant length of the dipoles in Table 6-2 and
compare with Table 6-2. Optional: use a moment method code to find the resonant lengths and
compare with Table 6-2 and the above formula.
6.2-1 (a) It is desired to have a simple formula for the length of a thin-wire half-wave folded
dipole antenna. Show that it is LðcmÞ ¼ 14,250=f ðMHzÞ.
(b) Determine the length in centimeters of half-wave folded dipoles for practical application as
receiving antennas for each VHF TV channel and the FM broadcast band (100 MHz). Tabulate
results.
6.2-2 Calculate the input impedance of a folded dipole of length 2a¼L ¼ 0:4l, wire size
0:001l, and wire spacing d ¼ 12:5a using the transmission line model. Compare your results
to values from Fig. 6-16.
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6.2-3 The equation for the impedance on a transmission line a distance l from a load, ZL, is
given by

ZðlÞ ¼ Zo
ZL cosβlþ jZo sinβl
Zo cosβlþ jZL sinβl

where Zo is the characteristic impedance of the transmission line. Show that this reduces to
(6-25) when the load is a short circuit at l ¼ L

2
.

6.3-1 Use array theory from Sec. 3.5 to analyze the array of Fig. 6-18a.
(a) Plot the E-plane pattern and compare to Fig. 6-18b
(b) Plot the H-plane pattern.
(c) Use (6-7) for the dipole (element) pattern.

6.3-2 Numerical methods reveal that the currents on the elements of the two-element parasitic
array of Fig. 6-18 are nearly sinusoidal and the current amplitudes and phases at each element
center are 1:0+�88� for the driver and 0:994+81:1� for the parasite. Use simple array theory
to obtain and plot the H-plane pattern in linear, polar form.
6.3-3 Phasor diagrams are often helpful in obtaining a rough idea about how arrays perform.
To illustrate, use phasor diagrams to obtain the relative far-zone field values in the endfire
directions of the two-element parasitic array of Prob. 6.3-2 (i.e., find the front-to-back ratio).
To do this, find the total phasor at each element location including the spatial phase delay due
to the element separation. Assume the amplitudes of each element are unity and the phases
are �88� for the driver and 81:1� for the parasite.
6.3-4 Design a 10.2-dBd gain Yagi for operation at 50.1 MHz. The parasitic elements are
insulated from the metal boom. The diameter of the elements is 0:0021l.
6.3-5 Design a 14.2-dBd gain Yagi for operation at 432 MHz. The parasitic elements are
mounted through a metal boom making electrical contact with it. The diameter of the elements
is 0:00343l. The boom diameter is 0:0275l.
6.3-6 Construction project—a 10b Yagi. This project is designed to demonstrate how a high
gain antenna can be built for under 10b! Locate a channel on your (or a cooperating friend’s)
TV receiver that has marginal reception, such as a snowy picture when a modest antenna (like
rabbit ears) is used. The construction phase proceeds as follows. Find a large rigid piece
of corrugated cardboard and trim it so that it is several centimeters longer than the total array
length and about 5 cm narrower than the director length. Now locate several thick coat
hangers. Straighten them as much as possible and cut them to the lengths required for the
reflector and directors. The feed element is a folded dipole constructed from a piece of twin-
lead transmission line. Cut it to a length that is a little longer than the driver dimension. Strip
the ends and solder the two wires at each end together such that the overall length is equal to
the driver dimension. Next cut one wire of the driver at the center of the folded dipole and
solder the ends to a long piece of twin-lead that serves as a transmission line for the antenna.
Lay out all element positions on the cardboard by marking appropriately. Tape the folded
dipole onto the cardboard at the driver location. The coat hanger parasitic elements are
positioned by merely inserting them into the corrugations in the cardboard. Now connect the
transmission line to the receiver. Rotate the antenna and note the effect on the reception. Large
performance differences should be observed. Note that it may be necessary to elevate the
antenna by placing it in the attic, for example. With this construction, it is very easy to change
the element spacings by placing the coat hanger elements into difference corrugations. Very
little difference will be observed for small distance changes. Normally, the best performance is
achieved for horizontal polarization, that is, elements parallel to the ground.
6.3-7 Construction project—a slightly more expensive Yagi. A fairly rugged Yagi antenna can
be constructed using the following technique. Select a TV channel with marginal reception and
design a Yagi for that frequency. The materials required for this project are a 13 2 in. board of
length slightly greater than the overall length of the array and a few meters of aluminum wire
(usually No. 8 AWG). Trim and straighten wires for the reflector and directors. Drill holes in
the wooden mast at the appropriate positions for the reflector and the directors. The holes
should be just slightly greater than the wire diameter. Be sure all holes are along a straight line.
The driver is a folded dipole oriented such that the plane of the dipole is perpendicular to the
line of the array. Drill one hole in the mast about 2 cm above the array line. At the same
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distance below the array line, drill in from each side of the mast about 0.5 cm. Cut a piece of
wire more than twice the length of the driver. Push it through the top hole and center it. Bend
the wire at the required length at each end and fold it back to the mast. Now carefully trim
away any excess wire such that the wire ends can just be forced into the shallow holes and still
form a symmetric folded dipole. Now wrap the bared ends of a twin-lead transmission line to
the ends of the folded dipole close to the mast (at the feed point). Be sure to get a good
mechanical contact. Also leave a tab of polyethylene where you stripped the twin lead. Small
wire brads can be wedged between the wire ends at the feed point and the mast, and at the
same time pinch the twin-lead connection between the antenna wire and the brad. Solder the
feed point connections. Tack the polyethylene tab to the bottom of the mast to provide strain
relief. Insert the remaining elements into their holes, center them, and nail brads into the hole
alongside the wires to secure their positions. The construction is now complete and you can
connect the transmission line to the receiver and test the reception. Try several antenna
locations and orientations.
6.3-8 A two-element Yagi has a current on the driven element of 1+164� and a current on the
parasitic element of 0:5+238�. The spacing between the elements is 0:2l. Does the parasitic
element act like a director or reflector element? Use a phasor diagram to show why.
6.3-9 A two-element Yagi with 0:2l element spacing has a current on the driven element of
1+254� and a current on the parasitic element of 0:6+�32�. Does the parasitic element act
like a director or reflector element? Why?
6.4-1 A receiving antenna with a real impedance RL attached to its terminals has the equiv-
alent circuit shown. Prove that maximum power transfer to the load for a fixed real antenna
impedance RA occurs for RL ¼ RA.

i

RA RL

v

6.4-2 A transmitter with a real impedance ofRt is connected to a lossless transmission line of real

characteristic impedance Ro and then to an antenna of real input impedance Ro.
(a) Derive an expression for the transmit efficiency, that is, power delivered to antenna/total

power dissipated. Neglect any mismatch effects.
(b) Find the percent efficiency for Rt ¼ Ro, Rt ¼ 0:5Ro, and Rt ¼ 0:1Ro.

6.4-3 Using the expression for ZðlÞ in Prob. 6.2-3 and referring to Fig. 6-30a, what is the
impedance ZAðlÞ if the antenna impedance is 40� j20 ohms and l ¼ 42:3l?
6.5-1 A monopole is embedded in a large dielectric medium with relative permittivity of 3.4.
Determine the length in free-space wavelengths of the quarter-wave monopole if the wire
radius is classified as thin.
6.6-1 A wire-grid is to pass through not more than 2.5% of the incident power. The spacing
between wires in the grid is to be 0:12l. What wire radius is required?
6.6-2 Awire-grid is to have a reflection loss of 0.5 dB. The spacing to wire radius ratio is 20.
What must the spacing be in wavelengths?
6.6-3 A wire-grid is to have a reflection loss of 1 dB. What percentage of the incident power
will be reflected?
6.6-4 A wire-grid is to be used to provide a measure of shielding. Not more than 1% of the
incident power may be transmitted through a grid with 0:1l spacing. What wire radius is
required?
6.6-5 (a) Calculate and plot the magnitude of the array factor in (6-54) and verify that the
maximum value of AFðθ ¼ 90�, φ ¼ 0�Þj j obtained when s ¼ 0:5l.
(b) Reason that this must be the case, using Fig. 6-54.
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6.7-1 Derive an expression for the directivity of an ideal (infinitesimal) dipole as a function of
its height h above a perfect ground plane. The dipole is oriented perpendicular to the ground
plane. Make use of the results in Secs. 3.3 and 8.5.
6.7-2 A short dipole is a quarter-wavelength above a perfect ground plane. Use simple array
theory for the dipole and its image to obtain polar plot sketches of the E- and H-plane patterns
when the dipole is oriented (a) vertically and (b) horizontally.
6.7-3 Repeat Prob. 6.7-2 for a short dipole a half-wavelength above a perfect ground plane.

6.7-4 A horizontal short dipole is a quarter-wavelength above a planar real Earth and is

operating at 1 MHz. The conductivity of the Earth is σ ¼ 123 10�3 S=m and the relative

dielectric constant is εr ¼ 15. For this frequency, σ, and εr , we can approximate ΓHj j by 0.9

and the phase of ΓH by �190� for all θ.
(a) Calculate and plot the H-plane elevation pattern in polar form in the upper half-space.
(b) Compare the pattern with that of the short dipole over a perfectly conducting ground

plane (i.e., the results of Prob. 6.7-2b.
6.7-5 A quarter-wave resonant monopole is to be used as a transmitting antenna at 1 MHz. A
radial system of 120 radials is to be used. If 97% efficiency is to be achieved, how long must
the radial wires be? Neglect any tower ohmic resistance.
6.8-1 The uniform circular loop antenna. A circular loop in the xy-plane with its center at the
origin and a radius b carries a uniform amplitude, uniform phase current given by

I ¼ Iof̂
0

(a) Due to symmetry, the pattern will not be a function of φ and A will have only a
φ-component. Using these facts, show that

A ¼ f̂μ
e�jβr

4πr
Iob

Z 2π

0

cosφ0ejβb sin θ cosφ
0
dφ0

in the far field. Use symmetry to reason that φ ¼ 0 can be assumed and only a
φ-component exists.

(b) Find an expression for Eφ. Hint: Use (F-7).
(c) Show that this result reduces to that for a small loop antenna in (3-49).

Hint: J1ðxÞ � x=2 for x�1.
6.8-2 Show that (6-69) yields (6-70). To perform the integrations, decompose the functions
cosðβx0Þ and sinðβy0Þ into sums of exponential functions using (E-6) and (E-7).
6.8-3 Simulation This problem applies small loop theory to moderately large square loops to
investigate where small loop theory becomes inaccurate. Calculate the input impedance
(radiation resistance and input reactance) based small loop theory for perimeter values 0.01,
0.05, 0.1, 0.15, and 0:2l and compare to values using a simulation code. Use a wire radius of
0:001l and a frequency of 300 MHz. Comment on the results.
6.8-4 Simulation Use a simulation code to evaluate a square loop antenna with a 1.1l
perimeter and wire radius of 0:001l.

(a) Compute the input impedance and compare to Fig. 6-68.
(b) Plot the radiation patterns and comment closeness to Fig. 6-67 patterns.
(c) Compute the gain.

6.8-5 Simulation This problem compares circular and square large loop antennas using a
simulation code.
(a) For the geometry of Fig. 6-66 use a simulation code to evaluate gain and input

impedance of a square loop antenna for L ¼ 1,1:5 and 2 l and a wire radius of 0:001l.
Compare the impedance values to those in Fig. 6-68.

(b) Repeat (a) for circular loops with circumferences equal to the perimeter values of the
square loops in (a). Use the same wire radius.

(c) Tabulate performance values for both antennas. Comment on similarities.
6.8-6 In a communication link a half-wavelength folded dipole perpendicular to the z-axis is
used to transmit and a square, one-wavelength loop as in Fig. 6-66 is used to receive. Sketch a
perspective view of the antennas in a common coordinate system for maximum power transfer;
include the orientations of the antennas and their feed points.
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6.8-7 Design of a TV antenna. Design a square loop antenna to receive over-the-air TV
Channel 37. It is to be constructed of 2-mm diameter wire. List the values of input impedance
and gain. Hint: Use a resonant loop and a simulation code.
6.8-8 Project. Research the Alford loop antenna in the literature and prepare a report that
includes background information with a discussion of applications, operating principles,
calculated performance using a simulation code for an example practical realization, and
comments on the results.
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Chapter7

Broadband Antennas

7.1 INTRODUCTION

Many system applications require an antenna to operate over a large range of frequencies.
An antenna with wide bandwidth is referred to as a broadband antenna, also often called
a wideband antenna. Bandwidth is defined both as percentage of the center frequency and
as a ratio. First, let fU and fL be the upper and lower frequencies, respectively, for which
satisfactory performance is obtained. The antenna operating band spans the frequencies
from fL to fU and the center frequency is fC ¼ ð fU þ fLÞ=2, which is the arithmetic mean of
the limit frequencies. The antenna bandwidth is defined as BW ¼ fU � fL and carries units
of frequency. Antenna bandwidth is, however, usually expressed in relative terms rather
than in absolute frequency, either as a percent or a ratio. Fractional bandwith, B, is defined
as BW/fC and is often expressed as percent bandwidth, which is defined as

Bp ¼ B � 100 ¼ BW

fC
� 100 ¼ 2

fU � fL

fU þ fL
� 100 %½ � ð7-1Þ

Ratio bandwidth is defined as a ratio of the upper to lower frequencies:

Br ¼ fU

fL
ð7-2Þ

Percentage bandwidth and ratio bandwidth are illustrated in Fig. 7-1.
The conversion between percent bandwidth to ratio bandwidth is found using:

Br ¼ 200þ Bp

200� Bp

Bp ¼ 2
Br � 1

Br þ 1
� 100 %½ � ð7-3Þ

For examples, 50% bandwidth corresponds to Br ¼ 1:67; 67% to Br ¼ 2 (an “octave”);
100% to Br ¼ 3; and 164% to Br ¼ 10 (a “decade”). Other center frequencies that are
used in the definition of percent bandwidth are design frequency, resonant frequency,
lowest VSWR frequency, and geometric mean frequency of fC ¼ ffiffiffiffiffiffiffiffiffi

fL fU
p

. Geometric mean
center frequency is popular when frequency is considered on a logarithmic scale,
including when fundamental limits on antenna size are being examined (see Sec. 11.5).
Bp values using arithmetic and geometric mean differ by only a small amount until Br

reaches 1.5, where the difference is 2 % (see Prob. 7.1-1). Bandwidth values are quoted
without noting whether percent or ratio is being used. Percent bandwidth is stated with
the unit % and ratio bandwidth is often expressed a ratio format of Br :1. The bandwidth
of narrowband antennas is usually expressed in percent bandwidth, whereas broadband
antennas are usually quoted in ratio bandwidth.
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Antenna performance is evaluated compared to desired performance values of
impedance, pattern, gain, or polarization. For example, suppose the antenna gain speci-
fication is 12 dB (minimum) and the selected antenna has 14-dB gain at the center fre-
quency. Thus, in this case the operating band is determined by the frequencies where the
gain falls by 2 dB. Electrically small antennas are almost always limited by adequate
impedance match. Impedance bandwidth is often stated such that for all frequencies from
fL to fU the VSWR is less than or equal to 2. Resonant antennas are also limited by
impedance match to the connecting transmission line. For example, the half-wave dipoles
in Fig. 6-7 have bandwidths of 8% and 16% for VSWR # 2. The performance quantity
that is responsible for limiting bandwidth varies with the antenna. Circularly polarized
antennas are often limited by the specification on axial ratio. With no qualifier on
bandwidth, it is assumed that all performance quantities meet the stated specifications
over the operating band.

Most antennas have a single continuous operating band spanning fL to fU . However,
antennas with multiple, separated operating bands (called a multiband antenna) are
becoming more common, especially in wireless communications. Each operating band of
a multiband antenna has an associated bandwidth. System aspects are also important in
the antenna selection process. When an antenna must handle all frequencies in the
operating band simultaneously, the bandwidth is called instantaneous bandwidth. Sys-
tems that employ impulses in time for sensing (such as radar) or communication often
require wide instantaneous bandwidth. Impulse ultra-wideband systems require wide
instantaneous bandwidth antennas, as will be discussed in Sec. 7.10. Many applications
do not require that the antenna use all of its bandwidth at one time. The most common
such situation is an antenna with acceptable radiation properties over a wide bandwidth
but with an input impedance that is acceptable only over a narrow band. This is solved by
tuning (adjusting) an external matching network, or sometimes by adjusting internal
portions of the antenna, for proper impedance match over a sub-band of frequencies
within the whole bandwidth, called the tunable bandwidth.

The term “broadband” in communications is a measure of bandwidth that depends
on the application, but we are specific in defining a broadband antenna as follows:
A broadband antenna is one with performance quantities of interest that do not change
significantly over about an octave of bandwidth ðBr ¼ 2Þ or more. Electrically small and
resonant antennas rarely qualify as broadband, whereas aperture antennas, to be discussed
in Chap. 9, are capable of broadband performance. This chapter focuses on antennas that
are specifically selected because of their broadband properties.

As we will see in this chapter, broadband antennas usually require structures that do
not have abrupt changes in physical dimensions but instead utilize materials with smooth
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Figure 7-1 Relative gain vs. frequency. (a) Percentage bandwidth example. (b) Ratio band-
width example.
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geometries and emphasize angles. Smooth physical structures tend to produce patterns
and input impedances that also change smoothly with frequency. This simple concept
guides the design of broadband antennas.

7.2 TRAVELING-WAVE WIRE ANTENNAS

The wire antennas we have discussed thus far have been resonant structures. The wave
traveling outward from the feed point to the end of the wire is reflected, setting up a
standing-wave-type current distribution. This can be seen by examining the expression for
the current in (6-1) for the top half of the dipole that can be written as

Im sin β
L

2
� z

� �� �
¼ Im

2j
ejðβL=2Þðe�jβz � ejβzÞ ð7-4Þ

The first term in brackets can be taken to represent an outward traveling wave and the
second term a reflected wave. The minus sign is the current reflection coefficient at an
open circuit.

If the reflected wave is not strongly present on an antenna, it is referred to as a
traveling-wave antenna. A traveling-wave antenna acts as a guiding structure for
traveling waves, whereas a resonant antenna supports standing waves. Traveling waves
can be created by using matched loads at the ends to prevent reflections. Also, very long
antennas may dissipate most of the power, leading to small reflected waves by virtue of
the fact that very little power is incident on the ends. In this section, several wire forms
of traveling-wave antennas will be discussed. Some of the antennas in this section are
essentially the traveling-wave counterparts of resonant wire antennas presented in Chap. 6.
They tend to be broadband with bandwidths of as much as 2 : 1.

The simplest traveling-wave wire antenna is a straight wire carrying a pure traveling
wave, referred to as the traveling-wave long wire antenna. A long wire is one that is
greater than one-half wavelength long. The traveling-wave long wire is shown in Fig. 7-1
with a matched load RL to prevent reflections from the wire end. Exact analysis of this
structure, as well as others to be presented in this section, is formidable. We shall make
several simplifying assumptions that permit pattern calculations that do not differ greatly
from real performance. First, the ground plane effects will be ignored and we will assume
that the antenna operates in free space. A traveling-wave long wire operated in the
presence of an imperfect ground plane is called a Beverage antenna, or wave antenna.
The ground plane may be accounted for in certain cases by using the techniques of the
previous chapter. Second, the details of the feed are assumed to be unimportant.
In Fig. 7-2, the long wire is shown being fed from a coaxial transmission line as one
practical method. The vertical section of length d is assumed not to radiate, which is
approximately true for d � L. Finally, we assume that the radiative and ohmic losses
along the wire are small. When attenuation is neglected, the current amplitude is constant
and the phase velocity is that of free space [1]. We can then write

ItðzÞ ¼ Ime
�jβz ð7-5Þ

which represents an unattenuated traveling wave propagating in the þz-direction with the
phase constant β of free space.

The current of (7-5) is that of a uniform line source with a linear phase constant of
βo ¼ �β. From (5-4), βo ¼ �βcos θo, so the pattern factor maximum radiation angle
(not including element factor effects) is θo ¼ 03, which implies an endfire pattern. The
complete radiation pattern from (5-6) is

FðθÞ ¼ K sin θ
sin½ðβL=2Þð1� cos θÞ�
ðβL=2Þð1� cos θÞ ð7-6Þ
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where K is a normalization constant that depends on the length L. The polar pattern for
L ¼ 6l is shown in Fig. 7-3. The length L ¼ nl results in n forward lobes in the angular
range 0, θm , 90�. In this example, n ¼ 6. The element factor sin θ forces a null in the
endfire direction. Hence, instead of having a single endfire lobe (which the pattern factor
produces), the “main beam” is a rotationally symmetric cone about the z-axis. The
maximum radiation angle in this case is θmðL ¼ 6lÞ ¼ 20:1�. In general, it is a function
of L. Solving (7-6) for θm as a function L produces the plot of Fig. 7-4. An approximate
expression for the angle of maximum radiation is [H.3: Wolff]

θm ¼ cos �1 1� 0:371

L=l

� �
ð7-7Þ

The beam direction values from Fig. 7-3 or (7-7) for a traveling-wave long wire of length
L may be used to calculate an approximate beam direction for a standing-wave straight
wire antenna (i.e., dipole). For example, θm for L ¼ 3l=2 from Fig. 7-3 is 40

�
and θm for

the dipole of Fig. 6-4d is 42:6�. As L increases, the traveling-wave and standing-wave
antenna main beam maximum angles approach each other [H.6: Ant. Eng. Hdbk., 1st ed.,
Chap. 6]. The standing-wave wire antenna is distinguished from its traveling-wave
counterpart by the presence of a second major lobe in the reverse direction; see Fig. 6-4d.
This can be seen by noting that the traveling-wave current of (7-5) corresponds to the first
term of the standing-wave current of (7-4). The second term of (7-4), which is the
reflected wave, produces a pattern similar in shape but oppositely directed. Thus,
a traveling-wave antenna has a beam with a maximum in the θ ¼ θm direction and a

It

L

θ

d RL

z

Figure 7-2 Traveling-wave long wire
antenna.

1.0

0.75

0.50

0.25
θm z

Figure 7-3 Pattern of a traveling-
wave long wire antenna. L ¼ 6l and
θm ¼ 20�.
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standing-wave antenna of the same length has an additional beam in the θ ¼ 180� � θm
direction.

The input impedance of a traveling-wave antenna is always predominantly real. This
can be understood by recalling that the impedance of a pure traveling wave on a low-loss
transmission line is equal to the (real) characteristic impedance of the transmission line.
Antennas that support traveling waves operate in a similar manner. The radiation
resistance of a traveling-wave long wire antenna is 200 to 300 Ω (see Prob. 7.2-5). The
termination resistance should equal the value of the radiation resistance.

The resonant vee dipole discussed in Sec. 6.1.2 can be made into a traveling-wave
antenna by terminating the wire ends with matched loads. The traveling-wave vee
antenna is shown in Fig. 7-5. The pattern due to each arm separately is expressed by
(7-5), an example of which is shown in Fig. 7-3. From Fig. 7-5, it is seen that when
α � θm, the beam maxima from each arm of the vee will line up in the forward direction.
A more accurate analysis of vee (see Prob. 7.2-8) includes the spatial separation effects
of the arms. Pattern calculations as a function of α reveal that a good vee pattern is
obtained when

α � 0:8 θm ð7-8Þ
where θm is found fromFig. 7-4 or (7-7). ForL ¼ 6l, θm ¼ 20� from Fig. 7-4 or (7-8) yields
α � 16�; the pattern for a vee with this geometry is shown in Fig. 7-5. The large side lobes
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Figure 7-4 Pattern maximum angle for a
traveling-wave long wire antenna of length L
operating in free space. See (7-7).
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Figure 7-5 The traveling-wave vee antenna. In this case, L ¼ 6l and α ¼ 0:8θm ¼ 16�.
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arise from portions of the beams from each half of the vee that do not line up along axis. The
pattern of the vee out of the plane of the vee is rather complicated due to the merging of the
conical beams for each half of the vee. The traveling-wave vee provides relatively high gain
for a bent wire structure.

By extending the ideas of a traveling-wave vee antenna, we obtain a rhombic antenna
as shown in Fig. 7-6. The operation of this antenna is visualized most easily by viewing
it as a transmission line that has been spread apart and consequently the characteristic
impedance is increased. The load resistor RL is of such a value as to match the trans-
mission line. The antenna carries outward traveling waves that are absorbed in the
matched load. Since the separation between the lines is large relative to a wavelength,
the structure will radiate. If designed properly, a directive pattern with a single beam
in the z-direction can be obtained.

A rhombic antenna operating in free space can be modeled as two traveling-wave vee
antennas put together. If we choose α ¼ 0:8 θm as for the vee, the beams of the rhombic in
Fig. 7-6 numbered 2, 3, 5, and 8 will be aligned. Again, θm follows from Fig. 7-4. Due to
the spatial separation of the two vees, the rhombic pattern will not be the same as that of a
single vee. (See Prob. 7.2-9.)

The effects of a rhombic operating above a real Earth ground can be included by the
techniques of Sec. 6.7.1. For a rhombic that is oriented horizontally, the reflection
coefficient ΓH is approximately �1 and the real Earth may be modeled as a perfect
conductor; Fig. 6-62 illustrates that this assumption has a minor effect for horizontal
antennas at lower frequencies. The array factor of a rhombic a distance h above a perfect
ground plane produces a null along the ground plane. There are several designs for
rhombics above a ground plane in the literature [2–5]. One such design is for the
alignment of the major lobe at a specific elevation angle. Then the rhombus angle α and
the elevation angle of the main beam are equal, and the height above ground is given by

h ¼ l
4 sinα

ð7-9Þ

and the length of each leg is

L ¼ 0:371l
sin2α

ð7-10Þ

For example, if α ¼ 14:4�, then L ¼ 6l and h ¼ 1l . Rhombic impedances are typically
on the order of 600 to 800 Ω.

The efficiency of the rhombic antenna is decreased significantly because of the matched
termination. The power that is not radiated is absorbed in the load RL.However, this loss of
power is essentially that which would have appeared in a large back lobe as a result
of reflected current if thematched loadwere not present. The travelingwave feature not only
improves the pattern but also produces wider impedance bandwidth. Well-designed

Resultant
pattern
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2

5

4

7

86

3

RL

α

Figure 7-6 The rhombic antenna. Each side is of length L. Component beams 2 and 3, and 5
and 8 line up to form the main beam of the resultant pattern. In this case, L ¼ 6l and α ¼ 16�.
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traveling-wave antennas have input impedances that have little reactance since there is little
or no reflected power.

The traveling-wave antennas discussed above have been examined in free space. One
traveling-wave antenna that requires the imperfectly conducting properties of real Earth is
the Beverage antenna shown in Fig. 7-7. The height h is a small fraction of a wavelength,
and the length L is usually between 2 and 10 wavelengths. The incoming vertically
polarized plane wave in Fig. 7-7 produces a horizontal component of the electric field that
is not totally shorted out by the imperfectly conducting Earth. It is this horizontal
component that is responsible for inducing a current on the antenna conductor of length L.
Alternatively, the Beverage antenna and its image in the lossy Earth may be viewed as an
unbalanced transmission line. As was noted in the folded dipole discussion in Sec. 6.2,
unbalanced transmission lines can radiate.

Fig. 7-8 shows the current on a Beverage antenna of length 2:18l. The curve was
calculated by the rigorous Sommerfeld theory for antennas in proximity to the imper-
fectly conducting Earth [1,2]. Because there are large dissipative losses in the Earth as
well as radiative losses, the current decays from the feed end to the load end. This portion
of the current distribution can be accounted for by a modification of (7-5):

ItðzÞ ¼ Ime
�αze�jβz ð7-11Þ

The current also shows a standing wave superimposed on the major portion of the current
distribution. This is evidence of a small reflected wave from the load end. The reflected
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wave also appears to diminish in strength as it moves toward the feed end. The reflected
wave can be represented by a relationship similar to (7-11). The approximate theory
presented in Sec. 6.7 cannot be used to obtain the current distribution in Fig. 7-8 because
the Beverage interacts too strongly with the Earth due to its close proximity to the ground
and its long horizontal length. Instead, the rigorous but complicated Sommerfeld theory [1]
must be used.

Fig. 7-9 shows some typical elevation plane patterns for a Beverage antenna used by
the military as a tactical field antenna. The antenna is particularly well-suited for this
purpose because it does not need to be elevated much above the ground. Note several
things about the patterns. The higher-frequency pattern has a narrower beamwidth in both
the elevation and azimuthal planes, and has a lower angle of radiation as expected.
Further, the back lobe radiation is low, particularly in the higher frequency case where the
antenna is electrically twice as long and there is more opportunity for dissipative loss.

Often, the feed end of the Beverage is higher than the load end to achieve as low a
radiation angle relative to the ground (take-off angle) as possible. The Beverage antenna
is usually used in the LF and lower HF portions of the frequency spectrum. It is believed
to have been first used on Long Island in the early days of radiotelephone for trans-
atlantic communication between the United States and London at 50 and 60 kHz. The
Beverage was the first antenna to use the traveling-wave principle.

7.3 HELICAL ANTENNAS

If a conductor is wound into a helical shape and fed properly, it is referred to as a helical
antenna, or simply as a helix. The typical geometry for a helix is shown in Fig. 7-10. If

one turn of the helix is uncoiled, the relationships among the various helix parameters are
revealed, as shown in Fig. 7-11. The symbols used to describe the helix are defined as
follows:

D ¼ diameter of helix (between centers of coil material)
C ¼ circumference of helix ¼ πD
S ¼ spacing between turns ¼ C tanα
α ¼ pitch angle ¼ tan �1 S

C
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Figure 7-9 Typical elevation patterns for a Beverage antenna.
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Figure 7-10 Geometry and
dimensions of a helical antenna.
This is a left-hand wound helix.
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L ¼ length of one turn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

p
N ¼ number of turns
Lw ¼ length of helix coil ¼ NL
h ¼ height ¼ axial length ¼ NS
d ¼ diameter of helix conductor

Note that when S ¼ 0 ðα ¼ 0�Þ, the helix reduces to a loop antenna, and when
D ¼ 0 ðα ¼ 90�Þ, it reduces to a linear antenna.

The helix can be operated in two modes: the normal mode and the axial mode. The
normal mode yields radiation that is most intense normal to the axis of the helix.
This occurs when the helix diameter is small compared to a wavelength. The axial mode
provides a radiation maximum along the axis of the helix. When the helix circumference is
on the order of a wavelength, the axial mode will result. We introduce both the normal
mode and axial mode helices in this section. See [H.3: Kraus, 3rd ed., H.4: Volakis, 4th ed.,
Chap. 12; H.8.3: Nakano] for more details.

7.3.1 Normal Mode Helix Antennas

In the normal mode of operation, the radiated field is maximum in a direction normal to
the helix axis and for certain geometries, in theory, will emit circularly polarized waves.
For normal mode operation, the dimensions of the helix must be small compared to a
wavelength, that is, D � l and usually L � l as well. The normal mode helix is elec-
trically small and thus its efficiency is low.

Since the helix is small, the current is assumed to be constant in magnitude and phase
over its length. The far-field pattern is independent of the number of turns and may be
obtained by examining one turn. One turn can be approximated as a small loop and ideal
dipole as shown in Fig. 7-12. The far-zone electric field of the ideal dipole from (2-74a) is

ED ¼ jωμ IS
e�jβr

4πr
sin θ θ̂ ð7-12Þ

where S, the spacing between helical turns, is the length of the ideal dipole in Fig. 7-12.
The far-zone electric field of the small loop from (3-49) is

L

S

α
C =   Dπ

Figure 7-11 One uncoiled turn of a helix.

z

Figure 7-12 One turn of a normal mode helix approximated as
a small loop and an ideal dipole.
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EL ¼ ηβ2 π
4
D2I

e�jβr

4πr
sin θ f̂ ð7-13Þ

where πD2=4 is the area of the loop. The total radiation field for one turn, as modeled in
Fig. 7-12, is the vector sum of the fields in (7-12) and (7-13). Note that both components
have a sin θ pattern (see Fig. 7-13) and they are 90� out-of-phase. The ratio of the electric
field components is

jEθj
jEφj ¼

4ωμSffiffiffiffiffiffiffiffiffiffiffiffiðμ=εÞp
ω

ffiffiffiffiffiffi
με

p ð2π=lÞπD2
¼ 2Sl

π2D2
¼ 2 S

l
C
l

� �2 ð7-14Þ

This equals the axial ratio of the polarization ellipse when greater than unity and the inverse
of axial ratiowhen less than unity; see Sec. 2.8. Limiting axial ratio values are 0 (with S ¼ 0)
corresponding to a small loop with horizontal polarization and N (with D ¼ 0) corre-
sponding to a short dipole with vertical polarization.

Since the (perpendicular) linear components are 90� out-of-phase, circular polarization
is obtained if the axial ratio is unity. This occurs for

C ¼ πD ¼
ffiffiffiffiffiffiffiffi
2Sl

p
ð7-15Þ

which was found by setting (7-14) equal to unity. This circular polarization is obtained in
all directions, except of course where the pattern is zero (along the axis of the helix).
From Fig. 7-11, it is seen that

L sinα ¼ S or α ¼ sin �1 S

L ð7-16Þ
and

C2 þ S2 ¼ L2 ð7-17Þ
For circular polarization in the normal mode, the circumference of the helix given by
(7-15) used in (7-17) gives

S2CP þ 2SCPl� L2 ¼ 0 ð7-18Þ
This is a quadratic equation that may be solved for S as

SCP ¼ �2l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ 4L2

p
2

¼ l �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L

l

� �2
s2

4
3
5 ð7-19Þ

(a) Geometry. (b) Radiation pattern of both E    and  Eθ φ ||||

z

sin
z

θθ

.

Figure 7-13 The normal mode helix and its radiation pattern.
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Choosing the plus sign to keep the physical length S positive and substituting into (7-16)
yields the pitch angle required for circular polarization:

αCP ¼ sin �1 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðL=lÞ2

q
L=l

2
4

3
5 ð7-20Þ

Usually, the normal mode helix is oriented vertically and operated such that the ratio in
(7-14) is greater than unity, leading to predominantly vertically polarized radiation. This
antenna is very popular in small transceivers such as handheld personal radios; see
Sec. 11.6.1. For these applications, the wire length Lw is about a quarter-wave-length and
the antenna is operated as a monopole fed against a ground plane. In this context, it is
often referred to as a normal mode helix antenna (NMHA), or resonant (quarter-
wave) stub helix antenna. The pattern is, of course, nearly omnidirectional. The
advantages of the stub helix over a conventional straight-wire monopole of the same
height is that the helix acts as an inductor, tending to cancel the capacitance inherent in
electrically short antennas. The current along the wire of the helix is approximately
sinusoidal. The radiation resistance of a resonant stub helix above a perfect ground plane
for heights under l=8 is [H.6: Ant. Eng. Hdbk., 3rd ed., Chap. 13]

Rr � 640

�
h

l

�2

Ω resonant, stub helix ð7-21Þ

The counterpart short monopole from (3-15) has Rr ¼ 395ðh=lÞ2 Ω. Since electrically
short antennas suffer from low radiation resistance, the higher radiation resistance of
the stub helix is another improvement over the conventional short (straight wire)
monopole.

The normal mode helix antenna is not a broadband antenna but is similar in
structure to the axial mode helix antenna, which is broadband and is discussed in the next
section.

EXAMPLE 7-1 A Stub Helix Antenna for Handheld Cellular Radios

Consider a stub helix operating in the cellular telephone band at 883 MHz ðl ¼ 34 cmÞ: The
four-turn helix is 2:25 in:ð5:7 cmÞ high, or h ¼ 0:168l, and 0:2 in: ð0:5 cmÞ in diameter,
giving a circumference of C ¼ 0:046l: The turn spacing is S ¼ h=N ¼ 5:7 cm=4 ¼
1:43 cm ¼ 0:042l: The helix length is Lw ¼ ½ðNCÞ2þ h2�1=2 ¼ 0:25l, which is of resonant
length.

The axial ratio from (7-14) is

jARj ¼
2

S

l

� �
C

l

� �2
¼ 2ð0:042Þ

ð0:046Þ2 ¼ 38

This confirms the nearly vertical linear nature of the polarization. The radiation resistance
from (7-21) is Rr ¼ 640ð0:168Þ2 ¼ 18 Ω: A straight monopole of the same height would have
Rr ¼ 395ð0:168Þ2 ¼ 11 Ω:
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7.3.2 Axial Mode Helix Antennas

Axial mode helices are used when a moderate gain of up to about 15 dB and circular
polarization are required. The relatively small cross section of the helix makes it popular at
UHF frequencies, where it is widely used for satellite communications. In this section, we
consider the axial mode, monofilar (single winding) helix antenna in detail with emphasis
on design considerations. In the axial mode, the helix radiates as an endfire antenna with a
single main beam along the axis of the helix (the þz-direction in Fig. 7-10). The radiation
is close to circularly polarized near the axial direction. Further, the main beam narrows as
turns are added to the helix. The axial mode occurs when the helix circumference C is on
the order of one wavelength. Helices with a few turns perform well over the frequency
range corresponding to

3

4
l#C#

4

3
l ð7-22Þ

This gives a bandwidth ratio of

Br ¼ fU

fL
¼ c=lU

c=lL
¼ 4=3

3=4
¼ 16

9
¼ 1:78 ð7-23Þ

This is close to the conventional definition of a 2:1 bandwidth ratio for a wideband
antenna. For long helices, the upper operating frequency is lower than 4l=3, reducing the
bandwidth below 1:78:

Kraus [H.3:Kraus, 1st ed., Chap. 4] performed the pioneering work on the axial mode
helix and provided a simple explanation of its operation as well as empirical formulas for
pattern, gain, polarization, and impedance. Subsequent experiments [3, 6] produced more
accurate models for helix antenna performance. The development that follows is based on
these works.

An approximate model for the axial mode helix that offers a simple explanation for its
operation assumes that the helix carries a pure traveling wave that travels outward from
the feed. The electric field associated with this traveling wave rotates in a circle, pro-
ducing radiation that is nearly circularly polarized off the end of the helix.

In contrast to the normal mode helix, which has a current that is nearly uniform in
phase over the helix winding, the phase of the axial mode helix current shifts continu-
ously along the helix, which is characteristic of a traveling wave. Since the circumference
is close to one wavelength, the current at opposite points on a turn are about 1803 out-of-
phase. This cancels the current direction reversal introduced by the half-turn. Thus, the
radiation from opposite points on the helix is nearly in-phase, leading to reinforcement
along the axis in the far field. This radiation mechanism closely parallels that of the one-
wavelength loop discussed in Sec. 6.8.

Both early measurements [H.3: Kraus] and theoretical analysis [3] showed that the phase
velocity of the traveling wave closely follows that of a Hansen-Woodyard endfire antenna.
Traditional modeling of the helix for pattern evaluation adopts an array approach with each
turn being an element of the array as in [H.3: Stutzman andThiele, 2nd ed, Sec. 6.2]. Herewe
follow a slightly easier path of a line source model. We assume the phase is that of Hansen-
Woodyard endfire and the amplitude is to be uniform, which is reasonable for pattern cal-
culation purposes. Specifically, the turn-to-turn phase shift from the Hansen-Woodyard
endfire array case from (8-38b) is

αh ¼ � βSþ π
N

	 

ð7-24Þ

where the turn spacing S is equivalent to the element spacing d. The phase shift per unit
length, which is needed for the line source model, is
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βo ¼
αh

S
¼ � β þ π

NS

	 

¼ �β � π

h
ð7-25Þ

where (7-24) and h ¼ NS were used. The pattern factor of the line source from (5-7) is
sin u=u where from (5-3):

u ¼ ðβ cos θþ βoÞ
h

2
¼ 1

2
βhðcos θ� 1Þ � π½ � ð7-26Þ

As mentioned, the element factor is cos θ. So the complete line source pattern is the
product of the element factor and the pattern factor, as in (5-6), is

FðθÞ ¼ π
2
cos θ

sin
1

2

�
βhðcos θ� 1Þ � π

� �
1

2
βh ðcos θ� 1Þ � π½ �

ð7-27Þ

where φ=2 is needed for normalization to unity at θ ¼ 0�. This expression applies to Eθ
and Eφ.

A remarkable feature of the axial mode helix is that the phase velocity automatically
adjusts to maintain the increased directivity condition over a wide range of helix
parameter values: 5

�
,α, 20

�
and 3

4
l,C, 4

3
l: This result was found empirically.

Just as the directors on a Yagi-Uda antenna can be viewed as a slow wave structure, the
helix can be viewed as a slow wave structure supporting a circularly polarized traveling
wave. The significant difference is that while the Yagi-Uda is narrowband the helix is
broadband because of the self-adjusting phase.

The electrical performance of the axial mode helix is, of course, influenced by the
several geometric parameters. A pitch angle of α ¼ 13� is popular because the helix is
broadband at that value, but pitch angles from 11 to 14� are good as well [4]. Increasing
the number of turns increases gain and reduces the axial ratio. Although helix antennas
can be accurately simulated by numerical computational codes, most notably the method
of moments, it is helpful to have simple formulas for approximating key performance
parameters and to use as design aids. Empirical formulas based on extensive measured
data were originally developed by Kraus [H.3: Kraus, 1st ed.]. Subsequent investigations
have improved the accuracy. The formulas to be presented are to be used under
the condition of the circumference being bounded as in (7-22) as well as 12� ,α, 15�

and N > 5:
The half-power beamwidth in degrees is given by

HP ¼ 65o

C

l

ffiffiffiffiffiffiffi
N
S

l

r ð7-28Þ

Originally the numerator constant used by Kraus was 52�, but this value has been found to
be too low. The formula applies to all cut planes through the helix axis because of the
high degree of symmetry in the structure. The gain approximation follows directly from
the HP approximation using (4-57):

G ¼ 26,000

HP2
¼ 6:2

C

l

� �2

N
S

l
ð7-29Þ

This formula is presented as a gain formula, but does not include wire losses (usually
small) and matching network losses (can be 1 dB or more) that need to be accounted for
separately. It does include gain reductions due to pattern imperfections such as null filling
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and high side lobes that often occur in practice. Originally the leading constant value used
by Kraus was 15, but this has been shown to be too high [5]. Extensive experimental
investigation has shown the numerator constant in this formula to vary from 4.2 to 7.7 for
the range of parameters noted [6]. Based on (7-29), gain varies with frequency as f 3,
although experiments indicate this to be strictly true only for N about 10. Variation with N
from (7-29) is linear, so that doubling the helix length adds 3 dB to the gain. However,
measurements show this to be high [6]. The circumference variation of ðC=lÞ2 is limited
to the range in (7-22), and experiments have shown that gain peaks around C ¼ 1:1l [6].

The classical empirical formula for axial ratio [H.3: Kraus, 1st ed.] is:

ARj j ¼ 2N þ 1

2N
ð7-30Þ

indicating that circular polarization improves ( ARj j lowers) as the number of turns
increases. For a 10-turn helix, (7-30) yields ARj j ¼ 21=20 ¼ 1:05 ¼ 0:4 dB: This is an
overly optimistic value that is not achieved in practice. Experimental data indicate that
axial ratio is less than 1:2ð1:5 dBÞ for 0:8,C=l, 1:2: ½6� Axial ratio can be improved by
tapering the last few turns of the helix. The sense of the radiated wave is determined by the
sense of the windings of the helix as shown in Fig. 7-14. Thus, a left- (right-) hand wound
helix is left- (right-) hand sensed polarized. It is important to remember that the sense of
polarization is the same when using the antenna for transmit or receive.

The classical formula for input resistance is

RA ¼ 140
C

l
Ω ð7-31Þ

The input impedance is real-valued due to the nearly pure traveling-wave behavior of a
properly designed helix. This simple formula must be regarded as only an approximation
since the input impedance of actual helix antennas is affected by details of the feed.
However, the input impedance does remain nearly resistive over a wide bandwidth.

An axial mode helix performs well and is represented approximately by the foregoing
empirical relations when the increased directivity condition is satisfied. This occurs over
the bandwidth of (7-22) for helices of a few turns. However, long helices have a reduced
upper operating frequency; for example, fU corresponds to about C � l for N ¼ 50 ½30�:

If only a pure traveling wave exists on the helix, the ground plane would have little
effect. However, other modes are present, including a wave reflected from the end of
the helix that returns to the feed region. This makes the ground plane geometry
important. An approximate guideline is that the ground plane should be at least 3l=4
in diameter. Ground structures such as cups or cones are often used in place of a
larger ground plane [7]. The inner conductor of the coaxial connector is attached to
the helix and the outer conductor is connected to the ground structure as indicated in
Fig. 7-14. The conductor diameter is frequently selected to provide a rigid, self-
supporting structure. Helix winding conductor diameter d usually is between 0:005l
and 0:05l: A 50-Ω input impedance can be achieved by including an impedance
transformer in the feed or by adjusting the location of the wire from the coax to the
helix winding.

There are many variations of the helix antenna. For example, tapering the helix by
gradually reducing the diameter near the end of the helix improves impedance, pattern,

(a) Left-hand sensed helix. (b) Right-hand sensed helix.

Figure 7-14 Left- and right-hand
wound helices. For the axial mode
helix, the sense of the windings
determines the sense of polariza-
tion of the antenna.
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and polarization [8]. A compact volume can be achieved at the sacrifice of bandwidth
with a helix that conforms to a spherical surface rather than a cylinder [9]. A recent
modification is the stub-loaded helix antenna that uses internal stubs to reduce the volume
with only small reduction in bandwidth [10].

EXAMPLE 7-2 A 10-Turn Axial Mode Helix Antenna

The helix antenna is rather easy to construct and will perform approximately as predicted
by the simple theory presented in this section, as will be demonstrated in this example.
Calculations are compared to experimental results for a 10-turn helix constructed for a
center frequency of 8 GHz (l ¼ 3:75 cm), where the helix was designed to have a cir-
cumference of C ¼ 0:92l ¼ 3:45 cm: The helix was built with a pitch angle of α ¼ 13�.
The spacing between turns is then S ¼ C tan α ¼ 3:45 tan 13� ¼ 0:796 cm. The mea-
sured radiation patterns for the two principal planes are shown in Figs. 7-15a and 7-15b
[3]. These patterns are nearly alike and compare well to the pattern computed from
simple theory with (7-27), which is plotted in Fig. 7-15c. The beamwidth of the measured
patterns is about 44�. For comparison, the computed pattern of Fig. 7-15c has HP ¼ 39�,
and the approximate empirical formula of (7-28) gives a beamwidth of

HP ¼ 65�

C
l

ffiffiffiffiffiffi
N S

l

q ¼ 65�

0:92
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð0:212Þp ¼ 48� ð7-32Þ

whereas (7-27) yields

HP ¼ 47� ð7-33Þ

(a) Measured E   pattern at 8 GHz [10]. (b) Measured E  pattern at 8 GHz [10].

(c) Pattern computed from (7-27).

θ φ

1.0

0.5

1.0

0.5 z z

1.0
0.5 z

Figure 7-15 Radiation patterns of a 10-turn axial mode helix with C ¼ 0:92 l and α ¼ 13�
(Example 7-2).
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The gain predicted by (7-29) is

G ¼ 6:2
C

l

� �2

N
S

l
¼ 6:2ð0:92Þ210ð0:212Þ ¼ 11:1 ¼ 10:5 dB ð7-34Þ

7.4 BICONICAL ANTENNAS

Broadbanding of dipole and monopole antennas was tried early in the history of antennas.
Oliver Lodge built a biconical antenna in 1897, and Marconi constructed a vertical
monocone antenna (see Fig. 1-3) in 1901; see [H.8.1: Bevensee] for a survey of conical
antenna development.

The bandwidth of a simple dipole antenna can be increased by using thicker wire as
indicated in Fig. 6-7. This concept can be extended to further increase bandwidth if the
conductors are flared to form a biconical structure. Then the fixed wire diameter is
replaced by a smoothly varying diameter and a fixed angle (of the conical surfaces). In
this section, the idealized biconical antenna is considered first, followed by two practical
forms—the finite biconical antenna and the discone.

7.4.1 The Infinite Biconical Antenna

If the conducting halves of an antenna are two infinite conical conducting surfaces end-
to-end, but with a finite gap at the feed point, the infinite biconical antenna of Fig. 7-16
results. Since the structure is infinite, it can be analyzed as a transmission line. With a time-
varying voltage applied across the gap, currents will flow radially out from the gap along
the surface of the conductors. These currents, in turn, create an encirculating magnetic field
Hφ: If we assume a TEM transmission line mode (all fields transverse to direction of
propagation), the electric field will be perpendicular to the magnetic field and be θ-directed.
When the potential on the top cone is positive and the bottom cone is negative, the electric
field lines extend from the top to the bottom cone as indicated in Fig. 7-16.

I

I

V

r

E

H

θ

θ

θ

φ

h

θh

z

+

Figure 7-16 Infinite biconical antenna. The field
components and current are shown.
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In the region between the cones, J ¼ 0, H ¼ Hφf̂, and E ¼ Eθθ̂: Then Ampere’s
law, r � H ¼ jωεEþ J, reduces to

1

r sin θ
@

@θ
ðsin θ HφÞ ¼ jωεEr ¼ 0 ð7-35Þ

for the r-component and

� 1

r

@

@r
ðrHφÞ ¼ jωεEθ ð7-36Þ

for the θ-component. From (7-35), we see that @=@θ ðsin θHφÞ ¼ 0 so

Hφ / 1

sin θ
ð7-37Þ

Since the structure acts as a guide for spherical waves, we can write (7-37) as

Hφ ¼ Ho

e�jβr

4πr
1

sin θ
ð7-38Þ

Then, substituting this into (7-36), we obtain

Eθ ¼ �1

jωε
1

r

Ho

4π sin θ
@

@r
ðe�jβrÞ ¼ βHo

ωε
1

r

e�jβr

4π
1

sin θ
¼ ηHo

e�jβr

4πr
1

sin θ
ð7-39Þ

This equation is simply Eθ ¼ ηHφ, which confirms our statement that the wave is TEM.
The field components vary as 1=sin θ, so the radiation pattern is

FðθÞ ¼ sin θh
sin θ

, θh , θ,π� θh ð7-40Þ

which is normalized to unity at its maxima on the conductor surfaces. This pattern is
plotted in Fig. 7-17.

In order to determine the input impedance, we first find the terminal voltage and
current. Referring to Fig. 7-16, we see the voltage is found by integrating along a constant
radius r and it is

z

F(  )θ

Figure 7-17 Radiation pattern of an infinite biconical antenna.
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VðrÞ ¼
Z π�θh

θh

Eθr dθ ð7-41Þ

This can be performed for any r since the cones are equipotential surfaces. Substituting
(7-39) into the above equation yields

VðrÞ ¼ ηHo

4π
e�jβr

Z π�θh

θh

dθ
sin θ

¼ ηHo

4π
e�jβr ln tan

θ
2

����
����

� �π�θh

θh

¼ ηHo

2π
e�jβr ln cot

θh
2

� �
ð7-42Þ

The boundary condition on Hφ at the conductor surface is Js ¼ Hφ. The total current on
one cone is found by integrating the current density Js around the cone as shown in
Fig. 7-16, so

IðrÞ ¼
Z 2π

0

Hφr sin θ dφ ¼ 2πrHφ sin θ ð7-43Þ

Substituting (7-38) in the above gives

IðrÞ ¼ Ho

2
e�jβr ð7-44Þ

The characteristic impedance at any point r, from (7-42) and (7-44), is

Zo ¼ VðrÞ
IðrÞ ¼ η

π
ln cot

θh
2

� �
ð7-45Þ

Since this is not a function of r, it must be also the impedance at the inputðr ¼ 0Þ. Using
η � 120π in (7-45) gives the input impedance

ZA ¼ Zo ¼ 120 ln cot
θh
2

� �
Ω ð7-46Þ

For θh less than 20�,

ZA ¼ Zo � 120 ln
2

θh

� �
Ω ð7-47Þ

where θh is in radians. The input impedance is real because there is only a pure traveling
wave. Since the structure is infinite, there are no discontinuities present to cause reflec-
tions setting up standing waves, which would show up as a reactive component in the
impedance (except at a few resonance points). If θh ¼ 1�, ZA ¼ 568þ j0 Ω. If θh ¼ 50�,
ZA ¼ 91þ j0 Ω.

If one cone is flared all the way out to form a perfect ground plane, a single infinite
cone above a ground plane results. This monopole version of the infinite bicone then has
an input impedance which is half that of the infinite bicone.

7.4.2 Finite Biconical Antennas

A practical biconical antenna is made by ending the two cones of the infinite bicone
forming the finite biconical antenna shown in Fig. 7-18. Inside an imaginary sphere of
radius h just enclosing the antenna, TEM waves exist together with higher-order modes
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created at the ends of the cones. These higher-order modes are the major contributors to
the antenna reactance. The ends of the cones cause reflections that set up standing waves
that lead to a complex input impedance.

The reactive part of the input impedance can be held to a minimum over a progres-
sively wider bandwidth by increasing the angle θh in Fig. 7-18. At the same time, the real
part of the input impedance becomes less sensitive to changing frequency (or changing h
in Fig. 7-18). This is illustrated by measured data in Fig. 7-19 for a conical monopole
where the antenna impedance is plotted versus the height of the monopole Lh. These data
clearly show that one can achieve the 2:1 impedance bandwidth necessary for one part of
our definition of a broadband antenna. This is our first example of an antenna that can be
more dependent on an angle in its geometry description than on its length. Frequency-
independent antennas, considered later in this chapter, exploit this property. Another
property that we will observe in many broadband and frequency-independent antennas is
that some important dimension must be at least l=4. Careful examination of Fig. 7-19
reveals that the impedance bandwidth starts when the height of the conical monopole is
about l=4 and extends upward beyond l=2. The pattern of a conical monopole or finite
biconical for small cone angles is very similar to that of an ordinary monopole or dipole
of the same length.

A much simpler alternative to the finite biconical antenna is the common “bow-tie”
antenna (shown later in Fig. 7-34). It offers less weight and costs less to build, butwill have a
somewhat more sensitive input impedance to changing frequency than the finite biconical.
The bow-tie is commonly constructed by printing the two halves on a thick substrate
material, one on top and the other on the bottom. The monopole version of the bow-tie,
called a triangular antenna, has impedance characteristics similar to those for the
conical monopole of Fig. 7-19, but with somewhat smaller variations with antenna length
[11]. A unidirectional bow-tie with 37% bandwidth is made by mounting it parallel to and
3=8l in front of a ground plane [12].

7.4.3 Discone Antennas

If one cone of the finite biconical antenna is replaced with a disk-shaped ground plane,
the structure becomes a disk-cone, or discone, antenna (see Fig. 7-20). The discone
antenna was developed by Kandoian [13] in 1945, followed several years later by

h

h

z

a

hθ

Figure 7-18 Finite biconical antenna.
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Figure 7-19 Measured input impedance of a conical monopole with flare angle 2θh # 90� versus monopole
height Lh. (Used with permission from [H.6: Jasik] ª 1961 The McGraw-Hill Companies.)
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experimental design studies [14, 15]. It is used (like a vertical dipole) for vertical
polarization and nearly uniform azimuth coverage (i.e., an omnidirectional pattern). The
discone offers satisfactory operation over a wide frequency range (several octaves) while
maintaining acceptable pattern and impedance properties.

The discone is constructed as shown in Fig. 7-20. The outer conductor of the coaxial
transmission line is connected to the cone and the inner conductor is attached to the disk
ground plane. The cone and disk can be either solid metal or radial wires. Ideally, the
pattern between the ground plane and the cone is that of the infinite bicone. This
omnidirectional pattern is well suited to broadcast applications.

The discone antenna can be designed for broadband impedance performance (typically
50Ω), while maintaining acceptable pattern behavior with frequency [13]. Typical
center frequency dimensions are H ¼ 0:7l, B ¼ 0:6l, D ¼ 0:4l, θh ¼ 25�, and δ � D.
For example, the discone with the patterns of Fig. 7-21 has a center frequency of 1GHz
(l ¼ 30 cm). So at 1 GHz, H ¼ 21:3 cm ¼ 0:71l, B1 ¼ 19:3 cm ¼ 0:64l, and θh �
sin �1½ðB=2Þ=H� ¼ 27�. Nail [14] has given optimum design formulas of D ¼ 0:7B1 and
δ ¼ 0:3B2, independent of H and θh.

The pattern performance over a 3:1 bandwidth is revealed in Fig. 7-21. At low fre-
quencies, the structure is small relative to a wavelength, and the pattern is not too dif-
ferent from that of a short dipole (see Fig. 7-21a). As frequency increases, the electrical
size of the ground plane increases and the pattern is confined more to the lower half-space
(see Fig. 7-21b). For further increases in frequency, the antenna behavior approaches that
of an infinite structure. For example, at 1500 MHz, the pattern (of Fig. 7-21c) is very
close to that of the monopole version of the infinite biconical antenna in Fig. 7-16.
Measurements with several values of disk parameter D and spacing between the cone δ
showed that the patterns are insensitive to these parameters [15].

Nail’s optimum design formulas [12] are for B2 � lU=75 at the highest operating
frequency of the antenna and δ � D. For larger values of B2 and δ � 0:5B2, it has been
found that Nail’s equations need to be altered when a type N-connector is used between the
skirt and the disk [14]. In this case, δ ¼ 0:5B2, 2a ¼ 0:33B2, D ¼ 0:75B1, L ¼ 1:15lL
based on experimental measurements. It has been reported in [16] that a VSWR below
1.5:1 over an octave bandwidth is easily achievable and 45� , 2θh , 75� yields the best
results. This is evident from Fig. 7-22 [H.6; Rudge Vol. 2, pg. 735] which shows VSWR for
various discone angles. The best low-frequency performance along with a nearly “flat”
VSWR curve at higher frequencies occurs for approximately 45� , 2θh , 75�.

50Ω coax

B1

h

B2

2a

H

D

δ

z

θ

Figure 7-20 Discone antenna. Typical dimen-
sions are HB0:7l, B1B0:6l, DB0:4l, and
δ � D.
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Discone, biconical, and bow-tie antennas are often constructed of wires rather than
solid metal to reduce weight and cost, and several commercial products are available.
Fig. 14-40 illustrates a wire-formed monocone. Simulation studies [17] have shown that
if more than eight wires are used to form the monocone, the performance is similar to
the solid monocone counterpart antenna; also see [18].

7.5 SLEEVE ANTENNAS

In Sec. 6.1, we saw that the dipole antenna is very frequency-sensitive and its bandwidth
is much less than the octave bandwidth provided by the antennas studied previously in
this chapter. However, the addition of a sleeve to a dipole or monopole can increase the
bandwidth to more than an octave. In this section, we will briefly examine a few forms of
the sleeve antenna, which incorporates a tubular conductor sleeve around an internal
radiating element. Emphasis will be placed on practical configurations.

(c)

1500 MHz

z

1.0

0.5

(b)

1000 MHz

z

1.0

0.5

(a)

500 MHz

z

1.0

0.5

Figure 7-21 Measured patterns of a discone antenna for H ¼ 21:3 cm, B1 ¼ 19:3 cm, and
θh ¼ 25�.
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7.5.1 Sleeve Monopoles

A sleeve monopole configuration is shown in Fig. 7-23a fed from a coaxial transmission
line. The sleeve exterior acts as a radiating element and the interior of the sleeve acts as
the outer conductor of the feed coaxial transmission line. In principle, the length of the
sleeve can be any portion of the total length of the monopole from zero (no sleeve) to
where the sleeve constitutes the entire radiating portion of the antenna. However, in
practice, the sleeve is usually about 1

3
to 1

2
the height of the monopole. The reason for this

is apparent from Figs. 7-23b and 7-23c, which suggest that the current at the virtual feed
point changes only slightly as the overall monopole height varies from l=4 to l=2. Thus,
the impedance remains somewhat constant over at least an octave. As for an ordinary
monopole with no sleeve, the antenna dimensions affect the impedance more than the
pattern.

Consider Fig. 7-23d. The first sleeve monopole resonance occurs at a frequency where
the monopole length ‘þ L is approximately l=4. Design proceeds by locating this first
resonance near the lower end of the frequency band, thereby fixing the total physical
length ‘þ L. The remaining design variable is ‘=L. It has been found experimentally that

(a) Geometry. (d) Geometry.Current distribution.
(Sleeve not shown)

Current distribution.
(Sleeve not shown)

Coaxial
Transmission

line

Virtual feed point

λ/4 λ/2

Radiator

Sleeve D

L
�1

�

�2

d

(b) (c)

Figure 7-23 Sleevemonopole configurations:Arrows in (a) indicate polaritywhen ‘þ L# l=2.
Different current distributions on the center conductor are shown in (b) and (c).
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Figure 7-22 VSWR curves for discones of various
cone angles, 2θh. (From [H.6: Rudge] ª 1983 IET
(London). Used with permission.)
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a value of ‘=L ¼ 2:25 yields optimum (nearly constant with frequency) radiation patterns
over a 4:1 band [19]. The value of ‘=L has little effect for ‘þ L# l=2 since the current on
the outside of the sleeve will have approximately the same phase as that on the top portion
of the monopole itself, as suggested by the arrows of Fig. 7-23a. However, for longer
electrical lengths the ratio ‘=L becomes very important and has a marked effect on the
radiation pattern, since the current on the outside of the sleeve will not necessarily be in-
phase with that on the top portion of the monopole. Some typical specifications for
optimum performance are given in Table 7-1. In some applications, the VSWR may be
too high, requiring a matching network.

7.5.2 Sleeve Dipoles

The sleeve monopole has a counterpart in the sleeve dipole antenna that is shown in
Fig. 7-24a. An approximate impedance analysis of the sleeve dipole can be carried out
according to Figs. 7-24b and 7-24c where the doubly driven structure of Fig. 7-24a is
replaced by the pair of asymmetrically driven structures in Fig. 7-24b. The change in
diameters on the longer arms is neglected, resulting in Fig. 7-24c. The current at the
input to the sleeve (virtual feed) IAðzf Þ is then approximately the sum of the currents
at the point z ¼ zf from the two configurations in Fig. 7-24c. For the left half of
Fig. 7-24c, the current at the virtual feed in that asymmetrical structure is Iasðzf Þ. The
current at the same point due to the excitation in the lower half of the sleeve dipole (i.e.,
the right half of Fig. 7-24c) is identical to the current at the point �zf when the exci-
tation is at the point zf , since the two structures are physically equivalent. Thus,

IAðzf Þ � Iasðzf Þ þ Iasð�zf Þ ð7-48Þ

Table 7-1 Specifications for Optimum Pattern Design
of a Sleeve Monopole

Pattern bandwidth 4:1
‘þ L l=4 at low end of band
‘=L 2.25
D=d 3.0
VSWR less than 8:1

(a) Sleeve dipole. (b) Intermediate equivalent. (c) Final equivalent.
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+

+

−
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−

−

z = zf

z = 0

z = −zf

Figure 7-24 Sleeve dipole configuration and approximate equivalents (Used with permission
from [H.3: Weeks] ª 1968 The McGraw-Hill Companies.)
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The input admittance to the sleeve is then

YA � Iasðzf Þ þ Iasð�zf Þ
VA

� Yas 1þ Iasðzf Þ
Iasð�zf Þ

� �
ð7-49Þ

where

Yas � 2

ðZ1 þ Z2Þ ð7-50Þ

and where Z1 is the impedance of a symmetrical antenna of half-length L1 and Z2 is
the impedance of a symmetrical antenna with half-length L2 [H.3: Weeks, Sec. 4.4.4].
Eq. (7-50) is useful for estimating the impedance of asymmetrical dipoles such as that in
Prob. 6.l-4.

The sleeve dipole of Fig. 7-24a can be approximated with an open-sleeve dipole in
which the tubular sleeve is replaced by two conductors close to either side of the driven
element as shown in Fig. 7-25. The length of the parasites (simulated sleeve) is
approximately one-half that of the center-fed dipole. The open-sleeve dipole, which we
will describe from an experimental viewpoint, is operated in front of a flat reflector, or
ground plane [20, 21]. The results are also applicable to sleeve dipoles without a flat
reflector present.

The antenna was designed for the 225- to 400-MHz frequency band. The dipole to
reflector spacing Sd was chosen to be 0:29l at 400 MHz to avoid the deterioration of
the radiation pattern that occurs for larger spacings. All the dimensions required for the
design of the open-sleeve dipole are given in Table 7-2. These design values yield
low VSWR over a wide bandwidth. This is illustrated in Fig. 7-26 by a comparison of the
VSWR characteristics of a conventional (unsleeved) dipole and an open-sleeve dipole
with a diameter D of 2.9 cm. Although these results do not represent exhaustive design

Reflector
surface

Coaxial input

Feed
point

details

S S

S

H

L

d

d

d

Figure 7-25 The open-sleeve
dipole antenna with a flat reflector
shown in front, top, and side views.
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data for the open-sleeve dipole, they do serve as a starting point in the design of open-
sleeve dipoles with or without a reflector present.

7.6 PRINCIPLES OF FREQUENCY-INDEPENDENT ANTENNAS

Frequency independent antennas had their beginning in research conducted in the late
1950s at the University of Illinois and led to configurations that will be covered in this
section. An early nonmilitary application of frequency-independent antennas was the log-
periodic dipole TV antenna that was used on houses around the world starting in the
1960s.

Aperture antennas, to be discussed in the next chapter, are capable of bandwidths of
2:1 or more, but the main beam narrows as frequency is increased. Often, it is desirable to
have the pattern of an antenna remain constant over a very wide range of frequencies. An
antenna with a bandwidth of about 10:1 or more is referred to as a frequency-independent
antenna. The purest form of a frequency-independent antenna has constant pattern,
impedance, polarization, and phase center with frequency. Few antennas meet all these
criteria. The axial mode helix has constant impedance and phase center location over a
bandwidth of about 2:1, but the main beam narrows with increasing frequency. The

Table 7-2 Electrical Dimensions of an Open-Sleeve Dipole with a
Reflector for Lowest VSWR

Parameter
(see Fig. 7-25)

Electrical Dimension
at Lowest Frequency

(225 MHz)

Electrical Dimension at
Highest Frequency

(400 MHz)

D 0:26 l 0:047 l
H 0:385 l 0:684 l
L 0:216 l 0:385 l
S 0:0381 l 0:0677 l
Sd 0:163 l 0:29 l

Frequency, MHz

Open-sleeve
dipole

Conventional
Cylindrical dipole
(without sleeves)

V
SW

R

200 250 300 350 400
1

2

3

4

5

6

Figure 7-26 Comparison between
the VSWR response of a conven-
tional (unsleeved) cylindrical dipole
and an open-sleeve dipole both with
a diameter D of 2.9 cm [20].
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principles of frequency independence are discussed in this section and antennas capable
of 10:1 bandwidth are introduced in the next two sections.

The biconical antenna represents the emergence of frequency-independent behavior. In
Sec. 7.4, we found that the input impedance and pattern of the infinite biconical antenna
were independent of frequency. This is precisely the behavior we desire. The feature of
the biconical structure that is responsible for frequency independence is the emphasis on
angles and the complete avoidance of finite lengths. This is verified by the observation
that when the bicone is truncated to form the finite biconical antenna of Fig. 7-18, its
bandwidth is limited. Of course, in general, if no finite lengths are present on an antenna,
the structure would have to be infinite. Rumsey [H.8.3: Rumsey] noted that, in practice,
frequency-independent antennas are designed to minimize finite lengths and maximize
angular dependence. The concept of angle emphasis has been exploited to produce a
family of frequency-independent antennas.

There is another property in addition to angle emphasis that leads to frequency-
independent behavior, that of self-complementarity. Consider a metal antenna with input
impedance Zmetal. A dual structure can be formed by replacing the metal with air and
replacing air with metal. The resulting complementary antenna has input impedance Zair.
Complementary antennas are similar to a positive and negative in photography. An
example is a ribbon dipole and its complement, the slot antenna, shown in Fig. 7-27.

Babinet’s principle can be used to find the impedance of complementary antennas.
Babinet’s principle for optics states that a source of light behind complementary thin
conducting sheets produces lit regions on the source-free side that when superposed give
a completely lit region, just as would exist without the sheets present. Extending this to
electromagnetics [19] leads to the following important relationship for the input impe-
dances of complementary antennas [H.8.3: Mushiake, p. 16]:

Zmetal Zair ¼ η2

4
¼ ð376:7Þ2

4
¼ 35,475:7Ω ð7-51Þ

This assumes that no dielectric or magnetic materials are present; if so, the proper ηmust be
used in place of the free-space value. If the dipole of Fig. 7-27a is resonated by reducing
its length slightly below a half-wavelength, its impedance is Zmetal ¼ Zdipole ¼ 70Ω. Then
from (7-51), the impedance for the slot antenna of Fig. 7-27b, Zair, is

Zslot ¼ η2

4Zdipole
¼ 35,475:7

4ð70Þ ¼ 506:8Ω half -wave slot antenna ð7-52Þ

(a) Ribbon dipole. (b) Slot antenna. Figure 7-27 Complementary dipole and slot antennas.
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Prob. 7.6-2 addresses the slot that is complementary to the ideal dipole.
The product of the impedances of two complementary antennas is the constant η2=4. If

the antenna is its own complement, frequency-independent impedance behavior is
achieved. This is the self-complementary property, in which the antenna and its com-
plement are identical. A self-complementary structure can be made to exactly overlay its
complement through translation and/or rotation. The value of impedance follows directly
from (7-52), as noted by [H.8.3: Mushiake]

Zmetal ¼ Zair ¼ η
2
¼ 188:5Ω self -complementary antenna ð7-53Þ

The frequency-independent impedance of (7-53) is the second design principle for
frequency-independent antennas; that is, self-complementary antennas tend to be
frequency-independent. It turns out, however, that many antennas that are not self-
complementary still have small impedance variations with frequency.

Our study of the antennas in this chapter has led to a number of characteristics that are
likely to produce broadband behavior. Before moving on to antenna types that yield
extremely wide bandwidth in the following sections, we summarize these properties. The
characteristics that yield broadband behavior are:

1. Emphasis on angles rather than lengths. Examples are the helix in Sec. 7.3 and
the spiral in Sec. 7.7, which both avoid fixed physical length elements and produce
wide bandwidth.

2. Self-complementary structures. The equiangular spiral of Fig. 7-29 is an example.
3. Thick metal—“fatter is better.” Increasing the wire diameter of even resonant

antennas such as a dipole widens its bandwidth; see Fig. 6-7. The biconical antenna
is the ultimate fat dipole and has wide bandwidth; the biconical antenna also
emphasizes angles. The bow-tie antenna of Fig. 7-34 is another example.

Ideally, frequency-independent antennas should display all three of these properties. It
is found in practice that successful wide bandwidth designs emphasize these properties,
but in many cases strict adherence is not required. For example, we will see in Sec. 7.8
that some log-periodic antennas deviate from the self-complementary principle and still
have wide bandwidth. The usual penalty for doing this is that the impedance will vary
with frequency and not be constant as predicted with (7-53). This may not be a serious
problem in many applications.

A distinguishing feature of frequency-independent antennas is their self-scaling
behavior.Most radiation takes place from that portion of the frequency-independent antenna
where its width is a half-wavelength or the circumference is onewavelength—the so-called
active region. Radiation is maximum perpendicular to the plane of the structure and can be
explained in a fashion similar to the one-wavelength loop discussed Sec. 6.8. As frequency
decreases, the active region moves to a larger portion of the antenna, where the width is a
half-wavelength. The characteristics of angle emphasis and using thick metal yield struc-
tures that provide regions where the current can adjust as the frequency changes.

Frequency-independent antennas can be divided into two types: spiral antennas and
log-periodic antennas. Spirals are discussed in the next section and log-periodics are
treated in the following section.

7.7 SPIRAL ANTENNAS

Spiral antennas and their variations are usually constructed to be either exactly or nearly
self-complementary. This yields extremely wide bandwidths of up to 40:1. Historically,
the equiangular spiral was invented first, so we begin our discussions with it [22], [H.6:
Ant. Eng. Hdbk., 4th ed., Chap. 13].
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7.7.1 Equiangular Spiral Antennas

The equiangular spiral curve shown in Fig. 7-28 is represented by the generating equation

r ¼ r0e
aφ ð7-54Þ

where r0 is the radius for φ ¼ 0 and a is a constant controlling the flare rate of the spiral.
The spiral of Fig. 7-28 is right-handed. Left-handed spirals can be generated using
negative values of a, or by simply turning over the spiral of Fig. 7-28. The equiangular
spiral curve is used to create the antenna of Fig. 7-29, which is referred to as the planar
equiangular spiral antenna. The four edges of the metallic region each have an equation
for their curves of the form in (7-54). In particular, edge 1 is exactly that of Fig. 7-28,
so r1 ¼ r0e

aφ. Edge 2 has the same spiral curve but rotated through the angle δ, so
r2 ¼ r0e

aðφ�δÞ. The other half of the antenna has edges that make the structure symmetric;
that is, rotating one spiral arm by one-half turn brings it into congruence with the other
arm. So, r3 ¼ r0e

aðφ�πÞ and r4 ¼ r0e
aðφ�π�δÞ. The structure of Fig. 7-29 is self-comple-

mentary, so δ ¼ π=2. It does not have to be constructed this way, but pattern symmetry is
best for the self-complementary case.

The impedance, pattern, and polarization of the planar equiangular spiral antenna
remain nearly constant over a wide range of frequencies. The feed point at the center, the
overall radius, and the flare rate affect the performance. The flare rate a is more con-
veniently represented through expansion ratio ε, which is the increase factor of the radius
for one turn of the spiral:

y

r

r x
0

φ

Figure 7-28 Equiangular spiral curve with
r ¼ r0e

aφ and r0 ¼ 0:311 cm and a ¼ 0:221.

Edge 1

Edge 2

R

δ

r2

r1

r3r4

Figure 7-29 Planar equiangular spiral antenna for
the self-complementary case with δ ¼ 90�.
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ε ¼ rðφþ 2πÞ
rðφÞ ¼ roe

aðφþ2πÞ

r0eaφ
¼ ea2π ð7-55Þ

A typical value for ε is 4, and then from (7-55), a ¼ 0:221. The frequency at the upper
end of the operating band fU is determined by the feed structure. The minimum radius r0
is about a quarter-wavelength at fU for an expansion ratio ε of 4 [H.8.3: Rumsey].
A nearly equivalent criterion is a circumference in the feed region of 2πr0 ¼ lU ¼ c=fU .
Of course, the spiral terminates at this point and is connected to the feed transmission
line. The low-frequency limit is set by overall radius R, which is roughly a quarter-
wavelength at fL. Alternatively, the circumference of a circle just enclosing the spiral can
be used to set the low-frequency limit through C ¼ 2πR ¼ lL.

Spirals with one-half to three turns have been found experimentally to be relatively
insensitive to the parameters a and δ [22]. One-and-one-half turns is about optimum.
For example, again consider a one-and-one-half turn spiral with a ¼ 0:221 as shown in
Fig. 7-29. Each edge curve is of the form in (7-55), so the maximum radius is
R ¼ rðφ ¼ 3πÞ ¼ r0e

0:221ð3πÞ ¼ 8:03r0. This equals lL=4, where lL is the wavelength at
the lower band edge frequency. At the feed point, r ¼ rðφ ¼ 0Þ ¼ r0e

0 ¼ r0, and this
equals lU=4 where lU is the wavelength at the upper band edge. The bandwidth is then
fU=fL ¼ lL=lU ¼ lL=4=lU=4 ¼ 8:03. This 8:1 bandwidth is typical; however, band-
widths of 40:1 can be obtained.

Based on (7-53), the self-complementary equiangular spiral should have an input
impedance value of 188:5þ j0 Ω. In practice, the measured impedance values tend to be
lower than this (about 120þ j0 Ω), due to the finite thickness of the metallization and the
presence of the coaxial feed line that is wound along one arm toward the feed at the center
[22]. A feed of this type is referred to as an infinite balun. The balance function arises because
any currents that are excited on the outside of the coax travel out from the feed point at the
center, acting essentially like the currents on the arm and radiating upon reaching the active
region. To maintain symmetry, a dummy coax is often attached to the second arm.

The radiation pattern of the self-complementary planar equiangular spiral antenna is
bidirectional with two wide beams broadside to the plane of the spiral. The field pattern
is approximately cos θ when the z-axis is normal to the plane of the spiral. The half-power
beamwidth is, thus, approximately 90�. The polarization of the radiation is close to circular
over wide angles, out to as far as 70� from broadside. The sense of the polarization is deter-
mined by the sense of the flare of the spiral. For example, the spiral of Fig. 7-29 radiates in the
right-hand sense for directions out of the page and left-hand sense for directions into the page.

7.7.2 Archimedean Spiral Antennas

Another form of the planar spiral is the Archimedean spiral antenna shown in Fig. 7-30.
This antenna, as are many spiral antennas, is easily constructed using printed circuit
techniques. The equations of the two spirals in Fig. 7-30 are

r ¼ r0φ ð7-56Þ
r ¼ r0ðφ� πÞ ð7-57Þ

The Archimedean spiral is linearly proportional to the polar angle rather than an expo-
nential for the equiangular spiral, and thus flares much more slowly.

The simple geometry of the Archimedean spiral antenna affords an opportunity to
explain an important operating principle in frequency-independent antennas. This is the
“band” description of radiation that is characterized by an active region responsible for
radiation. Between the feed point of a frequency-independent antenna and the active
region, currents exist in a transmission line mode and fields arising from them cancel in the
far field. The active region occurs on that portion of the antenna that is one wavelength in
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circumference for curved structures or has half-wavelength-long elements in antennas with
straight wires or edges. Beyond the active region, currents are small, having lost power to
radiation in the active region, and the antenna effectively behaves as if it is infinite in
extent. Of course, the active region moves around the antenna with frequency. Since the
geometry of a spiral is smooth, as frequency is reduced and the active region shifts to
locations farther out on the spiral, the electrical performance remains unchanged. Hence,
self-scaling occurs and frequency-independent behavior results.

We now give a physical explanation of how spiral antennas operate using Fig. 7-30. The
arms are fed 180� out-of-phase at points F1 and F2. This is represented with oppositely
directed current arrows. The current is inward for arm no. 1ð�Þ and outward for arm no.
2ðþÞ. The lengths of the arms out toA, F1A1 andF2A2, are equal, so the phase shifts from the
feed to A are identical, preserving the current directions as shown in Fig. 7-30. The active
region where the circumference is one wavelength contains points labeled with an A or B. It
can be assumed that the current magnitudes over this region are nearly the same. The phase,
however, shifts as the traveling waves progress along the arms. Since the circumference is
electrically large in the active region, phase must be accounted for. The phase shifts 180�
between A1 and A0

1 and between A2 and A0
2, because of the l=2 differential path length.

Adjacent points on different arms (A1, A
0
2 and A2, A

0
1) are now in phase because the 180�

phase shift counters the direction reversal introduced by the half-turn. In addition, the points
opposite these pairs are in phase; that is, A1, A

0
2 are in phase with A2, A

0
1. This in-phase

condition leads to reinforcement of electric fields in the broadside direction, giving a radi-
ation maximum. Interior to the active region, the electrical distance along different arms to
adjacent points is not electrically large, preserving the antiphase condition due to the exci-
tation. This is a transmission line mode and radiation is low. Often, resistive loads are added
to the ends of the spiral to prevent reflection of the remaining traveling waves.

The final aspect that requires explanation is the circular polarization property. In the active
region, points that are one-quarter turn around the spiral are 90� out of phase. For example,
the phase at point B1 lags that at point A1 by 90

�. In addition, the currents are orthogonal in
space. The current magnitudes are also nearly equal. Thus, all conditions are satisfied for
circular polarized radiation: The radiated fields (created by the currents) are orthogonal,
equal in magnitude, and 90� out of phase. As indicated by the vector diagram insert in
Fig. 7-30, the wave is left-hand circular polarized. The left-hand sense results from the
left-hand winding of the spiral. This is for radiation out of the page. Viewed from the other
side of the page, the spiral is right-hand wound and thus produces RHCP.

A2

B2

B1

/2

A

B

LHCP

1

1

0°

90°

F2

F1

A′1

A′2

A1

+

−

−

λ

Figure 7-30 The Archimedean spiral
antenna. The outside circumference in this
case is one wavelength and thus is the
active region. The inset is a vector diagram
for the radiated electric fields, showing that
the outward radiation is left-hand circularly
polarized.
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Based on the above discussion, it is apparent that the spiral produces a broad main beam
perpendicular to the plane of the spiral. Most applications require a unidirectional
beam. This is created by backing the spiral with a ground plane. The most common con-
struction approach is to use a metallic cavity behind the spiral, forming a cavity-backed
Archimedean spiral antenna. This introduces a fixed physical length (the distance to the
ground plane), thereby altering the true frequency-independent behavior. This is corrected
inmost commercial units by loading the cavity with absorbingmaterial to reduce resonance
effects; this, however, introduces loss. Typical performance parameter values for the cavity-
backed Archimedean spiral are HP ¼ 75�, ARj j ¼ 1 dB, G ¼ 5 dB over a 10:1 bandwidth
or more. The input impedance is about 120 Ω, and is nearly real. The performance of the
equiangular spiral is similar to that for the Archimedean spiral.

Very wideband antennas such as spirals are balanced structures. They are normally
connected to a coaxial cable, which is an unbalanced structure. Therefore, a balun must
be included with the spiral feed; see Sec. 6.4.3 for discussions of balun principles. One
such wideband balun is the tapered-coax wideband balun that is formed by gradually
cutting away the outer conductor of the coaxial cable, leaving a parallel wire line to attach
to the spiral arms [23] as shown in Fig. 6-27b.

The pattern of the cavity-backed Archimedean spiral can be modeled by the following
empirically derived function [24]:

FðθÞ ¼ cos 5:8ð0:53 θÞ ð7-58Þ

Evaluating this pattern for the half-power points leads to a beamwidth of HP ¼ 74�.
Fig. 7-31a shows an experimental model that has a diameter of 5:4 cm. The low

frequency cutoff for this spiral antenna occurs when the circumference is one wavelength
leading to:

c=l ¼ c=πD ¼ 30=5:4π ¼ 1:77GHz ð7-59Þ
The measured patterns are shown in Fig. 7-31b for three frequencies: 2.5 (slightly above
cutoff), 5, and 10 GHz. Also plotted is the pattern model of (7-58). Note that the pattern
remains nearly constant over a 4:1 bandwidth, characteristic of frequency-independent
antennas. Representative measured antenna patterns for a cavity-backed spiral are shown
in Fig. 13-13.

7.7.3 Conical Equiangular Spiral Antennas

Nonplanar forms of spiral antennas are used to produce a single main beam, thereby
avoiding a backing cavity. For example, the planar equiangular spiral antenna conformed
to a conical surface forms the conical equiangular spiral antenna shown in Fig. 7-32.
The equation for a conical equiangular spiral curve is

r ¼ eða sin θhÞφ ð7-60Þ
The planar spiral is a special case of this with θh ¼ 90�. The equations for the edges of
one spiral of metal are that of (7-60) for r1 and r2 ¼ eða sin θhÞðφ�δÞ, and δ ¼ π=2 for the
self-complementary case. The other spiral arm is produced by a 180� rotation. The edges
of the arms maintain a constant angle α with a radial line for any cone half-angle θh
[H.8.3: Rumsey].

a ¼ cot α ð7-61Þ
The conical equiangular spiral antenna has a single main beam that is directed off
the cone tip in the �z-direction. A self-complementary shape yields the best radiation
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patterns. Typical patterns for θh # 15� and α about 70� have a broad main beam with a
maximum in the θ ¼ 180� direction and a half-power beam width of about 80�. Since the
structure is rotationally symmetric, the pattern is also nearly rotationally symmetric.
The polarization of the radiated field is very close to circular in all directions, with the
sense determined by the sense of the spiral winding. However, the polarization ellipticity
increases with the off-axis angle.

The impedance [H.8.3: Rumsey] can be approximated by the relation

Zo � 300� 1:5δðdegreesÞ Ω ð7-62Þ
where δðdegreesÞ is the angle δ of Fig. 7-32 in degrees. For the self-complementary case,
δ is 90� and from (7-61) Zo � 165 Ω, which is close to the 188:5-Ω theoretical value of
(7-53). The impedance is not affected significantly by θh or α.

The design of the conical equiangular spiral antenna is rather simple and proceeds as
follows [25]. The upper frequency fU of the operating band occurs when the truncated
apex diameter is a quarter-wavelength; that is, lU=4. The lower band edge frequency fL is
determined by the base diameter B and occurs for B ¼ 3lL=8. θh is usually less than 15�

and α about 70�. For θh ¼ 10� and α ¼ 73�, the front-to-back ratio is 15 dB and the
polarization axial ratio on the axis is below 3 dB.

7.7.4 Related Configurations

Spiral antennas can be operated in other than the fundamental odd mode described above,
where the feed point terminals are excited in antiphase. Higher-order modes are possible
and have an active region where the circumference is an odd multiple (3, 5, . . .) of a

2.5 GHz

5.0 GHz

10.0 GHz

(a) The spiral (reduced in size).

Radiation patterns: measured (dashed curve) and
 computed (solid curve) using cos5.8 (0.53  ).

(b)
θ

−10 dB

−10 dB

−20 dB

−30 dB

−10 dB

−20 dB

−30 dB

−20 dB

−30 dB

Figure 7-31 A 4:1 bandwidth cavity-backed Archimedean spiral antenna.
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wavelength. Even modes can be created by feeding the arms in-phase, leading to a null
broadside to the spiral. This pattern is useful in direction finding (DF) [H.11.4: Lipsky]

Archimedean spirals with square arms provide a size reduction of 22%, which is based
on the increase in perimeter from circular with πD compared to 4D for square. Also,
spiral arms can be zigzagged [26], coiled, or loaded [H.9.1: Waterhouse, Chap. 4] to
extend bandwidth. Additional material on spiral antennas can be found in the following
references: [H.8.3: Corzine and Mosko], [H.8.3: Nakano], [H.8.6: Ant. Eng. Hdbk. 4th, ed.,
Chap. 13].

A broadband antenna that is related to the spiral is the sinuous antenna [25]. As can
be seen from Fig. 7-33, the sinuous antenna is more complicated than the spiral antenna.
However, it offers more flexible polarization uses. Two opposite arm pairs produce
orthogonal linear polarizations. These pairs can be used separately for polarization
diversity or for transmit/receive operation. Or, the two-arm-pair out-puts can be combined
to produce simultaneous LHCP and RHCP. The operating principles are very similar to
those for the planar spirals.

7.8 LOG-PERIODIC ANTENNAS

The frequency independent spiral antennas of the previous section illustrate the principle
that emphasis on angles will lead to a broadband antenna. Although spiral antennas are

d

B

z

h

r1r2

θ

δ

α

Figure 7-32 The conical equiangular spiral antenna.

Figure 7-33 The sinuous antenna.
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not complex structures, construction would be simplified if simple geometries, involving
circular or straight edges, could be utilized. Antennas of this type are discussed in this
section. To see how the ideas develop, first consider the bow-tie antenna (also called the
bifin antenna) of Fig. 7-34. It is the planar version of the finite biconical antenna (see
Fig. 7-18). It has a bidirectional pattern with broad main beams perpendicular to the plane
of the antenna. It is also linearly polarized. The bow-tie antenna is used as a receiving
antenna for UHF TV channels, frequently with a wire grid ground plane behind it to
reduce the back lobe. Since currents are abruptly terminated at the ends of the fins, the
antenna has limited bandwidth. As we shall see shortly, by modifying the simple bow-tie
antenna as shown in Fig. 7-35, the currents will then die off more rapidly with distance
from the feed point. The introduction of periodically positioned teeth distinguishes this
antenna as one of a broad class of log-periodic antennas. A log-periodic antenna is an
antenna having a structural geometry such that its impedance and radiation characteristics
repeat periodically as the logarithm of frequency. In practice, the variations over the
frequency band of operation are minor, and log-periodic antennas are usually considered
to be frequency-independent antennas.

Most of the work on frequency-independent antennas took place at the University of
Illinois in the late 1950s and the 1960s [28]. A series of antennas were developed through
many experiments. (For an excellent historical discussion of this evolution, see [H.3:
Weeks, Sec. 7.2].) Several geometries were examined, and those that produced broadband
behavior led to the determination of the properties necessary for wide bandwidth.

Frequency-independent spiral antennas were discussed in the previous section. In this
section, we outline the development of the log-periodic antenna family. The metamor-
phosis of the log-periodic produced the log-periodic dipole antenna, which is made up of
only straight wire segments.

One of the first log-periodic antennas was the log-periodic toothed planar antenna
shown in Fig. 7-35. It is similar to the bow-tie antenna except for the teeth. The teeth act
to disturb the currents that would flow if the antenna were of bow-tie-type construction.
Currents flow out along the teeth and, except at the frequency limits, are not significant at
the ends of the antenna. The rather unusual shape of this antenna is explained by
examining the planar equiangular spiral antenna. Along a radial line from the center of
the spiral, the positions of the far (or near) edges of a conductor from (7-54) are

rn ¼ rðφþ n2πÞ ¼ r0e
aðφþn2πÞ ð7-63Þ

The ratio of the nþ 1th position to the nth position is

rnþ1

rn
¼ r0e

aðφþðnþ1Þ2πÞ

r0eaðφþn2πÞ ¼ ea2π ¼ ε ð7-64Þ

which is the expansion ratio of (7-55). This is a constant, and thus the distances
(or period) of the edges are of constant ratio for the planar spiral. For the structure of

Figure 7-34 The bow-tie antenna.
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Fig. 7-35, the ratio of edge distances is also a constant and is given by the following
scale factor:

τ ¼ Rnþ1

Rn

, 1 ð7-65Þ

The slot width is expressed by

σ ¼ an

Rn

, 1 ð7-66Þ

These relations are true for any n. The parameter τ gives the period of the structure. We
would thus expect periodic pattern and impedance behavior with the same period. In
other words, if frequencies fnþ1 and fn from adjacent periods lead to identical perfor-
mance, then

fn

fnþ1

¼ τ, fn , fnþ1 ð7-67Þ

Forming fnþ1 ¼ fn=τ from this equation and taking the logarithm of both sides, we have

log fnþ1 ¼ log fn þ logð1=τÞ ð7-68Þ

Thus, the performance is periodic in a logarithmic fashion, hence the name log-periodic
antenna. All log-periodic antennas have this property.

If the teeth sizes of the log-periodic toothed planar antenna are adjusted properly, the
structure can be made self-complementary. From Fig. 7-35, we see that in general
(whether self-complementary or not).

I

a1

R1
R2γ

δδ

α

β

Figure 7-35 Log-periodic toothed planar antenna (self-complementary). Midband currents
are shown on top half.
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γ þ β ¼ 180� and β þ 2δ ¼ α ð7-69Þ
If the structure is self-complementary (as shown),

α ¼ γ and β ¼ δ ð7-70Þ
Substituting into (7-70) into (7-69) yields αþ β ¼ 180� and β þ 2β ¼ α. Solving these
two equations gives

α ¼ 135� and β ¼ 45� ð7-71Þ
for a self-complementary log-periodic toothed planar antenna. As we saw in the previous
section, an antenna that is self-complementary tends to be broadband and has an input
impedance of 188:5 Ω.

If the widths of the teeth and gaps are equalized, σ ¼ an=Rn ¼ Rnþ1=an. Using (7-65)
and solving for σ give

σ ¼ ffiffiffi
τ

p ð7-72Þ
This relationship and the self-complementary feature are popular in practice.

The properties of the log-periodic toothed planar antenna depend on τ. It has been
found experimentally that the half-power beamwidth increases with increasing values of
τ [H.8.3: Rumsey], increasing from about 30� at τ ¼ 0.2 to about 75� at τ ¼ 0.9. The
pattern has two lobes with maxima in each normal direction to the plane of the antenna.
The radiation is linearly polarized parallel to the teeth edges. This is perpendicular to
what it would be if there were no teeth ðδ ¼ 0Þ, in which case the antenna would be a
bow-tie. The fact that transverse current flow dominates over radial current flow is sig-
nificant. Most of the current appears on teeth that are about a quarter-wavelength long
(the active region). This, we have seen, is key to achieving wide bandwidths. The fre-
quency limits of operation are set by the frequencies where the largest and smallest teeth
are a quarter-wavelength long.

The log-periodic toothed planar antenna should have a performance (impedance and
pattern) that repeats periodically with frequency with period τ given by (7-65). The self-
complementary version of the antenna, although not producing frequency-independent
operation, does lead to performance that does not vary greatly for frequencies between
periods—that is, for fn , f , fnþ1. In fact, measurements have produced nearly identical
patterns over a 10:1 bandwidth [H.8.3: Rumsey].

The log-periodic toothed wedge antenna of Fig. 7-36 is a unidirectional pattern form
of its planar version in Fig. 7-35, in which the included angle ψ is 180�. A single broad

y

E

z

x

ψ

Figure 7-36 Log-periodic toothed wedge
antenna.
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main beam exists in the þz-direction. The patterns are nearly frequency-independent for
30� ,ψ, 60�. The polarization is linear and y-directed for an on-axis radiation, as
indicated in Fig. 7-36. There is a small cross-polarized component (x-directed) arising
from the radial current mode, as found in a biconical antenna. Typically, this cross-
polarized component is 18 dB down from the copolarized (y-directed) component on-axis,
indicating a strong excitation of the transverse current mode associated with frequency-
independent behavior. The bandwidth of the wedge version is similar to the sheet version,
but the input impedance is reduced for decreasing ψ. For the planar case ðψ ¼ 180�Þ, the
self-complementary antenna, which should have an impedance of 188:5 Ω, has an
impedance of about 165Ω, whereas the wedge form with ψ ¼ 30� has a 70-Ω impedance.
As ψ is decreased, the impedance variation over a period of the structure (frequency ratio
of τ) increases. For example, a 3:1 variation occurs for ψ ¼ 60� relative to the geometric
mean [H.8.3: Rumsey].

From a construction standpoint, it would be desirable if the toothed antennas could
be made with straight edges. This simplification of the structure turns out to be of
little consequence in the performance of the antenna. This is another major step in
the development of the log-periodic antenna. As an example, if the tooth edges of the
log-periodic toothed planar antenna in Fig. 7-35 are replaced by straight edges, the log-
periodic toothed trapezoid antenna of Fig. 7-37 results. The performance of this antenna
is similar to its curved edge version in Fig. 7-35. A log-periodic toothed trapezoid wedge
antenna can be formed by bending the planar version into a wedge, creating an antenna
similar to that of Fig. 7-36. In fact, the patterns of the two wedge forms (curved edge and
trapezoid) are similar, but the trapezoid version has better impedance performance with
only about a 1.6:1 variation over a period for ψ ¼ 60� [H.8.3: Rumsey].

The solid metal (or sheet) antennas we have described are practical for short wave-
lengths, but for low frequencies the required structures can become rather impractical. It
turns out that the sheet antennas can be replaced by a wire version in which thin wires are
shaped to follow the edges of the sheet antenna. An example of this major structural
simplification is that of Fig. 7-38a, which is the wire version of Fig. 7-37. This
log-periodic trapezoid wire antenna can also be bent at the apex to form a wedge that
produces a unidirectional pattern. The log-periodic trapezoid wedge wire antenna has a
performance similar to its sheet version. Measurements for a wedge angle ψ ¼ 45� have
yielded E- and H-plane half-power beamwidths of 66�, a gain of 9.2 dB, and a front-to-
back ratio of 12.3 dB. The average input impedance has been measured as 110 Ω with a
VSWR of 1.45 over a 10 : 1 band [29]. As with other wedge log-periodics, the main beam
maximum is straight off the apex and the radiation is linearly polarized.

Other even simpler log-periodic wire antennas exist in both planar and wedge shapes.
The log-periodic zig-zag wire antenna of Fig. 7-38b is an example.

The final phase in this metamorphosis of log-periodic antennas is the use of only
parallel wire segments. This is the log-periodic dipole array of Fig.7-39 [30, 31]. The
log-periodic dipole array (LPDA) is a series-fed array of parallel wire dipoles of

Figure 7-37 Log-periodic toothed trapezoid antenna.
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successively increasing lengths outward from the feed point at the apex. Note that the
interconnecting feed lines cross over between adjacent elements. This can be explained
by noting that the LPDA of Fig. 7-39 resembles the toothed trapezoid of Fig. 7-37 when
folded on itself, making a wedge with zero included angle. The two center fins of metal
then form a parallel transmission line with the teeth coming out from them on alternate
sides of the fins. This alternate arm geometry occurs for all wedge log-periodic antennas.

A particularly successful method of constructing an LPDA is shown in Fig. 7-40.
A coaxial transmission line is run through the inside of one of the feed conductors. The
outer conductor of the coax is attached to that conductor and the inner conductor of
the coax is connected to the other conductor of the LPDA transmission line.

As shown in Fig. 7-38, a wedge of enclosed angle α bounds the dipole lengths. The
scale factor τ for the LPDA is

τ ¼ Rnþ1

Rn

, 1 ð7-73Þ

Right triangles of enclosed angle α=2 reveal that

tan
α
2
¼ Ln=2

Rn

¼ Lnþ1=2

Rnþ1

ð7-74Þ

(a) Trapezoid. (b) Zig-zag.
Figure 7-38 Log-periodic wire antenna
configurations.

Rn�1

L1Z0α

Rn

dn

Figure 7-39 Log-periodic dipole array geometry.
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Thus,

L1

R1

¼ 	 	 	 ¼ Ln

Rn

¼ Lnþ1

Rnþ1

¼ 	 	 	 ¼ LN

RN

ð7-75Þ

Using this result in (7-73) gives

τ ¼ Rnþ1

Rn

¼ Lnþ1

Ln
ð7-76Þ

Thus, the ratio of successive element positions equals the ratio of successive dipole
lengths.

The spacing factor for the LPDA is defined as

σ ¼ dn

2Ln
ð7-77Þ

where the element spacings as shown in Fig. 7-39 are given by

dn ¼ Rn � Rnþ1 ð7-78Þ
But Rnþ1 ¼ τRn, so

dn ¼ Rn � τRn ¼ ð1� τÞRn ð7-79Þ
From (7-74), Rn ¼ Ln=2 tan ðα=2Þ. Using this in (7-79) yields

dn ¼ ð1� τÞ Ln

2 tan ðα=2Þ ð7-80Þ

Substituting this in (7-77) gives

σ ¼ dn

2Ln
¼ 1� τ

4 tan ðα=2Þ ð7-81Þ

or

α ¼ 2 tan �1 1� τ
4σ

� �
ð7-82Þ

Feed point

Array elements

Figure 7-40 Construction details of the log-periodic
dipole array.
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Combining (7-81) with (7-76), we note that all dimensions are scaled by

τ ¼ Rnþ1

Rn

¼ Lnþ1

Ln
¼ dnþ1

dn
ð7-83Þ

As we have seen with other log-periodic antennas, there is also an active region for the
LPDA, where the few dipoles near the one that is a half-wavelength long support much
more current than do the other radiating elements. It is convenient to view the LPDA
operation as being similar to that of a Yagi–Uda antenna. The longer dipole behind the
most active dipole (with largest current) behaves as a reflector and the adjacent shorter
dipole in front acts as a director. The radiation is then off of the apex. The wedge
enclosing the antenna forms an arrow pointing in the direction of the main beam
maximum.

As the operating frequency changes, the active region shifts to a different portion of
the antenna. The frequency limits of the operational band are roughly determined by the
frequencies at which the longest and shortest dipoles are half-wave resonant—that is,

L1 � lL
2

and LN � lU
2 ð7-84Þ

where lL and lU are the wavelengths corresponding to the lower and upper frequency
limits. Since the active region is not confined completely to one dipole, often dipoles are
added to each end of the array to ensure adequate performance over the band. The number
of additional dipoles required is a function of τ and σ [32], [H.8.3: Smith]. But for
noncritical applications, (7-84) is sufficient.

The pattern, gain, and impedance of an LPDA depend on the design parameters τ and σ.
Since the LPDA is a very popular broadband antenna featuring simple construction, low
cost, and light weight, wewill give the design details and illustrate them by examples. Gain
contours are plotted in Fig. 7-41 as a function of τ and σ [31]. Note that high gain requires
a large value of τ, which means a very slow expansion, that is, a LPDA of large overall
length. Gain is only slightly affected by the dipole thickness. It increases about 0.2 dB for
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Figure 7-41 Gain of a log-periodic dipole array. (Contours, at top, adapted from Carrel [31].
Maximum gain curve, at bottom, derived from data in [32].)
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a doubling of the thickness [H.8.3: Rumsey]. Gain is also affected by the feeder impedance
[32] and tends to decrease as the feeder impedance is increased above 100 Ω.

Fig. 7-41 (top portion) shows the variation in gain of an LPDA with σ and τ. The
curves are a modification of those originally presented by Carrel [31] that have been
found to have a gain that is erroneously high [32, 33, 34]. In [H.3: Balanis], Carrel’s
curves are reduced uniformly by 1 dB and in [35] uniformly by 1.5 dB. Based on data in
[32, 34], it appears that Carrel’s original curves were more in error (for gain) for lower
values of τ than for higher values. Thus, the 11-dB and 6-dB contours in Fig. 7-41 are
1 dB and 2 dB lower, respectively, than those in Carrel.

The bottom portion of Fig. 7-41 shows a gain curve that is derived from data in [32]
where N, the number of dipoles, varies from 12 to 47 (unlike Carrel’s modified contours
above for which N ¼ 8). Notice that the value of Gmax is greater than the value of the gain
contour at the optimum σ line in the top portion of Fig. 7-41. The Gmax vs. τ curve
probably represents an upper bound on the LPDA gain that can be achieved in practice for
feeder impedances of 100Ω or greater.

Further details on the design and calculations for the LPDA are available in the lit-
erature [32-35]. Also, the LPDA can be constructed in a size-reduced form or by using
printed circuit techniques [36-39].

EXAMPLE 7-3 Optimum Design of a 54- to 216-MHz Log-Periodic Dipole Antenna

An antenna that operates over the entire VHF-TVand FMbroadcast bands, which span the 54- to
216-MHz frequency range for a 4:1 bandwidth, is desired. Suppose the design gain is chosen to be
6:5 dB. The corresponding values of τ and σ for optimum design from Fig. 7-40 are

τ ¼ 0:822 and σ ¼ 0:149 ð7-85Þ
Then from (7-82), we have

α ¼ 2 tan �1 1� 0:822

4ð0:149Þ
� �

¼ 33:3� ð7-86Þ

The length of the longest dipole is determined first. At the lowest frequency of operation (54
MHz), the dipole length from (7-84) should be near a half-wavelength, so

L1 ¼ 0:5lL ¼ 0:5ð5:55Þ ¼ 2:78 m ð7-87Þ
The shortest dipole length should be on the order of LU ¼ 0:5lU ¼ 0:694 m at 216 MHz. The
LPDA element lengths are computed until a length on the order of 0.694 m is reached. To be
specific, element lengths are found from L1 using Lnþ1 ¼ τLn. For example,

L2 ¼ τL1 ¼ ð0:822Þð2:78Þ ¼ 2:29 m

and

L3 ¼ τL2 ¼ ð0:822Þð2:29Þ ¼ 1:88 m

Completing this process leads to

L1 ¼ 2:78 m, L2 ¼ 2:29 m, L3 ¼ 2:78 m, L4 ¼ 1:54 m

L5 ¼ 1:27 m, L6 ¼ 1:04 m, L7 ¼ 0:858 m, L8 ¼ 0:705 m

L9 ¼ 0:579 m

ð7-88Þ

The array was terminated with nine elements since L9 ¼ 0:579 m is less than the 0.694m
length for the highest operating frequency. Elements could be added to either end to improve
performance at the band edges.
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The element spacings for this example are found from (7-81) as

dn ¼ 2σLn ¼ 2ð0:149ÞLn ¼ 0:298Ln ð7-89Þ
Using the element lengths of (7-88) gives

d1 ¼ 0:828 m, d2 ¼ 0:682 m, d3 ¼ 0:560 m, d4 ¼ 0:459 m

d5 ¼ 0:378 m, d6 ¼ 0:310 m, d7 ¼ 0:256 m, d8 ¼ 0:210 m
ð7-90Þ

These dipole lengths and spacings completely specify the LPDA, as shown in Fig. 7-39. The
total length of the array is the sum of the spacings in (7-90), which gives a 3.683 m. The
outline of the antenna fits into an angular sector of angle α ¼ 33:3�.

EXAMPLE 7-4 Characteristics of a 200- to 600-MHz LPDA

In this example, we examine the gain, pattern, impedance, and current distribution of a LPDA
as a function of frequency. Suppose it is to be constructed for operation over the 200-
to 600-MHz band. For optimum performance and a design goal of 9 dB gain, we see from
Fig. 7-41 that τ ¼ 0:917 and σ ¼ 0:169. The lowest frequency of operation ð200MHzÞ has a
wavelength of lL ¼ 1:5 m, so the first element has a length of L1 ¼ lL=2 ¼ 0:75 m. The length
of the shortest element should be on the order of a half-wavelength at 600MHz, and
lU=2 ¼ 0:500 m=2 ¼ 0:250 m. Using the design techniques illustrated in the previous
example and four extra elements at the narrow end gives the 18-element LPDA shown in
Fig. 7-42. (The antenna geometry details are left as a problem.)

The LPDA of Fig. 7-42 was modeled using the computer techniques of Sec. 14.l0.2.
The resulting dipole terminal currents at the band edges and one midway frequency are shown
in Fig. 7-42. Also shown are the voltage amplitude distributions on the transmission line.
These currents and voltages illustrate the active region behavior we have mentioned several
times. For example, at 200 MHz there are three dipoles with strong currents on them and a
total of five with significant currents. This is also true for other frequencies in the operating
band, with the active region shifted to some other portion of the antenna as seen in Fig. 7-42.
At the high-frequency limit, element 14 is about a half-wavelength long and the extra four
elements provide support for the active region at 600MHz.

The gain, pattern, and impedance behavior as a function of frequency are shown in
Fig. 7-43. At 150MHz, the gain is considerably less than the 9-dB design value due to the
large back lobe. Also, the input impedance has a substantial imaginary part. This inferior
performance is, of course, caused by insufficient antenna length required for proper support of
the active region at that frequency. At the lower band edge of 200MHz, however, the pattern
has little back radiation, the gain is approaching the design goal, and the input impedance has a
small imaginary part. Similarly, at 650MHz the performance is only slightly inferior to that at
the upper band edge of 600MHz because of the added elements. At intermediate frequencies
between the band edges, the gain, pattern, and impedance remain reasonably constant, indi-
cating frequency-independent behavior. Fig. 7-43c and 7-43d are typical of intermediate
frequencies. The fact that the calculated gain exceeds the 9 dB value indicated by the contour
is due to a combination of at least three factors: (1) a different feeder impedance (below 100
ohms) is used, (2) the ratio of L=2a being different than 125, (3) the estimated gain reduction
applied here to Carrel’s original contours being, perhaps, slightly excessive. Each of these
three factors could conceivably account for 0:1�0:2 dB.

The termination used in this example is purely resistive and equal to the characteristic
impedance of the transmission line, but reactive terminations can also be used. The use of a
reactive termination can lead to unwanted resonances on the LPDA caused by energy being
trapped between the termination and the stop region on the termination side of the active
region. These high Q resonances can be eliminated by using a termination that is at least
slightly resistive or by using a relatively high value for the LPDA transmission line impedance
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(e.g., ZoB150 Ω) since this will cause the dipole elements to more heavily load the line. This
makes the active region more efficient [39] with the result that there is relatively little energy
left to propagate past the active region and cause a strong resonance effect on the radiation
pattern.

7.9 WIDEBAND EMC ANTENNAS

Electromagnetic compatibility (EMC) testing divides into two major categories: emission
testing (i.e., unwanted transmitted radiation) and susceptibility or immunity testing (i.e.,
undesirable received radiation). The antenna requirements for each are not identical. For
emission testing, the EMC antenna should be broadband, have a broad radiation pattern
(i.e., low directivity), have a low ð,2 : 1Þ VSWR, and be capable of receiving electric
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Figure 7-42 An optimum log-periodic dipole antenna for operation in the 200- to 600-MHz
band (Example 7-3). (Top) Voltage distribution on the 83-Ω transmission line. (Middle) The
geometry. (Bottom) Relative dipole terminal current amplitudes.
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and magnetic fields of any polarization. For susceptibility testing, the antenna should also
be capable of handling high power and have a directive pattern.

EMC standards tend to originate from the European-based CISPR (Comite Interna-
tional Speciale des Perturbations Radio-Electroniques) and when adopted by govern-
ments become national standards. Government agencies like the FCC in the United States
sometimes adopt modifications of these standards to suit their own national needs. For
example, CISPR requires that radiated emission measurements from Class B devices
(non-commercial devices) be conducted at a distance of 10 m from the DUT (device
under test), while the FCC standard specifies 3 m as the measuring distance. Note that at
3m it is likely that neither the DUT nor the EMC antenna will be in the far field of each
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Figure 7-43 Radiation patterns at several frequencies for the log-periodic dipole antenna of Example 7-3.
The gain and impedance values are also given. Calculations were done by the rigorous moment method
formulation in Sec. 14.10.2.
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other. This has obvious negative implications for the measurements that are partly
overcome by the use of a standard measuring distance.

CISPR Class B measurement standards officially require a set of tuned dipoles to cover
the emission testing frequency range but allow the use of broadband antennas under most
conditions. Not using tuned dipoles, however, requires the use of a calibrated antenna
factor. The antenna factor was discussed in Sec. 4.7. The CISPR requirements for a
broadband antenna include those in Table 7-3. The CISPR 2:1 VSWR requirement is
difficult to achieve at the lowest frequencies without the use of an attenuator inserted at
the antenna terminals.

Emission testing is performed from 30MHz to at least 1 GHz. The finite biconical
(Sec. 7.4.2) and the log-periodic (Sec. 7.8) are commonly used to cover the frequency
range in two steps with the biconical covering 30�300MHz and the log-periodic cov-
ering 300�1000MHz. These two antennas have been combined into an antenna com-
mercially marketed as a Bilog antenna. There are several possible configurations for the
biconical portion of the Bilog, one of which is shown in Fig. 7-44. A typical antenna
factor for the Bilog is shown in Fig. 7-45. Ideally the antenna factor should have low
magnitude, no sharp resonances, and minimum sensitivity to external factors. For the
antenna in Fig. 7-44, the VSWR and gain both deteriorate markedly from 60MHz down
to 30MHz. But this is not a problem for EMC measurements, because the antenna factor
is known.
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Figure 7-43 (Continued)

Table 7-3 CISPR Requirements for a Broadband Antenna

Frequency 30–1000 MHz
Polarization Substantially linearly polarized
Cross-pol 20 dB below aligned polarization
Polar pattern Direct and reflected ray response within 1 dB (i.e., broad

antenna pattern)
VSWR Less than 2:1
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7.10 ULTRA-WIDEBAND ANTENNAS

Ultra-wideband (UWB) systems have very wide bandwidths with applications in radar
and communications. A UWB communication system has a bandwidth much larger than
necessary to support the information being carried [38]. UWB communications is well
suited for wireless personal area networks (see Sec. 4.5.1) for short-range distribution of
video, data, music, and so on. Non-communication applications include imaging systems
(ground-penetrating radar, through-wall radar, surveillance, and medical imaging) and
vehicular radar. UWB systems are of two types: multicarrier (MC-UWB) and impulse
(I-UWB). MC-UWB divides the spectrum into many sub-bands, each with a carrier, and
the antennas can be analyzed using conventional frequency domain methods. I-UWB uses
impulses that spread the signal over many octaves of bandwidth, requiring the use of
time-domain techniques and an antenna with sufficient instantaneous bandwidth. An
illustration of the spreading in the frequency domain due to a short duration time pulse is
the Fourier transform of a perfect impulse as shown in Table 5-3, sixth entry.

The recent expansion of commercial UWB systems in the United States is due to the FCC
allocating frequency bands for UWB, including 3.1 to 10.6GHz. The bandwidth (the band
edges are defined in this case as the frequencies where the EIRP is �10 dB down from the
center frequency value) must occupy 500MHz or 20% of its center frequency, whichever
is greater. No license is required but emissions must not exceed an EIRP in 1MHz of
�41:3 dBm:This low-power level limits the application to short-range systemsbut reduces the
potential of interfering with other systems sharing the same frequencies. Conventional com-
munication systems, of course, have less bandwidth and transmit much greater power levels.

Wire bi-conical 63 cm

139 cm

131 cm

Log-periodic

Figure 7-44 Bilog antenna. (Courtesy of
TESEQ, Inc. Used with permission.)
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Military systems also use UWB technology in communications and radar, as well as a
special application called high-power microwave (HPM). HPM uses a directed energy
source employing a very narrow pulse at very high power levels (i.e., megawatts).
The antennas used, called impulse radiating antennas (IRA), are capable of radiating
waveforms with a flat frequency spectrum from 35MHz to 3.5GHz, which is a 100 : 1
frequency ratio [39]. Dissipative materials are sometimes used in the IRA to broaden
bandwidth.

Impulse-UWB systems should have a pulse signal that undergoes small distortion in
the time domain. This requires the ideal UWB antenna to produce radiated fields that
have constant magnitude with frequency and phase that varies linearly with frequency.
This is accomplished with an antenna that produces an output that is the time derivative of
the input [38, p. 13]. Such a non-dispersive system will produce an undistorted replica
of the source pulse waveform at the receiver output and do so at angles extending over the
half-power beamwidth of the pattern main beam (see. Fig. 15-31).

The phase center plays an import role in I-UWB antennas. It is the effective center of a
sphere in the far field over which the phase is constant. To radiate without dispersion, an
antenna must have a phase center which remains constant with frequency and have constant
impedance and pattern over the bandwidth [H.8.3: Schantz, p. 42]. Many antennas do not
have a unique phase center. Broadband antennas often have a phase center that moves in
location with frequency.

There are three types of UWB antennas [H.6: Balanis, 4th ed., Chap. 19]:

Type I. Variations of dipole/monopole antennas
Broadband dipoles/monopoles and biconical-family antennas can achieve 3:1

bandwidth.
Type II. Antennas with absorptive loading or with curved geometries

Diffractions are controlled through absorption or curved edges. Absorptive antennas
are suited for impulse UWB, but are lossy. Example curved-geometry antennas are
Vivaldi antennas (see Fig. 8-35b) and horns with rolled edges to achieve gentle,
continuously curved geometries.

Type III. Frequency-independent antennas
These antennas have an active region that maintains its shape and electrical size with

frequency change over the operating band. Examples are the LPDA, spiral, and
sinuous antennas discussed earlier in this chapter. However, the phase center of
these antennas moves with the active region, introducing dispersion and making the
antennas inappropriate for I-UWB.

Fig. 7-46 shows the evolution of compact UWB antennas suitable for time-domain
applications [40, 41]. The spherical antenna of Fig. 7-46a and its variations have been
used for decades for broadband applications. It emphasizes curved geometry of Type II
UWB antennas. The antenna height is one-quarter wavelength at the lowest operating
frequency. The VSWR for a sphere of 2:5 cm in height on a 2:8-cm diameter circular
ground plane is less that 2:1 from 3 to over 12 GHz. The phase is linear with frequency and
there is nearly omnidirectional, good impulse response over this range of frequencies.
Flattening the sphere into a disk to reduce antenna volume produces the circular disk
antenna of Fig. 7-46b that has electrical performance which is only slightly degraded from
the spherical antenna. Further size reduction is achieved by halving the disk to form the
half-circular disk antenna of Fig. 7-46c. The performance is again nearly the same as its
predecessors except the low-frequency end of the band is increased from 3 to 4:2 GHz for
VSWR ¼ 2. The most compact UWB antenna to date is the compact UWB antenna of
Fig. 7-46d. The measured VSWR for a 3:2-cm diameter enclosing hemisphere on a 30-cm
ground plane was about 2:1 from 2 to 18 GHz: [41] Time-domain performance is good as
well. Details on other UWB antennas are given in the following references: [40, Chap. 4],
[41, 42, 45], [H.8.3: Volakis, Sec. 3.2.8] and [H.8.3: Schantz, Chap. 6].
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PROBLEMS

7.1-1 Plot percent bandwidth using both arithmetic and geometric mean as the center fre-
quency as a function of Br from 1 to 3.
7.1-2 Derive the relationships in (7-3).
7.2-1 Verify that the maximum of the radiation from a traveling-wave long wire antenna that
is 6l long occurs at an angle of 20:1� from the wire.
7.2-2 Compare the approximate beam maximum angle formula of (7-7) for a traveling-wave
long wire with the values of Fig. 7-4 for L=l ¼ 1, 3, 6, 10.
7.2-3 Show that the power radiated from a traveling-wave long wire antenna is

P ¼ 30I2m 2:108þ ln
L

l

� �
� Cið2βLÞ þ sinð2βLÞ

2βL

� �

Use (5-8), (7-6) and (2-130).
7.2-4 Use the radiated power expression from Prob. 7.2-3 for a traveling-wave long wire to:

(a) Derive the directivity expression

D ¼
1:69 cot2

1

2
cos �1 1� 0:371

L=l

� �� �

2:108þ ln
L

l

� �
� Cið2βLÞ þ sinð2βLÞ

2βL

(b) Evaluate the directivity for L=l ¼ 2, 5, 10, 20. Cið2βLÞ is approximately zero for these
values of L.

7.2-5 Use the radiated power expression from Prob. 7.2-3 for a traveling-wave long wire to:
(a) Find an expression for the radiation resistance.
(b) Evaluate the radiation resistance for L=l ¼ 2, 5, 10, 20. Cið2βLÞ is approximately zero

for these values of L.
7.2-6 Plot the linear, polar plot of a traveling-wave long wire antenna that is eight wavelengths
long.
7.2-7 To be completely general, the traveling-wave long wire antenna has a current distri-
bution given by

ItðzÞ ¼ Ime
�aze�jβoz

where a is the attenuation coefficient representing radiation and ohmic losses. βo is the phase
constant and is related to the velocity factor p ¼ v=c as βo ¼ β=p.

(a) Derive the pattern function

FðθÞ ¼ K sin θ
sinh

aL

2
þ j

βL
2

1

p
� cos θ

� �� �
aL

2
þ j

βL
2

1

p
� cos θ

� �

(b) Show that this reduces to (7-6) for a ¼ 0 and p ¼ 1.
(c) Plot the polar pattern for a ¼ 0 and L ¼ 6l, for p ¼ 1:0, 0:75, 0:5
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7.2-8 Travel-wave vee antenna.
(a) Place the zero-phase reference point at the vertex of the vee antenna of Fig. 7-5, and

derive the radiation pattern as

FVðθÞ ¼ KV ½F1ðθÞ � F2ðθÞ�
where

F1ðθÞ ¼ ejðβL=2Þ½�1þcos ðθ�αÞ� sinðθ� αÞ sin½ðβL=2Þð1� cosðθ-αÞÞ�
ðβL=2Þð1� cosðθ� αÞÞ

and F2ðθÞ is the same as F1ðθÞ except that –α is replaced by α. This pattern expression
is valid only in the plane of the vee.

(b) Plot the polar pattern in Fig. 7-5 for L ¼ 6l and α ¼ 16�.
7.2-9 Rhombic antenna.

(a) Show that the pattern of the rhombic in Fig. 7-6 is

FRðθÞ ¼ KRfF1ðθÞ � F2ðθÞ þ e�jβL½F3 � F4�g
where F3 ¼ ejβL cos ðθ�αÞF2 and F4 ¼ ejβL cos ðθþαÞF1. F1 and F2 are given in Prob. 7.2-8.
This expression is valid only in the plane of the rhombic.

(b) Plot the polar pattern in Fig. 7-6 for L ¼ 6l and α ¼ 16�
7.2-10 A rhombic antenna above ground is to be designed for a main beam maximum at an
elevation angle of 20�. Determine the rhombic configuration required.
7.3-1 Compare the radiation resistances of the resonant stub helix to a short monopole for the
height values of 0.01, 0.05, 0.08, and 0:1l.
7.3-2 Find the radiation resistance of a six-turn resonant stub helix that is 2 cm high and
operates at 850MHz.
7.3-3 An unfurlable helix was built with an overall length of 78:7 cm, a diameter of 4:84 cm,
and a pitch angle of 11:7�. The center frequency of operation is 1:7 GHz: Calculate the number
of turns, the gain in decibels, the half-power beamwidth in degrees, and the axial ratio for the
helix.
7.3-4 It is desired to achieve a right-hand circularly polarized wave at 475MHz having a half-
power beamwidth of 39�. One of the easiest ways to do this is with a helix antenna. It is to be
built with a pitch angle of 12:5�, and the circumference of one turn is to be one wavelength at
the center frequency of operation.

(a) Calculate the number of turns needed.
(b) What is the directivity in decibels?
(c) What is the axial ratio of the on-axis fields?
(d) Over what range of frequencies will these parameters remain relatively constant?
(e) Find the input impedance at the design frequency and at the ends of the band.
(f) Evaluate HP at the band ends.

7.3-5 A commercially available axial mode helix antenna has six turns made of 0:95-cm
aluminum tubing supported by fiberglass insulators attached to a 3:8-cm aluminum shaft. The
band of operation is 300 to 520MHz. The mechanical characteristics are as follows: length of
helix, 118 cm; diameter of helix (center to center), 23.2 cm; and ground screen diameter, 89 cm.

(a) Determine the pitch angle α.
(b) Compute the gain in decibels at edges of the frequency band of operation.

7.3-6 A 12-turn axial mode helix has a circumference of 0.197 m, a pitch angle of 8:53�, and
operates at 1525MHz. Calculate and plot the radiation pattern in linear-polar form.
7.3-7 A helix antenna has five turns and a pitch angle of 12�. It is operated such that its
circumference is one wavelength. (a) Use simple array theory techniques to derive and
accurately sketch the radiation pattern. (b) Calculate the half-power beamwidth, not based on
results from (a).
7.3-8 One turn of an axial mode helix radiates similarly to a one-wavelength loop antenna.
Explain why, then, that the helix antenna radiates circular polarization and the loop radiates
linear polarization.
7.4-1 Calculate the input impedance for infinite biconical antennas of the following cone half-
angles: 0:1�, 1�, 10�, 20�, 50�.
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7.4-2 Show that the radiated power of the infinite biconical antenna is

P ¼ 4π
ffiffiffiffiffiffiffiffi
μ=ε

p
H2

o ln½cotðθh=2Þ�
and that the directivity is

D ¼ 1

sin2 θ ln½cotðθh=2Þ�
7.5-1 Construction project. Select a frequency for which you have laboratory equipment to
measure impedance (probably in the VHF or UHF range). Construct both an optimum open-
sleeve dipole and its ordinary dipole version. (Alternatively, monopoles may be constructed.)
Measure the input impedance of both antennas over a 2:1 frequency range about the center
frequency. (Alternatively, measure the VSWR.)
7.5-2 Use (7-50) and Figs. 6-5 and 6-6 to estimate the input impedance of the asymmetrically
fed dipole in Prob. 6.1-4.
7.6-1 Find the input impedance of a slot that is complementary to a half-wavelength long
ribbon dipole with impedance 73þ j42:5 Ω.
7.6-2 The far-field components for a short slot with uniform electric field and of length
Δz � l along the z-axis are

Eφ ¼ �VoΔz

2π
jβ

e�jβr

r
sin θ

Hθ ¼ VoΔz

2πη
jβ

e�jβr

r
sin θ

where Vo is the excitation voltage across the center of the slot.
(a) Find the input radiation resistance.
(b) Verify that (7-51) is satisfied using the appropriate complementary antenna.

7.6-3 Frequency-independent antennas have constant HP with frequency. Explain this in terms
of the formula HP ¼ Kl=L.
7.7-1 What is the sense of CP radiated by the equiangular spiral antenna shown in Table 1-4?
7.7-2 Design an equiangular spiral antenna for operation over the band 450 to 900MHz
7.7-3 Construction project. Construct the equiangular spiral antenna of the previous problem
using aluminum foil glued to cardboard. Test its performance with a receiver (perhaps a
television).
7.8-1 Design a self-complementary log-periodic toothed planar antenna for operation from
400MHz to 2GHz with a half-power beamwidth of 70�.
7.8-2 A log-periodic dipole array is to be designed to cover the frequency range 84 to
200MHz and have 7:5-dB gain. Give the required element lengths and spacings for optimal
design.
7.8-3 Evaluate the dipole lengths and spacings for the LPDA of Example 7-3.
7.8-4 Design an optimum LPDA to operate from 470MHz to 890MHz with 9-dB gain. Add
one extra element to each end over that required by (7-84).
7.8-5 What is the physical length of the LPDA in Example 7-3?
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Chapter8

Array Antennas

8.1 INTRODUCTION

The topic of array antennas was introduced in Sec. 3.5 with several two-element arrays as
examples of simple radiating systems. Fig. 3-19 summarizes the range of pattern control
that is possible by changing the spacing and phasing of two-element arrays illustrated
using elements with the same excitation amplitude and isotropic patterns. Arrays are
popular because of the ability to shape the pattern through spacing and excitation
adjustment along with the unique capability of scanning the pattern in angular space by
dynamically adjusting the excitation phases electronically. Such an array is referred to as
a phased array. The traditional method of scanning a directive beam is to mechanically
steer an aperture antenna such as a reflector antenna. Thus, the problem of mechanically
slewing of one large antenna is traded for the feed network complexities associated with
properly exciting many small antennas in an array. In addition to avoiding the need for a
mechanical structure required to point a large antenna, a phased array can also scan a
beam at electronic speeds and can even have multiple simultaneous main beams.
Although a feed network is required to excite the array elements, today’s low-cost
electronics, computing, and digital signal processing hardware and software make elec-
tronic scanning affordable. Arrays have the additional advantage of supporting many
geometries, including non-planar surfaces to conform to existing contours such as the
skin of an aircraft. There are many applications for phased arrays, most notably in radar.

The first widely used array antenna was the Yagi-Uda array invented in 1926 (see
Sec. 6.3). The Yagi was followed by other fixed-phase arrays that were mechanically
steered. Phased arrays emerged during World War II using mechanical phase shifters.
With the invention of the ferrite phase shifter in the 1950s, full electronic scanning
became possible. Both array element advances and solid-state phase shifters allowed for
more affordable, compact phased arrays beginning in the 1960s. The recent innovation in
arrays is the active phased array in which each element has transmit/receive electronics
including phase adjustment.

Both arrays and aperture antennas are capable of high gain. Arrays can be analyzed
using simple mathematics by summing phasors, but reflector antenna analysis requires
integration over the aperture, as we will find out in the next chapter. In this chapter, we
continue the development of arrays, beginning with linear arrays of multiple isotropic
elements, uniform excitations, and equal spacings. The pattern of individual elements is
then included. Techniques for evaluating the directivity of linear arrays are presented,
followed by addressing nonuniform excitation of linear arrays and multidimensional
arrays. Implementation issues of mutual coupling and feeding techniques are treated.
Finally, more detail is presented on the types of elements used in practical arrays along
with the special topic of wide-bandwidth phased arrays.
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8.2 THE ARRAY FACTOR FOR LINEAR ARRAYS

The fundamental configuration for elements in an array is the linear array shown in
Fig. 8-1. Linear arrays are used widely in practice and their operating principles can be
used to understand more complex array geometries. The array of Fig. 8-1 has identical
elements and is operated as a receiving antenna. The pattern characteristics of an array
can be explained for operation as a transmitter or receiver, whichever is more convenient,
since antennas usually satisfy the conditions for reciprocity. The output of each element
can be controlled in amplitude and phase as indicated by the attenuators and phase
shifters in Fig. 8-1. Amplitude and phase control provide for custom shaping of the
radiation pattern and for scanning of the pattern in space.

The basic array antenna model consists of two parts, the pattern of one of the elements
by itself, the element pattern, and the pattern of the array with the actual elements
replaced by isotropic point sources, the array factor. The total pattern of the array is then
the product of the element pattern and array factor; this will be discussed in detail in
Sec. 8.4. We treat the array factor first.

The array factor corresponding to the linear array of Fig. 8-1 is found by replacing
each element by an isotropic radiator, but retaining the element locations and excitations
as shown in Fig. 8-2. The array is receiving a plane wave arriving at an angle θ from the
line of the elements, and the planes of equal phase (i.e., wavefronts) are shown. Rays
perpendicular to the wavefronts indicate the direction of travel of the wave. With the
reference wavefront taken to be of zero phase, the distance to the nth element has a
corresponding phase delay (found by multiplying by β) of ξn. That is, each element is
excited with phase ξn, due to the spatial phase delay effect of the incoming plane wave.
The amplitudes of excitation are constant, taken to be unity, because a plane wave has
uniform amplitude. The resulting excitations of 1e jξ0 , 1e jξ1 , . . . are shown for each
element in Fig. 8-2. The elements themselves do not weight the outputs since they are
isotropic radiators that respond equally to all incoming wave directions.

The array factor for the array of Fig. 8-1 is found from the array of Fig. 8-2 that has
isotropic radiators for array elements in place of the actual elements. The array factor for
this receiving array is then the sum of the isotropic radiator receiving antenna responses
fe jξ0 , e jξ1 , : : : g weighted by the amplitude and phase shift represented by complex
currents fI0, I1, : : : g introduced in the transmission path connected to each element. The
array factor of the array shown in Fig. 8-2 is thus

AF ¼ I0e
jξ0 þ I1e

jξ1 þ I2e
jξ2 þ � � � ð8-1Þ

where ξ0, ξ1, : : : are the phases of an incoming plane wave at the element locations
designated 0,1, : : : For convenience, these phases are usually relative to the coordinate
origin; that is, the phase of the wave arriving at the nth element leads the phase of the
wave arriving at the origin by ξn.

+ Receiver

Figure 8-1 A typical linear array. The
symbols and indicate variable phase
shifters and attenuators. The output currents
are summed before entering the receiver.
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In Sec. 3.5, we presented examples that show how to sum the phasors in (8-1) for two-
element arrays of isotropic elements. For such simple cases, the major features of the
radiation pattern can be found by an inspection method where the phasors for each source
element are traced to the far field in principal directions and summed. We further illustrate
the inspection method with the following example.

EXAMPLE 8-1 Two Identical Isotropic Point Sources Spaced
One Wavelength Apart (see Fig. 8-3)

Two isotropic sources spaced one wavelength apart transmit signals of the same magnitude
and phase as shown in Fig. 8-3a. Fig. 8-3b shows some of the transmitted far-field rays.
Because of the in-phase condition, the fields arriving in the far field add perfectly (i.e., double)
in the � x-directions (broadside directions) because of the equal path length to the far field. In
other words, since the rays started out in phase and experience the same propagation phase
shift, they arrive in phase. Off the ends of the array in the endfire directions, the phase of the
field from the more distant element to the same far-field distance lags that from the close
element by 360� due to the extra one wavelength of travel. Thus, the far-field phasors sum in
phase in the � z-directions. So, the phase difference between the two far-field rays varies from
0� at broadside ðθ ¼ 90�Þ to 360� at endfire ðθ ¼ 0�,180�Þ. Therefore, there is a direction
where the phase difference is 180�, corresponding to a half-wavelength path length difference,
and the phasors cancel. The path length difference as a function of observation angle for the
two-element array is d cos θ (see Fig. 3-16d). For this example where d ¼ l, the angle for l=2-
path difference can be found using l cos θ ¼ � l=2, giving cos θ ¼ � 1=2 which has solutions
θ ¼ 60�, 120� for null locations. With these null locations and knowing that maxima occur in
multiples of 90�, the radiation pattern can be sketched as in Fig. 8-3c. The pattern magnitude is
plotted, but it should be noted that the endfire beams at 0� and 180� are negative-valued due to

+

Rays

Phase = ξ0 Wavefronts

Array factor

Ph (In)

|In|

Ine jξn

ξ1

ξn
θ1e jξn1e jξ11e jξ0

I1e jξ1

I0e jξ0

Reference
wavefront

Figure 8-2 Equivalent configuration of the array in Fig. 8-1 for determining the array factor.
The elements of the array are replaced by isotropic point sources.
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the 180� phase jump when passing through the null. The exact pattern expression is found
from the two-element array factor expression in (3-67) with d ¼ l, which when normalized is

f ðθÞ ¼ cosðπ cos θÞ ð8-2Þ
The three-dimensional plot of this expression is shown Fig. 8-3d. This example illustrates the
general result that multiple major lobes will appear in the pattern for an element spacing of
one wavelength (or greater), which can also be seen in Fig. 3-19.

We are now ready to develop more general array factor formulas. The expression in
(8-1) is general and can be applied to any geometry. First, we consider linear arrays with
elements equally spaced along the z-axis as shown in Fig. 8-4. The individual isotropic
elements respond equally in all directions to an incoming plane wave. But when the
outputs from each element are added in a receiver (weighted by complex currents In), the
total array response depends on θ, which is the angle with respect to the line of elements
(the z-axis). The phase of the arriving wave is set to zero at the origin for convenience,
thus ξo ¼ 0. The incoming waves arriving at Element 1 travel a distance of d cos θ less
than the wave arriving at the origin. The corresponding phase of waves at Element 1
relative to the origin is ξ1 ¼ βd cos θ, the spatial phase delay. In fact, across the array the
phase at each element leads its immediate nearest neighbor on the left by the same
amount of βd cos θ. Using this result in (8-1) gives

AF ¼ I0 þ I1e
jβd cos θ þ I2e

jβ2d cos θ þ � � � ¼
XN�1

n¼0

Ine
jβnd cos θ ð8-3Þ

(d ) Three-dimensional plot.

x

zz λ
λ Add

Add

Add

Add
Cancel

(b) Inspection method.

(a) Array configuration.

(c) Polar plot of array factor magnitude | f(θ) = | cos(    cosθ)|.π

CancelCancel

Cancel

60º

60º
1 1

z

θ

Figure 8-3 Two isotropic point sources with identical amplitude and phase currents, and
spaced one wavelength apart (Example 8-1).
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Now consider the array to be transmitting. If the current has a linear phase progression
(i.e., relative phase between adjacent elements is the same), we can separate the phase
explicitly as

In ¼ Ane
jnα ð8-4Þ

where the nþ 1th element leads the nth element in phase by α. Then (8-3) becomes

AF ¼
XN�1

n¼0

Ane
jnðβd cos θþαÞ ð8-5Þ

Define

ψ ¼ βd cos θþ α ð8-6Þ
Then

AF ¼
XN�1

n¼0

Ane
jnψ ð8-7Þ

This array factor is a function of ψ and is a Fourier series. This form is convenient for
calculations, but we usually want polar plots in terms of the angle θ.

The nonlinear transformation from ψ to θ given by (8-6) can be accomplished
graphically. Studying this graphical procedure adds understanding to the interaction of
the several array parameters.

As an example, consider two elements spaced one-half wavelength apart and with
identical currents as in Example 3-2. We found the normalized array factor in (3-69) to be
f ðθÞ ¼ cos½ðπ=2Þcos θ�. In this case, ψ from (8-6) is

ψ ¼ βd cos θþ α ¼ π cos θ ð8-8Þ
since d ¼ l=2 and α ¼ 0. Now f is expressed in terms of ψ as

f ðψÞ ¼ cos
ψ
2

ð8-9Þ

This is a rather simple function to plot. To obtain a plot of jf j as a function of θ, first plot
jf ðψÞj from (8-9) as shown in Fig. 8-5. Then draw a circle of radius ψ ¼ π below it as
shown, since (8-8) is a polar equation of a circle. For an arbitrary value of ψ, say, ψ1, drop
a line straight down until it intersects the circle. The values of θ ¼ θ1 and jf j ¼ f1 cor-
responding to ψ ¼ ψ1 are indicated in the figure. Locating several points taken in this
fashion produces the desired pattern sketch. Note that as θ ranges for 0 to π, ψ goes from

d c
os

θ

θθ
d d

0 1 2
r

z

n = 0

Figure 8-4 Equally spaced linear
array of isotropic point sources.
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π to �π in this case. The resulting polar plot is shown in Fig. 8-7b. It is the same as the
result obtained in Fig. 3-16.

Before proceeding with more specific examples, we consider a general array factor and
how a polar pattern is obtained from it. The magnitude of a typical array factor is plotted
as a function of ψ in Fig. 8-6. Below it a circle is constructed with a radius equal to βd
and its center located at ψ ¼ α. The angle θ is shown. It is very easy to use this plot. For a

1

f1

f1

0

| f( ) | = | cos     |
2

π θ

θ
π

π– π

 cos  1 =  ψ1

2π

1

ψ

1

ψ1

ψ
ψ

Figure 8-5 Procedure for obtaining the polar plot of the array factor of two elements spaced
one-half wavelength apart with identical currents.

α

a

βd

βd cosθ

ψ = βd cosθ + α

ψ
Visible region b

c

θ

|f(ψ)|
2π

Figure 8-6 Construction technique for finding the array factor as a function of polar angle θ.
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given value of θ, locate the intersection of a radial line from the origin of the circle and
the perimeter, point a. The corresponding value of ψ, at point b, is on a vertical line from
a. The array factor value corresponding to these values of ψ and θ is then point c, also on
the vertical line from a. Notice that the distance from the ψ ¼ 0 axis to a point, say, at a,
can be written as ψ ¼ αþ βd cos θ, which is (8-6).

To illustrate the procedure further, we will find the polar plots of the array factors for
some two-element arrays with uniform current amplitudes that were discussed earlier.
The array factor as a function of ψ, from (8-7) with N ¼ 2, is

AF ¼ 1þ e jψ ¼ e jðψ=2Þðe�jðψ=2Þ þ e jðψ=2ÞÞ ¼ 2e jðψ=2Þ cos
ψ
2

ð8-10Þ

where A0 ¼ A1 ¼ 1. Taking the magnitude eliminates the exponential factor and normal-
ization removes the factor of 2, giving

j f ðψÞj ¼ cos
ψ
2

����
���� ð8-11Þ

which also follows from (8-9). The array factor jf ðψÞj is the same for all two-element
arrays with the same current amplitudes and is plotted in Fig. 8-7a. Of course, ψ changes
with element spacing and phasing. For example, if the spacing is a half-wavelength and
the phases of each element are zero ðα ¼ 0Þ, the pattern is obtained as shown in Fig. 8-5
with the resulting pattern plotted in Fig. 8-7b. This is Example 3-2 discussed earlier.

θ

2= – —

| f(ψ)| = | cos |

| f(θ)|

| f(θ)|

| f(θ)|

θ

=α π

πα

θ

ψ

ψ
2–π π π

2

(a)

(b)

(c)

(d)

Figure 8-7 Array factors for two-element
arrays with equal amplitude currents.
(a) Universal array factor. (b) Polar plot
for d ¼ l=2,βd ¼ π,α ¼ 0 (Example 3-2).
(c) Polar plot of d ¼ l=2,βd ¼ π,α ¼ π
(Example 3-3). (d) Polar plot d ¼ l=4,
βd ¼ π=2, α ¼ �π=2 (Example 3-4).
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For Example 3-3, d ¼ l=2 and α ¼ π. The resulting polar plot of the array factor using
the procedures of Fig. 8-6 is shown in Fig. 8-7c. The array factor for Example 3-4 with
d ¼ l=4 and α ¼ �π=2 is shown in Fig. 8-7d.

By examining the general array factor expression in (8-7), some general properties can
be derived that aid in the construction of pattern plots. First, the array factor is periodic in
the variable ψ with period 2π. This is easily shown as follows:

AFðψþ 2πÞ ¼
X

Ane
jnðψþ2πÞ ¼

X
Ane

jnψe jn2π ¼
X

Ane
jnψ ¼ AFðψÞ ð8-12Þ

The array factor of a linear array along the z-axis is a function of θ but not of φ (the
element pattern may be though). In other words, the array factor is a pattern that has
rotational symmetry about the line of the array. Therefore, its complete structure is
determined by its values for

0 , θ , π ð8-13Þ
This is called the visible region. This corresponds to �1 , cos θ , 1 or �βd , βd
cos θ , βd or

α� βd , ψ , αþ βd ð8-14Þ
Hence, the visible region in terms of θ and ψ is given by (8-13) and (8-14), respectively.
The element spacing of the array in terms of a wavelength, d=l, determines the size of the
circle in Fig. 8-6 and thus how much of the array factor appears in the visible region. The
visible region in the variable ψ is of length 2βd, as seen from (8-14). This is the diameter
of the circle in Fig. 8-6. Suppose that exactly one period appears in the visible region.
Since the period is 2π, we have 2π ¼ 2βd ¼ 2ð2π=lÞd or d=l ¼ 1

2
. Thus, exactly one

period of the array factor appears in the visible region when the element spacing is one-
half wavelength. Less than one period is visible if 2βd , 2π, which corresponds to
d=l , 1

2
— that is, for spacings less than one-half wavelength. For spacings greater than

one-half wavelength, more than one period will be visible. For one-wavelength spacings,
two periods will be visible. For spacings larger than a half-wavelength, there may be more
than one major lobe in the visible region, depending on the element phasings. Additional
major lobes that rise to an intensity equal to that of the main lobe are called grating lobes.
In the one-wavelength spaced, two-element array factor of Fig. 8-3c, there are grating
lobes at θ ¼ 0 and 180�, in addition to the desired lobe in the θ ¼ 90� direction. In most
situations, it is undesirable to have grating lobes. As a result, most arrays are designed so
the element spacings are less than one wavelength.

8.3 UNIFORMLY EXCITED, EQUALLY SPACED LINEAR ARRAYS

An array is usually comprised of identical elements positioned in a regular geometrical
arrangement. In fact, this is the definition adopted by the IEEE. However, arrays are
encountered in practice with unequal interelement spacings. Usually, a modifier (e.g.,
equally or unequally spaced) is included to be completely clear about the array geometry.
The examples presented in this chapter are for equally spaced arrays, and unequally
spaced arrays are treated in Sec. 8.8.

8.3.1 The Array Factor Expression

A very important special case of equally spaced linear arrays is that of the uniformly
excited array. This is an array whose element current amplitudes are identical, or

A0 ¼ A1 ¼ A2 ¼ � � � ð8-15Þ
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In this section, we consider only element phasings of a linear form that is accounted for
by interelement phase shift α. The array factor from (8-7) is then

AF ¼ A0

XN�1

n¼0

e jnψ ¼ A0ð1þ e jψ þ � � � þ e jðN�1ÞψÞ ð8-16Þ

Only a few short steps are required to sum this geometric series. First, multiply (8-16) by
e jψ to obtain

AF e jψ ¼ A0ðe jψ þ e j2ψ þ � � � þ e jNψÞ ð8-17Þ

Subtracting this from (8-16) gives

AFð1� e jψÞ ¼ A0ð1� e jNψÞ

or

AF ¼ 1� e jNψ

1� e jψ A0 ð8-18Þ

This is rewritten in a more convenient form as follows:

AF ¼ A0

e jNψ � 1

e jψ � 1
¼ A0

e jNψ=2

e jψ=2

e jNψ=2 � e�jNψ=2

e jψ=2 � e�jψ=2

¼ A0e
jðN�1Þψ=2 sinðNψ=2Þ

sinðψ=2Þ

ð8-19Þ

The phase factor e jðN�1Þψ=2 is not important unless the array output signal is further
combined with the output from another antenna. In fact, if the array were centered about
the origin, the phase factor would not be present since it represents the phase shift of the
array phase center relative to the origin. Neglecting the phase factor in (8-19) gives

AF ¼ A0

sinðNψ=2Þ
sinðψ=2Þ ð8-20Þ

This expression is maximum for ψ ¼ 0 and the maximum value from (8-16) is

AFðψ ¼ 0Þ ¼ A0ð1þ 1þ � � � þ 1Þ ¼ A0N ð8-21Þ
Dividing this into (8-20) gives the normalized array factor

f ðψÞ ¼ sinðNψ=2Þ
Nsinðψ=2Þ UE, ESLA ð8-22Þ

This is the normalized array factor for an N element, uniformly excited, equally spaced
linear array (UE, ESLA) that is centered about the coordinate origin. This function is
similar to a ðsin uÞ=u function, with the major difference that the side lobes do not die off
without limit for increasing argument. In fact, the function (8-22) is periodic in 2π, which
is true in general, as we showed in (8-12).
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A number of trends can be seen by examining array factor plots for various values of N
as shown in Fig. 8-8:

1. As N increases, the main lobe narrows.
2. As N increases, there are more side lobes in one period of f ðψÞ. In fact, the number

of full lobes (one main lobe and the side lobes) in one period of f ðψÞ equals N � 1.
Thus, there will be N � 2 side lobes are one main lobe in each period.

3. The minor lobes are of width 2π=N in the variable ψ and the major lobes (main and
grating) are twice this width.

4. The side lobe peaks decrease with increasing N. A measure of the side lobe peaks
is the side lobe level that we have defined as

SLL ¼ jmaximum value of largest side lobej
jmaximum value of main lobej ð8-23Þ

| f(ψ)|

N = 3

1.0

0
0

3
2π

0.4π 0.8π 1.2π 1.6π 2π

0.4π 0.8π 1.2π 1.6π 2π

4π 2π
ψ

—
3
—

| f(ψ)|

N = 5

0
0

1.0

ψ

| f(ψ)|

N = 10

0
0

1.0

ψ

(a)

(b)

(c)

Figure 8-8 Array factor for an equally spaced,
uniformly excited linear array for a few array
numbers. (a) Three elements. (b) Five elements.
(c) Ten elements.
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and it is often expressed in decibels. The side lobe level of the array factor for
N ¼ 5 is �12 dB and it is �13 dB for N ¼ 20. SLL approaches the value of a
uniform line source, �13:3 dB, as N is increased.

5. jf ðψÞj is symmetric about π. It is left as an exercise to show this.

The radiation (field) polar plots in the variable θ can be obtained from f ðψÞ as discussed
in Sec. 8.2. For example, consider the two-element case. Then (8-22) becomes

f ðψÞ ¼ sinψ
2 sinðψ=2Þ ð8-24Þ

This is a universal pattern function for all equal amplitude two-element arrays and is
plotted in Fig 8-7a. Note that by the techniques used in Sec. 8.2, we found that the array
factor for a two-element array was cosðψ=2Þ; see (8-9). It can be shown that this is
identical to (8-24).

EXAMPLE 8-2 Four-Element Linear Array (see Fig. 8-9)

The universal array factor for a four-element, uniformly excited, equally spaced array is
plotted in Fig. 8-9b. Let us find the array factor plot for the special case of half-wavelength
spacing and 90� interelement phasing (i.e., α ¼ π=2). The array excitations are shown in

| f(ψ)| = ψ

ψ

sin 2
ψ

4 sin
2

– π π π π

ππ

π–
2
—

2
—3 π2

2
—

θ

θο = 120°
z

z

2
— = α 

βd = 

1.0

d(a)

(b)

(c)

1e j(  /2)1 1e jππ π1e j(3   /2)

Figure 8-9 Array factor for a four-element, uniformly excited, equally spaced phased array
(Example 8-2). (a) The array excitations. (b) Universal pattern for N ¼ 4. (c) Polar plot
for d ¼ l=2 and α ¼ π=2.
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Fig. 8-9a. The pattern plot can be sketched quickly by locating prominent features such as
maxima and zeros. Then vertical lines are dropped down from these points to the circle below.
From the intersection points with the circle, straight lines are drawn in to the center of the
circle. The perimeter of the circle has a pattern value of unity and the center a value of 0. For
linear polar plots such as this one, the magnitude of the pattern factor is linearly proportional
to the distance from the origin. For example, if the circle radius is 4 cm and the pattern value
to be plotted is 0:25, the pattern point is 1 cm from the origin along a radial line at the
appropriate angle θ. After locating the relative maxima and the zeros, a smooth curve is drawn,
joining these points. The polar plot calculated using (8-22) is shown in Fig. 8-9c. Note that a
polar plot can be made larger or smaller by expanding or contracting the construction circle.

8.3.2 Main Beam Scanning and Beamwidth

A maximum of an array factor occurs for ψ ¼ 0. Let θo be the corresponding value of θ
for which the array factor is maximum. Then from (8-6), we have 0 ¼ βd cos θ0 þ α, or

α ¼ �βd cos θo ð8-25Þ
This is the element-to-element phase shift in the excitation currents required to produce an
array factor main beam maximum in a direction θo relative to the line along which the array
elements are disposed. Thus, if wewant an array factormaximum in the θ ¼ θo direction, the
required element currents from (8-4) with (8-25) are

In ¼ e jnα ¼ e�jnβd cos θo ð8-26Þ
for a uniformly excited, equally spaced linear array. For the broadside case ðθo ¼ 90�Þ,
α ¼ 0. For the endfire case (θo ¼ 0� or 180�), α ¼ �βd or βd. In the example illustrated
in Fig. 8-9, α ¼ π=2 and d ¼ l=2 so θo ¼ cos�1ð�α=βdÞ ¼ cos�1 �1

2

� � ¼ 120�.
A helpful way to remember the influence of the phase is that the beam pointing

direction is toward the lagging element. In the example, each element lags its right
neighbor, so the beam steers to the left of the array broadside direction as shown in
Fig. 8-9c. This main beam scanning by phase control feature can be explicitly incorpo-
rated into ψ by substituting (8-25) into (8-6), giving

ψ ¼ βdðcos θ� cos θoÞ ð8-27Þ
Scanning is discussed further in Sec. 8.9.

A measure of the width of the main beam of a uniformly excited, equally spaced linear
array is given by the beamwidth between first nulls, BWFN, which is illustrated in
Fig. 2-10a for a general pattern. The main beam nulls are where the array factor (8-22)
first goes to zero in a plane containing the linear array. The zeros of the numerator of
(8-22) occur for NψFN=2 ¼ �nπ. When the denominator also goes to zero ð1

2
ψFN ¼ �nπÞ,

the pattern factor is unity, corresponding to the main beam ðn ¼ 0Þ and grating lobes. The
first nulls associated with the main beam occur for NψFN=2 ¼ �π. For a broadside array
α ¼ 0� and ψ ¼ βd cos θ, so the angles θ for the first nulls are found from

�π ¼ N

2

2π
l
d cos θFN ð8-28Þ

or

θFN ¼ cos�1 � l
Nd

� �
ð8-29Þ

The BWFN is then

BWFN ¼ jθFN left � θFN rightj ð8-30Þ
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¼ cos�1 � l
Nd

� �
� cos�1 þ l

Nd

� �����
���� ð8-31Þ

For long arrays (length L ¼ Nd � l), we can approximate (8-31) as follows:

BWFN � π
2
þ l
Nd

� π
2
� l
Nd

� �����
���� ¼ 2l

Nd
near broadside ð8-32Þ

For an endfire array (see Fig. 2-11c), the beamwidth between first nulls is twice that from
the main beam maximum to the first null. For long arrays it is approximately

BWFN � 2

ffiffiffiffiffiffi
2l
Nd

r
endfire ð8-33Þ

Half-power beamwidth (HP) is a more popular measure of the main beam size than
BWFN. Both depend on the array length Nd and main beam pointing angle θo. For a long
ðNd � lÞ uniformly excited linear array, the HP is approximately [1]

HP � 0:886
l
Nd

csc θo near broadside ð8-34Þ

and

HP � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:886

l
Nd

r
endfire ð8-35Þ

Comparing the formulas for HP and BWFN, we can see that HP is roughly one-half of the
corresponding BWFN value for long, uniformly excited linear arrays.

8.3.3 The Ordinary Endfire Array

In many applications, antennas are required to produce a single pencil beam. The array
factor for a broadside array produces a fan beam (such as in Fig. 8-3), although the proper
selection of array elements may yield a total pattern that has a single pencil beam.
Another way to achieve a single pencil beam is by the proper design of an endfire array.
We have said that an endfire condition results when θo ¼ 0� or 180�, which corresponds
to α ¼ �βd or þβd. Such arrays for which α ¼ �βd are referred to as ordinary endfire
arrays. If the spacing d is a half-wavelength, there will be two identical endfire lobes (see
Fig. 3-17). There are several ways to eliminate one of these lobes, thus leaving a single
pencil beam. Already mentioned was the use of a backing ground plane in Example 3-5.
For an array, the back lobe can be reduced by decreasing the spacing below a half-
wavelength. The visible region is 2βd wide in the variableψ, and to eliminate the unwanted
major lobe (grating lobe), we should reduce the visible region (and thus the spacing d)
below the half-wavelength spacing value of 2π. Since the grating lobe half-width (maxi-
mum to null) is 2π=N, so that 2βd # 2π� π=N. Dividing this by 2βd gives the condition
on spacing, which is given below along with the associated condition on phasing for
ordinary endfire operation:

d ,
l
2

1� 1

2N

� �
ð8-36aÞ

Ordinary endfire conditions
α ¼ �βd ð8-36bÞ
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An array satisfying these conditions produces a single endfire beam and no grating lobewith
a peak in the direction θ ¼ 0� forα ¼ �βd and in the direction θ ¼ 180� forα ¼ βd, which
follows from (8-25). The example below, like many to follow in this chapter, uses five
elements because there are enough lobes to fully illustrate general pattern trends.

EXAMPLE 8-3 Five-Element Ordinary Endfire Linear Array (see Fig. 8-10)

From (8-36a) for a five-element ordinary endfire array, we must have d # ðl=2Þð1� 1=10Þ ¼
0:45l. If we select d ¼ 0:45l and the θo ¼ 180� endfire direction, the required element-to-
element phase shift from (8-36b) is α ¼ βd ¼ ð2π=lÞð0:45lÞ ¼ 0:9π. The pattern construction

z

z

d � 0.5 λ

(d)

(e)

α � π

d � 0.45 λ
α � 0.9 π

z 

z 

ψ

d � 0.5 λ

 = 0.9

d � 0.45 λ

21.61.20.80.4π π π π π

πα

α π

0.5

1

N = 5

|f (θ)|

θ

0
0

=
(c)

(b)

(a)

Figure 8-10 Five-element
uniformly excited, equally spaced
linear array (Example 8-3). (a)
Universal pattern plot. (b) Polar plot
for ordinary endfire case with
d ¼ 0:45l and α ¼ 0:9π. (c) and (d)
Plots for endfire case with d ¼ 0:5l.
(e) 3D plot for case of (c).
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process is shown in Figs. 8-10a and b, and the three-dimensional pattern plot is shown in
Fig. 8-10e. Note there is a single main lobe. For comparison, if a spacing of a half-wavelength
had been used, two major lobes would appear as shown in Figs. 8-10c and d.

8.3.4 The Hansen-Woodyard Endfire Array

In the ordinary endfire case, the interelement excitation phase, α ¼ �βd, exactly equals
the spatial phase delay of waves in the endfire direction. If the phase delay is increased
beyond that for ordinary endfire by an amount δ, the excess phase delay, the interelement
phase shift is

α ¼ �ðβd þ δÞ ð8-37Þ
with the þ and � signs corresponding to beam peak directions of θo ¼ 180� and 0�,
respectively. This excitation moves the maximum of the universal array factor out of the
visible region ð0� # θ # 180�Þ as shown by example in Fig. 8-11, leading to a narrowing
of the main beam. A popular choice for the excess phase delay is δ ¼ π=N. Because the
phase delay is increased, the construction circle moves off the origin, which can lead to
the appearance of grating lobes or high side lobes. To avoid this, the circle radius is
decreased more than in the ordinary endfire case, corresponding to an element spacing d
that is smaller than a half-wavelength by twice that used in the ordinary endfire case.
These conditions on spacing and phasing are referred to as the Hansen-Woodyard endfire
conditions for endfire operation and are given by:

d ,
l
2

1� 1

N

� �
ð8-38aÞ

Hansen-Woodyard endfire conditions

α ¼ � βd þ π
N

� 	
ð8-38bÞ

Ordinary endfire

Hansen-Woodyard
endfire

1.0

0
0 0.4

| f(θ)|

| f
(ψ

)|

δ

π π

πα

π π π0.8 1.2 1.6 2

θ

 = 0.94 βd = 0.74π
z

ψ

Figure 8-11 Single endfire beam for a
five-element Hansen–Woodyard increased
directivity array with α ¼ 0:94π and
d ¼ 0:37l (Example 8-4).
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where again the þ and � signs are used with main beam peak directions of θo ¼ 180� and
0�, respectively. The original derivation by Hansen and Woodyard [2] assumed a con-
tinuous current distribution, but the result holds for an array of many closely spaced
elements. The value that yields maximum directivity is δmax ¼ 2:92=N, which is close
to the Hansen-Woodyard value of π=N used in (8-39b). Array directivity is discussed
further in Sec. 8.5.

The pattern of an endfire array with a non-zero δ value has the pattern shape of (8-22)
but is not normalized to unity maximum due to the peak of the universal array factor
being invisible. Using (8-37) in (8-6) gives the modified expression for ψ of
βdðcos θ� 1Þ � δ. Solving this for the pattern maximum at θo ¼ 0� or 180� gives
ψo ¼ �δ or δ, and the pattern from (8-22) is sinðNδ=2Þ=N sinðδ=2Þ. Using this to
renormalize the general array factor to include non-zero δ gives

f ðψÞ ¼
N sin

δ
2

� �
sin

Nψ
2

� �

sin
Nδ
2

� �
N sin

ψ
2

� � ð8-39Þ

The consequence of increased directivity for Hansen-Woodyard type arrays is higher side
lobes, as illustrated in the following example.

EXAMPLE 8-4 Five-Element Hansen-Woodyard Endfire Linear Array (see Fig. 8-11)

From (8-38a) for a five-element Hansen-Woodyard endfire array, we must have d # ðl=2Þ
ð1� 1=5Þ ¼ 0:4l. Choosingd ¼ 0:37l and the θo ¼ 180� endfire direction, the required element-
to-element phase shift from (8-38b) is α ¼ βd þ π=N ¼ 0:74πþ 0:2π ¼ 0:94π.The pattern
shown in Fig. 8-11 has a single main beam that is narrower than for the ordinary endfire case in
Example 8-3 (also using five elements), but the side lobes are higher. Nevertheless, the array
exhibits increased directivity, as we will examine in more detail in Sec. 8.5.

It is helpful to summarize the endfire array design process. First, select the number of
elements, using enough to achieve the required directivity. Next, choose an element
spacing that is less than a half-wavelength; for example, satisfying (8-36a) or (8-38a) for
ordinary or Handsen-Woodyard endfire cases. Finally, evaluate the interelement phase
shift α using (8-36b) or (8-38b) for ordinary or Handsen-Woodyard endfire cases.

8.4 THE COMPLETE ARRAY PATTERN AND PATTERN
MULTIPLICATION

Our treatment of arrays so far has assumed that all elements in the array are isotropic
point sources. Actual arrays, of course, employ real elements that do not have an isotropic
pattern. In the remainder of this chapter, we include element effects, starting in this
section with the principle of pattern multiplication which gives the complete array pattern
as the product of the element pattern and the array factor.

When the elements of an array are placed along a line and the currents in each element
also flow in the direction of that line, the array is said to be collinear. As a simple
example of a collinear array, suppose we have N short dipoles as shown in Fig. 8-12. The
elements are equally spaced a distance d apart and have currents I0, I1, I2, : : : , IN�1.
The total current is the sum of the z-directed short dipole currents and thus is z-directed,

c08 26 March 2012; 18:43:17

286 Chapter 8 Array Antennas



as is the vector potential. The vector potential integral in (2-103) reduces to a sum over
the element currents (modeled as ideal dipoles) as1

Az ¼ μ
e�jβr

4πr
Δz I0 þ I1e

jβd cos θ þ I2e
jβ2d cos θ þ � � � þ IN�1e

jβðN�1Þd cos θ
h i

¼ μ
e�jβr

4πr
Δz

XN�1

n¼0

Ine
jβnd cos θ

ð8-40Þ

in the far field. Then from (2-106),

Eθ ¼ jωμ
e�jβr

4πr
Δz sin θ

XN�1

n¼0

Ine
jβnd cos θ ð8-41Þ

From this expression, we can identify sin θ as the pattern of a single element by itself,
called the element pattern. The remaining factor

AF ¼
XN�1

n¼0

Ine
jβnd cos θ ð8-42Þ

is the array factor of (8-3). The array factor is a sum of fields from isotropic point sources
located at the center of each array element and is found from the element currents
(amplitudes and phases) and their locations. On the other hand, the element pattern is that
factor of the radiation pattern determined by the individual properties of an element based
on its current distribution and orientation in space. We shall see that this factoring process
holds in general if the elements have the same pattern and are similarly oriented.

We now consider a slightly more complicated case. Suppose for the sake of expla-
nation, we have N identical general, line-source elements forming a collinear array along

x

y

I0 I1 I2 I3
z

0 d 2d 3d

Figure 8-12 A collinear array of short
dipoles.

1 This result could also be obtained by writing the z-directed current density as

Jz ¼ δðx0Þ δðy0Þ½I0 δðz0Þ þ I1 δðz0 � dÞ þ I2 δðz0 � 2dÞ þ � � � IN�1 δðz0 � ðN � 1Þ dÞ� Δz

and substituting this into (2-102), giving

Az ¼ μ
e�jβr

4πr
Δz

Z N

�N
½I0 δðz0Þ þ I1 δðz0 � dÞ þ � � ��e jβz0cos θdz0

from which (8-40) follows.
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the z-axis. The nth element is centered at z ¼ zn and has a current distribution inðz0Þ. We
are now relaxing the equal spacing constraint. The total current along the z-axis is

Iðz0Þ ¼
XN�1

n¼0

inðz0Þ ð8-43Þ

The vector potential is then

Az ¼ μ
e�jβr

4πr

Z N

�N

XN�1

n¼0

inðz0Þe jβz0cos θdz0 ð8-44Þ

The far-field electric field from this and (2-106) is

Eθ ¼ jωμ
e�jβr

4πr

XN�1

n¼0

EnðθÞ ð8-45Þ

where

EnðθÞ ¼ sin θ
Z N

�N
inðz0Þe jβz0 cos θdz0 ð8-46Þ

is the pattern of the nth element.
If the array possesses no symmetry, (8-45) cannot be simplified. But if the array

elements are similar, a great deal of simplification is possible. By similar we mean that
the currents of each antenna element are in the same direction, of the same length, and
have the same distribution (although there may be different current amplitudes and phases
for each element). Then the patterns of (8-46) will be similar; that is, they will have the
same spatial variation but may have different amplitudes and phases. In the example at
hand, the currents are all z-directed. Now assume that each element is of length ‘, has a
normalized current distribution over its length of iðz0Þ, and an input current of In. Then

inðz0Þ ¼ Iniðz0 � znÞ ð8-47Þ
where zn is the position of the nth element center along the z-axis. Substituting this into
(8-46) gives

EnðθÞ ¼ sin θ In

Z znþ‘=2

zn�‘=2

iðξ � znÞe jβξ cos θ dξ ð8-48Þ

where ξ replaced z0. Let τ ¼ ξ � zn; then (8-48) becomes

EnðθÞ ¼ sin θ In

Z ‘=2

�‘=2

iðτÞe jβðτþznÞcos θ dτ

¼ sin θ
Z ‘=2

�‘=2

iðτÞe jβτ cos θ dτ

" #
Ine

jβzncos θ ð8-49Þ

To maintain consistent notation, we replace τ by z0, yielding

EnðθÞ ¼ sin θ
Z ‘=2

�‘=2

iðz0Þe jβz0cos θdz0
" #

Ine
jβzn cos θ ð8-50Þ
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The pattern for each element of an array of similar elements given by (8-50) is a product
of the pattern of the current distribution, and the amplitude and phase of excitation In, and
the last factor represents the spatial phase due to the displacement from the origin.
Substituting (8-50) into (8-45) gives

Eθ ¼ jωμ
e�jβτ

4πr
sin θ

Z ‘=2

�‘=2

iðz0Þe jβz0 cos θ dz0
" #XN�1

n¼0

Ine
jβzn cos θ ð8-51Þ

The factor

sin θ
Z ‘=2

�‘=2

iðz0Þe jβz0 cos θ dz0 ð8-52Þ

when normalized is the element pattern gaðθÞ of any element in the array of similar
elements. The sum

AF ¼
XN�1

n¼0

Ine
jβzn cos θ ð8-53Þ

is the unnormalized array factor.
In going from (8-45) to (8-51), it was necessary to assume that the elements of the

array were similar. When this is true, the electric field can be written as a product of an
element pattern, as in (8-52), and an array factor, as in (8-53). Note that the array factor is
the pattern of a linear array of N point sources located at positions fzng on the z-axis. If
the elements are equally spaced, zn ¼ nd and (8-53) reduces to (8-42). If further, they are
uniformly excited, the array reduces to (8-20). This result is not restricted to collinear
elements but can be applied to any array of similar elements. This is discussed next.

The process of factoring the pattern of an array into an element pattern and an array
factor is referred to as the principle of pattern multiplication. It is stated as follows: The
electric field pattern of an array consisting of similar elements is the product of the pattern
of one of the elements (the element pattern) and the pattern of an array of isotropic point
sources with the same locations, relative amplitudes, and phases as the original array (the
array factor).

In Sec. 2.4, we wrote the normalized electric field pattern of a single antenna as a
product of a normalized element factor g and a normalized pattern factor f . For array
antennas, we expand this concept and call the pattern of one element in the array an
element pattern ga. It, in turn, is composed of an element factor that is the pattern of an
infinitesimal piece of current on the array element (i.e., an ideal dipole) and a pattern
factor that is the pattern due to its current distribution as in (8-52). The complete (nor-
malized) pattern of an array antenna is

Fðθ,φÞ ¼ gaðθ,φÞ f ðθ,φÞ ð8-54Þ
where gaðθ,φÞ is the normalized pattern of a single element antenna of the array (the
array element pattern, or element pattern) and f ðθ,φÞ is the familiar normalized array
factor.

EXAMPLE 8-5 Two Collinear, Half-Wavelength-Spaced Short Dipoles (see Fig. 8-13)

To illustrate pattern multiplication, consider two collinear short dipoles spaced a half-
wavelength apart and equally excited. The element pattern is sin θ for an element along the
z-axis and the array factor was found in (3-69) to be cos½ðπ=2Þcos θ�. The total pattern is then
sin θ cos½ðπ=2Þcos θ�. The patterns are illustrated in Fig. 8-13. The 3D pattern, which has been
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rotated slightly to see inside, illustrates the omnidirectional shape. The half-power beamwidth
of the array factor is 60� and is 51� for the complete pattern. So, the complete pattern is
essentially a slightly narrower version of the array factor.

Collinear arrays are in widespread use in base stations for land mobile communications.
Half-wave dipoles spaced more than a half-wavelength apart are popular elements. The array
axis is oriented vertically, producing an omnidirectional pattern in the horizontal plane as
required for point-to-multipoint communications. Lengthening the array by adding elements
narrows the beamwidth in the elevation plane, increasing the directivity and extending the
usable range to a mobile unit. Base station antennas are treated further in Sec. 12.2.

Arrays that have parallel elements, as illustrated in Fig. 8-14, have more complicated
pattern expressions because the axis of symmetry of the array (the z-axis) is no longer
aligned with the axis of symmetry of the elements (the x-axis), as for a collinear array. So
the pattern will be a function of both θ and φ rather than just θ. The element pattern
for the line source element parallel to the x-axis is found from an expression analogous
to (8-52):

sinγ
Z ‘=2

�‘=2

iðx0Þe jβx0cos γdx0 ð8-55Þ

z

x

y

γ

θ

Figure 8-14 A linear array of parallel line
sources.

(c)

Element
pattern

sinθ cos (π cos θ)
2

Array
factor

Total
pattern

z

z
I0 = 1 I1 = 1

2
λ θ

× =

=×

(b)

(a)

sin θcos (π cos θ)
2

Figure 8-13 Array of two half-wavelength spaced, equal amplitude, equal phase, collinear
short dipoles (Example 8-5). (a) The array. (b) The pattern. (c) The 3D pattern (rotated).
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where γ is the spherical polar angle from the x-axis with 0 # γ # 180�. γ is expressed in
terms of θ and φ through the relations [H.3: Kraus, 3rd ed., Ch. 16]:

cos γ ¼ sin θ cosφ and sin γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θ cos2φ

q
ð8-56Þ

The array factor of (8-53) also applies to this case of parallel elements because the
elements are still along the z-axis.

EXAMPLE 8-6 Two Parallel, Half-Wavelength Spaced Short Dipoles (see Fig. 8-15)

The pattern of the short dipole elements parallel the x-axis is sin γ analogous to its sin θ pattern
when parallel to the z-axis. Using (8-56), the element pattern expressed in θ and φ is

sin γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 θ cos2φ

p
. The array factor is the same as for the previous example because the

element locations are the same. The complete pattern is the product of the element pattern and
array factor as shown in Figs. 8-15b and c. The fact that the axes of symmetry for the element and
the array are orthogonal leads to different principal plane patterns and to the complicated 3D
pattern of Fig. 8-15d, which has the axes tilted to show the broad null in the z-direction and the
narrow null in the x-direction. While such a pattern has few applications, it is presented here
to illustrate how an element pattern can have a major influence on the array pattern and for
additional practice in visualizing array patterns.

EXAMPLE 8-7 Five-Element Endfire Array of Parallel Half-Wave Dipoles

To illustrate parallel element arrays further, suppose the element antennas of Fig. 8-14 are half-
wave dipoles. Also suppose there are five elements arranged and excited for ordinary endfire as
in Example 8-3. The complete pattern is the product of the single half-wave dipole element
pattern and the array factor found from five isotropic sources. The element pattern for a half-
wave dipole element along the x-axis is

gaðγÞ ¼ cos½ðπ=2Þ cosγ�
sin γ

ð8-57Þ

which is (3-4) with θ replaced by γ. Using (8-56), this becomes

gaðθ, φÞ ¼ cos½ðπ=2Þ sin θ cosφ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 θ cos2 φ

p ð8-58Þ

The array factor is (8-22) with N ¼ 5, or

f ðψÞ ¼
sin

5

2
ψ

� �

5 sin
1

2
ψ

� � ð8-59Þ

For this example, α ¼ 0:9π and d ¼ 0:45l so ψ ¼ βd cos θþ α ¼ 0:9π cos θþ 0:9π, and
(8-59) is

f ðθÞ ¼ sinð2:25π cos θþ 2:25πÞ
5 sinð0:45π cos θþ 0:45πÞ ð8-60Þ

The total pattern of the array in terms of θ and φ is then the product of (8-58) and (8-60):
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Fðθ,φÞ ¼ cos½ðπ=2Þsin θ cosφ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θ cos2 φ

p sinð2:25π cos θþ 2:25πÞ
5 sinð0:45π cos θþ 0:45πÞ ð8-61Þ

The polar plot of this pattern is easily obtained by multiplying the plot in Fig. 3-5b, where the
axis of symmetry is now the x-axis instead of the z-axis, times the polar plot of Fig. 8-10b. This
is a polar plot similar to the array factor plot except that the endfire lobes are slightly narrower,
and there is a pattern zero in the γ ¼ 0� direction caused by the element pattern.
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×

×

=

=

z z

zz

y
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z

z

z

γ

(a)

(b)

(c)

(d )

Element pattern

Element pattern

sin γ cos cos

Array factor

I0 = 1 I1 = 1

z

x
θγ

Array factor

Total xz-plane pattern

Total yz-plane pattern

π θ–
2

λ–
2

(            ) sin γ cos cosπ θ–
2

(            )

Figure 8-15 Array of two half-wavelength spaced, equal amplitude, equal phase parallel
short dipoles (Example 8-6). (a) The array. (b) The xz-plane pattern. (c) The yz-plane pattern.
(d) The three-dimensional pattern.
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8.5 DIRECTIVITY OF UNIFORMLY EXCITED, EQUALLY SPACED
LINEAR ARRAYS

The directivity of an antenna is solely determined by its radiation pattern in all space sur-
rounding the antenna. The techniques of the previous section for determining the pattern of
an array have prepared us to develop, in this section, exact and approximate formulas for the
directivity of uniformly excited, equally spaced linear arrays (UE, ESLA). As expected,
array gain equals array directivity multiplied by the array radiation efficiency. To derive
directivity expressions, we use D ¼ 4π=ΩA, first finding the beam solid angle as

ΩA ¼
ZZ

jFðθ,φÞj2dΩ ¼
ZZ

jgaðθ,φÞj2jf ðθÞj2 dΩ ð8-62Þ

where gaðθ,φÞ and f ðθÞ are the normalized element pattern and linear array factor and
dΩ ¼ sin θ dθ dφ.

We begin by assuming the elements are equally spaced, uniformly excited, and iso-
tropic. This assumption leads to approximate results for situations where the element
pattern is much broader than the array factor and the main beams of both are aligned. The
appropriate array factor from (8-22) is

j f j2 ¼ sinðNψ=2Þ
N sinðψ=2Þ
����

����
2

ð8-63Þ

¼ 1

N
þ 2

N2

XN�1

m¼1

ðN � mÞ cosmψ ð8-64Þ

where (8-64) is another form for (8-63). This identity can be shown to be true forN ¼ 2 since

from (8-64), jf ðψÞj2 ¼ 1
2
þ 1

2
cosψ ¼ cos2ðψ=2Þ as in (8-9). With the simple expression in

(8-64), it is easier to perform the integration in (8-62) in terms of the variable ψ. Using
gaðθ,φÞ ¼ 1, ψ ¼ βd cos θþ α, and sin θdθ ¼ �ð1=βdÞdψ in (8-62) gives

ΩA ¼
Z 2π

0

dφ
Z π

0

jf ðθÞj2sin θ dθ ¼ 2π
Z �βdþα

βdþα
jf ðψÞj2 � 1

βd

� �
dψ

¼ 2π
βd

Z βdþα

�βdþα
jf ðψÞj2 dψ ð8-65Þ

Substituting (8-64) in the above yields

ΩA ¼ 2π
βd

1

N

Z βdþα

�βdþα
dψþ 2

N2

XN�1

m¼1

ðN � mÞ
Z βdþa

�βdþα
cosmψ dψ

" #

¼ 2π
βd

1

N
ψ
����
βdþα

�βdþα
þ 2

N2

XN�1

m¼1

ðN � mÞ sinmψ
m

����
βdþα

�βdþα

" #

¼ 2π
βd

1

N
ð2βdÞ þ 2

N2

XN�1

m¼1

N � m

m
sinmðβd þ αÞ � sinmð�βd þ αÞ½ �

" #

¼ 4π
N

þ 4π
N2

XN�1

m¼1

N � m

mβd
2 cos mα sin mβd ð8-66Þ

where (D-6) was used in the last step.
The directivity is now found from its basic definition of D ¼ 4π=ΩA with (8-66) as

[H.8.2: Ma. p. 23].

c08 26 March 2012; 18:43:21

8.5 Directivity of Uniformly Excited, Equally Spaced Linear Arrays 293



D ¼

����� sinðN δ=2Þ
N sinðδ=2Þ

�����
2

1

N
þ 2

N2

XN�1

m¼1

N � m

mβd
sin mβd cos mα

UE; ESLA of istropic elements ð8-67Þ

The numerator of this expression is the pattern normalization factor from (8-39), which is
required to normalize the pattern to unity peak in the visible region in cases where an
additional phase of δ beyond that for ordinary endfire is used; see (8-37). The formula
applies for any number of elements N, any spacing d, and any interelement phasing α, but
is restricted to isotropic elements. Fig. 8-16 plots this formula for various numbers of
elements as a function of element spacing for the broadside case with α and δ zero. Tai
[1] presented a family of such plots. All of the directivity curves fall off steeply as the
spacing approaches one wavelength. This effect is due to the emergence of grating lobes
in the visible region. See Fig. 8-3 as an example where full grating lobes are visible for
one-wavelength spacing. Eq. (8-67) reduces to a simple result for elements spaced a
multiple of a half-wavelength apart:

D ¼ N for isotropic elements and d ¼ n
l
2

ð8-68Þ
These values can be located on the graph in Fig. 8-16 for the broadside case, but (8-68)
applies for any scan angle.

It is obvious from Fig. 8-16 that maximum directivity is achieved with a broadside UE,
ESLA for a spacing of just under a wavelength, with the peak directivity becoming closer
to a wavelength for larger numbers of elements. Arrays are often designed to have an
element spacing near a wavelength to keep the number of elements as low as possible to
limit the cost and complexity of the antenna and associated feed network. A simple
formula for the directivity of a broadside array of uniformly excited isotropic elements
follows directly from the uniform line source case in (5-19):

D � 2
L

l
¼ 2

Nd

l
broadside, UELA ð8-69Þ

where we used the array length of L ¼ Nd. This straight line approximation, shown in
Fig. 8-16 for the case of 10 elements, is an excellent fit to the exact result up to almost
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Figure 8-16 Directivity as a function
of element spacing for a broadside
array of isotropic elements for several
element numbers N computed using
(8-67).
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one-wavelength spacing. Note that (8-69) is exact for d ¼ l=2 because it equals N, as it
should be based on (8-68).

The directivity of endfire arrays has trends similar to broadside arrays as illustrated by
the graph in Fig. 8-17 which shows directivity versus element spacing for the case of 10
isotropic elements. Plotted are curves for both ordinary endfire and Hansen-Woodyard
cases with phases given by (8-36b) and (8-38b), respectively. The results, again computed
using (8-67), show that directivity increases with increasing element spacing until
d ¼ l=2 is approached when a grating lobe begins to appear in the endfire direction
opposite the main beam. Line-source theory results in (5-20) lead to the approximation

D � 4
L

l
¼ 4

Nd

l
ordinary endfire, UELA ð8-70Þ

This straight-line approximation shown in Fig. 8-17 for 10 elements is an excellent fit.
There also is a straight-line approximate formula for the Hansen-Woodyard endfire case:

D � 7:2
L

l
¼ 7:2

Nd

l
Hansen-Woodyard endfire, UELA ð8-71Þ

Constant values other than 7.2 can be found in the literature. But because the Hansen-
Woodyard directivity curve does not follow a straight line as closely as does the ordinary
endfire directivity curve, any linear fit would not be as accurate as the ordinary endfire
straight line approximation in (8-70), which is within a few percent of the exact result. It
is obvious from the Fig. 8-17 that more directivity is achieved with the Hansen-Woodyard
array than with an ordinary endfire array of the same number of elements. In fact, the
increase based on the ratio of (8-71) to (8-70) is 7:2=4 ¼ 1:82 ¼ 2:6 dB. As an example,
consider five-element endfire arrays similar to those in Examples 8-3 and 8-4. Exact
directivity values for the ordinary and Hansen-Woodyard endfire cases from (8-67) are
5.88 and 9.41, respectively, while approximations (8-70) and (8-71) give 6.0 and 10.8.

The higher directivity associated with the Hansen-Woodyard array is due to the
increased progressive phase (i.e., δ > 0), which causes the peak of the main beam peak to
move into the invisible region and narrows the visible main beam, reducing the beam solid
angle and increasing directivity. It should be noted that the Hansen-Woodyard endfire array
provides the highest directivity in most cases but not all. For spacings of isotropic elements
much below a half-wavelength, the directivity can be increased somewhat by increasing
the phase shift per element over that called for with Hansen-Woodyard operation. [2]
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Figure 8-17 Comparison of direc-
tivities for two 10-element equally
spaced, uniformly excited endfire
arrays: ordinary endfire (dotted
curve) and Hansen–Woodyard
endfire (solid curve) calculated
using (8-67). Also shown are
straight line approximations using
(8-70) and (8-71).
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If the uniform excitation constraint is relaxed, it turns out that only a slight increase in
directivity is possible, unless spacing is under a half-wavelength is permitted. [1] Non-
uniformly excited arrays are discussed more fully in the next section.

Broadside and endfire represent the extreme beam scan directions. Fig. 8-18 plots
directivity values at all scan angles for a uniform amplitude, five-element linear array of
isotropic elements for various spacings. The d ¼ 0:5 l curve is a straight line equal to 5,
which comes from (8-68), and demonstrates that directivity is independent of scan angle
for d ¼ nl=2. The beamwidths calculated using (8-34) and (8-35) for broadside and
endfire are 20:3� and 68:2�, respectively. While the beamwidth is much narrower for the
broadside case, the pattern is an omnidirectional doughnut pattern in three dimensions
(see Fig. 3-16 for a similar pattern). At endfire, there are two opposing broad, unidi-
rectional beams as shown in Fig. 8-10d. It turns out that the beam solid angles, ΩA, for the
two vastly different patterns are the same, giving the same directivity. For the four cases
shown in Fig. 8-18, the largest directivity in the broadside direction of θo ¼ 90� is for the
widest spacing of d ¼ 0:6 l. As seen from Fig. 8-16, directivity continues to rise for
spacings up to almost d ¼ 0:9 l in the N ¼ 5 case. Fig. 8-18 shows that directivity
remains constant over a wide range of scan angles around broadside; this will be
explained in Sec. 8.9. The greatest directivity in the endfire scan cases (θo ¼ 0�, 180�)
occurs for the largest spacing that satisfies the single main beam criterion of (8-36a),
which is d # 0:45l as noted in Example 8-3. For the four cases considered, the largest
spacing satisfying this single endfire beam condition is 0:4l and, thus, has the greatest
directivity at endfire as can be noted from Fig. 8-18.

There are only a few expressions available similar to (8-67) for the directivity of arrays
with real elements (i.e., not isotropic) and directivity is usually found by integration using
(2-142) in (2-144). The often-used formula that holds for uniformly excited linear arrays
with elements that can be isotropic, collinear short dipoles, or parallel short dipoles is

D ¼
sinðN δ=2
N sinðδ=2Þ
����

����
2

a0

N
þ 2

N2

XN�1

m¼1

N � m

mβd
ða1 sin mβd þ a2 cos mβdÞ cos mα

ð8-72Þ

where a0,a1, and a2 are given in Table 8-1 for the element types. [3, 4] This formula
reduces to (8-67) for isotropic elements. Directivity-versus-spacing plots based on this
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Figure 8-18 Variation of directivity with scan angle for five-element uniformly excited arrays
of various element spacings. The elements are isotropic. Values were calculated using (8-67).
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formula are similar to Fig. 8-16 but the directivity values will, of course, be somewhat
larger; see [1] for such plots. As an example, (8-72) yields D ¼ 12:2 for an array of 10
collinear short dipoles spaced 0:6 l apart, whereas the same array but with isotropic
elements has D ¼ 11:9 from (8-67) or Fig. 8-16. In general, the directivity of long arrays
ðL � lÞ is primarily controlled by the array factor if the element pattern has low
directivity and its major lobe is aligned with that of the array factor. In such cases,
formulas based on isotropic elements like (8-69) to (8-71) can be used. Returning to the
10-element array of collinear short dipoles spaced 0:6l apart, (8-69) gives D ¼ 12, which
is close to the exact value of D ¼ 12:2.

The optimum (i.e., maximum directivity) array in most cases has uniform element
amplitudes and linear phase shifts. For spacings under l=2, the Hansen-Woodyard endfire
array is close to optimum. Above l=2 spacings, uniform amplitude, in-phase excitations
are close to maximum with the spacing for peak directivity just under a wavelength and
closer to a wavelength for larger numbers of elements. More is said on this topic in the
next section.

There are several ways to estimate directivity for the purpose of quick approximate
calculation. An approximate directivity formula for a UE, ESLA based on half-power
beamwidth can be derived by substituting (5-19) into (5-12), giving

D � 1:77

HP
rad ¼ 101:5�

HPdeg
ð8-73Þ

For example, an ES, UELA of 10, half-wave spaced isotropic elements has HPdeg ¼ 20:3�
and (8-73) gives D ¼ 5, which happens to be exactly correct from (8-68). For the example
of 10 collinear short dipoles spaced 0:6l apart, the beamwidth is 8:44� and then (8-73)
gives 12.0 which is close to the correct value of 12.2. The formula also can be used with
any omnidirectional antenna, but the following formula is more appropriate [5]:

D � 101:5�

HPdeg � 0:0027 HP2deg
ð8-74Þ

For example, a half-wave dipole which has a beamwidth of 78�, so (8-74) yields 1.65,
which is close to the correct value of 1.64. The example of 10 collinear short dipoles
spaced 0:6l apart with a beamwidth of 8:44� has D ¼ 12:3 from (8-74), and the correct
value is 12.2.

The following simple formula can be found in the literature:

D � DeDi ð8-75Þ
where D¼ directivity of the array, De ¼ directivity of one element in the array, and
Di ¼ directivity of the array with isotropic elements (i.e., directivity of the array factor).
Application of this approximation is primarily to broadside, single main beam pattern

Table 8-1 Parameters for Use in Computing the Directivity of Uniform Current Amplitude,
Equally Spaced Linear Arrays; see (8-67)

Element Type jgaðθ,φÞj2 a0 a1 a2

Isotropic 1 1 1 0

Collinear short dipoles (Fig. 8-12) sin2 θ
2

3

2

ðmβdÞ2
�2

mβd

Parallel short dipoles (Fig. 8-14) 1� sin2 θ cos2 φ ¼ sin2 γ
2

3
1� 1

ðmβdÞ2
1

mβd
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antennas (that is, grating lobes would not be accounted for). This formula is often presented
without restriction, but, in fact, it must be used with caution, especially for linear antennas.
[6] An alternate form of this formula that also can be found in the literature is D � DeN.
This form assumes the directivity of the array of isotropic elements equals the number of
elements, Di ¼ N, which is only true for spacings equal to multiples of a half-wavelength
(and for uniform current amplitudes), thus ignoring the effect spacing has on pattern and
directivity. As an example, (8-75) applied to 10 collinear short dipoles spaced a half
wavelength apart gives D ¼ DeN ¼ 1:5 U 10 ¼ 15, which is way above the correct answer
of 10.3. The directivity by (8-75) for 10 collinear half-wave dipoles spaced 0:75l apart is
D ¼ DeDi ¼ 1:64 U 14:5 ¼ 23:8, which again is much higher than the correct result
obtained by integration of D ¼ 15:2. On the other hand, (8-73) and (8-74) applied to this
array, which has a pattern with HP ¼ 6:8�, give good results with directivity values of 14.9
and D ¼ 15:2, respectively.

It is important to note that array directivity represents the increase in the radiation
intensity in the direction of maximum radiation over that of a single element. Consider a
single isotropic element and an array of N equally excited isotopic elements as shown in
Fig. 8-19. The input power to the array is assumed to divide equally among the array
elements, so the element powers are 1=N of the input power and the element currents are
1=

ffiffiffiffi
N

p
of the input current. The radiation intensity Uo for the isotropic element is pro-

portional to its input power, which in turn is proportional to the input current squared I2o .
The maximum radiation intensity Umax of the array in Fig. 8-19b is a factor of D greater
than that for a single isotropic element with the same input power.

8.6 NONUNIFORMLY EXCITED, EQUALLY SPACED LINEAR ARRAYS

We have seen that the main beam of an endfire array can be narrowed by changing the
phase from that which is required for the ordinary endfire case. We can also shape
the beam and control the level of the side lobes by adjusting the current amplitudes in an
array. General synthesis procedures for achieving a specified pattern are presented in
Chap. 10. In this section, a few simple techniques for controlling side lobe levels and
beamwidth are introduced. Several examples are given that reveal the relationship
between the array current distribution and the radiation pattern. The directivity for arrays
with nonuniform excitation are also examined.

The array factor of (8-7) can be written as a polynomial in terms of Z ¼ e jψ as follows:

AF ¼
XN�1

n¼0

Ane
jnψ ¼

XN�1

n¼0

AnZ
n ð8-76Þ

where the current amplitudes An are real and can be different for each n. It is a simple
matter to investigate element current distributions using a computer to perform the array

Io

Io

(a) (b)

N

Io

Io

N

Io

N

Io

N

Io

N

Figure 8-19 Array directivity is the ratio of the maximum radiation intensity of the array
compared to that for an isotropic element with the same input power. (a) Reference isotropic
antenna. (b) Array with the same total input power divided equally among the elements.
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factor summation. We present the results of several such calculations. The influence of the
element current amplitudes will become apparent because we use the same five-element,
broadside linear array with a half-wavelength element spacing throughout this section.

The pattern of a uniform array with all current amplitudes equal is plotted in linear,
polar form in Fig. 8-20a, and the element currents are shown in Fig. 8-21a. If the element

D = 5
HP = 20.8º

0º180º

(a) Uniform. (b) Triangular.

(d) Dolph-Chebyshev, –20 dB SLL.

(e) Dolph-Chebyshev, –30 dB SLL.

(c) Binomial.

SLL = –12 dB

D = 4.26
HP = 26.0º

SLL = –19.1 dB

D = 4.68
HP = 23.7º

SLL = –20 dB

SLL = –30 dB

D = 3.66
HP = 30.3º

SLL = –∞ dB

D = 4.23
HP = 26.4º

0º180º

0º180º0º180º

0º180º

0.75 1.00

0.250.50

0.75 1.00

0.250.50
0.75 1.00

0.250.50

0.75 1.00

0.250.50

0.75 1.00

0.250.50

Figure 8-20 Patterns of several uniform phase ðθo ¼ 90�Þ, equally spaced ðd ¼ l=2Þ five-element linear
arrays with various amplitude distributions. The currents are plotted in Fig. 8-21. (a) Uniform currents,
1:1:1:1:1. (b) Triangular current amplitude distribution, 1:2:3:2:1. (c) Binomial current amplitude distri-
bution, 1:4:6:4:1. (d) Dolph–Chebyshev current amplitude distribution, 1:1.61:1.94:1.61:1, for a side lobe
level of �20 dB. See Example 8-5. (e) Dolph–Chebyshev current amplitude distribution,
1:2.41:3.14:2.41:1, with a side lobe level of �30 dB.
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current amplitudes form a triangle as shown in Fig. 8-21b, the radiation pattern of
Fig. 8-20b results. Notice that the side lobes are considerably smaller than those of the
uniformly illuminated array, but at the expense of increased beamwidth. This increased
beamwidth (20:8–26:0�) is responsible for reduced directivity (from 5 to 4.26).

The side lobe reduction introduced by the triangular amplitude taper suggests that
perhaps an amplitude distribution exists such that all side lobes are completely elimi-
nated. Indeed, this is possible if the ratios of the currents are equal to the coefficients of
the binomial series. To see how this comes about, first consider a two-element array with
equal amplitudes and spacing d. The array factor from (8-76) is AF ¼ 1þ e jψ and can be
written in terms of z ¼ e jψ as

AF ¼ 1þ Z ð8-77Þ
If the spacing for this broadside array is less than, or at most equal to, a half-wavelength,
the array factor will have no side lobes (see Fig. 3-16). Now consider an array formed by
taking the product of two array factors of this type:

AF ¼ ð1þ ZÞð1þ ZÞ ¼ 1þ 2Z þ Z2 ð8-78Þ
This corresponds to a three-element array with the current amplitudes in the ratio 1 : 2 : 1.
Since this array is simply the square of one that had no side lobes, the three-element array
also has no side lobes. This process can also be viewed as arraying of two of the two-
element arrays such that the centers of each subarray are spaced d apart. This leads to a
coincidence of two elements in the middle of the total array, thus giving a current of 2.
The total array factor is the product of the “element pattern,” which is a two-element

1
2

λ 3
2

λλ 2λ0

(a) Uniform.

1
2

λ 3
2

λλ 2λ0

(b) Triangular.

(d) Dolph-Chebyshev, –20 dB SLL.

0

0.5

1.0 1.0
An An

z z

1
2

λ 3
2

λλ 2λ0
0

0.5

1.0
An

z
1
2

λ 3
2

λλ 2λ0

(c) Binomial.

1.0

0.5

An

z

1
2

λ 3
2

λλ 2λ0

(e) Dolph-Chebyshev, –30 dB SLL.

1.0

0.5

0

An

z

Figure 8-21 Current distributions corresponding to the patterns of Fig. 8-20. The current
phases are zero ðα ¼ 0Þ. Currents are normalized to unity at the array center.
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subarray pattern, and the array factor that is again a two-element, equal amplitude array.
Thus, the total array factor is the square of one subarray pattern. Continuing this process
for an N element array, we obtain

AF ¼ ð1þ ZÞN�1 ð8-79Þ

which is a binomial series; see (F-4). For N ¼ 5,

AF ¼ ð1þ ZÞ4 ¼ 1þ 4Z þ 6Z2 þ 4Z3 þ Z4 ð8-80Þ

Therefore, the ratios of the current amplitudes are 1 : 4 : 6 : 4 : 1. This current distribution
is shown in Fig. 8-21c and the resulting pattern is shown in Fig. 8-20c. This pattern is
broader than either the uniform or triangular distribution cases and has a lower directivity,
but it has no side lobes.

From these five-element array examples, a trend is apparent: As the current amplitude
is tapered more from the center to the edge of an array, the side lobes decrease and the
beamwidth of the main beam increases. Many applications where interference/jamming
concerns are important require low side lobes, but at the cost of reduced directivity due to
the increased beamwidth. The tradeoff between beamwidth and side lobe level is a
principle encountered frequently in antenna design that applies to both arrays and con-
tinuous distributions, and to slices containing the normal to two-dimensional apertures as
well. An example is line sources with uniform and cosine tapered currents shown in
Figs. 5-5a and 5-8a. The peak side lobe levels of the tapered distribution are 9:7 dB lower
ð23�13:3Þ than the uniform case, but with a beamwidth that is a factor of 1.34 wider
ð1:19=0:886Þ, based on the data in Table 5-2.

The beamwidth/side lobe level tradeoff can be optimized. In other words, it is possible
to determine the element current amplitudes such that the beamwidth is minimum for a
specified side lobe level, or conversely to specify the beamwidth and obtain the lowest
possible side lobe level. This array is referred to as a Dolph–Chebyshev array and it
provides a pattern with all side lobes of the same level. The Dolph–Chebyshev array
synthesis procedure is explained in detail in Sec. 10.4.1. For a five-element array with an
element spacing of a half-wavelength and a specified side lobe level of �20 dB, the
Dolph–Chebyshev current distribution is plotted in Fig. 8-21d and the corresponding
pattern is shown in Fig. 8-20d. If the side lobe level for the Dolph–Chebyshev array is
specified to be �30 dB, the distribution is that of Fig. 8-21e and the corresponding pattern
is shown in Fig. 8-20e. Note that the main beam is slightly broader than in the previous
case where the side lobe level was 10 dB higher.

The discussion of nonuniformly excited arrays thus far was for amplitudes that are
tapered toward the ends of the linear array. If the amplitude distribution becomes larger at
the ends of the array (called an inverse taper), we expect the opposite effect; that is, the
side lobe level increases and the beamwidth decreases. Suppose, for example, that we
invert the triangular distribution such that the amplitudes are 3 : 2 : 1 : 2 : 3. The resulting
pattern shown in Fig. 8-22 demonstrates the expected decrease in beamwidth and increase
in side lobe level. Although the directivity for the inverse triangular tapered current is
greater than that for the triangular taper of Fib. 8-20b, it is still not as large as that
produced by the uniform distribution.

The directivity values were given for each of the examples in this section. We close
this section by developing the directivity expression. With little additional complexity, we
expand the treatment to include unequal element spacings as well as nonuniform exci-
tation. The element positions along the z-axis are zn and the element current amplitudes
are An. If the element phases are linear with distance, then αn ¼ �βzn cos θo, where θo is
the angle of the pattern maximum; the applications of this type of phasing are discussed
in Sec. 8.9.1. The array factor of (8-53) is then appropriate and when normalized is
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f ðθÞ ¼
PN�1

n¼0

Ane
jαne jβzn cos θ

PN�1

n¼0

An

ð8-81Þ

The appropriate beam solid angle expression is

ΩA ¼ 2π
Z π

0

jf ðθÞj2sin θ dθ

¼ 2πPN�1

k¼0

Ak

� �
2

XN�1

m¼0

XN�1

p¼0

AmApe
jðαm�αpÞ

Z π

0

e jβðzm�zpÞcos θsin θ dθ ð8-82Þ

Evaluating the integral in the above expression and applying the result to D ¼ 4π=ΩA

yields

D ¼
PN�1

k¼0

Ak

� �2
PN�1

m¼0

PN�1

p¼0

AmApe
jðαm�αpÞ sin½βðzm � zpÞ�

βðzm � zpÞ
ð8-83Þ

where αn ¼ �βzn cos θo and the elements can have any positions zn and current ampli-
tudes An. This general result simplifies for a broadside, equally spaced array to

D ¼
PN�1

k¼0

Ak

� �2
PN�1

m¼0

PN�1

p¼0

AmAp

sin½ðm� pÞβd�
ðm� pÞβd

αn ¼ 0, zn ¼ nd ð8-84Þ

As another special cases, when the spacings are a multiple of a half-wavelength, (8-83)
reduces to

(b) The current distribution, 3:2:1:2:3.

2
λ 3

2
λλ 2λ0
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SLL = –6.3 dB

(a) The array factor.

0º180º
0.50 0.75 1.00

Figure 8-22 The inverse triangular tapered, five-element linear array with d ¼ l=2 and
θo ¼ 90�.
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D ¼
PN�1

n¼0

An

� �
2

PN�1

n¼0

ðAnÞ2
d ¼ l

2
, l, : : : ð8-85Þ

Note that this is independent of scan angle θo, as indicated in Fig. 8-18 for d ¼ l=2. Also,
if the amplitudes are uniform, (8-85) yields D ¼ N as given by (8-68). For a further
example, consider the triangular excitation with the pattern of Fig. 8-20b. The directivity
value from (8-85) is ½2ð1Þþ 2ð2Þ þ 3�2=½2ð1Þ2 þ 2ð2Þ2 þ ð3Þ2� ¼ 4:26. Eq. (8-85) is a
very instructive formula because it shows that directivity is a measure of the coherent
radiation from the linear array. The numerator is proportional to the square of the total
coherent field, whereas the denominator is proportional to the sum of the squares of the
field from each of the elements.

There is no closed-form expression for directivity that includes element pattern effects
in an array with weighted excitations that is analogous to (8-72), which is for uniformly
illuminated linear arrays of simple element types. Instead directivity is found by inte-
grating the pattern to find ΩA and using D ¼ 4π=ΩA. This is a relatively easy task with a
math applications computer package.

Directivity can be increased without limit through close element spacings with extreme
amplitude and phase changes across the array. As mentioned in Sec. 5.5, there are penalties
with using superdirective antennas and they are not practical except for modest increases
in directivity over that achieved with uniform excitation. For equally spaced, collinear
arrays of half-wave dipoles that can have nonuniform amplitude excitations, the maximum
directivity is only slightly larger than for uniform excitation up to a spacing of 0:7 l and is
nearly identical to it for greater spacings. Hansen [H.8.11: Hansen] provides more details
on superdirective arrays and superdirectivity in general.

8.7 MUTUAL COUPLING IN ARRAYS

Arrays so far have been treated as having non interacting elements and as being perfectly
matched in impedance to the feed network. This allows the following further assumptions:
(i) The element terminal currents are proportional to their incident signals, (ii) The relative
current distributions across each element are identical (although they can be of different
levels proportional to the excitations), and (iii) Pattern multiplication is valid. As might
be expected, in a real array the elements interact with each other which alters the currents
(and thus impedances). This interaction, called mutual coupling, changes the current
magnitude, phase, and distribution on each element from their free-space values. As a
consequence, the total array pattern is altered from the no-coupling case. In this section, we
discuss the effects of mutual coupling on impedance and pattern, followed by methods to
evaluate array element impedance and the array pattern in the presence of mutual coupling.

First, we present names and definitions for several terms used in the field of array
antennas mainly following the classic work by Hannan [8], but other names appear in the
literature for the same quantities. A passive array uses a single generator2 followed by
power dividers and phase adjustment devices. An active array has a separate generator at
each element, which is the most common array model. The input impedance of an ele-
ment that has been removed from the array and is isolated from all objects is called
isolated element impedance or simply antenna impedance. Of course, the practical case is
a fully active array with all elements excited to produce the desired beam shape, scan
angle, and so on. The impedance of an element in its array environment with all elements

2Arrays are usually described for the transmit case, but the results apply to receiving arrays as well.

c08 26 March 2012; 18:43:24

8.7 Mutual Coupling in Arrays 303



active is referred to as the active impedance, driving impedance or simply input impedance.3

The active impedance for the elementswill varywith position in the array and the excitations,
including phasing for scan. Active impedance is difficult to measure because of the
requirement for the array to be fully active, although simulations can be made for these
conditions. In practice, element impedance behavior is characterized by exciting the
one element and passively terminating all others, typically with nominal generator
impedance or a reference load such as 50Ω. This is often called passive impedance. In
most situations, passive impedance closely approximates active impedance because the
coupling environment is identical and the terminating impedance conditions are nearly
identical. Thus, it is more common to use the term active impedance in place of passive
impedance and we will adopt this approach. To distinguish cases of fully active arrays,
we use the term “active impedance in a fully active array.”

8.7.1 Impedance Effects of Mutual Coupling

The three mechanisms responsible for mutual coupling are illustrated in Fig. 8-23a. First
is direct space coupling between array elements. Second, indirect coupling can occur by
scattering from nearby objects such as a support tower. Third, the feed network that
interconnects elements in the array provides a path for coupling. In many practical arrays,
feed network coupling can be minimized through proper impedance matching at each
element. This permits each element in the array to be modeled with independent gen-
erators as in Fig. 8-23b, where the mth element has an applied generator voltage and
terminal impedance given by Vg

m and Zg
m. The voltage and current at the element term-

inals, Vm and Im, include all coupling effects. An array of N elements is then treated as an
N port network using conventional circuit analysis, giving

Zg
m

Vm
g

Zm

(a) Mechanisms for coupling between elements of an array.

(b) Model for mth element in an array.

Feed network

1 2 m N

Im

Vm

Figure 8-23 Mutual coupling in
a fully excited array antenna.

3 Some authors have used the term scan impedance in place of active impedance.
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V1 ¼ Z11I1 þ Z12I2 þ � � � þ Z1NIN

V2 ¼ Z12I1 þ Z22I2 þ � � � þ Z2NIN

^

VN ¼ Z1NI1 þ Z2NI2 þ � � � þ ZNNIN

ð8-86Þ

where Vn and In are the impressed current and voltage in the nth element, and Znn is the
self-impedance of the nth element when all other elements are open-circuited. The mutual
impedance Zmn (¼ Znm by reciprocity) between the two terminal pairs of elements m and
n is the open circuit voltage produced at the first terminal pair divided by the current
supplied to the second when all other terminals are open-circuited; that is,

Zmn ¼ Vm

In

����
Ii¼0 for all i except i ¼ n

ð8-87Þ

For example, Z12 ¼ Z21 ¼ V2=I1 with port 2 open circuited.
Mutual impedance is, in general, difficult to compute or measure. However, wide

availability of commercial simulation codes based on moment methods discussed
in Chap. 14 have made the evaluation of mutual impedance values for wire antennas
relatively easy. Before showing simulation results, we discuss how mutual impedance
between two antennas is measured, and the results are easily generalized for the deter-
mination of mutual impedance between any two elements of an arbitrary array, Zmn.
An antenna when isolated in free space with voltage V1 and current I1 has an input
impedance of

Z11 ¼ V1

I1
single isolated element ð8-88Þ

If a second antenna is brought into proximity with the first, then radiation from the first
antenna induces currents on the second, which in turn radiates and also influences the
current on the first antenna. The second antenna can either be excited or unexcited (par-
asitic), but in any case it has terminal current I2. Then the total voltage at the first antenna is

V1 ¼ Z11I1 þ Z12I2 ð8-89Þ
Similarly, the voltage at the terminals of the second antenna is expressed by

V2 ¼ Z21I1 þ Z22I2 ð8-90Þ
Note that (8-86) is a generalization of (8-89) and (8-90).

Now suppose the second antenna has a load impedance Z
g
2 across its terminals

ðVg
2 ¼ 0Þ such that V2 ¼ �Z

g
2 I2. We can write (8-90) as

� Z
g
2 I2 ¼ Z21I1 þ Z22I2 ð8-91Þ

Solving for I2 and using Z21 ¼ Z12, we obtain

I2 ¼ �Z21I1

Z22 þ Z
g
2

¼ �Z12I1

Z22 þ Z
g
2

ð8-92Þ

Substituting this into (8-89) and dividing by I1, we find that

V1

I1
¼ Z1 ¼ Z11 � ðZ12Þ2

Z22 þ Z
g
2

ð8-93Þ
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This expresses the input impedance in terms of the two self-impedances (Z11 and Z22), the
mutual impedance Z12, and the load Z

g
2 at the unexcited terminals of antenna 2.

The above discussion suggests the equivalent circuit of Fig. 8-24 for the coupling
between two resonant antennas. For a single isolated antenna (i.e., antenna 2 very far
away), Z12 ¼ 0, and (8-93) gives the input impedance equal to the self-impedance,
Z1 ¼ Z11. If antenna 2 is open-circuited, then Z

g
2 ¼ N and (8-93) gives Z1 ¼ Zoc ¼ Z11.

Open circuiting implies that the current all along antenna 2 is reduced to zero. This occurs
for antennas such as half-wave dipoles, where resonant behavior is eliminated by open
circuiting. In other antennas (such as full-wave dipoles), even with an open circuit there
will be current induced on the antenna. In this case, the second antenna should be
removed.

The general procedure for determining mutual impedance from open-circuit and short-
circuit measurements involves the following steps. [H.6: Hansen, Vol. II, pp. 157–160]:

1. Open circuit (or remove) antenna 2. Measure Zoc ¼ Z11 at the terminals to antenna
1. For identical antennas, Z22 ¼ Z11.

2. Short circuit antenna 2. Measure Zsc at the terminals to antenna 1.
3. Compute Z12, using

Z12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZocðZoc � ZscÞ

p
ð8-94Þ

This follows from (8-93) with Z
g
2 ¼ 0.

The proper sign must be chosen with (8-94). This is aided by examining variations
with spacing in the limit of small spacing and maintaining continuity through zero
crossings [9]. Good agreement between simulations are experimental results based on this
method is reported in [9].

Mutual impedance is computed by placing a generator on the input of one antenna,
finding the voltage appearing at the input terminals of the second antenna, and then taking
the ratio of the voltage to the current. Results of simulations using a moment method code
based on principles in Chap. 14 for two free-space resonated half-wave dipoles that are
oriented parallel to each other as a function of separation distance is plotted in Fig. 8-25.
Similar results are presented in Fig. 8-26 for dipoles that are collinear. The mutual
impedance values decrease with increasing separation distance in both dipole orientation
cases. The general trends for mutual coupling in arrays are as follows [H.6: Rudge et al.,
Vol. II, Sec. 10.3]:

a. The magnitude of mutual impedance decreases with spacing distance d, in many
cases decaying as 1=d2 [H.8.2: Hansen, “Phased Array Antennas,” 2nd ed., p. 225].

b. The far field pattern is an indicator of coupling between elements, although the
coupling mechanism is a near-field, not far-field, effect. Coupling is proportional to
the element pattern level in the array plane (or surface). And, elements with a
narrow pattern will have lower coupling than a elements with a broad beam.

c. Elements with polarizations (i.e., electric field orientations) that are parallel couple
more than when collinear.

d. Larger elements have smaller coupling.

Z11 – Z12

Z1 Z2

Z22 – Z12

Z12
Figure 8-24 Network representation of the
coupling between two antennas.
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Figs. 8-25 and 8-26 demonstrate these trends. Trend (a) is clear, and trends (b) and (c) are
evident when comparing the parallel and collinear dipole results.

A second way to quantify coupled arrays in addition to the mutual impedance
approach is to use the scattering parameter method that is commonly used in radio-
frequency circuit analysis. For an N-element array, the scattering approach consists of
incident voltage wave with an N 	 1 column matrix ½a� and reflected voltage wave N 	 1
column matrix ½b� that are related by an N 	 N square scattering matrix ½S� through the
matrix equation ½b� ¼ ½S�½a�. The voltage wave matrix and scattering matrix entries (called
scattering parameters or scattering coefficients) are complex valued, and carry magnitude
and phase information. The scattering parameter Smn is the ratio of the output voltage
wave amplitude at port m ðbmÞ due to the input voltage wave amplitude at port n ðanÞ
with all other ports not excited. The scattering parameters are popular because they relate
directly to measurements, and network analyzers output the values. The scattering matrix
diagonal entries are the reflection coefficients at each port, so

Snm ¼ Γm ð8-95Þ
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Figure 8-25 The mutual impedance between two resonant parallel dipoles as a function of
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Just as with the impedance matrix, the scattering matrix is symmetric for a reciprocal
device and Snm ¼ Smn. The off-diagonal entries represent the coupling between ports. So
the coupling between ports m and n in dB, Cmn, is

Cmn ¼ 20 log jSmnj ½dB� ð8-96Þ
The scattering matrix entries can be found from the impedance matrix entries, Zmn. For
element one of a two-element array with all connecting transmission lines of charac-
teristic impedance Zo:

S11 ¼ Z11 � Zoð Þ Z22 þ Zoð Þ � Z2
12

Z11 þ Zoð Þ Z22 þ Zoð Þ � Z2
12

ð8-97Þ

S12 ¼ 2ZoZ12

Z11 þ Zoð Þ Z22 þ Zoð Þ � Z2
12

ð8-98Þ

We can perform some simple reality checks on these equations. For no mutual coupling
(Z12¼ 0), (8-97) gives S11 ¼ Γ1 ¼ ðZ11 � ZoÞ=ðZ11 þ ZoÞ, which is the conventional one-
port reflection coefficient formula. Also, for no mutual coupling (8-98) yields S12 ¼ 0, as
should be the case.

To illustrate how mutual coupling values are used to calculate coupling, consider the
two-element array of parallel half-wave dipoles with a spacing of 0:6 l. Fig. 8-25 gives
Z12 ¼ �23� j17Ω and using a matched condition with Z11 ¼ Zo ¼ 70Ω, (8-98) in (8-96)
yields a coupling level of C11 ¼ �13:7dB. As we indicated earlier, coupling levels
vary widely as dipole spacing and orientation are changed. Microstrip elements on a
common substrate have coupling levels that decrease monotonically from �15 to �40 dB
as element spacing is increased from about 0:5 to 1:5l in the H-plane and from �20
to �30 dB in the E-plane. [H.8.4: Bancroft, p. 175] Prob. 8.7-4 addresses mutual
impedance calculation using simulations.

The input impedance of an element in the array can now be computed using the mutual
impedance values. For the mth element, the input impedance is found using (8-86) as

Zm ¼ Vm

Im
¼ Zm1

I1

Im
þ Zm2

I2

Im
þ � � � þ ZmN

IN

Im
ð8-99Þ

This is the input impedance in the presence of all elements; i.e., the active impedance in a
fully excited array. All coupling effects are included via the mutual impedances
found from numerical simulations or from measurements using (8-94). The formula
clearly shows the dependence of the input impedance on not only the mutual impedances,
but also on the terminal currents of each element. Of practical significance is that input
impedance is affected by the phase of the terminal currents as it is adjusted to phase-
scan the pattern. Thus, the input impedance of all elements in an array will change
with scan angle.

8.7.2 Array Pattern Evaluation Including Mutual Coupling

In addition to the element impedances, mutual coupling influences the radiation properties
of an array as will be discussed in this section. Complete analysis using simulations or
measuring the parameters of each embedded element antenna can be used for full char-
acterization of the array, but this is tedious and rarely done. Instead, approximate techni-
ques for including mutual coupling effects are employed, as we will present. Arrays can be
modeled using all mutual impedances explicitly, or by absorbing coupling effects into the
currents (isolated-element pattern approach) or into the element pattern (active-element
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pattern approach), which is the approach we take here. [H.6: Hansen, Vol. II, Chap. 3;
H.8.2: Mailloux, 2nd ed., Sec. 2.1].

In the isolated-element pattern approach, all coupling effects in the total array pattern
are accounted for in the excitations:

Funðθ,φÞ ¼ giðθ,φÞ
XN
m¼1

Ime
jξm ð8-100Þ

where ξm is the total phase contribution (usually referenced to the center of the array) due
to spatial phase delay. It is the classical array pattern approach of Sec. 8.4 consisting of
the product of an isolated-element pattern giðθ,φÞ and an array factor. Without coupling
effects, the currents fImg vary in proportion to the excitation voltages. Coupling effects
are included using the simple circuit model of the mth element in Fig. 8-23b:

Im ¼ Vg
m

Z
g
m þ Zm

ð8-101Þ

This is called “free excitation” because the element terminal voltage will change with scan
angle. Instead of a constant-voltage feed, it is a constant-incident (available) power feed as is
the case in Fig. 8-19. For an infinite array of identical elements in a uniform grid where all
elements have same coupling, each element “sees” the same environment and the active
impedances are identical, so that all fZmg equal ZA. Then the currents are proportional to the
voltages across the element terminals:

Im ¼ Vg
m

Zg þ ZA
/ Vm ð8-102Þ

This situation applies to large, equally spaced arrays. It must be pointed out that the
common implementation of (8-100) for finite arrays uses the approximation of (8-102),
thereby ignoring terminal current variations due to mutual coupling and only including
generator voltage variations. It is difficult to obtain accurate current information so that
(8-100) can be evaluated, and the active-element pattern method is usually employed; this
method is discussed next.

In the active-element pattern approach, all coupling effects are accounted for through
the active element. The active-element pattern gnaeðθ,φÞ is obtained by exciting only the
nth element and loading all other elements with the generator impedance Zg. The active-
element pattern arises from direct radiation from the nth element combined with fields
reradiated from the other elements, which in turn receive their power through spatial
coupling from the element n. The array pattern in this formulation is

Funðθ,φÞ ¼
XN
n¼1

gnaeðθ,φÞIne jξn ð8-103Þ

Here, the currents fIng are proportional to excitation voltages fVng as in (8-102). All
mutual coupling effects are incorporated into the active-element patterns gnaeðθ,φÞ, which
depend on the element characteristics and the array geometry. To represent the possibility
of gain variations, the active-element pattern levels are relative to a reference element
near the center of the array.

It would be tedious to measure active-element patterns for each element in an array.
Fortunately, this is usually not necessary. For a large array of identical elements in an
equally spaced array, each element sees the same environment of nearest neighbors,
except for the edge elements. The appropriate approximation is to factor (8-103) using an
average active-element pattern, gaeðθ,φÞ, which is the normalized pattern for a typical
central element in the array:
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Funðθ,φÞ ¼ gaeðθ,φÞ
XN
n¼1

Ine
jξn ð8-104Þ

The advantage of this approach is that the summation in this equation is the array factor
based on simple theory without mutual coupling. All coupling effects are contained in the
average active-element pattern, which is found by a single pattern measurement of a
central element in a large array.

The normalized form of (8-104) gives the important approximate result:

Fðθ,φÞ ¼ gaeðθ,φÞ f ðθ,φÞ ð8-105Þ

where
gaeðθ,φÞ ¼ average active-element pattern
f ðθ,φÞ ¼ array factor
Fðθ,φÞ ¼ array pattern

This is of the same form as the pattern multiplication formula of (8-54), but mutual
coupling effects are included. This approximation is widely used in practice. The average
active-element pattern also plays an important role in array construction. The pattern of a
single active element surrounded by several passively terminated elements is measured
and evaluated before the fully active large array is built and tested. If the active-element
pattern is not well formed, the full array will not be either. It has been shown that the
active input impedance can be obtained from the active-element pattern data. [10]

The isolated-element pattern will differ from the active-element patterns of the
elements in the array. But, for a sufficiently large array, the average-element pattern is
representative of the majority of the active-element patterns in the array. How large an
array has to be before (8-105) can be applied is an important question that is addressed
through guidelines and examples. As array size becomes large (ideally, an infinite number
of elements), the active-element patterns for the individual elements converge toward
being identical and being equal to the average-active element pattern. Elements near the
edge of a finite array have patterns that deviate from the pattern of central elements,
which should be close to the average-element pattern. This is illustrated by the patterns in
Fig. 8-27 that shows the active element patterns for each element in an array of eight
microstrip patch antennas spaced 0:57l apart. The polar-dB patterns shown for selected
elements were measured for that element excited and all others match loaded. The pat-
terns for elements 2 through 7 (only pattern 5 is shown) are nearly identical and are
symmetric. The edge element patterns (1 and 8) are distorted due to the asymmetric array
environment and due to the finite ground plane edge effects. Note that most pattern
distortion is on the side away from the array. Similar results have been reported for
dipoles in front of a ground plane. [H.3: Milligan, Sec. 12.5; H.8.2: Haupt, Sec. 6.4] The
topic of a representative element pattern in a finite array is revisited in Sec. 8.9.1.

–10

0 dB 0 dB 0 dB

1 2 3 4 5 6 7 8

–20
–10
–20

–10
–20

Figure 8-27 Measured active-element patterns for three elements, an interior element (5) and
the end elements (1 and 8), of a linear array of eight microstrip patch elements spaced 0:57l
apart.
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The full array pattern is, of course, affected by mutual coupling within the array.
Arrays are modeled with voltage generator excitations based on a desired set of terminal
currents. In the absence of mutual coupling, the terminal currents are proportional to the
excitation voltages, (8-102) applies, and the desired pattern is realized. With coupling
present the pattern is distorted, but it often turns out that the terminal currents can deviate
rather far from the desired excitations and the pattern is not greatly affected. A linear
array of 12 half-wave spaced, parallel, half-wave dipoles with excitation voltages
designed to steer the beam 45� off broadside has a pattern in Fig. 14-27 (dashed curve)
that does not differ much from the ideal no-coupling excitation case (solid curve). The
beam is steered correctly as well. Although the element currents and impedances are not
close to the desired values (see Table 14-1), the integrating effect of the pattern tends to
smooth out the variations; also see [11]. In addition to pattern, the gain and polarization of
the total array pattern are affected by mutual coupling. Guidelines similar to those used
for impedance in Sec. 8.7.1 also apply to radiation from arrays.

Techniques are available to compensate for mutual coupling effects. Mutual coupling
does not change the current distribution on elements in the array but does change the
complex terminal currents. Compensation schemes essentially anticipate how the terminal
currents will be altered by mutual coupling and change the excitation voltages to produce
the desired currents. [H.3: Milligan, Sec. 3.11; 12] There are also physical means to
reduce mutual coupling directly such as inserting conducting baffles (i.e., fences) between
elements. [H.8.3: Haupt, Sec. 6.8].

8.8 MULTIDIMENSIONAL ARRAYS

Linear arrays have a number of limitations. For instance, they can be phase-scanned in
only a plane containing the line of the elements’ centers. The beamwidth in a plane
perpendicular to the line of element centers is determined by the element beamwidth in
that plane. This usually limits the realizable gain. Thus, multidimensional arrays are used
for applications requiring a pencil beam, high gain, or main beam scanning in any
direction. With advances in fabrication and integrated feed electronics, the costs of large
multidimensional arrays are affordable in many situations. Multidimensional arrays are
classified by three characteristics: The geometric shape of the surface on which the ele-
ment centers are located, the perimeter of the array, and the grid geometry of the element
centers. The surface on which elements are placed can be linear, circular, planar, etc. The
perimeter of planar arrays is usually circular, rectangular, or square in shape. Fig. 8-28
illustrates a planar array with a rectangular perimeter. The array grid (or lattice) can have
equal or unequal row and column spacings. A planar array with equal element spacings of
dx and dy in the principal planes such as in Fig. 8-28 is referred to as having a rectangular
grid. If dx ¼ dy, the grid is said to be square. A triangular grid is also widely used. When
the array conforms to a complicated surface such as the fuselage of an aircraft, the array is
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Figure 8-28 Geometry of a planar array.
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said to be conformal. In this section, we present techniques for analyzing arrays of arbi-
trary geometry as well as a few important special case geometries.

The pattern multiplication principles developed in Sec. 8.4 for linear arrays apply to
arrays of any geometry as long as the elements are similar. That is, if the elements are
identical and oriented in the same direction, the total array pattern is factorable as in
(8-105), which includes mutual coupling effects. This is the usual situation and permits us
to confine attention to the array factor f ðθ,φÞ when studying multidimensional arrays. In
this section, we develop the array factor for an arbitrary geometry.

The elements for an arbitrary three-dimensional array are located with position vectors
from the origin to the mnth element:

r0mn ¼ x0mnx̂þy0mnŷþz0mnẑ ð8-106Þ
The array factor is then

AFðθ,φÞ ¼
XN
n¼1

XM
m¼1

Imne
jðβr̂ U r0mnþαmnÞ ð8-107Þ

which, when normalized, is f ðθ,φÞ. This equation is general but is directly applicable to
the common situation of an array on a surface. The double summation is useful in
geometries that employ “rows” and “columns.” The phase term αmn is that portion of the
excitation current phase used to scan the main beam and is shown explicitly. A common
geometry for phased arrays is planar. The array factor for a planar array in the xy-plane, as
in Fig. 8-28, follows from (8-107) as

AFðθ,φÞ ¼
XN
n¼1

XM
m¼1

Imne
jαmne jξmn ð8-108Þ

where
ξmn ¼ βr̂ U r̂0mn ¼ β½x0mn sin θ cosφþ y0mn sin θ sinφ�
αmn ¼ �β½x0mn sin θo cosφo þ y0mn sin θo sinφo�
θo,φo ¼ main beam pointing direction

This formulation is a generalization of that for a linear array. Note that the z-axis is
normal to the plane of the array, whereas in our treatment of linear arrays the z-axis
is along the array. If all rows parallel to the x-axis, have the same current distribution, and
if all columns have identical current distributions, then the current is separable (e.g.,
Imn ¼ IxmIyn) and (8-108) reduces to

AFðθ,φÞ ¼
XM
m¼1

Ixme
jξxm U

XN
n¼1

Iyne
jξyn ð8-109Þ

where the phase of the current for beam steering is not shown explicitly and

ξxm ¼ βx
0
m sin θ cosφ and ξyn ¼ βy

0
n sin θ sinφ

This is a product of two linear array factors associated with the row and column current
distributions. The patterns in the principal planes (φ ¼ 0�, 90� and called the cardinal
planes) are those of the corresponding linear arrays (row, column). Planar arrays normally
have separable current distributions, so linear array analysis can be applied directly to find
the principal plane patterns.

For planes off the principal planes, called the intercardinal planes, the pattern is the
product of the row and column linear array patterns if the current distribution is separable.
In the 45�-plane, the side lobes will be very low because they are a product of the side
lobe levels in the principal planes; Fig. 9-7 illustrates this point using a continuous planar
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aperture distribution. A technique for finding the pattern of a planar array in any cut-plane
is the projection method, or method of collapsed distributions, for finding the array factor.
The element locations are projected onto the cut-plane along with the current weighting
for the elements along the projection line. The projection line contains the elements in the
equivalent linear array. The weightings for coincident projections are added together. The
current distribution in the original array need not be separable and the grid need not be
regular. For an example of the projection method, a 4	 4 planar array of elements
spaced 0:5l apart and uniformly excited has an equivalent array in the 45�-plane of
seven elements spaced 0:354l apart with the following weightings: 1 : 2 : 3 : 4 : 3 : 2 : 1.
Prob. 8.8-5 shows that pattern of the projected linear array is identical to the planar array
pattern. See [H.3: Elliott, Sec. 6.10] for more examples. The method can be used for a
variety of geometries, such as finding the equivalent linear array for a circular array.

Planar arrays are used to create a highly directive beam, often with scan capability as
discussed in the next section. Here we present directivity calculation methods. First
consider a cell of an array, which is the area surrounding an element. The maximum
possible directivity for one cell based on (4-23) and using the physical area of a cell as the
maximum effective aperture, Aem is

DMaxCell ¼ 4π
l2

ACell ð8-110Þ
This formula assumes radiation into the half-space on one side of the array face. It pro-
vides an upper bound on the directivity of one element embedded in an array. For a half-
wavelength spaced square-grid planar array, the cell area is ACell ¼ dxdy ¼ ðl=2Þðl=2Þ ¼
l2=4 and (8-110) yields DMaxCell ¼ π. Finite arrays of dipoles in a l=2	 l=2 square grid
and backed by a ground plane have a maximum element gain (see Sec. 8.9.1) somewhat
above or below the maximum cell area directivity from (8-110) of 3.14, depending on the
number of elements and ground plane distance. [13]. The directivity of a full array is found
from a similar formula using the physical area of the full array, Ap:

DMaxArray ¼ 4π
l2

Ap ¼ πDxDy ð8-111Þ
which is also given in (9-67) for aperture antennas. The second part of this formula comes
from using Ap ¼ LxLy and introducing the directivities of uniform line sources in the x and
y directions of a planar array in the xy-plane from (5-19): Dx ¼ 2Lx=l and Dy ¼ 2Ly=l.

This formula also can be found based on (8-75) as DMaxArray ¼ MaxfDeDig ¼
DMaxCellN ¼ ð4π=l2ÞACellN ¼ ð4π=l2ÞAp where N is the total number of elements in the
array. Forman [14] gives the range of spacing values in a square grid array for which
(8-111) equals the correct directivity for a few element types, but the ranges are small
and (8-111) should used only as a guideline. In general, the directivity of planar arrays
increases with element spacing similar to that for linear arrays until grating lobes begin to
appear and directivity decreases. King and Wong [15] note this effect, and that directivity
becomes asymptotic to NDe, where De is the directivity for actual element, for spacing
values around 1 l depending on the element pattern. Formulas are available in the
literature [14] for calculating the directivity of planar arrays with simple element types,
although they tend to be complicated and have restrictions on their application. But such
formulas are useful for checking computer programs based on pattern integration to
find directivity. Forman found that (8-111) is close to the actual array directivity for an
element pattern of cos0:5 θ; the following example demonstrates this.

EXAMPLE 8-8 Directivity of Planar Arrays

In this example, we examine the exact and approximate methods for calculating the directivity
of a square-grid (5	 5) planar array in the xy-plane. The 25 elements have the pattern
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gaðθÞ ¼ cos0:5 θ (for θ , 90� and zero otherwise). We consider two approximate directivity
formulas. The first, which was mentioned in association with (8-75) for linear arrays, depends
only on the element type and not the spacing:

DApraxArray ¼ NDe ¼ 25 U 4 ¼ 100 ¼ 20dB ð8-112Þ
where the element directivity was obtained by pattern integration. The second approximation
is that of (8-111):

DMaxArray ¼ 4π
l2

Ap ¼ 4π
l2

ðNxdxÞðNydyÞ ¼ 4πN
dx

l
dy

l
ð8-113Þ

First consider spacings of d ¼ dx ¼ dy ¼ 0:5 l. Themaximum directivity from (8-113) is 19 dB.
Evaluating the directivity by pattern integration gives 18:3 dB for isotropic elements and
18:98 dB for square-root cosine element patterns. Increasing the spacing to d ¼ 0:8l increases
the directivity from (8-113) to 23 dB and the directivity by numerical integration to 21.6 and
22:4 dB for isotropic and square-root cosine element patterns, respectively. From these calcu-
lations we see that (8-112) is not reliable, and (8-113) and its general form (8-111) provide a
good upper bound directivity prediction for the square-root cosine element pattern array.

To produce radiation in only one hemisphere, arrays are often operatedwith a conducting
ground plane backing the elements. The same principle applies to the single element case
illustrated in Fig. 3-20. For example, a linear array backed by a ground plane can be analyzed
by removing the ground plane and introducing images of the elements, forming a planar
array; Probs. 8.8-2 and -3 are arrays of this type. The patterns of planar arrays can be found
using sequential linear array analysis if sufficient symmetry exists. One row is considered as
an “element” and its array pattern is multiplied by that of a column, considered as a linear
array; Prob. 8.8-4 is an example. Grids other than rectangular are used. The triangular grid
can offer similar pattern performance but requiring fewer elements; Prob. 8.8-6 compares a
square grid to a triangular one of the same array area.

There are many applications for non-planar arrays such as a conformal array that con-
forms to an aircraft surface, to the superstructure of a ship, or to the skin of missile. The
techniques used in this section can be used to find the radiation pattern for conformal arrays.

Directivity usually must be found by numerical integration. More examples and details
on analysis techniques are available in [H.8.2:Haupt, Chap. 5] and [H.8.2:Visser, Chap. 10].
An interesting array configuration is one that uses linearly polarized elements to produce
circularly polarized radiation. The planar array is made of 2	 2 subarrays of four linearly
polarized elements with angular orientations of 0�, 90�, 180�, and 270�, and phased in the
same way. This array is preferred over one using circularly polarized elements because
circularly polarized elements requiremore complicated feed hardware, leading tomore loss,
weight, and cost.

The largest antennas found in practice are arrays and are used to achieve high
directivity or narrow beamwidth. Arrays are preferred to a single large continuous
aperture antenna, such as a reflector, because of its large physical size and corresponding
weight, complexity, and cost. Radio astronomy applications have several very large arrays
in use or in the planning stages made up of thousands of elements and some have element
separations of many kilometers. There are also many radars employing arrays, as will be
discussed in the next section.

8.9 PHASED ARRAYS AND ARRAY FEEDING TECHNIQUES

It is often required that the antenna main beam pointing direction be varied with time,
which is referred to as scanning. Scanning can be accomplished mechanically or elec-
tronically. Mechanical scan is achieved by slewing the entire antenna, which can be any
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type of antenna but most often is a reflector antenna or a fixed-phase array. However,
mechanical scan requires a positioning system that can be large and costly, and
mechanical scan is often too slow. The alternative is to use a phased array, which is an
array whose phase (or time delay) at each element is controlled to steer the pattern in
angular space. Phased arrays offer the advantage of electronic-speed, inertia-less scanning
with the ability to track multiple targets (users) simultaneously. In general, the magnitude
and phases of elements can be controlled for low side lobes or to shape the main beam.
Phased arrays find applications in radar, sensing, and communications. In radar, targets
can be tracked to obtain their angular coordinates for surveillance. In communications,
the array radiation pattern can be adjusted for varying traffic conditions such as mobile
users changing location. In this section, we review electronic scanning principles along
with practical constraints. This is followed by the topics of feed networks and associated
enabling technologies, and operational phased arrays—past, present, and future.

8.9.1 Scan Principles

The simple formulas developed in Sec. 8.3.2 for calculating the linear phase taper across
an array required to steer the pattern main beam to a desired angle holds for all linear
arrays and is easily extended to other array geometries. The element phases are adjusted
to form a phase front that is planar and oriented to steer the main beam in a direction
normal to the formed planar wavefront.

The array factor for a linear array in (8-53) can be generalized to include element
phases with a linear portion fαng and a nonlinear portion fδng, and to include arbitrarily
positioned elements:

AFðθÞ ¼
XN�1

n¼0

Ine
jξn ¼

XN�1

n¼0

Ane
jðαnþδnÞe jξn ð8-114Þ

The spatial phase for the nth element located on the z-axis at zn is

ξn ¼ βzn cos θ ð8-115Þ
The current for the nth element has magnitude An and phase αn þ δn. The phases fαng
vary linearly with position in the array and determine the main beam maximum dir-
ection from

αn ¼ �βzn cos θo ð8-116Þ
and are referred to as linear phase, or uniform progressive phase. For an equally spaced
array, zn ¼ nd and αn ¼ nα where α ¼ �βd cos θo as in (8-25). Nonlinear phases fδng
can be used for pattern shaping (see Chap. 10).

As the pattern of an array is scanned off broadside, the main beam widens. This effect
is called beam broadening. We illustrate this for a linear array of five isotropic elements
spaced 0:4l apart. Fig. 8-29 shows a series of patterns for increasing off-broadside scan
angles. Notice the increase in the beamwidth of the main beam with scan off broadside.
The full pattern for this array is obtained by rotating the pattern about the z-axis. Two
examples of three-dimensional patterns are shown in Figs. 8-29b and 8-29f. As the main
beam is scanned away from broadside, the increase in beam solid angle of the main beam
is just about compensated for by the reduced solid angle of the total pattern (formed by
rotation of the pattern about the array axis). Thus, directivity of the array factor remains
relatively constant, with scan for spacings less than a half-wavelength and for scan angles
not close to endfire; see Fig. 8-18. For spacings slightly greater than a half-wavelength, a
grating lobe begins to appear for scan angles near endfire and the directivity decreases;
again, refer to Fig. 8-18. Since isotropic elements were assumed, these remarks apply to

c08 26 March 2012; 18:43:28

8.9 Phased Arrays and Array Feeding Techniques 315



array factors. When the element pattern effects are included for the case of a directive,
broadside element pattern, directivity will decrease with scan angle.

As we noted in Sec. 8.2, for half-wavelength spacings there is exactly one period of the
array factor in the visible region and no grating lobe will be visible, except for endfire
operation that produces two endfire beams. For spacings larger than a half-wavelength,
part or all of a grating lobe may be visible depending on scan angle. For one wavelength
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Figure 8-29 Example of phase-scanned patterns for a five-element linear array along the
z-axis with isotropic elements equally spaced at d ¼ 0:4l and with uniform current
magnitudes for various main beam pointing angles θo.
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spacing or more, there will be visible grating lobes. When spacings of several wave-
lengths are used, many grating lobes are visible (see Fig. 8-3 for a simple example) and
the array is called an interferometer. Each major lobe has a narrow beamwidth but there
are many of them. Large element spacings, however, permit electrically large elements
with relatively narrow beamwidth patterns that act to decrease the size of the grating
lobes. In normal applications, grating lobes limit the performance of phased arrays and
are to be avoided. Grating lobe peaks will be not appear in the visible region if element
spacings are restricted as follows:

d ,
l

1þ jcos θoj to avoid grating lobes ð8-117Þ

where θo is the main beam pointing angle with respect to the line of the array corre-
sponding to the largest scan angle off broadside. This relation is derived by solving (8-27)
for the first grating lobe at ψ ¼ 2π, where θ ¼ 0�. For broadside operation, θo ¼ 90� and
(8-117) gives d , l. If scanning to endfire ðθo ¼ 0, 180�Þ is desired, then d , l=2. This
result is based on an omnidirectional element pattern in the plane of scan. Larger spacings
are permitted for directive element patterns since they diminish the effect of grating lobes.

The principles required of scanning multidimensional arrays were covered in the
previous section. The expression for determining the phases of the mnth elements
located at positions ðx0mn, y

0
mn, z

0
mnÞ needed to steer the beam peak of the array factor to

the angle ðθo,φoÞ is given in (8-108). For planar arrays, the orientation of the array that
provides the most convenient mathematical formulation is for element centers located
in the xy-plane. This makes the direction broadside to the array the z-direction, and then
the angle θ is the angle off broadside. In contrast, for linear arrays we placed elements
along the z-axis, making θ the angle relative to endfire, not broadside. In the remainder
of this chapter, the z-axis is normal to the array, and scan angle refers to the angle the
beam peak is scanned away from broadside.

The complete pattern of a phased array is found by multiplying the array factor by the
element pattern as in (8-54). The important subtlety in pattern multiplication is that while
the array factor scans with phase change the element pattern remains fixed. As a phased
array is steered, the peak of the total array pattern follows the element pattern shape.
Fig. 8-30 shows a linear array operated for a broadside beam and for scan to 30� off
broadside. The array is four 0:7-l spaced elements that have uniform current magnitudes
and phases as required to steer the array factor. The element pattern (dashed curve), cos2 θ,
is unaffected by the scan angle, which has several effects on the total array pattern (solid
curve). First, the peak of the main beam is reduced by the level of the element pattern at
the angle of interest. In this case, the scanned beam peak is reduced to 0:77, for a 2:3-dB
scan loss. Second, the beam peak direction does not go to the desired angle of 30�
off broadside. Instead, the actual scan angle is a few degrees less than desired. The final
effect on the scanned pattern is the altering of the whole pattern from the array factor
shape. But this distortion can actually be an improvement. In the example in Fig. 8-30b,
the side lobe at θ ¼ �50� is a remnant of a full grating lobe the array factor has at�68�. So
the element pattern acts to greatly reduce grating lobes in scanned patterns. These are
general trends in array scanning. Mutual coupling effects can be included for scanned
patterns using (8-105), where the mutual coupling effects are included in the average
active-element pattern. The array grid of planar arrays controls the grating lobes. The
scan performance of a rectangular-grid array behaves like the projected linear array in
the scan plane.

The pattern and the element impedances of phased arrays vary with scan angle because
the mutual coupling changes. The input impedance influence is evident in (8-99) because
as the phases of the currents fIng are changed to scan the beam the summation of mutual
impedances weighted by the currents changes. The most serious effect is scan blindness,
which is manifested by a dramatic reduction in radiated power due to high reflection
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when the array is scanned to a blindness angle. In the transmitting case, when the feed
network is configured to steer the beam to a blind scan angle there is power reflected back
into the transmitter, which can cause damage. If Γmðθo,φoÞ is the active reflection
coefficient of the mth element in a fully excited phased array, the power delivered to that
element is

Pmðθo,φoÞ ¼ Pinc 1� jΓmðθo,φoÞj2
h i

ð8-118Þ

where (4-41) was used and Pinc is the incident power. From this we can find the gain of the
mth element operating in presence of the other elements [16], called an element-gain
pattern:
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(b)  Phased to scan to 30�.
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Figure 8-30 The total array pattern (solid curve) for a four-element linear array that has 0:7l
spacings, uniform excitation magnitudes, and excitation phases for (a) broadside operation and
(b) scanned 30� off broadside. The element pattern (dashed curve) is cos2θ. Note that the
element pattern remains stationary during scan.
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Gm
EGðθo,φoÞ ¼ Giðθo,φoÞ 1� jΓmðθo,φoÞj2

h i
ð8-119Þ

where Giðθo, φoÞ is the gain pattern of an isolated element, that is, Gi jFðθ,φÞj2. It is a
realized gain because impedance mismatch effects due to mutual coupling are included,
although feed network impedance matches are not. It is proportional to the active element
pattern, so (8-119) is essentially an active element-gain pattern. In an infinite array, all
element patterns are identical. In a large array with small edge effects (to be discussed
shortly), the element-gain patterns of all elements except those near the edge are nearly
identical and an average element-gain pattern (developed similarly to the pattern
expression of (8-105)) can be used in (8-119) to give:

GEGðθo,φoÞ ¼ Giðθo,φoÞ 1� jΓðθo,φoÞj2
h i

ð8-120Þ

where Γðθo,φoÞ is the reflection coefficient of a central element in the array. Usually an
array is nearly matched at broadside, so Γð0, 0Þ ¼ 0, and impedance mismatch increases
with scan angle.

In an infinite array, a complete mismatch occurs at the blindness angle, if it exists,
when jΓðθo,φoÞj ¼ 1. Then (8-120) shows that the average element-gain pattern goes to
zero. In finite arrays, the blindness effect does not yield complete mismatch, but there can
still be significant mismatch in large arrays. Scan blindness is associated with surface
wave–like phenomena and usually occurs for spacing values less than a wavelength and at
a scan angle less than that for which grating lobes occur in (8-117), and thus is often the
factor limiting the scan range of a phased array. Scan blindness varies with the scan plane.
In planar arrays of dipoles mismatches are larger for scan in the E-plane than in the
H-plane. This is illustrated in Fig. 14-28, which plots the input impedance of a central
element in a planar array of dipoles as a function of scan angle. The real part of the input
impedance approaches zero in the E-plane, but not in the H-plane. In the E-plane, the
dipole creates an electric field component perpendicular to the ground plane that can set
up a surface wave, whereas in the H-plane the electric field from the dipole traveling
along the array face is parallel to the ground plane and is shorted out. For arrays printed
on a dielectric substrate, the blindness angle moves toward broadside as dielectric
thickness is increased. [13] If the feed network resides on a common dielectric substrate,
an additional blindness effect, called “feed blindness,” can occur which has behavior
opposite that of surface-wave blindness. The feed blindness scan angle moves toward
endfire rather than broadside as dielectric loading increases. [17] The best way to avoid
scan blindness effects is to use small element spacing, typically under a half-wavelength.
Blindness effects can also be reduced by using subarrays, which are clusters of neigh-
boring elements fed with the same excitation. [18] But subarraying introduces additional
grating lobes.

Reducing the mutual coupling will help reduce blindness effects. Adding conducting
fences between elements helps, as mentioned in Sec. 8.7.2. Placing elements in cavities has
been used to reduce surface waves and improve blindness. [19] For more details on scan
blindness and its mitigation see [H.6: Hansen, Vol. II]. Pozar [13] recommends using array
designs that limit the maximum scan angle to about 10� less than the scan blindness angle.

Techniques are available for analyzing infinite arrays that take advantage of the
unending periodicity. [H.6: Hansen, Vol. II, Chap. 3; Haupt: H.8.2, Sec. 6.5] An infinite
array with a regular grid presents the same operating environment to each element. So the
active element patterns, reflection coefficient, and input impedance for each element
are identical. The pattern of the full infinite array is in theory an impulse function (giving
infinite directivity) which traces out the element pattern as scan angle is varied. Infinite
array analysis is useful in determining element performance of the central elements of
a finite array of the same type. As with linear arrays discussed in Sec. 8.7.2, the patterns
of elements near the edge of an array differ from that for centrally located elements.
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As array size increases, the array pattern becomes more accurately predicted from the
pattern multiplication formula of (8-105) using the average active-element pattern and
array factor. The array size for which this formula is acceptable depends on the element
type, array geometry, and other factors. An experimental study with microstrip elements
found that a 7	 7 array is sufficiently large. [20] For a planar array of half-wave spaced
printed dipoles, an array size of 19	 19 was found to be large enough for the active
reflection coefficient to behave similar to being in an infinite array. [13] This is consistent
with the general guideline of 10 l per side. [H.8.2: Mailloux, 2nd ed., p. 71].

Array size is usually driven by the requirements on resolution (width of the main
beam) or gain (directivity reduced by efficiencies), which is also affected by element
spacing. It is desirable to have wide element spacing (approaching a wavelength), which
reduces the number of elements and the associated costs for elements and the feed net-
work. However, the maximum scan angle limits how far apart elements can be in order to
avoid grating lobes as given by (8-117) and to avoid scan blindness.

8.9.2 Feed Networks and Array Technology

As mentioned in Sec. 8.1, phased arrays offer the unique advantages of electronic-speed
beam scanning without mechanical motion. Additional unique features are the capability
of tracking multiple targets (or users) that are in different directions, dynamic pattern
control, and graceful degradation as elements fail. In addition, beam nulls can be formed
to cancel jamming signals (or interference). Design for low radar cross section (see
Sec. 4.6) is possible by redirecting an enemy jamming signal away from the direction
back toward the threat. The many attractive features of arrays come with the penalty that
each element of an array must have a transmission path to the receiver (or transmitter). In
addition, a phased array requires hardware and software to control the phase of the
elements. The usual choice that is faced when deciding on a high-gain antenna is between
a reflector with a simple feed system but with a large steering mechanism and a phased
array with low-weight electronic scanning but a large feed network.

The possible array feed network architectures are shown in Fig. 8-31. The parallel and
series feeds follow directly from circuit concepts. The parallel feed shown in Fig. 8-31a is
the network form that we have assumed thus far and is the most common. It is also called
a corporate feed that looks like the organizational diagram of a corporation. It has the
desirable characteristic of equal line length to each element, making the network sym-
metric that helps with balancing mutual coupling effects. Most important, the signal
phase and amplitude to each element is naturally identical, as often used in practice. The
equal line lengths also make the network frequency independent, and thus wide band-
width. The series feed of Fig. 8-31b offers advantages of simple construction a compact
structure. Awaveguide slot array is a popular series-fed array; example slots are shown in
Fig. 8-35b. A disadvantage of the series feed is that the common feed line attenuates the
signal to successive elements, causing loss and complicating the design. Series-fed arrays
offer the possibility of frequency scanning by changing frequency which changes the
electrical line length between elements, and thus the phase. One realization of a series
feed is the “serpentine” waveguide feed which is a waveguide bent into a serpentine
similar to the shape in Fig. 8-31b with radiating elements, usually dipoles, with probes
tapped into the waveguide. Phase shifters can be inserted into the connecting series
transmission lines or in the individual element feed lines. A series feed introduces dis-
persion that distorts short pulses and limits bandwidth.

The preceding feeds are sometimes referred to as “constrained” feeds because of the
physical constraint of continuous connectivity from the feed to the elements. In contrast,
the space feed uses a primary antenna illuminating a separate unit (sometimes called an
“active lens”) consisting of pickup elements connected to a secondary radiating array
face, as illustrated in Fig. 8-31c for the transmitting case. Typically only used for large
phased arrays, the space feed array takes advantage of the free space environment
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between the primary feed and the pickup array, leading to size, weight, and cost reduction
compared to a fully connected feed network. The amplitude distribution of the array is
determined by the primary feed pattern and the pickup array element placements. The
phase introduced by the different path lengths from the primary feed to each pickup
element is compensated for by the phase shifters on the radiating elements, which also are
used for beam scanning. Just as with a reflector antenna, there is spillover loss associated
with the primary feed power missing the pickup array. It is common to taper the
amplitude distribution across the secondary radiating array to reduce side lobes by
“thinning” the array by not connecting some elements. The elements are not removed but
are dummy loaded to present a regular impedance environment to the active elements.
This is called density tapering. The primary feed is often configured with a central feed
antenna, usually a horn, surrounded by two pairs of horns, one pair in each plane, for
producing difference patterns with a null on axis for direction finding in the vertical and
horizontal planes. A related feed method is the reflectarray, which has a primary feed
illuminating an array which receives, processes, and transmits a formed beam back in the
direction of the feed, appearing to reflect the signal. [H.6: Ant. Eng. Hdbk., 4th ed., Chap.
35] Scanning is possible by including phase shift functionality into the array.

The three feed architectures were illustrated as linear arrays, but the concept is easily
extended to multidimensional arrays. The corporate feed network will become very large
for arrays with many elements. The space feed is an alternative, but the hybrid feed of
Fig. 8-31d is more commonly used. It is shown as a parallel-series hybrid with the rows
fed in parallel and the columns series fed. By inserting phase shifters in the legs of the
parallel feed the pattern can be steered in the azimuth plane (left-right as shown).
The parallel-parallel hybrid feed facilitates the use of subarrays that have the same
amplitude and/or phase in each element of the subarray.

Physical construction of the feed network and its associated components behind the
array face is in one of two forms, brick or tile. [H.8.2: Mailloux, 2nd ed., p. 46] In brick
construction, the complete feed hardware modules for one element (or a few elements),

(a) Parallel, or corporate, feed. (b) Series feed.

(c) Space feed. (d) Parallel-series feed.

Pickup
antenna

Secondary
transmitting
antenna

Primary
transmitting
antenna

Figure 8-31 Types of array feed networks.
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often including the element itself and all in a monolithic or hybrid integrated circuit, is
placed perpendicular to the array face. A brick can be as small as a single module
connected to a single element. Tile construction consists of several parallel layers with
each layer containing the same components performing the same function. For example,
there could be separate layers for the elements, phase shifters, and amplifiers. Tiles are
more compact than bricks but may have thermal management issues.

Beam scanning is implemented using one of the following methods. The term “phase
shifter” often includes any of these means for changing the phase. For more details see
[H.8.2: Mailloux, 2nd ed., Sec. 1.3], [H.6: Balanis, Ed., Chap. 25].

Phase shift — The use of phase shifter devices to adjust element phases for beam
scanning is the most popular method. Phase can be changed by altering the per-
meability using a ferrite phase shifter or by changing permittivity (dielectric con-
stant) such as with a ferroelectric phase shifter. Phase shifters are narrow band.

Time delay — Phase shift in time-delay devices is accomplished by adjusting line
length, usually by switching in various sections of transmission line.

Hybrid (usually phase-time delay) — Time-delay lines are generally larger than
conventional phase shifters, so in applications where time delay is required, time
delay and phase shift are combined. This will reduce the spreading of a pulse when
the beam is scanned compared to a phase-only feed. [21].

Frequency scanning — Phase is changed by changing frequency, which changes the
electrical length of the interconnecting lines and is used with series feeds. Fre-
quency scanned arrays are found in practice, mostly in radars rather than com-
munications where frequency is usually required to be fixed. An example of a
series-fed array is a waveguide with slots milled in one wall that act as radiating
elements.

Beam switching — Beam scanning could be accomplished by switching between
separate antennas pointed in different directions, but the system would be large and
complex. Instead, a beamforming network (BFN) is used to form multiple beams. A
BFN that forms N beams has N input ports, one for each beam. By adding a 1	 N
switch to the input, beams can be selected by controlling the switch.

Digital beamforming — Beamforming can be achieved in the digital domain by
sampling the RF signal at the element level and routing to a digital processor unit
for complex weighting (i.e., amplitude and phase control) and summing to form the
beam. Multiple simultaneous beams and adaptive features such as interference
rejection are possible as well.

Most phase-shifter technologies can be realized in digital as well as analog (allowing
adjustment to any phase value) form. An M-bit digital phase shifter provides phase
increments in multiples of 360=2M degrees. For example, a 3-bit phase shifter has phase
states of 0�, 45�, 90�, 135�, 180�, 225�, 270�, and 315�. These settings are the cumulative
phases of the three bits in series in all possible on/off states where the “off” states are 0�
and the “on” states are 45�, 90�, and 180�. Arrays in practice typically use from 3 to 7 bits
of phase shift. Quantization effects result from using the nearest digital phase state rather
than the exact phase, with the main issue being an increase in side lobes. [H.6: Rudge,
Vol. 2, Sec. 9.2.4] Similar high-side lobe problems develop when using subarrays with the
same phase supplied to all elements in the subarray. [H.8.2: Mailloux, 2nd ed., Sec. 7.3]
Also, digital phase shifters will place beams at discrete locations rather than directly
toward a user as is possible with analog phase steering. Hybrid use of both digital
and analog phase shifters may provide an optimum feed network. [H.6: Balanis, Ed.,
Sec. 25.5.3]

Delay line phase shifting can be realized by electromechanical adjustment of a “line
stretcher,” variable length transmission line. However, most time delay phase shifting is
done by switching in (or bypassing) fixed-length sections of line. The phase shift in time
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delay devices is proportional to frequency just as in a transmission line, leading to
wide bandwidth. The frequency proportionality follows from (8-116), where the phase
shift for the nth element of a linear array on the z-axis is αn ¼ �ð2π=cÞfnd cos θo. A
delay line with this phase will give a beam peak in the direction θo for all frequencies.
Time delay is preferred in pulse radar to preserve the pulse shape as the scan angle is
changed.

So far we have modeled arrays using unspecified phase shifters and will now discuss
how they are implemented. [H.8.2: Mailloux, 2nd ed., Sec. 1.3] Although intrinsically
analog, ferrite phase shifters are usually configured as digital phase shifters. Ferrite phase
shifters operate by changing the permeability of ferrite material that the wave propagates
through. They are often constructed in waveguide and can handle high power levels
needed in phased array radars. Due to their large size and weight, they are not often used
in space applications and large airborne systems. Diode phase shifters can also be analog
or digital. Analog diode phase shifters are realized with Schottky barrier or varactor
diodes. Digital diode phase shifters operate by using diodes (PIN, Gallium-Arsenide-
based devices, and others) to switch delay lines. Also, MEMS (micro-electromechanical
systems) switches are used to switch in fixed sections of line length to give the proper
number of bits of phase. In addition to the foregoing through-line devices, phase shifting
is also realized in devices configured for reflection from a shorted load. Ferroelectric
phase shifters operate by changing the material permittivity via an applied DC
voltage. When fully developed they will find wide acceptance because of their desirable
characteristics of low weight and low power draw due to being voltage actuated, unlike
MEMS-based units. Photonic technology is also employed in array feed networks. [H.8.2:
Hansen, 2nd ed., Sec. 6.4] Using open optical beams or fiber optic cables to distribute
signals reduces the size and weight of the network compared to conventional metallic
feeds. Immunity to RF interference is an added advantage. However, the required con-
verters between optical and RF frequencies are lossy and non-reciprocal.

Beamforming networks are constructed using conventional network techniques or
using quasi-optical lenses. [H.8.2: Hansen, 2nd ed., Chap. 10] Conventional constrained
networks can be as simple as a series of power dividers that include phase shifters if
scanning is required. For example, in Fig. 8-31a two-way power dividers are located at
the tee junctions, or one four-way power divider could be used. A power divider based
network, however, becomes excessively large for more than a moderate number of ele-
ments in the array. One of the most popular conventional-network BFNs is the Butler
matrix, which was introduced in 1961. [22] Compact Butler matrix units are available
commercially and find application in smart antennas to be discussed in Sec. 12.4. The
Butler matrix essentially performs a fast Fourier transform, radiating a set of beams that
are orthogonal so that the signals into one port only appear in the beam associated with
that port. A Butler matrix connects a 2n element array to n input ports that are inputs to
the beams. Fig. 8-32 shows a functional diagram of a four-beam Butler matrix.
Operation is illustrated for Beam 2 using the highlighted portion of Fig. 8-32. The signal
passes through two quadrature hybrid power dividers, denoted “H,” each with two input
ports on the bottom and two output ports on the top that have equal power outputs that are
in-phase (90� out of phase) from the same-side (opposite-side) input ports. Fixed phase
shifters of �45� are also used. The resulting outputs of the matrix have equal amplitude
and a progressive 45� interelement phase shift. The patterns are shown for half-wave-
length element spacing and a sin θ element pattern (array along the z-axis). In the iso-
tropic element case, the direction of one beam peak is in the null direction for the other
beams, which is the orthogonality property. This is approximately true for the array of
Fig. 8-32. The beam peaks are 14:5� and 48:6� off broadside for the isotropic element
case and 13:5� and 41� for the sin θ element pattern. The beam crossover points at
angles 0� and 30� off broadside are 3:7 dB below the beam peaks, which is the same for
the sin θ element case, except the crossover level is lower at 30� off broadside. Higher-
order Butler matrix BFNs behave similarly: An 8	 8 matrix for eight beams with a
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crossover level of �3:9 dB. [H.8.3: Milligan, 2nd ed., p. 595] A BFN can be used in a
multiple beam array, taking advantage of the orthogonal beam property where simulta-
neous beams can be processed separately for multiple user (target) tracking or beams can
be combined and weighted for special beam shaping.

A second BFN is the Blass matrix, which uses transmission lines of the proper lengths
to produce time-delay phasing and directional couplers to produce multiple beams.
Although not as compact as the Butler matrix, it is inherently wideband. [H.8.2: Mailloux,
2nd ed., Sec. 8.1.3] Quasi-optical beamformers find use in applications calling for wide
bandwidth, where the Butler matrix falls short; however, they are generally bulky and
heavy. Here we mention two prominent examples, and a more detailed treatment is found
in [H.8.2: Hansen, 2nd ed., Sec. 10.2.2]. The Luneberg lens is a spherical dielectric
with relative permittivity that decreases from 2 at the center to unity at the surface. This
yields the unique property that an incident signal (implemented with a small horn
antenna) on the surface produces an output beam directly opposite. Multiple feeds produce
multiple radiated beams. Functioning in similar fashion to the Luneberg lens is the Rotman
lens, constructed with parallel plate waveguide, stripline, or microstrip media. Finally,
we mention parasitic beamforming, in which only a few elements in an array are active
while others are passive but have controlled loads. [H.9.1: Thiel and Smith] For example,
an active monopole with parasitic monopoles on each side can be beam-steered 180�
by switching between two parasitic monopole states of first having the left one shorted and
the right one open loaded, and second reversing these load conditions.

The most flexible array is a fully distributed array (also called an active aperture) in
which all RF functions (phase shift, up conversion, amplification in the transmit chain,
and low noise amplifier and down conversion in the receive chain) are present for each
element. This architecture is used in digital beamforming, which is the application of
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Figure 8-32 Functional diagram of a four-
beam Butler matrix beamformer. “H” repre-
sents a quadrature hybrid power divider; the
input ports are on the bottom, and the two
output ports on the top have equal power
outputs that are in-phase (90� out of phase)
with the same-side (opposite-side) input port.
The patterns shown are for half-wave spaced
elements with sin θ patterns (array on the
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digital technology to array antenna technology.4 A digital beamforming array consists of
array elements followed by transceivers that down convert and digitize signals that then
stream into a digital signal processor unit. This unit supplies amplitude and phase weights
to each element, which permits beam shaping, beam steering, multiple beamforming, and
adaptive beamforming (which is used in smart antennas, discussed in Sec. 12.4). These
features are possible because the digital signal processor unit has all array element output
information available, in contrast to a conventional analog beamformer that outputs a
weighted sum of the element signals.

Feed network construction usually employs the same technology as the element uses.
For example, microstrip elements are fed by microstrip feed lines, and horn or open-
ended waveguide elements are connected to waveguide phase shifters. For small arrays,
coaxial cables are often sufficient for the feed. Modern phased arrays make use of
transmit-receive (T/R) modules that provide full duplex (simultaneous transmit and
receive functions). The critical components in T/R modules are a low-noise amplifier on
receive and a power amplifier in the transmit path, both usually constructed in MMIC
(monolithic microwave integrated circuits). [H.8.2: Fourikis, Sec. 4.6] In digital beam-
formers, analog-to-digital converters are also included.

8.9.3 Operational Array Examples and the Future of Arrays

Radars made early use of arrays. The SCR-270 radar was a fixed-phase array in an 8	 4
element configuration (horizontal	 vertical) that was mechanically rotated in azimuth
and operated at about 110 MHz. One of SCR-270 radars detected the planes approaching
Hawaii in December 1941, but there was no military response, resulting in the attack on
Pearl Harbor. Prompted by military preparedness concerns, phased array development
programs started in the 1930s, resulting in the first phased array in 1937. Since that time
there have been many technology developments that expanded capability, improved
performance, and lowered cost, including RF electronics (transmit/receive active devi-
ces), feed network components (power dividers, phase shifters, etc.), signal processing
units, and antenna elements (discussed in the next section). Further history of phased
arrays can be found in [H.8.2: Visser, Chap. 2].

Now we consider some examples of operational arrays; more examples are found in
[H.8.2: Fourikis, Chap. 1]. Arrays are used for land, sea, air, and space applications. Here
we present two arrays in some detail. The first is a small flat-plate array, the AN PPS-18
radar, and the second is the large airborne AWACS phased array. The PPS-18 is mounted
with the array face vertical and rotated mechanically to locate moving personnel by
Doppler radar techniques. Azimuth angle is read off the mechanical positioner, and the
range in steps of 25m is determined out to 3 km from radar return delay time. The
antenna consists of 256 bow-tie elements built up from 2	 2 subarrays fed in parallel.
Fig. 8-33 shows the top of the substrate along the other halves of two elements on the
bottom of the substrate. The operating band is 9 to 9:5GHz (fc ¼ 9:25GHz and
lc ¼ 3:24 cm) so the element spacing of 2 cm in both dimensions is d ¼ 0:61lc. The
array area is Ap ¼ 32 U 32 ¼ 1,024 cm2. Using the stated beamwidth in both principal
planes of 6� in (4-57) gives Gapp ¼ 26,000=36 ¼ 28:6 dB, which compares to the
specified gain of 27 dB. From G ¼ εapð4π=l2ÞAp in (9-78), the aperture efficiency is
found to be εap ¼ 41%.

The Airborne Warning and Control System (AWACS) is an impressive example of an
airborne phased array that has been in operation since 1977. The antenna is inside a
rotating radome mounted on top of a U.S. Air Force E-3 (Boeing 707) airplane, shown
in Fig. 8-34a. The array is the waveguide slot array with over 4,000 slots shown in

4 Sometimes feed networks that use digital phase shifters are also referred to as digital beamformers.
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Fig. 8-34b; slot arrays are discussed in the next section. It is a hybrid parallel-series array
of the type in Fig. 8-31d. The waveguides with series-fed slots go out in both horizontal
directions from the center feed. In the vertical direction, the 28 waveguides are fed in
parallel, each with a phase shifter for scanning in elevation. The entire array rotates 10
revolutions per minute for azimuth coverage. Side lobes below �40 dB are needed to
distinguish low-flying aircraft targets from clutter as far as 400 km away.

In the field of antennas, the future is probably most promising for arrays. Array
technology is evolving toward integration of transmit/receive modules and associated
controllers, which, when affordable, enable many applications. Traditionally an antenna
has been treated as a stand-alone device, but antennas are evolving into subsystems. This
is especially true for digital arrays where, in fact, it is hard to even identify where the
antenna is because many of its functions are embedded in software and digital processing.
Arrays offer the opportunity for combining several separate functions in a single antenna
using a multifunctional antenna. For example, the many antennas protruding from a
vehicle will be replaced by one multifunctional array conforming to the surface of the
vehicle. A complete multifunctional antenna performs tasks of communications over
several bands and waveforms, as well as radar, sensing, and countermeasure tasks.
Antennas of the future will be fully distributed digital beamforming arrays that are
wideband covering more than 10 :1 bandwidth and will support multiple polarizations. To
make this possible, the enabling technologies must continue to develop by lowering the
size and cost of components. There is a need for fabricating feed hardware, including
several radiating elements, into a single transceiver-antenna element unit affordably. Also
needed are commercial products of ferroelectric phase shifters and of MEMS switches for
reconfigurable arrays. Photonic feed networks may find wider use also. As arrays develop
in this fashion, reflector antennas and complex analog arrays will give way to digital
beamforming arrays.

Feed
point

Other half of printed bow-ties are on bottom of substrate

Figure 8-33 The upper right quadrant of the AN/PPS-18 Doppler radar flat-plate array. The
full array has 256 bow-tie elements. The other half of the bow-tie elements (shown as dotted
for two) are on the bottom of the substrate.
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8.10 ELEMENTS FOR ARRAYS

Array elements are selected based on the application for the array. An array can be a
fixed-phase array, also called a flat-plate array, or a phased array. Fixed-phase arrays do
not have a means to adjust the phase to the elements and thus have a pattern that is fixed
in space. They are often used as replacements for reflector antennas and offer the
advantage of a thinner, more appealing appearance. Flat-plate arrays are used in many
parts of the world for reception of television programming via satellite or terrestrial
signals. Some military radars use flat-plate arrays that are mechanically steered in the
azimuth plane (i.e., parallel to the ground), such as in Fig. 8-33. Fixed-phase arrays also
permit the use of narrow beam elements of moderate gain such as helix, Yagi-Uda, and
horn antennas. These elements, of course, are not appropriate for use in a flat-plate array
because they are long, making the array a deep structure. Wide element spacing is
possible because grating lobe effects are minimized by the broadside-only operation and
the narrow element pattern. Widely spaced element arrays allow the use of fewer ele-
ments for lower weight and cost. They are often used in mechanical-tracking satellite
Earth terminals. As material costs decrease, flat-plate arrays will find more applications.

(a)  The Boeing 707 showing the radome containing the antenna.
       (Courtesy of The Boeing Company. Used with permission.)

(b)  The waveguide slot phased array antenna.
      (Courtesy of Northrop Grumman Corporation. Used with permission.)

Figure 8-34 The AWACS surveillance system.
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Phased array elements must support the desired angular range of electronic scan. Most
importantly the element pattern needs to be wide enough to avoid significant gain loss
with scan angle; the scan loss effect is illustrated by example in Fig. 8-30. Secondly,
the element spacing should be small enough to avoid grating lobes as guided by the limit
in (8-117). Third, impedance match will vary with scan angle, and the array element
and array geometry should be selected to avoid scan blindness, which was discussed in
Sec. 8.9.1. These considerations generally lead to the guideline that increasing scan angle
requires closer element spacing. This, in turn, requires the elements to be smaller in size
in order to fit into a decreasing cell area for the grid. For wide bandwidth applications, to
be discussed in the next section, we will see that element spacing, and thus element size,
must be reduced as bandwidth is increased. Therefore, there is considerable emphasis on
using a compact element, at least in the dimensions of the array grid (x- and y-directions
for the planar array of Fig. 8-28). In the remaining dimension (z-direction for our planar
array example), the element can be large if the application permits. The depth of an
element may not be important for fixed antennas on land and sea platforms, where size
and weight are less important than for air and space vehicles. The requirement for a low
profile (i.e., shallow depth) will further limit the choices of element type. Before dis-
cussing specific element types, we review general goals for element performance; more
details on phased array specifications and evaluation are found in [H.6: Lo and Lee, Eds.,
Chap. 18].

For scanning in any plane, an element pattern that is rotationally symmetric
(i.e., balanced) is desired. This prompts the concept of an ideal element pattern. The
directivity expression in (8-110) indicates that one cell of a planar array in the xy-plane
has directivity proportional to its area, ACell. Directivity as a function of angle varies as
the projection of the cell area cos θ viewed from angle θ off broadside as reasoned by
Hannan [8]. This is similar to the element pattern for a linear current segment along the
z-axis, which is sin θ from (2-116) and is the projection factor for the length of the
segment viewed from angle θ. The corresponding field pattern for the cell area is cos1=2 θ,
which is called the ideal element pattern as proposed by Wheeler [23]. The average active
element-gain pattern including impedance mismatch created by mutual coupling is given
by (8-120) as Giðθ,φÞ½1� jΓðθ,φÞj2�, which is the gain variation with angle of an element
with all other elements terminated in matched loads. The angular variation of the isolated
element-gain pattern (normalized pattern) is approximated as cos θ, which is the square of
the ideal element pattern to make it a power pattern. The maximum directivity of a cell
in the array in (8-110) extends to gain as a function of angle by including the
angular variation and impedance mismatch just mentioned, giving the ideal element-gain
pattern:

GEG, idealðθ,φÞ ¼ 4π
l2

ACell 1� jΓðθ,φÞj2
h i

cos θ ð8-121Þ

If the array is infinitely large, the element patterns will be identical and often well
approximated by (8-121). In finite arrays, of course, element patterns vary with location
in the array. But for sufficiently large finite arrays, the full array gain is often approxi-
mated by multiplying by the number of elements, as discussed in Sec. 8.8. An approx-
imation for the gain of the full array as a function of scan angle with all elements excited
adding in-phase in direction ðθ,φÞ is to assume that the equal power supplied to all N
elements adds, giving GArrayðθ,φÞ ¼ N GEG, idealðθ,φÞ. This does not include array
pattern effects, just gain variation with scan angle. It follows from the discussion in
Sec. 8.8 for directivity approximations and is discussed further in [H.6: Hansen, Vol. II,
p. 303].

A perfect element would be impedance matched for all angles ð1� jΓðθ,φÞj2 ¼ 1Þ. The
peak gain at θ ¼ 0 in (8-121) of a planar array of half-spaced elements ðd ¼ dx ¼ dy ¼
l=2Þ would be GMaxEle ¼ 4πðl=2Þ2=l2 ¼ π ¼ 5dB. Thus, a perfect element has a
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unidirectional cos1=2 θ pattern and 5 dB gain.5 As explained in Sec. 8.9.1, a wide beam
pattern such as cos1=2 θ is appropriate for wide-scanning phased arrays. Scanning such a
pattern 60� off broadside gives a gain loss of (cos1=2 45� ¼ 0:841) of only 1:5 dB. When
designing large arrays that are capable of wide scan angles off broadside, it is recom-
mended to select elements with wide beams and to perform tests with a small array before
proceeding to full-scale hardware. [H.8.2: Milligan, 2nd ed., p. 128] In general, the desired
element pattern depends on the array application. For fixed-beam arrays, a narrow-beam
element pattern together with wider element spacing will lead to fewer elements in the
array and lower cost.

Table 8-2 provides a list of commonly used array elements, along with references to
places in the book where example realizations of the element are found. All of the major
element categories have or will be discussed. The same is true for the subcategories,
except for a few. Also noted in the table for each element are the features that are
advantages or limitations. All the elements are suitable for fixed-phase arrays, but some
have limited use in phased arrays, as noted in the table. In the remainder of this section,
we comment on the listed elements. Elements for unidirectional beam arrays rather than
bidirectional beams are assumed.

Dipoles and their variations to improve bandwidth are very popular array elements
because of their wide beamwidth and easily matched input impedance, as well as their
simple structure. They are used both for fixed-phase, broadside beam operation and for
phased arrays capable of wide-angle scan off broadside. Dipoles, including drooping
dipoles, are usually backed by a ground plane to produce a unidirectional pattern.
Properties of dipoles in free space are given in Table 3-2 and in Sec. 6.1, where it was
noted that about 16% bandwidth can be obtained with a wire dipole. A half-wave dipole
backed by a ground plane a quarter-wavelength away produces a unidirectional as shown
in Fig. 3-20. An integrated balun and mechanical support attached to the ground plane
are shown in Fig. 6-40b. A printed form of the dipole with balun is shown in Fig. 8-35a.

Table 8-2 Elements for Array Antennas

Element Examples Advantages; Disadvantages

Dipole-based elements, backed by a ground plane
Dipole Fig. 3-20 Wide beam, simple structure;

narrow bandFig. 8-35a
Bow-tie Fig. 7-32 Wide beam, simple structure, broadband

Microstrip elements Sec. 11.2 Wide beam, low-profile; narrow
band in basic form

Slot elements Fig. 8-35b High-power applications;
many are narrow bandFig. 8-34b

Aperture elements
Open-ended
waveguide

Fig. 9-9 Compact, moderate bandwidth; bulky structure

Horn antenna Fig. 9-11 Moderate bandwidth, fewer array elements;
limited scan due to wide spacing

Tapered slot antennas Fig. 8-35c
and d

Wide beam, broadband; not low-profile

Low-profile, broadband
elements

Fig. 8-38
Sec. 8-11

Broadband, low-profile

5Note that the directivity of the cos1=2 θ pattern from integration gives 6 dB because the classic formula of
(8-121) is approximate.
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The dipole is etched on to a printed circuit board together with a capacitively coupled
loop, microstrip feed line, and is capable of 40% bandwidth. [H.8.2: Mailloux, 2nd ed.,
p. 236] Often the printed dipole is an integral part of a transceiver module. By lowering
the ends of the dipole toward the ground plane, a drooping dipole is formed that can have
48% bandwidth. [H.8.2: Haupt, p. 271] Bandwidth can be increased to as high as 68%
[24] by expanding the printed dipole into a bow-tie antenna; see Fig. 7-32. A bow-tie
antenna array complete with feed network can be fabricated onto a single substrate as
illustrated in Fig. 8-33. Monopole elements based on counterpart dipoles are used for
fixed-phase endfire arrays and for phased arrays that scan off endfire.

Perhaps the best choice for a low-profile element is the microstrip antenna; see
Sec. 11.2. It is ideally suited for printed circuit construction and has a fractional wave-
length thickness. Its main disadvantage is that in its basic form, it has a bandwidth of only
a few percent. Microstrip arrays are discussed in Sec. 11.3.

Another low-profile element is a slot antenna, which is a narrow slot in a ground
plane as shown in Fig. 16-23. The slot is a complementary structure to the strip dipole of
Fig. 6-8, where the air is replaced by metal and the metal is replaced by air to form the
slot antenna. This complementary feature makes the strip dipole and slot antenna elec-
tromagnetic duals (see Sec. 3.4.1), so that the radiated electric and magnetic fields behave
the same with their roles reversed. That is, any plane containing the long axis is an
E-plane for the strip dipole but is the H-plane for the slot antenna. So, in Fig. 16-23, the
xz-plane is the E-plane, whereas if the slot were replaced by metal forming a strip dipole,
the yz-plane would be an E-plane. The patterns of a resonant half-wavelength slot in
a finite ground plane are shown in Fig. 16-26. Practical single slot antennas are backed by
a cavity to give a unidirectional pattern. Slot arrays are usually constructed with rect-
angular waveguides forming a waveguide slot array antenna as shown in Fig. 8-35b,
often fabricated by milling slots in the waveguide. The array is series fed, giving a
compact feed network. The slots are always designed to be resonant slots, but the array
itself can be a traveling-wave (or non-resonant) or standing-wave (or resonant) array,
which are terminated in a dummy load or a short, respectively. Traveling-wave arrays can
be frequency scanned, whereas standing-wave arrays are used for broadside beams. Slots

(a) Printed dipole antenna.
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(b) Waveguide slot elements.

(c) Linearly tapered slot antenna. (d) Exponentially tapered slot antenna.
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Figure 8-35 Selected elements for array antennas.

c08 26 March 2012; 18:43:32

330 Chapter 8 Array Antennas



are placed in the waveguide walls to interrupt the currents flowing in the walls, creating
an electric potential across the narrow dimension of the slot causing it to radiate. Thus,
the narrow wall of the slot determines the polarization; this was noted previously by it
being the E-plane. The location, orientation, and length of the slots all enter into the
design of a slot array, which can be complicated; see [H.6:Ant. Eng.Hdbk., 4th ed., Chap. 9]
for design procedures. The slots can be longitudinal (i.e., parallel to the waveguide axis
as shown in A of Fig. 8-35b) in the waveguide broadwall, inclined (rotated) in the
broadwall (B of Fig. 8-35b), or inclined in the narrow wall (C of Fig. 8-35b)—also called
an edge slot. The amplitude of excitation of each slot in the array is determined by the
offset from the center axis for longitudinal slots and the amount of angular rotation for the
inclined slots. Excitation phase is determined by which side of the center axis the lon-
gitudinal slots are placed and the direction of rotation for inclined slots, as well as the slot
length. Waveguide slot arrays have good efficiency and are an excellent choice for high-
power applications, but usually are narrow band (less that 5%). An example is the AWACS
array of Fig. 8-35b, which is a traveling-wave array with 160 narrow wall slots in the
longest row.

Aperture elements such as horn antennas (see Sec. 9.4) are used only for limited scan
arrays with large element spacings that can accommodate the large aperture size of a
horn. An exception is an array of open-ended waveguides (see Sec. 9.2.2), which have
fractional wavelength dimensions. The open-ended waveguide radiator of Example 9-3 is
0:7l by 0:3l. Being waveguide based, the element has moderate bandwidth (40% or
more), but the physical structure can be large and heavy. Many types of directive elements
can be used in limited scan arrays such as Yagi-Uda, helix, and others.

The tapered slot antenna (TSA),6 also sometimes referred to as a notch antenna
(or flared notch antenna), produces a useful endfire pattern over a bandwidth of 10 : 1 or
more. It has moderate gain (7 to 10 dB) and balanced E- and H-plane beamwidths, making
it a good array element candidate. [H.8.4: Lee and Chen, Chap. 9] There are several forms
the TSA can have, but the linearly tapered slot antenna (LTSA) of Fig. 8-35c and the
exponentially tapered slot antenna (ETSA) of Fig. 8-35d are two popular ones. They are
constructed by etching a slot into a metal film, usually on a low-εr substrate. As a recent
antenna innovation, the full understanding of its operation is incomplete, but basic prin-
ciples are clear as we now discuss. The length L varies from about more than one wave-
length up to many wavelengths over the operating band. The low frequency limit is
determined by the slot width,W , which must be greater than lL=2. The feed region dictates
the high-frequency limit. The TSA’s traveling-wave behavior is responsible for its broad
bandwidth. For operation near mid-band, the wave is bound in a transmission mode in the
small-gap slot region near the feed, and when the wave reaches a region where the slot has
widened to around a half-wavelength the power is converted to a radiation mode. TSAs are
often fed using a microstrip-to-slotline transition at the slot line input. The LTSA is similar
in geometry to the two-dimensional TEM (transverse electromagnetic) horn that is a planar
version of a waveguide horn like the one in Fig. 9-11b. [H.8.2: Hansen, 2nd ed., p. 149]
However, TSAs function more like a frequency independent antenna instead of an aperture
antenna.

The LTSA has sides that expand linearly. With a flare angle γ in the range of 15 to 20�,
it has nearly equal E- and H-plane beamwidths around 30�, even though the antenna is
larger in the E-plane (the plane of the paper is the E-plane in Fig. 8-35c and d). [25] The
ETSA has sides conforming to an exponentially flaring curve and is also called a Vivaldi
antenna, a name coined in 1979 [26].

When TSAs are used as elements in an array there are unexpected benefits associated
with the mutual coupling, which is explored further in the next section. The element
performs best with a smaller size than when used as a single antenna. [27] The length can

6 The term slot in this context does not imply there is radiation through a slot as in Fig. 16-23.
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be reduced to under a wavelength and the width to under a half wavelength. This result
allows closely spaced elements, which makes wide bandwidth possible. An experimental
study of a dual-linearly polarized array (formed with orthogonal TSA element pairs) in a
9	 8 grid demonstrated performance over a 5.9 : 1 bandwidth. The element spacing (in
both planes of the planar array) varied from about 0:1 lL to 0:6lU over the band. [28]
Simulations with the array showed that scanning out to 45� in all scan planes is
achievable. [29] The high-frequency performance of TSA arrays is limited by narrow-
band resonances introduced by the mutual coupling, but they can be reduced by adding
plated-through vias. [28]

Additional elements are introduced in the next section that are low-profile as well as
being suitable for broadband arrays.

8.11 WIDEBAND PHASED ARRAYS

In Sec. 7.1 we defined a broadband antenna as one with a bandwidth of about 2:1 or
greater. Broadband behavior is more difficult to achieve with an array than with a single
element. In this section, we address arrays that operate over a significant bandwidth,
typically around 2 : 1 or more, and refer to such an array as a wideband array. The
distinction between the terms broadband and wideband are minimal, but it is common to
use wideband with arrays with large bandwidth, so we adopt that convention. In this
section, we first discuss fundamental principles for wideband array operation and then
present types of wideband arrays that are of low-profile geometry. Multiband antennas
that have multiple narrow operating bands spanning a wide frequency range are not
included in this section, but instead we address arrays that operate over a continuous
wide bandwidth. In some cases the array needs to support instantaneous bandwidth (see
Sec. 7.1) over the band, such as with an UWB application discussed in Sec. 7.10.

A conventional wideband array with a periodic grid requires elements that span the
same wide bandwidth. As discussed in Sec. 8.9.1, the element spacing d is limited by
the appearance of grating lobes and other effects such as blind spots with (8-117) being
the guideline. The spacing limit must be satisfied over the operating band and will
give the largest physical distance value at the lowest operating frequency, fL. Of course,
the maximum physical extent of the element, D, in a row or column of the array must not
exceed the spacing, so D , d. As an example, for a 50� scan angle off broadside
ðΔθ ¼ 50�, θo ¼ 40�Þ, (8-117) gives d , 0:57l and then the maximum extent of the
element is D ¼ 0:57l. It turns out that this physical size limitation is usually more
difficult to satisfy than finding an element with sufficient bandwidth. The array band-
width limitation can be quantified using the graph in Fig. 8-36 which compares popular
broadband antennas used as elements in phased arrays. [30] The maximum lateral extent
(diameter) of the Archimedean and equiangular spirals is about D ¼ 0:5lL and for the
sinuous antenna is about D ¼ 0:4lL, based on principles in Sec. 7.7. The Foursquare
antenna of Fig. 8-38, to be discussed, has a maximum lateral extent of D ¼ 0:35 lL. The
minimum element spacing is obtained by equating to the element extent, d ¼ D, which
corresponds to zero separation between elements edges. As frequency is increased from
the low end of the operating band where l ¼ lL, the spacing normalized by wavelength
increases as given by d=l ¼ ðd=lLÞðf=fLÞ, which is used to plot the straight lines in Fig.
8-36. For example, at f=fL ¼ 2 the spiral antennas have a minimum spacing of
d=l ¼ ðd=lLÞðf=fLÞ ¼ 0:5 U 2 ¼ 1. The maximum scan angle off broadsideΔθ found from
the grating lobe appearance limit of (8-117) is shown on the right ordinate of Fig. 8-36. For
the preceding scan limit example, it is seen thatΔθ ¼ 50� on the right ordinate corresponds
to d=l ¼ 0:57 on the left ordinate. The plot is used to find candidate elements for an array
of a given bandwidth. We illustrate for an array with a 50% bandwidth, which is a ratio
bandwidth of Br ¼ fU=fL ¼ 1:67. Drawing a vertical line from 1:67 on the ordinate
intersects the three curves at 0:58, 0:67, and 0:84 for the element types. The corresponding
maximum scan angles read from the right ordinate are 46�, 30�, and 11�. That is, the
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Foursquare array can scan to 46� at the upper frequency while the spiral arrays can only
scan to 11� without a grating lobe appearing. Thus, we see that as the bandwidth
requirement is increased for an array, the more compact the element must be in addition to
covering the array bandwidth. For most applications, an extremely broadband element is
unnecessary. Having a compact element is usually the most important factor.

For broadside operation there is no bandwidth limitation due to array size or feed
network architecture. Of course, in all wideband arrays the element and feed network
components (phase shifters, power dividers, etc.) must be wideband. However, when a
phased array is scanned off broadside the main beam will steer to the intended scan angle
of θo only at the center frequency fc. This effect is illustrated for simplicity with a linear
array along the z-axis. The phase shifters are selected to produce an array factor peak at
angle θo at fc, and then the phase terms in (8-5) are zero, or 0 ¼ βcd cos θo þ α. When
frequency is changed to f , the peak shifts to angle θ, or 0 ¼ βd cos θþ α. Solving these
two equations gives

θ ¼ cos�1 fc

f
cos θo

� �
ð8-122Þ

This equation gives the angle for the peak of the beam of a linear array along the z-axis at
frequency f with the phase shifters set to give a beam peak at angle θo at frequency fc. For
f ¼ fc, (8-122) gives θ ¼ θo as expected. As frequency deviates more from the center
frequency, the beam peak direction correspondingly deviates (“squints”) more from the
desired pointing direction θo. The beam peak angle is closer to (farther from) broadside
compared to the center frequency direction for frequencies above (below) the center
frequency. Frequency dependent scan can be avoided by using time delay, as discussed in
Sec. 8.9.2. See [H.8.2: Mallioux, 2nd ed., p. 31] for more details on bandwidth effects on
phased arrays.
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Recent innovations in arrays have led to array architectures that avoid the compact
element size requirement of conventional uniform grid arrays, including reconfigurable
arrays, aperiodic-grid arrays, variable element size arrays, and tightly coupled arrays. A
reconfigurable array is altered dynamically to change its frequency band and, thus, does
not fit the topic of this section. Reconfigurable arrays, discussed in Sec. 12.5, are usually
implemented by activating switches internal to the elements to change their frequency
range, often with MEMS switches. An aperiodic-grid array (i.e., an unequally spaced
array) avoids the appearance of full grating lobes of a conventional periodic grid array
because grating lobe formation requires a periodic geometry. Aperiodic arrays are more
difficult to design because the mutual coupling environment is not repeatable across the
array, leading to varying element impedances and patterns.

A special type of aperiodic-grid array employing different size elements is called an
interlaced-element array, with one form being the wideband array with variable element
sizes (WAVES array). [31] An example of a basic unit used to make large WAVES arrays
shown in Fig. 8-37a consists of eight elements with two sizes of spiral antennas to cover
two octaves (4 : 1) of bandwidth. The small spirals have diameter DS and the large spirals
have diameter DL which are twice as large as the small spirals (DL ¼ 2DS). The large
elements operate over the full band of two octaves of f1 to f2ð¼ 2f1Þ and f2 to f4ð¼ 2f2Þ.
The small elements are operational only over the upper octave from f2 to f4. The patterns of
the large spiral are shown in Fig. 7-29. At the lowest operating frequency f1, the element
spacings in the principal directions are a half-wavelength, so S ¼ Sx ¼ Sy ¼ l1=2. At the
top of the first octave f2 ¼ 2f1 the electrical spacing is S ¼ l2, which will lead to grating
lobes. At f2 the small elements become operational, lowering the spacing between the
active elements to l2=2. Increasing frequency further to f4 ¼ 2f2, the spacing once again
becomes one wavelength, l4. The patterns for the array were computed using simple array
theory and were measured for an experimental model operating from 2:5 to 8GHz. [31]
Representative patterns are shown in Fig. 8-37b and c for the low end of the band at
2:5GHz with the four large elements active where the spacing is a half wavelength, and for
the top end of the band at 10GHz with all eight elements active where the spacing is one
wavelength. Note that the pattern for one-wavelength spacing is acceptable because the
element pattern of the spiral (see Fig. 7-29) diminishes the grating lobe effect, but smaller
spacings would be needed in low-side lobe or wide-angle scanning arrays. The WAVES
concept has been extended to at least three octaves of bandwidth (8 : 1) by distorting the
large elements to make room for the smaller elements [32] or by using multiple layers of
radiating elements, one layer for each octave. [33]

A recent innovation in wideband phased arrays is the tightly coupled array. While
conventional array design seeks to reduce mutual coupling, it turns out that there are
advantages to tightly packed elements that have high coupling. The unexpected benefit is
that the bandwidth of an embedded element antenna is larger than when isolated. As with
any array, the factor limiting bandwidth is the ground plane. But the second surprise
benefit for tightly coupled arrays is that the elements can be placed close to the ground
plane, often under l=10 at the lowest operating frequency of the array. A related concept
is that of a connected array, where the elements are conductively connected; examples are
connected dipoles joined at the ends [34] and tapered slot elements joined on the sides
[35]. The types of tightly coupled arrays are the Foursquare array, the current sheet array,
the fragmented array, and the long slot array.

Perhaps the first successful tightly coupled array was developed at Virginia Tech in the
1990s. [36] Related geometries for isolated elements have evolved, such as the Fourpoint
antenna shown in Fig. 12-7a which offers dual polarization and balanced patterns over
2:7 :1 bandwidth (see Fig. 12-7b), covering common wireless bands in one compact
antenna, and is an excellent choice for base stations. [37] The Foursquare element has
four squares excited with a balanced feed for each opposing pair of squares, giving
simultaneous dual linear polarizations. A 2	 2 illustrative array is shown in Fig. 8-38.
[38] The inactive squares can be thought of as sleeves for the active squares, thus
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widening bandwidth of an element as explained in Sec. 7.5. In an array, the neighboring
elements support current associated with radiation from an element through coupling
across the narrow gap between elements. [38] The original Foursquare arrays had a
bandwidth of about 2 :1. [38] The elements were about a quarter wavelength on each side
and a tenth wavelength above the ground plane at the low end of the band. Subsequent
research has shown 3:5 :1 bandwidth is possible. [39]

The current sheet array (CSA), whose name comes from Wheeler’s current sheet [23],
is an array of electrically small collinear dipoles in each principal plane and backed by a
ground plane less than a tenth of a wavelength away at the low end of the band. The

2.5 GHz

Geometry for an eight-element, two-octave
concept demonstration array.

(b) Pattern at 2.5 GHz with four large elements active.

(c) Pattern at 10 GHz with eight large elements active.
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Figure 8-37 An eight-
element example wideband
array with variable element
sizes (WAVES array). (From
[31] ª 1990. Reprinted with
permission from IET.)
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largest element spacing is a half-wavelength at the high end of the band, just like the
Foursquare array. The element ends are joined with capacitors to increase coupling.
Experiments at Harris Corp. demonstrated a 9 :1 bandwidth. [40] Additional details are
available in [H.8.2: Munk, Chap. 6] and [H.6: Balanis, Ed., Sec. 12.2].

The fragmented array is designed using a genetic algorithm routine to form pixilated
features. Bandwidths close to 10 :1 are possible with simple ground planes. [H.6: Balanis,
Ed., Sec. 12.4] The long slot array is a low-profile array of about lL=8 thickness and 4 :1
bandwidth with a ground plane. [41] Array bandwidth is usually limited by the presence of a
ground plane. Ground plane options include good conductors (i.e., metals), absorbing
materials, or artificial materials, or a combination of these. For conducting ground planes,
the conventional requirement of quarter-wavelength spacing away from the radiating ele-
ments limits the bandwidth to about 25%with conventional arrays.Wehave seen that tightly
coupled arrays with conducting ground planes are capable of much wider bandwidths, a
decade or so. Even greater bandwidths are possible by including absorbingmaterials such as
resistive sheets or ferrite materials, but the associated loss reduces the gain. Artificial
materials are artificial in the sense that they are not naturally occurring but are engineered
using common materials in textured structures to create special electromagnetic properties.
Such materials have origins in frequency selective surfaces that are constructed to pass
certain frequency bands and reflect others for use in reflector antenna and radome appli-
cations. An example is an artificial magnetic conductor (AMC), which is the dual of a PEC.
An electric antenna (such as a dipole) can be spaced arbitrarily close to aAMCground plane.
Similarly, a magnetic antenna (such as a loop) can be spaced arbitrarily close to a PEC
ground plane. Close ground plane spacing enables antennas that are physicallymuch thinner
at VHF frequencies (and below) than conventional quarter-wave ground plane spaced
antennas. See [H.6:Ant. Eng. Hdbk., 4th ed., Chap. 34] and [H.6: Balanis, Ed., Chap. 15] for
more details.

In closing, we mention that there are wideband arrays that cover multiple frequency
bands by using different types of elements for each band. In this shared-aperture array
approach, the elements of one frequency band are interleaved with elements of different
frequency bands. Such an array is often used to support multiple functions (communica-
tions, radar, sensing, position location, etc.) and thus is called multifunctional wideband
array.
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PROBLEMS

8.2-1 Consider an array of two elements spaced one wavelength apart with currents that are
equal in amplitude and 180� out-of-phase.
(a) Use the inspection method to rough sketch the polar plot of the array factor.
(b) Derive the exact array factor as a function of θ if the elements are on the z-axis.
(c) For what angles of θ is this array factor maximum?
(d) What is the expression for the normalized array factor jf ðθÞj?
(e) Show that (8-9) reduces to your answer in (d).

8.2-2 Use the techniques of Fig. 8-6 to obtain a polar plot of the array factor of the array given
in Prob. 8.2-1.
8.2-3 Use the techniques of Fig. 8-6 to obtain a polar plot of the array factor of a two-
element, one wavelength spaced array with equal amplitude and equal phase currents
(Example 8-1).
8.2-4 Usually, the interelement spacing of an array is about one-half wavelength. Spacings
much greater than this produce major lobes in undesired directions. To illustrate this point, use
the techniques of Fig. 8-6 to sketch the array factor for a two-element array with equal
amplitude, in-phase elements in polar form for the following spacings: (a) d ¼ 3l=4 and
(b) d ¼ 2l. Examples 3-2 and 8-1 and this problem show the effects of spacing on an array of
fixed excitation.
8.2-5 (a) Using the array factor for a two-element broadside array ðα ¼ 0Þ with equal current
amplitude point source elements, show that the directivity expression is

D ¼ 2

1þ ðsinβdÞ=βd
Hint: Change from variable θ to ψ ¼ βd cos θ.
(b) Plot this expression as a function of d from zero to two wavelengths.
8.3-1 Prove that the array factor magnitude jf ðψÞj for a uniformly excited, equally spaced
linear array is symmetric about ψ ¼ π.
8.3-2 Show that the array factor expressions (8-9) and (8-24) for a two-element uniformly
excited array are identical.
8.3-3 Drive (8-33)
8.3-4 The expression for the half-power beamwidth of the array factor for a broadside, uni-
formly excited, equally spaced, linear array can be approximated as

HP � k
l
Nd

for Nd � l. Determine k for N ¼ 10 and 20, and compare to (8-34)
8.3-5 In this problem, the effect of phasings and spacings on a simple array are illustrated.
Consider an equally spaced five-element array with uniform current amplitudes. Sketch the
array factors for:
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(a) d ¼ l=2, broadside case (θo ¼ 90�)
(b) d ¼ l, broadside case
(c) d ¼ 2l, broadside case
(d) d ¼ l=2, θo ¼ 45�

(e) d ¼ l=2, θo ¼ 0�, endfire case

The five plots can be obtained from one universal pattern plot as discussed in Sec. 8.3. For the last
two cases, determine the interelement phase shift α required to steer the main beam as specified.
8.3-6 Repeat Prob. 8.3-5 using a computer code.
8.3-7 Design a five-element uniformly excited, equally spaced linear array for:

(a) Main beam maximum at broadside
(b) Main beam maximum at 45� from broadside (θo ¼ 45�)

In each case, select the element spacing and linear phasing such that the beamwidth is as small
as possible and also so that no part of a grating lobe appears in the visible region. Sketch the
polar plots of the patterns.
8.3-8 Design and plot the array factor for an ordinary endfire, five-element, uniformly excited
linear array with spacings d ¼ 0:35l. Use θo ¼ 180� and find α.
8.3-9 Design a linear array of four isotropic elements for a single ordinary endfire beam using
the maximum spacing. Plot the polar pattern.
8.3-10 Design a linear array of five isotropic elements for Hansen–Woodyard increased
directivity with d ¼ 0:35l. Plot the polar pattern. (Note the differences in the results from
Example 8-4.)
8.3-11 Design a linear array of 10 isotropic elements for Hansen–Woodyard increased
directivity with d ¼ 0:4l. Plot the polar pattern.
8.3-12 Show that the array factor for a uniformly excited, equally spaced linear array
approaches the pattern factor of a uniform line source (i.e., neglect the element factor) in the
limit of small array element spacings.
8.3-13 Derive the pattern normalization factor used in (8-39). Consider both endfire directions
(i.e., θo ¼ 0 and 180�).
8.4-1 Two collinear half-wave dipoles are spaced a half-wavelength apart (but not quite
touching) and have the same amplitude and phase terminal currents. Calculate and plot the
element pattern, array factor, and array pattern.
8.4-2 Repeat Prob. 8.4-1 for one-wavelength spacing.
8.4-3 Two parallel half-wave dipoles are spaced a one wavelength apart and have the same
amplitude and phase terminal currents. Calculate and plot the full array pattern in the two
principal planes.
8.4-4 A linear array of three quarter-wavelength-long, vertical monopoles is operated against
an infinite, perfectly conducting ground plane. Let the element feeds be along the z-axis, the
ground plane in the yz-plane, and the monopoles in the x-direction.

(a) Design the array as a Hansen–Woodyard increased directivity endfire array; that is,
determine the element spacings and phasings (choose d ¼ 0:3l).

(b) Use the universal array factor plot for three uniformly excited elements to obtain a polar
plot of the array factor for this problem.

(c) Write the expression for the complete pattern.
(d) Plot the complete far-field patterns in the xz-plane and yz-plane.

8.4-5 Three collinear half-wave dipoles are spaced 0:9l apart and have the same amplitude
and phase terminal currents. (a) Use the graphical techniques of Sec. 8.2 to sketch array factor.
Then sketch the element and array patterns. (b) Use the computer to calculate and plot the
array pattern.
8.4-6 An array of four small loop antennas oriented with the loops in the yz-plane are spaced
0:4l apart along the z-axis, have uniform amplitudes, and are phased for ordinary endfire. Plot
the full array pattern in the two principal planes.
8.4-7 Suppose a truck uses a Citizens Band radio to communicate at 27MHz. The antenna
system is two quarter-wave monopoles parallel to the x-axis (assumed to operate above a
perfect ground plane) mounted on mirrors 2:78m apart along the z-axis and fed with equal
amplitude and phase. Use simple array theory to obtain sketches of the array patterns in the
three principal planes.
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8.4-8 Design problem. Design a broadside linear array of four parallel half-wave dipoles for as
narrow a beamwidth as possible and with no level outside the main beam above �8dB relative
to the main beam peak. The excitations are uniform. (a) Determine the required element
spacing. (b) Sketch the polar pattern in the H-plane.
8.4-9 Plot the principal plane full array patterns for the endfire array of Prob. 8.3-8 with
parallel half-wave dipoles elements. Find the half-power beamwidths.
8.5-1 Calculate the directivities in decibels for the following broadside arrays of point
sources:

(a) N ¼ 2, d ¼ l=2:
(b) N ¼ 10, d ¼ l=2:
(c) N ¼ 15, d ¼ l:

8.5-2 Evaluate (8-67) for d ¼ 3l=8 and N ¼ 10 for:
(a) Broadside, and compare the result to that of (8-69),
(b) Ordinary endfire, and compare the result to that of (8-70).

8.5-3 Evaluate (8-67) and plot D versus d=l for N ¼ 10 and ordinary endfire operation. Your
results should look like the curve in Fig. 8-17.
8.5-4 The approximate directivity formula of (8-69) for long, broadside linear arrays of iso-
tropic elements can be checked in the following two ways using HP � 0:886 l=L from (8-34):
(a) Use D ¼ 4π=ΩA to derive an equation of the form D ¼ cL=l by approximating ΩA as

2πHP; find c.
(b) Begin with (8-74) to derive an equation of the form D ¼ cL=l; find c.

8.5-5 Develop a computer code to evaluate directivity using (8-67).
(a) Plot the D versus d=l curve for a broadside array with eight isotropic elements; compare

to the curve in Fig. 8-16.
(b) Plot the D versus d=l curve for a broadside array of eight collinear short dipole

elements.
8.5-6 Show that D ¼ N for an ordinary endfire linear array of uniformly excited isotropic
elements when d ¼ l=4.
8.5-7 Evaluate the directivity of a broadside array of 12 collinear short dipole elements spaced
0:7l apart in the following ways:

(a) Use (8-67).
(b) Use (8-69).

Determine the value of HP and use in the following to calculate directivity:
(c) Eq. (8-73).
(d) Eq. (8-74).

8.5-8 Calculate the directivity for the array of Example 8-5. How much more directivity is
there compared to that of a single short dipole, in dB?
8.5-9 Calculate and plot the directivity of an array of 10 collinear short dipoles for spacings of
0:1 to 1:0 l. Also, plot the curves for the approximate formulas (8-69) and (8-75).
8.5-10 A five-element array of five parallel short dipoles spaced 0:3 l apart is designed for
Hansen–Woodyard endfire operation. Evaluate the directivity and compare to the directivities
for the same array with isotropic elements and a similar ordinary endfire array of isotropic
elements.
8.5-11 Design problem. Base station communication antennas are often constructed using a
collinear array of half-wave dipoles oriented vertically to produce an omnidirectional pattern
in the horizontal plane. The objective in this problem is to maximize gain by selecting the
proper element spacing. Assuming uniform amplitude and phase excitation, design a maxi-
mum-directivity four-element array for the middle of the cellular telephone band (824 to
894 MHz). Show solution details. Give the values of spacing d in wavelengths and directivity
D in decibels at midband and at the band edges. Plot the vertical-plane pattern in polar-linear
form. Sketch the array, showing its physical length along, with a feed network.
8.5-12 The approximate array directivity formula D � DeDi of (8-75) is attractive because of
its simplicity, but can yield inaccurate results in many cases as this problem shows. Evaluate
the directivity of the following arrays of short dipoles using the exact formula of (8-72).
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(a) N¼ 4, broadside, collinear short dipoles, d¼ l/2.
(b) N¼ 4, endfire, parallel short dipoles, d¼ l/2.
(c) N¼ 3, broadside, collinear short dipoles, d¼ l/2.
(d) N¼ 3, endfire, parallel short dipoles, d¼ l/2.

Then compare results to (8-75) for cases to which (8-75) is applicable.
8.5-13 Array directivity computation.
(a) Write a computer program to evaluate the directivity of an array by direct integration.

Validate the code by comparing to values obtained using (8-72) for an array of four
collinear dipoles that are spaced a half-wavelength apart.

(b) Use the direct-integration directivity code to evaluate the directivity of arrays of col-
linear half-wave dipoles of 2, 3 and 4 elements spaced a half wavelength apart and
uniformly excited. Compare to directivity of the same arrays with isotropic elements.

8.6-1 Calculate and plot the polar pattern for the five-element array with the triangular dis-
tribution in Fig. 8-21b. Find the half-power beamwidth in degrees and side lobe level in dB.
8.6-2 Calculate and plot the polar pattern for a five-element array with a triangular distribution
similar to Fig. 8-21b, but with collinear half-wave dipole elements. Compare values of half-
power beamwidth in degrees, side lobe level in dB, and directivity to the isotropic element case.
8.6-3 Prove that (8-83) follows from (8-82).
8.6-4 Prove that (8-85) follows from (8-83).
8.6-5 Verify the directivity values given in Figs. 8-20c through 8-20e, and in Fig. 8-22.
8.6-6 Binomial array. For a linear array of N isotropic elements spaced a half-wavelength
apart and that have binomial current weightings:
(a) Derive the normalized array factor expression in terms of θ.
(b) Derive an expression for the directivity. The result will only be a function of N.
(c) Evaluate the directivity expression derived in (b) for five elements.

8.7-1 Two antennas have the following self- and mutual impedances:

Z11 ¼ 70+0�, Z22 ¼ 100+45�, Z12 ¼ 60+�10�

(a) Find the input impedance to antenna 1, if antenna 2 is short-circuited.
(b) Find the voltage induced at the open-circuited terminals of antenna 2 when the voltage

applied to antenna 1 is 1+0� V.
8.7-2 Derive (8-94), making use of Fig. 8-24.
8.7-3 For the parallel dipoles of Fig. 8-25 and d ¼ 0:6 l, calculate the coupling level between
the dipoles in dB.
8.7-4 Mutual impedance calculation. (a) Mutual impedance is calculated using simulation
data in (8-87) for the case of antenna 1 excited and antenna 2 open circuited to find
Z12 ¼ V2=I1. Evaluate Z12 for parallel half-wave dipoles of the type in Fig. 8-25 and spaced
0:2l apart. (b) Mutual impedance can also be calculated using the following formula:

Z12 ¼ Z1,in � Z1,out

2

where Z1,in and Z1,out are the input impedances for antenna 1 for the two cases of two sources on
the two dipoles that are in phase and then out of phase. Derive this formula. (c) Repeat themutual
impedance calculation in (a) but using the formula in (b) and appropriate simulations.
8.8-1 A planar array of four isotropic elements is arranged in the xy-plane with the following
positions and currents: ðl=4,l=4Þ,þ1; ð�l=4, l=4Þ,þ1, ð�l=4, � l=4Þ,�1; ðl=4, � l=4Þ,�1 .
Use simple array modeling techniques to obtain sketches of the xz- and yz-plane patterns.
8.8-2 Afour-element linear arrayofparallel, in-phase, half-wavedipoles is locatedl=4 in front of a
largeplanar reflector in the xy-plane.Assume the reflector tobeaperfect groundplane. If thedipoles
are parallel to the x-axis and spaced l=2 apart, plot the complete pattern in the xy- and yz planes.
8.8-3 A two-element array of vertical short dipoles is operated a quarter-wavelength above a
perfect ground plane as shown. The elements are a half-wavelength apart and are excited with
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equal amplitude and opposite phase. Obtain polar plots for the radiation pattern of this radi-
ating system in the xz- and yz-planes.
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8.8-4 A two-dimensional, uniformly excited array of isotropic elements as shown below is to
be analyzed. Use the principle of pattern multiplication with a pair of elements oriented
vertically as an “array” and the four elements in a row as an “element.” Plot the patterns in the
xz-, yz- and xy-planes.

2

x

e j(π/2)e j(π/2)e j(π/2)

e j0e j0e j0 e j0

e j(π/2)
θ

λ

z

2
λ

2
λ

4
λ

8.8-5 A planar array in the xy-plane has four isotropic elements in x- and y-directions with
0:5l-spacings. Plot the radiation pattern (linear, polar plot) in the 45� plane. Then use the
projection technique to find the equivalent linear array and then obtain the 45�-plane pattern.
Compare the patterns.
8.8-6 Square and triangular grid planar arrays. This problem compares square-grid and
triangular-grid planar arrays in the xy-plane of the same area. The square-grid array has 25 iso-
tropic elements consisting of five rows of five elements each with 0:5l-spacings. The triangular
grid has 16 isotropic elements consisting of four rows of four elements each with 0:625 l
between all adjacent elements. Sketch the array geometries. Plot the radiation pattern (linear,
polar plot) in the 45� plane for both arrays and comment on the results.
8.8-7 Verify the directivity values in Example 8-8 using numerical pattern integration for
d ¼ 0:5l.
8.8-8 Project. Research the topic and prepare a report on the antenna aspects of one of the
following technical programs. Include calculations of as many antenna parameter values as
you can. (a) The Square Kilometer Array (www.skatelescope.org). (b) The Long Wavelength
Array (lwa.nrl.navy.mil). (c) The High Frequency Active Auroral Research Program (www
.haarp.alaska.edu). (d) The Low Band Antenna (www.lofar.org). (e) The Widefield Array
(www.mwatelescope.org). (f) A Wullenweber array.
8.9-1 Plot the full array pattern for 0� and 30� scan angles off broadside for the array of
Fig. 8-30. Also plot the array factor for 30 degrees scan to see the grating lobe reduction effect
of the element pattern.
8.9-2 The four-port Butler matrix beamformer of Fig. 8-32 is used to drive four isotropic
elements. (a) Write the interelement excitation phases for all four beams. (b) Plot all four beam
patterns on one polar pattern plot. (c) Give the values of the beam peak locations and crossover
levels. (d) Calculate the beam peak directions for Beam 1 and 2 using beam scanning
principles.
8.9-3 For the AN/PPS-18 radar example of Fig. 8-33, find the aperture efficiency based on a
specified gain of 27 dB.
8.9-4 Derive an expression for the line length of a delay-line phase shifter to steer the beam of
a linear array to angle θo starting with the required phase for element n of αn ¼ �ð2π=cÞf nd
cos θo.
8.9-5 Project. Investigate quantization lobes due to digital phase shifting.
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8.9-6 Project. Investigate and report on how the Butler and Blass beamforming networks
operate.
8.9-7 Compute the pattern of Beams 1 and 2 in Fig. 8-32 for the Butler matrix BFN and
determine the value and angle where beams crossover.
8.10-1 Find the element spacing in wavelengths, d=l, that gives a maximum element gain
value of 6 dB for a planar array with d ¼ dx ¼ dy.
8.11-1 This problem examines frequency effects on beam steering with a linear phased array.
(a) Derive (8-122). Now consider an array with the phase shifters set to steer the beam 30� off
broadside at 2GHz. Find the angle off broadside of the beam peak at (b) 1:6GHz, and
(c) 2:4GHz.
8.11-2 A phased array is required to have a bandwidth of 40% and 45� scan to off broadside.
Find which antenna types in Fig. 8-36 are possible choices as elements.
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Chapter9

Aperture Antennas

As summarized in Table 1-4, there are four types of antennas: electrically small, resonant,
broadband, and aperture. The first three have been discussed earlier. The basic electrically
small antennas are treated in Secs. 3.1 and 3.4. Resonant antennas are covered in Secs. 3.2,
3.3, and Chap. 5. The discussion of broadband antennas is in Chap. 7. In this chapter, we
treat the fourth and final antenna type, the aperture antenna. Part of the structure of an
aperture antenna is an aperture, or opening, through which electromagnetic waves flow. An
aperture antenna operating as a receiver “collects” waves via the aperture. Analogies in
acoustics are the megaphone and the parabolic microphone, which uses a parabolic
reflector to focus sound waves on a microphone at the focal point. Also, the pupil of the
human eye is an aperture for optical frequency electromagnetic waves. At radio fre-
quencies, horns and reflectors are examples of aperture antennas; see Table 1-4. Aperture
antennas are in common use at UHF frequencies and above. They are the antenna of choice
in applications requiring very high gain. A distinguishing feature of large aperture
antennas is the increase in gain with the operating frequency. The gain of an aperture
antenna increases with the square of frequency if aperture efficiency is constant with
frequency; see (4-27). Another feature is the nearly real-valued input impedance.

Since all receiving antennas act as collectors of waves, an effective aperture can be
defined for every antenna; see Sec. 4.4.1. However, this chapter deals with antennas that
have an obvious physical aperture. In the first section, general principles are developed
for calculating the radiation patterns from any aperture antenna. Subsequent discussions
focus on rectangular and circular aperture shapes. The properties of specific antennas
such as horns and circular parabolic reflectors then follow naturally. As in preceding
chapters, theoretical derivations lead to an accurate description of the antenna parameters,
as well as design techniques. Both rigorous and approximate methods of gain calculation
are also presented in this chapter.

9.1 RADIATION FROM APERTURES AND HUYGENS’ PRINCIPLE

Although aperture antennas were not widely used until the World War II period, the basic
concepts were available in 1690 when Huygens explained, in a simple way, the bending
(or diffraction) of light waves around an object. This was accomplished by viewing each
point of a wave front as a secondary source of spherical waves. The next wave front is the
envelope of these secondary waves in the forward direction. Some 150 years after
Huygens’ contribution, Fresnel recognized that the phase shift between wave fronts is
computed from the distance between wave fronts ΔL by the familiar relation βΔL.
Fig. 9-1 shows how a plane wave and a spherical wave can be constructed from secondary
waves; also see Figs. 16-1 and 16-2. The envelope of secondary waves forms the new
wave front. Geometrical optics (ray tracing) predicts that light shining through a slit in a
screen will have a lit region and a completely dark shadow region with a sharp boundary
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between them. Geometrical optics works well only for apertures that are very large rel-
ative to a wavelength. The secondary source concept shows that the secondary waves will
spread out away from the aperture and there will be a smooth blending of the lit and
shadow regions. This diffraction effect is illustrated in Fig. 9-2 for a slit in an opaque
screen with a plane wave incident on it. The superposition (i.e., the sum) of the wavelets
in the limit of an infinite number of secondary sources becomes a radiation integral over a
continuous source that we are familiar with.

Huygens’ principle evolved into a mathematical from referred to as the equivalence
principle (or, field equivalence principle). The field equivalence principle replaces an
aperture antenna with equivalent currents that produce radiation fields equivalent to those
from the antenna. The equivalence principle is derived by observing that a solution to
Maxwell’s equations and the boundary conditions, which all electromagnetic problems
must satisfy, is the solution. This follows from the uniqueness theorem in mathematics
which states that a solution that satisfies a differential equation (e.g., Maxwell’s equa-
tions) and the boundary conditions is unique. We now use this concept to set up equiv-
alent current relations for use in analyzing aperture antennas.

In the original problem of Fig. 9-3a, the fields that satisfy Maxwell’s equations in the
region exterior to volume V and that satisfy boundary conditions along S are unique.1 As
long as the sources exterior to V and the boundary conditions along S are not changed, the
solution (E, H) will not change. In the equivalent problem, the source exterior to V are
not changed, since there are none. Also, the boundary conditions are not changed, as will
now be explained. In the original problem, the fields along the boundary are E(S) and
H(S). In the equivalent problem of Fig. 9-3b, the original sources (e.g., the antenna

Secondary
sources

Wave fronts

(a) Plane wave. (b) Spherical wave.
Figure 9-1 Secondary waves used to
construct successive wavefronts.

Figure 9-2 Plane wave incident on a slit in a screen. The
edge diffraction leads to spreading of the radiation
from the slit.

1 In this chapter, the uppercase symbols V and S will be used to denote volume and surface.

c09 7 April 2012; 9:11:53

9.1 Radiation from Apertures and Huygens’ Principle 345



structure) have been removed, altering the fields internal to S, denoted as E1 and H1. In
order for the fields external to S to remain the same, equivalent currents must be intro-
duced to satisfy the discontinuity of the fields across S. These equivalent currents are
found from the boundary conditions of (2-22) and (2-23) as

Js1 ¼ n̂ � ½H�H1� on S ð9-1aÞ
Ms1 ¼ ½E� E1� � n̂ on S ð9-1bÞ

Where (E1, H1) and (E, H) are the fields internal and external to S; see Fig. 9-3b. These
equivalent currents, which are obtained from only a knowledge of the tangential fields
over S, can be used to find the fields external to S. However, the fields on S required to
determine the equivalent currents are unknown. Also, we do not know how to find the
external fields from the equivalent currents. We now address these difficulties, starting
with the second one.

Since the internal fields (E1, H1) are arbitrary, we choose them to be zero for sim-
plicity; see Fig. 9-3c. Then (9-1) becomes

Js ¼ n̂ � HðSÞ ð9-2aÞ
Ms ¼EðSÞ � n̂ ð9-2bÞ

Where E(S) and H(S) are the fields over the surface S. This zero internal field formulation
is referred to as Love’s equivalence principle.

Since the fields inside S are zero in the equivalent problem of Fig. 9-3c, we are free to
introduce materials inside S. If a perfect electric conductor is placed along S, Js will
vanish. The explanation is often given that the electric current is “shorted out” by the
conductor. This leaves a magnetic current density Ms radiating in the presence of the
electric conductor producing the external fields. Similarly, a perfect magnetic conductor
can be introduced along S to eliminate Ms, leaving only Js. Thus, we have two equivalent
formulations. They are Ms in the presence of a perfect electric conductor over S and Js in
the presence of a perfect magnetic conductor over S. Both yield the correct fields external
to S. However, these problems are difficult to solve as long as S is a general surface. Note
that if the real antenna contains conducting portions, then the Js equals the actual current
density over that portion and the aperture portion contains both Js and Ms (before any
fictitious conductors are introduced).

If the surface S is large in terms of a wavelength and the curvature of S is small, image
theory can be applied locally across the surface to solve for the currents operating in the
presence of the introduced conductors; this is exploited in Chap. 16. However, since the
selection of S is for convenience and we are interested in radiation problems, we can
extend S to infinity. Since S must be a closed surface, S includes the infinite plane along
z¼ 0 and closes at infinity to enclose sources in the region z , 0 of Fig. 9-4. In this case,

E, H E, H E, H
MS

MS1
JS1

JS

E, H
E1, H1

Sources

(a) Original
 problem.

(b) General equivalent
 problem.

(c) Equivalent problem
 with zero internal
 fields.

No sources
V

S S
S

V No sources

Zero fields

V

n

Figure 9-3 The equivalence principle.
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we can apply image theory with no approximation and easily solve many practical
problems with planar apertures.

We can apply image theory to the planar surface S to simplify the solution procedure.
To do this, we find the fields due to currents Js and Ms on the z¼ 0 plane as shown in
Fig. 9-4a; this will be followed by the application of image theory to reduce the solution
formulation by one-half. Although not all antenna problems have a planar aperture that
can be placed in the xy-plane, an equivalent planar aperture surface S can be set up. This
will be fruitful if the tangential field over S can be obtained; more will be said about this
later. First, we need to solve for fields in z > 0 due to the equivalent currents of Fig. 9-4a.

The fields (E, H) in the region z > 0, in general, are found by first evaluating A using
(2-61) and finding E and H from (2-46) and (2-36). In this case, the equivalent currents Js
and Ms will yield the exact fields everywhere in z > 0. However, we restrict our solution
to the far-field region appropriate to antenna problems. Then we can use the much simpler
procedure of Sec. 2.4.4 that we have used many times to solve radiation problems.
Now we slightly recast the formulation for the case of planar surface current densities in
the xy-plane. First, the magnetic vector potential is found from the form of (2-101)
appropriate to the geometry of Fig. 9-4a:

A¼μ
e�jβr

4πr

ZZ
S

JSðr0Þejβr̂ � r0dS
0 ð9-3Þ

S

S

S S S

S S

(a)  Both equivalent surface current densities acting in free space.

for
z > 0

for
z > 0

for
z > 0

for
z > 0

(b)  Equivalent electric current density alone.

Perfect
magnetic
conductor
m = ∞σ

Perfect
electric
conductor
 = ∞σ

(c)  Equivalent magnetic current density alone.

z

JS

JS

JS

JS

JS JS

JS 2JS

2MS

MS

MS MS = 0

JS = 0

MSMS

MS MS MS

E, H

Figure 9-4 Equivalent current configurations for a planar aperture surface. The antenna
located in z , 0 has been removed and three different equivalent current sets introduced as
shown.
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The far-zone electric field from (2-105) is

EA ¼�jωðAθθ̂þAφf̂Þ ð9-4Þ
The subscript A indicates that this field arises from the magnetic vector potential A.

The electric vector potential F associated with the magnetic current density is found
using the duality principle introduced in Sec. 3.4.12:

F¼ ε
e�jβr

4πr

ZZ
S

Msðr0Þe jβr̂ � r0dS
0 ð9-5Þ

The far-zone magnetic field arising from F is the dual of (9-4):

HF ¼�jωðFθ θ̂þFφf̂Þ ð9-6Þ
Since the solution is in the far field, the electric field associated with HF can be found
from the TEM relationship of (2-107) as

EF ¼ ηHF � r̂¼�jωηðFφθ̂ � Fθf̂Þ ð9-7Þ
The total electric field is then found by summing the contributions from each current:

E¼EA þEF ¼�jω½ðAθ þ ηFφÞθ̂þðAφ � ηFθÞf̂� ð9-8Þ
The equivalent systems of Fig. 9-4a involves both the electric and magnetic current

densities. Computations can be reduced considerably if image theory is used so that we
only have to deal with one of the currents. First, we introduce a perfect magnetic planar
conductor along surface S. The image currents shown in Fig. 9-4b are obtained by the
duality of images in a perfect magnetic ground plane; that is, a magnetic current parallel
to the plane has an oppositely directed image and a parallel electric current has a similarly
directed image. The fields for z > 0 are unchanged after removing the conducting plane
and introducing the images, as shown in Fig. 9-4b. Since the currents and their images are
adjacent to the plane S, we can add them vectorially to obtain the final equivalent system,
which has a doubled electric surface current density and no magnetic surface current
density. The radiation electric field for z > 0 is 2EA. In similar fashion, a perfect electric
ground plane can be introduced along S as shown in the leftmost part of Fig. 9-4c. Image
theory renders the images shown; see Fig. 3-8. These images acting together yield a zero
total electric surface current density and a magnetic surface current density of 2MS. Then
the radiation electric field for z > 0 is 2EF .

Wecannowsummarize theequivalence theorem in termsmost suitable to radiationpattern
calculations. First, an aperture plane is selected for the antenna, this is usually the physical
aperture of the antenna but need not be. Coordinates are set up such that the aperture plane
is the xy-plane and the þz-axis is the forward radiation direction. Then the radiation field
for z > 0 are found by one of the three equivalent systems of Fig. 9-4 as follows:

a. JS and MS on S (xy-plane)

E¼EA þEF ð9-9aÞ
with (9-3) in (9-4) and (9-5) in (9-6) and (9-7)

2 The symbol F for magnetic vector potential should not be confused with the normalized radiation
pattern function Fðθ, φÞ.
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b. 2JS on S

E¼ 2EA ð9-9bÞ
c. 2MS on S

E¼ 2EF ð9-9cÞ
The procedures for finding radiation from equivalent aperture plane currents are now
clear. It remains then to focus on determining those currents, which are established
using (9-2).

So far, no approximations have been introduced other than the usual far-field
approximations. Indeed, if the exact fields E(S) and/or H(S) are used in any of the above
three procedures, exact far-field results will be obtained in the half-space z > 0. However,
such exact knowledge of the fields over the entire plane S is rarely available. Usually, at
best it is possible to obtain only an approximate knowledge of the fields over a finite
portion of the infinite aperture plane. One such approach is the popular physical optics
approximation, in which it is assumed that the aperture fields Ea and Ha are those of the
incident wave. It is usually assumed that these fields exist over only some finite portion Sa
of the infinite plane S and the fields elsewhere over S are zero. In most cases, the aperture
surface Sa coincides with the physical aperture of the antenna. These approximations
improve as the dimensions of the aperture relative to a wavelength increase.

The three solution procedures will now be simplified. Suppose that aperture fields Ea

and Ha, which exist over and are tangent to some portion of Sa of the infinite plane S, are
known (perhaps by employing the physical optics approximation). The equivalent surface
current densities follow from (9-2) as

JS ¼ n̂ � Ha ð9-10Þ
MS ¼Ea � n̂ ð9-11Þ

on Sa and zero elsewhere. Using these in (9-3) and (9-5) gives

A¼μ
e�jβr

4πr
n̂ �
ZZ
Sa

Hae
jβr̂ � r0dS0 ð9-12Þ

F¼�ε
e�jβr

4πr
n̂ �

ZZ
Sa

Eae
jβr̂ � r0dS0 ð9-13Þ

The integral the above two equations is a two-dimensional Fourier transform. The two-
dimensional Fourier transform of an aperture field plays an important role in radiation
calculations for aperture antennas, in a way similar to the Fourier transform of the current
distribution for line sources (see Chap. 5). We therefore make the following definitions
for the integrals:

P¼
ZZ
Sa

Eae
jβr̂ � r0dS0 ð9-14Þ

Q¼
ZZ
Sa

Hae
jβr̂ � r0dS0 ð9-15Þ

The far-zone electric field based on both aperture fields can be written in a single
expression often encountered in the literature. The total electric field in terms of the
potentials, form (9-4) and (9-7), is
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E¼�jωA � jωηF � r̂ ð9-16Þ
Where the r-component of the first term is to be neglected. Substituting in (9-12) and
(9-13) and performing some manipulations yield

E¼�jβ
e�jβr

4πr
r̂ �

ZZ
Sa

½n̂ � Ea � η r̂ � ðn̂ � HaÞ�e jβr̂ � r0dS0 ð9-17Þ

This gives the full vector form of the radiated electric field from the aperture fields and is
often called a vector diffraction integral. The term “diffraction” is used because the field
found using (9-17) represents the superposition of all elements of the source distribution;
this is in contrast to geometrical optics that traces rays from points on the antenna directly
to observation points (see Sec. 16.1). The subsequent developments here are cast in terms
of the Fourier transforms P and Q; this provides a more procedural, as well as instructive,
approach.

The aperture surface Sa is in the xy-plane, so r0 ¼ x0x̂þ y0ŷ. This with r̂ in spherical
coordinates from (C-4) in (9-14) and (9-15) yield

Px ¼
ZZ
Sa

Eaxðx0, y0Þe jβðx0sin θ cosφþ y0sin θ sinφÞdx0dy0 ð9-18aÞ

Py ¼
ZZ
Sa

Eayðx0, y0Þe jβðx0sin θ cosφþ y0sin θ sinφÞdx0dy0 ð9-18bÞ

Qx ¼
ZZ
Sa

Haxðx0, y0Þe jβðx0sin θ cosφþ y0sin θ sinφÞdx0dy0 ð9-19aÞ

Qy ¼
ZZ
Sa

Hayðx0, y0Þe jβðx0sin θ cosφþ y0sin θ sinφÞdx0dy0 ð9-19bÞ

Now, (9-12) and (9-13) together with n̂¼ ẑ reduce to

A¼μ
e�jβr

4πr
ð�Qyx̂ þ QxŷÞ ð9-20Þ

F¼�ε
e�jβr

4πr
ð�Pyx̂ þ PxŷÞ ð9-21Þ

Expressing x̂ and ŷ in spherical coordinates as in (C-l) and (C-2) and retaining only the
θ- and φ-components give

A¼μ
e�jβr

4πr
�
θ̂ cos θðQx sinφ�Qy cosφÞþ f̂ðQx cosφ þ Qy sinφÞ

� ð9-22Þ

F¼�ε
e�jβr

4πr
�
θ̂ cos θðPx sinφ�Py cosφÞþ f̂ðPx cosφ þ Py sinφÞ

� ð9-23Þ

Using these in (9-8) yields the final radiation field components

ðaÞ Eθ ¼ jβ
e�jβr

4πr
Px cosφþPy sinφþ η cos θðQy cosφ � Qx sinφÞ
� � ð9-24aÞ

Eφ ¼ jβ
e�jβr

4πr
cos θðPy cosφ�Px sinφÞ � ηðQy sinφ þ Qx cosφÞ
� � ð9-24bÞ
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In a similar fashion, the other two equivalent systems reduce to

ðbÞ Eθ ¼ jβη
e�jβr

2πr
cos θðQy cosφ � Qx sinφÞ ð9-25aÞ

Eφ ¼ � jβη
e�jβr

2πr
ðQy sinφþQx cosφÞ ð9-25bÞ

ðcÞ Eθ ¼ jβ
e�jβr

2πr
ðPx cosφþPy sinφÞ ð9-26aÞ

Eφ ¼ jβ
e�jβr

2πr
cos θðPy cosφ � Px sinφÞ ð9-26bÞ

If the exact aperture fields over the entire aperture plane are used, the three for-
mulations of (9-24) to (9-26) each yield the same result. Use of the exact aperture fields
leads to equal contributions arising from the electric and magnetic currents. [H.3: Collin
and Zucker, Part 1, p. 73]. Therefore, the equivalent system using both current types, as in
(9-24), gives zero total field for z , 0 because cos θ is negative for π=2# θ# π, and the
contributions cancel as guaranteed by the equivalence theorem. However, the single
current systems of (9-25) and (9-26) do not yield zero fields for z , 0. This is an expected
result since image theory was involved in the development of these, and identical fields
are obtained only in the region z>0.

The trigonometric functions appearing in (9-24) to (9-26) actually describe the
projections of the aperture equivalent surface current densities onto the plane containing
the far-field components (i.e., perpendicular to r̂). For aperture field expressions, the
trigonometric functions that multiply the radiation integrals are often referred to as
obliquity factors. The element factor sin θ for line sources along the z-axis is an obliquity
factor. For apertures that are several wavelengths in extent, the obliquity factors do not
reduce the main beam and first few side lobes by a significant amount. Then the Fourier
transform adequately describes the pattern, and the aperture antenna problem reduces to
first finding the (scalar) far-field pattern from the Fourier transform of the aperture
electric field magnitude. Polarization is determined from the component(s) of the aperture
electric field tangent to a far-field sphere by projecting EA on to the far-field sphere.

In practice, only approximate information about the aperture fields is available, such as
obtained from the physical optics approximation. Then the three formulations give dif-
ferent results. The accuracy of the three results depends on the accuracy of the aperture
fields, but the differences might not be significant. For apertures mounted in a conducting
ground plane, the aperture plane (except for the aperture itself) is well modeled as an
infinite, perfectly conducting plane. Then the magnetic current (aperture electric field)
formulation of (9-26) is preferred since the aperture electric field, and thus magnetic
current, is zero outside the aperture because of the boundary condition of zero tangential
electric field on the conductor. For apertures in free space, the dual current formulation of
(9-24) is used. This is usually accompanied by the assumption that the aperture fields are
related as a transverse electromagnetic (TEM) wave:

Ha ¼ 1

η
ẑ � Ea ð9-27Þ

This implies that

Q¼ 1

η
ẑ � P or Qx ¼�Py

η
, Qy ¼ Px

η
ð9-28Þ

This assumption is valid for moderate- to high-gain antennas and is often applied with
success even to apertures that are only a few wavelengths in extent. Using (9-28) in (9-24)
leads to
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Eθ ¼ jβ
e�jβr

2πr
1þ cos θ

2
Px cosφþPy sinφ
� � ð9-29aÞ

Eφ ¼ jβ
e�jβr

2πr
1þ cos θ

2
Py cosφ � Px sinφ
� � ð9-29bÞ

which is a simpler form than (9-24). The factors in brackets are identical to those in
(9-26). The obliquity factor of (1þ cos θ)/2 differs only slightly from the cos θ obliquity
factor in (9-26) for small values of θ, where radiation is significant for high-gain antennas.
Unlike (9-26), (9-29) remains valid over all space (i.e., 0, θ, 180�) because image
theory was not employed and we can take surface S to enclose the antenna, since
equivalent currents are zero except over the finite aperture. However, accuracy is likely to
degrade for directions far out from the main beam. In summary, (9-26) should be used for
apertures in ground planes and (9-29) should be used for aperture antennas in free space.

EXAMPLE 9-1 Slit in an Infinite Conducting Plane

The aperture antenna calculation procedures and the physical optics approximation can be
illustrated rather simply for a plane wave normally incident on a slit in an infinite perfectly
conducting plane as shown in Fig. 9-5. This is the same problem as in Fig. 5-7a, except for a
coordinate system change. The physical optics approximation leads us to assume that the
incident field Ei ¼ ŷEoe

�jβr associated with the plane wave propagating in the þz-direction
renders the field over the physical aperture, so

Ea ¼
ŷEo jyj# L

2
, z¼ 0

0 elsewhere

8><
>: ð9-30Þ

The magnetic current formulation is appropriate in this case because the aperture electric field
is zero over the perfectly conducting portion of the aperture surface. This is essentially a one-
dimensional problem because the aperture field is uniform in the x-direction; then the radiation
fields will not change with position along the x-direction. We are thus concerned only with the
yz-plane (φ¼ 90�), and since the aperture field is only y-directed, (9-18) reduces to

Ei

Ea

Incident
plane wave

L

y x

z

Figure 9-5 Plane wave incident on a slit in an infi-
nite conducting plane. The slit is infinite in the
x-direction and is L wide in the y-direction.
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P¼ ŷPy ¼ ŷ

Z L=2

�L=2

Eoe
jβy0sin θdy0 ¼ ŷEoL

sin½ðβL=2Þsin θ�
ðβL=2Þsin θ ð9-31Þ

This result is similar to the line-source pattern of (5-2) except for the geometry difference of
the z-axis now being normal to the current.

When normalized, the magnitude of this expression renders the following radiation pattern:

FðθÞ¼ sin½ðβL=2Þsin θ�
ðβL=2Þsin θ ð9-32Þ

The polarization of the far field (electric field) is the tangent of the aperture electric field
direction ŷ onto the far-field sphere (in the φ¼ 903 observation plane), which is the θ-com-
ponent and there is no φ-component. Notice that (9-32) is nonzero at θ¼ 90�; this is acceptable
since Eθ can be normal to the conducting plane. A note of caution is in order for this example,
which has an aperture that is infinite in one dimension. The problem is really two-dimensional
rather than three-dimensional (equivalently, the aperture is one-dimensional rather than two-
dimensional). Therefore, the complete electric field will not be given by (9-26). The spherical
wave behavior of e�jβr=r (e.g., free-space Green’s function) is replaced by the cylindrical wave
behavior e�jβr=

ffiffi
r

p
. However, the one-dimensional Fourier transform as presented here yields the

correct angular variation (pattern). The pattern based on this simple approach agrees well with
that of more rigorous techniques, even for a slit of L¼ 0:45l, which is not large electrically. [1]

9.2 RECTANGULAR APERTURES

There are several antennas that have a physical aperture which is rectangular in shape. For
example, many horn antennas have rectangular apertures. Another example is a rectan-
gular slot in a metallic source structure such as a waveguide. In this section, we present
some general principles about rectangular apertures that have uniform and tapered
excitations. In Sec. 9.4, these principles are applied to rectangular aperture horn antennas.

9.2.1 Uniform Rectangular Apertures

A general rectangular aperture is shown in Fig. 9-6. It is excited in an idealized fashion
such that the aperture fields are confined to the Lx by Ly region. If the aperture fields are
uniform in phase and amplitude across the physical aperture, it is referred to as a uniform
rectangular aperture. Suppose the aperture electric field is y-polarized; then the uniform
rectangular aperture electric field is

Ea ¼Eoŷ, jxj# Lx

2
, jyj# Ly

2
ð9-33Þ

y

x

Lx

Ly

Figure 9-6 The rectangular aperture.
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Then from (9-18b)

Py ¼Eo

Z Lx=2

�Lx=2

ejβx
0sin θ cosφdx0

Z Ly=2

�Ly=2

ejβy
0sin θ cosφdy0

¼EoLxLy
sin½ðβLx=2Þu�
ðβLx=2Þu

sin½ðβLy=2Þv�
ðβLy=2Þv

ð9-34Þ

where we have introduced the pattern variables

u¼ sin θ cosφ, v¼ sin θ sinφ ð9-35Þ
The complete radiation fields are found from (9-26) as

Eθ ¼ jβ
e�jβr

2πr
EoLxLy sinφ

sin½ðβLx=2Þu�
ðβLx=2Þu

sin½ðβLy=2Þv�
ðβLy=2Þv ð9-36aÞ

Eφ ¼ jβ
e�jβr

2πr
EoLxLy cos θ cosφ

sin½ðβLx=2Þu�
ðβLx=2Þu

sin½ðβLy=2Þv�
ðβLy=2Þv ð9-36bÞ

These fields are rather complicated functions of θ and φ, but fortunately they simplify in
the principal planes. In the E-plane (yz-plane), φ¼ 90� (and 270�) and (9-36a) reduces to

Eθ ¼ jβ
e�jβr

2πr
EoLxLy

sin½ðβLy=2Þsin θ�
ðβLy=2Þsin θ E-plane ð9-37Þ

In the H-plane (xz-plane), φ¼ 0� (and 180�) and (9-36b) becomes

Eφ ¼ jβ
e�jβr

2πr
EoLxLy cos θ

sin½ðβLx=2Þ sin θ�
ðβLx=2Þ sin θ H-plane ð9-38Þ

Note that Eφ goes to zero at θ¼ 90� where it is tangent to the perfect conductor intro-
duced in the equivalent magnetic current formulation. The normalized forms of these
principal plane patterns are

FHðθÞ¼ cos θ
sin½ðβLx=2Þ sin θ�
ðβLx=2Þ sin θ , φ¼ 0� ð9-39Þ

FEðθÞ¼ sin½ðβLy=2Þ sin θ�
ðβLy=2Þ sin θ , φ¼ 90� ð9-40Þ

For large apertures (Lx, Ly� l), themain beam is narrow, the cos θ factor is negligible, and
the principal plane patterns are both of the form sin (x)/x that we have encountered several
times before, as, for example, with the uniform line source. By neglecting the obliquity
factors in (9-36), the normalized pattern factor for the uniform rectangular aperture is

f ðu, vÞ¼ sin½ðβLx=2Þu�
ðβLx=2Þu

sin½ðβLy=2Þv�
ðβLy=2Þv ð9-41Þ

which is the normalized version of Py in (9-34). The half-power beamwidths in the
principal planes follow from the line source result in (5-12). In the xz- and yz-planes,
the beamwidth expressions are
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HPx ¼ 0:886
l
Lx

rad¼ 50:8
l
Lx

deg ð9-42aÞ

HPy ¼ 0:886
l
Ly

rad¼ 50:8
l
Ly

deg ð9-42bÞ

Finally, we derive an expression for the directivity of a uniform rectangular aperture.
Such calculations are greatly simplified by using the variables u and v. The transfor-
mation from θ and φ to u and v given by (9-35) is essentially a collapsing of the spherical
surface of unit radius onto a planar surface through the equator, giving a circular disk of
unit radius. The u, v disk is analogous to the azimuthal map projection used in cartog-
raphy to show, for example, the northern hemisphere on a planar map; the globe is
projected with the North Pole at the center and the azimuth (radial) lines give true
compass directions. The visible region in u and v corresponding to θ#π=2 is

u2 þ v2 ¼ sin2 θ # 1 ð9-43Þ
which follows from (9-35).

The beam solid angle is found using

ΩA ¼
Z 2π

0

Z π=2

0

jFðθ, φÞj2dΩ ð9-44Þ

where only radiation for θ#π/2 is considered. The beam solid angle can be evaluated by
integrating over the entire visible region in terms of u and v. The projection of dΩ onto the
u,v plane is given by du dv¼ cos θdΩ. From (9-43), it is seen that cos θ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2� v2

p
.

Therefore, dΩ¼ du dv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2�v2

p
and (9-44) becomes

ΩA ¼
ZZ

u2þv2#1

jFðu, vÞj2 du dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2� v2

p ð9-45Þ

This is a general expression. For a large uniform phase aperture (Lx and Ly�l), the
radiation is concentrated in a narrow region about u¼ v¼ 0 ðθ¼ 0Þ. Then the square root
in the denominator in (9-45) is approximately 1. Also, since the side lobes are very low,
we can extend he limits to infinity without appreciably affecting the value of the integral.

Using these results and (9-41) for the uniform rectangular aperture in (9-45) yields

ΩA ¼
Z N

�N

sin2½ðβLx=2Þu�
½ðβLx=2Þu�2

du

Z N

�N

sin2½ðβLy=2Þv�
½ðβLy=2Þv�2

dv ð9-46Þ

The following change of variables:

u0 ¼ βLx
2

u¼ βLx
2

sin θ cosφ ð9-47aÞ

v0 ¼ βLy
2

v¼ βLy
2

sin θ sinφ ð9-47bÞ

leads to

ΩA ¼ 2

βLx
2

βLy

Z N

�N

sin2u0

ðu0Þ2 du0
Z N

�N

sin2v0

ðv0Þ2 dv0 ð9-48Þ

From (F-12) each integral above equals π, so
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ΩA ¼ 4

ð2π=lÞ2LxLy
π2 ¼ l2

LxLy
ð9-49Þ

The directivity of the rectangular aperture with uniform amplitude and phase is then

Du ¼ 4π
ΩA

¼ 4π
l2

LxLy ð9-50Þ

From this expression, the physical area of the aperture can be identified as Ap ¼ LxLy.
Comparing this to D¼ 4πAem=l

2 from (4-23), we see that the maximum effective aperture
Aem equals the physical apertureAp for the uniform rectangular aperture. This is true for any
shape aperturewith uniform excitation. Also note that for ideal apertures, there are no ohmic
losses (radiation efficiency er ¼ 1), so gain equals directivity and Ae ¼Aem.

EXAMPLE 9-2 A 20λ � 10λ Uniform Rectangular Aperture

The complete pattern for a uniform rectangular aperture that has Lx ¼ 20l and Ly ¼ 10l is
from (9-41):

f ðu, vÞ¼ sinð20πuÞ
20πu

sinð10πvÞ
10πv

ð9-51Þ

The contour plot of this pattern is shown in Fig. 9-7. The principal plane patterns, which are
profiles along the u and v axes of Fig. 9-7, are shown in Fig. 9-8. The aperture of Fig. 9-6 has a
ratio Lx=Ly ¼ 2 as in this example. Notice that the wide aperture dimension Lx leads to a
narrow beamwidth in that direction (along the u-axis). The half-power beamwidth from (9-42)
is HPx ¼ 0:0443 rad ¼ 2.54� in the xz-plane, and HPy ¼ 0:0886 rad ¼ 5.08� in the yz-plane.
The directivity from (9-50) is D¼ 4πð20lÞð10lÞ=l2 ¼ 2513¼ 34 dB.

u

v

Figure 9-7 Contour plot of
the pattern from a uniform
amplitude, uniform phase
rectangular aperture
ðLx ¼ 20l, Ly ¼ 10lÞ. The
solid contour levels are 0, –5,
–10, –15, –20, –25, –30 dB.
The dashed contour levels are
–35 and –40 dB. Principal
plane profiles are shown in
Fig. 9-8.
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9.2.2 Tapered Rectangular Apertures

In the previous section, we saw that the uniform rectangular aperture has an effective
aperture equal to its physical aperture. In other words, uniform illumination leads to the
most efficient use of the aperture area. It will be shown in Sec. 9.3 that uniform excitation
amplitude for an aperture gives the highest directivity possible for all constant phase
excitations of that aperture. In the antenna design problem, high directivity is not the only
parameter to be considered. Frequently, low side lobes are important. As we saw in
Chap. 5, the side lobes can be reduced by tapering the excitation amplitude toward the
edges of a line source. This is also true for two-dimensional apertures. In fact, many of
the line source results can be directly applied to aperture problems.

To simplify our general discussion of rectangular aperture distributions, we omit
the polarization of the aperture electric field, so that Ea can represent either the x-
or y-component of the aperture field. Then (9-18) becomes

P¼
ZZ
Sa

Eaðx0, y0Þ ejβux0ejβvy0dx0dy0 ð9-52Þ

(a) The xz-plane pattern; u = sin  .
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u

(b) The yz-plane pattern; v = sin  .θ
−1.00 −.80 −.60 −.40 −.20 0 .20 .40 .60 .80 1.00

v

Figure 9-8 Principal plane patterns for a uniform amplitude, uniform phase rectangular
aperture ðLx ¼ 20l, Ly ¼ 10lÞ. The complete pattern is shown in Fig. 9-7.
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Most practical aperture distributions are separable and can be expressed as a product of
functions of each aperture variable alone:

Eaðx0, y0Þ ¼Ea1ðx0ÞEa2ðy0Þ ð9-53Þ
Then (9-52) reduces to

P¼
Z Lx=2

�Lx=2

Ea1ðx0Þe jβux0dx0
Z Ly=2

�Ly=2

Ea2ðy0Þe jβvy0dy0 ð9-54Þ

Each of these integrals is recognized as the pattern factor of a line source along the respective
aperture directions. The normalized pattern factor for the rectangular aperture is then

f ðu0, v0Þ ¼ f1ðu0Þf2ðv0Þ ð9-55Þ
where f1ðu0Þ and f2ðv0Þ arise from the first and second integrals in (9-54), which are
essentially pattern factors of line source distributions along the x- and y-directions. Again,
here we have neglected any obliquity factors. The uniform rectangular aperture result
corresponding to (9-55) is (9-41). It is obtained directly from sin(u)/u of (5-7) by using u0
of (9-47a) in place of u for f1(u

0) and v0 of (9-47b) in place of u for f2ðv0Þ. Note the
different definition of u in Chap. 5 and this chapter.

Thus, the pattern expression for a rectangular aperture distribution that is separable, as
in (9-53), is obtained by finding the patterns f1 and f2 corresponding to the distributions
Ea1 and Ea2, and then employing (9-55).

EXAMPLE 9-3 The Open-Ended Rectangular Waveguide

One of the smallest aperture antennas is the open-ended waveguide shown in Fig. 9-9. It
requires no construction, since the antenna is the open end of a waveguide. It is often used as a
probe, such as with a near-field measurement range (see Sec. 13.2), because of its compact
size. When operated in the dominant TE10 mode, the aperture electric field is cosine-tapered in
the x-direction with length Lx ¼ a, similar to (5-21), and is uniform in the y-direction with
length Ly¼ b. The radiation pattern then can be found from the corresponding line source

a

φ

b

y

x

z

Ea

Eθ

Eφ

φ

θ

θ

Figure 9-9 Geometry for an open-ended rectangular waveguide operating in the dominant
TE10 mode as in Example 9-3. The aperture electric field Ea and radiated field components Eθ
and Eφ are shown.
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results using f ðu0, v0Þ ¼ f1ðu0Þf2ðv0Þ, where f1(u
0) is obtained from (5-25) and f2ðv0Þ is obtained

from (5-7):

f ðu0, v0Þ ¼ cos u0

1�½ð2=πÞu0�2
sin v0

v0
¼ cos½ðβLx=2Þu�

1�½ð2=πÞðβLx=2Þu�2
sin½ðβLy=2Þv�
ðβLy=2Þv ð9-56Þ

The vertical linear polarization of this antenna is evident from Fig. 9-9, which shows the
components of the electric field in the far field. The complete far-field component expressions
are easily obtained from (9-56) using the equivalent current formulations of (9-24) or (9-26).
If the open-ended waveguide is surrounded by a large ground plane, (9-56) in (9-26) yields
the following principal plane pattern results by a process identical to the development pre-
sented for (9-39) and (9-40):

FHðθÞ¼ cos θ
cos

βa
2
sin θ

� �

1� 2

π
βa
2

sin θ
� �2 φ¼ 0� ð9-57aÞ

open-ended waveguide on a
ground plane, 0 , θ , 90�

FEðθÞ¼
sin

βb
2
sin θ

� �
βb
2
sin θ

φ¼ 90� ð9-57bÞ

The magnetic current formulation is chosen because the ground plane is well represented by
the perfect conductor used in the image theory model of Fig. 9-4c. If the waveguide radiates
into free space, the complete expression of (9-24) is more appropriate and yields

FHðθÞ¼ 1þ cos θ
2

cos
βa
2

sin θ
� �

1� 2

π
βa
2

sin θ
� �2 φ¼ 0� ð9-58aÞ

open-ended waveguide in
free space, 0 , θ , 180�

FEðθÞ¼ 1þ cos θ
2

sin
βb
2
sin θ

� �
βb
2
sin θ

φ¼ 90� ð9-58bÞ

Note the difference in obliquity factors between (9-57) and (9-58). For (9-57), the boundary
conditions on the ground plane at θ¼ 90� are satisfied as explained in association with (9-38).
For operation in free space, (9-58) is valid all the way to θ¼ 180� where the ð1þ cos θÞ=2
obliquity factor takes the pattern to zero. Fig. 9-10 shows the patterns in the E- and H-planes
calculated using (9-57) and (9-58). Also shown are measured pattern data for a WR90 wave-
guide in free space operating at 9.32 GHz. [H.3: Silver, p. 345; 2] Agreement to the measured
data is best in the E-plane for the free-space case of (9-58b), as expected. But in the H-plane the
agreement is better for the ground plane case of (9-57a). This is due to the fact that the aperture
theory used for the calculated patterns assumes an electrically large aperture, but the waveguide
has dimensions that are not electrically large: a¼ 2:286 cm¼0:71l and b¼ 1:016 cm¼ 0:31l.
In addition, the fringe currents on the waveguide exterior are neglected, which will affect the H-
plane more than the E-plane. Better results can be obtained by including the fringe currents on
the waveguide walls, the phase constant βg of the waveguide, and the reflection coefficient
introduced by the discontinuity of the abrupt termination [2]; see Prob. 9.2-4. The directivity of
the open-ended waveguide is discussed in Example 9-4.
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9.3 TECHNIQUES FOR EVALUATING GAIN

Aperture antennas are often selected for use in applications requiring high gain. It is,
therefore, important to be able to evaluate gain as accurately as possible. In this section,
techniques are presented for evaluating gain based on pattern information and on aperture
field information. In addition, simple formulas are presented that provide approximate
gain values. These techniques apply to a wide variety of antenna types.

x

(b) The H-plane patterns.
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(a) The E-plane patterns.
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0.8

Figure 9-10 Radiation patterns of an open-ended WR-90 waveguide in free space operating at
9.32GHz with the geometry of Fig. 9-9 and as described in Example 9-3. The computed
patterns are for free space (solid curve) and with a ground plane in the xy-plane (dashed curve).
Also shown are the measured patterns (dots).
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9.3.1 Directivity

Two useful forms for directivity from (2-144) and (2-140) are

D¼ 4π
ΩA

ð9-59Þ

D¼ 4πUm

P
ð9-60Þ

where Um is the maximum of the radiation intensity defined through

Uðθ, φÞ ¼ 1

2η

��Eθ
��2 þ ��Eφ

��2h i
r2 ¼ Um Fðθ, φÞj j2 ð9-61Þ

ΩA is the beam solid angle:

ΩA ¼
Z 2π

0

Z π

0

Fðθ, φÞj2�sin θ dθ dφ ð9-62Þ

The total radiated power P is evaluated by integrating (9-61) over all radiation space or
from P¼UmΩA: Accurate evaluation of directivity using (9-59) and (9-62) requires both a
knowledge of the pattern over all angles θ, φ and integration of the pattern. If the pattern
function is known, the integral in (9-62) can sometimes be evaluated analytically, but is
usually found by numerical integration.

Pattern integration can be avoided when evaluating the directivity of aperture anten-
nas. This approach is based on determining the radiated power in the aperture plane where
it is easier to integrate. A knowledge of the aperture fields is required, of course. The
formulation is simplified by assuming that the tangential aperture electric and magnetic
fields are related as a TEM wave; see (9-27). This is justified by the good match to free
space (e.g., low VSWR) that most aperture antennas exhibit, indicating real power flow
as with a TEM wave. Using (9-27) in the general radiation field expression of (9-24) with
(9-61) gives

Uðθ, φÞ¼ β2

32π2η
ð1þ cos θÞ2�jPxj2 þ jPyj2

� ð9-63Þ

The maximum value of this function, which corresponds to the main beam peak from
(9-14), is

Um ¼ β2

8π2η

ZZ
Sa

Ea dS
0

������
������
2

ð9-64Þ

since r̂ � r0 ¼ 0 in the broadside case (θ¼ 0) because r̂¼ ẑ and r0 is in the xy-plane.
Integration of (9-63) to obtain P is, in general, rather difficult. This can be avoided by

observing that the total power reaching the far field must have passed through the
aperture. Within the validity of (9-27), the power density in the aperture is jEaj2=2η and
we can determine the radiated power from

P¼ 1

2η

ZZ
Sa

jEaj2dS0 ð9-65Þ

Substituting (9-64) and (9-65) in (9-60) gives a simplified, but powerful, directivity
relationship:
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D¼ 4π
l2

ZZ
Sa

Ea dS
0

������
������
2

ZZ
Sa

jEaj2dS0
ð9-66Þ

This formula assumes the following: The pattern peak is directed broadside to the
aperture, the aperture is large relative to a wavelength, and the aperture fields nearly form
a plane wave. It turns out that the latter two conditions need not be strictly satisfied for
good results to be obtained. Note the similarity of (9-66) to (8-85) for a half-wavelength
spaced linear array.

If the aperture distribution is of uniform amplitude (Ea ¼ Eo), then (9-66) reduces to

Du ¼ 4π
l2

Ap ð9-67Þ

where Ap is the physical aperture area. This was shown to be true for the rectangular
aperture by direct evaluation; see (9-50). Further, (9-67) is a general result and implies
that the directivity of a uniform amplitude aperture is the highest obtainable from a
uniform phase aperture. This is true because the maximum of (9-66) occurs for a uniform
illumination, which yields (9-67); see Prob. 9.3-2.

EXAMPLE 9-4 Directivity of an Open-Ended Rectangular Waveguide

To illustrate the aperture field integration method of determining directivity, we return to the
open-ended waveguide operating in the TE10 mode as described in Example 9-3 and illustrated
in Fig. 9-9. The aperture field distribution is

Ea ¼ ŷEo cos
πx0

a
, � a

2
# x0 #

a

2
, � b

2
# y0 #

b

2
ð9-68Þ

where the waveguide (and, thus, the aperture) has wide and narrow dimensions of a and b.
Then

ZZ
Sa

Ea ds0

������
������
2

¼ Eo

Z a=2

�a=2

cos
πx0

a
dx0
Z b=2

�b=2

dy0
 !2

¼E2
o

2a

π

� 	2

b2 ð9-69Þ

and ZZ
Sa

jEaj2 dS0 ¼E2
o

Z a=2

�a=2

cos2
πx0

a
dx0
Z b=2

�b=2

dy0 ¼E2
o

a

2
b ð9-70Þ

Substituting these into (9-66) gives

D¼ 4π
l2

8

π2
ab

� 	
¼ 4π

l2
ð0:81Þab ð9-71Þ

This directivity is reduced by a factor of 0.81 (the aperture taper efficiency, εt) from that of
same aperture when uniformly illuminated as in (9-67). However, in order for this formula to
provide a good approximation the aperture should be electrically large with dimensions of a
few wavelengths. A more all-purpose approach is (9-59) that should be used for small aper-
tures. This begins by finding the total normalized vector pattern by interpolating between the
principal plane patterns:
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Fðθ, φÞ¼ sinφ FEðθ, φÞθ̂þ cosφ FHðθ, φÞf̂ ð9-72Þ
Then the total pattern magnitude squared is

jFðθ, φÞj2 ¼Fðθ, φÞ � Fðθ, φÞ¼ sin2φ FE
2ðθ, φÞþ cos2φ FH

2ðθ, φÞ ð9-73Þ
The directivity is found from (9-59) and (9-62) with (9-73), (9-58b) for FE and (9-57a) for FH
because of the better fit to the measured pattern. This process yields a directivity of 6 dB,
which is close to the measured gain value at 9.32 GHz of 6.2 dB. [2] The directivity calculated
from (9-71) is 3.6 dB, which is inaccurate because of the small aperture size.

Most rectangular aperture distributions are separable, that is,

Eaðx, yÞ¼Ea1ðxÞEa2ðyÞ ð9-73Þ
It can then be shown (see Prob. 9.3-15) that the directivity is also separable:

D¼πDxDy cos θo ð9-74Þ
where

Dx,Dy ¼ directivity of a line source with a relative current distribution of Ea1(x), Ea2(y)
θo ¼main beam pointing direction relative to broadside

The cos θo factor represents the projection of the aperture physical area onto the plane
normal to the main beam maximum direction θo. This approximation is valid if the beam
is not scanned within several beamwidths of endfire. The directivity of a uniform rect-
angular aperture for broadside (θo ¼ 0) can be expressed as follows using (5-19):

Du ¼π
2Lx

l
2L

l
¼ 4π

l2
LxLy ð9-75Þ

which is (9-50).

9.3.2 Gain and Efficiencies

Gain equals directivity reduced by the amount of power lost on the antenna structure; see
Secs. 2.5 and 4.4.1 for previous discussions of gain. This is expressed using radiation
efficiency front (2-155) as

G¼ erD ð9-76Þ
Another form follows from (9-60) with input power in place of radiated power since
P ¼ erPin; also see (2-152):

G¼ 4πUm

Pin

ð9-77Þ

This form is often used when evaluating antennas by numerical computation.
Since the directivity of an aperture antenna is directly proportional to its physical

aperture area Ap, gain will be also:

G¼ 4π
l2

Ae ¼ 4π
l2

εapAp ¼ εapDu ð9-78Þ

where (4-27), (4-29), and (9-67) were used. Ae is the effective aperture and can be cal-
culated through this equation for any antenna, including arrays. From this, we see that
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Ae ¼ εapAp 0 # εap # 1 ð9-79Þ

Aperture efficiency εap is a measure of how efficiently the antenna physical area is uti-
lized. If εap is known, it is a simple matter to calculate the gain of an aperture antenna of
aperture area Ap using (9-78).

There are several contributions to the overall aperture efficiency. The following form
shows the factors separately and is appropriate for general use:

εap ¼ erεtεsεa ð9-80Þ

All these factors have values from zero to unity. We discussed radiation efficiency er in
Sec. 2.5; it represents all forms of dissipation on the antenna structure such as conductor
losses. In most aperture antennas, these losses are very low, so er � 1 and

G � D most aperture antennas ð9-81Þ
This may not hold if one of the following situations applies: The antenna size is less than
a wavelength, a lossy transmission line or device is considered to be part of the antenna,
or lossy materials are an integral part of the antenna such as a dielectric lens.

Aperture taper efficiency εt represents gain loss strictly due to the aperture amplitude
distribution. Often, the amplitude is tapered from the center to the edges of an aperture
intentionally to reduce sidelobes.εt is the ratio ofdirectivity computedwithonly the amplitude
taper present, Dt, to the directivity of the same aperture uniformly illuminated, Du:

εt ¼ Dt

Du

or Dt ¼ εtDu ð9-82Þ

Examples for line sources are given in Table 5-2. Also, in Example 9-4 we found
εt ¼ 0:81 for an open-ended waveguide.

Antennas that have a secondary radiating aperture illuminated by a primary (feed)
antenna, such as a parabolic reflector, experience spillover loss due to power from the
feed missing the radiating aperture. This spillover efficiency εs and aperture taper effi-
ciency are the main sources of gain loss in most aperture antennas. The product εtεs is
called the illumination efficiency εi:

The remaining factor in (9-80), εa, is achievement efficiency and can include many
subefficiencies. More subefficiencies will be treated with reflector antennas in Sec. 9.5,
but the following two are usually dominant:

εa � εcrεph ð9-83Þ
Cross-polarization efficiency, εcr, represents loss due to power being radiated in a
polarization state orthogonal to the intended polarization. Phase efficiency, εph, represents
loss due to nonuniform phase across the aperture.

Any of the efficiency factors can be expressed as a gain factor in decibels as

εnðdBÞ¼ 10 log εn ð9-84Þ
Gain “loss” is negative of this. For example, the aperture taper efficiency for Example 9-4
is εt ¼ 0:81, so εtðdBÞ¼�0:91 dB and the gain loss is þ0.91 dB. This is the only source
of loss in this case. In general, (9-78) and (9-80) can be written in dB form as

GðdBÞ¼ 10 log
4π
l2

Ap

� 	
þ erðdBÞþ εtðdBÞþ εsðdBÞþ εaðdBÞ ð9-85Þ

c09 7 April 2012; 9:12:0

364 Chapter 9 Aperture Antennas



Recall that polarization mismatch factor p and impedance mismatch factor q are not
included in aperture efficiency nor gain, but they play a role similar to the efficiency
factors (as discussed in Sec. 4.4).

9.3.3 Simple Directivity Formulas

It is often necessary to estimate the gain of an antenna, especially in system calculations. If
the gain cannot be measured, simple gain equations can be used. The most direct and
simplest approach is to use (9-78). The operating wavelength and physical aperture area are
easily obtained. Aperture efficiency can sometimes be determined by using a theoretical
model, as will be discussed for horns and reflectors later in this chapter. Inmany cases, it can
be estimated. In general εap ranges from 30% to 80% with 50% being a good overall value.
Optimum gain pyramidal horns have an aperture efficiency near 50%. Parabolic reflector
antennas have an efficiency of 55% or greater. Gain can be found by estimating the aperture
efficiency. For example, a 30-dB gain antenna with an actual efficiency of 55% will have a
gain error of 0.38 dB when an estimated efficiency of 60% is used.

It is very useful to have an approximate directivity expression that depends only on the
half-power beamwidths of the principal plane patterns. This is expected to yield good
results since we know that directivity varies inversely with the beam solid angle
ðD¼ 4π=ΩAÞ and the beam solid angle is primarily controlled by the main beam. Thus,
we expect to find that D~ ðHPEHPHÞ�1

, where the product of the principal plane
beamwidths approximates the beam solid angle. We now derive such relations.

The topic of directivity and gain estimation was introduced in Sec. 4.5.3, and the full
development along with references is found in [3]. The directivity of a rectangular
aperture with a separable distribution given by (9-74) for broadside operation ðθo ¼ 0Þ is

D¼πDxDy ð9-86Þ
where Dx and Dy are the directivities of a line source (or linear array) associated with the x
and y aperture distribution variations. But we know from studying several linear current
distributions that these directivities are related to the aperture extents as

Dx ¼ cx
2Lx

l
, Dy ¼ cy

2Ly

l
ð9-87Þ

where directivity factors cx and cy are constants that vary slightly with the distributions
Ea1ðxÞ and Ea2ðyÞ. For uniform line sources, cx ¼ cy ¼ 1; see (5-19). Using (9-87) in
(9-86) and rearranging give

D¼πcx
2Lx

l
cy
2Ly

l
¼ 4πcxcykxky

kx
l
Lx


 �
ky

l
Ly


 � ¼ 4πcxcykxky
HPxHPy

ð9-88Þ

The beamwidth factors kx and ky are constants associated with the following beamwidth
formulas that we have used frequently (see Table 5-2):

HPx ¼ kx
l
Lx

, HPy ¼ ky
l
Ly

ð9-89Þ

For uniform line sources, kx ¼ ky ¼ 0:886. The numerator in (9-88) is the directivity-
beamwidth product:

DB¼ 4πcxcykxky � 180

π

� 	2

½deg2� ð9-90Þ
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The general form of the directivity estimation formula based only on half-power beam-
widths in degrees is

D¼ DB

HPEoHPHo
ð9-91Þ

It is similar to the gain-bandwidth product that is commonly used to characterize circuit
devices. It remains relatively constant under a variety of operating circumstances because
as the amplitude is tapered, constants cx, cy decrease due to aperture taper efficiency
reduction, but the constants kx, ky increase due to beam broadening and nearly cancel the
decrease in cx, cy.

If we could determine the value of DB, (9-91) would be our desired simple expression
for directivity. For uniform distributions in x and y:

DBu ¼ 4πð1Þð1Þð0:886Þð0:886Þ¼ 9:86 rad2 ¼ 32,383 deg2 ð9-92Þ
Then (9-88) becomes

Durect ¼
32,383

HPEoHPHo

uniform rectangular aperture
directivity approximation

ð9-93Þ

where HPEo and HPHo are the principal plane beamwidths in degrees. Although this is
based on a uniform rectangular aperture, it produces accurate results for any pattern with
a moderately narrow major lobe and with minor lobes present. This relation can be used
for scanned beams if the beamwidths are those of the scanned beam. For uniform circular
apertures,

DBucir
¼ D � HP2 ¼ 4π

l2
πa2
�
1:02

l
2a

	2�
180

π

	2
¼ 33,709 deg2 uniform circular aperture

directivity approximation

ð9-94Þ

where (9-171) and (9-172) were used. This is very close to the directivity-beamwidth
product of 32,383 for uniform rectangular apertures. As the amplitude taper from the
center to the perimeter of a circular aperture is changed, DB varies from 33,709 to about
39,000 deg2 [4]. For a rectangular aperture with a cosine amplitude taper in the H-plane
and uniform phase, as found in the open-ended waveguide of Example 9-4, DB is 35,231
deg.2 The foregoing aperture distributions are included in Table 9-1, which lists the DB
values for several cases.

Some simple antennas and theoretical patterns have no minor lobes. The Gaussian and
cosq θ patterns are examples; see Probs. 9.3-18 and 9.3-19. The formula of Case 1 in
Table 9-1 for no side lobe patterns with DB¼ 41,253 applies to both omnidirectional and
unidirectional patterns. As mentioned in Sec. 4.5.3, the formula with 41,253 gives
1.47 dB for a half-wave dipole, which is close to the correct value of 1.63 dB. For the
unidirectional cosq θ pattern (zero for θ > 90�) the directivity is exactly D¼ 2(2qþ 1)
which is 13.4 dB for q¼ 5. The half-power beamwidth is 42.2� in both planes for this
pattern and the directivity is 41,2531(42.2)2¼ 13.6 dB, which is good agreement with the
exact value.

In practice, antennas produce radiation patterns with significant power content in side
lobes that do not progressively decrease away from the main beam. In addition, the main
beam rolls off more slowly than idealized patterns such as the sin u/u pattern for a
uniform line source. Thus, the solid angle of the main beam is larger than that predicted
by the product of the principal plane beamwidths. This together with the increased solid
angle contribution from the side lobes reduces the directivity compared to models based
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on ideal patterns. A variation of (9-92) that yields accurate gain values for antennas used
in practice is

G¼ 26,000

HPEoHPHo
ð9-95Þ

This is also (4-57). Gain is used here instead of directivity because it applies to com-
mercial antennas for which vendors quote measured gain values. It is assumed that ohmic
losses are very small so that G � D.

The simple formulas for finding directivity or gain are based only on half-power
beamwidths and thus accurate results cannot be counted on. There is not enough infor-
mation contained in the half-power beamwidths. The most important aspect of the
beamwidth-based directivity formulas is to select the appropriate formula. The intended
application for each DB value are included in Table 9-1. The following examples illus-
trate the power of the general formula of (9-95).

EXAMPLE 9-5 Pyramidal Horn Antenna

A pyramidal horn antenna (see Fig.9-18a), with a rectangular aperture of width A and height B,
designed for optimum gain has an aperture efficiency of 51%; so from (9-78)

G¼ 0:51
4π
l2

AB ð9-96Þ

As a specific example; a “standard gain horn” operating from 33 to 50 GHz has a measured gain
of 24.7 dB (G ¼ 295.1) at 40 GHz (l¼ 0.75 cm). The aperture dimensions of this horn are
A¼ 5.54 cm and B¼ 4.55 cm: Using these values of l, A, and B in (9-96) gives G¼ 287.2 ¼
24.6 dB. The gain can also be estimated from the principal plane half-power beamwidths,
measured at 40 GHz to be HPEo ¼ 9� and HPHo ¼ 10�. Then (9-95) yields G¼ 288.9¼ 24.6 dB.
The gain values from both of these methods agree very well with the measured gain of 24.7 dB.

EXAMPLE 9-6 Circular Parabolic Reflector Antenna

The aperture efficiency of a common circular parabolic reflector antenna with diameter D is
55%, so (9-78) becomes

Table 9-1 Directivity-Beamwidth Product for Use in Directivity Estimation: D � DB
HPEoHPHo

Case Pattern or Aperture Distribution Type DB [deg2]

1 No side lobe pattern, rectangular beam. See (4-56). 41,253
2 Uniform rectangular aperture. See (9-92). 32,383
3 Cosine-uniform rectangular aperture such as an open-ended

waveguide. See Example 9-3 and Prob. 9.3-20a.
35,231

4 Gaussian pattern. See Prob. 9.3-18 36,407
5 Uniform circular aperture. See Prob. 9.3-20b and Sec. 9.5.1. 33,709
6 Circular aperture with parabolic-on-a� 12 dB-pedestal distribution.

See Prob. 9.3-20c and Table 9-2.
38,933

7 General use for practical patterns with side lobes and null fill.
See Sec. 4.5.3 and (9-95).

26,000
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G¼ εap
4π
l2

Ap ¼ 0:55
4π
l2

π
D2

4

� 	
¼ 5:43

D2

l2
ð9-97Þ

For a specific example, a 3.66-m (12-ft) circular reflector operating at 11.7 GHz
(l¼ 2.564 cm) has a measured value of G ¼ 50.4 dB and HPEo ¼HPHo ¼ 0:5�: Again, we will
check our estimation formulas. First, (9-97) gives G¼ 5.43(366/2.564)2¼ 110,644¼ 50.4 dB.
Next, (9.95) yields G¼ 26,000/(0.5)2¼ 104,000¼ 50.2 dB. Both of these estimates are in good
agreement with the measured gain.

9.4 RECTANGULAR HORN ANTENNAS

Horn antennas are extremely popular antennas in the microwave region above about 1
GHz. Horns provide high gain, low VSWR, relatively wide bandwidth, low weight, and
they are rather easy to construct. As an additional benefit, the theoretical calculations for
horn antennas are achieved very closely in practice.

The three basic types of horn antennas that utilize rectangular geometry are illustrated
in Fig. 9-11. These horns are fed by a rectangular waveguide that is oriented with its
broad wall horizontal. For dominant waveguide mode excitation, the E-plane is then
vertical and the H-plane horizontal. If the horn serves to flare the broad wall dimension
and leave the narrow wall of the waveguide unchanged, it is called an H-plane sectoral
horn antenna as shown in Fig. 9-11a. On the other hand, if the horn serves to flare only
in the E-plane dimension, it is called an E-plane sectoral horn antenna and is shown in
Fig. 9-11b. When both waveguide dimensions are flared, it is referred to as a pyramidal
horn antenna, which is shown in Fig. 9-11c.

The operation of a horn antenna can be viewed as analogous to a megaphone, which is an
acoustic horn radiator providingdirectivity far soundwaves. The electromagnetic horn acts as
a transition from the waveguide mode to the free-space mode. This transition reduces
reflectedwaves and emphasizes the travelingwaves.This travelingwave behavior, aswehave
seen with other antennas, leads to low VSWR and wide bandwidth.

Aperture antennas are among the oldest antennas. Heinrich Hertz experimented with
microwave parabolic cylinder antennas in 1888. The Indian Physicist J. Chunder Bose
operated a pyramidal horn, which he called a “collecting funnel,” at 60 GHz in 1897. The

Ea

(a) H-plane sectoral horn. (b) E-plane sectoral horn.

(c) Pyramidal horn.

Ea

Ea

Figure 9-11 Rectangular horn antennas.
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horn antenna has been in widespread use since the 1940s; see Appendix H.8.6 books for
on horn antennas.

A characteristic of the horn antenna that we have not encountered until now is that the
longer path length from the connecting waveguide to the edge of the horn aperture
compared to the aperture center in the flare plane introduces a phase delay across the
aperture. This aperture “phase error” is not present in antennas such as an open-ended
waveguide and complicates the analysis. Phase errors occur in several areas of antennas
and they are treated in this section on rectangular horn antennas. In addition to the
rectangular horns, conical horn antennas are common. There are also special-purpose
horns including those with a dielectric or metallic plate lens in the aperture to correct for
the phase error and those with metallic ridges inside the horn to increase bandwidth
[H.8.5]. One of the most important applications for horn antennas is as a feed for a
reflector antenna. Popular feed horns have corrugations on the inside walls; these are
discussed in Sec. 9.7.

9.4.1 The H-Plane Sectoral Horn Antenna

The H-plane sectoral horn of Fig. 9-12a is fed from a rectangular waveguide of interior
dimensions a and b, with a the broadwall dimension. The aperture is of width A in the
H-plane and height b in the E-plane. The H-plane cross section of Fig. 9-12b reveals the
geometrical parameters. The following relationships for the geometry will be of use in
subsequent analysis:

‘2H ¼R2
1 þ

A

2

� 	2

ð9-98Þ

αH ¼ tan�1 A

2R1

� 	
ð9-99Þ

RH ¼ðA�aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘H
A

� 	2

� 1

4

s
ð9-100Þ

The preceding relations follow directly from Fig. 9-12b and it is an exercise to prove
(9-100). The dimensions A and RH (or ‘H or R1Þ must be determined to allow construction
of the horn. We first investigate the principles of operation and then present design
procedures for determining the horn dimensions.

The key to solving aperture antenna problems is to find the tangential fields over
the aperture. The aperture plane for the H-plane sectoral horn shown in Fig. 9-12a is in

Ea

(a) Overall geometry.
(b) Cross section through the xz-plane (H-plane).

y x

b

z
z

x AR

RH

�H

2   Hα R1b

a

A

a

Figure 9-12 H-plane sectoral horn antenna.
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the xy-plane. The aperture fields, of course, arise from the attached waveguide. As is
usually the case in practice, we will assume that the waveguide carries the dominant TE10

rectangular waveguide mode. The transverse fields in the waveguide are then given by

Ey ¼Eog cos
πx
a
e�jβgz ð9-101aÞ

Hz ¼ �Ey

Zg
ð9-101bÞ

where Zg ¼ η[(1�l/2a)2]�1/2 is the waveguide characteristic impedance. The fields
arriving at the aperture are essentially an expanded version of these waveguide fields.
However, the waves arriving at different points in the aperture are not in phase because of
the different path lengths. We will now determine this phase distribution.

The path length R from the (virtual) horn apex in the waveguide to the horn aperture
increases toward the horn mouth edges. Thus, waves arriving at aperture positions dis-
placed from the aperture center lag in phase relative to those arriving at the center. The
phase constant changes from that in the waveguide βg to the free space constant β as
waves progress down the horn. But for relatively large horns, the phase constant for
waves in the vicinity of the aperture is approximately that of free space. The aperture
phase variation in the x-direction is then given by

e�jβðR�R1Þ ð9-102Þ
The aperture phase is uniform in the y-direction. An approximate form for R using
Fig. 9-12b is

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ x2

q
¼R1 1þ x

R1

� 	2
" #1=2

ð9-103aÞ

� R1 1þ 1

2

x

R1

� 	2
" #

ð9-103bÞ

for x 	 R1 that holds if A=2 	 R1. Then

R�R1 � 1

2

x2

R1

ð9-104Þ

The amplitude distribution is an expanded version of that in the waveguide, so it is a
cosine taper in the x-direction. Using this fact and (9-104) in (9-102) leads to the aperture
electric field distribution

Eay ¼Eo cos
πx
A
e�jðβ=2R1Þx2 ð9-105Þ

inside the aperture and zero elsewhere. Note that Eayðx¼ 
 A=2Þ¼ 0 as required by
boundary conditions. The phase distribution is often referred to as a quadratic phase error,
since the deviation from a uniform phase condition varies as the square of the distance
from the aperture center. This result can be derived more rigorously by representing the
horn as a radial waveguide [H.3: Collin and Zucker, Part 1, p. 636].

The quadratic phase error complicates the radiation integral evaluation; however, the
result is worth the effort. Substituting (9-105) into (9-18b) yields
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Py ¼Eo

Z A=2

�A=2

cos
πx0

A
e�jðβ=2R1Þx02ejβux

0
dx0
Z b=2

�b=2

ejβvy
0
dy0 ð9-106Þ

After considerable work, this reduces to

Py ¼Eo

1

2

ffiffiffiffiffiffiffiffi
πR1

β

r
Iðθ, φÞ

� �
b
sin½ðβb=2Þsin θ sinφ
ðβb=2Þsin θ sinφÞ

� 
ð9-107Þ

where the factors in brackets correspond to each of the integrals in (9-106). The second
factor is that for a uniform line source. The first involves the function

Iðθ, φÞ¼ ejðR1=2βÞðβ sin θ cosφþπ=AÞ2 ½Cðs02Þ � jSðs02Þ � Cðs01Þþ jSðs01Þ�
þ ejðR1=2βÞðβ sin θ cosφ�π=AÞ2 ½Cðt02Þ � jSðt02Þ � Cðt01Þþ jSðt01Þ�

ð9-108Þ

where

s01 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

πβR1

s
� βA

2
�R1βu�πR1

A

0
@

1
A

s02 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

πβR1

s
βA
2

�R1βu�πR1

A

0
@

1
A

t01 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

πβR1

s
� βA

2
�R1βuþ πR1

A

0
@

1
A

t02 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

πβR1

s
βA
2

�R1βuþ πR1

A

0
@

1
A

ð9-109Þ

and the functions C(x) and S(x) are Fresnel integrals defined in (F-17) and tabulated in [5].
The total radiation fields can now be obtained. Using (9-29) gives the far-zone electric

field components

Eθ ¼ jβ
e�jβr

4πr
ð1þ cos θÞ sinφ Py ð9-110aÞ

Eφ ¼ jβ
e�jβr

4πr
ð1þ cos θÞ cosφ Py ð9-110bÞ

These together with (9-107) give the complete radiated electric field

E ¼ jβEob

ffiffiffiffiffiffiffiffi
πR1

β

s
e�jβr

4πr

�
1þ cos θ

2

	
ðθ̂ sinφþ f̂ cosφÞ

� sin½βb=2Þsin θ sinφ�ðβb=2Þsin θ sinφ I θ, φð Þ
ð9-111Þ

where I(θ, φ) is still given by (9-108).
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The complete radiation expression is rather cumbersome, so we will examine the
principal plane patterns. In the E-plane, φ¼ 90� and the normalized form of (9-111) is

FEðθÞ¼ 1þ cos θ
2

sin½ðβb=2Þ sin θ�
ðβb=2Þ sin θ ð9-112Þ

The second factor is the pattern of a uniform line source of length b along the y-axis, as
one would expect from the aperture distribution.

In the H-plane, φ¼ 0� and the normalized H-plane pattern is

FHðθÞ¼ 1þ cos θ
2

fHðθÞ¼ 1þ cos θ
2

Iðθ, φ¼ 0�Þ
Iðθ¼ 0�, φ¼ 0�Þ ð9-113Þ

The H-plane pattern can be displayed rather simply using universal radiation pattern plots
that are based on the maximum phase error across the aperture. The aperture distribution
phase error as a function of position x from (9-105) is

δ¼ β
2R1

x2 ð9-114Þ

Since the maximum value of x is A/2, the maximum phase error is

δmax ¼ β
2R1

A

2

� 	2

¼ 2π
A2

8lR1

¼ 2πt ð9-115Þ

where t is defined to be

t¼ A2

8lR1

¼ 1

8

A

l

� 	2
1

R1=l
ð9-116Þ

The function I(θ, φ¼ 0�) in (9-108) can be expressed in terms of t as

Iðθ, φ¼ 0�Þ¼ ejðπ=8tÞ½ðA=lÞ sin θþ 1=2�2 ½Cðs2Þ�jSðs2Þ�Cðs1Þþ jSðs1Þ�

þ ejðπ=8tÞ½ðA=lÞ sin θ�1=2�2 ½Cðt2Þ�jSðt2Þ�Cðt1Þþ jSðt1Þ�
ð9-117Þ

where

s1 ¼ 2
ffiffi
t

p �1� 1

4t

A

l
sin θ

0
@

1
A� 1

8t

2
4

3
5

s2 ¼ 2
ffiffi
t

p
1� 1

4t

A

l
sin θ

0
@

1
A� 1

8t

2
4

3
5

t1 ¼ 2
ffiffi
t

p �1� 1

4t

A

l
sin θ

0
@

1
Aþ 1

8t

2
4

3
5

t2 ¼ 2
ffiffi
t

p
1� 1

4t

A

l
sin θ

0
@

1
Aþ 1

8t

2
4

3
5

ð9-118Þ
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This function is plotted in Fig. 9-13 for various values of t. It is normalized to the main
beam peak for a zero phase error condition, which displays the directivity loss (reduction
of the main beam peak) as the maximum phase error 2πt increases.

The curves in Fig. 9-13 are universal pattern plots from which antenna patterns can be
derived for specific values of A, b, and l. The H-plane plots (solid curves) are a function of
(A/l) sin θ. The E-plane plot (dashed curve) is the second factor of (9-112), and the abscissa
for it is (b/l) sin θ. The factor (1þ cos θ)/2 that appears in both pattern functions (9-112) and
(9-113) is not included in Fig. 9-13. Formost situations, it has a small effect on the total pattern
and may be neglected. Its effect, however, is easily included by adding 20 log[(1þ cos θ)/2]
to the corresponding pattern value from the universal pattern. Note that the E-plane plot of
Fig. 9-13 has the �13.3-dB side lobe level of a uniform line source pattern, and the H-plane
constant phase (t ¼ 0) plot has the �23-dB side lobe level of a cosine-tapered line source
pattern. As the phase error increases, the H-plane pattern beamwidth and side lobes increase.

The pattern of fH(θ) in (9-113) can be evaluated with excellent results using a math-
ematics application computer package to perform the numerical integration:

fHðθÞp
Z A=2

�A=2

cos
πx0

A
e
�jβ

ffiffiffiffiffiffiffiffiffiffiffiffi
R2
1
þ x02

p
ejβ sin θ x0dx0 ð9-119Þ

where (9-106) was used with the exact phase error expression of (9-103a) rather than the
quadratic approximation of (9-103b). This avoids the foregoing complicated expressions
and permits inclusion of the exact phase.
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Figure 9-13 Universal radia-
tion patterns for the principal
planes of an H-plane sectoral
horn as shown in Fig. 9-12.
The factor ð1 þ cos θÞ=2 is not
included.
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The directivity for an H-plane sectoral horn is obtained from the aperture integration
method of (9-66) as

DH ¼ b

l
32

π
A

l

� 	
εHph ¼

4π
l2

εt εHph Ab ð9-120aÞ

where

εt ¼ 8

π2
ð9-120bÞ

εHph ¼
π2

64t
½Cðp1Þ�Cðp2Þ�2 þ ½Sðp1Þ�Sðp2Þ�2
n o

ð9-120cÞ

p1 ¼ 2
ffiffi
t

p
1þ 1

8t

� �
, p2 ¼ 2

ffiffi
t

p �1þ 1

8t

� �
ð9-120dÞ

Note that p1 ¼�s01 ¼ t02 and p2 ¼ s02 ¼�t01 from (9-108) for u ¼ 0. This expression explicitly
shows the two efficiency factors associated with aperture taper and phase, εt and εHph:

A family of universal directivity curves is given in Fig. 9-14, where lDH/b is plotted
versus A/l for various values of R1/l. Notice that for a given axial length R1, there is an
optimum aperture width A corresponding to the peak of the appropriate curve. The values
of A=l corresponding to optimum operation plotted versus R1=l produce a smooth curve
with the equation A=l¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3R1=l
p

, giving

A ¼
ffiffiffiffiffiffiffiffiffiffi
3lR1

p
optimum ð9-121Þ

For example, the value of A=l for the peak of the R1=l¼ 30 curve of Fig. 9-14 is 95, and

from (9-121), A=l¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3R1=l

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
3ð30Þp ¼ 9:49:
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Figure 9-14 Universal directivity curves for an H-plane sectoral horn.
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The optimum phase error parameter value corresponding to optimum directivity is
found from (9-116) with (9-121) as

top ¼ A2

8lR1

¼ 3

8
optimum ð9-122Þ

The optimum behavior of the directivity curves can be explained rather simply. For a
fixed axial length, as the aperture width A is increased from a small value, the directivity
increases by virtue of the increased aperture area. Optimum performance is reached when
t¼ top ¼ 3=8, which corresponds to a phase lag at the aperture edges ðx¼
A=2Þ of
δmax ¼ 2πtop ¼ 3π=4¼ 135�. As A is increased beyond the optimum point, the phase
deviations across the aperture lead to cancellations in the far field and decreased direc-
tivity, as can be seen from the pattern plots of Fig. 9-13.

The foregoing analysis can be performed without approximation by using numerical
techniques together with the exact phase error (9-l03a), as with the radiation integral in
(9-119), However, it is easier to use a corrected phase error parameter that includes the
effects of the exact phase error. The exact pattern is obtained if the value of t in (9-118) is
replaced by the following [6]:

te ¼ A

l

� 	2
1

8t
1 þ l

A

� 	2

16 t2

" #1=2
� 1

8<
:

9=
; exact ð9-123Þ

If the phase error is not large and the aperture is more than a few wavelengths, then te � t.
For example, the optimum case with a 3l aperture ðA=l¼ 3Þ has an exact phase error
parameter of te ¼ 0:354, which is close to the approximate value of 0.375. Similarly, exact
phase error conditions for directivity are obtained by replacing t with te in (9-120).

The half-power beamwidth for optimum performance can be determined from the
pattem plot of Fig. 9-13 for t¼ 3=8. The 3-dB down point on the main beam occurs
for ðA=lÞ sin θH ¼ 0:68, so the H-plane beamwidth for an optimum H-plane sectoral horn
is 2θH ¼ sin�1ð0:68l=AÞ; and for A�l,

HPH � 1:36
l
A
¼ 78�

l
A

optimum ð9-124Þ

9.4.2 The E-Plane Sectoral Horn Antenna

A rectangular horn antenna can also be formed by flaring the feed waveguide in the
E-plane. The resulting horn is referred to as an E-plane sectoral horn antenna as shown
in Fig. 9-15. The geometrical relationships for this horn are

‘2E ¼R2
2 þ

B

2

� 	2

ð9-125Þ

αE ¼ tan�1 B

2R2

� 	
ð9-126Þ

RE ¼ðB� bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘E
B

� 	2

� 1

4

s
ð9-127Þ

A similar line of reasoning as employed for the H-plane horn leads to the following
aperture electric field distribution for the E-plane horn:
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Eay ¼Eo cos
πx
a
e�jðβ=2R2Þy2 ð9-128Þ

The same steps as used with the H-plane sectoral horn yield the radiation field:

E¼ jβEo

ffiffiffiffiffiffiffiffi
πR2

β

s
4a

π
e�jβr

4πr
ejðβR2=2Þv

2ðθ̂ sinφþ f̂ cosφÞ

� 1 þ cos θ
2

cos½ðβa=2Þu�
1� ½ðβa=πÞu�2 Cðr2Þ�jSðr2Þ � Cðr1Þ þ jSðr1Þ½ �

ð9-129aÞ

where

r1 ¼
ffiffiffiffiffiffiffiffi
β
πR2

s
�B

2
�R2v

� 	
, r2 ¼

ffiffiffiffiffiffiffiffi
β
πR2

s
B

2
�R2v

� 	
ð9-129bÞ

The normalized H-plane pattern follows from this with φ¼ 0� as

FHðθÞ¼ 1 þ cos θ
2

cos½ðβa=2Þ sin θ�
1� ½ðβa=πÞ sin θ�2 ð9-130Þ

The second factor in this expression is the pattern of a uniform phase, cosine amplitude
tapered line source of length a.

The aperture phase error in the E-plane is approximated with the quadratic phase
error in (9-128) as δ¼ðβ=2R2Þy2. The maximum phase error occurs for y¼
B=2,
giving δmax ¼ðβ=2R2ÞðB=2Þ2 ¼ 2πðB2=8lR2Þ¼ 2π s, where we define the phase error
parameter s as

s¼ B2

8lR2

¼ 1

8

B

l

� 	2
1

R2=l
ð9-131Þ

The E-plane pattern magnitude from (9-129) with φ¼ 90� can be expressed in terms of s as

(a) Overall geometry. (b) Cross section through the yz-plane (E-plane).
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Figure 9-15 E-plane sectoral horn antenna.
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jFEðθÞj ¼ 1þ cos θ
2

jfEðθÞj

¼ 1 þ cos θ
2

½Cðr4Þ � Cðr3Þ�2 þ ½Sðr4Þ � Sðr3Þ�2
4½C2ð2 ffiffi

s
p Þ þ S2ð2 ffiffi

s
p Þ�

8<
:

9=
;

1=2 ð9-132aÞ

where

r3 ¼ 2
ffiffi
s

p �1� 1

4s

B

l
sin θ

� 	� �
, r4 ¼ 2

ffiffi
s

p
1� 1

4s

B

l
sin θ

� 	� �
ð9-132bÞ

Similar to (9-119) for theH-plane sectoral horn, the pattern of anE-plane sectoral horn can be
evaluated by direct numerical integration; fEðθÞ in (9-132a) is found from

fEðθÞ~
Z B=2

�B=2

e
�jβ

ffiffiffiffiffiffiffiffiffiffiffiffi
R2
2
þ y02

p
ejβ sin θ y0dy0 ð9-133Þ

The universal patterns for the E-plane sectoral horn are plotted in Fig. 9-16. The E-plane
patterns (solid curves) for various values of s are not normalized to 0 dB at the maximum
point, but rather are given relative to the no-phase error case, which is s ¼ 0 corresponding
to a uniform line source. TheH-plane pattern (dashed curve) is that of a cosine-tapered line
source, which is the second factor of (9-130). The factor ð1 þ cos θÞ=2 is not included in
these plots.

The directivity of the E-plane sectoral horn found from (9-66) is

DE ¼ a

l
32

π
B

l
εEph ¼

4π
l2

εt εEph aB ð9-134aÞ

where

εt ¼ 8

π2
ð9-134bÞ

εEph ¼
C2ðqÞþ S2ðqÞ

q2
ð9-134cÞ

q¼ Bffiffiffiffiffiffiffiffiffiffi
2lR2

p ¼ 2
ffiffi
s

p ð9-134dÞ

A family of universal directivity curves lDE=a for various values of R2=l is given in
Fig. 9-17 as a function of B=l. The peak of each curve corresponds to optimum directivity
for the value of R2. A curve fit to pairs of values of B=l and R2=l for optimum
conditions yields

B¼
ffiffiffiffiffiffiffiffiffiffi
2lR2

p
optimum ð9-135Þ

The corresponding value of s is

sop ¼ B2

8lR2

¼ 1

4
optimum ð9-136Þ
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Exact phase error conditions corresponding to spherical wave fronts in the aperture
plane can be included easily, replacing s by se [6]:

se ¼ B

l

� 	2
1

8s
1 þ l

B

� 	2

16s2

" #1=2
�1

8<
:

9=
; exact ð9-137Þ

That is, the pattern and directivity expressions of (9-132) and (9-134) are made exact by
using (9-137). However, in practice, accuracy cannot be expected when the aperture is
small, because the aperture fields are not well approximated by free-space conditions.

The half-power beamwidth relationship for the optimum horn follows from the
s ¼ 1/4 plot in Fig. 9-16 and is

HPE ¼ 2 sin�1 0:47

B=l
� 0:94

l
B
¼ 54�

l
B

optimum ð9-138Þ

Gain for horn antennas nearly equals directivity—that is, GE � DE and GH � DH . The
gain of an E-plane sectoral horn has been shown to be more accurately given by [7]

GE ¼ 16aB

l2ð1þlg=lÞ
C2ðq1Þþ S2ðq1Þ

q21
eπða=lÞð1�l=lgÞ ð9-139Þ

where lg ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðl=2aÞ2

q
is the wavelength of the dominant mode in the waveguide

feeding the antenna and q1 ¼B½ ffiffiffiffiffiffiffiffiffiffiffiffi
2lg‘E

p
cosðαE=2Þ��1

. This expression yields values that
agree quite well with experimental results. The values from (9-134) are less than those of
(9-139) by 20% or more.

9.4.3 The Pyramidal Horn Antenna

Probably the most popular form of the rectangular horn antenna is the pyramidal horn
antenna. As shown in Fig. 9-18, it is flared in both the E- and H-planes. This configu-
ration will lead to narrow beamwidths in both principal planes, forming a pencil beam.
The aperture electric field is obtained by combining the results for H- and E-plane
sectoral horns from (9-105) and (9-128) giving

Eay ¼ Eo cos
πx
A


 �
e�jðβ=2Þðx2=R1 þ y2=R2Þ ð9-140Þ

Following a procedure similar to that used for the sectoral horns will yield a general
radiation field expression. The principal plane patterns are the same as those obtained
from the sectoral horn calculations because the aperture distribution is separable as
in (9-72). To be precise, the E- and H-plane patterns of the pyramidal horn equal the
E-plane pattern of the E-plane sectoral horn and the H-plane pattern of the H-plane
sectoral horn. Therefore, the E-plane pattern of the pyramidal horn can be found from
the universal pattern plots (solid curves) of Fig. 9-16, and the H-plane pattern can be
found from the solid curves of Fig. 9-13.

Since pyramidal horns are used as gain standards at microwave frequencies, accurate
gain evaluation is important. The directivity of the pyramidal horn is found rather simply
from

Dp ¼ π
32

l
a
DE

� 	
l
b
DH

� 	
ð9-141Þ
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See Prob. 9.4-15. The terms in parentheses are obtained directly from the directivity
curves for sectoral horns of Figs. 9-14 and 9-17, respectively. Gain values computed with
(9-141) agree very well with experiment for sufficiently large horns. It includes the
geometrical optics fields and singly diffracted fields from the horn edges. The inclusion of
multiple diffraction and diffraction at the edges arising from reflections from the horn
interior leads to small oscillations in the gain about that predicted by (9-141) as a function
of frequency, and in agreement with experimental results [8].

It is instructive to examine the aperture efficiency contributions for horns. The
radiation efficiency er is close to unity, so we can take gain to be equal to directivity; see
(9-81). The two efficiencies that must be considered are the aperture taper efficiency εt
and phase efficiency εph:

εap ¼ εtεph ¼ εtεEphε
H
ph ð9-142Þ

where we decomposed total phase efficiency into factors due to phase errors in the E- and
H-planes. Gain is then expressed from (9-77) as

G ¼ 4π
l2

εapAB ¼ 4π
l2

εt ABεEph ε
H
ph ¼ Go εEph ε

H
ph ð9-143Þ

where Go is the gain without a phase error effect and includes aperture taper efficiency,
which was found in Example 9-4 to be εt¼ 0.81. The phase error efficiencies can be
found by evaluating directivity for the sectoral horns and removing the known taper
efficiency. The results of this process are plotted in Fig. 9-19 as a function of phase error
parameters s and t. The aperture efficiencies for optimum sectoral horns with s¼ 0.25 and
t¼ 0.375 are

εEap ¼ 0:649, εHap ¼ 0:643 optimum ð9-144Þ

(a) Overall geometry.

(b) Cross section through the xz-plane (H-plane). (c) Cross section through the yz-plane (E-plane).
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Figure 9-18 Pyramidal horn antenna.
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Both include εt¼ 0.81. So,

εEph ¼ εEap
εt

¼ 0:80, εHph ¼ εHap
εt

¼ 0:79 ð9-145Þ

The aperture efficiency of an optimum pyramidal horn from (9-142) is

εPap ¼ εtεEphε
H
ph ¼ 0:81ð0:80Þð0:79Þ ¼ 0:51 ð9-146Þ

It is common to use an aperture efficiency value of 50% for optimum gain pyramidal
horns.

The gain of an optimum gain pyramidal horn from (9-146) in (9-143) is

G ¼ 0:51
4π
l2

AB optimum pyramidal horn ð9-147Þ

It is popular to express horn gain in dB form by taking 10 log of (9-143):

GdB ¼ Go,dB þ εEph,dBðsÞ þ εHph,dBðtÞ ð9-148Þ
The last two terms are gain reduction factors associated with the phase errors of (9-120c)
and (9-134c). These phase efficiencies, before taking 10 log, can be approximated with
simple formulas [9]:

εEphðsÞ ¼ 1

4s
C2ð2 ffiffi

s
p Þ þ S2ð2 ffiffi

s
p� � � 1:00329� 0:11911s� 2:75224s2 ð9-149Þ

εHphðtÞ ¼ π2

64t
½Cðp1Þ � Cðp2Þ�2 þ ½Sðp1Þ � Sðp2Þ�2
n o

� 1:00323� 0:08784t � 1:27048t2 ð9-150Þ
The approximate formulas are valid from zero up to at least s¼ 0.262 and t¼ 0.397. For
example, s¼ 0.25 and t¼ 0.375 in the approximate formulas give the values in (9-144),
which are the points shown in Fig. 9-19. Increased accuracy is obtained if the exact phase
error parameters in (9-123) and (9-137) are used.
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Figure 9-19 Aperture efficiencies for E- and H-plane sectoral horns (left ordinate) and phase
efficiencies associated with E- and H-plane flares (right ordinate).
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Many applications for horns require a specified gain to be realized at a known oper-
ating frequency. Usually, the optimum gain design approach is used because it renders the
shortest axial length for the specified gain. We now derive the single design equation that
permits determination of the optimum horn geometry for the specified gain. The proce-
dure includes the connecting waveguide internal dimensions a and b as well as the horn
dimensions. There are three conditions that must be satisfied. The first two are that the
phase error in the E- and H-planes be those associated with optimum performance.
The third is that the structure of the pyramidal horn be physically realizable and properly
mated to the connecting waveguide. This can be seen from Fig. 9-18 to be

RE ¼ RH ¼ RP ð9-151Þ

From similar triangles in Fig. 9-18,

R1

RH

¼ A=2

A=2� a=2
¼ A

A� a
ð9-152Þ

R2

RE

¼ B=2

B=2� b=2
¼ B

B� b
ð9-153Þ

Imposing the optimum performance in the E-plane through (9-135) and substituting
(9-153), we obtain

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lREB

B� b

r
or B2 � bB� 2lRE ¼ 0 ð9-154Þ

which is a quadratic equation with one solution:

B ¼ 1

2
ðb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 8lRE

p
Þ ð9-155Þ

The second solution yields the impossible case of negative B and is ignored. Similarly, the
optimum performance condition for the H-plane of (9-122) together with (9-152) yields

RH ¼ A� a

A
R1 ¼ A� a

A

A2

3l

� 	
¼ A� a

3l
A ð9-156Þ

Imposing the physical realization condition of (9-151) with (9-156) in (9-155) gives

B ¼ 1

2
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 8AðA� aÞ

3

r !
ð9-157Þ

Linking this to the specified gain G gives

G ¼ 4π
l2

εap AB ¼ 4π
l2

εap A
1

2
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 8AðA� aÞ

3

r !
ð9-158Þ

Expanding to form a fourth-order equation in A gives the desired design equation [10]:

A4 � aA3 þ 3bGl2

8πεap
A ¼ 3G2l4

32π2ε2ap
pyramidal horn design equation ð9-159Þ
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It is possible to solve this quartic equation for its roots, but it is rather involved and the
solution is easily obtained using a numerical equation solver routine. Alternatively, it can
be solved by trial and error using a first guess approximation of

A1 ¼ 0:45l
ffiffiffiffi
G

p
ð9-160Þ

We now summarize the steps in the optimum horn design procedure:

Step 1: Specify the desired gain G at the operating wavelength l and specify the
connecting waveguide dimensions a and b.

Step 2: Solve (9-159) for A using εap¼ 0.5l.
Step 3: Find the remaining horn dimensions as follows: B from (9-147); R1 from

(9-121); RH from (9-152); lH from (9-98); R2 from (9-135); RE from (9-153);
and lE from (9-125).

Step 4: The correct solution can be verified by checking to see if RE equals RH and by
evaluating (9-131) and (9-116) to see if s¼ 0.25 and t¼ 0.375.

Horn antennas operate well over a bandwidth of about 50%. However, performance is
optimum only at the design frequency. Fig. 9-20 is again curve for the “standard gain
horn” in the 8.2 to 12.4 GHz band that is considered in Example 9-7. Note that gain
increases with frequency, which is characteristic of aperture antennas. The curve is not a
straight line as might seem to be the case from the explicit frequency-squared dependence
in (9-78). This is because aperture efficiency decreases with frequency due to increasing
phase errors, as shown in Fig. 9-20. Thus, an optimum gain horn is only “optimum” at its
design frequency.

Before closing this section with an example of optimum horn design, we comment on the
assumption that phase error arises from a spherical phase front in the aperture and
the wavelength there equals that of free space. A solution technique for rectangular horns is
available that uses a gradual change in phase velocity from the waveguide to the aperture by
treating eachpoint as a section of an infinitely longwaveguide of thatwidth [11].However, for
all but short horns with small apertures, gain does not differ noticeably from the foregoing
design approach.
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Figure 9-20 Directivity and aperture efficiency of the standard gain rectangular horn of
Example 9-7.
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EXAMPLE 9-7 Design of an Optimum Gain Pyramidal Horn Antenna

Commercial “standard gain” pyramidal horn antennas are available to cover the frequency
band from 8.2 to 12.4 GHz (X-band). They are fed from a WR90 waveguide with
a¼ 0.9 in.¼ 2.286 cm and b¼ 0.4 in.¼ 1.016 cm. As the gain curve in Fig. 9-20 indicates, the
aperture efficiency decreases rapidly with frequency. Therefore, the optimum design point is
chosen near the low end of the band to provide more uniform gain over the whole band.
Efficiency reduction due to increased phase errors at the high end of the band is significant, but
the aperture is much larger electrically so gain actually increases.

For this design example, we choose the optimum design point to be at 8.75 GHz, where
aperture efficiency is 51%. The desired gain is G¼ 21.75 dB or 102.175¼ 149.6 at 8.75 GHz
(l¼ 3.43 cm). The design equation of (9-159) is solved by trial and error beginning with
A1¼ 18.9 cm using (9-160). Step 3 of the design procedure gives all remaining horn
dimensions:

A ¼ 18.61 cm, B ¼ 14.75 cm
R1 ¼ 33.67 cm, R2 ¼ 31.72 cm
lH ¼ 34.93 cm, lE ¼ 32.56 cm
RH¼ 29.53 cm, RE ¼ 29.53 cm

These values are verified by noting that Rp¼RE¼RH and by evaluating (9-131) and (9-116) to
obtain the optimum values of s¼ 0.25 and t¼ 0.375. The gain value is verified using
the universal directivity curves R2/l¼ 9-3 and B/l¼ 4.3 with Fig. 9-17, giving lDE/a¼ 36,
and R1/l¼ 10.1 and A/l¼ 5.4 with Fig. 9-14, giving lDH/b¼ 43. Then from (9-141),

Dp ¼ π
32

l
a
DE

� 	
l
b
DH

� 	
¼ π

32
ð36Þð43Þ ¼ 152 ¼ 21:8 dB

which is very close to the design goal of 21.75 dB. Accurate evaluation of directivity
using (9-120c) and (9-134c) in (9-148) with sop ¼ 0:25 and top ¼ 0:375 gives a value
of 21.79 dB. The exact phase errors for this geometry are se ¼ 0:247 and te ¼ 0:368 from
(9-137) and (9-123); they lead to a directivity of 21.85 dB. The directivity as a function of
frequency is plotted in Fig. 9-20; sec Prob. 9.4-17.

The complete radiation patterns at 8.75 GHz are plotted in Fig. 9-21 including the
ð1 þ cos θÞ=2 factor. The half-power beamwidths are

HPE ¼ 12:4�, HPH ¼ 14:2�

0 dB
E-plane H-plane

−10

−20

−30

Figure 9-21 Principal plane patterns for
the optimum pyramidal horn antenna of
Example 9-7 at 8.75 GHz. The patterns
include the ð1þ cos θÞ=2 factor. HPE ¼ 12.4�
and HPH ¼ 14.2�.
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These agree exactly with the predicted values based on (9-138) and (9-124). Thus, the simple
half-power beamwidth formulas of (9-138) and (9-124) give good results for optimum horns.
The first side lobe of the E-plane and H-plane patterns in Fig. 9-21 are located at 16� and 44�
with values of �9.4 and �32.5 dB, respectively. The E- and H-plane first side lobe values
without the ð1þcos θÞ=2 factor included are �9.2 and �31.2 dB, respectively, and can be
found in Figs. 9-16 and 9-13. The gain (directivity) can also be estimated directly from
beamwidths using (9-95):

G ¼ 26,000

HPEoHPHo
¼ 26,000

ð12:4�Þð14:2�Þ ¼ 21:7 dB

which is close to the design value of 21.75 dB.

9.5 CIRCULAR APERTURES

An antenna that has a physical aperture opening with a circular shape is said to have a
circular aperture. Various forms of circular aperture antennas are encountered in practice.
In this section, we discuss ideal circular aperture distributions with uniform and tapered
amplitudes. This is followed in the next section by a study of parabolic reflector antennas
that are the most popular circular aperture antennas.

9.5.1 The Uniform Circular Aperture

A general circular aperture is shown in Fig. 9-22. If the aperture distribution amplitude
is constant, it is referred to as a uniform circular aperture. This is approximated by a
circular hole in a conducting sheet with a uniform plane wave incident from behind.
Suppose the aperture electric field is x-directed, or

Ea ¼ x̂Eo ρ0 # a ð9-161Þ
Then (9-14) gives

P ¼ x̂Eo

ZZ
Sa

ejβr̂
� r0dS0 ð9-162Þ

The general geometry for this radiation integral is shown in Fig. 2-7. It is applied to the
circular aperture geometry of Fig. 9-22 using cylindrical coordinates to describe source

z

r

y

x

a

R

Far-field point
(r, ,θ φ

φ

)

φ�

ρ

θ

�

Figure 9-22 The circular aperture.

c09 7 April 2012; 9:12:7

9.5 Circular Apertures 385



points in the xy-plane; see Appendix C.1 for a review of cylindrical coordinates. Then the
vector from the origin to an arbitrary point in the aperture becomes

r0 ¼ ρ0 ¼ ρ0cosφ x̂þρ0 sinφ ŷ ð9-163Þ
This with (C-4) yields

r̂ �r0 ¼ ρ0 sin θ ðcosφ cosφ0 þ sinφ sinφ0Þ
¼ ρ0 sin θ cosðφ� φ0Þ ð9-164Þ

Hence, (9-162) becomes

P ¼ x̂Eo

Z a

0

Z 2π

0

ejβρ
0sin θ cosðφ�φ0Þ dφ0

� �
ρ0dρ0

¼ x̂E02π
Z a

0

ρ0J0ðβρ0 sin θÞdρ0 ð9-165Þ

where (F-6) was used for the φ0 integration. J0ðxÞ is a Bessel function of the first kind and
zero order, which is unity at x ¼ 0 and is a decaying oscillatory function for increasing x.
The ρ0 integration can be performed usingZ

xJ0ðxÞ dx ¼ xJ1ðxÞ ð9-166Þ

which follows from (F-9). J1ðxÞ is a Bessel function of the first kind and first order, which
is zero for x ¼ 0 and is a decaying oscillatory function for increasing x. Transforming
variables as x ¼ βρ0 sin θ and using (9-166) in (9-165) yield

P ¼ x̂Eo 2π
a

β sin θ
J1ðβa sin θÞ ¼ x̂Px ð9-167Þ

The equivalent magnetic current formulation of (9-26) gives

E ¼ ðθ̂ cosφ� f̂ sinφ cosφÞjβ ejβr

2πr
Px ¼ p̂E0πa2jβ

e�jβr

2πr
f ðθÞ ð9-168Þ

where the polarization unit vector is

p̂ ¼ θ̂ cosφ� f̂ sinφ cos θ ð9-169Þ
and the relativevariation of the radiation integralPx normalized to unitymaximumatq ¼ 0� is

f ðθÞ ¼ 2J1ðβa sin θÞ
βa sin θ

ð9-170Þ

f ðθÞ is independent of φ due to the circular symmetry of the aperture distribution. In the
E-plane, φ ¼ 0� and (9-169) becomes p̂¼ θ̂, and f ðθÞ represents the Eθ component. In
the H-plane, φ ¼ 90� and (9-169) reduces to p̂ ¼ �f̂ cos θ; and f ðθÞ multiplied by
cos θ represents the Eφ component. This cos θ factor ensures that the electric field goes to
zero at θ ¼ 90� as required by the boundary condition on the tangential electric field on
the ground plane.

For large apertures, f ðθÞ gives a narrow main beam in the θ ¼ 0� direction for the
uniform phase aperture we are considering here. Thus, near the main beam, cos θ ¼ 1
since θ is small and (9-169) gives p̂ ¼ θ̂ cosφ� f̂ sinφ, which is the projection of the
aperture electric field vector x̂ tangent to the far field sphere; see (C-1.). In this case, all θ
dependence is contained in f ðθÞ. An example of f ðθÞ is plotted in Fig. 9-23 in the
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uv-plane for a ¼ 5l out to the limit of the visible region ðθ¼ 90�Þ. A plot of the radiation
pattern in any plane passing through the center of Fig. 9-23 is shown in Fig. 9-24. Note
the similarity of this pattern, 2J1ðxÞ=x, to the uniform line source pattern, sin x=x.

The half-power point of (9-170) occurs at βa sin θ¼ 1:6, so the half-power beam-
width for a�l is

R
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Figure 9-24 Pattern of a 10l diameter uniform circular aperture. It is the pattern in any plane
passing through the center of Fig. 9-23.

u v
Figure 9-23 Radiation pattern of a uniform amplitude, uniform phase, 10-wavelength
diameter circular aperture.
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HP ¼ 2θHP ¼ 2 sin�1 1:6

βa
� 2

1:6

π
l
2a

or

HP ¼ 1:02
l
2a

rad ¼ 58:4
l
2a

deg ð9-171Þ

For the 10l diameter example, HP ¼ 0.102 rad ¼ 5.84�. The side lobe level of any
uniform circular aperture pattern is �17.6 dB. This can be seen in Fig. 9-24. Since the
uniform circular aperture has uniform excitation amplitude, it has unity aperture taper
efficiency and the directivity, from (9-66), is

Du ¼ 4π
l2

Ap ¼ 4π
l2

πa2 ð9-172Þ

9.5.2 Tapered Circular Apertures

Many circular aperture antennas can be approximated as a radially symmetric circular
aperture with an aperture field amplitude distribution that is tapered from the center of the
aperture toward the edge. In practice, many circular aperture distributions are close to
radially symmetric and do not vary with φ0 (see Fig. 9-22). We shall assume this is the
case, and again we will confine our attention to a broadside circular aperture that is large
in terms of a wavelength. Then the pattern is well approximated by the unnormalized
radiation integral

funðθÞ ¼
Z 2π

0

Z a

0

Eaðρ0Þejβρ0sin θ cosðφ�φ0Þρ0 dρ0 dφ0 ð9-173Þ

Performing the integration over φ0 with the aid of (F-6) leads to

funðθÞ ¼ 2π
Z a

0

Eaðρ0Þρ0J0ðβρ0 sin θÞ dρ0 ð9-174Þ

This integral can be performed for various aperture tapers and normalized to obtain f ðθÞ.
The properties of several common circular aperture tapers are given in Table 9-2.

Similar data are available in the literature [4,12] including elliptical apertures [13].
Table 9-2 is analogous to Table 5-2 for line source distributions. The parabolic distri-
bution (n ¼ 1) of Table 9-2a provides a smooth taper from the aperture center to edge
where the aperture field is zero. When n ¼ 0, the distribution reduces to the uniform case
where, of course, aperture taper efficiency is unity; see (9-82) and (9-172). The parabolic
taper (n ¼ 1) yields lower side lobes at the expense of wider beamwidth and reduced
directivity compared to the uniform distribution. This effect is more pronounced for the
parabolic squared (n ¼ 2) distribution. The side-lobe level-beamwidth tradeoff can be
customized by using the parabolic-on-a-pedestal aperture distribution in Table 9-2b. The
pedestal height C is the edge (field) illumination relative to that at the center. This taper
can be used to model illuminations commonly encountered with a circular reflector
antenna, where the pedestal represents the fact that the feed antenna pattern is intercepted
by the reflector only out to the reflector rim. Again, we observe that as the taper becomes
more severe (n increases or C decreases), the side-lobe levels while the beam width
increases and directivity decreases. The data in Table 9-2 provide canonical forms for
use in modeling parabolic reflector antennas discussed in the next section.

The directivity-bandwidth product DBcir is found by a form of (9-90) appropriate to
tapered circular apertures using cxcy-c2 ¼ πεt and kxky-k2:
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Table 9-2 Characteristics of Tapered Circular Aperture Distributions

a. Parabolic taper

Eaðρ0Þ ¼ 1� ρ0

a

0
@

1
A

22
4

3
5
n

f ðθ, nÞ ¼ 2nþ 1ðn þ 1Þ!Jnþ 1ðβa sin θÞ
ðβa sin θÞnþ 1

Ea(ρ')

1.0
n = 0

n = 1

n = 2
0.5

0 aa
ρ '

n HP (rad)
Side Lobe
Level (dB) εt

Normalized
Pattern
f ðθ, nÞ Distribution

0 1:02
l
2a

�17.6 1.00 2J1ðβa sin θÞ
βa sin θ

Uniform

1 1:27
l
2a

�24.6 0.75 8J2ðβa sin θÞ
ðβa sin θÞ2

Parabolic

2 1:47
l
2a

�30.6 0.55 48J3ðβa sin θÞ
ðβa sin θÞ2

Parabolic squared

b. Parabolic taper on a pedestal

Eaðρ0Þ ¼ C þ ð1� CÞ 1� ρ0

a

� 	2
" #n

f ðθ, n, CÞ ¼
Cf ðθ, n ¼ 0Þ þ 1� C

n þ 1
f ðθ, nÞ

C þ 1� C

n þ 1

Ea(ρ')

1.0

n = 1

n = 2
C

0.5

0 aa
ρ '

Edge Illumination n ¼ 1 n ¼ 2

CdB C HP (rad)
Side Lobe
Level (dB) εt HP (rad)

Side Lobe
Level (dB) εt

�8 0.398 1:12
l
2a

�21.5 0.942 1:14
l
2a

�24.7 0.918

�10 0.316 1:14
l
2a

�22.3 0.917 1:17
l
2a

�27.0 0.877

�12 0.251 1:16
l
2a

�22.9 0.893 1:20
l
2a

�29.5 0.834

�14 0.200 1:17
l
2a

�23.4 0.871 1:23
l
2a

�31.7 0.792

�16 0.158 1:19
l
2a

�23.8 0.850 1:26
l
2a

�33.5 0.754

(Continued)
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DBcir ¼ π2εtk2
180

π

� 	2

¼ 32,400 εtk2 deg2 ð9-175Þ

For the range of values given in Table 9-2b, this product remains nearly constant,
leading to

D � DBcir

HP2
¼ 39,000

HP2
tapered circular aperture ð9-176Þ

where HP is the half-power beamwidth in all planes in degrees.
This section is closed by deriving the fundamental relation used to develop Table 9-2.

The parabolic distribution used in (9-174) gives

funðθÞ ¼ 2π
Z a

0

1� ρ0

a

� 	2
" #n

ρ0J0ðβρ0 sin θÞ dρ0 ð9-177Þ

The integral can be evaluated using

Z 1

0

ð1� x2ÞnxJ0ðbxÞ dx ¼ 2nn!

bnþ 1
Jnþ 1ðbÞ ð9-178Þ

by letting x ¼ ρ0=a and b ¼ βa sin θ. Then (9-177) reduces to

funðθÞ ¼ πa2

n þ 1
f ðθ, nÞ ð9-179Þ

where

f ðθ, nÞ ¼ 2nþ 1ðn þ 1Þ!Jnþ 1ðβa sin θÞ
ðβa sin θÞnþ 1

ð9-180Þ

is the normalized pattern function. The patterns given in Table 9-2a follow from (9-180).
The aperture tape efficiency is (see Prob. 9.5-4).

εt ¼
C þ 1� C

n þ 1

� �2

C2 þ 2Cð1� CÞ
n þ 1

þ ð1� CÞ2
2n þ 1

ð9-181Þ

Table 9-2 Continued

�18 0.126 1:20
l
2a

�24.1 0.833 1:29
l
2a

�34.5 0.719

�20 0.100 1:21
l
2a

�24.3 0.817 1:32
l
2a

�34.7 0.690

Interpolation equations for finding HP and εt when CdB is between �8 and �20 dB:

Quantity n ¼ 1 n ¼ 2

HP ¼ k
l
2a

k¼�0:008CdB þ 1:06 k ¼ �0:015CdB þ 1:02

εt εt¼0:01CdB þ 1:02 εt ¼ 0:019CdB þ 1:06
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9.6 REFLECTOR ANTENNAS

High-gain antennas are required for long-distance radio communication and high-
resolution radar applications. Reflector systems are perhaps the most widely used
high-gain antennas and routinely achieve gains far in excess of 30 dB in the microwave
region. Such gains would be difficult to obtain with any other single antenna we have
discussed thus far. Reflector, or “dish,” antennas are seen on towers, store rooftops, home
rooftops and lawns, and in many other locations. In this section, we consider the more
important reflector antenna configurations with emphasis on those that have circular
apertures. Before presenting the basic physics and mathematics leading to the reflector
antenna design principles, we give a brief history of reflectors.

Reflector antennas have their origins in optical telescopes. Refracting optical tele-
scopes were well known in the 17th century but suffered from aberrations. In 1663,
Scottish mathematician James Gregory (1638–1675) conceived the reflecting optical
telescope, but his construction attempts failed. It was Isaac Newton (1642–1727) who
built the first such instrument in 1672. Also in 1672, Cassegrain3 revealed his telescope
design employing two reflectors like Gregory’s but configured with the subreflector
between the main reflector and focal point rather than beyond the focal point. The antenna
counterparts of the Cassegrain and Gregorian reflectors are shown later in Fig. 9-32. The
first reflector to be used as an antenna was the cylindrical-parabolic reflector of Hertz in
1888, shown in Fig. 1-2. The first large reflecting antenna was a 9-6-m prime focus
reflector (i.e., no subreflector) antenna built by Grote Reber (1911–2002) in his backyard
in Wheaton, Illinois, in 1937, which he used for radio astronomy. He may have been the
first to use a waveguide cavity for a feed. He is often called the father of the large dish
antenna. Reber used the instrument to confirm Jansky’s initial discovery of extraterrestrial
noise which was discussed in Sec. 4.3. Reber’s actual antenna is now on display at
the National Radio Astronomy Observatory in Green Bank, West Virginia; see [www
.nrao.edu]. See [H.6: Hansen, Vol. I, Chap. 2] for more reflector history.

9.6.1 Parabolic Reflector Antenna Principles

The simplest reflector antenna consists of two components: A reflecting surface that is large
relative to a wavelength and a much smaller feed antenna. The most popular form is the
parabolic reflector antenna shown in Fig. 9-25a. The reflector (or “dish”) is a paraboloid
of revolution. The intersection of the reflector with any plane containing the reflector axis
(z-axis) forms a curve of the parabolic type shown in Fig. 9-25b. The equation describing the
parabolic reflector surface shape in the rectangular form using (ρ0, zf) is

ðρ0Þ2 ¼ 4FðF � zf Þ, ρ0 # a ð9-182Þ
The apex of the dish corresponds to ρ0 ¼ 0 and zf ¼ F, and the edge of the dish to
ρ0 ¼ a and zf ¼ F � a2=4F. For a given displacement ρ0 from the axis of the reflector,
the point R on the reflector surface is a distance rf away from the focal point O. The
parabolic curve can also be expressed in polar coordinates ðrf , θf Þ as

rf ¼ 2F

1 þ cos θf
¼ F sec2

θf
2

ð9-183Þ

Then the projection of this distance rf onto the aperture plane is

ρ0 ¼ rf sin θf ¼ 2F sin θf
1 þ cos θf

¼ 2F tan
θf
2

ð9-184Þ

3 Accurate historical information about Cassegain is not available. Even his first name is a subject of
debate.
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At the apex ðθf ¼ 0�Þ, rf ¼ F, and ρ0 ¼ 0. At the reflector edge ðθf ¼ θoÞ, rf ¼
2F=ð1 þ cos θoÞ and ρ0 ¼ a.

The axisymmetric parabolic reflector is completely specified with two parameters, the
diameter D and focal length F. Equivalently, the reflector is often stated in terms of D and
F/D, which give the size and shape (curvature rate), respectively. The “focal-length-to-
diameter” ratio F/D represents the curvature rate of the dish. In the limit as F/D
approaches infinity, the reflector becomes planar. A flat reflector “focuses” at infinity, and
a normally incident plane wave is reflected back as a plane wave (i.e., it is focused at
infinity). Shapes associated with commonly used reflectors are shown in Fig. 9-26.
When F/D is 0.25, the focal point lies in the plane passing through the rim. As indicated
in Fig. 9-25b, the angle from the feed axis (the zf-axis) to the reflector rim is related to
F/D using (9-184) at point Eðρ0 ¼ a, θf ¼ θoÞ as

x,

y

z
O

(a) Parabolic reflector and coordinate system. (b) Cross section of the reflector in the xz-plane.
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Figure 9-25 The axisymmetric parabolic reflector antenna.
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F

D
¼ 1

4 tan
θo
2

ð9-185aÞ

θo ¼ 2 tan�1 1

4
F

D

� 	
0
BB@

1
CCA ð9-185bÞ

The reflector design problem consists primarily of matching the feed antenna pattern to
the reflector. The usual goal is to have the feed pattern about 10 dB down in the direction
of the rim, for example, Ff ðθf ¼ θoÞ ¼ �10 dB. Feed antennas with this property can be
constructed for the commonly used F/D values of 0.3 to 1.0 and are discussed in Sec. 9.7.
The F/D choice also impacts on cross-polarization performance, as we shall see.

The focal distance of a reflector is easily calculated using diameter D and height H0.
This practical relation is found by solving (9-182) at the rim, where ρ0 ¼ D=2 and
zf ¼ F � H0, giving

F ¼ D2

16H0

ð9-186Þ

For example, when F=D¼ 1=4, this gives H0 ¼D=4; thus, H0 ¼ F, which is evident from
Fig. 9-26.

The following two very important properties make the parabolic reflector useful as an
antenna:

1. All rays leaving the focal point O are collimated after reflection from the reflector
and the reflected rays are parallel to the reflector axis (z-axis).

2. All path lengths from the focal point to the reflector and on to the aperture plane are
the same and are equal to 2F.

The terminology used here is that of geometrical optics (GO) which treats wave propa-
gation as rays that are normal to the equiphase surface. For a point source at the focus, the
wave fronts are spherical and all rays are along rf shown in Fig. 9-25. GO principles will
now be used to verify the above two properties.

The first property follows directly from the enforcement of the law of reflection
on the reflector surface; that is, αr ¼ αi in Fig. 9-25b. To show this, we first determine
the surface normal n̂ by evaluating the gradient of the parabolic curve equation,
Cp ¼ F� rf cos

2ðθf =2Þ ¼ 0, based on (9-183) in feed coordinates:

N ¼ ∇Cp ¼ ∇ F � rf cos
2 θf
2

� 	

¼ r̂f
@

@rf
þ θ̂f

1

rf

@

@θf
þ f̂f

1

rf sin θf
@

@φf

" #
Cp

¼ �r̂r cos
2 θf
2

þ θ̂f cos
θf
2
sin

θf
2

ð9-187Þ

Normalizing using N2 ¼ N � N ¼ cos2
θf
2
gives

n̂ ¼ N

N
¼ �r̂f cos

θf
2

þ θ̂f sin
θf
2

ð9-188Þ

The angles between the surface normal and the incident and reflected rays are then easily
found from
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cos αi ¼ �r̂f � n̂ ¼ cos
θf
2

ð9-189aÞ
cos αr ¼ ẑ � n̂ ¼ ð�r̂f cos θf þ θ̂f sin θf Þ � n̂

¼ cos θf cos
θf
2

þ sin θf sin
θf
2

¼ cos
θf
2

ð9-189bÞ

Comparing these two equations, we see that

αi ¼ αr ¼ θf
2

ð9-190Þ

proving that the law of reflection is satisfied. Also, note from Fig. 9-25b that
αi þ αr ¼ θf , which is consistent with (9-190).

The equal path length property follows from (9-183) as

OR þ RA ¼ total path length from focal point to aperture

¼ rf þ rf cos θf ¼ rf ð1 þ cos θf Þ ¼ 2F
ð9-191Þ

Since the total path length is constant (2F), the phase of waves arriving in the aperture plane
from a point source at the focus will also be constant. Thus, the parabolic reflector with a
feed that has a point phase center at the focal point will produce uniform phase across the
aperture plane. The aperture amplitude distribution, however, will not be uniform.

Reflector antennas are analyzed by tracing rays to the aperture and setting up an
aperture distribution that can be integrated to obtain the far-field pattern. Alternatively, an
equivalent surface current over the reflector can be integrated. In either case, GO prin-
ciples are used to determine the current distribution. Application of GO requires the
following to be true:

a. The radius of curvature of the main reflector is large compared to a wavelength and
the local region around each reflection point can be treated as planar.

b. The radius of curvature of the incoming wave from the feed is large and can be
treated locally at the reflection point as a plane wave.

In addition, with metallic objects we make the following assumption:

c. The reflector acts as a perfect conductor so that the incident and reflected wave
amplitudes are equal; in fact, Γ ¼ �1.

The law of reflection applied to a reflector (e.g., see property 1 for parabolic reflectors)
relies on these assumptions.

The parabolic reflector is inherently a very wideband antenna. The bandwidth of a
reflector is determined at the low-frequency end by the size of the reflector; it should be at
least several wavelengths in extent for GO principles to hold. At the high-frequency end,
performance is limited by the smoothness of the reflector surface. Surface distortions
must be much less than a wavelength to avoid phase errors in the aperture; see (9-235).
In practice, the bandwidth of a reflector antenna system is usually limited by the band-
width of the feed antenna rather than the reflector.

We now discuss techniques for analyzing reflector antennas. The techniques are not
limited to reflectors of parabolic shape, but we consider only parabolic reflector cases.

GO/Aperture Distribution Method. The most basic method of analyzing reflector
antennas is to use GO to determine the aperture field distribution and then find the far-
field radiation pattern using the aperture theory developed in Sec. 9.5. This is done by
tracing rays from the feed antenna to the aperture. First, we assume the feed is an isotropic
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radiator; the influence of the radiation pattern of a real feed antenna will he included later.
Since all rays from the feed travel the same physical distance to the aperture, the aperture
distribution of a parabolic reflector will be of uniform phase (this is true for all frequencies).
However, there is a nonuniform amplitude distribution introduced. This is due to the fact
that the power density of the rays leaving the isotropic feed falls off as 1=r2f since the wave
is spherical. After reflection, there is no longer any spreading loss since the rays are parallel
(i.e., focused at infinity), forming a section of plane wave. Hence, the aperture field
intensity varies as 1=rf . This is proved more formally below.

Geometrical optics (see Sec. 16.1) assumes that power density in free space follows
straight-line paths. Applied to this case, the power in a conical wedge of solid angle dΩ
with cross-sectional angle dθf as shown in Fig. 9-27 will remain confined to that conical
wedge as it progresses out from the feed. After reflection, the power associated with the
increment dθf arrives at the aperture plane in a thin ring of thickness dρ0 and area dA.
The power leaving the feed, assumed to be isotropic, and arriving at the aperture is
proportional to Pt dΩ, where Pt is the transmit power. This power is distributed over area
dA in the aperture plane. Thus, the power density in the aperture plane varies as

Saðρ0ÞpPt dΩ
dA

p
dΩ
dA

ð9-192Þ

since Pt is a constant. After integration over φf , dΩ ¼ 2π sin θf dθf and dA ¼
2πρ0 dρ0. So,

Saðρ0Þp 2π sin θf dθf
2πρ0 dρ0

¼ sin θf
ρ0

dθf
dρ0

ð9-193Þ

From (9-184),

dρ0

dθf
¼ d

dθf
2F tan

θf
2

� 	
¼ F sec2

θf
2

¼ rf ð9-194Þ

From (9-183) was used for the last equality. Then
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Figure 9-27 Axisymmetric, focus-fed para-
bolic reflector antenna in cross section.
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dθf
dρ0

¼ 1

rf
ð9-195Þ

Hence, (9-192) with (9-184) and (9-195) becomes

Sap
sin θf
rf sin θf

1

rf
¼ 1

r2f
ð9-196Þ

This proves the spherical wave nature of the feed radiation and is referred to as spherical
spreading loss. And since Eap

ffiffiffiffiffi
Sa

p
,

Eaðθf Þp 1

rf
ð9-197Þ

Thus, there is a natural amplitude taper in the aperture caused by the curvature of the
reflector.

If the primary (or feed) antenna is not isotropic, the effect of its normalized radiation
pattern Ff ðθf , φ0Þ can be included, using the coordinate system of Fig. 9-25 as

Eaðθf , φ0Þ ¼ Voe
�jβ2F Ff ðθf , φ0Þ

rf
ûr ð9-198Þ

where ûr, is the unit vector of the aperture electric field. The phase shift associated with
the 2F path length from the focal point to the aperture plane is also included. The
coordinates ρ0 and φ0 are appropriate for describing the aperture electric field. Feed
coordinates rf and θf are expressed in terms of the aperture coordinate ρ0 using

rf ¼ 4F2 þ ρ02

4F
ð9-199aÞ

θf ¼ 2 tan�1 ρ0

2F
ð9-199bÞ

which follow from (9-183) and (9-184). These transformations can be used with (9-198)
to obtain the aperture distribution at points ðρ0, φ0Þ from the feed antenna radiation pattern
Ff . It remains only to find the polarization of the aperture electric field vector by
determining ûr in (9-198). This follows by using the approximations that at the point of
reflection, the reflector behaves as if planar [assumption (a)] and is perfectly conducting
[assumption (c)]. Then the tangential component of the total electric field formed by the
sum of the incident and reflected wave electric fields, Ei þ Er, is zero at the reflector.
The law of reflection requires that n̂ bisect the incident and reflected rays; then,
Ei þ Er ¼ 2ðn̂ � EiÞn̂, or

Er ¼ 2ðn̂ � EiÞn̂� Ei ð9-200Þ
Since the reflector is assumed to be perfect [assumption (c) above], jErj ¼ jEi j; using
this to normalize the above equation gives

ûr ¼ 2ðn̂ � ûiÞn̂� ûi ð9-201Þ
where ûr ¼ Er=jErj and ûi ¼ Ei=jEij.

We can now write the radiation pattern function for the entire reflector system. The
Fourier transform of the aperture distribution follows from (9-164) and (9-198) in (9-14):
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P ¼ Vo

Z 2π

0

Z a

0

Ff ðθf , φ0Þ
rf

ûr e
jβρ0 sin θ cosðφ�φ0Þρ0 dρ0 dφ0 ð9-202Þ

for a circular projected aperture of radius a ¼ D=2. The complete radiation pattern then
follows from (9-29). A single reflector fed from a feed antenna at the focal point is often
called a focus-fed or prime-focus reflector antenna. The feed is the primary antenna and
the reflector forms the secondary antenna. The feed pattern is then the primary pattern
and the pattern from the antenna system as a whole is called the secondary pattern.

The uniform aperture phase associated with the GO formulation and the use of a real-
valued feed pattern function Ff ðθf , φ0Þ leads to a symmetric pattern function since the
Fourier transform of a real function is symmetric. Thus, the GO formulation always
renders a symmetric far-field pattern. However, for general situations, such as offset
reflectors to be discussed in Sec. 9.6.3, reflector antennas have asymmetric patterns.
A more accurate analysis technique is now introduced for this purpose.

PO/Surface Current Method. The theory developed in Sec. 2.4 indicates that we can
integrate over a current distribution to obtain the far field. For reflector antennas, we use
the current on the metallic reflector generated by the incident fields from the feed antenna.
Using the general expression for the magnetic vector potential of (2-101) appropriate to a
surface current in the general far-field electric field expression of (2-105) gives

E ¼ �jωμ
e�jβr

4πr

ZZ
Sr

½Js � ðJs � r̂Þr̂�ejβr̂ � r̂ dS0 ð9-203Þ

where Sr is the surface of the reflector. This approach, of course, is viable only if the
surface current Js is known. The current is found using the physical-optics (PO)
approximation that makes use of assumptions (a) to (c) used in GO analysis to relate the
surface current to the incident field from the feed. That is, the wave arriving from the feed
behaves locally as a plane wave and reflects from a locally-plane reflector that behaves as
a perfect reflector. Then the incident magnetic field from the feed Hi and the magnetic
field associated with the reflected wave Hr are related to the surface current from (2-26)
as Js ¼ Htan, where Htan is the tangential component of the total magnetic field that is
given by n̂ � ðHi þ HrÞ. But for a perfect conductor, the reflected magnetic field equals
the incident magnetic field, so we are led to

Js ¼ 2n̂ � Hi over the front of the reflector

0 on the shadowed side of the reflector

�
ð9-204Þ

Thus, the PO approximation interprets the reflector surface Sr as having a nonzero current
only over portions illuminated by the feed using ray tracing. Also, the discontinuity at the
rim of the reflector separating the illuminated and shadowed regions is neglected. This
effect as well as direct radiation and blockage/scattering effects due to the feed assembly
can be treated separately.

The integral in (9-203) can be evaluated analytically for arbitrary symmetrical
reflectors. Known as Rusch’s method, it ushered in the era of modern reflector antenna
analysis and remains the most popular approach for reflector analysis [H.8.5: Scott].
However, the integration is usually performed numerically [14]. In addition, a Jacobian
transformation is usually employed to evaluate the integral using aperture plane coor-
dinates, avoiding direct integration over the curved reflector surface [H.6: Lo & Lee,
Eds., Chap. 15]. Series expansions are also employed for efficient integral evaluation [15].
A number of codes are available to evaluate reflector antenna performance. The powerful
code GRASP [Appendix G.2] includes PO evaluation. Web PRAC (Parabolic Reflector
Antenna Code) is a user-friendly web-based program, and is described in Appendix G.
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For axisymmetric reflectors, the GO/aperture integration (GO/AI) and PO/surface
integration (PO/SI) methods yield identical results [16]. However, the two methods, as
conventionally applied to offset reflectors, yield different results, with the GO/AI method
being slightly inferior. In addition, the pattern accuracy of both formulations degrades
beyond the main beam and first few side lobes; the pattern effects in this region are
dominated by diffraction from the reflector rim.

Diffraction Effects. The GO/AI and PO/SI techniques just discussed produce accurate
results for the main beam and first few side lobes. The pattern in the far-out side-lobe
region is found by including diffraction (i.e., scattering) from the rim of the reflector (and
subreflector in dual systems) and any other sharp edges. This is done by augmenting GO
with diffraction effects through the use of the geometrical theory of diffraction (GTD) or
by augmenting PO with a fringe current on the rim using the physical theory of diffraction
(PTD). GTD and PTD are discussed in Chap. 16 and an example of diffraction from a
reflector is treated in Sec. 16.18.

The level of back-directed radiation is quantified with front-to-back ratio (F/B) which
is the ratio of the main beam peak to the pattern value 180� away. For good reflector, this
is greater than 40 dB.

9.6.2 The Axisymmetric Parabolic Reflector Antenna

In this and the remaining subsections, we discuss commonly used reflector geometries
and their properties. The most popular reflector antenna is the focus-fed, axisymmetric
parabolic reflector illustrated in Fig. 9-27. The feed is located at the focal point and its
main beam peak is directed toward the reflector center. Usually, the feed is some type of
horn antenna as discussed in Sec. 9.7. A simple dipole feed can be used at UHF
frequencies and below.

Consider a feed antenna that is linearly polarized along the x-axis (coincident with the
xf -axis) and pointed toward the reflector apex with E- and H-plane patterns CEðθf Þ
and CHðθf Þ, respectively. The aperture field produced by a feed that is represented by
(9-239a) is found from (9-198) and (9-201) with (9-188) as

Ea ¼ Vo

e�jβ2F

rf
f�x̂ CEðθf Þ cos2φf þ CHðθf Þ sin2φf

� �
þ ŷ½CEðθf Þ � CHðθf Þ� sinφf cosφf g

ð9-205Þ

If the feed is balanced (i.e., has a rotationally symmetric normalized pattern Ff ðθf Þ,
(9-205) simplifies to EaB� x̂Ff ðθf Þ. So, cross-polarization (i.e., y-polarized field content)
arises from the imbalance between the E- and H-plane copolarized patterns, CE and CH .
Eq. (9-205) also shows that cross-polarization in the aperture is maximum in the φf ¼ 45�,
135� plane. This aperture cross-polarization causes far-field cross-polarization. The aper-
ture distribution of (9-205) can be integrated to find the radiation. It is instructive to
examine (9-205) for an xf -polarized short dipole, which has CE ¼ cos θf and CH ¼ 1:

Ea ¼ Vo

e�jβ2F

rf
f�x̂ðcos θf cos2 φf þ sin2φf Þ

� ŷð1� cos θf Þsin φf cosφf g
ð9-206Þ

The field components are shown in Fig. 9-28. The bracketed expression reduces
to �x̂ cos θf in the E-plane ðφf ¼ 0�Þ and �x̂ in the H-plane ðφf ¼ 90�Þ. Thus, the
aperture electric field is polarized parallel to the short dipole feed in the principal planes.
Note that the aperture fields are inverted relative to the incident fields due to the reflection
process. For nonprincipal planes, field components orthogonal to that of the feed
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(e.g., y-components) are present, giving cross-polarization. These cross-polarization prop-
erties are also true for the reflector radiation. The cross-polarization content in the aperture
fields cancels in principal planes. This follows from the opposite phase of the cross-polarized
components on opposite halves of the aperture. However, in nonprincipal planes, complete
cancellation in the far field does not occur. The largest cross-polarized components intro-
duced by the reflector occur in the 45� planes. We also note a very important conclusion: As
F/D increases, cross-polarization decreases. This follows by first noting from (9-185b) that
as F/D increases, the maximum feed angle θf ¼ θo decreases and thus the second term in
the (9-206) decreases, leading to reduced cross-polarization. In the limit of large F/D, the
reflector becomes flat and does not introduce cross-polarization.

Fig. 9-29 presents pattern data computed with the GRASP commercial reflector
antenna code [Appendix G] using physical optics, surface current integration. A half-
wave dipole, as is frequently encountered in practice, is used as the feed and behaves
similar to the short dipole discussed above. Cross-polarization for reflectors is defined as
ratio of the cross-polarization relative to the co-polarized pattern peak value. The peak
cross-polarization is denoted as XPOL. Note the lack of cross-polarization in the prin-
cipal planes in Fig. 9-29 and a cross-polar peak of XPOL ¼ �26:3 dB in the φ ¼ 45�

plane. Ignoring the polarization vector and substituting (9-199) into (9-198) give an
expression for the normalized aperture illumination in aperture coordinates:

Eanðρ0Þ ¼ Ff θf ¼ 2 tan�1 ρ0

2F

� 	
1

1 þ ρ0

2F

� 	2
ð9-207aÞ

¼ 20 logjFf j � 20 log 1 þ ρ0

2F

� 	2
" #

½dB� ð9-207bÞ

This permits direct evaluation of the electric field variation as a function of aperture
radius ρ0. The second factor in (9-207a) is called the spherical spreading factor and
represents the fact that the distance rf from the focal point to the reflector increases with
ρ0. As noted earlier, rays leaving the feed at the focal point spread out in all directions,
leading to r�1

f field variation. After reflection from the main reflector, the rays are col-
limated and no longer experience amplitude decay. The exact form of the aperture
distribution has less influence on the pattern and directivity of a reflector than the edge
illumination EI, or edge taper ET, that are found from (9-207b) for ρ0 ¼ a as

EI ¼ 20 log½Eanðρ0 ¼ aÞ� ¼ �FT� Lsph ¼ �ET ½dB� ð9-208Þ

x

y H-plane

E-plane

Figure 9-28 Electric field distribution in
the aperture of a parabolic reflector for an
x-polarized short dipole feed antenna. The
electric field is decomposed into its x- and
y-components. See (9-206).
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where
EI ¼ edge illumination (dB) ¼ 20 log C
ET ¼ edge taper (dB) ¼ –EI
FT ¼ feed taper (at aperture edge) (dB) ¼ �20 log½Ff ðθoÞ�
Lsph ¼ spherical spreading loss at the aperture edge (dB)

¼ 20 log 1 þ 1

16
F

D

� 	2

2
6664

3
7775 ¼ �20 log

1 þ cos θo
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Figure 9-29 An axisymmetric parabolic reflector with diameterD ¼ 100l andF=D ¼ 0:5 fed
by a half-wave dipole located at the focus. All data were computed using GRASP. (Reproduced
by permission from [H.11.1: Stutzman]. ª 1993 by Artech House, Inc., Norwood, MA.)
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The above expression for Lsph shows that F/D influences the amount of spherical spreading
loss. It varies from 0.5 to 6.0 dB for F/D, ranging from 1.0 down to 0.25; see Fig. 9-26.

Reflector antenna performance can be estimated by a simple process. First, the aperture
distribution is obtained using (9-207). Next, a canonical distribution, such as presented in
Table 9-2, is selected so that it approximates the aperture distribution. Then the performance
parameters of Table 9-2 such as HP, SLL, and εt are evaluated. Interpolation can be used
for intermediate values. This canonical distribution method is illustrated in Example 9-8.
The approach is described in detail in [4], which also contains useful data for canonical
distributions; however, [4] failed to include spherical spreading loss.
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Figure 9-29 (continued)
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EXAMPLE 9-8 A 28-GHz Parabolic Reflector Antenna

An axisymmetric parabolic reflector antenna 1.22m (4 ft) in diameter was used at Virginia Tech
to receive signals at 28.56 GHz (l ¼ 1.05 cm) from a geostationary satellite. It has an
F=D ¼ 0.5. It is constructed of epoxy fiberglass with a reflective metal layer and has an rms
surface accuracy of 0.2mm. The feed antenna is a circular corrugated horn positioned at the focal
point and supported with four thin-profile spars. The feed pattern is slightly asymmetric, but
analysis using a canonical distribution yields good results. We assume the feed to be rotationally
symmetric and equal to the measured E-plane feed pattern with the following beamwidths:

HP ¼ 56�, BW�10dB ¼ 104� ð9-209Þ
The angle from the center to the edge of the reflector from (9-185b) is θo ¼ 53:1�. The 10-dB
down pointwill fall inside the reflector since BW�10dB=2 ¼ 52�.We assume the feed pattern has
fallen to 11 dB down at the rim, that is, FT ¼ 11 dB. The spherical spreading loss from (9-208b)
is Lsph ¼ 1:9 dB. The edge taper from (9-208a) is ET ¼ 11 þ 1:9 ¼ 12:9 dB. The corre-
sponding edge illuminationEI ¼ �12:9 dB (C ¼ 0.2265) falls between the values in Table 9-2.
Linearly interpolating for the parabolic-squared taper yields the following results:

HP ¼ 1:214
l
D

¼ 0:599� ð0:605� measuredÞ ð9-210aÞ
SLL ¼ �30:5 dB ð � 28:5 dB measuredÞ ð9-210bÞ

Note the very good agreement to measured values. The complete pattern using f ðθ, n, CÞ from
Table 9-2b is plotted in Fig. 9-30.Also shown for comparison is themeasured pattern; it is identical
to the computed pattern over the main beam. The gain is evaluated in Prob. 9.6-6.

9.6.3 Offset Parabolic Reflectors

The blockage of the main reflector aperture by the feed assembly and associated support
structure can be reduced or eliminated by using the offset reflector shown in Fig. 9-31.
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Figure 9-30 Measured (solid) E-plane pattern for the 1.22-m-diameter axisymmetric para-
bolic reflector at 28.56 GHz in Example 9-8. The computed (dashed) pattern is for a parabolic-
squared circular aperture distribution on a �12:9-dB pedestal.
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The properties of the offset reflector are similar to the axisymmetric counterpart formed
by using the diameter of the parent reflector Dp. That is, the appropriate focal-length-to-
diameter ratio to use for electrical performance is F=Dp. This degrades cross-polarization
performance because F=Dp , F=D for the offset reflector and cross-polarization levels
rise with decreasing F=Dp for an unbalanced feed pointed toward the apex, that is,
θf ¼ 0�. More will be said about cross-polarization in Sec. 9.6.5.

The analysis techniques explained in the previous section for axisymmetric geometries
are general and are also used for offset reflectors. The GO/AI and PO/SI methods yield
identical results if the integration surface is chosen to cap the reflector [16]. This is the natural
choice for axisymmetric reflectors where the integration plane is selected to coincide with
the physical aperture plane that contains the rim of the reflector, thus capping it. However,
if the projected aperture of an offset reflector (as shown in Fig. 9-31) is used for the integration
surface, GO/AI and PO/SI yield different results [17]. PO/SI is thought to produce more
accurate patterns, especially for cross-polarization. In addition, the pattern accuracy of
both formulations degrades beyond the main beam and first few side lobes. Pattern effects in
this region are dominated by diffraction from the reflector rim; see Sec. 16.18.

Pencil beams are required in communication applications for high gain and in remote
sensing for scene resolution. Offset reflectors are used not only to produce pencil beam
patterns, as discussed so far, but also for contoured beams. Offset reflectors produce contour
beams by using an array of feed horns or by shaping the main reflector (e.g., using a non-
parabolic shape). Offset reflectors avoid blockage caused by hardware in the feed region
created by a cluster of feed horns. A popular application for contour beams is on geosta-
tionary satellites that have antennas which produce a footprint conforming to a desired
Earth region such as a country or continent. The multiple feed antennas in the focal region,
each creating a scanned beam according to the displacement from the focal point, are
combined with amplitude and phase weighting to produce a custom-shaped main beam.

9.6.4 Dual Reflector Antennas

A subreflector can be introduced between the feed and main reflector of a single reflector
antenna to form a dual reflector. The most popular dual reflector is the axisymmetric
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Figure 9-31 Geometry of the offset parabolic reflector of diameter D and focal
length F. The axis of symmetry s bisects the parent parabolic curve of diameter Dp. Note
that the axisymmetric case occurs when H ¼ 0.
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Cassegrain reflector antenna shown in Fig. 9-32. The main reflector is parabolic and the
subreflector is hyperbolic. This geometry again produces a focused system. That is, rays
associated with an incoming plane wave parallel to the axis of symmetry reflect from both
reflectors and intersect at a point, the focal point F0. The virtual focal point F shown in
Fig. 9-32 is the point from which transmitted rays appear to emanate with a spherical
wave front after reflection from the subreflector. That is, the feed is mirrored in the
subreflector.

A second form of the dual reflector antenna that offers perfect focusing is theGregorian
reflector. It has a concave rather than a convex subreflector that is located beyond the virtual
focal point as shown in Fig. 9-32 and has an elliptical cross section. Both Cassegrain and
Gregorian systems have their origins in optical telescopes and are named for their inventors.
The subreflector for the Gregorian system being more distant from the main reflector
requires more support structure. Both types of dual reflectors offer the major advantage of
having the feed conveniently located near the apex of the main reflector. This provides
convenient access to the feed region, reduces the support problem for feed hardware, and
eliminates the long transmission line run, and associated losses, often used to reach the
focal region of a prime focus reflector. Another advantage of dual reflectors over single
reflectors is in low-noise Earth terminal applications. The feed radiation not intercepted by
the subreflector of a dual reflector (e.g., spillover) is directed toward the low-noise sky
region rather than the more noisy ground as seen by the spillover of a single reflector.

The subreflector shapes used in the classical dual reflector configurations are described
by conic sections. Fig. 9-33 gives the geometry of the subreflectors in subreflector
coordinates xs and zs; the complete subreflector surface is obtained by rotating the curve
about the zs-axis. The subreflector is determined by its diameter Ds and eccentricity e.
The shape is controlled by the eccentricity, which is defined as defined as

e ¼ c

a

> 1 hyperbola ðCassegrainÞ
, 1 ellipse ðGregorianÞ

�
ð9-211Þ

Example shapes are e ¼N, planar; e¼ 0, circle (sphere); and e¼ 1, parabola. The
equations of the subreflector surfaces are given by

z2s
a2

� x2s
b2

¼ 1 b2 ¼ c2 � a2 hyperbola

z2s
a2

þ x2s
b2

¼ 1 b2 ¼ a2 � c2 ellipse

ð9-212Þ

The distances c and a are shown in Fig. 9-33. The required hyperbolic shape will be
proved for the Cassegrain dual reflector. This derivation also illustrates how the subre-
flector operates.

Elliptical
subreflector
(Gregorian)

Feed
antenna

Parabolic
main

reflector

Ds
FF'D

Hyperbolic
subreflector
(Cassegrain)

Figure 9-32 Classical axisymmetrical dual
reflectors. The main reflector is parabolic
and the subreflector is hyperbolic (elliptical)
for the Cassegrain (Gregorian) reflector
system.
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The function of the hyperbolic subreflector is to convert the incoming wave from a
feed antenna located at the focal point F0 to a spherical wave front w that appears to
originate from the virtual focal point F. For this to be true, the optical path (total distance)
from F0 to wavefront w must be constant. Enforcement of this condition determines the
subreflector shape. As seen from Fig. 9-33a, the total distance from F0 to A including
reflection from the subreflector is

F0R þ RA ¼ F0V þ VB ¼ c þ a þ VB ð9-213Þ
But

RA ¼ FA � FR ¼ FB � FR ð9-214Þ
where FB ¼ FA was based on the exiting wave being spherical. This in (9-213) leads to

F0R � FR ¼ c þ a� ðFB � VBÞ ¼ c þ a� ðc� aÞ ¼ 2a ð9-215Þ
This result coincides with the following definition of a hyperbola: A hyperbola is the
locus of a point that moves such that the difference of its distances, F0R � FR, from two
fixed points, F0 and F, is equal to a constant, 2a.

Dual reflectors can be modeled with a single equivalent parabolic reflector as shown in
Fig. 9-34 for the axisymmetric Cassegrain reflector. The equivalent parabola has the same
diameter ðDe ¼ DÞ, but a focal length ðFeÞ longer than that of the main reflector (F):

Fe ¼ e þ 1

e� 1
F ¼ MF ð9-216Þ

whereM is called themagnification. From (9-211), e > 1 for the hyperbolic subreflector of
a Cassegrain reflector, soM > 1 and Fe > F. This increased effective focal length provides
several advantages, which are noted by examining the equivalent (single) parabolic
reflector with diameterD and focal length Fe, and thus larger focal-length-to-diameter ratio
than the actual dual reflector. First, as noted in Sec. 9.6.2, cross-polarization in the far-field
pattern improves with larger focal length-to-diameter ratio. Second, there is less spherical
spreading loss at the rim of the main reflector; see (9-207). Finally, main beam scan per-
formance is improved. This follows because the larger the focal-length-to-diameter ratio is,

(a) Hyperbolic subreflector. (b) Elliptical subreflector.
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Figure 9-33 Geometry of classical subreflectors.
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the less the radiation pattern deteriorates as the feed antenna is laterally displaced (in the
xsys-plane). This is explained by examining the limiting case of an infinite focal length-
to-diameter ratio case (e.g., a flat main reflector) in which no deterioration occurs for
reflection off normal incidence. The equivalent parabola concept applies to dual offset
reflectors also [18].

In a single reflector antenna system, the phase front from the feed antenna is converted
to the desired exiting phase front. This is usually a spherical to planar conversion as
accomplished with a parabolic reflector. Limited aperture amplitude control is accom-
plished through feed taper and F/D; see (9-208). This is true for traditional single and dual
reflectors with a parabolic main reflector. However, if both reflector shapes in dual
reflectors are allowed to be “shaped,” both the aperture amplitude and phase can be
controlled. In the usual synthesis case, the subreflector has a highly tapered illumination
to reduce spillover and is shaped to spread the reflected rays out for uniform amplitude.
This requires shaping of the main reflector. The topic of dual reflector synthesis is rather
advanced, but can be understood with the following simplified explanation [19–22]. In
principle, the shapes of both the main reflector and the subreflector can be determined
exactly for axisymmetric systems [21] and for offset dual reflectors [22]. As in the above-
mentioned case, the shapes of dual reflectors can be determined to yield uniform aperture
amplitude and phase, giving maximum aperture utilization. The design problem is to
convert the rather broad feed antenna radiation pattern to a nearly uniform amplitude and
phase aperture distribution while keeping spillover acceptable. The concept is to under-
illuminate the subreflector in order to reduce its spillover and then increase its curvature
over classical shape to direct reflected rays to edges of the main reflector. Within the limit
of geometrical optics, main reflector spillover is avoided with proper reflector sizing.
Shaping of the subreflector changes the total path length from the feed to the aperture. But
that can be nearly compensated for by shaping the main reflector to correct for phase
errors introduced by subreflector shaping. The amount of main reflector shape change is
on the same order as subreflector shape change because both introduce about the same
phase error. However, subreflector shaping almost completely controls the aperture
amplitude distribution. This sequential shaping does not yield an exact solution but avoids
the difficult mathematics associated with the exact approach, which requires simulta-
neous solution for the reflector shapes.

Dual-shaped reflectors are in wide use for high-gain axisymmetric systems such as
satellite communications Earth terminals with main reflectors larger than a few meters in
diameter. Shaped offset dual reflectors for smaller systems are also being used. One of
the highest reported measured aperture efficiencies (85%) was achieved with a 1.5-m
main reflector in an offset dual shaped reflector configuration operated at 31GHz. [23]

Equivalent
parabolic
reflectorF

F
2c

F'
θo

Fe

Figure 9-34 The equivalent single parabolic reflector for a Cassegrain dual reflector.
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Theoretical predictions for larger main reflectors indicate that more than 90% efficiency
is possible. [23] Dual reflectors can also be designed for low side lobes. [24]

For the synthesis of dual-shaped reflectors, it is common to use geometrical optics
(GO) during the design process. The previous discussion of shaped reflectors for high
efficiency is a good example. After the reflector shapes are determined using GO-based
synthesis, a computer code is then employed to accurately determine performance
parameters such as gain, side-lobe level, and cross-polarization. There are two popular
approaches for the computer analysis of dual reflectors: GTD/PO that uses the geomet-
rical theory of diffraction (GTD is treated in Chap. 16) on the subreflector and PO on the
main reflector, and PO/PO that uses PO on both the subreflector and main reflector. For
small subreflectors less than about 10l, PO/PO is thought to give more accurate results.
GTD/PO is usually used for electrically large reflector systems because PO/PO compu-
tations are very time consuming.

9.6.5 Cross-Polarization and Scanning Properties of Reflector Antennas

Reflectors are used in many situations, including dual polarized operation that permits
two communication channels on the same frequency. This requires the two polarizations
to be nearly orthogonal. A second popular use for reflectors is to scan a single main beam
or to form multiple narrow beams with the same large main reflector by displacing the
feed(s) from the focal point. Both cross-polarization and beam scanning are discussed in
this section.

Analysis of the axisymmetric parabolic reflector in Sec. 9.6.2 showed that for a purely
polarized but unbalanced feed, such as a dipole, reflector-induced cross-polarization is
zero in the principal planes and is maximum in the 45� planes; see Fig. 9-29. A balanced
feed with a rotationally symmetric pattern (see Sec. 9.6.2) positioned with its perfect
phase center at the focus produces no far-field cross-polarization based on GO analysis.
However, PO analysis of an axisymmetric reflector with a balanced feed does yield a
small cross-polarized pattern. In practice, the feed is usually responsible for the dominant
contribution to cross-polarization from axisymmetric reflectors.

As noted in Sec. 9.6.2, the cross-polarization of axisymmetric reflectors decreases with
increasing F/D. That is, as the dish curvature reduces, less cross-polarization is intro-
duced. This is easily remembered because as F/D becomes larger, the reflector becomes
flatter and a flat reflector does not depolarize. If the feed antenna pattern is rotationally
symmetric (e.g., balanced) and purely polarized, cross-polarization is reduced signifi-
cantly, but a residual level remains due to axial (z-directed) currents on the reflector.

Cross-polarization behavior for offset reflectors is more complex. The general
geometry is shown in Fig. 9-31. As explained in Sec. 9.6.3, the parent reflector diameter
must be used for electrical performance. Since F/D of the actual offset reflector is greater
in F=Dp, for the parent reflector, cross-polarization will be worse in an offset reflector.
This assumes that the feed is directed toward the apex; that is, ψf ¼ 0�. This would lead
to considerable spillover. Instead, the feed is usually pointed so that its axis bisects the
angle subtended by the reflector ðψf ¼ ψBÞ or the ray along the feed axis arrives in
the center of the projected aperture ðψf ¼ ψCÞ. The influence of feed pointing angle
is illustrated in Fig. 9-35 for an offset reflector with a diameter of 85:5l, offset height
h ¼ D=8, and F=D ¼ 0:3. The feed is linearly polarized with a circularly symmetric
pattern (e.g., balanced feed) and a 10-dB beamwidth of 70�. This geometry yields results
that are representative of offset reflectors used in practice. In this example, the bisector
angle is ψB ¼ 45:1� and the angle of the central ray is ψC ¼ 49:7�. Note in Fig. 9-35
that cross-polarization performance degrades as the feed pointing angle increases.
However, gain shows a broad peak centered on ψf ¼ 47�, which is between ψB and ψC.
Side-lobe level is fairly constant with pointing angle as long as ψf > 30�. It turns out that
the feed pointing angle ψf ¼ ψE that leads to equal edge illuminations ðEIL ¼ EIUÞ
produces very low side lobes with only small penalties in gain and cross-polarization [25].
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In this example, ψE ¼ 49:6�, where SLL ¼ –30.1 dB. An important fundamental limita-
tion on offset reflectors is apparent from Fig. 9-35. For maximum gain (i.e., aperture effi-
ciency), cross-polarization is on the order of –23 dB, which is unacceptably high in many
applications.

Cross-polarization performance of single offset reflectors is summarized in Fig. 9-36.
The cross-polarization for a balanced feed linearly polarized will be maximum in the plane
of asymmetry (yz-plane) and zero in the plane of symmetry (xz-plane). [H.11.1:Stutzman;
p.102; 26; 27] The polarization in the (secondary) pattern of a reflector antenna is influenced
by both the cross-polarization of the (primary) feed pattern, XPOLF, as well as that intro-
duced by the reflector,XPOLR. So far,we have neglected any feed cross-polarization, that is,
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F=Dp ¼ 0:3, and h ¼ D=8. The bisector angle is ψB ¼ 45:1�. The central ray angle is
ψC ¼ 49:7�. The feed is balanced and linearly polarized. (Used with permission from Terada
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XPOLF ¼ 0. Since cross-polarization requires a code such as a physical optics code for
exact evaluation, an approximate technique is very useful. Aworst-case estimate of cross-
polarization of the reflector system is found by adding the contributions [28]:

XPOLS ¼ XPOLF þ XPOLR ð9-217Þ
For example, a feed with �30-dB cross-polarization (XPOLF ¼ 0.0316) used in a
reflector with �23-dB cross-polarization (XPOLR ¼ 0.0708) gives XPOLS ¼ 0.1024 ¼
–19.8 dB.

The situation is much different for a circularly polarized (CP), balanced feed as
indicated in Fig. 9-36. There is no cross-polarization; however, the main beam “squints”
off axis in the yz-plane [26, 27, 29]. The main beam rotates (or squints) to opposite sides
of the reflector axis for opposite senses of CP. Note that with CP feeds, the sense of CP
radiated from the reflector will be opposite that of the feed due to the sense reversal
encountered during reflection.

The advantages of the offset reflector of Sec. 9.6.3 and the dual reflector of Sec. 9.6.4
can be combined in the form of a dual offset reflector. Aperture blockage is eliminated
and the subreflector introduces a second design variable for reducing cross-polarization
far below that of a single offset reflector. The performance of a dual offset reflector can be
evaluated in a manner similar to that for the axisymmetric dual reflector by using an
equivalent single paraboloid with the same diameter as the main reflector and a focal
length given by Fe ¼ MF from (9-216). If the dual reflector geometry is chosen such that
the feed axis of the original system is coincident with the equivalent paraboloid axis,
cross-polarization will be minimum.

Reflector antennas designed for high gain are focused systems. That is, an incomingwave
parallel to the axis of themain reflector will be focused to a small region near the focal point.
This leads to a simple antenna system, but limits beam scanning possibilities if rotating the
entire reflector system is to be avoided. Some beam scanning is possible by displacing
the feed off the focal point. This can be understood by considering a planar reflector with a
small feed antenna that is displaced (and tilted back to aim at the reflector) from the axis
perpendicular to the reflector. The reflected wave, or main beam from the reflector, will exit
at an angle equal to the displacement angle. A similar effect applies to parabolic reflectors as
shown in Fig. 9-37, where the feed antenna is laterally displaced a distance δ in the focal
plane. If the reflector is flat ðF=D¼NÞ, the angle of the beam scan angle θB equals the feed
tilt angle θF . For curved reflectors ðF,NÞ, the beam scan angle will be less than the
feed tilt angle. Scanning is quantified with beam deviation factor (BDF):

BDF ¼ θB
θF

ð9-218Þ

BDF is maximum at unity for a flat reflector and decreases with decreasing F=D or F=Dp

for axisymmetric and offset reflectors, respectively. The following approximate expres-
sion can be used for small displacements δ [30]:

BDF ¼
1 þ 0:36 4

F

D

� ��2

1 þ 4
F

D

� ��2
ð9-219Þ

Lateral feed displacement introduces a planar phase front tilted with respect to the
aperture plane that is responsible for scanning the beam in a direction opposite to
the displacement, as indicated in Fig. 9-37. However, nonlinear phase as a function of
position in the aperture plane is also introduced, leading to pattern distortion, including
beam broadening, and gain loss [31]. These effects worsen with increasing displacement
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and lower F/D values. One characteristic pattern distortion is a high first side lobe called
the coma lobe on the reflector axis side of the main beam.

Multiple reflectors can also be scanned by displacement of the feed off the focal point.
Dual reflectors offer the advantage of a longer effective focal length through the equiv-
alent parabolic reflector; see (9-216). This leads to better scan performance. Application
of an equivalent single paraboloid provides approximate results for small scan angles with
dual offset reflectors [32]. Advanced techniques can be used with tri-reflectors to mini-
mize motion during scan [33, 34].

9.6.6 Gain Calculations for Reflector Antennas

Aperture antennas usually have an obvious physical aperture of area Ap through which
energy passes on its way to the far field. The maximum achievable gain for an aperture
antenna from (9-67)

Gmax ¼ Du ¼ 4π
l2

Ap ð9-220Þ

This gain is possible only under the ideal circumstances of a uniform amplitude, uniform
phase antenna with no spillover or ohmic losses present. In practice, these conditions are
not satisfied and gain is decreased from ideal, as represented through the following:

G ¼ εapDu ¼ εap
4π
l2

Ap ð9-221Þ

where εap is aperture efficiency and 0# εap # 1; see (9-78) and (9-79). Since wavelength
and physical aperture area are easily found, the study of gain reduces to one of aperture
efficiency, which can be expressed as a product of subefficiencies:

εap ¼ erεtεsεa ð9-222Þ
where

er ¼ radiation efficiency
εt ¼ aperture taper efficiency
εs ¼ spillover efficiency
εa ¼ achievement efficiency

We now explain each of these efficiencies.
Aperture taper efficiency is obtained by working with that portion of the power that

reaches the aperture. That is, if we ignore achievement and spillover losses, (9-66) for a
circular reflector aperture of radius a leads to

εt ¼ 1

πa2

Z 2π

0

Z a

0

Eaðρ0, φ0Þρ0 dρ0 dφ0
����

����
2

Z 2π

0

Z a

0

j Eaðρ0, φ0Þj2ρ0 dρ0 dφ0
ð9-223Þ

θB

θF F δ
D

Figure 9-37 Beam scanning of a reflector antenna
by feed displacement.
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This expression can be written directly in terms of the known feed antenna pattern by
transforming to feed angles:

εt ¼ 4F2

πa2

Z 2π

0

Z θo

0

Ff ðθf , φ0Þ tan θf
2

dθf dφ0
����

����
2

Z 2π

0

Z θo

0

j Ff ðθf , φ0Þj2 sin θf dθf dφ0
ð9-224Þ

The aperture taper efficiency can be evaluated from the feed pattern using this expression.
The feed antenna radiation pattern has the greatest influence on reflector antenna gain by

its control over the aperture distribution and aperture taper efficiency, as discussed in
Sec. 9.6.2. Since the feed pattern will extend beyond the rim of the reflector, the associated
power will not be redirected by the reflector into the main beam and consequently gain is
reduced. This is referred to as spillover and the associated efficiency factor is called
spillover efficiency εs, which is defined as the fraction of power radiated by the feed that is
intercepted by the main reflector of a single reflector or the subreflector of a dual reflector.

Spillover efficiency measures that portion of the feed pattern that is intercepted by the
main reflector (and redirected through the aperture into the main beam) relative to
the total feed power:

εs ¼

Z 2π

0

Z θo

0

jFf ðθf , φ0Þj2 sin θf dθf dφ0

Z 2π

0

Z π

0

j Ff ðθf , φ0Þj2 sin θf dθf dφ0
ð9-225Þ

Notice that the numerator involves an integral over the feed pattern only out to the angular
extent of the reflector, whereas the denominator integral extends over the entire feed pattern.

The reflector design problem reduces to a tradeoff between aperture taper and spillover
through feed antenna choice. A broad feed pattern introduces little amplitude taper
across the aperture, but there will be a significant spillover as illustrated in Fig. 9-38a.
The spillover problem is solved by using a feed with a narrow pattern as illustrated in
Fig. 9-38b. However, now the feed pattern taper is large, leading to low aperture taper
efficiency.

Taper and spillover efficiencies can be combined to form illumination efficiency εi to
completely account for feed pattern and main reflector effects. That is, εi yields total aperture
efficiency under ideal circumstances of no ohmic losses ðer ¼ 1Þ and no achievement
losses ðεa ¼ 1Þ. Multiplying (9-224) and (9-225) and using a ¼ 2F tanðθo=2Þ from (9-185a)
lead to

ε t is high

ε s is low

ε t is low

ε s is high

High spillover

(a) Broad feed pattern giving high aperture taper
      efficiency but low spillover efficiency.

(b) Narrow feed pattern giving high spillover efficiency
      but low aperture taper efficiency.

Low spillover

Figure 9-38 Illustration of the influence of the feed antenna pattern on reflector aperture taper
and spillover.
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εi ¼ εtεs ¼ Gf

4π2
cot2

θo
2

Z 2π

0

Z θo

0

Ff ðθf , φ0Þ tan θf
2

dθf dφ0
����

����
2

ð9-226Þ

Here, we have made use of the following expression for the gain of the feed:

Gf ¼ 4πZ 2π

0

Z π

0

jFf ðθf , φ0Þj2 sin θf dθf dφ0
ð9-227Þ

This is actually feed directivity, but feed ohmic losses are included in er for the entire
reflector system.

An ideal, and unrealizable, feed antenna pattern would compensate for spherical
spreading loss by increasing with angle off axis and then abruptly falling to zero in the
direction of the rim to avoid spillover. This pattern follows from (9-196) and (9-194) as

Ff ðθf , φf Þ ¼
cos2

θo
2
sec2

θf
2

θf # θσ

0 θf > θσ

ideal feed

8><
>: ð9-228Þ

which is normalized to a peak of unity at θf ¼ θo. Using this in (9-226) yields an effi-
ciency of εi ¼ 1; see Prob. 9.6-12. Thus, the ideal feed pattern of (9-228) will lead to
100% aperture efficiency if no ohmic or achievement losses are present. The ideal feed
must, however, be infinitely large in order to produce the discontinuous pattern.

Usually, (9-226) cannot be evaluated analytically and must either be estimated based
on canonical distributions or evaluated numerically. However, there is one feed pattern
function that is used to model the patterns of real feeds such as conical corrugated
horns and that can be handled analytically. This pattern, which is discussed in detail in
Sec. 9.7.4, is the rotationally symmetric pattern of

Ff ðθf Þ ¼
cos2 θf θf #

π
2

0 θf >
π
2

8>>><
>>>:

ð9-229Þ

The evaluation of (9-225) and (9-227) using this feed model is straightforward and yields

εs ¼ 1� cos2qþ 1 θo ð9-230Þ
Gf ¼ 2ð2q þ 1Þ ð9-231Þ

The evaluation of εt in (7-226) is more difficult. Expressions for εi follow for a few q
values [H.3: Silver, p. 425].

εi ¼ cot2
θo
2

24 sin2
θo
2

þ ln cos
θo
2

0
@

1
A

2
4

3
5
2

q ¼ 1

40 sin4
θo
2

þ ln cos
θo
2

0
@

1
A

2
4

3
5
2

q ¼ 2

14
1

2
sin2θo þ 1

3
ð1� cos θoÞ3 þ 2 ln cos

θo
2

0
@

1
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2
4

3
5
2

q ¼ 3

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9-232Þ

c09 7 April 2012; 9:12:17

412 Chapter 9 Aperture Antennas



The edge illumination EI for this distribution from (9-208a) is

EI ¼ 1 þ cos θo
2

cosqθo ð9-233Þ

The q-value of 2 is representative of situations encountered in practice. The taper and
spillover efficiencies and their product found from (9-230) and (9-232) are plotted in
Fig. 9-39. The tradeoff between taper and spillover is evident. The peak value is about
εi ¼ 82% and occurs for an edge illumination of about EIdB ¼ �11dB. Thus, we arrive
at a general rule: Peak aperture efficiency of a parabolic reflector occurs for an edge
illumination of about �11 dB, or Eanðρ0 ¼ aÞ ¼ 0:28. It turns out that the peak illumi-
nation efficiency for q-values of 1 to 4 is near 82%; see Prob. 9.6-16. In practice, the
highest achievable aperture efficiency for a single reflector using a nearly rotationally
symmetric feed pattern is about 75%. If simple feeds such as an open-ended waveguide
are used, the aperture efficiency is about 60%. We now examine the remaining effi-
ciencies responsible for gain reduction.

The several factors that reduce gain for practical implementation reasons are lumped
together into achievement efficiency, which is expressed using subefficiencies as

εa ¼ εrsεcrεblkεφrεφf ð9-234Þ
where

εrs ¼ random surface error efficiency
εcr ¼ cross-polarization efficiency
εblk ¼ aperture blockage efficiency
εφr ¼ reflector phase error efficiency
εφf ¼ feed phase error efficiency

All these efficiencies can range from 0 to 1, but for properly designed systems they are
just slightly less than unity. We now discuss them.

Random surface deviations from the ideal shape of a reflector cause gain reduction
and side-lobe increase. This is due to the distortions in the aperture phase because of the
consequent departure from equal ray path lengths of a focused reflector system. Random
surface error efficiency εrs is the efficiency factor associated with gain loss from random
reflector surface errors. This efficiency can be expressed in terms of the rms
surface deviation δ, which is approximately one-third of the peak-to-peak error. For

ε i = ε tεs
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surface errors that are not large and that have a correlation length that is small compared
to the reflector size,

εrs ¼ e�ð4πδ=lÞ2 ¼ 685:8ðδ=lÞ2 dB ð9-235Þ

2π=l converts the surface errors to phase and the additional factor of 2 accounts for the
two-way path of the reflected rays. This result was derived for a flat reflector with
Gaussian distributed errors, but it works well in practice [35]. It can be seen from (9-235)
that for δ 	 l, the efficiency is nearly 100%. For a fixed random error δ, as frequency
increases such that δ varies from 0:01l and 0:1l, the efficiency decreases from 0.98 to
0.21. The corresponding gain loss from (9-235) is 0.07 to 6.9 dB. We conclude that
random error loss is in transition for δ near 0:01l. Smaller errors are negligible, whereas
larger errors can be a significant problem. The manufacturing techniques for a reflector
determine its surface accuracy. Machined metal reflectors are the most accurate with δ
near 0.04 mm (0.001 in.). Mass production of reflectors that are a few meters in diameter
or less using presses and molds yields slightly larger errors and this accuracy degrades for
larger reflectors.

Cross-polarization efficiency εcr has contributions due to the reflector(s) and the feed
antenna. The former is usually small (except for offset reflectors) and is neglected. Feed
antennas have a component that is orthogonal to the desired polarization. The associated
power ends up in the far field and is wasted—hence, a gain loss. Typical feeds yield εcr
values from 96 to 99% [36], corresponding to gain losses of from 0.2 to 0.04 dB.

Structures placed in front of a reflector such as the feed, subreflector, and support
hardware will block rays exiting the aperture and scatter power into the side-lobe region.
A simple approximate formula is available for aperture blockage efficiency [36]:

εblk ¼ 1� 1

εt
Ab

Ap

� �2
ð9-236Þ

where Ab is the blockage area projected onto the physical aperture of area Ap. The square
is present because of gain loss due to a decrease of on-axis power by blockage and due to
the increase in off-axis power by redirection of the same power into the side lobes. The
aperture taper efficiency εt is included to weight the central area more heavily where
blockage is usually present. For optimum operation, εt is about 0.89; see Prob. 9.6-16.
Then for blockages of Ab=Ap ¼ 1, 5, and 10%, εblk ¼ 0.98, 0.89, and 0.79, respectively.

Under ideal circumstances, reflector antennas have uniform aperture phase. As with
horn antennas, phase errors in the aperture plane lead to gain loss and pattern deterio-
ration [36]. Phase errors arise for the following reasons:

a. Displacement of the phase center of the feed antenna off the focal point. The
reflector is said to be defocused. Lateral displacement causes beam scanning as
discussed in Sec. 9.6.5. Often, these errors can be corrected by repositioning the
phase center of the feed antenna to the focal point.

b. Deterministic deviations of the reflector(s) from design shapes. For example, a
single reflector that deviates from a paraboloidal shape with a “potato chip” dis-
tortion over the entire reflector will produce a smooth phase error over the aperture.
Forces such as wind, temperature gradients, and differential gravity effects in
addition to manufacturing defects cause deterministic errors whose efficiency is
represented with εφr. Only sophisticated techniques such as array feeds are capable
of correcting for deterministic errors [37].

c. An imperfect feed antenna phase center. The loss is represented by εφf and can be
partially compensated by feed repositioning [36].

d. Random surface error effects. These effects cannot be corrected. The associated
efficiency factor εrs is given in (9-235).
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The first three listed effects can be combined into phase-error efficiency εph. Since ran-
dom phase errors are usually the dominant effect, εrs is shown explicitly in (9-234).

The diffraction effects mentioned in Sec. 9.6.1 also cause gain loss, but are usually
small compared to spillover loss [36]. This and other sources of gain loss not specifically
mentioned are included in εa.

It is important to remember that a reflector antenna usually includes some processing
components such as an orthomode transducer (OMT) to separate orthogonal polarizations
at the feed. These components are lossy and reduce the gain. Their losses, along with
other losses such as radome loss, are all included in er. Systems using offset reflectors
usually place the upconverter/downconverter hardware immediately behind the feed horn
because aperture blockage is not a problem. This greatly reduces the RF transmission line
loss compared to an axisyminetric reflector with a transmission line running from the feed
to the rear of the reflector.

Although highly approximate, it is helpful to have a “typical” aperture efficiency value
for a reflector antenna. Usually most efficiency loss comes from using an unbalanced
feed. For example, a dipole feed is often used at UHF frequencies, leading to an aperture
efficiency of about 50%. As mentioned earlier, a well-designed, prime-focus reflector
antenna with a balanced feed (to be discussed in detail in Sec. 9.7.1) has up to 75%
efficiency. The range of typical values for many applications is

εap � 0:55 to 0:65 ð9-237Þ

9.6.7 Other Reflector Antennas

Single and dual parabolic reflectors, as described in this chapter, were developed roughly
from World War II through 1960. Since that period, modifications to the basic reflector
types have been introduced for the purpose of increasing aperture efficiency or for special
antenna pattern-shaping applications to produce a pencil beam, a fan beam, a shaped
main beam, low side lobes, or multiple main beams. In this section, we introduce a few of
the many types of reflector antennas that are in common use.

A parabolic reflector with a circular perimeter and a simple feed at the focal point as in
Fig. 9-27 is used to produce a pencil-beam pattern that is rotationally symmetric. As we
have seen, the configuration can be axisymmetric or offset, and subreflectors can be used
to form a multiple reflector. There are many applications for a high-gain reflector antenna
with different beamwidths in the principal planes. An example is shown in Fig. 9-40a,
which is a single parabolic reflector with wider horizontal than vertical aperture extent.
This produces a narrower main beam in the horizontal plane as needed for VSAT (Very
Small Aperture Terminal) satellite communications. The narrow beam is in the geosta-
tionary satellite arc to avoid interference between adjacent satellites. The feed antenna
must have a broader pattern in the horizontal plane for proper dish illumination. A pattern
with different principal plane beamwidths can also be produced with a parabolic cylinder
as shown in Fig.9-40b, which has a parabolic cross section in one plane and a line cross
section parallel to the reflector axis. The narrow beamwidth is in the plane containing the
reflector axis and requires a feed that extends along the focal lime. The corner reflector
antenna discussed in Sec. 6.6.2 is a simplified version of the parabolic cylinder that uses
flat metallic sides. The parabolic torus of Fig. 9-40c is, in a sense, a curved version of the
parabolic cylinder, having a parabolic and circular cross sections in the principal planes.
A popular application for the parabolic torus employs multiple feeds located along the
focal arc to produce separate beams for receiving different satellites with a single Earth
terminal antenna. Aperture efficiency is sacrificed, but there is a cost savings over using
several antennas. The spherical reflector of Fig. 9-40d, with a circular cross section in all
planes containing the reflector axis, produces a pencil beam but with lower aperture
efficiency than a parabolic version due to nonuniform aperture phase; equivalently, there
is a focal region rather than a focal point. However, the feed can be moved over the focal
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region to scan the beam with lower gain loss than experienced when displacing a feed
from the focal point of a parabolic reflector. The horn reflector antenna of Fig.9-40e is
formed by joining a horn to an offset parabolic reflector. It is very popular for terrestrial
microwave communication links because of its low side and back lobes.

Finally, we mention that shaped reflectors are used to produce shaped beams for either
optimum power distribution in desired directions or to reduce power in directions of
interference. Geometrical optics-based techniques are usually used for synthesizing
shaped beams [H.8.5: Wescott].

9.7 FEED ANTENNAS FOR REFLECTORS

A reflector antenna must be fed properly in order to realize maximum performance, such
as high aperture efficiency. This section presents design principles and the types of
commonly used feed antennas.

9.7.1 Field Representations

The electric field from a feed antenna can be expressed in general, following the
geometry of Fig. 9-25, as

Ef ¼ Vo

e�jβrf

rf
Uf ðθf , φf Þθ̂f þ Vf ðθf , φf Þf̂f

h i
ð9-238Þ

Rarely are Uf and Vf known for all angles. Instead, usually only the principal plane
patterns are available: Uf ðθf , φf ¼ 0Þ ¼ CEðθf Þ in the E-plane and Vf ðθf , φf ¼
90�Þ ¼ CHðθf Þ in the H-plane. Then the field from the feed is found approximately for
any angle φf by interpolation. If the feed is purely linearly polarized, it can be modeled
in terms of its principal plane patterns as

Parabola

Parabola

Sphere

(d ) Spherical reflector. (e) Horn reflector.

Horn

(a) Non-circular aperture
      parabolic reflector.

(b) Parabolic cylinder. (c) Parabolic torus.

Parabola

Circle
Line

Focal
line

Figure 9-40 Other reflector antenna types.
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Ef ¼ Vo

e�jβrf

rf
CEðθf Þ cosφf θ̂f �CHðθf Þ sinφf f̂f

h i
xf -polarized ð9-239aÞ

or

Ef ¼ Vo

e�jβrf

rf
CEðθf Þ sinφf θ̂f �CHðθf Þ cosφf f̂f

h i
yf -polarized ð9-239bÞ

As an example, the E-plane and H-plane of an xf -polarized short dipole are

CEðθf Þ ¼ cos θf , CHðθf Þ ¼ 1 xf -polarized short dipole ð9-240Þ
As illustrated in Fig. 9-28 and with (9-206), cross-polarization is present in the aperture of
an axisymmetric reflector fed with a dipole antenna and the resulting far-field patterns
contain cross-polarization except in the principal planes.

An axisymmetric reflector will have a rotationally symmetric secondary pattern and
very low cross-polarization if it is fed with a rotationally symmetric feed pattern:

CEðθf Þ ¼ CHðθf Þ balanced feed ð9-241Þ
A feed that creates such a pattern is referred to as a balanced feed. The field repre-
sentations of (9-239) for a balanced feed reduce to

Ev
f ¼ Vo

e�jβrf

rf
Ff ðθf Þ cosφf θ̂f � sinφf f̂f

h i
¼ Vo

e�jβrf

rf
Ff ðθf Þv̂

¼ Evv̂ xf -polarized ð9-242aÞ

Eh
f ¼ Vo

e�jβrf

rf
Ff ðθf Þ sinφf θ̂f þ cosφf f̂f

h i
¼ Vo

e�jβrf

rf
Ff ðθf Þĥ

¼ Ehĥ yf -polarized ð9-242bÞ
These correspond to vertical (v) and horizontal (h) feed polarizations with pure linear
polarizations in the xf zf - and yf zf -planes, respectively. Note that they have a rotationally
symmetric pattern Ff ðθf Þ. Also, there is no cross-polarization since, for example, with the
vertically polarized feed Ev

f
� ĥ ¼ Evv̂ � ĥ ¼ 0.

The aperture electric field for a balanced xf -polarized feed from (9-205) is

Ea ¼ �x̂Vo

e�jβ2F

rf
Ff ðθf Þ ð9-243Þ

This corresponds to the GO model of (9-198) and has no cross-polarization. However,
there will be a small amount of off-axis cross-polarization in the secondary pattern that is
not accounted for here and arising from the axial currents (z-directed) on the surface of
the reflector.

9.7.2 Matching the Feed to the Reflector

There are two equivalent viewpoints that can be used to select a feed for proper illu-
mination of a reflector for high aperture efficiency: Matching the feed pattern to the
reflector or matching of the feed antenna aperture distribution to the focal field distri-
bution. We discuss these approaches in this section.

As noted previously, the feed pattern is matched to the reflector when its pattern gives
about a –11-dB edge illumination. The governing equation for axisymmetric reflectors,
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(9-208), can be solved using the popular cosqθf feed pattern model to determine the
required half-power and –10-dB beamwidths. The result is plotted in Fig. 9-41. These
curves are very useful in reflector design. Also shown in Fig. 9-41 is the reflector
edge angle θo from Fig. 9-26b.

The focal field matching approach involves a plane wave incident on the reflector. In
the limit of infinite frequency, the rays converge to the focal point. In practice,
the received fields extend over a finite region near the focal point, resulting in a focal
plane distribution (FPD). It turns out that the FPD is approximately the Fourier transform
of the aperture plane distribution (APD), with increasing accuracy with larger F=D [38].
So, the uniform APD created by the incident plane wave leads to a sinðuÞ=u form FPD and
100% aperture efficiency. The purpose of the feed is to capture the FPD. In fact, if the
aperture distribution of the feed antenna placed in the focal plane matches the FPD, the
aperture efficiency will be 100%. However, a feed of infinite extent would be required to
collect all the fields. This “ideal feed” for an axisymmetric parabolic reflector has a point
phase center and pattern that is rotationally symmetric, extending over a cone only out to
the reflector rim and compensating for spherical spreading loss. This pattern is expressed
functionally in normalized form in (9-228). The pattern discontinuity at the reflector rim
ðθf ¼ θoÞ gives the required uniform APD and zero outside. This pattern is impossible to
achieve. The Fourier transform gives a FPD with infinite extent, requiring an infinite-
sized feed to realize.

A classical feed for producing the purely linearly polarized aperture distribution as in
(9-243), yielding low cross-polarization in the secondary pattern, is the Huygens’ source.
Its rotationally symmetric pattern leads to high efficiency when feeding an axisymmetric
parabolic reflector. The development of the Huygens’ source begins by reexamining the
aperture fields created by a short dipole feeding a parabolic reflector. The electric fields of
an xf -polarized short dipole in (9-206) have cross-polarized components as indicated in
Fig. 9-28. This means that the total aperture electric field has outward curvature as shown
in Fig. 9-42a. Opposite curvature fields as in Fig. 9-42b are created by a yf -directed
magnetic dipole (see Sec. 3.4.2) at the focal point. The combination of crossed electri-
cally small electric and magnetic dipoles produces the purely linearly polarized field of
Fig. 9-42c. The Huygen’s source aperture fields can be derived using (9-243) for a short
dipole and their dual form for a magnetic dipole feed; see Prob. 9.7-4. The magnetic
current required to produce an electric field from the magnetic dipole equaling that for the
electric dipole is found by equating the components of (2-74a) and (3-40), yielding
Im ¼ ηI. Practical Huygens’ sources are discussed in Sec. 9.7.4.
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Figure 9-41 Angle from the axis of an
axisymmetric parabolic reflector to the rim
θo (dashed curve) and the required feed
pattern beamwidths (solid curves) to pro-
duce an –11-dB edge illumination as a
function of F=D.
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9.7.3 A General Feed Model

A popular representation for feed patterns is the cosq θf pattern given by

CEðθf Þ ¼ cosqE θf , CHðθf Þ ¼ cosqH θf , θf , π=2 ð9-244Þ
which for a balanced feed reduces to

CEðθf Þ ¼ CHðθf Þ ¼ Ff ðθf Þ ¼ cosq θf , θf , π=2 ð9-245Þ
The value of q (or qE and qH) is chosen to match the pattern of a real feed antenna at one
point in addition to the unity beam peak:

q ¼ log½Ff ðθ 0
f Þ�

logðcos θ 0
f Þ ð9-246Þ

where θ 0
f is the match point, such as the �3- or �10-dB pattern point or θo. An advantage

of using the simple pattern form of (9-245) is that it can be used to evaluate important
parameters such as the feed antenna directivity:

Gf ¼ 2ð2qE þ 1Þð2qH þ 1Þ
qE þ qH þ 1

ð9-247Þ

which reduces to 2(2q þ 1) as in (9-231) for a balanced feed.

(a) Aperture electric field when fed
with a short dipole.

(c) Aperture electric field when fed with
       crossed electric and magnetic dipoles.

(b) Aperture electric field when fed with an
electrically small magnetic dipole.

Figure 9-42 Aperture electric fields of an axisymmetric parabolic antenna with various feeds.
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We now have all the tools to formulate a simple procedure for designing an axi-
symmetric reflector using the following steps:

1. Determine the reflector diameter. The diameter to achieve a required gain is found
using (9-78) if an aperture efficiency value can be assumed. If the beamwidth is
specified, the diameter is found by solving the following for D:

HP ¼ 1:18
l
D

rad ð9-248Þ
which is a good approximation for reflectors with a �11-dB edge illumination.

2. Choose F/D. The normal range of F/D values is 0.3 to 1.0. Higher values lead to
better cross-polarization performance, but require a narrower feed pattern and,
hence, physically larger feed antenna.

3. Determine the required feed pattern. The edge illumination is specified for a
desired performance and the q-value for a cosq θf feed model is found by solving
(9-233) for q:

q ¼
log EI 1 þ 1

16ðF=DÞ2
 !" #

log cos 2 tan�1
1

4ðF=DÞ
� 	� � ð9-249Þ

El ¼ 0.28(�11 dB) is used for optimum gain.
The final step in the complete design process is to select a feed antenna that approximates
the cosq θf pattern with the q-value found from (9-249). The next two subsections address
feed design. This subsection is closed with a comprehensive example.

EXAMPLE 9-9 Design of an Axisymmetric Reflector Antenna

Suppose that a high-gain, narrow beam antenna is required at 10 GHz. The axisymmetric
parabolic reflector antenna is a good choice. To achieve a 1� half-power beamwidth, the
required diameter follows from (9-248) as

D ¼ 1:18l

HP
π

180�
¼ 1:18ð0:03 mÞ

1 � π
180�

¼ 2:0 m

The F/D is chosen to be 0.5 for low cross-polarization. Solving (9-249) for the optimum case
of EI ¼ 0.28 gives a value of q near 2. The edge illumination value is verified using (9-208)
with θo ¼ 53:1�.

EI ¼ �FT� Lsph ¼ 20 logðcosqθoÞ þ 20 log½ð1 þ cos θoÞ=2� ¼ �8:86� 1:93
¼ �10:79 dB � �11 dB

The aperture distribution based on (9-208) is plotted in Fig. 9-43 along with a parabolic-
squared taper on a pedestal with C ¼ 0.28. The agreement suggests that the parabolic-squared
tapered circular aperture model works well for reflectors. The illumination efficiency follows
from (9-232) for q ¼ 2 as εi ¼ 0.82. The spillover efficiency from (9-230) is

εs ¼ 1� cos2qþ 1θo ¼ 1� cos5 53:1� ¼ 0:92

So,

εt ¼ εi=εs ¼ 0:82=0:92 ¼ 0:89

c09 7 April 2012; 9:12:19

420 Chapter 9 Aperture Antennas



This is consistent with Table 9-1b for the parabolic-squared on a �11-dB pedestal distribution.
The radiation pattern in the 45� plane computed using PRAC (see Appendix G) is shown in
Fig. 9-44. See Prob. 9.7-3 for gain evaluation.

9.7.4 Feed Antennas Used in Practice

The ideal feed of (9-228) produces a uniform amplitude and phase distribution which
compensates for spherical spreading loss and does not have spillover. However, it cannot
be realized in practice. A practical feed is smaller than a few wavelengths in diameter
and, thus, has a broad pattern. The feed pattern is usually modeled with the cosq θf pattern
of (9-245). In this section we present the guidelines for design of practical feed antennas
along with examples of popular feeds. Further details are found in [H.6: Balanis, Ed.,
Chap. 18] and the books in [H.8.6].

For the usual case of high aperture efficiency designs, the feed should have the fol-
lowing characteristics:

1. The feed pattern should be rotationally symmetric, or balanced, as in (9-245).
2. The feed pattern should be such that the reflector edge illumination is about

�11 dB, as discussed in Sec. 9.7.2.
3. The feed should have a point phase center and the phase center should be posi-

tioned at the focal point of the reflector.
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Figure 9-44 Pattern for the 2-m
axisymmetric parabolic reflector
antenna of Example 9-9 computed
using the PRAC code.
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Figure 9-43 Aperture field distribution
for axisymmetric parabolic reflector of
Example 9-9 (dashed curve) along with the
parabolic-squared-on-a-pedestal distribution
with C ¼ 0.28 (solid curve).
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4. The feed should be small in order to reduce blockage; it is usually on the order of a
wavelength in diameter.

5. The feed should have low cross-polarization, usually below �30 dB.
6. The above characteristics should hold over the desired operational frequency band.

Usually, the feed is responsible for limiting the performance of a reflector antenna
system.

The simplest feed antenna is a dipole, which is often combined with some type of
metallic backing to reduce direct feed radiation in the direction of the reflector main
beam. This not only reduces aperture efficiency but also leads to significant cross-
polarization since it is the unbalance in the principal plane patterns that most strongly
influences cross-polarization, as seen in (9-205). Dipoles are widely used as feeds for
reflectors operating in the UHF range. Aperture efficiency is, however, low. For example,
the illumination efficiency of the dipole-fed reflector in Fig. 9-29 is only 24%. At fre-
quencies above a few GHz, waveguide and small horn antennas are used.

The open-ended rectangular waveguide and rectangular horn antennas operating in the
dominant TE10 mode, discussed in Secs. 9.2 and 9.4, respectively, are used as feeds.
Circular waveguides and conical horns operating in the dominant TE11 mode are also
used as feeds and provide more symmetric principal plane patterns. Next, we discuss
these feed antennas, followed by a discussion of multimode feeds.

The open-ended circular waveguide has cross-polarization below �30 dB. It is small
in size, with diameters from 0.8 to 1.15l and –l0-dB beamwidths of about 140 to 104�,
respectively. The E- and H-plane beamwidths are not greatly different. Equal principal
plane beamwidths occur for a diameter of 0.96l where BW�10 dB¼ 118�.This provides a
good match to a reflector with θo � 59�, or F/D� 0.44. An axisymmetric parabolic
reflector with this feed has εi ¼ 0.74 [H.4: Collin, p. 231].

Conical horn antennas behave similarly to pyramidal horn antennas and display
optimum gain with 48 to 56% aperture efficiency [H.6: Ant. Eng. Hdbk., 4th ed.,
p. 14–32]. The half-power beamwidths under the condition of optimum gain are
HPE¼ 1.05l/df and HPH¼ 1.22l/df [39], which can be used with the cosq θf feed model
to perform reflector design.

The simple feeds discussed above operate in their dominant mode (TE10 for rectangular
and TE11 for circular) and have unbalanced principal plane patterns. This is due to the
markedly different amplitude distributions that are uniform in the E-plane and taper to zero
in the H-plane. Since the aperture phase errors caused by the spherical phase fronts are
strongly frequency-dependent, equal principal plane patterns can be obtained only over a
narrow frequency range. Wider bandwidth balanced feeds with low cross-polarization can
be achieved by introducing higher-order modes using a multimode horn feed.

There are several forms of multimode feed horns. Here, we consider the most popular
form, the dual mode (conical) horn or Potter horn [40.]. The operating principle of the dual
mode horn is similar to the Huygens’ source of Fig. 9-42. In addition to the dominant TE11

mode of the conical horn, a TM11 mode is generated internal to the horn that has little
effect on the H-plane pattern, but with proper amplitude and phase will alter the TE11 mode
field distribution in the E-plane to be nearly like that in the H-plane. The electric fields of
the separate modes as well as their combination are shown in Fig. 9-45a. Note that the
modes reinforce in the central region of the feed aperture and cancel around the aperture
perimeter, giving the desired circular symmetry and pure linear polarization. Conversion
from the TE11 mode to the TM11 mode can be accomplished with an iris, dielectric ring,
flare, or, as shown in Fig. 9-45b, with a step. Proper TM11 mode amplitude is controlled by
the step size and phase is controlled by the distance d. The horn diameter must be greater
than 1.3l and has HP� 1.26l/df ; thus, HP, 55� and the feed is usually used with large
F/D reflectors [H.6: Ant. Eng. Hdbk., 3rd ed., p. 15–21]. Bandwidths of 10% are possible.

The limited bandwidth of the dual-mode horn can be overcome while still achieving
axial beam symmetry, low side lobes, and low cross-polarization by using a hybrid mode
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feed. The mixture of TE11 and TM11 modes occur in a natural way and propagate with a
common phase velocity, forming what is known as a hybrid HE11 mode. This leads to
bandwidths of 1.6:1 or more. The most popular hybrid mode feed is the corrugated
conical horn. Some variation of the corrugated horn is used as the feed for most of today’s
microwave reflector antennas. There is no exact formulation for the corrugated horn, but
considerable design data are available: [41], [H.8.6: Clarricoats], and [H.3: Milligan,
2nd ed., Sec. 7.3] The basic principle is to provide the same boundary conditions around
the inside of the horn. This is accomplished using corrugations (or grooves or teeth) as
shown in Fig. 9-46. When the corrugation depths dc are a quarter wavelength the short
circuit at the bottom (B) is transformed to an open circuit at the surface (A), choking off
current. Then the content of the TE11 and TM11 modes is the same, forming a balanced
HE11 mode. If there are several corrugations per wavelength, the surface appears to be
uniform. The axial current conditions are equivalent to no azimuthal magnetic field.
Similarly, an azimuthal electric field is not possible due to the shorting effect of the teeth
edges. Thus, all fields decay to zero at the walls, yielding symmetric horn aperture fields
and, consequently, a far-field pattern from the horn that is symmetric down to as low as
�25 dB. This symmetry along with low side lobes leads to low spillover from the
reflector when the horn is used as a feed.

The phase center of a feed is placed at the focal point of reflector, so it is important to
know its location. For long horns (i.e., Δ small) the phase center is near the aperture and
moves along the axis toward the apex as Δ increases, reaching the apex for Δ. 0.7l.

dc

df

B
A

α

Δ

Figure 9-46 The corrugated conical feed horn antenna.

TE11 TM11

(a) Horn aperture electric field distribution.

(b) A dual-mode horn that uses a step to generate the TM11 mode.

d

TE11 and TM11

Figure 9-45 The dual-mode feed
horn antenna.
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That is, for wide flare angle horns (i.e., α large), the phase center is near the apex. The
corrugated horn provides the desireable feature for a feed antenna of a phase center that is
stable with frequency.

The corrugated horn in Fig. 9-46 is often called a scalar horn because of its field
direction independence. Horns with flare angles α from 0� to 90� are used in practice, but
the term scalar horn is usually reserved for the large flare angle cases, which we consider
further. A simple model is not available for the patterns of corrugated horns, but the
following is a rule of thumb useful in matching a scalar horn to a reflector [H.3: Milligan,
2nd ed., p. 357]:

BW�3 dB ¼ 0.74 α and BW�10 dB ¼ 1.51α (9-250)

Computer-aided design tools for multimode horn antennas are available. [42]
A popular feed horn is the corrugated horn with α¼ 90�, shown in Fig. 9-47, which is

called a choke horn because the circular waveguide has one or more choke rings around it
to “choke off” currents running on the outside of the waveguide and to provide a uniform
boundary condition.

9.8 LENS ANTENNAS

Lens antennas are of two major types, dielectric or constrained; these for the most part
can also be called non-metallic or metallic, respectively. Both types are introduced in
this section. Further details can be found in [H.8.5: Sletten, Ed.] [H.3: Kraus, 3rd ed.,
Chap. 17], and [H.3: Milligan, 2nd ed., Chap. 9].

9.8.1 Dielectric Lens Antennas

Advantages of the horn antenna over the reflector antenna are low cross-polarization and
little or no back lobe. However, the quadratic phase error in the aperture of a conventional
horn antenna causes gain loss and high side lobes. This can be prevented using a
dielectric lens in the aperture to slow down the waves in the central region, allowing edge
rays to “catch up” and produce a nearly uniform phase condition for high gain. This is
analgous to the lens in the human eye and the lens in eyeglasses. Lenses can also be used
to correct for astigmatism, which is the condition of non-coincident phase centers in the
principal planes. The horn phase error parameters of s and t in (9-131) and (9-116),
repectively, for the E- and H-planes, show that phase error decreases as the inverse of
horn length. This leads to a horn of large axial length for low phase error. A lens in the
aperture that corrects phase error permits a much shorter horn. To reduce lens thickness, a
zoned lens can be used, which removes material greater than a wavelength from the lens,
producing a stepped geometry.

Figure 9-47 The choke horn.
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A dielectric lens antenna of special design is the Luneberg lens antenna shown in
Fig. 9-48. It consists of a dielectric sphere with a dielectric constant that smoothly varies
from 2 at the center to 1 at the surface, following the relation εr¼ 2�(r/R)2. In practice,
the sphere is constructed of nested hemispherical shells of uniform dielectric constant,
producing a discrete approximation to the gradient. The classic and simplest Luneberg
lens has two foci, one at the surface of the sphere and one at infinity. The ray paths are
illustrated in Fig. 9-48 for Feed 1 and Beam 1. Each feed antenna produces a beam
directly across the sphere. Feeds are added to produce additional beams. Thus, this is a
multibeam antenna. A beam can be electronically scanned by switching between feeds or
can be mechanically scanned by rotating a single feed around the sphere.

9.8.2 Constrained Lens Antennas

Direct-radiating electronically scanned antennas provide compact size compared to
reflector antennas and, thus, are preferred for many applications. Phased arrays have the
disadvantages of narrow bandwidth in many cases, loss, and high cost. The constrained
lens antenna is a direct radiating antenna that focuses the radiated wave by using arrays of
small elements to collect signal from one direction and re-radiate in another. The space
feed of Fig. 8-31 is a constrained lens antenna with the phase shifters acting to correct the
phase error of the spherical wave from the primary horn. The lens can also electronically
steer the beam and provide amplitude control for low side lobes and beam shaping. With
cables in the lens providing a uniform output phase front, the bandwidth is unlimited
because of the true time delay. When multiple feeds are placed along a focal arc, the
antenna is called a bootlace lens antenna. Each feed produces a beam in a fashion similar
to the Luneberg lens.

A special case of the bootlace lens, but a popular configuration, is the Rotman lens
antenna. Rotman [43] found the lens parameters that produce three perfect focal points
for equal path lengths to the far field. The phase errors for feeds at points in between the
foci are small. Parallel plate and printed circuit forms of the Rotman lens are common
implementations. Bandwidths greater than 2:1 have been achieved.
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PROBLEMS

9.1-1 An ideal dipole with an infinitesimal current centered along the z-axis has only a
θ-component of E. If this uniform current element is now rotated to line up with the x-axis,
there will be both θ- and φ-components. Make the necessary changes to the far-zone E
expression for the z-directed current case to obtain the far-zone E expression for the x-directed
current case. Sketch the E and H field orientations (not the pattern) for the x-directed ideal
dipole in the xz- and yz-planes.
9.1-2 Use the principle of duality to derive (9-5) and (9-6) from (9-3) and (9-4), respectively.
9.1-3 Show that (9-24) follows from (9-22) and (9-23).
9.1-4 Show how (9-26) follows from (9-6).
9.1-5 Show how (9-24) follows from (9-17).
9.1-6 If the incident field in Example 9-1 is x-polarized, write radiation field Eφ and the
pattern F(θ). Your answer will be that of (5-15) with a coordinate change. Is the appropriate
boundary condition for Eφ satisfied on the conducting plane?
9.2-1 Derive (9-34).
9.2-2 Use geometric arguments to prove that du dv ¼ cos θ dΩ where dΩ ¼ sin θ dθ dφ; that
is, sketch a hemisphere and project the intersection of the differential dΩ with the hemisphere
onto the uv-plane.
9.2-3 For the open-ended waveguide of Example 9-3:

(a) Numerically evaluate the E-plane pattern expressions to verify the results in Fig. 9-10a.
Plot the two computed patterns.

(b) Repeat (a) for the H-plane patterns of Fig. 9-10b.
9.2-4 The open-ended waveguide of Fig. 9-9 can be more accurately modeled by including the
reflection coefficient at the aperture Γ and the waveguide phase constant βg ¼ 2π=lg, where

lg ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � l=2að Þ2

q
. The aperture fields are given by [2]

Ey ¼ Eo 1þ Γð Þ cos π x

a
e�j βg z and Hx ¼ �Eo

Zo
1 � Γð Þ cos π x

a
e�j βgz

where Zo ¼ ω μ=βg.

(a) Derive complete expressions for the far-field electric field components. Use the mag-
netic and electric equivalent current formulation.
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(b) Write the normalized E- and H-plane pattern expressions.
(c) Write the normalized obliquity factor in the principal planes for the case when the

waveguide is matched (Γ¼ 0) and the guide phase velocity is that of free space.
9.2-5 Estimate the horizontal and vertical beamwidths in degrees of the Hertz cylindrical-
parabolic reflector of Fig. 1-2 by assuming a uniform aperture distribution in the horizontal
direction and cosine in the vertical direction approximating a vertically oriented dipole feed.
The beam will be narrower than Hertz found because of the ideal excitation assumed.
9.3-1 Prove (9-63).
9.3-2 Prove that the uniform amplitude aperture excitation yields the highest directivity of all
uniform phase excitations. Hint: Use (9-66) and the Schwarz inequality

Z Z
S

fg dS0

������
������ 2 #

Z Z
S

f 2 dS0
Z Z
S

g2 dS0

for any functions f and g. Let g¼ 1 and f equal the aperture field.
9.3-3 Show that the aperture taper efficiency is 2

3
for a rectangular aperture with a uniform

amplitude distribution in one direction and a cosine-squared distribution in the other.
9.3-4 A rectangular aperture (Lx by Ly) has a field distribution that is cosine-tapered in both
the x- and y-directions. Derive the directivity expression. What is the aperture taper efficiency?
9.3-5 Compute the directivity in decibels for a rectangular aperture with Lx¼ 10l and
Ly¼ 20l for (a) A completely uniform aperture illumination and (b) A cosine amplitude taper
in one direction and a uniform taper in the other aperture direction.
9.3-6 Evaluate the aperture taper efficiency for a triangular tapered, rectangular aperture
distribution:

Eaðx0, y0Þ ¼ 1� 2jx0j
Lx

� �
x̂, jx0j# Lx

2
, jy0j# Ly

2

9.3-7 Strictly speaking, is the uniform aperture distribution physically realizable? Why?
9.3-8 An antenna operating at 150 MHz has a physical aperture area of 100 m2, a gain of
23 dB, and a directivity of 23.5 dB. Compute: (a) Effective aperture, Ae, (b) Maximum
effective aperture, Aem, (c) Aperture efficiency, εap, (d) Radiation Efficiency er, and
(e) Aperture taper efficiency εt.
9.3-9 Verify (4-56).
9.3-10 The general antenna gain relation of (9-78) includes a frequency-squared dependence.
However, the class of frequency-independent antennas display nearly constant gain over large
frequency variations. Explain this apparent paradox.
9.3-11 A horn antenna with a 185.5 �137.4 cm rectangular aperture has the following
measured parameter values at 0.44 GHz: HPE� ¼ 30�, HPH� ¼ 27�, and G ¼ 15.5 dB.
(a) Compute the aperture efficiency.
(b) Estimate the gain from the measured half-power beamwidths.

9.3-12 Repeat Prob. 9.3-11 for a horn with a 28.85 � 21.39 cm aperture and HPE� ¼ 12�,
HPH� ¼ 13�, and G ¼ 22.1 dB at 6.3 GHz.
9.3-13 A 3.66-m (12-ft) diameter circular parabolic reflector operates at 460 MHz. The
measured parameters of this antenna are G ¼ 22.2 dB and HPE� ¼ HPH� ¼ 12.5�. Estimate
the gain using both (9-97) and (9-95).
9.3-14 Estimate the gain of a circular parabolic reflector operating at 28.56 GHz in two ways:

(a) Using only its size, which is 1.22 m (4 ft) in diameter.
(b) Using only the measured half-power beamwidths, which are HPE� ¼ 0.605� and

HPH� ¼ 0.556�.
9.3-15 (a) Prove (9-86) for a separable distribution using (9-73) and Prob. 5.2-11.

(b) Using εap ¼ εapx εapy and assuming er ¼ 1, write expressions for εapx and εapy. using the
results from (a).
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(c) For a general aperture distribution show that

εt ¼ 1

Ap

ZZ
Ea dS

� �2
ZZ

Eaj j2dS

9.3-16 Show that the directivity-beamwidth product for a uniformphase rectangular aperturewith
a cosine amplitude taper in the H-plane and uniform amplitude in the E-plane is 35,230 deg2.
9.3-17 A geostationary satellite is 42,000 km from the center of the Earth. If the �3-dB
pattern points fall near the edge of the Earth, find an approximate value for the spacecraft
antenna gain. Note that the result is independent of frequency.
9.3-18 A Gaussian power pattern of half-power beamwidth HP in degrees is

Pn θð Þ ¼ e�ð4 ln 2Þ θ=HPð Þ2

Derive the following approximate directivity expression for narrow beam Gaussian patterns:

D � 36,407

HP2

9.3-19 Horn antennas used as feeds for reflectors have patterns that are well approximated by

F θð Þ ¼ cosq θð Þ, 0# θ#π=2

(a) Derive the directivity expression D ¼ 2(2qþ 1).
(b) Compare directivity values based on (a) to those using (9-94) and (4-56) for q ¼ 0, 1, 5,

10, 50; tabulate the results.
9.4-1 Derive the expression for RH in (9-100).
9.4-2 Derive the H-plane sectoral horn radiation field expression (9-107) and (9-108) by
changing to complex exponentials and then completing the square in the exponents in the
integrand.
9.4-3 In the H-plane pattern expression of (9-117) and (9-118) for an H-plane sectoral horn:
(a) Show that s1 follows from s01 of (9-109).
(b) Show that the phase term (π/8t)[(A/l) sin θ þ 1/2]2 follows from the corresponding

term in (9-108).
9.4-4 Derive the directivity formula of (9-120) for an H-plane sectoral horn from (9-66). The
numerator in (9-66) can be evaluated using (9-106) to (9-108).
9.4-5 Use a computer program to evaluate Fresnel integrals. Compute C(x) and S(x) for
x ¼ 0, 1, 2, 3, 4, and 5. Tabulate the values along with those from a math table, giving the
deviation from the known values.
9.4-6 The H-plane pattern for an H-plane sectoral horn arises from the first integral in (9-106).

(a) First evaluate this integral for a no phase error condition.
(b) Show that the on-axis value of the H-plane pattern relative to the on-axis value of the

zero phase error case is given by

π
16

ffiffi
t

p Iðθ ¼ 0
�
, φ ¼ 0

�Þ

(c) Evaluate this for t¼ 1
8
, 1
4
, 3
8
, and 1

2
and compare to the values from Fig. 9-13.

9.4-7 An H-plane sectoral horn antenna has an axial length of 5l and a flare half-angle αH

of 12.6�.
(a) Plot the polar plot of the H-plane radiation pattern in decibels.
(b) Compute the directivity function lDH/b using (9-120) and compare to that obtained

from Fig. 9-14.
(c) Since the aperture is not large relative to a wavelength, use the zero phase error

directivity formula of (9-71) to compute lDH/b.
9.4-8 Design an optimum H-plane sectoral horn antenna with 12.15-dB gain at 10 GHz. It is
fed with a WR90 waveguide.
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(a) Find the horn dimensions employing Fig. 9-14.
(b) Draw the H-plane horn geometry to scale.
(c) Use (9-120) to compute the directivity as a check.

9.4-9 Repeat Prob. 9.4-8(a), except use (9-120) and (9-21) instead of Fig. 9-14.
9.4-10 Derive the E-plane sectoral horn far-zone electric field expression of (9-129)
9.4-11 Show how the E-plane pattern magnitude expression for an E-plane sectoral horn of
(9-132) follows from (9-129).
9.4-12 Use physical reasoning to explain why the phase error parameters of optimum E-plane
and H-plane sectoral horns are different.
9.4-13 An E-plane sectoral horn antenna is attached to a WR90 waveguide. Determine the
horn dimensions for a half-power beamwidth of 11� in the E-plane and an optimum gain of
14.9 dB at 10 GHz.
9.4-14 An E-plane sectoral horn has an E-plane aperture height of 24.0 cm and a half-flare
angle of 16.5�. It is attached to a WR284 waveguide. Compute the gain at 3.75 GHz (a) using
(9-134a) and (b) using (9-139).
9.4-15 Derive (9-141) by starting with (9-78) and using εap¼ εtε

E
apε

H
ap.

9.4-16 Start with A¼ 18.61 cm and verify all horn dimensions given in Example 9-7.
9.4-17 The aperture efficiency in Fig. 9-20 for the pyramidal horn of Example 9-7 is based on
the aperture quadratic phase error approximation.

(a) Find the aperture efficiency by direct evaluation of (9-120c) and (9-134c) from 8 to 13
GHz to verify Fig. 9-20. Then repeat using the exact phase errors (9-123) and (9-137).
Compare these results.

(b) Evaluate aperture efficiency at 8, 10, and 13 GHz using the approximate formulas in
(9-149) and (9-150). Compare to results from (a); tabulate values.

9.4-18 Explain why an optimum horn is designed for about 50% aperture efficiency at a
frequency near the low end of its operating band as in Example 9-7.
9.4-19 Design an optimum gain pyramidal horn antenna connected to a WR90 waveguide
with 20-dB gain at 10 GHz. (a) Give all horn dimensions. (b) Evaluate the directivity at 10
GHz using the exact phase errors.
9.4-20 A commercially available standard gain horn antenna operates from 18 to 26.5 GHz
and has a WR42 waveguide input. The gain is 24.7 dB at 24 GHz.
(a) Use optimum gain design principles to determine the horn geometry values in

centimeters.
(b) Plot the E- and H-plane polar patterns in decibels including the (1þ cos θ)/2 factor.
(c) Determine the half-power beamwidths from pattern calculations and compare to the

simple formula values.
(d) Evaluate the gain at the design frequency using the exact phase errors. Give the aperture

efficiency values.
(e) Compare the gain to that calculated using the approximation in (9-95) for both beam-

width values found in (c).
9.4-21 Repeat Prob. 9.4-20 for a pyramidal horn designed for optimum operation at 1 GHz
and a gain of 15.45 dB. It is connected to WR975 waveguide with a¼ 9.75 in.¼ 24.765 cm
and b¼ 4.875 in.¼ 12.3825 cm.
9.4-22 For Example 9-7, compute the half-power beamwidths using line source models from
Chap. 5 for the same amplitude tapers as in the horn aperture. Explain why there are deviations
from the values in Example 9-7.
9.4-23 Derive the following relationship that must be satisfied for a physically realizable
pyramidal horn antenna:

R1

l
¼

1� b=l
B=l

1� a=l
A=l

R2

l

9.4-24 A squaremain beam horn antenna. It is often desirable to have equal principal plane half-
power beamwidths. This problem develops a design technique for a so-called square main beam

c09 7 April 2012; 9:12:22

430 Chapter 9 Aperture Antennas



pyramidal horn. If optimum design techniques under the condition of a square main beam are
used, the resulting horn dimensions will render a horn that cannot be constructed. To avoid this
problem, we can design for a square main beam and aim for near optimum conditions. To do this
we first determine the aperture dimensions that give the desired beamwidths and optimum
operation. Then the axial lengths are adjusted to provide a physically realizable structure. This
will probably notmove the operating point too far fromoptimum. Follow this procedure to design
a square main beam horn at 8 GHz with 12� beamwidths and fed by a WR90 waveguide.
(a) Determine A/l and B/l.
(b) Use the results of Prob. 9.4-23 for adjusting the axial lengths. Do this to keep the

fractional increase or decrease of both the same—that is, use

R1

l
¼ R1op

l
F and

R2

l
¼ R2op

l
¼ 1

F

and solve for the constant F.
(c) Evaluate the final phase error parameters t and s.
(d) Give the horn dimensions in centimeters.
(e) Evaluate the gain.
(f) Compute the aperture efficiency.

9.5-1 Write the radiated electric field expression analogous to (9-168) using the equivalent
current formulation that includes both electric and magnetic surface current densities.
9.5-2 Verify that the uniform circular aperture pattern of (9-170) is unity for θ ¼ 0.
9.5-3 Derive the pattern expression f(θ, n, C) in Table 9-2b for a parabolic taper on a pedestal.
9.5-4 For a parabolic-on-a-pedestal circular aperture distribution: (a) Derive (9-181) using
(9-66). (b) Evaluate εt for n ¼ 1 and 2 for a �10-dB edge taper.
9.5-5 For a tapered circular aperture: (a) Prove that c ¼ cxcy¼ ffiffiffiffiffiffiffi

πεt
p

=2. (b) Show by exam-
ining the values in Table 9-2b that DBcir� 39,000 deg2.
9.5-6 Derive the directivity-beamwidth product, DBcir, for a circular aperture with a para-
bolic-on-a �12-dB pedestal distribution (Case 6 in Table 9-1).
9.6-1 Derive (9-199a).
9.6-2 Using sketches, show that the components of the incident and reflected electric fields
tangent to a parabolic reflector cancel and that (9-200) holds.
9.6-3 Plot the edge illumination in decibels for a circular parabolic reflector due to spherical
spreading loss only (i.e., the feed is isotropic) as a function of F/D from 0 and 1.
9.6-4 A commercially available parabolic reflector antenna operating at 2.1 GHz has an
aperture diameter of 1.83 m (6 ft). Compute the gain in decibels.
9.6-5 A commercially available parabolic reflector antenna operating at 11.2 GHz has an
aperture diameter of 3.66 m (12 ft). Compute the gain in decibels.
9.6-6 Analyze the reflector in Example 9-8 using a reflector computer code (see Appendix G).
Model the feed using a cosq θf pattern with a �10-dB beamwidth of 104�. Tabulate the values
for HP, SLL, G, and εap. Include values for the canonical distribution approach. Plot the pattern
in decibels.
9.6-7 A commercial axisymmetric reflector antenna used for Ku-band satellite reception
(11.95 GHz midband) is 2.4 m in diameter and has an F/D ¼ 0.37. Assuming a cosq θf feed
pattern: (a) Use a canomical aperture distribution to determine reflector performance, (b) Use a
reflector code (see Appendix G) to evaluate performance. Tabulate results from (a) and (b)
including G, HP, and SLL.
9.6-8 Use a reflector code (see Appendix G) to determine the following performance para-
meters for an offset parabolic reflector with D ¼ 100l, H ¼ 70l, F/Dp¼ 0.466, ψf¼ 34.72�,
and a cosq θf feed with q ¼ 13.0897: (a) Gain, (b) SLL, (c), XPOL peak location, (d) XPOL
peak value in decibels relative to the main beam peak. (e) Plot the pattern in decibels out to 3�
in the plane normal to the offset plane (i.e., φ¼ 90�).
9.6-9 A popular commercial offset parabolic reflector antenna for receiving direct broadcast
television (12.45-GHz midband) has the following geometric parameters: D ¼ 45.70 cm
(18 in.), F ¼ 26.23 cm, Dp¼ 94.00 cm, and H¼ 24.15 cm. The beamwidth between �10 dB
points on the feed pattern is 80.8� and the peak of the feed pattern is aimed 49.5� from the
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reflector axis. Use a computer program to evaluate the radiation pattern in the principal planes.
Tabulate the values of G, HPs, SLLs, and XPOLs.
9.6-10 Derive (9-224) and (9-226).
9.6-11 Derive (9-230) and (9-231).
9.6-12 Prove that the ideal feed of (9-228) produces 100% aperture efficiency.
9.6-13 (a) Derive an expression for the aperture efficiency of an axisymmetric reflector fed
with an isotropic feed antenna, and (b) Evaluate for F/D ¼ 0.25, 0.5, and 1.
9.6-14 Derive the illumination efficiency expression (9-232) for a cosq θf feed pattern
for q¼ 2.
9.6-15 A geostationary satellite transmits at 4 GHz using a parabolic reflector antenna. The
peak of the beam is directed toward the center of the Earth disk and the �3 dB pattern points
fall on the edge of the Earth. Find the gain in decibels. (Earth radius ¼ 6,400 km; distance
from center of Earth to orbit ¼ 42,000 km.)
9.6-16 This problem serves to verify the claim that the �11-dB edge illlumination yields
about εi� 0.82 under a variety of axisymmetric reflector system cases. For cos2 θf feed
patterns as in (9-229) and values of q ¼ 1, 2, and 3, find the F/D value of the optimum
gain axisymmetric reflector. Tabulate the following for each q value: F/D, 2θo, feed BW�10 dB,
εs, εi found using (9-232), and εt.
9.6-17 Compute the blockage efficiency for a reflector of optimum gain for Ab /Ap¼ 0.1, 1,
2, 5, and 10%.
9.6-18 A subreflector in a Cassegrain dual reflector has a diameter which is 10% of the main
reflector diameter. Find the aperture blockage efficiency assuming optimum operation.
9.7-1 Find the half-power and �10-dB beamwidths of a cosq θf feed pattern required to
produce an edge illumination of �11dB in an axisymmetric reflector with F/D ¼ 0.4. Give the
value of q.
9.7-2 Plot the aperture electric field amplitude distribution for an axisymmetric reflector with
F/D¼ 0.3 and a cos2 θf feed pattern. Also, show on the same plot the parabolic-squared
aperture distribution with the same edge illumination.
9.7-3 For the reflector of Example 9-9, (a) Calculate the gain in decibels using aperture
efficiency, and (b) Use a reflector code to find the gain and compare to the value from (a).
9.7-4 Derive the aperture electric field expression for the Huygens’ source of Fig. 9-42.
9.7-5 A commercial offset parabolic reflector antenna has a diameter of 1.8 m is used for
Ku-band satellite communications. It is just fully offset (that is, h¼ 0) and F/Dp¼ 0.305. The
feed has a �10-dB beamwidth of 76.8�. For the middle of the transmit band at 14.25 GHz: (a)
Determine the feed pointing angle that produces nearly equal edge illumination at the upper
and lower reflector edges. (b) Use a reflector code to evaluate the reflector performance. (c)
Find a canonical distribution that approximates the aperture distribution. Tabulate values from
(b) and (c) for as many of the following parameters as possible: G, HP, SLL, XPOL, and εap.
9.7-6 An optimum gain conical horn is used to feed an axisymmetric parabolic reflector with
F/D ¼ 0.44. Using HP � 1.14 df /l as an average beamwidth expression, find the df /l value
for maximum illumination efficiency.
9.7-7 Derive (9-247).
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Chapter10

Antenna Synthesis

10.1 THE ANTENNA SYNTHESIS PROBLEM

The study of antennas thus far in this book has been one of analysis, where antenna
performance is determined once the antenna type and physical parameter values are
given. Antenna engineering, like most engineering fields, has both analysis and synthesis
problems. Antenna analysis uses analytical formulation, simulation, and/or measurement
to understand how an antenna operates and to determine its performance characteristics.
Antenna synthesis is the reverse of analysis: an antenna structure is derived to meet a
given set of performance specifications, most often the radiation pattern. Antenna design
could incorporate analysis or synthesis but usually applies engineering judgment in the
following areas: formulating the electrical and mechanical specifications, selecting
the antenna type, and performing iterative analysis to arrive at an antenna that meets
specifications.

Antenna synthesis in general does not require the a priori selection of an antenna type.
As an analogy, in circuit theory it is possible to determine the needed circuit components
and their values for achieving a specified frequency response characteristic. There is no
single antenna synthesis method that will yield an optimum antenna for the given spe-
cifications. However, computing packages are emerging that include a suite of antenna
types that can be simulated using a single user interface to greatly speed up the design
process. In this chapter, we present synthesis methods for the most popular antenna type
variables, shown in the left column of Table 10-1. The time domain is shown along with
frequency domain as antenna variables. Here we continue to work in the frequency
domain. Time domain synthesis using the singularity expansion method is treated in [H.6:
Balanis, Sec. 13.5].

10.1.1 Formulation of the Synthesis Problem

We will pose the antenna synthesis problem as one of determining the excitation of a
given antenna type that leads to a radiation pattern which suitably approximates a desired
pattern. The desired pattern can vary widely depending on the application and has the
variables listed in the right-hand column of Table 10-1. To illustrate, consider a com-
munication satellite in synchronous orbit that is required to generate separate antenna
beams for the western United States and for Alaska. Two main beams are required, both
shaped for nearly uniform illumination of each region. Also low side lobes may be
specified to minimize interference over other regions of the earth, but higher side lobes
could be permitted for directions not toward the earth. This type of pattern has multiple
shaped main beams and a shaped side lobe envelope.
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The antenna itself can take many forms, as listed in the left-hand column of Table 10-1.
Antenna type refers to the geometry of the antenna and consists of continuity, shape, and
size. The performance of an antenna is used to define the antenna types in Table 1-4 and
includes the performance parameters listed in Table 1-3. Performance parameters other
than pattern shape can be included in the synthesis problem specifications. In this chapter,
we consider the problem of pattern synthesis. The remaining performance parameters are
considered elsewhere in the book. A general synthesis procedure would yield the antenna
type and its excitation that produces the best approximation to specified performance
values including the desired pattern shape. No such general synthesis method exists.
Instead, synthesis methods have been developed for each antenna type. The discussion of
synthesis in this chapter is divided between continuous and discrete (array) antenna types.
Before addressing these methods, we present further general remarks.

If the radiation electric field components Eθ and Eφ are specified in the synthesis
problem, a secondary synthesis problem can be formulated in terms of antenna aperture
field transform components. For example, the aperture magnetic equivalent surface
current solution of (9-26) can be solved, giving

Px

Py

� �
¼ jβ

e�jβr

2πr

� ��1
cosφ sin φ
�cos θ sinφ cos θ cosφ

� ��1 Eθ

Eφ

� �
ð10-1Þ

This can be used to obtain Px and Py from specified functions Eθ and Eφ. The problem is
then of synthesizing desired functions Px and Py, which are Fourier transforms of the
aperture electric field components; see (9-18). The process is similar for each of Px and
Py: Therefore, we let f ðθ, φÞ be the normalized pattern factor for either and frame our
discussions using f ðθ, φÞ: As another example, consider a line source along the z-axis: If
FdðθÞ is the normalized desired radiation pattern, then the desired pattern factor is

fdðθÞ ¼ FdðθÞ
sin θ

ð10-2Þ

This chapter discusses synthesis of the pattern function f ðθ, φÞ that provides an
approximation to the desired pattern fdðθ, φÞ: The pattern synthesis techniques will be
presented for one-dimensional formulations with a geometry yielding f ðθÞ: That is, the
continuous form (line sources) and the discrete form (linear arrays) will be treated.
However, these results can be applied to two-dimensional antennas such as planar
aperture and planar array antennas. Direct application of the methods is possible if the

Table 10-1 Antenna Synthesis Variables

Antenna Type Variables Radiation Pattern Variables

� Antenna Continuity
Continuous
Discrete—array

� Antenna Shape
Linear
Planar
Conformal
Three-dimensional

� Antenna Size
� Domain

Frequency
Time

� Main Beam
Narrow main beam

Single beam
Multiple beams

Shaped main beam
� Pattern Nulls at Specified Angles
� Side Lobes

Nominal side lobes
Low side lobes
Shaped envelope side lobes
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two-dimensional aperture distribution is separable (see Sec. 9.2.2). Then the synthesized
pattern function f is used to represent each principal plane pattern. Synthesis methods can
be classified by antenna or pattern type. Only a few methods exist that can be applied to a
variety of antenna and pattern types, and one such method is presented in Sec. 10.5.

Usually, synthesis methods for shaped beam patterns are completely different from
those for low side lobe, narrow beam patterns, so we will classify the methods by pattern
type. Line source and linear array synthesis principles with applications to shaped beam
patterns are detailed in Secs. 10.2 and 10.3. Low side lobe, narrow main beam methods
are presented in Sec. 10.4.

10.1.2 Synthesis Principles

The radiation pattern of a line source of current (actual or equivalent) along the z-axis and
of length L is given by (5-28) for the geometry of Fig. 2-9a. The element factor
gðθÞ ¼ sin θ is accounted for separately; for narrow-beam, broadside line sources, it is
negligible. The normalized pattern factor of a line source follows from (5-29) as1

f ðθÞ ¼ 1

l

Z L=2

�L=2

iðzÞeiβz cos θdz ð10-3Þ

where iðzÞ is the normalized form of the current function IðzÞ, and it is usually normalized
such that (10-3) produces a pattern f ðθÞ that is unity at its maximum. The linear phase
shift that scans the main beam is contained in iðzÞ; for example, see (5-1). For conve-
nience, we define

w ¼ cos θ and s ¼ z

l
ð10-4Þ

and w is related to the u in Chap. 5 through u ¼ ðβL=2Þw: Then (10-3) becomes

f ðwÞ ¼
Z L=2l

�L=2l
iðsÞej2πws ds ð10-5Þ

This equation forms the relationship between the relative current distribution iðsÞ and the
normalized pattern factor f ðwÞ:

Since the current distribution iðzÞ extends only over the length L, (that is, iðsÞ is zero
for jsj > L=2lÞ, the limits of the integral in (10-5) can be extended to infinity, giving

f ðwÞ ¼
Z N

�N
iðsÞe j2πws ds ð10-6Þ

This is recognized as a Fourier transform. The corresponding inverse Fourier transform is

iðsÞ ¼
Z N

�N
f ðwÞe�j2πsw dw ð10-7Þ

(See Prob. 10.1-1). Several common line-source currents and their associated pattern
Fourier transform pairs are shown in Table 5-3.

It is important to understand the requirements on a current distribution in order to
achieve a pattern shape. This is useful in synthesis and in finding explanations for pattern

1 Frequently, the z-axisis selected to be normal to the line source, in which case cos θ in (10-3) becomes
sin θ:
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abnormalities. The (linear) Fourier transform relationship between the current and pattern
developed in Sec. 5.3 can be used to infer the general properties shown in Table 10-2.
These principles also apply to arrays. The current distribution and the pattern functions can
be described mathematically in terms of either real and imaginary, or amplitude and phase,
or even and odd parts, as shown in the definitions section of Table 10-2. A current or
pattern function is said to be symmetric if its magnitude is mirror-imaged about the origin.

The pattern properties and the associated required current distribution in Table 10-2
are explained next.

1. Synthesis Property 1: A real-valued pattern is achieved if and only if the current
distribution amplitude is symmetric and the phase is odd.

Real patterns are often used in synthesis for mathematical simplicity, but in
general a pattern can be complex-valued. Although allowing pattern phase to vary
adds another synthesis variable, it turns out to add little to synthesis capability.
Thus, we only consider real-valued patterns.

2. Synthesis Property 2: A real-valued current distribution produces a symmetric
pattern.

A symmetric pattern is obtained if either of the two conditions shown in
Property 2 of Table 10-2 is satisfied. The first condition states that a symmetric
current amplitude distribution and an even phase distribution produce a symmetric
pattern. The second condition states that an asymmetric current amplitude distri-
bution and a constant phase distribution produce a symmetric pattern. Both of these
conditions indicate that a zero current phase yields a symmetric pattern. A current
phase distribution that is zero, of course, means a real-valued current.

3. Synthesis Property 3: An asymmetric pattern can be realized only through the use
of current phase control.

Both conditions shown in Table 10-2 for achieving an asymmetric pattern
require control of the current phase. For example, a linear phase taper in the
current, which is an odd phase function, will steer the beam off axis ðw 6¼ 0Þ and
produces a pattern that is not symmetric about w ¼ 0, although it can be symmetric
about the beam peak.

Table 10-2 Symmetry Properties of Current Distributions and Patterns

Definitions:

iðsÞ ¼ irðsÞ þ jiiðsÞ Real and imaginary
iðsÞ ¼ jiðsÞjejφðsÞ ¼ AðsÞejφðsÞ Amplitude and phase
iðsÞ ¼ ieðsÞ þ ioðsÞ Even and odd

ieð�sÞ ¼ ieðsÞ, ioð�sÞ ¼ �ioðsÞ
jið�sÞj ¼ jiðsÞj Symmetric

Properties:

Pattern Required Current Distribution

1. Real pattern
f ðwÞ ¼ frðwÞ þ j0

ið�sÞ ¼ i*ðsÞ :
Að�sÞ ¼ AðsÞ Sym: amp:
φð�sÞ ¼ �φðsÞ Odd phase

2. Symmetric pattern
jf ð�wÞj ¼ jf ðwÞj

AðsÞ symmetric and φðsÞ even; that is, iðsÞ even
or

AðsÞ asymmetric and φðsÞ constant
3. Asymmetric pattern

jf ð�wÞj 6¼ jf ðwÞj
AðsÞ symmetric and φðsÞ odd, nonzero

or
AðsÞ a symmetric and φðsÞ nonconstant
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These properties provide guidelines for what is required of the current distribution to
achieve the specified pattern shape. A complicated current distribution may be difficult to
realize with a continuous aperture antenna. The designer often looks to an array in such
cases.

10.2 LINE SOURCE SHAPED BEAM SYNTHESIS METHODS

Shaped beam synthesis is used when the main beam of an antenna pattern is required to
conform to a specified shape and cannot be of nominal shape. This section focuses on
one-dimensional continuous current distributions (i.e., line sources), but the results apply
to two-dimensional current distributions that are separable (i.e., factorable into a product
of two functions, each depending only on the associated source coordinate in the cor-
responding plane).

10.2.1 The Fourier Transform Method

The Fourier transform pair relationship for the pattern and current of (10-6) and (10-7)
suggests a synthesis method. If fdðwÞ is the desired pattern, the corresponding current
distribution idðsÞ is found rather easily from (10-7) as

idðsÞ ¼
Z N

�N
fdðwÞe�j2πsw dw ð10-8Þ

This is very direct, but unfortunately, the resulting idðsÞ will not, in general, be confined to
jsj # L=2l as required; it will usually be, in fact, of infinite extent. An approximate
solution can be obtained by truncating idðsÞ, giving the synthesized current distribution as
follows:

iðsÞ ¼
idðsÞ jsj# L

2l

0 jsj > L

2l

8>>>><
>>>>:

ð10-9Þ

The current iðsÞ produces an approximate pattern f ðwÞ from (10-6). The current idðsÞ
extending over all s produces the pattern fdðwÞ exactly.

The Fourier transform synthesized pattern yields the least mean-square error (MSE), or
least mean-squared deviation from the desired pattern, over the entire w-axis. The mean-
squared error

MSE ¼
Z N

�N
j f ðwÞ � fdðwÞj2 dw ð10-10Þ

with f ðwÞ corresponding to iðsÞ in (10-9), is the smallest of all patterns arising from line
sources of length L. The Fourier transform synthesized pattern, however, does not provide
minimum mean-squared deviation in the visible region.

EXAMPLE 10-1 Fourier Transform Synthesis of a Sector Pattern

A sector pattern is a shaped beam pattern that, ideally, has uniform radiation over the main beam
(a sector of space) and zero side lobes. Such patterns are popular for search applications where
vehicles are located by establishing communications or by a radar echo in the sector of space
occupied by the antenna pattern main beam. As a specific example, let the desired pattern be
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fdðθÞ ¼ 1 cos �1c # θ # cos�1ð�cÞ
0 elsewhere

�
ð10-11aÞ

or, equivalently,

fdðwÞ ¼
1 jwj # c

0 elsewhere

�
ð10-11bÞ

fdðwÞ is shown in Fig. 10-1a by the dashed curve. Using (10-11b) in (10-8) and (10-9) gives

iðsÞ ¼ 2c
sinð2πcsÞ
2πcs

, jsj # L

2l
ð10-12Þ

If this sin ðxÞ=x function were not truncated, its Fourier transform (its pattern) would be
exactly the sector pattern of (10-11). The actual pattern from (10-6) using (10-12) is

f ðwÞ ¼ 1

π
Si

L

l
πðwþ cÞ

� �
� Si

L

l
πðw� c

� �� �
ð10-13Þ

where Si is the sine integral of (F-13). Alternate means of evaluating f ðwÞ include direct
numerical integration or numerical Fourier transform. This synthesized sector pattern is
plotted in Fig. 10-1a for c ¼ 0:5 and L ¼ 10l. The pattern is plotted in linear form, rather than
in decibels, to emphasize the details of the main beam. Note the oscillations about the desired
pattern on the main beam, called ripple, and the nonzero side lobes. This appearance of main
beam ripple and overshoots in the synthesized pattern occur because the desired pattern has a
discontinuity. This Gibbs phenomenon is a familiar result from Fourier theory and signal
theory. The current distribution of (10-12) is plotted in Fig. 10-1b, and it is very similar to the
current in Table 5-3b, as expected.

10.2.2 The Woodward–Lawson Sampling Method

A particularly convenient way to synthesize a radiation pattern is to specify values of the
pattern at various points, that is, to sample the pattern. The Woodward–Lawson method’s
is the most popular of the sampling methods [1, 2]. It is based on decomposition of the
source current distribution into a sum of uniform amplitude, linear phase sources:

inðsÞ ¼ an

L=l
e�j2πwns, jsj # L

2l
ð10-14Þ

i(s)

fd(w)

1.0

1.0

1.0

0.5

0.5

−5

−0.5−1.0

−4 −3 −2 −1 1 2 3 4 5

(b) The current distribution.(a) The synthesized pattern (solid curve) and the
      desired sector pattern (dashed curve).

w = cos    

s = λ
z

θ

0.5

Figure 10-1 Fourier transform synthesis of a sector pattern using a 10l line source (Example 10-1).
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The pattern corresponding to this component current, from (10-6), is

fnðwÞ ¼ an Sa π
L

l
ðw� wnÞ

� �
ð10-15Þ

where the sampling function SaðxÞ is defiend as SaðxÞ ¼ sinðxÞ=x: This component
pattern has a maximum of an centered at w ¼ wn: The current component phase coeffi-
cient wn in (10-14) controls the location of the component pattern maximum, and the
current component amplitude coefficient an controls the component pattern amplitude.

In the Woodward–Lawson method, the total current excitation is composed of a sum of
2M þ 1 component currents as

iðsÞ ¼
XM
n¼�M

inðxÞ ¼ 1

L=l

XM
n¼�M

ane
�j2πwns ð10-16aÞ

where

wn ¼ n

L=l
, jnj # M, jwnj # 1:0 ð10-16bÞ

The pattern corresponding to this current is

f ðwÞ ¼
XM
n¼�M

fnðwÞ ¼
XM
n¼�M

an Sa π
L

l
ðw� wnÞ

� �

¼
XM
n¼�M

an Sa π
L

l
w� n

� �� �
ð10-17Þ

At pattern points w ¼ wn ¼ nl=L, this reduces to f ðw ¼ wnÞ ¼ an: Thus, the pattern has
specified values an, called pattern sample values, at the pattern locations wn of (10-16b),
called sample points. The pattern sample values are chosen to equal the values of the
desired pattern at the sample points:

an ¼ fdðw ¼ wnÞ ð10-18Þ
The current distribution required to produce a pattern with values an at locations wn is that
of (10-16).

The Woodward–Lawson sampling method can be made more flexible by noting that as
long as adjacent samples are separated by the sampling interval Δw ¼ l=L, the pattern
values at the sample points are still uncorrelated, that is, (10-18) holds. The total number
of samples is chosen such that the visible region is just covered; samples located outside
the visible region could lead to superdirective results. Since the visible region is of extent
2 and Δw ¼ l=L, the number of samples 2M þ 1 is on the order of 2=ðl=LÞ, or M is on
the order of L=l. The Woodward–Lawson synthesis procedure is very easy to visualize, as
illustrated in the following example.

EXAMPLE 10-2 Woodward–Lawson Line Source Synthesis of a Sector Pattern

The sector pattern of Example 10-1 is now to be synthesized with a 10-wavelength-long line
source using the Woodward–Lawson method. Sampling this pattern according to
an ¼ fdðw ¼ wnÞ with sample locations wn ¼ nl=L ¼ 0:1n gives the values in Table 10-3. The
sample value at the discontinuity ðw ¼ 0:5Þ could be selected as 1, 0.5, or 0 according to
the specific application. Using a�5 ¼ 1 gives the widest main beam, whereas a�5 ¼ 0 gives
the narrowest. In this case, we choose a�5 ¼ 0:5 as a compromise. The synthesized pattern is
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computed using the sample values and locations of Table 10-3 in (10-17) and is plotted in Fig.
10-2a. The sample points are indicated by dots.

To illustrate the sampling nature of the Woodward–Lawson method, two sampling func-
tions from the sum in (10-17) are shown in Fig. 10-2b for sample locations w�1 ¼ �0:1 and
w0 ¼ 0: Note that when one sampling function is maximum, the other is zero, thus making the
samples independent. Further, each sampling function is zero at all sample locations
wn ¼ nl=L, except at its maximum. When all samples are included, the value of the total
synthesized pattern at locations wn is completely determined by the Sa function centered at
that location. This is the beauty of the Woodward–Lawson sampling method.

Note that the Woodward–Lawson pattern of Fig. 10-2a is a better approximation to the
desired pattern (in the visible region) than that of the Fourier transform method in Fig. 10-1a,
both generated from a 10-wavelength line source. Detailed comparisons of all the sector
pattern examples are presented in sec. 10.3.3.

The current distribution corresponding to the sector pattern of this example is plotted
in Fig. 10-2c. It was obtained from (10-16). Note the similarity to the current distribution in
Fig. 10-1b for the Fourier transform method. This occurs because the Fourier transform of any
pattern is the antenna current distribution. Since the patterns in Examples 10-1 and 10-2 are
both close to a sector pattern, their Fourier transforms (currents) must be close to that of an
ideal sector pattern, which is sinðπsÞ=πs in these examples.

10.3 LINEAR ARRAY SHAPED BEAM SYNTHESIS METHODS

In this section we consider linear array synthesis methods. But, just as for line sources,
shaped beam synthesis for linear arrays can be applied to two-dimensional arrays with
distributions that are separable. The applicable equation expressing this result for planar
arrays is (8-109), which gives the two-dimensional array pattern as a product of two one-
dimensional array patterns. Fourier series and Woodward–Lawson methods are presented
in this section. They are analogous to the Fourier transform and Woodward–Lawson
methods of the previous section. Before presenting these methods, we model the array
general configuration to be used with any linear array synthesis method.

Consider an equally spaced linear array along the z-axis with interelement spacing d.
For simplicity, the physical center of the array is located at the origin. The total
number of elements in the array P can be either even ðthen let P ¼ 2NÞ or odd
ðthen let P ¼ 2N þ 1Þ: For an odd element number, the element locations are given by

Table 10-3 Sample Locations and Sample Values for a
10l Woodward–Lawson Sector Pattern (Example 10-2)

n
Sample

Location wn

Pattern Sample
Value an

0 0 1
�1 �0.1 1
�2 �0.2 1
�3 �0.3 1
�4 �0.4 1
�5 �0.5 0.5
�6 �0.6 0
�7 �0.7 0
�8 �0.8 0
�9 �0.9 0
�10 �1.0 0
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zm ¼ md, jmj # N ð10-19Þ
and P ¼ 2N þ 1: The corresponding array factor is

f ðwÞ ¼
XN
m¼�N

ime
j2πmðd=lÞw ð10-20Þ

where im are the element currents and again w ¼ cos θ: This expression is similar to
(8-42).

For an, even number of elements, the element positions are

zm ¼ 2m� 1

2
d, 1 # m # N

z�m ¼ � 2m� 1

2
d, �N #�m # �1

ð10-21Þ

f(w)

i(s)

fd(w)

1.0

0.5

0.2 0.4 0.6 0.8 1.0

1.0

(c) The current distribution corresponding to the
      synthesized pattern.

(a) The synthesized pattern (solid curve) and the desired
      pattern (dashed curve).  The dots indicate
      the sample values and locations.

(b) Two component patterns at sample
      locations w−1 = −0.1 and w0 = 0.

Sa[10π(w + 0.1)] Sa(10πw)

s =
λ
z

θ
−1.0

−4 −3 −2 −1 1 2 3 4 5−5

−.8

−1.0 −0.5 0.5 1.0

−.6 −.4 −.2
w = cos    

w = cos    θ

0.5

0.5

1.0

Figure 10-2 Woodward–Lawson synthesis of a sector pattern using a 10l line source (Example 10-2).
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and P ¼ 2N: The corresponding array factor is

f ðwÞ ¼
XN
m¼1

ði�me
�jπð2m�1Þðd=lÞw þ ime

jπð2m�1Þðd=lÞwÞ ð10-22Þ

for P even.
For comparison to a line source, the total array length is defined as

L ¼ Pd ð10-23Þ
This definition applies to both the even and odd element cases, and it includes a distance
d=2 beyond each end element. Similar to (10-2) for continuous sources, the desired array
factor is found from (8-54) by dividing the desired complete pattern, FdðwÞ, by the
element pattern, gaðwÞ: fdðwÞ ¼ FdðwÞ=gaðwÞ:

10.3.1 The Fourier Series Method

The array factor resulting from an array of identical discrete radiators (elements) is, of
course, the sum over the currents for each element weighted by the spatial phase delay
from each element to the far-field point. This array factor summation can be made to be of
a form that is very similar to a Fourier series, just as the radiation integral for a continuous
source resembles a Fourier transform (see Sec. 10.2.1). To see how this correspondence
comes about, we first observe that a function fdðwÞ, the desired pattern function, can be
expanded into a Fourier series in the interval �l=2d , w , l=2d as

fdðwÞ ¼
XN

m¼�N
bme

j2πmðd=lÞw ð10-24Þ

where

bm ¼ d

l

Z l=2d

�l=2d
fdðwÞe�j2πmðd=lÞw dw ð10-25Þ

If we identify d as the spacing between elements of an equally spaced linear array and
w ¼ cos θ where θ is the angle from the line of the array, the sum in (10-24) is recognized
as the array factor of an array with an infinite number of elements with currents bm:

An infinite array is, of course, not practical, but truncating the series (10-24) to a finite
number of terms produces the following approximation to fdðwÞ:

f ðwÞ ¼
XN
m¼�N

bme
j2πmðd=lÞw ð10-26Þ

If we let the currents of each element in the array equal the Fourier series coefficients,
that is,

im ¼ bm, jmj # N ð10-27Þ
then (10-26) is identical to (10-20), the array factor for an array with an odd number of
elements.

The Fourier series synthesis procedure is, then, to use element excitations im equal to
the Fourier series coefficients bm calculated from the desired pattern fd, as in (10-25). The
array factor f arising from these element currents is an approximation to the desired
pattern. This Fourier series synthesized pattern provides the least mean-squared error
[see (10-10)] over the region �l=2d , w , l=2d: If the elements are half-wavelength
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spaced ðd ¼ l=2Þ, this region is exactly the visible region ð�1 , w ,1, or
0 , θ , πÞ:
A similar line of reasoning leads to the results for an even number of elements. In this

case, the Fourier series coefficient currents are

im ¼ bm ¼ d

l

Z l=2d

�l=2d
fdðwÞe�jπð2m�1Þðd=lÞwdw, m$ 1

i�m ¼ b�m ¼ d

l

Z l=2d

�l=2d
fdðwÞejπð2m�1Þðd=lÞwdw, �m#�1

ð10-28Þ

for P even. The synthesized pattern is given by (10-22). Note that if N is infinite, (10-22)
together with (10-28) is the Fourier series expansion of fd; that is, f ðwÞ ¼ fdðwÞ:
Generally the element spacing is equal to or greater than a half wavelength, so l=2d , 1:

EXAMPLE 10-3 Fourier Series Synthesis of a Sector Pattern

For an equally spaced linear array with an even number of elements, the sector pattern of
(10-11) in (10-28) yields excitation currents

im ¼ i�m ¼ 2
d

l
c Sa πð2m� 1Þ d

l
c

� �
, 1 # m # N ð10-29Þ

The spacing should satisfy d , l=ð1þ cÞ to avoid secondary main beams’ folding back into
the visible region. Since these currents are symmetric, the array factor of (10-22) reduces to

f ðwÞ ¼ 2
XN
m¼1

im cos πð2m� 1Þ d
l
w

� �
ð10-30Þ

which is a real function. Note this is a special case of symmetry Property 1 in Table 10-2.
The specific case of c ¼ 0:5, d=l ¼ 0:5, and 20 elements ðN ¼ 10Þ has an array length

L ¼ Pd ¼ 10l and excitation currents from (10-29) given by

im ¼ i�m ¼ 1

2
Sa

π
4
ð2m� 1Þ

h i
, 1 # m # 10 ð10-31Þ

These excitation values are listed in Table 10-4, together with the element positions from
(10-21). When these are used in the pattern expression (10-30), the pattern shown in Fig. 10-3
is produced.

10.3.2 The Woodward–Lawson Sampling Method

The Woodward–Lawson sampling method for linear arrays is analogous to the
Woodward–Lawson sampling method for line sources (see Sec. 10.2.2). In the array case,
the synthesized array factor is the superposition of array factors from uniform amplitude,
linear phase arrays:

f ðwÞ ¼
XM
n¼�M

an
sin½ðP=2Þðw� wnÞð2π=lÞ d�
P sin

1

2
ðw� wnÞð2π=lÞ d

� � ð10-32Þ
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where the sample values are

an ¼ fdðw ¼ wnÞ ð10-33Þ
and the sample points are

wn ¼ n
l
Pd

¼ n

L=l
, jnj # M, jwnj # 1:0 ð10-34Þ

The element currents required to give this pattern are found from

im ¼ 1

P

XM
π¼�M

ane
�j2πðzm=lÞwn ð10-35Þ

These results hold for arrays with either an even or odd number of elements.

EXAMPLE 10-4 Woodward–Lawson Array Synthesis of a Sector Pattern

Again, the sector pattern of (10-11) with c ¼ 0:5 is to be synthesized, this time with a
20-element, half-wavelength spaced linear array using the Woodward–Lawson method. The
sample locations from (10-34) are wn ¼ 0:1n: Thus, the sample locations and values
are the same as for Example 10-2 and are given in Table 10-3. Using these and element

fd(w)

| f(w)|

1.00.80.60.40.2

1.0

0.5

0−0.2−0.4−0.6−0.8−1.0
w = cos    θ

Figure 10-3 Fourier series
synthesized array factor for a
20-element, l=2 spaced linear
array (Example 10-3). The
desired pattern (dashed curve)
is a sector pattern.

Table 10-4 Array Positions and Currents for a Fourier
Series Synthesized Linear Array of 20 Half-Wavelength
Spaced Elements for a Sector Pattern (Example 10-3)

Element
Number m

Element
Position zm

Excitation
Current im

�1 �0.25l 0.4502
�2 �0.75l 0.1501
�3 �1.25l �0.0900
�4 �1.75l �0.0643
�5 �2.25l 0.0500
�6 �2.75l 0.0409
�7 �3.25l �0.0346
�8 �3.75l �0.0300
�9 �4.25l 0.0265
�10 �4.75l 0.0237
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positions zm from (10-21) in (10-35) yields the array currents of Table 10-5. The pattern can be
generated from either the Woodward–Lawson pattern expression of (10-32), or by direct array
computation using (10-30), which is the version of (10-22) for the symmetric case, and the
array parameters of Table 10-5. The pattern is plotted in Fig. 10-4.

The Woodward–Lawson array can be realized in practice using a Butler matrix beam
forming network that produces independent beams. The Butler matrix was discussed in
Sec. 8.9.2, where it was mentioned that the component beam crossover value is about
4 dB below the peak.

A topic that relates toarray synthesis is thatof synthetic aperture radar,whichusesplatform
motion tocreate aneffective aperture that ismuch larger than the real aperture.Anexample is a
down-looking antenna on an airplane or spacecraft moving at a constant velocity in a straight
line that collects signaldata returned fromthe transmitted radar pulses.An imageof theEarth’s
surface is formed by combining the data using the real aperture as an element in a synthesized
aperture along the motion path. Applications are also found in radio astronomy.

10.3.3 Comparison of Shaped Beam Synthesis Methods

Most shaped beam antenna patterns have three distinct types of pattern regions: side lobe,
main beam, and transition. The side lobe region is easily recognized, and the side lobe
level, SLL, is defined from

fd (w)

| f(w)|
1.0

0.5

0.5

1.00−1.0 −0.5
w = cos    θ

Figure 10-4 Woodward–
Lawson synthesized array
factor for a 20-element,
l=2 spaced linear array
(Example 10-4). The desired
pattern (dashed curve) is a
sector pattern.

Table 10-5 Array Element Currents and Positions
Synthesized from the Woodward–Lawson Method

for a Sector Pattern (Example 10-4)

Element
Number m

Element
Position zm

Excitation
Current im

�1 �0.25l 0.44923
�2 �0.75l 0.14727
�3 �1.25l �0.08536
�4 �1.75l �0.05770
�5 �2.25l 0.04140
�6 �2.75l 0.03020
�7 �3.25l �0.02167
�8 �3.75l �0.01464
�9 �4.25l 0.00849

�10 �4.75l 0.00278
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SLL ¼ 20 log

���� value of the highest side lobe peak

maximum of desired pattern

���� ð10-36Þ

over the side lobe region. The quality of fit to the desired pattern fdðwÞ by the synthe-
sized pattern f ðwÞ over the main beam is measured by the ripple R, which is defined as

R ¼ 20 maximum

����log
���� f ðwÞ
fdðwÞ

����
����

� �
dB½ � ð10-37Þ

over the main beam. Also of interest is the region between the main beam and side lobe
region, referred to as the transition region. In many applications, such as direction finding,
it is desirable to have the main beam fall off very sharply into the side lobe region. To
quantify this, transition width T is introduced and defined as

T ¼ jwf¼0:9�wf¼0:1j ð10-38Þ
where wf¼0:9 and wf¼0:1 are the values of w where the synthesized pattern f equals 90 and
10% of the local discontinuity in the desired pattern. For unsymmetrical, single beam
patterns, there are two transition regions with different transition widths. Transition width
is analogous to rise time in time-signal analysis.

The shaped beam synthesis methods we have discussed in this and the previous section
can be compared rather easily using SLL, R, and T. The sector pattern results of
Examples 10-1 to 10-4 are presented in Table 10-6. A few general trends can be extracted
from the table. The Woodward–Lawson methods (for both line sources and arrays) tend to
produce low side lobes and low main beam ripple at some sacrifice in transition width. On
the other hand, Fourier methods yield somewhat inferior side lobe levels and ripples. The
Fourier series synthesized pattern gives very sharp rolloff from the main beam to the side
lobe region; that is, small transition width.

10.4 LOW SIDE LOBE, NARROW MAIN BEAM SYNTHESIS METHODS

Many applications call for a pattern with a single narrow beam and low side lobes to
reject unwanted signals in directions outside the main beam. Point-to-point commu-
nications and imaging are example uses for narrow beam, low side lobe patterns. Extreme
side lobe reduction is used to cope with high-power jamming transmitters. Dynamic
(adaptive) pattern control is required to counter interference or jamming signals that
change arrival direction. In this section, we present the two most popular methods to
synthesize narrow beam, low side lobe patterns: the Dolph-Chebyshev method for linear
arrays and the Taylor line source method. The methods are closely related, and the Dolph-
Chebyshev method is presented first to simplify the mathematical development.

Table 10-6 Comparison of Synthesized Sector Patterns (c¼ 0.5, L¼ 10l)

Method Type
Example
Number

Figure
Number

Side Lobe
Level,

SLL (dB)
Ripple
R (dB)

Transition
Width, T

Fourier transform 10l line source 10-1 10-1a �21.9 0.83 0.0893
Woodward-Lawson 10l line source 10-2 10-2a �29.8 0.27 0.1303
Fourier series 20-element l/2

spaced array
10-3 10-3 �22.6 0.87 0.0891

Woodward-Lawson 20-element l/2
spaced array

10-4 10-4 �29.6 0.27 0.1343
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10.4.1 The Dolph-Chebyshev Linear Array Method

A uniform line source has a first side lobe level of �13.3 dB, and a uniform linear array
has slightly higher side lobes and depends on the number of elements. As we learned with
line sources in Sec. 5.2 and arrays in Sec. 8.6, the current amplitude must taper from the
center to the edge of a source for low side lobes. The side lobes lower as the element
current amplitude taper from the center to the edge of an array is increased, as illustrated
in Figs. 8-20 and 8-21. The tradeoff to achieve low side lobes is main beam widening and
a reduction in directivity. This tradeoff is optimum (highest directivity for a given side
lobe level) when all the side lobes are of equal level. This optimum case will give the
narrowest possible beamwidth for a specified side lobe level, or vice versa. In this
section, we present a method for achieving the optimum broadside linear array with equal
element spacings that are equal to or greater than a half-wavelength.

Chebyshev2 polynomials have the desired property of equal ripples. They are com-
monly used with equal-ripple filters. Optimum side lobe performance occurs when there
are as many side lobes as possible in the visible region that are of equal level. Dolph [3]
applied Chebyshev polynomials in this manner to arrays using what is now called the
Dolph-Cheyshev method. We begin by examining the properties of Chebyshev poly-
nomials, which are defined as:

TnðxÞ ¼
ð�1Þn coshðn cosh�1jxjÞ, x ,� 1

cosðn cos�1xÞ, �1 , x , 1

coshðn cosh�1 xÞ, x > 1

8><
>: ð10-39Þ

A few of the lower-order polynomials are

T0ðxÞ ¼ 1

T1ðxÞ ¼ x

T2ðxÞ ¼ 2x2 � 1

T3ðxÞ ¼ 4x3 � 3x

T4ðxÞ ¼ 8x4 � 8x2 þ 1

ð10-40Þ

Higher-order polynomials can be generated from the recursive formula

Tnþ1ðxÞ ¼ 2xTnðxÞ � Tn�1ðxÞ ð10-41Þ
or by letting δ ¼ cos�1 x and expanding cos mδ in powers of cos δ: For example, T3ðxÞ ¼
cosð3 cos�1 xÞ ¼ cos 3δ ¼ 4 cos3 δ � 3 cos δ from (D-13). Hence, T3ðxÞ ¼ 4x3 � 3x:
A few polynomials are plotted in Fig. 10-5.

Some important general properties of Chebyshev polynomials follow from (10-39) or
Fig. 10-5. The even-ordered polynomials are even, that is, Tnð�xÞ ¼ TnðxÞ for n even, and
the odd-ordered ones are odd, that is, Tnð�xÞ ¼ �TnðxÞ for n odd. All polynomials pass
through the point (1, 1). In the range �1 # x # 1, the polynomial values lie between �1
and 1, and the maximum magnitude is always unity there. All zeros (roots) of the
polynomials also lie in �1 # x # 1:

The equal amplitude oscillations of Chebyshev polynomials in the region jxj # 1 is the
desired property for equal side lobes. Also, the polynomial nature of the functions makes
them suitable for array factors since an array factor can be written as a polynomial. The

2 The polynomials were introduced by Russian mathematical Pafnuty Chebyshev (1821–1894). A com-
mon alternate spelling is Tchebyscheff.
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connection between arrays and Chebyshev polynomials is established by considering a
symmetrically excited, broadside array for which (see Table 10-2).

i�m ¼ im ð10-42Þ
where the mth element is located at zm¼md and current i0 is at the origin (z¼ 0) for an
odd number of elements. Symmetrical excitation leads to a real-valued array factor that,
from (10-20) and (10-22), is given by

f ðψÞ ¼
i0 þ 2

XN
m¼1

im cos mψ P odd

2
XN
m¼1

im cos ð2m� 1Þψ
2

2
4

3
5 P even

8>>>>><
>>>>>:

ð10-43Þ

where ψ ¼ 2πðd=lÞw: This array factor (for odd or even P) is a sum of cosðmψ=2Þ terms
form up toP� 1:But each term containing cosðmψ=2Þ can bewritten as a sumof termswith
powers of cosðψ=2Þ up to m, through the use of trigonometric identities. Therefore, the
array factor is expressible as a sum of terms with powers of cosðψ=2Þ up to P� 1:

By choosing an appropriate transformation between x and ψ, the array factor and
Chebyshev polynomial will be identical. The transformation

x ¼ xo cos
ψ
2

ð10-44Þ

and the correspondence

f ðψÞ ¼ TP�1 xo cos
ψ
2

� �
ð10-45Þ

will yield a polynomial in powers of cosðψ=2Þ matching that of the array factor. The main
beam maximum value of R occurs for θ ¼ 90�, or ψ ¼ 0, for a broadside array.3 Then

3 The symbol f is usually reserved for a pattern normalized to a maximum value of unity, but for the
Dolph-Chebyshev array, it is more convenient to normalize the array factor f to a maximum value of R.

T4

T2

T0

T3

Tn(x)

T1

T0

T4

T3

T2

T1

7

6

5

4

3

2
1

−1.0 −0.75 −0.25 0.25 0.5 0.75 1.0
−1
−2

(1,1)

−3

x
−0.5

Figure 10-5 Chebyshev
polynomials T0ðxÞ, T1ðxÞ, T2ðxÞ,
T3ðxÞ, and T4ðxÞ:
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(10-44) indicates that x ¼ xo at the main beam maximum. The visible region extends
from θ ¼ 0� to 180�, or ψ ¼ 2πðd=lÞ to � 2πðd=lÞ: These limits correspond to x ¼
xo cosðπd=lÞ; for half-wavelength spacing, the limits are x ¼ 0: Thus, for d ¼ l=2, the
visible region begins at x ¼ 0, or θ ¼ 0�, and x increases θ does until xo (the main beam
maximum point) is reached and retraces back to x ¼ 0, or θ ¼ 180� (see Fig. 10-6).

The main beam-to-side lobe ratio R is the value of the array factor at the main beam
maximum, since the side lobe lvel magnitude is unity (see Fig. 10-6). The side lobe level
is thus 1=R, or

SLL ¼ �20 log R ½dB� ð10-46Þ

Evaluating (10-45) at the main beam maximum gives

f ðψ ¼ 0Þ ¼ R ¼ Tp�1ðxoÞ ¼ cosh ½ðP� 1Þ cosh�1 xo� ð10-47Þ

from (10-39). Or, solving for xo, we get

xo ¼ cosh
cosh�1R

P� 1

� �
ð10-48Þ

The design procedure can now be summarized. For a given side lobe ratio, R can be
determined from (10-46), leading to xo from (10-48). The array factor is then given by
(10-45), or it can be computed from (10-43) directly from the current values. The
excitation currents are found by comparison between the array factor of (10-43) and
the Chebyshev polynomial of (10-45). This synthesis procedure will be illustrated in
Example 10-5. The currents are difficult to find by this method for arrays larger than a few
elements. A direct computational method is available [4] for finding the currents and was
used to calculate the current magnitude values in Table 10-7 for some common side lobe
levels for Dolph-Chebyshev arrays of from 3 to 10 elements. For example, Table 10-7
gives the currents for an array with �30 dB side lobes as 1 : 2.41 : 3.14 : 2.41 : 1, which
agree with the values given in the caption of Fig. 8-20.

The Dolph-Chebyshev array design procedure provides the lowest side lobe pattern for a
specified beamwidth. However, these solutions only depend on the number of elements, not
their spacing (and thus total array length). Practical design seeks the narrowest beamwidth
solution within the Dolph-Chebyshev family. This result is obtained by including as many
side lobes as possible in the visible region without letting the grating lobe emerge to a level

T4(x)

(xo’ R)

xo x

−1

7

6

5

4

3

2

1 (1,1)

−1.0 −0.5 −0.25−0.75 0.25 0.5 0.75 1.0 Figure 10-6 Chebyshev polynomi-
al T4ðxÞ:
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above the design side lobe level. A general expression for the optimum spacing of the
Dolph–Chebyshev array, with isotropic elements, that gives the narrowest beamwidth
possible for a specified side lobe level and given number elements is [4]

dopt ¼ l 1�
cos�1 1

γ
π

2
664

3
775 broadside ð10-49aÞ

dopt ¼ l
2

1�
cos�1 1

γ
π

2
664

3
775 endfire ð10-49bÞ

where

γ ¼ cosh
1

P� 1
lnðRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1Þ

p� �
ð10-49cÞ

An interesting result is that the directivity is identical for broadside and endfire operation
for both half-wavelength and optimum spacings [5]. Although the beamwidth is broader
at endfire than at broadside, the main beam is a fan beam at broadside, leading to the same
solid angle (and, thus, the same directivity) as for the pencil-shaped endfire beam.

The half-power beamwidth of a Dolph-Chebyshev array, in general, is given by

HP ¼ π � 2 cos�1 ψ
βd

broadside ð10-50aÞ

Table 10-7 Current Magnitudes for Equally Spaced Dolph-
Chebyshev Linear Arrays (current values are listed for the central

element first and the edge elements have unity magnitude)

SLL (dB)

P 220 225 230 235 240

3 1.6364 1.7870 1.8774 1.9301 1.9604
4 1.7357 2.0699 2.3309 2.5265 2.6688
5 1.9319 2.5478 3.1397 3.6785 4.1480

1.6085 2.0318 2.4123 2.7401 3.0131
6 1.8499 2.5876 3.3828 4.1955 4.9891

1.4369 1.8804 2.3129 2.7180 3.0853
7 1.8387 2.7267 3.7846 4.9811 6.2731

1.6837 2.4374 3.3071 4.2625 5.2678
1.2764 1.7081 2.1507 2.5880 3.0071

8 1.7244 2.6467 3.8136 5.2208 6.8448
1.5091 2.2296 3.0965 4.0944 5.1982
1.1386 1.5464 1.9783 2.4205 2.8605

9 1.6627 2.6434 3.9565 5.6368 7.6989
1.5800 2.4751 3.6516 5.1308 6.9168
1.3503 2.0193 2.8462 3.8279 4.9516
1.0231 1.4036 1.8158 2.2483 2.6901

10 1.5585 2.5318 3.8830 5.6816 7.9837
1.4360 2.2770 3.4095 4.8740 6.6982
1.2125 1.8265 2.5986 3.5346 4.6319
0.9264 1.2802 1.6695 2.0852 2.5182
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HP ¼ 2 cos�1 1� ψh

βd

� �
endfire ð10-50bÞ

where

ψh ¼ 2 cos�1

cosh
1

P� 1
cosh�1 Rffiffiffi

2
p

� �

cosh
1

P� 1
cosh�1 R

� �
8>><
>>:

9>>=
>>; ð10-50cÞ

The beamwidth of a Dolph-Chebyshev array will be wider than a uniform line source of
the same length L ¼ Pd, which is HP� 0.886 l/L.

The directivity of Dolph-Chebyshev arrays can be calculated using the appropriate
formula of (8-83) to (8-85), or the method in [5]. The directivity value is identical for
broadside and endfire cases for spacing values that are multiples of a half-wavelength. [5]
At broadside, the beamwidth is narrow, but the three-dimensional pattern is a fan beam.
The main beam is broader at endfire, but is a pencil beam. The directivity of an endfire
Dolph-Chebyshev array equals that of the broadside array with the same number of
elements and side lobe level, but with twice the spacing [5]: Dendfire(d) ¼ Dbroadside(2d).
The following formula provides an approximation to directivity for spacings greater than
a half-wavelength but not so large that grating lobes appear:

D � 2 R2

1þ R2 HP
broadside ð10-51Þ

where HP is the half-power beamwidth in radians. It should be remembered that the
foregoing results are for isotropic elements. The element pattern in most cases reduces
the beamwidth and increases directivity.

Before presenting two examples, we point out that arbitrarily high directivity and
narrow beamwidth can be obtained from an array of fixed length. This is a superdirective
array, which is defined as an array with more directivity than with an array of uniform
excitation. The concept and quantitative definition of superdirectivity was introduced
with line sources in Sec. 5.5, and superdirective arrays were mentioned in Sec. 8.6.
Superdirective arrays generally require the element spacing to be less than a half-
wavelength. Modest superdirectivity is accomplished with the Hansen-Woodyard endfire
array of Sec. 8.3.4. Extremely high directivity is achieved through widely varying
amplitudes and phases of the elements. [7] However, directivity much higher than
for uniform, excitation carries the disadvantages of narrow bandwidth and high sensitivity
to the accuracy of the excitation currents, rendering the array impractical in most
situations.

EXAMPLE 10-5 A Five-Element, Broadside, 220-dB Side Lobe, Half-Wavelength Spaced
Dolph-Chebyshev Array

For a five-element array ðP ¼ 5, N ¼ 2Þ, the array factor from (10-43) is

f ðψÞ ¼ io þ 2i1 cos ψ þ 2i2 cos 2ψ ð10-52Þ
where ψ ¼ 2πðd=lÞ cos θ ¼ π cos θ for d ¼ l=2: Using cos ð2ψ=2Þ ¼ 2 cos2ðψ=2Þ � 1
from (D-12) and cosð4ψ=2Þ ¼ 8 cos4ðψ=2Þ � 8 cos2ðψ=2Þ þ 1 from (D-14), the array factor
can be written as
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f ðψÞ ¼ ði0 � 2i1 þ 2i2Þ þ ð4i1 � 16i2Þ cos2
ψ
2
þ 16i2 cos

4 ψ
2

ð10-53Þ

And from (10-40),

T4ðxÞ ¼ 1� 8x2 þ 8x4 ¼ 1� 8x2o cos
2 ψ
2

þ 8x4o cos
4 ψ
2

ð10-54Þ

where (10-44) was used in the second step. Now, the currents are found by successively
equating the coefficients of like terms of (10-53) and (10-54). From the cos4ðψ=2Þ term,

i2 ¼ 1

2
x4o ð10-55Þ

The cos2ðψ=2Þ term yields

i1 ¼ 4i2 � 2x2o ¼ 2x4o � 2x2o ð10-56Þ
using (10-55). The final term gives

i0 ¼ �2i2 þ 2i1 þ 1 ¼ 3x4o � 4x2o þ 1 ð10-57Þ
using (10-55) and (10-56). The current values will be completely determined when xo is
evaluated. This is accomplished by first finding the main beam-to-side lobe ratio from (10-46)
using the specified �20-dB side lobe level;

R ¼ 10�SLL=20 ¼ 10 ð10-58Þ
Then from (10-48) with P ¼ 5 and R ¼ 10,

xo ¼ 1:293 ð10-59Þ
The element currents from (10-55) to (10-57) with (10-59) are

i2 ¼ i�2 ¼ 1:3975, i1 ¼ i�1 ¼ 2:2465, i0 ¼ 2:6978 ð10-60Þ
These currents yield a main beam maximum of R ¼ 10 and unity side lobes. Normalizing
these to unity edge currents gives a 1 : 1.61 : 1.93 : 1.61 : 1 current distribution. These values
agree with those in Table 10-7. The currents of (10-60) in (10-52) lead to the pattern in
Fig. 10-7, which was normalized to 0 dB on the main beam maximum. The half-power
beamwidth from (10-50a) is 23.7�, which was also found by direct evaluation of the polar

−10

−30

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−20

−40

w = cos    θ

| f (w)|, dB

Figure 10-7 Dolph-Chebyshev
synthesized array factor for a
five-element, l=2 spaced, broadside
array with �20-dB side lobes
(Example 10-5).
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pattern in Fig. 8-20d. The directivity for equi-phased, half-wavelength spaced arrays can be
obtained from (8-85). For this example, the directivity is

D ¼

���� P2
m¼�2

im

����
2

P2
m¼�2

i2m

¼ 4:69 ð10-61Þ

The directivity found from (10-51) is 4.72.

EXAMPLE 10-6 Optimum 10-Element, 230-dB Side Lobe Dolph-Chebyshev Endfire Array

Using P ¼ 10 and R ¼ 10�ð�30Þ=20 ¼ 31:62 in ð10-49aÞ yields
dopt ¼ 0:429l ð10-62Þ

The element current amplitudes are [4]

1 : 1:67 : 2:60 : 3:41 : 3:88 : 3:88 : 3:41 : 2:60 : 1:67 : 1 ð10-63Þ
Thesewith interelement phase shiftα ¼ �βd cosð0�Þ ¼ �154:5� yield the pattern in Fig. 10-8.
The half-power beamwidth from (10-50) is 59.6�. The directivity from (8-83) is 14.5.

10.4.2 The Taylor Line Source Method

Although the Dolph-Chebyshev array does yield the highest directivity and narrowest
beamwidth, the constant side lobe envelope leads to a high reactive energy condition,
especially for large arrays. This means high-Q (low bandwidth) operation. This situation
can be avoided by first designing a line source with nearly constant side lobes and using
the current values at element locations in an array configuration that produces a very
similar pattern; see Prob. 10.4-11.

The optimum narrow beam pattern from a line source antenna occurs when all side
lobes are of equal level, just as in the array case. The required functional form, as we have

−10

−20

−30

0 dB

z

Figure 10-8 Polar pattern for the optimum
endfire Dolph-Chebyshev, 10 element �30-dB
side lobe array of Example 10-6.
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seen, is that of the Chebyshev polynomial. The Chebyshev polynomial TNðxÞ has N � 1
equal level “side lobes” in the region �1 , x , 1, and for jxj > 1, its magnitude
increases monotonically. A change of variables will transform the Chebyshev polynomial
into the desired pattern form; that is, with a zero slope main beam maximum at x ¼ 0 and
equal level side lobes. The new function resulting from the variable change is

P2NðxÞ ¼ TNðxo � a2x2Þ ð10-64Þ
where a is a constant and

x ¼ L

l
cos θ ¼ L

l
w ð10-65Þ

At the pattern maximum,

P2Nðw ¼ 0Þ ¼ TNðxoÞ ¼ R ð10-66Þ
which is the main beam-to-side lobe ratio. A plot of (10-64) for N ¼ 4 is shown in
Fig. 10-9; it is the transformed version of Fig. 10-6.

From (10-39), we have in the side lobe region

P2NðxÞ ¼ cos½N cos�1ðxo � a2x2Þ�, jxo � a2x2j , 1 ð10-67Þ
The zeros of this function occur when the cosine argument equals ð2n� 1Þπ=2, or when
the values of x are as follows:

xn ¼ � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xo � cos

ð2n� 1Þπ
2N

r
, jnj$ 1 ð10-68Þ

where the plus sign is used for zero locations on the positive x-axis and x�n ¼ �xn: In the
main beam region, from (10-39),

P2NðxÞ ¼ cosh½N cosh�1ðxo � a2x2Þ�, jxo � a2x2j > 1 ð10-69Þ
The main beam maximum value of P2N is R and occurs for x ¼ 0; see (10-65) and
(10-66). Solving (10-69) for xo at the main beam maximum yields

xo ¼ cosh
1

N
cosh�1R

� �
ð10-70Þ

P8(x)

x−3 −2 −1 1 2 3

10

5

15

Figure 10-9 Transformed
Chebyshev polynomial
P8ðxÞ ¼ T4ðxo � a2x2Þ: Values
of a ¼ 0:55536 and xo ¼ 1:42553
corresponding to Example 10-6
were used.
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It is convenient to introduce A such that

A ¼ 1

π
cosh�1 R ð10-71Þ

so then

xo ¼ cosh
πA
N

ð10-72Þ

In order to have all side lobe levels equal, we let N approach infinity, but simultaneously
the argument of P2N is changed to keep the first nulls stationary, thus leaving the beam-

width unchanged. For large N, xo ¼ coshðπA=NÞ � 1þ 1
2
ðπA=NÞ2 and cos

ð2n�1Þπ
2N

�
1� 1

2

ð2n�1Þπ
2N

h i2
and using these in (10-68) gives

xn ¼ � 1

a

πffiffiffi
2

p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ

�
n� 1

2

�2
s

N-N ð10-73Þ

By letting

a ¼ πffiffiffi
2

p
N

ð10-74Þ

the first zero location remains fixed as N increases. Then

xn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ

�
n� 1

2

�2
s

ð10-75Þ

The pattern factor is a polynomial in x with an infinite number of roots xn and can be
expressed as a product of factors ðx� xnÞ for n from �N to þN: And since x�n ¼ �xn,
the pattern is

L
N

n¼1

ðx2 � x2nÞ ¼ L
N

n¼1

x2 � A2 �
�
n� 1

2

�2
" #

ð10-76Þ

Normalizing this to unity at x ¼ 0 gives

f ðxÞ ¼
L
N

n¼1

1� x2 � A2

ðn� 1
2
Þ2

" #

L
N

n¼1

1þ A2

ðn� 1
2
Þ2

" # ¼ cosðπ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � A2Þp

cosh πA
ð10-77Þ

The last step above utilizes the closed-form expression for the infinite products. Using
(10-65) and (10-71) in (10-77) gives the pattern in w as

f ðwÞ ¼
cos π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðL=lÞw�2 � A2

q� �
R

ð10-78Þ
Note that this is normalized to unity at the maximum ðw ¼ 0Þ and oscillates between
�1=R and 1=R in the side lobe region. For large w, the argument of the cosine function
in (10-78) is approximately πwL=l, so the zero locations of the pattern are
wn � �lðn� 1

2
Þ=L or xn � �ðn� 1

2
Þ, and thus they are regularly spaced. Also note that

for w , lA=L, the cosine argument of (10-78) is imaginary and since cosð jθÞ ¼ cosh θ,
(10-78) is more conveniently expressed as
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f ðwÞ ¼
cosh π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � ½ðL=lÞw�2

q� �
cos πA

ð10-79Þ

This pattern is that of the ideal Taylor line source [8]. It is a function of A that is found
from the side lobe level; see (10-46) and (10-71). The line source is “ideal” in the sense
that equi-level side lobes extend to infinity in pattern space, thus leading to infinite power.
The required source excitation, in turn, must have infinite power and, in fact, will have
singularities at each end of the line source.

An approximate realization of the ideal Taylor line source, referred to as the Taylor
line source, nearly equals the first few side lobes but has decreasing far-out side lobes
[8]. The decaying side lobe envelope removes the infinite power difficulty encountered
with the ideal Taylor line source. The Taylor line source pattern is again a polynomial
in x, but with zero locations given by

xn ¼
�σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ

�
n� 1

2

�2
s

1 # n, n

� n n # n,N

8>><
>>: ð10-80Þ

The zeros for n , n are those of the ideal line source in (10-75) scaled by the factor σ.
The far-out side lobes for n$ n are located at the integer x positions. The zero
arrangement for a sinðπxÞ=πx pattern is x ¼ �n for n$ 1, so the Taylor pattern far-out
side lobes are those of the sinðπxÞ=πx pattern. The scaling parameter σ is determined by
making the zero location expressions in (10-80) identical for n ¼ n, which yields

σ ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðn� 1

2
Þ2

q ð10-81Þ

From the zero locations of (10-80), we write the approximate Taylor line source
pattern as

f ðx, A, nÞ ¼ sin πx
πx

L
n�1

n¼1

1� ðx=xnÞ2
1� ðx=nÞ2 ð10-82Þ

The side lobes are nearly constant at the value 1=R out to x ¼ n and decay as 1=x beyond
x ¼ n: The pattern in terms of w ¼ cos θ is

f ðw, A, nÞ ¼ sinðπLw=lÞ
πLw=l

L
n�1

n¼1

1� ðw=wnÞ2
1� ðLw=lnÞ2 ð10-83Þ

where the pattern zero locations on the w-axis are

wn ¼
� l
L
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ

�
n� 1

2

�2
s

1 # n, n

� l
L
n n # n,N

8>>>>><
>>>>>:

ð10-84Þ

with σ given by (10-81).
The Taylor line source is actually a pattern of the Woodward–Lawson family. We show

how this comes about and also determine the sample values and locations. First, assume
that the required source excitation can be expanded in a Fourier series as
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iðsÞ ¼ l
L

XN
n¼�N

ane
�j2πðl=LÞns jsj # L

2l
ð10-85Þ

The corresponding pattern from (10-17) is

f ðwÞ ¼
XN

n¼�N
an Sa w� l

L
n

� �
L

l
π

� �
ð10-86Þ

where the sample locations are identified as

ws
n ¼

l
L
n ð10-87Þ

The infinite expansion of (10-86) gives the exact pattern if the sample values are (see
Prob. 10.4-7)

an ¼ f ðw ¼ ws
nÞ ¼ f ðn, A, nÞ ð10-88Þ

But the pattern zeros correspond to the sample locations of (10-87) for jnj $ n since
xn ¼ n, or wn ¼ ðl=LÞn for jnj$ n from (10-80). Thus,

an ¼ 0 for jnj $ n ð10-89Þ
Using (10-88) and (10-89) in (10-86) gives the pattern expression

f ðwÞ ¼
Xn�1

n¼�nþ1

f ðn, A, nÞ Sa ðw� ws
nÞ
L

l
π

� �
ð10-90Þ

The required current distribution from (10-85) is

iðsÞ ¼ l
L

1þ 2
Xn�1

n¼1

f ðn, A, nÞ cos 2π
l
L
ns

� �" #
ð10-91Þ

The coefficients f ðn, A, nÞ are the samples of Taylor line source pattern for
x ¼ n and n , n: They are found from

f ðn, A, nÞ ¼
½ðn�1Þ!�2

ðn�1þnÞ!ðn�1�nÞ! L
n�1

m¼1

1� n2

x2m

0
@

1
A jnj , n

0 jnj $ n

8>><
>>: ð10-92Þ

and f ð�n, A, nÞ ¼ f ðn, A, nÞ: Also f (0, A, n)¼ 1. Tables of the coefficient values are also
available. [H.6: Hansen, Vol. I, Appendix I] These coefficients together with (10-90) and
(10-91) determine the Taylor line source pattern and current distribution.

The half-power beamwidth expression is obtained rather easily for the ideal pattern.
Evaluating (10-79) at the half-power points yields

1ffiffiffi
2

p ¼ 1

R
cosh π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � L

l
wHP

� �2
s2

4
3
5 ð10-93Þ

Solving this gives the two solutions

wHP ¼ � l
Lπ

ðcosh�1RÞ2 � cosh�1 Rffiffiffi
2

p
� �2

" #1=2

ð10-94Þ
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The half-power beamwidth in w is then

HPwi ¼ 2jwHPj ¼ 2l
Lπ

ðcosh�1RÞ2 � cosh�1 Rffiffiffi
2

p
� �2

" #1=2
ð10-95Þ

The angle from broadside is γ ¼ θ � 90�, so w ¼ cos θ ¼ cosðγ þ 90�Þ ¼ �sin γ
and γ ¼ �sin�1 w: The half-power beamwidth based on the ideal Taylor line source is

HPi ¼ jθHPi left � θHPi right j ¼ j γHPi left � γHPi right j
¼ jsin�1 wHPþ � sin�1 wHP�j ¼ 2jsin�1wHPj

¼ 2 sin�1 l
Lπ

cosh�1R

 �2 � �

cosh�1 Rffiffiffi
2

p
�2

2
4

3
5
1=2

8><
>:

9>=
>; ð10-96Þ

where wHPþ and wHP� are the two solutions of (10-94). The beamwidth for the approx-
imate Taylor line source is given approximately by

HPw � σHPwi ð10-97Þ
and in θ by

HP � 2 sin�1 lσ
Lπ

ðcosh�1RÞ2 � cosh�1 Rffiffiffi
2

p
� �2

" #1=2
8<
:

9=
; ð10-98Þ

EXAMPLE 10-7 A 10-Wavelength Taylor Line Source with 2 25-dB Side Lobes and n5 5

The side lobe ratio is

R ¼ 10�SLL=20 ¼ 101:25 ¼ 17:7828 ð10-99Þ
From (10-71),

A ¼ 1

π
cosh�1 R ¼ 1:13655 ð10-100Þ

Then from (10-81),

σ ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ðn� 1

2
Þ2

q ¼ 1:07728 ð10-101Þ

If we use values of A and σ, the zero locations xn can be calculated from (10-80), and then the
sample coefficients follow from (10-92) as given in Table 10-8. The sample locations
from (10-87) are also tabulated. The pattern and current distribution can now be computed
from (10-90) and (10-91) with the sample values and locations of Table 10-8. The resulting
pattern and current distribution are plotted in Fig. 10-10. The side lobe decay envelope for
the far-out side lobes of the pattern is shown in Fig. 10-10a. The half-power beamwidths from
(10-95) to (10-98) are

HPwi ¼ 0:0978, HPi ¼ 5:606� ð10-102Þ
and
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HPw � 0:1054, HPi � 6:039� ð10-103Þ
In this case, the ideal Taylor line source beamwidth is very close to that of the approximate
Taylor line source. The half-power beamwidth HPw is indicated in Fig. 10-10a.

10.5 THE ITERATIVE SAMPLING METHOD

Several other synthesis methods are presented along with many references in [H.6:
Balanis, Ed., Sec. 13.5]. One method that merits mention involves manipulation of the
array polynomial of (8-76). [9] Varying the placement of the P�1 zeros (roots) in
the complex Z-plane covers the range of possible synthesized patterns. A set of rules
using the roots for pattern control is presented in [10]. In this section, we present a
method called the iterative sampling method that can be used for both continuous and
array antennas that have one or multiple dimensions.

Classical synthesis methods such as Woodward–Lawson or Fourier methods produce
patterns that often do not come sufficiently close to the desired pattern over at least some
parts of the pattern. In addition, once a pattern is synthesized with a classical method,
there is limited ability to change the synthesized pattern. In essence, classical methods are
“one-shot” methods in the sense that if the synthesized pattern is not a good enough fit to
the desired pattern, a different method must be tried. The iterative sampling method, on

Table 10-8 Sample Values and Locations for the Taylor
Line Source of Example 10-7 (L¼ 10l, n¼ 5)

n an5 f(n, A, n)5 f(n, 1.13655, 5) ws
n

0 1.000000 0
�1 0.221477 �0.1
�2 �0.005370 �0.2
�3 �0.006621 �0.3
�4 0.004917 �0.4

|f (w)|, dB |i(s)|

w = cos s = 

HPw = 0.1054

−5 −4 −3 −2 −1 1 2 3 4 500.2 0.4 0.6 0.8

0.20
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λ

(b) The current distribution. (a) The synthesized pattern.

0.14

Figure 10-10 A 10l Taylor line source with �25-dB side lobes and n ¼ 5 (Example 10-7).
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the other hand, starts with a pattern that roughly approximates the desired pattern,
and then adjustments are made to the pattern (and associated current distribution) to
improve the fit to the desired pattern. Although convergence to the desired pattern is not
guaranteed, good results are obtained in practice. If the desired pattern is over specified
such that the specifications cannot be realized, then as with any method the closeness of
fit to the desired pattern must be relaxed or the aperture size increased. The iterative
sampling method is appealing because of its simplicity and because it is applicable to
nearly any antenna type, including linear arrays, linear apertures, nonuniformly spaced
arrays, and muliti-dimensional antennas. In the following, we illustrate the iterative
sampling method for line sources. More details and applications are found in [11].

The Fourier transform method provides lowest mean squared error, which is an
integrated error, between the desired and synthesized pattern. The iterative sampling
method, on the other hand, can minimize the maximum deviation from the desired pat-
tern, which is called a minimax error and is the most appropriate quality-of-fit measure
for most applications. The maximum allowed deviation is specified over regions of the far
field where pattern fit is critical. The iterative sampling method is based on theWoodward–
Lawson formulation of (10-16) to (10-18). [12] But instead of requiring the indivi-
dual pattern samples to be uncorrelated, they can be weakly correlated. This gives the
method flexibility and permits iterative application for a custom fit to the desired pattern.

The iterative sampling method begins with any initial pattern f ð0ÞðwÞ: The initial
pattern is usually obtained by a classical synthesis method such as the Woodward–
Lawson method but could be any pattern, such as a measured pattern. Next, correction
patterns Δf ðiÞðwÞ are added to the initial pattern f ð0ÞðwÞ to adjust the total pattern toward
the desired pattern. The general expression for the synthesized pattern after K iterations is

f ðKÞðwÞ ¼ f ð0ÞðwÞ þ
XK
i¼1

Δf ðiÞðwÞ ¼ f ð0ÞðwÞ þ
XK
i¼1

XM
n¼�M

aðiÞn GðiÞ
n ðwÞ ð10-104Þ

Each iteration has a maximum of 2Mþ1 component correction patternsG
ðiÞ
n ðwÞand usually

fewer are used. The component correction can be any function, but the uniform line source
sampling function pattern, Sa, used in the Woodward–Lawson method is usually adequate.

The weighting coefficient, a
ði Þ
n , is usually taken to be the difference between the previous

iteration pattern value and the desired pattern value at the sample point:

aðiÞn ¼ fdðwðiÞ
n Þ �f ði�1ÞðwðiÞ

n Þ ð10-105Þ
The correction pattern locations, w

ðiÞ
n , can be anywhere, but the algorithm that works best

is to place the new samples at the mean location between previous samples:

wðiÞ
n ¼ w

ði�1Þ
n þw

ði�1Þ
n�1

2
ð10-106Þ

The corrections are applied symmetrically about the coordinate origin to maintain any
pattern symmetry that exists and to maintain a real-valued pattern and current. The source
distribution corresponding to the synthesized pattern is found by the Fourier transform of
(10-104).

iðKÞðsÞ ¼ ið0ÞðsÞ þ
XK
i¼1

XM
n¼-M

aðiÞn gðiÞn ðsÞ ð10-107Þ

where iðKÞðsÞ is the current responsible for the pattern f ðKÞðwÞ and g
ðiÞ
n ðsÞ is the current

responsible for the pattern GðiÞðwÞ.
Many examples of patterns synthesized with the iterative sampling method are pre-

sented in [11–13], including line sources, two-dimensional continuous sources, linear

c10 7 April 2012; 12:0:3

460 Chapter 10 Antenna Synthesis



(equally or unequally spaced) arrays, and planar arrays for a shaped-beam, low side lobes,
or both. Thus, the iterative sampling method can be used for all antenna types and desired
patterns within one simple framework. The method can even be used with reflector
antennas to compensate for surface distortions. [14] For example, when an array is used
to feed a mesh reflector that deploys in space with distortions, the iterative sampling
method can be used to adjust the feed element excitations to reduce deleterious pattern
effects such as high side lobes.
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PROBLEMS

10.1-1 If gðtÞ and GðωÞ are a Fourier transform pair, then

GðωÞ ¼
Z N

�N
gðtÞe�jωtdt and gðtÞ ¼ 1

2π

Z N

�N
GðωÞe jωt dω

If g, t, G, and ω are replaced by f , w, i, and 2πs, respectively, show that (10-6) and (10-7)
follow from the above equations.
10.1-2 Decomposing a linear current distribution iðsÞ into real/imaginary and even/odd parts
and applying the Fourier transform, give the following pattern expression:

f ðwÞ ¼ 2

Z N

0

½ireðsÞ cos 2πws � iioðsÞ sin 2πws� ds

þ j2

Z N

0

½iieðsÞ cos 2πwsþ iroðsÞ sin 2πws� ds
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Use this to prove the following: (a) Property 1 in Table 10-2, and (b) Property 2 in Table 10-2
by first forming the magnitude of f ðwÞ:
10.2-1 A narrow pencil beam pattern represented by a delta function is scanned to the location
θ ¼ 53:1�: Find the required current distribution using Fourier line source synthesis.
10.2-2 Use (10-6) to find the pattern from a uniform amplitude, zero phase line source of
length L centered on the z-axis:
10.2-3 Derive the current distribution idðsÞ in (10-12) required to exactly produce the sector
pattern of (10-11b).
10.2-4 (a) Derive the Fourier transform synthesis pattern of (10-13) for a sector pattern.
(b) Plot this pattern, thus verifying Fig. 10-1a. Numerical integration of the Fourier transform
via computer may be easier than using (10-13).
10.2-5 Derive (10-15).
10.2-6 Repeat the Woodward–Lawson synthesis of the sector pattern of Example 10-2, but
this time for a five-wavelength line source.

(a) Plot the pattern in linear, rectangular form as a function of w.
(b) Plot the current distribution.

10.2-7 A cosecant pattern (see Prob. 2.5-7 for a discussion of the cosecant pattern) is given by

fdðwÞ ¼

1 0# w # 0:1

0:1

w
0:1 # w # 0:5

0 elsewhere

8>>>><
>>>>:

Use the Woodward–Lawson method to synthesize an approximation to this pattern for a 10l
line source.

(a) Plot the pattern in linear, rectangular form together with the desired pattern as a
function of w.

(b) Plot the required current amplitude and phase.
10.3-1 Discuss the conditions on fdðwÞ such that it can be represented by the Fourier series in
(10-24).
10.3-2 Derive the Fourier series coefficient expression in (10-25).
10.3-3 Derive the element current expression (10-29) for the Fourier series synthesis of a
sector pattern.
10.3-4 Synthesize a sector pattern with c ¼ 0:5 using the Fourier series method as in
Example 10-3 for an array of 20 elements that are spaced 0:6l apart.

(a) Determine the element locations and current values.
(b) Plot the radiation pattern in linear, rectangular form as a function of w:

10.3-5 Repeat Prob. 10.3-4 for an array of 10 elements and half-wavelength spacings.
10.3-6 Use the Fourier series synthesis method to synthesize a sector pattern with c ¼ 0:5 for
an array of 21 half-wavelength spaced elements. Evaluate the element currents. Plot the
pattern. Compare pattern parameters to the 20-element array result of Example 10-3.
10.3-7 Repeat the cosecant pattern synthesis as in Prob. 10.2-7a, using the Fourier series
method for a 20-element, half-wavelength spaced array. Tabulate the element current values.
10.3-8 Show that the Woodward–Lawson sampling method pattern of (10-32) arises from the
array factor with the currents of (10-35) for:

(a) An odd number of elements. Hint: Use (10-19) and (10-20).
(b) An even number of elements. Hint: Use (10-21) and (10-22).

10.3-9 Verify the array element positions and currents of Table 10-5 for the Woodward–
Lawson synthesized sector pattern of Example 10-4.
10.3-10 Repeat the Woodward–Lawson synthesis as in Example 10-4 but for a 10-element,
half-wavelength spaced array.
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10.3-11 A linear array can be synthesized by sampling the current distribution of a line source
with an acceptable pattern, and the resulting array pattern will be close to that of the line
source. Create a linear array of 20, half-wavelength spaced elements by sampling the current
distribution of Example 10-2. Plot the array factor and comment on how it compares to the
pattern of Fig. 10-2a.
10.3-12 A collinear array of 18 half-wave dipole antennas is to be used to synthesize a sector
pattern with a main beam sector over the region 70� # θ # 110�, that is, FdðθÞ ¼ 1 over this
region and zero elsewhere.

(a) For 0:65l spacings, determine the input currents required for Woodward–Lawson
synthesis of the complete pattern. Account for the element pattern.

(b) Plot the total array pattern in linear, polar form as a function of θ.
10.3-13 Repeat Prob. 10.3-12 for a cosecant desired pattern, where FdðθÞ is 1 for
80� # θ # 90�, cos 80�=cos θ for 0� # θ # 80�, and zero elsewhere. Use 18 pattern samples.
10.4-1 For the five-element, broadside, –20 dB side lobe, half-wavelength spaced Dolph-
Chebyshev array of Example 10-5:

(a) Calculate and plot the pattern in rectangular, logarithmic form as a function of w.
(b) Find the half-power beamwidth in two ways: from the pattern calculation and using the

formula of (10-50a).
(c) Compare the beamwidth to that of a uniform line source of the same length as the array.

10.4-2 Design a Dolph-Chebyshev broadside array of five, half-wavelength spaced isotropic
elements for –30 dB side lobes.

(a) Calculate elements currents to verify the values in Table 10-7.
(b) Compute the directivity using (8-84) and using the approximate directivity formula of

(10-51) with half-power beamwidth from (10-50a).
10.4-3 Design a Dolph-Chebyshev array of 10 isotropic elements for �20 dB side lobes for
the following cases:

(a) Broadside and optimum spacing. Find the spacing value. Plot the pattern in rectangular,
logarithmic form as a function of w. Calculate the beamwidth and directivity.

(b) Repeat (a) for endfire.
10.4-4 Design a low-side lobe, broadside collinear array of half-wave dipoles. Design a
Dolph-Chebyshev array of eight isotropic elements with the narrowest beamwidth for �20 dB
side lobes. Then plot the patterns in polar-dB form with and without the element pattern.
10.4-5 Derive the ideal Taylor line source pattern results of (10-76) and (10-77).
10.4-6 Show how the approximate Taylor line source pattern of (10-82) follows from the zero
locations.
10.4-7 The sampling theorem from time-signal analysis states that a signal gðtÞ is exactly
reconstructed from the time samples gðm=2BÞ as

gðtÞ ¼
XN

m¼�N
g

m

2B

� 
Sa 2πB t � m

2B

� h i

where B is the highest frequency component of the signal. Draw the appropriate analogies to
antenna theory to obtain the sampled data pattern expression of (10-86).
10.4-8 Verify (10-94).
10.4-9 Compute the sample values an of Table 10-8 for the Taylor line source of Example 10-7.
10.4-10 Compare the half-power beamwidth values for the Taylor line source of Example 10-7.
Compare your answers to those of (10-102) and (10-103).
10.4-11 An array antenna can be designed by choosing the element current excitations at the
corresponding points of the continuous current from a line source synthesized for the desired
pattern. This is illustrated in this problem with a narrow main beam, low side lobe pattern. The
Taylor line source of Example 10-7 has current values appropriate for a 20-element array given
in the table:
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Array Excitations for Problem 10.4-11

m zm/l im

�1 �0.25 0.14234
�2 �0.75 0.13833
�3 �1.25 0.13127
�4 �1.75 0.12175
�5 �2.25 0.10935
�6 �2.75 0.09429
�7 �3.25 0.07891
�8 �3.75 0.06676
�9 �4.25 0.05980
�10 �4.75 0.05720

(a) Use these current values to obtain the array factor of the corresponding linear array.
(b) Compare and comment on the half-power beamwidths and side lobe levels of the array

and line source patterns.
10.4-12 Design an eight-wavelength Taylor line source ðn ¼ 7Þ with �30-dB side lobes.

(a) Obtain and tabulate the sample values and locations.
(b) Plot the pattern in rectangular-logarithmic form as a function of w.
(c) Plot the current distribution.

10.4-13 Evaluate σ for several values of n for the case of a �25-dB side lobe level. Using
HPw � σHPwi, explain the half-power beamwidth behavior as a function of n:
10.4-14 Design an optimum broadside Dolph–Chebyshev array with 10 elements and �20-dB
side lobes. With the same array geometry, find the element currents by sampling a �20-dB
Taylor line source ðn ¼ 8Þ current distribution with the same length. Plot the polar-dB pattern
for both arrays and compare for: (a) Isotropic elements, and (b) Collinear half-wave dipoles
along the line of the array.
10.4-15 Effect of mutual coupling on array synthesis. Use a moment method code to evaluate
the array of Example 10-5; see Chap. 14. and Appendix G. Use resonated half-wavelength
dipoles parallel to the x-axis with centers along the z-axis with voltage sources proportional to
the desired currents. Compute the yz-plane pattern in polar form and compare to that of the
example. Give the side lobe levels and currents for the two approaches.
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Chapter11

Low-Profile Antennas and
Personal Communication
Antennas

11.1 INTRODUCTION

Wireless communication was discussed in Sec. 4.5 from a system perspective. This
chapter focuses on antennas for wireless personal communications (WPC), which employ
a communication device that a person can carry or easily move from place to place. Of
necessity, these antennas should be low-profile—that is, of small physical thickness.
Antennas in or protruding from a wireless terminal are needed to support several wireless
personal communication applications, many simultaneously. Some example applications
are cellular telephone communications; Wi-Fi, Bluetooth, and UWB communications;
RFID (radio frequency identification); position location (such as GPS) and asset tracking;
and body area networks (BAN). A few of the applications permit the use of tunable
antennas that move a narrow frequency band over a large frequency range; examples are
TV and radio reception in which only one channel is received at a time. Demand is
increasing for smaller radio terminals used by warfighters, first responders, and law
enforcement personnel. Not all applications are conventional two-way communication
uses, but we treat them together because of the similar antenna requirements of low
profile and compact volume. The need for a physically small terminal leads to the
requirement for an even smaller antenna. The essence of the handset antenna challenge is
to accommodate an ever increasing number of wireless services and frequency bands
within a shrinking allocated volume.

Handset-based communication devices such as cellular telephones and personal digital
assistants form a large part of WPC, and we will highlight this application. In a handset
there are certain regions of the internal volume that are designated as “keep-out” zones,
where an antenna cannot be located, thus restricting the possible antenna volume.
A typical volume maximum is about 5 cm3 with dimensions of 35� 35� 4mm. The
printed circuit board size for a bar shape phone is 100� 40mm (3.9� 1.6 in.), but smart
phones often are larger. The antenna is expected to support several cellular telephone
bands as well as Wi-Fi, TV and FM radio reception, MIMO modes, and so on, in this
small volume. One technique used to relax the size constraint is to make use of other
handset parts for the antenna ground plane, such as a printed circuit board. However,
handset antenna performance requirements are less demanding than in many other areas
of antenna design. Typical performance metrics for handset antennas are
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Impedance match: VSWR,3 (return loss . 6 dB)
Antenna gain: 0 dBi
Radiation efficiency: 50%
Bandwidth: 8 to 12% (depending on the band)

The low gain specification is due to the need for a very low directivity pattern to minimize
signal variations as handset position is varied. Handset antennas can be external or
internal, or both, but multiple internal antennas is the most popular approach. As more
antennas and antenna functions are added to a handset, antenna isolation is more difficult
to achieve. [1] Also, the close proximity to active devices on the platform increases noise
and self-interference. Although most handset antennas are unbalanced (i.e., monopole
type), balanced antennas (i.e., dipole type) are desirable because of reduced influence of
the chassis and human operator. While balanced antennas are larger than their unbalanced
counterpart, they are more efficient, are less susceptible to noise, and provide more
isolation. Diversity features can also be incorporated such as polarization diversity or
spatial diversity. In the latter, a second antenna on the handset provides a second copy of
the signal via a different propagation path that may offer improved reception (see
Sec. 12.4 for more on diversity). The handsets themselves are generally one of two
shapes, clam shell (that fold in the middle) or bar (single block). The antenna design
differs for these two form factors. The perfect handset antenna, albeit unobtainable,
would be one that can be made as small as desired to fit into any allocated volume;
presents no biohazard; and experiences no frequency shifting, pattern distortion, gain
loss, or impedance mismatch due to the presence of the human operator. However, the
antenna size limitations are physics-based and not technology-based, as will be discussed
in Sec. 11.5, which treats the fundamental limits on antenna size.

In this chapter we feature several antennas that can be used in personal communication
devices. Many of the antenna types that have been covered in previous chapters are
revisited here with added emphasis on how the antennas are configured for common
applications. We introduce microstrip antennas and arrays, and leaky wave antennas, as
well as other topics related to personal communications such as antenna near fields,
human body effects, and radiation hazards. The next chapter addresses antennas for larger
terminals such as base stations, satellites, and vehicles.

11.2 MICROSTRIP ANTENNA ELEMENTS

The microstrip antenna is a special type of printed antenna, which is constructed using
methods similar to those used for printed circuits. Example printed antennas are the printed
dipole of Fig. 8-35a, tapered slot antennas of Fig. 8-35c and d, and the printed bow-tie
antenna array of Fig. 8-33. The microstrip antenna (MSA) consists of a metallic patch
printed on top of a thin substrate with a ground plane on the bottom of the substrate, as
illustrated in Fig. 11-1. The MSA is usually less than 0.05 l thick, where l is the free space
wavelength. The basic feeds for the patch are a probe feed using a coaxial transmission line
below the ground plane or an edge feed using a coplanar microstrip transmission line
connected to an edge of the patch. The edge-fed patch is a very low profile antenna that also
can include other components using microwave integrated circuit techniques and the feed
network when arrayed. This offers the advantage of low-cost, controlled-dimension con-
struction. Printing on flexible substrates allows the microstrip antenna to be wrapped con-
formally onto a vehicle, for example. The radiation pattern is a single, broad unidirectional
beam broadside to the patch due to the ground plane greatly reducing the back radiation
(zero for an infinitely large ground plane). Because the MSA is a resonant antenna (see
Table 1-4) it is narrowband, leading to its biggest design challenge—achieving adequate
bandwidth. Other disadvantages include spurious radiation from the feed, poor cross-
polarization purity, limited power handling, and adjustment difficulty after fabrication.
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The microstrip antenna is a recent innovation in the field of antennas. It was first
proposed in 1950s, and intense research in the 1970s on the basic MSA resulted in the
first comprehensive publication on the MSAs in 1981 [2]. Although the radiation pattern
of the basic MSAvaries slowly with frequency, the impedance does not. Thus, impedance
bandwidth is the limiting factor of the basic MSA, because it is only a few percent. In the
1980s, new feed methods led to enhanced bandwidth. In the 1990s, commercial systems
began widely adopting MSAs. Now MSAs are commonly used as isolated antennas and
as elements in arrays. A popular application is in base station antennas, usually as a linear
array. Perhaps the widest application is in position location devices. Fixed mounted and
portable GPS units in cars usually use a microstrip antenna. The MSA is not as popular
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(a)  Geometry for analyzing the edge-fed microstrip patch antenna.

(b)  Side view showing the electric fields.

(c)  Top view showing the fringing electric fields. The equivalent magnetic surface
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Figure 11-1 The half-wavelength rectangular patch microstrip antenna: L � 0.49ld.
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for use in non-GPS bands in handsets because of its large physical size. But GPS signals
are narrowband, so a MSAwith a high dielectric constant substrate to reduce size is small
enough to find wide use for GPS reception. Laptop computers also use MSAs for Wi-Fi
links. The MSA as an isolated antenna or an array usually appears on a list of candidate
antenna types for a new antenna design project. It is easy to predict that there will be
many new applications for microstrip antennas that will emerge in the future.

In this section, we present several single microstrip antenna types, followed in the next
section by arrays of microstrip elements. More than four decades of research and
development devoted to the MSA has led to many books on the topic, which are listed in
Appendix H.8.4.

11.2.1 Rectangular Microstrip Patch Antennas

The simplest MSA is a rectangular patch on top of a substrate material with relative
dielectric substrate εr of thickness t� l and backed by a large ground plane as shown in
Fig. 11-1a. The edge feed is a microstrip transmission line on the left side of the patch.
The patch is L long (in the plane of the feed line) and W wide. When the length is
approximately a half wavelength in terms of the wavelength in the dielectric ld, the patch
becomes resonant (input reactance is zero) and is called a half-wave rectangular patch
antenna (or half-wave patch). The electric field distribution for a half-wave patch shown
in Fig. 11-1b displays fringing fields that extend beyond the patch. This fringing makes
the patch effectively longer than its physical length, so the resonant length is less than a
half-wavelength. In addition to εr, the amount of length reduction to achieve resonance
also depends on t, andW, and formulas including these variables are presented later in this
section. But, for many purposes the following simple formula is adequate:

L � 0:49ld ¼ 0:49
lffiffiffiffi
εr

p half -wave patch ð11-1Þ

where l is the free-space wavelength at resonance and ld is the wavelength of a wave in
an infinitely large block of dielectric with εr. In practice, this formula is used as a starting
point for an experimental hardware model or for simulation. Next, the input impedance is
measured or calculated as a function of frequency spanning the design frequency, and the
resonant frequency is noted. Then, the model is scaled in size to shift the resonance to
the desired frequency, followed by a second measurement or simulation for verification.
For laboratory models, the patch size is reduced by trimming with a knife or increased
by adding conductive tape. The width W is used to adjust the input resistance, as we will
see next.

A popular material for MSA substrate is PTFE (polytetrafluorethylene) woven glass
laminate with εr¼ 2.50; Teflons is an example. Micowave PTFE-based materials such
as Duroids are commercially available in various thicknesses and dielectric constants
(e.g., εr¼ 2.22, 2.33, 6.15, 10.2). FR-4 with a dielectric constant of 4.6 is fiberglass
material with epoxy resin binder that offers low cost, but with high loss, so it is used
less often for frequencies above a few GHz. Ceramics such as Barium Titanate are used
for high dielectric constant MSAs like GPS patches. The resonant frequency of narrow
band patches is sensitive to variations of material thickness and dielectric constant. Thus,
it is important to have a material that is manufactured with proper quality control over
material uniformity (especially εr), has low loss, and has a selection of thicknesses and
sheet sizes. As frequency increases, these are even more important considerations.

Approximate analytical models were developed in the early years of MSA develop-
ment to evaluate parameters such as input impedance, pattern, and bandwidth because
simulation codes were inadequate and slow. With today’s efficient computational algo-
rithms and fast computing platforms, accurate simulations of MSAs are now commonly
performed and several commercial packages are available. The analytical models yield
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formulas, often including empirically based parameters, that are used as a first step in
simulations. The models presented by Carver and Mink [2] remain an excellent starting
point. Recent developments found in [H.6: Ant. Eng. Hdbk., 4th ed., Chap. 7; H.6:
Balanis, Ed., Chap. 4; H.8.4: Lee and Chen, Chap. 5] augment the original work and
provide more accurate formulas. The two main analytical methods are the transmission-
line model and the cavity model. The transmission-line model is essentially a one-
dimensional model that assumes uniform fields in y-direction in the patch and treats the
patch as two parallel radiating slots, each having an equivalent parallel slot admittance.
The cavity model is more generally applicable than the transmission-line model because it
is not restricted to rectangular patches and is not limited to one-dimensional variations.
The cavity model includes all patch internal field variations through a summation of
modal fields. The TM10 mode is identical to the transmission-line mode, which has been
used to develop the formulas to follow that include dependencies on the several rectan-
gular patch parameters. Accuracy degrades for t greater than about 0.02 l and for high
dielectric constants. The design formulas begin with a more accurate equation for the
resonant patch length:

L ¼ 0:5
lffiffiffiffi
εr

p � 2ΔL ð11-2Þ

where ΔL is fringing length given by

ΔL ¼ 0:412

εre þ 0:3ð Þ W

t
þ 0:264

� �

εre � 0:258ð Þ W

t
þ 0:8

� � t ð11-3Þ

where εre is the effective dielectric constant given by

εre ¼ εr þ 1

2
þ εr � 1

2
1þ 10 t

W

� ��0:5

ð11-4Þ

The total fringing length, 2ΔL, due to the fringing on both edges is the amount the patch
length should be reduced below a half wavelength to achieve resonance. Viewed another
way, ΔL is the amount to be added to each edge to form an effective patch length. It is
evident from (11-3) that ΔL increases with substrate thickness approximately linearly.
This is because as the thickness increases, the electric fields extend farther and “fringe”
more. As an example, at 10GHz (l¼ 3 cm) for a 0.01-l-thick substrate with εr¼ 2.2
the preceding three formulas yield L¼ 0.98 cm, which is in good agreement with the
approximate formula of (11-1) that gives 0.99 cm.

Because the radiation pattern of a microstrip antenna is unidirectional broadside to the
patch, the rectangular patch of Fig. 11-1 will have a beam peak in the z-direction. We now
apply antenna theory principles to derive approximate pattern expressions for the rect-
angular patch. First, we note that the microstrip feed line will not radiate because the
width of the upper conductor of the microstrip transmission line is small compared to a
wavelength, whereas the patch is large relative to a wavelength. Thus, the electric field
lines on the two sides of the upper conductor of the microstrip transmission line are
oppositely directed (in the y-direction) as shown in Fig. 11-1c. The radiation from these
fringing fields cancels in the far field because the distance to the far field from each
opposing arrow in a pair is nearly the same, leaving a phase difference of 180� due to
the opposing directions. But the situation is different for the patch. The transmission-line
model viewpoint of two radiating slots is useful in finding the radiation pattern of a
rectangular patch with the region between the patch and the ground plane acting as a half-
wavelength transmission line that is open circuited at the end. Fig. 11-1b shows the
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electric field lines associated with the standing wave mode inside the patch. The electric
field lines are perpendicular to the conductors as required by boundary conditions and
look much like those in a parallel plate capacitor. The fringing fields at the ends are
exposed to the upper half space (z. 0). Unlike any other antenna, it is these fringing
fields that are responsible for the radiation. The half-wavelength (in the dielectric) sep-
aration between the ends leads to electric fields that are of opposite sign on the left and
right halves of the patch as shown in Fig. 11-1b. Therefore, the fringing fields at the ends
are 180� out of phase and equal in magnitude. But, as the top view in Fig. 11-1c shows,
the half-wavelength separation has brought the fringing fields back in-phase, leading to a
reinforcement of radiation broadside to the patch. The radiation can be calculated by
either treating the two edges as radiating slot apertures with electric fields extending
beyond the edges, or by employing equivalent magnetic currents. We will use the latter
approach.

The equivalent magnetic surface currents are found from (2-23) with the fringing
electric fields Ea using MS ¼ 2Ea � n̂. The factor of 2 comes from the image of
the magnetic current in the conducting ground plane (see Fig. 9-4c) for small t.
The far-field components for this geometry with the z-axis normal to the patch (see
Prob. 11.2-12) as

Eθ ¼ Eo cosφ f ðθ, φÞ ð11-5aÞ
Eφ ¼ �Eo cos θ sinφ f ðθ, φÞ ð11-5bÞ

where

f θ, φð Þ ¼
sin

βW
2

sin θ sinφ
� �
βW
2

sin θ sinφ
cos

βL
2

sin θ cosφ
� �

ð11-5cÞ

and β is the usual free-space phase constant. The first factor in (11-5c) is the pattern
factor for a uniform line source of width W in the y-direction. The second factor is the
array factor for a two-element array along the x-axis corresponding to the edge slots; see
(3-71). The radiated electric field is linearly polarized in the plane containing the feed,
because the source electric fields shown in Fig. 11-1c are polarized in the xz-plane,
making it the E-plane. The principal plane patterns follow from (11-5) as

FE θð Þ ¼ cos

�
βL
2

sin θ
�

E-plane, φ ¼ 0� ð11-6aÞ

rectangular patch antenna principal plane patterns

FH θð Þ ¼ cos θ

sin
βW
2

sin θ

2
4

3
5

βW
2

sin θ
H-plane, φ ¼ 90� ð11-6bÞ

This simple H-plane pattern expression is based on a symmetric standing wave with
uniform fields along the radiating edges. As a result there are no cross-polarized fields,
but in reality cross-polarization can be significant in MSAs.

The input impedance at the edge of the resonant rectangular patch ranges from 100 to
400Ω. An approximate expression for the input resistance (reactance is zero at resonance)
of a resonant edge-fed patch is [3].
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ZA ¼ 90
ε2r

εr � 1

�
L

W

�2
Ω half -wave rectangular patch antenna ð11-7Þ

This formula reveals that input resistance decreases as the patch is widened. For example,
for a dielectric with εr¼ 2.2, a patch width-to-length ratio of W/L¼ 1 gives an input
resistance of 363Ω. A very wide patch with W/L¼ 2.7 is required to obtain an input
impedance of 50Ω.

A narrow band antenna such as a microstrip antenna is limited by impedance match to
the connecting transmission line. As operating frequency moves off resonance, the patch
input impedance increases rapidly, causing large mismatch. The efficiency of the MSA
improves as the impedance mismatch is reduced, which is accomplished by widening the
bandwidth. An empirical formula for the bandwidth is [3]:

B ¼ 3:77
εr � 1

εr2
W

L

t

l
t � l rectangular patch bandwidth ð11-8Þ

where B is the fractional bandwidth relative to the resonant frequency (see (7-1))
for VSWR# 2. For example, for a 0.02-l thick dielectric with εr¼ 2.2, a square patch
(W/L¼ 1), the bandwidth is 0.019, or 1.9%. For thicknesses larger than about t¼ 0.15 l,
(11-8) loses accuracy and more complete models must be used as in [3]. Evident
from (11-8) is that bandwidth can be increased by increasing the dielectric thickness or
the patch width.

The final important parameter is radiation efficiency er (often referred to as just
efficiency) which for MSAs represents dissipation from dielectric and conductor losses,
surface waves, and cross-polarization content. Not included in radiation efficiency is loss
encountered due to impedance mismatch, but usually one of the impedance matching
techniques discussed below is used to eliminate this loss at resonance. Radiation effi-
ciency is as high as 95% for thin, low dielectric constant substrates and decreases with
increasing substrate thickness; see [3] or [4] for evaluation formulas and [H.6: Ant. Eng.
Hdbk., 4th ed., Fig. 7-8] for efficiency values as a function of substrate properties.

The design process for a MSA focuses on optimizing performance values for the
application at hand such as having an input impedance of a certain value (often 50Ω),
achieving a specified bandwidth, or having high efficiency. The first step is to find the
patch length L for resonance at the center frequency of the desired operating band using
(11-1). Next, the patch width is found by back solving (11-7) for achieving a desired input
impedance or (11-8) for achieving a desired bandwidth. If high efficiency is the goal, the
following width is selected [H.8.4: Bahl & Bhartia, p. 57]:

W ¼ l
2

εr þ 1

2

2
4

3
5
�1=2

patch width for high efficiency ð11-9Þ

which is calculated at resonance. The length is then recalculated using the more accurate
formulas in (11-2) to (11-4) or a simulation code. MSA computer simulation algorithms
use so-called full-wave solutions because they account for the full wave behavior con-
tained in Maxwell’s equations. The method of moments (see Chap. 14) is very popular for
MSA simulations; however the finite element method and the FDTD method (see
Chap. 15) are also used; see [H.6: Balanis, Ed., p. 175] for the available commercial
microstrip antenna codes. Full-wave solutions have more capabilities than models and
can handle irregular geometries, feed details, and material characteristics. The outputs
include the input impedance and the patterns (co- and cross-polarized). However,
even with the latest computing hardware, simulations can be time consuming, especi-
ally for arrays. Thus, approximate models remain valuable as first-cut solutions and for
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validations of simulation results. The design phase continues with iterations on parameter
values of εr, t, W, and L, attempting to converge on the desired operating band, imped-
ance, gain, and so on. Simulations and measurements with prototype hardware are usually
required for validation of the final design.

EXAMPLE 11-1 Half-Wave, Square Microstrip Patch Antenna1

A square, half-wave patch was designed to be resonant at 3.03GHz (l¼ 9.9 cm) on a t¼ 0.114 cm
thick substrate of εr¼ 2.35 dielectric. The patch dimensions are found from (11-1):

L ¼ W ¼ 0:49
lffiffiffiffi
εr

p ¼ 0:49
9:9ffiffiffiffiffiffiffiffiffi
2:35

p ¼ 3:165 cm ð11-10Þ

This value is close to that from the more accurate formulas of (11-2) to (11-4) which yield
L¼ 3.11 cm. Fig. 11-2 shows the measured input impedance as a function of frequency. The
resonant frequency (where the reactance is zero in Fig. 11-2a) is 3.01GHz, which is close to
the design frequency of 3.03GHz. The measured input resistance from Fig. 11-2b at the
resonant frequency of 3.01GHz is 316Ω, which compares to 369Ω computed from (11-7).
Also shown in Fig. 11-2 are values computed using the cavity model of Carver and Mink [2]
and using method of moments simulations. Note the excellent agreement between simulations
and measurements. The bandwidth from (11-8) is 1.1%. The radiation patterns computed
from (11-6) are plotted together with measured values in Fig. 11-3, showing that agreement
of measured data to the simple theory results is very good. The beamwidths in the E- and
H-planes are 103� and 81�, leading to a directivity of 6.9 dB using (4-56).

In addition to the direct, edge feed of Fig. 11-1, the main techniques for feeding
patches are shown in Fig. 11-4 and can be classified into three groups: directly coupled (a,
b, c), electromagnetically coupled (d, e, f ), or aperture coupled (g). Direct coupling
methods have limited freedom to adjust the input impedance but are simple to implement.
The edge feed techniques of Figs. 11-1, 11-4b and 11-4c are used for planar, low-profile
realizations. This approach is especially well suited to arrays of MSAs, where
the patch, feed, and other feed network components can be fabricated on a single layer.
The probe feed of Fig. 11-4a allows access from below the patch. The rectangular patch is
normally fed along the patch centerline in the E-plane as shown in Fig. 11-1. This avoids
excitation of a second resonant mode orthogonal to the desired mode, which would lead
to excessive cross-polarization levels.

The only means of input impedance control with the edge-fed patch of Fig. 11-1 is
by changing the patch shape (L/W). The feeds in Fig. 11-4 offer additional degrees of
freedom in controlling the impedance. The edge-fed patch of Fig. 11-4b includes a
quarter-wave transformer, which is widely used in microwave systems. The antenna
input impedance of ZA is matched to a transmission line of characteristic impedance Zo
(often 50Ω) with a section of a transmission line that is a quarter-wavelength long based
on the wavelength in the transmission line and has characteristic impedance given by

Z 0
o ¼

ffiffiffiffiffiffiffiffiffiffi
ZAZo

p
quarter-wave transformer ð11-11Þ

where the impedances are real-valued. The characteristic impedance of a microstrip
transmission line is controlled by the width of the strip, much as the loss resistance of a

1Measurements and simulations were performed by the Virginia Tech Antenna Group.
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wire is inversely proportional to the wire diameter in (2-170). That is, the wider the strip,
the lower the characteristic impedance.

The direct coaxial probe feed of Fig. 11-4a is simple to implement by extending the
center conductor of the connector attached to the ground plane upward to the patch.
Impedance can be adjusted by proper location of the probe attachment point. As the probe
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Figure 11-2 Measured input
impedance for the square-
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distance from the patch edge, Δxp, in Fig. 11-4a is increased, the input resistance
decreases and is expressed as [3].

ZAðΔxpÞ ¼ ZAðΔxp ¼ 0Þ cos2 πΔxp

L
probe-fed patch ð11-12Þ

where ZA(Δxp¼ 0) is given in (11-7). A disadvantage of the probe feed is that it intro-
duces an inductance that can prevent the patch from resonating if t is 0.1l or more. Also,
the probe itself will radiate, adding to the cross polarization. The inset feeding of Fig. 11-4c
also offers input impedance control by varying the inset distance Δxi. The input
impedance expression is the same as (11-12) except that the power on the cosine function
is 4 instead of 2 and Δxi is the argument in place of Δxp. [5] A more accurate formula
using a cosine squared function with a shifted argument and a family of empirically
derived constants is available in [6]. Large input impedance changes that are required for

Δxp Δxi

(a) Probe feed.

(d) Probe feed with a gap. (e) Microstrip edge feed with gap.

(g) Aperture coupled feed.

(f) Two-layer feed.

(b) Microstrip edge feed with
      quarter-wave transformer.

(c) Microstrip edge feed with inset.

Figure 11-4 Techniques for feeding microstrip patch antennas. Along with Fig. 11-1, (a), (b),
and (c) are direct feeds; (d), (e), and (f ) are electromagnetic coupled feeds; and (g) is an
aperture coupled feed.
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high-permittivity substrates demand a significant inset depth, which affects cross polar-
ization and the radiation pattern shape.

Direct feeds have narrow bandwidth, which can be increased by increasing the sub-
strate thickness, but with the penalty of increasing the power trapped in surface waves. An
electromagnetically coupled feed (also called proximity, noncontacting, or gap feed) does
not contact the patch and has at least two design parameters. It has the advantage of being
less sensitive to dimensional errors from the etching process. For each direct feed in
Figs. 11-4a, b, and c, there is a gap feed counterpart in Figs. 11-4d, e, and f. The probe
feed with a gap in Fig. 11-4d is fed from below with a probe, often formed by extending
the center conductor of a coaxial cable. The gap between the end of the probe and the
patch introduces capacitance that partially cancels the probe inductance, permitting
the use of thicker substrates. The microstrip feed line with a gap of Fig. 11-4e is entirely
planar and easy to etch. However, in high-permittivity substrate designs, the gap distance
can become small. The two-layer feed of Fig. 11-4f is especially useful in microstrip
arrays with a top layer for the patches and a second layer for the microstrip feed network.

There are conflicting goals for the antenna and its connecting transmission line. The
goal with an antenna is to encourage radiation, and with a transmission line the goal is to
bind the wave to the line. The aperture coupled feed of Fig. 11-4g addresses this conflict
by using an upper substrate of low dielectric constant for better radiation and a lower
substrate of high-dielectric constant for containing the fields to the feed line. This also
provides wider bandwidth. Another advantage is that the central ground plane acts to
isolate the feed system from the patch.

11.2.2 Other Microstrip Patch Antennas and Their Applications

Many patch shapes and configurations have been investigated. Following the rectangular
patch, the circular patch is probably is the most common shape. It can be made slightly
smaller than its rectangular counterpart, but with a small penalty in gain and bandwidth.
[H.8.4: Waterhouse, p. 27] See [H.8.4: Garg et al., Chap. 5] for analysis details on circular
patches.

The half-wave rectangular patch MSA is too large for many applications, especially in
arrays. An alternative is the quarter-wave patch antenna which has a patch length of
L� ld /4 at resonance, which is half that of the half-wave patch. The principle of oper-
ation is understood by first noting from Fig. 11-1b that the electric fields in the center of
the half-wave patch are zero. Thus, a conducting wall can be placed at x¼ 0 with little
effect on the fields for x, 0. The quarter-wave patch is then formed by removing the
patch half to the right of the shorting wall (for x. 0). In practice, the conducting wall is
usually implemented with shorting pins or vias between the ground plane and the patch.
With only the open edge to radiate, the E-plane pattern is that of a single slot and the
arraying effect of two slots with the half-wave patch is lost, giving a broad pattern. Such a
broad pattern makes the antenna useful as an element in a wide scan angle phased array.
The H-plane pattern is similar to that of the half-wave patch. The input radiation resis-
tance at resonance is about twice that of the similar half-wave patch. The bandwidth is
smaller than as its counterpart half-wave patch, and cross-polarization is higher.

MSAs with a single feed point in the center of the radiating edge will produce linear
polarization. Circularly polarized (CP) radiation can be created using a square patch with
two feed points on orthogonal edges and an external means to excite the ports with equal
amplitude and 90� out of phase (leading or lagging phase determine the sense of left or
right CP); see Sec. 2.8 for the basics on antenna polarization. This is accomplished with
either edge or probe feeds. The two feed point approach can also be used to generate dual
orthogonal linear polarizations with a single patch. Single feed point CP patch imple-
mentations are shown in Fig. 11-5. These CP patches operate by internally generating
orthogonal modes of equal amplitude and quadrature phase by slight perturbations in the
symmetric geometry. Although patches of many different shapes are capable of CP
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operation, usually modified square or circular patches are used in practice. The price paid
for having a simple geometry is narrow CP bandwidth (usually specified as under 3 dB
axial ratio) that is much narrower than the patch impedance bandwidth, which itself is
usually narrow. The principle of operation for a single-patch CP antenna is understood by
modeling the nearly square patch (Lþ δL by L) of Fig. 11-5a as two orthogonal dipoles,
one slightly longer than half-wave resonant and the other slightly less. The input reac-
tances will differ in phase as noted from Fig. 6-6 on each side of resonance. Similarly, the
orthogonal patch mode impedances will be out of phase and, with proper dimensions,
the radiated fields will be 90� out of phase. Inserting a slot into the patch as in Fig. 11-5b
or trimming the corners of a square patch as in Fig. 11-5c are also used to create CP. The
first three CP patches in Fig. 11-5 are edge fed and the final one in Fig. 11-5d is an off-
center, probe-fed patch, which is very popular due to its compact feed coming from below
the patch. See [H.9.1: Hirasawa and Haneishi, Sec. 4.5] for more details on the operation
and for design data on CP patches.

Microstrip antennas are the main antenna used for reception of global navigation
satellite system (GNSS) signals, which are right-hand CP. They are ideally suited because
of their small size and low cost. The narrow bandwidth is not a limitation because of the
narrowband signal. For example, the GPS L1 frequency spans 1565–1585MHz for a
20MHz, or 1.3%, bandwidth. To achieve small size the substrate is typically a ceramic
with a dielectric constant of 20 or 36. The probe-fed, nearly square patch is popular.
Using εr¼ 36 in (11-1) yields a patch side length of about 15mm. If a substrate with
εr¼ 2.2 had been used, the side length would be 63 mm, which is a factor of 4.2 larger in
side length and unacceptably large for most applications. The high-dielectric constant
patch in this case has an area that is less than 6% of the conventional patch area. The gain
of a GPS patch antenna is lower than that of a conventional patch for two reasons. First,
the smaller antenna size increases the beamwidth in the principal planes with the benefit
of better coverage of satellites in off-zenith directions, but lower the directivity. Second,
ceramics are lossy, leading to a radiation efficiency around 70%. Thus, a typical gain
value for a ceramic patch GPS antenna is 5 dB. GPS antennas in handset wireless phones
present a special challenge because of the size constraint. One solution is to print a
monopole onto the PCB, but the gain is very low and there is an additional loss of 3 dB
due to the LP-to-CP polarization mismatch. MSAs are used in handsets also, but suffer
from several dB gain loss due to the small ground plane available. GNSS systems transmit
multiple frequency bands, so multiband receiving antennas are often required. The
common solution is to stack a smaller patch for the upper band on top of a patch resonant
at the low band; see [H.9.1: Kumar, Sec. 5.5] for stacked patch designs.

The MSA is a ground-plane dependent antenna, and our discussions to this point have
assumed an infinitely large, good conductor ground plane. In many applications, the
available ground plane size is limited and performance will be compromised. A general
guideline is that if the ground plane is a few wavelengths in size, the pattern is unaffected.
If the ground plane is more than twice the patch size, the impedance is unaffected. If the
ground plane is larger than the patch size by l/20 on all sides, the resonant frequency will

(a) Nearly square
      corner-fed patch.

(b) Slotted square
      patch.

(c) Corner trimmed
      square patch.

(d) Offset probe-fed
      square patch.

L

L�δL

Figure 11-5 Microstrip antennas for generating circular polarization.
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not be increased. [H.8.4: Garg et al., p. 295] With finite size ground planes, the pattern
will have ripples due to interfering diffractions from the ground plane edges. The pattern
deviates the most from its infinite ground plane pattern in the endfire directions, and there
will be significant radiation below the ground plane. Cross-polarization levels are
increased with finite ground planes as well.

Microstrip antennas, elements, and arrays are also popular in non-planar applications.
Awidely used example is the so-called wrap-around antenna in which the MSA is printed
on a flexible material that is then applied to a curved surface such as the skin of a vehicle.
[7] Wrap-around MSAs are ideally suited for use on aircraft, missiles, and rockets where
conformal antennas are a must. See [H.8.4: Wong, Design of Nonplanar Microstrip
Antennas and Tr. Lines] for several topics in non-planar MSAs. Finally, we mention that
MSAs are now being used in millimeter-wave applications (above 30GHz); see [H.8.4:
Bhartia et al.].

11.2.3 Broadband Microstrip Patch Antennas

The intensive research and development efforts into overcoming the main limitation of
MSAs, narrow bandwidth, have provided several broadband designs. Because MSAs are
inherently narrowband, we define broadband patch antennas to be about 10% or more.
Here we review the techniques for realizing a broadband MSA; the following references
provide comprehensive treatments: [H.8.4: Bancroft; Kumar and Ray; Wong, Compact
and Broadband Micro. Ant.; Garg et al., Chap. 9; Waterhouse, Chap. 3; Pozar and
Schaubert, Chap. 4], [H.8.3: Chia and Chen], and [H.6: Godara, Sec. 6.4]. It is evident
from (11-8) that the bandwidth of a rectangular patch element can be increased by
increasing the dielectric thickness. Bandwidth as high as 20% is possible using this
simple method with substrates about 0.15 ld thick. [8] However, thick MSAs suffer from
high feed radiation (probe or edge fed), leading to excessive cross polarization, and high
feed inductance (probe fed). In array applications, surface wave generation leads to
increased side lobes and cross-polarization.

The inductance introduced by a thick substrate can be canceled by adding capacitance.
The gap-fed patch of Fig. 11-4a and the slotted patch of Fig. 11-5b provide this tuning
effect. A small slot in a rectangular patch can provide 7% bandwidth. [H.8.4: Bancroft,
Sec. 4.2] Patch shape optimization yields 8% bandwidth. [H.8.4: Bancroft, Sec. 4.3]
Adding a shorting pin or low-resistance chip resistor between the patch edge and the
ground plane to a conventional patch increases its bandwidth to 10%. [H.8.4: Wong,
Compact and Broadband Microstrip Ant., Sec. 1.3] Shorting pins can also be used to
reduce the size of an MSA. [H.8.4: Waterhouse, Chap. 5] Meandering the patch to give an
apparent longer current path also reduces patch size. [H.8.4: Wong, Compact and
Broadband Microstrip Ant., Sec. 2.3].

Very broadband operation is usually achieved with a double tuning effect realized by
adding parasitic elements such as coplanar or stacked patches. Although 20% bandwidth
is possible using parasitic patches coplanar to the radiating patch [H.8.4: Waterhouse,
Sec. 3.3], the design is not feasible if space is limited. Numerous stacked patch designs,
however, are widely used. The two popular stacked patch antennas shown in Fig. 11-6 are
electromagnetically coupled and aperture-coupled stacked patches. Both have a feed
layer on the bottom, usually of high dielectric constant, a lower patch on a substrate for
the next layer, and an upper patch on a substrate for the top layer. Stacked MSAs increase
bandwidth over a single patch because of the increased overall thickness, the decrease
in effective dielectric constant, and the multiple resonances. The electromagnetically
coupled stacked patch antenna of Fig. 11-6a consists of two substrate layers (lower
with εr1 and t1, and upper with εr2 and t2) with a gap between of thickness g filled with air
or foam material. The lower patch is directly fed and the upper patch is parasitically fed
from the lower patch. With the upper patch slightly smaller than the lower patch, the
two associated resonant frequencies are close together, yielding a broadband effect.
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With no gap (g¼ 0), the bandwidth can reach 8%. The presence of the gap increases the
thickness and thus the bandwidth. Designs with over 20% bandwidth and gains with and
without the gap of 6.8 dB and 8.3 dB, respectively, have been reported. [H.8.4: Kumar
and Ray]. These square-shaped, stacked patches have cross-polarization below �25 dB.

The aperture-coupled patch antenna of Fig. 11-4g uses a metal layer with an aperture to
feed the radiating (upper) patch. The aperture-coupled stacked patch (also called an aper-
ture-stacked patch) of Fig. 11-6b makes use of the aperture layer as another resonator, in
addition to the two patches, to further broaden bandwidth. With careful design, it is capable
of almost 70% bandwidth. [9] A thorough treatment of parameter tradeoffs is found in
[H.8.4: Kumar and Ray]. In summary, we see that stacked patch antennas offer greater
bandwidth and gain than single patch antennas at the expense of increased overall thickness.

Many applications do not require broad bandwidth, but instead multiple narrow
bands. GNSS satellite navigation satellite receiving terminals, for example, use two
or more narrow bands. Land mobile radio (cellular telephone) handset terminals require
multiple band compact antennas. WLAN terminals do also. Microstrip antennas
with multiple resonances offer a compact, inexpensive solution. The simplest way to dual
band a MSA is to use two feeds on adjacent edges that excite orthogonal modes on the
same patch, such as a rectangular patch which has a resonant frequency ratio approxi-
mately equal to the ratio of the patch side dimensions. Low cross-polarization will,
however, be difficult to achieve. Other means of multi-banding a patch are to use multiple
patches or to use reactive loading. See the following for design details: [H.8.4: Bancroft,
Chap. 5; Kumar and Ray, Chap. 7] and [10].

11.3 MICROSTRIP ARRAYS

Low-profile single antenna elements, such as a microstrip antenna, are capable of no more
than about 10 dB gain. Many applications require a low-profile antenna with moderate to
high gain, and an array of microstrip antennas is an attractive solution. The microstrip
array antenna offers the opportunity to print the feed network at the same time as the
radiating elements, often fabricating them on the same single-layer printed circuit board.
Antenna technology is following the evolutionary path toward full integration similar to
that of low-frequency electronics. Largely as the result of pioneering work for sophisti-
cated military radar, phase-scanned microstrip arrays can be produced with monolithic

Upper patch (L2 � W2)

Lower patch (L1 � W1)

Upper substrate (εr2, tr2)

Lower substrate (εr2, tr2)

Gap (g)

Upper patch (L2 � W2)

Lower patch (L1 � W1)
Upper substrate (εr2, tr2)

Lower substrate (εr1, tr1)

Aperture layer

Transmission line layer with feed

(a) Electromagneticially coupled stacked patch.

(b) Aperture-coupled stacked patch (viewed with layers separated).

Figure 11-6 Stacked-patch
microstrip antennas for broadband
operation.
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microwave integrated circuit (MMIC) techniques that fabricate amplifiers, phase shifters,
and other devices on the same substrate. Replacing older array technology using discrete
components with integrated subassemblies, especially for large arrays, yields savings in
hardware volume and cost.

The microstrip array antenna has many possible configurations. Microstrip arrays are
very popular for fixed-phase arrays applications because the radiating elements and feed
network can be fabricated on a single-layer printed circuit board using low-cost litho-
graphic techniques. The inter-element spacing for fixed-beam arrays is usually selected to
be less than a free-space wavelength (l) to avoid grating lobes and greater than l/2 to
provide sufficient room for the feed lines, to achieve higher gain for a given effects
number of elements, and to reduce mutual coupling. Mutual coupling effects depend on
the array architecture, the spacings, and the scan range. The active-element patterns for
the microstrip elements shown in Fig. 8-27 are very similar, indicating that mutual
coupling effects may not be a problem for those patches that are spaced 0.57 l apart.
Element spacings in scanned arrays need to be reduced from that for fixed-phase arrays,
with more reduction as the maximum scan angle off broadside increases; see Sec. 8.9.1.

As with any array, the microstrip array geometry can be linear, planar, or conformal
and the feed system can be parallel, series, or hybrid; see Fig. 8-31. Series feeds are either
resonant or traveling wave. The resonant-series-fed microstrip array has elements spaced
multiples of a guide wavelength apart along the feed line, which makes both the incident
and reflected waves in-phase, resulting in a broadside beam. The resonant array band-
width is very narrow, usually less than 1%. [H.6: Balanis, Ed., p. 170] A traveling wave
microstrip array absorbs power arriving at the end of the array in either a terminal element
or a load, avoiding a reflected wave. As a consequence, any spacing is possible and the
bandwidth is wider than for the resonant array. The feed network for the series-fed array
is not only more compact than a parallel-fed array with the same number of elements, but
has lower dissipative losses because of the smaller total line length in the feed network.

Parallel-fed arrays with their equal path lengths to each element have wider bandwidth
than series-fed arrays. The successive branching used in parallel feed networks (without
special power dividers) lowers the input impedance. But proper impedance can be
maintained by using microstrip transmission lines in the feed network. In fact, a
microstrip feed network enables impedance matching, phase control, and amplitude
tapering, all in a planar feed network, which is a major advantage over other array
implementations. Here we illustrate a simple parallel feed network and associated
impedance matching using the 2 � 2 array shown in Fig. 11-7a that can be used as a
fundamental subarray unit to build a planar array of any number of elements divisible by
4 such as the 16-element example in Fig. 11-7b. The four patches in the subarry are edge
fed with microstrip transmission lines of equal length from the subarray center (point C)
to preserve equal excitation phase. To illustrate, the patch input impedance is taken to be
ZA¼ 200Ω. The microstrip feed lines attached to the patches (points A) are of charac-
teristic impedances Zo1¼ 200Ω. These lines are matched to the patch loads, and thus
present 200Ω at each branch at points B and D. The parallel combination gives a 100Ω
impedance looking into points B and D. Again matched microstrip lines are used, this
time with Zo2¼ 100Ω. Paralleling at point C gives 50Ω. If only a four-element array were
desired, a probe feed attached to a 50-Ω coaxial line could be connected through ground
plane to point C. For larger arrays, the 50-Ω impedance at point C is transformed using a
quarter-wave transformer, producing 100Ω at point E. The required characteristic
impedance is found from (11-11) as Zo3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ZCZo4

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 U 100

p ¼ 70Ω. That is, the
quarter-wavelength-long section of Zo3¼ 70Ω line is followed by a line of Zo4¼ 100Ω
that can be of any length. This impedance matching pattern is repeated as subarrays are
added to build larger arrays as shown in Fig. 11-7b. This design produces equal amplitude
element excitations. If amplitude control is needed, for example to lower side lobes, the
two-way dividing branch points are followed by different characteristic impedance lines
to feed element pairs. [H.8.4: Bancroft, p. 156]
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EXAMPLE 11-2 Microstrip Patch Array of 16 Elements

The goal for this array design is to achieve high gain. This requires equal amplitude and phase
to each element and a simple feed network with low loss. The architecture of Fig. 11-7b is
an ideal solution that also provides a low-profile geometry. The operating frequency is 10GHz
(l¼ 3 cm) and the substrate is a dielectric with εr¼ 2.2. From (11-1), the patch length is
L ¼ 0:49l=

ffiffiffiffi
εr

p ¼ 0:49 U 3=
ffiffiffiffiffiffiffi
2:2

p ¼ 0:99 cm. The desired patch input impedance is 200 Ω, so
(11-7) is used to solve for the required patch width:

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90

ε2r
εr � 1

ZA

vuuut
L ¼

ffiffiffiffiffiffiffiffi
363

200

r
U 0:99 ¼ 1:335 cm ð11-13Þ

The element spacing is chosen to be d¼ 0.8 l¼ 2.4 cm, which is relatively large to provide
large array area and large directivity for the fixed number of elements. This spacing provides
sufficient separation between elements that have dimensions of 0.99 cm � 1.33 cm.

The design goal for a microstrip array with the highest possible gain is mainly one of
controlling the several sources of loss, which are surface wave loss, spurious radiation
loss, dielectric loss, conductor loss, and connector loss. As the number of elements in the
array increases, most of these losses increase as well. The usual competitor to an array for
moderate- to high-gain applications is an aperture antenna like a parabolic reflector. The
gain from (2-155) is directivity multiplied by the effect of all these losses, the radiation
efficiency er, or G¼ erD. Here we are assuming that the array is uniformly illuminated so
that the aperture efficiency εap equals the radiation efficiency; see (9-79). A reflector
antenna has unavoidable aperture taper and spillover losses, but radiation efficiency is
nearly 100%. The aperture efficiency of a simple focus-fed parabolic does not depend on
aperture size. As the radiating aperture size increases, the efficiency of an array decreases
due to increasing dielectric and conductor losses, and will eventually fall below that for
an equivalently sized reflector antenna. The array size for which the efficiencies of an
array and a reflector are the same is about 256 elements (16 � 16). This was determined
from a theoretical study supported by measurements. [11] Arrays similar to the one
shown in Fig. 11-7 were constructed and measured for N¼ 16, 64, 256, and 1024

d

A A

A A

B

E

d

D

C
Zo1

ZA � 200 Ω

(a) The four-element subarray. (b) A 16-element array formed from subarrays.

Zo1 � 200 Ω

Zo3 � 70 Ω Zo4 � 100 Ω
ZC � 50 Ω

ZB �
100 Ω Zo2 �

100 Ω

Zo1

Zo1

Zo2

Figure 11-7 A planar microstrip array with a feed network that produces equal amplitude and
phase element excitations.
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elements, and the efficiencies were 72%, 63%, 50%, and 34%, respectively. Comparing to
a reflector antenna of the same aperture area and 50% aperture efficiency, a fixed-phase,
uniformly illuminated array provides more gain for the same aperture size up to about 256
elements. The reflector antenna is a better solution for larger apertures. The gain of the
array can be calculated using the maximum directivity from (8-113) as

GArray ¼ erDMax Array ¼ er4πN
dx

l
dy

l
ð11-14Þ

For the case of dx¼ dy¼ d¼ 0.8 l as in Example 11-2 where uniform illumination is used,
GArray¼ 8.04 erN. Using the efficiencies for the study, the gain values are GArray¼ 19.7,
25.1, 30.0, and 34.5 dB for arrays of N¼ 16, 64, 256, and 1024 elements, respectively.
The area of these arrays increases by a factor of 4 for each size increment, which cor-
responds to a directivity increase of 6 dB, but the increase in gain in going from 256
to 1024 elements is only 4.5 dB due to the loss build-up.

As would be expected, an array of microstrip elements presents bandwidth challenges.
Increasing the substrate thickness to increase element bandwidth unfortunately leads to
surface waves along the substrate that reduce the usable scan range. [12] Fixed-phase MSA
arrays are not affected as much as phased arrays. The deleterious effects of the surface
waves in phased arrays are rapid variation in the active impedance with scan angle,
increased side lobes, and scan blindness moving toward broadside. Thus, there is tradeoff
in scan range and bandwidth in microstrip arrays. When widely spaced operating bands are
required, it is usually preferred to use a dual-band array rather than a broadband array. This
approach also affords interference rejection of unwanted signals at frequencies between the
bands. Dual-band arrays can be constructed using two layers of patches, each layer made of
patches resonant at the desired frequency band. The lower layer contains the low-frequency
patches and the upper layer contains the high-frequency patches with separate feed net-
works for each layer. A fixed-phase array operating at 2.44 and 5.78GHz using a 4� 4
array for the low band and a 8� 8 array for the high band is described in [13].

Microstrip arrays are often required to be circularly polarized. One popular application is
for Earth-space propagation where CP is used because of Faraday rotation experienced by
linear polarization. Circularly polarized elements as in Fig. 11-5 can be used in array
applications. An especially attractive way to achieve CP in a microstrip array that was
mentioned in Sec. 8.8 is to use 2 � 2 subarrays of linearly polarized elements fed with
sequential phases of 0�, 90�, 180�, and 270� clocked around the subarray. [H.6: Balanis,
Ed., Sec. 4.5] This special configuration not only reduces the feed network complexity
compared to dual-feeds to each element, but it also has wider bandwidth. Microstrip arrays
are also used when dual polarization is called for. A dual-polarized microstrip array can be
realized using orthogonal feeds in a patch and connecting the same polarization feed lines
together, forming essentially orthogonally polarized arrays in the same aperture.

Microstrip antennas are also excellent candidates for omnidirectional arrays that
are formed by wrapping the linear array around a vehicle, for example. [H.6: Ant. Eng.
Hdbk., 3rd ed., Sec. 7.3]

11.4 MICROSTRIP LEAKY WAVE ANTENNAS

The microstrip leaky wave antenna illustrated in Fig. 11-8a and 11-8b is an inexpensive
low-profile antenna. It consists of a microstrip transmission line operating in the first
higher-order mode, as we will see later. The objective of this section is to introduce the
general characteristics of leaky wave antennas and then to illustrate those characteristics
with a more detailed look at a microstrip leaky wave antenna.

11.4.1 Characteristics of Leaky Wave Antennas

A leaky wave antenna is a traveling wave antenna composed of a transmission line
structure that leaks energy along its entire length. Transmission lines do not normally
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radiate unless they are perturbed or unbalanced in some fashion. If a transmission line is
perturbed such that it radiates a leaky wave, the wave will have a complex guided wave
number, kg, of the form kg ¼ βg � jαg where αg is the attenuation constant due to
leakage. Leaky wave antennas are designed such that at least 90% of the power on the
structure has leaked away before the traveling wave reaches the end of the antenna.
The remaining power can be absorbed by a matched load to prevent a strong minor lobe
in the backward direction. When αg is known, the 10% power at the end of the antenna,
P(L), farthest from the input can be calculated according to

PðLÞ
Pð0Þ ¼ ðe�αLÞ2 ¼ ðe�2αLÞ ¼ 0:1 ð11-15Þ

where P(0) is the power at the input end of the antenna.
There are two types of leaky wave geometries: uniform along its length as are the

geometries in Fig. 11-8; and periodic wherein the geometry has some periodicity along its
length. Examples of the periodic type are shown in Fig. 11-9. Both types are fast wave
structures. The periodic microstrip antenna in Fig. 11-9 is capable of backward as well as
forward radiation [14].

The radiation pattern of leaky wave antennas is strongly dependent upon the length of
the antenna (typically 5–20 wavelengths long) and its phase constant, βg. Since the length
is long and βg changes with frequency, the main beam frequency scans within the forward
range of about 10� to 80� from endfire. The beamwidth (and gain) normally remains
relatively constant with scan angle. The pattern factor of a typical leaky wave antenna is
that of a line source (see Chap. 5) with current of the form

I ¼ Ioe
�αgz e�jβgz ð11-16Þ

If the effect of αg is neglected, the position of the main lobe at θo is then

θo � �cos�1
βg

β
¼ �cos�1 c

v
ð11-17Þ

L

(a) With vias along the center line simulating a metallic
      wall to prevent fundamental mode propagation.

(b) With rectangular slots to prevent fundamental mode
      propagation.

W

Figure 11-8 Uniform microstrip leaky
wave antennas.
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as expressed in (5-35). When αg is taken into account, there will be some small modifying

effect on θo by αg, but (11-17) will usually have satisfactory accuracy [H.8.8: Walter, p. 69].
The side lobe level of a leaky wave antenna tends to be high and can be higher than

the �13.3 dB level of a uniform aperture. Most leaky wave antennas are easily impedance
matched. Bandwidths typically are in the range of 15–30% but can be higher [15].
For example, the antennas in Fig. 11-8 have a pattern bandwidth of about 28% whereas
that in [15] is more than 2:1. Leaky wave antennas have high excitation efficiency and
low losses other than that due to radiation. If high power is not a requirement, printed
circuit techniques can be used for fabrication as in the microstrip leaky wave antenna in
Sec. 11.4.3.

11.4.2 Microstrip Modes

A microstrip transmission line normally does not radiate. The fields produced by the
fundamental EH0 mode do not decouple from the structure. It is only when the funda-
mental mode is blocked or restricted within the antenna that the microstrip transmission
line can operate in a higher-order mode (specifically odd-numbered modes). It is in
these odd-numbered higher-order modes that the fields are able to decouple from the
surface and, thus, radiate from the structure. When this happens, the antenna is said to
be operating as a leaky wave antenna.

Fig. 11-10a illustrates the fundamental mode and Fig. 11-10b shows the next higher-
order mode. The fundamental mode for microstrip is a slow wave quasi-TEM mode,
usually annotated, EH0, in which both the electric and magnetic fields have a component
in the direction of propagation. Examination of the electric field lines in Fig. 11-10a
indicates that there will be no net radiation in the far field. Likewise, a higher-order mode
in microstrip is not purely TE or TM, but a hybrid combination of the two. The first

(a)

TE01 E

(b)

(c) Microstrip leaky wave antenna. [14]

(a), (b) Metallic waveguide leaky wave antennas.

Figure 11-9 Periodic leaky wave
antennas.
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higher-order mode is termed the EH1 mode shown in Fig. 11-10b. It has a phase reversal,
or null, along the centerline, allowing the fields to decouple and radiate. EH1 is a fast
wave. Examination of the electric field lines in Fig. 11-10b indicates that this mode has
the potential to produce far field radiation.

In Fig. 11-8a the dominant mode is prevented from existing by the metal wall of vias
separating the left half of the transmission line from the right half. In Fig. 11-8b the
dominant mode is prevented from existing by the rectangular slots in the microstrip line
which interrupt the current of the EH0 mode [H.6: Lo, p. 32–14].

The EH1 mode on the microstrip transmission line is not a leaky wave mode. Instead,
the EH1 mode makes it possible for the microstrip structure to support a leaky wave.
Leaky waves are not modes in the usual sense; in fact, leaky waves are non-modal.
Sometimes leaky waves are called improper or nonspectral because the forward leaky
wave increases in the y-direction vertically away from the guiding structure, thereby
seemingly in violation of the condition that the radiation vanish at infinity. Fig. 11-11
illustrates this. In Fig. 11-11, the strength of the leaking field is depicted by the thickness
of the rays at angle θo, the angle of the main beam. The fields increase exponentially to a
distance above the antenna, ymax, given by

ymax ¼ y tan θo ð11-18Þ

E-field lines

(a) Field distribution associated with the fundamental microstrip mode, EH0.

εr

εr

E-field lines

(b) Field distribution associated with the first higher-order mode, EH1.

Figure 11-10 Two microstrip modes.
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Figure 11-11 The
intensity of fields radiating
from a leaky wave antenna.
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and then quickly decay, with the result that the fields do not continue to increase
indefinitely.

Before the microstrip leaky wave antenna operation can be better understood, an
understanding of the propagation characteristics of the antenna is required. Once the
propagation characteristics are known, other quantities of interest can readily be obtained.

11.4.3 Propagation Regimes

The EH1 mode exhibits four distinct propagation regimes. Below the cutoff frequency, fc,
is the reactive regime and above cutoff are the leaky wave, surface wave, and bound wave
regimes, as illustrated in Fig. 11-12. These regimes can be understood by analyzing the
general dispersion relation

k2g ¼ k2gx þ k2gy þ k2gz ð11-19Þ
where each component is complex (i.e., kgx¼ βgx�jαgx, kgy¼ βgy�jαgy, kgz¼ βgz�jαgz).
For notational simplification, the subscript “g” will be dropped from the x, y, and z
components.

There are numerous methods for finding the various propagation constants in (11-19).
These methods include techniques such as FDTD (Chap. 15), MoM (Chap. 14), full-wave
Green’s function analysis, the method of Steepest Descent, mode matching, and an
approximate somewhat simpler method, transverse resonance. Each method has different
advantages and limitations for analyzing the microstrip leaky wave antenna. None of
these methods yield propagation constants without a fair amount of effort. However, once
the propagation constants are known, the design of a leaky wave antenna is a straight-
forward procedure involving, in part, (11-15). The main beam may be shaped by altering
the geometry so that αz and βz are changed to meet design goals [H.6: Ant. Eng. Hdbk.,
3rd ed., Chap. 11] and the sidelobe level can be controlled by the choice of αz.

Usually, the transverse propagation constants kx and ky must be found first and then the
longitudinal propagation constant, kz, found from (11-19). In the radiation regime,
between the microstrip line and the ground plane,

k2z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2g � k2x

q
ð11-20Þ

since ky is zero. In a method like FDTD which calculates fields, kz can be found directly
from a field component [16, 17] as indicated in Fig. 11-13. Note that

Ey ~ e�jkz ¼ e�ðαz�jβzÞ ð11-21Þ
and then

ln Ey ¼ ln e�ðαzz�jβzzÞ ¼ �αzz� jβzz ð11-22Þ
Thus αzz is simply the slope of the peaks in Fig. 11-13 and βz is found from the separation
of nulls since βz ¼ 2π/lz.

Once the longitudinal propagation constant is known, the far-field pattern can be
determined by using the complex propagation constant in the appropriate line-source
expression similar to (5-2) or (2-103).

The results that follow were obtained by FDTD (see Sec. 15.9) and also by Transverse
Resonance [16, 17, 18]. Additionally, results in the radiation regime were verified by
near-field measurements. The parameters of the antenna were length, L ¼ 220mm;
width, w ¼ 15 mm; εr ¼ 2.33 (see also Fig. 15-34). The configuration used was that in
Fig. 11-8a with the vias. This is called the half-width antenna because it takes advantage
of the symmetry plane longitudinally down the middle of the microstrip such that only
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half of the 15mm width is excited and thus the other half can be eliminated. The results
that follow can be obtained with either the half-width or full-width configurations.

Fig. 11-12 shows the plot of normalized (with respect to β) βz and αz versus frequency.
From zero frequency up to the cutoff frequency, fc, the region is called the reactive
regime. It is characterized by a very large αz component, causing the microstrip to appear
as a reactive load at the input of the microstrip. At the cutoff frequency, the phase and
attenuation constants are equal (βz¼αz). This is the start of the radiation regime. In this
regime, propagation outside the antenna is occurring in all directions. The radiation
regime continues until the phase constant is that of free space (β). At this point, there is no
attenuation in the longitudinal direction (αz¼ 0) and large attenuation in the radiated
direction (αy). Because of this, fields no longer radiate. However, they continue to prop-
agate in the longitudinal and transverse directions. This is called the surface regime. This
regime continues until βz.β. At this point, there is a large attenuation in the transverse
direction (αx) causing all fields to be bound under the top conductor and only propagate in
the longitudinal direction. This is called the bound regime. Clearly the computation of the
various propagation constants is crucial to understanding the operational regimes of the
microstrip leaky wave antenna.

Fig. 11-14a shows an H-plane pattern at 6.25GHz, and Fig. 11-14b shows an H-plane
pattern at 7.2GHz obtained using the FDTD and Transverse Resonance–derived complex
longitudinal propagation constants as part of a line-source model to calculate the far-field
pattern. Only the forward traveling wave is used for the pattern calculations, there being a
matched load assumed at the end opposite the feed to absorb power reaching the far end. The
operating band of the leaky wave antenna is from about 6GHz to 8.2GHz. At 6.25GHz the
main beamof the pattern is at about 61� andwould rise higher if the frequencywas decreased
toward cutoff at 6GHz. At 7.2 GHz the main beam is at about 37� and would approach
endfire if the frequency was increased toward 8.2 GHz. The lack of deep nulls in the
6.25GHz pattern is due to the value of αz being higher at the lower frequencies.

In conclusion, αz determines the length of the antenna and controls side lobe levels,
βz determines the main beam direction, and together αz and βz determine the radiation
bandwidth. The relative permittivity influences αz and βz. The higher εr is, the larger is
αz and the smaller is the bandwidth. The most difficult part of microstrip leaky wave
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design is the determination of the complex propagation constants. However, once they are
known, the design procedure is straightforward. A discussion of the FDTD simulation of
the microstrip leaky wave antenna is in Sec. 15.9.3.

11.5 FUNDAMENTAL LIMITS ON ANTENNA SIZE

The topic of small antennas is of great interest in the wireless communications com-
munity because a primary goal in many applications is to have the antenna volume as
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Figure 11-14 Normalized far-field patterns at two frequencies for the antenna in Fig. 15-34.
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small as possible. One of the most challenging areas is wireless handset design in which
size reduction is limited by the size of two main components: batteries and antennas.
Electronic devices in handsets have increased steadily in functional volume density for
many years, whereas antenna size has not decreased significantly. This is because
antennas (and batteries) do not follow Moore’s law for integrated circuits, which predicts
that component density on a chip increases by a factor of 2 every 18 months. Alterna-
tively,Moore’s law states that size can be reduced by one-half every 18months for the same
performance. This size reduction is not possible for antennas because they are directly
limited by physics principles rather than manufacturing techniques as is the case with
integrated circuits. In this section, we examine the theoretical limit on antenna size and how
close it can be approached in practice. Also included are the consequences of reducing
antenna size too much. Emphasis is primarily on electrically small antennas, but many
results apply to resonant and broadband antennas as well.

In Sec. 1.4, we defined an electrically small antenna as one whose size is much less
than the operating wavelength. The precise definition of electrically small begins by
enclosing the antenna with an imaginary sphere of radius a as shown in Fig. 11-15. An
electrically small antenna, as defined by Wheeler [19] and widely adopted, is one that is
smaller than a radiansphere, which is an imaginary sphere of radius r with βr¼ 1.2 So the
radiansphere radius r is l/2π, for a diameter of about 1/3 wavelength. Thus, an electri-
cally small antenna (ESA) satisfies

βa# 1 electrically small antenna ð11-23Þ
The physical significance of the radiansphere is that it marks the boundary between the
near-field and far-field regions for an ESA; Prob. 11.5-2 guides the proof of this. Inside
the radiansphere, reactive stored energy dominates over radiated energy. Small antennas
are usually mounted over a ground plane. If the ground plane is large, it is well
approximated as an infinitely large conductor, and then the antenna is considered to
include its image for determining the antenna sphere radius. For example, the monopole

2Wheeler [20] originally used diameter instead of radius, giving βr # 0.5 and some references use this.
But (11-23) has become the most common criterion for defining the size limit.

Radiansphere

Sphere just
enclosing
antenna

Reactive fields
dominate, r�λ/2π

Radiating fields
dominate, r�λ/2π

r�λ/2π

a

Figure 11-15 The radiansphere and the antenna sphere. The antenna sphere is of radius a
and just encloses the antenna, which in this case is a capacitor-plate dipole antenna. The
radiansphere is of radius r where βr¼ 1. If βa, 1, the antenna is electrically small.
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version of the capacitor-plate dipole shown in Fig. 3-10b fits in a hemisphere of radius a,
and the monopole and its image fit in the full sphere as in Fig. 11-15 (and in Fig. 3-3).

In Chaps. 2 and 3, we examined several simple radiators. Some of these were elec-
trically small radiators (e.g., ideal dipole, short dipole, and small loop) smaller than
resonant size. The consequence of electrically small size, as we saw in Example 2-4, is
high input reactance, low radiation resistance, low efficiency, and narrow bandwidth. An
electrically small antenna is characterized by a radiation resistance that is much less than
its reactance and by a radiation pattern that is essentially independent of the antenna size.
Although the radiation pattern and the directivity of an electrically small antenna are
independent of size or frequency, the radiation resistance and especially the reactance are
not. This is apparent from Figs. 6-5 and 6-6 for the dipole and Fig. 6-68 for the loop when
their sizes are electrically small. This sensitivity of the input impedance to frequency
makes the transfer of power from a generator into the antenna or from the antenna into a
receiver a challenge for the antenna engineer. ESAs also can have low efficiency because
of ohmic losses.

The key parameters for evaluating an ESA of size, bandwidth, and efficiency (gain) are
highly interrelated and cannot be simultaneously optimized. That is, antenna size is
reduced at the expense of decreased bandwidth or decreased efficiency, or both. An
alternate way to view this is that there is an upper limit to gain-bandwidth product for an
antenna, and maximum possible gain is increased only at the expense of bandwidth. [21]
In spite of this barrier, the wireless industry continues to place great emphasis on reducing
antenna size as much as possible without large compromise in performance. There are
some system design approaches that allow for improved performance of ESAs, as we will
note in this section, but these require an understanding of the fundamental limits on
antenna size, which is our first topic.

11.5.1 The Fundamental Limit on Antenna Size

Antenna size limit theory started with Wheeler in 1947 [20] and remains an active area of
investigation. There are three approaches used: field theory analysis, equivalent circuit
models, and radiation pattern integration. Books on ESAs are found in Appendix H.8.11,
with [H.8.11: Volakis et al.] providing the most comprehensive summary. In this section,
we present an overview with emphasis on practical results and relating antenna size to its
bandwidth.

Aswith any resonant electrical device, a basic performance parameter of anESA is antenna
Q (quality factor),QA. The antenna is assumed to be resonant (tuned) to a resonant frequency
and to be lossless (loss effects are accounted for in the radiation efficiency). Under these
assumptions, antennaQ approximately equals radiationQ, which deals onlywith the radiation
portion of power accepted by the antenna. Further assumptions in the theory to follow are that
the antenna is passive, linear, and time-invariant.We start withQ because, unlike bandwidth, it
can be rigorously defined. Following Q discussion, we present approximate relationships for
bandwidth. Antenna Q is defined as the ratio of stored to radiated power:

QA ¼ 2 ω max Weav ,Wmavf g
P

ð11-24Þ

where Weav and Wmavare the time-average, non-radiating (stored) electric and magnetic
energies, and P is the time-average radiated power. At the resonant frequency, if there is
one, the electric and magnetic energies are equal, just as in a resonant circuit. As done in
circuit theory, it is logical to express Q in terms of input impedance as the ratio of reactive
impedance, XA, to real impedance, RA:

QA ¼ XAj j
RA

ð11-25Þ
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This is an approximation that is accurate for a small dipole with βa, 0.5 and for a small
loop with βa, 0.3. [H.8.11: Volakis et al., p. 52] The Q of a monopole enclosed by a
hemisphere is the same as its dipole counterpart because the reactive power in the
numerator and the radiated power in the denominator of (11-24) are both halved, yielding
the same ratio.

When handsets first found widespread use, they only operated in a single frequency
band. Currently, the antenna system in a handset has to function in several bands, sup-
porting many applications. Usually a single antenna in a handset must cover several bands.
Communication engineers include each communication band in counting the number of
bands, leading to the common designations for handsets of quadband (four bands), pen-
taband (five bands), hexaband (six bands), and so on. Some of these communication bands
are contiguous in frequency. From an antenna operational standpoint, contiguous bands are
one band, and only bands separated in frequency are counted in a multiband antenna. We
use the latter definition, but the reader should be aware of the different ways to count bands.
Unless otherwise noted, the theories here do not apply to multi-resonant or broadband
antennas.

QA is approximately inversely related to fractional bandwidth, B, which was defined in
(7-1a), giving [21]:

B � 1

QA

ð11-26Þ

This is also a classical result for an RLC circuit, as Chu [21] modeled the small antenna.
It is accurate for QA. 10. After completing the discussion of Q, we will be more specific
in the bandwidth relationship.

In 1948, Chu [21] published his classic paper in which he expressed the fields outside
the radiansphere as a summation of spherical waves. He then formed an equivalent RLC
ladder network to separate the non-propagating energy from the total energy that led to an
approximate expression for minimum radiation Q [23]:

QChu ¼
1þ 2 β að Þ2

β að Þ3 1þ βað Þ2
h i ð11-27Þ

where a is the radius of the just-enclosing sphere centered on the antenna. Chu showed
that an antenna exciting only the TM10 mode (equivalent to a small dipole) or only the
TE10 mode (equivalent to a small loop) has the lowest possible Q for a linearly polarized
antenna. Subsequent work by Collin and Rothschild [22] and McLean [23] based on full-
wave analysis for the TM10 mode gave an exact expression for the minimum radiation Q:

QMcLean ¼
1

β3a3
þ 1

βa
ð11-28Þ

This result is very close to that of (11-27) for a smaller than the radiansphere, as in (11-23).
Based on variation of energy velocity inside the radiation sphere, Davis et al. [24] corrected
the derivation for the false assumption of previous investigators that radiated energy pro-
pagates radially outward at the speed of light, giving

QA ¼ 1

β3a3
minimum Q for all antennas ð11-29Þ

This equation yields values nearly identical to those from the Chu formula of (11-27) for
βa, 1 and is only slightly lower for other βa values. As we discuss next, this has general
application and is the lowest possible Q for any antenna. Enclosing shapes other than
spherical (that are convex) leads to a smaller volume and higher minimum Q. [25]
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Antenna size limits are best understood by plotting Q versus antenna size. The lowest
curve in Fig. 11-16 is a plot of the limit in (11-29). Increasing abscissa values, βa,
represent increasing antenna electrical size, a/l. Increasing ordinate values, QA, corre-
spond to decreasing bandwidth because of the inverse relationship in (11-26). A point
(QA, βa) can be plotted on this graph for an antenna of size a operating at wavelength l
and having Q value QA using (11-38) below. The fundamental limit theory requires that
the point cannot be below the curve. The curve also shows that smaller size (i.e., βa) is
achieved by increasing QA (i.e., lowering bandwidth). Approaching this lower bound on Q
has been elusive to achieve in practice. Usually it is not possible to merely lower the Q for
an antenna while maintaining its size. The antenna engineer has to look for an inherently
lower-Q design. Antennas that approach the limit on QA tend to efficiently utilize the
spherical volume—that is, fill out the antenna sphere. A linear dipole, for example, fills
very little of a spherical volume and is far above the fundamental limit curve. However,
filling the volume does not guarantee reaching the lower limit.

11.5.2 Practical Aspects of Antenna Size Limits

The obvious question is how close an antenna can come to the minimum Q limit of
(11-29). There is no general answer to this question, and we address it through examples
for practical antennas. The middle curve in Fig. 11-16 is for a short dipole. It was
derived by integration of the far-field pattern using (5-38) to obtain QA for the short
dipole with a sinusoidal current distribution. The curve, as expected, is above the bottom
curve, which is the lowest possible QA. The top curve is for a thin wire dipole based on
the ratio |XA|/RA in (11-25) and calculated using the method of moments for a dipole of
radius 0.005l. Although the top curve is for an electrically small dipole similar to that
for the middle curve, the finite wire size and all other aspects of a real antenna are
included. Summarizing Fig. 11-16, the lower curve is the minimum theoretically pos-
sible QA; the middle curve is the lowest QA for an electrically small linear dipole with a
sinusoidal current distribution; and the top curve is actual QA for a real wire dipole that
is electrically small.
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Figure 11-16 Antenna Q versus βa,
where a is the radius of a sphere that
just encloses the antenna. The bottom
curve is the minimum QA for any
antenna from (11-29). The middle
curve is the lower bound for a dipole
with a sinusoidal current distribution.
The top curve is a typical result: a thin
wire dipole using (11-25) and moment
method simulations were used to find
the input reactance and radiation
resistance.
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It is interesting to note that the QA curve for an ideal dipole with uniform current varies
as 1/(βa)3 for small a and the near fields (reactive) of an ideal dipole vary as 1/(βr)3.
This implies that as an antenna becomes electrically smaller there is a sharp increase in
the stored energy close to the antenna. This can be interpreted as radiating energy into
the invisible region. Also as electrical size is decreased the directivity remains equal
to 1.5. Thus, ESAs are superdirective, which means there is more directivity than
would be expected based on size. Superdirectivity and QA are closely related, as
explained in Sec. 5.5.

In addition to limited bandwidth, the electrically small antenna also suffers from low
radiation efficiency. This is due to the radiation resistance decreasing faster than the
ohmic loss resistance as the size decreases. From (2-172), the radiation resistance Rr of a
short dipole varies as f 2 and from (3-54), the radiation resistance of a small loop varies as
f 4. However, from (2-170), ohmic resistance Ro is constant with frequency. Thus, the
radiation efficiency, given in (2-178) as er¼Rr /(RrþRo), of an ESA decreases rapidly as
frequency is decreased. Radiation efficiency can be improved by reducing losses on the
antenna by, for example, using planar strips instead of thin wires. Radiation resistance can
be increased by filling more of the volume (inside a) with antenna structure. Various
loading schemes and geometry perturbations can be used. [26] Increasing the radiation
resistance also improves input impedance. For example, the high capacitive reactance of a
short electric dipole can be reduced by inductive loading. An example of this is the
normal mode helix, to be discussed in more detail in Sec. 11.6.1.

An electrically small dipole or loop antenna has a directivity of D¼ 1.5. Other types of
ESAs will have directivities near this value. Gain is found from directivity as G¼ erD,
and radiation efficiency er (referred to here as efficiency) will decrease with decreasing
antenna size and can become very small. Thus, the attention with ESAs is focused on
efficiency. Impedance mismatch depends on how the antenna is loaded and is accounted
for by multiplying impedance mismatch factor q times gain to find realized gain; see
Sec. 4.4.4. Here efficiency includes only internal antenna loss.

An insightful way to display efficiency versus frequency is to use a Bode plot to reveal
asymptotic behavior. This requires expressing the efficiency in (2-178) in a form suitable
for interpretation on a Bode diagram. Thus,

er ¼ 1

1þ Ro

Rr

ð11-30Þ

For a short dipole, (2-171), (2-172), and (2-175) give

Rr

Ro

¼ π3=2

c2
ffiffiffi
ε

p
� �

aΔL
ffiffiffi
σ

p� �
f 3=2 ð11-31Þ

where c is the speed of light. Fig. 11-17 is the Bode diagram obtained by combining these
two equations and plotting efficiency in dB form using er(dB)¼ 10 log(er) for the dipole
case of the AM car radio antenna in Example 2-4 with a¼ 0.159 cm and Δz¼ 1.57m.
[26] When Ro¼Rr, the radiation efficiency is 50% (�3 dB), and when Ro�Rr the
electrically small asymptotic behavior is Rr/Ro, which falls off with decreasing frequency
at 15 dB/decade due to the f 3/2 frequency dependence when er� 0.5. The efficiency value
for the car antenna of Example 2-4 at 1MHz of 6.85%¼�11.6 dB can be found on the
curve in Fig. 11-17. The break point where the low- and high-frequency asymptotes meet,
which is where Ro¼Rr and the efficiency is �3 dB, in Fig. 11-17 occurs at 5.68 MHz.
The plot can be modified to display gain instead of efficiency by adding the directivity for
the short dipole of 1.5¼ 1.76 dB.

The small loop antenna can be developed in a similar fashion. Using (2-171), (3-53),
and (3-60) in (11-30) gives the asymptotic ratio:
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Rr

Ro

¼ 31, 200
π3=2

c4
ffiffiffi
μ

p
� � ffiffiffi

σ
p� �

ab3
� �

f 7=2 ð11-32Þ

for a circular loop of mean radius b and wire of radius a and conductivity σ. This is
the low-frequency asymptote for an electrically small loop antenna of wire radius a and
mean loop radius b. The expression is valid up to about a loop perimeter of 0.3 l.
Consider a 1-meter circumference circular loop made of 0.5-inch diameter aluminum
wire. Fig. 11-18 plots the efficiency in dB using (11-32) in (11-30) versus frequency on a
logarithmic scale for this small loop example, including the Bode asymptotes. The break
point of the asymptotes occurs at 38.2 MHz where the efficiency is �3 dB. The roll-off
for low frequencies is at the rate of 35 dB/decade, or 10 dB/octave, for er� 0.5 due to the
f7/2 frequency dependence (11-32). An example including measured values for a multi-
turn loop antenna is given in [27, 28].

The Bode asymptotic diagram can be used to extend measured data for gain or effi-
ciency to frequencies outside the range of measurement. There are two scenarios,
depending on whether the corner frequency is known or unknown. If the corner frequency
is known and both asymptotes are also known, it is straightforward to either extend high-
frequency data to low frequencies or vice versa. If the corner frequency is unknown, the
situation is more difficult. Ideally at least one piece of low-frequency data allows
the location of the low-frequency asymptote to be determined, and this allows the corner
frequency to be fixed. If there is no low-frequency data, it may be possible to extend high-
frequency data to low frequencies following the basic behavior of the Bode diagram of

1

1þ αx�γ ð11-33Þ

where x is a relative frequency, γ determines the slope of the asymptotic low-frequency
dependence, and α is a constant that determines the location of the low-frequency
asymptote. The low-frequency asymptotic frequency dependence is likely to be f 7/2 in
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Figure 11-17 Efficiency in dB as a function of frequency for a short dipole antenna.
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magnetic cases and may be f 3/2 in electric cases if the antenna behaves like a thin linear
dipole or monopole.

Fig. 11-19 shows the QA values for several practical antennas where each point (QA,βa)
is for the mid-band operating point of the antenna. Most antenna names on the plot are
self-explanatory. The “Patch” is a microstrip patch antenna. It is far above the mini-
mum QA curve because it has very narrow bandwidth. The “Dipole” is a half-wave
dipole. The “Goubau” antenna is a specially fed top-loaded monopole that is 0.09l tall
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Figure 11-18 Efficiency in dB as a function of frequency for a one-turn, 1-meter diameter
circular loop antenna made of 0.5-inch diameter aluminum wire.
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Figure 11-19 Several practical antenna examples. Each point (QA, βa) is for the mid-band
operating point of the antenna. The solid line is the minimum QA for any antenna from (11-29).
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with an octave of bandwidth. Note that it is close to the minimum curve. [29] The
“Foursquare” antenna is a broadband antenna that was discussed in Sec. 8.11. The “Folded
Hemisphere” antenna is a small, folded spherical helix that efficiently uses the radian-
sphere, getting very close to the minimum QA. [30] The “Compact UWB” antenna is
shown in Fig. 7-44d and has a fractional bandwidth of 3.5. It is close to the limit, which is
difficult to achieve for a broadband antenna. The folded hemisphere and compact UWB
antennas are close to the minimum QA because they come close to filling the surrounding
hemisphere. The remaining antennas will be discussed later.

11.5.3 Antenna Loading and Impedance Matching

Electrically small antennas have low radiation resistance and high reactance, capacitive
for an electric antenna (such as a small dipole) and inductive for a magnetic antenna
(such as a small loop). A matching network can always be found to cancel the reactance
and increase the input resistance to a convenient value such as 50 Ω. The antenna is then
tuned at the matched frequency. However, a matching network has disadvantages. First,
adding reactance to the whole antenna system increases the Q, thus lowering the band-
width. Second, loss in the matching network will lower the efficiency. The usual goal for
realizing impedance matching, at least for ESAs, is to use internal loading to avoid the
added volume and expense of an external matching network. When internal loading is
used, the antenna is said to be self resonant. There are two forms of internal loading:
using lumped circuit elements within the antenna or by changing antenna geometry.
Lumped loads were discussed in Sec. 6.5. Increasing the length of the antenna conductors
without making it taller provides a longer current path, which increases the reactance and
radiation resistance. Top-hat loading, as with the monopole of Fig. 2-10b, accomplishes
this. The normal mode helix antenna (NMHA) is very popular as a self-resonant small
monopole. It is essentially a wire monopole coiled into a helix, giving it a longer current
path compared to straight wire of the same height. The meander line monopole antenna
shown in Fig. 11-21 is a low-profile version of the NMHA that is used in handsets.

Now we return to the evaluation of bandwidth that was approximated as B� 1/QA in
(11-26). An antenna operating band spans the limit frequencies from fL to fU. Antenna
performance is acceptable between these frequencies, which for impedance-limited
antennas is for a VSWR less than or equal to a specified value S. In the QA calculation, the
frequency limits are where the power drops to half (�3 dB) peak power in the band,
corresponding to S¼ 5.83. The bandwidth is the fractional bandwidth defined in (7-1a) as
B¼ (fU�fL)/fC, and in this application the center frequency is the geometric mean of
fC ¼ ffiffiffiffiffiffiffiffi

fLfU
p

rather than the normal arithmetic mean. Geometric mean agrees closely with
arithmetic mean for low bandwidths and is 6% greater than arithmetic mean when B
reaches 0.7. Geometric mean frequency is needed for accurate calculation of Q for
broadband antennas. [H.8.3: Schantz, Sec. 5.5] Bandwidth is often quoted for a
VSWR value of S that is different than the half-power level value of 5.83. To convert, the
following is used [H6: Ant. Eng. Hdbk., 4th ed., p. 6-13]:

BVSWR¼S ¼ S� 1

2
ffiffiffi
S

p B�3dB ð11-34Þ

As a check, if VSWR¼ 5.83, B–3dB¼BVSWR¼ 5.83, as it should. A common bandwidth
limit is for S¼ 2, and then B�3dB ¼ 2

ffiffiffi
2

p
BVSWR¼2. QA is related to bandwidth, but QA is

unloaded Q, meaning the antenna is assumed to be unaffected by any attached load. Then

QA ¼ 1

B�3dB, unloaded

small antenna ð11-35Þ

c11 27 March 2012; 18:37:0

496 Chapter 11 Low-Profile Antennas and Personal Communication Antennas



where the unloaded bandwidth, B�3dB, unloaded, must also be used. However, when mea-
surements are made, the measuring instrument loads the antenna. In general, when a
matching network is conjugate matched to the antenna, ZM¼ ZA

*¼RA�jXA; see Sec. 4.4.4.
When the load is matched to the antenna, the bandwidth is doubled, so the unloaded
bandwidth is found as

Bunloaded ¼ 1

2
Bloaded match loaded antenna ð11-36Þ

Combining this with (11-35) gives

QA ¼ 2

B�3dB, loaded

match loaded small antenna ð11-37Þ

Expressing this equation in terms of VSWR¼ 2 bandwidth using (11-34) with S¼ 2 gives

QA ¼ 1ffiffiffi
2

p
BVSWR¼2, loaded

match loaded small antenna ð11-38Þ

The foregoing development applies to tuned electrically small antennas and may be
inaccurate for other applications. For broadband antennas, QA can be roughly approxi-
mated using

QA ¼ 1

BVSWR¼2, loaded

broadband antenna ð11-39Þ

Ohmic loss effects can be included in the evaluation of Q rather simply by noting from
(11-25) that QA is inversely proportional to dissipation and thus QA decreases with
increasing loss. Then minimum Q expression of (11-29) is modified to include loss as
follows:

QA ¼ er

β3a3
minimum Q including loss ð11-40Þ

The effect is to lower the fundamental limit curve in Fig. 11-16. Of course, as efficiency
decreases, QA decreases and thus bandwidth increases. Sometimes loss is intentionally
added to an antenna to widen bandwidth. This result also shows that if an antenna has
wide bandwidth, it may be due to loss. Matching network losses can be included in the
efficiency too.

Loading antennas with materials is also used for size reduction. Materials act to
lower the wave velocity c ¼ 1=

ffiffiffiffiffiffi
με

p ¼ fl which reduces the wavelength, making
the antenna appear to be electrically larger. If the materials also satisfy μr¼ εr, then the
intrinsic impedance of the medium will remain equal to that of free space and
η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μrμo=εrεo
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

μo=εo
p

, implying a good match to free space. As would be
expected, there is a gap between this theory and reality. First, the equations are based on
an infinite medium filled with material. Using finite volumes of loading material can
reduce the electrical size, although size reduction will not be as high as for the infinite
medium case with a size reduction factor of F ¼ ffiffiffiffiffiffiffiffiffiμrεr

p
. The amount of size reduction

depends on the size, shape, and material parameters of the loading materials. For
example, a resonant quarter-wave monopole (7.6 cm tall) operating at 900MHz can
be reduced in height by a factor of F¼ 4.6 by embedding it in the center of a cylinder
of dielectric with εr¼ 90, radius of 10 cm, and height equal to that of the monopole of
1.65 cm. [H.8.11: Fujimoto et al., Chap. 3] This is almost half of the infinite-medium
reduction factor of F ¼ ffiffiffiffi

εr
p ¼ ffiffiffiffiffi

90
p ¼ 9:5. This large height reduction is achieved with
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some penalties in bandwidth and impedance. The bandwidth is reduced from 26% to 16%
and input resistance at resonance is lowered from 39Ω to 5Ω. Hybrid magneto-dielectric
loading materials provide the greatest size reduction for μr¼ εr but with a penalty in
efficiency. It has been shown for a spherical helix filled with a magneto-dielectric core
that the fundamental size limit can be approached. [31] The challenge with constructing
material-loaded antennas is finding low-loss, affordable materials. Magnetic materials,
such as ferrites, are more lossy than dielectrics and can become very lossy at RF
frequencies.

Artificial materials are being developed for antenna loading in an attempt to avoid the
loss problem and to create characteristics not found in nature. Popular artificial materials
are metamaterials (also called electromagnetic bandgap structures). Metamaterials are
constructed with small pieces of common material and arranged in a spatially ordered
lattice. Interestingly, negative values of μr and εr are possible. An artificial magnetic
conductor is well suited as a closely spaced ground plane to back electric antennas. A
shell of negative permittivity material surrounding an ESA has been proposed as a way to
approach the fundamental size limit, but there are dispersion and loss issues. [32] Double
negative materials with both μr and εr negative have been studied, but even the possibility
of building them is open to question.

Electrically small antennas are ideal candidates for using superconducting materials
because of the high ohmic loss when antenna size is much less than a wavelength. A
superconductor has close to zero DC resistance. There are some superconductors that are
suitable for constructing antennas and matching networks, but they are often required to
be cooled to the liquid nitrogen temperature of 77�K. Usually the greatest benefit is in the
matching network where high losses are reduced greatly with superconductors. However,
bandwidth is often sacrificed. Superconductor antenna systems are costly and usually
only used for special critical applications. See [H.8.11: Hansen, Chap. 3] for more details.

The prior discussion assumed a linear, time-invariant medium. It is possible to min-
iaturize an antenna below the fundamental limit using nonlinear, time-variant techniques.
One uses impedance modulation where an antenna’s tuning is time varied. The resonant
frequency is changed periodically, creating the effect of two resonant frequencies that can
be used simultaneously. The method has been demonstrated using a varactor diode in the
antenna. [33] However, spurious radiation and phase nonlinearity are issues.

Recently it has been shown that the fundamental limit of (11-29) applies to all
antennas including broadband antennas such as ultra-wideband antennas. [34] As already
mentioned, the bandwidth and Q relationships for small antennas are not accurate for
broadband antennas. The inaccuracy of bandwidth formulas has been shown to be the
case for doubly resonant antennas. [35] Broadband antennas can be size-reduced using
similar techniques as for ESAs such as efficient volume filling and loading; however, the
challenge is even greater. Examples of efficient volume filling antennas are the folded
hemisphere antenna [30] and the compact UWB antenna [36] shown in Fig. 7-44d. As
shown in Fig. 11-19, the compact UWB antenna is a broadband antenna (BVSWR¼ 2¼3.5)
that is close to fundamental size limit, which is difficult to accomplish in practice. Size
reduction of frequency independent antennas such as spirals using continuous loading can
be implemented in the following ways: coiling the arms similar to the meander monopole
or zigzagging the arms (see Sec. 7.7.4); dielectric loading; and resistive loading. [H.8.11:
Volakis et al., Chap. 5]

11.6 ANTENNAS FOR COMPACT DEVICES

Compact antennas are required in a wide variety of wireless devices, ranging from
handsets for cellular telephone, to modules for asset tracking, to implantable medical
devices. The evolution in handset antennas has been dramatic. When public cellular
radio started, the antenna protruded from the handset and was an “eye-poker,” similar to
the antenna shown in Fig. 11-20b. Gradually the external antenna size was reduced,
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eventually being replaced by an internal antenna. So how has it been possible for the
handset antenna to shrink from a long antenna protruding from the handset to an invisible
internal antenna? The preceding section explained how antenna size is limited by fun-
damental physics principles. As explained in Sec. 4.5 and shown in Table 4-1, compact
internal antennas were enabled by reducing the cell size, replacing base station omni-
directional antennas with more directive sector antennas, and making other system
improvements. In this section, we consider several types of compact antennas. Many of
these antennas operate as monopoles and require a ground plane.

11.6.1 Normal Mode Helix Type Antennas

The theory for the normal mode helix antenna (NMHA) was presented in Sec. 7.3.1. In
this section, we examine practical realizations of the NMHA. The NMHA is essentially a
wire monopole coiled into a helix as shown in Fig. 7-9. The total wire length for N turns is

Lw ¼ NL ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

p
where C is the circumference of the helix and S is the spacing between turns. This gives
greater wire length compared to a straight wire of the same axial length (height, h), which
is desired because of the increase in radiation resistance. The length increase ratio is
defined as

R ¼ Lw

h
¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

p

h
NMHA length increase ratio ð11-41Þ

For a helix of fixed height, increasing the number of turns by decreasing the spacing
between turns, N¼ h/S, increases length Lw. Using a fatter helix (increasing the diameter,
D¼C/π) also increases the wire length.

An example compact NMHA operating at 150 MHz in the VHF band is 10 cm tall and
2 cm in diameter and has 13.25 turns. The total wire length of Lw ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

p ¼
83:9 cm ¼ 0:42l. Simulations with a moment method code give for copper wire
ZA¼ 4.9�j0.7 Ohms, indicating resonance (see Prob. 11.6-1). The value of radiation
resistance predicted by (7-20) with h¼ 0.05 l is 1.6Ω, which is close to the 2Ω based on
simulation with perfectly conducting wire that gives ZA¼ 2–j3.5Ω. The length
increase ratio is R¼ Lw/h¼ 83.9/10¼ 8.4. These results are in close agreement to the
simulations of Best. [H.6: Balanis, Ed., p. 488]

Example 7-1 gave a NMHA operating at 883 MHz (l¼ 34 cm) with a quarter-wave
wire length of Lw¼ 8.5 cm. The βa value is about 1, so the antenna is electrically small.
The height is h¼ 5.7 cm¼ 0.17l, giving a length increase ratio of R¼ 1.49. The radiation
resistance from (7-20) is Rr¼ 11Ω. As we saw in the previous example, larger length
increase ratios are used in the lower frequency bands such as VHF to avoid large physical
heights, but as the electrical height of the antenna is reduced, the radiation resistance is
lowered. A commercial version of this handset-NMHA antenna, called a stubby antenna,
is shown in Fig. 11-20a. Generally, if the total wire length, Lw, is less than a quarter-
wavelength it is called a stubby. If the wire length is approximately a quarter-wavelength
to achieve resonance, it is called a quarter-wave helix, or simply a quarter-wave. The
particular implementation of Fig. 11-20 operates in one of two antenna modes, stubby
antenna only or whip antenna only. In the stubby antenna mode of Fig. 11-20a, the
extendable section is stowed and has a non-metallic portion at its tip that is inside
the helix so as not to affect stubby operation. The stubby has a feed connection
inside the handset attached to the lower end of the helix. The stubby antenna is also used
without the whip antenna and is mounted either external or internal to the handset. When
mounted externally it is molded in polycarbonate or polyurethane.When the extendablewire
is deployed as in Fig. 11-20b, the stubby is used to feed the whip antenna, either by direct
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contact or through capacitive coupling. Operation is then as a quarter-wave straight wire
antenna. Both antennas are monopoles and are grounded to the PCB in the handset. The
human operator also can act as a ground. Ground plane independence is possible if the
extendable section is an end-fed half-wave dipole, but at 850MHz it is rather long at 17.5 cm
(7 in). The whip antenna mode provides gain of around 2 dB and the stubby antenna gain is
less than 0 dB. The extendable antenna has largely disappeared from cellular handsets. Early
cordless telephones used NMHAs that also have been replaced by internal antennas. The
NMHA can provide dual-band operation in separated frequency bands.

If ribbon conductors are used for an NMHA in place of wires and at the same time it is
flattened, a planar version results that is easily manufactured by printing or stamping. The
meander line antenna (MLA) is a low-profile version of the NMHA that can be con-
figured as either a dipole or a monopole. Meander dipoles are sometimes used as in-glass
antennas on vehicles. The meander monopole in Fig. 11-21 has 7 vertical sections and
6 horizontal sections. If the section lengths are sV¼ 1.43 cm and sH¼ 3.33 cm, the total
wire length is Lw¼ 7 � 1.43þ 6 � 3.33¼ 10þ 20¼ 30 cm. Best [H.6: Balanis, Ed., Sec. 10.6]
simulated this monopole over a perfect ground plane and found the resonant frequency
to be 361 MHz (l¼ 83 cm), giving an electrical height of 0.12l and wire length of 0.361l
for a length increase ratio from (11-41) of R¼ 0.361/0.12¼ 3, which is a significant
increase. The meander monopole is used in handsets because of its compact geometry, but
because it does not fill much of the enclosing sphere, it has lower radiation resistance,
efficiency, and bandwidth than a NMHA of the same height. As in the NHMA, the current
along the wire of the meander monopole reduces from a peak at the feed to zero at the top
end. Due to its small electrical size, the phase is nearly constant along the length. Because
of this, the adjacent horizontal sections, which have oppositely directed currents as shown
in Fig. 11-21, lead to canceled radiated fields. Thus, the vertical sections are responsible
for the radiation just as in a straight wire monopole and control the radiation resistance.
The adjacent horizontal sections add inductance and loss. Thus, the pattern of the meander
antenna is similar to a straight monopole of the same height with a null in the vertical

(a) Stowed configuration.
     Only the stubby antenna is operational.

(b) Deployed configuration. The stubby
     antenna is used to feed the whip antenna.

Figure 11-20 The stubby antenna (NMHA) in a wireless handset. The NMHA is used alone as
in (a) or with an extendable wire antenna (“whip”) as in (b). When extended, the stubby is used
to feed the whip antenna.
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direction, a half-donut 3D shape, and linearly polarized parallel to the long axis. The
NMHA behaves in the same fashion. Comparisons of NHMA to meander monopoles
of the same height and conductor length adjusted to give the same resonant frequency
show that the NMHA has higher radiation resistance, wider bandwidth, and higher effi-
ciency. [H.6: Balanis, Ed., Sec. 10.6] In spite of these shortcomings, the meander
monopole is a popular antenna because it is compact and low-cost. Also found was that
decreasing wire diameter lowers the resonant frequency, but this will lead to more loss.

Calculations with meander monopoles over finite ground planes in [H.6: Godara, Ed.,
Sec. 12.2] provide some general trends. First, the meander monopole has multiple
resonances and thus is useful in dual-band handsets. Second, as ground plane size is
reduced from infinite to fractional wavelength sides, the impedance decreases and the
resonant frequency increases. The ground plane (PCB) of a typical handset is 100mm�
50 mm which at 850 MHz is 0.28 l� 0.14 l and the PCB itself participates in the radi-
ation, leading to low directivity. At 2GHz the PCB is larger electrically (0.67 l� 0.3 l)
and the current is more localized to the antenna, giving a pattern that is more like the
infinite ground plane case. As a consequence the gain will be higher at 2GHz compared to
850 MHz.

11.6.2 Quadrifilar Antennas

In the family of compact helix antennas is the quadrifilar helix antenna (QHA), also
called the quadrifilar antenna, shown in Fig. 11-22. Quadrifilar antennas provide a cir-
cularly polarized unidirectional beam without need for a ground plane. The quadrifilar
helix antenna is a popular choice for satellite communications both for the spacecraft and
the ground terminal. The four wire helical arms are spaced equally around a circular
cylinder surface (i.e., 90� apart) and are fed at the top with equal amplitudes and
sequentially 90� out of phase. One way to construct a phasing network is with one 180�
hybrid and two 90� hybrid dividers. The QHA can be thought of as two orthogonal bifilar
helical loops. If the phase progression from turn to turn matches the sense of the circular
polarization, the wave is forward fire. If not, a backfire mode results. Unlike the axial mode
helix, circular polarization is not dependent on the circumference being about a wave-
length, but instead can be much smaller because the CP is generated by the feed phases to
the arms, which is a significant advantage. Both high-gain and broad shaped-beam patterns

sH

sV

w

Geometric Relations
NV�number of vertical sections

NH�number of horizontal sections
h�height�NVsV
LW� total wire length�NVsV�NHsH

Figure 11-21 The meander line monopole antenna. The arrows indicate current direction.
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are possible. Quadrifilar antennas are capable of moderately high gain by using several
turns and a long axial length. Generally, large pitch angles, few turns, and short lengths are
used for broad beams. Being ground-plane independent because of its balanced feed
arrangement, the QHA is not greatly affected by nearby objects such as a human.

When the bifilar loops are a fractional turn (1/4 to 1) the quadrifilar is called a volute
antenna, and it is resonant when each arm is an integer multiple of a quarter wavelength.
The ends of the volute are opened (shorted) at the base if the helical arms are an odd
(even) multiple of a quarter-wavelength long. The volute antenna can produce a broad
beam with a cardioid-shape pattern off its top end (þz-axis) with low back lobes and
good circular polarization, but with narrow bandwidth of a few percent. [H.6: Ant. Eng.
Hdbk, 4th ed., Sec. 12.5] The QHA in Fig. 11-22 has left-hand wound half-turn arms, but
produces right-hand CP due to the backfire nature of the antenna. The beam peak is in the
z-direction. An example QHA of Prob. 11.6-4 has half-turn arms, a diameter of
D¼ 0.174l and height of h¼ 0.243l. Using the helix geometry relations in Sec. 7.3, we
find S¼ 0.486l, α¼ 41.6�, and L¼ 0.732l. The wire length of one loop is the length of
one turn (two half-turns on each side) plus the end lengths, so Lloop¼ Lþ 2D¼ 1.08l.
Thus, each arm is about a half-wavelength long. Simulations show that the endfire,
unidirectional beam has a half-power beamwidth, HP, of 120� and the bandwidth is 3.2%.
[H.3: Milligan, 2nd ed., p. 266] See [H.9.1: Kumar, Chap. 5] for derivations of QHA
radiation properties and design data.

The QHA becomes a compact antenna suitable for use with mobile and portable
terminals through size reduction techniques such as meandering or folding of the arms, or
by loading with high dielectric constant ceramic material. It is popular for GPS reception
where narrow bandwidth is acceptable. A typical GPS QHA printed onto a ceramic
dielectric core with εr¼ 40 is 18-mm tall and 10 mm in diameter with a gain of �2dBic at
1.575GHz. [H.6: Ant. Eng. Hdbk., 4th ed., p. 39–26] In the GPS application, it is
important to have a phase center that is stationary over the pattern main beam and
bandwidth, which a well-designed QHA provides.

11.6.3 Planar Inverted-F Type Antennas

The quarter-wave monopole is an excellent antenna with the desirable characteristics of
5.16 dB directivity, omnidirectional coverage, and 35 þ j0Ω input impedance. However,
at frequencies in the UHF band and below, the antenna often becomes unacceptably tall.
The simple solution is to bend the vertical wire over, forming an upside-down L shape.

z

Figure 11-22 The quadrifilar helix antenna.
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This inverted-L antenna (ILA) we introduced as the transmission line monopole in
Fig. 3-10c. The ILA finds many applications where a low-profile antenna is needed and
narrow bandwidth is acceptable. It also forms the starting point for the evolution of the
planar inverted-F antenna.

The image current in the ground plane (if large) of the ILA has a horizontal component
that is directed opposite to the current on the horizontal wire, and the vertical image
current is in the same direction as the current on the vertical wire. The current distribution
is approximately sinusoidal over the whole wire and is zero at the open end. The distance
above the ground plane, h, in Fig. 11-23 is much smaller than a wavelength, so con-
tributions from the horizontal currents of the wire and its image remain nearly out of
phase in the far field, leading to substantial cancellation. On the other hand, the vertical
wire forms an effective single vertical radiating element with nearly uniform current
of length 2h. Thus, the vertical wire controls the radiation resistance and the total wire
length of Lw¼ hþ LH influences the input impedance. The ILA resonates when Lw� l/4,
as would be expected. The pattern is a half-donut shape in three dimensions similar to a
quarter-wave monopole, except along the z-axis there is dip rather than a perfect null. Due
to the ground plane effects, the radiation resistance is lower than a quarter-wave
monopole. A straight quarter-wave monopole has a radiation resistance of about 36 Ω and
the quarter-wave ILA is about 8Ω, depending on wire details. When the ILA is size-
reduced to form an electrically small ILA, the radiation resistance falls even more and the
reactance is highly capacitive. The radiation resistance for a small ILA can be approxi-
mated with the following formula derived in [37]:

Rr ¼ 160π2

�
h

l

�2

1� h

2 hþ LHð Þ

2
4

3
5
2

ILA; h � l ð11-42Þ

EXAMPLE 11-3 Garage Door Opener Transmitter ILA Antenna

Many garage door opener remote control units transmit on a frequency of 315 MHz
(l¼ 95.2 cm). A commonly used antenna for this application is a small ILA that has h¼ 1.2 cm
and LH¼ 6.7 cm, for a total wire length of Lw¼ 7.9 cm¼ 0.08 l, making it electrically
small. Simulations for perfect conducting wire of 1-mm diameter give ZA¼ 0.21�j364 Ω and
(11-42) confirms this radiation resistance value, which is very low. Simulations with copper wire
give a total resistance of 0.25Ω, which means the efficiency is er¼ 0.21/0.25¼ 84%. For
comparison, if the same wire were a straight monopole, simulations show that ZA¼ 2.7�j415 Ω
and near 100% efficiency. A resonated quarter-wave monopole would have a good input
impedance of ZA¼ 35þ j0Ω but would be 22.7 cm (9 in) tall and not suitable for the appli-
cation. The receiving antenna in the garage is usually a piece of wire that is close to a quarter-
wavelength in length.

z

Feed
Ground plane

xh

LH

Figure 11-23 The inverted-L antenna (ILA). The arrow indicates the feed point.
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The input impedance of the ILA can be altered by simply adding two wires to form a
closed conducting loop as shown in Fig. 11-24. The second vertical wire is grounded and of
the same height (h) as the driven wire and is separated from it by distance s. This antenna,
called an inverted-F antenna (IFA), adds only a small amount of length over the ILA but
provides more design parameters and wider bandwidth. The IFA is resonated just like for
the ILA and the length hþ LH should be about a quarter-wavelength. The currents on the
vertical wires are in phase, leading to reinforced radiation and higher radiation resistance.
The loop can be thought of as adding inductance to partially cancel the capacitance of the
horizontal wire segment. Another way to think of the added section is that it behaves like
the gamma match shown in Fig. 6-35c. The pattern of the IFA is similar to the ILA. When
an IFA is mounted at the edge of a device-size ground plane such as a handset PCB, the
pattern becomes similar to a dipole pattern with nulls near the long axis of the ground plane
and close to omnidirectional around the long axis. [H.9.1: Sanchez-Hernandez, Ed., p. 29]

EXAMPLE 11-4 Inverted-F Antenna for the 2.45GHz ISM Band

The unlicensed ISM band at 2.45GHz spans 2.4 to 2.5GHz for a bandwidth of 4%, which can
be covered with an IFA. Simulation trials using wire 1mm in diameter lead to a resonance for
h¼ 9.8 mm, LH¼ 21.8 mm, and s¼ 4 mm. This size is compact and suitable for many
applications. The total wire length is hþ sþLH¼ 35.6 cm ¼ 0.29 l, which is close to a
quarter-wavelength. The input resistance is 28 Ω (real). The ILA form of this antenna using the
same h and LH values has ZA¼ 12þ j11 Ω, showing that the added section on the IFA increases
the radiation resistance significantly.

The resonated ILA has narrow bandwidth (a few percent) and low input resistance,
which are increased with the IFA. Further increase in bandwidth is possible by adding a
second, parasitic ILA wire parallel to an IFA, forming a dual inverted-F antenna (DIFA)
that is capable of 14% bandwidth. [38]

Employing the technique used many times for increasing bandwidth, the bandwidth of
an IFA is increased by replacing the wires with metallic plates forming the planar
inverted-F antenna (PIFA) shown in Fig. 11-25. The basic PIFA consists of a ground
plane and an upper plate fed by a coaxial type feed line with the center conductor passed
through the ground plane and connected to the top plate while the outer conductor is
connected to the ground plane. There is also a shorting plate that shorts the top plate to the
ground plane. In addition to the explanation of the PIFA evolving from an IFA by using
wide conductors, the PIFA can also be thought of as a quarter-wave microstrip patch,
which was discussed in Sec. 11.2.2. As the shorting plate width, w, of the quarter-wave
patch is reduced the resonant frequency lowers, making the antenna more compact. This
effect is explained by the capacitance of the top plate being reduced by the inductance of

h h

s LH

Feed
Ground plane

z

x

Figure 11-24 The inverted-F antenna (IFA). The arrow indicates the feed point.
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the shorting plate that increases with decreasing width. The greatest frequency reduction
occurs for placement of the shorting plate (or pin) in the corner of the top plate to provide
a longer current path compared to placement at the center of the edge. The PIFA forms an
effective quarter-wave monopole at first resonance when the longest current path is about
a quarter-wavelength. The lowest resonant frequency configuration is for a shorting pin
located at the corner, giving a current path of one side plus one end length totaling a
quarter-wavelength [H.9.1: Waterhouse, p. 199]:

lr ¼ 4 LþWð Þ PIFA resonant wavelength ð11-43Þ

This makes the PIFA about half the size of a microstrip patch, which has lr¼ 4L. The input
impedance is controlled by the spacing of the feed from the edge, s, and as the resonant
frequency is reduced, s is decreased to obtain a 50-Ω input impedance.

The bandwidth of conventional PIFA is about 8%. [39] The bandwidth can be increased
by raising the top plate height h or altering the top plate geometry. [H.9.1: Waterhouse,
Chap. 7] Using a specially shaped feed plate instead of a straight feed wire, a bandwidth of
25% is possible. [40] Parasitic elements near the PIFA can be used to increase bandwidth,
but add to the antenna size. PIFA size can be reduced by increasing the effective current
path length by altering the top plate geometry through meandering, notches, or slots.
Dielectric loading can also be used but at the expense of bandwidth reduction.

The foregoing assumes an infinite ground plane. The impedance of a PIFA with a finite
ground plane does not differ greatly from the infinite ground plane case, but the resonant
frequency, bandwidth, and pattern do change. A investigation [39] of ground plane size
influence on the PIFA’s resonant frequency and bandwidth using simulations and mea-
surements showed that as ground plane size (Lg¼Wg) is reduced, resonant frequency is
unaffected unless smaller than 0.2 l, but bandwidth reduces below the infinite ground plane
value of 8% for ground plane side lengths below 0.8 l, with 5% bandwidth for ground
plane sides of 0.5 l. Gain is approximately equal to the infinite ground plane value of 4.5
dB for ground planes at least 0.8 l in size, but decreasing to 3 dB for 0.8 l side lengths.

Patterns of a PIFA with various size ground planes are shown in Fig. 11-26. All pat-
terns have an overhead (þz-directed) null, indicating monopole behavior. In fact, for the
infinite ground plane case the pattern is very similar to a quarter-wave monopole with
pattern peaks in the θ¼ 90� directions. As the ground plane is reduced in size, the pattern
peaks rise above the horizontal plane and radiation also increases in the lower hemisphere.
When the ground plane size reaches the top plate size of 0.156 l square the pattern becomes
dipole-like. The values mentioned so far were for the PIFA centered on the ground plane,
and optimum performance is obtained by placing it near a corner of the ground plane. [39]

Bandwidths of a PIFA mounted in a typical handset can reach 17%. [41]
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Figure 11-25 The planar inverted-F antenna (PIFA). The arrow (") indicates the feed point.
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11.6.4 Other Compact Antennas, Including Multiband/Broadband
Handset Antennas

Handsets have unique operational circumstances. They can be held in most any orien-
tation. For best reception from a base station, the handset should respond best to signals in
the horizontal plane parallel to the ground, called the azimuth plane. So handsets are
designed for a pattern peak in the azimuth plane. But the directivity (and thus gain) are
intentionally low to have response to signals from any direction because of the random
orientations that are possible, and the random incoming signal directions due to multipath
propagation. Thus, the specification on gain for a handset antenna is near 0 dB. Similarly,
cross-polarization response is usually high for the same reasons. This is counter to
the usual antenna requirement situation in that low gain and poor polarization purity are
desired, not avoided. Typical specifications on handset mobile phone antennas are listed
in Table 11-1. While impedance match (usually to 50 Ω) for most antennas is specified as
VSWR# 2, handset antennas often have a degraded match of VSWR# 3.

Handset antennas are evaluated using the usual antenna parameters of gain, pattern,
and efficiency. These are measured with the antenna mounted on its intended handset
platform. But the special operating conditions and antenna requirements of handsets
necessitate additional evaluation parameters, which are directed toward evaluating the
antenna as it will be used, often including the operating environment and propagation
conditions. Here, we give a simple description of the commonly used parameters and a
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Figure 11-26 Radiation patterns of the PIFA antenna of Fig. 11-25 on finite ground planes. The
top plate dimensions are L¼W¼ 0.156l and the ground plane dimensions Lg¼Wg are infinite,
0.940l, 0.643l, 0.391l, and 0.156l. (From [39] ª 2003. Reprinted with permission from IET.)
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full quantitative development is found in Sec. 13.6. Total radiated power (TRP) is the
total power radiated from a handset when transmitting by summing up power density
received at sample points (both polarizations) over a sphere around the handset. Total
isotropic sensitivity (TIS) is the minimum input signal power that yields an acceptable
system performance parameter such as bit error rate, sampled at points over the sphere
around the handset in both polarizations. TRP and TIS permit the system engineer to
determine the effectiveness of the handset, with emphasis on the maximum range it will
operate.

The common cellular telephone 800 MHz and 1900 MHz bands require the antenna to
operate at frequencies about an octave apart and have bandwidths in each band of at least
15% and 24%, as indicated in Table 11-1. Antennas used in modern handsets have no
protruding parts, but instead are entirely internal and have a single feed point. A possible
antenna is a stubby antenna consisting of a normal mode helix with two sections of
differing pitch angle or diameter to support the two bands. A meander line antenna with
two sections is also used. But perhaps the most popular internal handset antenna is some
variation of the PIFA antenna for dual band operation. A common implementation is to
have two sections (or arms) of the PIFA top plate operating in parallel, the longer one for
the low band and the shorter one for the high band, and each arm is about a quarter-
wavelength long in its operating band. Often one or both arms are folded around
a supporting plastic mold or printed onto it. Sometimes the antenna is printed onto a
flexible printed circuit board material and then positioned inside the handset. Slots are
often inserted in the top plate to widen bandwidth. Fig. 11-27 shows an example of a
commercial handset antenna based on PIFA design principles. [H.9.1: Fujimoto and
James, Chap. 5] gives several PIFA configurations for handsets. The PIFA can be posi-
tioned over the PCB ground plane or off the end. Separate additional antennas are used
for diversity that may or may not be the same type as the primary antenna. Also found in a
handset are separate antennas for other functions such as Wi-Fi, GPS, and so on.

The wideband compact PIFA (WC-PIFA) shown in Fig. 11-28a makes use of a
capacitive feed to broaden bandwidth. [42] The return loss plotted in Fig. 11-28b is for
an experimental model covering several popular frequency bands with VSWR, 2
(RL. 10 dB). [43] The physical dimensions are L¼ 25 mm, W¼ 10 mm, h¼ 6.3 mm,
and G¼ 63 mm. A bandwidth of 49% is achieved in a very low profile that is just 6 mm in
height. The narrow but long ground plane requirement is not critical when the antenna is

Table 11-1 Typical Handset Antenna Specifications

Gain 0 dBi
Bandwidth 12% @ 800 MHz (824�960 MHz)

25% @ 1900 MHz (1710�2170 MHz)
Impedance match VSWR # 3 (RL$ 6 dB)
Efficiency er. 50% (in free space)
Polarization Usually linear, but high cross-polarization is acceptable
Power handling 900 MHz bands3:

24 dBm (UMTS/WCDMA)
33 dBm (GSM/CDMA)

1900 MHz bands:
24 dBm (UMTS/WCDMA)
30 dBm (GSM/CDMA)

Handset size (bar shape) 100� 50� 15 mm3

Antenna size 40� 20� 10 mm3

3 See Appendix for frequency bands.
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mounted to make use of available metal in the device as a ground plane. Another feature
of this antenna is that it is relatively insensitive to its surroundings.

The most compact antenna is the so-called chip antenna, which is an electrically small
antenna such as a NMHA or meander line antenna encased in a high-dielectric constant
ceramic. The chip antenna is usually designed to make use of the handset PCB as a
ground plane to assist in radiating, which makes the antenna sensitive to platform details,
and tuning may be required for the specific application. A typical commercial chip
antenna covering the 800/1900 MHz and GPS bands has �4 dB gain and dimensions of
about 20� 4� 5 mm3.

All of the low-profile antennas we have discussed have been unbalanced with one feed
terminal and a ground connection to a large ground plane. The currents on the ground
plane make the antenna system sensitive to the ground plane details and surrounding
objects, especially the human operator. This effect is strongest for the low-frequency
bands. If a balanced antenna is used, antenna performance will be less sensitive to
the handset dimensions and to a human operator. Also, there is more flexibility in the
placement of the antenna in the handset. Examples of balanced antennas are dipole and
quadrifilar antennas. A balanced antenna is often fed with a differential amplifier to
reduce RF circuit complexity. [H.9.1: Chen, p. 48]

In the design of antennas for handsets, allowance must be made for the shift of the
operating band when the antenna is placed in a case of low-loss plastic. Generally
the band shifts down in frequency by a few percent.

11.6.5 Radio Frequency Identification (RFID) Antennas

A radio frequency identification (RFID) system identifies an object without direct contact
through digital wireless techniques. The RFID system has the functional blocks shown in
Fig. 11-29 consisting of a reader (or interrogator) and a tag that are separated by a short
distance. The reader emits a radio-frequency signal that the tag processes and then sends a

Long arm

Short arm

Parasitic
grounded
arm

Feed and
ground
contacts

Figure 11-27 A commercial handset (Sony EricssonW810s) showing the antenna for covering
the 850/900 MHz and 1800/1900 MHz bands. It is based on PIFA design principles. (Reprinted
with permission from Sony EricssonMobile Communications. W810s is a registered trademark
used for cellular or mobile phones and owned by Sony Ericsson Mobile Communications AB.)
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return signal back to the reader containing identification, location, status, and/or other
information about the tagged object. The number of applications for RFID systems is
growing rapidly. Uses include security systems, vehicular applications, personal identi-
fication (e.g., passports), personnel access control (e.g., door entry authorization), and
asset tracking (e.g., baggage, cargo, inventory, and animals). Table 11-2 lists the major
categories of RFID applications.
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Figure 11-28 The wideband-compact PIFA antenna.
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Figure 11-29 The basic elements of an RFID system. (From [45] ª 2003. Reprinted with
permission from John Wiley & Sons, Inc.)
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Tags are distinguished by how they generate power when interrogated by the reader,
and are one of three types: passive, semi-active, and active. Tags are usually small, simple
devices consisting of an inexpensive electrically small antenna, an IC chip, and in
the case of a semi-active or active tag, a battery to supply power. A passive tag utilizes the
power in the electromagnetic field from the reader to energize a chip and respond. Passive
tags are the least expensive and therefore are the most common type of tag. Passive tags
potentially have an indefinitely long life. Passive tags contain a rectifier to convert the RF
power from the reader into DC power to activate tag circuitry.

Tags must operate in one of the allocated frequency bands listed in Table 11-3,
including the passive read distance for each band, which is the maximum distance from
the reader that the tag can be read. The two lowest frequency systems, LF and HF, operate
through inductive coupling. The tag is in the near field of the reader, and power transfer is
via magnetic fields. When the tag detects the reader signal, it switches onto and off of a
load resistor, which changes the impedance of the reader loop. The higher-frequency
bands operate based on backscattering. The tag antenna receives the reader signal and
turns on and off a load resistor, varying the antenna reflection characteristics. [H.9.1:
Fujimoto, 2nd ed., Chap. 13]

The lower the frequency, the less a tag is affected by its operating environment and the
more reliable the system is. For example, the LF band, which is the oldest RFID band, is
well suited for applications requiring the reading of small amounts of data at low speed
within short distances. This frequency range is also relatively free of regulatory limita-
tions. Magnetic fields at these frequencies penetrate through water, tissue, wood, glass,
and thin sheets of metal. Fig. 11-30 shows the shielding effectiveness of a 0.02-inch-thick
aluminum plate at a near field distance of 18 inches and also for a plane wave (far-field
source). Shielding effectiveness is defined for magnetic fields as

Table 11-2 Some RFID Applications

Tracking and identification
Large assets (e.g., shipping containers, military vehicles)
Inventory control
Retail checkout
Pets with implanted tags

Payment and stored value systems
Subway and bus passes
Electronic toll systems
Contactless credit cards

Access control
Automobile ignition systems
Building access proximity cards
Ski lift passes

Table 11-3 RFID Allocated Frequency Bands

Frequency Band Name Frequencies Passive Read Distance

Low frequency (LF) 120–140 kHz 10–120 cm
High frequency (HF) 13.56 MHz 10–20 cm
Ultra-high frequency (UHF) 868–928 MHz ,10 m
Microwave (MW) 2.45 & 5.8 MHz ,3 m
Ultra-wideband (UWB) 3.1–10.6GHz 10 m
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SðdBÞ ¼ 20 log
Hi

Ht
ð11-44Þ

where Hi is the field incident on the metal plate and Ht is the field transmitted on the
opposite side of the plate. The definition for the shielding effectiveness for electric fields
is similar. Fig. 11-30 shows that the shielding effectiveness of the aluminum plate is
vastly less effective for the magnetic field compared to that for the electric field. Further,
for the low-frequency magnetic field, very little reflection loss occurs, and absorption loss
is the primary shielding mechanism [44]. For materials with much less conductivity than
aluminum, like wood, plastic, or glass, the magnetic field will penetrate quite easily. The
better penetrating qualities of magnetic fields aid the performance of the LF and HF RFID
systems that operate using magnetic coupling. The Norton equivalent circuit for a mutual
coupling-based tag is shown in Fig. 11-31 [H.3: Huang & Boyle, p. 338–348]. The circuit
to the left of the terminals is the tag antenna (e.g., coil) and that to the right is the IC chip. The
maximum voltage across the IC resistance, RIC, occurs at the resonant frequency, which is
determined by all the circuit reactances [H.3: Huang & Boyle, p. 338–348]. The level of the
resonant maximum voltage is largely determined by the resistance of the tag antenna or coil,
R2P. Thismeans that the read range overwhich there is voltage in excess of the IC threshold is
determined largely by the quality of the tag antenna (i.e., coil). Further details can be found in
[45]. In general, tag antennas are the limiting factor in many RFID systems.
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Figure 11-30 Electric field, plane wave, and magnetic field shielding effectiveness of a 0.02 in.
solid aluminumplate. (From[44]ª2003.Reprintedwithpermission fromJohnWiley&Sons, Inc.)

L2P(R2S�jωL2S)

jωMI1I = R2P C2P CIC RIC V

Figure 11-31 Parallel equivalent circuit of a low-frequency tag and IC. (From [52]. Y. Huang
and K. Boyle, “Antennas from Theory to Practice,” Wiley, 2008.)
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In the higher RFID frequency bands, there is potential for greater passive read dis-
tances, but reliability, the EM environment, interference, and regulatory limitations
become issues. Both passive and active tags are used at the higher frequencies and are
far-field systems governed by the Friis transmission formula in (4-33). In the popular
application of asset tracking, either low-frequency or high-frequency tags are used,
depending on the object being tracked. Pallet-level and container-level RFID systems use
UHF and above bands. Item-level tagging systems use the HF band because there are
many more tags used and the tag cost is low.

As expected, different RFID antennas are used in different bands. The tags always use
thin, low-cost antennas, whereas the size and cost constraints on reader antennas are not
as great. Because RFID systems in the LF and HF bands operate using mutual inductance,
multi-turn loops (coils) are used in both the reader and tag. LF tags use loops with
about 40 turns and HF tags use loops of about 7 turns. Although called antennas, the loops
are really coupling devices designed to enhance the mutual coupling between the reader
and tag. Tags use planar multi-turn loops printed using low-cost conductive ink. As
an example, the typical tag antenna size used in a retail medicine container box is about
2 cm square, corresponding to about 0.0001 l at 13.56MHz.

Tag antennas for the UHF and above bands are usually a reduced-size, half-
wavelength-long dipole that is meandered or spiraled in order to obtain sufficient
bandwidth for the wide RFID bands at UHF and above. Wider bandwidth is needed
because the allocated bands are wider than for the lower bands, and worldwide allocations
do not always cover the same frequencies. Thus, a tag intended for use in multiple regions
has to have wide enough bandwidth to operate in those regions. Also, objects near the tag
can detune the antenna, so the antenna needs to cover more than the allocated band(s)
with a moderately broadband antenna. The most popular solution is to use a meander line
dipole with a perturbation to broaden the bandwidth. The principles of meander line
antenna operation were presented in Sec. 11.6.1. The commercial UHF tag from Impinj
shown in Fig. 11-32 is 9.5 cm long, corresponding to about 0.28 l at 900MHz. Impedance
matching sections are often printed with the tag antenna. One of the more popular
matching configurations is the Tee match shown in Fig. 6-35b. The matching loop in
Fig. 11-32 resembles the Tee match. The antennas used in UHF readers include dipoles,
PIFAs, and microstrip patches, especially for circular polarization implementations.
Advantages to UHF tags are that they have wide bandwidth for handling high amounts of
data; they can be optimized for the item they are attached to; and the tags on items can be
read while in a stacked configuration. See [H.8.12: Volakis et al., Chap. 9] for more
details on RFID antennas.

11.7 DIELECTRIC RESONATOR ANTENNAS

A low-profile antenna, whose height can be substantially less than a wavelength, is the
dielectric resonator antenna (DRA). The dimensions of a DRA are on the order of l=

ffiffiffiffi
εr

p
or less. The most basic forms of dielectric resonator antennas are that of a short, reso-
nating section of circular or rectangular dielectric waveguide placed vertically on a metal

95.00 mm8.00 mm

End load Meander section Matching loop

Chip is placed here

Figure 11-32 An example UHF RFID tag antenna. (Reprinted with permission from Impinj,
Inc.)
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plane, as illustrated by Fig. 11-33 for the circular cylinder. The fields excited in the
dielectric radiate as explained by the Volume Equivalence Principle. The Volume
Equivalence Principle states that a dielectric object (εd, μd) can be replaced by equivalent
currents in free space (εo, μo). These currents then radiate in free space. The electric and
magnetic volume equivalent currents JV and MV are [46]

JV ¼ jωðεd � εoÞE and MV ¼ jωðμd � μoÞH ð11-45Þ
and exist only in the dielectric (εd, μd) itself. E and H are the electric and magnetic fields
in the dielectric. Although any amount of field in the dielectric has the potential to radiate
according to the Volume Equivalence Principle, resonance provides the necessary con-
centration of fields for strong radiation. However, the fields E and H are generally
unknown and must be found (e.g., Moment Method, Finite Element, FDTD, etc.) before
the volume equivalent currents can be used to calculate the radiation. The volume
equivalent currents are useful for radiation by dielectric volumes just as equivalent sur-
face currents are useful for radiation by conducting objects.

Most dielectrics are non-magnetic and so the electric volume equivalent is the current
of interest. It indicates that the strength of the current JV is proportional to the relative
dielectric constant since (εd – ε) ¼ εo(εr� 1), and also proportional to the electric field,
E, in the dielectric, which is a maximum at the resonant frequency. When εr is high, the
plane wave reflection coefficient at the dielectric-air interface becomes large, resulting in
the confinement of energy within the dielectric, which makes resonance possible. For
example, the plane wave reflection coefficient exceeds 1/2 when εr is greater than only 9
(see Prob. 11.7-1).
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Figure 11-33 Circularly cylindrical DRAs on a ground plane.
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Dielectric Resonant antennas are potentially quite efficient since they are not enclosed
by metal walls, thereby allowing all the energy inputted to the DRA to be radiated except
for modest amounts of power consumed by the ground plane and feed line conduction
losses, the loss in the dielectric itself typically being quite small. Thus the stored energy
inside the dielectric can be quite high but quite small outside, making it difficult for
external objects to couple to and/or detune the DRA. Because of this, mutual coupling in
an array is low, there are no surface waves, no scan blind angles, and thus the scanning
range can be quite wide.

The DRA exhibits well-defined resonances. The most commonly used modes in a
circular cylinder geometry that exhibit resonances are the lower-order TE, TM, and
hybrid modes. These are shown in Fig. 11-34. The TM01δ produces a monopole pattern as
shown in Fig. 11-35 while the TE01δ and hybrid EH11δ produce a pattern like that of a
narrow slot on a ground plane. The mode subscripts denote the variation of fields in
radial, azimuth, and z-directions inside the DRA, respectively. The directivity of these
modes is similar to that of an ideal electric or magnetic dipole (i.e., 1.76 dBiþ 3 dB
ground plane effect) for the lower-order modes when εr is high.
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Figure 11-34 Mode patterns for the
lowest-order modes of the circularly
cylindrical DRAs.
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The well-defined resonances of the various DRA modes are indicative of somewhat
high Q devices with bandwidths in the 5–10% range. However, these basic bandwidths
can readily be expanded to 20% and beyond, which is an advantage over patch antennas.
Let βa be a normalized phase constant or wavenumber (i.e., β normalized with respect
to a). The resonant frequency of a circularly cylindrical DRA can be found from the
normalized resonant phase constant, which is of the form

βa ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
εr þ χ

p κ1 ð11-46Þ

where the values of χ and κ1 are found empirically. χ was found to be approximately in
the range 1 # χ # 2. Table 11-4 gives values for χ and κ1 for the three lowest-order
modes [47; H.8.7: Petosa, Sec. 2.2]. Alternative empirical formulations may be found in
[H.6: Ant. Eng. Hdbk., 4th ed. Sec. 17.1].

Solving (11-46) for the resonant frequency, fr, gives

frC
cffiffiffiffiffiffiffiffiffiffiffiffiffi

εr þ χ
p 1

2πa
κ1 ð11-47Þ
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The resonance frequency in (11-47) is mostly determined by εr and a, and is inversely
proportional to these quantities as one would expect. It follows that fr is modified by the
ratio a/H as given by the relationships for κ1 in Table 11-4. The value for κ1 in Table 11-4
the TE01δ mode varies monotonically from about 2.5 to 4.25. Fig. 11-36 shows the TE01δ
mode normalized wave number for 8 # εr # 140.

Empirically derived relationships for the radiation Q for two of the lowest-order
modes are given in [47; H.8.7: Petosa, Sec. 2.2] and for a third (TM01δ) in [H.6: Ant. Eng.
Hdbk., 4th ed. Sec. 17-1]. These relationships are of the general form

QA ¼ ðεrÞpκ2 ð11-48Þ

Table 11-4 Cylindrical DRA Resonance Parameters

Mode χ κ1 Limitations
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�
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Figure 11-36 Normalized phase constant of the TE01δ mode of the circularly cylindrical DRA.
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Values for p and κ2 are given in Table 11-5. Fig. 11-37 plots the TE01δ mode radiation
Q versus the height to radius ratio for 8 # εr # 120. Here κ2 varies from about 0.46
to 0.28.

The graphs in Figs. 11-36 and 11-37 may be used for design purposes. The steps are
to find the Q, then chose εr, next determine βa, and finally determine the radius.
Example 11-5 illustrates the procedure.

Table 11-5 Cylindrical DRA QA Parameters

Mode p κ2 Limitations

TE01δ 1.27
0:078192

�
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�
H

a
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�4�
0:5 #

a

H
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EXAMPLE 11-5 DRA Design

A design for a cylindrical DRA in the TE01δ mode is to have a bandwidth of at least 3.5% for a
VSWR of 2 at 10GHz.

1. Determine the radiation Q. The relationship between VSWR, Q, and fractional band-

width, Bf, is Bf ¼ VSWR�1

Q
ffiffiffiffiffiffiffiffiffiffi
VSWR

p , which yields a Q of 20 in this case.

2. To determine the dielectric constant, draw a straight horizontal line on at Q¼ 20 in
Fig. 11-37. The desired design must fall on or below this line. If εr ¼ 16 is chosen, a
wide range of radius-to-height ratios is possible for the designer, whereas if εr ¼ 24 is
chosen, for example, the choice for (a/H) is more limited. We will chose εr ¼ 16.

3. To determine βa, note that βa ¼ 0:20958 U
�

a

H

�
U f ðGHzÞ UHðcmÞ

which in this case is βa ¼ 2:0958 U
�

a

H

�
UHðcmÞ

4. To find the radius, plot the expression immediately above for βa on the curves in Fig.
11-36 as shown in Fig. 11-38. This will result in a series of straight lines for various
values of H(cm). Any H(cm) line that intersects the εr ¼ 16 curve is a possible solution
for βa and (a/H). Some possible solutions are shown in Fig. 11-38.

5. Using (11-47) to check the resonant frequency, we choseH ¼ 0.3 cm. Using the cursor on
the MATLAB plot of Fig. 11-38 to locate coordinates, it is determined that βa ¼ 0.6898
and (a/H) ¼ 1.097 fromwhich it is found that a ¼ 0.3291 cm. Using these values and the
cursor on Fig. 11-37 shows that the Q is 15.11. Thus Bf ¼ 4.68%, which is greater than
the 3.5% requirement due to using εr , 20. A calculation of κ1 gives κ1 ¼ 2.844. Then
using these various values in (11-47) confirms that fr ¼ 10.0GHz exactly.

1.5

1.25

1

0.75

0.5

0.25

0
0 0.5 1 1.5 2 2.5

Radius to height ratio (a/H)

N
or

m
al

iz
ed

 p
ha

se
 c

on
st

an
t, 

(β
a)

3 3.5 4 4.5 5 5.5

εr�8

εr�12

εr�16

εr�20

εr�25
εr�30

εr�40

εr�50
εr�60

εr�80
εr�100
εr�140

H � 0.3 cm

H � 0.2 cm

H � 0.15 cm

H � 0.1 cm

Figure 11-38 TE01δ DRA designs at 10GHz for εr ¼ 16.

c11 27 March 2012; 18:37:5

518 Chapter 11 Low-Profile Antennas and Personal Communication Antennas



Tables 11-1 and 11-2 use empirically derived expressions because exact analytically
derived results are not tractable for all but the hemispherical DRA. The usual approximate
method of analysis for most shapes involves assuming that the z-component of themagnetic
field vanishes at all surfaces parallel to the z-axis [48]. This is called the magnetic wall or
perfect open circuit condition and is known to be accurate for high values of εr, but holds
reasonably well for low values as well. Mainly for fabrication reasons, the hemispherical
DRA is seldom used.

There are a variety of DRA shapes that have been studied other than the sphere, circular
cylinder, and rectangular cylinder. It is beyond the scope of this text to explore those here.
Many other shapes have been investigated that provide improvements in bandwidth.
A number of geometries provide bandwidths on the order of 20%, and several on the order
of 50%, and some more. An excellent reference for DRAs is found in [H.8.7: Petosa].

DRAs can be designed to have a low profile (e.g., H, 0.03l). This is usually done with
high-dielectric constant material, that is εr on the order of 100. The reported bandwidths
are between 1 and 4% because of the high Q. This is an example of the tradeoff between
εr and Q or bandwidth. By way of contrast, microstrip antennas experience a decrease
in radiation efficiency as εr is increased due to the increased excitation of surface waves
whereas DRAs do not suffer from this problem.

A number of excitation methods are used for DRAs. Some of these are the coaxial
probe, aperture-coupling with a microstrip feed line, direct microstrip feed line, co-planar
feed, soldered-through probe, slotline, stripline, and dielectric image guide. Details of
these may be found in [H.8.7: Luk & Leung].

DRAs have been mostly used from 2 to 40GHz, but some usage has been as low as
1.3GHz for GPS applications. The lower frequency limit is due to large size and weight
constraints. The higher frequency limit is due to issues associated with small size, par-
ticularly difficulties with fabrication. Small size also presents challenges with feeding the
DRA. Another fabrication issue is bonding the DRA to its metal ground plane. This must
be done without air gaps between the DRA and the ground plane.

11.8 NEAR FIELDS OF ELECTRICALLY LARGE ANTENNAS

In Chap. 2 the boundary between the near field and the far field was examined. Several
criteria were presented in (2-100). These criteria depend on the size of the antenna and the
wavelength. Similarly there were criteria for the boundary between regions within
the near field itself. The near field regions are called the reactive near field and radiating
near field, as Fig. 2-8 indicates. The boundary between the reactive near field and radi-
ating near field also depends on the size of the antenna and the wavelength. In Chap. 2 the
near fields of the electrically small antenna ideal dipole were examined. In this section,
we will examine the near fields of some electrically large antennas.

11.8.1 Near Field of a Uniform Rectangular Aperture

Fig. 11-39 shows the behavior of the power density along a line perpendicular to the center of
a large uniform rectangular aperture. The graph starts on the right at the far-field boundary of
2D2/l and begins to separate from the 1/r2 curve. Moving toward the aperture, the power
density cannot vary as 1/r2 since this would imply an infinite power density at the aperture.

If one visualizes the aperture as being made up of a large number (e.g., 100) of small,
equal size rectangles, the oscillation in Fig. 11-39 can be explained by the differences in
path length from each small rectangle to the observation point along the line perpen-
dicular to the center of the aperture. At infinity, the path lengths are all the same. Moving
toward the aperture, but still well out in the far field, the path lengths are not all quite the
same, but the differences are only a few degrees in phase. In the near field, the path
lengths can be different enough that some are nearly 180� different in phase from others.
This constructive and destructive process produces the oscillation in Fig. 11-39. The
closer the observation point comes to the aperture, the more the net contribution to the
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power density comes from the small rectangles at the center region of the aperture. This
concept is similar to the stationary phase principle in Sec. 16.15.

11.8.2 Calculating Near Fields

In Chap. 2 the common far-field criterion of 2D2/l was derived by retaining the third term
in the expansion for R in (2-86). The retention of the third term is sometimes referred to
as the Fresnel approximation, since the radiating near field may also be referred to as the
Fresnel region. One approach to calculating fields in the radiating near field is to use
the Fresnel approximation, as Fig. 11-40 illustrates.

Fig. 11-40a shows a comparison between the two-term, far-field approximation the
three-term Fresnel approximation. The difference between the two curves increases as
the distance to the aperture decreases. Close to the aperture, the far-field approximation
predicts deep nulls, whereas the more accurate Fresnel approximation does not. Also
apparent in Fig. 11-40a is an oscillation like that in Fig. 11-39.

Fig. 11-40b shows a comparison between the Fresnel approximation and probe-
measured values of the field strength. The agreement between calculation and experi-
mental measurements is generally quite good.

Another method of calculating near fields is obtained by quantizing the source into
small segments such that the observation point is in the far field of each small segment
while being in the near field of the entire source. The far fields of all the segments are
summed at the point of observation, with the proper amplitudes and phases determined by
the original source distribution. We will illustrate the method with a line source, but the
method is extendable to rectangular apertures as well. The following discussion is
adopted from [H.8.8: Walter, pp. 40–44].

Consider Fig. 11-41, where a line source is comprised of N segments. Let each seg-
ment have a constant amplitude In, a constant absolute phase ψn, and a constant phase
constant βn all of whose values are determined by the source. Then

Inðz0nÞ ¼ Ine
jψnejβnz

0
n ð11-49Þ
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Figure 11-39 Near-field behavior of a uniform rectangular aperture. (From [H.6: Hansen] ª
1964 Academic Press. Used with permission.)
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The observation point in Fig. 11-41 is in the far field of the individual segments but in
the near field of the overall source. In this situation it is desirable to work with the
z-component of the electric field on the line y ¼ constant in the figure. The derivation in
[H.8.8: Walter, pp. 40–44] employs the equivalent of (2-80) and (2-95), but here we only
present the final formulation.

For N segments, the minimum distance for which the result is a valid representation of
the source fields is

y ¼ 2L2

lN2
ð11-50Þ

The electric field is given as

Ez ¼ �jωμL
4Nπ

XN
n¼1

Ine
jðψn�βRnÞ

Rn

sin2θn
sinun

un
ð11-51Þ

where now un becomes

un ¼ βðz� znÞ
Rn

þ βn

� �
L

2N
ð11-52Þ

The nearer the observation point to the source, the more the source needs to be divided
into smaller uniform segments.

The y-component of the electric field may be found in the same manner as the
z-component, thus giving the total near field of the source. This method can be applied in
the reactive near field as well as the radiating near field and has been used to investigate
the quiet zone in a compact range.

Fig. 11-42 shows calculations using the method of this section for a 250 l-long,
uniform-amplitude constant-phase line source. The z-component of the electric field is
calculated along a line y¼ constant shown in Fig. 11-42. The variation in z is �125l
, z, 125l. The distances y¼ 300l and 600l are in the region where there would be a
“quiet zone” for approximately �60l, z, 60l. The distance y¼ 300l offers less
amplitude and phase variation than y¼ 600l, and the best quiet zone location is probably
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Figure 11-41 Near-field observation point in the far field of individual segments.
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near y¼ 300l. The distance y¼ 125,000l is the 2D2/l boundary between the near and far
fields. Note that the phase plot shows the 22.5� phase variation used in the derivation of
2D2/l. The 1 dB amplitude variation is due to the half-power beamwidth being about 0.2�,
well outside the 0.057� angle at the origin subtended by z¼ 125l and y¼ 125,000l
(i.e., (90��θ) in Fig. 11-41).

11.9 HUMAN BODY EFFECTS ON ANTENNA PERFORMANCE

The effect of the human body on the electric and magnetic fields around it can be sub-
stantial. The electric field in close proximity to the human body is reduced significantly
due to the conductivity of the human tissue, whereas the magnetic field is increased, in
accordance with the boundary conditions on tangential E and tangential H. This body-
field interaction has received increasing attention in recent years, particularly because of
the rising use of mobile phone handsets. There are two reasons for understanding the
interaction of electromagnetic fields with the human body. The first reason is to under-
stand the effect on mobile phone performance (mainly the radiation pattern and imped-
ance). This will be examined in this section. The second reason is to understand the
interaction for compliance with safety standards. This will be examined in the next
section on radiation hazards.

The effect of the human body on antenna performance can be done via experimental
measurements or via computer simulation using the FDTD method discussed in Chap. 15.
Early computer models of the human head, for instance, consisted of a layer of bone
surrounded by a layer of muscle. But the head contains many different kinds of tissue, so
later models used data from magnetic resonance imaging to provide very accurate models
of the various tissues in the body, perhaps more accurate than necessary for many
investigations. Experimental investigations employ models called “phantoms,” wherein
the interior of the phantom is filled with one or more liquids having the required dielectric
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Figure 11-42 Near-field normalized phase variations at various distances from a uniform line
source along the z-axis.
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constant at the frequency under consideration. The dielectric constant of the human body
is both tissue specific and frequency sensitive. Extensive data for the electrical properties
of the human body may be found on the FCC website: www.fcc.gov.

The main effects of the human body on the radiation from a handset is to decrease the
overall radiated power, decrease the radiation in the direction of the head relative to
the opposite direction, and in some cases detune the handset antenna. Fig. 11-43
shows the simulated far-field pattern of a monopole antenna on a rectangular box model
of a handset located 1.5 cm from the head [49] at 900 MHz. The pattern is compared to
the omnidirectional pattern of the monopole without the head present. Clearly the head
alters the pattern of the monopole alone. The head also causes a marked decrease in the
radiated power level due to the absorption of power by the head. Thus the radiation
efficiency of (2-177) is reduced for the monopole antenna system according to

er ¼ P

Pþ Po þ Ploss

ð11-53Þ

where Ploss is the power absorbed by the human body. As one would expect from the
discussion in Sec. 11.8, Ploss is reduced if the phone is positioned farther away from
the head. In general, the tissues of the human body are lossy dielectrics at RF frequencies,
as discussed in the next section.

The presence of the human body also can have an effect on the handset antenna
impedance. Consider the handset model Fig. 11-44 but with a monopole on the handset.
Fig. 11-45 shows the computed return loss for the monopole antenna on the box model.
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Figure 11-43 Computed radiation patterns in
the azimuthal plane for a vertically oriented
monopole at 900 MHz. (From [49] ª 2004.
Reprinted with permission from Microwave
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[49] ª 2004. Reprinted with permission from
Microwave Journal.)
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Three cases are shown: monopole on the box model only; hand on the monopole-box
model in the presence of the head; and hand on the monopole-box model but not in
the presence of the head. The results indicate that there is relatively little change in the
antenna input impedance as evidenced by the low level of the return loss in all three cases.
This is a desirable characteristic of the monopole antenna. There is some detuning in
Fig. 11-45, however, when the head is present.

Fig. 11-46 shows the effect of the hand on a planar inverted-F antenna (PIFA) for
several positions of the hand. The handset model is shown in Fig. 11-44. When the hand
covers an appreciable portion of the PIFA (i.e., d¼ 40 mm), the return loss curves show
that the input impedance of the PIFA is noticeable affected. When d¼ 40 mm and 60 mm
there is detuning of the PIFA. When d¼ 70 mm, the hand is not covering any part of the
PIFA and performance is almost the same as if no hand were present. The results suggest
the importance of minimizing antenna masking through proper placement of the antenna
in the handset. A desirable feature of the PIFA is its ability to direct radiation away from
the head due to the ground plane upon which the PIFA resides. This feature helps
reduce the power absorption by the head.

Another device that employs an antenna close to the human body is a pager. Pagers are
typically worn on the belt or in a shirt pocket, placing the antenna quiet close to the body,

Figure 11-45 Computed return loss values
of a monopole on a handset for three cases.
(From [49] ª 2004. Reprinted by permis-
sion of Artech House.)

Figure 11-46 Computed return loss of
the side-mounted PIFA handset for dif-
ferent hand locations. (From [49] ª
2004. Reprinted with permission from
Microwave Journal.)
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if not for all practical purposes right on the body. In the VHF–UHF regions of the
spectrum where most pager services are found, the human body acts predominately like a
reflector to a degree dependent upon the frequency. The wave impedance will be low,
even for plane wave incidence, suggesting a magnetic antenna be used for good on-body
performance.

The magnetic antenna of choice is, of course, a small loop. A small loop positioned such
that the axis of the loop is tangential to the body acts like a magnetic dipole (see Sec. 3.4)
parallel to the body surface as indicated in Fig. 11-47. As such it will always receive the
maximum magnetic field available [H.9.1: Fujimoto, 1st ed., p. 178], whatever the ori-
entation of the body wearing it. The proximity of the body distorts the idealized uniform
phase of the current on the small loop such that the perfect nulls of the magnetic dipole are
partially filled in, a beneficial proximity effect of the human body in this instance.

11.10 RADIATION HAZARDS

Electromagnetic waves can be divided into two categories according to their ionizing
capability. Ionization is the process by which electrons are stripped from atoms and
molecules by high-energy photons.4 The human body is largely water, so the water
molecule is used to define the minimum quantum energy necessary to produce ejection.
Ionization in humans can produce molecular changes that damage biological tissue
and even DNA. Ionization occurs at wavelengths shorter than most ultraviolet rays
(e.g., x-rays, gamma rays) as indicated in Fig. 11-48. The photon energy associated with
x-rays is a billion times more energetic than that of a 1GHz microwave photon.

The photon energies in RF electromagnetic fields are not great enough to cause the
ionization of atoms and molecules. Therefore, RF radiation is generally non-ionizing
radiation. An exception to this is radio transmitters using very high supply voltages in
excess of 5 kV, which can produce x-rays. When considering biological effects of elec-
tromagnetic radiation, it is important to distinguish between ionizing radiation and non-
ionizing radiation. Unfortunately, the general public does not distinguish between ion-
izing and non-ionizing radiation.

Radiation hazards to humans can be divided into two categories: direct and indirect.
First, direct effects include both thermal effects and non-thermal effects. Thermal effects
involve heating of the human body and include shocks and burns. Non-thermal or
athermal effects are biological effects without significant heating. Athermal effects are
not well understood and are the subject of ongoing research. There are also non-human
effects such as when strong fields interact with flammable vapors. This effect is obviously
a hazard. Not all biological effects constitute a hazard.

Magnetic dipole

Figure 11-47 A small loop antenna on the side of a person
and its image in the body. The small loop is perpendicular to
the body. The magnetic dipole is parallel to the body and
perpendicular to the loop.

4 Electromagnetic phenomena can be described either in terms of waves or particles. This is known as the
wave-particle duality of electromagnetic energy. The particle in an electromagnetic wave is the photon
whose energy is h- f expressed in electron-volts where h- is Plank’s constant. There is an electron-volt scale
in Fig. 11-48.
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Recall that generally a dielectric constant is complex, with the imaginary part deter-
mined by the conductivity and frequency as in (2-15). Fig. 11-49 shows the relative
dielectric constant of some human tissue versus frequency. The decline in εr with
increasing frequency at the lower frequencies is due to capacitance inherent in the cellular
membranes. From about 100 MHz to about 10GHz those membranes are short-circuited.
The decline above 10GHz is due to the water content and its frequency characteristics.

Fig. 11-50 shows the resistivity, ρ, of human tissue, which is the inverse of the
conductivity, σ. The resistivity of high water content human tissues changes slowly at low
frequencies but rapidly at high frequencies due to the conductivity of water changing
strongly there. At these higher frequencies there is little penetration of the human body, as
shown in Fig. 11-51, and surface absorption determines bio-effects and hazards except for
the more sensitive eye tissue. The skin depth, δ, used for the curve in Fig. 11-51, is given
by [H.4: Siwiak].

δðωÞ ¼ β2
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Figure 11-49 Relative dielectric constant of representative human tissue. (Figure drawn from
data in [51].)
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The skin depth or penetration depth is, of course, taken to be the depth where the incident
power density has been reduced by a factor of e�2—that is, down to about 13.5% of the
incident power density.

RF exposure standards have been developed by various organizations and govern-
ments. These standards recommend safe levels of exposure for both the general public
(i.e., an uncontrolled environment) and also for workers in a controlled environment. The
recommended safe levels have been revised downward several times in recent decades,
and not all organizations agree on exactly on what the safe levels are, but the various
implemented safe levels are all similar. The various standards put in place have done a
good job of protecting humans.

Table 11-6 shows themaximum permissible exposure (MPE) in terms of power density for
an uncontrolled environment as specified by the ANSI/IEEE C95.1-1992 guidelines and
adopted by the FCC. The standard is based on whole body absorption. Fig. 11-52 graphs
the MPE FCC standard. The most restrictive limits on exposure are in the frequency range of
30–300 MHz, where the human body absorbs RF energy most efficiently, partly due to a
possible half-wave dipole-like resonance around 100MHz. The low-frequencyMPE is higher
than the high-frequency MPE since the depth of penetration is greater at low frequencies.

Most RF safety limits are defined in terms of the electric and magnetic field strengths
as well as in terms of power density. For lower frequencies, limits are usually expressed
in terms of field values, and the power densities are far-field equivalent values. At
higher frequencies, where a person is likely to actually be in a far field, it is usually only
necessary to consider power densities as is done in Table 11-6.

There are also limits for localized or partial body absorption, which is expressed in
terms of the specific absorption rate. The specific absorption rate, or SAR, is the absorbed
power, Pa, per unit volume divided by the material density, p, so as to obtain the
absorption per unit mass. Thus, if Pa is expressed as

Pa ¼ 1

2
σ Ej j2 W=m3 ð11-55Þ

then SAR is

SAR ¼ σ
2p

Ej j2 W=kg ð11-56Þ
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Figure 11-51 Depth of penetration of RF energy in tissues with high water content. (Data
from [51] ª 1972 IEEE.)
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SAR represents the ratio of an infinitesimal amount of RF power absorbed in an infini-
tesimal mass surrounding a specific point. SAR is a measure of the local heating rate of
tissue. A SAR of 1W/kg equates to a heating rate of less than 0.0003 C per second in
muscle tissue. This corresponds to a rise in temperature of 1�C in about one hour.

At a SAR of 4 W/kg, reversible tissue disruption has been observed, and above 5 W/kg
permanent adverse effects have been found. Thus, most standards are based on a fraction
of 4 W/kg to account for biological uncertainty and to add an additional safety factor.
Exposure is averaged over a 6-minute period of time, and peak exposure cannot exceed
8 W/kg. Consider an adult human weighing 75 kg or 165 lbs. For continuous exposure
lasting 6 minutes or more, the maximum RF power absorbed by the human is limited
to 0.4 W/kg� 75 kg ¼ 30 watts. An absorbed power of 30 watts is equivalent to
approximately one-quarter of the resting metabolic rate of an adult. This standard was not
developed to protect against possible long-term exposure to low-level RF radiation
because such hazards, if any, are not well understood.

In specifying safety exposure limits for humans, both the local tissue SAR and whole
body average are important. [50] There is no practical way of measuring SAR in humans.
The determination of SAR is either done via computer modeling or experimental

Table 11-6 FCC Limits for Maximum Permissible Exposure (MPE)

a. Limits for Occupational/Controlled Exposure [50]

Frequency
Range (MHz)

Electric
Field

Strength (E)
(V/m)

Magnetic Field
Strength (H)

(A/m)
Power Density
(S) (mW/cm2)

Averaging Time
|E|2, |H|2 or S
(minutes)

0.3–3.0 614 1.63 (100)*1 6
3.0–30 1842/f 4.89/f (900/f2)*2 6
30–300 61.4 0.163 1.0 6
300–1500 � � f/300 6
1500–100,000 � � 5 6

b. Limits for General Population/Uncontrolled Exposure [50]

Frequency
Range (MHz)

Electric
Field

Strength (E)
(V/m)

Magnetic Field
Strength (H)

(A/m)
Power Density
(S) (mW/cm2)

Averaging Time
|E|2, |H|2 or S
(minutes)

0.3–1.34 614 1.63 (100)*3 30
1.34–30 824/f 2.19/f (180/f2)*4 30
30–300 27.5 0.073 0.2 30
300–1500 � � f/1500 30
1500–100,000 � � 1.0 30

f¼ frequency in MHz *Plane-wave equivalent power density

NOTE 1: Occupational/controlled limits apply in situations in which persons are exposed as a conse-
quence of their employment provided those persons are fully aware of the potential for exposure and can
exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations
when an individual is transient through a location where occupational/controlled limits apply provided he
or she is made aware of the potential for exposure.

NOTE 2: General population/uncontrolled exposures apply in situations in which the general public may
be exposed, or in which persons that are exposed as a consequence of their employment may not be fully
aware of the potential for exposure or can not exercise control over their exposure.
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measurements done with “dummy” models of the human anatomy comprised of materials
which mimic the electrical characteristics of human tissues. The favorite computer
modeling technique is the FDTD, discussed in Chap. 15. It should be noted that such
modeling does not take into account the thermo-regulatory system of the human body.

There have been numerous studies of the SAR distribution for hand-held cellular
phones done by both experimental models and software simulation models. All studies
show that about 50% of the power transmitted by the cellular phone is absorbed by the
body, mostly in the head on the side of the phone. These studies indicate that, in general,
the 1.6mW/g partial body limit is unlikely to be exceeded under normal phone use
conditions. Various other studies, while finding that electro-stimulation in the brain does
occur, find no link between cell phone use and brain tumors. Nevertheless, prudence
might dictate that hand-held cell phone use be in moderation until this and other issues
are more definitively resolved.

Electromagnetic fields can have a positive effect on the human body. It has been
known for several decades that pulsed DC used to produce a magnetic field at the site of a
bone fracture can promote healing that otherwise might not occur due to weak blood
supply at the site of the fracture. A “Jones fracture” in the foot is one example where
the blood flow is weak and healing is problematic. The pulsed magnetic field of a bone
stimulator applied at the site of a Jones fracture promotes a flow of current in the
bone similar to the currents the body would naturally produce to signal the bone to heal.
While this effect is not an RF effect and certainly not a hazard, it is an example a
beneficial interaction of electromagnetic fields with the human body.
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PROBLEMS

11.2-1 Show how the normalized principal plane patterns of (11-6) follow from (11-5).
Discuss the electric field polarization in each plane.
11.2-2 A square microstrip patch with L¼W¼ 4.02 cm is printed on an 0.159-cm-thick
substrate with εr¼ 2.55. Find the resonant frequency, input impedance at resonance for an
edge feed, and the bandwidth.
11.2-3 For the rectangular MSA of Example 11-1: (a) Verify the patch length. (b) Calculate
the input impedance. (c) Calculate the bandwidth. (d) Plot the E- and H-plane polar patterns.
(e) Estimate the directivity. (f) Use (11-2) to (11-4) to find the resonant patch length; compare
to the value in (a).
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11.2-4 Calculate the length of a rectangular patch at resonance at 3GHz for a substrate of
dielectric constant 2.2 and variable thickness from 0.001 to 0.05 l. The patch width is a half-
wavelength. Do this twice for the two levels of approximation in (11-1) and (11-2). Compare
using a graph.
11.2-5 An edge-fed rectangular (W¼ 1.5 L) microstrip patch antenna has a substrate of
thickness 0.01l. (a) Vary the dielectric constant to find the value which gives the highest
bandwidth and state the values of εr and B. Using these values: (b) Calculate the patch length
and width at a resonant frequency of 3GHz, and (c) Calculate the input impedance.
11.2-6 A square microstrip patch antenna has measured resonant frequency of 2.28GHz and
has a substrate of dielectric constant 2.55 and thickness of 0.159 cm. (a) Calculate the resonant
frequency for a patch length of 4.02 cm and compare to the measured value. (b) Calculate the
input impedance at the measured resonant frequency and compare to the measured value of
400 Ω.
11.2-7 A probe-fed rectangular patch antenna of 0.3-cm-thick dielectric of 4.53 dielectric
constant is 1.74 cm long and 2.31cm wide. The resonant frequency is 3.72GHz. (a) Calculate
input impedance in Ohms for an edge feed. (b) Calculate input impedance for a probe feed
0.55 cm in from the edge.
11.2-8 A probe-fed rectangular patch antenna of 0.127-cm thick dielectric of 4.53 dielectric
constant is 13.97 cm long and 20.45 cm wide. (a) Calculate the resonant patch length at 660
MHz using the simple formula. (b) Calculate the input impedance for an edge feed. (c)
Calculate the input impedance for a probe feed 0.635 cm in from the edge.
11.2-9 A probe-fed square microstrip patch antenna on a 0.3-cm thick substrate of εr¼ 4.53 is
to be designed to operate at 3.72GHz. (a) Find the patch length at resonance. (b) Find the
probe location for 50-Ω input impedance.
11.2-10 An inset-fed rectangular microstrip patch antenna with dimensions L¼ 4.04 cm,
W¼ 5.94 cm, and t¼ 0.127 cm has a substrate of εr¼ 2.42. Find the inset distance required for
an input impedance of 50 Ω.
11.2-11 A commercial microstrip patch antenna has HP beamwidths in both principal plane of
100� and a radiation efficiency of 70%. Calculate the gain in dB.
11.2-12 Derive the pattern of a rectangular MSA in (11-5) starting with image theory for a
magnetic current above an electric ground plane as in Fig. 9-4c and (9-2b), as well as (9-26).
11.3-1 For the 16-element (4� 4) array of Example 11-2. (a) Plot one of the principal plane
patterns using (11-6a) for the element pattern. (b) Compute the directivity by pattern inte-
gration assuming the element pattern applies to all space, and then find the gain.
11.3-2 A linear array of four quarter-wave microstrip patches spaced 4.2 cm apart are to be
excited to produce an endfire beam. The operating frequency is 2.73GHz and the substrate
relative dielectric constant is 2.45. Sketch the corporate feed network required to accomplish
this, indicating on it the extra microstrip transmission line lengths in cm required for proper
phasing.
11.4-1 Calculate the power remaining at the end of the leaky wave antenna used in
Fig. 11-14a. Repeat for Fig. 11-14b. Assume the length of the antenna is 5l at 6.25GHz.
11.5-1 (a) An electrically small antenna has QA¼ 60. The smallest sphere that can enclose the
antenna has a radius of 0.0159 l. Find the antenna gain in dB. (b) Repeat (a) if the antenna QA

is 40 and the radius is 0.0318 l. (c) What is the directivity of these antennas in dB? (d) Explain
what negative dB gain means.
11.5-2 Show that the radius of a radiansphere, l/2π, corresponds to the distance from an ideal
dipole where the power density contained in the near field equals that in the far field in the
direction of maximum radiation, θo¼ 90�.
11.5-3 Derive the formulas for Rr/Ro for (a) Short dipole, (11-31), and (b) Small loop, (11-32).
11.5-4 Use (11-27), (11-28), and (11-29) to plot curves of QA vs. βa on a single graph with a
log-scale ordinate from 1 to 104 and a linear-scale abscissa from 0 to 1.
11.5-5 Use (11-40) to plot curves of QA vs. βa on a single graph with a log-scale ordinate
from 1 to 104 and a linear-scale abscissa from 0 to 1 for radiation efficiency values of er¼ 1,
0.5, 0.2, and 0.1.
11.5-6 For the dipole of Fig. 6-7 with a 0.1-mm radius, calculate the ratio of the half-power
(VSWR¼ 5.83) bandwidth to the VSWR¼ 2 bandwidth and compare to that predicted using
(11-34).
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11.6-1 Simulation. Use a moment method code to simulate the 13.25-turn NMHA discussed in
Sec. 11.6.1 that is 10 cm tall and 2 cm in diameter constructed with copper wire 0.18 mm in
diameter. Give the input impedance and gain values at 150 MHz.
11.6-2 Simulation. Use a moment method code to simulate the NMHA of Example 7-1 at 883
MHz using a wire diameter of 1 mm and operated over a perfect ground plane. Give the input
impedance and gain.
11.6-3 Simulation. The meander line monopole of Fig. 11-21 for the following dimens-
ions: sV¼ 1.43 cm, sH¼ 3.33 cm, and w¼ 2 mm. Use a simulation code to compute the input
impedance to see if the resonant frequency is 344 MHz. Model the flat conductor with
equivalent (perfectly conducting) wires of diameter equal to half the conductor width (see
Sec. 6.1.1).
11.6-4 Consider the example QHA discussed in Sec. 11.6.2 that has half-turn arms, a diameter
of D¼ 0.174l, and height of h¼ 0.243l. (a) Calculate the helix parameters of S, α, L, and
Lloop. (b) Compute the physical dimensions in cm for operation at 2.2GHz.
11.6-5 Simulation. Use a simulation code to verify the values in Example 11-3 for the ILA
garage door opener transmitter. Plot the elevation pattern and give the gain for copper wire.
11.6-6 Simulation. Use a simulation code to verify the values in Example 11-4 for the IFA
antenna. Plot the elevation pattern and give the gain for 1-mm diameter copper wire.
11.6-7 The PIFA of [39] has L¼W¼ 2 cm. Calculate the resonant frequency for an infinite
ground plane and compare to the measured value of 1.885GHz.
11.6-8 The RFID tag using the antenna of Fig. 11-32 can respond to �17 dBm of power. If the
reader has 36 dBm EIRP and the tag antenna has 0 dB gain, calculate the passive read distance.
Assume free space propagation conditions and a frequency of 900 MHz.
11.7-1 Calculate the plane wave reflection coefficient for and air-dielectric interface when
εr¼ 9, 16, 25, 36, 49, 64, 81, and 100. Plot the results.
11.7-2 Determine the radius and Q of the design in Example 11-2 when H¼ 0.2 cm.
11.7-3 Design an HE11δ mode circular cylinder DRA with 5% bandwidth at 10GHz.
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Chapter12

Terminal and Base Station
Antennas for Wireless
Applications

An overview of wireless communications was presented in Sec. 4.5, including the
conceptual drawing in Fig. 4-7 of the integration of wireless systems. In this chapter, we
discuss wireless communication antennas used in practice. The types of wireless com-
munication networks are shown in Fig. 12-1. If there are just two terminals as in Fig. 12-1a,
it is called a point-to-point link. An example is two-way, high data rate, point-to-point
communications using microwave frequencies. Microwave point-to-point links are used
in backhaul systems to connect cellular base stations together. A simple example of a one-
way, point-to-point link is a wireless garage door opener remote control system. A base
station services multiple terminals. If the terminals are only receivers as in Fig. 12-1b, the
system is referred to as broadcast communications. Examples include AM and FM
broadcast radio and broadcast TV. If both the base station and the terminals transmit and
receive as shown in Fig. 12-1c, the system is called point-to-multipoint communications.
Cellular telephone is an example. If the base station serves a small region such as a
building, it is referred to as a wireless access point (WAP). Fig. 12-1c indicates the ter-
minology used to describe directional links. The terms uplink and downlink are refer-
enced to the base station, indicating that signals are traveling up to or down from it. The
terms forward link and reverse link (also called a return link) are referenced to the user
terminal and indicate signal directions that are forward to the base station from the user or
reverse from the base station to the user. Another type of network consists of just multiple
terminals, each capable of communicating with any other terminal that is within range,
which is referred to as a peer-to-peer (or mesh) network. Walkie-talkie radios are an
example.

When setting up a new wireless communication system, there is a set of steps followed
in the design process. After the system and antenna specifications are clearly defined, the
operating frequency range is selected. Regulatory agencies restrict uses by frequency and
also limit the power output and sometimes the antenna pattern and gain.1 The next

1A chart of all allocated frequencies for the U.S. is found at http://www.ntia.doc.gov/osmhome/allochrt
.pdf, and the FCC rules and regulations are found at http://fcc.gov/.
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decision is whether to use a frequency band that requires a license from the regulatory
agency (“licensed”) or a band that is license exempt (“unlicensed”). Licensed operation
requires an application and approval but affords protection against unauthorized users.
Unlicensed operation avoids the licensing process, and affordable equipment is available,
but interference and competition for bandwidth can be issues. Propagation is also a large
factor in the frequency selection decision. Frequencies at VHF and below offer long-
distance communication, even over non-line-of-sight (NLOS) paths. Frequencies at UHF
and above are used for applications requiring wide bandwidth. Above 10 GHz, a clear
line-of-sight (LOS) path is required, and the atmosphere can cause attenuation and
depolarization; see Sec. 4.5.2. Once a frequency is chosen, the antenna selection process
begins. This starts by identifying the relevant system specifications listed in Table 1-3.
The first choice to be made is between an array and a single antenna. Next, Table 1-4 is
used as a guide in finding the appropriate antenna or array element. A list of candidate
antennas is prepared, followed by a down selection process that eliminates candidates
after preliminary investigations. The final candidate antennas are evaluated in detail using
simulations and experimental models. Final selection is made based on comparisons of
the results from the evaluation phase that often includes full system tests.

12.1 SATELLITE TERMINAL ANTENNAS

Although more than 90% of the world’s population has cellular telephone service available,
82% of the world’s surface does not have cellular coverage. Whereas terrestrial-based
communications are not practical for reaching remote locations and oceans, satellite-based
communications are. Due to the long distances between Earth and space, satellite links
require a clear line-of-sight to operate. Earth terminals can be fixed, portable, or mobile.
For wide bandwidth communications, a fixed Earth terminal is used that most often has a
reflector antenna and sometimes a mechanically steered fixed-phase array or a phased
array. If the satellite is not geostationary, the terminal requires a steering mechanism to
continuously maintain the antenna main beam direction aimed toward the satellite, or a
broad beam antenna is used.

(a) Point-to-point.

R

R

(b) Broadcast.

(c) Point-to-multipoint.

T/R

T/R

Down/forward
link

Up/reverse
link

Figure 12-1 Wireless communication network configurations.
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Reflector antennas are very popular for fixed terminals but are also used on vehicles such
as ships and aircraft with a means of tracking the satellite during vehicle motion. Cassegrain
reflectors are commonly used for Earth terminals because of their low noise due to lower
ground pickup from spillover compared to a prime focus reflector (see Secs. 4.3 and 9.6).
Also, the antenna must have low side lobes to avoid interference with and from adjacent
satellites that typically are 2� apart. Gateway terminals (see Fig. 4-7) communicate many
channels of information occupying wide bandwidth using reflector antennas several meters
in diameter. User terminals have narrower bandwidth, allowing smaller antennas.

Fixed two-way Earth user terminals use large reflector or array antennas. However,
direct broadcast satellite (DBS) or direct-to-home (DTH) systems have special features
that allow the antenna to be small and the whole Earth terminal to be low cost. First, the
geostationary broadcast satellites are spaced about 9� apart instead of 2�. This permits a
wider beam antenna, which allows an antenna diameter as small as 0.5m in diameter.
Low antenna gain is possible because of the high satellite transmit power and video
compression, which allows for reduced bandwidth (and thus more channels). See
Examples 4-3 and 4-4 for link calculations.

Circular polarization is popular for satellite communications for two reasons. First, at
UHF frequencies and below, Faraday rotation effects lead to variable tilt angle of linearly
polarized waves as conditions in the ionosphere change, requiring the Earth terminal to
track the polarization angle of the incoming wave. Circular polarization is unaffected by
Faraday rotation. Second, circular polarization used on satellites that spin for stabilization
would not have a polarization state alignment problem due to satellite body rotation.

Mobile satellite terminals present challenges. Two-way mobile terminals must track the
satellite using a medium-sized antenna to point in the satellite direction to compensate for
vehicle motion.Mobile Earth terminals on small vehicles or that are hand carriedmust have
small antennas, so an antenna with a broad beam pointed upward is used. Earth terminals
that only receive can have very small antennas. Position location such as GPS and digital
audio radio are examples. The quadrifilar antenna of Fig. 11-22 is popular for satellite
communication terminals with circular polarization. For non-geostationary satellite con-
stellations such as GPS, the pattern is often shaped to have more gain at an angle off zenith
(þz-direction) for better coverage of satellites that are not directly overhead and more dis-
tant. See [H.9.1: Fujimoto, 2nd ed., Chap. 11] for more details on mobile satellite antennas.

An example of a commercial system using portable satellite Earth terminals is Omni-
TRACS, used by long-distance freight vehicles for two-way transfer of data. The Ku-band
(14/12 GHz) antenna is a sectoral horn (see Sec. 9.4) with a broad beam in elevation so that
elevation tracking to the geostationary satellite is not required. Azimuth tracking is by
mechanical rotation of the horn attached to a rotary joint. The white bubble radome
housing the antenna and RF system can be seen on truck cabs.

The antenna choice for a satellite depends on the type of satellite. For spinning
satellites, omnidirectional patterns are required. Candidate antennas are monopoles,
quadrifilars, or elements disposed around the perimeter of the body. High-gain antennas
can be used on spinning satellites with a de-spun platform or on body-stabilized space-
craft. Reflectors, horns, slots, microstrip elements, and arrays are used in the higher
frequency bands, whereas dipoles and helices are used at lower frequencies.

12.2 BASE STATION ANTENNAS

A base station antenna carries multiple signal channels and has an antenna pattern that
covers a defined region around the base station.2 The type of antenna used depends on the
size scale of the cell. Fig. 4-7 shows the various cell sizes. In cellular communications,
channels of the same frequency can be reused in cells that are spatially separated. Fig. 12-2

2 The term base station is used here to mean a terrestrial base station and not include air, space, etc.
platforms.
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shows spatial coverage (i.e., where the radiation is strong enough for effective commu-
nication) of the main types of base stations for a single cell. The omnidirectional pattern of
Fig. 12-2a provides uniform radiation around the tower in azimuth (the horizontal plane).
Early cellular communications systems used these exclusively, but most have been
replaced by antennas which cover a specific angular region in the horizontal plane, except
for rural areas and in-fill applications. The most common cellular base station antenna has
the sector shape pattern of Fig. 12-2b, which enables serving more user terminals. The
most flexible configuration is the smart base station antenna of Fig. 12-2c that adjusts the
directions and shapes of beams according to traffic needs. Smart antennas are discussed
further in Sec. 12.4.

The omnidirectional antenna used in cellular telephone base stations has the appear-
ance of a tall monopole, but in reality it is a vertical collinear array of dipole elements.
Often there are three or more such antennas on the same mount to provide for spatial
receive diversity and for separating transmit and receive functions. The elements in the
array are fed in parallel, often with uniform amplitude to achieve high gain. Although the
pattern is uniform in azimuth, it is directive in the elevation plane. A longer array will
produce a narrower elevation pattern and thus higher gain and longer communication
distance. However, a pattern that is extremely narrow will lead to loss of coverage near
the tower. A linear phase taper across the array is used to produce what is referred to as
electrical downtilt that tilts the beam downward slightly to reduce interference into
adjacent cells. If the entire antenna is tilted mechanically (called mechanical downtilt),
the donut pattern tilts down on one side and up on the opposite side, whereas electrical
downtilt produces a cone around the antenna with the same angle of downtilt in all
azimuth directions. Special construction techniques are used to realize the parallel feed.
The feed lines are routed through the center of the vertical support mast to avoid having
the cable disturb the radiated fields. The array analysis techniques in Chap. 8 are readily
applied to base station arrays, as illustrated in following examples.

(a) Omnidirectional.

(b) Sectorized.

(c) Smart.

Figure 12-2 Base station antenna types.
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EXAMPLE 12-1 An Omnidirectional Base Station Antenna for Cellular
Wireless Communications

A commercial omnidirectional base station antenna for operation from 800–900 MHz
is constructed using in a collinear array of 10 half-wave dipoles spaced 28.5 cm apart
(d¼ 0.81 l at mid-band). The array factor is found from (8-22) for a uniformly excited, equally
spaced linear array. The required inter-element phase shift for a 7� downtilt from (8-25) is
α¼�βd cos(θo)¼�3603 0.81 cos(97)¼ 35.5�. The array factor for this array is multiplied
by the element pattern of a half-wave dipole from (3-4), giving the full array pattern, which is
plotted in Fig. 12-3a in the elevation plane. It agrees closely with the measured pattern. Note
that the beam peak is 7� down from the horizontal plane as designed. The directivity of the
array as a function of element spacing computed using (8-62) is plotted in Fig. 12-3b. Note that
the directivity peaks for about one-wavelength spacing. The choice of 0.81 l spacing gives
lower side lobes than when one-wavelength spacing is used. Also, at the top end of the band
(900 MHz) the spacing is closer to one wavelength d ¼ 0:87l. The mid-band directivity from
the plot is 16.5, or 12.2 dB, and equals the vendor’s quoted gain value.

Omnidirectional antennas are in wide use in private mobile radio systems, including
delivery trucks and municipal (police and rescue) vehicles. VHF and UHF collinear
arrays of exposed folded dipoles mounted on towers or buildings are easily identified. An
example of a popular base station antenna design follows.

EXAMPLE 12-2 A Near-Omnidirectional Base Station Antenna for Land Mobile Radio

Fig. 12-4a is a base station antenna with four half-wave folded dipoles; see Sec. 6.2 to review
folded dipoles. This example considers a commercial UHF-band antenna operating
at 460MHz, where the folded dipoles are 32.6 cm long (L¼ 0.5 l) and the spacing is
d¼ 47 cm¼ 0.72 l. With the elements mounted on one side of the tower, the tower acts as a
reflector and enhances radiation in the direction of the elements, as indicated in the pattern of
Fig. 12-4b. More directivity is achieved by decreasing the standoff distance from the tower, s.
A directive pattern is preferred over an omnidirectional pattern for many applications. An
example where a directive pattern is desired is when the tower is located on a hill just outside
of a town. The antenna is oriented so that the beam peak is directed toward town, where most
users are located. In this example, the pattern has beamwidths of HPv¼ 220� and HPh¼ 18�.
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(a) Elevation radiation pattern in dB. (b) Directivity versus element spacing.
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Figure 12-3 An omnidirectional base station antenna for 800–900 MHz that is a collinear
array of 10 half-wave dipoles phased for 7� beam downtilt. See Example 12-1.
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Using the directivity estimation formula from (4-56), D� 41,253/(220� 3 18�)¼ 10.2 dB,
which equals the vendor’s quoted value. If the elements are replaced by pairs of opposing folded
dipoles and alternate pairs are rotated 90�, the structure is symmetrical and thus the pattern is
nearly omnidirectional. The directivity of the omnidirectional, four-element array obtained
by pattern integration is D¼ 7.8 dB. With an elevation pattern beamwidth of HPv¼ 18� and
using the directivity estimation formula from (4-56), D� 41,253/(360� 3 18�)¼ 8.0 dB, which
equals the vendor’s quoted value.

The most common cellular base station uses a sector pattern to cover a sector of angular
space rather than having uniform coverage around the tower. A typical sector antenna
arrangement with a triangular tower-top structure uses panel antennas on each face that
cover one 120� sector, as shown in Fig. 12-3b. Common values for the half-power
beamwidth in the azimuth plane of a 120�-sector antenna are 65�and 90�. Fig. 12-5 shows
typical panel antenna azimuth radiation patterns with 65� and 90� beamwidths. Note that
both patterns substantially cover a 120� sector and that the front-to-back ratios are 30 and
25 dB. Unequal sectors are used when users are not uniformly distributed around the base
station, such as near a major roadway where users are concentrated over limited angular

s�λ/2

L�λ/2

d�0.72λ

s

z

x

s�λ/4

(a) The array of four collinear
folded-dipole elements.

x

y

(b)  The azimuth patterns for stand-off distances of 
the elements from the tower of s�λ/4 (solid curve) 

and s�λ/2 (dashed curve).

Figure 12-4 A base station antenna for land mobile radio in the UHF band. See Example 12-2.

90° sector pattern

65° sector pattern

�30�20 �10 0

Figure 12-5 Representative azimuth
radiation patterns of a 120� sector
antenna with 65� (solid line) and 90�
(dashed line) beamwidth cases.
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regions. Similar to the omnidirectional base station antenna, a sector antenna also uses a
vertical array of elements to produce a narrow elevation beam to increase gain. The
smallest vertical beamwidth used in practice is about HPv¼ 4�. The corresponding
practical upper bound on gain for a 65�-panel antenna from (4-57) is 26,000/
HPhHPv¼ 26,000/(653 4)¼ 100¼ 20 dB. Mechanical downtilt is used in combination
with electrical downtilt with panel antennas. The downtilt angle adjustment is a balancing
process. Small downtilt angle with the beam peak nearly horizontal provides longer dis-
tance communication, and large downtilt angle reduces interference into cells that reuse
the same frequencies. There are other pattern considerations as well. Reduced radiation
above the horizontal direction is desired to reduce interference and increase directivity.
Uniform excitation produces the highest directivity but will have a pattern with deep nulls
that could produce lost communication. Nonuniform excitation is used to shape the beam,
especially below the horizontal direction to fill in the nulls (referred to as “null-fill”).
Pattern shaping is also used to lower the radiation above the horizontal where coverage is
not needed. The synthesis techniques of Sec. 10.3 are used for beam shaping, often
employing a nonlinear phase component of the element currents in addition to the linear
phase shift for downtilting. Fig. 12-6 shows an example of a shaped elevation pattern that
is typical for a sector antenna. Comparing to Fig. 12-3a, which is a typical uniform
amplitude and phase pattern, the deep nulls below horizontal are filled in and the side lobes
above horizontal are lowered.

Several types of antennas are used as elements in panel antennas. General specifica-
tions on panel antennas that apply over the bandwidth are nearly constant azimuth
pattern, good impedance match (VSWR, 1.4 or RL. 16 dB), and front-to-back ratio
(pattern peak/pattern value in opposite direction) .30 dB. There are several forms of
broadband dipoles that are commonly used as elements, including dropping dipoles and
dipoles with four wide, metallic wings (called a twin dipole antenna). [H.6: Balanis, Ed.,
p. 1177] Patch antennas are used without dielectrics for high-power handling and low
loss. Log-periodic antennas are also used as elements in both planar and trapezoidal
forms (see Sec. 7.8). All panel antennas have a ground plane to reduce back directed
radiation. For dipoles and patches, the ground plane is required to produce a unidirec-
tional beam, as explained in Example 3-5 for a dipole that is a quarter-wavelength away
from a ground plane. Ground planes are also used in panel antennas to back elements that
would not normally require a ground plane, such as a log-periodic antenna to achieve very
low back radiation; i.e., high front-to-back ratio. The ground plane size and shape in the
azimuth plane are varied to control the azimuth pattern shape. [H.6: Balanis, Ed., p. 1163]

Electrical downtilt is achieved using phase shifters that are implemented by changing
the feed line length or by varying the amount of dielectric in the transmission path.
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Figure 12-6 Elevation pattern for a sector
antenna with nonuniform excitation to shape the
beam for improved coverage below horizontal
and lower side lobes above.
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Probably the most common phase shifter uses concentric arcs, each with two outputs to a
pair of elements on each side of the array in a parallel configuration with a sliding contact
to vary the electrical path length. The path length through each arc changes equally to
both elements but as an increase to one element and as a decrease to the other, giving a
differential phase shift; the phase change is more for the larger conducting arc path.
[H.9.1: Chen and Luk, p. 75] Another popular differential phase shifter that simulta-
neously increases the line length on one side of the phase shifter while decreasing it on
the other uses an inline mechanical device. Also used is a phase shifter that inserts a
dielectric slug between the conductors of a transmission line. Phase is adjusted manually
at the antenna or, more commonly, using remote control means. In addition to elevation
beam downtilt adjustment, phase control is also used for azimuth beam steering and
shaping. To respond to rapidly varying user traffic conditions (essentially, the number of
users in each sector), antenna pattern changes can be made dynamically, which falls into
the area of smart antennas (discussed in Sec. 12.4).

A special consideration for base station antennas is self-interference between the
multiple channels that are transmitting at the same time. This passive intermodulation
(PIM) results from the mixing of two carriers at frequencies f1 and f2 due to the presence
of a nonlinearity. The third-order intermodulation products often produce the worst PIM.
An example third-order product occurs at the frequency of 2f2 – f1, which can fall within
the operating band because the f1 and f2 carriers are close in frequency. PIM not only
occurs within a single antenna but also between nearby antennas. For example, when
transmit antennas for different wireless services are mounted on the same tower (or a
nearby tower), they can create PIM, which is referred to as co-site interference, more
generally called electromagnetic interference (see Sec. 4.7). There are several sources of
PIM. At RF frequencies, current is confined to the surface of a conductor because of the
skin effect. Thus, oxide layers (aluminum is a common offender) can cause rectification
leading to PIM, which is called the “rusty bolt” effect. Protection of the antenna from
weathering (i.e., rusting) is a key consideration in base station installations. Other sources
of PIM are dissimilar metal contacts, poor solder joints, and ferromagnetic materials
(steel and nickel). Metal-to-metal contacts can produce PIM and should be minimized,
but when used, solid compression of contacting surfaces is required. Non-contacting (i.e.,
capacitive) coupling and insulation between metals are solutions. Details on good practice
principles for mechanical joints are found in [H.9.1: Chen and Luk, p. 71]. Connectors
commonly cause PIM problems. In general applications, gold-plated mating surfaces in
connectors are used to reduce PIM and loss because of gold’s low oxidation property.
Manufacturing techniques that employ stamping and folding of antenna and feed line
parts are used to avoid metallic joints that generate PIM. Some environments are very
challenging, such as shipboard installations, where there are many metallic structures
near a transmitting antenna. Manufacturers usually test all base station antennas for PIM
specification compliance before shipping. Testing is performed by injecting two 20-watt
carriers at f1 and f2 and using a network analyzer to sweep over the operating band to
make sure all spurious signals are �153 dB below the carrier level. Thus, with the total
input power of 43 dBm (23 20W), the spurious signal levels should be below�110 dBm.

Dual-polarized antennas allow for diversity using one dual-polarized receiving panel
antenna instead of two separate antennas using spatial diversity. One of the most popular
configurations is dual orthogonal slant 45� linear polarizations. Dual-band panel antennas
add a further significant savings in antenna hardware and associated wind loading and
visual impact. The most compact deployment uses panels that are both dual polarized and
dual band. Dual-band arrays can be constructed using two interleaved arrays, one cov-
ering the low bands and one covering the high bands. The element count can be reduced
further using wideband elements in an array covering both bands with interleaved (and
smaller) elements to cover only the high bands that are required, because a closer physical
spacing is needed to achieve about 0.8 l electrical spacing. One such candidate dual-
polarization, dual-band element is the Fourpoint antenna that was discussed in Sec. 8.11
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and is shown in Fig. 12-7a. The orientation in Fig. 12-7a gives the most popular dual-
polarization mounting of þ/�45�. The antenna is 11.4 cm wide, which is much smaller
than a conventional panel antenna of width 1200 ¼ 30.5 cm that covers the low band of
824–960 MHz. The Fourpoint antenna is fed against a ground plane that is 6.4 cm away
(about 0.2 l and 0.4 l at the center of the 824–960 MHz and 1710–2170 MHz bands,
respectively). Simulation and measured results in Fig. 12-7b show a 2.7:1 bandwidth
for VSWR, 2 and two very low-VSWR bands centered on the low and high cellular
bands. [1, 2]

Base station antennas are mounted in a variety of ways. So-called monopole towers are
popular because of low visual impact. Nearly invisible installations are finding accep-
tance with zoning administrations. These include mountings inside wooden building
structures, such as church steeples, and towers that replicate coniferous trees with
placement near a coniferous tree stand. Coincident installation with power and light
utility poles are also well received. It is important to hide cable runs to the tower top, too.

(b) Measured and simulated VSWR for the Fourpoint element.
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(a) Top view of the Fourpoint antenna. The two slant linear polarizations 
of �45° and �45° are oriented as shown, each generated by the feed 

terminal pairs at the center in the respective planes.

Figure 12-7 The Fourpoint antenna is a candidate element for dual-polarized, dual-band base
station panel antennas. The dimensions are A¼ 11.4 cm, B¼ 9.5 cm, C¼ 11.7 cm, W¼ 2 mm,
and 6.4 cm deep. (Used with permission from Suh et al. [2] ª 2004 IEEE.)
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12.3 MOBILE TERMINAL ANTENNAS

Mobile communications developed around 1900, soon after Marconi demonstrated that
long-distance wireless communications was possible. At first, only trains and ships could
handle the large mobile communications equipment. A prominent example is the top-
loaded monopole in the shape of a T used on the Titanic ocean liner. The top-loading wires
spanned most of the length of the ship and were 62m above the water. The shipboard radio
was able to send out distress signals to summon aid before sinking after hitting an iceberg
on April 14, 1912. Today, of course, antennas are found on mobile vehicles and devices of
all types. In this section, we treat antennas used on moving platforms.

The size constraints placed on antennas are usually significantly less for vehicle-
mounted antennas compared with handheld devices. Many vehicles have a natural ground
plane available in the form of a roof, fender, or other metal body panel. This makes
monopoles attractive solutions. At low frequencies (VHF and below), portable and mobile
terminals often use an electrically small antenna (see Sec. 11.5) such as the stubby and
quarter-wave helical (see Sec. 11.6.1). These two normal mode helix antennas (NMHA)
are always options at any frequency band where small height is needed. These provide a
comparison point to start examining simple wire antennas. We begin by reviewing the
ideal dipole with length much less than a wavelength. It has directivity from (2-158) of
1.76 dB. The ideal monopole of height{ l with a perfect ground plane has 3 dB more
directivity because the radiation is confined to half the radiation sphere; so the directivity
is 4.76 dB. The stubby antenna, which is an NMHA with a wire length,l/4, has a
directivity of 4.5 dB. The quarter-wave NMHA (see Example 7-1) has a directivity
of 4.7 dB. These antennas are used on portable handheld devices with minimal ground
planes and the directivity is 3 dB smaller in theory. In practice, the gains are around 0 dB.
More gain3 is obtained by increasing the antenna size.

Table 12-1 summarizes popular vehicular antennas in order of increasing size. The
quarter-wave whip is one of the leading candidates because of its good input impedance of
about 35þ j0 Ω when resonated and above a perfect ground plane, and for its simple
structure. Its height is acceptable in many cases: 7.5 cm at 1 GHz and 75 cm at 100 MHz. It
has a gain of 5.15 dB, which is 2.15 dB for the half-wave dipole formed with the image in
the ground plane plus 3 dB due to use of only half the solid angle. The quarter-wave whip
is frequently seen on the roofs of fleet vehicles such as police and emergency cars. In the
higher frequency bands (high UHF and above), physical size limitations are less of a
problem, opening up more antenna options such as half-wave wire antennas. The end-fed
half-wave whip and center-fed half-wave dipole are relatively independent of the ground

3Gain includes ohmic losses. Except for electrically small antennas, gain can be taken to equal directivity
for wire antennas.

Table 12-1 Land Mobile Vehicular Antennas

Gain (dBi)

Antenna Figure No. Height, h
Perfect

ground plane
Typical

vehicle mount

Quarter-wave whip 6-47b l/4 5.15 2
Half-wave end-fed whip l/2 N/A 2.4
Half-wave center-fed dipole 3-5 l/2 N/A 2.4
Three-quarter-wave
monopole with stub

6-45 3l/4 8.6 5

Five-eighths-over-quarter-
wave monopole

12-8 7/8l 8.1 5
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plane, making them good choices for small (or no) ground plane applications, such as on
handheld radios. The obvious disadvantage is that they are twice as long as a quarter-wave
whip. Also, the end-fed half-wave whip has high input impedance and thus requires a
matching network. The center-fed half-wave dipole is well matched but has to have a
feed line from the lower end to the center feed point, or realized as a sleeve dipole
(see Fig. 7-22c). The three-quarter wave monopole with stub of Fig. 6-45 has in internal
phase-reversing stub that brings the current of the upper section in phase with that of the
lower wire segment as well as loading coil at the base. The added wire length increases the
gain to 8.6 dB when over an infinite ground plane. The most common variation of this
antenna is five-eighths-over-quarter-wave monopole, shown in Fig. 12-8, which has a
longer upper section, and the coil is moved to the stub location and acts as the phase

35cm

18cm

17cm

5cm

12cm

12cm

800 MHz

900 MHz

VSWR=2

0.5λ

Un wound
coil

1λ

1.48λ

(a) The antenna geometry.
(b) The current distribution with the coil

unwound for plotting simplicity.

(c) The measured input impedance swept from 800 to 900 MHz on a Smith chart. The
center of the chart is 50 � j0 Ω.

Figure 12-8 The 5/8-over-1/4 wavelength wire antenna of Example 12-3.
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reverser. This antenna was popular for cellular phone antennas mounted on the rear
window glass of automobiles. It remains popular as a rooftop mount vehicular antenna,
with the following being an example.

EXAMPLE 12-3 A 5/8-over-1/4 Wavelength Monopole Antenna

Fig. 12-8 shows a commercial 5/8-over-1/4 wavelengthmonopole antenna for the 824–894MHz
cellular band with a mid-band wavelength of lc¼ 35 cm at 859 MHz. The commercial model of
Fig. 12-8a is composed of the three sections with a total height of 35 cm¼ 1 lc, and the electrical
lengths of the upper and lower sections are hU¼ 0.51 lc and hL¼ 0.34 lc. The antenna is
somewhat longer than the nominal design height of 0.875 lc¼ 30.6 cm. The approximate cur-
rent distribution, assuming a sinusoidal shape, is shown in Fig. 12-8b with the coil unwound for
illustration purposes. The cross hatching denotes the non-radiating current in the coil. The fields
created by opposite sides of the coil cancel in the far field. Note that the upper and lower straight
wire section currents are in phase. This design produces an excellent impedance match
(VSWR, 2) over a greater bandwidth than the operating band of 70 MHz, or 8.1%, as shown
in the Smith chart in Fig. 12-8c. This impedance was measured with a spectrum analyzer swept
from 800 to 900 MHz and spirals around the chart center of 50þ j0 Ω. The gain is 5.2 dB.
Simulations give an impedance of 52þ j5Ω at mid-band and a gain of 8.1 dB.

Antennas mounted on vehicles are affected by the vehicle itself, the location on
the vehicle, and frequency. At low frequencies, the antenna simply acts to excite the vehicle
as a radiator. Broadcast AM/FM radio reception at 1MHz in a car is a good example. The 31-
inch fender-mount short monopole was the standard AM car antenna for decades, but has
been replaced by in-glass antennas. Example 2-4 showed that the fender whip antenna is only
7% efficient at AM; however, it is a quarter-wavelength long at FM and is very efficient.
Early rear-window units used the defroster element for an antenna, but current practice is
to have the AM/FM antenna separate from the defroster. [H.6: Ant. Eng. Hdbk., 4th ed.,
Chap. 39] Whereas AM antenna performance is not sensitive to vehicle shape details, FM
broadcast radio reception can depend on vehicle details such as the passenger compartment,
which is near resonance at 100MHz. Thus, it is important to simulate ormeasure the antenna
on a full vehicle model. Fig. 12-9 shows such results for an FM rear window glass antenna.
[3] The side glass of sport utility vehicles is used for in-glass antennas. Antenna placement on
a vehicle at HF and VHF frequencies follows the general principle of the horizontal-plane
pattern elongating in the directions of the most metal; see [4] for measured patterns of
antennas on vehicles from 30 to 830 MHz. The pattern of a roof-mounted antenna is slightly
forward-rearward elongated, and a trunk deck mount antenna pattern is forward elongated.
At high frequencies (UHF and above) such as the cellular band, only the materials near the
antenna are important, so a center roof-mounted antenna behaves much like an infinite
ground plane. Automobile-mounted cellular telephone antennas perform well. Handheld
phones, however, experience about 10 dB loss when used inside a vehicle. [5]

Land vehicles have many other wireless applications besides radio reception and cel-
lular telephone. The term telematics is used to describe all such applications and includes
the following:

� Satellite navigation (e.g., GPS)
� Remote keyless entry (RKE)
� Tire pressure monitoring system (TPMS)
� Satellite radio reception (SDARS)
� Terrestrial TV reception
� Short-range communication (DSRC)
� In-vehicle short-range data (e.g., Bluetooth)
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� Electronic toll collection
� Collision avoidance
� Intelligent cruise control

Antennas for used for satellite navigation (for example, GPS that uses RHCP) are the
microstrip patch of Sec. 11.2 and the quadrifilar antenna of Sec. 11.6.2. Experiments have
shown that rear roof mounting for a GPS antenna provides a good compromise for all
satellite view angles. [6] There are many mobile applications for satellite navigation
besides the most familiar one of driving guidance. Driver assistance communications
services like OnStar send on-vehicle GPS-derived location information over the cellular
network to a central processing location, from where directions and commands are sent
back to the vehicle via cellular telephone link. One interesting GPS application is in
agriculture, where harvesting and planting equipment are instrumented for sensing and
position location. This assists in avoiding gaps and overlaps in the field work. Also, as
corn, for example, is harvested in the fall, the picker records GPS-derived location
information along with the amount of corn picked at each location. In the spring during
planting, fertilizer and seed are applied in amounts based on the harvest data.

RKE and TPMS both operate at 315 MHz. The RKE key fob antenna is usually on the
PCB and couples to the operator’s hand and arm, extending the effective radiator to near
resonance. There can be as many as five receiving antennas on the vehicle. The TPMS

Rear-window glass FM antenna

(a) Wire mesh model used for the NEC-2 method of moments simulations.

(b) Measured (solid curve) and simulated (dashed curve) radiation patterns.

0 �10 �20 �30 �40

Figure 12-9 A rear window glass FM broadcast car radio antenna. (From [3]ª 2001. Reprinted
with permission of IET.)
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system uses a miniature transmitter unit in the valve stem of each tire including an
antenna, often a loop, that is 0.01-l wide. Receiving antennas can be in the dashboard,
trunk, or side glass. The very popular entertainment application of satellite radio (known
as satellite digital audio radio service, SDARS, in North America, with XM Radio as an
example) operates at S-band frequencies and uses LHCP antennas similar to those used
for GPS reception. Often antennas for cellular, GPS, and SDARS are located together at
the center-rear of the roof. Antennas, usually in-glass, are also needed for the emerging
application of terrestrial TV that usually includes multiple antennas for diversity recep-
tion. Another emerging application is dedicated short range communications (DSRC)
operating at 5.9 GHz for roadside-to-vehicle (“talking signs”) and vehicle-to-vehicle
communications (for driver alerts to hazards ahead). DSRC is used in electronic toll
collection systems that transmit a signal from the toll plaza to an RFID transponder in the
vehicle, which returns identification information. The mobile wireless applications of
lane change assistance, forward collision warning, and adaptive cruise control use radar,
many systems operating at 24 or 76 GHz. More information on automotive antennas is
found in [H.6: Ant. Eng. Hdbk., 4th ed., Chap. 39] and [H.9.1; Fujimoto and James, 2nd
ed., Chap. 8].

Antennas for aircraft must have low drag and thus be close to conformal to the super
structure. Because the antenna is essentially integrated into the aircraft, modeling and
measurements must include some (or, at low frequencies all) of the plane’s body.
Antennas used on aircraft include monopoles, dipoles, loops, slots, and even reflector
antennas housed inside a radome. A popular aircraft antenna is the blade antenna, which
has many antenna forms, including monopole, and often has multiple octave bandwidth.
For more details on aircraft antennas and their modeling and measurement see [H.9.1:
Macnamara] and [H.6: Ant. Eng. Hdbk., 4th ed., Chap. 40].

Ships are able to support large antenna systems and associated hardware but often have
an environment filled with many metal structures that complicate antenna design and
placement. In addition, ship motion makes pointing of narrow beam antennas difficult,
and sea-surface reflections introduce multipath interference. Modern military ship designs
are moving toward a streamlined topside shape composed of four faces, each containing
wideband phased arrays. Such multifunctional phased arrays are able to support broad-
band communications, radar, and electronic warfare tasks, and the arrays can be recon-
figured to accommodate new applications instead of adding another antenna on the deck.
The reference [H.9.1: Law] is a book devoted to the topic of shipboard antennas.

Small platforms that are mobile require small antennas and usually have multiple
antennas for diversity to combat multipath propagation effects. Laptop computers com-
monly have wireless services (Wi-Fi, cellular data, TV) and are used while in motion.
Antennas that are used in laptops include sleeve dipoles, helical monopoles, inverted-Fs,
and slots. [H.9.1: Chen, Chap. 4] Special antenna designs are available that have low
isolation to reduce coupling [7].

12.4 SMART ANTENNAS

The antenna historically has been considered as a separate component in a system.
However, as processing power has been added to wireless systems, the role of the
antenna has expanded from being a separate device into a subsystem with functions
distributed through several sections of the radio. Digital signal processing (i.e., com-
puting) hardware and software in the system has allowed intelligence to be added to the
antenna subsystem, leading to an intelligent antenna, usually referred to as a smart
antenna. A smart antenna is used for expanding frequency reuse and for combating
propagation problems and interference. [8] The propagation problems are multipath
fading and delay due to multiple signals arriving at the receiver from different directions
and with different arrival times created by reflection and scattering of the transmitted
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signal. An example of multipath fading is the fluctuation of the signal received from a
distant radio station in a moving car.

Smart antennas are also capable of improving performance in the presence of inter-
ference caused by other nearby transmitters. As the sophistication increases, the smart
antenna incorporates more support software to control its functions. An antenna that
adapts by responding dynamically to its operating conditions (such as changing sur-
roundings due to platform motion or to changing terminal locations) is called an adaptive
antenna. Adaptive antennas are discussed in the next section and are used in radar as well
as communications. A smart antenna can include adaptive capabilities, and the term smart
antenna is not clearly defined. An example of an adaptive feature is steering a pattern null
in the direction of an interference source as the interferer moves. The limiting case of a
smart antenna is to have a single beam track each user, similar to that shown in Fig. 12-1c.
Smart antennas are used both for transmitting and receiving, although more commonly
implemented to receive at the base station in wireless communications because the uplink
link usually limits performance. Smart antennas use multiple antenna elements. In the
simplest form, they perform only a diversity function to improve performance and do not
increase communication capacity. We begin with the topic of antenna diversity.

The dimensions used for antenna diversity (or simply, diversity) are similar to the
dimensions used in frequency reuse (see Sec. 4.5.1): spatial, angle, and polarization.
However, diversity is employed to improve performance, whereas frequency reuse is for
increasing capacity by increasing effective bandwidth. Antenna diversity is effective in
situations where the terminal or environment is time-changing, such as with a mobile
terminal. Often there is no line-of-sight, and the terminal is said to be shadowed or blocked
(for the path partially or totally hidden, respectively), as with vegetation or buildings in the
direct path. Diversity is based on the concept that multiple copies of the signal are received
by different branches (associated with different antenna elements, angles, or polarizations)
that have experienced different propagation conditions and are not correlated or only
partially correlated. We begin discussion of these diversity dimensions for the case of a
transmitting mobile terminal and a receiving base station antenna with diversity. The
classic diversity configuration is spatial diversity, in which two or more receiving antennas
are widely separated, as illustrated by the two panels at the ends of the tower top face in
Fig. 12-1b. The separation distance of around 10 or more wavelengths provides suffi-
ciently different angles of arrival for the fields arriving at each antenna to have differing
phases and thus low correlation. Fig. 12-10a shows the signals received by two panel
antennas 3-m apart (8.5 l) measured at Virginia Tech [10] as a function of the distance of
the terminal moving at walking speed and transmitting at 842 MHz. The two dashed
curves (S1 and S2) are the signals received at the base station. They are similar but not
correlated because the peaks and nulls do not occur at the same time. The diversity curve
was obtained by selecting the stronger of the two signals at each instant (position of
the terminal). Note that most deep nulls are eliminated with diversity. The time variation
is quantified on a statistical basis using the cumulative distribution function (CDF)
shown in Fig. 12-10b. The ordinate value is the probability that the signal equals or
exceeds the abscissa signal level in dB. The two curves S1 and S2 are the CDFs for the
single antennas. Note that they are nearly identical, indicating that having just a different
location for a single antenna provides no improvement. The curve on the right is the
spatial diversity CDF. For 1% of the time, the single-antenna signals equal or exceed
�20 dB, whereas the diversity signal equals or exceeds �10 dB, giving a diversity gain of
10 dB. At 10% probability, the diversity gain is 5 dB. Of course, the goal is to reduce
loss of signal due to momentary deep fades. Diversity provides a solution. There are
several algorithms for combining diversity branch signals, but the simplest one concep-
tually is selection combining, that we assume here, which selects the strongest signal at
each instant.

Angle diversity uses an antenna with beams pointed in different directions over the
sector. Angle diversity relies on having a different multipath component structure in
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each beam within the sector. The beams are often formed using a Butler matrix feed
(see Sec. 8.5.2) that connects all elements in an array and provides one output port for
each beam. Each beam spatial weights the multipath components differently, providing
diversity.

Polarization diversity uses dual orthogonal polarizations in a panel antenna with one
output port for each polarization. Polarization diversity at the base station is particularly
effective for handset terminals, which are held in various orientations, changing the
polarization of the transmitted wave. Polarization diversity works because different
multipath components arrive at the receiver in different polarization states and each path
has different depolarization effects. For example, a vertical utility pole along one path
scatters incident vertical polarization differently than a horizontal bridge along a different
path. The orthogonal polarizations in the receiving antenna respond differently to these
two signals.

It has been shown experimentally that all three types of diversity—spatial, angle, and
polarization—perform about the same. This research was done at Virginia Tech using a
base station antenna with three antenna subsystems, one for each of the three diversities,
and measuring the received signals in each diversity subsystem simultaneously. [9, 10]
Tests were performed with the terminal in all possible principal orientations for various
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(a) Signals received by the two antennas (S1 and S2) along with the diversity-combined signal.

(b) The cumulative probability distribution. (Used with permission
from Dietrich et al. [10] © 2000 IEEE.)
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Figure 12-10 Spatial antenna diversity data measured at Virginia Tech for two receiving
95�-sector panel antennas separated by 3m. The terminal transmitted at 842 MHz and moved
at walking speed.
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distances and propagation scenarios, mostly non-line-of-sight, including indoor and
outdoor locations. The results showed that spatial diversity has the most diversity gain
with GD¼ 8 to 11 dB at 1% probability, and with CDFs similar to that in Fig. 12-10b for
nearly all cases. [10] For light shadowing, spatial diversity provides more diversity gain.
Polarization diversity had almost as much gain with GD¼ 6 to 10 dB at 1% probability.
Angle diversity with GD¼ 5 to 9 dB has the least diversity gain, but still a significant
improvement over single antenna reception. Polarization diversity offers the significant
advantage that the number of antennas per sector can be reduced to just one panel with
dual polarization, reducing cost and visual impact. Often such a panel antenna has a top
part with a single vertical polarization for transmitting and a lower part with dual slant-
45� polarizations for receiving. Further compactness is obtained by using dual-band
panels instead of separate bays of antennas for each frequency band.

Antenna diversity has been found to also be effective at the terminal level. This is
because a handset operating in a building, for example, experiences wide-angle multipath
due to reflections from walls and objects. In fact, an antenna element spacing as small as
0.1 l is effective. [11] This can be understood from a two-ray model for wide-angle
multipath consisting of two oppositely directed waves of equal amplitude (one repre-
senting the direct wave and the other the reflected wave). This produces a standing wave
with perfect nulls a half-wave apart and a null-to-peak distance of a quarter-wavelength.
In a real propagation environment, the summation of all multipath components will not
produce the same perfect standing wave pattern, but there will be peaks and nulls spaced
fractional wavelengths apart. Experiments using a moving terminal with four antennas
operating at 2GHz yielded CDFs similar to that for base station diversity. [1, 11]
Measurements with a human operator next to the handset showed that the diversity gain
is only reduced by about 2 dB. [11] Adaptive beam forming showed that mean signal-
to-interference plus noise-ratio is improved from 0 dB to 30 to 40 dB for an interferer
separated as little as 2� away from the signal direction. [10]

Smart antennas used in wireless communications focus on recovering the signal of
interest in a cluttered environment with interference present. A common feature of a
smart antenna beyond spatial processing is to include time-domain delay equalization to
properly combine the multipath signal components. As capabilities increase, the excita-
tions of each element (often called weights) are adjusted based on a complex algorithm
crafted to optimize certain performance parameters and/or to expand capacity. Smart
antennas make use of the digital beamforming array techniques discussed in Sec. 8.9.2.
Smart antennas in wireless implement space division multiple access (SDMA), which is a
technique to spatially focus the transmitted signal in the direction of intended users, as
shown in Fig. 12-1c. Adaptive beamforming techniques can be used to simultaneously
steer the main beam toward a user (or, target) and to steer nulls toward interferers that are
not in the same direction as the user. Dual (or even multiple) polarized adaptive smart
arrays can also be used to reject interferers that differ in polarization from the user’s
polarization.

Smart base stations can be expanded to include transmit diversity alone or as a part of
multiple-input multiple-output (MIMO) systems which have multiple transmit antennas
and multiple receive antennas. Spatial diversity is the special case of two antennas at one
end and one antenna at the other end. MIMO relies on the fact that a transmit beam is
spread over a wide angular sector and that the receive antenna collects signals arriving
from many angles. So the multiple paths from the transmitter to the receiver lead to
signals that are spread in time due to their different path lengths traveled. This is
exploited by sending the same data stream out on different beams from the transmit
antenna. The receive antenna beams are directed toward the dominant scatterers and
collect the data streams for subsequent combining. Although counterintuitive, the more
multipath, the more effective is MIMO. MIMO uses space-time coding to increase per-
formance and capacity. [H.6: Balanis, Ed., Chap. 26] See [H.9.1: Sanchez-Hernandez,
Ed., Chap. 6] for material on handset antennas for MIMO systems. For more information
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on smart antennas, see the following sources: [H.9.2], [H.6: Godara, Ed., Chap. 22], and
[H.9.1: Fujimoto, 3rd ed., Chap. 15].

12.5 ADAPTIVE AND SPATIAL FILTERING ANTENNAS

We have seen in previous sections that antenna arrays can steer their main beams and
nulls in prescribed directions. This process is sometimes referred to as spatial filtering.
Spatial filtering is of particular importance in systems where performance is interference
limited. These include, for example, mobile wireless communications systems as well as
radar systems in a jamming environment. Spatial filtering can be achieved using the
following implementations:

Phased array: We have already seen that by adjusting the phase of each element, the
main beam maximum can be pointed as desired.

Sectorized: As in Fig. 12-2b, multiple antenna elements are used such that each
provides coverage over a sector. In second generation mobile phone systems, three
base station antennas, each covering 120� sectors, are used to cover an entire cell.

Switched beam: A software algorithm is used to select from multiple predefined beams
of an antenna array such that the strongest signal is chosen. This will be discussed
in the next section.

Adaptive array: Current generation adaptive arrays use a software algorithm to
maximize the desired signal in one or more directions while directing nulls toward
interferers. The software is more complex than for a switched beam system. This
will also be discussed in the next section.

12.5.1 Switched Beam Antenna Systems

There are several ways of implementing a switched beam system according to how the
antenna outputs are chosen or combined. [H.4: Saunders, Chap. 16] In selection com-
bining, a separate receiver is employed at each antenna output, and the switch selects the
receiver output which instantaneously has the best signal-to-noise plus interference ratio
(SNIR). This is a complicated and expensive scheme because the switch must monitor all
receiver outputs simultaneously, and each antenna has its own receiver. An alternative is
switched combining that uses just one receiver, with the switch selecting the receiver
input with a SNIR above a predefined threshold. The performance of this scheme is
inferior to that of selection combining because there may be other receiver inputs with a
better SNIR that are not selected due to other input(s) being above the threshold. Swit-
ched combining wastes the signal power residing on the unused receiver inputs. This can
be overcome by equal-gain combining, which adds the signals of the available receiver
inputs. Care is taken to add the signals such that they are co-phased for coherent com-
bining. Noise at each receiver input is randomly phased and adds incoherently. When
equal gain combining is employed, there is the possibility that one of the inputs has a
much lower SNIR than the others, thereby degrading the overall SNIR. This negative
possibility can be overcome by maximum ratio combining, in which the various inputs are
weighted according to their individual SNIR so as to maximize the overall SNIR.

A relatively new type of spatial filtering antenna is a reconfigurable antenna that can
alter its radiation pattern by opening and closing switches. Current switch technologies
include PIN diodes, FETs, andMEMS devices, the latter in their commercial infancy. [H.4:
Huang, p. 352] For example, a number of patch antenna elements can be interconnected by
MEMS devices controlled by a microprocessor controller. The antenna performance is
measured by a sensor system measuring signal strength. By using many interconnected
elements, the reconfigurable antenna is able to change itself into a large number of different
electrical configurations in real time as it adapts to changing conditions.
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12.5.2 Adaptive Antennas in General

Signal reception in a conventional array is subject to degradation in the signal-to-noise plus
interference ratio (SNIR) due to the reception of undesired signals, as well as the unwanted
reception of natural noise. This undesired signal energy enters the conventional array via
side lobes and portions of the main beam. To overcome this degradation, arrays can be
designed to adapt to the signal environment. Such arrays are called adaptive arrays because
they sense the presence of unwanted energy in the signal environment and suppress it,
thereby enhancing the SNIR.

The earliest example of an adaptive antenna, although it was not called that, is the side
lobe canceller (SLC) employed in radar systems as a protection against jamming. In this
scheme, a secondary array of low-gain elements works in conjunction with the main array
to null out interfering signals by processing the outputs of the two arrays such that the
jamming signal or signals are canceled. This is actually a partial adaptive array because
not all the elements contribute equally to the operation of the SLC processor.

The term adaptive antenna was first used by Van Atta in the late 1950s to describe a
self-phasing array that automatically and passively reradiates a signal back in the
direction from which it came. [H.9.2: Monzingo, p. 5] No prior knowledge of the signal
direction is required. The Van Atta array may be regarded as an adaptive transmitting
array. This is in contrast to an adaptive receiving array, which employs a computer
algorithm to control the signal levels and phasing at the elements such that, when the
output of the elements are combined or selected individually, the SNIR is improved. We
will consider both kinds of adaptive arrays.

12.5.3 Van Atta Retrodirective Array

A simple example of the Van Atta array is shown in Fig. 12-11. This array concept is
based upon the principle of phase conjugacy, which states: “the phase of the transmitted
signal from any element in the retrodirective array must bear a conjugate relationship to
the phase of the received signal at that element when compared to a common reference
signal.” Referring to Fig. 12-11, this means that each element in the array must have an
outgoing wave which is delayed (with respect to a given reference element) by exactly as
much as the incoming wave was advanced. When this requirement is satisfied, the total
path length from the source to an array element and back to the source will be the same
for all elements in the array as it is in Fig. 12-11.

Direction of arrival
and reradiation

Equal length
cables between
element pairs

φ

Figure 12-11 Passive Van
Atta array.
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Fig. 12-11 is that of a passive array. Its gain is determined by the size of the array.
Additional gain and/or modification of the received signal may be achieved with an active
scheme as shown in Fig. 12-12. The amplification in Fig. 12-12 is usually limited to about
15 dB due to mutual coupling. This limitation can be overcome by using a Van Atta
repeater array, as shown in Fig. 12-13. In addition to amplification, Fig. 12-13 shows
signal modification by the modulators in the interconnecting lines. Care must be taken to
phase-match the amplifiers and the modulators as well as the cable lengths.

12.5.4 Adaptive Receiving Arrays

An adaptive receiving array is one that coherently receives desired signals and suppresses
undesired signals. In theory, it does this by steering the main beam to the direction of the
desired signal source and simultaneously steering nulls toward the undesired signal
sources. Since the outputs of the array elements coherently combine the desired signal, but
incoherently combine noise (i.e., thermal noise and interfering signals), the output signal to

Circulator Circulator

AMP

AMP

Figure 12-12 Two-element Van Atta
array with bilateral amplification.
(From [H.6: Hansen, Vol. III, p. 370]
ª 1966 Academic Press. Used with
permission.)

Amp

Modulator

Modulator input

Received Phase Front

Transmitted
Phase Frontθ θ

Figure 12-13 Van Atta repeater array with amplification and modulation. After Leroy B. Van Brunt,
“Applied ECM,” Vol. I (E. W. Engineering), 1980.
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noise plus interference ratio of an N-element adaptive array can be N times the SNIR of an
individual element. The number of degrees of freedom (i.e., main beam plus null direc-
tions) in the adaptive array has is equal to the number of elements in the array minus one.

An adaptive array has four basic components: the RF array itself, the beam forming
network, the signal processor, and the adaptive algorithm. Beamforming can be analog or
digital. Analog beamforming is usually accomplished with a Butler matrix (see
Fig. 8-32). The fast Fourier transform (FFT) is equivalent to the Butler matrix. The FFT is
used in digital beam forming.

There are two common basic adaptive algorithms: the Applebaum algorithm and the
Widrow algorithm (see Fig. 12-14). The Applebaum algorithm requires that the signal
bearing be known and seeks to maximize the SNIR at the output of the array system under
the assumption that the desired signal is absent most of the time (e.g., radar). Because it is
simple to implement, it is used extensively for clutter and interference rejection in radar
systems.

The Widrow algorithm minimizes the mean square error (LMS) signal, which is the
difference between the array system output and a reference signal. In a communication
system, the desired signal is usually present and is used as the reference signal. In other
kinds of systems (e.g., radar) it is pointless to generate a fictitious desired signal. In both
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(a) Applebaum, weight adjustment determined by the output.
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(b) Widrow, weight adjustment is determined by the error signal, ε(t).

Figure 12-14 Two types of adaptive arrays.
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of these algorithms, if there is no interference, the optimum weights are the complex
conjugate of the desired signal (i.e., principle of phase conjugacy).

The use of adaptive arrays in mobile communications systems helps to overcome the
problems of single antenna systems. The use of adaptive antenna arrays helps improve
the system’s performance by increasing spectrum efficiency and channel capacity, by
extending range, steering multiple beams to track many mobiles, and electronically
compensating for aperture distortion. The use of adaptive arrays also reduces multipath
fading, co-channel interference, bit-error rate, and outage probability.
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PROBLEMS

12.2-1 Plot the pattern for Example 12-1 of an omnidirectional cellular base station antenna
for 7� downtilt and comment on it compared to the pattern of the same array but for 1.25� of
downtilt.
12.2-2 For the base station of Example 12-2: (a) Calculate and plot the elevation plane pattern,
and (b) Evaluate the directivity assuming an omnidirectional element pattern in the azimuth
plane.
12.2-3 The azimuth pattern of a sector base station antenna can be modeled by generalizing
the cardioid pattern of (3-73):

FðθÞ ¼ cos ½a π
4
ðcos ðθÞ � bÞ�

n oc

(a) Adjust the coefficients a, b, and c in the above formula to find pattern that approximates
the 65� pattern of Fig. 12-5.

(b) Search antenna product literature to find a commercial base station antenna with a 65�
azimuth pattern. Compare the manufacturer-provided pattern to that in (a).

c12 12 April 2012; 9:31:44

Problems 557



12.3-1 Use a simulation code to model the three-quarter-wavelength monopole with a stub of
Fig. 6-45 over an infinite ground plane at 860 MHz, but with no inductive load at the base.
Include the input impedance, elevation plane pattern, and gain.
12.3-2 Use a simulation code to model the five-eighths over quarter-wave monopole of
Fig. 12-8 over an infinite ground plane. Give the input impedance, gain, and elevation pattern.
12.4-1 Project. Investigate the topic of antenna diversity on handset terminals and write a
report including the kinds of diversities used, the antennas used, quantitative information about
diversity gain, and effects on the human operator.
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Chapter13

Antenna Measurements

Accurate antenna measurement requires specialized space and instrumentation. The space
can be an outdoor range with towers and positioners or an indoor room (often very large)
configured with probes, positioners and usually absorber-lined walls. Instrumentation is
needed for generating test signals, controlling the positioners, collecting data, and pro-
cessing and displaying data. This usually includes a vector network analyzer. All of the
foregoing items are expensive to purchase and require trained personnel to operate. Thus,
most engineers involved in antennas and wireless probably will never make an antenna
measurement. However, all antenna engineers and personnel involved with wireless
technologies will have a need to understand measured antenna data. In the past, the antenna
design cycle was based on measuring hardware models and iterating on the models and
measurements until specifications were satisfied. Now it is common to use simulation
packages (see Appendix G) developed from numerical methods (see Chaps. 14–16) for
preliminary investigations of antennas during the design phase, followed by measurements
for validation and for compliance with specifications and regulations. The study of antenna
measurements provides a deeper understanding of antennas, allows one to interpret mea-
sured data, and serves as an introduction to thosewho desire to actually be directly involved
with antenna measurements. The principles introduced here also apply to scattering
measurements, but we focus on antenna measurements. The primary measured antenna
characteristics are radiation pattern, gain, polarization, and impedance. The first three of
these are discussed in this chapter. Impedance is often measured in conjunction with
the other characteristics and is usually performed with a network analyzer. We begin the
chapter with the principles that pattern measurements are based on. Reference books
on both general and specialized topics in antenna measurements are listed in Appendix H.7.

13.1 RECIPROCITY AND ANTENNA MEASUREMENTS

We have noted several times that usually the pattern of an antenna is the same for either
transmitting or receiving. If this is the case, the antenna is said to be reciprocal. This is
true as long the antenna materials and the surrounding medium satisfy conditions for
reciprocity. In this section, we use Maxwell’s equations to derive reciprocity theorems,
which are then used to find the conditions under which an antenna is reciprocal. These
results have significant implications on antenna measurements. In particular, if an antenna
is reciprocal, the performance parameters (pattern, gain, etc.) can be measured with the
antenna operating in transmit or receive and the results are identical. This avoids mea-
suring a parameter twice, once for transmit and once for receive, and allows the test
antenna to be used in either transmit or receive based on which is easier to do or more
likely to give greater accuracy. Of course, for using an antenna in operational settings,

c13 7 April 2012; 10:31:33

559



other factors come into play in choosing the type of antenna for transmit or receive
applications. For example, an electrically small antenna with high ohmic loss and high
input reactance would not be suitable for high-power transmitting because the loss would
generate heat and impedance mismatch would cause significant power to be reflected
back to the transmitter. Both of these effects could damage the transmitter. On the other
hand, an inefficient antenna is often acceptable for receive applications such as an AM car
radio antenna (see Example 2-4). Inefficient antennas are also used at HF frequencies and
below for receiving because the internal noise generated in the antenna loss resistance is
usually small compared to external atmospheric noise.

There are several forms reciprocity theorems take for electromagnetic field problems.
We consider two forms of reciprocity for use in antenna problems. The Lorentz reci-
procity theorem is discussed first. Let sources Ja and Ma produce fields Ea and Ha and
sources Jb and Mb produce fields Eb and Hb. See Fig. 13-1. The frequencies of all
quantities are identical. The Lorentz reciprocity theorem that is derivable from Maxwell’s
equations (see Prob. 13.1-1) states that for isotropic media.ZZZ

va

ðEb � Ja �Hb � MaÞ dv0 ¼
ZZZ
va

ðEa � Jb �Ha � MbÞ dv0 ð13-1Þ

The left-hand side is the reaction (a measure of the coupling) of the fields from sources b
on sources a, and the right-hand side is the reaction of the fields from sources a on
sources b. This is a very general expression, but it can be put into a more usable form. Let
sources b consist of only an ideal electric dipole of vector length p located at point
ðxp; yp; zpÞ. Since the ideal dipole can be represented as an infinitesimal source and Mb is
zero, (13-1) becomes1

Eaðxp; yp; zpÞ � p ¼
ZZZ
va

ðEb � Ja �Hb � MaÞ dv0 ð13-2Þ

This expression allows calculation of the electric field from sources a by evaluating
the integral using known sources Ja and Ma and known ideal dipole fields Eb and Hb of
(2-72) and (2-71), evaluated at the location of sources a. This can be performed for
various orientations p of the ideal dipole, which is acting as a field probe.

The Lorentz reciprocity theorem can also be used to derive a second reciprocity
theorem using terminal voltages and currents. Suppose sources a and b are antennas
excited with ideal (infinite impedance) current generators Ia and Ib. Since no magnetic
sources are present, (13-1) reduces to

Volume υbVolume υa

Ma

Ja

Mb

Jb

Figure 13-1 Source configuration for the
Lorentz reciprocity theorem.

1 The ideal dipole current could be written as Jb ¼ δðx� xpÞδðy� ypÞδðz� zpÞp. This together with
Mb ¼ 0 in (13-1) yields (13-2).
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ZZZ
va

Eb � Ja dv
0 ¼

ZZZ
vb

Ea � Jb dv
0 ð13-3Þ

For perfectly conducting antennas, the electric fields will be zero over the antennas;
however, voltages will be produced across the terminals. Taking the current to be constant
in the terminal region and using the concept of

R
E � d‘ ¼ �V , we see that (13-2)

becomes

Voc
a Ia ¼ Voc

b Ib ð13-4Þ
where Voc

a is the open circuit voltage across the terminals of antenna a due to the field Eb

generated by antenna b and, similarly, Voc
b is the open circuit voltage at antenna b due to

antenna a. Open circuit voltages have been used because of the infinite impedances of the
generators. Rearranging (13-4) leads to a statement of reciprocity in circuit form

Voc
a

Ib
¼ Voc

b

Ia
ð13-5Þ

Several factors affect the voltage appearing at one antenna due to another antenna that
is excited: the specific antennas used, the medium between the antennas with perhaps
other objects present, and the relative orientation of the antennas. We can represent the
general situation entirely in terms of circuit parameters using the following, which holds
for any linear passive network:

Va ¼ ZaaIa þ ZabIb ð13-6aÞ
Vb ¼ ZbaIa þ ZbbIb ð13-6bÞ

where Va, Vb, Ia, and Ib are the terminal voltages and currents of antennas a and b. If
antenna a is excited with a generator of current Ia, the open circuit voltage appearing at
the terminals of antenna b is VbjIb¼0. The transfer impedance Zba from (13-6b) with Ib
zero is

Zba ¼ Vb

Ia

����
Ib¼0

ð13-7Þ

If antenna b is excited with a generator of current Ib, the open circuit voltage appearing
at the terminals of antenna a is Va Ia¼0j . The transfer impedance Zab is, from (13-6a) with
Ia zero,

Zab ¼ Va

Ib

����
Ia¼0

ð13-8Þ

Comparing (13-7) and (13-8) to (13-5), we see that2

Zab ¼ Zba ¼ Zm ð13-9Þ
where Zm is the transfer (or mutual) impedance between the antennas. This can also be
shown from the circuit formulation of (13-6) if the individual impedances are linear,
passive, and bilateral (see Probs. 13.1-3 and 13.1-4). This, in turn, is true if the medium
and the antennas are linear, passive, and isotropic.

2 See [1] for a proposed slight modification of (13-9).
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The significance of these results is now explained using the model of Fig. 13-2. If an
ideal current source of current I excites antenna a, the open circuit voltage at the term-
inals of b from (13-7) is

Vb

��
Ib¼0

¼ I Zba ð13-10Þ

If the same source is now applied to the terminals of antenna b, the open circuit voltage
appearing at the terminals of antenna a from (13-8) is

Va

��
Ia¼0

¼ I Zab ð13-11Þ
But Zab ¼ Zba, so the preceding two equations yield

Va

��
Ia¼0

¼ Vb

��
Ib¼0

¼ V ð13-12Þ

Thus, the same excitation current will produce the same terminal voltage independent
of which port is excited, as illustrated in Fig. 13-2. In other words, reciprocity states that
the source and the measurer can be interchanged without changing the system response.
The same is true of an ideal voltage source and short circuit terminal currents. These are
familiar results from network theory.

The self-impedances of the antennas from (13-6) are

Zaa ¼ Va

Ia

����
Ib¼0

ð13-13Þ

Zbb ¼ Vb

Ib

����
Ia¼0

ð13-14Þ

If antennas a and b are widely separated, which is the usual operating situation, Zaa and
Zbb are much greater than Zab ¼ Zba ¼ Zm. Thus, the input impedance to antenna a, for
example, from (13-6a) is

Za ¼ Va

Ia
¼ Zaa þ Zab

Ib

Ia
� Zaa ð13-15Þ

(a) Two-port representation of a
      two-antenna system.

(b) Antenna a excited with current source I.

a b

a

I

b

V

(c) Antenna b excited with current source I.

b

I

a

V

Figure 13-2 Reciprocity for antennas. The output voltage V is the same in (b) and (c) for the
same input current I.
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Thus, if an antenna is isolated so that all objects including other antennas are far away and
the antenna is lossless, the self-impedance equals its input impedance.

Suppose antenna a is excited (i.e., acting as a transmitter) and the voltage produced at
the terminals of antenna b is measured with an ideal voltmeter. If the antennas are sep-
arated so that they are in each other’s far field, the transfer impedance Zba is actually the
far-field (or radiation) pattern of antenna a if antenna b is moved around a on a constant
radius as shown in Fig. 13-3a. As antenna b is moved, it is maintained with the same
orientation and polarization relative to antenna a . The output voltage of b as a function of
angle around antenna a gives the relative angular variation of the radiation from antenna
a, that is, its radiation pattern. Examining (13-7), we see that this is really Zba (Ia is
constant). Thus, Zba as a function of angle is the transmitting pattern of antenna a. If now
antenna b is excited and antenna a acts as a receiver, the terminal voltage of antenna a is
the receiving pattern of antenna a as antenna b is again moved around at a constant
distance from antenna a; see Fig. 13-3b. Thus, Zab as a function of angle is the receiving
pattern of antenna a. Since the transfer impedances are identical, we can conclude that the
transmit and receive patterns of an antenna are identical. This is an important conse-
quence of reciprocity.

The equality of the transmit and receive patterns of an antenna is not an unexpected
result. This can be seen through the relation Gðθ;φÞ ¼ 4πAeðθ;φÞ=l2 of (4-28) which
relates the receiving characteristic of the antenna Aeðθ;φÞ for an incoming plane wave
from angle ðθ;φÞ to the gain pattern value Gðθ;φÞ in the direction ðθ;φÞ when the antenna
transmits. The reciprocal property is of major practical importance. It permits the test
antenna to be used in either a receive or transmit mode during pattern measurements.
In practice, pattern measurements are usually made with the test antenna used in reception.

It is important to note that reciprocity, as illustrated in Fig. 13-2 along with (13-9), is a
general result. Also, in the case when the antennas are far removed from each other,

(a) The transmitting pattern of antenna a is Zba

Ia

Vb
oc (  ,  )

r > rff

Ia.

r

Va
oc (  ,  )

r > rff

r

Ib

Vb
oc (  ,  )(  ,  ) =

(b) The receiving pattern of antenna a is Zab Ib.Va
oc (  ,  )(  ,  ) =

Figure 13-3 Antenna pattern
reciprocity. The transmitting and
receiving patterns of an antenna
are identical because
Zabðθ, φÞ ¼ Zbaðθ, φÞ ¼ Zmðθ, φÞ.
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Zmðθ;φÞ is the far-field pattern. These results hold under the conditions that the antenna
and transmission medium are linear, passive, and isotropic. These conditions are satisfied
in most cases. A notable exception is if the antenna system includes a non-reciprocal
device such as a circulator or isolator, which use ferrite materials.

13.2 PATTERN MEASUREMENT AND ANTENNA RANGES

An antenna pattern is a graphical representation of the field magnitude at a fixed distance
from an antenna as a function of direction. With the antenna at the origin of a spherical
coordinate system, radiation fields E and H are perpendicular to each other and both are
transverse to the direction of propagation r̂. Also, the field intensities vary as r2 1. In
antenna pattern discussions, electric field is used, but magnetic field behavior follows
directly since its intensity is proportional to the electric field and its direction is per-
pendicular to E and r̂; see (2-107).

The radiated electric field is both a vector and a phasor. In general, it has two
orthogonal components, Eθ and Eφ. These components are complex-valued and their
relative magnitude and phase determine the polarization; see Sec. 2.8. For simple
antennas, only one component is present. For example, the ideal dipole parallel to the
z-axis has only an Eθ component as shown in Fig. 2-4. Measurement of the radiation
pattern in this case is conceptualized by moving a receiving probe around the antenna as it
transmits a constant signal a fixed distance away, r. The probe’s orientation is maintained
parallel to Eθ as shown in Fig. 13-4. The output of the probe varies in direct proportion to
the intensity of the received field component arriving from direction ðθ;φÞ. The pattern of
the ideal dipole is sin θ; see Fig. 2-4. In general, antennas will have both Eθ and Eφ
components and patterns are cut twice, once with the probe oriented parallel to Eθ and
once with it parallel to Eφ.

Although we have conceptualized the measurement of a radiation pattern by moving a
receiver over a sphere of constant radius, this is obviously an impractical way of making
such measurements. The important feature is to maintain a constant large distance
between the antennas and to vary the observation angle. This is accomplished by rotating
the test antenna, or antenna under test (AUT), as illustrated in Fig. 13-5. By reciprocity, it
makes no difference if the test antenna is operated as a receiver or transmitter, but usually

Probe

r

y

x

z

E

Figure 13-4 Pattern measurement conceptualized by
movement of a probe antenna over the surface of a
sphere in the far field of the antenna.

Source Test Antenna

Va Figure 13-5 Radiation pattern measurement. The pattern of
antenna a is proportional to the terminal voltage Va, which
is a function of the angular position of antenna a during
rotation.
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the test antenna is used as a receiving antenna and we adopt this convention. The fields
from the motionless source antenna provide a constant illumination of the test antenna
whose output varies with its angular position. This leads to the rule that it is the pattern of
the rotated antenna that is being measured.

A complete representation of the radiation properties of an antenna would, of course,
require measuring the radiation at all possible angles ðθ;φÞ. This is rarely attempted and
fortunately is not necessary. For most applications, the principal plane patterns are suf-
ficient. See Fig. 2-4 for an illustration of the principal plane patterns using an ideal dipole.

There are many ways of displaying antenna patterns. For example, a principal plane
pattern could be plotted in polar or rectangular form. In addition, the scale could be either
linear or logarithmic (decibel). All combinations of plot type and scale type are used:
polar-linear, polar-log, rectangular-linear, and rectangular-log. Fig. 13-6 shows the same
radiation pattern plotted in these four ways. Generally speaking, log plots are used for
high-gain, low side-lobe patterns and linear plots are used when the main beam details are
of primary interest. These antenna pattern representations can be recorded directly using
commercially available measuring and recording equipment. When more detailed
information is required, the results of several planar cuts can be put together to make a
contour plot. It is important to appreciate that measured patterns are usually not perfectly
symmetric even though the antenna structure appears to be symmetric and also nulls are
often partially filled.

A facility used to measure antenna radiation characteristics is referred to as an antenna
range. Often, the same, range can also be used to measure scattering characteristics
such as radar cross section. The entire measurement facility consists of the space
(indoor or outdoor) for the source and test antennas, antenna positioners, a transmitter,
a receiving system, and data display/recording equipment. In this section, we discuss
the basic range layouts. For more details on antenna ranges, see [H.7: Evans],
[H.9.4: Macnamara, Chap. 8], and chapters in handbooks of Appendix H.6 for a complete
discussion of antenna measurement techniques.

(a) Polar-linear.

(c) Rectangular-linear.
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(b) Polar-logarithmic.

(d) Rectangular-logarithmic.
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Figure 13-6 Illustration of the four antenna pattern plot types using the same pattern.
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Table 13-1 lists the types of antenna ranges together with their characteristics and
advantages and disadvantages. Most ranges are free space ranges that are designed to have
strong direct illumination of the test antenna with weak indirect illumination. First, we
consider far-field ranges in which the source antenna is far from the test antenna. This can
be accomplished by elevating both (or one of) the source and test antennas giving an
elevated range (or slant range). For all antenna ranges, the site around the test antenna
affects pattern measurement accuracy. The guiding principle is to have the line of sight
(direct) path between the source and test antenna unblocked and as high above the ground
(or floor) as practical. This yields large values for the angles αt and αr shown in Fig. 13-7.
Then directive antennas will have indirect rays arising from specular reflection from the
ground of reduced level because angles αt and αr usually correspond to side-lobe direc-
tions. In the elevated range of Fig. 13-7, the source and test antennas are approximately the
same height, ht � hr. The slant range is similar to the elevated range except that only
the source is elevated, leaving the test antenna conveniently located near the ground.

In far-field ranges, the test antenna is located in the far field of the source antenna so
that the incoming waves are nearly planar as indicated in Fig. 13-7. In fact, a common goal

Table 13-1 Characteristics of Antenna Ranges

Range Type Description Advantages Disadvantages

FREE SPACE
RANGES

Effects of all surroundings are
suppressed to acceptable
levels

Far-field Ranges
Elevated range Source and test antenna are

placed on towers, buildings,
hills, etc

Low cost Requires real estate
May require towers
Outdoor weather

Slant range Either the source or test
antenna is elevated

Low cost Requires real estate
May require a tower
Outdoor weather

Anechoic chamber A room is lined with absorber
material to suppress
reflections

Indoors Absorber and large
room are costly

Compact Range The test antenna is illuminated
by the collimated near field
of a large reflector

Small space A large reflector is
required

Near-field Range The magnitude and phase of
the near field of the test
antenna are sampled and the
far field is computed

Very small space Accurate probe
positioning is
required

Accurate amplitude and
phase are required

Time-consuming
measurements

Computer-intensive

GROUND
REFLECTION
RANGE

The ground between the source
and test antennas is
reflective, enhancing the
indirect ray that interferes
with the direct ray, giving a
smooth test antenna
illumination

Test tower is short
Operates well at low
frequencies (VHF)

Outdoor weather
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of all antenna ranges is to provide plane wave illumination of the test antenna. Deviations
from uniform field illumination amplitude (i.e., magnitude) and phase across the test
antenna aperture add to the inherent aperture taper of the test antenna, causing pattern
measurement errors. In far-field ranges, the illumination field amplitude variation is
determined by the radiation pattern of the source antenna. The effect of increased
amplitude taper imposed on the test antenna aperture is to reduce the measured gain and
change the side lobes close to the main beam. If the source antenna pattern peak is centered
on the test antenna, as it should be in all cases, and the amplitude taper created by the
source antenna pattern is�0:25 dB at the edges of the test antenna aperture, there will be a
directivity (and thus, gain) reduction of 0:1 dB. [H.7: IEEE Std. 149-1979, p. 19] That is,
the pattern point at angle α=2 is 0:25 dB down from the peak; see Fig. 13-7. This is dif-
ficult to achieve for the wide variety of measurement situations on an antenna range, but in
all cases the source antenna should be directed toward the test antenna and have a
beamwidth that is as small as possible to reduce illumination of the surroundings and to
increase the received signal for adequate dynamic range. At the same time, the source
antenna should not have a beamwidth that is narrow enough to impose an amplitude taper
across the test antenna.

Phase errors are due to the fact that to achieve a planar phase front from a finite-sized
source antenna, the source must be an infinite distance away from the test antenna. The
spherical waves from the source antenna cause a phase error across the test antenna extent
of D that behave exactly as the far-field distance phase error discussed in Sec. 2.4.3.
There we found that spherical waves deviate from parallel rays with a 22:5� phase error
(l=16 distance error) at a distance of 2D2=l. This distance is often taken as the minimum
separation distance between the source and test antennas, or

R > rff ¼ 2D2

l
ð13-16Þ

The size of the source antenna does not enter into this distance calculation. [2]
The traditional minimum far-field measurement distance in (13-16) is adequate for

moderate- to high-gain antennas if high accuracy in the side lobes is not a requirement.
A measurement distance that is much greater than 2D2=l produces a nearly planar phase
front and thus small phase error. However, very large distances are impractical because of
the low power arriving at the test antenna. So it is desirable to keep the measurement
distance as small as possible. The effects of decreasing the measurement distance are to

AUT
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gα

α

gα

rαtα

Figure 13-7 The elevated antenna range.
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fill in the nulls between side lobes, increase the peak of the side lobes (mainly near the
main beam), broaden the main beam, and reduce the main beam peak causing an apparent
gain loss. The same effects were noted with horn antennas that experience phase error due
to a spherical wave in the aperture. The patterns of a horn in Fig. 9-13 show the null
filling, side lobe rise, and gain due to phase error. The quantitative impact of range-
distance phase-error effects has been thoroughly studied. [3, 4] For example, a first side
lobe of �30 dB relative to the main beam peak with no phase error rises to �27 dB for a
2D2=l measurement distance. The measured gain value is about 0:1 dB low for typical
high-gain antennas measured at the 2D2=l distance. For broad main beam antennas, the
measurement distance should be at least 2D2=l to ensure accurate measurement of any
ripple on the main beam. [5]

When far-field ranges are used indoors, the walls of the room must be lined with
absorbing material to reduce reflections generated by the flat wall surfaces. The range is
then referred to as an anechoic chamber. Most absorbing materials are carbon-impreg-
nated urethane foam. A fire retardant chemical is also included in the absorber. The foam
provides a low impedance mismatch to the incident wave, giving a high coefficient of
transmission. After a wave enters the absorber, it is attenuated by the carbon. A popular
shape for absorber is pyramidal. This shape directs the small fraction of the incident wave
reflected from one pyramid toward the next pyramid, giving another opportunity for
transmission into the absorber to be attenuated. In some commercial products the faces of
the pyramids are custom-shaped to optimize its properties, which often include band-
width. A second improvement is to use different-sized pyramids in an aperiodic con-
figuration that gives random phase to reflections, which lowers the net amount reflected.
Absorber performs better with increasing electrical thickness. Absorber is specified using
reflectivity (ratio of reflected power to incident power) for normal incidence. For
example, one-wavelength-thick pyramidal absorber has �33 dB reflectivity and �51 dB
for eight-wavelength thickness. [H.7: Hemming, p. 31] Using Fig. 13-7 to examine indoor
chambers, the ground is now a wall of a chamber and αg ¼ 90� for normal incidence.
Absorber performance degrades (i.e., reflectivity increases) for incidence farther off
normal, that is, decreasing αg. So, reflectivity of �33 dB at normal incidence degrades
to �25 dB for αg ¼ 40�. [H.7: Hemming, Fig. 3-7] Room design is important. Suppose
the room is L long and W � W in cross section, where the source and test antennas are
near the ends of the L dimension and spaced R apart. To keep incidence as close to normal
as possible, the room should be as wide as possible (i.e., W large). At the same time,
R (and thus L) should be large to keep the test antenna in the far field of the source
antenna. The compromise in these competing goals is to have αg $ 20�, leading to
the following relation [H.7: IEEE Std. 149-1979, p. 30]:

R # 2:75W Anechoic chamber room dimension design formula ð13-17Þ

where
R ¼ Separation of source and test antenna
W ¼ Width of chamber that is also W high

Flat ferrite material is sometimes used below 1 GHz, mainly because it is thinner than
pyramidal foam.

Rotation positioners are required in most of antenna ranges. Often, a simple azimuth
positioner (or “turntable”) is sufficient. An elevation-over-azimuth positioner as illus-
trated in Fig. 13-8a permits alignment with the source antenna placed at any height.
Frequently, a model tower is used to position the test antenna over the axis of the
rotation positioner; see Fig. 13-8b. Included with the model tower is a roll positioner
that rotates the test antenna about its own axis for controlling the pattern cut. The
source tower also often has a roll positioner for proper orientation of the source antenna
polarization.
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The rotational axis should pass through the phase center of the test antenna, which is the
apparent origin of the spherical wave radiated from the antenna.

The instrumentation used with an antenna range varies from a simple signal source
together with a relative power indicating subsystem to complete commercial systems with
automatic data collection and display features. The signal source should be stable in
power level and frequency. The receiving system should have a linear dynamic range of at
least 40 dB. Both amplitude-only and amplitude-phase receiving systems are available.
The transmitter sends a fixed frequency signal. For the receiver to have wide dynamic
range, its bandwidth must be narrowed. The receiver must track the frequency of the
drifting transmitted signal or an ultra-stable transmitter is needed. This approach is used
for widely separated source and test antenna locations. But, most instrumentation systems
use a vector network analyzer (VNA) that provides a source signal and a receiver syn-
chronized to it. A limitation is that there must be cable runs from the VNA to the source
and test antenna. The advantages of the VNA are that it steps frequency in increments
under user control and provides linear response over wide dynamic range, as much as
100 dB.

The foregoing discussions have been for traditional frequency-domain techniques, but
antenna measurements can also be made in the time domain. In time-domain antenna
measurement the source transmits pulses. The indirect waves created by reflections from
the ground (or floor) and objects arrive delayed in time from the direct wave as illustrated
in Fig. 13-9. Using time gating, the contribution of the indirect waves is greatly reduced.
The pulses can be generated with a VNA or synthetically using Fourier transforming to go
back and forth between the frequency and time domains. The steps used in synthetic time-
domain processing illustrated in Fig. 13-9 are: (1) The transmitter is swept in frequency;
(2) The received signal is transformed to the time domain (RAW signal), time gating is
applied (GATE), and an inverse transform returns the signal to the frequency domain with

Elevation Azimuth

Roll

(b) Model tower.(a) Azimuth-over-elevation.

Figure 13-8 Antenna positioners for antenna testing.

Source AUT

RAW
� GATE

� PROCESSED

Figure 13-9 Time-domain antenna measurement showing the direct-path pulsed signal and
the indirect-path delayed signal. [6] (Reprinted with permission.)
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the indirect waves gated out (PROCESSED). The outdoor range at Virginia Tech where
this is used has an 18-m direct path and a 19-m indirect path via reflection, giving a 1-m
path difference corresponding to a 3:3 ns delay. [6]

A compact range, so-named because it can fit into a smaller room than a far-field
range, is based on an offset reflector, as shown in Fig. 13-10. The room need not be
absorber lined, but better performance is obtained with absorber. As noted in Sec. 9.6.1,
the fields from the feed at the focal point reflect off the parabolic-shaped reflector and
become collimated, providing a flat phase condition parallel to the aperture plane (per-
pendicular to the page in Fig. 13-10). There is, however, an amplitude taper in the
aperture. Increasing the focal length-to-diameter ratio reduces the taper; see (9-208). An
offset reflector is used to get the feed out of the way so that the aperture fields are not
disturbed. The antenna under test is placed in the center of the collimated beam and
rotated to generate pattern data. The region around the test antenna where the amplitude
and phase variations are small is referred to as the quiet zone. The diameter of the
reflector should be about 20 l larger than the diameter of the quiet zone. [H.9.4: Mac-
namara, p. 284] The obvious disadvantage of the compact range is the large main
reflector. The upper operating frequency of the range is limited by the smoothness of the
reflector. While the far-field range suffers from a phase error problem, the challenge with
a compact range is amplitude error. There are two techniques to reduce the amplitude
errors in the quiet zone. First, the edges of the reflector can be serrated to reduce edge
diffraction effects in the quiet zone. Second, a dual-reflector can be used (see Sec. 9.6.4)
in which both the main reflector and the subreflector are shaped. The subreflector is
under-illuminated to avoid its spillover from reaching the quiet zone and is shaped to
direct rays to the edges of the main reflector. The main reflector is shaped to correct for
phase errors introduced by the shaped subreflector.

The near-field range is the smallest range type. In the planar near-field range shown in
Fig. 13-11, the test antenna acts as a transmitter and the amplitude and phase are sampled
by a receiving probe antenna that is moved over a plane in front of the test antenna. The
spatial samples, spaced about a half-wavelength apart, are processed using a fast Fourier
transform algorithm to obtain far-field patterns analogous to the radiation integral for
finding a far-field pattern from an aperture distribution. Probe effect corrections are
included in the processing. The near-field range requires accurate positioning of the probe
and accurate amplitude and phase samples. A unique feature of the near-field range is that
aperture distribution data are available and are useful in antenna design and evaluation.
For example, the excitations of array elements can be examined and adjusted. Usually the
test room is absorber-lined, or at least the walls behind the scanner are. The planar system
does not require a positioner for the test antenna, but the accurate pattern data is possible
only in forward hemisphere. For full pattern coverage, the test antenna is rotated in one or
two angles using a cylindrical or spherical scanner, respectively. The spherical near-field
scanner is popular for low-directivity antennas, such as handset antennas. Complete near-
field measurement systems are commercially available. A variation on near-field scanning
is to move the probe antenna around a test antenna that is stationary or on an azimuth

Test
antenna
(rotated)

Figure 13-10 The compact range.
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rotation table. Commercial systems of various sizes are available for small wireless test
articles and for use with antennas mounted on vehicles. Data collection speed is increased
with scanning systems by using a dual-polarized probe. For more details on near-field
scanning, see the books in Appendix H.7.

The operating principle of the ground reflection range is completely different from that
of free space ranges. The source and test antenna heights are small and the ground
between the towers is constructed to be flat and reflective, which causes the indirect ray to
arrive with an amplitude close to that of the direct ray. The indirect ray path distance is
not greatly different from that of the direct ray. This gives a slowly varying phase over the
test region, which in turn gives a slowly varying interference pattern and a relatively
constant field illumination over the test zone. A low test tower height is convenient for
large test objects such as antennas on full-scale aircraft. The ground reflection range
is sometimes used to test radiation emissions from equipment and systems, and then it is
referred to as an open area test site. [H.9.4: Macnamara, p. 295]

Finally, we mention that antenna testing is often performed using a scale model to
scale the test article size so that it can be accommodated in the available facilities. As
an example, suppose the design antenna is an array operating at 600 MHz ðld ¼ 50 cmÞ
that is 4 m long ðLd ¼ 5 ldÞ. It is convenient to test at 6 GHz ðlt ¼ 5 cmÞ, so the scale
model antenna would need to be scaled by the scale factor that is the ratio of the test
wavelength to the design wavelength: s ¼ lt=ld ¼ 5=50 ¼ 0:1. The scale model antenna
size is then 40 cm long ð4 m � 0:1Þ, which is easily accommodated in most ranges.
When the antenna is mounted on a vehicle, the entire vehicle needs to be scaled. The
details of the scale model that are a significant fraction of a wavelength at the testing
frequency need to be reproduced. The model usually can be made using the same
materials as the full-scale model except, in a few cases, for materials that have properties
that are not constant with frequency (notably, ε and μ).

13.3 GAIN MEASUREMENT

The pattern measurement techniques discussed in the previous section are relative
measurements giving the angular variation of the test antenna’s radiation. Also needed is
the absolute level of radiation. The parameter of gain aids in quantifying absolute power
level but is usually a more difficult measurement than pattern measurement. The defi-
nitions and basic principles of gain are found in Sec. 2.5. To review, gain is found from
directivity using (2-155), G ¼ erD, where er is the radiation efficiency. When gain
measurements include an unavoidable impedance mismatch loss, it is referred to as
realized gain (see Sec. 4.4.2). Realized gain is related to gain as Gr ¼ qG where q is
impedance mismatch loss and is found using (4-39). Gain alone can be found by

Probe

Positioning
carriage

Test
antenna
(stationary)

Figure 13-11 The planar near-field range.
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estimating impedance mismatch loss and removing it from the realized gain value. If the
test antenna and source antenna are not of the same polarization and aligned properly,
there will also be polarization mismatch loss p, which can be found using (4-45) and
removed from the measured gain value also. In this section, impedance and polarization
matches are assumed unless otherwise noted.

13.3.1 Gain Measurement of Linearly Polarized Antennas

Gain can be found using directivity in the following way. Directivity D is computed using
multiple radiation patterns normalized to the same reference level, performing a finite
summation to approximate the beam solid angle integral in (2-142), and directivity
calculated using D ¼ 4π=ΩA from (2-144). Then gain is found using G ¼ erD and
estimating the radiation efficiency er, which is unity for many antennas. Automated
antenna measurement systems often provide directivity estimated in this fashion.

The most popular gain measurement method is the gain comparison (or gain substi-
tution, or gain transfer) method, which is a measurement made relative to an antenna of
known gain called a standard gain antenna. The gain comparison method measurement
uses the arrangement in Fig. 13-12 with a transmitter of fixed input power, Pt, connected
to a suitable source antenna whose pattern peak is centered on the test antenna location.
The received power is measured using the test antenna, PT , and for the standard gain
antenna, PS, as illustrated in Fig. 13-12. The source and receive antennas are linearly
polarized and aligned in polarization (for example, both horizontally polarized). Often
the antennas at each end are on positioners capable of being adjusted in angle to peak the
output. The pattern peak of the standard and test antennas must be aimed in the direction
of the source antenna. The gain of the test antenna is then easily computed from that of
the standard gain antenna multiplied by the ratio of the received powers:

GT ¼ PT

PS

GS ð13-18Þ

which is expressed in dB as

GTðdBÞ ¼ PTðdBmÞ � PSðdBmÞ þ GSðdBÞ ð13-19Þ
where

GTðdBÞ ¼ gain of the test antenna in dB—calculated
GSðdBÞ ¼ gain of the standard gain antenna in dB—known

PTðdBmÞ ¼ power received by the test antenna in dBm—measured
PSðdBmÞ ¼ power received by the standard gain antenna in dBm—measured

Source

Standard
gain
antenna

Test
antenna
GT

Pt

Gs
PS

PT

Figure 13-12 Measurement of the gain of a test antenna GT using the gain comparison
method based on the known gain of a standard gain antenna GS and GT ¼ ðPT=PSÞGS.
(Reproduced by permission from [H.11.1: Stutzman]. ª 1993 by Artech House, Inc.,
Norwood, MA.)
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This is an intuitive result which simply says that the gain of the test antenna is larger than
the gain of the standard by the increase in received power from the test antenna over that
from the gain standard. This result is also easily derived using the Friis transmission
formula of (4-34) for both the test and standard antenna cases and subtracting; the terms
involving distance R, frequency f , and transmit power Pt are constants and drop out,
leaving (13-19). Of course, if the powers are equal ðPT ¼ PSÞ the gain of the test antenna
is identical to that of the standard gain antenna.

EXAMPLE 13-1 Gain Measurement by Gain Comparison

Suppose that a standard gain antenna has a gain of 63, or 18 dB. Following the measurement
technique of Fig. 13-12, the measured powers are PS ¼ 3:16 mW or 5 dBm (5 dB above a
milliwatt), and PT ¼ 31:6 mW or 15 dBm. The gain of the test antenna is then GT ¼
ð31:6=3:16Þ 63 ¼ 630, or in terms of decibels

GTðdBÞ ¼ PTðdBmÞ � PSðdBmÞ þ GSðdBÞ ¼ 15� 5þ 18 ¼ 28 dB ð13-20Þ

It is obvious from (13-19) that accurate gain measurement requires accurate power
measurement. With modern receivers this is often possible. An approach that does not
rely on receiver linearity is the RF substitution method in which a precision attenuator is
used to establish the level change. That is, the attenuator is adjusted to bring the receiver
to the same reading in both cases; then the difference in the corresponding attenuator
settings equals PTðdBmÞ � PSðdBmÞ that is used in (13-19). Accuracy also depends
directly on knowledge of the gain of the standard gain antenna. Popular standard gain
antennas are the half-wave dipole for UHF frequencies and below and the pyramidal horn
for UHF frequencies and above. The gain of the dipole is quite accurately assumed to be
2:15 dB (see Table 3-2). It is constructed or adjusted to the half-wave resonant length at
the desired frequency and fed with balun. Commercially available standard gain horns are
provided with a calibrated gain versus frequency curve like the one in Fig. 9-20. If the
gain of a horn is not known, it can be calculated using the techniques in Sec. 9.4.

Note that the term gain is synonymous with absolute gain or peak gain. Gain and
pattern data can be merged into a gain pattern by multiplying gain by the normalized
pattern so that gain as a function of angle can be displayed:

Gðθ;φÞ ¼ G Pðθ;φÞ ¼ G
��Fðθ;φÞ��2 ð13-21Þ

This equation can be expressed in dB by taking 10 log of both sides. The unit of gain in dB is
more completelywritten as dBi to indicate that the gain is referenced to an isotropic antenna.

Gain can also be measured without a standard gain antenna using the three-antenna
method. The power received is measured for the three possible combinations of transmit
and receive antennas, and the Friis transmission formula is used to solve for all three
antenna gains. See Prob. 13.3-1.

13.3.2 Gain Measurement of Circularly Polarized Antennas

If a good-quality circularly polarized (CP) source of known gain is available, the gain
comparison method of Fig. 13-12 can be used. However, a gain standard should have low
cross-polarization, and making a CP antenna with low cross-polarization is more difficult
than for an LP antenna. Thus, the gain of CP and elliptically polarized antennas are usually
measured using two orthogonal linearly polarized (LP) antennas or one LP antenna used
in two orthogonal orientations. The procedure is to use the gain comparison method of
(13-19) twice, once for each orthogonal LP source antenna orientation. Suppose the gains
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are measured for vertical and horizontal LP source antenna orientations, GTv and GTh.
These measured partial gains are combined to give the total gain [H.11.1: Stutzman, p. 94]:

GTðdBÞ ¼ 10 logðGTv þ GThÞ ½dBic� ð13-22Þ
This procedure is referred to as the partial gain method. Any pair of perpendicular
orientations can be used because the power in an elliptically polarized wave is contained
in the sum of two orthogonal components. As a side note, we observe that a CP antenna
performs this sum instantaneously. Therefore, the gain in (13-22) is relative to an ideal CP
antenna. The unit dBic indicates gain relative to an isotropic, perfect CP antenna. The
accuracy of gain measurement depends on the purity of the source antenna. An LP
standard gain antenna usually has an axial ratio of 40 dB or better and does not contribute
significantly to gain error.

EXAMPLE 13-2 Calculation of Gain Using the Partial Gain Method

Fig. 13-13 gives two patterns measured with an LP source antenna and a nominally CP test
antenna, which is a cavity-backed spiral antenna operating at 1054MHz. Also shown is the
pattern of a standard gain horn, which has a gain at 1054MHz of 14:15 dB based on the
manufacturer’s gain curve. The receiver gain setting and the source power were constant
during these measurements. The peak gains for vertical and horizontal polarizations are

GTvðdBÞ ¼ 14:15� 16:1 ¼ �1:95 dB, GThðdBÞ ¼ 14:15� 13:25 ¼ 0:9 dB ð13-23Þ
because the vertical and horizontal LP pattern peaks are 13.25 and 16:1 dB below the standard
gain horn pattern peak, respectively. Then

GTv ¼ 10�1:95=10 ¼ 0:64, GTh ¼ 100:9=10 ¼ 1:23 ð13-24Þ
and (13-22) gives

GTðdBÞ ¼ 10 logð0:64þ 1:23Þ ¼ 2:71 dBic ð13-25Þ

Gain ref.

0 dB

−10

−20

−30

= 90�

Eh
Ev

= 0�

Figure 13-13 Illustration of measurement of the gain of a CP antenna using the partial gain
method; see Example 13-2. The patterns are for an LP standard gain horn (long dashed curve)
and the nominally CP antenna with the source vertically (solid curve) and horizontally
(short dashed curve) polarized. (Reproduced by permission from [H.11.1: Stutzman]. ª 1993
by Artech House, Inc., Norwood, MA.)
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13.3.3 Radiation Efficiency Measurement

Low-directivity antennas have broad patterns. In fact, in many applications a very broad
pattern is needed. For example, mobile terminal antennas must have low directivity in
order to respond well to an incoming signal as the terminal’s orientation changes. Also,
any electrically small antenna will have low directivity with a pattern shaped somewhat
like a distorted donut. From Table 3-2, the directivity of a donut pattern is 1:76 dB, and
even a half-wave dipole has not much more directivity with 2:15 dB. Thus in practice, the
directivity of electrically small antennas and half-wave dipole type antennas will range
from around 0 to 2 dB. But radiation efficiency (or simply efficiency) er must also be
determined to calculate gain using G ¼ erD.

The Wheeler cap method is the most popular technique for efficiency measurement.
The Wheeler cap method uses a conducting hemispherical cap centered on the test
antenna which is mounted on a ground plane. [7] The radius of the cap, a, should satisfy
the radiansphere condition of βa , 1, or a , 0:159l, from (11-23) and as shown in
Fig. 11-15. The size and shape of the Wheeler cap need not closely adhere to these
conditions. It can be box shaped and have a length up to 0:5 l. [H.7: Arai, p. 56] The two
steps in the method are to measure the input resistance with and without the cap. The
radiation efficiency from (2-178) is

er ¼ Rr

Rr þ Ro

ð13-26Þ

where Rr is the radiation resistance and Ro is the ohmic loss resistance. Without the
Wheeler cap, the antenna is essentially in free space and the input resistance is
RAfs ¼ Rr þ Ro; see Fig. 2-15b. With the cap on, radiation loss is prevented, leaving only
ohmic loss, and the input impedance is RAcap ¼ Ro. So the efficiency is found from these
two measurements of RAfs and RAcap as

er ¼ RAfs � RAcap

RAfs

¼ 1� RAcap

RAfs

ð13-27Þ

This result can be expressed in terms of reflection coefficients, that is,
��S11��2; see

Prob. 13.3-2. The formulations assume no reactance is present. Methods are available
where this assumption is not needed. [8]

13.3.4 Gain Measurement of Large Antennas

Electrically large antennas many wavelengths in size often cannot be measured in con-
ventional testing facilities. For example, the Deep Space Network 70-m reflector antenna
at Goldstone, California, operating at 2:3 GHz requires a measurement distance
from (13-16) of 75 km! An option is to use a source flown on an airplane. Sometimes
beacon signals are available on satellites, but the signal can be weak. Here we discuss
the radiometric method, which uses a radiometric receiver with the test antenna to
measure noise temperature.

A discrete “radio star” is used as a source of noise. The noise is incident on the test
antenna, operating the receive mode, with power spectral flux density of S, which is the
power per unit area per unit bandwidth, W=m2=Hz.3 An antenna of effective aperture Ae

produces output power per Hertz from the noise source of SAe=2, where the factor of 1/2
is needed because of the polarization mismatch loss between the unpolarized noise and

3 The symbol S is conventionally used for both power density as in Sec. 2.3 and power spectral density as
in this section.
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polarized antenna. The received power can also be expressed as kTA from (4-15).
Equating gives:

SAe

2
¼ kTA W=Hz½ � ð13-28Þ

Using the expression for gain in terms of effective aperture G ¼ 4πAe=l
2 from (4-27), in

the above:

G ¼ 8πkTA
Sl2

ð13-29Þ

where k ¼ 1:38 � 10�23 J K�1 is Boltzmann’s constant and TA is the measured antenna
noise temperature. The power spectral flux density S of the source must be known and the
values for intense discrete radio sources in the sky are available in [H.7: IEEE Standard
149]. The obvious disadvantage of this method is that a radiometer is required to measure
the noise temperature. A radiometer can also be used to measure antenna efficiency. [9]

13.3.5 Summary of Gain Determination Methods

Accurate determination of gain is usually very important. Thus, the multiple methods
available should be used to make sure an error has not been made in the measurement of
gain. Gain estimation methods are valuable. The half-power beamwidths measured during
the pattern measurement phase can be used in G � 26,000=HPE�HPH� from (4-57). A
second way to estimate gain is using G ¼ εap4πAp=l

2 from (9-77), where the aperture
efficiency εap is estimated based on the antenna type, and the physical aperture area Ap is
easily obtained. The most accurate estimation method is pattern integration over several
pattern cuts to find directivity and then to estimate efficiency to compute gain with
G ¼ erD. Of course, the main gain evaluation method is direct measurement using the
gain comparison or three-antenna method. Electrically large antennas are measured using
radiometric methods. The efficiency of electrically small antennas is measured using the
Wheeler cap method or the radiometric method.

13.4 POLARIZATION MEASUREMENT

Quite often, the polarization of an antenna can be inferred from the geometry of the active
portion of the antenna. For example, the ideal dipole in Fig. 2-4 is vertical linearly
polarized since the radiating element is oriented vertically. For gain and co-polarized
pattern measurements, the test antenna should be illuminated with a wave of the expected
polarization of the antenna: in this case, a vertical linearly polarized wave. Real antennas
always have a certain amount of power in the polarization orthogonal to the intended
polarization. For the practical realization of the ideal dipole, there will be a small amount
of horizontal linear polarization. Such cross-polarization arises from horizontal currents
flowing on the antenna or nearby structures. Thus, a complete antenna measurement set
includes characterization of the polarization properties of the test antenna. This is often
accomplished by making pattern cuts in the E- andH-planes of the test antenna with it both
co-polarized and cross-polarized to the source antenna. This is illustrated in Fig. 13-14
for the case of a nominally LP test antenna and an LP source antenna. Of course, the cross-
polarized patterns will be much lower in level than the co-polarized patterns, and will be
zero for a perfect LP test antenna. Co- and cross-polarized patterns for reflector antennas
are discussed in Sec. 9.6.5.

There are three measurement techniques used to characterize an antenna that is
elliptically polarized but has an axial ratio that is not large (i.e., the polarization state
is not close to pure LP). These methods are discussed in the remainder of this section;
also see [H.11.1: Stutzman].
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13.4.1 The Polarization Pattern Method

A polarization pattern is the amplitude response of an antenna as it is rotated about its
roll axis. It can be measured at any fixed pattern rotation angle. The resulting pattern
shown in Fig. 13-15 is a polar plot of the response of the test antenna as a function of the
relative angle α between the illuminating LP wave orientation and a reference orientation
of the antenna. Either the LP source antenna is rolled while the test antenna is stationary
or vice versa. It is easier to explain the polarization pattern method with the test antenna
operated as an elliptically polarized transmitting antenna and the receiving antenna as a
linearly polarized probe. Reciprocity permits us to do this. The tip of the instantaneous
electric field vector from the test antenna lies on the polarization ellipse and rotates at the
frequency of the wave; that is, the electric vector completes f rotations around the ellipse
per second. The output voltage of the LP probe is proportional to the peak projection
of the electric field onto the LP orientation line at angle α. This is the distance OP in
Fig. 13-15 projected from the tangent point T on the ellipse. The locus of points P as the
LP probe is rotated is fatter than the ellipse, which is also shown in Fig. 2-20. Of course,
for a CP test antenna both curves in Fig. 13-15 are circular.

Note that the maximum and minimum of the polarization pattern are identical to the
corresponding maximum and minimum of the polarization ellipse when scaled to the same
size. Although the measured polarization pattern does not give the polarization ellipse,
it does produce the axial ratio magnitude of the antenna polarization. It is also obvious
from Fig. 13-15 that the tilt angle of the ellipse is determined as well. The polarization
pattern gives the axial ratio magnitude jARj and tilt angle τ of the polarization ellipse, but
not the sense. The sense can be determined by additional measurements. For example, two
nominally CP antennas that are identical except for sense can be used as receiving

Source
antenna
(stationary)

E-plane
co-polarized

E-plane
cross-polarized

H-plane
co-polarized

H-plane
cross-polarized

(a)

(b)

(c)

(d)

Antenna
under test
(rotated)

Measured
pattern

Figure 13-14 Illustration of copolarized and cross-polarized pattern measurement. The source
antenna is LP and the test antenna operating in the receiving mode is nominally LP and is
rotated about its axis. (Reproduced by permission from [H.11.1: Stutzman]. ª 1993 by Artech
House, Inc., Norwood, MA.)
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antennas with the test antenna transmitting. The sense of the antenna with the greatest
output is then the sense of the test antenna.

The polarization pattern method in many cases is a practical way to measure antenna
polarization. If the test antenna is nearly circularly polarized, the axial ratio is near unity
and measured results are insensitive to the purity of the LP probe. If the test antenna is
exactly circular, tilt angle is irrelevant. In the case of a test antenna that is nearly linearly
polarized, axial ratio measurement accuracy depends on the quality of the LP probe,
which must have an axial ratio much greater than that of the test antenna.

13.4.2 The Spinning Linear Method

The spinning linear (or rotating source) method provides a rapid measurement technique
for determining the axial ratio magnitude as a function of pattern angle. The test antenna
is rotated as in a conventional pattern measurement while an LP probe antenna (usually
transmitting) is spun. The spin rate of the LP antenna should be such that the test antenna
pattern does not change appreciably during one-half revolution of the LP antenna while
the test antenna rotates slowly. An example pattern is shown in Fig. 13-16, which is a
pattern of a helix antenna. Superimposed on the antenna pattern are rapid variations
representing twice the rotation rate of the probe antenna. For logarithmic (dB) patterns as
in Fig. 13-16, the axial ratio is the difference between adjacent maxima and minima at
each angle. For example, at a pattern angle of 30� counterclockwise from the main beam
axis, the maximum and minimum pattern envelopes are about �8 and �10 dB, corre-
sponding to a 2-dB axial ratio.

Sense cannot be obtained using the spinning linear method. Tilt angle could, in theory,
be obtained if probe orientation information were known accurately at the pattern points,
but this is usually not done in practice.

13.4.3 The Dual-Linear Pattern Method

A method related to the spinning linear method is the dual-linear pattern method. In this
method, two patterns are measured for orthogonal orientations of the LP probe source
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Figure 13-15 Polarization pattern (solid curve) of an elliptically polarized test antenna.
It is the response of an LP receiving probe with orientation angle α to a transmitting test
antenna with the polarization ellipse shown (dashed curve). (Reproduced by permission
from [H.11.1: Stutzman]. ª 1993 by Artech House, Inc., Norwood, MA.)
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antenna so that they align with the major and minor axes of the test antenna polarization
ellipse. Fig. 13-17 illustrates the resulting patterns for the same sample antenna as in
Fig. 13-16 for the spinning linear method. For the same example pattern point at 30�
counterclockwise from the beam peak, the two linear pattern values are �8 and �10 dB,
again giving a 2-dB axial ratio value. Of course, the gains and other equipment settings
must remain constant during the entire measurement period.

−10

0 dB

−20

−30

Figure 13-16 Axial ratio measurement as a function of pattern angle using the spinning
linear method. The axial ratio is the difference in decibels between adjacent peaks and
nulls. The test antenna is a helix antenna operating at X-band and the source is a rotating
LP antenna. (Reproduced by permission from [H.11.1: Stutzman]. ª 1993 by Artech
House, Inc., Norwood, MA.)

−10

0 dB

−20

−30

Figure 13-17 Axial ratio measurement as a function of pattern angle using the dual-linear
pattern method. The axial ratio is the decibel difference between the two patterns that
represent planes containing the major and minor axes of the test antenna polarization ellipse.
The test antenna is identical to that in Fig. 13-16. (Reproduced by permission from [H.11.1:
Stutzman]. ª 1993 by Artech House, Inc., Norwood, MA.)
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13.5 FIELD INTENSITY MEASUREMENT

A very small receiving antenna can be used as a field probe. Probes are used when it is
necessary to measure the spatial amplitude distribution of electromagnetic fields. They
are used in antenna measurement facilities such as near-field ranges. The probe must be
small relative to the structure whose fields are being measured in order to minimize the
disturbance of the fields introduced by the probe itself. The electrically small dipole, in
any of its practical forms discussed in Sec. 3.1, is used to probe electric fields. The small
loop is used as a magnetic field probe. In this section, we show how to calculate field
intensity from probe measurements along with other aspects of field measurements.

An antenna pattern can be measured by moving a receiving antenna around a trans-
mitting test antenna at a fixed distance from it in the far field; this is the relative field
strength variation. Absolute field level is measured with a receiving antenna at a specified
distance from a transmitting device. Such measurements are made for compliance to
regulations and are necessary at low-frequency bands because the effects of terrain and
the real Earth surface are difficult to calculate. If the gain of the measuring antenna is
known (it usually is) and the voltage developed across its terminals is measured, the field
strength incident upon the measuring antenna can be calculated, as we now discuss.

The same model as in Fig. 4-1b is used to derive field intensity. The power delivered to
the terminating load is

PD ¼ 1

2

��VA

��2
RT

¼ V2
A,rms

RT

ð13-30Þ

where VA,rms ¼
��VA

��= ffiffiffi
2

p
, since VA is a peak quantity. The field form of the delivered

power expression from (4-35) and (4-26) is

PD ¼ pq Sav Ae ¼ pq
ðEi

rmsÞ2
η

Ae ð13-31Þ

Equating these two relations yields

ðEi
rmsÞ2 ¼ η

V2
A,rms

pqRL

1

Ae

¼ η
V2
A,rms

pqRL

4π
Gl2

ð13-32Þ

where (4-27) was used for Ae. Converting wavelength to frequency using l ¼ c=f and
expressing the relation in decibels by taking 10 log of both sides gives

Ei
rmsðdBμV=mÞ ¼ VA,rmsðdBμVÞ þ 20 log f ðMHzÞ � GðdBÞ

� 10 log RL � 10 log p� 10 log q� 12:8
ð13-33Þ

This expression permits easy calculation of electric field intensity Ei
rms in decibels relative

to 1 μV=m, using the voltage VA,rms in decibels relative to 1 μV, measured at the terminals
of a probe antenna with gain G. Gain loss due to mispointing can also be included. For
example, suppose the probe antenna has 6-dB gain and is pointed so that the incoming
wave arrives from a direction on the receiving antenna pattern that is 2 dB below its
maximum. Then 4-dB gain is used in (13-33) rather than the peak gain of 6 dB.

EXAMPLE 13-3 Sensitivity of an FM Receiver

As an example, suppose the antenna and transmission line input impedances are both 300Ω.
Then (13-33) becomes

Ei
rmsðdBμV=mÞ ¼ 20 log f ðMHzÞ � GðdBÞ þ VA,rmsðdBμVÞ � 37:57 ð13-34Þ
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To be specific, consider a typical FM broadcast receiver with a sensitivity of 1 μV; that is,
minimum satisfactory performance is produced when the value of VA,rms is 1 μV , or 0 dBμV.
The most popular antenna for FM receivers is the half-wave folded dipole (see Sec 6.2) that
has a real impedance of about 300Ω and a gain of 2:15 dB. At a frequency of 100MHz, the
incident field intensity required for minimum satisfactory performance from (13-34) is
0:28 dB μV=m, or 1:03 μV=m.

Regulatory agencies often specify the maximum field strength radiated from a device
at a fixed distance away. For example, the FCC places a maximum value on the electric
field strength radiated from ISM devices at a distance of 3 m and places limits on the
electric field strength from AM broadcast radio stations 1 km away from the antenna as
well as radiated power. Commercially available antennas for electromagnetic compliance
are calibrated using manufacturer provided values of antenna factor over the operating
range of the antenna.

At frequencies below 1 GHz, antenna measurements are made by illuminating the test
antenna with a known field intensity and measuring the terminal voltage. Antenna factor
is used to quantify this measurement. Antenna factor was introduced in Sec. 4.2 and is
defined as the ratio of the field intensity illuminating the antenna to the received voltage
across the antenna terminals:

K ¼ Ei

VA

½m�1� ð13-35Þ

This is an electric field antenna factor; a corresponding one involving magnetic field
intensity is also in use. Antenna factor is often used to determine receiver sensitivity.
Then, (13-35) in decibel form using (13-33) becomes

Ei
rmsðdBμV=mÞ ¼ receiver sensitivity ¼ VA,rmsðdBμVÞ þ KðdB=mÞ ð13-36aÞ

where

KðdB=mÞ ¼ 20 log ½ f ðMHzÞ� � GðdBÞ � 10 log RL

� 10 log p� 10 log q� 12:8
ð13-36bÞ

It is common to specialize this definition to RL ¼ 50Ω, since that is the normal receiver
input impedance. Antenna factor includes impedance mismatch effects and antenna gain.
The polarizations of the wave and antenna are usually assumed to be matched (i.e.,
q ¼ 1), which is the customary measurement situation.

EXAMPLE 13-4 Sensitivity of an FM Receiver Using Antenna Factor

We repeat Example 13-3 using antenna factor. Substituting RA ¼ Zo ¼ 300Ω, G ¼ 1:64 and
l ¼ 3 m in (13-36b) gives

K ¼ 20 logð100Þ � 2:15� 10 logð300Þ � 0� 0� 12:8 ¼ 0:28 dB=m ¼ 1:03 m�1 ð13-37Þ

Then for 1μV sensitivity, (13-36a) gives

Ei
rms ¼ 0 dB μVþ 0:28 dB=m ¼ 0:28 dB μV=m ð13-38Þ

which is the result we obtained in Example 13-3.
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13.6 MOBILE RADIO ANTENNA MEASUREMENTS

Physically small antennas and handset antennas for mobile communications are difficult
to measure accurately. The cable connecting to the antenna under test can carry unbal-
anced currents that radiate, leading to highly inaccurate measured values. A standard
method to avoid this problem is to make a monopole version of the antenna mounted on a
large ground plane, and then the cable below the ground plane will have little effect.
However, this technique is not applicable to handset antennas. Ferrite beads on the cable
help but often do not solve the problem of spurious radiation. An alternative approach is
to measure the antenna in the transmit mode using a battery-operated transmitter
embedded in the handset. This eliminates the cable connection and its associated pro-
blems. In this section, we present techniques for measuring a small antenna and a full
terminal, or more generally the device under test (DUT). Also, the associated figure-
of-merit quantities used in the mobile communications industry are explained.

A quantity that includes the gain, radiation pattern, polarization, and multipath due to
the propagation environment is mean effective gain (MEG). MEG is measured by moving
a mobile terminal over a prescribed course that has multipath effects and averaging the
signal received from a base station. The measured MEG represents the interaction of
the antenna and propagation along the course. Comparing to the same measurement with
a reference antenna, like a half-wave dipole, moved over the same course gives a relative
measure of the test antenna performance. Because of the varying propagation conditions,
measured MEG is not generally used. Instead, a theoretical MEG is computed by inte-
grating the gain pattern over the sphere surrounding it weighted by an assumed angular
probability density distribution for the incoming waves. For more details on MEG see
[H.9.1: Mobile Sys. Hdbk.].

Full mobile equipment testing avoids having to isolate the antenna effects, and at the
same time provides an end-to-end test. In the past, this was done by a cable connection
from a source to a receiving terminal. For more realistic conditions an over-the-air test
system (OATS) is used to provide end-to-end wireless testing. There are two primary
measured quantities. Total radiated power (TRP) is used for the DUT transmitting and total
isotropic sensitivity (TIS) for receiving. TRP and TIS were introduced in Sec. 11.6.4,
and here we provide their quantitative relationships.

TRP is tested with the DUT, usually a handset, transmitting at rated power output. The
received power at a fixed distance in an OATS is measured in both polarizations. Samples
are collected over the sphere surrounding the DUT, commonly in 15� increments in
azimuth and elevation. The data samples are then summed approximating the integral:

TRP ¼ 1

4π

ZZ
½Pt Gθðθ, φÞ þ Pt Gφðθ, φÞ� dΩ ð13-39Þ

For an antenna of gain Gt and normalized power pattern F θ, φð Þj j2, the preceding result

reduces to PtGt

RR
F θ, φð Þj j2 dΩ

h i
=4π, which using (2-142) equals PtGtΩA=4π. Noting

that PtGt ¼ EIRP and ΩA=4π ¼ D gives

TRP ¼ EIRP

D
ð13-40Þ

With a handset as the DUT transmitting 24 dBm, a typical TRP value is 27 dBm. [10]
TIS is measured with the DUT terminal receiving a signal from a transmitter a fixed

distance away. Samples are collected over the sphere surrounding the DUT, commonly in
30� increments in azimuth and elevation. At each point, the transmit power is adjusted
until the DUT performance is just acceptable. For a handset this is the threshold bit error
rate. The recorded power levels in each polarization, Pisθ and Pisφ, are then summed
approximating the integral:
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TIS ¼ 4πZZ
1

Pisθðθ, φÞ þ
1

Pisφðθ, φÞ
� �

dΩ
ð13-41Þ

Note that if the powers measured have the same value of Pis, TIS ¼ 4π=
RR ð1=PisÞdΩ ¼ Pis,

as expected. A typical TIS value for a handset is about �105 dBm. [10]
TIS and TRP are usually measured in an anechoic chamber. Drive tests are also used

where measurements are made on a device as it is moved in a vehicle, carried by an
operator, or moved on a mechanical track. However, a large number of drive tests are
needed to get an average result. A faster and less expensive approach is to perform
measurements in a reverberation chamber, which is a metal-box structure with a mode-
stirring device similar to that used in a microwave oven. Reverberation chambers have
been used for interference and compatibility testing of electronic products. More
recently, the reverberation chamber is being used with wireless communication terminals
to create a multipath environment as encountered with indoor and urban propagation
conditions. [11]

13.7 RULES FOR EXPERIMENTAL INVESTIGATIONS

The order in which the experimental procedures described in this chapter are performed is
important. The preferred order for most antennas is:

1. Measure impedance match over the intended operating band
2. Measure the radiation patterns
3. Measure gain
4. Measure the polarization state

Of course, the order can vary with the antenna tested and the measurement facility used.
However, impedance measurement is a necessary first step. If the antenna does not
provide the required input impedance, the subsequent tests will be meaningless. And the
design cycle needs to iterate until the impedance is within acceptable limits. It is best to
measure the full impedance (i.e., resistance and reactance) swept over frequency (usually
displayed on a Smith chart), which is useful in understanding the operation of the
antenna. But, specifications are most often in terms of VSWR or return loss. If possible,
the impedance measurement should be made with the test article in an anechoic chamber
to eliminate effects of surroundings. But often the test is made by placing the device in an
absorber-lined box, or aiming the test antenna toward a room corner with absorber on the
walls. For small devices and antennas, it is possible to make remote impedance mea-
surements without any connecting cable. [12] For more on small antenna measurement
see [H.8.11: Hirasawa and Haneishi, Chap. 9].

Once an acceptable impedance match is achieved, the radiation patterns can be
measured, followed by gain and polarization using the procedures in this chapter. It
may be convenient to combine measurement steps. The patterns and the gain can
be measured simultaneously if the reference level of the pattern includes the gain.
Also, polarization characterization can be combined with the pattern measurement, as
shown in Figs. 13-16 and 13-17. With modern antenna measurement instruments, the
operator can choose from a range of data display formats and types after data collection
is complete.

Gain measurement is important because the impedance match can be good and the
patterns can look normal but with the gain being extremely low. This can happen for an
antenna that is very lossy. Remember that a dummy load has a VSWR of unity. To
reemphasize, just because the VSWR is low does not mean the antenna is operating well.
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PROBLEMS

13.1-1 Let sources Ja,Ma, Jb and Mb all be of the same frequency in a linear medium. The
following steps lead to the Lorentz reciprocity theorem:
(a) Maxwell’s equations for sources a are

r�Ea ¼ �jωμHa �Ma

r�Ha ¼ jωε Ea þ Ja

Similar equations can be written for sources b. Manipulate these four equations and use
the vector identity (C-19) to show that

r � ðEa �Hb � Eb �HaÞ ¼ Eb � Ja þHa � Mb �Hb � Ma � Ea � Jb

(b) Integrate the above equation over a volume v enclosing all sources, employ the
divergence theorem (C-23) for the left-hand side, and let the volume extend to infinity.
Then the fields arriving at the surface of the volume behave like spherical waves, and
the TEM wave relationships can be employed to show that the left-hand side is zero,
leading to a proof of (13-1).

13.1-2 Use the reciprocity theorem form of (13-2) to show that the distant field of any finite
electric current distribution in free space can have no radial component.
13.1-3 Since any two-port network can be reduced to an equivalent T-section, the general
antenna system of Fig. 13-2a can be modeled as shown in the figure. First, excite terminals a

with a current source Ia and find the open circuit output voltage Vb Ib¼0

�� . Then, excite terminals

b with a current source Ib and find the open circuit output voltage Va Ia¼0j . From these rela-
tionships, find Zba and Zab; they will, of course, be equal.
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Va Vb

Z1 Z2

Z3

13.1-4 Write the voltage equations for the network representation of Prob. 13.1-3 and compare
to (13-6) show that the T-section impedances are Z1 ¼ Zaa � Zm, Z2 ¼ Zbb � Zm, and Z3 ¼ Zm.
13.1-5 If antennas a and b are identical, how is the network of Probs. 13.1-3 and 13.1-4
simplified?
13.1-6 Reciprocity can also be shown with voltage generators and short circuit currents:

(a) Drive terminals a of the network in Prob. 13.1-3 with a voltage generator Va and short
circuit terminals b. Find the expression of Va=Ib Vb¼0

�� in terms of Z1, Z2, and Z3. Then
drive terminals b with voltage source Vb while short circuiting terminals a. Find
Vb=Ia Va¼0j . It should equal Va=Ib Vb¼0

�� .
(b) Find the same transfer impedance expressions in terms of Zaa, Zbb, Zab, and Zba from (13-

6). Show that they are equal if Zab ¼ Zba.
(c) Using Z1 ¼ Zaa � Zm, Z2 ¼ Zbb � Zm, and Z3 ¼ Zm from Prob. 13.1-4 show that the

transfer impedance expressions of (a) are the same as those of (b).
13.1-7 Using the model of Fig. 13-2a, excite antenna a with voltage Va and prove that the
power received in antenna b, which is terminated in load RL, is proportional to jZmj2 for
antenna b in the far field of a.
13.2-1 Anechoic chamber design. An anechoic chamber with a separation distance between
the source and test antenna of 7 m is to be used to measure the pattern of a 2-dB gain antenna.
Measurements are to be made from 1 to 12 GHz and a receiver dynamic range of 45 dB is
required for the pattern. The receiver has a sensitivity of �110 dBm at 1 GHz and �95 dBm at
12 GHz. The transmitter power is 10 dBm. Find the gain of the source antenna (constant over
the band) in order to keep the received signal power above the receiver sensitivity by an
amount equal to the dynamic range.
13.3-1 The three antenna method of gain measurement. (a) Derive expressions for the gains of
three antennas denoted 1, 2, and 3 with unknown gains G1,G2, and G3 in terms of the powers
measured with all three combinations of antennas used for transmit and receive: P12, P23,
and P13, as well as the transmit power Pt and the free space loss Lfs. Start by writing the
Friis transmission equations for each case in dB form. (b) Reduce the equations to the
gain comparison method result of (13-19) by using antennas with G1 ¼ Gt,G2 ¼ GT , and
G3 ¼ GS:
13.3-2 Derive a radiation efficiency expression for the Wheeler cap method using measured
values of S11fsj j2 for free space and S11cap

�� ��2 with the cap on. Start with the power form of the
efficiency equation in (2-177).
13.3-3 Receiving terminals are often quantified with a figure-of-merit called “G-over-T,”
which is the antenna gain divided by the system noise temperature expressed in dB:

G

T

����
dB

¼ GðdBÞ � 10 log TsysðK�Þ
h i

Calculate the G=T for the direct broadcast satellite terminal in Examples 4-3 and 4-4.
13.5-1 Derive (13-33) from (13-32).
13.5-2 A voltage of 200 μV (peak) is required at the input of an FM broadcast receiver for
acceptable performance. The receiver input impedance is 300Ω (real). The antenna is a lin-
early polarized folded dipole with an input impedance of 300þ j0Ω and has negligible loss.
The antenna has a gain of 1.64 and is oriented for maximum received signal. The connecting
transmission line is a 300-Ω twin lead. (a) What are the radiation and impedance efficiencies er
and q? (b) If the radio station transmitting antenna is circularly polarized, find the minimum
peak electric field in μV/m incident on the receiver required for reception at 100MHz.
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13.5-3 (a) Derive an expression for the antenna factor using (13-32) in (13-35). (b) Use this
relation to derive (13-36b). (c) Show that (a) reduces to the following popular formula for a
matched, 50-Ω system:

K ¼ 9:73

l
ffiffiffiffi
G

p m�1

13.5-4 Evaluate the antenna factor of a matched antenna operating at 30 MHz with a gain of
3 dB and terminated with a 50-Ω resistor.
13.5-5 An AM broadcast tower is a 75-m-tall monopole and transmits 50 kW at 1000 kHz.
Make reasonable assumptions needed to calculate the electric field 1 km away and compare to
the FCC minimum of 141 mV=m:
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Chapter14

CEM for Antennas:
The Method of Moments

14.1 GENERAL INTRODUCTION TO CEM

Computational electromagnetics (CEM) is broadly defined as the discipline that intrinsi-
cally and routinely involves the use of a digital computer to obtain numerical results for
electromagnetic problems. [1] It is a third tool available to electromagnetics engineers, the
other two being mathematical analysis (which we employed in the early chapters
of this book) and experimental observation (Chap. 13). It is not uncommon to verify
analysis results and CEM results with experimental results, nor is it uncommon to employ
analysis and/or CEM to understand experimental results. As CEM becomes more mature, it
is increasingly being used to design experiments and provides a cost-effective alternative to
solving electromagnetic problems when experimental results cannot be readily obtained.

CEM has developed a number of different techniques in recent decades, with a variety
of commercial software based on them for the simulation of electromagnetic problems. It
is very advantageous to understand the principles underlying the method being used in
order to know how to construct an efficient simulation model for a particular application
and how to set parameters in the software for the best accuracy and computation effi-
ciency. In the remaining chapters of this book, we will examine in detail a representative
sampling of CEM methods.

There are various ways to classify the assortment of techniques in CEM. First we will
divide CEM into two major categories: full-wave methods based upon “first principles”
(formerly called numerical methods) and high-frequency methods, as shown in Fig. 14-1.
Full-wave methods involve the discretization of the computational domain, which
includes the antenna or scatterer and in certain methods also the surrounding space,
followed by the generation of a matrix equation of the form [A][x]¼ [B] and its (sym-
bolic) solution [x]¼ [A]�1 [B] in the frequency domain (Chap. 14), or a marching onward
in space and time scheme in the time domain (Chap. 15). These techniques are applied
most easily to objects whose size in three dimensions is within an order of magnitude or
two of the wavelength. On the other hand, high-frequency methods, based upon
asymptotic expansions or assumptions about the current, are best suited to objects that are
many wavelengths in extent (see Fig. 14-2). These methods are considered in Chap. 16.

Under the category of full-wave methods, techniques can be classified as partial dif-
ferential equation (PDE) based or integral equation (IE) based, since Maxwell’s equations
can be expressed in either differential or integral form, respectively. PDE techniques
divide the antenna or scatterer and the space around it into small segments, patches, or
cells which interact with nearby segments, patches, or cells. Since surrounding space
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cannot be subdivided out to infinity, an absorbing boundary condition (ABC) must be
established around the object or objects to simulate infinity in radiation problems. In
contrast to this, IE techniques subdivide only the object or objects in the problem space
but not the space itself. Each subdivision interacts with all other subdivisions. The
equivalence theorem is used to produce equivalent currents radiating in free space out to
infinity. There are three types of integral equations: electric field integral equation (EFIE),
magnetic field integral equation (MFIE), and combined field integral equation (CFIE), the
latter being needed to overcome resonance phenomena.

Under the IE and PDE categories, there is a distinction between time domain and
frequency domain techniques. Because frequency domain techniques solve Maxwell’s
equations one frequency at a time, they are usually the natural choice for problems with
narrow bandwidths, in contrast to time domain techniques, which often calculate the
system impulse response, yielding, via Fourier transformation, data at multiple frequen-
cies. This makes time domain techniques relatively efficient for many wide bandwidth
problems.

Computational
electromagnetics

Full-wave
methods

Integral
equation

based

Time
domain

Time
domain

Frequency
domain

Frequency
domain

GO/UTD PO/PTD

FVTD MoM FDTD FEM

Differential
equation

based

Field
based

Current
based

High-frequency
methods

Figure 14-1 Categories within computational electromagnetics.

High-frequency methods

Full-wave methods

Object size

0.1λ 10λ 100λ 1000λλ Figure 14-2 Regions of
applicability for the major
categories of Fig. 14-1.
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When a problem is large in terms of the wavelength, full-wave methods become less
attractive because calculating the unknown currents or fields requires solving a very large
system of linear system equations or marching fields through a very large number of time
steps. This can put excessive demands upon computer resources. For such problems,
high-frequency methods provide a reasonable alternative (see Fig. 14-2). High-frequency
methods can be either field based or current based (see Fig. 14-1). Field-based methods
use ray optics to account for the reflection, refraction, and diffraction of electromagnetic
fields. Current-based methods start with a basic assumption about the relationship
between the current and the surface fields and then integrate over the current, and possibly
its refinements, to obtain the radiated field. In high-frequency methods, there is no need to
solve for the unknown currents or fields on the antenna or scatterer as is required in full-
wave methods, and therefore computer resources are often less of an issue. On the other
hand, we note that some high-frequency current-based simulations require tens of
thousands of facets on the radiating object because of its electrical size, resulting in a very
large problem to be simulated.

There are many techniques for modeling radiation problems. The following sections
of this book in Chaps. 14, 15, and 16, will examine four representative techniques in detail.
These are:

1. Method of moments (MoM)
2. Finite difference time domain (FDTD)
3. Geometrical optics (GO) with the uniform theory of diffraction (UTD)
4. Physical optics (PO) with the physical theory of diffraction (PTD)

These are not the only techniques in use today, but they probably represent the ones
most commonly used, other than the popular finite element method (FEM). There are
many FEM books, several of which are directed toward antennas [H.10.5: Volakis;
H.10.5: Jin]. Other popular CEM techniques are the finite volume time domain technique
(FVTD), the finite integral technique (FIT), and the transmission line matrix (TLM)
method, all of which have similarities to FDTD.

Another category of methods are hybrid methods, which combine several techniques
in order to capitalize on the strengths of each while avoiding the weaknesses of each.
Some of these are MoM-UTD, MoM-PO, FEM-MoM, FEM-PO, and FEM-FDTD. One
MoM-UTD method is discussed in Chap. 16.

Clearly there is a rich assortment of techniques available for solving a wide range of
antenna problems. An attempt to summarize the usual applicability of some of the more
common techniques is presented in Table 14-1. Note that FDTD has similarities to FVTD,
FIT, and TLM. Obviously no one technique is best for all problems.

Table 14-1 Representative Applicability of Some CEM Techniques

Large
Apertures Wire Ant. Printed Ant. Complex Media

Resonance
Phenomena

MoM 3(b) 1 2 2 1(e)

FDTD(a,c) 3 2 1 1 1
FEM(a) 3 2 1 1 2
GO/UTD 1 4 4 3(d) 4
PO/PTD 1 4 4 3(d) 4

(a) ABC required, free space discretized 1 – very good
(b) Fast solver required 2 – good
(c) Similar to FVTD, FIT, TLM 3 – sometimes applicable
(d) Via indirect means 4 – not applicable
(e) CFIE required
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The next section begins the discussion of the method of moments. The focus is on
antennas composed of wires or metallic tubes. The early use of the moment method in
electromagnetic problems dealt mostly with wire geometries. The wire geometry is a
one-dimensional problem. In recent years MoM has found application to the more
complicated problem of surfaces of arbitrary shape discretized into surface patches, a
two-dimensional MoM problem. The chapter will conclude with a brief discussion
of surface patches. Formulations for the discretization of dielectric volumes, a three-
dimensional MoM problem, have also become available.

14.2 INTRODUCTION TO THE METHOD OF MOMENTS1

Thus far, we have studied a variety of antenna configurations, but for the most part we
have assumed either that the current distribution was uniform (e.g., the ideal dipole) or
sinusoidal. It was then a relatively straightforward procedure to obtain the near- and
far-zone fields created by the current.

In the chapter, we eliminate the need for assuming the form of the current distribu-
tion. Naturally, this greatly expands the number of antenna configurations that can be
investigated. Indeed, we are then able to study, for example, wire antennas of almost
arbitrary configuration. The methods we use to do this are, therefore, very general
methods capable of yielding answers whose accuracy is within the limit of experimental
error. The potential price for using such powerful methods lies in the effort required to
write the necessary software, the time required for computer execution, and the effort
required for validation. Fortunately, cost-effective software is readily available and it is
not necessary to write software from “scratch.” However, a reasonable understanding of
the principles on which the electromagnetic software is based is necessary in order to
avoid its misuse and the misinterpretation of results.

Consider the wire antenna along the z-axis in Fig. 14-3. A generic form for an integral
equation describing such as antenna is

�
Z
Iðz0ÞKðz, z0Þ dz0 ¼ E0ðzÞ ð14-1Þ

The kernel Kðz, z0Þ depends on the specific integral equation formulation used; the
popular Pocklington form is presented in the next section.

Electromagnetic radiation problems can always be expressed as an integral equation
of the general form in (14-1) with an inhomogeneous source term on the right and the
unknown within the integral. However, it was not until the availability of modern high-
speed digital computers in the mid-1960s that it was feasible to solve most such equa-
tions. Since that time, many MoM procedures and codes have been developed [1–3].

MoM is a solution procedure for approximating an integral equation, such as that in
(14-1), with a system of simultaneous linear algebraic equations in terms of the unknown
current Iðz0Þ. [H.10.2: Harrington] Then, as we have seen in the previous chapters, once
the current is known, it is a fairly straightforward procedure to determine the radiation
pattern and impedance.

In this chapter, we set forth the basic principles involved in solving integral equations
via MoM and demonstrate the procedure with several examples. The serious student is
encouraged to use these basic principles to write a simple computer code, such as that
suggested by Prob. 14.5-1.

1 In disciplines other than electromagnetics, the method of moments is known as part of the boundary
element method (BEM).
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14.3 POCKLINGTON’S INTEGRAL EQUATION

One of the common integral equation that arises in the treatment of wire antennas is that
derived by Pocklington in 1897. It enabled him to show that the current distribution on
thin wires is approximately sinusoidal and propagates with nearly the speed of light. To
derive this equation, consider the wire of conductivity σ in Fig. 14-3a surrounded by free
space ðμo, εoÞ. Assume the conductivity of the wire is high (e.g., copper) such that the
current is largely confined to the surface of the wire. The equivalence model for the wire
becomes that in Fig. 14-3b (see Prob. 14.3-1), where current on the material wire is
replaced by the equivalent surface current in free space (i.e., the wire material
is removed). This step is necessary so that the vector potential, which employs the free-
space Green’s function, can be used.

When the wire radius is much less than the wavelength, we may assume only
z-directed currents are present. From the Lorentz gauge condition in (2-44),

@Az

@z
¼ �jωεoμoΦ ð14-2Þ

where Φ is the scalar potential and Az is the z-component of the magnetic vector potential.
If we use (2-39), the vector electric field arising from potentials is

E ¼ �jωA�rΦ ð14-3Þ
which for the situation in Fig. 14-3 reduces to the scalar equation

Ez ¼ �jωAz � @Φ
@z

ð14-4Þ

Taking the derivative of (14-2) and substituting into (14-4) gives

z

J

(   o,   o)μ ε (   o,   o)μ

μ

ε

(   o,   o)μ εε

ρ

σ

2a

z

J

ρ

2a

s

Highly conducting wire
with current density J.

Surface equivalence model with
equivalent surface current
density Js in free space.

(b)(a)

Figure 14-3 Highly conduct-
ing thin wire along z-axis.
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Ez ¼ 1

jωμoεo
@2Az

@z2
þ β2Az

� �
ð14-5Þ

If we consider a z-directed volume current element J dv0,

dEz ¼ 1

jωεo
@2ψðz, z0Þ

@z2
þ β2ψðz, z0Þ

� �
J dv0 ð14-6Þ

where ψðz, z0Þ is the free-space Green’s function given in (2-59) as

ψðz, z0Þ ¼ e�jβR

4πR
ð14-7Þ

and R is the distance between the observation point (x, y, z) and the source point
ðx0, y0, z0Þ or

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
ð14-8Þ

The total contribution to the electric field is the integral over the wire volume:

Ez ¼ 1

jωεo

ZZZ
@2ψðz, z 0Þ

@z2
þ β2ψðz, z 0Þ

� �
J dv0 ð14-9Þ

We only need consider a volume distribution of current density if the wire is not of
sufficiently high conductivity. If we assume the conductivity to be infinite, then the
current is confined to the wire surface and (14-9) reduces to

Ez ¼ 1

jωεo

I
c

Z L=2

�L=2

@2ψðz, z 0Þ
@z2

þ β2ψðz, z 0Þ
� �

Js dz 0 dφ0 ð14-10Þ

where c is the cross-sectional curve of the wire surface as shown in Fig. 14-4a. For wires
of good conducting material, the assumption of a surface current is approximately true
and leads to no complications. If one observes the surface current distribution from a
point on the wire axis as in Fig. 14-4b, then

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� z0Þ2 þ a2

q
ð14-11Þ

For a � l, the current distribution is nearly uniform with respect to φ0, and (14-10)
reduces to a line integral of (total) current. Thus,

Ez ¼ 1

jωεo

Z L=2

�L=2

@2ψðz, z0Þ
@z2

þ β2ψðz, z0Þ
� �

Iðz0Þ dz0 ð14-12Þ

Note that the equivalent filamentary line source Iðz0Þ is located a radial distance a from
the observation point as in Figs. 14-4c and 14-4d and that we have not assumed the wire
to be infinitely thin as was the case for dipoles studied in Chaps. 2 and 6.

In accordance with the surface equivalence principle of Sec. 9.1, we can denote the
quantity Ez in (14-12) as the scattered field Es

z. That is, E
s
z is the field radiated in free

space by the equivalent current Iðz0Þ. The other field present is the incident or impressed
field Ei

z. At the surface of the perfectly conducting wire and also interior to the wire,
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the sum of the tangential components of the scattered field and the incident field must be
zero. Hence, �Es

z ¼ þEi
z, and using (14-12) we write

�1

jωεo

Z L=2

�L=2

Iðz0Þ @2ψðz, z0Þ
@z2

þ β2ψðz, z0Þ
� �

dz0 ¼ Ei
zðzÞ ð14-13Þ

which is the type of integral equation derived by Pocklington and is of the general form
used in (14-1).

Eq. (14-13) is an integral equation of the first kind because the unknown Iðz0Þappears
only inside the integral. It is known as an integral equation because a boundary condition
is incorporated therein. This is in contrast to (14-12) that is merely an expression for the
so-called scattered field, which we can think of as that field radiated by a current inde-
pendent of how the current was established (e.g., an impressed source on an antenna or
incident plane wave).

Before we leave this section, it is worthwhile to summarize the important approx-
imations that were used based on the assumption that a � l.

1. Circumferential current on the wire is negligible.
2. Enforcement of the boundary condition on the surface of the wire (Fig. 14-4a) was

performed on the axis of the wire (Fig. 14-4b), and the surface current then
“collapsed” into a filament (Fig. 14-4c). By using reciprocity, the current filament
was placed on the axis of the wire and the observation point placed a distance “a”
away from the filament (Fig. 14-4d).

3. The distance R given by (14-11) leads to the widely used thin wire kernel or reduced
kernel. R can never be zero; hence, the kernel is never singular. However, it is nearly
singular and care must sometimes be taken during integrations when R� a.

In the following section, we illustrate how an integral equation such as (14-13) is
solved numerically and point out how the procedure is analogous to Kirchhoff’s network
equation as noted by [H.3: Schelkunoff] many years ago.

(   o,   o)μ ε

ε

z

Js

o (   o,   o)μ εo

μo o

Observation
point

(a)

c

R

L
2

L
2−

ε

z

Js

μo o

(b)

c

R

z

I(z′)

Observation
point

(c)

R

z

I(z′)

Observation
point

aaaa

(d)

R

Observation
point

Figure 14-4 Simulation models for a thin wire. (a) Wire with equivalent surface current
density Js and observation point on the surface. (b) Wire with surface current density Js and
observation point on the wire axis. (c) Equivalent filamentary line source for the situation in
(b). (d) Alternate representation of (c).
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14.4 INTEGRAL EQUATIONS AND KIRCHHOFF’S
NETWORK EQUATIONS

One purpose of this section is to show the resemblance between integral equations of the
type given in (14-13) and Kirchhoff’s network equations:

XN
n¼1

Zmn In ¼ Vm, m ¼ 1, 2, 3, : : :N ð14-14Þ

Thus, we will solve the integral equation numerically by writing N equations in N
unknowns just as we would do if we were solving an N mesh or N node circuit problem.

For convenience, let us write (14-13) in the form

�
Z L=2

�L=2

Iðz0ÞKðz, z0Þdz0 ¼ Ei
zðzÞ ð14-15Þ

The first step in solving (14-15) is to approximate the unknown current by a series of
known expansion functions Fn such that

Iðz0Þ ¼
XN
n¼1

InFnðz0Þ ð14-16Þ

where the In’s are complex expansion coefficients and are unknown. To keep the dis-
cussion as simple as possible, we assume the expansion functions are a set of orthogonal
pulse functions given by

Fnðz0Þ ¼
1 for z0 in Δzn

0

0 otherwise

�
ð14-17Þ

The expansion in terms of pulse functions is a “stairstep” approximation to the current
distribution on the wire, where the wire is divided into N segments of length Δzn

0.
See Fig. 14-5.

Substituting (14-16) into (14-15) gives

�
Z L=2

�L=2

XN
n¼1

InFnðz0ÞKðzm, z0Þ dz0 �Ei
zðzmÞ ð14-18Þ

where the subscript m on zm indicates that the integral equation is being enforced at
segment m. Note that the left side is only approximately equal to the right side because we
have replaced the actual current distribution with approximate distribution. Using (14-17)
in (14-18) enables us to write

I1

I2

I3
I4

Actual
distribution

I5

I6
I7

Δz′

z′

F7(z′)

Figure 14-5 “Staircase” approximation to an actual current distribution.
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�
XN
n¼1

In

Z
Δz0n

Kðzm, z0Þ dz0 � Ei
zðzmÞ ð14-19Þ

For convenience, we let

f ðzm, z0nÞ ¼ �
Z
Δz0n

Kðzm, z0Þ dz0 ð14-20Þ

Then (14-16) and (14-17) in (14-15) yield

�
Z L=2

�L=2

Iðz0ÞKðzm, z0Þdz0 � I1f ðzm, z01Þ þ I2f ðzm, z02Þ þ � � � þ Inf ðzm, z0nÞ

þ � � � þ INf ðzm, z0NÞ � Ei
zðzmÞ

ð14-21Þ

as illustrated in Fig. 14-5. A physical interpretation of this equation is as follows. The
wire has been divided up into N segments, each of length Δz0n ¼ Δz0, with the current
being an unknown constant over each segment. At the center of the mth segment, the sum
of the scattered fields from all N segments is set equal to the incident field at the point zm.
The incident field is a known field arising from either a source located on the wire
(transmitting case) or from a source located at a large distance (receiving case or radar
scattering case). As we might surmise, if a more accurate representation of Iðz0Þ is
required, then shorter segments (and a larger N) can be used. More will be said about this
later.

Eq. (14-21) leads to

XN
n¼1

Zmn In ¼ Vm ð14-22Þ

where in this example situation

Zmn ¼ f ðzm, z0nÞ ð14-23Þ
and

Vm ¼ Ei
zðzmÞ ð14-24Þ

Note that we have achieved our goal of reducing the electromagnetic problem to (14-22),
which is identical to the network formulation of (14-14). It should be mentioned, how-
ever, that in network problems Zmn is known at the start, whereas in electromagnetic
problems it is necessary to calculate Zmn as we have shown in this elementary example.

So far, we have only generated one equation in N unknowns. We need N � 1 additional
independent equations to solve for the N unknowns. To obtain these additional equations,
we choose a different zm for each equation. That is, we enforce the integral equation at N
points on the axis of the wire. The process of doing this is called point-matching. It is a
special case of the more general method of moments.

Point-matching at N points results in the following system of equations:

I1 f ðz1, z01Þ þ I2f ðz1, z02Þ þ � � � þ INf ðz1, z0NÞ ¼ Ei
zðz1Þ

I1 f ðz2, z01Þ þ I2f ðz2, z02Þ þ � � � þ INf ðz2, z0NÞ ¼ Ei
zðz2Þ

^ ^ ^ ^

I1 f ðzN , z01Þ þ I2f ðzN , z02Þ þ � � � þ INf ðzN , z0NÞ ¼ Ei
zðzNÞ

ð14-25Þ
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which can be written in the matrix form as

f ðz1, z01Þ f ðz1, z02Þ : : : f ðz1, z0NÞ
f ðz2, z01Þ f ðz2, z02Þ : : : f ðz2, z0NÞ

^ ^ ^

f ðzN , z01Þ f ðzN , z02Þ : : : f ðzN , z0NÞ

2
6664

3
7775

I1

I2

^

IN

2
6664

3
7775 ¼

Ei
zðz1Þ

Ei
zðz2Þ
^

Ei
zðzNÞ

2
6664

3
7775 ð14-26Þ

or in the compact notation as

½Zmn�½In� ¼ ½Vm� ð14-27Þ
where Zmn and Vm are given by (14-23) and (l4-24), respectively. We refer to the first
index (m) as the match point index because it is associated with the observation point at
which the mth equation is valid. The second index is the source point index since it is
associated with the field from the nth segment or nth source. Because of the analogy to
the network equations, the matrices ½Zmn�, ½In�, and ½Vm� are referred to as generalized
impedance, current, and voltage matrices, respectively. But this is only an analogy and
thus the units of ½Zmn�, ½In�, and ½Vm� need not necessarily be ohms, amperes, and volts,
respectively. The analogy is not restricted to collinear segments as in the example treated
here, but applies to arbitrary configurations of wires as well.

We can write the solution to (14-27) symbolically as

½In� ¼ ½Zmn��1½Vm� ð14-28Þ
In practice, the explicit inverse ½Zmn��1

is not usually evaluated, but instead the system of
equations is solved by one of several fairly standard matrix algorithms. Once ½In� is found,
the approximate current distribution of (14-16) is known in discrete form and we can then
proceed to determine impedance and radiation patterns or the radar cross section.

To summarize this section, we have obtained an elementary numerical solution to an
integral equation of the form in (14-15). This was done by successively enforcing the
integral equation at N different points, as illustrated in (14-25). For mathematical con-
venience and simplicity, the locations of the points were chosen to be at the center of the
N equal-length segments into which the wire was divided. Strictly speaking, in order for
the equations in (14-25) to be exact equalities, N must approach infinity. However, in
practice we can obtain accurate solutions for the current distribution by allowing N to be
sufficiently large, as will be demonstrated in the next section.

14.5 SOURCE MODELING

Three source models are commonly used in the MoM. For transmitting antennas, the delta
gap source and frill source produce the required incident field. For a receiving antenna or
scatterer, the incident field is usually a plane wave. We examine all three in this section.

No doubt, the most, used generator model in wire antenna theory is the delta gap
model, shown in Fig. 14-6, which is often referred to as a slice generator. Although such

VA

Ei

2
− VA

2
+

δ

z

Figure 14-6 The delta gap source model with impressed field Ei ¼ VA=δ.
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sources do not exist in practice, they do permit surprisingly good calculations to be made.
The source arises from the assumption that a voltage is placed across the gap, giving rise
to an impressed electric field Ei ¼ V/δ confined entirely to the gap (i.e., no fringing).
With reference to Fig. 14-6, the voltage across the gap is determined by the line integral
of the electric field across the gap. The result is VA ¼ þEiδ. The voltage VA applied across
the gap is not to be confused with the elements Vm in the generalized voltage matrix [Vm].
For a delta gap source model, Vm ¼ Ei ¼ VA/δ when the point-matching technique
is used.

A second generator model, which has practical significance, is the so-called frill
generator. Consider Fig. 14-7a that shows a coaxial line feeding a monopole on a ground
plane. Assuming a purely dominant mode distribution (TEM) in the coaxial aperture and
image theory, we can replace the ground plane and the coaxial aperture with a frill of
magnetic current as shown in Fig. 14-7b. Since the assumed form of the electric field in
the aperture is

Eρ0 ðρ0Þ ¼
1

2ρ0 lnðb=aÞ ð14-29Þ

the corresponding magnetic current distribution from M ¼ 2n̂�E is

Mφ0 ¼ 2Eρ0 ¼
�1

ρ0 lnðb=aÞ ð14-30Þ

from which it can be shown that the electric field on the axis of the monopole is
[4; H.10.2: Mittra, Ed., Chap. 2]

Ei
z 0; zð Þ ¼ 1

2ln ðb=aÞ
e�jβR1

R1

� e�jβR2

R2

� �
ð14-31Þ

b a b

z z

a

Eρ

(a) Coaxial line feeding a monopole
through a ground plane.

(b) Mathematical model of
Fig. 14-7a.

Frill of
magnetic
current

Figure 14-7 Magnetic frill source.
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where

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
ð14-32aÞ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
ð14-32bÞ

if the frill center is at the coordinate origin.
The third source to consider is that of an incident plane wave. To obtain the elements

in the generalized voltage matrix in this case, we need the tangential component of the
incident field at the match points along the axis of the wire dipole. For our z-directed
dipole of Fig. 14-4, this would be

Ei
tan ¼ ẑ � Eejβz cos θ ð14-33Þ

For example, for a unit amplitude plane wave normally incident on the z-directed dipole,
the elements of the generalized voltage matrix are all ð1þ j0Þ.

EXAMPLE 14-1 Point-Matching on a Short Dipole

The purpose of this example is to illustrate the application of (14-26). An objective is to use
MoM to determine the input impedance ZA of a short dipole with a length of 0:1l and a radius
of 0:005l. For convenience of illustration, choose N ¼ 5. With reference to Fig. 14-8, the
elements of ½Zmn� are calculated to be

½Zmn� ¼ 102

679:5+�89:99	 292:6+89:97	 33:03+89:73	 9:75+89:09	 4:24+87:92	

292:6+89:97	 679:5+�89:99	 292:6+89:97	 33:03+89:73	 9:75+89:09	

33:03+89:73	 292:6+89:97	 679:5+�89:99	 292:6+89:97	 33:03+89:73	

9:75+89:09	 33:03+89:73	 292:6+89:97	 679:5+�89:99	 292:6+89:97	

4:24+87:92	 9:75+89:09	 33:03+89:73	 292:6+89:97	 679:5+�89:99	

2
6666664

3
7777775

For a 1-V excitation at the center of the short dipole (i.e., segment 3), the following voltage
matrix ½Vm� is obtained using the frill source discussed in Sec. 14.5 with b=a ¼ 2:3, and upon
solving (14-28), the following current matrix ½In� is also obtained:

½Vm� ¼

0:484+�0:31	

3:128+�0:04	

67:938+�0:002	

3:128+�0:04	

0:484+�0:31	

2
6666664

3
7777775
, ½In� ¼ 10�3

0:78+89:54	

1:48+89:64	

2:35+89:75	

1:48+89:64	

0:78+89:54	

2
6666664

3
7777775

On the other hand, if a 1-V delta gap excitation is used, V3 ¼ 1=Δz ¼ 1=0:02 ¼ 50 +0	, and
the resulting voltage and current matrices are

½Vm� ¼

0+0	

0+0	

50:0+0	

0+0	

0+0	

2
6666664

3
7777775
, ½In� ¼ 10�3

0:52 +89:54	

0:98 +89:64	

1:63 +89:76	

0:98 +89:64	

0:52 +89:54	

2
6666664

3
7777775
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Note that the current distribution decreases from the center toward the ends as expected.
The input impedance for the frill may be found from ZA ¼ VA=I3 ¼ 1:0=ð2:35�
10�3 +89:75	Þ ¼ 425:53 +�89:75	 ¼ 1:857� j425:53 Ω. Comparing with the thinner
dipole in Figs. 6-5 and 6-6, we see that the input impedance of a 0.1 l long dipole also has a
very small real part and a large negative reactive part. Further, the real part of 1:857 Ω
compares fairly well with the approximate formula 20π2ðL=lÞ2 ¼ 1:974 Ω even though only
five segments were used here.

In the preceding example, a short dipole was represented by only five segments for the
purposes of numerical illustration. To illustrate the behavior of a pulse point-matching
solution to Pocklington’s equation for a resonant size dipole as the number of segments is
varied, consider Fig. 14-9. Fig. 14-9 shows the input impedance of a dipole of length
L ¼ 0:47 l as the number of segments varies from 10 to 120. Both the frill source
and delta gap are used. For both sources, it is apparent that for N sufficiently large,
the solution has converged to a final or reasonably stable result. In many instances,
N cannot be made arbitrarily large without encountering a numerically unstable result.
For example, the reactance of the delta gap source exhibits divergence for large N in
Fig. 14-9b, but this should not be viewed as a general behavior of the delta gap since it

Equivalent
filament
I(z′)

Frill

2.3

(for 50    )

F2 (z′)

z

R

R = R (z1, z′)

Z12 =   ∫ F2 (z′) K (z1, z′) dz′

x

b

a

z1 (Match point)

Center line of
original dipole

b
a =

Ω

−
Δz′2

K(zm, z′) = 1 e
o4 jπ εω

jβ− −
R5

(1
R

jβ βR) (2R2[ + +3a2) a2R2]2
Figure 14-8 Calculation of
Z12 for the short dipole in
Example 14-1.
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does not necessarily occur for other MoM formulations (e.g., Fig. 14-13b) or for (14-13)
if the order of differentiation and integration is interchanged.

A curve, such as those in Fig. 14-9, is well worth the effort since it clearly shows the con-
vergence behavior of a solution. A comparison with experimental data is shown in Fig. 14-10.

To summarize this section, an elementary numerical solution to an integral equation of
the form given in (14-15) was obtained by successively enforcing the integral equation at
N different points as illustrated in (14-25). For mathematical convenience and simplicity,
the segments were of equal length, and the match points were located at the center of each
segment. Strictly speaking, in order for the equations (14-25) to be exact equalities, N
must approach infinity. However, in practice, accurate solutions can be obtained by
allowing, N to be sufficiently large. In this regard, a convergence curve, such as that in
Fig. 14-9, can be invaluable.
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Figure 14-9 Curves showing convergence of input impedance as the number of pulse functions is
increased for two different sources: the delta gap and the frill.
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14.6 WEIGHTED RESIDUALS AND THE METHOD OF MOMENTS

Our objective in this section is to derive a moment method procedure more general than
the point-matching method of the previous section. This is accomplished by using an
approach known as the method of weighted residuals [5].

Consider the straight wire example of the previous section. Define the residual R to be
the sum of the tangential components of the scattered and incident fields:

R ¼ Es
tan þ Ei

tan ð14-34Þ
Clearly, we wish the residual to be zero and thereby satisfy the boundary condition.
In our example of Sec. 14.4, with pulse expansion functions the residual is found from
(14-19) to be

RðzÞ ¼ �
XN
n¼1

Inf ðz, z0nÞ þ Ei
zðzÞ ð14-35Þ

Stated in terms of the electric field boundary condition, the residual is the sum of the
tangential components of the scattered and incident fields at the wire surface. Eq. (14-35),
when evaluated for z ¼ zm, gives the residual at the mth match point, where, of course, the
residual must be zero since the solution for the In’s was obtained subject to the electric
field boundary condition at the N matching points. However, at points other than the
match points, the total tangential electric field will not generally be zero as Fig. 14-11
indicates. Therefore, the residual for z 6¼ zm, m ¼ 1, 2, 3 : : :N, will not be zero, either.
Physically, we can view the point-matching procedure as a relaxation of the boundary
condition such that it is only satisfied at specified points. In between those points, one can
only hope that the boundary condition is not so badly violated that the solution is ren-
dered useless. Thus, it is not surprising that as N is increased (within limits) the solution
tends to improve as we saw in Fig. 14-9.

In the method of weighted residuals the In’s are found such that the residual is forced
to zero in a weighted average sense. So, in the wire problem of Fig. 14-3 the weighted
integrals of the residual are set to zero as follows.Z

WmðzÞRðzÞ dz ¼ 0, m ¼ 1, 2, 3, : : : , N ð14-36Þ
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Figure 14-11 Normalized tangential electric field along one-half of a center-fed dipole with
pulse expansion functions and delta weighting functions (courtesy of E. K. Miller). Dots
indicate match point locations.
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where WmðzÞ is called a weighting or testing function. Substituting (14-35) into (14-36)
gives

�
Z L=2

�L=2

WmðzÞ
XN
n¼1

Inf ðz, z0nÞ dzþ
Z L=2

�L=2

WmðzÞEi
zðzÞ dz ¼ 0, m ¼ 1, 2, 3, : : : ,N

ð14-37Þ
If the weighting functions are the Dirac delta functions

WmðzÞ ¼ δðz� zmÞ ð14-38aÞ
then (14-37) reduces to (14-21). If the weighting functions are the pulse functions

WmðzÞ ¼
1 for z in Δzm

0 otherwise

�
ð14-38bÞ

then (14-37) becomes

�
XN
n¼1

In

Z
ΔZm

f ðz; z0nÞ dzþ
Z
ΔZm

Ei
zðzÞ dz ¼ 0, m ¼ 1, 2, 3, : : : ;N ð14-39Þ

It follows that

Zmn ¼
Z
ΔZm

f ðz, z0nÞ dz ð14-40aÞ

and

Vm ¼
Z
ΔZm

Ei
zðzÞ dz ð14-40bÞ

The current obtained from solving (14-40) will not necessarily be such that the sum of the
scattered and incident fields (i.e., the residual) is zero everywhere along the surface of
the wire, but the average over the wire will tend to be zero, presumably giving a more
accurate current distribution for a given N than when the weight functions are delta
functions. Actually, this may or may not be the case depending on the particular choice of
expansion functions for the current and weighting (or testing) functions.

The question of how one chooses the expansion functions and weighting functions is
certainly a valid one. It is, however, a question without a concise answer. But, as a rule of
thumb, it is desirable to choose expansion functions that closely resemble the anticipated
form of the current on the wire and to use the same functions for the weighting functions
as used for the expansion functions. There are exceptions to these rules including the
pulse point-matching solution of Sec. 14.4. When the expansion function and the weight
function are the same, the procedure is often referred to as Galerkin’s method, which is
closely related to variational methods.

EXAMPLE 14-2 Galerkin’s Method on a Short Dipole

The purpose of this example is to repeat Example 14-l using pulse functions for weight
functions instead of delta functions. With reference to Fig. 14-12, the impedance matrix ½Zmn�
for this pulse-pulse Galerkin solution based on (14-40) is calculated to be
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½Zmn� ¼ 102

14:4+�89:99	 6:14+89:97	 0:759+89:76	 0:206+89:14	 0:087+87:98	

6:14+89:97	 14:4+�89:99	 6:14+89:97	 0:759+89:76	 0:206+89:14	

0:759+89:76	 6:14+89:97	 14:4+�89:99	 6:14+89:97	 0:759+89:76	

0:206+89:14	 0:759+89:76	 6:14+89:97	 14:4+�89:99	 6:14+89:97	

0:087+87:98	 0:206+89:14	 0:759+89:76	 6:14+89:97	 14:4+�89:99	

2
6666664

3
7777775

The voltage matrix ½Vm�, using a 1-V frill source, and solution matrix ½In� are, respectively,

½Vm� ¼

0:011+�0:280	
0:089+�0:034	
0:791+�0:003	
0:089+�0:034	
0:011+�0:280	

2
6666664

3
7777775
, ½In� ¼ 10�3

0:49 +89:57	

0:91 +89:66	

1:38 +89:75	

0:91 +89:66	

0:49 +89:57	

2
6666664

3
7777775

On the other hand, if a 1-V delta gap excitation is used,

Equivalent
filament
I (z′)

Frill

2.3

F2 (z′)

F1 (z)

z

R

R R = R (z, z′)

Z12 =   

x

b

a

Center line of
orginal dipole

b
a =

−

Δz1 Δz′2

1
o4 jπ εω �F1 (z)�F2 (z′) K (z, z′) dz′ dz

Figure 14-12 Calculation of
Z12 for the short dipole in
Example 14-2.
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½Vm� ¼

0 +0	

0 +0	

1 +0	

0 +0	

0 +0	

2
6666664

3
7777775
, ½In� ¼ 10�3

0:49 +89:57	

0:91 +89:67	

1:52 +89:78	

0:91 +89:67	

0:49 +89:57	

2
6666664

3
7777775

Note that all these five matrices are different from those in Example 14-1. Of course, we would
expect ½Zmn� and ½Vm� to be different because they are computed by a different process.
The reason ½In� is different is solely attributable to the fact that N is only 5. As in Example 14-1, a
larger value of N is required in order to obtain a converged result. The input impedance based on
the above current using the frill source is ZA ¼ 3:162� j724 Ω, whereas for the delta gap source
ZA ¼ 2:526� j658 Ω. The impedance based on N ¼ 25 is ZA ¼ 2:35� j556 Ω.

Fig. 14-13 shows the convergence of the input impedance for a dipole of length 0:47l
using pulse expansion functions and pulse weighting functions in Pocklington’s equation.
Comparing with Fig. 14-9, we see that the convergence is more rapid with pulse weights
than delta weights, and the pulse-pulse formulation is less sensitive to the kind of source
(i.e., frill or delta gap) than the pulse-delta formulation. In many formulations, as in the
one here, the averaging process provided by nondelta weights tends to improve the rate of
convergence and stability of the solution.

Next, we relate the quantities in the weighted residual integral to Kirchhoff’s network
equations, just as was done in Sec. 14.4. In doing so, let us generalize somewhat and
consider a wire as shown in Fig. 14-14. In this case, the residual may be written as

Rð‘Þ ¼ Es
tanð‘Þ þ Ei

tanð‘Þ ¼
XN
n¼1

InE
s
nð‘Þ þ Ei

tanð‘Þ ð14-41Þ

and the weighted residual as Z
along wire

Wmð‘Þ � Rð‘Þ d‘ ¼ 0 ð14-42Þ
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Figure 14-13 Curves showing convergence of input impedance as the number of segments (pulse
Galerkin) is increased for two different sources: the delta gap and the frill.
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so that

XN
n¼1

In

Z Δ‘m=2

�Δ‘m=2

Wmð‘Þ � Es
nð‘Þ d‘þ

Z Δ‘m=2

�Δ‘m=2

Wmð‘Þ � Eið‘Þ d‘ ¼ 0, m ¼ 1, 2, 3, : : : , N

ð14-43Þ
This equation can be viewed in the form of (14-14) and if the scattered field from the nth
expansion function of the current is denoted as Es

nð‘Þ, then the general mnth element in
the generalized impedance matrix is

Zmn ¼ �
Z ‘m=2

�‘m=2

Wmð‘Þ � Es
nð‘Þ d‘ ð14-44Þ

and for the mth generalized voltage matrix element,

Vm ¼
Z ‘m=2

‘m=2

Wmð‘Þ � Eið‘Þ d‘ ð14-45Þ

where Wmð‘Þ is the mth testing function taken to be located interior to the wire as
suggested in Fig. 14-12. Strictly speaking, the test function should be located at the wire
surface (see Fig. 14-4a), in which case (14-44) and (14-45) would be double integrals
over the surface. In placing the testing function on the axis, we are in a sense modifying
the electric field boundary condition for the sake of mathematical simplification. In doing
this, experience has shown that we are restricted to wires for which the radius is less than
about 0:01l. This is sufficient for most wire antenna or scattering problems. For thicker
wires, a more exact formulation is available [6].

The process of expanding the unknown current Ið‘0Þ in a series of expansion functions
and then generating N equations in N unknowns using the weighted residual integral of
(14-42) is more commonly referred to in the electromagnetics literature as the method
of moments. MoM is, as we have seen in this section, equivalent to the method of
weighted residuals. If the testing or weighting functions are delta functions, then the
specific MoM procedure is known as point-matching. This is also known as collocation.
This was the procedure used to obtain the system of equations in (14-25). If both the test

2
Δ�m

2
Δ�m

�m

�n

−

Figure 14-14 Segmented curved wire.
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function and expansion function are the same, then the specific MoM procedure is known
as Galerkin’s method. A pulse-pulse Galerkin formulation was used in Example 14-2.
There are functions other than the pulse function that have been shown to be useful. Some
of these are discussed in Sec. 14.8. In the next section, we discuss two other approaches to
the MoM: the reaction concept and the linear algebra formulation.

14.7 TWO ALTERNATIVE APPROACHES TO THE METHOD
OF MOMENTS

In the previous sections of this chapter, MoM has been developed using an approach
that makes takes advantage of concepts a student is likely to have previously experienced
(e.g., Kirchhoff’s network equations and the use of the “staircase approximation” to an
integral in Sec. 14.4). Two other approaches to MoM are found in the literature. One has a
physical interpretation (i.e., reaction) and the other is entirely mathematical (i.e., the
linear algebra approach). This section will consider both of these approaches.

14.7.1 Reaction

In 1954, Rumsey introduced a physical observable (e.g., mass, length, charge, etc.) called
reaction that permitted a general approach to boundary value problems in electromag-
netic theory. [7] His approach resulted in the formulation of the reaction integral equation.
Eq. (14-43) is really a special form of the reaction integral equation that applies to wire
geometries. A rigorous derivation of the reaction integral equation can be derived using
only principles of electromagnetic theory. The derivation is somewhat difficult to follow
and so we will use inductive reasoning here, having derived (14-43) in the previous
section by the relatively straightforward weighted residual approach.

Reaction is basically “a measure of the coupling” between one source and another.
Thus, if we view the test function (weight function) as a test source, then the impedance
matrix elements given by (14-44) may be taken as a calculation of the coupling between
the mth test source and the scattered field from the nth expansion function or actual
source. Similarly, the mth voltage matrix element in (14-45) can be interpreted as the
coupling between the mth test source and the incident field. When referring to (14-45), for
instance, we can say that we are “reacting” the mth test source with the incident field, or
in the case of (14-44) that we are “reacting” the electric field from the nth actual source
with the current on the mth test source.

We obtained (14-43) for a wire. The method of moments or the method of weighted
residuals applies to geometries other than just wire geometries as indicated in Fig. 14-15a.
Consider the equivalent situation in Fig. 14-15b. Let ðJm, MmÞbe the surface current den-
sities of a test source and ðEm, HmÞ be the fields from the test source. The currents on the
conducting body are both replaced by equivalent surface currents ðJs, MsÞ radiating the
fields ðEs, HsÞ in free space. The generalization of (14-43) then becomesZ Z

S

ðJm � Es �Mm � HsÞ dsþ
Z Z

S

ðJm � Ei �Mm � HiÞ ds ¼ 0, m ¼ 1, 2 , 3, : : : , N

ð14-46Þ
The minus sign associated with Mm can be justified by referring to the reciprocity field
theorems in Sec. 13.1. The physical interpretation of (14-46) is that we wish to have zero
reaction (i.e., zero coupling) between the test source and the sum of the incident
and scattered fields. Clearly, this is equivalent to the condition stated by (14-36). Nev-
ertheless, the alternative physical interpretation offered by (14-46) and the reaction
concept is a useful one and the student will find it used in the literature.
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If we denote the fields from the nth expansion function of the actual current by
ðEs

n, H
s
nÞ, the sum of the N fields being ðEs, HsÞ, then we may write for the general mnth

element in the generalized impedance matrix:

Zmn ¼ �
Z Z

S

ðJm � Es
n �Mm � Hs

nÞ ds ð14-47Þ

Similarly, we may write the general mth element in the voltage matrix:

Vm ¼
Z Z

S

ðJm � Ei �Mm � HiÞ ds ð14-48Þ

The incident field ðEi, HiÞ, which originates from the impressed currents Ji in
Fig. 14-15a, may be the field from a source located on S (antenna transmitting situation)
or be from a source located at a great distance from S (antenna receiving and radar
scattering situation). The general relationships in (14-47) and (14-48) will be useful later
for both wire and nonwire geometries.

14.7.2 Linear Algebra Formulation of MoM

Another way of approaching the general formulation of MoM is through the use of linear
algebra. This is an approach commonly found in the literature [3]. Consider a general
metallic body with a surface current density J on it. For simplicity, assume there are no
magnetic currents. The extension of what follows to the case where both J and M are
present can be deduced easily from the previous section on reaction.

The development of the linear algebra approach begins by requiring that the total
tangential electric field be zero everywhere on the surface of the body, or that

0 ¼ Es
tan þ Ei

tan ð14-49Þ

Metallic
scattering

body
Ji, Mi

Ji, Mi
Jm, Mm

Si
S

(Js, Ms)

(E, H)

V
S

Test
source

Source current densities Ji and Mi acting in the presence of a
metallic scattering body bounded by surface S create
fields (E, H) exterior to S.

Test source interior to surface S with equivalent currents
(Js, Ms) in free space.

(a)

(b) Figure 14-15 Sources used in
reaction concept.
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where Es
tan is the scattered electric field radiated by the current density J and Ei

tanis the
tangential component of the incident electric field due to a source located anywhere on or
outside the body. We will drop the subscript tan since it will be understood that the
tangential electric field boundary condition is being used.

Rewriting (14-49) in the form

�Es ¼ Ei ð14-50Þ
and defining the operator

LopðJÞ ¼ �Es ð14-51Þ
we can use the concept of linear vector spaces and operators to write the operator
equation

LopðJÞ ¼ Ei ð14-52Þ
Where Lop is an operator that must be determined for the problem of interest, Ei is a
known excitation function or source, and J is the unknown response function to be
determined. In the problems that are considered in this chapter, Lop is an integral operator
operating on the current J.

For a given problem, we must determine the domain of definition of the operator or, in
other words, the space of functions on which it operates and also the range of the operator
or the functions resulting from the operation. In reality, the operator performs a mapping
from some subset containing J to one containing Ei. If the solution is to be unique, this
mapping must be one to one.

Next, expand the response (solution) function J in a series of basis functions
F1, F2, F3, : : : on a surface S and defined in the domain of Lop. That is,

J ¼
X
n

In Fn ð14-53Þ

where the coefficients In are, in general, complex. The In’s are the unknown coefficients
that are to be determined. Substituting (14-53) into (14-52) yields

Lop
X
n

InFn

 !
¼ Ei ð14-54Þ

Using the linearity of Lop, we get X
n

In LopðFnÞ ¼ Ei ð14-55Þ

The next step in the solution outlined above is to define a set of weighting functions
W1,W2, : : : in the domain of Lop and then form the inner product:X

n

InhWm, LopðFnÞi ¼ hWm, Eii ð14-56Þ

Note that if Wm is a delta function, (14-56) becomes the point-matching case, and if
Wm ¼ Fm then (14-56) is a Galerkin formulation (e.g., Sec. 14.6). For the Galerkin
formulation, write X

n

InhFm, LopðFnÞi ¼ hFm, E
ii ð14-57Þ

and the inner products appear as the reaction quantity mentioned earlier. Note that the
basis functions Fn and the weight functions Fm represent currents. The inner product
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hF, Ei is a scalar quantity obtained by integrating F � E over the surface under consid-
eration. This particular inner product is called reaction. The inner product is defined such
that the following conditions are satisfied:

hF, Ei ¼ hE, Fi ð14-58aÞ
hαFþ βF, Ei ¼ αhF, Ei þ βhF, Ei ð14-58bÞ

if

hF*, Fi > 0, then F 6¼ 0 ð14-58cÞ
if

hF*, Fi ¼ 0, then F ¼ 0 ð14-58dÞ
where α and β are scalars and * denotes complex conjugation.

The third step is to calculate the various inner products given in (14-56) and thereby
form the matrix equation

hF1, LopðF1Þi hF1 Lop ðF2Þi : : :
hF2, LopðF1Þi

:

:

:

:

:

:

:

:

:

:

:

2
666666666664

3
777777777775

I1

I2

:

:

:

IN

2
666666666664

3
777777777775
¼

hF1, E
ii

hF2, E
ii

:

:

:

hFN , E
ii

2
666666666664

3
777777777775

ð14-59Þ

or, in more compact notation,

½Zmn�½In� ¼ ½Vm� ð14-60Þ
The procedure for obtaining a MoM solution in terms of linear algebra can be sum-

marized in the following way:

1. Expand the unknown in a series of basis functions Fn, spanning J in the domain
of Lop.

2. Determine a suitable inner product and define a set of weighting functions.
3. Take the inner products and thereby form the matrix equation.
4. Solve the matrix equation for the unknown.

The first two steps are examined in more detail in Sec. 14.8.1.

EXAMPLE 14-3 Linear Algebra Interpretation of Sec. 14.6

The purpose of this example is to interpret the formulation given in (14-40) in terms of linear
algebra as discussed in this section. From (14-40a),

Zmn ¼
Z
Δzm

FmðzÞf ðz, z0nÞ dz

where

f ðz, z0nÞ ¼ �
Z
Δz 0n

Fnðz0ÞKðz, z0Þ dz0
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Thus,

Zmn ¼
Z
Δzm

FmðzÞ �
Z
Δz0n

Fnðz0ÞKðz, z0Þdz0
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LopðFnÞ

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hFm, LopðFnÞi

where the integral operator is given by

Lop ¼ �
Z
Δz0n

Kðz, z0Þ dz0

From (14-40b), write

Vm ¼
Z
Δzm

FmðzÞEi
zðzÞ dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hFm, E
i
zi

Note that the inner products actually contain a dot product of two vectors as in (14-44) and
(14-45), but the integral expressions above only contain scalars since the dot products have
effectively already been performed.

14.8 FORMULATION AND COMPUTATIONAL CONSIDERATIONS

The development and use of a computer model of an electromagnetic problem can be
divided into the following four steps:

1. Development of the mathematical formulation based on the physics of the
problem, the object size in terms of l, and mathematical principles (e.g., MoM,
FD-TD, etc.)

2. Coding the mathematical formulation into a computer algorithm
3. Validation of the computer code
4. Computation to solve analysis and design problems

The following six subsections address issues in MoM affecting item 1 of the preceding
list. The last subsection addresses the important issue of validation.

14.8.1 Other Expansion and Weighting Functions

In Secs. 14.5 and 14.6, the pulse function was used as the expansion function and either
the pulse function or delta function was used as the weighting function. The advantage of
these functions lies in the simplicity they provide to the mathematical formulation and,
hence, the coding. However, there are other functions commonly used. These include:

Triangle functions (piecewise linear):

JðzÞ ¼ Inðznþ1 � zÞ þ Inþ1ðz� znÞ
Δzn

for z in Δzn

0 otherwise

8>>><
>>>:

ð14-61Þ
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Piecewise sinusoidal:

JðzÞ ¼ In sinβðznþ1 � zÞ þ Inþ1 sin βðz� znÞ
sin β Δzn

for z in Δzn

0 otherwise

8>>><
>>>:

ð14-62Þ

Sinusoidal interpolation:

JðzÞ ¼ An þ Bn sin βðz� znÞ þ Cn cos βðz� znÞ for z in Δzn

0 otherwise

�
ð14-63Þ

where Δzn ¼ znþ1 � zn.
The triangle functions were introduced in much of Harrington’s early work and were

used both as expansion and weighting functions (a Galerkin formulation). The triangle
Galerkin formulation is also used in the MININEC Professional thin wire code [8].

Piecewise sinusoidal functions were first used by Richmond in a Galerkin formulation
developed with the reaction integral equation [9]. These functions are computationally
very efficient for wire geometries in free space, in part because the actual current dis-
tributions are nearly sinusoidal. A convergence curve for a dipole impedance is shown in
Fig. 14-16. The rapid convergence is evident. The piecewise sinusoidal function is
illustrated in Fig. 14-17a. Two segments are required to define the function. When several
functions are used, as for the dipole suggested by Fig. 14-17b, each function overlaps
with adjacent functions. The junction of two (or more) segments is called a node.
In Fig. 14-17b, there are five nodes and there are five functions spanning six segments.
Seven points (i.e., five nodes plus two end-points) are required to define the six segments.
On the other hand, if there are no endpoints as in a loop, the number of nodes, the number
of segments, and the number of overlapping functions are all the same.

The sinusoidal interpolation function along with delta weighting functions is used in
the Numerical Electromagnetics Code or NEC code as it is widely known [10].

The choice of functions has been the subject of research in past years. Some discussion
of this may be found in [11] and [H.10.2: Moore]. The choice of functions is also
influenced by a consideration of how to treat junctions of more than two wires. In the case
of the (nonoverlapping) pulse function, no special consideration is required. In fact,
Kirchhoff’s current law will automatically be satisfied at a multiwire junction as a con-
sequence of Maxwell’s equations being satisfied. In the case of overlapping functions
(e.g., triangle, piecewise sinusoid) at a junction of N wires, there are N� 1 independent
currents (the Nth being determined by Kirchhoff’s current law); therefore, only N� 1
functions are needed that go across the N-wire junction (see Prob. 14.13-3).
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Figure 14-16 Input impedance con-
vergence of a piecewise sinusoidal
(PWS) Galerkin code [9] for two
different wire radii.
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14.8.2 Other Electric Field Integral Equations for Wires

One form of an electric field integral equation (EFIE) is the Pocklington form in
Sec. 14.3. Another form is the potential form used by Harrington [3] in his pioneering
work. For z-directed wires, the potential form is

Ei ¼
Z L=2

�L=2

jωμoIðz0Þ �
1

jωεo
@Iðz0Þ
@z0

@

@z

� �
e�jβR

4πR
dz0 ð14-64Þ

which is derived by using both the vector and scalar potentials (see Probs. 14.3-3 and
14.8-1). This form can provide more rapid convergence than the Pocklington form, which
implies that convergence rates are dependent on the characteristics of the kernel as well as
the choice of expansion and weighting functions.

(a) Piecewise sinusoidal expansion function.

(b) Set of overlapping expansion functions on
     an open-ended wire.

N1

N = node

zn − 1 zn + 1zn

N2 N3 N4 N5EP EP

EP = endpoint

#1 #5

#4#3#2

Figure 14-17 Illustration of
overlapping expansion func-
tions using the piecewise
sinusoid.

100

80

60

40

20

 a = 0.005λ
L = 0.47λ

0
0 20

N, Number of pulse functions
40 60 80 100

In
pu

t i
m

pe
da

nc
e 

(Z
A
),

Ω

RA

XA

Figure 14-18 Convergence of Hallen’s equation using pulse expansion functions and point-
matching.
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A quite different appearing equation for wire antenna work is that due to Hallen (see
Prob. 14.8-2). Hallen’s integral equation for a z-directed wire antenna is

Z L=2

�L=2

Iðz0Þ e
�jβR

4πR
dz0 ¼ � j

η
C1 cos βzþ VA

2
sin βjzj

� �
ð14-65Þ

where VA is the terminal voltage.
Hallen’s equation has a simple kernel and is generally simpler to code than the either

the Pocklington or potential forms. For N unknowns, there must be N þ 1 equations
because the constant C1 is an unknown as well [12]. Example 14-4 shows a sample
impedance matrix, whereas Fig. 14-18 shows the rate of convergence for pulse expansion
functions and delta weights.

EXAMPLE 14-4 Subdomain Solution of Hallen’s Equation

The purpose of this example is to implement a pulse expansion function, point-matching
solution to Hallen’s equation for a z-directed wire dipole. The solution can be expressed as

XN
n¼1

In Zmn þ C0
1cos βzm ¼ Vm, m ¼ 1, 2, : : : ,N þ 1

where

Zmn ¼
Z Δz0n=2

�Δz0n=2

e�jβR

R
dz0, Vm ¼ �j

2πVA

η
sin βjzj, C0

1 ¼ j
4π
η
C1

and R is given by (l4-11). Treating C
0
1 as an unknown rather than C1 significantly improves the

condition number of the matrix ½Z 0
mn� shown below. The Zmn for m 6¼ n are easily computed by

numerical integration. For m ¼ n, special care may be necessary for very small wire radii. The
match points are chosen at the center of each pulse function, but an odd number of functions
are required so that there is a match at the feed location. Further, it is necessary to have a
match point at one end of the dipole (see Prob. 14.8-2). This is accomplished conceptually by
employing a “phantom pulse” extending Δz=2 beyond one end of the dipole such that there is
a match point at the end of the dipole.

For a dipole 0:1l in length, radius 0:005l, and three pulse functions, the following modified
(because of the C

0
1 term) impedance matrix is written as

½Zmn� Z
0
1,Nþ1

^

Z
0
Nþ1,1 : : : : : Z

0
Nþ1,Nþ1

2
64

3
75

where the block ½Zmn� is toeplitz, the N þ 1 column is given by

Z
0
1,Nþ1 ¼ cosðβziÞ

and the remaining elements Z 0
Nþ1,i are found from the numerical evaluation of the integral

(above) in this example (see Fig. 14-19). Thus, for the short dipole numerical example being
used here, the modified impedance matrix is

½Z 0
mn� ¼

3:83 +�3:13	 1:08+�11:1	 0:51 +�23:6	 0:98 +0	

1:08 +�11:1	 3:83+�3:13	 1:08 +�11:1	 1:00 +0	

0:51 +�23:6	 1:08+�11:1	 3:83 +�3:13	 0:98 +0	

0:40 +�29:7	 0:69+�17:4	 2:59 +�4:62	 0:95 +0	

2
6664

3
7775
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The voltage matrix is

½Vm� ¼ 10�3

3:46 +�90	
0+�90	

3:46 +�90	
5:15 +�90	

2
6664

3
7775

Solving for the current matrix gives

½In� ¼ 10�3

0:84+89:45	

1:98+89:69	

0:84+89:45	

9:41+�95:02	

2
6664

3
7775

Note that I4 is the value for the coefficient C
0
1 for which there is no further use. The input

impedance is 1:0=ð1:98� 10�3+89:69	Þ ¼ 2:75� j504 Ω. If five pulses were used instead of
just three, the input impedance would be 2:1� j489 Ω, which more closely agrees with the
approximate value of 1:974 Ω for the real part obtained from 20π2ðL=lÞ2.

14.8.3 Computer Time Considerations

Historically, there have been two computer limitations to the use of MoM: the amount of
computer storage necessary for the N2 impedance matrix elements and the amount
of time to compute those N2 elements and solve the resulting system of equations.
Computer technology has significantly decreased the impact of the first limitation. Iter-
ative methods have increased the speed of solution of a system of dense simultaneous
equations, leaving the time required to compute the N2 elements as a major limitation on
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3
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∫ R
Re β−
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(       z′)2+

Figure 14-19 Calculation of
Z43 for the short dipole in
Example 14-4.
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the electrical size of an object that can be reasonably accommodated by MoM (see
Fig. 14-2). Let us examine where the computation time is spent.

A square impedance matrix of N2 elements is said to be of order N. Let Ni be the
number of different source or incident fields (i.e., radar cross section is a function of
incidence angle) associated with a given impedance matrix and let Na be the number
of observation points at which the field is to be computed from the current solution; then
the time t for execution will be approximately given by [6]

t C AN2 þ B3N
3 þ CN2Ni þ DNNiNa ð14-66Þ

where the algorithm and computer-dependent factors A, B, C, and D are

A ¼ time required to compute a typical impedance matrix element
B3N

3 ¼ time required to solve ½Zmn�½In� ¼ ½Vm�for ½In� by matrix
inversion ½In� ¼ ½Zmn��1½Vm� for a system of order N

CN2Ni ¼ time required to perform the operation ½Zmn��1½Vm� or its equivalent
for each new ½Vm�

DNNiNa ¼ time for computing the far field from ½In�

The second term in (14-66) dominates. However, it is unlikely that we would solve a
large system of equations by finding the inverse. Instead, usually an algorithm such as
Gauss-Jordan or Crout is used, in which case B3N

3-B2N
2 and we have

t C AN2 þ B2N
2 þ CN2Ni þ DNNiNa ð14-67Þ

which is a significant reduction in the solution time required for large N. If iterative
methods are used, more favorable reductions are possible using advanced solver algo-
rithms such as the fast multipole method (FMM) discussed next.

Solving a MoM matrix using direct matrix inversion limits the technique to low-
frequency applications because the problem size (N) is typically proportional to
frequency squared using surface patch discretization. [13] This translates to computa-
tional time being proportional to frequency to the sixth power. For example, if a problem
can be solved at 1 GHz, to solve the same problem at 10 GHz will require at least 104

times the computer resources and take 106 times longer to solve. Even if computer speed
doubles every 18 months, the increase in computational speed only produces a minuscule
decrease in solve time. The use of iterative solvers reduces the computational time to N2.
Even so the computational time is proportional to the frequency to the fourth power. It is
evident that for the MoM to be of practical use, parallel computing technology needs to
be coupled with advanced solver algorithms that further reduce the computational time
scaling factor from N2 to N. Several numerical techniques [14–18] were developed in the
early 1990s to address this need to further reduce the solution time for iterative methods.
The discussion of each technique is beyond the scope of this book; the fast multipole
method will be briefly described here as it has received the most intense research com-
pared to other fast solver techniques.

The fast multipole method (FMM) [14–16, 19–20] was developed to further reduce the
solution time for iterative methods by speeding up the matrix-vector multiply step during
the iterative solve. In the FMM procedure, the basis functions of an object are divided into
groups. For nearby groups, the impedance matrix elements are calculated by direct
numerical integration of the radiation integral similar to how the near diagonal terms of
the impedance matrix are calculated for direct solve. For source and test elements in two
well-separated groups, the Green’s function is replaced by a multipole expansion using
the addition theorem. This allows the source point and test point to be decoupled but
related through the center of their respective groups. The interaction between the source
and test elements is calculated by “aggregating” the radiations from source elements to
the center of the source group, “translating” the interaction from the center of the source
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group to the center of the test group, then “disaggregating” the received fields from the
center of the test group to the test element. Applying FMM to an iterative solver can
reduce the solve time from O(N2) to O(N1.5) for the single-level FMM or to O(N logN) for
the multilevel FMM. [21, 22] While the scaling factor is reduced, the constant associated
with it is much larger than that for direct solve and iterative solve.

The steps involved in the FMM implementation are much more complicated than
direct solvers. In addition, the accuracy of the FMM solution depends on proper setting of
the convergence tolerance for the iteration steps and the number of terms included in the
multipole expansion. Fast direct solvers, such as the adaptive cross approximation (ACA)
[23], that minimize the burden of implementation and application have become an area of
active research. Fast solver and parallel computing technologies have made the MoM
practical for many engineering problems.

When the second term in (14-66) is on the order of N2 or less, then usually the first
term in (14-66), which is associated with the time required to calculate the matrix ele-
ments, becomes the dominating factor. In the following subsections, we examine briefly
some ways, other than FMM, for reducing the total time required for the operations
indicated in (14-66).

14.8.4 Toeplitz Matrices

Certain types of problems produce impedance matrices where there is a systematic
repetition in the matrix elements. Often, this repetition can be used to decrease the impact
of both the first and second terms in (14-66). Consider the straight wire in Fig. 14-3. If the
segments are of equal length, all the values of the N2 matrix elements are contained in any
one row of ½Zmn�, say, the first one. All other rows are merely a rearranged version of the
first. The remaining elements can be obtained by the rearrangement algorithm:

Zmn ¼ Z1,jm�njþ1, m$ 2, n$ 1 ð14-68Þ
Such a matrix is said to be a toeplitz matrix. Computer programs exist for solving toeplitz
matrices that are considerably more efficient than those for solving a non- toeplitz matrix.
For a toeplitz matrix, the first two terms in (14-66) become AN and BN5/3, respectively,
and the execution time in (14-66) is reduced as in

t C AN þ B1N
5=3 þ CN2Ni þ DNNiNa ð14-69Þ

for which there is a significant improvement in the first term as well as the second.
Toeplitz matrices can arise in the treatment of certain wire geometries. These are the

straight wire (see Examples 14-1 and 14-2), the circular loop, and the helix. A toeplitz
matrix can also arise in the treatment of geometries other than the wire, but these are
outside the scope of this chapter.

14.8.5 Block Toeplitz Matrices

Consider the linear array of parallel dipoles in Fig. 14-20. The impedance matrix that
characterizes the array will be toeplitz by blocks or submatrices when the array elements
are of the same length and equally spaced. Thus, if the impedance matrix for the array
[Z]array is written in terms of submatrices [S] as

½Z�array ¼

½S�11 ½S�12 : : : ½S�1J
½S�21 ½S�22 : : : ½S�2J

^ & ^

½S�J1 : : : ½S�JJ

2
6664

3
7775 ¼

½S�11 ½S�12 : : : ½S�1J
½S�12 ½S�11 : : : ½S�1ðJ�1Þ

^ & ^

½S�1J ½S�1ðJ�1Þ : : : ½S�11

2
6664

3
7775 ð14-70Þ
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where ½S�ij ¼ ½Zmn�, the entire impedance matrix is toeplitz by blocks. Thus, if one row of
submatrices is known, the remaining submatrices may be filled by the algorithm

½S�ij ¼ ½S�1,ji�jjþ1, i$ 2, j$ 1 ð14-71Þ
Consequently, the first term in (14-66) is of order N2=J, where J is the number of
independent submatrices. The second term in (14-66) will be of order N9=5.

If the submatrices are themselves toeplitz, as they would be if all segments are of
identical length and radius, then the matrix fill time is reduced even further. Computer
programs exist for solving block toeplitz matrices. The potential savings in execution
time for a problem that is block toeplitz over the same size nonblock toeplitz problem can
be considerable.

14.8.6 Compressed Matrices

In certain problems, there will be a repetition in the values within ½In� due to the symmetry
of the problem. If this can be recognized in advance, it can be used to advantage to
compress the matrix from order N to order N/L, where L is the degree of symmetry.

Consider the following simple but very common example of symmetry suggested by
Fig. 14-7a. Here, the monopole and its image will have a symmetrical current about the
feed point. Suppose In ¼ InþN=2; then we can write

XN=2
n¼1

ðZmn þ Zm,nþN=2ÞIn ¼ Vm, m ¼ 1, 2, 3, : : : , N=2 ð14-72Þ

The solution of this compressed system of N/2 equations will yield the N/2 independent
In’s. From (14-67), we see that the solution time for the system is B2ðN=2Þ2, or a
reduction in time by a factor of 4 for this portion of the computing process. For higher
degrees of symmetry, the savings in time would be even more considerable. For some
large problems, it may be necessary to compress the matrix for another reason, namely
storage requirements. It is possible that an impedance matrix may be so large that it
cannot be stored in readily available core memory and that through symmetry it may be
compressed to a reasonable size.

xn

xn

y

z

x1

x1
x2

x2

x

θ

φ
Figure 14-20 Linear array of
parallel dipoles.
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So, it is the execution time and computer storage that tend to limit the electrical size of
problems that may be reasonably treated with MoM. In some of the following sections,
we will approach certain situations in such a way that the impact of these two limitations
is minimized.

14.8.7 Validation

A computer code must reliably produce accurate results if it is to be useful. Errors in the
code are most likely to occur because of an encoding mistake, but can also occur due to
an oversight in the mathematical formulation or cumulative numerical errors caused
by large numbers of numerical operations and/or inadequate numerical precision.
The investigation of the possible existence of errors such as these, as well as others, is the
process of validation. We examine two kinds of validation: external validation and
internal validation.

External validation usually means that the output of a code is compared against either
experimental measurements or the output of an independent code (perhaps thereby val-
idating both codes). Near-field quantities, such as antenna input impedance, are more
critical gages than far-field quantities. Consequently, earlier figures in this chapter have
used the input impedance as a check against both experimental data and results from
other independent codes.

Internal validation usually implies that additional coding and/or computational effort is
involved. Some examples of internal checks are:

1. A convergence check to establish that a limiting value is smoothly approached as
N is increased

2. A power balance check where the power supplied by the incident field is equal to
the radiated plus dissipated powers

3. A reciprocity check where source and observation points are interchanged
4. Boundary condition check where the applicable boundary condition (e.g., total

tangential E is zero) is met

Of these four checks, only the last is both necessary and sufficient. The others are nec-
essary but not sufficient checks.

In the case of a code that is written to handle a wide variety of geometries, frequencies,
and so on, representative sample of such situations must be validated much like a new
aircraft must be test flown in a variety of different configurations, speeds, weather con-
ditions, and so on, before it can be certified as safe for general use.

14.9 CALCULATION OF ANTENNA AND SCATTERER
CHARACTERISTICS

Thus far, our discussion of MoM has been mainly concerned with acquiring a knowledge
of some unknown current distribution. Now consider how we can obtain other infor-
mation as well. But first, we should make one further remark about the currents derived
from the solution of the matrix equation.

If pulse functions are used as the expansion functions in the point-matching technique,
a knowledge of the current coefficients In means that the current distribution at the match
points is known “precisely,” if we assume, of course, that the solution has converged. In
between the match points, we do not know the current, but since the distance between the
match points is small in terms of the wavelength, one can simply fit a curve through
the current values at the match points to obtain a good approximation of the current
distribution along the wire.

In the case of overlapping functions, such as the piecewise sinusoidal or the triangle
(see the previous section), a knowledge of the coefficients In again only means that the

c14 7 April 2012; 9:34:56

618 Chapter 14 CEM for Antennas: The Method of Moments



current is known at the junctions of the segments. Along the segments, we use the
overlapping functions themselves to approximate the current distribution between seg-
ment junctions.

After we have determined the current distribution, the input or terminal current can be
found by evaluating the current distribution at the antenna terminal location. In turn then,
the input impedance may be calculated by dividing the terminal voltage by the terminal
current. The calculation of accurate impedance data is a task that is somewhat sensitive to
the model used for the feed point. Two such models were discussed in Sec. 14.5.

Distributive loading, which arises when a wire is not perfectly conducting, may affect
the current distribution in certain situations. For simplicity, consider a wire whose axis is
parallel to the z-axis. When the wire has finite conductivity, we can relate the tangential
electric field at the surface of the wire to the equivalent electric surface current density by
the use of the surface impedance Zs, which is defined as the ratio of the tangential electric
field strength at the surface of a conductor to the current density that flows as a result of
that tangential electric field. Thus,

E ¼ ZsJs ð14-73Þ
Using Ms ¼ E� n̂ and the relationship Js ¼ ẑIðzÞ=2πa, we can write

Ms ¼ ZsJs � ρ̂ ¼ f̂ZsIðzÞ
2πa

ð14-74Þ

Writing the reaction integral equation from (14-46) and reciprocity as

�
Z Z

S

ðEm � Js �Hm � MsÞ ds ¼ Vm ð14-75Þ

and substituting (14-74) lead to

�
Z
IðzÞ½ẑ � Em � Zsf̂ � HmÞ dz ¼ Vm ð14-76Þ

Using (14-16) in (14-76), we can write the generalized impedance matrix element Z
0
mn,

modified for finite conducting wires, as

Z 0
mn ¼

Z
Δzn

FnðzÞẑ � Em dz� Zs

Z
Δzn

FnðzÞf̂ � Hm dz ð14-77Þ

From Ampere’s law, a suitable approximation for Hm is

f̂ � Hm ¼ FmðzÞ
2πa

ð14-78Þ

and thus (14-75) can be written as

Z
0
mn ¼ Zmn � Zs

2πa

Z
ðm,nÞ

FnðzÞFmðzÞ dz ð14-79Þ

where region ðm, nÞ is the wire surface shared by testing or weighting function m and
expansion or basis function n. In the case of overlapping expansion functions, this region
covers two intersecting segments if m and n are equal. When m 6¼ n, the shared region
covers, at most, one wire segment. This means that distributive loading is accounted for
by a modification of only the appropriate main diagonal elements, and those elements
adjacent to the modified main diagonal elements if overlapping functions are being used.

c14 7 April 2012; 9:34:56

14.9 Calculation of Antenna and Scatterer Characteristics 619



In the case of nonoverlapping functions, such as the pulse, only the main diagonal ele-
ments are modified.

The effect of either lumped loading (considered in Sec. 14.10) or distributive loading
is to alter the current distribution on the wire antenna or scatterer. If we, know the current
distribution, the far field can be obtained by the classical methods used previously in this
book (e.g., Sec. 2.4). To illustrate, consider again z-directed segments with pulse
expansion functions of the current. Then from (8-41), we can write

E ¼ θ̂jωμ
e�jβr
4πr

Δz sin θ
XN�1

n¼0

Ine
jβz 0n cos θ ð14-80Þ

where z0n is the center of each short segment.
Once the far field is known, the gain may be determined from the general relationship

Gðθ, φÞ ¼ ½jEθj2 þ jEφj2�r2
30jIAj2RA

ð14-81Þ

where RA is the real part of the antenna input impedance. The directivity is obtained by
replacing RA with Rr, the radiation resistance.

The radar cross section may be found as (similar to (4-67))

σ ¼ lim
r-N

4πr2
jEsj2
jEij2 ð14-82Þ

where Es can be determined, for example, from (14-12). The radar cross section for a
short circuited dipole scatterer is shown in Fig. 14-21.

The radiation efficiency is calculated using (2-178) as

er ¼ Rr

RA

¼ Rr

Rr þ Ro

ð14-83Þ

Ro is the loss resistance due to dissipative loading, either distributed or lumped (see
Sec. 14.10.1). Alternatively, we could determine the radiated power by integrating the
power density in the far field as we did in Chap. 2. However, the above method (14-83)
is computationally more efficient.
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Figure 14-21 Monostatic radar cross section of
a straight wire at normal incidence as a function
of wire length.
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From the discussion in this section, we can see, among other things, that refinements
such as losses due to finite conductivity (distributive loading) or the effects of lumped
loading can be included into a moment method solution in a fairly straightforward
manner. In the next section, we investigate lumped loading further.

14.10 THE WIRE ANTENNA OR SCATTERER
AS AN N-PORT NETWORK

In Sec. 14.4, we saw the resemblance between the simultaneous linear equation appro-
ximation of an integral equation and Kirchhoff ’s network equations. It follows that we
may view the junction of two or more segments as a port in the usual circuit sense as
indicated by Fig.14-22a. At each port, we may place either series or parallel elements
that are either passive or active. Series connections are treated on an impedance basis,
whereas parallel connections are handled on an admittance basis. This section considers
both types.

14.10.1 Series Connections

We already have considered a single generator placed at the junction of two wire seg-
ments (e.g., Sec. 14.5). The generator was in series with the implied port terminals
located at the ends of the two adjacent segments. We could, of course, place as many
generators on the wire as there are segment junctions. Thus, for an N-segment dipole,
there would be N � 1 ports. If there is no generator or passive element across the port, the
port is understood to be short-circuited.

Previously in Sec. 14.9, we saw how distributed loading was accounted for in the
moment method by modifying certain elements in the impedance matrix. Here, let us

Port 1

Port 2

Port 3

Port 4

(a) N − 1 port terminal pairs.

(b) Equivalent circuit for the mth port.
4

3

2

1

mth port

Im

Im

Zm

ZmVm

Vg
m

Vg
m= −−

−

−

+

+

+

Figure 14-22 N segment wire showing ports.
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examine how lumped loading may be handled. If a load Zm is inserted into a wire antenna
at segment junction m having a current Im, the total voltage acting at that point is

Vm ¼ Vg
m � Im Zm ð14-84Þ

where Vg
m represents a voltage generator that may be located at point m in series with Zm

as indicated in Fig. 14-22b. In many cases, Vg
m will be zero. Considering the mth equation

in a system of N linear equations, we can write

XN
n¼1

Zmn In ¼ Vg
m � Im Zm ð14-85Þ

or

XN
n¼1

Z 0
mn In ¼ Vg

m ð14-86Þ

where

Z 0
mm ¼ Zmm þ Zm ð14-87Þ

Except for the diagonal elements, the new impedance matrix is the same as the original,
or Z

0
mn ¼ Zmn, m 6¼ n. Thus, the effect of lumped loading may be accounted for by simply

adding the load impedances Zm to the corresponding diagonal elements in the impedance
matrix. The effects of lumped loading can be substantial. For example, resistive loading
can be used to achieve increased bandwidth, but at the expense of lower efficiency. Or,
lumped loading can be used for impedance matching as in Fig. 6-45.

14.10.2 Parallel Connections

In the previous subsection, we saw how circuit elements, when connected in series at a
given port, resulted in modification of certain entries in the open-circuit moment method
impedance [Zmn]. If, however, we connect one port in parallel with another as in a log-
periodic antenna, then it is necessary to work with the short-circuit moment method
admittance matrix ½Ymn�.

Consider Fig. 14-23 that shows a log-periodic dipole antenna (LPDA). The LPDA is
viewed as the parallel connection of two N-port networks. One N-port represents the
mutual coupling between N dipole antennas. The other represents the transmission line
that interconnects the dipoles. Therefore, there is one network port for each of the dipoles
in the system.

The approach is shown schematically in Fig. 14-24. The N-port labeled “antenna ele-
ments” includes the self- and mutual impedances between N unconnected dipole antennas
located arbitrarily in space. The “transmission line” N-port represents the transmission line
connecting the dipole antennas. Included in this network is the effect of reversing the
polarity between successive dipoles. Note that there is a current source Is on the LPDA. If
there are Ne dipole elements on the antenna, then there are voltage sources applied on ports
1, 2, 3, . . . ,Ne. Also, there is a terminating admittance on the LPDA antenna Yt that exists at
port 1.We do not know the numerical values of the applied voltage sources. Thus, theymust
be found before we can solve for the currents on the LPDA.

Let [YA] and [ZA] be the short-circuit admittance matrix and open-circuit impedance
matrix, respectively, for the “antenna elements” network, where [YA] ¼ [ZA]

�1. We note
that [ZA] is not the moment method impedance matrix. An element of [ZA], say, [ZA]ij,
represents the voltage induced on dipole i in the LPDA by a unit current on dipole j with
all other dipoles open-circuited. Thus,
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½ZA�ij ¼
Vi

Ij
ð14-88Þ

Let [YT] be the short-circuit admittance matrix for the “transmission line” network. Let
[IA] and [VA] be the column matrices representing the voltage and current at each port of
the “antenna elements” network. Since the two networks are in parallel, the total current
can be written as

½Is� ¼ ½½YA� þ ½YT ��½VA� ð14-89Þ
where [Is] represents the applied current sources. The [Is] matrix contains all zero ele-
ments, except at the port where there is a current source Is. The current source, of course,
represents the excitation of the LPDA antenna. Note in (14-89) that we know the entry in
[Is] but not the entries in [VA]. These must be found so that the moment method column
matrix [Vm] can be constructed and the usual equation [In] ¼ [Zmn]

�1[Vm] ¼ [Ymn][Vm]
solved for the current distributions in the antenna dipole elements. But before we can
solve (14-89) for [VA] and construct [Vm], we must know [YA] and [YT].
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Figure 14-23 Log-periodic dipole antenna.
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Figure 14-24 Schematic representation of the LPDA network of Fig. 14-23.
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To obtain the elements of [YA], we proceed as follows. Consider an LPDA with Ne

dipoles and M expansion functions on each dipole. The moment method impedance
matrix will be of order Ne � M. To obtain the moment method admittance matrix [Ymn],
we note that [Ymn] ¼ [Zmn]

�1 and

½I� ¼ ½Zmn��1½V � ¼ ½Ymn�½V� ð14-90Þ
or

Im ¼
XM�Ne

n¼1

YmnVn, m ¼ 1, 2, : : : , M � Ne ð14-91Þ

To obtain [YA], we note that most of the Vn’s will be zero since voltages are only applied
by the transmission line on the center ports of each dipole in the LPDA. Suppose we
rearrange the system of equations in (14-91) such that the first Ne entries in [V] as well as
[I] correspond to the center ports of the dipoles in the LPDA. Then the currents at those
ports containing a generator (i.e., antenna element ports) are related to the voltages at
those ports by

Ij ¼
XNe
i¼1

YjiVi, j ¼ 1, 2, : : : , Ne ð14-92Þ

or

½IA� ¼ ½YA�½VA� ð14-93Þ
where all the Vi’s in [VA] will be nonzero. (See Prob. 14.10-1.) In finding [YA] in this
manner, we have done so without making approximations other than those appropriate to
the moment method itself. Indeed, all mutual couplings are included and we are
not limited to LPDAs of less than 2:1 bandwidth as in the treatments by Carrel [24] and
Kyle [25].

To obtain the transmission line admittance matrix [YT] in (14-89), we first recognize
that [YT] is the transmission line admittance matrix for a simple terminated transmission
line with a port at the position where each dipole is connected. Since [YT] is the short-
circuit admittance matrix, a given element (YT)ji represents the current induced across
port j (which is shorted) by a unit voltage at port i, with all other ports shorted. Thus,
(YT)ji is nonzero only for i� 1 # j # iþ 1:

It is possible to write the transmission line admittance matrix [YT] in a straightforward
fashion [25]. For a single LPDA, it is

½YT � ¼

ðYt � jYo cotβd1Þ �jYo cscβd1 0 ? 0

�jYo cscβd1 �jYoðcotβd1 þ cotβd2Þ �jYo cscβd2 ? 0

0 �jYo cscβd2 �jYoðcotβd2 þ cotβd3Þ ? 0

: : : : : : : : : : : : : : :

0 0 0 �jYo cscβdNe�1 �jYo cotβdNe�1

2
6666664

3
7777775

(14-94)

where Yo is the transmission line characteristic admittance and β the propagation constant
of the transmission line. (See Prob. 14.10-2.)

With the proper elements of both [YA] and [YT] in hand, the voltages [VA] acting at the
driven port of each dipole are

½VA� ¼ ½½YA� þ ½YT ���1½Is� ð14-95Þ
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where [Is] has one nonzero entry. With these voltages at each dipole, the moment method
voltage matrix [Vm] can be filled and the current distribution on each dipole in the LPDA
obtained from

½In� ¼ ½Zmn��1½Vm� ð14-96Þ
where the elements of [VA] are the nonzero elements of [Vm] and the elements of [In] are
the complex coefficients associated with the expansion functions on the various dipole
elements.

It is worthwhile to summarize the above procedure for analyzing the LPDA. First,
the open-circuit impedance matrix [Zmn] was formed in the usual manner. By taking the
inverse of [Zmn], the short-circuit admittance matrix was obtained. Next, the antenna
elements admittance matrix [YA] was formed from [Ymn] as in (14-91) and (14-92). Then
[YA] was added to the transmisstion line admittance matrix [YT], Then the current gen-
erator shown in Figs. 14-23 and 14-24 was used in (14-95) to obtain the voltage [VA]
acting at each dipole port. These voltages were then used to obtain the moments method
voltage matrix [Vm]. Solution for the currents [In] on each dipole in the LPDA followed
according to (14-96). Patterns obtained using this procedure are given in Fig. 7-43 and
agree with those in [H.8.3: Rumsey].

14.11 ANTENNA ARRAYS

The use of moment methods in the analysis and design of arrays of wire antennas (or
scatterers) has significant advantages over the more classical methods used in treating
arrays in that mutual coupling between array elements is taken completely into account
(e.g., see the LPDA treatment in Sec. 14.10.2). Furthermore, no unrealistic assumptions
need be made regarding the current distributions on the wires, and the array elements can
be excited at any point(s) or be loaded at any point(s) along their lengths. Thus, the type
of wire element array problem that can be considered is rather general. In this section, we
examine several array configurations of parallel dipoles and illustrate some typical mutual
coupling effects.

14.11.1 The Linear Array

Consider the linear array of parallel wire elements shown in Fig. 14-20. The elements
need not be of the same length and radius or be equally spaced in order to be treated by
MoM. Clearly, they could be quite arbitrarily configured and, in fact, need not even be
parallel. However, in this subsection we wish to illustrate the effects of mutual coupling in
a typical linear dipole array by comparing MoM results (using a voltage generator with an
internal impedance of 72Ω) with results suggested by the methods of Chap. 8 (i.e.,
current generator excitation). For this purpose, without loss of generality, we consider a
linear array of 12 equally spaced ðd ¼ l=2Þ, parallel, center-fed, half-wave dipoles
phased for a beam maximum 45	 off broadside. Each dipole is divided into six segments
and a 1-V generator is placed in series with a 72Ω resistance at the center port of each
dipole, the piecewise sinusoidal current amplitudes obtained using (l4-62) and the
methods of Sec. 14.7.1 are given in Table 14-2. We note that neither the feed point
currents nor the input impedances [see (8-93)] are identical across the-array. This is due
to mutual coupling. Since the main beam is at φo ¼ 45	, there is no symmetry in
the currents about the array center as there would be if the array were phased for
broadside radiation.

The normalized patterns are shown in Figs. 14-25a and 14-25b along with the
normalized pattern for uniform current excitation. In spite of the differences noted in
Table 14-2, there is little difference seen in the three normalized patterns shown
in Figs. 14-25a and 14-25b. There is, of course, some small difference in the directivity
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in the two cases. It is possible to synthesize (see Chap. 10) the excitation voltages such
that maximum gain is achieved. If this were done, the resulting currents at the fed ports
would be of unit magnitude, whereas the voltages needed to establish these unit mag-
nitude currents would generally be of nonunit magnitude.

14.11.2 The Circular Array

Consider the circular array in Fig. 14-26 that is also known as a ring array [H.8.2: Ma,
Chap. 3]. Such arrays have been used in radio direction finding, radar, sonar, and in other
systems applications. Usually, circular arrays are composed of identical, equally spaced
elements as indicated in Fig. 14-26, and each dipole is excited at its center. If we tem-
porarily replace each dipole with a point source at the excited dipole ports, we can write
for the array factor (see Sec. 8.1):

AFðθ, φÞ ¼
XN
n¼1

Ine
jαnej½βρ

0
n sin θ cos ðφ�φnÞ� ð14-97Þ

where In is the current excitation of the nth element located at φ ¼ φn, αn is the asso-
ciated phase excitation relative to the array center located at the coordinate origin, and ρ0n
is the radial distance of each element center from the origin (all of which equal b for the
circular array case). For the usual case of cophasal excitation,

αn ¼ �βρ0n sin θo cos ðφo � φnÞ ð14-98Þ
where ðθo, φoÞis the desired position of the main beam maximum.

For the half-wave dipoles, the element pattern is given approximately by (3-4). Thus,
the complete pattern for the circular array of half-wave dipoles with an assumed sinu-
soidal current distribution can be written as

Fðθ, φÞ ¼
cos

�
π
2
cos θ

�
sin θ

PN
n¼1

Ine
jαnej½βρ

0
n sin θ cos ðφ�φnÞ�

PN
n¼1

In

ð14-99Þ

Table 14-2 Normalized Terminal Currents for a Linear Array of 12 Half-Wavelength Spaced,
Parallel, Half-Wave Dipoles; a¼ 0.0001l

Zero Generator Impedance 72-Ω Generator Impedance

Element Number jIAj jZAj jIAj jZAja

1 0.689 107.1 0.746 111.9
2 0.698 105.9 0.760 108.6
3 0.728 101.5 0.799 99.6
4 0.753 98.2 0.829 93.5
5 0.768 96.3 0.847 89.9
6 0.777 95.2 0.856 88.2
7 0.781 94.7 0.854 88.6
8 0.775 95.4 0.837 91.8
9 0.753 98.2 0.806 98.1
10 0.713 103.7 0.777 104.4
11 0.689 107.3 0.802 98.8
12 1.000 74.0 1.000 65.1

aExclusive of 72-Ω generator impedance.
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where the assumption is made that (8-100) applies rather than (8-104).
The analysis of the circular array in (14-97) to (14-99) is, of course, based on known

currents on the array elements. In practice, we usually apply voltages rather than currents
to the array element ports. To determine the currents established by the voltages, we can
use MoM, thereby including all mutual effects.

We will consider the circular array in Fig. 14-26 to be composed of identical, equally
spaced dipoles. Thus, certain simplifications in the moment method formulation are
possible. With the excitation at the centers of all dipoles, it is clear that the current
distributions will have even symmetry about the z ¼ 0 plane. This image symmetry can
be used to compress the size of the impedance matrix [Zmn] of each dipole as discussed
in Sec. 14.8.6. (This could also have been done for the linear array in the previous
section.) In addition to this, the impedance matrix for the circular array will take the
submatrix form

Current generator

0

–10

(a)

 = 0°

dB

0

–10

–20

(b)

dB

Voltage generator (unloaded)

Current generator
Voltage generator (loaded)

φ = 180°φ

 = 180°φ  = 0°φ

Figure 14-25 Linear array patterns with main beam steered to φo ¼ 45	 and ideal current
generators (solid curve) compared to patterns from an array with voltage generators (see
Table 14-2). (a) Linear array pattern for unloaded voltage generator excitations (dashed
curve). (b) Linear array pattern for 72-Ω loaded voltage generator excitations (dashed curve).
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½Z�array ¼

½S�11 ½S�12 : : : ½S�1N
½S�1N ½S�11 : : : ½S�1ðN�1Þ
^ ^ & ^

½S�12 ½S�13 : : : ½S�11

2
6664

3
7775 ð14-100Þ

where [S]ij¼ [Zmn], and each [Zmn] may be compressed as described in Sec. 14.8.6. The
matrix in (14-100) is not only toeplitz, but also goes by the name “block circulant.” It can
be shown that the inverse of a block circulant matrix is also block circulant. Thus, [Y]array
would be block circulant. In a block circulant matrix, successive rows of blocks repeat the
previous row but begin with the last block of the previous row.

If we use 1-V voltage generators in series with a 72-Ω impedance at the center of each
dipole in a 12-element circular array with l=2 spacing, the currents given in Table 14-3

b

x

L

z

y

Dipole n
Dipole 3

Dipole 2

Dipole 1

Dipole N    1−

1φ

2n φφ

Figure 14-26 Circular array of dipoles.

Table 14-3 Normalized Terminal Currents
for a Circular Array of 12 Half-Wavelength
Spaced, Parallel Half-Wave Dipoles (72-Ω

loaded voltage generators)

Element Number jIAj
1 0.735
2 0.566
3 0.628
4 0.517
5 0.547
6 0.791
7 1.000
8 0.791
9 0.547
10 0.517
11 0.628
12 0.566
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resulted using phases from (14-98). The almost 2:1 variation in current magnitude is the
result of mutual coupling. The corresponding pattern in the azimuthal plane is shown in
Fig. 14-27. For purposes of comparison, also shown is the pattern for uniform (current)
excitation calculated using (14-97). The difference between the two types of patterns is
more noticeable here than in Fig. 14-27 for the linear array. Although the pattern with the
voltage generator obtained using the moment method is the more realistic of the two, an
advantage of the moment method is that it does yield the input impedance of the elements
for any scan angle, thereby providing information for the design of the feed network (see
Sec. 8.9).

14.11.3 Two-Dimensional Planar Array of Dipoles

Consider a two-dimensional array of parallel dipoles located in the xz-plane as shown in
Fig. 14-28. Our purpose here is to use MoM to show how the input impedance of an
element in the array varies with scan angle.

Fig. 14-28 shows the input impedance variation of the center element in a 7 � 9 array
(i.e., seven collinear elements in an E-plane row by nine parallel elements in an H-plane
row). Three scanning conditions are illustrated: H-plane, E-plane, and the 45	 plane
between the E- and H-planes. It is clear from Fig. 14-28 that the input impedance does
vary considerably with scan angle and the variation depends on the plane of scan. Clearly,
this variation poses a challenging design problem for the engineer responsible for
designing the array feed and matching network.

Note that as the array is scanned in the E-plane (zy-plane) to 90	 (i.e., “endfire”), the
real part of the input impedance is tending toward zero, which in turn means the element
is tending not to radiate! Indeed, although the other elements in the array will not have
exactly the same behavior, most of them (except the edge elements) will behave similarly
and the entire array will tend not to radiate! This phenomenon is known as Wood’s
anomaly, or the blindspot phenomenon, and it would seem inappropriate not to mention it
in a book on antenna principles. Wood’s anomaly is more likely to occur in large arrays

Current generator
Voltage generator

0

dB
10−

20−

30−

φ

φ = 270° φ = 90°

φ = 180°

Figure 14-27 Patterns of the circular array of Fig. 14-26 with 12 elements for uniform current
excitation (solid curve) and for 72-Ω loaded voltage generators with currents of Table 14-3
(dashed curve).
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than in the relatively small one considered here. Fortunately, Wood’s anomaly can be
avoided in some arrays by suitable choices in the array design parameters as well as in the
element design itself. (See Sec. 8.9.)

An explanation for Wood’s anomaly lies in an understanding of surface waves. In the
E-plane, as the array is scanned farther and farther away from broadside, there is a larger
and larger component of the electric field normal to the array plane. The metallic elements
in the dipole array simulate a metallic surface for the currents that flow in the direction
established by the E-plane. Thus, a surface wave is excited in the E-plane direction
that can consume the output power of the array if the array is large. This surface wave
phenomenon is similar to the creeping wave discussed in Sec. 16.11.

In the H-plane, no such surface wave is possible because at large scan angles, the
electric field is trying to propagate tangential to the simulated metallic surface and tends to
be shorted out by it. Similarly, the creeping wave in Sec. 16.11 tends not to propagate
when the electric field is parallel to a metallic surface.

The moment method analysis of a two-dimensional array such as that in Fig. 14-28
is aided by the block toeplitz nature of the problem. Much larger arrays than that in
Fig. 14-28 can be analyzed and designed with the aid of MoM even if the number of
unknowns is in the tens of thousands. However, for arrays of such size, other methods
of analysis are available [H.8.2: Amitay].

14.11.4 Summary

In this section, we illustrated, through the use of several examples, the application of the
moment method to antenna arrays. The examples show us several things. First,
the moment method takes into account all mutual couplings and makes it unnecessary to
assume the current distribution on the elements in the array or to assume that each
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Figure 14-28 Input impedance variation of a central element in a 7 � 9 dipole array as a
function of scan angle for three planes of scan ðdx ¼ dz ¼ 0:5lÞ:
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element has the same pattern. Second, the moment method directly provides accurate
information concerning the input impedance of various elements under any scan condi-
tion. Third, the assumption of a sinusoidal current distribution on a thin half-wave
dipole in an array environment is a pretty good one and, therefore, the classical methods
of dipole array analysis based on this assumption are quite accurate. It is for elements
other than the dipole that the moment method has an obvious additional advantage.

14.12 RADAR CROSS SECTION OF ANTENNAS

The study of antenna scattering is a combination of two electromagnetic disciplines:
antennas and scattering. Usually, antenna analysis considers the antenna to be a trans-
mitter, whereas part of the study of antenna scattering requires the antenna to be viewed
as a receiver. Even in the receiving case, if we are just interested in the power delivered to
a load, we can conveniently use antenna transmitting properties and reciprocity. But if we
are also interested in how an antenna scatters energy into surrounding space, then a
detailed knowledge of the induced currents on all parts of the antenna structure is
required. In general, this is a difficult task, but one that is tractable using MoM.

To begin our discussion, consider the Thevenin equivalent circuit of Fig. 14-29 for an
antenna as a function of its load impedance. In this circuit, ZA ¼ RA þ jXA is the antenna
impedance, ZL ¼ RL þ jXL is the load impedance, and VA is the open-circuit voltage
induced at the antenna terminals. VA can be related to the incident electric field Ei as
in [26] by

VA ¼ �hr
A

� Ei ð14-101Þ

where hrA is the antenna vector effective length upon receiving, evaluated in the direction
of reception. (Note that (14-101) from [26] differs from (4-2).) By reciprocity, this
antenna vector effective length is equal to that of the antenna upon transmitting htA,
evaluated in the same direction and defined such that the far field radiated by the antenna
under unit current excitation is

Et ¼ �j
η
2l

htA
e�jβr

r
ð14-102Þ

where r is the radial distance from the antenna to the observation point.
The signs associated with (14-101) and (14-102) are such that the positive terminal

during reception is the terminal into which positive sense current enters during trans-
mission. The receiving current is then given by

IAðZLÞ ¼ � VA

ZA þ ZL
ð14-103Þ

With this terminology defined, we now state that the field scattered by an antenna as a
function of its load impedance is given by

−

+
VA ZL

ZA

IA

Figure 14-29 Antenna Thevenin equivalent circuit
used by Green [26].
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EsðZLÞ ¼ Esð0Þ � ZLIð0Þ
ZL þ ZA

Et ð14-104Þ

where Es(0) and I(0) are, respectively, the scattered field and terminal current under short-
circuit conditions, ZL ¼ 0. The frequency, polarization, and directions of incidence and
reception are assumed to be fixed. This basic equation of antenna scattering was derived
by King and Harrison [27] using compensation and superposition theorems in circuit
analysis, Stevenson [28] using field theory, and Hu [29] using circuit and field theories
combined. Aharoni [H.3: Aharoni] provides a textbook discussion. A derivation from the
field point of view is also offered by Green [26]. Derivations employing the scattering
matrix are given by Collin [H.3: Collin] and Hansen [30]

Eq. (14-104) is not quite in the form we need for our investigation of antenna scat-
tering. To obtain the form used by Green [26], set ZL ¼ Z*

A, complex conjugate of the
antenna impedance, and solve for Es(0):

Esð0Þ ¼ EsðZ*
AÞ þ

Z*
AIð0Þ
2RA

Et ð14-105Þ

The use of (14-103), first with ZL ¼ 0 and then with ZL ¼ Z*
A, leads to

Ið0Þ ¼ 2RA

ZA
IðZ*

AÞ ð14-106Þ

so that (14-105) becomes

Esð0Þ ¼ EsðZ*
AÞ þ

Z*
A

ZA
IðZ*

AÞEt ð14-107Þ

These last two equations, substituted into (14-104), yield the fundamental equation due to
Green:

EsðZLÞ ¼ EsðZ*
AÞ þ

1

ZA
Z*
A �

2RAZL

ZA þ ZL

� �
IðZ*

AÞEt ð14-108Þ

or

EsðZLÞ ¼ EsðZ*
AÞ � ½IðZ*

AÞEt�Γm ð14-109Þ
where the quantity

Γm 
 ZL � Z*
A

ZL þ ZA
¼

ZL þ jXA

RA
� 1

ZL þ jXA

RA
þ 1

ð14-110Þ

is a modified voltage reflection coefficient in contrast with the usual definition of
reflection coefficient.

The quantity ½IðZ*
AÞEt�Γm in (14-109) is called the antenna mode component of the

scattered field because it is completely determined by the radiation properties of the
antenna. It vanishes when the antenna is conjugate-matched. This term is related to
the energy absorbed in the load of a lossless antenna as well as the energy reradiated
by the antenna due to load mismatch. The pattern of the energy scattered in the antenna
mode is exactly that of the antenna radiation pattern. The other quantity on the right-hand
side of (14-109), EsðZ*

AÞ, is called the structural scattering or residual scattering

c14 7 April 2012; 9:35:0

632 Chapter 14 CEM for Antennas: The Method of Moments



component. It arises from the currents induced on the antenna surface by the incident
wave even when the antenna has been conjugate-matched.

Hansen [30] gives an alternative formulation to that of Green in (14-109) in terms of a
conventional load match. However, his formulation does not appear to be generally
superior to Green’s.

A conceptualization of antenna mode and residual mode scattering is possible from
the point of view of point-matching [31]. Fig. 14-30 shows the excitation of a dipole by
a plane wave [31]. The arrows depict the amplitude of the plane wave at the match
points. The (b) part of the figure shows the usual antenna excitation that gives rise to the
antenna mode term, whereas the (c) part shows the difference between the plane wave
excitation and the antenna mode excitation that is the residual (structural) mode
excitation.

A primary reason for being interested in antenna scattering is to determine the radar
cross section of an antenna. In the case of antenna mode scattering, it is possible to derive
the following simple expression for the antennamode component of the radar cross section:

σant ¼ Γ2G2ðθ, fÞ l
2

4π
ð14-111Þ

However, no such simple expression is possible for the structural mode radar cross
section.

Fig. 14-31 shows the broadside monostatic RCS of a dipole 0.5 m in length terminated
in a 72-Ω load as the frequency is varied from 100 to 2000 MHz [31]. We observe peaks
in the curve at the first three dipole resonances near 300, 900, and 1500 MHz as expected.
Near 300 MHz, the RCS is due to the residual mode since the dipole is conjugate-mat-
ched at its first resonance. Above about 1000MHz, the RCS is also dominated by the
residual scattering, but this is because the antenna mode radiation pattern is weak or zero
in the broadside direction.

Fig. 14-32 shows the bistatic scattered field for the residual mode and antenna mode
when a plane wave is incident at angles of 90, 60, and 30	 from the axis of a 1:723l
dipole with a load of 72 Ω. In comparing the curves in Figs. 14-32a and 14-32b, we first
observe that the antenna mode bistatic electric field curves are all symmetric about
θs ¼ 90	, whereas the structural mode curves for θs ¼ 60	 and 30	 are not. This is a
further illustration of the antenna-like behavior of the antenna mode. The very weak

(a) Plane wave excitation.

(b) Antenna mode excitation.

(c) Structural mode excitation.
Figure 14-30 Conceptualization of antenna
mode and structural mode scattering.

c14 7 April 2012; 9:35:0

14.12 Radar Cross Section of Antennas 633



0.28

0.24

0.20

0.16

0.12

St
ru

ct
ur

al
 m

od
e 

E
-f

ie
ld

 m
ag

ni
tu

de

0.08

0.04

0.00

0.28

0.24

0.20

0.16

0.12

A
nt

en
na

 m
od

e 
E

-f
ie

ld
 m

ag
ni

tu
de

0.08

0.04

0.00

0 20 40

60°
90°

30°

(a) Structural mode electric field bistatic scattering.

60 80
Observation angle   s, degrees

100 120 140 160 180
θ

0 20 40

(b) Antenna mode electric field bistatic scattering.

60 80
Observation angle   s, degrees

100 120 140 160 180
θ

θ

θ i
λ= 90°

60°

1.723

30°

z

θ

θ i
λ= 90°

60°

1.723

30°

30°

60°
90°

z

Figure 14-32 Component parts of antenna scattering.

0.5

0.4

0.3

0.2

0.1

0.0
100

, m
2

300 600
Frequency, MHz

1000 2000

σ

Ei

72Ω

Figure 14-31 Monostatic broadside RCS vs. frequency for a 0.5-meter-long dipole terminated
in a 72-Ω load.
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response of the antenna mode scattering for 90	 incidence is due to the small lobe in the
antenna transmitting pattern visible in Fig. 14-32c at θ ¼ 90	.

To illustrate the structure-like behavior of the structural mode, note the large bistatic
response around for the θs ¼ 125	 for the θi ¼ 30	 incidence case in Fig. 14-32a. This is
due to the dipole structure acting like a moderately long reflecting surface. If the length of
the dipole were to increase, the angle of maximum response would increase toward 150	
as expected from the law of reflection.

It is worthwhile to comment on how the MoM is used to obtain the data in Fig. 14-32a.
First, at each frequency the antenna input impedance is calculated for the dipole so that
EsðZ*

AÞ is known. Then the left-hand side of (14-109) is calculated for each of the three
incidence angles. Next, IðZ*

AÞ is found so that the antenna mode scattering may be cal-
culated. In turn, subtracting the antenna mode scattering from the total scattered field on
the left-hand side of (14-109) yields the structural scattering. No other CEM technique
would be as helpful as MoM for these kinds of calculations.

Fig. 14-33 shows the total power scattered, PS, and the total power absorbed, PA, by
a 0.5-m-long dipole with a 72-Ω load and a plane wave normally incident. Generally,
the total power scattered is greater than the total power absorbed, the two being equal
at first resonance where the dipole is conjugate-matched. Below first resonance, the dipole
is not conjugate-matched and it is possible for the total power absorbed to exceed the total
power scattered. The curves in Fig. 14-33 were calculated using the equivalent circuit in
Fig. 14-29 by assuming that ZA accounts for the total power scattered and ZL for the total
power absorbed by the dipole. That ZA accounts for the total power scattered by the
antenna is not generally true, but is approximately true when the power scattered by
the open-circuited antenna is much smaller than that scattered by the terminated antenna
[32] (below about 400 MHz in Fig. 14-31). Numerically integrating the scattered fields
over a far-zone sphere enclosing the dipole to correctly calculate the total power scattered
replicates the PA curve up to a dipole length of about 0:6l and provides at best only rough
quantitative agreement above that length. It is sometimes thought that a matched lossless
antenna cannot absorb more power than it scatters. However, this is not true theoretically
[33]. In practice, it is unlikely that a matched lossless antenna will absorb more power

0 dB

(c) Transmitting E-plane pattern of the 1.723 λ dipole.

θ�90�

θ�180�

�5

�10

�15
�20

�30

Figure 14-32 (Continued)
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than it scatters. In Fig. 14-33, the powers are equal just below 300 MHz where the dipole
is matched. Thus, the dipole exhibits the characteristics of the so called “minimum
scattering antenna.” A minimum scattering antenna is one that:

1. Scatters as much power as it absorbs for conjugate match
2. Has identical transmitting and receiving patterns
3. Radiates the same fields in the forward and backward directions
4. Is “invisible” when its terminals are open circuited

The half-wave dipole, when open circuited, will consist of two collinear quarter-wave
dipoles. A quarter-wave dipole is a very poor, nearly “invisible,” scatterer (see Fig. 14-33
around 150 MHz). Small lossy dipoles are even poorer scatterers. [34]

The name minimum scattering antenna implies that an antenna is in a class of antennas
with the lowest possible scattering. However, this is not necessarily the case, and the
widespread use of the name is unfortunate for that reason [H.8.2: Munk, pg. 35]. Note that
total scattering is different from backscattering (e.g., monostatic RCS). An antenna with
the potential for zero backscattering is an array of conjugate-matched dipole elements a
quarter-wavelength in front of a finite ground plane of a size similar to that of the array.
This array basically absorbs all the energy incident upon it [35] [H.8.2: Munk, pg. 33], yet
it does not meet the preceding requirements for a minimum scattering antenna!

Generally speaking, a conjugate match usually results in only a 6 dB reduction in the
RCS compared to the short-circuit case. For example, the RCS of a half-wave dipole
short-circuited at its terminals is 0.86l2. If the half-wave dipole is conjugate-matched, its
RCS is 0.215l2. This is a 6 dB reduction similar to that in Fig. 14-31 just below 300 MHz,
the so called “6 dB rule.”

In this section, scattering by an antenna has been examined for the purpose of
understanding the radar signature of an antenna (see also Example 16-5, Sec. 16.14).
However, this is not the only reason to be interested in antenna scattering. For example, if
an antenna did not scatter, there would be no mutual coupling in an antenna (receiving)
array. Further, antenna scattering is a phenomenon central to many RFID systems.

14.13 MODELING OF SOLID SURFACES

There are two principal ways in which MoM can be used to model either two-dimensional
or three-dimensional bodies (e.g., infinite cylinder or finite cylinder, respectively).
A simple but older way is to model a solid surface with a grid of wires, the so-called
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Figure 14-33 Total power absorbed and total power scattered by a 0.5-m-long dipole with a
72-Ω load.
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wire-grid model. Examples are shown in Fig. 14-34. A more modern way of modeling
solid surfaces is to use either the electric-field integral equation (EFIE) or the magnetic-
field integral equation (MFIE), in which the surfaces are subdivided into patches having a
continuous metallic surface. In this section, we briefly examine both approaches.

14.13.1 Wire-Grid Model

In this subsection, we demonstrate the application of the wire segment procedure to
model not just a wire antenna or wire scatterer, but also to model the metallic environ-
ment near the antenna. We can accomplish this by using a wire-grid or wire mesh to
stimulate an actual continuous metallic surface. The idea of using a wire mesh to simulate
a continuous metallic surface precedes, of course, the time when the moment method
came into widespread use. There are many practical situations where the effect of a
continuous metallic surface is required, but the weight and/or wind resistance offered by a
continuous surface is too large (e.g., a reflector surface).

The successful substitution of a wire grid for a continuous metallic surface (in reality
or in a model) depends on the fact that as the grid size becomes smaller relative to the
wavelength, the grid supports a current distribution that approximates of the actual cur-
rent, however, and as such it can be expected to reasonably predict the far fields but
possibly not the near fields. This is due to the fact that the grid supports an evanescent
reactive field on both sides of its surface [36]. An actual continuous conducting surface is
not capable of supporting such a field.

The accuracy with which a wire-grid model simulates an actual surface depends on the
computer code (i.e., expansion and weighting functions) used, the radius of the wire
segments used, as well as the grid size. For example, with pulse expansion functions and
point-matching, it has been found that a grid spacing of about 0.1 to 0.2l yields good
results [37]. With the piecewise sinusoidal Galerkin method, it has been found that the
grid size should not exceed l=4 and a suitable wire radius is a ¼ w=25, where w denotes
the width or length (whichever is greater) of the apertures [37].

Let us now consider the situation where a monopole is axially mounted on the base of
a cone as shown in Fig. 14-35. A wire-grid representation can be used in which the cone
or frustum is represented by a number of “generating lines” consisting of a number of
wires joined end to end, as shown in Fig. 14-36a. Except for the base, no wires need to be
provided in planes normal to the z-axis because of excitation symmetry.

Parabolic
reflector

Sphere

Slot in flat plate

Circular
disk

Figure 14-34 Examples of wire-grid modeling.
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An interesting simplification (see Sec. 14.8.6) can be obtained from the symmetry of
the configuration in the case where all generating lines have the same number of seg-
ments, each segment being identical (except for the orientation on the φ-coordinate) to
the corresponding one on each other generating line. The currents on such corresponding
segments should be equal in magnitude and phase, since I(z) is independent of φ. Let
the segments be numbered in a consecutive way, starting with the line at φ ¼ 0 and
proceeding in counterclockwise direction along the other lines. Let M be the number of
segments on each line and L the number of generating lines. Thus, one can write

XL �M

j¼1

ZkjIj ¼ E
j
k, k ¼ 1, 2, : : : , L �M ð14-112Þ

Since the currents on corresponding segments are equal,

Ij ¼ IðjþMÞ ¼ Iðjþ2MÞ ¼ IðjþðL�1ÞMÞ ð14-113Þ
and (14-112) can be written as (see Sec. 14.8.6)

XM
j¼1

Ij
XL�1
n¼0

Zkð jþnMÞ

 !
¼ Ei

k, k ¼ 1, 2, : : : , M ð14-114Þ

The advantage of (14-114) is that it permits us to reduce the number of unknown
currents to M, while the actual number of wire segments is L �M, where L is arbitrary. As
a result, there is little limitation other than computer running time to the number of
generating lines (and thus to the total number of segments represented). For the patterns
calculated here, L was chosen to be 10, M to be 170, and pulse basis functions were used.

y

5.24 cm

6.35 cm

77.47 cm

18.26 cm H

z

9.7°

Figure 14-35 Dimensions of experimental cone model. The
monopole is a quarter-wavelength at each frequency.
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The left-hand side of (14-114) represents �Es for the cone problem under consider-
ation here. It remains to determine Ei. For the monopole, consider the geometry depicted
in Fig. 14-36b. If we start with the vector potential, the following near-field expressions
for the monopole configuration of Fig. 14-36b may be derived as

Ei
z ¼�j29:975 jIj e�jβR1

R1

� e�jβr

r
cosβH� j

z

r2
e�jβrsinβH � z

βr3
e�jβrsinβH

� �
ð14-115Þ

and

Ei
ρ ¼

j29:975 jIj
ρ

ðz� HÞ e
�jβR1

R1

� z

r
e�jβrcos βH � jz2

r2
e�jβrsinβH

�

þ ρ2

βr3
e�jβrsin βH

�
ð14-116Þ

The right-hand side of (14-114), which constitutes the generalized voltage matrix,
requires that the tangential components of the incident field be determined at each match
point on one of the generating lines of the cone. The equations above for Ei

z and Ei
ρ are

used to do this.
Solving for the current on the cone makes it possible to calculate the far-field pattern

of the cone-monopole structure by superimposing the fields of the cone and those of the
monopole. A necessary but not sufficient check on the validity of the moment method
solution in this problem requires that the currents at the junctions of the monopole with

x

(a) Model of monopole and cone. Cone generating line showing
distribution of segments and
boundary matching points.

R1

I (h) dh

I (h) = | I | sin (H − h)

R

P (  , z)

H

h
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z

z

y0

(b)

S

ρ

ρ

Matching points.
ζ

Figure 14-36 Wire-grid model of cone in Fig. 14-35.
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the wire-grid representation of the cone satisfy Kirchhoff’s current law. For the formu-
lation in (14-114) to (14-116) with L ¼ 10, the current on each of the 10 wire-grid lines
was found to be 0.1 Awhen the monopole base current jIj ¼ 1:0 A. That these 11 currents
satisfy Kirchhoff’s current law at their common junction is a direct consequence of
Maxwell’s equations since Kirchhoff’s current law was not explicitly built into the system
of equations [i.e., a constraining equation was not one of the equations in (14-114)].

To experimentally test the validity of the wire-grid representation of a metallic surface,
an actual wire-grid cone was built around a Styrofoam core in a configuration similar to
that shown in Fig. 14-36a. An experimental comparison of the solid cone and its wire-grid
counterpart is shown in Fig. 14-37a. Some representative results showing both the results
calculated for the wire-grid cone and measurements for the solid surface cone are
illustrated in Fig. 14-37b. The results are generally quite good.

Other variations of the formulation given here are possible, of course. For example,
instead of assuming the current distribution on the monopole, it can be treated as an
unknown as are the currents on the metallic body. This could be done in a number of
ways. The monopole terminal current value could be constrained to a particular value.
This would take into account the interaction between the cone and monopole, but would
not conveniently provide for the calculation of impedance. Alternatively, one could use a
voltage generator at the base of the monopole such as the magnetic frill current discussed
previously. Calculation of the currents on the cone and monopole would account for the
cone-monopole interaction and also yield directly the monopole impedance. Note that in
either case, the previously described symmetry for the cone due to the symmetrical
excitation could still be used to advantage.
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Figure 14-37 Far-field patterns of a monopole on the base of the cone in Fig. 14-36.
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The accuracy of wire-grid models can be improved if the grid is reactively loaded with
lumped loads [36]. The motivation for doing this to eliminate the effects of the evanescent
reactive field that is in proximity to the wire grid. Not only does this increase the accuracy
of the model, but it also permits larger grid sizes to be used. Nevertheless, even without
this loading, the wire-grid model is a convenient and relatively straightforward tool for
engineering calculations.

14.13.2 Continuous Surface Model

Continuous surface models employ surface “patches” with overlapping basis functions
(see Fig. 14-17 for an example of overlapping basis functions on a wire), in either an
EFIE formulation or one based upon the MFIE. The EFIE has the advantage of being
applicable to both open and closed bodies, whereas the MFIE is applicable only to
closed surfaces because the MFIE is based on a boundary condition which is not valid
for infinitesimally thin geometries. Of the two, the EFIE is generally more difficult to
apply due to the kernel of the integral containing a singularity. In closed body problems
where the interior dimensions of the body correspond to a waveguide type mode, it is
possible to obtain erroneous currents. This difficulty can be overcome by the use of a
combined field integral equation formulation, called CFIE, that combines the EFIE
and MFIE.

The patch shape of choice for an arbitrarily shaped surface is the planar triangular patch
used in Fig. 14-38. Planar triangular patches are capable of accurately conforming to any
geometrical surface or boundary within the desired tolerance, are easily specified for
computer input, and allow for a varying patch density to accommodate small geometry
features and sharp variations in anticipated current density.

If the basis functions representing the surface current are not constructed such that
their normal components are continuous across the patch edges, then the continuity
equation in (2-11) requires the presence of point or line charges at the edges. These
fictitious charges, if present, can cause erroneous solutions in some cases and are to be
avoided for that reason. Thus, the basis function of choice for triangular patches is the
RWG basis function [39, 40], which avoids difficulties at the patch edges.

The RWG basis function is a subdomain vector basis function defined to be nonzero
over two adjacent triangular patches that have a common (interior) edge, the nth edge,
between them, as distinguished from a boundary (exterior) edge of the non-closed object.
Fig. 14-39 shows two such triangles, Tþ

n and T�
n , corresponding to the nth edge of an

Face
Edge

Vertex

Handle

Boundary
EdgeBoundary

Curve

Aperture

Figure 14-38 Arbitrary surface modeled by triangular patches.
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RWG basis function on a triangulated surface model. The vector basis function associated
with the nth edge is defined as

f n rð Þ ¼

ln

2Aþ
n

ρþ
n rð Þ, if r in Tþ

n

ln

2A�n
ρ�
n rð Þ, if r in T�

n

0, otherwise,

8>>>>>><
>>>>>>:

ð14-117Þ

where ln is the length of the edge and Aþ
n is the area of triangle Tþ

n , and the position
vectors ρ�n originate at the free vertex of T�

n . The subscripts refer to edges and the
superscripts refer to faces. These vector basis functions have a current representation free
of line or point charges at the boundary of the object and also at all other sides of Tþ

n and
T�
n [39, 40]. The basis functions fn provide for an adequate approximation to the surface

current. Note that the ρþ
n and ρ�

n are not unit vectors and therefore their magnitudes
produce the “rooftop” nature of the basis function shown in Fig. 14-40. Other examples of
overlapping basis functions may be found in Sec. 14.8.1. The component of the current fn
normal to the nth edge is constructed to be continuous across the edge, as may be seen
from Fig. 14-40 by normalizing the normal component of ρ�

n along edge n, which is just

ρn
�

Tn
�

�n

Tn
�

ρn
�

�n

2An
�
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2An
�

Figure 14-40 Geometry showing normal
component of a basis function at an edge.
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Figure 14-39 Local coordinates associated
with an edge.
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the height of triangle T�
n with edge n as the base and the height expressed as ð2A�

n Þ=ln.
The RWG basis function in an EFIE formulation is capable of representing rapidly
varying current densities such as the edge condition on a flat plate as shown in Fig. 14-41
for a 1.0l square flat plate [39, 40].

The scope of this text does not permit a detailed discussion of MoM modeling with
RWG vector basis functions, but as an example of the use of the RWG vector basis
function, the model size, and the model complexity, consider the monopole on a large
finite ground plane 30.48 cm by 30.48 cm shown in Fig. 14-42. The monopole on
the finite ground plane is one of 12 antenna benchmarks established by the Electro-
magnetic Code Consortium (EMCC).

The ground plane in Fig. 14-42 is 3.2mm thick. The monopole is off-center, located
5.33 cm from the nearest edge and 11.43 cm from the next nearest edge. The monopole is
1.47 cm tall and has a first resonance at about 4.5 GHz, where l/4 is 1.65 cm. The RWG
(surface) basis functions are used on the ground plane and the curved surface of
the monopole itself (see Fig. 14-43). The dielectric material, ε ¼ 2.0, tan δ ¼ 0.0002,
in the coax at the base of the monopole is also modeled by RWG basis functions.

Figure 14-42 Non-uniform mesh of the monopole positioned asymmetrically on the finite
ground plane. (Courtesy of BerrieHill Research Corporation.)

90 RECTANGULAR PATCHES (GLISSON [39])
84 TRIANGULAR PATCHES

CUT AT AA'

CUT AT BB'

5.0

4.0

3.0

2.0

1.0

0.0 1.00.5

x/λ, y/λ

B'

A'

A

1.0 λ

y

x

x

B

Jx

Hi

Ei

Figure 14-41 Distribution of current on a 1.0l square flat plate for normal incidence [39].
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A non-uniform mesh is generated with higher density near the monopole to accurately
simulate the fast-varying surface currents there. As a rule of thumb for the numerical
convergence, the edge lengths of each triangle are restricted to less than l/10 at the
(effective) wavelength of interest. In addition, small geometric features whose dimen-
sions are less than a wavelength require a large amount of small mesh elements for
accurate geometric representations. Since the first resonance is at approximately 4.5 GHz,
most triangles have edges less than 0.5 cm.

For the geometry in Figs. 14-42 and 14-43, there are 20,176 triangles, 20,126 metallic,
and 50 dielectric. For a closed surface, the number of edges is 1.5 times the number of
triangles, since there are three edges per triangle and each edge is counted twice. A general
surface has junction edges which are shared by more than two triangles or exterior
edges which is shared by only one triangle, that is, boundary edges of an infinitely thin
plate. If an edge belongs to a PEC triangle, there is only one unknown (J) associated with
it. If an edge belongs to a dielectric triangle, there are two unknowns (J and M) per edge.
Because the RWG basis functions are edge-based, the number of unknown coefficients
are associated with the number of edges.

The resulting EFIE matrix for the monopole on the large ground plane was 32,524 by
32,524. The code used was by FEKO [41], a commercially available code. The computing
hardware used to generate very accurate input impedance data consisted of 4 physical
CPU’s operating at 2.4 GHz with 128 GB of RAM. Each CPU has 4 processors for a total
of 16. The sum of CPU times for all processors is 6.725 hours per frequency corre-
sponding to a run time of 0.42 hours or about 25 minutes. The complex-valued matrix
equation is solved directly by standard LU factorization.

To gain a perspective on the electrical size of the simulation, at the monopole first
resonance the wavelength is about 6.67 cm. Thus the ground plane is about 4.57l by
4.57l or 20.9 square wavelengths. This accounts for most of the unknowns, the remainder
being associated with the metallic monopole and the dielectric in the coax at the base of
the monopole.

The monopole itself can also be modeled as a 1D wire or a 2D planar strip to reduce
the number of unknowns. However, for accurate calculation of the input impedance of the
installed antenna over a wide band of frequencies, both the circular monopole and coax
were included in the detailed computational model used here.

As a second example of the use of RWG basis functions, consider the cavity-backed
two-armArchimedian spiral shown in Fig. 14-44. The spiral arms, 0.09 cmwide, are tapered
at the end and are on a thin dielectric substrate of radius 7.37 cm and thickness 0.15 cm, with
εr ¼ 3:38� j0:008. The inner radius of the spiral is r1 ¼ 0.198 cm and outer radius
r2 ¼ 4.75 cm. The number of spiral turns is 12. There are two layers of lossy foam in the
cavity. The top layer of foam is 1.87 cm thick with εr ¼ 1:09� j0:04, and the bottom layer

Figure 14-43 Close-up view of the mesh near and on the monopole. (Courtesy of BerrieHill
Research Corporation.)
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of foam is 1.47 cm thick with εr ¼ 1:1� j0:09. The lowest operating frequency of the
cavity-backed spiral is about 1 GHz, and the highest operating frequency is about 24 GHz.

In the MoM simulation model there are 16,208 triangles, 6751 metallic and 9457
dielectric. This corresponds to 16,307 PEC edges, 16,357 dielectric (electric) edges and
12,216 dielectric (magnetic) edges. This results in a 44,880 by 44,880 matrix to be solved
for 44,880 unknowns. The run time using the FEKO code with 16 processors was 0.75
hours or 45 minutes per frequency to generate the current distribution on the spiral and far
field patterns for both polarizations.

To put this problem in electrical perspective, at the lowest frequency of operation,
1 GHz, the wavelength is 30 cm. Thus, the maximum circumference of the spiral arms is
about 30 cm and the diameter is about 10 cm. Modeling the narrow spiral arms of 12 turns
each and its substrate requires the bulk of the triangles, edges, and unknowns. The high
curvature of the spiral arms near the center of the antenna can only be accurately captured
with small triangles. Hence, an appropriate discretization for electromagnetic simulations
must satisfy the convergence requirement (e.g., edge length, l/10, where l is the
effective wavelength) and resolve the important geometric details such as the surface
curvatures.

14.14 SUMMARY

In this chapter, we presented a very useful and powerful technique, the method of
moments, for the analysis of certain types of antennas (e.g., wire antennas) and arrays
of antennas (e.g., Sec. 14.10 through 14.12). Although the method has been applied
primarily to z-directed wires, we have seen that it applies equally well to arbitrary
configurations of wires, for example, Sec. 14.11, as well as to solid surfaces, for example,
Sec. 14.13.2. Furthermore the method of moments has been used to generate some of
the data presented in Chaps. 6 and 7.

Figure 14-44 Cavity-backed two-arm spiral antenna with two layers of lossy foam inside.
(Courtesy of BerrieHill Research Corporation.)
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The method of moments is often thought of as a low-frequency technique because it
generally cannot be applied to bodies that are arbitrarily large in terms of the wavelength
(e.g., Sec. 14.8). In contrast to this, in Chapter 16 we will study high-frequency techni-
ques that apply best to bodies which are arbitrarily large in terms of the wavelength.
(See Figs. 14-1 and 14-2.)
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PROBLEMS

14.3-1 (a) Use the equivalence principle to show that the current flowing on the highly
conducting wire in Fig. 14-3a may be replaced by the equivalent currents radiating in free
space as in Fig. 14-3b (i.e., the wire material is replaced by free space with zero fields and zero
sources inside the original wire volume) and that the equivalent currents (Fig. 14-3b) are the
same as the currents in the original problem.

(b) Why is this important?
14.3-2 Show that the left-hand side of (14-13) may be expressed as

�Es
z ¼

�1

4πjωεo

Z L=2

�L=2

Iðz0Þ e
�jβR

R5
1þ jβRÞð2R2 � 3a2Þ þ β2a2R2
	 


dz0

14.3-3 Through integration by parts, show that the left-hand side of (14-13) may be written as

Es
z ¼ þ

Z L=2

�L=2

jωμoIðz0Þ �
1

jωεo
@Iðz0Þ
@ðz0Þ

@

@z

� �
e�jβR

4πR
dz0

This equation maybe derived by using both the vector and scalar potentials [3].
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14.4-1 (a) What are the units of the generalized voltage, current, and impedance matrix
elements in (14-26)?
(b) If both sides of (14-26) are multiplied by the segment length, Δz, what are the units of

the matrix elements in (14-26)?
14.4-2 Moment methods involve solving systems of linear equations. A computer technique
for solving such problems is needed. This could be through a high-level language (MathCAD,
MatLab, Mathematica, . . . ), a subroutine you write, or a canned routine such as IMSL.
(a) For the problem

V ¼ ZI where Z ¼ 1 j

j 1

� �

obtain the solution by hand using I ¼ Z�1V if

V ¼ 2 þ j

1 þ 2j

� �

(b) Solve the problem in (a) using your chosen computer approach. Include details of the
approach. Compare to your hand solution.

14.4-3 An important ingredient in moment methods is to be able to numerically integrate
complex-valued functions. Select a computer approach and document it.
(a) Integrate the following analytically:Z π

0

e jxdx

(b) Use your computer approach of choice to evaluate the integral in (a) and compare to
results you obtained in (a).

14.5-1 In order to obtain some feeling for MoM, it is recommended that the student write a
computer program to solve the following problem. Consider a straight dipole of length L (or
monopole of length L/2) and radius a. Divide the dipole in N segments of equal length, each
containing a pulse expansion function.

(a) Use point-matching and the equation in Prob. 14.3-2 for the scattered field to compute
the elements in the first row of the impedance matrix [Zmn] as given in (14-26), noting
that these are the only independence matrix elements since the matrix is toeplitz (see
Sec. 14.8.4). Note that the integrand tends toward singularity when R ¼ a, but even so
one may numerically integrate through this region if reasonable care is taken.

(b) Confirm the matrices in Example 14-1. Next, duplicate the curves in Fig. 14-9. (This
exercise continues in Probs. 14.6-1 and 14.9-1.)

14.5-2 Starting with the electric vector potential and (14-30), derive (14-31).

14.6-1 (a) Extend the computer code of Prob. 14.5-1 to use pulse weighting functions
in (14-40).

(b) Confirm the matrices in Example 14-2 and duplicate the curves in Fig. 14-13. (This
exercise continues in Prob. 14.9-1.)
14.7-1 Show that (14-47) to (14-48) follow from (14-44) and (14-45), respectively.
14.7-2 Compare (14-57) to (14-37).
14.7-3 From (14-59), derive (14-26) if delta weighting functions are used.
14.8-1 Use both vector and scalar potentials to derive (14-64).
14.8-2 Another equation for the treatment of wire antennas is Hallen’s integral equation:Z L=2

�L=2

Iðz0Þ e
�jβR

4πR
dz0 ¼ � j

η
ðC1 cosβzþ C2 sinβ jzjÞ

where C1 and C2 are constants. The constants C2 may be evaluated as VA/2, where VA is the
terminal voltage of the antenna. Derive Hallen’s equation for the dipole by writing a solution
to the wave equation for Az that is proportional to the right-hand side of the preceding equation
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and then equating this result to the integral form of the vector potential for Az due to a perfectly
conducting thin wire dipole.
14.8-3 In Secs. 14.4 and 14.6, we used pulse functions in the moment method. Expansion
functions such as the pulse function, piecewise sinusoidal function, etc., are often called
subdomain expansion functions because each expansion is generally nonzero on only a rel-
atively small part of the radiating body. (The concept of domain relates to Sec. 14.7.2.)

There is another type of expansion function called entire-domain expansion functions. In
this case, the function is generally nonzero over the entire radiating body and the concept of
segments is not used. For example, if one were to treat the dipole with an entire-domain
expansion function (i.e., a Fourier series), one could write for the current:

Iðz0Þ ¼
XN
n¼1

InFnðz0Þ
where

Fnðz0Þ ¼ cosð2n� 1Þπz
0

L
, � L

2
# z0 #

L

2

[Note that each term in Fnðz0Þ goes to zero at the ends of the dipole.]
(a) Sketch the first two terms in the series for Fnðz0Þ.
(b) If there are N terms and N match points (i.e., a point-matching solution), write an

expression for Zmn, using the notation in Secs. 14.4 and 14.6.
(c) Give a physical interpretation of Z25 (i.e., complete a statement similar to the following:

Z25 represents the field from ____ at _____).
14.8-4 Verify (14-70) using the algorithm in (14-71).

14.9-1 (a) After successfully completing Probs. 14.5-1 and 14.6-1, use (14-80) to compute the
far-field radiation pattern of dipole antennas with lengths of 0.1, 0.5, 1.0, 1.25, and 1.5l.
Justify the value of N that you use in each case.

(b) For the dipole lengths in part (a), plot the current distributions on the dipoles in
magnitude and phase. Compare with the assumed sinusoidal distribution used in Sec. 6.1.

(c) Using (14-81), compute the gain at broadside for the dipole lengths in part (a).
(d) Consider a plane wave to be incident on a dipole short-circuited at its terminals. Use

the relationship

Ei
zðzmÞ ¼ ejβz cos θ

i

to compute [Vm] for θi ¼ 90	 (i.e., the broadside case) and then compute the radar cross
section, as in (14-82), when L ¼ l=2. Compare with Fig. 14-21 and verify several more points
in Fig. 14-21.
14.9-2 Derive (14-80) by considering the dipole of length L to be compared of N ideal col-
linear dipoles of length L/N.
14.9-3 Derive (14-81), starting with the Poynting theorem.

14.9-4 (a) Using an available MoM code, compute, plot, and label the patterns (three planes)
in polar, linear form and the current distribution for a one-wavelength loop. Compare gain to
that expected.

(b) Find the input impedance for a loop of radius a ¼ 0:001 wavelength for perimeter ¼ 1,
1.5, and 2 wavelengths. Compare to Fig. 6-68.
14.10-1 Consider the LPDA in Fig. 14-23 to have only two dipoles. Assume each dipole is
composed of three piecewise sinusoidal expansion functions numbered consecutively with the
first three piecewise sinusoids on one dipole and the remaining three on the other. Thus, [Zmn]
will be of order six, with the second and fifth piecewise sinusoids being at the centers of their
respective dipoles. In accordance with (14-91) and (14-93), show that the elements of [Ymn]
which form [YA] are Y22, Y25, Y52, Y55.
14.10-2 (a) Show that the admittance matrix for one section of the transmission line in
Fig. 14-23 without dipoles attached is
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½Y � ¼ �jYo cot βd þjYo csc βd
þjYo csc βd �jYo cot βd

� �

where d is the length of one section of transmission line with propagation constant β and
characteristic admittance Yo.

(b) Show that connecting N-1 of these sections using the scheme in Fig. 14-23 results in
(14-94).
14.10-3 Extend the LPDA analysis in Sec. 14.10.2 to an array ofM LPDA antennas as in [25].
14.10-4 In Sec. 14.10.2, we obtained a solution to the LPDA. One of the important points in
that solution is the determination of [YA] in the manner indicated in Eqs. (14-90) to (14-93).
Had we wished to then find [ZA], we could have obtained it from [ZA] ¼ [YA]

�1. Denote this
method A. Suppose instead we find [ZA] by considering the two dipole mutual impedance
problem as Carrel [24] and Kyle [25] did. For example, [ZA]mn is obtained by temporarily
removing all dipoles except m and n from the system and then calculating [ZA]mn. Denote this
method B.

(a) Will [ZA] obtained by method A be the same as that obtained by method B? Why?
(b) The following question refers to the concepts implied by part (a). When we calculate a

moment method impedance matrix [Zmn], in what way does that calculation process
relate to method B above?

14.11-1 Show that (14-100) is valid.
14.12-1 Assuming that ZA in Fig. 14-29 can account for the power scattered by a dipole when
0 , L , 0:6l, and the load is 72Ω purely resistive, find a relationship betweenRA andRLwhen:

(a) More power is scattered (totally) by the dipole than is absorbed by the load.
(b) The powers scattered and absorbed are equal.
(c) The power absorbed by the load is greater than that scattered.
(d) When the scattered and absorbed powers are equal at first resonance, what is the

contribution by the antenna mode to the total RCS of the dipole?
14.12-2 Derive (14-111) in either of the following ways:

(a) With a plane wave incident, define an absorption aperture of an antenna as Gl2=4π,
find the absorbed and scattered powers, and apply the definition of radar cross section.

(b) Start with the antenna mode term in (14-109) and use the relationship that the maximum
effective aperture for reradiation is Are ¼ ðh0

AÞ2η=ð4RAÞ, when ZA ¼ ZL, and obtain an
expression for the field scattered by the antenna mode, Es

ant ¼ EiAreð�j=lÞΓðe�jβr=rÞ,
before applying the radar cross-section definition.

14.12-3 In [32] an expression for the RCS of small antennas, such as the dipole, is presented
that is valid when the scattered field of the open-circuited antenna is small compared to that of
the terminated antenna:

σ=l2 �ð1=πÞjGRA=ðZA þ ZLÞj2

(a) Use this expression to compute the RCS of the dipole used in Fig. 14-31.
(b) Also use this expression to compute the RSC of the dipole at first antiresonance (i.e.,

about 600 MHz). Make an idealized assumption about the input impedance at first
antiresonance. Compare your result to Fig. 14-31. Explain the difference.

14.12-4 A sheet of very thin conducting material (thickness, t ,,, lÞ has a plane wave
normally incident upon it. The resistance R of the thin material is 1=σt where σ is the con-
ductivity of the material, and R is measured in ohms/square.

(a) Find the optimum resistance of the thin material such that the sheet absorbs the
maximum amount of power from the wave and that this amount is 50% of the power
incident.

(b) Comment on the similarity of the maximum power absorbed in (a) to that absorbed by a
matched resonant antenna at first resonance (e.g., a l=2 dipole).

(c) Do the answers to (a) and (b) imply that any antenna may not absorb more power than it
scatters [26,33]?

14.13-1 Derive (14-114) from (14-112).
14.13-2 Sketch a wire-grid model for a square plate 1l� 1l. If pulse expansion functions are
to be used, how many unknowns will your model have?
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14.13-3 Sketch a wire-grid model for a quarter-wavelength monopole at the center of a cir-
cular ground plane of l=4 radius. If pulse expansion functions are used, how many unknowns
will your models have? If piecewise sinusoidal functions are used, how many unknowns will
your model have?
14.13-4 A form for the magnetic field integral equation (MFIE) is

Js ¼ 2 n̂ � Hi � 2 n̂ �
ZZ
S

Js � rψ dS0

Starting with the tangential H boundary condition, derive the MFIE.
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Chapter15

CEM for Antennas:
Finite Difference Time
Domain Method

The computational approach of the previous chapter involved setting up and solving
frequency domain integral equations for the phasor electric and/or magnetic currents
induced on the surfaces of antennas or scatterers. From a computing perspective, this
method of moments (MoM) procedure involves setting up and solving dense (i.e., few
zero elements), complex-valued systems of linear equations. These systems can involve
tens of thousands of equations in the treatment of problems of even moderate electrical
size, as we saw at end of the previous chapter.

As powerful as MoM is, it is inadequate for some important engineering problems,
particularly those involving pulsed excitations and various transient phenomena. These
kinds of problems require data to be computed over a range of frequencies. This suggests
the need for a solution technique in the time domain, since all of the required frequency
domain data can be generated from one-time domain solution via Fourier transformation.
There is an approach that directly solves Maxwell’s curl equations at points on space
grids in the time domain. It is the finite difference time domain (FDTD) method (see
Fig. 14-1). There are at least four reasons for the development of interest in such partial
differential equation (PDE) solutions of Maxwell’s equations:

1. PDE solutions are robust.
2. Time domain PDE methods usually have no matrices (frequency domain PDE

methods usually have sparse matrices).
3. Complex-valued material properties are readily accommodated.
4. Computer resources are adequate to allow widespread usage of PDE methods.

The finite difference time domain (FDTD) technique to be discussed in the following
sections offers many advantages as an electromagnetic modeling, simulation, and analysis
tool. Its capabilities include:

� Broadband response predictions with a single excitation
� Arbitrary three-dimensional (3D) model geometries
� Interaction with an object of any conductivity from that of a perfect conductor, to

that of low or zero conductivity
� Frequency-dependent constitutive parameters for modeling most materials:
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Lossy dielectrics
Magnetic materials
Unconventional materials that can be anisotropic and/or nonlinear

� Any type of response such as:
Scattered fields
Antenna patterns
Radar cross section (RCS)
Surface response fields
Currents, power densities, charge distributions
Penetration/interior coupling

The basis of the FDTD algorithm is the two Maxwell curl equations in derivative form
in the time domain. These equations are expressed in linearized form by means of central
finite differencing. Only nearest-neighbor interactions need be considered as the fields are
advanced temporally in discrete time steps over spatial cells usually of rectangular shape
as indicated in Fig. 15-1 (other cell shapes are possible, as well as two-dimensional and
one-dimensional treatments).

Although FDTD is well suited to computing responses to a continuous wave or single-
frequency excitation, it is particularly well suited to computing transient responses. This
is especially the case when complex geometries or difficult environments, such as an
antenna that is buried in the Earth or dielectrically clad, are considered. Also, interior
coupling into metallic enclosures is a situation where FDTD is a method of choice.

For problems where the modeled region must extend to infinity, absorbing boundary
conditions (ABCs) are employed at the outer-grid truncation planes (grid boundary), which
ideally permit all outgoing numerical waves to exit the region with negligible reflection at
the grid truncation. Phenomena such as the induction of surface currents, scattering and
multiple scattering, aperture penetration and cavity excitation are modeled time step by
time step by the action of the numerical analog to the curl equations. The self-consistency
of these modeled phenomena is generally assured if their spatial and temporal variations
are well resolved by the space and time sampling process. A self-consistent model will
account for the mutual coupling of all the electrically small-volume cells constituting the
structure and its near field, even if the structure spans tens of wavelengths in three
dimensions and there are hundreds of millions of space cells. In contrast, MoM provides a
self-consistent solution of Maxwell’s equations, which includes all mutual coupling, by
solving a system of simultaneous equations.

In the remainder of this chapter, we develop FDTD for application to two classes of
problems: antennas and scattering, with emphasis on the former. The theoretical

z

Δ z

Δ xΔ y

Boundary

FDTD
unit cell
(see Fig. 15-4) y

x

(Es, Hs)

Antenna

Figure 15-1 Embedding of an antenna
structure in an FDTD space lattice.
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development is for the three-dimensional objects in or near isotropic media, but examples
are mostly specialized to two-dimensional and one-dimensional problems. The material
that follows is intended as an introduction to FDTD. For more extensive information,
refer to larger works on the subject [H.10.3: Taflove; H.10.3: Kunz]. The presentation
here is influenced by [1] and [H.10.3: Taflove, 1st ed; H.10.3: Kunz], particularly [1] and
[H.10.3: Taflove, 1st ed].

In the following section, we examine the form of Maxwell’s equations we need to solve
in one, two, and three dimensions before developing the rectangular coordinate system
finite difference representations for those equations in Sec. 15.2. The finite difference
equations are the equations used in the Yee algorithm of the FDTD technique and are
subject to the constraints discussed in Sec. 15.3. Implementation of the finite difference
equations is discussed in Sec. 15.4. Discussion of the absorbing boundary conditions
follows in Sec. 15.5. Some sources used in FDTD are presented in Sec. l5.6, whereas
transformation from the near field to the far field is contained in Sec. 15.7. Sec. 15.8 and
15.9 provide two-dimensional and three-dimensional examples, respectively.

15.1 MAXWELL’S EQUATIONS FOR THE FDTD METHOD

Before developing the basis for the FDTD method in the next section, we need to examine
Maxwell’s time domain curl equations in one, two, and three dimensions and put them in
a form convenient for the FDTD method. Consider a region of space that is source-free
but may have lossy magnetic and/or lossy electric materials that convert energy in the
electromagnetic field to heat. We define an equivalent magnetic current density M to
account for the magnetic loss mechanisms:

M ¼ ρ0H ð15-1Þ
and an equivalent electric current density J to account for the electric loss mechanisms:

J ¼ σE ð15-2Þ
Here, ρ0 is an equivalent magnetic resistivity in ohms per meter and σ the electric con-
ductivity in siemens per meter. Thus, we can write

@H

@t
¼ � 1

μ
∇ � E� ρ0

μ
H ð15-3Þ

@E

@t
¼ 1

ε
∇ � H� σ

ε
E ð15-4Þ

15.1.1 Three-Dimensional Formulation

Writing out the vector components of the two curl equations above yields the following
system of six coupled scalar equations in the three-dimensional rectangular coordinate
system1:

@Hx

@t
¼ 1

μ
@Ey

@z
� @Ez

@y
� ρ0Hx

� �
ð15-5aÞ

1 For clarity and notational convenience, script will not be used in this chapter for the time-varying field
quantities as in Chap. 2.

c15 12 April 2012; 13:45:9

654 Chapter 15 CEM for Antennas: Finite Difference Time Domain Method



@Hy

@t
¼ 1

μ
@Ez

@x
� @Ex

@z
� ρ0Hy

� �
ð15-5bÞ

@Hz

@t
¼ 1

μ
@Ex

@y
� @Ey

@x
� ρ0Hz

� �
ð15-5cÞ

@Ex

@t
¼ 1

ε
@Hz

@y
� @Hy

@z
� σEx

� �
ð15-6aÞ

@Ey

@t
¼ 1

ε
@Hx

@z
� @Hz

@x
� σEy

� �
ð15-6bÞ

@Ez

@t
¼ 1

ε
@Hy

@x
� @Hx

@y
� σEz

� �
ð15-6cÞ

This system of six coupled partial differential equations forms the basis of the FDTD
numerical algorithm to be developed in the next section. Before proceeding with the full
three-dimensional FDTD algorithm, it is useful to consider reductions to the two-
dimensional and one-dimensional cases, which can yield engineering information without
the computational effort required for the three-dimensional case.

15.1.2 Two-Dimensional Formulation

In the two-dimensional problem, there is no variation with respect to one of the coordinates
in either the problem geometry or excitation. Here, we assume no variationwith respect to z,
which means that all partial derivatives of the fields with respect to z equal zero, and that the
structure beingmodeled extends to infinity in the z-directionwith no change in its geometry.

Consider grouping the previous six equations, with all partial derivatives with respect
to z equal to zero, into two sets, one of which only involves magnetic field components
transverse to the problem geometry axis (i.e., the z-axis) and the other in which there are
only electric field components transverse to the z-axis. The first set is called the two-
dimensional transverse magnetic (TM) mode and is

@Hx

@t
¼ 1

μ
� @Ez

@y
� ρ0Hx

� �
ð15-7aÞ

@Hy

@t
¼ 1

μ
@Ez

@x
� ρ0Hy

0
@

1
A two-dimensional TM mode ð15-7bÞ

@Ez

@t
¼ 1

ε
@Hy

@x
� @Hx

@y
� σEz

� �
ð15-7cÞ

The second set is then the two-dimensional transverse electric (TE) mode and is

@Ex

@t
¼ 1

ε
@Hz

@y
� σEx

� �
ð15-8aÞ

@Ey

@t
¼ 1

ε
� @Hz

@x
� σEy

0
@

1
A two-dimensional TE mode ð15-8bÞ
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@Hz

@t
¼ 1

μ
@Ex

@y
� @Ey

@x
� ρ0Hz

� �
ð15-8cÞ

We observe that the TM and TE modes are decoupled; that is, they contain no common
field vector components. In fact, these modes are completely independent for structures
comprised of isotropic materials. That is, the modes can exist simultaneously with no
mutual interactions. Problems having both TM and TE excitation can be solved as a
superposition of these two separate problems.

Physical phenomena associated with the TM and TE cases can be quite different. To see
this, one can look at, for example, Fig. 16-34 which shows the considerable difference in
echo widths for the TE (perpendicular case) and TM (parallel case) excitation of an infinite
circular cylinder.

15.1.3 One-Dimensional Formulation

Next, assume that there is no variation with respect to two coordinates in either the problem
geometry or the excitation. In this instance, assume no variation with respect to either y or
z, which means that all partial derivatives with respect to either y or z equal zero. This
implies that the problem is one-dimensional in nature with propagation in the x-direction,
but with space infinite in the y- and z-directions. Thus, while propagating in the x-direction,
a wave could encounter infinite sheets of material having thickness in the x-dimension.

The one-dimensional problem is formulated by reducing either the two-dimensional
TM mode or two-dimensional TE mode and ultimately obtaining almost the same result.
Reducing the two-dimensional TM mode gives:

@Hx

@t
¼ 1

μ
ð�ρ0HxÞ ð15-9aÞ

@Hy

@t
¼ 1

μ
@Ez

@x
� ρ0Hy

� �
ð15-9bÞ

@Ez

@t
¼ 1

ε
@Hy

@x
� σEz

� �
ð15-9cÞ

The first of these three equations can be shown to vanish by reasoning that if the fields are
all zero prior to some time, say, t ¼ 0, when a source is turned on, then the time derivative of
Hx is zero. This, in turn, implies that Hx remains at zero. We now have a set of just two
equations involving only Hy and Ez. Designate this set the TM mode in one dimension:

@Hy

@t
¼ 1

μ
@Ez

@x
� ρ0Hy

� �

one-dimensional TM mode

ð15-10aÞ

@Ez

@t
¼ 1

ε
@Hy

@x
� σEz

� �
ð15-10bÞ

In a similar way, we can reduce the two-dimensional TE mode to a set of two
equations involving only Ey and Hz. Designate this set the TE mode in one dimension:
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@Ey

@t
¼ 1

ε
� @Hz

@x
� σEy

� �

one-dimensional TE mode

ð15-11aÞ

@Hz

@t
¼ 1

μ
� @Ey

@x
� ρ0Hz

� �
ð15-11bÞ

The only practical difference between the one-dimensional TM and TE modes is that they
represent plane waves of orthogonal polarizations. This renders the TM and TE labels in
the one-dimensional case uncommon since we would ordinarily identify the plane wave
polarization in some other way.

From either one-dimensional set, we can easily derive the one-dimensional scalar
wave equation for a component of E and that for a component of H, both of which only
have for solutions plane waves traveling in the �x-direction at a speed given by 1=

ffiffiffiffiffiffi
με

p
.

That is, in the one-dimensional case we have transverse electromagnetic (TEM) plane
waves traveling at a speed determined by the constitutive parameters of the medium.

In the next section, we examine numerical solutions to the one-dimensional, two-
dimensional, and three-dimensional equations developed here.

15.2 FINITE DIFFERENCES AND THE YEE ALGORITHM

In this section, we develop the Yee algorithm used in the FDTD method. The Yee
algorithm is based on finite difference approximations of the space derivatives and time
derivatives in Maxwell’s curl equations as shown later in this section. To begin our
development, consider (15-10a) in the lossless case:

@Hy

@t
¼ 1

μ
@Ez

@x
ð15-12Þ

Employing the classical definition of a derivative, we can write

lim
Δt-0

ΔHy

Δt
¼ 1

μ
lim
Δx-0

ΔEz

Δx
ð15-13Þ

In Fig. 15-2 we illustrate (15-13) and note that in the limit a continuous and exact solution
to (15-13) is obtained at the point ðx, tÞ. It is important to note that at this point, space and
time derivatives are being equated, and not the actual values of the fields. In other words, it
is apparent that Maxwell’s equations do not directly yield electric and magnetic field
values, but rather relate the rate of change between electric and magnetic field values.

Variation of Hy Variation of Ez

(x, t)

(xi, tn)

Time

Space

Ez

Ez

Hy

Hy
Δ t Δ x Figure 15-2 Space-time graphical

interpretation of a one-dimensional
component of Maxwell’s equations
and its discretization [1]. (Reprinted
with permission of Eric Thiele.)

c15 12 April 2012; 13:45:10

15.2 Finite Differences and the Yee Algorithm 657



Thus the following strategy may suggest itself. Discretize space and time around the
point ðx, tÞ in such a way that Maxwell’s equations hold true. That is, apply central
differences to relate the derivatives of the neighboring discrete fields. Then, for example,
(15-13) can be expressed as

Hy tn þΔt

2

� �
� Hy tn �Δt

2

� �
Δt

��������
xi

¼ 1

μ

Ez xi þΔx

2

� �
� Ez xi �Δx

2

� �
Δx

��������
tn

ð15-14Þ

This gives us the relationship between the derivatives at ðxi, tnÞ which closely approx-
imates the relationship at ðx, tÞ. However, as we shall see later, if (15-14) is solved for the
field quantity at the most advanced point in time ði:e:, tn þΔt=2Þ, then an estimate of the
magnetic field value at the spatial point xi at time ðtn þΔt=2Þ can be obtained.

We could obtain (15-14) from (15-12) in a more formal way by expanding Hyðxi, tnÞ
in a Taylor series about the temporal point tn to temporal point tn þ Δt

2
, keeping space

fixed at the point xi. This yields an expansion for Hy tn þ Δt
2

� ���
xi
. Similarly, we could

obtain an explain for Hy tn � Δt
2

� ���
xi
. Taking the difference would give the left-hand side of

(15-14) plus remainder terms on the order of ðΔtÞ2. Likewise, expansions of Ez about xi
in both directions with time fixed lead to the right-hand side of (15-14) plus remainder

terms on the order of ðΔxÞ2. In this way, we formally obtain second-order-accurate
central difference approximations to the first partial derivatives in time and space.

Continuing our FDTD solution to (15-12), we solve (15-14) for, Hy tn þ Δt
2

� �
and

obtain [after dropping the z and y subscripts on the field components and taking (15-14) to
be an equality]

H tn þΔt

2

� ������
xi

¼ H tn �Δt

2

� ������
xi

þ Δt

μ Δx
E xi þΔx

2

� �
� E xi �Δx

2

� �� 	
tn

ð15-15Þ

For convenience, we notationally adopt a subscript i for the space position and a
superscript n for the time observation point. If we use this shorthand notation, (15-15) can
be written compactly as

H
nþ1=2
i ¼ H

n�1=2
i þ Δt

μΔx
En

iþ1=2 � En
i�1=2

h i
ð15-16Þ

which implies that we can solve for H
nþ1=2
i knowing the value for H at the same spatial

point but at Δt earlier in time and knowing E at spatial points �Δx=2 removed from xi
and Δt=2 earlier in time. This is illustrated in Fig. 15-3 that shows on a time-space
diagram the three quantities linked (by the various dashed lines) to the calculation of

H
nþ1=2
i .
How do we obtain E at spatial points xi �Δx=2? The answer, of course, is to start with

the lossless version of (15-10b) and obtain for Ez the central difference approximation

Enþ1
iþ1=2 ¼ En

iþ1=2 þ
Δt

εΔx
H

nþ1=2
iþ1 � H

nþ1=2
i

h i
ð15-17Þ

by differencing about the temporal point ðnþ 1=2Þ and the spatial point ðiþ 1=2Þ. This
equation says that Enþ1

iþ1=2 can be calculated with values of H and E at previous instants of

time at adjacent spatial locations as Fig. 15-3 suggests. Clearly, we have the basis for a
method that can march a field behavior forward in space and time through the use of
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difference equations like (15-16) and (15-17), more commonly called update equations
(because they update the fields in the cells as time moves forward).

In 1966, K. S. Yee [2] originated a set of finite difference equations for the lossless
three-dimensional time-dependent Maxwell’s curl equations of (15-5) and (15-6) similar
to that above for the lossless one-dimensional case. Yee’s algorithm, introduced later in
this section for the three-dimensional case, is one of great usefulness since its funda-
mental basis is so robust. The Yee algorithm is robust for the following reasons. First, it
solves for both electric and magnetic fields in time and space using the coupled
Maxwell’s curl equations rather than solving for the electric field alone (or the magnetic
field alone) as with the wave equation.

Second, the Yee algorithm interleaves its E- and H-field vector components in three-
dimensional space (see Fig. 15-4), so that every E-field vector component is surrounded
by H-field components, and every H-field vector component is surrounded by E-field
components as suggested by Fig. 15-4. The spatial arrangement in Fig. 15-4 is not
arbitrary since it must be consistent with the laws of Ampere and Faraday [1].

Third, the Yee algorithm centers its E- and H-field vector components in time in what
is commonly termed a leapfrog arrangement. All the E-field computations in the three-
dimensional space of interest are computed for a particular time point using the most
recently computed H-field data stored in the computer memory (as Fig. 15-3 suggests for
the one-dimensional case). Then, all the H-field computations in the three-dimensional
space are computed using the E-field data just computed and stored in memory. This
leapfrog arrangement is then repeated with the recomputation of the E-field based on the
newly obtained H-field. This process continues for a finite number of time steps until
some desired late time response is achieved (e.g., steady state).

Fourth, no matrices are involved and no large systems of simultaneous equations need
to be solved as in the method of moments.

Eq. (15-17) above involved two variables: one in space and one in time. In the most
general case, we have four degrees of freedom (three in space and one in time), and must
choose notation carefully. Extending the notation from (15-17), denote a space point in a
uniform, rectangular three-dimensional lattice as

Time

T
im

e 
st

ep

n + 

n + 1

3
2

n + 

Hi
n+1/2

Hi + 1
n +1/2

Hi
n – 1/2

Ei  –1/2
n

Ei  + 1/2
n + 1

Ei  +1/2
n

1
2

n – 

n – 1

i – 1 i

1
2

i – 12 i + 12 i + 3
Space

Δx

2i + 1

(i, n)

2

Spatial cell number

n

Δt
2

Figure 15-3 Calculation of H
nþ1=2
i and Enþ1

iþ1=2 from its nearest neighbors in space and time [1].
(Reprinted with permission of Eric Thiele.)
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ði, j, kÞ ¼ ðiΔx, jΔy, kΔzÞ ð15-18Þ
Here, Δx, Δy, and Δz are, respectively, the lattice space increments in the x-, y-, and
z-coordinate directions, and i, j, and k are integers. Further, we denote any field com-
ponent u as a function of space and time evaluated at a discrete point in the space lattice
and at a discrete point in time as

uðiΔx, jΔy, kΔz, nΔtÞ ¼ uni, j,k ð15-19Þ

Here,Δt is the time increment, assumed uniform over the observation interval, and n is an
integer. Carrying this notation to derivatives, we find, for example, Yee’s expression for
the first space derivative of u in the x-direction, evaluated at the fixed time tn ¼ nΔt, to be

@

@x
uðiΔx, jΔy, kΔz, nΔtÞ ¼

un
iþ1=2,j,k � un

i�1=2,j,k

Δx
þ O ðΔxÞ2
h i

ð15-20aÞ

We note that the �1
2
increment in the i subscript ðx-coordinateÞ of u denotes a space finite

difference over �Δx=2 as in (15-17). The remainder term O½ðΔxÞ2� is a result of the
Taylor series expansions that formally lead to the second-order-accurate finite difference
representation of the derivatives. The numerical approximation analogous to (15-20a) for

@u=@y or @u=@z can be written simply by incrementing the j or k subscript of u by �1
2
Δy

or �1
2
Δz, respectively.

Yee’s expression for the first time derivative of u, evaluated at the fixed space point
ði, j, kÞ, follows by analogy:

@

@t
uðiΔx, jΔy, kΔz, nΔtÞ ¼ u

nþ1=2
i, j,k � u

n�1=2
i, j,k

Δt
þ O ðΔtÞ2

h i
ð15-20bÞ

Here, the �1
2
increment in the n superscript (time value) of u denotes a time finite dif-

ference over �Δt=2 as in the left-hand side of (15-14).
We now apply the above ideas and notation to achieve a numerical approximation of

Maxwell’s curl equations in three dimensions, given by (15-16) and (15-17). For example,
consider (15-5a), repeated here for convenience:

Δx
2

Δy

x
2

Δy
2

Δz
2

Δz
2

Δx
2

(i + 1, j, k + 1)

(i + 1, j, k)Ex

Ey

Hx

Ez

Hz
Hy

y

z
(i, j + 1, k + 1) (i + 1, j + 1, k + 1)

(i, j, k + 1)

(i, j, k)

Figure 15-4 Position of the electric and magnetic field vector components in a cubic unit cell
of the Yee space lattice of dimension Δx by Δy by Δz [1]. (Reprinted with permission of Eric
Thiele.)
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@Hx

@t
¼ 1

μ
@Ey

@z
� @Ez

@y
� ρ0Hx

� �
ð15-21Þ

Substituting for the time and space derivatives at time step n and assuming the space
lattice point ði, j, kÞ, we have initially2

Hx

��nþ1=2

i, j,k
� Hx

��n�1=2

i, j,k

Δt
¼ 1

μi, j,k

Ey

��n
i, j,kþ1=2

� Ey

��n
i, j,k�1=2

Δz

�
Ez

��n
i, jþ1=2,k

� Ez

��n
i, j�1=2,k

Δy

�ρ0i, j,k :Hx

��n
i, j,k

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð15-22Þ

Note that all field quantities on the right-hand side (in a compact format) are evaluated at
time step n, including the magnetic field term Hx, appearing due to the magnetic loss ρ0.
Since Hx at time step n is not assumed to be stored in computer memory (only the

previous values of Hx at time step n�1
2
are assumed to be in memory), we need some way

to estimate this term. A very good approach is to apply a “semi-implicit” approximation
to the Hx term on the right-hand side:

Hx

��n
i,j,k

¼
Hx

��nþ1=2

i,j,k
þ Hx

��n�1=2

i,j,k

2
ð15-23Þ

Hx at time step n is assumed to be simply the arithmetic average of the stored value of Hx

at the time step n� 1
2
and the yet to be computed new value of Hx at time step nþ 1

2

Substituting into (15-22) after multiplying both sides by Δt, we obtain

Hx

��nþ1=2

i,j,k
� Hx

��n�1=2

i,j,k
¼ Δt

μi,j,k

Ey

��n
i,j,kþ1=2

� Ey

��n
i,j,k�1=2

Δz

�
Ez

��n
i,jþ1=2,k

� Ez

��n
i,j�1=2,k

Δy

�ρ0i,j,k :
Hx

��nþ1=2

i,j,k
þ Hx

��n�1=2

i,j,k

2

0
@

1
A

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð15-24Þ

We note that Hx

��nþ1=2

i, j,k
and Hx

��n�1=2

i, j,k
appear on both sides of (15-24). Collecting all terms

of these two types and isolating Hx

��nþ1=2

i, j,k
on the left-hand side yield

2 For ease of presentation in some of the equations that follow, the terms inside the parentheses are
“stacked” vertically rather than written horizontally.
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1þ Δt

μi,j,k

� ρ
0
i,j,k

2

 !
� Hx

��nþ1=2

i, j,k
¼ 1� Δt

μi, j,k

� ρ
0
i, j,k

2

 !
� Hx

��n�1=2

i, j,k

þ Δt

μi, j,k

Ey

��n
i, j,kþ1=2

� Ey

��n
i, j,k�1=2

Δz

�
Ez

��n
i, jþ1=2,k

� Ez

��n
i, j�1=2,k

Δy

0
BBBBB@

1
CCCCCA ð15-25Þ

Finally, dividing both sides by 1þ Δt

μi, j,k

:
ρ0i, j,k
2

 !
yields an explicit expression forHx

��nþ1=2

i, j,k
:

Hx

��nþ1=2

i, j,k
¼

1� ρ0i, j,k Δt

2μi, j,k

1þ ρ0i, j,k Δt

2μi, j,k

0
BBB@

1
CCCA :Hx

��n�1=2

i, j,k

þ
Δt

μi, j,k

1þ ρ0i, j,k Δt

2μi, j,k

0
BBB@

1
CCCA :

Ey

��n
i, j,kþ1=2

� Ey

��n
i, j,k�1=2

Δz

�
Ez

��n
i, jþ1=2,k

� Ez

��n
i, j�1=2,k

Δy

0
BBBBB@

1
CCCCCA ð15-26Þ

In a similar manner, we can derive finite difference expressions based on Yee’s algorithm
for the Hy and Hz field components in the curl equations.

By analogy, we can derive finite difference expressions based on Yee’s algorithm for

the Ex, Ey, and Ez field components given by (15-6). Here, σEnþ1=2 represents the loss
term on the right-hand side of each equation that is estimated using a semi-implicit
procedure similar to that of (15-23). This results in a set of three equations for Ex, Ey, and
Ez. For example, the result for Ez, also at space lattice point ði, j, kÞ, is

Ez

��nþ1

i, j,k
¼

1� σi, j,k Δt

2εi, j,k

1þ σi, j,k Δt

2εi, j,k

0
BB@

1
CCA: Ez

��n
i, j,k

þ
Δt

εi, j,k

1þ σi, j,k Δt

2σi, j,k

0
BB@

1
CCA:

Hy

��nþ1=2

iþ1=2, j,k
� Hy

��nþ1=2

i�1=2, j,k

Δx

�
Hx

��nþ1=2

i, jþ1=2,k
� Hx

��nþ1=2

i, j�1=2,k

Δy

0
BBBBBB@

1
CCCCCCA

ð15-27Þ

With the above expressions for Hnþ1=2 and Enþ1, the new value of a field vector com-
ponent at any space lattice point depends only on its previous value and the previous
values of the components of the other field vectors at adjacent points.

To implement a solution like (15-26) and (15-27) for a region having a continuous
variation of isotropic material properties with spatial position, it is desirable to define and
store the following constant coefficients for each field vector component before time
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stepping is commenced. For a cubic lattice where Δx ¼ Δy ¼ Δz ¼ Δs, we have for the
electric field algorithm coefficients at point ði, j, kÞ

Ca

��
i, j,k

¼
1� σi, j,k Δt

2εi, j,k

1þ σi, j,k Δt

2εi, j,k

ð15-28aÞ

Cb

��
i, j,k

¼
Δt

εi, j,k Δs

1þ σi, j,k Δt

2εi, j,k

ð15-28bÞ

And for the magnetic field algorithm coefficients at point ði, j, kÞ, we have

Da

��
i, j,k

¼
1� ρ0i, j,k Δt

2μi, j,k

1þ ρ0i, j,k Δt

2μi, j,k

ð15-29aÞ

Db

��
i, j,k

¼
Δt

μi, j,k Δs

1þ ρ0i, j,k Δt

2μi, j,k

ð15-29bÞ

Note that the lattice increment Δs is contained in Cb and Db.
The complete set of finite difference equations suggested by (15-26) and (15-27) can

now be written to conform to the spatial arrangement in Fig. 15-4 by adjusting the spatial

indices appropriately. For example, to the spatial indices in (15-26), we add 1
2
to both j and

k to obtain the following equation for Hx and in (15-27) add 1
2
to the index k to obtain the

following equation for Ez. Thus, the complete set of six equations can be written as

Hx

��nþ1=2

i, jþ1=2,kþ1=2
¼ DaHX

��
i, jþ1=2,kþ1=2

: Hx

��n�1=2

i, jþ1=2,kþ1=2
þ DbHX

��
i, jþ1=2,kþ1=2

: ðEy

��n
i, jþ1=2, kþ1

� Ey

��n
i, jþ1=2,k

þ Ez

��n
i, j, kþ1=2

� Ez

��n
i, jþ1,kþ1=2

Þ
ð15-30aÞ

Hy

��nþ1=2

iþ1=2, j,kþ1=2
¼ DaHY

��
iþ1=2, j,kþ1=2

: Hy

��n�1=2

iþ1=2, j,kþ1=2
þ DbHY

��
iþ1=2, j,kþ1=2

: ðEz

��n
iþ1, j,kþ1=2

� Ez

��n
i, j,kþ1=2

þ Ex

��n
iþ1=2, j,k

� Ex

��n
iþ1=2, j,kþ1

Þ
ð15-30bÞ

Hz

��nþ1=2

iþ1=2, jþ1=2,k
¼ DaHZ

��
iþ1=2, jþ1=2,k

: Hz

��n�1=2

iþ1=2, jþ1=2,k
þ DbHZ

��
iþ1=2, jþ1=2,k

: ðEx

��n
iþ1=2, jþ1,k

� Ex

��n
iþ1=2, j,k

þ Ey

��n
i, jþ1=2,k

� Ey

��n
iþ1,jþ1=2,k

Þ
ð15-30cÞ

Ex

��nþ1

iþ1=2, j,k
¼ CaEX

��
iþ1=2, j,k

: Ez

��n
iþ1=2, j,k

þ CbEX

��
iþ1=2,j,k

: ðHz

��nþ1=2

iþ1=2, jþ1=2,k
�Hz

��nþ1=2

iþ1=2, j�1=2,k
þHy

��nþ1=2

iþ1=2, j,k�1=2
�Hy

��nþ1=2

iþ1=2, j,kþ1=2
Þ

ð15-31aÞ
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Ey

��nþ1

i, jþ1=2,k
¼ CaEY

��
i, jþ1=2,k

: Ey

��n
i, jþ1=2,k

þ CbEY

��
i, jþ1=2,k

:ðHx

��nþ1=2

i, jþ1=2,kþ1=2
� Hx

��nþ1=2

i, jþ1=2, k�1=2
þ Hz

��nþ1=2

i�1=2,jþ1=2,k
� Hz

��nþ1=2

iþ1=2, jþ1=2,k
Þ

ð15-31bÞ
Ez

��nþ1

i, j, kþ1=2
¼ CaEZ

��
i, j,kþ1=2

: Ez

��n
i,j,kþ1=2

þ CbEZ

��
i,j,kþ1=2

:ðHy

��nþ1=2

iþ1=2, j,kþ1=2
� Hy

��nþ1=2

i�1=2,j,kþ1=2
þ Hx

��nþ1=2

i, j�1=2,kþ1=2
� Hx

��nþ1=2

i, jþ1=2,kþ1=2
Þ

ð15-31cÞ
The above six equations can be used for the three-dimensional case in Fig. 15-4 or
reduced appropriately for the two-dimensional and one-dimensional cases, for example,
the two-dimensional TE case contains the field components in the spatial arrangement
given in Fig. 15-4 in the x-y plane, whereas the two-dimensional TM case contains the

field components in the k þ 1
2
plane. A one-dimensional case may be obtained by

appropriately reducing either of the two-dimensional cases.
Next, we develop bounds on the cell size and the time step used in the update equations

and discuss the effects of dispersion.

15.3 CELL SIZE, NUMERICAL STABILITY, AND DISPERSION

Before we can implement the difference equations presented in the previous section, the
cell size and time increment must be determined. In practice, the cell size is determined
first. It is primarily influenced by numerical dispersion, which is the propagation of
different frequencies with different velocities. Then after we have established the cell
size, the time increment is determined such that numerical stability is achieved.

In view of our study of MoM earlier in this chapter, we can appreciate that over one
FDTD cell dimension the electromagnetic field should not change significantly.
This means that for meaningful results, the grid size should be only a fraction of the
wavelength of the highest significant frequency content fU in the excitation frequency
spectrum. For example, from a study of Fourier analysis we know that for a pulse of width
τ, the major portion of the frequency spectrum lies between zero and fU ¼ 1=τ. The
Nyquist sampling theorem would suggest that the cell size be less than lU=2 in order that
the spatial variation of the fields be adequately sampled. However, our pulse has fre-
quency content higher than fU , numerical dispersion is present in the two-dimensional and
three-dimensional cases, and our difference equations are themselves approximations, so
a higher spatial sampling rate (i.e., smaller cell size) is required. Depending on the
accuracy of desired results, it has been found that the cell size should be smaller than
approximately lU=10 in the material medium (e.g., lU=20 if computational resources
allow), primarily to minimize the effects of numerical dispersion. Fig. 15-5 shows, for the
one-dimensional case, the effects of cell size on phase velocity and suggests a cell size at
least as small as lU=20. Details of the geometry may dictate a still smaller cell size.

Now that we have established cell size, the time stepΔt can be determined. Let us first
consider the one-dimensional case. In one time step, any point on the wave must not
travel more than one cell because during one time step the FDTD algorithm can propagate
the wave only from one cell to its nearest neighbors. Any attempt to use even a slightly
larger time step will quickly lead to numerical instability. We can do less than one cell in
one time step, but it is not an optimum situation and will not lead to increased accuracy.
Thus, the condition in the one-dimensional case is

Δt #
Δx

c
ð15-32Þ
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If the equality sign is used, we have what is referred to by Taflove [H.10.3: Taflove, 1st
ed] as the magic time step, cΔt ¼ Δx. It can be shown that the one-dimensional central
difference equations produce an exact solution when the magic time step is used. This is
an interesting result given that the difference equations are themselves approximations
(see Fig. 15-2). Unfortunately, a similar condition does not exist in the two-dimensional
and three-dimensional cases.

To guarantee numerical stability in the general case, it has been shown that

Δt #
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðΔxÞ2 þ
1

ðΔyÞ2 þ
1

ðΔzÞ2
s ð15-33Þ

The above condition was obtained using the classical approach first suggested by Courant
et al. in [5]. In this approach, a time eigenvalue problem is first solved and then a space
eigenvalue problem is solved. Next, a stable range of space eigenvalues is forced to lie
within the stable range of the time eigenvalues, resulting in the general relation above.

In the two-dimensional case, if Δx ¼ Δy ¼ Δz ¼ Δs, (15-33) reduces to

Δt #
Δs

c
ffiffiffi
2

p ð15-34Þ

whereas in the three-dimensional case, (15-33) reduces to

Δt #
Δs

c
ffiffiffi
3

p ð15-35Þ

Examination of the above results shows that the minimum number of time steps required
to travel the maximum dimension of a unit cell is equal to the dimensionality of the cell.
Thus, at least two time steps are required to traverse the diagonal of a two-dimensional
square cell and at least three time steps to traverse the diagonal of a three-dimensional
cubic cell.
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Figure 15-5 Variation of numerical
phase velocity with samples (cells) per
wavelength in a one-dimensional FDTD
grid (From [H.10.3: Taflove, 1st ed.], ª
1995. Reprinted with permission of Artech
House, Inc. Norwood, MA.)
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Before we leave this section, it is necessary to mention dispersion. Dispersion is the
propagation of different numerical wavelengths with different velocities within the grid.
Dispersion, for example, can cause the distortion of a pulse shape. In the one-dimensional
case, dispersion is zero if the magic time step is used.

In the two-dimensional case, dispersion is zero if the equality is used in (15-33) and
propagation is along the square cell diagonal. In any other direction of propagation, there
will be dispersion. The situation is similar in the three-dimensional case. If the equality
sign in (15-33) is used and propagation is along the cube diagonal, dispersion will be
zero, otherwise not. Generally, numerical dispersion can be reduced, but not eliminated,
by reducing the cell size.

Dispersion is illustrated in Fig. 15-6, which shows the variation of the normalized
numerical phase velocity with the propagation angle in a two-dimensional FDTD grid
where the inequality of (15-33) was used. The time step cΔt ¼ Δs=2 was employed; it is
an example of a time step commonly used in two-dimensional (and three-dimensional)
grids to satisfy the stability criterion in (15-33) with a margin of error. The figure shows
that the phase velocity is a minimum along the Cartesian axes ðα ¼ 0� and α ¼ 90�Þ and
is a maximum at α ¼ 45� (along the square cell diagonal), but is slightly less than c even
there since the equality of (15-33) was not used. The general behavior in Fig. 15-6
represents a numerical anisotropy that is inherent in the Yee algorithm.

Fig. 15-7 shows the variation of the numerical phase velocity versus cell size for the
same incidence angles and time step. The beneficial effect of small cell size is apparent. If
too large of a cell size (i.e., too close to the Nyquist limit) is used, the wave will actually
stop propagating.

Both figures imply that different frequency components of the excitation will propa-
gate with different speeds, resulting in pulse distortion that will increase with distance. On
the other hand, for a sinusoidal wave, the effect of an incorrect phase velocity would be to
develop a lagging phase error that increases with propagation distance.

Now that we have bounds on the cell size and the time step, and understand the effects
of dispersion, we are in a position to implement the central difference update equations.
The next section examines how to do this.
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Figure 15-6 Variation of the numerical phase velocity with wave propagation angle in a two-
dimensional FDTD grid for three grid resolutions. At 0 and 90�, incidence is along either
Cartesian grid axis. (From [H.10.3: Taflove, 1st ed.] ª 1995. Reprinted by permission of
Artech House, Inc., Norwood, MA.)
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15.4 COMPUTER ALGORITHM AND FDTD IMPLEMENTATION

In previous sections, we developed the Yee algorithm and explained some of the basic
concepts in the FDTD approach. Although there are other fundamental issues to be
discussed, it is helpful at this point to view the generalities of the computer architecture
and how the Yee algorithm is implemented. Some specific points will be illustrated with a
one-dimensional example.

The primary computational feature of an FDTD code is the time stepping process. This
is a small part of the code, but the most heavily used part. Prior to time stepping, the
FDTD grid must be defined as well as parameters such as cell size, time step, and
the source condition. Constant multipliers that are not computed at each time step, such as
the C and D coefficients in (15-28) and (15-29), should also be evaluated and stored
before time stepping begins. There must be a geometrical definition of the antenna or
scatterer that consists of identifying those cell locations containing material other than
free space. This is done via the Ca, Cb, Da, and Db coefficients. In addition, desired
responses must be specified so that they will be available for output after time stepping is
completed (or perhaps during the time stepping if transient information is desired).

The code requirements consist of the following major steps:

Preprocessing

� Define the FDTD grid (sets the number of cells in each dimension and the cell size).
� Calculate the time step according to the Courant stability condition presented in the

previous section.
� Calculate constant multipliers, including the C and D coefficients from Sec. 15.2,

which serves to define the antenna or scatterer geometry in the FDTD grid.

Time stepping

� Update the source conditions (to be discussed in Sec. 15.6).
� Calculate the response of an E-field component from that of the nearest-neighbor

field quantities according to the type of material present at the nearest-neighbor
locations.

� Update the absorbing boundary condition (ABC), also called the outer radiation
boundary condition. The purpose of the ABC (discussed in Sec. 15.5) is to absorb,

1

0.8

0.6

0.4

0.2

0
0 0.1

Grid space cell size (λo)
0.2

= 0°, 90°
= 45°

0.3 0.4 0.5

N
or

m
al

iz
ed

 p
ha

se
 v

el
oc

ity
, v

/c

α
α

Figure 15-7 Variation of the
numerical phase velocity
with grid cell size in a two-
dimensional FDTD grid for
three wave propagation angles
relative to Cartesian grid axes
at 0 and 90�. (From [H.10.3:
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at the extremities of the FDTD grid, as much of the radiation field as possible to
prevent nonphysical reflections within the FDTD grid.

� Update H-field components.

Postprocessing

� In software, arrays save response data such as E- and H-field components, currents,
voltages, etc., at desired time steps.

� Determine the tangential electric and magnetic fields on a closed fictitious surface
surrounding the antenna or scatterer and compute the corresponding scattered or
radiated fields in the far zone (see Sec. 15.7).

A code structure that will implement the above requirements is suggested by the sim-
plified flowchart shown in Fig. 15-8.

To illustrate how some of the calculations are done, a simplified one-dimensional model
is used. The model is along the x-axis and in free space. We use the one-dimensional
equations of (15-10a) and (15-10b), but the FDTD equations are taken from (15-30b) with

Ex ¼ 0 and from (15-31c) with Hx ¼ Hz ¼ 0. Note that Ca ¼ 1 and Cb ¼ Δt
εoΔx

and that

Da ¼ 1 and Db ¼ Δt
μoΔx

using the magic time step condition. Thus,

Hy

��nþ1=2

iþ1=2
¼ Hy

��n�1=2

iþ1=2
þ Δt

μoΔx
Ez

��n
iþ1

� Ez

��n
i


 �
ð15-36Þ

Define grid

Preprocessing

Time-stepping

Postprocessing

Calculate non-time-
varying parameters

Update E at all points

Update source conditions

Update boundary conditions
at extremities of grid

Update H at all points

Save response data

Time stepping done?

Yes

No

Manipulate data

Write output
Figure 15-8 FDTD flowchart.
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Ez

��nþ1

i
¼ Ez

��n
i
þ Δt

εoΔx
Hy

��nþ1=2

iþ1=2
� Hy

��nþ1=2

i�1=2


 �
ð15-37Þ

We note that Δt
εoΔx

¼ 1
εoc

¼ η and that Δt
μoΔx

¼ 1
μoc

¼ 1
η, where c ¼ ðμoεoÞ�1=2

.

Next, an FDTD grid is set up along the x-axis starting with cell #1, ending with cell
#53, and a source at cell 50 as indicated in Fig. 15-9. The source is a delta function with
amplitude η. As an initial condition, for n , 1 all fields in the FDTD grid are taken to be
zero. The source turns on at n ¼ 1. Thus, dropping the coordinate subscripts on H and E
in (15-36) and (15-37), we can write (for i$ 50)

E1:0
50 ¼ η ð15-38aÞ

H1:5
50:5 ¼ 0þ 1

η
ðE1:0

51 � E1:0
50 Þ ¼ �1 ð15-38bÞ

All other E1:0
i and H1:5

iþ1=2 for i > 50 are zero since the delta function has not yet prop-

agated to those other locations in the FDTD grid. Aword on the notation is in order here.

Eq. (15-36) shows Hy

��nþ1=2

iþ1=2
on the left side, whereas (15-38b) shows H1:5

50:5. In a computer

array, there is no location 50.5. There are only the data locations for E50 and H50. It is
important to understand that HiþΔx=2 is Hi in the computer. At the next time step, we write

(for i$ 50)

E2:0
50 � 0 ð15-39aÞ

E2:0
51 ¼ E1:0

51 þ η H1:5
51:5 � H1:5

50:5

� � ¼ 0þ η 0þ 1ð Þ ¼ η ð15-39bÞ
E2:0
52 ¼ E1:0

52 þ η H1:5
52:5 � H1:5

51:5

� � ¼ 0þ η 0� 0ð Þ ¼ 0 ð15-39cÞ
E2:0
53 ¼ 0 ð15-39dÞ

H2:5
50:5 ¼ H1:5

50:5 þ
1

η
E2:0
51 � E2:0

50

� � ¼ �1þ 1

η
η� 0ð Þ ¼ 0 ð15-39eÞ

H2:5
51:5 ¼ H1:5

51:5 þ
1

η
E2:0
52 � E2:0

51

� � ¼ 0þ 1

η
0� ηð Þ ¼ �1 ð15-39f Þ

H2:5
52:5 ¼ H1:5

52:5 þ
1

η
E2:0
53 � E2:0

52

� � ¼ 0þ 1

η
0� 0ð Þ ¼ 0 ð15-39gÞ

H2:5
53:5 ¼ 0 ð15-39hÞ

At the third time step, we find that, for i$ 50,

E3:0
50 � 0, E3:0

51 ¼ 0 ð15-40aÞ
E3:0
52 ¼ E2:0

52 þ η H2:5
52:5 � H2:5

51:5

� � ¼ 0þ η 0þ 1ð Þ ¼ η ð15-40bÞ

0 Δx 2Δx 49Δx 50Δx 51Δx 52Δx 53Δx
x

EzEz =    (t)

Hy

iΔx

δ

Figure 15-9 A one-dimensional 53-cell model.
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E3:0
53 ¼ 0, H3:5

50:5 ¼ 0, H3:5
51:5 ¼ 0 ð15-40cÞ

H3:5
52:5 ¼ H2:5

52:5 þ
1

η
E3:0
53 � E3:0

52

� � ¼ 0þ 1

η
0� ηð Þ ¼ �1 ð15-40dÞ

H3:5
53:5 ¼ 0 ð15-40eÞ

At the fourth time step, for i$ 50, we encounter the following:

E4:0
50 � 0, E4:0

51 ¼ 0, E4:0
52 ¼ 0 ð15-41aÞ

E4:0
53 ¼ E3:0

53 þ η H3:5
53:5 � H3:5

52:5

� � ¼ 0þ η 0þ 1ð Þ ¼ η ð15-41bÞ

H4:5
50:5 ¼ 0, H4:5

51:5 ¼ 0, H4:5
52:5 ¼ 0 ð15-41cÞ

H4:5
53:5 ¼ H3:5

53:5 þ
1

η
E4:0
54 � E4:0

53

� � ð15-41dÞ

Here, we have a problem in that E4:0
54 is undefined. If a computer software could take E4:0

54

to be zero, then in the computer we would obtain the “correct” value for E4:5
53:5. However,

since the grid was specified to extend only to i ¼ 53, we have no reason to expect this will
happen. The difficulty can be overcome with an absorbing boundary condition, as dis-
cussed in the next section.

Before proceeding to the next section, we observe that in this section we applied the
leapfrog time-marching finite difference algorithm equations, and that for our impulsive
source, propagation at the speed of light is predicted in the positive x-direction. It is left as
an exercise for the reader to show that the same equations will predict propagation in the
negative x-direction, and that the right-hand rule for power flow is automatically obeyed.

15.5 ABSORBING BOUNDARY CONDITIONS

At the end of the previous section, it was seen that there was a problem in computing the
fields at the edge of the FDTD grid. Without some means of absorbing the outward
propagating waves at the extremities of the FDTD grid, nonphysical reflections at the
edge of the grid will contaminate the fields inside the grid. Of course, we could terminate
the time-stepping procedure before such a reflection reaches the observation area of
interest or make the grid very, very large, but these are not computationally viable
alternatives. Therefore, some special attention must be given to the problem of updating
field components at the edge of the grid.

The most practical solution to updating at the edge of the grid is to employ an absorbing
boundary condition (ABC), sometimes referred to as a radiation boundary condition
(RBC). In the one-dimensional case, the required condition is simple and exact because
there is a plane wave normally incident on the edges of the grid. Thus, simple propagation
delay can be used. In the two-dimensional and three-dimensional cases, the problem is
considerably more difficult because the wave is not likely to be normally incident on the
edges of the grid and the waves are not likely to be planar as indicated in Fig. 15-10.

Numerous ABCs have been developed over the past several decades. It is beyond the
scope of this book to derive them or even to present more than two of them. Thus, we will
present only the Mur ABC [4] and the Berenger perfectly matched layer ABC [5].

There exist two Mur estimates for the fields on the boundary which are first-order- and
second-order-accurate. Consider the Ez component located at x ¼ iΔx, y ¼ jΔy for the
two-dimensional case. The first-order Mur estimate of this Ez field component is [H10.2:
Kunz].
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Enþ1
i, j ¼ En

i�1,j þ
cΔt �Δx

cΔt þΔx
Enþ1
i�1,j � En

i, j


 �
ð15-42Þ

In the one-dimensional case if Δx ¼ cΔt, Enþ1
i ¼ En

i�1, which says that the estimate at
location i at the nþ 1 time step is the field from the previous location and previous time
step. This is an exact result in one dimension only.

The second-order Mur estimate for Ez in the two-dimensional case, if we assume
Δx ¼ Δy, is [2]

Enþ1
i, j ¼ �En�1

i�1,j þ
cΔt �Δx

cΔt þΔx
Enþ1
i�1,j þ En�1

i, j


 �
þ 2Δx

cΔt þΔx
En
i�1,j þ En

i, j


 �

þ cΔtð Þ2
2 Δxð Þ cΔt þΔxð Þ En

i, jþ1 � 2En
i, j þ En

i, j�1 þ En
i�1,jþ1 � 2En

i�1,j þ En
i�1,j�1


 �
ð15-43Þ

In the case of the first-orderMur estimate, we see that the current value ofEz at x ¼ iΔx is
estimated from the previous Ez value at x ¼ iΔx and the value of Ez at x ¼ ði� 1ÞΔx at the
current time step, both at the same y-position. The second-order Mur estimate uses values
from the preceding two time steps, and values at the adjacent x- and y-positions. The

equations needed at the y ¼ jΔy surface (where the index j is not to be confused with
ffiffiffiffiffiffiffi�1

p
)

are appropriate permutations of the positional coordinates given in (15-43) above. The
second-order Mur estimate is an exact solution for waves impinging normal to a grid
boundary. At the intersection of the xz- and yz-planes, some type of first-order-accurate
approximation may be employed based on propagation delay as suggested by (15-42).

In 1994, Berenger [5] published a technique that lowered the reflection from the outer
grid boundary by several orders of magnitude over other approaches. He called his
approach the “perfectly matched layer (PML) for the absorption of electromagnetic
waves” in his paper that treated the two-dimensional TE and TM cases. Ingenuously, he
artificially split the fields at the boundaries into two components, creating four coupled
equations rather than the usual three. This extra degree of freedom permitted Berenger to
derive a nonphysical anisotropic absorbing medium, adjacent to the outer boundary (see
Fig. 15-11), with a remarkable wave impedance that is independent of the angle of
incidence and frequency of the outgoing waves. For the TM case, except in the interface
for Hy, the applicable FDTD equations for Hy and Ez are

Structure

Lattice boundary
(absorbs all waves)

Radiated
wave

Lattice
boundary

i = 1 i = imax

j = jmax

j = 1 Figure 15-10 FDTD electromagnetic
wave interaction region with (ideally)
no reflection from the lattice boundary.
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Hy

��nþ1=2

iþ1=2,j
¼ e�σ*x ðiþ1=2ÞΔt=μ0Hy

��n�1=2

iþ1=2,j
� 1� eσ

*
x ðiþ1=2ÞΔt=μ0

σx

�
iþ 1

2

�
Δx

	 Ezx

��n
iþ1,j

þ Ezy

��n
iþ1,j

� Ezx

��n
iþj

� Ezy

��n
i, j

h i ð15-44Þ

Ezx

��nþ1

i, j
¼ e�σxðiÞΔt=ε0Ezx

��n
i, j
� 1� eσxðiÞΔt=ε0

σðiÞΔx
	 Hy

��nþ1=2

iþ1=2,j
� Hy

��nþ1=2

i�1=2,j

h i
ð15-45Þ

where the electric and magnetic conductivities σx and σ*
x are functions of xðiÞ in the left,

right, and corner layers. In the upper and lower PML layers, σx and σ*
x are equal to zero

for all xðiÞ, where in fact, the medium behaves as a vacuum for the equations dependent
on xðiÞ. Note that Ezx and Ezy are colocated at the same point.

For an Hy component lying on the interface, the update equation is based on the values
of three adjacent E-field components: one Ez component in the regular FDTD grid, and
two components, Ezx and Ezy, in the PML region. Through the application of a normal
Maxwell-based FDTD update equation to this Hy component, an interface is established
between the regular FDTD grid and PML grid. Here, the assumption is made that the Ezx

and Ezy components are summed to yield an Ez component that is effectively a regular
FDTD field component. This is seen to be valid by simply letting σx ¼ σy and reducing
the four PML update equations to the usual three FDTD governing equations. Thus, the
finite difference equations have to be modified. So, in the right side interface normal to x,
the equation for Hy above becomes

Hy

��nþ1=2

ilþ1=2,j
¼ e�σ*x ðilÞΔt=μ0 Hy

��n�1=2

ilþ1=2,j
� 1� eσ

*
x ðilÞΔt=μ0

σ*
xðilÞΔx

	 Ezx

��n
ilþ1,j

þ Ezy

��n
ilþ1,j

� Ez

��n
il,j

h i
ð15-46Þ
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Figure 15-11 Structure of a two-dimensional FDTD grid having the Berenger PML ABC.
(J. Berenger, Comput. Phys., Vol. 114, pp. 185–200, 1994. Reprinted with permission of
Computational Physics.)
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This particular update is applied at the right-side interface normal to x, where il indicates
the inner boundary of the PML.

The discretized equations needed for the components Hx and Ezy are left as an exercise
for the reader. Not surprisingly, the two-dimensional PML equations reduce to the exact
one-dimensional result. This is also left as an exercise for the reader. A Maxwellian
derivation of the PML technique may be found in [8].

Of the two ABCs presented here, Mur and Berenger, the former is somewhat simpler to
implement but the latter offers substantially lower reflection characteristics, perhaps more
than is really necessary for many applications. One general consideration with ABCs is that
of determining the necessary distance from the antenna or scatterer to the outer boundary
where the ABC is applied. The greater this distance, the more effective the ABC tends to
be. (This is particularly true with the Mur ABC but not necessarily so with the PML.) The
increased effectiveness of the ABC is due to the more plane-like nature of the outward
traveling wavefront as the distance becomes large. A common criterion is a minimum of 10
cells between the antenna or scatterer and the outer boundary, with 15 to 20 being preferred
for the Mur ABC and as few as 4 or 5 for the PML.

More recently, improvements on the PML have been developed. Two of these are the
UPML and the CPML. The UPML is the uniaxial PML first applied to FDTD by Gedney.
[6, 7] It is based on a Maxwellian formulation [H.10.3: Taflove, 3rd ed., p. 274] rather
than on a mathematical model. As a consequence, there are been attempts to physically
realize a UPML. The development of the UPML was followed by the CPML, which is a
convolutional PML. [8] The CPML is more accurate than the classical UPML, more
efficient, and better suited for application to domains with generalized materials. It has
been reported that the CPML reduces errors due to reflections from the absorbing
boundary by better than 20 dB relative to the UPML [H.10.3: Taflove, 3rd ed., p. 324].

Before we leave this section, let us apply the one-dimensional exact result to (15-41d).

In this case, the exact result is E4:0
54 ¼ E3:0

53 ¼ 0. Thus,

H4:5
53:5 ¼ 0þ 1

η
ð0� ηÞ ¼ �1 ð15-47Þ

Then, to evaluate the reflection from the edge of the grid,

E5:0
53 ¼ E4:0

53 þ η H4:5
53:5 � H4:5

52:5

� � ¼ ηþ η �1� 0ð Þ ¼ 0 ð15-48aÞ

H5:5
52:5 ¼ H4:5

52:5 þ
1

η
E5:0
53 � E5:0

52

� � ¼ 0þ 1

η
ð0� 0Þ ¼ 0 ð15-48bÞ

Table 15-1 Pulse Propagation with Perfect Absorption ð Ej j ¼ η, Hj j ¼ 1Þ Spatial Cell
Location ði$ 50Þ

50 50.5 51 51.5 52 52.5 53 53.5

Time Step
1 η 0 0 0 E
1.5 �1 0 0 0 H
2 0 η 0 0 E
2.5 0 �1 0 0 H
3 0 0 η 0 E
3.5 0 0 �1 0 H
4 0 0 0 η E
4.5 0 0 0 �1 H
5 0 0 0 0 E
5.5 0 0 0 0 H
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We see that there is perfect absorption. Table 15-1 summarizes the situation for
1 # n , 6 and i$ 50. Note that all points in the grid are calculated at all time steps.
The grid used for Table 15-1 ends on an H-field calculation. The example could also be
developed to end on an E-field calculation at E53 by defining the H-field only out to H52:5.

In this case, H3:5
53:5 would be undefined in (15-41b) and the one-dimensional exact

absorption condition would be applied to E53. For simplicity, an ABC is typically applied
to only E- or only H-fields. In this way, regular FDTD update equations will govern all
behavior for one type of field ðsay, HÞ and special updates then need only be applied at
the grid boundary to the other type of field ðsay, EÞ. Note that the Mur equations are given
here for the electric field.

15.6 SOURCE CONDITIONS

In this section, we introduce into the FDTD lattice several electromagnetic wave exci-
tations appropriate for modeling engineering problems. An excitation of interest is the
linearly polarized plane wave propagating in free space for use in scattering analysis, but
we are also interested in waves radiated by antennas. With FDTD, we usually study
antennas in the transmitting mode since it is not computationally efficient to do so in the
receiving mode.

This section covers source conditions for antennas and scatterers. Following the
designations of Taflove, the sources will be classified as either “hard” or “soft.” A hard
source forces a field quantity to a value independent of neighboring fields, which means
that the update equations are not allowed to update the field(s) at the source location (e.g.,
a metallic monopole near a scatterer). A soft source does permit the fields to be updated at
the source location(s) (e.g., a plane wave injected into the grid).

15.6.1 Source Functionality

A common source is one that generates a continuous sinusoidal wave of frequency fo that
is switched on at n ¼ 0:

f ðtÞ ¼ Eo sin ð2πfonΔtÞ ð15-49aÞ
A second source provides a wideband Gaussian pulse with finite dc spectral content that is
centered at time step no and has a 1=e characteristic decay of ndecay time steps:

f ðtÞ ¼ Eoe
�½ðn�noÞ=ndecay�2 ð15-49bÞ

Note that (15-49b) has a nonzero value at n ¼ 0, so that if a smooth transition from zero
into the Gaussian pulse is required, no should be taken as at least 3ndecay. A third source
that provides a zero-dc content is a sine modulated (bandpass) Gaussian pulse with a
Fourier spectrum symmetrical about fo. The pulse is again centered at time step no and
has a 1=e characteristic decay of ndecay time steps:

f ðtÞ ¼ Eoe
�½ðn�noÞ=ndecay�2 sin½2πfoðn� noÞΔt� ð15-49cÞ

Each source of (15-49) radiates a numerical wave having a timewaveform corresponding
to the source function f ðtÞ. The numerical wave propagates symmetrically in all directions
from the source point at is. If a material structure is specified at some distance from the
source point, the radiated numerical wave eventually propagates to this structure and
undergoes partial transmission and partial reflection. In principle, time-stepping can be
continued until all transients decay. For the source of (15-49a), this would mean the
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attainment of the sinusoidal steady state for the transmitted and reflected fields. For the
sources of (15-49b) and (15-49c), this would mean the evolution of the complete time
histories of the transmitted and reflected waves. Discrete Fourier analysis of these time
histories obtained in a single FDTD run can provide the magnitude and phase of the
transmission and reflection coefficients over a potentiallywide frequency band starting at dc.

Thus far, we have discussed three time functions used in FDTD work. The delta
function used in Secs. l5.4 and 15.5 is not a generally useful time function for FDTD
calculations because of its theoretically infinite bandwidth. The delta function was used in
Secs. 15.4 and 15.5 because it provided a simple way of illustrating how the update
equations worked, how the one-dimensional absorbing boundary condition worked, and
even permitted a small number of calculations to be easily done by hand. Unfortunately, the
delta function hard source will only work in one dimension, and then only when propa-
gation is exactly one cell per time step (e.g., the magic time step). Fig. 15-12 illustrates the
consequences of violating this condition. Consider Fig. 15-9 but with the grid extending
from zero to iΔx ¼ 1200Δx, with a delta function source of amplitude η at i ¼ 500 and the
region from i ¼ 0 to i ¼ 250 filled with a relative permittivity of only 1.01. Fig. 15-12
shows the electric field in the grid after 50 and 400 time steps. Note that the wave
encounters the small change in dielectric constant at n ¼ 250 and there is obvious evidence
of numerical dispersion for n ¼ 400 in the region i , 400 as a consequence of the (slight)
violation of the condition one cell in one time step for i , 250 and n > 250. On the other
hand, at n ¼ 400, i ¼ 900 the delta function propagates to the right in a dispersionless
manner since no violation of the one cell in one time step condition has occurred.

15.6.2 The Hard Source

The hard source is set up simply by assigning a desired time function to specific electric or
magnetic field components in the FDTD lattice as we did in the example in Sec. 15.4. For
example, in a one-dimensional grid, the following hard source on Ez could be established
at the grid source point is to generate a continuous sinusoid that is switched on at n ¼ 0:

Ez

��n
is
¼ f ðtÞ ¼ Eo sin ð2πfonΔtÞ ð15-50Þ

−100

−200

400

300

200

200 400 600
Cell (i)
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n = 50n = 50

n = 400
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n = 400

is
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100

0
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E
z,V

/m

r = 1.01ε

Figure 15-12 Delta wave function at n ¼ 50 and 400 with εr ¼ 1:01 for 0 # i # 250 and
is ¼ 500. Source magnitude is 377 V=m.
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Note that the electric field at is is forced to have a value determined entirely by the source
and it is independent of the update equation.

There are some difficulties with the hard source scenario. As time-stepping is con-
tinued to obtain either the sinusoidal steady state or the late-time pulse response, we note
that the reflected numerical wave eventually returns to the source grid location is. Because
the total electric field is specific at is without regard to any possible reflected waves in the
grid (hence the terminology, “hard source”), the hard source causes a retro-reflection of
these waves at is back toward the material structure of interest. In effect, it prevents the
movement of reflected wave energy through its position toward infinity, and thereby may
fail to properly simulate the true physical situation.

15.6.3 The Soft Source

A simple way to mitigate the reflective nature of a hard source is to allow a new value of
the electric field at the source location is to equal the update value plus the value of an
impressed electric field described by the time function f ðtÞ. For our one-dimensional
example, this means that

Ez

��n
is
¼ Ez

��n�1

is
þ Δt

εoΔx
Hy

��n�1=2

isþ1=2
� Hy

��n�1=2

is�1=2


 �
þ f ðtÞ ð15-51Þ

where f ðtÞ can be obtained, for example, from (15-49). The relationship in (15-51) is
conceptually similar to that of the resistive voltage source in [H.10.3: Taflove, 1st ed.,
Chap. 6, p. 459].

Fig. 15-13 illustrates the difference between one-dimensional hard and soft sources.
The FDTD model has cells from i ¼ 0 to i ¼ 1200 with a source at i ¼ 500 and a
dielectric with εr ¼ 9 in cells 1 to 200. The time function is a Gaussian pulse as in
(l5-49b). The (a) and (b) parts of the figure apply whether the source is hard or soft,
whereas the (c) and (d) parts only apply to the soft source and the (e) and (f) to the hard
source. For n ¼ 600, 700, and 800, the differences between the hard and soft sources are
apparent. Note the effect of the ABC at i ¼ 1200.

15.6.4 Total-Field/Scattered-Field Formulation

The total-field/scattered-field FDTD formulation [H.10.3: Taflove, Chap. 6] (see Fig. 15-14)
finds its greatest use in simulating plane wave illumination. This approach is based on the
linearity of Maxwell’s equations and the usual decomposition of the total electric and

magnetic fields into incident fields ðEi, HiÞ and scattered fields ðEs, HsÞ. Ei andHi are the
values of the incident fields that are known at all points of an FDTD grid at all time steps.
These are the field values that would exist if there were no materials of any sort in the
modeling as Fig. 15-15 shows for the fields on two separate grids, one being used for the
incident field and the second for the total field-scattered field. The incident field only exists
in the total field portion (100, i, 1100) of the total field grid (0 , i , 1200).

In Fig. 15-15, the total field grid is free space only. At time step n ¼ 350, the incident
field grid is seen to be propagating a sine wave. For i. 100 the incident field is subtracted
from the (zero) total field leaving only the scattered field (which is equal to the incident
field) in the total field grid. The scattered field region of the total field grid (dotted line in
Fig. 15-15) is exactly equal to zero, as one would expect with no scatterer present. At time
step n ¼ 650, the scattered field for i, 100 remains zero, while for i. 1100 the wave has
propagated through, and is subtracted out, leaving only zero scattered field in this region
as well for this example with no scatterer present.

The finite difference approximations of the Yee algorithm can be applied with equal
validity to either the incident-field vector components, the scattered-field vector com-
ponents, or the total-field vector components. FDTD codes can utilize this property to
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Figure 15-13 Gaussian pulse electric field at n ¼ 100, 200, 300, 400, 500, 600, 700, and 800.
Parts ða�dÞ are for a soft source at is ¼ 500. Parts (a), (b), (e), and (f) are for a hard source at
is ¼ 500. Cells from i ¼ 0 to i ¼ 200 contain εr ¼ 9.
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zone the numerical space lattice into two distinct regions separated by a nonphysical
surface that serves to connect the fields in each region as shown in Fig. 15-14.

Region 1, the inner zone of the lattice, is denoted as the total-field region where the
Yee algorithm operates on total-field vector components. The interacting structure of
interest is embedded within this region.

Region 2, the outer zone of the lattice, is denoted as the scattered-field region where
the Yee algorithm operates only on scattered-field vector components. This implies that
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Figure 15-14 Zoning of the FDTD grid, (a) Total-field and scattered-field regions, connecting
surface/plane wave source, and lattice truncation (ABC). (b) Detail of field component
locations in a one-dimensional horizontal cut through the grid of (a).
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Figure 15-15 One-dimensional free-space grid
from i ¼ 0 to i ¼ 1200. Total field region is from
i ¼ 100 to i ¼ 1100. 40 cells per wavelength
with a 10-GHz sine wave propagating from left to
right. E-fields shown at n ¼ 300, and n ¼ 650.
The scattered field region is shaded grey.
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there is no incident wave in Region 2 as illustrated by Fig. 15-16 for i , 100 and
n # 330. For n ¼ 200, the total field is the incident field (E and H considered to be 180�
out of time phase), whereas for n ¼ 330 reflection has occurred from the perfect electric
conductor (PEC) and some of the total field is just the incident field and some is a
standing wave of the incident and scattered (reflected) fields (E and H 90� out of time
phase). In Fig. 15-16, for n ¼ 650 and n ¼ 671 there is a scattered field propagating to the
left for i , 100 (E and H are in time phase) with a standing wave for 100 , i , 250,
with E always zero at i ¼ 250 and H at times reaching a maximum value of 2 at the PEC.

To illustrate how the total-field/scattered-field formulation is implemented, consider
the one-dimensional case. The nonphysical surface constituting the interface of Regions 1
and 2 contains E and H components that obviously require the formulation of various
field component spatial differences in the update equations. When a spatial difference is
taken across the interface plane, a problem of consistency arises. That is, on the Region 1
side of the interface, the field in the difference expression is assumed to be a total field,
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whereas on the Region 2 side of the interface, the field in the difference expression is
assumed to be a scattered field. It is inconsistent to perform an arithmetic difference
between scattered- and total-field values.

This problem of consistency can be solved by using the values of the components of

the incident-field vectors3 Einc and Hinc, which are assumed to be known or calculable at
each space lattice point. As illustrated in Fig. 15-14b, let the left interface between
scattered-field and total-field zones be positioned between Ez at iL and Hy at iL�1=2. From

this arrangement, it is clear that Ez is a total-field component. We then write

Etot
z

��nþ1

iL
¼ Etot

z

��n
iL
þ Δt

εoΔx
Htot

y

��nþ1=2

iLþ1=2
� Hscat

y

��nþ1=2

iL�1=2


 �
� Δt

εoΔx
Hinc

y

��nþ1=2

iL�1=2
ð15-52Þ

where the right-most term corrects the problem of inconsistency since

� Hscat
y

��nþ1=2

iL�1=2
� Hinc

y

��nþ1=2

iL�1=2
¼ �Htot

y

��nþ1=2

iL�1=2
ð15-53Þ

Similarly at grid point ðiL � 1
2
Þ, we write

Hscat
y

��nþ1=2

iL�1=2
¼ Hscat

y

��n�1=2

iL�1=2
þ Δt

μoΔx
Etot
z

��n
iL
� Escat

z

��n
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 �
� Δt

μoΔx
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z

��n
iL

ð15-54Þ

where the right-most term corrects the problem of inconsistency since

Escat
z

��n
iL
¼ Etot

z

��n
iL
� Einc

z

��n
iL

ð15-55Þ

A similar procedure is carried out at the right-hand-side total-field/scattered-field inter-
face. Let the right interface between scattered-field and total-field zones be positioned
exactly at an Ez component at grid point iR, and further assume that this Ez is a total-field
component. The electric field expression analogous to (15-52) is

Etot
z

��nþ1

iR
¼ Etot

z

��n
iR
þ Δt

εoΔx
Hscat

y

��nþ1=2
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� Htot

y
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iR�1=2


 �
þ Δt

εoΔx
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y

��nþ1=2

iRþ1=2
ð15-56Þ

The magnetic field expression analogous to (15-54) is

Hscat
y
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¼ Hscat
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��n
iRþ1

� Etot
z

��n
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 �
þ Δt

μoΔx
Einc
z

��n
iR

ð15-57Þ

The important effect of this procedure is to generate a plane wave at the left-hand
scattered-field/total-field interface point iL, propagate it through the total-field region to
the right-hand total-field/scattered-field interface point iR, and then cancel it out in the
right-hand scattered-field region. In the absence of a scattering object in the central total-
field zone, there are zero fields present in the scattered-field regions to the left and right of
the center zone as is the case in Fig. 15-15.

15.6.5 Pure Scattered-Field Formulation

The pure scattered-field formulation borrows from a method popular with the frequency
domain integral equation (i.e., MoM) community. Again, the concept evolves from the
linearity of Maxwell’s equations and the decomposition of the total electric and magnetic

3 To avoid confusion with the index i, “inc” is used to denote the incident field. For further consistency,
“scat” denotes the scattered field and “tot” the total field.
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fields into a known incident field and an unknown scattered field. Here, however, the
FDTD method is used to time step only the scattered electric and magnetic fields. That is,
the FDTD grid is not segmented into total-field and scattered-field regions, but instead
assumes scattered-field quantities everywhere. This is the case for (transmitting) antenna
analysis where the scattered field is thought of as the radiation field. The scattered
(radiation) field is, however, a near field since it is not practical to extend the grid to the
far-field. To obtain a far-field radiation pattern, it is necessary to transform data in
the near field to the far-field as discussed in the next section.

15.7 NEAR FIELDS AND FAR FIELDS

As we have implied earlier, it is not practical to directly calculate far-field FDTD data
within the FDTD grid because for most problems, the grid space cannot be made large
enough to include the far field. Thus, near-field data must be transformed into far-field
data. The existence of a well-defined scattered-field region in the FDTD lattice, as
described in the previous section, facilitates a near-to-far-field transformation that is
discussed here. If we use the near-field data stored in a single FDTD modeling run, this
transformation efficiently and accurately calculates the complete radiation pattern of an
antenna or the complete far-field bistatic scattering response of an illuminated structure
for a single illumination angle.

To begin developing the near-to-far-field transformation, refer to Fig. 15-17, where a
rectangular virtual surface Sab fully enclosing the scatterer (region B) is located in the
scattered-field region (region 2 of Fig. 15-17) near the lattice boundary. The tangential
components of the scattered fields Es and Hs are first obtained at Sab using FDTD. Then,
as indicated in Fig. 15-17, an equivalent problem is set up that is completely valid for
Region A, external to Sab. The new excitation data are Js and Ms, the equivalent
surface electric and magnetic currents, respectively, on Sab that are obtained according to
(see Sec. 9.1).

JsðrÞ ¼ n̂	HsðrÞ ð15-58aÞ
MsðrÞ ¼ �n̂	EsðrÞ ð15-58bÞ

where n̂ is the outward unit normal vector at the surface Sab.
The scattered far fields are then given by the integration of the equivalent currents of

(15-58a) and (15-58b). If ðμo, εoÞ are the region A medium characteristics, then the
following scattered far-field expressions for θ and φ polarizations are obtained:

Eθ ¼ �jω ½Aθ þ ηFφ� ð15-59aÞ
Eφ ¼ �jω ½Aφ � ηFθ� ð15-59bÞ

ο,   ο

Grid
boundary (ABC)

Near to far field
transformation
boundary

No material objects
No sources
Zero fields

Es, Hs

Js = n × Hs∧ Ms = n × Es

Sab n

μ ε

ο,  μ εο cells
5 - 10

B A

∧

∧

Figure 15-17 Electromagnetic
equivalence to transform near
fields to far fields.
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where

Aθ ¼ Ax cos θ cosφþ Ay cos θ sinφ� Az sin θ ð15-59cÞ
Fθ ¼ Fx cos θ cosφþ Fy cos θ sinφ� Fz sin θ ð15-59dÞ
Aφ ¼ �Ax sinφþ Ay cosφ ð15-59eÞ
Fφ ¼ �Fx sinφþ Fy cosφ ð15-59f Þ

and the potentials in the far-field region are given by

A

F

� 	
¼ e�jβr

4πr

� �ZZ
μoJs

εoMs

� 	
ejβr

0cos ξ dS0ab ð15-60aÞ

r0cos ξ ¼ ðx0 cosφþ y0 sinφÞ sin θþ z0 cos θ ð15-60bÞ
This approach to computing the far scattered fields is straightforward because (1) the

near-field data for arbitrary antennas or scatterers can be obtained from the FDTD cal-
culations themselves and (2) the transformation of the near-field data to the far field is
independent of the nature of the scatterer that resides within the integration surface Sab.

Early FDTD calculations of far-zone scattered fields used sinusoidal excitation.
Because of this, the FDTD far-zone results were obtained at only one frequency per
FDTD calculation run. The procedure for such single-frequency far-zone calculations is
straightforward. First, the FDTD calculations are stepped through time until steady-state
conditions are reached. Then the complex time-harmonic electric and magnetic currents
flowing on a closed surface surrounding the object are obtained. If these time-harmonic
fields or currents are stored, then during postprocessing the far-zone radiated or scattered
fields can be calculated in any desired direction. This approach is particularly suited to
far-zone radiation or scattering patterns at only a single frequency.

To obtain far-zone results at multiple frequencies, the approach is to use pulsed
excitations for the FDTD calculations. For each frequency of interest, a running discrete
Fourier transform (DFT) of the time-harmonic surface currents on a closed surface sur-
rounding the FDTD geometry is updated at each time step. The running DFT provides the
complex frequency domain currents for any number of frequencies when using pulse
excitation for the FDTD calculation. This is much more efficient than using a time-
harmonic excitation for each frequency of interest. It requires no more computer storage
per frequency for the surface currents than when sinusoidal excitation is used and
provides frequency domain far-zone fields at any far-zone angle. If far-zone results are
desired at several frequencies, then the running DFT approach is the better choice.

Before leaving this section, we should mention that the near-field data itself may be of
interest. Near-field data are readily obtained by selecting appropriate field values directly
from the FDTD grid. Data can include instantaneous fields, phasor fields obtained via
Fourier transformation of the instantaneous fields, scalar or vector-interpolated field
maps. The near-field radiation pattern of an antenna is simply the spatial distribution of
the FDTD computed radiated fields in the vicinity of the antenna. Near-fields provide
insight into basic physical interactions such as reflection and diffraction. Near-field data
can also be used to determine, for example, magnitude and phase data across an antenna
aperture (as in the next section), surface current densities on an antenna, and current or
field distributions in or along an antenna feed.

15.8 A TWO-DIMENSIONAL EXAMPLE: AN E–PLANE
SECTORAL HORN ANTENNA

The previous sections presented all the basics needed to do a problem from grid layout
to computation of the far field. This section considers a two-dimensional TE example
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problem in detail. The problem is a two-dimensional model of an E-plane sectoral horn as
illustrated in Fig. 9-15. The horn was chosen according to the optimum condition

B ¼ ffiffiffiffiffiffiffiffiffiffi
2lR2

p
with R2 ¼ 8l so that B ¼ 4l. (See Sec. 9.4.2.) The resulting FDTD model of

the horn is illustrated in Fig. 15-18. Notice that the walls of the horn are “stepped.” To see
why this stepping comes about, examine the two-dimensional grid in Fig. 15-19. At the
walls of the horn and waveguide, the coefficients Ca and Cb are calculated with a high

value of conductivity (e.g., 5:7	 107siemens=m). Since the cells are square, a stepped
contour naturally results.

The two-dimensional grid used for this example was 260	 200 cells as indicated in
Fig. 15-18. The cells are l=20 by l=20 at the center frequency. The boundary for the near-
to-far-field transformation is taken to be 12 cells inside the extremities of the grid. The
time function chosen is the sine modulated Gaussian pulse of (15-49c) expressed as

f ðtÞ ¼ 1:148e�½ðt�3τoÞ=τo�2 sin ½2πfcðt � 3τoÞ� ð15-61Þ
where

τo ¼ 1:0=½πðfh � fcÞ�
fh ¼ 15 GHz
fc ¼ 10 GHz

Δx ¼ l=20 at the center frequency.

2Δt ¼ Δx=2:99792458	 108

t ¼ nΔt, Δt ¼ 2:5	 10�12

The plot of this function is shown in Fig. 15-20. A soft source with this time function is
located l=4 from the back wall of the waveguide at the center frequency.

(200, 0) (200, 260)

(0, 260)(0, 0)

Figure 15-18 TE model of an E-plane sectoral horn.
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Fig. 15-21a shows the fields in the horn at the 250th time step. The pulse has not yet
reached the aperture and there is evidence of some reflection at the discontinuity where
the walls of the horn join with the waveguide walls. In Fig. 15-21b, where n ¼ 475,
the peak energy content of the pulse has passed just beyond the aperture and there is some
evidence of energy reflected from the aperture traveling back toward the waveguide.
Diffraction at the edges of the horn is in clear evidence. Time steps n ¼ 600 and 800
are presented in the previous edition of this book on p. 528. They show double diffraction
effects at n ¼ 600 and 800 and diffraction by a wedge whose interior angle is greater than
π (i.e., where the horn itself joins the waveguide) at n ¼ 800.

In Figs. 15-21a�b, the darkest areas indicate highest levels of field intensity and thewhite
areas indicate zero field intensity. Even within the pulse itself there are several instants
in time when the pulse is zero (see Fig. 15-20). These times of zero field intensity are the
thin white lines within the main pulse and its diffractions or reflections in Fig. 15-21.
Large almost-white areas are evidence of numerical noise.

Fig. 15-22 shows the amplitude and phase distributions across the aperture at 9,10, and
11 GHz. These are obtained from a Fourier transform of the fields at the aperture. From

Ey

Ex

Cell (i, j)

Hz

(i, j)

Figure 15-19 Perspective view of a
two-dimensional TE grid.

1.0

0.5

0.0

−0.5

−1.0
0 50

Time step (n)
100 150

f (t)

Figure 15-20 Sine modulated Gaussian waveform.
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(0, 200) (200, 260)

(0, 200) (200, 260)

(0, 0) (0, 260)
(a) At n = 250

(0, 0) (0, 260)
(b) At n = 475

Figure 15-21 Pulse propagation at n ¼ 250, 475, 600, 800.
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our design condition for this horn, B ¼ ffiffiffiffiffiffiffiffiffiffi
2lR2

p
, a 90� phase change is expected from the

center of the aperture to the edge. The FDTD results are nearly in agreement with this if
allowance is made for the diffraction effects near the edges of the aperture that are not
included in the classical analysis of Chap. 9, but are included in the nearly exact FDTD
results. From the amplitude distribution near the edges of the aperture in Fig. 15-22 as
well as the more rapid change in phase there, it is apparent that the electromagnetic wave
has a strong interaction with the edges of the horn.

Fig. 15-23 shows the magnitude of the electric field along the transformation boundary
that partly contributes to the near-to-far-field transformation; the magnetic field accounts
for the remainder. The field is evaluated at n ¼ 800. Not surprisingly, the field is strongest
on the side in front of the aperture and is zero on the side opposite the aperture (i.e., the
back side) since the pulse has not yet had time to reach the back side. Along the sides
(i.e., the top or bottom of Fig. 15-18), there is some field present, particularly near the
horn aperture.

Fig. 15-24 shows the far-field pattern at 10 GHz computed from the near-to-far-field
transformation using data at a boundary 12 cells inside the extremities of the grid in
Fig. 15-18. The pattern is in good agreement with the classical pattern shown in Fig. 9-16

for the case S ¼ 1
4
when the E-plane scale on the abscissa is 4 sin θ since B=l sin θ ¼

4sin θ here.
The forward-region far-field pattern was calculated at n ¼ 800 because data in Fig. 15-25

show that steady state has been achieved on the front (right) face of the near-to-far-field
transformation boundary. Near-field convergence guarantees far-field convergence, but the
reverse is not true. One could calculate the far-field pattern after more time steps, but
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bution at n ¼ 800.
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unwanted effects such as the interaction of the wave with the exterior of the waveguide may
appear in the data. At, say, n ¼ 800, the start of such occurs before the disturbance has had
time to reach the back face of the near-to-far-field transformation boundary. In other words, it
is important to march out in time far enough to achieve steady state, but not so far out in time
that the desired data become contaminated with unwanted effects.
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Figure 15-23 Amplitude of the
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FDTD has the potential to provide other data as well. Consider Fig. 15-26 that shows
the magnetic field at the center of the aperture ði ¼ 199, j ¼ 100Þ from n ¼ 300 to
n ¼ 1500. The first major feature to appear is the main pulse at approximately n ¼ 420
(e.g., about 210 cells traveled with two time steps per cell). About 80 time steps later
(i.e., 40 cells from an edge to the aperture center), the diffraction from the edges of the
horn arrives. At approximately n ¼ 700 and n ¼ 850, respectively, diffraction that has
reflected from the opposite wall arrives, followed by diffraction that has again reflected
from the other wall. These last two effects at around n ¼ 700 and n ¼ 825 do not affect
the main-lobe region of the far-field pattern because they are propagating in directions
that are not in the main-lobe direction.
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The next section will consider two three-dimensional antenna problems, although
not in as much detail as was done here for the two-dimensional model of the E-plane
sectoral horn.

15.9 ANTENNA ANALYSIS AND APPLICATIONS

Application of FDTD to antennas has occurred only recently relative to other applications
such as shielding and radar cross section. One reason for this is that MoM can provide
results for small, relatively simple antennas with much less computer time and memory
than FDTD, since MoM finds only the currents flowing on the wire or conducting surface,
whereas FDTD must calculate the fields in the entire computational region. This region
should contain enough cells to allow some near-field decay between the antenna and the
absorbing boundaries. If the antenna is small and geometrically simple, computing the
fields in all the surrounding free-space cells makes FDTD much less efficient than MoM.
For medium-sized antennas, or antennas with geometries and/or materials [9] that are not
easily included in MoM formulations, or where data are needed at many frequencies,
FDTD becomes a superior method.

When FDTD is applied to receiving antenna calculations, it loses one of its advantages
relative to the MoM in applications that require results at multiple far-zone angles. For
example, in scattering applications the MoM produces results for different plane wave
incidence angles efficiently from a single impedance matrix, whereas FDTD requires a
complete recalculation for each different incidence angle. However, for antenna trans-
mitting problems, FDTD can produce far-zone fields in any number of different directions
efficiently during one computation, as can MoM. Because FDTD also provides wide
frequency band results with pulse excitation, it is extremely efficient in antenna appli-
cations, since results for impedance and radiation patterns over a wide frequency band
can be obtained from one FDTD computation.

15.9.1 Impedance, Efficiency, and Gain

It should not be forgotten that antenna descriptors we have become so comfortable with
elsewhere in this book, such as impedance, gain, far-field patterns, and radar cross
section, are frequency domain concepts. To obtain them from the FDTD calculation
process, it is necessary to Fourier-transform the appropriate voltages, currents, and fields
from the time domain to the frequency domain.

In order to capitalize on the advantages of FDTD (i.e., wide bandwidth data), it is
common to utilize a Gaussian voltage pulse to excite an antenna. The Fourier transform of
the voltage excitation pulse at the feed point is denoted as VAðωÞ and the Fourier transform
of the current at the feed point is denoted IAðωÞThen the input impedance is given by

ZAðωÞ ¼ VAðωÞ
IAðωÞ ð15-62Þ

To determine υAðtÞ and iAðtÞ in the FDTD grid, from which VAðωÞ and IAðωÞ are derived,
we employ the line integrals of E and H, respectively.

Consider a situation in which an antenna is fed with one voltage source modeled as an

electric field Ez

��n
i, j,k

with corresponding voltage υiðtÞ across the cell at the antenna feed

gap, and this source supplies a time domain current iiðtÞ. After all transients are dissipated
and the time domain results for these two quantities are Fourier-transformed, the
equivalent steady-state input power at each frequency is given quite simply by

PinðωÞ ¼ 1

2
Re VAðωÞI*AðωÞ
�  ð15-63Þ
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Dissipated power due to ohmic losses is computed as follows. Suppose that an FDTD
electric field component EzðtÞ is in a region with conductivity σ. If we assume that
the electric field is uniform within a single FDTD cell, then at each frequency the
equivalent steady-state power dissipated in this region is given by

Po ¼ 1

2

ZZZ
σ
��EzðωÞ

��2 dυ ¼ 1

2
σ
��EzðωÞ

��2Δx Δy Δz

¼ 1

2

σ Δx Δy

Δz

��EzðωÞΔz
��2 ¼ VðωÞj j2

2R

ð15-64Þ

where EzðωÞ is the Fourier transform of EzðtÞ and R is a lumped resistance across the cell
in the z-direction. Knowing Pin and Po leads to a determination of radiation efficiency
from (2-153).

To determine the antenna gain, the far-zone electric field in the desired direction must
be determined at specified frequencies. If we use the approach given in the previous
section, this can be done for pulsed far-zone fields. Since the far-zone electric field is
computed so that the 1=r amplitude factor and the propagation delay are suppressed, the
antenna gain relative to a lossless isotropic antenna in the ðθ,φÞ direction is given by

Gðω, θ,φÞ ¼ 1

2

Eðω, θ,φÞ2�� ��=η
Pin=4π

ð15-65Þ

where Eðω, θ,φÞ is the peak value of the Fourier transform of the pulsed far-zone time
domain electric field radiated in the ðθ,φÞ direction.

15.9.2 The Monopole over a PEC Ground Plane

Maloney et al. [10] used FDTD to model the radiation from two simple antennas: the
cylindrical monopole and the conical monopole. Here, we shall consider only the former,
the cylindrical monopole of height h over a PEC ground plane. The FDTD grid used to
model this antenna is shown in Fig. 15-27. The grid used a two-dimensional cylindrical-
coordinate algorithm, exploiting the rotational symmetry of both the antenna and feeding
coaxial line about the z-axis. In the cylindrical system, the TE mode is composed of
Eφ, Hρ, and Hz, whereas the TM mode has the components Eρ, Ez, and Hφ. Since the
coaxial line was excited with a TEM mode consisting of just Eρ and Hφ, only the TM
cylindrical mode was modeled.

A Gaussian pulse voltage excitation within the coaxial line υðtÞ ¼ υ0 expð�t2=2τ2pÞ
was used at source plane A� A0 in combination with an exact ABC to emulate a matched
source at that location. The following normalized parameters apply to the model: b=a ¼
2:30 ð50-Ω coaxial lineÞ; h=a ¼ 65:8; τp=τa ¼ 8:04	 10�2. Here τp is the 1=e width of
the excitation pulse and τa ¼ h=c ¼ characteristic antenna height. In other words, τa
represents the time required for an electromagnetic wave to travel the length of the
monopole. Finally, an ABC of only first-order accuracy was used to terminate the grid at
its outer boundary Se.

The cylindrical monopole represents a two-dimensional electromagnetic problem. For
example, the radiator in Fig. 15-27 is rotationally symmetric and is excited by a rota-
tionally symmetric source

EiðtÞ ¼ υiðtÞ
Inðb=aÞρ ρ̂ ð15-66Þ
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The applicable components of Maxwell’s curl equations are

@Eρ

@z
� @Ez

@ρ
¼ �μo

@Hφ

@t
ð15-67aÞ

� @Hφ

@z
¼ �εo

@Eρ

@t
ð15-67bÞ

1

ρ
@ðρHφÞ
@ρ

¼ εo
@Ez

@t
ð15-67cÞ

After discretization of the above, we have

Hφ
��nþ1=2

i, j
¼ Hφ

��n�1=2

i, j
þ Δt

μoΔρ
Ez

��n
iþ1=2,j

� Ez

��n
i�1=2,j

h i

� Δt

μoΔz
Eρ
��n
i, jþ1=2

� Eρ
��n
i, j�1=2

h i ð15-68aÞ

Eρ
��nþ1

i, j�1=2
¼ Eρ

��n
i, j�1=2

� Δt

εoΔz
Hφ
��nþ1=2

i, j
� Hφ

��nþ1=2

i, j�1

h i
ð15-68bÞ

Ez

��nþ1

iþ1=2,j
¼ Ez

��n
iþ1=2,j

þ Δt

εoΔρ
1

ρiþ1=2

ρiþ1Hφ
��nþ1=2

iþ1,j
� ρiHφ

��nþ1=2

i, j

h i
ð15-68cÞ

Note that the grid in Fig. 15-28 is arranged so that the electric field component tangential
to the surface of a perfect conductor is evaluated at the surface.

An absorbing boundary condition is used at the surface Se; this allows the observation
period to be extended beyond t ¼ to. If we look in the opposite direction, the TEM field
within the coaxial line behaves like the one-dimensional case examined in previous

Image
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Coaxial
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lA

lB

Grid

R

V

B – B�

A – A�
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Se z

O

Figure 15-27 Geometry of the two-dimensional
cylindrical-coordinate FDFD grid used to model the
transient excitation of a coaxial-fed monopole
over a PEC ground plane. (Maloney et al., IEEE
Trans. on Ant. & Prop., Vol. 38, pp. 1059–1068,
July 1990. Reprinted with permission of IEEE.)
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sections. Thus, an exact absorbing boundary condition can be constructed within the
coaxial line. The incident field is additively injected at a plane z ¼ �‘, and the absorbing
boundary condition, placed at z ¼ �ð‘þΔzÞ, exactly absorbs the field of a TEM mode
propagating in the �z-direction. This allows the cross section at which the incident field is
specified to be moved closer to the ground plane; namely, in Fig. 15-27, B� B0ðz ¼ ‘BÞ is
used instead of A� A0ðz ¼ �‘AÞ. This reduces both the time required for observation and
the size of the grid.

The spatial and temporal increments ðΔρ, Δz, and ΔtÞ are chosen to satisfy the
Courant-Friedrichs-Levy condition in the cylindrical system [3]:

cΔt #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δρ2Δz2

Δρ2 þΔz2

s
ð15-69Þ

In this work, two spatial grid spacings are used: a fine spacing ðΔρ1 
 Δz1Þ within the
coaxial line and close to the antenna where the field is varying rapidly with spatial
position, and a coarse grid [Δρ2 ¼ ð3� 5ÞΔρ1, Δz2 ¼ ð3� 5ÞΔz1] in the remainder of
the space. The use of the dual grid reduces computer storage. Note that when (15-69) is
satisfied for the fine grid, it is automatically satisfied for the course grid. In the example
that follows,

cΔt ¼ minðΔρ1, Δz1Þ
2

ð15-70Þ

and the increments Δρ1, Δz1 are chosen small enough to resolve the spatial variation of
the field.

Fig. 15-29 is a space-time plot of the FDTD calculated surface charge density on the
monopole antenna and its feeding coaxial line. At point A in this figure, the incident pulse
has reached the antenna. An impedance mismatch between the feed-line and the antenna
causes some of the energy to reflect back down the line. The remaining energy then
propagates along the length of the antenna until the end of the antenna is reached at point
B. Here, some energy radiates while the remaining energy reflects back down the antenna.
This represents the (imperfect) transition from the antenna to free space.
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Figure 15-28 Spatial grid and field components for the two-dimensional problem with
cylindrical symmetry. (Maloney et al., IEEE Trans. on Ant. & Prop., pp. 1059–1068, July
1990. Reprinted with permission.)
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At point C, the antenna/feedline junction causes a partial retroreflection, with some
energy continuing down the coax and the remainder going back up the monopole. This
process repeats itself until all transients have decayed. It is significant to note that at no
time did energy enter the antenna from the coax once the incident pulse had propagated
through. This verified that the ABC at the line feedpoint was working properly.

Fig. 15-30 shows the FDTD-computed radiated fields for three snapshots in time. In
Fig. 15-30a, the initial outgoing wavefront W1 was produced after the exciting pulse
passed the feedline/antenna transition. Note the reflected energy traveling back down the
coaxial feedline. In Fig. 15-30b, a second outgoing wavefront W2 was produced when
the energy traveling up the antenna was reflected from its top end. In Fig. 15-30c, bothW1

and W2 have propagated away from the antenna, but a third wavefront W3 was generated
when energy retroreflected from the feed-line/antenna transition. Also in Fig. 15-30c, the
wavefrontW2R arises from the reflection of theW2 wavefront from the ground plane. This
process repeats until the surface charge density decays to zero.

The far-zone electric field Eθ for the cylindrical monopole antenna is shown in
Fig. 15-31. The surface used for these calculations was the cylindrical boundary separating
the fine and coarse grids in Fig. 15–27. Each trace in this figure shows the electric field at a
fixed polar angle θ as a function of the normalized time t=τa. Notice that the shape of each
time domain trace is different for each polar angle because each trace has a different
frequency content. This is due to the radiation patterns in the frequency domain being
different at each frequency. Also notice that wave-fronts from the same point on the
antenna are always separated by a time interval that is a multiple of 2τa, the round-trip
transit time for the pulse on the antenna. For example, wavefronts W1 and W3, which are
centered on the drive point, are separated by the time 2τa, as are wavefronts W2 and W4,
which are centered on the end.
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Figure 15-29 Normalized surface charge density on the cylindrical monopole antenna as a
function of the normalized position z=h and the normalized time t=τa. (Maloney et al., IEEE
Trans. on Ant. & Prop., Vol. 38, pp. 1059–1068, July 1990. Reprinted with permission.)
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Figure 15-30 FDTD-computed radiation of a Gaussian pulse from the cylindrical monopole antenna.
The gray scale plots show the magnitude of the electric field, whereas the line drawings show the surface
charge density on the antenna and the feeding coaxial life. (Maloney et al., IEEE Trans. on Ant. & Prop.,
Vol. 38, pp. 1059–1068, July 1990. Reprinted with permission.)

0 1 2
t/τa

3 4

θ
5°

25°

45°

65°

W4R

W2R

W2

+

W4

W4 + W4R

W2 + W2R

W1

W3

90°

Figure 15-31 Radiation of a Gaussian pulse from a cylindrical monopole antenna. Each trace
shows the far-zone electric field εθ at a fixed polar angle θ as a function of the normalized time
t=τa: b=a ¼ 2:30, h/a¼ 65.8, and τp=τa ¼ 8:04	 10�2. (Maloney et al., IEEE Trans. on Ant.
& Prop., pp. 1059–1068, July 1990. Reprinted with permission.)
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15.9.3 Microstrip Leaky Wave Antennas

The microstrip leaky wave antenna was discussed in Sec. 11.4.3. This section discusses
how the configuration in Fig. 11-8a was simulated on a PC with limited computer
resources. The dimensions of interest for the full-width configuration in Fig. 11-8a where
a length of 220 mm with the vias replaced by a solid wall down the centerline. The width
of the microstrip was 15 mm. At 8 GHz the free-space wavelength is 37:5 mm, making
the antenna 5:86l long. The material was Rogers Corporation 5870 Duroid with 1-ounce
copper cladding 35μm thick. The following discussion is taken from [11].

As a starting point in building the FDTD simulation model, the entire antenna was
surrounded by a 20-cell-thick layer of free space, except for the space above the antenna
(i.e., between the top of the antenna and the UPML), which was 40 cells thick. The
substrate was extended one antenna width in both transverse directions, making the overall
width of the configuration 45 mm, as shown in Fig. 15-32. The copper in the microstrip

and the ground plane was a one-cell-thick layer of conductivity, σ ¼ 5:8	 107 S=m. With
cells nearly cubical in shape, the substrate would be 22 cells thick. Thus the initial sim-
ulation model would require nearly 900 million cells, far too large for a PC. By approx-
imating the copper conductor as a perfect electric conductor (PEC) of zero thickness,
larger cells could be used throughout, decreasing the total number of cells required. For
example, by making the substrate only 5 cells thick, the simulation model is reduced from
900 million cells to about 50 million cells, a 94% decrease but still too large for a PC at the
time this work was undertaken.

The PML used in this study was the UPML of Sec. 15.5 matched to free space, which
surrounds the leaky wave antenna on all sides. Of interest to us is the propagation constant
of the forward traveling wave as discussed in Sec. 11.4.3. To isolate the forward traveling
wave, any reflected waves need to be eliminated in the simulation model. This can be
accomplished by extending the substrate in the transverse and longitudinal directions
directly into the UPML and modifying the affected UPML cells to match the substrate.
This permits the UPML layer under the ground plate to be removed since it is now
redundant. The UPML now absorbs the propagating waves except for the forward trav-
eling wave. At this point the UPML is inhomogeneous in the broadside, or y-direction. If
the electric flux density, Dy, is discontinuous between two materials, Gauss’s Law states

x

y

45 mm

PML
(ε0)w = 15 mm

εr = 2.33
h = 0.787 mm

ε0

Figure 15-32 An x-y cross-section slice of the full-width antenna surrounded by free space
(not to scale).
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that a surface charge will develop at the boundary. Such a charge build-up is a potential
source of instability in an FDTD simulation but can be avoided by choosing the imaginary
component of UPML permittivity to be normalized to free-space permittivity instead of
the material’s permittivity.

Next in the development of the simulation model, free space was removed except for
the region on the top side of the antenna, as shown in Fig. 15-33. Further, the thickness of
the free-space layer above the antenna only needed to be 2 cells thick. The resulting
simulation space is now reduced to 10 million cells.

A further reduction in the number of cells is possible if the cells used are elongated in the
longitudinal direction instead of being cubic. The cells used, however, had the same
dimensions in the transverse x-direction and broadside y-direction direction. Itwas found that
the error in βz at the center frequency of 7 GHz with respect to the transverse resonance
solution was less than 1% if the ratio of the cell size was 1:1:6 (transverse:broadside:
longitudinal) or less.Usinga 5-cell-thick substratewith a ratioof 1:1:5 reduced the simulation
space to 572, 000 cells.

MATLAB defaults to double precision unless specified otherwise. Runs in single
precision used roughly 40% less memory and results were mostly consistent with double
precision results. All runs were done in double precision unless the size of the simulation
required more memory than was available.

The worst resolution will occur in areas with the shortest wavelength and largest cells,
which occurs in the substrate outside the microstrip where the wavelength is the free-
space wavelength reduced by

ffiffiffiffi
εr

p
. When the substrate is 5 cells thick (i.e., each cell is

787=5μm thick) and the size is 1:1:5 ðx : y : zÞ, the cells are 157:4	 157:4	 787 μm.
When the size is 1:1:3, the cells are 157:4	 157:4	 472:2μm. Between the microstrip
and the ground plate where the z-directed guided wavelength is much greater, the reso-
lution is hundreds of cells per guided wavelength, which is more than adequate for
accurate determination of αz and βz.

A general rule for cell size is that the cells size be small enough to represent geo-
metrical features adequately and that the cell size be smaller than one-tenth the shortest
wavelength in the simulation space. The cell size used for the microstrip leaky wave
easily meets these criteria and is further driven in this case by the discovered need to
sample the fields more accurately in the critical transverse x-direction.

x

y

PML
(ε0)

PML
(εr)

ε0

εr = 2.33

Ex, Ez = 0

Ey, Ez = 0

h = 0.787 mm

Figure 15-33 An x-y cross-section slice of the full-width antenna extending into the PML
with unneeded material removed (not to scale).
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Finally, the unexcited half of the antenna in Fig. 11-8a was eliminated and the half-
width configuration in Fig. 15-34 was used for the final simulation. The half-width
antenna used approximately 45% less memory than the full-width simulation.

The source placement and size required some experimentation. It was found that at
least one source cell must be more than two cells from the UPML or too much energy will
be absorbed for the traveling wave to adequately develop. A single source cell centered
vertically in the substrate between the microstrip and ground plate allowed a traveling
wave of the largest magnitude to develop in the half-width antenna provided the source
was two cells inside the open side edge of the antenna and five cells from the UPML. The
source cell location is indicated in Fig. 15-33.

Results of the FDTD simulation are found in Figs. 11-12 and 11-13 and also in [12].
A purpose of this subsection is to demonstrate how a seemingly large simulation

problem can be reduced in size without compromising accuracy and usefulness. As
computer capability increases, larger and larger simulations become the norm. Recent
advances to 64-bit architecture with corresponding increases in computer memory enable
current desktop computers to overcome some of the computer limitations encountered in
this study. Nevertheless, it is prudent to take advantage of opportunities to reduce the size
of the FDTD simulation space.

15.10 SUMMARY

In this chapter, the finite difference time domain, or FDTD, method has been presented.
FDTD is a differential-equation-based method in the time domain that employs
approximations to derivatives in a solution of Maxwell’s equations that “marches on in
time and space.” The basic features of FDTD were presented in Secs. 15.2 through l5.6.
The one-dimensional case was used to illustrate fundamental principles, but the two-
dimensional and three-dimensional cases were also considered (e.g., Secs. 15.8 and l5.9).
Only simple media were employed, but FDTD is well suited to complex media as well,
such as inhomogeneous and anisotropic media.

Both MoM (in the previous chapter) and FDTD are usually thought of as intermediate
frequency techniques because they cannot easily accommodate bodies that are arbitrarily
large in terms of the wavelength. In contrast to this, Chap. 16 presents high-frequency or
asymptotic methods that apply best to material structures (i.e., antennas or scatterers)
arbitrarily large in terms of the wavelength.
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PROBLEMS

15.1-1 Reduce (15-5) to (15-7) and (15-8).
15.1-2 Reduce (15-7) to (15-10) and reduce (15-8) to (15-11).

15.2-1 (a) Obtain (15-14) from (15-12) by expanding Hy in a Taylor series about the temporal
point tn and by expanding Ez, about the spatial point xi.

(b) Show that the central difference approximations are second-order-accurate. That is,
error ¼ OðΔz2Þ þ OðΔt2Þ.

(c) Does this tell how much error is in the solution?
15.2-2 Derive (15-17) from (15-10b).
15.2-3 Derive (15-22) from (15-21).
15.2-4 Derive (15-27) from (15-6c).
15.2-5 Derive from (15-5b) an expression for Hy similar to (15-26).
15.2-6 Derive from (l5-6b) an expression for Ey similar to (15-27).
15.2-7 Derive (15-30a) from (15-26).
15.3-1 Show that the one-dimensional central difference eqs. (15-14) and (15-17) produce an
exact solution when cΔt ¼ Δx.
15.3-2 Can numerical dispersion occur in a non-dispersive medium?
15.3-3 Consider a plane wave in free space:

Hy ¼ Hoe
jðωt�βxÞ

If the plane wave is discretized in time and space

Hyðxi, tnÞ ¼ Hoe
jðωnΔt�βnumiΔxÞ

where t ¼ nΔt, x ¼ iΔx, βnum ¼ ω
υ :υ is the numerical phase velocity.

(a) Write an expression for the phase error of the discretized wave relative to the actual
wave and comment on the amount of phase error as the propagation distance increases.

(b) How can the error in phase be overcome?
15.4-1 With reference to Fig. 15-9, calculate by hand E and H for the fourth time step when
i , 50. Then, from your results, verify that there is power flow in the negative x-direction.
15.5-1 Recompute by hand Table 15-1 if there is a perfect electrical conductor in cell 53.
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15.5-2 Show that the second-order Mur estimate in (15-43) reduces to an exact 1-D result.
15.6-1 Write a one-dimensional computer code and verify the results presented in Fig. 11-12
for the delta function hard source.
15.6-2 Extend the computer code in Prob. 15.6-1 to accommodate soft sources and verify
Fig. 15-13.
15.6-3 With reference to Fig. 15-13, calculate by classical means the reflection and trans-
mission coefficients at the dielectric to air interface and compare with the magnitude of the
reflected and transmitted fields in the figure when n ¼ 400.
15.6-4 At what time step in Fig. 15-13 does the peak value of the reflected Gaussian pulse
arrive back at the source? Arrive at your answer by assuming the magic time step and then
determining how many time steps are required.
15.6-5 In terms of the update equations, explain why the soft source in Fig. 15-13 allows the
wave reflected from the dielectric to pass onward to the right and the hard source does not.
15.6-6 Verify (15-52) using (15-53).
15.6-7 Verify (15-54) using (15-55).
15.6-8 Explain why it is more computationally efficient to use FDTD for antennas when the
antenna is transmitting than when it is receiving.
15.6-9 Extend Prob. 15.5-1 out to n ¼ 8 if the source at i ¼ 50 is a hard source. Repeat if the
source is a soft source.
15.7-1 Using the surface equivalence theorem, show that the far-field pattern of an antenna
may be computed using (15-59) and (15-60) applied to a surface surrounding the antenna.
15.8-1 In Fig. 15-22, exclude edge effects on the phase and show that the phase change from
the center of the aperture to the edges is 90� at 10 GHz as required by the optimum condition
under which this horn was designed. (Note the amplitude distribution near the edges and use
that to estimate the region over which the edges are having a strong effect on both the
amplitude and phase distributions.)
15.8-2 Compare Fig. 15-24 to Fig. 15-16.
15.8-3 By making measurements on Fig. 15-18 with a ruler, verify the time at which the
various physical phenomena depicted in Fig. 15-26 occur.
15.8-4 Write a two-dimensional computer code (or use an existing one) and verify Fig. 15-22.
15.8-5 Make a photocopy of Figs. 15-21a�b and indicate on the copy the various physical
phenomena that you see there.
15.9-1 Verify (15-64).
15.9-2 Derive (15-65).
15.9-3 Derive (15-68) from (15-67).
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Chapter16

CEM for Antennas:
High-Frequency Methods

Optics is a well-understood area of physics that deals with the characteristics of light
wave propagation. It was Maxwell who showed before 1873 that the propagation of light
could be viewed as an electromagnetic phenomenon. Since the wavelength of light waves
is usually small compared to objects with which it interacts, the analytical treatment of
light wave propagation is much different than that employed to analyze lower-frequency
propagation where the size of a scattering surface is comparable to the wavelength.

A very useful and easily understood method for analyzing optical problems is the ray
concept. The relationship between ray optics and wave propagation is apparent from the
famous works of Huygens in 1690 and Fresnel in 1818, but was not formally shown until
the works of Luneberg in 1944 and Kline in 1951. [1] Since that time the well-known
methods of optics have found increasing use in the treatment of many electromagnetic
problems in the radio frequency portion of the spectrum for situations where the wave-
length is small compared to the geometrical dimensions of the scatterer or antenna. In
these cases, asymptotic high-frequency methods must be employed since it is not prac-
tical to use moment methods (Chap. 14) or eigenfunction expansions. This is because the
rate of convergence of both of these techniques is generally quite poor when dealing with
an electrically large antenna or scatterer.

In this chapter, we will first examine the principles of geometrical optics. We will then
see that in many situations geometrical optics is inadequate to completely describe the
behavior of the electromagnetic field, and it is necessary to include another field called
the diffracted field. The diffracted field, when added to the geometrical optics field,
permits us to solve many practical radiation and scattering problems in a moderately
straightforward manner that could not be solved any other way.

Geometrical optics and its extension to include diffracted fields is a field-based method
(see Fig. 14-1) and does not require the calculation of currents. Later in this chapter,
current-based methods will be discussed wherein currents are used to ultimately deter-
mine the field quantities of interest. These methods are physical optics and its extension
to include diffraction. In many situations, a physical optics current is inadequate to
produce accurate fields from a radiating object and it is necessary to include another
current called the nonuniform current. The nonuniform current, when added to the
physical optics current, permits an accurate representation of the fields to be obtained.
Whether a field-based or a current-based method is to be used depends on the specific
application, as we shall see in the sections that follow.
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16.1 GEOMETRICAL OPTICS

Geometrical optics, or ray optics as it is often called, was originally developed to analyze
the propagation of light where the frequency is sufficiently high that the wave nature of
light need not be considered. Indeed, geometrical optics can be developed by simply
considering the transport of energy from one point to another without any reference to
whether the transport mechanism is particle or wave in nature.

Classical geometrical optics applies to isotropic lossless media that may or may not be
homogeneous. In this chapter, we will only consider homogeneous media where the index
of refraction n is assumed to be real and is given by

n ¼ c

v
ð16-1Þ

and is not a function of position within a given medium. Here, c is approximately
3� 108m=s and v is the velocity of propagation in the medium. In a homogeneous
medium, energy moves along ray paths that are straight lines. Normal to these ray paths
are a family of surfaces called the eikonal of the ray system. In applying geometrical
optics, it is only necessary that we know either the eikonal of the ray system or the ray
paths, since the two are uniquely related.

For a plane wave in homogeneous media, the eikonal surfaces are planes perpendicular
to the ray paths as shown in Fig. 16-1a. For a spherical source, the eikonal surfaces are
spherical surfaces perpendicular to the ray paths as shown in Fig. 16-1b.

The variation of the amplitude of the geometrical optics field within a ray tube is
determined by the law of energy conservation since the rays are lines of energy flow.
Consider two surfaces ρo and ρo þΔρ as shown in Fig. 16-2. Between the two surfaces, we
can construct a tube of constant energy flux by using the rays. Thus, the energy through
cross section dσo at Po must equal the energy flux through cross section dσ at P. If S is
the power per unit area, the condition of constant energy flow through the flux tube is

So dσo ¼ S dσ ð16-2Þ
In the case of electromagnetic waves, the quantity S is the real part of the complex
Poynting vector and we can assume that

S ¼ 1

2

ffiffiffi
ε
μ

r
Ej j2 ð16-3Þ

Substituting (16-3) into (16-2) yields

Eoj j2 dσo ¼ Ej j2 dσ ð16-4Þ

Eikonal
surfaces

Rays
Rays

Point source

Eikonal
surfaces

(a) Plane wave. (b) Spherical wave.

Figure 16-1 The relationship of rays and eikonals for two types of sources.
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Solving for Ej j, we obtain

Ej j ¼ Eoj j
ffiffiffiffiffiffiffiffi
dσo

dσ

r
ð16-5Þ

Therefore, we have obtained a relationship between the amplitude of the geometrical
optics field at one point in terms of the amplitude at another.

The relationship in (16-5) would be more useful if the radii of curvature of the
wavefront surfaces dσ and dσo were used. Consider the astigmatic ray tube picture in
Fig. 16-3. The principal radii of curvature of dσo are ρ1 and ρ2, whereas the principal
radii of curvature of dσ are ðρ1 þ ‘Þ and ðρ2 þ ‘Þ. we can write for the ratios

dσo

ρ1ρ2
¼ dσ

ðρ1 þ ‘Þðρ2 þ ‘Þ ð16-6Þ

and thus

dσo

dσ
¼ ρ1ρ2

ðρ1 þ ‘Þðρ2 þ ‘Þ ð16-7Þ

From (16-5), we have

Ej j ¼ Eoj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1ρ2
ðρ1 þ ‘Þðρ2 þ ‘Þ

r
ð16-8Þ

Rays

Wavefront
at time t Wavefront

at time t

P
Po

d

d
t

σ

σ

vΔ

Δ

t+

+

Δ

o

o

o ρρ

ρ
Figure 16-2 The relationship of rays and
wavefronts.
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�
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Figure 16-3 An astigmatic
ray tube.
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Note that the tube of rays converge to a line at ρ1 ¼ 0 and ρ2 ¼ 0 where the cross section
of the ray tube goes to zero. Therefore, the amplitude of the geometrical optics field
description becomes infinite there although the actual field does not. The locus of points
where the ray tube cross section exhibits such behavior is called a caustic. Caustics may be a
point, line, or surface. For example, consider a point source as shown in Fig. 16-4. We can
construct a ray tube from four rays and write

dσo

ρ2
¼ dσ

ðρþ ‘Þ2 ð16-9Þ

Thus,

Ej j ¼ Eoj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2

ðρþ ‘Þ2
s

¼ Eoj j ρ
ðρþ ‘Þ ð16-10Þ

The caustic would be located at the point source in this case.
In both (16-8) and (16-10), we note that as ‘ becomes large, we have the usual inverse

distance-type field dependence found in the far zone of a three-dimensional source. Often,
however, one is concerned with two-dimensional problems where one of the radii of
curvature, say, ρ2, becomes infinite. In such problems,

Ej j ¼ Eoj j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

ρ1 þ ‘

r
ð16-11Þ

Here, the eikonal surfaces are cylindrical and, as ‘-N, we have an amplitude depen-
dence of the field at large distances of the form 1=

ffiffi
‘

p
. Obviously, if both ρ1 and ρ2 are

infinite, the eikonal surfaces are planes and Ej j is a constant for all values of ‘ (e.g., a
plane wave).

The results of (16-8), (16-10), and (16-11) are extremely important for they permit us
to easily compute the amplitude of the geometrical optics field at one point in terms of its
known value at another. In electromagnetic field problems, however, we must also include
the phase. Phase can be introduced into (16-8) artificially. First, we take our phase ref-
erence to coincide with the amplitude reference. Thus, the electrical phase of the ray tube
is given by e�jβ‘ and we may write for the amplitude and phase of the field in the ray
tube of Fig. 16-3

�ρ

dσdσo

Figure 16-4 A tube of rays from a point
source.
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E ¼ Eoe
jφo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1ρ2

ðρ1 þ ‘Þðρ2 þ ‘Þ
r

e�jβ‘ ð16-12Þ

or

E ¼ Eoe
iφoAðρ1, ρ2, ‘Þe�jβ‘ ð16-13Þ

where Eo is the reference amplitude at ‘ ¼ 0, φo is the reference phase at ‘ ¼ 0, Aðρ1, ρ2, ‘Þ
is the general spatial attenuation factor, and e�jβ‘ is the spatial phase delay factor.

Note that when ‘ becomes less than �ρ2, the quantity under the radical sign in
Aðρ1, ρ2, ‘Þ becomes negative and a phase jump of π=2 occurs when the observer passes
through the caustic. Although we cannot predict the amplitude or the phase of the geo-
metrical optics field at the caustic, we can determine the fields on either side of the
caustic.

Eq. (16-12) or (16-13) permits us to approximately express the field at a point (i.e., ‘)
in terms of the value at a known point (i.e., ‘ ¼ 0). Rigorously, the result is only
approximate, becoming more accurate as the wavelength tends toward zero. In practice,
however, we will find the geometrical optics expression above to be highly accurate for
engineering purposes where the assumptions of geometrical optics are valid.

To finish our initial discussion of geometrical optics, we illustrate its use by con-
sidering the problem of reflection at a curved smooth surface and the subsequent
calculation of the radar cross section of a sphere. From (16-12), it is apparent that we
need an expression for the radii of curvature of the wavefront in terms of the geometrical
radii of curvature of the surface. Consider Fig. 16-5 that depicts a line source parallel with
the axis of a convex cylinder of arbitrary cross section. From Fig. 16-5a,

γ1 ¼ π� α� ðπ� θoÞ ¼ θo � α ð16-14Þ
The element of arc length in Fig. 16-5b is equal to rc1 Δα and

r c
1Δα ¼ Δγ1‘o

cos θo
¼ ðΔ θo �ΔαÞ‘o

cos θo
ð16-15Þ

Since Δγ2 ¼ Δθo þΔα, we have

r c
1Δα ¼ ρ1 Δγ2

cos θo
¼ ρ1

Δ θo þΔα
cos θo

ð16-16Þ

Ray tube
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Figure 16-5 Ray geometry for reflection by a curved conducting surface.
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Solving both (16-15) and (16-16) for r c1 Δα cos θo, we have, respectively,

r c
1 Δα cos θo ¼ ‘o Δ θo � ‘o Δα ð16-17Þ

and

r c
1Δα cos θo ¼ ρ1Δθo þ ρ1 Δα ð16-18Þ

Solving both these equations for Δα and equating the two results yields

‘o Δ θo
r c
1 cos θo þ ‘o

¼ ρ1 Δ θo
r c
1 cos θo � ρ1

ð16-19Þ

which after some manipulation gives us the desired result

1

ρ1
¼ 1

‘o
þ 2

rc1 cos θo
ð16-20Þ

This equation1 relates a principal radii of curvature of the reflected wavefront to the
geometrical radius of curvature of the surface at the point where the ray strikes
the surface.

As a simple example of the application of (16-20), consider the situation shown in
Fig. 16-6 where a plane wave is incident on a sphere. We wish to find the field scattered
back in the direction of the transmitter and from this back-scattered field find the radar
cross section of the sphere. Thus, the only ray we need consider is that reflected from
what is called the specular point. In this situation, then, ‘o ¼ N, θo ¼ 0�, and rc ¼ a in
(12-20) and we have the following result:

ρ1 ¼
a

2
¼ ρ2 ð16-21Þ

where ρ2 is the radius of curvature of the reflected wavefront orthogonal to ρ1. (See
Prob. 16.1-1 for an expression for ρ2.)

If the incident field has a value of Eo at the specular point, then in the backscattered
direction,

Es ¼ �Eo

ρ1
ρ1 þ ‘

e�jβ‘ ð16-22Þ

Reflected
wavefront

Specular
point

Virtual
source a

a
2

Figure 16-6 Geometrical optics
scattering by a sphere.

1 Even though this result is based on a two-dimensional configuration, the result is somewhat more
general than this in that it holds true in the plane of incidence whenever the plane of incidence coincides
with the principal planes of the surface.
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with ρ2 having the same value as ρ1 in this example. Therefore, similar to (4-67), the
radar cross section is (at high frequencies)

σ ¼ lim
‘-N

4π‘2
a=2

a=2þ ‘

� �2
¼ πa2 ð16-23Þ

The exact value for σ=πa2 is shown in Fig. 16-7. We note that as the radius of the
sphere becomes larger, the more closely the geometric optics cross section approaches
the exact (high frequency) result. That is what one would expect since geometrical optics
assumes the wavelength is small when compared to the geometrical dimensions of the
scattering surface. Furthermore, the result in (16-23) is frequency-independent, which is
typical of geometrical optics calculations [2-4].

We can extrapolate from (16-22) to write a general expression for the geometrical
optics field due to a plane wave reflected from a smooth surface. Let a plane of incidence
be defined by the incident ray and the normal to the surface. Let Ei

OðQrÞ and Ei
\ðQrÞ be

the components of the incident field that are parallel and perpendicular, respectively, to
the plane of incidence at the point of reflection Qr, and let Er

Oð‘Þ and Er
\ð‘Þ be the

components of the reflected field that are parallel and perpendicular to the plane of
incidence, respectively. Then, in matrix form,

Er
Oð‘Þ

Er
\ð‘Þ

� �
¼ Ei

OðQrÞ
Ei
\ðQrÞ

� �
� R½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1ρ2

ðρ1 þ ‘Þðρ2 þ ‘Þ
r

e�jβ‘ ð16-24Þ

where R is a reflection coefficient matrix, and for perfectly conducting surfaces appears as

R ¼ RO 0

0 R\

� �
ð16-25Þ

where RO ¼ þ1 and R\ ¼ �1 and are recognized as representing the Fresnel reflection
coefficients for parallel and perpendicular polarization reflection from plane perfectly
conducting surfaces.2 The Fresnel reflection coefficients imply that the incident wave is a
plane wave and that the reflecting surface is also planar. We can deviate from these
restrictions at high frequencies (short wavelengths) by noting that geometrical optics
reflection is a local phenomenon and, therefore, the incident field need only be locally

4.0

2.4

a2
1.6

0.8

0
0 2 4 6 8 10

Sphere circumference in wavelengths, 2 aπ
12 14 16 18 20 22 24

1.0

3.2

λ

πσ

Figure 16-7 Radar cross section σ of a sphere versus the electrical size of the sphere.

2 The signs on the entries RO and R\ depend on the reference directions used for the incident and reflected
electric field vectors. The treatment here is consistent with that in Fig. 6-62, but others are in common use.
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plane at the reflecting point and the surface need only be adequately approximated by a
plane tangent to the surface at the point of reflection.

If we apply geometrical optics to reflection from a surface when the source point and
reflection point are fixed, then the observation point is determined for us by the law of
reflection. That is, we obtain information about the reflected field in one direction only
(the specular direction), whereas the reflection typically spreads out over some angular
region. To obtain information about the reflected field in nonspecular directions, it is
necessary to first consider what the current is on the reflecting surface and then integrate
that current to get the reflected field (e.g., the aperture integration of Chap. 9). In the
Sec. 16.14, we will examine the physical optics method of doing this.

16.2 WEDGE DIFFRACTION THEORY

In the previous section, we introduced the ray-optical concept of geometrical optics. The
theory was applied to the calculation of the backscattered field from a sphere, but no
attempt was made to determine the field in the forward scattering direction, in particular,
the shadowed region in Figs. 16-6 or 16-8. By simple ray tracing, it is quite apparent that
geometrical optics is incapable of correctly predicting a nonzero field in the shadow
region. However, geometrical optics may be extended to include a class of rays, called
diffracted rays [5, 6], that permit the calculation of fields in the shadow region of a
scatterer. Diffracted rays are produced, for example, when a ray strikes an edge, a vertex,
or is incident tangentially to a curve surface as illustrated in Fig. 16-8. It is these rays that
account for a nonzero field in the shadow region. In addition, they also modify the
geometrical optics field in the illuminated region. It is the purpose of this section to
examine in some detail one type of diffracted ray, the wedge diffracted ray of Fig. 16-8a.

Consider the wedge diffraction situation shown in Fig. 16-8a. Geometrical optics
would predict a sharp discontinuity in the field at a shadow boundary as shown in
Fig. 16-9. Since physical phenomena in nature are not perfectly discontinuous, it is
apparent that geometrical optics by itself constitutes an incomplete treatment of problems
such as those in Fig. 16-8. It will be shown that the wedge diffracted rays will make the
total electric field continuous across the shadow boundary in Fig. 16-8a.

Because diffraction is a local phenomena at high frequencies, the value of the field of a
diffracted ray is proportional to the field value of the incident ray at the point of dif-
fraction multiplied by a coefficient called the diffraction coefficient. That is, the
diffraction coefficient is determined largely by the local properties of the field and the
boundary in the immediate neighborhood of the point of diffraction. Since it is only

Shadow
boundary

(a) Wedge diffraction. (b) Tip diffraction. (c) Curved surface diffraction.

Shadow

boundaryShad
ow

boundary

Figure 16-8 Examples of diffraction.
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the local conditions near the point of diffraction that are important, the diffracted ray
amplitude may be determined from the solution of the appropriate boundary value
problem having these local properties. Such a problem is called a canonical problem and
wedge diffraction is one such canonical problem. Wedge diffraction is perhaps the most
important canonical problem in the extension of geometrical optics as originally proposed
by Joseph Keller in 1953. Keller’s theory is known as the geometrical theory of dif-
fraction, or GTD [5–6].

Through the use of geometrical optics and the solution to a number of canonical
problems, such a those in Fig. 16-8, we can construct solutions to more complex problems
via the principle of superposition. Let us now consider the canonical problem of wedge
diffraction. To start, we will consider scalar diffraction by an infinitely conducting and
infinitesimally thin half-plane sheet as shown in Fig. 16-10. The half-plane is a wedge of
zero included angle. To calculate the field in the region z. 0, we will use Huygens’
principle in two dimensions; see Sec. 9.1. Thus, each point on the primary wave
front along z ¼ 0 is considered to be a new source for a secondary cylindrical wave, the
envelope of these secondary cylindrical waves being the secondary wave-front. Thus,

EðPÞ ¼
Z x¼N

x¼a

dE ð16-26Þ

where dE is the electric field at P due to a magnetic line source parallel to the y-axis in the
z ¼ 0 plane, or

dE ¼ C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ δðxÞp e�jβ½‘þδðxÞ� dx ð16-27Þ

Magnitude of
geometrical optics field

1.0

0.5

2

+− +−=
0 ππ

φ φ φ

Figure 16-9 Magnitude of the geo-
metrical optics field near either a
reflected field shadow boundary
ðφþ ¼ φþ φ0 ¼ πÞ or an incident field
shadow boundary ðφ� ¼ φ� φ0 ¼ πÞ.

Plane
wave

Conducting
Half-plane

0

dx

x

�

P
z

−∞

�

a

(x)δ

Figure 16-10 Plane wave diffrac-
tion by a conducting half-plane.
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where C1 is a constant. If ð‘þ δÞ � l, and ‘ � δ, we may write for the contribution to
EðPÞ from those two-dimensional Huygens’ sources between x ¼ a and x ¼ xo

EðPÞ ¼ C1ffiffi
‘

p e�jβ‘
Z xo

a

e�jβδðxÞ dx ð16-28Þ

We will consider the contribution from xo to N later. When δ � ‘, we can follow the
same reasoning as in (2-86) to show that ‘þ δ 	 ‘þ x2=2‘. Making the substitutions
γ2 ¼ 2=l‘ and u ¼ γx gives

EðPÞ ¼ C1

ffiffiffiffiffiffiffiffi
l=2

p
e�jβ‘

Z γxo

γa
e�jðπ=2Þu2du ð16-29Þ

If the upper limit in (16-29) is allowed to go to infinity, the integral will be in the standard
form of a Fresnel integral [H.10.4: James], [H.4: Jordan]. The Fresnel integral may be
easily evaluated on a computer or from a graph known as Cornu’s spiral, which is shown
in Fig. 16-11a. A vector drawn from the origin to any point on the curve represents the
magnitude of a Fresnel integral with lower limit zero and upper limit uo. As uo
approaches infinity, the tip of the vector will circle the point ð1

2
, 1
2
Þ an infinite number of

times, which suggests that the contribution to the value of the integral comes primarily
between the limits zero and uo provided uo . 1:26. For this reason, we can argue that
allowing γxo-N in (16-29) has little effect on the value of the integral. Thus,

EðPÞ 	 C1

ffiffiffiffiffiffiffiffi
l=2

p
e�jβ‘

Z N

γa
e�jðπ=2Þu2 du ð16-30Þ

The value of the integral in (16-30) can be represented by a vector drawn from any point
on the Cornu spiral to the point ð1

2
, 1
2
Þ (e.g., see Prob. 16.2-2).

If the lower limit in (16-30) is allowed to go to minus infinity, EðPÞ will equal the field
strength without the half-plane present [H.4: Jordan]. Thus,

EðPÞja¼�N ¼ C1

ffiffiffiffiffiffiffiffi
l=2

p
ð1� jÞe�jβ‘ ¼ Eoe

�jβ‘ ð16-31Þ

Solving for C1 and substituting into (16-30) give the value of EðPÞ in terms of the free-
space field Eo:

EðPÞ 	 Eoe
þjðπ=4Þffiffiffi
2

p e�jβ‘
Z N

γa
e�jðπ=2Þu2 du ð16-32Þ

where for this approximate analysis to hold, it is necessary that ‘ � l and the point
x ¼ a not be far removed from the z-axis so that the assumption ‘ � δ holds. A more
exact (and complicated) analysis of this problem is possible, but it has not been presented
here for we wish simply to show how the Fresnel integral arises naturally in the study of
wedge diffraction.

Eq. (16-32) and the Cornu spiral make it possible to visualize the variation of the
electric field as the point a moves along the x-axis, causing the observation point to
change from the lit region to the shadow region. The corresponding plot of the relative
electric field in the vicinity of the shadow boundary is shown in Fig. 16-11b. We note that
on the shadow boundary the value of the relative field is 1

2
and in the lit region the value of

the field oscillates about the value of unity. This oscillation can be interpreted as being
caused by interference between the diffracted field and the direct field. Since there is no
direct field in the shadow region, we observe that no such oscillation occurs. Unfortu-
nately, it is not convenient to explicitly distinguish between the direct and diffracted field
in (16-32). In many applications of diffraction theory, it is essential that we be able to
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mathematically distinguish between the direct and diffracted fields, as well as the
reflected field that we have yet to consider.

Referring to Fig. 16-12, we can identify two shadow boundaries: the incident or direct
field shadow boundary and the reflected field shadow boundary. These two shadow
boundaries serve to divide space into three regions where region I contains direct and
diffracted rays as well as reflected rays, region II direct and diffracted rays but no
reflected rays, and region III only diffracted rays.

For a field in any one of the three regions, let us write Eðρ, φÞ as consisting of a
reflected field vrðρ, φþ φ0Þ and an incident field viðρ, φ� φ0Þ. Thus,

1.0

0.5

Shadow
region

Shadow
boundary

Lit region

(b)

(a)

g1 f1 e1 d1 c1 b1 a1 a

Relative
field

0.5

ImLine length is proportional to field.
and correspond to positive values of

the direct field and diffracted fields are
in-phase.

Note: The value of the relative field is 0.5
at the shadow boundary corresponding
to line

a. At
a1,

a1

b1

c1

A

b1,

d1.

c1
f1

0.5

0.5

= 1.26u
f1

g1

d1

e1

0.5
Re

A vector drawn from the origin to any point on
the curve represents the magnitude of the Fresnel
integral and the negative of its phase.

Figure 16-11 (a) Use of the Cornu spiral in evaluating the Fresnel integral as a function of the
parameter a. (b) Relative magnitude of the diffracted field in the vicinity of a shadow
boundary. Refer to Fig. 16-10 for values of a.
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Eðρ, φÞ ¼ 
vrðρ, φþ φ0Þ þ viðρ, φ� φ0Þ ð16-33Þ
The choice of sign depends on the polarization of the incident field. If the electric field is
perpendicular (parallel) to the diffracting edge, the plus (minus) sign is used. The field E
at the point P must be a solution to the scalar wave equation with the appropriate
boundary conditions. The boundary value problem depicted in Fig. 16-12 was first solved
by Sommerfeld in 1896. We will first consider his solution. To do so, we must examine
(16-33) more fully.

The first term in (16-33) gives the reflected fields, whereas the term viðr, φ� φ0Þ
represents the incident field. If the ground plane were infinite in extent, the reflected field
term would simply be the geometrical optics reflected field. However, in the case of the
half-plane in Fig. 16-12, the reflected field will consist of two parts: namely, a geomet-
rical optics reflected field and a diffracted field. Both parts of the reflected field will
appear to originate from an image source behind the half-plane. Similarly, the incident
field can be thought to consist of two parts: namely a geometrical optics incident field and
a diffracted field. Thus, for the reflected field,


vrðρ, φþ φ0Þ ¼ 
½vr*ðρ, φþ φ0Þ þ vrBðρ, φþ φ0Þ� ð16-34Þ

and for the incident field,

viðρ, φ� φ0Þ ¼ vi*ðρ, φ� φ0Þ þ viBðρ, φ� φ0Þ ð16-35Þ

where v* denotes the geometrical optics field and vB the diffracted field. Thus, (16-33)
may be thought of as being composed of four parts. Each of the terms on the right-hand
side of (16-34) and (16-35) satisfies the wave equation individually except at the reflected
field and incident field shadow boundaries, respectively. However, the sum of vr* and vrB
makes vr continuous across the reflected field shadow boundary and thus vr satisfies the
wave equation there. (Similar comments apply to vi.) But, neither vr nor vi alone satisfies
the boundary conditions at the wedge. However, the sum of vr and vi in (16-33) does
satisfy the boundary conditions as well as the wave equation.

From simple geometrical considerations, we can see that for reflected geometrical
optics rays, all points on a constant phase wavefront are given by

vr* ðρ, φþ φ0Þ ¼ ejβρ cosðφþφ0Þ, 0,φ,π� φ0 in region I ð16-36Þ
where the phase reference is taken to be at the edge of the half-plane in Fig. 16-13 since
we are using a cylindrical coordinate system whose origin is on the edge of the wedge. By

Incident field
shadow boundary

Reflected field
shadow boundary

III

( ),

III

−∞

Conducting
half-plane

ρφ

φ

ρ φ

II

I

I
P

Figure 16-12 Diffraction by a con-
ducting half-plane showing the loca-
tion of shadow boundaries.
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similar considerations for direct incident rays, points on a constant phase wavefront
are given by

vi* ðρ, φ� φ0Þ ¼ e jβρ cosðφ�φ0Þ, 0,φ,πþ φ0 in regions I and II ð16-37Þ

For other values of φ,

vi* ¼ 0 ¼ vr* ð16-38Þ

In other words, v* is zero in regions II and III for reflected rays and is zero in region III for
direct or incident rays. It is the diffracted field that compensates for this discontinuity in
the geometrical optics field as shown in Fig. 16-14. We see in Fig. 16-14a that for
φ. 255�, the total field is just the diffracted field and the total field is continuous across
the incident field shadow boundary at φ ¼ 255�, where the value of the diffracted field is
0.5. For 105� ,φ, 255�, the total field oscillates due to the interference between the
incident field and the diffracted field. At φ ¼ 105�, the diffracted field again rises to 0.5
and the total field is continuous across the field shadow boundary. For φ ¼ 105�, the total
field oscillates almost between 0 and 2 due mainly to the standing wave produced in
region I by the incident and reflected fields and the fact that the field is observed at a
constant distance ðρ ¼ 3lÞ from the edge of the half-plane, requiring the observation
point to sweep through the standing wave field. The electric field is normal to the half-
plane at φ ¼ 0 and is nonzero there. Fig. 16-14b shows a time domain representation of
the total electric field in the vicinity of the edge of the half-plane when a sinusoidal plane
wave is incident at φ0 ¼ 75�. Since the presentation is essentially a “snapshot” in time,

e o−jβρ

e−jβρ
φ

φ

φ

φ

φ

o

Origin
)(

Conducting
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ρ

oρ
ρ = −cos [ ]

ρ
−

−

+

φφ )( +

oρ
ρ = −cos ( φφ )+

π

π

π

−∞

Figure 16-13 Geometry for the
reflected field wavefront from a
conducting half-plane.
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the almost white areas indicate zero field at an instant of time. (See Fig. 15-21 and
associated text.) Note evidence of the reflection and shadow boundaries, the weak field
when φ. 255�, and the interference pattern when φ, 105�. In the interference pattern
for φ, 105� there is a standing wave in directions both normal and tangential to the half
plane since φ0 6¼ 90�.

Mathematical expressions for the diffracted field vB have been a subject of consid-
erable research in the past several decades in an effort to improve on the early classical
work of Sommerfeld [7]. For the half-plane problem of Fig. 16-12, Sommerfeld obtained
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(a) Diffraction by a half-plane (frequency domain).

(b) FDTD calculated field distribution for a fixed instant of time in the vicinity of a half-plane.
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Figure 16-14 Diffraction by a half-plane. The incident field is polarized perpendicular to the
edge of the half-plane. Refer to Figs. 16-12 and 16-13.
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an expression for the diffracted field due to an incident plane wave in terms of the Fresnel
integral. This expression is3

vBðρ, φ
Þ ¼ �e jðπ=4Þ
ffiffiffiffiffiffi
2

πα

r
Ue jβρ cos φ
cos

φ


2

Z N

ffiffiffiffiffiffi
αβρ

p
ejτ

2
dτ ð16-39Þ

where

φ
 ¼ φ
 φ0 ð16-40Þ
and

α ¼ 1þ cos φ
 ð16-41Þ
We note that this solution is in a form somewhat similar to that of (16-32). The mathe-
matical details of deriving the above are beyond the scope of this text.

Sommerfeld’s work was more general than that of just a half-plane. He also considered
the more general case of a plane wave illuminating a conducting wedge of interior angle
ð2� nÞπ, where 0, n# 2.4 For this case, he obtained an asymptotic evaluation of a
contour integral representation for the diffracted field that is given by

vBðρ, φ
Þ ¼ e�jðβρþπ=4Þffiffiffiffiffiffiffiffiffiffiffi
2πβρ

p ð1=nÞ sinðπ=nÞ
cosðπ=nÞ � cosðφ
=nÞ ð16-42Þ

Unfortunately, this asymptotic form yields infinite fields in the immediate vicinity of
the shadow boundary [8]. The region near a shadow boundary is usually referred to as
a transition region. Eq. (16-42) is only valid outside a transition region where the
condition

βρ cos
π
n
� cos

φ


n

� �2

� 1 ð16-43Þ

is satisfied. This condition is always met if the quantity βρð1þ cos φ
Þ is large, which
means that the observation point at Pðρ, φ, zÞ must be at a large electrical distance from
the diffracting edge. Nevertheless, (16-42) is a useful one if the observation point is not
near a shadow boundary and the above conditions are met.

In 1938, Pauli [9] improved on the work of Sommerfeld by obtaining a series form for
Sommerfeld’s contour integral solution. Pauli’s result is given by

vBðρ, φ
Þ ¼ 2e jðπ=4Þ

n
ffiffiffi
π

p sinðπ=nÞ
cosðπ=nÞ � cosðφ
=nÞ cos

φ


2

����
����Uejβρ cos φ


Z N

ffiffiffiffiffiffi
αβρ

p
e�jτ2 dτ

þ higher-order terms½ � ð16-44Þ

3 Note that in (16-39), we are really writing two equations, one for υrBðr, φþÞ and the other for υiBðr, φ�Þ.
The use of the notation φ
 is for convenience and the reader should keep in mind that wherever it appears
there are two separate equations implied, one associated with the reflected field and one associated with
the incident field.
4 Refer forward to Fig. 16-15. Note, the parameter n as used here is not to be confused with the index of
refraction.

c16 7 April 2012; 9:47:29

714 Chapter 16 CEM for Antennas: High-Frequency Methods



This expression is far more accurate, particularly near the shadow boundaries, than (16-42)
while being only slightly more difficult to evaluate. It is valid for 0, n# 2. In the case of
the half-plane ðn ¼ 2Þ, the higher-order terms are identically zero and Pauli’s result in
(16-44) reduces to that of Sommerfeld in (16-39). Pauli’s expression was the first practical
formulation of Sommerfeld’s original solution that included a finite observation distance.

EXAMPLE 16-1 Sample Wedge Diffraction Calculations

The use of Eqs. (16-39), (16-42), and (16-44) is best illustrated by an example. Let us calculate
the diffracted field in Fig. 16-14 for φ ¼ 250�. Assume l= 1m. Using (16-39), we obtain

vBð3, φ�Þ ¼ ð�9:146� j9:146Þð0:0436ÞUð0:997þ j0:0717Þð0:359� j0:620Þ
¼ �0:397þ j0:0760

vBð3, φþÞ ¼ ð�0:418� j0:418Þð�0:954ÞUð�0:964þ j0:264Þð�0:0237þ j0:0820Þ
¼ 0:0345� j0:0335

Thus, the exact Sommerfeld solution gives for the diffracted field magnitude �0:3625þj
j0:0435j ¼ 0:365, which agrees with Fig. 16-14. Using (16-44), we should obtain the same
result for the half-plane case since Pauli’s equation reduces to Sommerfeld’s. Thus,

vBð3, φ�Þ ¼ ð0:798þ j0:798Þð�11:46Þð0:0436ÞUð0:997þ j0:0717Þð0:359� j0:620Þ
¼ �0:397þ j0:0760

vBð3, φþÞ ¼ ð0:798þ j0:798Þð0:524ÞUð0:954Þð�0:964þ j0:264ÞUð�0:0237þ j0:0820Þ
¼ 0:0345� j0:0335

and the diffracted field magnitude is once again 0.365. We note that since φ ¼ 250� is near the
incident field shadow boundary, vBð3, φ�Þ is the major contributor to the diffracted field and
vBð3, φþÞ, which is associated with the reflected field shadow boundary, makes only a minor
contribution. Both (16-39) and (16-44) would go to infinity precisely at the shadow boundary
φ ¼ 255� (or φ ¼ 105�). For this reason, we have elected to use φ ¼ 250� in this example.
Finally, let us use the asymptotic form in (16-42). Thus,

vBð3, φ�Þ¼ ð0:065� j0:065Þð�11:46Þ
¼ �0:745þ j0:745

vBð3, φþÞ¼ ð0:065� j0:065Þð0:524Þ
¼ 0:034� j0:034

and the magnitude of the diffracted field alone exceeds unity or that of the incident field. This
result is in error because the condition in (16-43) has been violated. The result would be only
10% in error at ρ ¼ 10l if φ ¼ 255� 
 12�, at 20l if φ ¼ 255� 
 5�, at 30l if φ ¼ 255� 
 4�,
and at 100l if φ ¼ 255� 
 3�. However, no matter how large ρ is, the asymptotic form will be
singular right at the shadow boundary.

Starting in 1953, it was Keller [5, 6] who systematically developed the geometrical
theory of diffraction, or GTD as it is often referred to. In his work, he has called the
quantities DðφþÞ and Dðφ�Þ diffraction coefficients, where

viBðρ, φ�Þ � vrBðρ, φþÞ� 	 ¼ Dðφ�Þ � DðφþÞ½ � e
�jβρffiffiffi
ρ

p ð16-45Þ

and used the asymptotic expression of Sommerfeld in (16-42) to calculate the diffracted
field due to plane wave incidence. The postulates of Keller’s theory are:
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1. The diffracted field propagates along ray paths that include points on the boundary
surface. These ray paths obey the principle of Fermat, known also as the principle
of shortest optical path.

2. Diffraction, like reflection and transmission, is a local phenomenon at high fre-
quencies. That is, it depends only on the nature of the boundary surface and the
incident field in the immediate neighborhood of the point of diffraction.

3. A diffracted wave propagates along its ray path so that:
a. power is conserved in a tube of rays, and
b. phase delay equals the wave number times the distance along the ray path.

A consequence of the second postulate is that the diffracted fields caused by the edge of the
infinite wedge in Fig. 16-13, for example, appear to be cylindrical wave fields that originate
at the wedge edge. This is consistent with the ðρÞ�1=2

dependence in (16-45).
The simple ray formulation ofKeller’s geometrical theory of diffraction is restricted to the

calculation of fields in regions of space that exclude transition regions adjacent to shadow
boundaries, caustics, and focal points. To calculate the field at such points, additions
andmodifications to the geometrical theory of diffraction are required. Further, if the incident
field is not a planewave, but a cylindrical or spherical wave, GTDmust bemodified to accept
these incident fields as well. These various modifications will be considered in later sections.

16.3 THE RAY-FIXED COORDINATE SYSTEM

In the previous section,we considered the scalar diffracted field due to a planewave normally
incident (i.e., traveling in the negative ρ-direction) on a perfectly conducting infinite wedge
whose edge was along the z-axis. Such a coordinate system is said to be an edge-fixed
coordinate system. On the other hand, the obliquely incident and diffracted rays associated
with the point Q in Fig. 16-15 are more conveniently described in terms of spherical coor-
dinates centered atQ. Such a coordinate system is said to be ray-fixed [1]. Let the position of

Observation point

(2 − n)

Cone of
diffracted rays

Source point

y

y

x

x

s o φ

s

s

s

z

Q

s

γ ×=
s o φ

φ

φ
φ

φ

γ
γγ

γ

γ

π

π

γ

oγ
o

oo

o

o ×=
=

(2 − n)
Figure 16-15 Geometry for three-
dimensional wedge diffraction problem.
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the source of the incident ray be defined by the spherical coordinates ðs0, γ0o, φ0Þ, and the
observation point by the coordinates ðs,γo,φÞ as indicated in Fig. 16-15. Note that the pointQ
is a unique point on the edge for a given source location and observation point.

The plane containing the incident ray and the edge of the wedge will be referred to as
the plane of incidence, whereas that plane containing the diffracted ray and the edge of the
wedge will be referred to as the plane of diffraction. The unit vector ŝ0 is in the direction of
incidence and the unit vector ŝ in the direction of diffraction. It is then apparent that the unit
vectors ĝ0

o and f̂
0
are parallel and perpendicular, respectively, to the plane of incidence,

and that the unit vectors ĝo and f̂ are parallel and perpendicular, respectively, to the plane
of diffraction as shown in Fig. 16-16. γ0o and γo are angles less than π=2 measured from the
edge to the incident and diffracted rays, respectively, whereas ĝ0

o and ĝo are the implied
unit vectors. Further, φ0 and φ are angles measured from one face of the wedge to the plane
of incidence and diffraction, respectively, whereas f̂

0
and f̂ are the implied unit vectors.

Note that φ0 and φ are measured from the same face of the wedge.
Let us write a symbolic expression for the diffracted field in matrix form as

½Ed� ¼ ½D�½Ei�AðρÞe�jβρ ð16-46Þ
where ½Ed� and ½Ei� are column matrices consisting of the scalar components of the
diffracted and incident fields respectively, ½D� is a square matrix of the appropriate scalar
diffraction coefficients, and ρ is the distance from the wedge edge to the observation
point, and AðρÞ is a spreading factor. Now if the edge-fixed coordinate system is used, it
is clear that ½Ed� will have, in general, three scalar components Ed

ρ, Ed
φ, and Ed

z , and ½D�
will be a 3� 3 matrix. It can be shown that in such a situation seven of the nine terms in
½D� are nonvanishing. However, when the ray-fixed coordinate system is used, there is no
(radial) component of the diffracted field in the direction of the diffracted ray tube since
the incident field is not allowed to have a component in the direction of the incident ray
tube. It follows that there are then only two possible components of the diffracted field,
Ed
γ and Ed

φ, and only two components of the incident field, Ei
γ0 and Ei

φ0 . Clearly, ½D� is
then a 2� 2 matrix. In this case, ½D� has nonvanishing terms on the main diagonal. Thus,
for plane wave incidence in the ray-fixed system, (16-46) can be written as

Ed
γðsÞ

Ed
φðsÞ

" #
¼

�DO 0

0 �D\

" #
Ei
γ0 ðQÞ

Ei
φ0 ðQÞ

" #
AðsÞe�jβs ð16-47Þ

s

E i

E i
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Figure 16-16 Ray-fixed coordinate system.
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where the scalar diffraction coefficients DO and D\ are momentarily undefined and will
be given in the following section.

It is apparent that the use of the ray-fixed coordinate system instead of the edge-fixed
system reduces the diffraction matrix from a 3� 3 matrix with seven nonvanishing terms
to a 2� 2 matrix with but two nonvanishing terms. Thus, the ray-fixed system is the
natural coordinate system to be used for wedge diffraction and the importance of using it
can hardly be overemphasized.

We have chosen to use the notation DO in association with Ei
γ 0 ðQÞ and D\ in asso-

ciation with Ei
φ0 ðQÞ not because Ei

γ0 and Ei
φ0 are parallel and perpendicular, respectively,

to the diffracting edge (which they are at normal incidence when γ 0
o ¼ 90�), but because

Ei
γ 0 and Ei

φ0 are parallel and perpendicular, respectively, to the plane of incidence as

shown in Fig. 16-16.
Since Ei

γ 0 and E
i
φ0 are parallel and perpendicular, respectively, to the plane of incidence,

we will let Ei
γ 0 be written as Ei

O and Ei
φ0 as E

i
\. Similarly, Ed

γðsÞ and Ed
φðsÞ are parallel and

perpendicular, respectively, to the plane of diffraction as shown in Fig. 16-16. Thus, we let

Ed
γ bewritten asE

d
O andE

d
φ asE

d
\.With these notational changes, (16-47) may be rewritten as

Ed
OðsÞ

Ed
\ðsÞ

" #
¼ �DO 0

0 �D\

� �
Ei
OðQÞ

Ei
\ðQÞ

� �
AðsÞe�jβs ð16-48Þ

We will use this notation throughout the remainder of the chapter, keeping in mind that
when the O and \ symbols are associated with Ei, reference to the plane of incidence is
implied. When the O and \ symbols are associated with Ed , reference to the plane of
diffraction is implied.

16.4 A UNIFORM THEORY OF WEDGE DIFFRACTION

The modern version of GTD can be divided into the two basic canonical problems of
wedge diffraction and curved surface diffraction plus the lesser but more complex pro-
blems of vertex diffraction, tip diffraction, and other higher-order phenomena. In the
application of wedge diffraction to antenna problems, the important features of antennas
are modeled by perfectly conducting wedges. For example, the sectoral horn antenna can
be modeled by two half-planes as shown in Fig. 16-18 for the purpose of analyzing the
E-plane pattern [8]. In such a problem, however, it is necessary to use cylindrical wave
diffraction coefficients instead of plane wave diffraction coefficients as in Sec. 16.2. The
first use of cylindrical wave diffraction in the treatment of antenna problems, such as in
Sec. 16.5, was by Rudduck [8], who used Pauli’s formulation together with the principle
of reciprocity to calculate the necessary cylindrical wave diffraction. Problems involving
spherical wave diffraction are also common.

In Sec. 16.2, some early developments in the study of diffraction by a conducting
wedge were presented. We saw that although some of the formulas presented are certainly
useful for some engineering calculations, they are limited in their accuracy in a transition
(shadow boundary) region [e.g., (16-42)], or when the observation point is near ðr, lÞ
the diffracting edge [e.g., (16-44)]. It would obviously be useful and convenient if there
were available to us a theory of wedge diffraction having the property that it could
accurately predict the diffracted field in such places as the transition regions or near the
diffracting edge without the necessity for considering each type of incident field sepa-
rately. Such a theory is available and is known as a uniform theory of wedge diffraction
because it applies in all situations consistent with the postulates of the geometrical theory
of diffraction given in Sec. 16.2. It is the purpose of this section to present the important
results in this theory, known as UTD, which is based on the numerous works of
Kouyoumjian and Pathak [10–12].
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In 1967, Kouyoumjian and co-workers obtained a generalized version of Pauli’s result
[i.e., (16-44)] with the resultant diffraction function vB expressed as vBðL, φ
Þ, where L is
a distance parameter more general than just the distance ρ used in Sec. 16.2, whereas φ


retains the meaning used previously. In their work, the distance parameter is given by

L ¼

s sin2 γ 0
o for plane waves

ρ0ρ
ρþ ρ0

for cylindrical waves

s0s sin2 γ 0
o

sþ s0
for conical and spherical waves �

8>>>>>>><
>>>>>>>:

ð16-49Þ

We note immediately that L is dependent on the type of incident wave and the angle of
incidence γ0o (which equals the angle of reflection γo) as well as the distances involved.
The distance parameter L in (16-49) can be found by imposing the condition that the total
field, which is the sum of the geometrical-optics field and the diffracted field, be con-
tinuous at shadow or reflection boundaries.

When the work of Kouyoumjian and co-workers is expressed in terms of the scalar
diffraction coefficients DO and D\, where

DOðL, φ, φ0Þ ¼ vBðL, φ�Þ � vBðL, φþÞ½ �
ffiffiffi
L

p
e jβL

sinγo
ð16-50Þ

D\ðL, φ, φ0Þ ¼ vBðL, φ�Þ þ vBðL, φþÞ½ �
ffiffiffi
L

p
ejβL

sinγo
ð16-51Þ

We have (without proof) [10, 12]

D O
\

ðL, φ, φ0Þ ¼ �e�jðπ=4Þ

2n
ffiffiffiffiffiffiffiffiffi
2πβ

p
sinγ0o

� cot

�
πþ ðφ� φ0Þ

2n

�
F βLaþðφ� φ0Þ½ �

�

þ cot

�
π� ðφ� φ0Þ

2n

�
F βLa�ðφ� φ0Þ½ �

�
(
cot

�
πþ ðφþ φ0Þ

2n

�
F βLaþðφþ φ0Þ½ �

þ cot

�
π� ðφþ φ0Þ

2n

�
F βLa�ðφþ φ0Þ½ �

)#
ð16-52Þ

where, if the argument of F is represented by X,

FðXÞ ¼ 2j
ffiffiffiffi
X

p��� ���ejX Z Nffiffiffi
X

pj j
e�jτ2 dτ ð16-53Þ

Again, we see that a Fresnel integral appears in the expression for the diffraction
coefficient. The factor FðXÞ may be regarded as a correction factor to be used in the
transition regions of the shadow and reflection boundaries. Outside of the transition
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regions where the argument of F exceeds about 3, the magnitude of F is approximately
equal to 1, as Fig. 16-17 shows. Even within a given transition region, usually only one of
the four terms in (16-52) is significantly different from unity. The transition function that
is significantly different from unity goes to zero at the same rate that its cotangent
multiplier goes to infinity. Thus the transition function prevents the singularity in (16-42)
from occurring in (16-52) (see Prob. 16.4-7).

The argument of the transition function, which is X ¼ βLa
ðφ
 φ0Þ, may be calcu-
lated for a known value of βL if a
 as a function of ðφ
 φ0Þ is known. To determine
aþðφ
 φ0Þ and a�ðφ
 φ0Þ, we use

a
 ðφ
 φ0Þ ¼ 2 cos2
2nπN
 � ðφ
 φ0Þ

2

� �
ð16-54Þ

in which N
 are the integer that most nearly satisfy the four equations

2πnNþ � ðφ
 φ0Þ ¼ π ð16-55Þ
and

2πnN� � ðφ
 φ0Þ ¼ �π ð16-56Þ
We note that Nþ and N� may each have two separate values in a given problem. For
exterior wedge diffraction where 1, n# 2, Nþ¼ 0 or 1, but N� ¼ �1, 0 or 1. The
factor a
ðφ
 φ0Þ may be interpreted physically as a measure of the angular separation
between the field point and a shadow or reflection boundary.

Now that we have all the necessary relationships to calculate DO and D\, we repeat
(16-47) in the format of UTD as

Ed
OðsÞ

Ed
\ðsÞ

" #
¼ �DO 0

0 �D\

� �
Ei
OðQÞ

Ei
\ðQÞ

� �
AðsÞe�jβs ð16-57Þ

where the spatial attenuation factor AðsÞ is defined as

AðsÞ ¼

1ffiffi
s

p for plane, cylindrical, and conical wave incidence

�
s0

sðs0 þ sÞ
�1=2

for spherical wave incidence

8>>>><
>>>>:

ð16-58Þ
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Figure 16-17 Magnitude and phase of the transition function FðβLaÞ, where a ¼ aþ or a�.
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It should also be mentioned that, since diffraction concepts apply to acoustical problems, the
diffraction coefficients DO and D\ in (16-57) are sometimes writtenDs and Dh, respectively,
which correspond to the acoustic soft and hard boundary conditions [14]. Software code
based upon (16-52) for UTD is available in the previous editions of this text.

EXAMPLE 16-2 Sample UTD Calculation

The use of (16-49) to (16-58) is best illustrated by an example. Suppose we wish to calculate the
diffracted field in Fig. 16-14 when φ ¼ 250�. We have in this case: φþ φ0 ¼ 325�;
φ� φ0 ¼ 175�; L ¼ 3l; βL ¼ 6π; n ¼ 2; l ¼ 1m. Thus, from (16-54) to (16-56)

aþðφþ φ0Þ ¼ 2 cos2ð197:5�Þ, where Nþ ¼ 1

aþðφ� φ0Þ ¼ 2 cos2ð87:5�Þ, where Nþ ¼ 0

a�ðφþ φ0Þ ¼ 2 cos2ð162:5�Þ, where N� ¼ 0

a�ðφ� φ0Þ ¼ 2 cos2ð87:5�Þ, where N� ¼ 0

From Fig. 16-17, using the respective values of aþ and a� above, we obtain

Fð6πU1:819Þ ¼ 0:999þ j0:0146

Fð6πU0:0038Þ ¼ 0:318þ j0:216

Fð6πU1:819Þ ¼ 0:999þ j0:0146

Fð6πU0:0038Þ ¼ 0:318þ j0:216

Using (16-52) and (16-58), we obtain

D\ðL, φ, φ0Þ ¼ �0:628þ j 0:0735

AðsÞe�jβs ¼ 0:577

From (16-57),

Ed
\ðsÞ ¼ �0:363þ j0:0424

or

Ed
\ðsÞ

�� �� ¼ 0:365

which agrees with Fig. 16-14. It is worth noting that when the four correction factors F above are
multiplied by their associated cotangent factor, it is the fourth term above that is much larger than
the others. Asmentioned earlier, usually just one of the terms in (16-52) turns out to be large, even
close to a shadow boundary. Eq. (16-52) will not exhibit a singular behavior at a shadow boundary
as was the case in Sec. 16.2 with (16-39) and (16-42).

If the field point is not close to a shadow or reflection boundary and φ0 6¼ 0 or nπ
(grazing incidence), the scalar diffraction coefficients DO and D\ reduce to Keller’s
diffraction coefficients [see (16-42) and (16-45)] that may be written as

DO
\

ðφ,φ0; γ0oÞ ¼
e�jðπ=4Þ sinðπ=nÞ
n
ffiffiffiffiffiffiffiffiffi
2πβ

p
sinγ0o

U
1

cos
π
n
� cos

φ� φ0

n

� 1

cos
π
n
� cos

φþ φ0

n

2
64

3
75 ð16-59Þ

This expression is valid for all four types of incident waves given in (16-49), which is
important because the diffraction coefficient should be independent of the edge illumi-
nation away from shadow and reflection boundaries. However, from Sec. 16.2, we know
that (16-59) will become singular as a shadow or reflection boundary is approached.
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Grazing incidence, where φ0 ¼ 0 or nπ, is a special case that must be considered
separately. In this case, DO 	 0, and the expression for Ed

\ must be multiplied by a factor
of 1

2
. If we consider grazing incidence to be the limit of oblique incidence, we can see how

the need for the factor of 1
2
arises, because at grazing incidence the incident and reflected

fields merge. When they merge, one-half of the total field propagating along the face of
the wedge toward the edge is the incident field and the other half is the reflected field. The
merged field is then regarded as being the “incident” field, but it is too large by a factor of
2 and the factor of 1

2
becomes necessary. That is, (16-57) requires the use of the free-space

incident field and not the merged field.
The uniform theory of wedge diffraction described in this section permits us to con-

sider diffraction problems wherein both the source and observation points are quite close
to the diffracting edge (i.e., a wavelength or even less). It also permits us to consider any
type of TEM incident field. A more general expression for L, valid for an arbitrary
wavefront incident on the straight edge of a wedge, appears in the literature [11, 12].

Unlike the edge diffraction formulas presented in Sec. 16.2, (16-52) is valid in the
transition regions of the incident field shadow boundary and the reflected field shadow
boundary. Eq. (16-52) cannot be used to calculate the field at a caustic of the diffracted ray.
This does not conflict with the concept of a uniform theory of wedge diffraction because
geometrical optics itself is incapable of determining the field at a caustic. The field at a
caustic may, however, be found through the use of a supplementary solution in the form of
an integral representation of the field. The equivalent sources in the integral representation
are determined from a suitable high-frequency approximation such as geometrical optics or
the geometrical theory of diffraction. The calculation of the field at a caustic by such
methods will be considered in Sec. 16.9.

16.5 E-PLANE ANALYSIS OF HORN ANTENNAS

To illustrate the application of the uniform theory of diffraction presented in the previous
section, consider the E-plane horn antenna shown in Fig. 16-18a. In this section, we use
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Figure 16-18 Diffraction by a horn antenna. (a) E-plane sectoral horn. (b) Model of E-plane
sectoral horn. (c) Neglected rays.
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the model shown in Fig. 16-18b to compute the complete E-plane pattern of the horn
antenna. The model is simple and therefore particularly well-suited to use as a first
example of the application of UTD. The model has only three sources of radiation and is
two-dimensional in nature (i.e., infinite in the 
 x-directions), which in the E-plane well-
represents a three-dimensional horn antenna.

The equations applicable to the analysis are as follows. Note that the angle ζ ð0#
ζ# 2πÞ is used instead of θ ð0# θ#πÞ so that positions in the yz-plane may be defined
unambiguously. In the far field, we have (in the yz-plane)

r1 ¼ r � a sin ζ ð16-60Þ

r2 ¼ r þ a sin ζ ð16-61Þ

r3 ¼ r þ ρE cos ζ cos ζE ð16-62Þ

where r1 and r2 are distances to the far-field observation point Pðr, ζÞ from diffracting
edges 1 and 2, respectively, and r3 is the distance from the line source to the far-field
observation point as shown in Fig. 16-18b. Thus, the incident field along the direct ray can
be expressed by

EiðPÞ ¼ e�jβr3ffiffiffiffi
r3

p 	 e�jβrffiffi
r

p e jβρE cos ζ cos ζE , �ζE # ζ# ζE ð16-63Þ

and

EiðPÞ ¼ 0, ζE , ζ, 2π� ζE ð16-64Þ

Note that in applying UTD, we do not replace the conducting surfaces with equivalent
currents radiating in free space as in the preceding chapters of this book. Instead, the
conducting surfaces are retained. As a consequence, for example, EiðPÞ ¼ 0 when ζ. ζE.

The edge diffracted field at Pðr, ζÞ from a diffraction point Q1 on the “top” edge may
be written as

Ed
1ðPÞ ¼

1

2
Ei
\ðQ1ÞD\ðL, φ, φ0Þ e

�jβr1ffiffiffiffi
r1

p ¼ 1

2
Ei
\D\ðL, φ, φ0Þ e

�jβrffiffi
r

p ejβa sin ζ ,

� π
2
# ζ#πþ ζE ð16-65Þ

and

Ed
1ðPÞ ¼ 0, πþ ζE , ζ,

3π
2

ð16-66Þ

Similarly, the diffracted field at Pðr, ζÞ from a diffraction point Q2 on the “bottom” edge
may be written

Ed
2ðPÞ ¼

1

2
Ei
\ðQ2ÞD\ðL, φ, φ0Þ e

�jβr2ffiffiffiffi
r2

p ¼ 1

2
Ei
\D\ðL, φ, φ0Þ e

�jβrffiffi
r

p e�jβa sin ζ ,

�π� ζE # ζ#
π
2

ð16-67Þ

and
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Ed
2ðPÞ ¼ 0,

π
2
, ζ,π� ζE ð16-68Þ

where

Ei
\ðQ1Þ ¼ Ei

\ðQ2Þ ¼ e�jβρEffiffiffiffiffiρEp ð16-69Þ

Thus, the total field at an observation point Pðr, ζÞ may be written as the scalar sum

EðPÞ ¼ EiðPÞ þ Ed
1ðPÞ þ Ed

2ðPÞ ð16-70Þ
In the above equations, scalar D\ denotes the diffraction coefficient at the point of

diffraction Qm for the case where the incident electric field is normal to the edge. The
diffraction coefficient at Qm depends on the geometry of the incident and diffracted rays
at Qm and is most accurately given by (16-49) and (16-52). Here, of course, we consider
the incident field to be cylindrical and use the cylindrical wave form for the distance
parameter L. EiðQmÞ is the incident field that is perpendicular to both the edge and
incident ray.

At first glance, the factor of 1
2
in (16-65) and (16-67) might appear to be incorrect.

However, in this problem, the rays from the line source are incident at a grazing angle
with the surface of the horn walls and therefore deserve special consideration. Grazing
incidence, where φ0 ¼ 0 or nπ, requires that D\ in (16-57) be multiplied by a factor of 1

2
as discussed in the preceding section below (16-59).

Fig. 16-19 shows results calculated with the model shown in Fig. 16-18b and also
experimental data. The agreement between the calculated results without using double
diffractions (dashed curve) and the experimental results is seen to be very good. Note that
there is a discontinuity in the calculated results when ζ ¼ 90� (or 270�). This discontinuity
may be removed simply by including rays that diffract from Q2 (or Q1) and travel across
the horn aperture to Q1 (or Q2) and are diffracted a second time as indicated in Fig. 16-18c.

Also shown in Fig. 16-18c are several other rays that have not been included in the
calculated results because in this problem they provide a relatively weak numerical
contribution. Strictly speaking, those rays shown in Fig. 16-18c that do not involve double
diffractions should be included in the analysis. These are the two rays that experience a
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Figure 16-19 Calculated and experimental E-plane patterns of an E-plane sectoral horn.
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reflection after undergoing diffraction at Q2 (or Q1, which are not shown). Of the two
doubly diffracted rays shown, here only the one from Q2 to Q1 is important, because it
compensates for the shadowing of Q2 when ζ. 90�. There is no similar compensation
needed in the case of the other doubly diffracted ray that goes from Q2 to the “top” wall
and back to Q2.

In conclusion, we have used a simple model (i.e., Fig. 16-18b) to calculate the E-plane
pattern of horn antennas with good results. Strictly speaking, we should have included
some of the rays in Fig. 16-18c, but did not do so for the sake of simplicity without a loss
of accuracy. It is a fundamental fact that in applying UTD (or GTD), one must be careful
to identify and include all rays that arise in the problem. In the horn problem here, we
were able to omit some of the rays only because they were not in or near a transition
region, and because the rays in Fig. 16-18b are one or more orders of magnitude stronger
than those in Fig. 16-18c.

16.6 CYLINDRICAL PARABOLIC REFLECTOR ANTENNAS

As a second example of the application of UTD, we consider the cylindrical parabolic
antenna shown in Fig. 16-20. We use the aperture integration procedure given in Chap. 9
to obtain the pattern in and near the main beam, but use UTD to compute the pattern
everywhere else. As in the study of the horn antenna in the previous section, the model
here is two-dimensional. We consider only the diffractions that occur at the edges of
the parabolic surface and ignore any higher-order rays associated with the curved surface
(e.g., see Sec. 16.11). A simple model was presented in Example 5-3.

First, let us consider the equation for obtaining the main beam and first few side lobes.
From Sec. 9.1, we may write for the far field EA obtained by aperture integration

EAðPÞ ¼
ffiffiffiffiffiffiffiffi
jβ
2πr

r
e�jβr cos ζ

Z a

�a

Ff ðθsÞffiffiffi
ρ

p e jβy0 sin ζ dy0 ð16-71Þ

where Ff ðθsÞ is the pattern of the electric line source current Ie that serves as the feed for the
cylindrical parabolic reflector antenna. (If the line source pattern is isotropic, Ff ðθsÞ ¼ 1.)
Eq. (16-71) is a two-dimensional specialization of the equations in Sec. 9.1.

Q2

r2

r

z

F

D
0.5

Diffr
acted ray

from Q 1

Diffr
acted ray

from Q 2

=

f

(y = −a)

Q1

r1

y

(y = a)

oρ

ρ

oθ

sθ
ζ

+
2

−
2

3

π

π

γ

γ

γ

Figure 16-20 Cylindrical parabolic
antenna geometry.
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Eq. (16-71) can, of course, give us the pattern for 90� $ ζ$ �90�. However, since we
must perform the aperture integration anew for each value of ζ, it is more efficient in
the computational sense to use (16-71) for ζo $ ζ$ �ζo, where ζo is the angular extent
of the main beam and the first side lobe or two, and then to use UTD for the remainder of
the pattern. Clearly, we do not use aperture integration and UTD simultaneously in the
same angular sector.

For the UTD model of the antenna, the following equations apply. For the singly
diffracted field from Q1, we have at the far-field observation point Pðr, ζÞ

Ed
1ðPÞ ¼ 0,

3π
2

� γ# ζ#
3π
2

ð16-72Þ

and elsewhere

Ed
1ðPÞ ¼ Ei

OðQ1ÞDOðL, φ, φ0Þ e
�jβr1ffiffiffiffi
r1

p

	 Ei
OðQ1ÞDOðL, φ, φ0Þ e

�jβrffiffi
r

p e jβa sin ζ
ð16-73Þ

where (16-60) has been used in (16-73). Similarly, the diffracted field at Pðr, ζÞ from Q2

may be written

Ed
2ðPÞ ¼ 0,

π
2
# ζ#

π
2
þ γ ð16-74Þ

and elsewhere

Ed
2ðPÞ ¼ Ei

OðQ2ÞDOðL, φ, φ0Þ e
�jβr2ffiffiffiffi
r2

p

	 Ei
OðQ2ÞDOðL, φ, φ0Þ e

�jβrffiffi
r

p e�jβa sin ζ
ð16-75Þ

where (16-61) has been used in (16-75). In both (16-73) and (16-75),

Ei
OðQ1Þ ¼ Ei

OðQ2Þ ¼ e�jβρoffiffiffiffiffiρop Ff ðθoÞ ð16-76Þ

The total field at an observation point Pðr, ζÞ may be written as either

EðPÞ ¼ EiðPÞ þ EAðPÞ ð16-77Þ
or

EðPÞ ¼ EiðPÞ þ Ed
1ðPÞ þ Ed

2ðPÞ ð16-78Þ

depending on the angle ζ as mentioned earlier.
Fig. 16-21 shows a calculated pattern for a cylindrical parabolic reflector having a 10l

aperture (i.e., 2a ¼ 10l) and a focal length-to-diameter ratio of 0.5. The electric line
source that models the feed has a pattern of Ff ðθsÞ ¼ cos2 θs for θs $ 90� and Ff ðθsÞ ¼ 0
in the forward half-space where θs , 90�. We note that the pattern has a small discon-
tinuity at ζ ¼ 90� (and 270�) and this discontinuity can be removed by including double
diffracted rays between Q1 and Q2 as was done for the horn in the previous section. We
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also note that there is a small discontinuity at about ζ ¼ 127� (and 233�) that is a result of
the shadowing of Q2 (or Q1 when ζ 	 233�). The relatively high level of the pattern in the
vicinity of ζ ¼ 120� is due to the spillover caused by the feed pattern.

It is interesting to note that for the chosen feed pattern of cos2 θs, the aperture electric
field distribution is almost that of a cosine on a pedestal with a�15-dB edge illumination as
shown in Fig. 16-22. Referring to Table 5-2, we see that such a distribution should produce a
patternwith a side-lobe level of�22 dB. Examination of the pattern in Fig. 16-21 shows that
indeed the side-lobe level is �22 dB. Thus, the pattern in the forward half-space could be
well represented by a line source, as discussed in Chap. 5, once the aperture field distri-
bution is known.

In this section, we have examined the H-plane pattern of a cylindrical parabolic
antenna (i.e., an electric line source was used to model the feed). We could also analyze
the E-plane pattern when a magnetic line source is used to model the feed. This is left as
an exercise for the student.

16.7 RADIATION BY A SLOT ON A FINITE GROUND PLANE

To illustrate further the application of the uniform theory of diffraction, consider the
situation in Fig. 16-23 where a radiating slot is asymmetrically located along the x-axis of
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the rectangular plate. We desire pattern information in both principal planes to determine
the amount of ripple in the pattern caused by edge diffraction. In general, the edges
denoted Q1 and Q2 will be illuminated unequally unless d1 ¼ d2 and thus the pattern in
the xz-plane will not be symmetrical about the z-axis.

The geometry of the problem to be investigated, as depicted in Fig. 16-23, is a narrow
aperture (or slot) with length T on a finite ground plane of dimensions A and B. The
narrow slot has an electric field polarized in the x-direction and has a cosine-distribution
in the y-direction. The length of the slot is taken to be one-half wavelength at the
operating frequency.

For radiation in the xz-plane above the ground plane, the problem is represented, to a first-
degree approximation, by an infinitely long slot. According to UTD, there exist two edge-
diffracted rays originating from edge points Q1 and Q2 due to the finiteness of the ground
plane. Therefore, for a far-field observation point Pðr, θ, φ ¼ 0Þ in the region of interest, the
total field is the sum of the contributions from the direct ray and two edge-diffracted rays as
shown in Fig. 16-24. Doubly diffracted rays exist but are small compared to the singly dif-
fracted rays shown in Fig. 16-24 and are not included in the present analysis.

For radiation in the yz-plane above the ground plane, a sampling of N þ 1 ideal sources
forming a cosine distribution is performed. There exist no first-order edge-diffracted rays
because the incident ray is zero in the yz-plane. A geometry of five samplings is shown in Fig.
16-25. The end sources are of zero amplitude since tangential E is zero at the ends of the slot.

First, let us consider the radiation pattern in the xz-plane. The direct ray from the
narrow slot at an observation point Pðr, θ, φ ¼ 0Þ is

EiðPÞ ¼ θ̂Eo

e�jβrffiffi
r

p ð16-79Þ

The edge-diffracted ray from Q1 at Pðr, θ, φ ¼ 0Þ becomes

Ed
1ðPÞ ¼ θ̂

1

2
Ei
\ ðQ1ÞD\ðL, φ, φ0Þ e

�jβr1ffiffiffiffi
r1

p ð16-80Þ

with

Ei
\ðQ1Þ ¼ ẑEo

e�jβd1ffiffiffiffiffi
d1

p ¼ ẑEi
\ðQ1Þ ð16-81Þ

The edge-diffracted ray from Q2 at Pðr, θ, φ ¼ 0Þ yields

Ed
2ðPÞ ¼ θ̂

1

2
Ei
\ ðQ2ÞD\ðL, φ, φ0Þ e

�jβr2ffiffiffiffi
r2

p ð16-82Þ

A

B
x

T

d2

Q2 Q1

Q3

Q4

z

d1

yθ

φ

Figure 16-23 Geometry of a slot on a rectan-
gular conducting plate.
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with

Ei
\ðQ2Þ ¼ ẑEo

e�jβd2ffiffiffiffiffi
d2

p ¼ ẑEi
\ðQ2Þ ð16-83Þ

The total field at an observation point Pðr, θ, φ ¼ 0Þ then becomes (in the symmetrical case)

EðPÞ ¼ EiðPÞ þ Ed
1ðPÞ þ Ed

2ðPÞ ð16-84Þ
The parameters r, r1, d1, r2 and d2, are shown in Fig. 16-24. The parameter Eo repre-
sents the magnitude of the electric field at the narrow slot in the xz-plane. Ei

\ðQmÞ is that
component of the incident field which is perpendicular to both the edge and the incident
ray. To first order, DO is zero. However, there is a small amount of diffraction that does
take place and this is called the slope diffraction (see Prob. 16.7-1). The addition of slope
diffraction to the diffracted field ensures that not only is the total field continuous across a
shadow boundary, but also the derivative of the total field is continuous.

For the slot problem of Fig. 16-23, the radiation in the yz-plane may be analyzed in the
region above the ground plane, to a first degree approximation, by an array of dipole
sources with a cosine-distributed amplitude across the array. Let the total number of
dipoles in the array be N þ 1; then the separation between dipoles is

s ¼ T

N
ð16-85Þ

The total field at an observation point Pðr, θ, φ ¼ π=2Þ then becomes

EðPÞ ¼ θ̂Eo sinð90� � θÞ
XN=2

n¼�N=2

cos
nsπ
T


 �
ejnβ s sin θ ð16-86Þ

In Fig. 16-25 is shown the geometry of the yz-plane with five dipoles ðN ¼ 4Þ in the array.
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Fig. 16-26 shows the far-field pattern results in the xz- and yz-plane at both 1 and
3 GHz. The ground plane is 61� 61 cm but the slot is taken to be one-half wavelength at
each frequency and diffraction in the yz-plane has been assumed to be negligible, and under
this assumption the pattern in the yz-plane is the same at each frequency as indicated in
Fig. 16-26. However, due to diffraction, the two patterns in the xz-plane are different, the
“ripple” in the patterns being the result of the diffracted energy. Since the slot is located
symmetrically on the ground plane, we see that the pattern is symmetric about the z-axis.

For completeness, the slope diffraction contribution to the yz-plane pattern at 1 and
3 GHz is also shown in Fig. 16-26. Slope diffraction is proportional to the spatial deriv-
ative of the incident field with respect to the direction that is normal to both the incident ray
and the edge at Q (see Prob. 16.7-1). In contrast, the edge diffraction we have considered
thus far is proportional to the incident field at Q. In the problem considered in this section,
the incident field at Q3 and Q4 in Fig. 16-23 is zero. However, the derivative of the incident
field with respect to the normal (z in this case) is not zero at either Q3 or Q4. Although an
experimental comparison for vertex diffraction is not shown here, such comparisons have
been made with excellent results [12]. We know from experimental measurements that
vertex diffraction is generally much weaker than wedge diffraction. Thus, the total far field
is given to a good approximation by (16-84). In the problem considered here, vertex
diffraction is weak in the xz- and yz-planes and somewhat stronger in the φ ¼ 45� and
φ ¼ 135� planes. A UTD vertex diffraction coefficient is available in [13].

16.8 RADIATION BY A MONOPOLE ON A FINITE GROUND PLANE

As another application of the uniform theory of diffraction and also as an example of a
problem with a caustic, consider the two situations depicted in Fig. 16-27. First, consider
the situation in Fig. 16-27a of a l=4 monopole on a square plate and suppose we wish to
obtain the pattern in the xz-plane. For purposes of far-field calculation and conceptual
simplicity, a suitable approximation to the l=4 monopole is the ideal dipole of Chap. 2.
We will consider the ideal dipole to be resting on the surface of the ground plane. Thus,
following the development of the previous section for the slot, we have for the direct ray
from the ideal dipole at Pðr, θ, φ ¼ 0Þ

EiðPÞ ¼ θ̂ Eo

e�jβr

r
sin θ ð16-87Þ
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which now must obviously be considered a spherical wave. The edge-diffracted ray from
Q1 at Pðr, θ, φ ¼ 0Þ appears to emanate from a single point and is therefore

Ed
1ðPÞ ¼ θ̂

1

2
Ei
\ðQ1ÞD\ðL, φ, φ0Þ

ffiffiffiffiffi
d1

p e�jβr1

r1
ð16-88Þ

with

Ei
\ðQ1Þ ¼ ẑEo

e�jβd1

d1
¼ ẑEi

\ðQ1Þ ð16-89Þ

Similarly, the edge-diffracted ray from Q2 at Pðr, θ, φ ¼ 0Þ is

Ed
2ðPÞ ¼ θ̂

1

2
Ei
\ ðQ2ÞD\ðL, φ, φ0Þ

ffiffiffiffiffi
d2

p e�jβr2

r2
ð16-90Þ

with Ei
\ðQ2Þ given by (16-89) since the source is located at the center of the ground

plane. Diffraction from the sides containing Q3 and Q4 does not contribute to the far field
in the xz-plane since the monopole is positioned at the center of the ground plane and the
diffracted fields from these two sides will cancel one another. As in the case of the slot of
the previous section, we neglect diffraction from the four corners or vertices of the ground
plane. The corresponding pattern for a 6l square ground plane is given in Fig. 16-28
(dashed curve).

If we now consider the geometry of Fig. 16-27b, we note that in the xz-plane, the
diffracted radiation will also appear (due to Fermat’s principle) to come from two points
that are called stationary points. We note also that the z-axis is a caustic in this problem
because all rays from the circular edge of the ground plane intersect along the z-axis.
Therefore, although we can expect to use the two stationary points to calculate the dif-
fracted field contribution to the pattern in regions not near the caustic [14], we can
likewise expect the “two-point approximation” to be increasingly in error as the obser-
vation point Pmoves nearer the caustic. Fig. 16-28 shows that indeed this is the case since
the measured and two-point calculated patterns diverge as both θ-0 and θ-π, which is
also a caustic. The apparent difficulty in the vicinity of the caustic can be overcome, as
suggested in Fig. 16-28, by the use of a fictitious equivalent edge current. As will be
seen in the next section, the so-called equivalent current is not a physical current at all,
but rather a mathematical artifice for predicting the correct diffracted field at or near
a caustic.

(a) Square ground plane.

Q4

Q2 Q1 x

y

z z

x
d2 d1 Q1

Q3

Q2

(b) Circular ground plane.

Figure 16-27 Monopole on a finite ground plane.
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16.9 EQUIVALENT CURRENT CONCEPTS

In the previous section, we saw that, in the treatment of the circular ground plane,
we could obtain the diffracted field using ordinary wedge diffraction theory if the point
of observation was not near a caustic. In essence, we treated the problem as a two-
dimensional one with the diffraction taken as that from an infinite two-dimensional
wedge, whereas in fact we had a finite edge that was not straight, but curved.

To properly treat the diffraction by a curved edge or finite wedge (i.e., finite length of
the edge), it is necessary to consider the concept of equivalent currents [15]. As we shall
see, the strengths (i.e., amplitude and phase) of these so-called equivalent currents will be
determined by the canonical problem of wedge diffraction.

Consider the wedge of Fig. 16-15 to be of finite extent, �‘=2# zðQÞ# ‘=2. To start,
we assume the currents are the same as those on an infinite wedge. Let us determine the
current flowing on the edge of the infinite wedge that would produce the scattered field
predicted by wedge diffraction analysis. Thus, we specify an infinite line source whose
current is determined by the diffraction coefficient. If the z-directed line source is an
electric current, it can be shown that the solution to the scalar wave equation is [16]

ψ ¼ Ie

4j
Hð2Þ

o ðβρÞ ð16-91Þ

and therefore that the z-component of the electric field is

Ez ¼ �β2Ie

4ωε
Hð2Þ

o ðβρÞ ð16-92Þ
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diameter. The calculated curve by Lopez [14] is for a 6l� 6l square ground plane.
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where Ie denotes an electric current. If the argument of the Hankel function H
ð2Þ
o ðβρÞ is

large, then using the asymptotic representation of the Hankel function, we obtain

Ez ¼ ηβIe
ejðπ=4Þ

2
ffiffiffiffiffiffiffiffiffiffiffi
2πβρ

p e�jβρ ð16-93Þ

We note that (16-93) represents an outward traveling wave in the cylindrical coordinate
system with the proper ρ�1=2 dependence for a two-dimensional problem. If instead the
line source is a magnetic current Im, then we have

Hz ¼ � β
η
Im

ejðπ=4Þ

2
ffiffiffiffiffiffiffiffiffiffiffi
2πβρ

p e�jβρ ð16-94Þ

Since we are considering a two-dimensional problem, we can also apply wedge dif-
fraction theory to obtain the diffracted field from the edge for the two orthogonal
polarizations. Thus,

Ez ¼ DOðL, φ, φ0ÞEi
z

e�jβρffiffiffi
ρ

p ð16-95Þ

and

Hz ¼ D\ðL, φ, φ0ÞHi
z

e�jβρffiffiffi
ρ

p ð16-96Þ

where DO and D\ are given in Sec. 16.4. Usually, however, we find that the use of
equivalent currents involves the calculation of diffracted fields in regions away from an
incident field or a reflected field shadow boundary or their associated transition regions.
Thus, the asymptotic form in (16-59) for arbitrary incidence angle γo is usually sufficient.

From (16-93) with (16-95) and also (16-94) with (16-96), we can solve for the electric
and magnetic currents of an infinite line source that will produce the same far fields
predicted using the diffraction coefficients. Thus,5

Ie ¼ �2j

ηβ
Ei
z DO φ, φ0;

π
2


 � ffiffiffiffiffiffiffiffiffi
2πβ

p
e jðπ=4Þ ð16-97Þ

and

Im ¼ 2jη
β

Hi
z D\ φ, φ0;

π
2


 � ffiffiffiffiffiffiffiffiffi
2πβ

p
e jðπ=4Þ ð16-98Þ

We note that (16-97) and (16-98) give the equivalent currents Ie and Im, but they are
numerically different for each value of φ and φ0. The fact that these currents are different
for different observation points (i.e., values of φ) serves to emphasize the fact that these
equivalent currents are not true currents, but fictitious currents that simply aid us in
calculating diffracted fields.

Considering Fig. 16-15 with the ray incident normally on the edge ðγo ¼ π=2Þ, we
have, respectively, for the far-zone diffracted fields

5Note that we denote the diffraction coefficient to be a function of L, φ, and φ0 to imply the Fresnel
integral form of the uniform theory in (16-52) and use φ, φ0, and γo when the asymptotic form in (16-59)
is intended.
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Ee
θ ¼

jωμ sin θ
4πr

e�jβr
Z ‘=2

�‘=2

Iez ðz0Þe jβz0 cos θ dz0 ð16-99Þ

and

Hm
θ ¼ jωμ sin θ

4πr
e�jβr

Z ‘=2

�‘=2

Imz ðz0Þe jβz
0 cos θ dz0 ð16-100Þ

As in Chap. 5, we see that since the currents are constant with respect to z0, (16-99) and
(16-100) reduce to results in the general form of sinðxÞ=x with respect to the θ-coordinate.

For the case of nonnormal incidence (i.e., γo 6¼ π=2), we can proceed in the same
manner and show that

Ie ¼ �2j

ηβ
Ei
z DO φ, φ0; γoð Þ

ffiffiffiffiffiffiffiffiffi
2πβ

p
e jðπ=4Þe jβ‘ cos γo ð16-101Þ

and

Im ¼ 2jη
β

Hi
z D\ φ, φ0; γoð Þ

ffiffiffiffiffiffiffiffiffi
2πβ

p
e jðπ=4Þe jβ‘ cos γo ð16-102Þ

which includes the phase term to account for the traveling-wave-type current due to the
oblique angle of incidence. In obtaining (16-101) and (16-102), we have neglected the effects
of the terminations at z ¼ 
‘=2. If the effect of the termination could be specified, an
alternative equivalent current could be composed of the currents given above plus a reflected
current due to the termination. These reflection effects would be expected to be of most
concern in the backscatter direction, rather than in the direction of the bistatic scattered field.
Even so, as the edge becomes long in terms of the wavelength, termination effects diminish.
In addition, usually the above currents find their application in the angular region near the
plane normal to the edge, further diminishing any possible termination effects.

When we obtain equivalent currents, we invoke the postulate of diffraction theory that
diffraction is a local phenomena. For curved edges, we stretch this postulate even further
than for the straight edge. That is, we assume that each point on a curved edge acts as an
incremental section of an infinite straight edge and thereby determine the equivalent
current. Thus, for example, the equivalent current that would enable us to calculate the
diffracted field at the caustic of the problem in Fig. 16-27b would be [12]

Im ¼ �ðf̂3 ŝ0Þ � EiD\ φ, φ0;
π
2


 � ffiffiffiffiffiffi
8π
β

s
e�jðπ=4Þ ð16-103Þ

where we have used the result of (16-98) and the fact that ðf̂3 ŝ0Þ gives us the unit vector
perpendicular to the ray from the sources to the edge. The use of (16-103) gives the
calculated results in Fig. 16-28, which agree with experimental measurements in the
caustic region.

If, on the other hand, the source in Fig. 16-27b were a magnetic dipole, then the
required equivalent current would be [14]

Ie ¼ � f̂ � Ei

η
DO φ, φ0;

π
2


 � ffiffiffiffiffiffi
8π
β

s
e�jðπ=4Þ ð16-104Þ

For an arbitrary polarization of the incident wave, both electric and magnetic currents
are necessary to obtain the total diffracted field. Such a situation would occur, for
example, in the calculation of the fields at or near the rear axis (caustic region) of a
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circular parabolic reflector antenna. At the rim of the parabolic dish, the polarization of
the field incident from the feed is generally neither perpendicular nor parallel to the edge.
Thus, both electric and magnetic equivalent currents at the rim would be required to
obtain the total diffracted field in the rear axial region.

16.10 A MULTIPLE DIFFRACTION FORMULATION

In the previous two sections, we considered radiating elements on infinitely thin ground
planes (i.e., n ¼ 2). If, instead, the ground plane were “thick” such that one side could be
represented by two 90� wedges as shown in Fig. 16-29, then it would have been necessary
to consider the multiple diffractions that occur between the two closely spaced edges. In
such a situation, some of the energy diffracted by one edge is, in turn, diffracted by the
other, giving rise to second-order diffraction or double diffracted rays. Clearly, some of
these double diffracted rays give rise to still higher-order multiple diffractions.

If, to reasonably approximate the total diffracted energy, it is necessary to include
doubly diffracted rays, then it is usually simplest to include them in the same manner used
to account for the first-order diffraction in the previous two sections. On the other hand, if
it is necessary to account for diffractions higher than second-order, it is advantageous to
use a procedure known as the method of self-consistency [17].

Briefly, the method of self-consistency incorporates all the diffracted rays (i.e., single
as well as all higher-order multiple ones) into a total (or net) diffracted field from each
diffracting edge. Thus, each of these total edge diffracted fields is excited by a surface ray.
Between the two diffracting edges there are, therefore, two surface rays traveling in
opposite directions. The amplitudes and phases of these two surface rays are treated as
unknowns. To solve for the two unknowns, two equations are generated by applying
single diffraction conditions at each of the two diffracting edges.

To illustrate, consider Fig. 16-29. The coefficients C1 and C3 are the unknown ampli-
tudes (i.e., magnitude and phase) of the two surface rays on the surface ab. The coefficients
C2 and C4 are known once C1 and C3 are known. Thus, we may write the following
equations. At edge a,

C1 ¼ C3Rba þ V1 ð16-105Þ
and at edge b,

C3 ¼ C1Rab þ V3 ð16-106Þ
and knowing C1 and C3, we have

C2 ¼ TbaC3 þ V2 ð16-107Þ
C4 ¼ TabC1 þ V4 ð16-108Þ

Magnetic
line source

C1

C4C2
a b

C3

∞ ∞
Figure 16-29 Magnetic line source exciting surface rays
on a half-plane of finite thickness.

c16 7 April 2012; 9:47:37

16.10 A Multiple Diffraction Formulation 735



where R and T are reflection and transmission coefficients, respectively, and V is the
direct source contribution to the corresponding surface ray.

Eqs. (16-105) and (16-106) may be written in matrix form as

1 � Rba

�Rab 1

� �
C1

C3

� �
¼ V1

V3

� �
ð16-109Þ

or compactly as

½Z�½C� ¼ ½V � ð16-110Þ
where ½Z� is taken to be a coupling matrix and ½V� is the excitation matrix. The elements
of the coupling matrix specify the interactions between the two surface rays. In general,
two surface rays can couple only if they travel on the same or adjacent faces of a polygon
as shown in Fig. 16-30. This, in general, leads to a sparse ½Z� matrix.

For the situation in Fig. 16-29, the reflection and transmission coefficients are

Rab ¼ e�jβρabffiffiffiffiffiffiρab
p 1

2
D\ðL, φ, φ0Þ ð16-111Þ

where φþ ¼ φ� ¼ 0 and γo ¼ 90�, and

Tab ¼ e�jβρabffiffiffiffiffiffiρab
p 1

2
D\ðL, φ, φ0Þ ð16-112Þ

where φþ ¼ 2π� π=2, φ� ¼ 0, and γo ¼ 90�. For Tab, φþ is 2π less the interior wedge
angle of π=2. In both cases, the distance parameter L used is that for cylindrical waves.
For the special situation depicted in Fig. 16-29, Rab ¼ Rba and Tab ¼ Tba. This is not true
in general. For example, it would not be true for the situation depicted in Fig. 16-31.

For the two excitation matrix elements, we have

V1 ¼ e�jβρsaffiffiffiffiffiffiρsa
p D\ðL, φ, φ0Þ ð16-113Þ

Magnetic line 
source

C6C8

C1

C7 C5

C4C2

d

a

c

b

C3

Figure 16-30 Magnetic line source exciting
surface rays on an infinite four-sided polygon
cylinder.

(b) Polygon approximation.(a) Curved surface.
Figure 16-31 Polygon approxima-
tion of a curved surface cylinder.
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V3 ¼ e�jβρsbffiffiffiffiffiffiρsb
p D\ðL, φ, φ0Þ ð16-114Þ

where ρsa is the distance from the line source to edge a and ρsb is the distance from the
line source to edge b. If the line source did not directly illuminate, say, edge b, then V3

would be zero. Here, we have considered only the TE case. A consideration of the TM
case requires a knowledge of slope diffraction (see Sec. 16.7).

As stated earlier, it may be sufficient in many problems to only take into account
second-order diffraction, thereby neglecting all higher-order multiply-diffracted rays. An
example of a situation where the method of self-consistency greatly simplifies the amount
of work required for solution is suggested by Fig. 16-31. It is possible and practical to
approximate the curved surface of Fig. 16-31a with a polygon such as that in Fig. 16-31b.
For an accurate approximation to the curved surfaces, the edges in Fig. 16-31b may be
sufficiently close together that higher-order multiple diffractions should be taken into
account. The easiest way of doing that is via the method of self-consistency. However, the
self-consistent field method only works well provided an edge is not in the transition
region of a diffraction from another edge. This is a possibility if adjacent edges of the
polygon are closely aligned and this limits the degree to which the curved surface may be
approximated.

16.11 DIFFRACTION BY CURVED SURFACES

In previous sections, we saw how a perfectly conducting wedge diffracts energy into the
shadow region. Curved surfaces can also diffract energy. That is, when an incident ray
strikes a smooth, convex-curved perfectly conducting surface at grazing incidence, a part
of its energy is diffracted into the shadow region as illustrated by Fig. 16-32.

In Fig. 16-32, the incident plane wave undergoes diffraction at the shadow boundary at
point Q1 that is a point of tangency for the incident ray. At this point, a portion of the energy

Top view (source at O)
Wavefront

Shadow boundary

Illuminated
region

Side view

Diffracting surface

Surface ray

Incident

 ray

Diffractedray

Caustic

Shadow 
region

Wavefront

Q1

d  (Q1)

b1

t1

t2

n2

n1

b1

Q1

Q2

Q2

P

P

�

s�

O

O

η
d  (Q2)η

ρ

Figure 16-32 Diffraction by a smooth convex surface.
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is trapped, resulting in a wave that propagates on the surface of the scatterer, shedding
energy by radiation in directions tangent to the surface (e.g., point Q2 ) as it progresses
around the curved surface.

This wave that propagates along the surface in the shadow region is known as a creeping
wave. The creeping wave can be described by an attachment (diffraction) coefficient at the
point of capture, a launching (diffraction) coefficient at the point of radiation, an attenuation
factor to account for the rate of radiation, and a description of the path on the scatterer
transversed by the creeping wave in order to account for phase delay and total attenuation.
Thus, the creeping wave field Ecwðs00Þ along the path s00, in the case of a two-dimensional
problem, can be written as

Ecwðs00Þ ¼ EiðQ1ÞDsðQ1ÞGðs00Þe�
R
γðs00Þds00 ð16-115Þ

where
Ecwðs00Þ ¼ creeping wave field along s00
DsðQ1Þ ¼ the surface diffraction coefficient (attachment coefficient) at point A
γðs00Þ ¼ αðs00Þ þ jβðs00Þ ¼ creeping wave propagation factor

s00 ¼ arc length along the creeping wave path
Gðs00Þ ¼ the ray divergence factor determined by the geometry of the ray

As already stated, the surface ray sheds energy tangentially as it propagates along a
geodesic on the curved surface, with the result that energy is continuously lost, resulting
in attenuation. As in geometrical optics, we assume that energy in the flux tube between
adjacent rays is conserved, which gives the two-dimensional geometrical optics spreading
factor as

Gðs00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dηðQ1Þ
dηðs00Þ

s
ð16-116Þ

where dηðs00Þ is the transverse dimension of the surface ray tube as shown in Fig. 16-32.
For a plane wave at normal incidence, Gðs00Þ is unity.

Keller and Levy [18] have given the first-order terms in the expressions for the curved
surface diffraction coefficients and attenuation constants. Kouyoumjian [12, 19] gives
higher-order terms and uses the notation of a soft surface for the case where E is tan-
gential to the surface and hard surface for the case where E is normal to the surface. To be
consistent with our earlier notation, we will use the perpendicular and parallel notation of
earlier parts of this chapter.

At point Q2, there will be a second surface diffraction coefficient DsðQ2Þ that will
account for the tangential detachment (launch) of a ray from the surface toward the
observation point at a distance ‘ from point Q2. Thus, we can write for the creeping wave
field shed at Q2 and observed at the observation point P

EcwðPÞ ¼ EiðQ1ÞDsðQ1ÞDsðQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dηðQ1Þ
dηðQ2Þ

s
e
�
R Q2

Q1
αðs00Þds00

e�jβðQ2�Q1Þ e
�jβ‘ffiffi
‘

p ð16-117Þ

For a circular cylinder, the diffraction coefficients and attenuation constants for the
asymptotic approximation to the exact solution are given by the quantities in Table 16-1,
where ρg is the radius of curvature along a geodesic. For a normally incident plane wave
on a circular cylinder, ρg ¼ aUAið�xÞ is the Airy function [12, 20]. The creeping wave
surface field is more accurately represented by a series of modes, but only the first such
mode is given in Table 16-1 since the higher-order modes are not numerically significant
for the circular cylinder treated here.
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EXAMPLE 16-3 Creeping Wave on a Circular Cylinder

Consider the two-dimensional problem of calculating the radar echo width of a right circular
cylinder normal to the axis of the cylinder. The echo width σw is the two-dimensional
counterpart to the three-dimensional echo area or radar cross section. σw is defined to be

σw ¼ lim
‘-N

2π‘
E

s�� ��2��Ei��2 ð16-118Þ

where ‘ is the range to the target.
Let the cylinder be of radius a and centered about the z-axis as in Fig. 16-33. Assume the

incident wave is given by

Ei
O

Ei
\

 !
¼ eþjβ‘ ð16-119Þ

The two-dimensional geometrical optics field reflected in the backscatter direction may be
found from (16-21) and (16-24) to be

Er
O

Er
\

� �
¼ Ei

O

Ei
\

 !
R½ �

ffiffiffiffiffi
a

2‘

r
ð16-120Þ

where ‘ � a and where R is given by (16-25). Applying the echo width definition above
gives

σw ¼ lim
‘-N

2π‘
E

s�� ��2��E i��2 ¼ lim
‘-N

2π‘
a

2‘


 �
¼ πa ð16-121Þ

Next, the effects of creeping waves around the cylinder are included. At the attachment
point, write

EcwðQ1Þ ¼ EiðQ1ÞDsðQ1Þ ð16-122Þ
and at the detachment point, write

EcwðQ2Þ ¼ EiðQ1ÞDsðQ1Þe�jβπae
�
R πa
0

α ds00 ¼ EiðQ1ÞDsðQ1Þe�jβπae�α πa ð16-123Þ

Gðs00Þ is unity since there is no transverse spreading of the rays on the surface of the cylinder.
When EcwðQ2Þ is multiplied by the detachment coefficient DðQ2Þ, we have the radiated

creeping wave field. By a reciprocity argument, we can see that for the circular cylinder, the
launching and attachment coefficients are the same. Thus in the following expression for
the radiated field in the backscatter direction, the surface diffraction coefficient is squared:

Table 16-1 Diffraction and Attenuation Coefficients for a Convex Cylindrical Surface

Case ðDsÞ2 α
Airy Function and

Its Zeros

EO ρ1=3g e�jπ=12

π1=2 25=6 β1=6ðAi0ð�qÞÞ2
q

ρg
e jπ=6 βρg

2

� �1=3 q ¼ 2:33811
Ai0ð�qÞ ¼ 0:7012

E\ ρ1=3g e�jπ=12

π1=2 25=6 β1=6ðqÞðAið�qÞÞ2
q

ρg
e jπ=6 βρg

2

� �1=3 q ¼ 1:01879
Aið�qÞ ¼ 0:5356
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Ecw
O

Ecw
\

� �
¼ Ei

O

Ei
\

 !
U

Ds
O

Ds
\

� �2

e�jβπae�πaαO,\

ffiffiffiffiffi
a

2‘

r
ð16-124Þ

Wemust consider the fact that there are attachment points at both the top and bottomof the cylinder
requiring us to double the creeping wave field strength. Thus, the total back-scattered field is

Es
O

Es
\

� �
¼ Er

O

Er
\

� �
þ 2

Ecw
O

Ecw
\

� �
ð16-125Þ

which for the cylinder is

Es
O

Es
\

� �
¼ Ei

O

Ei
\

 !
U

�
ffiffiffi
a

2

s
e j2βa þ 2ðDs

OÞ2e�πaαO e�jβπa

þ
ffiffiffi
a

2

s
e j2βa þ 2ðDs

\Þ2e�πaα\ e�jβπa

0
BBBBB@

1
CCCCCA

e�jβ‘ffiffi
‘

p ð16-126Þ

The echo width then becomes

σw ¼ πa
����� e j2βa þ 2ðDs

O,\Þ2
2

a

� �1=2
e�πaαO,\ e�jβπa

����
2

���!
βa-N

πa2 ð16-127Þ

Expressions for D and α can be obtained from Table 16-1 with ρg ¼ a.

For the problem considered in the above example, the exact result for the echo width for
both principal polarizations appears in Fig. 16-34a. The echo width is normalized with
respect to πa just as the sphere echo area was normalized with respect to its specular
contribution. Note that the creeping wave contribution to the echo width for the cylinder is
quite visible for the perpendicular polarization and does not appear for the parallel polar-
ization. This is due to the tangential electric field boundary condition that tends to short out
the creeping wave contribution in the parallel case but not the perpendicular case.

The above GTD-based expression in (16-127) for the echo width of a circular cylinder
cannot be expected to reproduce the curves in Fig. 16-34a, which are based on the exact
eigenfunction solution when the diameter is on the order of the wavelength or less. This,
of course, is because GTD is an asymptotic theory valid most when the wavelength is
small compared to the scatterer. In Fig. 16-34a, the wavelength is not small compared to
the scatterer. Results using (16-127) are shown in Fig. 16-34b. The differences between
the results from (16-127) and the exact solution are apparent. As a point of fact, there is
no theoretical reason to expect them to agree. Interestingly, most of the error in
attempting to reproduce Fig. 16-34a with (16-127) arises from the geometrical optics
term and not the creeping wave term.

Ei

Ei

Ei

Er

Ecw

Ecw

y a

x

Figure 16-33 Backscatter from a circular
cylinder.
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To improve the accuracy of the geometrical optics contribution, it is necessary to
include correction terms [20] (see Prob. 16.11-1). The application of correction terms to
the geometrical optics contribution is shown in Fig. 16-34c, and the improvement over
Fig. 16-34b is substantial. In fact, the agreement between Fig. 16-34a and Fig. 16-34c
when βa. 2 (i.e., a. l=3) is surprisingly good for a high-frequency method in a lower
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(a) Exact eigenfunction solution.
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(b) GTD solution using (16-127).
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(c) GTD solution with GO correction.
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Figure 16-34 Echo width of an infinitely long circular cylinder calculated by three methods.

c16 7 April 2012; 9:47:39

16.11 Diffraction by Curved Surfaces 741



portion of the intermediate frequency region. In this region, one would normally employ
the method of moments or MoM to produce results such as those in Fig. 16-34a.

The concept of a creeping wave is valuable in that it helps one visualize the physical
process involved in diffraction by curved surfaces. For example, the RCS of a sphere
as a function of the sphere radius is presented in Fig. 16-7. We can interpret the oscillatory
feature of the curve as being caused by two creeping waves traveling around the sphere
in opposite directions. A similar explanation applies to the cylinder in Fig. 16-34.
Depending on the electrical size of the sphere or cylinder, these two creeping waves tend
to either constructively or destructively interfere with each other, causing the RCS to
oscillate about the value contributed by the specular scattering. As the sphere or cylin-
der becomes larger, the amount of oscillation decreases, which may be attributed to the
decreasing amplitudes of the two creeping waves due to the product α times the total path
length s00. In the backscatter case, as the radius becomes large, α becomes small, but the
product αs00 becomes large, causing the creeping wave to become small compared to
the specular contribution as evidenced by Fig. 16-7 and (16-34).

In the case of backscatter for the cylinder or sphere, the creeping wave travels a 180�
geodesic path. A 180� path is not the only path of possible interest. Consider Fig. 16-35
that shows the mutual coupling between two half-wave dipoles on opposite sides of a
circular cylinder [24]. The coupling with the cylinder present can be calculated by the
creeping wave formulation in this section.

16.12 APPLICATION OF UTD TO WIRELESS
MOBILE PROPAGATION

Diffraction theory presented in this chapter has application in the propagation of wireless
mobile signals. This section will discuss propagation mainly in urban macrocells (see
Fig. 4-7). Macrocells are typically a few tens of kilometers across as discussed in
Sec. 4.5.1. Macrocells are formed by base stations having antenna heights that are sig-
nificantly higher than the surrounding clutter introduced by buildings and tall vegetation.
On the other hand, mobile receivers are likely to be shadowed by these obstructions in the
nearby environment, particularly buildings, as shown in Fig. 16-36.

There are two broad classes of macrocell propagation models: empirical and physical.
Early propagation models were based upon empirical relationships derived from large
amounts of measured data, but these relationships provide little understanding of the
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Figure 16-35 Mutual impedance Z12 between two l=2 dipoles in the deep shadow region of
each other compared to Z12 without cylinder present.
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physical processes involved in producing various signal levels at the mobile receiver.
Subsequently, effort was made to construct physical propagation models based upon an
understanding of the interaction of the signal environment with the signal transmitted by
the base station. These physical models treat the path loss in a given macrocell as distance
dependent on the assumption that the environment around the base station is fairly uni-
form. The effect of obstructions in the signal environment is usually presented as excess
path loss over what the unobstructed free space path loss alone would be. Diffraction
(UTD) plays a major role in determining the excess path loss in urban macrocells.

Wireless signals from a macrocell mobile system, operated in a reasonably flat terrain
city environment, will experience propagation over and around multiple buildings. Dif-
fraction over multiple buildings is stronger than diffraction around buildings and models
using diffraction theory are of the most interest. In a scenario with propagation over mul-
tiple rooftops, the diffraction is largely unaffected by the shape of the rooftop except for the
“last” rooftop as suggested in Fig. 16-36. Consequently, simple knife edge (i.e., thin half-
plane as in Fig. 16-10) diffraction was used in early models for all but the last rooftop. Later
propagation models used the UTD wedge diffraction for all rooftops. An early example of
the utilization of UTD was by Luebbers [22] in a model for a single wedge wherein the part
of the UTD diffraction coefficient associated with the reflection boundary is modified to
account for finite conductivity. This was done by multiplying the diffraction transition
functions F[βLaþ(ϕþϕ0)] and F[βLa�(ϕþϕ0)] in (16-52) by the appropriate reflection
coefficient as in (6-62) and (6-63). This single wedge model was later used by others
[23, 24] in multiple wedge models.

The problem with the sequential application of first-order diffraction (see Sec. 16.4) to
multiple edge (i.e., multiple rooftops as in Fig. 16-36) is that a rooftop will likely be in the
transition region of the previously encountered rooftop rendering the field incident on all
but the first rooftop non-ray optical (i.e., incident fields from multiple sources). This will
introduce error into the propagation model [23, 25]. The ray-optical nature of the field can
be restored either by including higher-order diffraction terms such as multiple diffractions
(see Sec. 16.10) and [25 or 26] or by including slope diffraction [23, 24]. Results using
multiple diffraction are shown in Figs. 16-37 and 16-38, where the calculated results are
compared against measurements. The field is normalized with respect to the free-space
value and therefore represents the excess path loss due to the rooftops. Values above zero
dB at a receiver height around 65 wavelengths are due to the constructive interference
between the direct and diffracted rays. Both the calculated results and the measurements
were done for a scale model at 25GHz in a controlled environment. The agreement between
the theoretical and measured scale model results is quite good, especially in the parallel
polarization case. Diffraction by straight edges is not frequency dependent (see Sec. 16.16).

Slope diffraction was used in Fig. 16-27 and also in Prob. 16.7-1 for a perfectly
conducting wedge. Here we are interested in an absorbing (i.e., imperfectly conducting)

Final
Building

Multiple Diffraction

Single
Diffraction

Mobile

Base
Station

Figure 16-36 Multiple diffractions over flat building rooftops. (Reproduced by permission
from [H.9.1: Fujimoto], Norwood, MA: Artech House, Inc. ª 2008 by Artech House, Inc.)
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wedge or screen. We can add slope diffraction to (16-57) and write that matrix equation in
compact form as [H.10.4: McNamara]

Ed
O,\ðsÞ ¼ � DO,\E

i
O,\ðQÞ þ

1

jβ
@DO,\

@φ0
@Ei

O,\ðQÞ
@n

� �
AðsÞe�jβs ð16-128Þ

which applies to both perfectly conducting and imperfectly conducting wedges when the
appropriate reflection representation is used in the diffraction coefficient.

The parameter, L, implicit in the preceding expression is determined by continuity
equations in [23] which ensure the continuity of the diffracted field amplitude across the
shadow boundaries. This concept was improved in [24] which allowed for independent
continuity relations for each ray in an n-ray propagation. A tutorial review of wireless
propagation can be found in [27], and a more detailed discussion in [H.4: Saunders].

16.13 EXTENSION OF MOMENT METHOD USING THE UTD

In Chap. 14, we saw how the MoM could be applied to many antenna and scattering
problems where the antenna or scatterer was not excessively large in terms of the
wavelength. In this chapter, we have seen how geometrical optics and GTD can be
applied to problems that are large in terms of wavelength. The purpose of this section is to
show how the class of problems solvable by moment methods can be enlarged by
incorporating GTD into the moment method solution [26]. In studying this section, the
student will have an opportunity to test his or her understanding of the fundamental
concepts developed in Chap. 14 and the previous sections of this chapter.

Recall from Chap. 14 the elements of the generalized impedance matrix can be given
in inner product notation as

Zmn ¼ Jm, Enh i ð16-129Þ
This states that the Zmnth element of the impedance matrix is found by reacting the mth
test function (weight function) with the electric field from the nth basis function. Simi-
larly, the mth element in the generalized voltage matrix is found by reacting the mth test
function with the incident field.

In a strictly moment method formulation of a given problem, all material bodies are
removed and replaced with equivalent currents radiating in free space. Thus, when one
reacts the mth test function with the field from the nth basis function, it is only that field
which directly arrives at the mth test function via the shortest free-space path that one
needs to consider since it is the only possible field. However, suppose there exists in a
given situation a portion of the structure that is not represented by equivalent currents
(i.e., a material body remains as shown in Fig. 16-39). In this case, the calculation of the
impedance matrix elements is more complex, but not unduly so. Let these new impedance
matrix elements be denoted Z 0

mn. In terms of (16-129), the reaction of Jm with En may

E = 0 = H

E, H
Js

Ji

n

Material body
replaced by equivalent
currents in localized
free space

Material structure
not characterized
by equivalent
currents

Ray path

Figure 16-39 A source radiat-
ing in free space with one
scatterer replaced by an equiv-
alent current and the other
remaining as a material body.
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be interpreted to mean the reaction of the test source with not only the field from the true
source arriving at the test source directly, but also the reaction of the test source with
fields from the true source that arrive by other means, as suggested by Fig. 16-39.
Therefore, one can write

Z 0
mn ¼ Jm, aEn þ bEnh i ð16-130Þ

where a may be set to unity and b¼ b(m, n) is different for each m and n. The quantity
bEn also represents the field due to Jn, but arriving at the mth observation point or region
due to a physical process, such as a geometrical optics or diffraction mechanism, which is
not accounted for in that portion of the problem formulated by the moment method. Thus,

Z 0
mn ¼ Jm, Enh i þ Jm, bEnh i ð16-131Þ

or

Z 0
mn ¼ Zmn þ Zg

mn ð16-132Þ
where the superscript g denotes that Zg

mn is an additional term added to, in general, each
impedance matrix element due to a physical process g that redirects energy from the nth
basis current function to the location of the mth test source.

As implied by Fig. 16-39, there is also a modification of the usual generalized voltage
matrix terms. That is,

V 0
m ¼ Jm, E

i þ cEi
�  ð16-133Þ

where Ei is the incident field arriving directly at region m and cEi is that field from the
source redirected to region m by a physical process g. We note that c ¼ cðmÞ is different
for each m:

V 0
m ¼ Jm, E

i
� þ Jm, cE

i
�  ð16-134Þ

or

V 0
m ¼ Vm þ Vg

m ð16-135Þ
As a direct consequence of the foregoing discussion, we have

½Z 0�½I0� ¼ ½V 0� ð16-136Þ
and its solution as

½I0� ¼ ½Z 0��1½V 0� ð16-137Þ
where ½I0� is the current on, for example, an antenna operating in the presence of scat-
tering mechanisms that may be accounted for by either geometrical optics techniques
or GTD.

Initially, to combine the method of moments and GTD into a hybrid technique [28],
consider the problem of a monopole near a perfectly conducting wedge as show in
Fig. 16-40. If we describe the monopole on an infinite ground plane strictly by the
moment method matrix representation given in (14-43), then for the monopole near
the conducting wedge, we utilize (16-135), where in (16-131) the term Zg

mn is obtained
by considering that energy radiated by the nth basis function on the monopole that is
diffracted by the wedge to the mth observation point or region.

To investigate a monopole on a circular ground plane as in Fig. 16-41, we must use the
equivalent edge currents described in Sec. 16.9. Thus, we replace the edge of the disk
with an equivalent magnetic current M given by
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M ¼ �2Eθe
�jðπ=4ÞD\ðL,φ,φ0Þ

ffiffiffi
l

p
ð16-138Þ

This equivalent magnetic current is used to calculate the field at the segment at s due to
the current at s0 as indicated in Fig. 16-41. Note that an equivalent magnetic ring current
must be calculated for each choice of s and s0.

It is useful for us to break up the equivalent magnetic ring current of Fig. 16-41 into
differential elements dc0 so that the observation point is in the far field of each element
even though it may be in the near field of the total ring current.

The electric field in a plane perpendicular to an element dc0 is given by

dEz ¼ M dc0

4π
jω
cr

þ 1

r2

� �
e�jβr ð16-139Þ

where r ¼ ða2 þ z2Þ1=2. Letting dc0 ¼ a dψ where ψ is the azimuth angle, taking only the
z-component at the monopole, and integrating over the range ψ ¼ 0 to ψ ¼ 2π yields

Ez ¼ Ma2

2r

jβ
r
þ 1

r2

� �
e�jβr ð16-140Þ

The value for Ez is the term Zg
mn that is added to the impedance element obtained for

a monopole on an infinite ground plane. This process gives the modified impedance
element needed, Z 0

mn, to calculate the modified currents (and hence input impedance) of a
monopole on the finite circular ground plane.

d

2a

h

(2 – n)    = WAπ

α

Figure 16-40 Monopole on a conducting
wedge.

h

a dc� = adψ

z

s�
s

θ

φ

φ

� Figure 16-41 Segmented monopole
encircled by a magnetic ring current for
analysis of a monopole on a circular
ground plane.
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Figs. 16-42a and 16-42b show a comparison between calculations made with the
equivalent magnetic ring current and measurements for a monopole of length 0:224l and
radius 0:003l on a circular ground plane for varying radius. It is apparent that the correct
variation is accurately predicted for both the real and imaginary parts of the input
impedance. For the input resistance, the agreement between the measurements and the
theory is excellent. For the input reactance, the agreement is very good, but there is a
slight shift in the calculated curve when compared to the measurements. The amount of
this shift is sufficiently small that it can be attributed to the usual problems associated
with modeling the region in proximity to the driving point.

Next, consider the situation shown in Fig. 16-43 where a monopole of height h is a
distance d1 away from a vertical conducting step. To properly determine the Zg

mn term
in (16-131), it is necessary to determine all the various combinations of reflections that
can occur for rays emanating from the monopole and reflecting back to it as well as the
diffraction from the top edge of the step. Since the vertical wall is at a right angle to
the lower horizontal surface, there will be no diffraction from the interior wedge and
all the reflections can most conveniently be accounted for by imaging the monopole into
the horizontal ground plane and then imaging the resulting dipole into the plane of the
vertical wall.
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Figure 16-42 Theoretical and experimental input impedance of a monopole of radius 0.003l
at the center of a circular disk as shown in Fig. 16-41.
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Shown in Fig. 16-43 are two example situations that depict the utilization of the
images. If we consider the uppermost segment of the monopole to be the source segment,
one set of rays shows the use of the image in the horizontal surface to calculate reflected-
diffracted energy reaching the segments of the monopole. The other set of rays shows the
use of the image in the vertical wall to calculate singly reflected energy. In the calculated
results that follow, all combinations of singly reflected, doubly reflected, diffracted,
diffracted-reflected, reflected-diffracted, and reflected-diffracted-reflected rays are taken
into account. All rays that involve combinations of double (or higher-order) diffractions
are negligible.

Fig. 16-44 shows the calculated input impedance for a quarter-wavelength monopole a
quarter-wavelength away from a vertical wall whose height is d2 . 0:25l. As d2
increases, the impedance oscillates about the value for the case where d2 ¼ N. The
results of Figs. 16-44a and 16-44b shows that as the diffracting edge recedes from the
vicinity of the monopole, its effect on the input impedance rapidly diminishes. Although
we have not shown results for the case where the step height is less than the height of the
monopole, the same method could be used to investigate such situations.

In combining moment methods with GTD, we have proceeded from the philosophical
viewpoint of extending the method of moments via GTD. In so doing, we have shown that
modifying the impedance matrix to account for diffraction effects (or geometrical optics
effects) enables one to accurately treat a larger class of problems than could be treated by
moments methods alone. An alternative interpretation of the hybrid method is also
possible. That is, the procedure employed can be viewed as using UTD to obtain an
approximation to the exact Green’s function needed. Other hybrid methods are discussed
in [29].

Although this hybrid method possesses many of the advantages inherent in both the
moment method and UTD, it also has some of the limitations peculiar to each. For
example, as in the usual moment method, one can treat arbitrary configurations of wire
antennas (or slot antennas), taking into account lumped loading, finite conductivity, and
so forth, and obtain accurate impedance data and current distributions. Naturally, one still
must take the usual precaution of using a sufficient number of basis functions to assure
convergence. On the other hand, as in the usual UTD problem, one must take care that the
antenna is not too close to a source of diffraction (e.g., d. 0:2l).

h

d2

d1

2a

WA

Figure 16-43 Monopole near
a conducting step showing the
partial use of images.
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16.14 PHYSICAL OPTICS

In Sec. 16.1, we calculated the scattered field from the sphere by geometrical optics.
Often, we can calculate these same scattered fields by physical optics. The concept of
physical optics can be considered to be somewhat more general than geometrical optics,
since the equations obtained from physical optics for the scattered field from a conducting
body often reduce to the equations of geometrical optics in the high frequency limit.
In fact, it is assumed in physical optics that the field at the surface of the scattering body
is the geometrical optics surface field. This implies that at each point on the illuminated
side of the scatterer, the scattering takes place as if there were an infinite tangent
plane at that point, while over the shadowed regions of the scatterer the field at the surface
is zero [2].
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For a perfectly conducting body, the assumed physical optics surface current is

JPO ¼ n̂3Htotal in the illuminated region

0 in the shadowed region

�
ð16-141Þ

where n̂ is a unit normal vector outward from the surface of interest as shown in Fig. 16-45.
From image theory, the tangential components of H at a perfect conductor are just

twice those from the same source when the conducting scatterer is replaced by equivalent
currents in free space. Thus, the physical optics current is given by

JPO ¼ 2ðn̂3HiÞ ð16-142Þ
From Chap. 2, we know that in the far field

Es ¼ �jωA ð16-143Þ
having neglected any radial terms. For the purposes of simplification, let ψ represent the
free-space Green’s function as in (2-59). Then

Es ¼ �jωμ
ZZ

Jψ ds0 ð16-144Þ

Using the curl E equation, we can write for Hs

Hs ¼ r3

ZZ
Jψ ds0 ð16-145Þ

Since the del operation is in the unprimed coordinate system and the integration is in the
primed coordinate system, we can write

Hs ¼
ZZ

ðr3 JψÞ ds0 ð16-146Þ

Since r3 Jψ ¼ rψ3 Jþ ψr3 J using (C-16), and the last term on the right is zero,

Hs ¼
ZZ

ðrψ3 JÞ ds0 ð16-147Þ

Since R ¼ r � r̂ � r0, as in (2-98), we can express rψ in the far field as

rψ ¼ �r̂
1þ jβr
4πr2

e�jβre jβr̂ � r0 ð16-148Þ

Shadow boundary

Shadow boundary

Hi

n

JPO

Shadow
region

Conducting
scatterer

Figure 16-45 Physical optics
current on a conducting scatterer.
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giving

Hs ¼ e�jβr
ZZ

ðJ3 r̂Þ 1þ jβr
4πr2

ejβr̂
� r0 ds0 ð16-149Þ

which is approximately equal to

Hs 	 jβ
4πr

e�jβr
ZZ

ðJ3 r̂Þe jβr̂ � r0 ds0 ð16-150Þ

since βr � 1 and r 	 R in the denominator. It should be noted that this expression for the
scattered field is frequency dependent in contrast to the geometrical optics expression that
is frequency independent. It might, therefore, be intuitively inferred that physical optics
provides a more accurate approximation to the scattered field. Although this may be so in
certain cases, a general conclusion cannot be reached since necessary and sufficient
conditions for the valid application of physical optics are not known [2]. It is fortunate for
the engineer that physical optics works in many practical problems, even though in some
problems prior justification of its application would be difficult to make.

Next, let us develop a general expression for the radar cross section using our
expression in (16-150) for Hs. Writing the radar cross-section definition as

σ ¼ lim
r-N

4πr2
Hsj j2
Hi
�� ��2 ð16-151Þ

and inserting the physical optics current J ¼ 2n̂3Hi gives

σ ¼ lim
r-N

4πr2
β
4π

� �2
1

Hi

����
����
2 ZZ

ðð2n̂3HiÞ3 r̂Þ e
jβr̂Ur0

r
ds0

�����
�����
2

ð16-152Þ

which reduces to

σ ¼ π
l2

1

Hi

����
����
2 ZZ

ðð2n̂3HiÞ3 r̂Þe jβr̂Ur0 ds0
����

����
2

ð16-153Þ

Using the vector identity (C-8), we can write

ðn̂3HiÞ3 r̂ ¼ ðr̂ � n̂ÞHi � ðr̂ � HiÞn̂ ð16-154Þ
At this point, consider the backscattered or monostatic radar cross section where (16-154)
reduces to ðr̂ � n̂ÞHi and the phase of Hi is ejβr̂

� r0 on the illuminated surface. Thus,

σ ¼ 4π
l2

ZZ
ðr̂ � n̂Þe j2βr̂Ur0 ds0

����
����
2

ð16-155Þ

Next, take r̂ ¼ ẑ for the purpose of monostatic illustration (i.e., the radar is on þz axis),
giving us a final result of

σ ¼ 4π
l2

ZZ
ðẑ � n̂Þe j2βẑUr0 ds0

����
����
2

ð16-156Þ

where the factor of 2 in the exponent represents the phase advance of the backscattered
field relative to the origin due to the two-way path.
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EXAMPLE 16-4 RCS of a Sphere by Physical Optics

Here we apply the result in (16-156) to obtain the physical optics expression for the monostatic
RCS of a sphere and compare it to the result obtained by geometrical optics. First, we note that
from Fig. 16-46

ẑ � n̂ ¼ cos θ0 ¼ a� ‘0

a
ð16-157Þ

where ‘0 is the distance from the reference plane to the spherical surface, and that an element
of surface area is a2 sin θ0 dθ0 dφ0 on the spherical surface. Since a� ‘0 ¼ a cos θ0 and
d‘0 ¼ a sin θ0 dθ0, we find that on the projected area of the sphere onto the reference plane is
ds0 ¼ a2 sin θ0 dθ0 dφ0 ¼ a dφ0 d‘0. Noting that ẑUr0 ¼ ða� ‘0Þ, substituting into our general
expression for monostatic RCS, and performing the φ integration, we obtain

σsp ¼ 4π
l2

2π e j2βa
Z a

0

e�j2β‘0 ða� ‘0Þ d‘0
����

����2 ð16-158Þ

Performing the remaining integration yields

σsp ¼ 4π
l2

2π
e j2βa

j2β
a� 1� e�j2βa

j 2β

� �����
����
2

ð16-159Þ

which can be put in the form

σsp ¼ 4π
l2

al
j 2

1þ j

2βa

� �
e j2βa � j

2βa

� �����
����2 ð16-160Þ

The terms associated with the exponential ej2βa are due to the front face (i.e., specular)
reflection, whereas the right-most term ðj=2βaÞ is due to the contribution from the artificially
imposed discontinuity in the current at the θ ¼ π=2 location on the sphere (i.e., shadow
boundary). Since this discontinuity is nonphysical, so too is the right-most term ð j=2βaÞ and
we must disregard it. Thus,

σ ¼ πa2
1

j
1þ j

2βa

� �
e j2βa

����
����2 ���!βa-N

πa2 ð16-161Þ

We see then that the radar cross section of the sphere obtained via physical optics reduces to
the geometrical optics result of (16-23) in the high-frequency limit.

The fact that we have had to eliminate the right-most term ðj=2βaÞ in (16-140) is not a
peculiarity of the sphere, but is common to any problem employing physical optics where
a nonphysical discontinuity in current gives rise to an erroneous contribution to the scattered
field that can be numerically significant when compared to the geometrical optics contribution.

x
Reference

plane

Hi = x Hi a

a – �

�� θ
(–z)

�

�

Figure 16-46 Physical optics
scattering by a sphere.
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The second term in (16-161) may be taken to be the second term in a high-frequency
asymptotic expansion of the scattered field. Such an expansion is in inverse powers of the
frequency and is known as Luneburg–Kline expansion [1]. The Luneburg–Kline expansion
satisfies the wave equation and is a formal way of showing the correspondence between optics
and electromagnetics in the high-frequency limit. The leading term in the Luneburg–Kline
expansion is, in fact, the geometrical optics term that is also the first term in (16-161).

Physical optics is more useful to us than just finding radar cross sections. For example,
if we wish to find the far-field pattern of a parabolic reflector antenna, physical optics is
one way of doing so. In fact, it is probably the easiest way of finding the radiated field on
the forward axis of the reflector antenna. In directions other than on the forward axis of
the reflector antenna, physical optics provides us with a nonzero estimate of the radiation
pattern. This should be contrasted with geometrical optics that can only provide infor-
mation in a specular direction (see Fig. 16-47), but does so in a straightforward manner.
Fig. 16-47 shows a ray normally incident on a flat plate and the reflected or scattered field
coming back only in one direction, whereas the figure indicates that the physical optics
current produces a scattered field in all directions for the same incident field.

EXAMPLE 16-5 RCS of a 3-D Parabolic Reflector

As an example of the application of (16-156) to antenna scattering, consider a circularly
symmetric parabolic reflector (see Fig. 9-25) antenna with the prime focus feed temporarily
removed, as shown in Fig. 16-48. We wish to compute the monostatic RCS on the z-axis. To do
this, we need to determine n̂, r0, z0, and ds0 in (16-156).

The location of the origin is on the parabola center, and the equation of the parabola is
ðρ0Þ2 ¼ 4Fz0, where F is the focal length. Using this for z0 in the representation of r0, we have

r0 ¼ ρ0ρ̂þ z0ẑ ¼ ρ0ρ̂þ ðρ0Þ2
4F

ẑ ð16-162Þ

The normal is found by setting the gradient of 4Fz0 � ðρ0Þ2 equal to zero, which yields

n̂ ¼ �ρ0ρ̂þ 2F ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F2 þ ðρ0Þ2

q ð16-163Þ

The differential surface element on the curved surface of the parabola in Fig. 16-48 is dl0 by
dw0 where the circular arc is dl0 ¼ ρ0dφ0 and the parabolic arc is

dw0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dz0

dρ0

� �2
s

dρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0

2F

� �2
s

dρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F2 þ ðρ0Þ2

q
2F

dρ0 ð16-164Þ

Thus, the differential element of curved surface area is

ds0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F2 þ ðρ0Þ2

q
2F

ρ0dρ0dφ0 ð16-165Þ

Geometrical optics Physical optics

Flat Plate

b

a

b

a

Figure 16-47 Geometrical optics
compared to physical optics.
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Next we have for ðẑ � n̂Þds0 in (16-156)

ðẑ � n̂Þds0 ¼ ρ0dρ0dφ0 ð16-166Þ
and for the exponential term

2βẑ � r0 ¼ 2β
ðρ0Þ2
4F

¼ π
lF

ðρ0Þ2 ð16-167Þ

Then (16-156) becomes

σ ¼ 4π
l2

ZZ
e j πlFðρ0Þ

2
ρ0dρ0dφ0

����
����
2

ð16-168Þ

Let

u ¼ j
π
lF

ðρ0Þ2 and du ¼ j
2π
lF

ρ0dρ0 ð16-169Þ

u1 ¼ 0 and u2 ¼ j
π
lF

�
D

2

�2

ð16-170Þ

After performing the trivial φ integration in (16-168), we have

σ ¼ 4π
l2

lF
j

Z u2

u1

eudu

�����
�����
2

-4πF2 ð16-171Þ

Similar to the previous example for the sphere, we have identified the eu2 term resulting from the
integration as being associated with the non-physical abrupt termination of the physical optics
current at the rimof the parabola, and have discarded that term. The simple result in (16-171)may
be confirmed by a consideration of Prob. 16.1-4c which obtains the same result via geometrical
optics [30, p. 618]. The result in (16-171) is the same result as for the convex case since the dot
product ẑ � n̂ in the kernel in (16-156) is the same in both cases, and except for sign, the expo-
nential term in (16-167) is the same for both cases aswell. Furthermore, the results for the convex
case agree with the exact solution [30, p. 593]. The results for the concave case are limited
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Figure 16-48 Circularly symmetric parabolic
reflector. Monostatic case with axial
incidence.
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to cases where there are no multiple reflections that contribute to the monostatic RCS. The
procedure used here for the special case of monostatic axial incidence may be generalized for
oblique incidence. The details are left as an exercise for the interested reader.

The result in Example 16-5 gives the major part of the structural, σs (or residual) com-
ponent of the antenna scattering bya front-fed circular parabolic reflector antennaat boresight
(i.e., θ ¼ 0�). Recall from Sec. 14.12 that here is also a contribution to the total scattering, σT,
by the antenna mode (see (14-111) for σant). The total cross section can be written as [31]

σT ¼ σs þ σant þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
σsσant

p
cosφ ð16-172Þ

where φ is the relative phase between the structural scattering and antenna scattering.
Fig. 16-49 [H.8.2: Munk, p. 229] shows the bistatic scattering from a parabolic

cylindrical reflector of modest size for boresight incidence (θ ¼ 0�). Fig. 16-49 presents
bistatic RCS results for no feed and also for a low RCS feed. The presence of the low
RCS feed produces a lower level of bistatic scattering in a wide angular region about
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Figure 16-49 The bistatic scattered field from a parabolic cylinder for an incident plane wave
along boresight; that is, θ ¼ 0�. Shown with and without a low RCS feed. Frequency is
9:0 GHz. (From [H.8.2: Munk] ª 2003. Reprinted by permission of John Wiley & Sons.)
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boresight than with the feed removed. This is due to the feed absorbing power incident
upon it rather than allowing that power to return to the radar.

The bistatic scattering remains strong in Fig. 16-49 as long as there is a defined normal
to the parabolic surface that bisects the angle of incidence and the angle of reflection.
In Fig. 16-49 this accounts for the bistatic scattering for approximately �45� , θ, 45�

due the normal making an approximate angle of θ ¼ 22:5� at the edges of the para-
bolic cylinder (i.e., the angle of the normal bisects the angle formed by the incident ray
at 0� and the angle of the reflected ray at 45�).

If the feed is not low RCS and/or is seriously mismatched at an out-of-band frequency,
there can be a strong monostatic return at θ ¼ 0� [H.8.2: Munk, p. 227] due to the antenna
mode. The strong RCS at θ ¼ 180� is due to the interesting phenomena of forward
scattering. The two-dimensional H-plane results in Fig. 16-49 are representative of
H-plane results for the three-dimensional parabolic reflector in Example 16-5.

In summary, physical optics is an approximate high-frequency method of considerable
usefulness that can be expected to provide an accurate representation of the scattered field
arising from a surface where the postulated physical optics current is reasonably close to
the true current distribution. We recall from the discussion at the beginning of this section
that the physical optics current will be a reasonable representation of the true current if
the field at the scatterer surface is correctly given by the geometrical optics surface field.

An example of a situation where the geometrical optics surface field does not give us
the true current is in the vicinity of an edge (where a plane tangent to the surface is not
defined). Consider Fig. 16-50 that shows βσw for an infinite strip when physical optics is
used compared to an exact solution [2]. Both TE (E perpendicular to the edges) and TM
(E parallel to the edges) are shown. As the backscatter angle θ moves away from the
normal to the strip (θ ¼ 0�), the difference between physical optics and the correct solution
for the two polarizations becomes increasingly larger. This difference may be eliminated
by adding to the physical optics current an additional current to account for each edge.
This is the subject of Sec. 16.17.

Before doing that, we will utilize physical optics to investigate the frequency
dependence of some common sources of scattering.

16.15 FREQUENCY DEPENDENCE OF FIRST-ORDER
SCATTERING SOURCES

Part of antenna scattering is the scattering from the structure which comprises the antenna
and its immediate platform. It is insightful, therefore, to examine the frequency

102
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10–2

TE TM

a = 8.94

polarization polarization

Physical
optics

0 10 20 30 40 50 60 70 80 90
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2
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Figure 16-50 TE and TM physical optics scattering by a strip of width a.
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dependence of the major geometrical features likely to be found as part of an antenna and/
or the platform upon which the antenna is placed. To do this we will examine the
monostatic RCS of a number of elementary shapes having a common geometrical feature.
The dominant scattering contributors in elementary shapes will have scattering cross
sections that vary with frequency (or wavelength) according to the form, wavelength
times a function of a characteristic dimension, d, of the object as [32]:

σ ¼ lnf ðd=lÞ ð16-173Þ
where n ¼ �2, �1, 0, 1, 2 for the geometries we will consider here. The function
f ðd=lÞ in (16-173) is different for each shape and is not of concern in this section.

Some elementary scattering contributors can be classified in terms of their principal
radii of curvature at the point where the normal to the surface is parallel to the direction of
incidence. Table 16-2 provides some examples.

Fig. 16-51 shows the backscatter radar cross-section dependence of five simple shapes.
These are a circular flat plate (FP), right circular cylinder (CYL), sphere (SPH), curved
edge (CE), and cone-sphere (CS). The RCS is in dBsm (dB relative to a square meter)
versus frequency. The RCS is the monostatic RCS viewed on the axis (see Fig. 16-52) of

Table 16-2 Classification of Elementary Scatterers

n radii of curvature geometry

�2 two infinite radii plane
�1 one infinite, one nonzero finite curved cylinder
0 two nonzero finite spheroid
0 one infinite, one zero straight edge
1 one nonzero finite, one infinite non-planar edge
2 two zero tip or point

Frequency, GHz

R
C

S 
(σ

),
 d

B
sm

Flat plate

Circular cylinder

80

60

40

20

0

�20

�40
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�80
10�1 100 101 102

Sphere

Cone-sphere

Circular disk edge

Figure 16-51 Frequency dependence of five simple scattering shapes.
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each object except for the disk which is viewed normal to the curved edge in the plane
containing the edge. The common geometrical feature among the shapes is that all use
a radius of 0:5642 m, which is the radius that produces a cross section of 1 square meter,
or 0 dBsm, for the sphere. Further, four of the shapes (FP, CYL, SPH, CS) project a
physical area of 1 square meter (1 m2) in the monostatic radar direction. All five first-
order radar cross sections can be predicted by physical optics if no higher-order effects
such as creeping wave, multiple diffractions, and so on are included. The purpose here is
to illustrate the dominant frequency dependence of some common geometrical features
exclusive of higher-order effects.

The uppermost curve in Fig. 16-51 is that of the flat circular plate. The wavelength
dependence is l�2, as it is for the rectangular plate in Prob. 16.13-1. The flat plate has two
infinite radii of curvature, the n ¼ �2 case.

The next curve is that of a finite length, L, circular cylinder viewed normal to the axis
of the cylinder as indicated in Fig. 16-48 for the infinite length circular cylinder. The
projected area of the finite length circular cylinder viewed normal to the curved surface is
2aL ¼ ð2Þð0:5642Þð0:8862Þ ¼ 1 m2, and the RCS is inversely proportional to wave-
length. The level of the curve is influenced by the length to diameter ratio of the cylinder,
that is by the radius of the cylinder. The curved surface of the circular cylinder has one
infinite radius of curvature and one finite and nonzero, the n ¼ �1 case.

The third curve applies to the RCS of a sphere and also to the RCS of a finite length
straight edge. The scattering by the sphere is mainly from the specular point, as indicated
in Fig. 16-6. The sphere has no infinite radii of curvature, the n ¼ 0 case. The zero
wavelength dependence of a straight finite edge can be seen by using (5-6) in the RCS
definition. The straight finite edge is also the n ¼ 0 case.

(a) Flat circular plate. (b) Circular cylinder.

(c) Sphere. (d) Circular disk.

(e) Cone Sphere.

To Radar 2a

To Radar

2a

a
To Radar

a
To Radar

a
To Radar

2α � 30�

Join

Join

Figure 16-52 Side view of five simple scattering shapes.
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The fourth curve is the RCS of the flat circular plate viewed edge-on [33] as shown in
Fig. 16-52d. This is the case of a non-planar edge, which has one nonzero finite radius of
curvature and the RCS is proportional to wavelength, the n ¼ 1 case.

The fifth curve is the RCS of a cone-sphere wherein more than half of a sphere is
“mated” to a cone such that there is the smoothest possible join between the cone and the
sphere, as illustrated in Fig. 16-52e. There are three backscattering contributors. The
incident wave first encounters the tip of the cone. Then the incident wave encounters
the join between the cone and the spherical portion. Third, the incident wave excites a
creeping wave on the spherical surface, some which is capable of creeping around the
back side of the cone-sphere and shedding energy in the backscatter direction. This could
produce an oscillation in the cone-sphere curve in Fig. 16-51 at the lower frequencies just
as it does for the sphere in Fig. 16-7, if it were included here. The tip scattering is weak,
leaving the join between the cone and the sphere as the dominant contributor to the
backscattered RCS, the n ¼ 2 case. Intuitively it might seem that the join between
the cone and the sphere, being as smooth as possible, would not be a significant scattering
source. However, if one looks at the cone sphere profile in Fig. 16-52e, there is a dis-
continuity in the derivative of the slope at the cone-sphere join, and this is the cause of the
scattering [2]. An approximate physical optics formula for the join scattering is

σ ¼ l2

16π
sec4 α ð16-174Þ

where α is the cone half-angle. An approximate physical optics formula for tip scattering
(see Prob. 16.13-3) is

σ ¼ l2

16π
tan4 α ð16-175Þ

Clearly the scattering from the join is much greater than the tip scattering. If the tip is
rounded instead of pointed, the tip scattering increases markedly. The cone-sphere curve
does not include creeping wave effects.

The scattering contributors for the five elementary shapes are not the only sources of
scattering in general, but are representative of the major first-order sources. Not all have
been treated analytically in this chapter. Only first-order scattering has been considered in
this section. Contributions by higher-order effects such as multiple diffractions and
creeping waves have not been included. For additional discussion of scattering sources,
refer to the literature [4, 34].

The last section in this text examines the physical theory of diffraction (PTD), a
combination of physical optics and currents near edges. To investigate PTD, we need the
method of stationary phase, which is the subject of the next section.

16.16 METHOD OF STATIONARY PHASE

As we have seen many times earlier in this book, integrals describing radiation have
integrands that consist of an amplitude function times a phase function. In many cases, an
asymptotic evaluation is possible if the amplitude function is slowly varying and the
exponential function is rapidly varying.

Consider the integral

I ¼
Z b

a

f ðxÞejβγðxÞ dx ð16-176Þ

in which f ðxÞ and γðxÞ are real functions. If f ðxÞ is slowly varying and βγðxÞ is a rapidly
varying function over the interval of integration due to β being large, the major contribution
from the integral comes from the point or points of stationary phase. A point of stationary
phase is defined as a point where the first derivative of the phase function γ vanishes:
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dγ
dx

¼ 0, at x ¼ xo ð16-177Þ

To expand the phase function in a Taylor series about the point of stationary phase, write

γðxÞCγo þ ðx� xoÞγ 0
o þ ðx� xoÞ2γ 00

o =2þ? ð16-178Þ
where γ0o and γ00o represent the derivatives of γ with respect to x, evaluated at xo. Now γ0o
is zero by definition [see (16-177)], and in the neighborhood of the point of stationary
phase the quantity ðx� xoÞ is small so that the high-order terms (i.e., order 3 and higher)
indicated in (16-178) may be neglected. If there is one and only one stationary point xo in
the interval from a to b, and xo is not near either a or b, (16-176) thus becomes

I ¼
Z xoþδ

xo�δ
f ðxÞe jβγoe jβðx�xoÞ2γ 00o =2 dx ðif γ 00

o 6¼ 0Þ ð16-179Þ

where δ represents a small number. Thus, the range of integration has been reduced to a
small neighborhood about the point of stationary phase. If f ðxÞ is slowly varying, it may
be approximated by f ðxoÞ over this small interval. Thus, (16-179) becomes

Io ¼ f ðxoÞe jβγo
Z N

�N
e jβðx�xoÞ2γ00o=2 dx ¼ f ðxoÞejβγo

Z N

�N
e jβz2γ 00o =2 dz ð16-180Þ

where ðx� xoÞ ¼ z. For convenience, the limits of integration have been changed again,
this time to infinity. This introduces a little error if the chief contribution to the integral
comes from the neighborhood of the point of stationary phase. In other regions, the rapid
phase variations cause the contribution from one half-period to be nearly canceled by that
from the next half-period if the amplitude f ðxÞ is constant or varies slowly.

Now consider the integralZ N

�N
ejaz

2
dz ¼

Z N

�N
ðcos az2 þ j sin az2Þ dz ¼

ffiffiffiffiffiffi
π
aj j

r
e jðπ=4Þ sgnðaÞ ð16-181Þ

where

sgnðaÞ ¼ 1 if a. 0

�1 if a, 0

�

If we use (16-181) to evaluate (16-180), the stationary phase approximation is

Z xoþδ

xo�δ
f ðxÞe jβγðxÞ dx 	 f ðxoÞ e jβγðxoÞ

ffiffiffiffiffiffiffiffiffiffiffi
2π

β γ 00
oj j

s
e jðπ=4Þ sgnðγ 00o Þ ð16-182Þ

If two or more points of stationary phase exist in the interval of integration ða to bÞ
and there is no coupling between them, the total value of the integral is obtained by
summing the contributions from each such point as given in (16-182).

Eq. (16-182) is not valid if the second derivative of the phase function vanishes at the
point of stationary phase. In this event, γ 00

o ¼ 0 and it is necessary to retain the third-order
term in the Taylor series in (16-178).

Eq. (16-182) also becomes invalid if one of the limits of integration, a or b, is close to
the point of stationary phase xo. In this event, however, it is possible to express the
integral in the form of a Fresnel integral as discussed later. A problem also arises if there
exist two or more stationary points close together in the range of integration.

To obtain the endpoint contribution, it is best to write (16-176) as
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I ¼
Z N

�N
f ðxÞe jβγðxÞ dx�

Z N

b

f ðxÞe jβγðxÞ dx�
Z N

�a

f ð�xÞe jβγð�xÞ dx ð16-183Þ

or

I ¼ Io � Ib � I�a ð16-184Þ
The evaluation of Io has been done in (16-182). Ib, for instance, can be evaluated via
integration by parts (see Prob. 12.14-1) by allowing the wave number to be complex and
to have a small amount of loss (i.e., small α) so that the contribution to the integral by the
upper limit at infinity vanishes, and then letting the wave number be approximated by β,
as before. Thus,

IbD � 1

jβ
f ðbÞ
γ0ðbÞ e jβγðbÞ ð16-185Þ

A similar expression can be found for I�a. Eq. (16-185) is valid when b is not near (or
coupled) to xo. When the stationary point is coupled to the endpoint, we have [H.10.4:
James]

IbDUð�ε1ÞIo þ ε1 f ðbÞe jβγðbÞ�jv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

β γ00ðbÞj j

s
F
ðvÞ ð16-186Þ

where γ00ðbÞ 6¼ 0, ε1 ¼ sgnðb� xoÞ, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

β
2 γ00ðbÞj j

q
γ0ðbÞj j, U ¼ unit step function, and

F
ðvÞ is the Fresnel integral.
There also are formulas for the stationary phase evaluation of double integrals [2].

However, (16-182) and (16-185) are sufficient to develop the physical theory of dif-
fraction in the next section.

EXAMPLE 16-6 Echo Width of a Circular Cylinder

Consider the radar echo width of an infinite circular cylinder about the z-axis (see Fig. 16-53).
We employ (16-182) to do this; (16-185) is used in the next section. Starting with the two-
dimensional counterpart to (16-182), write for ψ in the cylindrical system:

ψ ¼ 1

4j
H

ð2Þ
0 ðβρÞD 1

4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

πβ ρ�ρ0j j

s
e�jβ ρ�ρ0j j ð16-187Þ

To distant
observation
points

a

y

x

Hi

J = z|J| e –jβ| ρ – ρ′| Hi= 2n 

–    ρ ρ′

ρ

φ
φ    ′ β

×
Figure 16-53 Geometry for radia-
tion by a circular cylinder.
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where ρ� ρ0j j ¼ ρ� ρ0 cosðφ� φ0Þ and the asymptotic or large argument approximation for
the Hankel function, H

ð2Þ
0 ðβρÞ, of the second kind and zeroth order has been used. For

amplitude purposes in the far field, ρ� ρ0j j 	 ρ. Thus, similar to (16-183), we obtain

∇ψ ¼ ρ̂
1

4j

ffiffiffiffiffiffi
2j

πβ

s
� 1=2þ jβρ

ρ3=2

� �
e�jβ ρ�ρ0j j ð16-188Þ

In the far field, the 1
2
is insignificant compared to βρ. Thus,

Hs 	
ffiffiffiffiffiffiffiffiffi
j

8πβ

r Z
ðJ3 ρ̂Þ j

β
ρ1=2

� �
e�jβ ρ�ρ0j j dc0 ð16-189Þ

where dc0 is an incremental element on a circumferential line of the cylinder, dc0 ¼ adφ0.
Applying the definition of echo width (see Sec. 16.11) and taking J ¼ 2n̂3Hi give

σw ¼ β
4

1

Hi
�� ��2

Z
ðð2n̂3HiÞ3 ρ̂Þe�jβ ρ�ρ0j j dc0

����
����
2

ð16-190Þ

The phase of the current on the cylinder is eþjβa cosðφ�φ0Þ (i.e., advanced relative to the origin as
indicated in Fig. 16-46). Thus,

σw ¼ β
Z

ejβa cosðφ-φ0Þðρ̂ � n̂Þe�jβ ρ�ρ0j j dc0
����

����
2

ð16-191Þ

Noting that ðρ̂ � n̂Þ ¼ cos φ0 and ρ� ρ0j j ¼ ρ� a cos φ0 when ρ0 ¼ a and φ ¼ 0 yields

σw ¼ β e�jβρ
Z π=2

�π=2
cos φ0 eþj2βa cos φ0 adφ0

�����
�����
2

ð16-192Þ

The integral can be evaluated in a straightforward manner by the method of stationary phase.
Using (16-182), identify f 0ðφ0Þ ¼ a cos φ0 and γðφ0Þ ¼ �2a cos φ0. To find the stationary
point(s) φo, use f 0ðφ0Þ ¼ 0 ¼ �a sin φ0 and determine that φ0

o ¼ 0, π. Due to the physical
optics assumption of no current at φ0

o ¼ π, the value of π is discarded. Therefore,
f ðφ0

oÞ ¼ a cosð0�Þ ¼ a. Since γ00ðφ0Þ ¼ 2a cos φ0, then γ00ðφ0
oÞ ¼ 2a. Therefore,

σw ¼ β ae�jβρe jβa

ffiffiffiffiffiffiffiffi
2π
β2a

s
ejπ=4 sgn ðγ 00o Þ

�����
�����
2

¼ πa ð16-193Þ

Thus, our stationary phase evaluation has produced the same result for the echo width as we
obtained in Sec. 16.11 using geometrical optics.

It is interesting to compare the treatment here for the cylinder with the treatment of the
sphere in the previous section. In the case of the sphere, the projection of the currents onto
a plane was integrated. This produced an integral that could be evaluated in closed form.
Had the sphere problem been formulated in a manner similar to that used here for the
cylinder by integrating on the actual surface, it would have been necessary to use sta-
tionary phase for double integrals. The single integral treatment is, however, sufficient for
our development of PTD in the next section.

16.17 PHYSICAL THEORY OF DIFFRACTION

The physical theory of diffraction (PTD) is an extension of physical optics (PO) that
refines the PO surface field approximation just as GTD or UTD refines the geometrical
optics surface-field approximation. The original PTD formulation was developed by
Ufimtsev [35] for surfaces with perfectly conducting edges. Ufimtsev’s original work was
done at about the same time as the ray-optical work of Keller and independently of Keller.
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However, Ufimtsev was aware of the work of Sommerfeld [7] and Pauli [9] and used the
asymptotic form in (16-42) as did Keller.

In his work, Ufimtsev postulated that there was a nonuniform component of the current
that would include effects not accounted for in the physical optics current, called the
uniform current in his work (see Fig. 16-54). Ufimtsev did not actually find the non-
uniform current for the wedge, but instead found the field due to the nonuniform com-
ponent of the current by indirect means. (More recently, expressions for these nonuniform
currents have been found [36, 37].) He found the non-uniform current contribution to the
field by subtracting the PO field from the known total field for the wedge. The result was
the field due to what was left, that from the nonuniform current. To see this, write

Es
total ¼ Er

GO þ Ed
K ð16-194Þ

where

Es
total ¼ the total scattered field

Er
GO ¼ the reflected field obtained by geometrical optics

Ed
K ¼ the diffracted field found using the Keller diffraction coefficient in ð12-59Þ

Then write EPO for the field due to the physical optics current, as

EPOCEr
PO þ Ed

PO ð16-195Þ
where Ed

PO is called the physical optics diffracted field (which is not the total diffracted
field) and is due to the abrupt termination of the physical optics current at, for example,
the edge of the half-plane in Fig. 16-54. Er

PO is the reflected field obtained by integration
of the currents and is theoretically equal to Er

GO since both represent the reflected field,
although by different means.

Subtracting (16-195) from (16-194) or ðEs
total � EPOÞ yields the field due to the non-

uniform current Enu as

Enu ¼ Ed
K � Ed

PO ð16-196Þ
The field due to the nonuniform current, when added to the field due to the uniform
current (e.g., the specular contribution), gives the total scattered field:

Es
total ¼ Eunif þ Enu ð16-197Þ

If we take Er
GO ¼ Er

PO, it follows from (16-195) that

Er
GO ¼ EPO � Ed

PO ð16-198Þ

Total current

Physical optics current

Enu

Ed
PO Er

PO

Edge
Conducting half-plane

∞

Figure 16-54 Conceptualization of PTD currents. Also indicated are the fields generated by
those currents.
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Substituting (16-198) into (16-194) gives

Es
total ¼ EPO þ ðEd

K � Ed
POÞ ¼ Eunif þ ðEnuÞ ð16-199Þ

Next, we present expressions for the fields due to the nonuniform current. As in GTD,
each polarization is considered separately. Thus for the nonuniform contribution in the
two-dimensional case, the parallel and perpendicular polarizations (where O and \ refer
to the orientation of the electric field) are

Enu
O ¼ Eif 0

ejðβρþπ=4Þffiffiffiffiffiffiffiffiffiffiffi
2πβρ

p ð16-200Þ

Hnu
\ ¼ Hig0

ejðβρþπ=4Þffiffiffiffiffiffiffiffiffiffiffi
2πβρ

p ð16-201Þ

Thus, Enu
O and Hnu

\ are known in terms of two simple functions f 0 and g0, where f 0 ¼ f � fo
and g0 ¼ g� go and

f

g

� �
¼ 1

n
sin

π
n

1

cos
π
n
� cos

φ� φ0

n

2
64

3
75�

1

cos
π
n
� cos

φþ φ0

n

2
64

3
75 ð16-202Þ

fo ¼
fa 0,φ0 #π� φint

fa þ fb π� φint #φ0 #π
fb π,φ0 , 2π� φint

8><
>: ð16-203Þ

go ¼
ga 0,φ0 #π� φint

ga þ gb π� φint #φ0 #π
gb π,φ0 , 2π� φint

8><
>: ð16-204Þ

fa

ga

� �
¼ sin φ0

�sin φ

� �
1

cos φþ cos φ0 ð16-205Þ

fb

gb

� �
¼ sinð2π� φint � φ0Þ

�sinð2π� φint � φ

� �

� 1

cosð2π� φint � φÞ þ cosð2π� φint � φ0Þ
ð16-206Þ

with φint ¼ ð2� nÞπ, the interior wedge angle. The a subscript denotes that the A face is
illuminated and b denotes that the B face is illuminated as in Fig. 16-55.

Clearly, f and g correspond to the Keller GTD diffraction coefficients. Even though we
know that f and g tend to infinity at the reflection and shadow boundaries, f 0 and g0 do not
because the singularities in f and g are canceled by identical singularities in fo and go. The
quantities fo and go are the PO diffraction coefficients.

The expressions for fo and go are obtained from the stationary phase endpoint con-
tribution in (16-185). To demonstrate this [38], consider the wedge in Fig. 16-55 for the
perpendicular (TE) case with only face A illuminated. Write for the incident magnetic
field [see Eq. (16-37)]

Hi ¼ ẑ Hoe
jβρ cosðφ�φ0Þ ð16-207Þ
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The physical optics current on the illuminated face of the wedge, face A in Fig. 16-55, is
given by

JPO ¼ 2n̂3Hi
ρ¼x0,φ¼0

��
¼ 2ðŷ3 ẑÞHie jβx

0 cos φ0 ¼ 2x̂ Hoe
jβx0 cos φ0 ð16-208Þ

The vector potential for the two-dimensional wedge is

A ¼ μ
Z N

0

JPO
1

4j
H

ð2Þ
0 β ρo � ρ0j jð Þ dx0 ð16-209Þ

Using the asymptotic expression of the Hankel function gives

ACμ
2Hi

4j
x̂

Z N

0

e jβx
0 cos φ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

πβ ρo � ρ0j j

s
e�jβ ρo�ρ0j j dx0 ð16-210Þ

From Fig. 16-55, note that ρo � ρ0j jDρo � ρ̂Uρ0 ¼ ρo � x0 cos φ. Thus, A becomes,
with the usual far-field approximations,

ADμ
Hi

2j
x̂

ffiffiffiffiffiffiffiffiffiffiffi
2j

πβρo

s Z N

0

e�jβρoe jβx
0ðcos φ0þcos φÞ dx0 ð16-211Þ

Considering just the integral with d 	 ρo � x0 cosφ, we get

I ¼
Z N

0

e jβðx
0 cos φ0�dÞdx0DIo þ Ib ð16-212Þ

where Io is the stationary contribution discussed in the previous section and Ib is the
endpoint contribution in Eq. (16-185). Evaluation of Io is not of immediate interest to us
here and is left as an exercise for the reader. Our attention is turned to Ib, where

Ib ¼ � 1

jβ
f ð0Þ
γ0ð0Þ e jβγð0Þ ð16-213Þ

y

y
d

int

P(   ,   )

(x – x′) xFace A

Face B

ρ

ρ

φ

φ

φ

E i

o n

ρ ′

Figure 16-55 TE plane wave incidence on
the A face of a wedge.
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Here,

f ð0Þ ¼ 1 ð16-214aÞ
γðx0Þ ¼ x0 cosφ0 � d ð16-214bÞ

d ¼ fðx� x0Þ2 þ ðyÞ2g1=2 ð16-214cÞ
d

dx0
ðdÞ ¼ � ðx� xÞ0

d
ð16-214dÞ

γ0ðx0Þ ¼ cosφ0 � d

dx0
ðdÞ ¼ cosφ0 þ x� x0

d
ð16-214eÞ

γ0ð0Þ ¼ cosφ0 þ x

ρo
¼ cosφ0 þ cosφ ð16-214f Þ

γð0Þ ¼ �dð0Þ ¼ �ρo ð16-214gÞ
Thus, the endpoint contribution to the integral is

Ib ¼ � 1

jβ
1

cosφ0 þ cosφ
e�jβρo ð16-215Þ

which means that the endpoint contribution Aep
\ is

Aep
\ ¼ �μ

Hix̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjβρo

p e jβρo
�1

jβ
1

cosφ0 þ cosφ
ð16-216Þ

Since Eep
\ ¼ �jωAep

\ and ηHi ¼ Ei,

Eep
\ ¼ Ei 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πjβρo
p 1

cosφþ cosφ0 e
�jβρo x̂ ð16-217Þ

And finally for the magnetic field, we have

Hep
\ ¼ ðρ̂o 3 x̂ÞHi 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πjβρo
p 1

cosφþ cosφ0 e
�jβρo

¼ �Hi 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjβρo

p sinφ
cosφþ cosφ0 e

�jβρo ẑ ¼ Hd
PO ẑ ð16-218Þ

which is the postulated result given in (16-200) through (16-206).
Suppose that PTD is to be used to calculate the results in Fig. 16-14a. First, it must be

kept in mind that PTD uses the equivalence principle, as does physical optics, where all
conducting media are replaced with equivalent currents radiating in free space. This
should be contrasted with GTD, where all material media are retained. Starting with
region I (Fig. 16-12), one can write

EtotalDEi þ Eunif þ Enu ð16-219Þ
or

Etotal ¼ Ei þ ðEPOÞ þ ðEd
K � Ed

POÞ
¼ Ei þ ðEr

PO þ Ed
POÞ þ ðEd

K � Ed
POÞ ð16-220Þ
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which in terms of GTD is

Etotal ¼ Ei þ Er
GO þ Ed

K in region I ð16-221Þ
To apply PTD, (16-219a) is used, whereas the use of (16-219c) is the application of GTD.
In the former, fields from currents are used, whereas in the latter, ray-optical fields are
used. More specifically, to apply PTD as given in (16-219a) to the half-plane problem of
Fig. 16-14, Ei is represented by (16-37), Er

PO by (16-182), Ed
PO by (16-185), and

ðEd
k � Ed

POÞ by (16-201). Fig. 16-56 is helpful in understanding the PTD calculation in
region I. As the reflection boundary is approached in Fig. 16-56, (16-186) must be used
since the stationary point and endpoint become coupled.

For region II, as in Fig. 16-56, all the quantities in (16-219b) are also present, except
Er
PO that is absent outside the two transition regions. Here with PTD, Eunif is continuous

across the reflected field shadow boundary. Enu is also continuous. Thus, Etotal is con-
tinuous across the reflected field shadow boundary. (See Prob. 16.17-2.)

With regard to Fig. 16-56, in region III all PTD quantities in (16-219a) are present just
as in region II. Moving across the incident field shadow boundary, Enu will, of course, be
continuous. Both Ei and Eunif are also continuous and, therefore, Etotal is continuous.
Moving deeper into the shadow region, Ei will (theoretically) be canceled by Er

PO, leaving
Ed
K . This is not surprising because it is known from Sec. 16.2 that Ed

K gives the correct
field in the deep shadow region. To calculate the field in PTD in region III, note from
Fig. 16-56 that Er

PO appears in the shadow region and (16-185) is used in its evaluation
away from the shadow boundary, just as it was used in region I.

RB

SB

End point
contribution

Face A

Face B

Stationary point

(a) Observation point in region I.

(c) Observation point in region II, no
      stationary point.

(b) Observation point in a transition region
      (e.g., near to the reflection boundary).
      Stationary point and end point are coupled.
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H i H i

x x
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and end point
contribution
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H i
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P
(d) Observation point in region III. The incident
      field will be approximately canceled by the 
      stationary point contribution.

H i

x
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Face A
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End point
contribution

Stationary point

Figure 16-56 The relationship between stationary phase and geometrical optics for a
conducting wedge.
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PTD, just like GTD, applies only to scattering directions lying on the cone of dif-
fracted rays shown in Fig. 16-15. This restriction for PTD may be overcome by using
incremental length diffraction coefficients (ILDC) devised by Mitzner [39]. The ILDCs
do for PTD what equivalent currents in Sec. 16.9 do for GTD [40].

16.18 CYLINDRICAL PARABOLIC REFLECTOR ANTENNAS—PTD

As a second example of the application of the PTD, consider again the cylindrical par-
abolic reflector antenna shown in Fig. 16-20. In the half-space where z is positive (region
A in Fig. 16-57), we use aperture integration for 0, ζ, π=2. This gives the contribu-
tion from Eunif . The contribution from Eunif will increasingly disagree with the UTD
result in Fig. 16-58 as ζ moves from 30 to 90�. This discrepancy may be removed by
including Enu in the calculation as Fig. 16-58 shows for the PTD case.

To obtain the field or pattern in the deep shadow region (the shaded part of region C in
Fig. 16-57), we cannot use the field from the aperture integration. An examination of the
equivalence principle shows that this is so. For example, from an examination of the half-
plane example in the previous section, we know that in the deep shadow region the field
may be found from just Ed

k if E
i is canceled by Er

PO. However, if E
r
PO is taken to be from

the equivalent currents in the aperture, Er
PO gives a collimated beam in the negative

z-direction that clearly cannot be canceled by the field from the feed. However, if Er
PO is

taken to be the field from the currents on the parabolic surface, it will cancel Ei in the
shaded region.

B

C

C

B
A

z
ζ

C

Figure 16-57 Regions of a cylindrical parabolic reflec-
tor antenna (see Fig. 16-20).
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parison of physical optics
aperture integration with UTD
and PTD in the side-lobe
region for the geometry of
Fig. 16-20.
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Toget the field in the unshaded part of regionsC andB, we need touseEunif and Enu,which
means the integration over the parabolic surface itself must be done. Generally, it is easier to
integrate over the aperture than over the parabolic surface, but that is not a valid option here. In
obtaining the field in regions B and C, the need to integrate over the parabolic surface can be
avoided by simply using the UTD diffraction coefficients in a GTD model rather than the
Keller coefficients in a PTD model, realizing that UTD gives the correct fields without the
singularity at the incident field shadow boundary. That is to say, in this problem the simpler
model is a GTD model with UTD coefficients for regions C, B, and part of A.

Fig. 16-58 shows the E-plane radiation pattern for the cylindrical parabolic reflector
antenna of Fig. 16-20. Fig. 16-58 shows a comparison of aperture integration, PTD, andUTD
for the TE (or perpendicular) case. The agreement between classical aperture integration and
the two asymptotic theories is excellent in the region of the main beam and the first few side
lobes; thereafter, there is increasing disagreement because aperture integration does not fully
account for edge diffraction effects that are increasingly important at larger angles.

Fig. 16-59a shows a comparison between UTD single diffraction, UTD double dif-
fraction, and PTD for the full E-plane pattern. Aperture integration is used for the main
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Figure 16-59 A comparison of PTD with UTD single (1) and double (2) diffraction calcu-
lations for the geometry of Fig. 16-20.
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beam and the first side lobe in the UTD calculations; thereafter, starting in the second
null, UTD alone is used. With two exceptions, the agreement is quite good between UTD
and PTD. First, in the vicinity of 90�, there is some disagreement since edge diffraction
effects are particularly strong for this polarization and one edge is in the transition region
of the other (see Fig. 16-18c). Note, however, that the pattern is near the �40-dB level.
Second, there is some disagreement in and near the back-lobe region. This disagreement
is not due to a deficiency in the diffraction calculations, but the inability of Eunif from the
integration over the currents on the parabolic surface to exactly cancel Ei from the feed in
the PTD calculation. If the feed had less taper (e.g., cos θs instead of cos2 θs), the dif-
fracted field would be stronger and the incomplete cancellation of Eunif by Ei less
apparent at the higher back-lobe level. For this geometry, disagreement in the back-lobe
region is greater in the H-plane case than the E-plane case because the diffracted field in
the former is weaker than in the latter, resulting in a more noticeable incomplete can-
cellation effect.

16.19 SUMMARY

In this chapter on high-frequency methods, a variety of techniques have been presented
for predicting both the near- and far-zone fields from perfectly conducting bodies whose
dimensions are large in terms of the wavelength. The GTD/UTD approach is ray-based
and relatively simple when the number of rays is not large. The PTD approach is current-
based and requires the integration of currents. Since integration is a smoothing process, a
geometrical surface description in PTD does not have to be as accurate as in UTD. In both
UTD and PTD, the most difficult part to calculate is usually the most basic part: GO in the
case of UTD and PO in the case of PTD. An example of this is the calculation of scat-
tering by an infinite cylinder in Sec. 16.11 where, for small radii, the creeping wave
contribution was more accurate than that of GO.

The importance of the UTD method in antenna and scattering problems stems from the
significant advantages to be gained from its use: (1) it is simple to use and yields accurate
results; (2) it provides some physical insight into the radiation and scattering mechanisms
involved; (3) it can be used to treat problems for which exact analytical solutions are not
available. UTD is also used in acoustic problems such as SONAR and problems involving
inhomogeneous or anistropic media [H.6: Felsen].

The importance of the PTD method is mostly in scattering problems. An advantage of
the PO is that it provides scattering information in directions that are not necessarily in
the specular direction or on the cone of diffracted rays. PTD is thought to have played a
key part in the development of the B-2 stealth bomber.

The methods of this chapter tend to complement the intermediate frequency moment
method techniques presented in Chap. 14 and the FDTD technique in Chap. 15. And, as
was seen in Sec. 16.12, the moment method can be formally combined with UTD into a
hybrid technique that extends the class of problems to which moment methods can be
applied. This can be done not only because both MoM and UTD are highly practical
techniques, but also because they are inherently flexible in their application to analysis
and design problems. Outside the scope of this text are other more recently developed
hybrid techniques. These include FEM/BEM, MoM/PO, FEM/PO, and others.
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PROBLEMS

16.1-1 It can be shown [10] that the principal radii of curvature of the geometrical optics
reflected wavefront are given by

1

ρ1
¼ 1

2

1

ρi1
þ 1

ρi2

0
@

1
Aþ 1

f1
and

1

ρ2
¼ 1

2

1

ρi1
þ 1

ρi2

0
@

1
Aþ 1

f2

where ρi1 and ρ
i
2 are the principal radii of curvature of the incident wavefront and ρ1 and ρ2 are

the principal radii of curvature of the reflected wavefront. General expressions for f1 and f2 are
given in the literature [10]. However, for an incident spherical wave,

1

f1,2
¼ 1

cos θi
sin2 θ2
rc1

þ sin2 θ1
rc2

0
@

1
A




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cos2 θi
sin2 θ2
rc1

þ sin2 θ1
rc2

0
@

1
A2

� 4

rc1r
c
2

vuuut
where θ1 and θ2 are the angles between the incident ray and principal directions (i.e., tangent
unit vectors) associated with the principal radii of curvature of the surface rc1 and rc2,
respectively.
(a) Show that for θ1 ¼ θo and θ2 ¼ 90�, the first equation reduces to (16-20) and the second to

1

ρ2
¼ 1

‘o
þ 2 cos θo

rc2

(b) Without using (16-20) or the expression for ρ2 immediately above, show that in the case
of plane wave illumination ffiffiffiffiffiffiffiffiffi

ρ1ρ2
p ¼ 1

2

ffiffiffiffiffiffiffiffi
rc1r

c
2

p
16.1-2 An infinite elliptical paraboloid is described by the equation

x2

2rc1
þ y2

2rc2
¼ �z

where r1 and r2 are the principal radii of curvature at the specular point. Using geometrical
optics, show that the radar cross section for axial incidence is

σ ¼ πrc1r
c
2
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Actually, this result applies to any surface expressible in terms of a second-degree polynomial,
where rc1 and rc2 are the principal radii of curvature at the reflection point [2, 3]. Is the above
result valid for a cylindrical surface or flat plate? Why not?
16.1-3 A plane wave is incident on a smooth three-dimensional conducting convex body. The
two principal radii of curvature of the body at the specular point are rc1 ¼ 5l and rc2 ¼ 10l.
Write expressions for the electric and magnetic backscattered fields if the incident plane wave
fields are

Ei ¼ ŷe�jβx and Hi ¼ ẑ
e�jβx

η

16.1-4 (a) Determine the monostatic RCS of a convex infinite paraboloid of revolution for on
axis incidence if the radii of curvature at the specular point are given by rc ¼ 2F, where F is
the focal length of the paraboloid [H.3: Milligan, 2nd ed., p. 382].

(b) Under what conditions would the result of (b) hold for the monostatic RCS of a cir-
cularly symmetric parabolic reflector for on axis incidence upon its concave surface?
16.2-1 A cylindrical wave is incident on a cylindrical parabolic reflector as shown. To obtain
the diffracted field from the top edge (only) at any point in space, the edge may be analyzed as
if a half-plane were tangent to the uppermost portion of the parabolic surface. Divide the space
around the top edge into three separate regions and write general expressions (with numerical
values for φ0) for the total electric field from the top edge in those three regions of space. In
which of the three regions is the total geometrical optics field zero?

Direction
of main
beam

Ei

Focus

Parabola

H
alf-plane boundary

60°

16.2-2 Evaluate the following Fresnel integrals:

(a)

Z N

0

e�jτ2 dτ

(b)

Z 5

0

e�jτ2 dτ

(c)

Z N

5

e�jτ2 dτ

16.2-3 Find vBðρ, φ
Þ, using both (16-42) and (16-44) for a 90� interior angle wedge when:
(a) φ0 ¼ 45�, ρ ¼ 10l, φ ¼ 220�
(b) φ0 ¼ 45�, ρ ¼ 10l, φ ¼ 230�

Compare your results in (a) and (b) and explain any differences. What is v* in parts (a)
and (b)?
16.2-4 Find vBðρ, φ
Þ for a 90� interior wedge angle (both polarizations) when:

(a) φ0 ¼ 45�, ρ ¼ 10l, φ ¼ 90�
(b) φ0 ¼ 45�, ρ ¼ 10l, φ ¼ 138�
(c) φ0 ¼ 45�, ρ ¼ 10l, φ ¼ 180�

Comment on your results and justify the formulas you used to evaluate the diffracted field in
each case.
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16.2-5 Substitute (16-34) and (16-35) into (16-33) and explain the physical significance of
each of the four terms you obtain.
16.2-6 Draw a sketch that illustrates the first postulate of Keller’s theory. Include both a direct
ray and a diffracted ray in your sketch.
16.3-1 Consider a magnetic line source parallel to the edge of a half-plane as shown. In this
situation, the diffracted field appears to originate from a magnetic line source located at the
edge. Using the flux tube concept of Fig. 16-3, show that the diffracted field may be written as

Ed
\ðρÞ ¼ �D\E

i
\ðQÞ

e�jβρffiffiffi
ρ

p

where Ei
\ðQÞ is the value of the incident field at the edge.

Pρ
Magnetic

line source

Conducting
half-plane

−∞

16.3-2 Repeat Prob. 16.3-1 when the magnetic line source is replaced by an electric line
source and show that

Ed
jjðρÞ ¼ �DjjEi

jjðQÞ
e�jβρffiffiffi

ρ
p

16.3-3 Consider the situation where a point source illuminates the edge of a half-plane at
normal incidence. Unlike the previous two problems, in this case there will be spreading in
both principal planes. Using the flux tube concept of Fig. 16-3, show that the diffracted field
may be written as either

Ed
jjðsÞ ¼ �DjjEi

jjðQÞ
ffiffiffiffiffiffiffiffiffiffiffi
s0

s0 þ s

r
e�jβsffiffi

s
p

or

Ed
\ðsÞ ¼ �D\E

i
\ðQÞ

ffiffiffiffiffiffiffiffiffiffiffi
s0

s0 þ s

r
e�jβsffiffi

s
p

16.3-4 Show that the diffraction coefficient matrix ½D� in (16-46) will generally have seven
nonvanishing coefficients if an edge-fixed coordinate system is used rather than a ray-fixed
system.
16.4-1 Derive (16-59) from (16-52) and show that (16-59) is the same as (16-42).
16.4-2 Consider the case where a half-plane is illuminated by a plane wave and the obser-
vation point is near the edge of the wedge.
(a) Show that UTD reduces to the Sommerfeld-Pauli result in (16-44) and hence the UTD is

exact.
(b) Is UTD an exact solution if the source is near the wedge edge and the observation point

is at a very large distance? Why?
(c) If both the source and observation points are near the wedge edge, the UTD solution will

not be exact. Why? (Although the solution may not be exact, the results may still be
useful—see Sec. 16.12.)

16.4-3 Show that an alternative to (16-55) would be to define Nþ as the value of
½ðφ
 φ0Þ þ π�=2πn rounded to the nearest integer. Define a similar alternative to (16-56).
16.4-4 Consider a wedge illuminated by either an electric or magnetic line source parallel to
the edge and at some distance from it ðρ0 � lÞ.
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(a) At the reflection boundary (or incident boundary), show that the diffraction coefficient

must have a discontinuity of magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ρ=ðρþ ρ0Þp

.
(b) Show that at the reflection boundary (or incident boundary), the UTD diffraction

coefficient is discontinuous by an amount 
 ffiffiffi
L

p
. What determines the sign of the dis-

continuity? The following approximation is useful:

FðXÞ ¼ ffiffiffiffiffiffi
πX

p � 2Xejðπ=4Þ � 2

3
X2e�jðπ=4Þ

� �
ejðπ=4þXÞ

which is valid when X is small
(c) From the results of (a) and (b), show that the total field is continuous across the

reflection (or incident) shadow boundary.
16.4-5 A plane wave is incident at an angle of γ0o ¼ 45�, φ0 ¼ 30� on the edge of a
90� n ¼ 3

2

� �
conducting wedge.

(a) Use (16-52) and Fig. 16-17 to calculate Ed
\ at a distance s ¼ 2l when φ ¼ 120�, 132�,

138�, 180�, 222�, 228�, and 260� when Ei
\ ¼ 1 V=m.

(b) Repeat (a) for Ed
jj when Ei

jj ¼ 1 V=m.
16.4-6 (a) Use (16-36), (16-37), and (16-42) to compute the total field in Fig. 16-14a. Your
result will differ from that in Fig. 16-14a at the reflection and shadow boundaries. Why?

(b) Recompute (a), but use (16-52) instead of (16-42).
(c) Comment on the difference between the results in (a) and (b) above.

16.4-7 (a) Using trigonometric identities, put (16-42) into a form similar to (16-52) but
without the transition functions, F.
(b) Comment on the purpose of the transition functions.

16.5-1 Use the E-plane model in Fig. 16-18b and a computer program for wedge diffraction to
verify the curves in Fig. 9-16 that were obtained by aperture integration.
16.5-2 Explain why the rays in Fig. 16-18c make a negligible contribution to the radiation
pattern except when ζ 	 90�.
16.5-3 Show that the doubly diffracted field from Q1 in Fig. 16-18c can be written as

Ed
1,2ðPÞ ¼

1

2

e�jβρEffiffiffiffiffiρEp D\ðQ2ÞD\ðQ1Þ e
�jβ2affiffiffiffiffi
2a

p e�jβrffiffi
r

p ejβa sin ζU

16.5-4 Redo Prob. 15.8-5.
16.5-5 Calculate the diffracted field from the 194� interior wedge angle edge on the outside of
the horn antenna in Fig. 15-18 that is formed by the join of the horn wall with the waveguide.
Use ρ ¼ l. Assume that the electric field incident on the join is 1 V=m. Compare your result to
what you observe in Fig. 11-21d of [H.3: Stutzman, 2nd ed., Chap. 11].
16.6-1 Use a computer program for wedge diffraction to calculate the total diffracted field for
0# ζ# 2π for the antenna of Fig. 16-20. Compare your results with Fig. 16-21. Why is there a
difference?
16.6-2 Draw a sketch of the “creeping wave” rays (see Sec. 16.11) on the back side of
the parabolic reflector of Fig. 16-20. Now draw rays that originate at Q1 or Q2 and reflect
several times along the inside surface parabolic reflector. These rays are called whispering
gallery rays.
16.6-3 Show that the doubly diffracted ray from Q1 in Fig. 16-20 can be written as

Ed
1,2ðPÞ ¼

e�jβρEffiffiffiffiffiρEp FðθoÞDjjðQ2ÞDjjðQ1Þ U e�jβ2affiffiffiffiffi
2a

p e�jβrffiffi
r

p e jβa sin ζ

16.6-4 Derive (16-71).
16.6-5 If the line source in Fig. 16-20 is a magnetic line source, calculate the far-field pattern.
Your result will be similar to that in Fig. 16-21, except that the discontinuity at ζ ¼ 90� will be
greater and the back lobes will be about 8 dB higher. Why?
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16.6-6 Use the UTD to calculate the H-plane pattern of a 90� corner reflector antenna with a
dipole feed. The dipole feed is 0:5l from the apex of the reflector, the reflector sides are 1:0l
long, and the aperture of the corner reflector is 1:414l across.
16.7-1 The diffracted field that is neglected in (16-86) may be written generally as [12]

Ed
SDðPÞ ¼

1

2jβ
@EiðQÞ
@n

@

@φ0 Djj φ0¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

sðρþ sÞ
r

e�jβs
����

Compare the value of this slope diffracted field with the direct field in (16-86) when θ ¼ 90�.
16.7-2 (a) Using (16-36) and (16-37) in (16-33), show how a factor of 2 arises in Eðρ, φÞ for
the perpendicular polarization in the infinite ground plane case ðvB ¼ 0Þ when the plane wave
has grazing incidence to the ground plane ðφ0 ¼ 0Þ.

(b) Then verify, in general, that at grazing incidence the diffracted field must be multiplied
by 1

2
, as in (16-80) and (16-82), to obtain the correct value of the diffracted field. To do this, use

either the asymptotic form in (16-42) or (16-59) to show that Djj-0 and a factor of 2 naturally
arises in D\.
16.8-1 A short monopole (stub antenna) is mounted at the center of a square ground plane 6l
on a side as shown in Fig. 16-27a.
(a) Using the two-point approximation, show that the relative diffracted field in the region

200� ,φ1 , 340� can be expressed by

Ed ¼ e�jðβrþπ=4Þffiffiffiffiffiffiffiffiffiffiffi
2πβr

p 1

cos
φ1

2

� e�j12π cos φ2

cos
φ2

2

2
64

3
75

where φ2 ¼ 2π� ðφ1 � πÞ

φ2 φ1

(b) Why must the diffracted field be zero when φ1 ¼ 270� for this problem? Use a sketch
and physical reasoning to explain why.

(c) Calculate and plot a graph of the diffracted field for 200� ,φ1 , 340�. Compare your
results with Fig. 16-28.

16.9-1 Derive (16-97) and (16-98).
16.9-2 Derive (16-101) and (16-102).
16.9-3 A short monopole (stub antenna) is mounted at the center of a circular ground plane 6l
in diameter as shown in Fig. 16-27b.
(a) Using the equivalent concept, show that the relative diffracted field in the region

90� # θ# 180� can be expressed by

Ed ¼ � e�jðβrþπ=4Þffiffiffiffiffiffiffiffiffiffiffi
2πβr

p 1

cosðφ=2Þ 2πjJ1ð6π sin θÞ

where J1 is the first-order Bessel function Note thatZ 2π

0

cosðξ � ξ0Þejx cosðξ�ξ0Þ dξ0 ¼ 2πjJ1ðxÞ

(b) Calculate the diffracted field and compare with that calculated in Prob. 16.8-1.
16.10-1 A triangular cylinder is illuminated by a line source as shown. Apply the self- con-
sistent method to this problem by setting up (16-110) in a form similar to (16-109). Note that
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some of the matrix elements will be zero. Check your solution with that in [17].

Line source

C4

C2

C5

C6

C3

C1
AB

C

16.11-1 (a) Use the information in Table 16-1 to compute σw in (16-127). Plot σw vs. βa for
0:1#βa# 10 for both polarizations on the same graph.

(b) Repeat part (a) when the geometrical optics contribution (only) is multiplied by

1� j 5
16ðβaÞ þ 127

512ðβaÞ2
h i

in the parallel case and by 1þ j 11
16ðβaÞ � 353

512ðβaÞ2
h i

in the perpendicular

case [H.10.4: James]. Plot both results on the same graph. Compare with Fig. 16-34.
(c) Plot the parallel polarization results from (a) and (b) on one graph and the perpendicular

polarization results on another. Comment on your results.
16.11-2 Which of the following applies to a creeping wave? (a) has no attenuation on a flat
surface; (b) propagates in the shadowed region of a target; (c) has a larger attenuation per unit
length for small radii of curvature than for large radii of curvature.
16.12-1 (a) Show that diffraction by a straight edge is independent of frequency (wavelength).

(b) Can the results in Figs. 16-37 and 16-38 be scaled to a frequency different than that
used in the figures? Why?
16.12-2 (a) A vertically polarized cellular antenna transmits 20W at 860MHz. A receiving
an- tenna is shadowed by a 0.3-km-high ridge normal to a line drawn between the two
antennas as shown. How much power is available at the terminals of the receiving antenna if
the gain of the receiving antenna in the direction of the ridge is 4 dB and that of the trans-
mitting antenna is 15 dB toward the ridge? As a rough approximation, assume the ridge is
perfectly conducting.

4 km

30° 30°

1 km

(b) Compare your result to the power that would be available if the ridge was not present.
(c) What is the excess path loss due to the presence of the ridge?

16.13-1 Consider a monopole at the center of a square ground plane whose sides are l=2 long.
The monopole is to be represented using pulse basis functions and delta weighting functions.
The four sides of the ground plane are to be accounted for using wedge diffraction. Diffraction
by the four corners is to be ignored. Derive the necessary equations that would enable you to
calculate Zg

mn in (16-132).
16.13-2 Derive (16-138).
16.13-3 For the problem in Fig. 16-42, show all possible ray paths that do not involve double
(or higher-order) diffractions.
16.13-4 A dipole of length ‘ is located a distance d from the surface of an infinitely long
circular cylinder of radius a. The dipole is parallel to the axis of the cylinder. Show how you
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would account for the presence of the cylinder if only the dipole is represented by the method
of moments.
16.14-1 Using physical optics, show that the radar cross section of a flat rectangular plate at
normal incidence is σ ¼ 4πðA2=l2Þ where A is the area of the plate.
16.14-2 Eq. (16-156) can be converted to a different and often useful form by noting
that ðẑ � n̂Þ ds is the projection of the element of surface area ds onto the xy-plane.
Thus, ðẑ � n̂Þ ds ¼ dsz ¼ ðdsz=d‘Þ d‘ where dsz is the projection of ds onto the xy-plane. Then
(16-156) becomes

σ ¼ 4π
l2

Z L

0

e�j2β‘ dsz

d‘
d‘

� �

where ‘ is the distance from the reference plane to the surface. Use the above expression for
the radar cross section to derive the physical optics expression for the RCS of the sphere.
16.14-3 Show that the RCS of an infinite cone (as shown) is σ ¼ ðl2 tan4 αÞ=16π

Ei

Reference
plane

α (−z)

�

16.14-4 Show that the RCS of a square flat plate with edges parallel to the x- and y-axes, and
direction of incidence in the xz-plane, is

σ ¼ 4πa4

l2
sinðβa sin θÞ
βa sin θ

� �2
cos2 θ

where a is the length of one side. Compare the angular variation of this result with that of the
uniformly illuminated line source in Chap. 5.
16.14-5 Show that the RCS of a circular flat plae, or disk, in the xy-plane is

σ ¼ πa2

tan2 θ
J1

4πa sin θ
l

� �� �2
where a in the radius of the disk and J1ðxÞ the Bessel function of order one. Also show that at
θ ¼ 0�, the above expression reduces to σ ¼ ð4π=l2ÞA2 where A is the area of the disk [4].
16.14-6 Show that in Example 16-5, the dot product ðẑ � n̂Þ is the same for both the convex
and concave cases.
16.14-7 The radar cross section of a target depends on which of the following? (a) the
waveform of the radar; (b) the range to target; (c) the value of the incident field at the target
16.14-8 Show that RCS determined by the physical optics method contains no polarization
information.
16.14-9 Which of the following is true? The field 2n̂3Hi at the surface of a perfectly con-
ducting object is: (a) exact in all cases; (b) without polarization information; (c) the geo-
metrical optics surface field.
16.16-1 After writing

Ib ¼
Z N

b

f ðxÞejβγðxÞdx ¼ 1

jβ

Z N

b

f ðxÞ
γ0ðxÞ jβγ

0ðxÞejβγðxÞ dx

integrate by parts to obtain (16-185).
16.16-2 Show that
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I�a D
1

jβ
f ð�aÞ
γ0ð�aÞ e

jβγð�aÞ

16.16-3 Show that (16-183) follows from (16-180) and (16-181).
16.16-4 Interpret the discussion between (16-29) and (16-30) in terms of the concept of
stationary phase.
16.16-5 Using physical reasoning based on the concept of stationary phase, explain why the
monostatic axial incidence scattering by a parabolic surface is the same for both convex and
concave cases. (See Prob. 16.1-4.)

16.17-1 Show that
f

g

� �
in (12-202) can be expressed as

f

g

� �
¼ �1

2n
cot

πþ φ�

2n

� �
þ cot

π� φ�

2n

� �� �

 1

2n
cot

πþ φþ

2n

� �
þ cot

π� φþ

2n

� �� �

16.17-2 For the half-plane case in Fig. 16-14, analytically show that at the reflection and shadow
boundaries, the singularity in f is canceled by the singularity in fo making f 0 in (16-200)
continuous.
HINT: Identify which cotangent term in the solution of Prob. 16.5-1 that is singular at the
reflection boundary and which term is singular at the shadow boundary. Cancel these
terms with the singularity in fo by letting φþ ¼ π
 δ at the GO reflection boundary and
by letting φ� ¼ π
 δ at the GO shadow boundary.
16.17-3 For the half-plane case in Fig. 16-14a show by numerical computation that f 0 in
(12-202) is continuous across the reflection and shadow boundaries. Also compute separately f
and fo at these boundaries. Use the geometry in Fig. 16-14.
16.17-4 Evaluate Io in (16-212).
16.17-5 Show that (16-196) substituted into (16-197) leads to (16-194).
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Appendix A

Frequency Bands

A.1 RADIO FREQUENCY BANDS

Frequency

3 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

1 mm1 cm10 cm1 m10 m

Wavelength

100 m1 km10 km

30 kHz 300 kHz

100 km
VLF LF MF HF VHF UHF SHF EHF

A.2 TELEVISION CHANNEL FREQUENCIES (IN NORTH AMERICA)

VHF

Channel
No.

Frequency
Range
(MHz)

Channel
No.

Frequency
Range
(MHz)

2 54–60 8 180–186
3 60–66 9 186–192
4 66–72 10 192–198
5 76–82 11 198–204
6 82–88 12 204–210
7 174–180 13 210–216

UHF

Channel No.
Frequency

Range (MHz) Channel No.
Frequency

Range (MHz) Channel No.
Frequency

Range (MHz)

14 470–476 23 524–530 32 578–584
15 476–482 24 530–536 33 584–590
16 482–488 25 536–542 34 590–596
17 488–494 26 542–548 35 596–602
18 494–500 27 548–554 36 602–608
19 500–506 28 554–560 37 608–614
20 506–512 29 560–566 38 614–620
21 512–518 30 566–572 39 620–626
22 518–524 31 572–578 40 626–632

(Continued )
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Channel No.
Frequency

Range (MHz) Channel No.
Frequency

Range (MHz)

41 632–638 47 668–674
42 638–644 48 674–680
43 644–650 49 680–686
44 650–656 50 686–692
45 656–662 51 692–698
46 662–668

Note: The carrier frequency for the video portion is the lower frequency
plus 1.25MHz. The audio carrier frequency is the upper frequencyminus
0.25MHz. All channels have a 6-MHz bandwidth. For example, the
Channel 2 video carrier is at 55.25MHz and the audio carrier is at
59.75MHz.

A.3 CELLULAR TELEPHONE BANDS

Band Name (s) Transmit/Receive (MHz) Region: Technology

Cellular 824–849/869–894 U.S.: 2G, 3G, LTE
(GSM 850)

GSM 900 880–915/925–960 non-U.S.: 2G, 3G
(WCDMA)

DCS 1710–1785/1805–1880 non-U.S.: 2G
(GSM 1800)

DCS 1900 1710–1755/2110–2155 U.S.: 3G, LTE

PCS 1900 1850–1910/1930–1990 Americas: 2G; U.S.: 2G, 3G, LTE
(GSM 1900)

UMTS 1910–1980/2110–2170 Europe, Asia: 3G, LTE
(WCDMA)

A.4 RADAR BANDS

IEEE Band Designations

HF 3–30 MHz
VHF 30–300 MHz
UHF 300–1000 MHz
L-band 1–2 GHz
S-band 2–4 GHz
C-band 4–8 GHz
X-band 8–12 GHz
Ku-band 12–18 GHz
K-band 18–27 GHz
Ka-band 27–40 GHz
V-band 40–75 GHz
W-band 75–110 GHz
Millimeter 110–300 GHz

UHF (Continued)
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Appendix B

Material Data and
Constants

B.1 CONDUCTIVITIES OF GOOD CONDUCTORS

Conductor Conductivity (S/m)

Silicon steel 2 3 106

Brass 1.1 3 107

Aluminum 3.5 3 107

Gold 4.1 3 107

Copper 5.8 3 107

Silver 6.1 3 107

B.2 WIRE DATA

Wire Size
AWG

Diameter in
mm (in.)

Single Copper
Wire Continuous

Duty Current Capacity (A)

Copper Wire dc
Resistance per Unit
Length (Ω/100 m)

8 3.264 (0.1285) 73 0.1952
9 2.906 (0.1144) — 0.2462
10 2.588 (0.1019) 55 0.3103
11 2.305 (0.0907) — 0.3914
12 2.053 (0.0808) 41 0.4935
13 1.828 (0.0720) — 0.6224
14 1.628 (0.0641) 32 0.7849
16 1.291 (0.0508) 22 1.248
18 1.024 (0.0403) 16 1.984
20 0.812 (0.0320) 11 3.155
22 0.644 (0.0253) — 5.017
24 0.511 (0.0201) — 7.98
26 0.405 (0.0159) — 12.69
28 0.321 (0.0129) — 20.17
30 0.255 (0.0100) — 32.06
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B.3 DIELECTRIC CONSTANT: PERMITTIVITY OF FREE SPACE

εo ¼ 8:8543 10212 F=m � 1029=36π F=m

B.4 PERMEABILITY OF FREE SPACE

μo ¼ 1:25663 1026 H=m � 4π3 1027 H=m

B.5 VELOCITY OF LIGHT IN FREE SPACE

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
μoεo

p ¼ 2:9979253 108 m=s

B.6 INTRINSIC IMPEDANCE OF FREE SPACE

ηo ¼
ffiffiffiffiffi
μo

εo

r
¼ 376:73 Ω � 120π Ω

B.7 PROPERTIES OF SOME COMMON DIELECTRICS

Dielectric Permittivity at 10 GHz

Type Name εr0 tan δ

Foam Styrofoam 1.03 0.00015
Plastic Teflon (PTFE) 2.08 0.00037
Plastic Duroid 5870 2.33 0.0012
Plastic Polystyrene 2.54 0.00043
Plastic Duroid 6006 6.15 0.0027
Ceramic Aluminum Oxide 8.79 0.0018

Note: The loss in dielectrics is represented using complex relative
permittivity: εr5 εr0 2 jεrv5 εr0 (12 j tan δ), where tan δ is called
loss tangent.
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Appendix C

Coordinate Systems
and Vectors

C.1 THE COORDINATE SYSTEMS AND UNIT VECTORS

C.1.1 The Coordinate Systems

y

P(x, y, z)

y

x

Rectangular Coordinates Cylindrical Coordinates

Spherical Coordinates

x

z

z

ẑ

ŷ
x̂

y

P(ρ, φ, z)

z

z

x

ẑ

ρ

ρ

ˆ

φ
φ

ˆ

φ

y

z

θ θ
r

r̂

ˆ

φ̂

P(r, θ, φ)

x
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C.1.2 Unit Vector Representations

x̂ ¼ r̂ sin θ cosφ1 θ̂ cos θ cosφ2 f̂ sinφ ðC-1Þ

ŷ ¼ r̂ sin θ sinφ1 θ̂ cos θ cosφ1 f̂ cosφ ðC-2Þ

ẑ ¼ r̂ cos θ2 θ̂ sin θ ðC-3Þ

r̂ ¼ x̂ sin θ cosφ1 ŷ sin θ sinφ1 ẑ cos θ ðC-4Þ

θ̂ ¼ x̂ cos θ cosφ1 ŷ cos θ sinφ2 ẑ sin θ ðC-5Þ

f̂ ¼2x̂ sinφ1 ŷ cosφ ðC-6Þ

C.2 VECTOR IDENTITIES

A3 ðB3CÞ ¼ ðA � CÞB2 ðA � BÞC ðC-7Þ

ðA3BÞ3C ¼ ðC � AÞB2 ðC � BÞA ðC-8Þ

∇ � ð∇3GÞ ¼ 0 ðC-9Þ

∇3∇g ¼ 0 ðC-10Þ

∇ � ∇g ¼ ∇2g ðC-11Þ

∇ðf 1 gÞ ¼ ∇f 1∇g ðC-12Þ

∇ � ðF1GÞ ¼ ∇ � F1∇ � G ðC-13Þ

∇ðfgÞ ¼ g∇f 1 f∇g ðC-14Þ

∇ � ðfGÞ ¼ G � ð∇f Þ1 f ð∇ � GÞ ðC-15Þ

∇3 ðfGÞ ¼ ð∇f Þ3G1 f ð∇3GÞ ðC-16Þ

∇3 ð∇3GÞ ¼ ∇ð∇ � GÞ2∇2G ðC-17Þ

∇2G ¼ x̂r2Gx 1 ŷr2Gy 1 ẑr2Gz ðC-18Þ

∇ � ðF3GÞ ¼ G � ð∇3FÞ2F � ð∇3GÞ ðC-19Þ
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F � ðG3HÞ ¼ G � ðH3FÞ ¼ H � ðF3GÞ ðC-20Þ

∇3 ðF3GÞ ¼ Fð∇ � GÞ2Gð∇ � FÞ1 ðG � ∇ÞF2 ðF � ∇ÞG ðC-21Þ

∇ðF � GÞ ¼ ðF � ∇ÞG1 ðG � ∇ÞF1F3 ð∇3GÞ1G3 ð∇3FÞ ðC-22Þ
ZZZ
v

∇ � G dv ¼
ZZ
�
s

G � ds divergence theorem ðC-23Þ

ZZZ
s

ð∇3GÞ � ds ¼
I
l

G � dl Stokes’ theorem ðC-24Þ

C.3 VECTOR DIFFERENTIAL OPERATORS

C.3.1 Rectangular Coordinates

∇g ¼ x̂
@g

@x
1 ŷ

@g

@y
1 ẑ

@g

@z
ðC-25Þ

∇ � G ¼ @Gx

@x
1

@Gy

@y
1

@Gz

@z
ðC-26Þ

∇3G ¼ x̂
@Gz

@y
2

@Gy

@z

� �
1 ŷ

@Gx

@z
2

@Gz

@x

� �
1 ẑ

@Gy

@x
2

@Gx

@y

� �
ðC-27Þ

∇2g ¼ @2g

@x2
1

@2g

@y2
1

@2g

@z2
ðC-28Þ

C.3.2 Cylindrical Coordinates

∇g ¼ ρ̂
@g

@ρ
1 f̂

1

ρ
@g

@φ
1 ẑ

@g

@z
ðC-29Þ

∇ � G ¼ 1

ρ
@

@ρ
ðρGρÞ1 1

ρ
@Gφ

@φ
1

@Gz

@z
ðC-30Þ

∇3G ¼ ρ̂
1

ρ
@Gz

@φ
2

@Gφ

@z

� �
1 f̂

@Gρ

@z
2

@Gz

@ρ

� �
1 ẑ

1

ρ
@

@ρ
ðρGφÞ2 @Gρ

@φ

� �
ðC-31Þ

∇2g ¼ 1

ρ
@

@ρ
ρ
@g

@ρ

� �
1

1

ρ2
@2g

@φ2
1

@2g

@z2
ðC-32Þ
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C.3.3 Spherical Coordinates

∇g ¼ r̂
@g

@r
1 θ̂

1

r

@g

@θ
1 f̂

1

r sin θ
@g

@φ
ðC-33Þ

∇ � G ¼ 1

r2
@

@r
ðr2GrÞ1 1

r sin θ
@

@θ
ðGθ sin θÞ1 1

r sin θ
@Gφ

@φ
ðC-34Þ

∇3G¼ r̂
1

r sin θ
@

@θ
ðGφ sin θÞ2 @Gθ

@φ

2
4

3
5

1 θ̂
1

r

1

sin θ
@Gr

@φ
2

@

@r
ðrGφÞ

2
4

3
5

1 f̂
1

r

@

@r
ðrGθÞ2 @Gr

@θ

2
4

3
5

ðC-35Þ

∇2g ¼ 1

r2
@

@r
r2
@g

@r

� �
1

1

r2 sin θ
@

@θ
sin θ

@g

@θ

� �
1

1

r2 sin 2 θ
@2g

@φ2
ðC-36Þ
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Appendix D

Trigonometric Relations

sinðα � βÞ ¼ sinα cos β � cosα sin β ðD-1Þ

cosðα � βÞ ¼ cosα cos β � sinα sin β ðD-2Þ

sin
π
2
� α

� �
¼ cosα ðD-3Þ

cos
π
2
� α

� �
¼ � sinα ðD-4Þ

sinα cos β¼ 1
2
sin ðα1βÞ1 sinðα2βÞ½ � ðD-5Þ

cosα sinβ¼ 1
2
sin ðα1 βÞ1 sinðα2 βÞ½ � ðD-6Þ

cosα cos β ¼ 1
2
cos ðα1βÞ1 cosðα2βÞ½ � ðD-7Þ

sinα sin β ¼ 2 1
2
cos ðα1βÞ2 cosðα2βÞ½ � ðD-8Þ

sinα ¼ 2 sin
α
2
cos

α
2

ðD-9Þ

sin 2α ¼ 2 sinα cosα ðD-10Þ

cosα ¼ 2 cos2
α
2
2 1 ¼ 12 2 sin2

α
2

ðD-11Þ

cos 2 α ¼ 2 cos2α2 1 ¼ cos 2α2 sin2α ¼ 12 2 sin2α ðD-12Þ

cos 3α ¼ 4 cos3α2 3 cosα ðD-13Þ

cos 4α ¼ 8 cos4α2 8 cos 2 α1 1 ðD-14Þ
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cos mα ¼ 2m2 1cos m α2
m

1!
2m2 3 cos m2 2α

1
mðm2 3Þ

2!
2m2 5 cos m2 4 α1 � � �

ðD-15Þ

1 ¼ sin 2α1 cos 2 α ðD-16Þ

sec2α ¼ 1

cos 2α
¼ 11 tan2 α ðD-17Þ

sinα ¼ α2
α3

3!
1

α5

5!
2

α7

7!
1 � � � ðD-18Þ

cosα ¼ 12
α2

2!
1

α4

4!
2

α6

6!
1 � � � ðD-19Þ

e� jα ¼ cosα � j sinα ðD-20Þ

tanα ¼ sinα
cosα

ðD-21Þ

sinα ¼ ejα 2 e2jα

2j
ðD-22Þ

cosα ¼ ejα 1 e2jα

2
ðD-23Þ

sin21α ¼ α1
α3

2 U 3
1

3α5

2 U 4 U 5
1 � � � ðD-24Þ

cos21α ¼ π
2
2 α1

α3

2 U 3
1

3α5

2 U 4 U 5
1 � � �

� �
ðD-25Þ
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Appendix E

Hyperbolic Relations

sinh α ¼ eα 2 e2α

2
¼ α1

α3

3!
1

α5

5!
1

α7

7!
1 ��� ðE-1Þ

cosh α ¼ eα 1 e2α

2
¼ 11

α2

2!
1

α4

4!
1

α6

6!
1 ��� ðE-2Þ

tanh α ¼ sinh α
cosh α

¼ 1

coth α
ðE-3Þ

sinhðα6 jβÞ ¼ sinh α cos β 6 j cosh α sin β ðE-4Þ

coshðα6 jβÞ ¼ cosh α cos β 6 j sinh α sin β ðE-5Þ

sinhðjαÞ ¼ j sinα ¼ e jα 2 e2jα

2
ðE-6Þ

coshðjαÞ ¼ cos α ¼ e jα 1 e2jα

2
ðE-7Þ
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Appendix F

Mathematical Relations

F.1 DIRAC DELTA FUNCTION

The Dirac delta function (or impulse function) is zero everywhere except when the
argument is zero

δðx2 xoÞ ¼ 0 for x 6¼ xo ðF-1Þ

For the zero argument case, the function is singular but in a special way: The area is unity,
that is,

Z N

2N
δðx2 xoÞdx ¼ 1 ðF-2Þ

Another useful property of the Dirac delta function follows:

Z N

2N
gðxÞδðx2 xoÞdx ¼ gðxoÞ ðF-3Þ

F.2 BINOMIAL THEOREM

ða1 bÞn¼ an 1 nan2 1b1
nðn2 1Þ

2!
an2 2b2

1
nðn2 1Þðn2 2Þ

3!
an2 3b3 1 � � �

ðF-4Þ

ð16 xÞn� 16 nx for x � 1 ðF-5Þ

F.3 BESSEL FUNCTIONS

JoðxÞ ¼ 1

2π

Z 2π

0

ejx cosα dα ðF-6Þ
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JnðxÞ ¼ j2n

2π

Z 2π

0

ejx cos α cos ðnαÞ dα

¼
XN
m¼0

ð21Þmx2m1n

m!ðm1 nÞ!22m1n

ðF-7Þ

JnðxÞ¼ 2ðn2 1Þ
x

Jn2 1ðxÞ2 Jn2 2ðxÞ ðF-8Þ

Z
xn1 1JnðxÞdx ¼ xn1 1Jn1 1ðxÞ ðF-9Þ

Z 1

0

ð12 x2ÞnxJ0ðbxÞ dx ¼ 2nn!

bn1 1
Jn11ðbÞ ðF-10Þ

F.4 SOME USEFUL INTEGRALS

Z
sin ða1 bxÞecx dx ¼ ecx

b2 1 c2
c sin ða1 bxÞ2 b cos ða1 bxÞ½ � ðF-11Þ

Z N

2N

sin 2x

x2
dx ¼ π ðF-12Þ

SiðxÞ ¼
Z x

0

sin τ
τ

dτ sine integral ðF-13Þ

CiðxÞ ¼ 2

Z N

x

cos τ
τ

dτ cosine integral ðF-14Þ

CinðxÞ ¼
Z x

0

12 cos τ
τ

dτ ðF-15Þ

CinðxÞ ¼ 0:57721 lnðxÞ2CiðxÞ ðF-16Þ

CðxÞ ¼
Z x

0

cos
π
2
τ2

0
@

1
Adτ; Cð2xÞ ¼ 2CðxÞ

SðxÞ ¼
Z x

0

sin
π
2
τ2

0
@

1
Adτ; Sð2xÞ ¼ 2SðxÞ

9>>>>>>=
>>>>>>;

Fresnel integrals

ðF-17aÞ

ðF-17bÞ
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Appendix G

Computing Tools for
Antennas

There are several well-developed commercial math applications packages, such as
MATLAB, Mathcad, and Mathematica. Students and practicing engineers regularly use at
least one of these computing tools. Any of these packages can be used to code formulas
presented in this book to obtain numerical and graphical and even symbolic analytical results.
This book does not present code statement listings. This is because there is no one standard
package in use, and because there is learning value in developing one’s own codes.

The Preface addressed the topic of Simulations as a Learning Aid. Simulation of
antennas is now common, and students should become familiar with at least one package
while taking a course from this text. Several chapter-end problems include simulation
aspects. The area of simulation packages is very dynamic. New packages and upgrades
are introduced frequently, and older packages become unsupported. Thus, no one package
is recommended. Section H.10 lists several books focused on topics in computational
methods, and some sources include codes. Following is a list of several suggested low-
cost simulation computational packages. Students should acquire and use at least one wire
antenna package. Most have excellent user interfaces that handle three-dimensional
geometries and also have well-organized outputs.

G.1 WIRE ANTENNA SIMULATION PACKAGES

G.1.1 NEC Family

NEC (Numerical Electromagnetics Code) is the first large-problem-capablemomentmethod
code. The following website has links to several NEC-based codes: www.nec2.org.

G.1.2 EZNEC Family

EZNEC has packages of various capability levels based on the NEC moment method
algorithm, but all are affordable. There is a free demonstration version with limited
capability. EZNEC is an excellent choice for beginners. See [H.3: Huang and Boyle, Sec.
6.3] for examples using EZNEC. Go to: www.eznec.com.

G.1.3 GRADMAX

GRADMAX is a totally online interactive wire code that does not require purchase or
download to use. It uses the Java applet technology and runs directly from a web browser
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in any common operating system. It is moment method based and includes optimization
features. See the following reference for details: R. Ravelo and M. Terada, “Analysis and
Optimization of Wire Antennas over the Internet,” IEEE Ant. & Prop. Mag., Vol. 52,
pp. 188–193, Feb. 2010. Go to: www.ene.unb.br/Bterada/antennas.

G.1.4 WIRE

WIRE is a free moment method based code. WIRE permits the user to specify arbitrary
arrangements of straight wires of finite size, with or without lumped loads, and with
arbitrary connectivity. Both antenna and scattering problems can be solved. Many antenna
configurations can be modeled, including arrays. The method of moments solution
approach is used, so full mutual coupling is accounted for. The following are available
outputs: values for current distribution on the wires, input impedance, radiation patterns,
and gain; and plots of current distributions and patterns. Go to: https://filebox.vt.edu
/users/wadavis/.

G.2 PARABOLIC REFLECTOR ANTENNA SIMULATION PACKAGES

G.2.1 WebPRAC—Web-based Parabolic Reflector Antenna Code

WebPRAC is a user-friendly program for analysis of reflector antennas that is run
interactively online. No purchase or download is required. It uses the Java applet tech-
nology and runs directly from a web browser in any common operating system. The main
reflector geometry, including offset reflectors, as well as the desired illumination is
specified by the user. The program returns the required feed pattern, gain, and radiation
patterns, including cross-polarization patterns. See the following reference for details:
R. Ravelo, M. Terada, and W. Stutzman, “Analysis of Reflector Antennas through the
World Wide Web,” IEEE Ant. & Prop. Mag., Vol. 49, pp. 113–116, April 2007. Go to:
www.ene.unb.br/Bterada/antennas.

G.2.2 GRASP—General Reflector and Antenna Farm Analysis Program

GRASP is a full-capability reflector antenna code. A free student version is available for
download. Go to: www.ticra.com.

G.3 WEB SITES WITH ANTENNA CALCULATION AND
MODELING TOOLS

� Dipole and array pattern calculation and plotting program.
Go to: www.amanogawa.com.

� ANCAN—Analysis and Characterization of Antenna Arrays.
Go to: www.tsc.uniovi.es/Bflasheras/ancan.html.

� Inexpensive hardware modeling approaches.
Go to: www.freeantenans.com.
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Appendix H

Book List

H.1 INTRODUCTION

This appendix lists nearly all antenna books ever written in English. The list is organized
by technical topic, and within each topic then ordered alphabetically by the lead author’s
last name. An article with historical notes and useful information on locating the books is
available.1

H.2 ANTENNA DEFINITIONS

The IEEE standard listed here is the major reference for antenna terms and their meaning.
However, a reader cannot assume that a term found in books and articles follows the IEEE
standard and should look in the book or article for the author’s definition.

IEEE Standard Definitions of Terms for Antennas:
IEEE Standard 145-1993, IEEE, 28 pp., 1993.

H.3 FUNDAMENTAL BOOKS ON ANTENNAS

Fundamental books are textbooks or books covering several antenna topics. These
references, for the most part, have consistent notation and have connectivity between
topics.

J. Aharoni, Antennae, Oxford, 265 pp., 1946.
C. A. Balanis, Antenna Theory: Analysis and Design, 1st ed., Harper & Row, 790 pp.,

1982; 2nd ed., Wiley, 941 pp., 1997; 3rd ed., Wiley, 1117 pp., 2005.
S. Best, Introduction to Antennas, SciTech Pub., 3 CDs, 2004.
Lamont Blake, Antennas, 1st ed., Wiley, 415 pp., 1966; 2nd ed., Artech House, 461 pp.,

1984; 3rd ed., L. Blake and M. W. Long, Antennas: Fundamentals, Design, and
Measurements, Scitech Pub., 650 pp., 2009.

G. A. Briggs and R. S. Roberts, Aerial Handbook, Rank Wharfedale, 175 pp., 1964.
(revised, 1968)

R. A. Burberry, VHFand UHFAntennas, IEE Electromagnetic Waves Series No. 35-Peter
Peregrinus, 301 pp., 1992.

1W. L. Stutzman, “Bibliography for Antennas: A List of Every English-Language Book Ever Written,”
IEEE Antennas & Propagation Magazine, Vol. 50, pp. 128–143, Aug. 2008. An updated version of the
article is posted at http://www.wiley.com/college/stutzman/std.htm.
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R. Chatterjee, Antenna Theory and Practice, 1st ed., Wiley, 314 pp., 1988; 2nd ed., New
Age International Ltd., 394 pp., 1998.

C. Christodoulou and P. Wahid, Fundamentals of Antennas: Concepts and Applications,
SPIE Press, 94 pp., 2001.

R. E. Collin and F. J. Zucker, Eds., Antenna Theory, McGraw-Hill, Part 1, 666 pp., 1969;
Part 2, 683 pp., 1969.

F. R. Connor, Antennas, 1st ed., Edward Arnold, 99 pp., 1972; 2nd ed., 125 pp., 1989.
L. M. Dezettel, Introduction to Antennas, Radio Shack, 127 pp., 1972.
S. Drabowitch, A. Papiernik, and J. Encianas, Modern Antennas, 1st ed., Chapman &

Hall, 631 pp., 1998; 2nd ed. (with H. Griffiths), Springer, 689 pp., 2005.
R. S. Elliott, Antenna Theory and Design, 1st ed., Prentice-Hall, 594 pp., 1981. Revised

ed., Wiley–IEEE Press, 594 pp., 2003.
A. Z. Fradin, Microwave Antennas, Pergamon Press, 668 pp., 1961.
D. W. Fry and F. K. Goward, Aerials for Centimetre Wave-Lengths, Cambridge University

Press, 172 pp., 1950.
V. Fusco, Foundations of Antenna Theory and Techniques, Prentice-Hall, 230 pp., 2005.
W. Gosling, Radio Antennas and Propagation, Newnes (Elsevier), 192 pp., 1998.
Heinrich Hertz, Electric Waves, MacMillan Company, 279 pp., 1893. Comment: This is

the first book on antennas.
Y. Huang and K. Boyle, Antennas: From Theory to Practice, Wiley, 378 pp., 2008.
P.-S. Kildal, Foundations of Antennas: A Unified Approach, Studentlitteratur, 394 pp.,

2000.
G. J. King, The Practical Aerial Handbook, 1st ed., Odhams, 224 pp., 1967; 2nd ed.,

Newnes-Butterworth, 232 pp., 1970.
R. W. P. King and C. W. Harrison, Antennas and Waves: A Modern Approach, MIT Press,

778 pp., 1969.
J. D. Kraus, Antennas, 1st ed., McGraw-Hill, 553 pp., 1950; 2nd ed., McGraw-Hill, 892

pp., 1988; J. Kraus and R. Marhefka, Antennas for All Applications, 3rd ed., McGraw-
Hill, 938 pp., 2002.

E. A. Laport, Radio Antenna Engineering, McGraw-Hill, 563 pp., 1952.
Kai Fong Lee, Principles of Antenna Theory, Wiley, 324 pp., 1984.
T .S. M. Maclean, Principles of Antennas—Wire and Aperture, Cambridge Press, 360 pp.,

1986.
Thomas A. Milligan, Modern Antenna Design, 1st ed., McGraw-Hill, 408 pp., 1985; 2nd

ed., Wiley–IEEE Press, 614 pp., 2005.
George Monser, Antenna Design: A Practical Guide, McGraw-Hill, 163 pp., 1996.
E. B. Moullin, Radio Aerials, Oxford U. Press, 514 pp., 1949.
H. Page, Principles of Aerial Design, Van Nostrand, 172 pp., 1966.
E. Roubine and J. C. Bolomey, Antennas, Volume 1: General Principles, Hemisphere, 218

pp., 1987. S. Drabowitch and C. Ancona, Antennas, Volume 2: Applications, Hemi-
sphere, 305 pp., 1988.

S. A. Schelkunoff, Advanced Antenna Theory, Wiley, 216 pp., 1952.
S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice, Wiley, 639 pp., 1952.
S. Silver, Editor, Microwave Antenna Theory and Design, MIT Radiation Laboratory

Series Vol. 12, McGraw-Hill,, 623 pp., 1949.
Carl E. Smith, Theory and Design of Directional Antenna Systems, Cleveland Inst. of

Radio Elec., 1946.
Martin S. Smith, Introduction to Antennas, Springer-Verlag, 128 pp., 1988.
Robert A. Smith, Aerials for Metre and Centimetre Wave-Lengths, Cambridge U. Press,

218 pp., 1949.
Woodrow Smith, Antenna Manual, Editors and Engineers, 301 pp., 1948.
W. L. Stutzman and G. A Thiele, Antenna Theory and Design, 1st ed., Wiley, 598 pp.,

1981; 2nd ed., Wiley, 648 pp., 1998; 3rd ed., Wiley, 820 pp., 2012.
L. Thourel, The Antenna (Translation of Les Antennes, 1956), Wiley, 407 pp., 1960.

bapp08 26 March 2012; 8:30:25

Appendix H Book List 797



W. H. Watson, The Physical Principles of Wave Guide Transmission and Antenna
Systems, Oxford U. Press, 208 pp., 1947.

W. L. Weeks, Antenna Engineering, McGraw-Hill, 370 pp., 1968.
H. PaulWilliams,AntennaTheory andDesign, Vol. 1:Foundations ofAntennaTheory; Vol. 2:

The Electrical Design of Antennae, 1st ed., Pitman, 1950; 2nd ed., Pitman, 795 pp., 1966.
E. Wolff, Antenna Analysis, Wiley, 514 pp., 1966.

H.4 BOOKS ON ANTENNAS WITH PROPAGATION

S. Cloude, An Introduction to Electromagnetic Wave Propagation & Antennas, Springer,
176 pp., 1996.

R. E. Collin, Antennas and Radiowave Propagation, McGraw-Hill, 508 pp., 1985.
John Griffiths, Radio Wave Propagation and Antennas: An Introduction, Prentice-Hall,

384 pp., 1987.
A. Harish and M. Sachidananda, Antennas and Wave Propagation, Oxford, 402 pp., 2007.
E. Jordan, Electromagnetic Waves and Radiating Systems, 1st ed., Prentice-Hall, 1950;

E. Jordan and K. Balmain, 2nd ed., Prentice-Hall, 753 pp., 1968.
G. Raju, Antennas and Wave Propagation, Akhil Books, 402 pp., 2007.
S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, 1st ed.,

Wiley, 409 pp., 1999; 2nd ed. (with A. Aragon-Zavala), Wiley, 524 pp., 2007.
K. Siwiak, Radiowave Propagation and Antennas for Personal Communication, 1st ed.,

Artech House, 320 pp., 1995; 2nd ed., Artech House, 418 pp., 1998; 3rd ed., (with Y.
Bahreini), Artech House, 464 pp., 2007.

W. Sinnema, Electronic Transmission Technology: Lines, Waves, and Antennas, 1st ed.,
Prentice-Hall, 264 pp., 1979; 2nd ed., Prentice-Hall, 400 pp., 1988.

Albert Smith, Radio Frequency Principles and Applications: The Generation, Propaga-
tion, and Reception of Signals and Noise, Wiley, 217 pp., 1998.

R. Vaughan and J. Bach Anderson, Channels, Propagation, and Antennas for Mobile
Communications, IET, 753 pp., 2003.

J. Wait, Introduction to Antennas and Propagation, Peregrinus, 256 pp., 1986.
G. Welch, Wave Propagation and Antennas, Van Nostrand, 257 pp., 1958.

H.5 BOOKS ON ANTENNAS WITH OTHER TOPICS

R. G. Brown, R. A. Sharpe, and W. L. Hughes, Lines, Waves, and Antennas: The
Transmission of Electrical Energy, 1st ed., Ronald Press, 279 pp., 1961; 2nd ed., 471
pp., 1973.

R. W. P. King, H. R. Mimno, and A. H. Wing, Transmission Lines, Antennas and
Waveguides, McGraw-Hill, 347 pp., 1945.

J. A. Kuecken, Antennas and Transmission Lines, Howard Sams, 320 pp., 1969.
H. Mott, Antennas for Radar and Communications: A Polarimetric Approach, Wiley, 521

pp., 1992.
S. Roman, Transmission Lines and Antennas, Holt, Rinehart, Winston, 146 pp.,1969.
B. Rulf and G. Robertshaw, Understanding Antennas for Radar, Communications, and

Avionics, Van Nostrand Reinhold, 335 pp.,1987.
K. Warnick and P. Russer, Problem Solving in Electromagnetics, Microwave Circuits, and

Antenna Design in Communication Engineering, 2nd ed., Artech House, 688 pp., 2006.

H.6 HANDBOOKS AND GENERAL REFERENCE BOOKS ON
ANTENNAS

Antenna Engineering Handbook
1st ed.: H. Jasik, Ed., McGraw-Hill, 1021 pp., 1961.
2nd ed.: R. C. Johnson and H. Jasik, Eds., McGraw-Hill, 1408 pp., 1984.
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Chapters 24 through 41 of 2nd ed. also published as: R. C. Johnson and H. Jasik,
Eds., Antenna Applications Reference Guide, McGraw-Hill, 480 pp., 1987.

3rd ed.: R. C. Johnson, Ed., McGraw-Hill, 1392 pp., 1993.
4th ed.: J. Volakis, Ed., McGraw-Hill, 1900 pp., 2007.

C. Balanis, Ed., Modern Antenna Handbook, Wiley, 1650 pp., 2008.
R. Bansal, Ed., Handbook of Engineering Electromagnetics, Marcel Decker, 706 pp.,

2004.
J. Carr, Practical Antenna Handbook, 1st ed., TAB Books, 439 pp., 1989; 2nd ed., TAB

Books, 560 pp., 1994; 3rd ed., McGraw-Hill, 574 p., 1998; 4th ed., McGraw-Hill, 609
pp., 2001.

Kai Chang, Ed., Encyclopedia of RF and Microwave and Engineering, Wiley, 6 volumes,
5832 pp., 2005.

Kai Chang, Ed., Handbook of RF/Microwave Components and Engineering, Wiley, 1784
pp., 2003.

Kai Chang, Ed., Handbook of Microwave and Optical Components, Vol. 1: Microwave
Passive and Antenna Components, Wiley, 907 pp., 1989.

P. J. B. Clarricoats, Ed., Advanced Antenna Technology, Microwave Exhibitions and
Publications, 454 pp., 1981.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, 888 pp.,
1973.

L. C. Godara, Ed., Handbook of Antennas in Wireless Communications, CRC Press, 936
pp., 2002.

R. C. Hansen, Ed., Microwave Scanning Antennas, Academic Press, Vol. I–Apertures,
442 pp., 1964; Vol. II–Arrays, 400 pp., 1966; Vol. III–Frequency Scanning Arrays, 422
pp., 1966.

R. C. Johnson, Designer Notes for Microwave Antennas, Artech House, 195 pp., 1991.
E.C. Jordan, Ed., Symposium on Electromagnetic Theory and Antennas, Part 2, 669 pp.,

Pergamon Press, 1963.
Y. T. Lo and S. W. Lee, Eds., Antenna Handbook: Theory, Applications, and Design, Van

Nostrand Reinhold, 2284 pp., 1988.
A. W. Rudge, K. Milne, A. D. Olver, and P. Knight, Eds., The Handbook of Antenna

Design, Peregrinus, Vol. I, 708 pp., 1981 and Vol. II, 945 pp., 1983.
B. L. Smith and M. H. Carpentier, Eds., The Microwave Engineering Handbook, Vol. 2:

Microwave Circuits, Antennas and Propagation, Van Nostrand Reinhold, 1993.

H.7 BOOKS ON ANTENNA MEASUREMENTS

H. Arai, Measurement of Mobile Antenna Systems, Artech House, 214 pp., 2001.
G. E. Evans, Antenna Measurement Techniques, Artech House, 229 pp., 1990.
S. Gregson, J. McCormick, and C. Panini, Principles of Planar Near-Field Antenna

Measurements, IET, 424 pp., 2007.
J. E. Hansen, Ed., Spherical Near-Field Antenna Measurements, IET, 387 pp., 1988.
T. B. Hansen and A. D. Yaghijian, Plane-Wave Theory of Time-Domain Fields: Near-

Field Scanning Applications, IEEE Press, 376 pp., 1999.
L. H. Hemming, Electromagnetic Anechoic Chambers: A Fundamental Design and

Specification Guide, Wiley, 220 pp., 2002.
J. S. Hollis, T. J. Lyon, and L. Clayton, Eds., Microwave Antenna Measurements,

Scientific-Atlanta, 604 pp., 1970.
IEEE Standard Test Procedures for Antennas, IEEE Standard 149-1979, IEEE, 143 pp.,

1979.
D. Kerns, Plane-Wave Scattering-Matrix Theory of Antennas and Antenna-Antenna

Interactions, U.S. Government Printing Office, 162 pp., 1981.
A. D. Kuz’min and A. E. Solmenovich, Radio-Astronomical Methods of Antenna Mea-

surement, Academic Press, 182 pp., 1966.
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E. Skomal and A. A. Smith, Measuring the Radio Frequency Environment, Van Nostrand
Reinhold, Chapter 6, “Antennas,” 45 pp., 1985.

Dan Slater, Near-Field Antenna Measurements, Artech House, 310 pp., 1991.

H.8 BOOKS ON SPECIFIC ANTENNA TOPICS

H.8.1 Wire Antennas

A. Banos, Dipole Radiation in the Presence of a Conducting Half-Space, Pergamon
Press, 245 pp., 1966.

R. M. Bevensee, Handbook of Conical Antennas and Scatterers, Gordon and Breach
Science, 173 pp., 1973.

M. L. Burrows, ELF Communications Antennas, Peregrinus, 245 pp., 1978.
J. Carr, Antenna Toolkit, 1st ed., Elsevier, 215 pp., 1997; 2nd ed., Elsevier, 253 pp., 2001.
J. E. Cunningham, The Complete Broadcast Antenna Handbook: Design, Installation,

Operation & Maintenance, G/L Tab Books, 450 pp., 1977.
A. E. Harper, Rhombic Antenna Design, Van Nostrand, 111 pp., 1941.
R. W. P. King, Tables of Antenna Characteristics, IFI/Plenum, 393 pp., 1971.
R. W. P. King, The Theory of Linear Antennas, Harvard University Press, 944 pp., 1956.
F. M. Landstorfer and R.R. Sacher, Optimisation of Wire Antennas, Wiley, 174 pp., 1985.
D. B. Miron, Small Antenna Design, Elsevier, 283 pp., 2006.
L. A.Moxon,HFAntennas for All Locations, Radio Society of Great Britain, 260 pp., 1982.
B. D. Popovic, M. B. Dragovic, and A. R. Djordjevic, Analysis and Synthesis of Wire

Antennas, Research Studies Press, 304 pp., 1982.
B. D. Popovic and B. M. Kolundzija, Analysis of Metallic Antennas and Scatterers, IET-

Stevenage, 193 pp., 1994.
J. Raines, Folded Unipole Antennas: Theory and Applications, McGraw-Hill, 400 pp.,

2007.
J. R. Wait, Electromagnetic Radiation from Cylindrical Structures, Pergamon, 200 pp.,

1959.
M. M. Weiner, Monopole Antennas, Marcel Dekker, 740 pp., 2003.
M. M. Weiner, S. P. Cruze, C. C. Li, and W. J. Wilson, Monopole Elements on Circular

Ground Planes, Artech House, 306 pp., 1987.
S. Uda and Y. Mushiake, Yagi-Uda Antenna, Saski Printing and Publishing Co., 198 pp.,

1954.
American Radio Relay League (ARRL) publications on antennas:

The ARRL Antenna Book, frequent editions.
The ARRL Antenna Compendium, several volumes.
W. N. Caron, Antenna Impedance Matching, ARRL, 195 pp., 1989.
J. L. Lawson, Yagi-Antenna Design, ARRL, 196 pp., 1986.
D. B. Leeson, Physical Design of Yagi Antennas, ARRL, 340 pp., 1992.
M. Walter Maxwell, Reflections: Transmission Lines and Antennas, ARRL, 435

pp., 1990.

H.8.2 Arrays

N. Amitay, V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas,
Wiley, 443 pp., 1972.

A. K. Bhattacharyya, Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and
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W. L. Stutzman, Polarization in Electromagnetic Systems, Artech House, 239 pp., 1993.
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H.11.2 Radomes

D. Lynch, Introduction to RF Stealth, Scitech, 573 pp., 2004.
H. L. Hirsch and D. C. Grove, Practical Simulation of Radar Antennas and Radomes,

Artech House, 287 pp., 1987.
D. J. Kozakoff, Analysis of Radome Enclosed Antennas, Artech House, 265 pp., 1997.
J. D. Walton, Jr., Ed., Radome Engineering Handbook, Marcel Dekker, 592 pp., 1970.

H.11.3 Artificial Materials Useful in Antennas

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and
Microwave Applications, Wiley–IEEE Press, 352 pp., 2005.

F. Capolino, Artificial Materials Handbook, Vol. I: Theory and Phenomena of Artificial
Materials, 800 pp., 2008; Vol. II: Applications of Artificial Materials, 800 pp., 2008.

G. V. Eleftheriandes and K. G. Balmain, Negative-Refraction Metamaterials: Funda-
mental Principles and Applications, Wiley–IEEE Press, 440 pp., 2005.

N. Engheta, and R. Ziolkowski, Eds., Metamaterials: Physics and Engineering
Explorations, Wiley, 414 pp., 2006.

B. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, 440 pp., 2000.

H.11.4 Other

K. C. Gupta and P. S. Hall, Eds., Analysis and Design of Integrated Circuit-Antenna
Modules, Wiley, 440 pp., 1999.

S. E. Lipsky, Microwave Passive Direction Finding, Wiley, 298 pp., 1987.
T. Macnamara, Handbook of Antennas for EMC, Artech House, 328 pp., 1995.
T. Macnamara, Introduction to Antenna Placement and Installation, Wiley, 394 pp., 2010.
J. A. Navarro and Kai Chang, Integrated Active Antennas and Spatial Power Combining,

Wiley, 368 pp., 1996.
G. A. Savitskii, Calculations for Antenna Installations, Amerind Pub., 181 pp., 1982.
G. Wiskin, R. Manton, and J. Causebrook, Masts, Antennas, and Service Planning, Focal

Press, 233 pp., 1992.
B. S. Yarman, Design of Ultra Wideband Antenna Matching Networks, Springer, 310 pp.,

2008.

bapp08 26 March 2012; 8:30:30

Appendix H Book List 809



Index

Absolute gain, see Gain
Absorbing boundary condition (ABC), 670–674
Access point, see Wireless
Achievement efficiency, see Efficiency
Active aperture, see Array, fully distributed
Active-element pattern, 308–310
Active impedance, see Impedance
Active lens, 320
Active reflection coefficient, see Array
Active region of an antenna, 245, 247–248,

258, 260–261
Adaptive antenna, 550, 553–557
Adaptive array, see Array
Advanced Warning and Control System (AWACS),

325–326, 331
Aerial, 9
Aircraft antenna, 549
Airy function, 738
Alford loop antenna, see Loop antenna
Amplitude modulation (AM), 8
Anechoic chamber, 566–568
Angle diversity, see Antenna diversity
Antenna (or, Antennae), 9–11
Antenna analysis, 433
Antenna bandwidth, see Bandwidth
Antenna design, 433
Antenna diversity:
angle, 550–552
polarization, 550–552
spatial, 550–552

Antenna factor, 103, 124–125, 581
Antenna impedance, see Imepdance
Antenna loading, see Loading of an antenna
Antenna mode (in scattering), 632
Antenna pattern, see Pattern
Antenna range, 565–571:
compact, 566, 569–570
elevated, 566
far-field, 566
ground reflection, 566, 571
near field, 566, 570–571
slant, 566

Antenna scattering, seeRadar cross section of an antenna
Antenna synthesis, 433
Antenna (noise) temperature, 103–107, 575
Antenna under test (AUT), see Test antenna
Aperiodic-grid array, see Array
Aperture:
antenna, 19, 21, 344–427
blockage, 414

circular, 385–390
distribution, 357–358, 362–363, 366–367, 385,
388–389, 418

efficiency, see Efficiency
effective, 102–103, 108–109, 344, 356, 363
illumination, 399
plane distribution (APD), 418
receiving, 100–103
rectangular, 353–360
uniform, 353

Aperture coupled microstrip antenna feed, see
Microstrip antenna feed

Archimedean spiral antenna, see Spiral antenna
Array (or, array antenna), 89–97, 271–338,

625–631:
active, 271, 303–304, 310
active reflection coefficient, 318, 320
adaptive, 553–557
aperiodic-grid, 334
arbitrarily configured, 312
binomial, 299–301, 341
blindness, 317–319
circular, 311, 313, 626–629
collinear, 286–290, 297–298, 306–307, 336
conformal, 312, 314
connected, 334
current sheet, 334–336
directivity, 293–298, 301–303
Dolph-Chebyshev, see Linear array
element pattern, see Element pattern
elements for, 327–332
factor, 89, 272–278, 287
feeding of, see Feeds for arrays
fixed-phase, 327
Foursquare, 334–336
fragmented, 334, 336
fully distributed, see Array, active
grid, 311
interlaced (or, interleaved), 334, 543
linear, see Linear array
long slot, 334, 336
microstrip, see Microstrip array antenna
multibeam, 324
mulltidimensional, 311–314, 321,
626–630

multifunctional, 326, 549
multifunctional wideband, 336
ordinary endfire, see Linear array
parallel element, 290–292
parasitic, 166
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passive, 303
perimeter, 311
phased, 10, 271, 314–327
planar, 311–314, 626–630
reconfigurable, 334
retrodirective, 554–555
shared-aperture, 336
slot, 320, 322, 325–327, 329–331
superdirective, see Superdirective
Van Atta, see Array, retrodirective
wideband, 332–336
tightly coupled, 334
waveguide slot, 330–331
wideband array with variable element sizes
(WAVES), 334–335

variable element size, 334–335
Yagi-Uda, see Yagi-Uda antenna

Artificial magnetic conductor (AMC),
336, 498

Artificial material, 336, 498
Astigmatism, 424
Average active-element pattern, 309–310
Average element-gain pattern, 319, 328
Axial-mode helix antenna, see Helix antenna
Azimuth positioner, 568

Babinet’s principle, 244
Backfire antenna, 194–198
Back lobe, 49
Backscatter, 705, 740, 752, 758
Balanced feed for reflector antennas, see Feeds

for reflectors
Balanced feed for wire antennas, 175, 181
Balanced transmission line, 177
Balun, 181–186:

folded, 183–184
half-wave, 184–185
infinite, 247
sleeve, 182–183
tapered coax, 183–184, 249
tapered microstrip, 183–184

Bandwidth:
antenna, 18–19, 218–220
fractional, 218
instantaneous, 219
percent, 218
ratio, 218
three-dB, 496
tunable, 219
VSWR, 219, 496

Base station, 536
Base station antenna, 538–544
Beam broadening, 315
Beam deviation factor (BDF), 409
Beam efficiency, see Efficiency
Beamforming network (BFN); also see Feeds

for arrays:
Blass matrix, 324
Butler matrix, 323–324, 551
digital, 321–325

parasitic, 324
quasi-optical, 323
switched beam, 322–324

Beam scanning, see Scanning
Beam solid angle, 52
Beam switching, see Beamforming network
Beamwidth:
factor, 365
half-power, 47, 49
principal half-power, 49
beamwidth between first nulls,
47, 282–283

Bell, Alexander, 2–3
Bessel function, 386, 792–793
Beverage antenna, 220, 224–225
Biconical antenna:
finite, 235–236
infinite, 233–235

Bifin antenna, see Bow-tie antenna
Bilog antenna, 263–264
Binomial array, 299–301
Binomial theorem, 792
Blade antenna, 549
Blass matrix, see Beamforming network
Blind scan angle, 317–319, 332, 629
Body area cell (or, Body area network (BAN)),

118, 465
Boltzmann’s constant, 104, 576
Bootlace lens antenna, see Lens antenna
Boundary conditions, 25–27, 588, 670–674
Bow-tie antenna, 236, 252, 325–326
Brick feed, see Feeds for arrays
Broadband antenna, 19–20, 218–266
Broadcast communications, 12, 118, 536–538
Broadside antenna, 50
Butler matrix, see Beamforming network

Capacitor-plate antenna, 72
Cardioid pattern, 93
Carrier-to-noise ratio (CNR), 104–105
Cassegrain reflector antenna, 404–406
Caustic, 703–704, 722, 730–731
Cavity-backed Archimedian spiral antenna, see

Spiral antenna
Cavity mode (for microstrip antennas), 469, 473
Cell area (of an array element), 313
Cellular radio, 10, 116, 465, 478, 498, 500,

507, 527, 531
Center frequency:
arithmetic mean, 218
geometric mean, 218, 496

Chip antenna, 508
Circular aperture, see Aperture
Circular disk antenna, 265–266
Circular polarization, 62, 113, 115–116
Co-polarized, 398
Collinear array, see Linear array, collinear
Collinear dipoles, 286–290, 307
Collocation (in MoM), 605
Coma lobe, 410
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Combining:
equal-gain, 553
maximum ratio, 553
selection, 550, 553
switched, 553

Communication links, 107–111, 118–121
Compact range, see Antenna range
Complementary antenna, 244–245
Computational electromagnetics (CEM), 587–590
Computing tools for antennas, 794–795
Conductivity, 25, 783
Conformal antenna, 477
Conformal array, see Array
Conic section, 404
Conical equiangular spiral antenna, see Spiral

antenna
Conical horn antenna, see Horn antenna
Conical monopole antenna, see Monopole antenna
Connected array, see Array
Constants, 783–784
Constrained feed, see Feeds for arrays
Contour beam, 403
Convolutional perfectly matched layer (CPML)

(in FDTD), 763
Coordinate systems, 785
Corner reflector antenna, 192–194
Cornu spiral, 709–710
Corporate feed, see Feeds for arrays
Corrugated conical horn, see Horn, corrugated
Cosine-tapered line source, 129, 137–141
Co-site interference, 543
Coupling (between array elements), 308
Courant stability condition (in FDTD), 665
Creeping wave, 738–742, 760, 771
Cross polarization (or, Cross-polarized), 113, 364, 393,

398–399, 403, 407–409, 417–422
Cross polarization efficiency, see Efficiency
Cumulative distribution function (CDF), 550
Current density:
electric, 24–25
magnetic, 25
surface, 25

Current element (also see Dipole, ideal), 32, 46, 48
Current sheet array, see Array

Delta gap source model (for a wire antenna),
596–597

Demagnetization factor, 87
Dielectric constant, see Permittivity
Dielectric loading, see Loading of an antenna
Density tapering (of an array), 321
Device under test (DUT), 582
Difference pattern, 321
Diffracted rays, 707
Diffraction:
aperture, 350, 398
coefficient, 707, 715, 717–721
curved surface, 725–727
horn, 380
multiple, 735–737

reflector, 398, 403, 725–727, 769–771
wedge, 707–716, 765–769

Diffraction integral, 39, 350
Diode phase shifter, 323
Dipole antenna, 21:
broadband, 159, 236, 265, 241–243
drooping, 330, 540
folded, 161–166
full-wave, 154–157, 160, 180, 212
half-wave, 16–17, 20, 50, 56, 73–75, 90,
153–155, 545

ideal (or, Hertzian), 5, 32–37, 42, 52, 54, 55, 70–71,
77–78, 90

open-sleeve, 242–243
short, 32, 58–59, 70–71, 90
sleeve, 241–243
straight wire, 151–161
top-hat loaded, 72
vee, 160–161
twin, 542

Dielectric constant, see Permittivity
Dielectric lens antenna, see Lens antenna
Dielectric substrate, 319, 325–326, 331, 466, 468–469,

475–480
Dirac delta function, 30, 32, 287, 792
Direction finding, 321
Directivity:
aperture, 361–362
defined, 17–18, 50–56, 108, 361–363
estimation, 365–367
factor, 365
Hansen-Woodyard increased, see Linear array
linear array, see Linear array
uniform aperture, 362–363
uniform line source, 131–135

Directivity-beamwidth product, 365–367
Directly coupled microstrip feed, 472, 474
Discone antenna, 236–239
Dispersion (in FDTD), 664–666
Diversity, see Antenna diversity
Diversity combining, see Combining
Diversity gain, 550
Dolph-Chebyshev method, 447; also see

Linear array
Doublet, see Dipole antenna, ideal
Downlink, 118, 536
Downtilt:
electrical, 539
mechanical, 539

Driving point impedance, see Impedance, antenna
Drooping dipole antenna, see Dipole antenna
Dual inverted-F antenna (DIFA), 504
Dual-linear pattern method (of polarization

measurement), 578–579
Dual mode conical horn antenna, see Horn antenna
Dual offset reflector antenna, see Reflector antenna
Dual-polarized antenna, 18, 543–544
Dual reflector antenna, see Reflector antenna
Duality, 81–84
Duplex, 118
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Earth, 105, 198–205
Eccentricity, 404
Echo width, 739–740, 762–763
Edge illumination, 389, 399–400, 407, 413, 418,

420–421, 727
Edge taper, 399–400
Effective aperture, see Aperture
Effective area, see Aperture, effective
Effective dielectric constant, 469
Effective isotropically radiated power (EIRP),

110–111
Effective length (height) of an antenna, 101–102, 109
Effective permeability, 87
Effective radiated power (ERP), 111
Efficiency:

achievement, 364, 410–413
aperture, 109, 344, 364–365, 380–381, 410,
415–416, 418, 420–422

aperture blockage, 414–415
aperture taper, 362, 364, 388, 410–414
beam, 120
cross polarization, 364, 413–414
feed phase error, 413
illumination, 295, 343
impedance, see Impedance mismatch factor
measurement, 575
phase, 364, 380–381
polarization, 110, 113–115
radiation, 18, 55, 60–61, 363–364, 575
random surface error, 413–415
spillover, 364, 420

Eikonal, 701
Electrically small antenna (ESA), 20–21, 42–43,

70–73, 489–490
Electric dipole antenna, see Dipole antenna, ideal
Electric vector potential, see Potential
Electromagnetically coupled microstrip feed,

472, 475, 477
Electromagnetic bandgap structure, see Metamaterial
Electromagnetic compatibility (EMC), 123
Electromagnetic compatibility antenna, 261–264
Electromagnetic interference (EMI), 123
Electromagnetism, 3–4
Electronic scanning, see Scanning
Element factor, 33, 109, 282
Element pattern, 89, 95–96, 272, 286–287, 289–293,

308–310, 317–318, 328–329
Elevated range, see Antenna range
Elevation-over-azimuth positioner, 568
Elliptical polarization, 62
Emission testing, 261–264
Endfire antenna, 50, 75, 167, 171, 190–191, 220–221,

229, 283–286, 291–292, 295–296, 331
Endfire array:

Hansen-Woodyard, see Linear array
ordinary, 283–285, 291, 295

Equal-gain combining, see Combining
Equiangular spiral antenna, see Spiral antenna
Equivalence principle, 345–353, 513
Equivalent currents, 345–347, 681, 732–735, 745

Equivalent radius, 160
Ether, 4
Excess phase delay (in an array), 285
Expansion function, 594
Expansion ratio, 246, 253
Exponentially tapered slot antenna (ETSA), 330–331
Extraterrestrial life, 106
EZNEC wire code, 794

Fan beam, 50
Faraday rotation, 116, 538
Far-field distance, 42–44, 519–521, 567–568
Far-field range, see Antenna range
Far-field region, see Field region
Far zone, see Field region
Fast multipole method (in MoM), 615–616
Fast solver (in MoM), 615–616
Fast wave, 143–145, 482–484
Feed blindness (in an array), 319
Feed network, see Feeds for arrays
Feeds for arrays:
beamforming network, see Beamforming network
brick, 321–322
constrained, 320
corporate, 320
difference, 321
hybrid, 321–322
multiple beam, 322, 324–325
optical, 323
parallel, 320–321
series, 320–321
serpentine, 320
space, 320–321
tile, 321–322

Feeds for reflectors, 416–424
balanced, 398, 407, 417
Huygens’ source, 418
hybrid mode, 422–423
ideal, 418
practical, 421–424

Feeds for wire antennas, 175–186
Femtocell, 118
Fermat’s principle, 716
Ferrite-core multiturn loop antenna, see Ferrite rod

antenna
Ferrite phase shifter, see Phase shifter
Ferrite rod antenna, 87–88, 106
Ferroelectric phase shifter, see Phase shifter
Field equivalence principle, see Equivalence principle
Field intensity measurement, see Measurement
Field probe, 580
Field region (or zone):
far, 36, 42–44, 567
Fresnel, 521–522
near, 35, 42
radiative near, 42
reactive near, 42

Finite difference, 657–664
Finite difference time domain (FDTD) method,

588–589, 652–698
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Finite element method (FEM), 588–589
Fixed terminal, see Terminal
Flared-notch antenna, see Tapered slot antenna
Flat plate array, see Array, fixed-phase
Flat plate reflector, 94–96, 190–192
Flux density, see Power density
Focal length-to-diameter ratio (F/D), 392, 405
Focal plane distribution (FPD), 418
Focal point, 314, 391–394, 404, 418
Focus-fed reflector, see Reflector
Folded dipole antenna, 161–166
Footprint, 403
Forward link, 118, 536
Fourier series method (for synthesis), 440–446
Fourier transform, 142–143, 349–350, 435–436
Fourier transform method (for synthesis), 437–438, 460
Fourpoint antenna, 334, 543–544
Foursquare antenna, 334
Foursquare array, see Array
Fractals, 189–190
Fractional bandwidth, see Bandwidth
Fragmented array, see Array
Fraunhofer region, see Field region, far
Free excitation, 309
Free space loss, 110
Free space range, 566
Frequency bands, 11, 116, 507, 781–782
Frequency-independent antenna, 21, 243–245
Frequency modulation (FM), 9
Frequency scanning, see Scanning
Frequency selective surface (FSS), 336
Fresnel integral, 371, 709, 793
Fresnel region, see Field region
Friis transmission formula, 109
Frill generator, 597
Fringing length (in a microstrip antenna), 469
Front-to-back ratio, 398, 542
Full-wave dipole antenna, see Dipole antenna
Full wave solution (for a microstrip antenna), 471–473
Full wave method (in CEM), 587, 589

Gain:
absolute, 109
defined, 17–18, 54, 108–109, 363–364, 573
estimation, 120–121, 367–368
mean effective (MEG), 582
partial, 573–574
realized, 110, 319, 571
relative, 55

Gain comparison method, 572–573
Gain measurement, see Measurement
Gain pattern, 573
Gain substitution method, see Gain comparison method
Gain transfer method, see Gain comparison method
Galerkin’s method, 602, 606
Gap microstrip antenna feed, see Microstrip

antenna feed
Geometrical optics (GO), 344–345, 393–397,

588–589, 700–707
Geometrical optics/Aperture distribution method,

394–398

Geometrical theory of diffraction (GTD), 398, 708
Global navigation satellite system (GNSS), 476, 478,

502, 548–549
Global Positioning Satellite (GPS), 116, 465, 466, 478
GRADMAX wire code, 794
GRASP reflector code, 397, 399–400, 795
Grating lobe, 278
Ground plane:
construction of, 202–205
imperfect, 75–76, 198–205
perfect, 75–80, 198, 201–203
radial wire, 203–205
real earth, 198–201

Ground reflection range, see Antenna range

Half-circular disk antenna, 265–266
Half-power beamwidth, see Beamwidth
Half-wave dipole antenna, see Dipole antenna
Hallen’s integral equation, 612–614
Handheld terminal, see Terminal
Hansen-Woodyard endfire array, 145–147, 172–174;

also see Linear array
Hansen-Woodyard increased directivity, see

Linear array
Hard source (in FDTD), 675–677
Heaviside layer, see Ionosphere
Helical antenna, see Helix antenna
Helix antenna:
axial mode, 21, 226, 229–233
normal mode (NMHA), 225–228, 499–501
quadrifilar, 501–502
stub, 228
stub-loaded, 232

Helmholtz equation, 30
Hertz, Heinrich, 2–5
Hertzian electric dipole, see Ideal dipole
Hetrodyne, 9
High-frequency methods, 588–589, 700–771
History of antennas and wireless, 1–10
Homogeneous medium, 701
Horn antenna:
choke, 424
conical, 369, 412, 422–423
corrugated (conical) horn, 423–424
dual mode (conical), 422–423
E-plane, 368, 375–379, 722–725
first horn antenna, 7, 368
H-plane, 368–375
hybrid mode, 422, 424
multimode, 422, 424
Potter horn, see Horn antenna, dual mode
pyramidal, 21, 365, 367–368, 379–384
scalar, 424
sectoral, 368–379, 722–725

Horn-reflector antenna, 416
Human body effects on antenna performance,

523–526
Huygens’ principle, 344–345
Huygens’ source, 418
Hybrid feed (for an array), 321–322
Hybrid methods in CEM, 589
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Hybrid mode feed, 422–423
Hyperbolic relations, 791

Ideal dipole, see Dipole antenna
Ideal element-gain pattern, 328
Ideal element pattern, 328
Ideal magnetic dipole, 83–84
Ideal Taylor line source, 456
Image theory, 76–78
Impedance:

active, 304, 308
antenna, 18, 56–60, 303
driving (point), 304
input, 19, 56–60, 304
intrinsic, 34, 40, 42, 784
isolated element, 303
mutual, 305–308
origin of term, 6
passive, 304
self, 305
transfer, 561

Impedance matching, 112, 177–186
Impedance mismatch factor, 110, 112, 177
Impedance modulation, 498
Impulse radiating antenna (IRA), 265
Index of refraction, 701
Infinite balun, see Balun
Infinite biconical antenna, see Biconical antenna
Infinitesimal dipole, see Dipole antenna, ideal
Instantaneous bandwidth, see Bandwidth
Integral equation (IE), 587–588, 590–596, 612:

combined, (CFIE), 588, 641
electric field (EFIE), 588, 641
magnetic field (MFIE), 588, 641

Integrals (list of some useful integrals), 793
Intercardinal plane, 312
Interferometer, 317
Interlaced-element array, see Array antenna
Intrinsic impedance, see Impedance
Inverted-F antenna (IFA), 504
Inverted-L antenna (ILA), 72–73, 502–504
Invisible region, 145–146, 493
Ionosphere, 6
Isolated-element pattern, 308–310
Isotropic, 17–18
Isotropic antenna (or isotropic radiator, or point

source), 17–18, 36, 50–53, 89–90
Iterative sampling method, 459–461

Jansky, 105
Johnson noise, see Nyquist noise

Keller’s theory of GTD, 715–716
Klystron, 10

Leaky wave antenna, 481–483, 695–697
Leapfrog arrangement (in FDTD), 659
Left-hand polarized, 62
Length increase ratio (of a normal mode helix

antenna), 499

Lens antenna:
active, see Active lens
bootlace, 425
constrained, 424–425
dielectric, 424–425
Luneberg, 324, 425
Rotman, 324, 425
zoned, 424

Licensed operation of a wireless system, 537
Linear array:
beamwidth, 282–283, 296–297, 301
collinear, 286
directivity, 293–298, 301–303, 313–314
Dolph-Chebyshev, 299–301, 446–453
general properties, 89–97, 271–303
Hansen-Woodyard endfire, 171–174, 229, 285–286,
295–297

main beam scanning of, 271–272, 282, 296
nonuniformly excited, 298–303
ordinary endfire, 283–285, 291, 295
unequally spaced, 278, 302, 311
uniformly excited, 272, 277–298

Linear phase, 315
Linearly polarized, 62
Linearly tapered slot antenna (LTSA), 330–331
Line-of-sight, 537
Line current, see Line source
Line source:
principles, 38–41, 44, 128–148
superdirective, 145–148
tapered, 137–143
uniform, 45–48, 128–137

Loading (of an antenna):
dielectric, 190
dissipative, 620
distributive, 189–190, 619–621
end (or top), 58, 72–73, 81
lumped, 186–188, 620–621

Lobes (of a pattern), 17–18, 47–50
Location-based services, 116, 467
Log-periodic:
antenna, 21, 243–245, 251–261
dipole array (LPDA), 255–261, 622–625
toothed planar antenna, 253–254
toothed trapezoid antenna, 255
toothed trapezoid wedge antenna, 255
toothed trapezoid wedge wire antenna, 255–256
toothed trapezoid wire antenna, 255
toothed wedge antenna, 254–255
zig-zag wire antenna, 255–256

Long slot array, see Array
Long-wire antenna, seeTraveling-wave longwire antenna
Loop antenna:
Alford, 206
circular, 205–206, 210–211
large, 21, 205–211
small, 20, 81–89, 205
small multiturn, 87
square, see Square loop antenna

Loop-stick antenna, see Ferrite rod antenna
Lorentz (or Lorenz) condition, 28
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Lorentz reciprocity theorem, 560
Loss tangent, 784
Love’s equivalence principle, 346
Luneberg lens antenna, see Lens antenna

Macrocell, 118
Magic time step (in FDTD), 665
Magnetic dipole, see Ideal magnetic dipole
Magnetic field integral equation, 588, 641
Magnetic moment, 86–87
Magnetic vector potential, see Potential
Magnification, 405
Main beam, 18, 47, 49
Main beam efficiency, see Efficiency, beam
Main beam solid angle, see Beam solid angle
Main lobe, see Main beam
Major lobe, see Main beam
Marconi, Guglielmo, 2–3, 7–8
Matching techniques, see Impedance matching
Material data, 783–784
Maximum effective aperture, 102–103, 108, 356
Maximum permissible exposure (MPE), 529–531
Maximum ratio combining, see Combining
Maximum side lobe level, 49
Maxwell, James, 2–6
Maxwell’s equations, 3–4, 6, 23–27, 652–657
Meander line antenna (MLA), 500–501, 512
Mean-square error (MSE), 437, 442
Measurement:
field intensity, 580–581
gain, 571–576
impedance, 559
mutual impedance, 305–306
pattern, 559–564
polarization, 576–579
quiet zone, 522–523
range distance, 42–43, 519–523
time-domain antenna, 569

Megacell, 118
Metamaterial, 498
Method of moments (MoM), 587–646, 745–750
Microcell, 118
Micro-electromechanical system (MEMS), see

Phase shifter
Microstrip antenna (MSA), 20–21, 466–488:
aperture-coupled stacked patch, 478
broadband, 477–478
circular, 475–476
circularly polarized, 475–476, 481
electromagnetically coupled stacked patch, 477–478
half-wave, 467–473
quarter-wave, 475
rectangular, 467–475

Microstrip antenna feed:
aperture coupled, 472–474
electromagnetically coupled (or gap, or
noncontacing, or proximity), 472–475

inset, 474
probe, 466, 472–474

Microstrip array antenna, 478–481

Microstrip leaky wave antenna, 481–483, 695–697
Microwaves, 10–11
Millimeter waves, 11, 782
Minimax error, 460
Minor lobe, 49
Mobile antenna, 545–549
Mobile telephone, 9, 465–466, 507, 782
Mobile terminal, see Terminal
Model tower, 568–569
Monopole antenna, 21, 72, 75–81, 690–694, 730–732,

746–750:
conical, 236–237
five-eights-over-quarter wave, 545–546
sleeve, 240–241
three-quarter wave with stub, 545–546

Monostatic radar, 122–123
Moore’s law, 489
Morse, Samuel, 2
Multiband antenna, 219
Multifunctional antenna, 326
Multifunctional array, see Array
Multimode horn antenna, see Horn antenna
Multiple beam array, see Array
Multiple beam feed network, see Feeds for arrays
Multiple-input, multiple output (MIMO), 118, 552
Multipole method, 615
Mutual coupling, 303–311, 479, 625–629
Mutual impedance, see Impedance

Near-field range, see Antenna range
Near-field region, see Field region
NEC (Numerical Electromagnetics Code), 794
Noise, 18, 61, 103–107
Noncontacting microstrip feed, 472–474
Non-line-of-sight (NLOS), 537
Normalmodehelix antenna (NMHA), seeHelix antenna
Notch antenna, see Tapered slot antenna
Numerical stability, 664–665
Nyquist noise, 104
Null-fill, 542

Obliquity factor, 351
Omnidirectional antenna, 17–19, 37, 50
Omnidirectional pattern, see Pattern
One-wavelength square loop antenna, 206–210
Open area test site, 571
Open-ended waveguide, see Waveguide
Open-sleeve dipole antenna, see Dipole antenna
Optical feed, see Feeds for arrays
Ordinary endfire array, 145–147, 283; also see

Linear array
Orthomode transducer (OMT), 415
Over-the-air test system (OATS), 582

Panel antenna, 541
Parabolic cylindrical reflector antenna, see Reflector

antenna, cylindrical parabolic
Parabolic reflector antenna, see Reflector antenna
Parabolic torus reflector antenna, 415–416
Parasitic array, see Array
Parallel dipoles, 290–292, 306–308, 311, 616–617,

625–630
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Parallel element array, 290–292, 311, 616–617,
625–630

Parallel feed for an array, see Feeds for arrays
Parasitic array, 166–172, 324
Parent reflector, see Reflector antenna
Partial differential equation (PDE), 587–588
Partial gain method, 574
Passive intermodulation (PIM), 543
Passive read distance, 510
Patch antenna, 466, 468–478; also see

Microstrip antenna
Pattern (or, radiation pattern), 18, 36–50:

cosecant, 67–68, 462–463
desired, 437
difference, 321
E-plane, 36–37
Gaussian, 68
H-plane, 36–37
isotropic, 17–18
multiplication, 96, 286–292
normalized, 46
omnidirectional, 17–18, 37
polar, 37
power, 48
polarization, 577
primary, 397
principal plane, 37
secondary, 397
shaped, 18
synthesis, 433–461

Pattern factor, 46–47, 282, 289, 434–435
Pattern multiplication, see Pattern
Peak gain, see Gain
Pencil beam, 50
Perfect electric conductor (PEC), 26, 75, 198, 336
Perfect ground plane, see Ground plane
Perfectly matched layer (PML) (in FDTD), 671
Permeability, 30, 87, 784
Permittivity, 25, 30, 784
Personal area cell, 118
Phase center, 265, 569
Phase constant, 29–30, 220
Phase shifter:

analog, 322–323
dielectric, 542–543
digital, 32–323
diode, 323
ferrite, 323
ferroelectric, 323
MEMS, 323
photonic, 323

Phase efficiency, see Efficiency
Phased array, see Array
Physical-optics (PO) approximation, 349, 397,

750–757
Physical optics/Surface current method, 397–398
Physical theory of diffraction (PTD):

for reflectors, 398, 769–770
theory, 588–589, 763–769

Picocell, 118

Piecewise sinusoidal functions, 611
Planar array, 311–320, 328–332, 629–630
Planar equiangular spiral antenna, see Spiral antenna
Plane wave, 40, 61–62
Pocklington’s integral equation, 591–593
Point-matching, 595, 605
Point-to-multipoint communication, 118, 536
Point-to-point communication, 118, 536
Point source, see Isotropic antenna
Polar diagram, see Pattern, polar
Polar pattern, see Pattern, polar
Polarization, 17–18, 61–66, 576–579
Polarization of an antenna, 65
Polarization diversity, see Antenna diversity
Polarization efficiency, see Efficiency
Polarization mismatch factor, see Polarization

efficiency
Polarization pattern method, 577–578
Polytetrafluorethylene (PTFE), 468, 784
Portable terminal, see Terminal
Positioner:
azimuth, 568
azimuth-over-elevation, 568–569
roll, 568

Potential:
electric vector, 348
magnetic vector, 28–29, 347
scalar, 28

Potter horn, see Horn, dual mode
Power gain, see Gain
Power pattern, see Pattern
Poynting’s theorem, 26
Poynting vector, 26
PRAC reflector code, 397, 421, 795
Prime-focus reflector antenna, see Reflector
Primary antenna, 364, 397
Primary pattern, see Pattern
Principal half-power beamwidth, see Beamwidth
Principle of pattern multiplication, see Pattern,

multiplication
Printed antenna, 466
Progressive phase, see Linear phase
Project ELF, 73
Projection technique (for an array), 313
Propagation, see Wireless propagation
Proximity microstrip antenna feed, see Mictrostrip

antenna feed
Pulse function, 594
Pyramidal horn antenna, see Horn antenna

Quality factor (Q), 147, 178, 490–492
Quadrifilar helix antenna (QHA), 501–502
Quarter-wave helix antenna, 228, 499
Quarter-wave monopole, 79–80
Quarter-wave transformer, 214–215, 472–474
Quasi-optical lens, 323
Quiet zone, 570

Radar, 10, 12, 122–123, 325–327
Radar cross section (RCS), 122, 620, 631–633, 752
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Radar cross section of an antenna, 631–636,
754–757

Radar range equation, 122
Radiansphere, 489–490
Radiate, 10–11
Radiated power, 10, 35
Radiation boundary condition, see Absorbing

boundary condition
Radiation efficiency, see Efficiency
Radiation field, 34–36
Radiation hazard, 526–531
Radiation integral, 39
Radiation intensity, 51
Radiation mechanism, 13–17
Radiation pattern, see Pattern
Radiation resistance, 9, 57–61, 87–89, 155–156, 187
Radio (or, radio communication), 8, 65, 116
Radio frequency identification (RFID) antenna, 465,

508–512
Radiometry, 12–17, 105
Radiometric method of gain measurement, 575–576
Range, see Antenna range
Ratio bandwidth, see Bandwidth
Ray optics, 701
Rayleigh distance, see Far-field distance
Reaction, 560, 606
Realized gain, see Gain
Receiver sensitivity, 580–581
Reciprocity, 47, 56, 65, 559–564
Reconfigurable antenna, 553
Reconfigurable array, see Array
Rectangular aperture, see Aperture
Reflection coefficient, see Voltage reflection

coefficient
Reflector antenna:
axisymmetric, 398–407
beam squint in, 408–409
Cassegrain, 404–407
corner, see Corner reflector antenna
cross polarization, 364, 393, 398–399, 403, 405,
407–409

cylindrical parabolic, 6–7, 9, 141–142, 415–416,
725–727, 769–771

diffraction effects, 380, 398, 403, 415, 725–727
dual, 403–407
dual offset, 409
equivalent parabolic, 405
focus-fed, 395, 397–398
gain, 410–415
Gregorian, 404–405
history, 391
horn-reflector, 416
multiple, 403–407, 409–410
offset, 398, 402–403, 406–410
parabolic, 6–7, 9, 21, 141–142, 367–368, 391–403,
725–727, 754–755, 769–771

parent, 403
parabolic cylinder, see Reflector, cylindrical
parabolic

parabolic torus, 415–416

primary, 397
prime-focus, 397
principles, 391–398
RCS of, 754
scanning, 409–410
secondary, 397
shaped, 406–407, 416
spherical, 416
surface errors, 413–414

Reflectarray, 321
Reflector element in a Yagi antenna, 167–171
Reflector in a short backfire antenna, 194–195
Relative core length, 87
Relative gain, see Gain
Remote sensing, 12
Residual (in method of weighted residuals), 601
Resonant antenna, 9, 19–20, 74, 151
Retarded time, 30
Retrodirective array, see Array
Return loss, 112
Reverberation chamber, 583
Reverse link, 118, 536
Rhombic antenna, 223–224
Right-hand polarized, 62
Ripple (on a main beam), 446
Roll positioner, 568
Rotating source method, see Spinning linear method
Rotman lens antenna, see Lens antenna
Rusch’s method, 397
RWG basis function, 641–642

Sample point, 439
Sample value, 439
Satellite communications, 10, 537–538, 549
Satellite terminal antenna, 537–538
Scalar horn, see Horn antenna
Scalar wave equation, see Wave equation
Scale factor of a log-periodic antenna, 253
Scale model of an antenna, 571
Scan angle, 317, 333
Scan blindness in an array, 317–318
Scanning of an array; also see Beamforming network:
beam switching, 322
defined, 18–19, 282
digital, 322–323
electronic, 320
frequency, 320, 322
hybrid, 322
of wideband array, 332–334
phase, 322–323
time-delay, 322–323, 333

Scattering, 122–123, 676–681, 757–760
Secondary antenna, 397
Secondary pattern, 397
Sector pattern, 437–440, 541
Sectoral horn antenna, see Horn antenna
Selection combining, see Combining
Self-complementary antenna, 244–245
Self-consistency method, 735
Self impedance, see Impedance
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Self-phased array, 554
Self resonant, 496
Self scaling, 245, 248
Self similar, 189
Separable distribution, 142, 357–358, 363
Series feed of an array, see Feeds for arrays
Shadow boundary, 707
Shaped beam, 18, 416, 435–446
Shared-aperture array, see Array
Shipboard antenna, 549
Short backfire antenna (SBFA), 194–198
Short dipole antenna, see Dipole antenna
Short waves, 9
Shunt feed, 180–181
Side lobe, 17–18, 49
Side lobe canceller (SLC), 554
Side-lobe level (SLL), 49, 280, 445–446
Signal-to-noise ratio (SNR), 105
Signal-to-noise plus interference ratio (SNIR), 552–554
Similar array elements, 288, 312
Sinuous antenna, 251
Sinusoidal interpolation functions, 611
Skin depth, 58
Slant range, see Antenna range
Sleeve dipole antenna, see Dipole antenna
Sleeve monopole antenna, see Monopole

antenna
Slice generator, 596
Slope diffraction, 729–730, 745
Slot antenna, 86, 244–245, 330, 727–730
Slot width of a log-periodic antenna, 253
Slow wave, 143–145, 171, 483
Small antenna, see Electrically small antenna
Small loop antenna, see Loop antenna
Small multiturn loop antenna, see Loop antenna
Smart antenna, 323, 549–553
Software radio, 118
Space division multiple access (SDMA), 552
Space feed of an array, see Feeds for arrays
Space-time coding, 552
Spacing factor of a log-periodic dipole array, 257
Spatial diversity, see Antenna diversity
Spatial filtering, 552–553
Specific absorption rate (SAR), 529–530
Spectrum, see Frequency bands
Specular point, 705
Speed of light, 11, 14, 29, 784
Spherical antenna, 265–266
Spherical wave, 40, 379
Spherical spreading loss, 109, 393, 396, 400
Spillover, 404, 411
Spillover efficiency, see Efficiency
Spinning linear method (of polarization

measurement), 578
Spiral antenna, 245–251:

Archimedean, 247–249, 644–645
conical equiangular, 249–250
cavity-backed Archimedean, 249
equiangular, 245–247
planar equiangular, 246–247

Square loop antenna:
large, 205–211
small, 59, 81–89, 205

Squint, 333, 409
Standard gain antenna, 367, 379, 383–384, 572–574
Standing wave ratio (SWR), see Voltage standing wave

ratio (VSWR)
Stationary phase, 760–763
Structural scattering, 632–633
Stubby antenna, 499–500
Submillimeter waves, 11
Substrate material, 468
Superconductor, 61, 498
Superdirective array, 303, 451
Superdirective ratio, 146–148
Superdirectivity, 145–148, 301, 451, 493
Supergain, 147
Superhetrodyne radio receiver, 9
Surface errors in a reflector antenna, 413–414
Surface resistance, 58
Surface wave, 171–174, 201, 319, 471, 475, 477,

480–481, 485, 514, 519
Susceptability, 261
Switched combining, see Combining
Synthesis (of an antenna), 433–461
Synthetic aperture radar (SAR), 445
System noise temperature, 104, 107

Tapered circular aperture, 388–390
Tapered-coax wideband balun, 249
Tapered line source, see Line source
Tapered rectangular aperture, 357–360
Tapered slot antenna (TSA), 329–332
Taylor line source, 453–459
Telecommunications, 1
Telematics, 547–549
Television (TV), 9, 65
Television channels, 781–782
Terminal:
fixed, 116–118, 537–538
handheld (or, handset), 116–119, 465–478, 488–508
mobile, 116–119, 478, 502, 538–541, 545–549
portable, 116–119, 502, 538, 545

Test antenna, 564
Testing function (in MoM), 602
Test source (in MoM), 606
Three-antenna method (of gain measurement), 573
Tightly coupled array, see Array
Tile feed, see Feeds for arrays
Tilt angle (of polarization ellipse), 64
Time-delay scanning, see Scanning
Time-domain antenna measurement, see Measurement
Time-domain antenna synthesis, 433–434
Time domain numerical techniques, 588
Toeplitz matrix, 616–617
Top-hat loaded dipole antenna, see Capacitor-plate

antenna
Torus antenna, see Parabolic torus reflector antenna
Total isotropic sensitivity (TIS), 507, 582–583
Total radiated power (TRP), 507, 582–583
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Transition width, 446
Transmission line, 10–11, 175–177
Transmission-line loaded antenna, 72–73
Transmission-line model (for microstrip antennas),

469–470
Transverse electromagnetic (TEM) wave,

see Plane wave
Transverse resonance, 485–487
Traveling wave antenna, 220–225, 481–483
Traveling-wave long wire antenna, 220
Traveling-wave vee antenna, 222–223
Triangular antenna, 236
Triangle function, 610
Triangular patch (in MoM), 642
Trigonometric relations, 789–790
Triode tube, 9
Tunable bandwidth, see Bandwidth

Ultra wideband (UWB) antenna, 264–266
Ultra wideband (UWB) communications, 465
Umbrella-loaded monopole antenna, 80–81
Uniaxial perfectly matched layer (UPML)

(in FDTD), 673
Uniform circular aperture, 366–367, 385–388
Uniform line source, see Line source
Uniform progressive phase, see Linear phase
Uniform rectangular aperture, 353–357,

363, 366–367
Uniform theory of diffraction (UTD), 588–589,

718–722, 737–742, 769–771
Uniform theory of wedge diffraction,

718–722
Unintended radiator, 123–125
Uniqueness theorem, 345
Units of electromagnetic quantitites, 5
Unit vectors, 785–786
Unlicensed operation of a wireless system, 537
Update equations (in FDTD), 659
Uplink, 118, 536
Utilization factor, see Efficiency, aperture taper

Vacuum tube diode, 9
Validation (in MoM), 610, 618
Van Atta array, see Array, retrodirective
Variable element size array, see Array
Vector differential operators, 787–788
Vector diffraction integral, 350
Vector effective length, see Effective length
Vector identities, 786–787
Vector network analyzer (VNA), 569
Vector potential, see Potential
Vectors, 786–788
Vector wave equation, see Wave equation
Vee dipole antenna, see Dipole antenna
Vee antenna (traveling-wave), see Traveling-wave

vee antenna

Velocity:
energy, 491
of electromagnetic waves (including light),
29–30, 784

phase, 29–30, 87, 143, 145, 171, 220, 229, 497
Very small aperture terminal (VSAT), 12, 415
Virtual focal point, 404
Visible region (of an array pattern), 278
Vivaldi antenna, 265, 331
Voltage reflection coefficient, 112
Voltage standing wave ratio (VSWR), 112, 583
Voltage standing wave ratio bandwidth, see Bandwidth
Volute antenna, 502

Wave antenna, see Beverage antenna
Wave equation:
scalar, 29–30
vector, 29–31

Waveguide:
open-ended circular, 422
open-ended rectangular, 330–331, 358–360, 362–363
slot array, see Array

WebPRAC reflector code, 795
Wedge diffraction, see Diffraction, wedge
Weighted residuals method, 601–606
Weighting function (in MoM), 602
Wheeler cap method (of efficiency measurement), 575
Whip antenna, 499–500, 545–546
Wideband antenna, see Broadband antenna
Wideband array, see Array
Wideband array with variable element sizes

(WAVES), see Array
Wideband compact PIFA antenna (WC-PIFA),

507–509
Widrow algorithm, 556
Wire antenna, 151–211
WIRE wire code, 795
Wire-grid model, 637–641
Wire grid nomograph, 193
Wireless:
access point (WAP), 536
communications, 7–8, 116–121, 536–537
personal communications, 465
propagation, 549–553, 742–745
telegraphy, 8
telephony, 8

Wrap-around antenna, 477
Wood’s anomaly; also see Blind scan angle, 629
Woodward-Lawson sampling method:
array, 443–446
line source, 438–440, 446

Yagi-Uda antenna, 9, 21, 166–175
Yee algorithm (in FDTD), 657–664

Zoned lens antenna, see Lens antenna
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Symbols

SYMBOLS1

a ¼ wire radius [m]
A ¼ magnetic vector potential [V-s/m]
AF ¼ array factor
Ae ¼ effective aperture ¼ er Aem [m2]
Aem ¼ maximum effective aperture [m2]
Ap ¼ physical aperture ¼ physical area of an aperture antenna [m2]
AR ¼ polarization ellipse axial ratio (1# jARj)
b ¼ mean radius of a loop [m]
B ¼ fractional bandwidth ¼ BW/fC
Bp ¼ percent bandwidth ¼ B3 100 ¼ 2

fU � fL

fU þ fL
3 100 %½ �

Br ¼ ratio bandwidth ¼ fU / fL
BW ¼ antenna bandwidth ¼ fU�fL [Hz]
BWFN ¼ beamwidth between first nulls [rad]
c ¼ velocity (speed) of electromagnetic waves in free space� 3 3 108 m/s
c ¼ directivity factor used in D ¼ c 2 L/l
d ¼ interelement spacing in an equally spaced array [m]
D ¼ diameter of an antenna [m]
D ¼ directivity; directivity in dB ¼ 10 log D
Du ¼ directivity of a uniform aperture (constant amplitude and phase)
er ¼ radiation efficiency
E ¼ electric field vector [V/m]
Ea ¼ aperture electric field [V/m]
Ei ¼ incident electric field vector [V/m]
EIRP ¼ effective (or equivalent) isotropically radiated power [W]
f ¼ frequency [Hz]
fL (fU) ¼ lower (upper) operating frequency of an antenna [Hz]
f ( ) ¼ pattern factor or array factor normalized to unity maximum
F( ) ¼ radiation pattern normalized to unity maximum
g ( ) ¼ element pattern in a continuous current antenna normalized to unity maximum
ga ( ) ¼ pattern of a single element in an array normalized to unity maximum
gae ( ) ¼ average active element pattern normalized to a typical element in the array with all elements

active
gi ( ) ¼ isolated-element pattern normalized to unity maximum
G ¼ (maximum) gain of an antenna; gain in dB ¼ 10 log G
Go ¼ gain with no phase error
Gref ¼ gain of a reference antenna
Gr ¼ gain of a receive antenna
Gt ¼ gain of a transmit antenna
h ¼ height of an antenna above ground [m]
h ¼ vector effective length of an antenna [m] ¼ h ĥ

1 This is a list of the frequently used symbols and abbreviations used in the book. Discussions of the topics
associated with each symbol can be located by looking under the term name for the symbol in the index. Units for
important quantities are listed on page 5. Values for physical constants are in Appendix B. Coordinate systems are in
Appendix C.1.1. Greek symbols are on the inside back cover.
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H ¼ magnetic field vector [A/m]
HP ¼ half-power beamwidth [rad]; HPdeg ¼ half-power beamwidth [deg]
HPE� HPH�ð Þ ¼ half power beamwidth in degrees in E-plane (H- plane) [deg]
I ¼ (electric) current [A]
Iin ¼ current at input terminals of an antenna [A]
Im ¼ maximum current appearing on an antenna [A]
Im ¼ magnetic current [V]
JS ¼ surface current density [A/m]
k ¼ beamwidth factor used in HP ¼ k l/L
K ¼ antenna factor [m�1]
L ¼ inductance [H]
L ¼ mean length of a wire loop [m]
L ¼ length of a line source antenna or linear array [m]
M ¼ magnetic current density vector [V/m2]
n ¼ index of refraction (except in Chap. 16)
n̂ ¼ unit normal vector
p ¼ polarization efficiency; polarization mismatch factor (0# p# 1)
P ¼ power radiated [W]
PD ¼ power delivered from an antenna to a load (after impedance and polarization mismatches) [W]
Pin ¼ power into an antenna (includes ohmic loss) [W]
Po ¼ power lost to ohmic resistance [W]
PN ¼ power available due to noise [W]
Pr ¼ power available from a receiving antenna if properly matched [W]
Pt ¼ power from a transmitter delivered to an antenna [W]
q ¼ charge [C]
q ¼ impedance mismatch factor (0# q# 1)
Q ¼ radiation quality factor
r ¼ spherical coordinate radius [m]
r0 ¼ distance from a point in a source distribution to an observation point P [m]
rp ¼ distance from the coordinate origin to the observation point P [m]
rff ¼ distance to far field from a coordinate origin centered on an antenna [m]
R ¼ distance between two points in three dimensional space [m]
R ¼ line of sight separation on a radio link [m]
RA ¼ input resistance at antenna terminals [Ω]
Rri ¼ radiation resistance referred to the input terminals [Ω]
RS ¼ surface resistance [Ω]
s ¼ surface area (except Chap. 9, where S is used) [m2]
S ¼ time-average power flux density [W/m2]
S ¼ Poynting vector [W/m2]
SLL ¼ side lobe level relative to main beam peak; side lobe level in dB ¼ 20 log (SLL)
t ¼ time [s]
TA ¼ antenna output noise temperature [K]
Tr ¼ receiver input noise temperature [K]
U ¼ radiation intensity [W/steradian]
v ¼ volume (except Chap. 9, where V is used)
v ¼ phase velocity [m/s]
VA ¼ open circuit voltage across the terminals of an antenna [V]
VSWR ¼ voltage standing wave ratio (VSWR$ 1)
Xin ¼ input reactance at antenna terminals [Ω]
XPOL ¼ cross polarization level (usually relative to pattern main beam peak)
Z ¼ impedance [Ω]
ZA ¼ impedance at input to antenna [Ω]
Zm ¼ active impedance of mth element in an array with all elements excited [Ω]
Zmn ¼ mutual impedance between the mth and nth elements of an array antenna [Ω]
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GREEK SYMBOLS

α ¼ interelement phase shift in an array; the amount an element leads its left
neighboring element [rad]

α ¼ pitch angle of a helix antenna [rad]
αh ¼ turn-to-turn phase shift in a helix antenna in the axial mode [rad]
β ¼ phase constant ¼ 2π/l [rad/m]
βg ¼ phase constant in a waveguide [rad/m]
βo ¼ excitation phase per meter across a line source [rad/m]
Γ ¼ voltage reflection coefficient
Δz ¼ length of an ideal dipole [m]
ε ¼ polarization ellipticity angle [rad]¼ cot�1(�AR)
ε ¼ permittivity [F/m]
εr ¼ relative permittivity ¼ ε/εo where εo ¼ permittivity of free space

¼ 10�9/36π F/m
ε0 ¼ effective permittivity ¼ ε� j (σ/ω) [F/m]
εap ¼ aperture efficiency
εt ¼ aperture taper efficiency

η ¼ intrinsic impedance ¼
ffiffiffi
μ
ε

r
[Ω]

θo ¼ angle of the pattern main beam peak relative to the endfire direction in one-dimensional
antennas and relative to broadside for multidimensional antennas [rad]

l ¼ free-space wavelength [m]
μ ¼ permeability [H/m]
μr ¼ relative permeability ¼ μ/μo where μo ¼ permeability of free space

¼ 4π3 10�7 H/m
ρ ¼ charge density [C/m3]
σ ¼ conductivity [S/m]
τ ¼ polarization tilt angle [rad]
Φ ¼ (electric) scalar potential [V]
ψ ¼ array factor argument ¼ βd cos θþα [rad]
ω ¼ radian frequency ¼ 2πf [rad/s]
ΩA ¼ beam solid angle [steradians]
ΩM ¼ main beam solid angle [steradians]
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