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_____ Preface

The continuing popularity of Microwave Engineering is gratifying. | have received many
letters and emails from students and teachers from around the world with positive com-
ments and suggestions. | think one reason for its success is the emphasis on the funda-
mentals of electromagnetics, wave propagation, network analysis, and design principles
as applied to modern RF and microwave engineering. As | have stated in earlier editions,
| have tried to avoid the handbook approach in which a large amount of information is
presented with little or no explanation or context, but a considerable amount of material
in this book is related to the design of specific microwave circuits and components, for
both practical and motivational value. | have tried to base the analysis and logic behind
these designs on first principles, so the reader can see and understand the process of ap-
plying fundamental conceptsto arrive at useful results. The engineer who has afirm grasp
of the basic concepts and principles of microwave engineering and knows how these can
be applied toward practical problemsis the engineer who is the most likely to be rewarded
with a creative and productive career.

For this new edition | again solicited detailed feedback from teachers and readers for
their thoughts about how the book should be revised. The most common requests were
for more material on active circuits, noise, nonlinear effects, and wireless systems. This
edition, therefore, now has separate chapters on noise and nonlinear distortion, and ac-
tive devices. In Chapter 10, the coverage of noise has been expanded, along with more
material on intermodulation distortion and related nonlinear effects. For Chapter 11, on
active devices, | have added updated material on bipolar junction and field effect transis-
tors, including datafor a number of commercial devices (Schottky and PIN diodes, and Si,
GaAs, GaN, and SiGetransistors), and these sections have been reorganized and rewritten.
Chapters 12 and 13 treat active circuit design, and discussions of differential amplifiers,
inductive degeneration for nMOS amplifiers, and differential FET and Gilbert cell mix-
ers have been added. In Chapter 14, on RF and microwave systems, | have updated and
added new material on wireless communications systems, including link budget, link mar-
gin, digital modulation methods, and bit error rates. The section on radiation hazards has
been updated and rewritten. Other new material includes a section on transients on trans-
mission lines (material that was originally in the first edition, cut from later editions, and
now brought back by popular demand), the theory of power waves, a discussion of higher
order modes and frequency effects for microstrip line, and a discussion of how to deter-
mine unloaded Q from resonator measurements. This edition also has numerous new or
revised problems and examples, including several questions of the “open-ended” variety.
Material that has been cut from this edition includes the quasi-static numerical analysis of
microstrip line and some material related to microwave tubes. Finaly, working from the
original sourcefiles, | have made hundreds of corrections and rewrites of the original text.

v
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Preface

Today, microwave and RF technology is more pervasive than ever. This is especialy
true in the commercial sector, where modern applications include cellular telephones,
smartphones, 3G and WiFi wireless networking, millimeter wave collision sensors for ve-
hicles, direct broadcast satellites for radio, television, and networking, global positioning
systems, radio frequency identification tagging, ultra wideband radio and radar systems,
and microwave remote sensing systems for the environment. Defense systems continue to
rely heavily on microwave technology for passive and active sensing, communications, and
weapons control systems. There should be no shortage of challenging problemsin RF and
microwave engineering in the foreseeable future, and there will be a clear need for engi-
neers having both an understanding of the fundamentals of microwave engineering and the
creativity to apply this knowledge to problems of practical interest.

Modern RF and microwave engineering predominantly involves distributed circuit
analysis and design, in contrast to the waveguide and field theory orientation of earlier
generations. The majority of microwave engineerstoday design planar components and in-
tegrated circuits without direct recourse to el ectromagnetic analysis. Microwave computer-
aided design (CAD) software and network analyzers are the essential tools of today’s
microwave engineer, and microwave engineering education must respond to this shift in
emphasis to network analysis, planar circuits and components, and active circuit design.
Microwave engineering will always involve electromagnetics (many of the more sophisti-
cated microwave CAD packages implement rigorous field theory solutions), and students
will still benefit from an exposure to subjects such as waveguide modes and coupling
through apertures, but the change in emphasis to microwave circuit analysis and design
isclear.

This text is written for a two-semester course in RF and microwave engineering for
seniors or first-year graduate students. It is possible to use Microwave Engineering with or
without an electromagnetics emphasis. Many instructors today prefer to focus on circuit
analysis and design, and there is more than enough material in Chapters 2, 4-8, and 10-14
for such aprogram with minimal or no field theory requirement. Someinstructors may wish
to begin their course with Chapter 14 on systems in order to provide some motivational
context for the study of microwave circuit theory and components. This can be done, but
some basic material on noise from Chapter 10 may be required.

Two important items that should be included in a successful course on microwave
engineering are the use of CAD simulation software and a microwave laboratory experi-
ence. Providing students with access to CAD software allows them to verify results of the
design-oriented problemsin the text, giving immediate feedback that builds confidence and
makes the effort more rewarding. Because the drudgery of repetitive calculation is elimi-
nated, students can easily try aternative approaches and explore problems in more detail.
The effect of line losses, for example, is explored in several examples and problems; this
would be effectively impossible without the use of modern CAD tools. In addition, class-
room exposure to CAD tools provides useful experience upon graduation. Most of the
commercially available microwave CAD tools are very expensive, but several manufactur-
ers provide academic discounts or free “ student versions’ of their products. Feedback from
reviewers was almost unanimous, however, that the text should not emphasize a particular
software product in the text or in supplementary materials.

A hands-on microwave instructional laboratory is expensive to equip but provides the
best way for students to develop an intuition and physical feeling for microwave phenom-
ena. A laboratory with the first semester of the course might cover the measurement of
microwave power, frequency, standing wave ratio, impedance, and scattering parameters,
as well as the characterization of basic microwave components such as tuners, couplers,
resonators, loads, circulators, and filters. Important practical knowledge about connectors,
waveguides, and microwave test equipment will be acquired in this way. A more advanced
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laboratory session can consider topics such as noise figure, intermodul ation distortion, and
mixing. Naturally, the type of experiments that can be offered is heavily dependent on the
test equipment that is available.

Additional resources for students and instructors are available on the Wiley website.
These include PowerPoint dides, a suggested laboratory manual, and an online solution
manual for al problems in the text (available to qualified instructors, who may apply for
access at the website http://he-cda.wiley.com/wileycdd/).
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Electromagnetic Theory

We begin our study of microwave engineering with a brief overview of the history and
major applications of microwave technology, followed by a review of some of the fundamental
topics in electromagnetic theory that we will need throughout the book. Further discussion of
these topics may be found in references [1-8].

1.1

INTRODUCTION TO MICROWAVE ENGINEERING

The field of radio frequency (RF) and microwave engineering generally covers the behavior
of alternating current signals with frequencies in the range of 100 MHz (1 MHz = 108 Hz)
to 1000 GHz (1 GHz = 10° Hz). RF frequencies range from very high frequency (VHF)
(30-300 MHZz) to ultra high frequency (UHF) (300-3000 MHz), while the term microwave
is typically used for frequencies between 3 and 300 GHz, with a corresponding electrical
wavelength between A = ¢/f = 10 cm and A = 1 mm, respectively. Signals with wave-
lengths on the order of millimeters are often referred to as millimeter waves. Figure 1.1
shows the location of the RF and microwave frequency bands in the electromagnetic spec-
trum. Because of the high frequencies (and short wavelengths), standard circuit theory
often cannot be used directly to solve microwave network problems. In a sense, standard
circuit theory is an approximation, or special case, of the broader theory of electromag-
netics as described by Maxwell’s equations. This is due to the fact that, in general, the
lumped circuit element approximations of circuit theory may not be valid at high RF and
microwave frequencies. Microwave components often act as distributed elements, where
the phase of the voltage or current changes significantly over the physical extent of the de-
vice because the device dimensions are on the order of the electrical wavelength. At much
lower frequencies the wavelength is large enough that there is insignificant phase variation
across the dimensions of a component. The other extreme of frequency can be identified
as optical engineering, in which the wavelength is much shorter than the dimensions of the
component. In this case Maxwell’s equations can be simplified to the geometrical optics
regime, and optical systems can be designed with the theory of geometrical optics. Such

1
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FIGURE 1.1  The electromagnetic spectrum.

techniques are sometimes applicable to millimeter wave systems, where they are referred
to as quasi-optical.

In RF and microwave engineering, then, one must often work with Maxwell’s equa-
tions and their solutions. It is in the nature of these equations that mathematical complexity
arises since Maxwell’s equations involve vector differential or integral operations on vec-
tor field quantities, and these fields are functions of spatial coordinates. One of the goals
of this book is to try to reduce the complexity of a field theory solution to a result that
can be expressed in terms of simpler circuit theory, perhaps extended to include distributed
elements (such as transmission lines) and concepts (such as reflection coefficients and scat-
tering parameters). A field theory solution generally provides a complete description of the
electromagnetic field at every point in space, which is usually much more information than
we need for most practical purposes. We are typically more interested in terminal quanti-
ties such as power, impedance, voltage, and current, which can often be expressed in terms
of these extended circuit theory concepts. It is this complexity that adds to the challenge,
as well as the rewards, of microwave engineering.

Applications of Microwave Engineering

Just as the high frequencies and short wavelengths of microwave energy make for diffi-
culties in the analysis and design of microwave devices and systems, these same aspects
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provide unique opportunities for the application of microwave systems. The following con-
siderations can be useful in practice:

e Antenna gain is proportional to the electrical size of the antenna. At higher frequen-
cies, more antenna gain can be obtained for a given physical antenna size, and this
has important consequences when implementing microwave systems.

e More bandwidth (directly related to data rate) can be realized at higher frequencies.
A 1% bandwidth at 600 MHz is 6 MHz, which (with binary phase shift keying
modulation) can provide a data rate of about 6 Mbps (megabits per second), while
at 60 GHz a 1% bandwidth is 600 MHz, allowing a 600 Mbps data rate.

e Microwave signals travel by line of sight and are not bent by the ionosphere as are
lower frequency signals. Satellite and terrestrial communication links with very high
capacities are therefore possible, with frequency reuse at minimally distant locations.

e The effective reflection area (radar cross section) of a radar target is usually propor-
tional to the target’s electrical size. This fact, coupled with the frequency character-
istics of antenna gain, generally makes microwave frequencies preferred for radar
systems.

e \arious molecular, atomic, and nuclear resonances occur at microwave frequencies,
creating a variety of unique applications in the areas of basic science, remote sens-
ing, medical diagnostics and treatment, and heating methods.

The majority of today’s applications of RF and microwave technology are to wire-
less networking and communications systems, wireless security systems, radar systems,
environmental remote sensing, and medical systems. As the frequency allocations listed
in Figure 1.1 show, RF and microwave communications systems are pervasive, especially
today when wireless connectivity promises to provide voice and data access to “anyone,
anywhere, at any time.”

Modern wireless telephony is based on the concept of cellular frequency reuse, a tech-
nique first proposed by Bell Labs in 1947 but not practically implemented until the 1970s.
By this time advances in miniaturization, as well as increasing demand for wireless com-
munications, drove the introduction of several early cellular telephone systems in Europe,
the United States, and Japan. The Nordic Mobile Telephone (NMT) system was deployed
in 1981 in the Nordic countries, the Advanced Mobile Phone System (AMPS) was intro-
duced in the United States in 1983 by AT&T, and NTT in Japan introduced its first mobile
phone service in 1988. All of these early systems used analog FM modulation, with their
allocated frequency bands divided into several hundred narrow band voice channels. These
early systems are usually referred to now as first-generation cellular systems, or 1G.

Second-generation (2G) cellular systems achieved improved performance by using
various digital modulation schemes, with systems such as GSM, CDMA, DAMPS, PCS,
and PHS being some of the major standards introduced in the 1990s in the United States,
Europe, and Japan. These systems can handle digitized voice, as well as some limited data,
with data rates typically in the 8 to 14 kbps range. In recent years there has been a wide
variety of new and modified standards to transition to handheld services that include voice,
texting, data networking, positioning, and Internet access. These standards are variously
known as 2.5G, 3G, 3.5G, 3.75G, and 4G, with current plans to provide data rates up to at
least 100 Mbps. The number of subscribers to wireless services seems to be keeping pace
with the growing power and access provided by modern handheld wireless devices; as of
2010 there were more than five billion cell phone users worldwide.

Satellite systems also depend on RF and microwave technology, and satellites have been
developed to provide cellular (voice), video, and data connections worldwide. Two large
satellite constellations, Iridium and Globalstar, were deployed in the late 1990s to provide
worldwide telephony service. Unfortunately, these systems suffered from both technical
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drawbacks and weak business models and have led to multibillion dollar financial failures.
However, smaller satellite systems, such as the Global Positioning Satellite (GPS) system
and the Direct Broadcast Satellite (DBS) system, have been extremely successful.

Wireless local area networks (WLANS) provide high-speed networking between com-
puters over short distances, and the demand for this capability is expected to remain strong.
One of the newer examples of wireless communications technology is ultra wide band
(UWB) radio, where the broadcast signal occupies a very wide frequency band but with a
very low power level (typically below the ambient radio noise level) to avoid interference
with other systems.

Radar systems find application in military, commercial, and scientific fields. Radar is
used for detecting and locating air, ground, and seagoing targets, as well as for missile
guidance and fire control. In the commercial sector, radar technology is used for air traffic
control, motion detectors (door openers and security alarms), vehicle collision avoidance,
and distance measurement. Scientific applications of radar include weather prediction, re-
mote sensing of the atmosphere, the oceans, and the ground, as well as medical diagnostics
and therapy. Microwave radiometry, which is the passive sensing of microwave energy
emitted by an object, is used for remote sensing of the atmosphere and the earth, as well as
in medical diagnostics and imaging for security applications.

A Short History of Microwave Engineering

Microwave engineering is often considered a fairly mature discipline because the funda-
mental concepts were developed more than 50 years ago, and probably because radar, the
first major application of microwave technology, was intensively developed as far back as
World War I1. However, recent years have brought substantial and continuing developments
in high-frequency solid-state devices, microwave integrated circuits, and computer-aided
design techniques, and the ever-widening applications of RF and microwave technology to
wireless communications, networking, sensing, and security have kept the field active and
vibrant.

The foundations of modern electromagnetic theory were formulated in 1873 by James
Clerk Maxwell, who hypothesized, solely from mathematical considerations, electromag-
netic wave propagation and the idea that light was a form of electromagnetic energy.
Maxwell’s formulation was cast in its modern form by Oliver Heaviside during the period
from 1885 to 1887. Heaviside was a reclusive genius whose efforts removed many of the
mathematical complexities of Maxwell’s theory, introduced vector notation, and provided
a foundation for practical applications of guided waves and transmission lines. Heinrich
Hertz, a German professor of physics and a gifted experimentalist who understood the the-
ory published by Maxwell, carried out a set of experiments during the period 1887-1891
that validated Maxwell’s theory of electromagnetic waves. Figure 1.2 is a photograph of
the original equipment used by Hertz in his experiments. It is interesting to observe that
this is an instance of a discovery occurring after a prediction has been made on theoretical
grounds—a characteristic of many of the major discoveries throughout the history of sci-
ence. All of the practical applications of electromagnetic theory—radio, television, radar,
cellular telephones, and wireless networking—owe their existence to the theoretical work
of Maxwell.

Because of the lack of reliable microwave sources and other components, the rapid
growth of radio technology in the early 1900s occurred primarily in the HF to VHF range.
It was not until the 1940s and the advent of radar development during World War Il that
microwave theory and technology received substantial interest. In the United States, the
Radiation Laboratory was established at the Massachusetts Institute of Technology to de-
velop radar theory and practice. A number of talented scientists, including N. Marcuvitz,
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FIGURE 1.2  Original apparatus used by Hertz for his electromagnetics experiments. (1) 50 MHz

transmitter spark gap and loaded dipole antenna. (2) Wire grid for polarization ex-
periments. (3) Vacuum apparatus for cathode ray experiments. (4) Hot-wire gal-
vanometer. (5) Reiss or Knochenhauer spirals. (6) Rolled-paper galvanometer. (7)
Metal sphere probe. (8) Reiss spark micrometer. (9) Coaxial line. (10-12) Equip-
ment to demonstrate dielectric polarization effects. (13) Mercury induction coil
interrupter. (14) Meidinger cell. (15) Bell jar. (16) Induction coil. (17) Bunsen
cells. (18) Large-area conductor for charge storage. (19) Circular loop receiving
antenna. (20) Eight-sided receiver detector. (21) Rotating mirror and mercury inter-
rupter. (22) Square loop receiving antenna. (23) Equipment for refraction and dielec-
tric constant measurement. (24) Two square loop receiving antennas. (25) Square
loop receiving antenna. (26) Transmitter dipole. (27) Induction coil. (28) Coaxial
line. (29) High-voltage discharger. (30) Cylindrical parabolic reflector/receiver. (31)
Cylindrical parabolic reflector/transmitter. (32) Circular loop receiving antenna.
(33) Planar reflector. (34, 35) Battery of accumulators. Photographed on October
1, 1913, at the Bavarian Academy of Science, Munich, Germany, with Hertz’s as-
sistant, Julius Amman.

Photograph and identification courtesy of J. H. Bryant.

I. 1. Rabi, J. S. Schwinger, H. A. Bethe, E. M. Purcell, C. G. Montgomery, and R. H. Dicke,
among others, gathered for a very intensive period of development in the microwave field.
Their work included the theoretical and experimental treatment of waveguide components,
microwave antennas, small-aperture coupling theory, and the beginnings of microwave net-
work theory. Many of these researchers were physicists who returned to physics research
after the war, but their microwave work is summarized in the classic 28-volume Radiation
Laboratory Series of books that still finds application today.

Communications systems using microwave technology began to be developed soon
after the birth of radar, benefiting from much of the work that was originally done for
radar systems. The advantages offered by microwave systems, including wide bandwidths
and line-of-sight propagation, have proved to be critical for both terrestrial and satellite
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1.2

communications systems and have thus provided an impetus for the continuing develop-
ment of low-cost miniaturized microwave components. We refer the interested reader to
references [1] and [2] for further historical perspectives on the fields of wireless commu-
nications and microwave engineering.

MAXWELL'S EQUATIONS

Electric and magnetic phenomena at the macroscopic level are described by Maxwell’s
equations, as published by Maxwell in 1873. This work summarized the state of electro-
magnetic science at that time and hypothesized from theoretical considerations the exis-
tence of the electrical displacement current, which led to the experimental discovery by
Hertz of electromagnetic wave propagation. Maxwell’s work was based on a large body of
empirical and theoretical knowledge developed by Gauss, Ampere, Faraday, and others. A
first course in electromagnetics usually follows this historical (or deductive) approach, and
it is assumed that the reader has had such a course as a prerequisite to the present material.
Several references are available [3-7] that provide a good treatment of electromagnetic
theory at the undergraduate or graduate level.

This chapter will outline the fundamental concepts of electromagnetic theory that we
will require later in the book. Maxwell’s equations will be presented, and boundary condi-
tions and the effect of dielectric and magnetic materials will be discussed. Wave phenom-
ena are of essential importance in microwave engineering, and thus much of the chapter is
spent on topics related to plane waves. Plane waves are the simplest form of electromag-
netic waves and so serve to illustrate a number of basic properties associated with wave
propagation. Although it is assumed that the reader has studied plane waves before, the
present material should help to reinforce the basic principles in the reader’s mind and per-
haps to introduce some concepts that the reader has not seen previously. This material will
also serve as a useful reference for later chapters.

With an awareness of the historical perspective, it is usually advantageous from a
pedagogical point of view to present electromagnetic theory from the “inductive,” or ax-
iomatic, approach by beginning with Maxwell’s equations. The general form of time-
varying Maxwell equations, then, can be written in “point,” or differential, form as

vXézig—M (1.1a)
ot

vXﬁ=%+j, (1.1b)

V.-D= 0, (llC)

V.B=0. (1.1d)

The MKS system of units is used throughout this book. The script quantities represent
time-varying vector fields and are real functions of spatial coordinates X, y, z, and the time
variable t. These quantities are defined as follows:

£ is the electric field, in volts per meter (V/m).1

H is the magnetic field, in amperes per meter (A/m).

1 As recommended by the IEEE Standard Definitions of Terms for Radio Wave Propagation, |EEE Standard
211-1997, the terms “electric field” and “magnetic field” are used in place of the older terminology of “electric
field intensity” and “magnetic field intensity.”
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D is the electric flux density, in coulombs per meter squared (Coul/m?).
B is the magnetic flux density, in webers per meter squared (Wh/m?).
M is the (fictitious) magnetic current density, in volts per meter (V/m?).
J is the electric current density, in amperes per meter squared (A/m?).
p is the electric charge density, in coulombs per meter cubed (Coul/m3).

The sources of the electromagnetic field are the currents M and 7 and the electric
charge density p. The magnetic current M is a fictitious source in the sense that it is
only a mathematical convenience: the real source of a magnetic current is always a loop
of electric current or some similar type of magnetic dipole, as opposed to the flow of an
actual magnetic charge (magnetic monopole charges are not known to exist). The magnetic
current is included here for completeness, as we will have occasion to use it in Chapter 4
when dealing with apertures. Since electric current is really the flow of charge, it can be
said that the electric charge density p is the ultimate source of the electromagnetic field.

In free-space, the following simple relations hold between the electric and magnetic
field intensities and flux densities:

B = poH, (1.2a)
D = eof, (1.2b)

where 119 = 47 x 10~7 henry/m is the permeability of free-space, and €g = 8.854 x 1012
farad/m is the permittivity of free-space. We will see in the next section how media other
than free-space affect these constitutive relations.

Equations (1.1a)—(1.1d) are linear but are not independent of each other. For instance,
consider the divergence of (1.1a). Since the divergence of the curl of any vector is zero
[vector identity (B.12), from Appendix B], we have

V-Vx5_=0=—%(v-5’)—v-/\;t.

Since there is no free magnetic charge, V - M = 0, which leads to V - B = 0, or (1.1d).
The continuity equation can be similarly derived by taking the divergence of (1.1b), giving

- ap
V-J+ o =0, (1.3)
where (1.1c) was used. This equation states that charge is conserved, or that current is
continuous, since V - 7 represents the outflow of current at a point, and dp/dt represents
the charge buildup with time at the same point. It is this result that led Maxwell to the
conclusion that the displacement current density D/at was necessary in (1.1b), which
can be seen by taking the divergence of this equation.
The above differential equations can be converted to integral form through the use of
various vector integral theorems. Thus, applying the divergence theorem (B.15) to (1.1c)
and (1.1d) yields

D . d5 = dv = Q, 1.4
S’DS/\‘/,OU Q (1.4)

B-ds=0, (1.5)
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FIGURE 1.3 The closed contour C and surface Sassociated with Faraday’s law.

where Q in (1.4) represents the total charge contained in the closed volume V (enclosed
by a closed surface S). Applying Stokes’ theorem (B.16) to (1.1a) gives

fé-drz—ifé-dé—/&t-ds (1.6)
c ot Js s

which, without the M term, is the usual form of Faraday’s law and forms the basis for
Kirchhoff’s voltage law. In (1.6), C represents a closed contour around the surface S, as
shown in Figure 1.3. Ampere'slaw can be derived by applying Stokes’ theorem to (1.1b):

yfﬂ-dl‘:ifﬁ-dﬂfj.ds:3/15~d§+z, (1.7

where 7 = fsj -ds is the total electric current flow through the surface S. Equations
(1.4)—(1.7) constitute the integral forms of Maxwell’s equations.

The above equations are valid for arbitrary time dependence, but most of our work will
be involved with fields having a sinusoidal, or harmonic, time dependence, with steady-
state conditions assumed. In this case phasor notation is very convenient, and so all field
quantities will be assumed to be complex vectors with an implied e/“! time dependence
and written with roman (rather than script) letters. Thus, a sinusoidal electric field polarized
in the X direction of the form

E(X, Y,z t) = RA(X, Y, Z) c0s (wt + @), (1.8)

where A is the (real) amplitude, w is the radian frequency, and ¢ is the phase reference of
the wave att = 0, has the phasor for

E(X, y. 2) = RA(X, Y, 2)€/?. (1.9

We will assume cosine-based phasors in this book, so the conversion from phasor quanti-
ties to real time-varying quantities is accomplished by multiplying the phasor by el“! and
taking the real part:

E(X, Y, z, t) = Re{E(x, vy, 2)el“'}, (1.10)

as substituting (1.9) into (1.10) to obtain (1.8) demonstrates. When working in phasor
notation, it is customary to suppress the factor e/t that is common to all terms.

When dealing with power and energy we will often be interested in the time average of
a quadratic quantity. This can be found very easily for time harmonic fields. For example,
the average of the square of the magnitude of an electric field, given as

€ = REq cos(wt + ¢1) + YE5 cos(wt + ¢2) + 2E5 cos(wt + ¢3), (1.11)
has the phasor form

E = XE1el® + YE el + 2E3el%3 (1.12)
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can be calculated as

- 17T -
|5|avg=?f0 £.Edt

1 T
= ?/ [E2 cos?(wt + ¢1) + E3 cos?(wt + ¢) + E5 cos?(wt + ¢3)] dt
0

1 _
= 5(Ef+ B} + Bf) = 5B =

N =

E.E* (1.13)

N =

Then the root-mean-square (rms) value is |E|ms = |E|/+/2.

J(x, y, 2) Alm? M(X, Y, 2) V/m?

& &

zZ yA
y y
= = X = X
Ji(x, y) A/m Mg(%, y) V/m
J(x, v, 2) = J(x, y) 8(z—z,) AIm? M(x, y, 2) = Mg(x, y) 8(z—2,) V/m?
(b)
VA yA
y y
X o(x) A XVp(%) V
—_— —_—
X X
306 ¥, 2) = X109 8(y o) 8(z—25) Alm? M(X, Y, 2) = XVp(x) 8(y — Yo) 8(2—2;) V/m?
(©
V4 Z
y
Il A-m VIV-m
——> ——>
(%01 Yor Z0) (%01 Yor Z0)
1 X 1 X
J(%, Y, 2) = XUS(x —X%o) 8y —Yo) 8(z—275) Alm? M(X, Y, 2) = XVI3(X —Xo) 8(y — Yo) (2 —Z) V/m?
(@
FIGURE 14

Avrbitrary volume, surface, and line currents. (a) Arbitrary electric and magnetic vol-
ume current densities. (b) Arbitrary electric and magnetic surface current densities
in the z = zp plane. (c) Arbitrary electric and magnetic line currents. (d) Infinitesi-
mal electric and magnetic dipoles parallel to the x-axis.
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1.3

Assuming an et time dependence, we can replace the time derivatives in (1.1a)-
(1.1d) with jw. Maxwell’s equations in phasor form then become

VxE=—-jowB—-M, (1.14a)
VxH=jwD+J, (1.14b)
V.-D=p, (1.14c)
V.-B= (1.14d)

The Fourier transform can be used to convert a solution to Maxwell’s equations for an
arbitrary frequency w into a solution for arbitrary time dependence.

The electric and magnetic current sources, J and M, in (1.14) are volume current
densities with units A/m? and V/m?2. In many cases, however, the actual currents will be in
the form of a current sheet, a line current, or an infinitesimal dipole current. These special
types of current distributions can always be written as volume current densities through
the use of delta functions. Figure 1.4 shows examples of this procedure for electric and
magnetic currents.

FIELDS IN MEDIA AND BOUNDARY CONDITIONS

In the preceding section it was assumed that the electric and magnetic fields were in free-
space, with no material bodies present. In practice, material bodies are often present; this
complicates the analysis but also allows the useful application of material properties to
microwave components. When electromagnetic fields exist in material media, the field
vectors are related to each other by the constitutive relations.

For a dielectric material, an applied electric field E causes the polarization of the
atoms or molecules of the material to create electric dipole moments that augment the
total displacement flux, D. This additional polarization vector is called Pe, the electric
polarization, where

D = ¢E + Pe. (1.15)

In a linear medium the electric polarization is linearly related to the applied electric field
as

Pe = g xeE, (1.16)
where xe, which may be complex, is called the electric susceptibility. Then,
D = ¢E + Po = ¢o(1 + xe)E = €E, (1.17)
where
e=¢ —je" =1+ xe) (1.18)

is the complex permittivity of the medium. The imaginary part of ¢ accounts for loss in
the medium (heat) due to damping of the vibrating dipole moments. (Free-space, having a
real ¢, is lossless.) Due to energy conservation, as we will see in Section 1.6, the imaginary
part of ¢ must be negative (¢” positive). The loss of a dielectric material may also be
considered as an equivalent conductor loss. In a material with conductivity o, a conduction
current density will exist:

J=0E, (1.19)
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which is Ohm's law from an electromagnetic field point of view. Maxwell’s curl equation
for H in (1.14b) then becomes

VxH=jowD+J

= jweE +0E

= jwe'E + (we” +0)E

i I s 1 z —

= Jw(e je Jw)E, (1.20)

where it is seen that loss due to dielectric damping (we”) is indistinguishable from conduc-
tivity loss (o). The term we” + o can then be considered as the total effective conductivity.
A related quantity of interest is the loss tangent, defined as

1

tns = 2<% (1.21)

we
which is seen to be the ratio of the real to the imaginary part of the total displacement
current. Microwave materials are usually characterized by specifying the real relative per-
mittivity (the dielectric constant),2 e, with €’ = ¢ €g, and the loss tangent at a certain fre-
quency. These properties are listed in Appendix G for several types of materials. It is useful
to note that, after a problem has been solved assuming a lossless dielectric, loss can eas-
ily be introduced by replacing the real € with a complex e = ¢’ — je”’ =€’(1 — jtané) =
coer (1 — j tan é).

In the preceding discussion it was assumed that P was a vector in the same direction
as E. Such materials are called isotropic materials, but not all materials have this property.
Some materials are anisotropic and are characterized by a more complicated relation be-
tween Pe and E, or D and E. The most general linear relation between these vectors takes
the form of a tensor of rank two (a dyad), which can be written in matrix form as

Dy €xx €xy €xz Ex Ex
Dy = ny Eyy Gyz Ey = [E] Ey . (122)
D, €zx  €zy €zz E; E;

It is thus seen that a given vector component of E gives rise, in general, to three components
of D. Crystal structures and ionized gases are examples of anisotropic dielectrics. For a
linear isotropic material, the matrix of (1.22) reduces to a diagonal matrix with elements €.

An analogous situation occurs for magnetic materials. An applied magnetic field may
align magnetic dipole moments in a magnetic material to produce a magnetic polarization
(or magnetization) Pn,. Then,

B = uo(H + Pm). (1.23)
For a linear magnetic material, Py, is linearly related to H as
Pm = xmH, (1.24)
where xm is a complex magnetic susceptibility. From (1.23) and (1.24),

B=po(l+ xmH = uH, (1.25)

2 The IEEE Standard Definitions of Terms for Radio Wave Propagation, |[EEE Sandard 211-1997, suggests
that the term “relative permittivity” be used instead of “dielectric constant.” The |IEEE Sandard Definitions of
Terms for Antennas, |EEE Standard 145-1993, however, still recognizes “dielectric constant.” Since this term
is commonly used in microwave engineering work, it will occasionally be used in this book.
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where 1 = wo(1+ xm) = ' — ju” is the complex permeability of the medium. Again,
the imaginary part of xm or u accounts for loss due to damping forces; there is no magnetic
conductivity because there is no real magnetic current. As in the electric case, magnetic
materials may be anisotropic, in which case a tensor permeability can be written as

By MUxx Mxy Mxz Hx Hx
By = | Kyx MHyy Hyz Hy = [u] Hy . (1.26)
B, Hzx  Mzy Mzz H; H;

An important example of anisotropic magnetic materials in microwave engineering is the
class of ferrimagnetic materials known as ferrites; these materials and their applications
will be discussed further in Chapter 9.

If linear media are assumed (e, u not depending on E or H), then Maxwell’s equa-
tions can be written in phasor form as

VxE=—jouH —M, (1.27a)
VxH=jweE+ 1], (1.27h)
V.D= 0, (1270)
V.-B=0 (1.27d)
The constitutive relations are
D =¢E, (1.28a)
B=uH, (1.28b)

where € and © may be complex and may be tensors. Note that relations like (1.28a) and
(1.28b) generally cannot be written in time domain form, even for linear media, because of
the possible phase shift between D and E, or B and H. The phasor representation accounts
for this phase shift by the complex form of € and w.

Maxwell’s equations (1.27a)—(1.27d) in differential form require known boundary val-
ues for a complete and unique solution. A general method used throughout this book is to
solve the source-free Maxwell equations in a certain region to obtain solutions with un-
known coefficients and then apply boundary conditions to solve for these coefficients. A
number of specific cases of boundary conditions arise, as discussed in what follows.

Fields at a General Material Interface

Consider a plane interface between two media, as shown in Figure 1.5. Maxwell’s equa-
tions in integral form can be used to deduce conditions involving the normal and tangential

Medium 2: e,, u, Mg

\an
\Bn 1

FIGURE 1.5 Fields, currents, and surface charge at a general interface between two media.
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Medium 2

Medium 1 TD

FIGURE 1.6 Closed surface Sfor equation (1.29).

fields at this interface. The time-harmonic version of (1.4), where Sis the closed “pillbox”-
shaped surface shown in Figure 1.6, can be written as

j£f)~d§:/ p dv. (1.29)
S \Y

In the limitas h — 0, the contribution of Dy, through the sidewalls goes to zero, so (1.29)
reduces to

ASDyn — ASD1p = A Sps,
or
Don — D1n = ps, (1.30)
where ps is the surface charge density on the interface. In vector form, we can write
fi-(Dy — D1) = ps. (1.31)
A similar argument for B leads to the result that

A By =1

o
=

(1.32)

because there is no free magnetic charge.
For the tangential components of the electric field we use the phasor form of (1.6),

fE-df:-jw/l?dS—fl\?Ldé, (1.33)
C S S

in connection with the closed contour C shown in Figure 1.7. In the limit as h — 0, the
surface integral of B vanishes (because S= hA¢ vanishes). The contribution from the
surface integral of M, however, may be nonzero if a magnetic surface current density Ms
exists on the surface. The Dirac delta function can then be used to write

M = Mss(h), (1.34)
where h is a coordinate measured normal from the interface. Equation (1.33) then gives

ALE{1 — ALEy = —ALMg,

~ Medium 2
E, n
12 LFL‘_\ 0060008 5”
—
Fu T ~—Al—> Medium 1

FIGURE 1.7  Closed contour C for equation (1.33).
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or
Et1 — Ero = —Mes, (1.35)
which can be generalized in vector form as
(E2 — E1) x A = Ms. (1.36)
A similar argument for the magnetic field leads to
A x (Hy — Hp) = Js, (1.37)

where Js is an electric surface current density that may exist at the interface. Equations
(1.31), (1.32), (1.36), and (1.37) are the most general expressions for the boundary condi-
tions at an arbitrary interface of materials and/or surface currents.

Fields at a Dielectric Interface

At an interface between two lossless dielectric materials, no charge or surface current den-
sities will ordinarily exist. Equations (1.31), (1.32), (1.36), and (1.37) then reduce to

A-Dy =Dy, (1.38a)
fi-By=nA-By, (1.38b)
Ax E; = A x Ey, (1.38c)
fi x Hy = A x Ha. (1.38d)

In words, these equations state that the normal components of D and B are continuous
across the interface, and the tangential components of E and H are continuous across the
interface. Because Maxwell’s equations are not all linearly independent, the six boundary
conditions contained in the above equations are not all linearly independent. Thus, the
enforcement of (1.38c) and (1.38d) for the four tangential field components, for example,
will automatically force the satisfaction of the equations for the continuity of the normal
components.

Fields at the Interface with a Perfect Conductor (Electric Wall)

Many problems in microwave engineering involve boundaries with good conductors (e.g.,
metals), which can often be assumed as lossless (¢ — o0). In this case of a perfect con-
ductor, all field components must be zero inside the conducting region. This result can
be seen by considering a conductor with finite conductivity (o < co) and noting that the
skin depth (the depth to which most of the microwave power penetrates) goes to zero as
o — oo. (Such an analysis will be performed in Section 1.7.) If we also assume here that
Ms = 0, which would be the case if the perfect conductor filled all the space on one side
of the boundary, then (1.31), (1.32), (1.36), and (1.37) reduce to the following:

A-D = ps, (1.39a)
A-B=0, (1.39b)
AxE=0, (1.39c)
AxH=1Js, (1.39d)

where ps and Js are the electric surface charge density and current density, respectively, on
the interface, and fi is the normal unit vector pointing out of the perfect conductor. Such
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a boundary is also known as an electric wall because the tangential components of E are
“shorted out,” as seen from (1.39c), and must vanish at the surface of the conductor.

The Magnetic Wall Boundary Condition

Dual to the preceding boundary condition is the magnetic wall boundary condition, where
the tangential components of H must vanish. Such a boundary does not really exist in
practice but may be approximated by a corrugated surface or in certain planar transmission
line problems. In addition, the idealization that A x H = 0 at an interface is often a con-
venient simplification, as we will see in later chapters. We will also see that the magnetic
wall boundary condition is analogous to the relations between the voltage and current at
the end of an open-circuited transmission line, while the electric wall boundary condition
is analogous to the voltage and current at the end of a short-circuited transmission line.
The magnetic wall condition, then, provides a degree of completeness in our formulation
of boundary conditions and is a useful approximation in several cases of practical interest.
The fields at a magnetic wall satisfy the following conditions:

Ai-D=0, (1.40a)
Ai-B=0, (1.40b)
A x E = —Ms, (1.40c)
AxH=0, (1.40d)

where fi is the normal unit vector pointing out of the magnetic wall region.

The Radiation Condition

When dealing with problems that have one or more infinite boundaries, such as plane
waves in an infinite medium, or infinitely long transmission lines, a condition on the fields
at infinity must be enforced. This boundary condition is known as the radiation condition
and is essentially a statement of energy conservation. It states that, at an infinite distance
from a source, the fields must either be vanishingly small (i.e., zero) or propagating in an
outward direction. This result can easily be seen by allowing the infinite medium to contain
a small loss factor (as any physical medium would have). Incoming waves (from infinity)
of finite amplitude would then require an infinite source at infinity and so are disallowed.

THE WAVE EQUATION AND BASIC PLANE WAVE SOLUTIONS

The Helmholtz Equation

In a source-free, linear, isotropic, homogeneous region, Maxwell’s curl equations in phasor
form are

VxE=—jouH, (1.41a)
V x H = jweE, (1.41b)

and constitute two equations for the two unknowns, E and H. As such, they can be solved
for either E or H. Taking the curl of (1.41a) and using (1.41b) gives

VxVxE:—jwquH:wzueE,
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which is an equation for E. This result can be simplified through the use of vector identity
(B.14),VxVxA=V(V-A) - V2 A, which is valid for the rectangular components of
an arbitrary vector A. Then,

V2E 4 o’ueE =0, (1.42)

because V- E =0 in a source-free region. Equation (1.42) is the wave equation, or
Helmholtz equation, for E. An identical equation for H can be derived in the same manner:

V?H + w?ueH = 0. (1.43)

A constant k = w,/ji€ is defined and called the propagation constant (also known as the
phase constant, or wave number), of the medium; its units are 1/m.

As a way of introducing wave behavior, we will next study the solutions to the above
wave equations in their simplest forms, first for a lossless medium and then for a lossy
(conducting) medium.

Plane Waves in a Lossless Medium

In alossless medium, € and w are real numbers, and so K is real. A basic plane wave solution
to the above wave equations can be found by considering an electric field with only an X
component and uniform (no variation) in the x and y directions. Then, 3/9x = d/dy = 0,
and the Helmholtz equation of (1.42) reduces to

9%E
" — +KEx=0. (1.44)
The two independent solutions to this equation are easily seen, by substitution, to be of the
form
Ex(z) = Ete 1K 4 E-elk? (1.45)

where E™ and E™ are arbitrary amplitude constants.
The above solution is for the time harmonic case at frequency w. In the time domain,
this result is written as

Ex(z, 1) = ET cos(wt — kz) + E~ cos(wt + k2), (1.46)

where we have assumed that E™ and E~ are real constants. Consider the first term in
(1.46). This term represents a wave traveling in the +z direction because, to maintain a
fixed point on the wave (wt — kz = constant), one must move in the +z direction as time
increases. Similarly, the second term in (1.46) represents a wave traveling in the negative z
direction—hence the notation E* and E~ for these wave amplitudes. The velocity of the
wave in this sense is called the phase velocity because it is the velocity at which a fixed
phase point on the wave travels, and it is given by

dz d (ot - constant 1) 1 (1.47)
v —_— = - = .
PTGt T dt k kK e
In free-space, we have vp = 1/,/to€0 = C = 2.998 x 108 mi/sec, which is the speed of

light.
The wavelength, A, is defined as the distance between two successive maxima (or
minima, or any other reference points) on the wave at a fixed instant of time. Thus,

(wt — kz) — [wt — k(z+ 1)] = 27,
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SO

(1.48)

. 2 2mwvp vp
Tk w fr

A complete specification of the plane wave electromagnetic field should include the
magnetic field. In general, whenever E or H is known, the other field vector can be readily
found by using one of Maxwell’s curl equations. Thus, applying (1.41a) to the electric field
of (1.45) gives Hy = H; =0, and

Hy = 125 _ L _ gk, (1.49)
o 9z n

where n = wu /K = /iu/€ is known as the intrinsic impedance of the medium. The ratio
of the E and H field components is seen to have units of impedance, known as the wave
impedance; for planes waves the wave impedance is equal to the intrinsic impedance of the
medium. In free-space the intrinsic impedance is 7o = /110/€0 = 377 2. Note that the E
and H vectors are orthogonal to each other and orthogonal to the direction of propagation
(£2); this is a characteristic of transverse electromagnetic (TEM) waves.

EXAMPLE 1.1 BASIC PLANE WAVE PARAMETERS

A plane wave propagating in a lossless dielectric medium has an electric field
given as & = Eg cos(wt — Bz) with a frequency of 5.0 GHz and a wavelength
in the material of 3.0 cm. Determine the propagation constant, the phase velocity,
the relative permittivity of the medium, and the wave impedance.

Solution ) )
From (1.48) the propagation constant is k = TN = O_g3 =209.4 m™%, and from
(1.47) the phase velocity is '
27 f
vp = % - ”T = 2f = (0.03) (5 x 10%) = 1.5 x 10% m/sec.

This is slower than the speed of light by a factor of 2.0. The relative permittivity
of the medium can be found from (1.47) as

2 8\ 2
c 30x1
o =(2) = (35) =40
The wave impedance is

n=no/eé = = 1885 m

377
/4.0
Plane Waves in a General Lossy Medium

Now consider the effect of a lossy medium. If the medium is conductive, with a conductiv-
ity o, Maxwell’s curl equations can be written, from (1.41a) and (1.20) as

VxE=—jouH, (1.50a)
V x H = jweE + oE. (1.50b)
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The resulting wave equation for E then becomes
V2E + a)zue(l —j 1) E=o0, (1.51)
we

where we see a similarity with (1.42), the wave equation for E in the lossless case. The
difference is that the quantity k? = w?ue of (1.42) is replaced by w?ue[l — j (o/we)] in
(1.51). We then define a complex propagation constant for the medium as

. . .o
y=oa+ |B=|wJue 1—1& (1.52)

where « is the attenuation constant and g is the phase constant. If we again assume an
electric field with only an X component and uniform in x and y, the wave equation of
(1.51) reduces to

% —y2Ex =0, (1.53)
which has solutions
Ex(2) = Ete 724+ E- €2 (1.54)
The positive traveling wave then has a propagation factor of the form
e Vi = g ¥Zg iFZ
which in the time domain is of the form
e %% cos(wt — B2).

We see that this represents a wave traveling in the +z direction with a phase velocity
vp = w/B, awavelength A = 2r/8, and an exponential damping factor. The rate of decay
with distance is given by the attenuation constant, «. The negative traveling wave term of
(1.54) is similarly damped along the —z axis. If the loss is removed, o = 0, and we have
y =jkanda =0,8 =k.

As discussed in Section 1.3, loss can also be treated through the use of a complex
permittivity. From (1.52) and (1.20) with o = 0 but e = ¢’ — j€” complex, we have that

y = joJue = jK= jo/ne’ (1 — jtans), (1.55)

where tan§ = €” /¢’ is the loss tangent of the material.
The associated magnetic field can be calculated as
— .
Hy= 2% _ TV (grevz -2, (1.56)
wi 0Z Wl

The intrinsic impedance of the conducting medium is now complex,
jou
n=-—"

14

but is still identified as the wave impedance, which expresses the ratio of electric to mag-
netic field components. This allows (1.56) to be rewritten as

, (1.57)

1
Hy = =(ETe 7 — E"€%). (1.58)
n

Note that although n of (1.57) is, in general, complex, it reduces to the lossless case of

n=4+/u/e wheny = jk = jo./1t€.
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Plane Waves in a Good Conductor

Many problems of practical interest involve loss or attenuation due to good (but not perfect)
conductors. A good conductor is a special case of the preceding analysis, where the con-
ductive current is much greater than the displacement current, which means that o > we.
Most metals can be categorized as good conductors. In terms of a complex ¢, rather than
conductivity, this condition is equivalent to €” > ¢’. The propagation constant of (1.52)
can then be adequately approximated by ignoring the displacement current term, to give

y:a+jﬁ:jw¢ﬁ/j%=(1+j)/%. (1.59)

The skin depth, or characteristic depth of penetration, is defined as

1 2
Sg=—= | —. (1.60)
o wuo

Thus the amplitude of the fields in the conductor will decay by an amount 1/e, or 36.8%,
after traveling a distance of one skin depth, because e %% = e *% = e~1. At microwave
frequencies, for a good conductor, this distance is very small. The practical importance of
this result is that only a thin plating of a good conductor (e.g., silver or gold) is necessary
for low-loss microwave components.

EXAMPLE 1.2 SKIN DEPTH AT MICROWAVE FREQUENCIES

Compute the skin depth of aluminum, copper, gold, and silver at a frequency of
10 GHz.

Solution
The conductivities for these metals are listed in Appendix F. Equation (1.60) gives
the skin depths as

so_ |2 _ |t _ 1 \/T
* " Vouo \rfuoo | 71009 @4r x 10-7)V o
=5.03 x 103\/1.
o

1

For aluminum: 85 = 5. 1078 /———— =814 x10"'m.

or aluminum: s = 5.03 x 10 3816 < 107 8.14 x 107 'm
1

F © 8s=5.03x10"3/ =6.60 x 10~ 'm.

or copper s X 5813 < 107 X m

1 —

1

. -3/ -7
For gold: 8s =5.03 x 10 1008 X107 = 7.86 x 107 'm.
For silver: 8s = b. 1‘3,/—_— 40 x 10~ 'm.
or silver s =5.03 x 10 5173 < 107 6.40 x 10

These results show that most of the current flow in a good conductor occurs in an
extremely thin region near the surface of the conductor. |
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1.5

TABLE 1.1 Summary of Resultsfor Plane Wave Propagation in Various M edia

Type of Medium

Lossless General Good Conductor

Quantity (" =0 =0) Lossy (€” > € oro > we')
Complex propagation y = jo. i€ y = jo./ L€ y =01+ j)Jouo/2

constant . .o

=joype [1—] e

Phase constant B=k=w/ue B =Im{y} B =Im{y} =Jounos/2

(wave number)
Attenuation constant a=0 o = Re{y} a =Rely} = Jouo/2
Impedance n=+u/e=wn/k n=jopuly n=01+Jvou/2o
Skin depth 8s = o0 s =1/a 8s = /2/wuo
Wavelength A=21/B A=21/B A=21/B
Phase velocity vp=w/p vp=w/p vp=w/p

The intrinsic impedance inside a good conductor can be obtained from (1.57) and

(1.59). The result is
jw o o1
UZJ_M:(1+J)/_M=(1+J)—. (1.61)
y 20 08s

Notice that the phase angle of this impedance is 45°, a characteristic of good conductors.
The phase angle of the impedance for a lossless material is 0°, and the phase angle of the
impedance of an arbitrary lossy medium is somewhere between 0° and 45°.

Table 1.1 summarizes the results for plane wave propagation in lossless and lossy
homogeneous media.

GENERAL PLANE WAVE SOLUTIONS

Some specific features of plane waves were discussed in Section 1.4, but we will now
look at plane waves from a more general point of view and solve the wave equation by
the method of separation of variables. This technique will find application in succeeding
chapters. We will also discuss circularly polarized plane waves, which will be important
for the discussion of ferrites in Chapter 9. .
In free-space, the Helmholtz equation for E can be written as
- - 9’E  9°E  9’E -

V2E + K2E — + +— +kE =0, 1.62
ko axz  9y? = 9z2 K9 (1.62)

and this vector wave equation holds for each rectangular component of E:
9’E;  0°E; N I%E;
ax2 Y2 072

where the index i = X, y, or z. This equation can be solved by the method of separation of
variables, a standard technique for treating such partial differential equations. The method
begins by assuming that the solution to (1.63) for, say, Ex, can be written as a product of
three functions for each of the three coordinates:

Ex(X, ¥, 20 = f(X)a(y)h(2). (1.64)

+k2E =0, (1.63)
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Substituting this form into (1.63) and dividing by fgh gives

f// g// /1 2
— + 4+ — =0 1.65
F+ g + kg =0, (1.65)
where the double primes denote the second derivative. The key step in the argument is to
recognize that each of the terms in (1.65) must be equal to a constant because they are
independent of each other. That is, f”/f is only a function of x, and the remaining terms
in (1.65) do not depend on x, so f”/f must be a constant, and similarly for the other terms
in (1.65). Thus, we define three separation constants, ky, ky, and k, such that

P8 =k g'/g=—kj:  h'/h=—k:

or
d?f ’ d’g  , d*h
W'ﬁ'kxf:o; d—y2+kyg=0; @-szhzo. (1.66)
Combining (1.65) and (1.66) shows that
KZ + K + K = k5. (1.67)

The partial differential equation of (1.63) has now been reduced to three separate ordinary
differential equations in (1.66). Solutions to these equations have the forms e=ikxx  exikyy,
and e*1k2Z respectively. As we saw in the previous section, the terms with + signs result
in waves traveling in the negative X, y, or z direction, while the terms with — signs result
in waves traveling in the positive direction. Both solutions are possible and are valid; the
amount to which these various terms are excited is dependent on the source of the fields and
the boundary conditions. For our present discussion we will select a plane wave traveling
in the positive direction for each coordinate and write the complete solution for Ex as

Ex(x, ¥, 2) = Ae™) (oxtoysian, (1.68)
where A is an arbitrary amplitude constant. Now define a wave number vector k as
K = kxX + ky ¥ + k72 = koh. (1.69)

Then from (1.67), |k| = ko, and so i is a unit vector in the direction of propagation. Also
define a position vector as

F=xX+yy+zz (1.70)
then (1.68) can be written as
Ex(X, V, 2) = Ae ikT, (1.71)

Solutions to (1.63) for Ey and E; are, of course, similar in form to Ey of (1.71), but with
different amplitude constants:

Ey(X, Y, 2) = Be KT, (1.72)
Ey(X,y,2) = Ce IKT, (1.73)

The x, y, and z dependences of the three components of E in (1.71)-(1.73) must be the
same (same Ky, ky, kz), because the divergence condition that
dEx 0dEy 0E;

V.-E=— =0
aX + ay + a0z
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must also be applied in order to satisfy Maxwell’s equations, and this implies that Ex, Ey,
and E; must each have the same variation in X, y, and z. (Note that the solutions in the
preceding section automatically satisfied the divergence condition because Ex was the only
component of E, and Ey did not vary with x.) This condition also imposes a constraint on
the amplitudes A, B, and C because if

Eo = AR + By + C2,
we have
E = Ege IKT,
and
V.E=V.(Ee kN = E.ve kT = _jk. Epe kT =0,
where vector identity (B.7) was used. Thus, we must have
k-Ep=0, (1.74)

which means that the electric field amplitude vector Eg must be perpendicular to the direc-

tion of propagation, k. This condition is a general result for plane waves and implies that

only two of the three amplitude constants, A, B, and C, can be chosen independently.
The magnetic field can be found from Maxwell’s equation,

V x E=—jouH, (1.75)
to give
H= L vxE=—vx(Eelk
WO Wi
= =1 Eo x Veﬁjk'r_

wio
= L g x (—jRe I
oo
= _ko A x Eoeijk'r?
wHo
1 o
= —AXx Eoe_lk'r
10

1 _
- —fAxE, (1.76)
1o

where vector identity (B.9) was used in obtaining the second line. This result shows that

the magnetic field vector H lies in a plane normal to k, the direction of propagation, and

that H is perpendicular to E. See Figure 1.8 for an illustration of these vector relations.

The quantity no = /o/€o0 = 377 Q in (1.76) is the intrinsic impedance of free-space.
The time domain expression for the electric field can be found as

Ex,y,z,1) = Re[E(x, y, 20/}
= Re{Epe KTel*!}

= Egcos(k - F — wt), (1.77)
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FIGURE 1.8  Orientation of the E, H, and k = kgf vectors for a general plane wave.

assuming that the amplitude constants A, B, and C contained in Eq are real. If these
constants are not real, their phases should be included inside the cosine term of (1.77). It
is easy to show that the wavelength and phase velocity for this solution are the same as
obtained in Section 1.4.

EXAMPLE 1.3 CURRENT SHEETSAS SOURCES OF PLANE WAVES

An infinite sheet of surface current can be considered as a source for plane waves.
If an electric surface current density Js = JoX exists on the z = 0 plane in free-
space, find the resulting fields by assuming plane waves on either side of the
current sheet and enforcing boundary conditions.

Solution

Since the source does not vary with x or y, the fields will not vary with x or y but
will propagate away from the source in the =z direction. The boundary conditions
to be satisfied at z = 0 are

A x (Ex— Ep) =2x (E; — E1) =0,

A x (Ho — Hy) = 2 x (Hz — Hy) = JX,
where E1, Hj are the fields for z < 0, and Ez, H; are the fields for z > 0. To
satisfy the second condition, H must have a §¥ component. Then for E to be or-

thogonal to H and 2, E must have an X component. Thus the fields will have the
following form:

forz < 0, E; = RAnoelk?,
|:|1 = —9Aejk02,

forz > 0, E, = XBnge 1407,
Hy = )A/Be_jkoz,

where A and B are arbitrary amplitude constants. The first boundary condition,
that Ex is continuous at z = 0, yields A = B, while the boundary condition for
H yields the equation

—-B—-—A=J.
Solving for A, B gives
A=B=-%/2,

which completes the solution. [ |
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Circularly Polarized Plane Waves

The plane waves discussed previously all had their electric field vector pointing in a fixed
direction and so are called linearly polarized waves. In general, the polarization of a plane
wave refers to the orientation of the electric field vector, which may be in a fixed direction
or may change with time.

Consider the superposition of an X linearly polarized wave with amplitude E; and a §
linearly polarized wave with amplitude Ej, both traveling in the positive z direction. The
total electric field can be written as

E = (E1% + Epy)e 1k, (1.78)

A number of possibilities now arise. If E; # 0 and E; = 0, we have a plane wave linearly
polarized in the X direction. Similarly, if E; = 0and E, # 0, we have a plane wave linearly
polarized in the y direction. If E; and E; are both real and nonzero, we have a plane wave
linearly polarized at the angle

For example, if E; = E» = Ep, we have
E = Eo(X + e 1k,
which represents an electric field vector at a 45° angle from the x-axis.
Now consider the case in which E; = j Ey = Eg, where Eg is real, so that
E = Eo(x — jy)eikz, (1.79)
The time domain form of this field is
E(z, t) = Eg[R cos(wt — koz) + Y cos(wt — koz — 7/2)]. (1.80)

This expression shows that the electric field vector changes with time or, equivalently, with
distance along the z-axis. To see this, pick a fixed position, say z = 0. Equation (1.80) then
reduces to

£(0, t) = Eg[Xcoswt + ysinwt], (1.81)

S0 as wt increases from zero, the electric field vector rotates counterclockwise from the
x-axis. The resulting angle from the x-axis of the electric field vector at time t,atz= 0, is

then
_1 [ sinwt
¢ = tan = ot,
cos wt

which shows that the polarization rotates at the uniform angular velocity w. Since the
fingers of the right hand point in the direction of rotation of the electric field vector when
the thumb points in the direction of propagation, this type of wave is referred to as a right-
hand circularly polarized (RHCP) wave. Similarly, a field of the form

E = Eo(X + j§)e ko? (1.82)

constitutes a left-hand circularly polarized (LHCP) wave, where the electric field vector
rotates in the opposite direction. See Figure 1.9 for a sketch of the polarization vectors for
RHCP and LHCP plane waves.

The magnetic field associated with a circularly polarized wave may be found from
Maxwell’s equations or by using the wave impedance applied to each component of the



1.6 Energy and Power 25

£(0,1) £(0,1)

v o

Propagation Propagation
@ (b)

FIGURE 1.9 Electric field polarization for (a) RHCP and (b) LHCP plane waves.

1.6

electric field. For example, applying (1.76) to the electric field of a RHCP wave as given
in (1.79) yields

e _
205~ jypeiior,

which is also seen to represent a vector rotating in the RHCP sense.

ENERGY AND POWER

In general, a source of electromagnetic energy sets up fields that store electric and magnetic
energy and carry power that may be transmitted or dissipated as loss. In the sinusoidal
steady-state case, the time-average stored electric energy in a volume V is given by

1 o
We = —Re/ E. D*dv, (1.83)
4 Jv

which in the case of simple lossless isotropic, homogeneous, linear media, where € is a
real scalar constant, reduces to

W = f/ E.E*do. (1.84)
4 )y
Similarly, the time-average magnetic energy stored in the volume V is
1 -
W = —Re/ H . B*dv, (1.85)
4 Jv
which becomes
Wiy = ﬁ/ H.H*dv, (1.86)
4 Jv

for a real, constant, scalar .

We can now derive Poynting’s theorem, which leads to energy conservation for elec-
tromagnetic fields and sources. If we have an electric source current Js and a conduction
current o E as defined in (1.19), then the total electric current density is J = Js + o E.
Multiplying (1.27a) by H* and multiplying the conjugate of (1.27b) by E yields

H* . (V x E) = —jou|H? = H* - M,
E-(VxH)=E-J*— joe*|E> = E - JX +0|E|? — jwe*|E|?,
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S

FIGURE 110  Avolume V, enclosed by the closed surface S, containing fields E, H, and current
sources Js, Ms.

where Ms is the magnetic source current. Using these two results in vector identity (B.8)
gives

V- (ExH*=H*"(VxE)—E-(VxH
= —0|E + jo(e*|E — ulHP) — (E- I + H* - My).

Now integrate over a volume V and use the divergence theorem:

/V(Exl—i*)dv:%ExH*-dé
\Y S

=—a/ |E|2dv+ja)/ (e*|E|2—M|I:I|2)dv—/(E~J_S*—i—H_*-l\7|s)dv, (1.87)
\Y \% \%

where Siis a closed surface enclosing the volume V, as shown in Figure 1.10. Allowing
e=¢ —je”" and u=pu' — ju” to be complex to allow for loss, and rewriting (1.87),
gives

1 - - - - 1 - - -
——/(E-J:+H*~Ms)dv=—j£ExH*~d§+g/|E|2dv
2 Jv 2 Js 2 Jv

+9/(e”|E|Z+M|H|Z)dU+ 19/(M’|H'|2—e/|é|2>dv. (1.88)
2 \V; 2 \%

This result is known as Poynting’s theorem, after the physicist J. H. Poynting (1852-1914),
and is basically a power balance equation. Thus, the integral on the left-hand side repre-
sents the complex power Ps delivered by the sources Js and Mg inside S:

1 - - - _
P — _§/<E L34 A Me) dv. (1.89)
\Y%

The first integral on the right-hand side of (1.88) represents complex power flow out of the
closed surface S. If we define a quantity S, called the Poynting vector, as

S=E x H*, (1.90)

then this power can be expressed as
1 (- - I R
Poz—ygExH*-ds=—'¢S-ds. (1.91)
2Js 2 Js

The surface Sin (1.91) must be a closed surface for this interpretation to be valid. The
real parts of Ps and Py in (1.89) and (1.91) represent time-average powers.

The second and third integrals in (1.88) are real quantities representing the time-
average power dissipated in the volume V due to conductivity, dielectric, and magnetic
losses. If we define this power as P, we have

Pe=5/ |E|2dv+i’/(e”|é|2+u”|ﬂ|z>dv, (1.92)
2 2



1.6 Energy and Power 27

which is sometimes referred to as Joule's law. The last integral in (1.88) can be seen to be
related to the stored electric and magnetic energies, as defined in (1.84) and (1.86).
With the above definitions, Poynting’s theorem can be rewritten as

In words, this complex power balance equation states that the power delivered by the
sources (Ps) is equal to the sum of the power transmitted through the surface (P),
the power lost to heat in the volume (P;), and 2w times the net reactive energy stored
in the volume.

Power Absorbed by a Good Conductor

Practical transmission lines involve imperfect conductors, leading to attenuation and power
losses, as well as the generation of noise. To calculate loss and attenuation due to an im-
perfect conductor we must find the power dissipated in the conductor. We will show that
this can be accomplished using only the fields at the surface of the conductor, which is a
very helpful simplification when calculating attenuation.

Consider the geometry of Figure 1.11, which shows the interface between a lossless
medium and a good conductor. A field is incident from z < 0, and the field penetrates into
the conducting region, z > 0. The real average power entering the conductor volume de-
fined by the cross-sectional area & at the interface and the surface Sis given from (1.91) as

1 - -
Pavg = ERe/ E x H*-Ads (1.94)
S+S

where fi is a unit normal vector pointing into the closed surface S + S, and E, H are the
fields over this surface. The contribution to the integral in (1.94) from the surface S can
be made zero by proper selection of this surface. For example, if the field is a normally
incident plane wave, the Poynting vector S= E x H* will be in the 2 direction, and so
tangential to the top, bottom, front, and back of S, if these walls are made parallel to the
z-axis. If the wave is obliquely incident, these walls can be slanted to obtain the same
result. If the conductor is good, the decay of the fields away from the interface at z=0
will be very rapid, so the right-hand end of S can be made far enough away from z =0
such that there is negligible contribution to the integral from this part of the surface S. The

\

FIGURE 1.11  An interface between a lossless medium and a good conductor with a closed sur-

face § + Sfor computing the power dissipated in the conductor.
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time-average power entering the conductor through & can then be written as
1 - -
Pavg = —Re/ E x H*. 2ds. (1.95)
2 Js

From vector identity (B.3) we have
2. (ExH*=(@2xE)-H*=nH - H*, (1.96)

since H = A x E/n, as generalized from (1.76) for conductive media, where 7 is the in-
trinsic impedance (complex) of the conductor. Equation (1.95) can then be written as

R _
Pavg = 75 /SO |H|2ds, (1.97)

. 1
RS:Re{n}:Re{(l—H)/%}: /%20_55 (1.98)

is defined as the surface resistance of the conductor. The magnetic field H in (1.97) is
tangential to the conductor surface and needs only to be evaluated at the surface of the con-
ductor; since H: is continuous at z = 0, it does not matter whether this field is evaluated
just outside the conductor or just inside the conductor. In the next section we will show
how (1.97) can be evaluated in terms of a surface current density flowing on the surface of
the conductor, where the conductor can be approximated as perfect.

where

PLANE WAVE REFLECTION FROM A MEDIA INTERFACE

A number of problems to be considered in later chapters involve the behavior of electro-
magnetic fields at the interface of various types of media, including lossless media, lossy
media, a good conductor, or a perfect conductor, and so it is beneficial at this time to study
the reflection of a plane wave normally incident from free-space onto a half-space of an
arbitrary material. The geometry is shown in Figure 1.12, where the material half-space
Z > 0 is characterized by the parameters ¢, u, and o.

General Medium

With no loss of generality we can assume that the incident plane wave has an electric field
vector oriented along the x-axis and is propagating along the positive z-axis. The incident

€0) Mo €1, T

M—
— M— &

FIGURE 1.12  Plane wave reflection from an arbitrary medium; normal incidence.
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fields can then be written, for z < 0, as

E = REqe %07, (1.99a)

_ 1 .

Hi = §— Epe™ %02, (1.99b)
10

where ng is the impedance of free-space and Eg is an arbitrary amplitude. Also in the
region z < 0, a reflected wave may exist with the form

E, = KI'Egetiko?, (1.100a)

_ B .

Hr = —y— Epet ik, (1.100b)
10

where T is the unknown reflection coefficient of the reflected electric field. Note that in
(1.100), the sign in the exponential terms has been chosen as positive, to represent waves
traveling in the —2 direction of propagation, as derived in (1.46). This is also consis-
tent with the Poynting vector § = E; x H = —|T'|?|Eg|?2/n0, which shows power to
be traveling in the —2 direction for the reflected wave.

As shown in Section 1.4, from equations (1.54) and (1.58), the transmitted fields for
z > 0 in the lossy medium can be written as

E; = XTEge 7%, (1.101a)

- YTE

= 2 g2 (1.101b)
n

where T is the transmission coefficient of the transmitted electric field and # is the intrinsic
impedance (complex) of the lossy medium in the region z > 0. From (1.57) and (1.52) the
intrinsic impedance is

n=-—": (1.102)

and the propagation constant is

y=a+ jB=jo/ue/1— jo/we. (1.103)

We now have a boundary value problem where the general form of the fields are known
via (1.99)—(1.101) on either side of the material discontinuity at z = 0. The two unknown
constants I" and T are found by applying boundary conditions for Ex and Hy at z = 0.
Since these tangential field components must be continuous at z = 0, we arrive at the fol-
lowing two equations:

140 =T, (1.104a)
1-T T
=, (1.104b)
no n

Solving these equations for the reflection and transmission coefficients gives

r=1-1m (1.105a)
n+no
2
T—1417=—"_ (1.105h)
n+no

This is a general solution for reflection and transmission of a normally incident wave at the
interface of an arbitrary material, where n is the intrinsic impedance of the material. We
now consider three special cases of this result.
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Lossless Medium

If the region for z > 0 is a lossless dielectric, then o = 0, and 1 and € are real quantities.
The propagation constant in this case is purely imaginary and can be written as

Yy = iB = joJue = jko/urer, (1.106)

where ko = w./io€o is the propagation constant (wave number) of a plane wave in free-
space. The wavelength in the dielectric is

2 2 A
=2 M (1.107)
B oJue  Juré
the phase velocity is
1) 1 c
Vp=— = = , (1.108)
P B /L€ A/ Mr €r

(slower than the speed of light in free-space) and the intrinsic impedance of the dielectric is

4 € V €

For this lossless case, 7 is real, so both I" and T from (1.105) are real, and E and H are in
phase with each other in both regions.

Power conservation for the incident, reflected, and transmitted waves can be demon-
strated by computing the Poynting vectors in the two regions. Thus, for z < 0, the complex
Poynting vector is found from the total fields in this region as

S =ExH*=(E +E) x (H + H)*

1 : : . :

= 7] E0|2—(e"k02 + FeJkOZ)(e—JkoZ _ Fejkoz)*
10
1 : :

= 2|Eo|?—(1 — |T'|? 4 re?lko? _ prg2ikoz)
10
1

= 2|Eg|>=(1 — |T|> 4+ 2j " sin 2ko2), (1.110a)
10

since I is real. For z > 0 the complex Poynting vector is

_ B B E 2 T 2
5 = E x Hr = 2129 1T
n
which can be rewritten, using (1.105), as
_ 4 1
S = 2|EolP—— = 2|Eo[2=(1 — |TP). (1.110b)
2
(n + no) 10

Now observe that at z= 0, S~ = S*, so that complex power flow is conserved across the
interface. Next consider the time-average power flow in the two regions. For z < 0 the
time-average power flow through a 1 m? cross section is

1 1

_ 1
P~ =ZRe{S -2l = Z|Eo)2=(1 — |T]?. 1.111a
> { } 2| ol no( IT'|%) ( )
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and for z > 0, the time-average power flow through a 1 m? cross section is

1 - 1 1
T =ZRe{S"-2} = Z|EP=—1-TH =P, (1.111b)
2 2 10

so real power flow is conserved.

We now note a subtle point. When computing the complex Poynting vector for z < 0 in
(1.110a), we used the total E and H fields. If we compute separately the Poynting vectors
for the incident and reflected waves, we obtain

§ = & x Ar =2/ (1.112a)
10

_ Eol?|T|?

§=E xH'= —2M, (1.112b)

1o

and we see that § + § # S~ of (1.110a). The missing cross-product terms account for
stored reactive energy in the standing wave in the z < 0 region. Thus, the decomposition
of a Poynting vector into incident and reflected components is not, in general, meaningful.
It is possible to define a time-average Poynting vector as (1/2)Re{E x H*}, and in this
case such a definition applied to the individual incident and reflected components will give
the correct result since P = (1/2)|Eo|?/no and P, = (=1/2)|Eo|2|T'|2/n0, S0 P, + P, =
P~. However, this definition will fail to provide meaningful results when the medium for
z < Ois lossy.

Good Conductor

If the region for z > 0 is a good (but not perfect) conductor, the propagation constant can
be written as discussed in Section 1.4:

y=a+]jp= (1+J),/ (1+J)—. (1.113)

Similarly, the intrinsic impedance of the conductor simplifies to

77_(1+])w/ (l+J)— (1.114)

Now the impedance is complex, with a phase angle of 45°, so E and H will be 45° out of
phase, and I" and T will be complex. In (1.113) and (1.114), §s = 1/« is the skin depth, as
defined in (1.60).

For z < 0 the complex Poynting vector can be evaluated at z = 0 to give

§(z=0)=2|E0|2%(1—|r|2+r—r*). (1.115a)
For z > 0 the complex Poynting vector is
St=E x Hf =2 E0|2|T|2ni*e*2“2,
and using (1.105) for T and I" gives

4n

3 1
S = 2B P ————e = 2|E P = (1 — T2 + T — I'")e 2%, (1.115b)
In + nol no

So at the interface at z= 0, S~ = S*, and complex power is conserved.
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Observe that if we were to compute the separate incident and reflected Poynting vec-
tors for z < 0 as

_ _ _ Eol?

S =E xH'= 2—' ol , (1.116a)
10

B B _ E 2 T 2

S =E xH'= _p Bl , (1.116b)

10

we would not obtain § + § = S~ of (1.115a), even for z = 0. It is possible, however, to
consider real power flow in terms of the individual traveling wave components. Thus, the
time-average power flows through a 1 m? cross section are

1 _ 1 1
P~ = ZRe(S -2) = Z|Eo)2=(1 — TP, (1.117a)
2 2 no
1 _ 1 1
Pt = ZRe(S - 2) = Z|Egl2=(1 — [T [%)e 27 (1.117b)
2 2 1o
which shows power balance at z = 0. In addition, P, = |Eg|2/2n0 and P, = —|Eg|2 |T'|?/

2no, sothat B, + P, = P, showing that the real power flow for z < 0 can be decomposed
into incident and reflected wave components.

Notice that S*, the power density in the lossy conductor, decays exponentially accord-
ing to the e~2%Z attenuation factor. This means that power is being dissipated in the lossy
material as the wave propagates into the medium in the +z direction. The power, and also
the fields, decay to a negligibly small value within a few skin depths of the material, which
for a reasonably good conductor is an extremely small distance at microwave frequencies.

The electric volume current density flowing in the conducting region is given as

J = 0Bt = X0 EgTe VZAIm?, (1.118)

and so the average power dissipated in (or transmitted into) a 1 m? cross-sectional volume
of the conductor can be calculated from the conductor loss term of (1.92) (Joule’s law) as

1 B _ 1 1 1 o0
pt = _f Ei- Jdv = _/ f (REeTe 7% - (RoEgTe 7%*dzdydx
2 )y 2 Jx=0Jy=0Jz=0
1 00 E 2 T 2
- —0|E0|2|T|2/ -2z g, — ZIEOFITIY (1.119)
2 72=0 4(:(

Since 1/n = 0ds/(1 + ) = (0/2a)(1 — ]), the real power entering the conductor through
a1 m? cross section [as given by (1/2)Re{S" - 2} at z = 0] can be expressed using (1.115b)
as P! = |Eg|?|T|%(o /4), which is in agreement with (1.119).

Perfect Conductor

Now assume that the region z > 0 contains a perfect conductor. The above results can be
specialized to this case by allowing ¢ — oo. Then, from (1.113), « — oo; from (1.114),
n — 0; from (1.60), §s — 0; and from (1.105a, b), T — 0 and I' — —1. The fields for
z > 0thus decay infinitely fast and are identically zero in the perfect conductor. The perfect
conductor can be thought of as “shorting out” the incident electric field. For z < 0, from
(1.99) and (1.100), the total E and H fields are, since I' = —1,

E =E + E = KEg(e”1%0% — elk0?) = _22iEysinkoz, (1.120a)

I 1 . . 2
H = H + H = §—Eq(e %% 4 el%?) = y = Ej coskoz. (1.120b)
1o 1o
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Observe thatat z= 0, E = 0 and H = §(2/n0) Eo. The Poynting vector for z < 0 is

. - 4 .
S =E x H* = —2j — |Eg|?sinkozcos koz, (1.121)
10

which has a zero real part and thus indicates that no real power is delivered to the perfect
conductor.

The volume current density of (1.118) for the lossy conductor reduces to an infinitely
thin sheet of surface current in the limit of infinite conductivity:

2
= X Ey Am. (1.122)

T a3 5 .2
J=AxH=-2x{J—Egcoskyz
no 7=0 1o

The Surface Impedance Concept

In many problems, particularly those in which the effect of attenuation or conductor loss
is needed, the presence of an imperfect conductor must be taken into account. The sur-
face impedance concept allows us to do this in an approximate, but very convenient and
accurate, manner. We will develop this method from the theory presented in the previous
sections.

Consider a good conductor in the region z > 0. As we have seen, a plane wave nor-
mally incident on this conductor is mostly reflected, and the power that is transmitted into
the conductor is dissipated as heat within a very short distance from the surface. There are
three ways to compute this power.

First, we can use Joule’s law, as in (1.119). For a 1 m? area of conductor surface, the
power transmitted through this surface and dissipated as heat is given by (1.119). Using
(1.105b) for T, (1.114) for n, and the fact that « = 1/8s gives the following result:

o|T>  odhln* _ 8

- ~ , (1.123)
a In+mnol?>  o8sn?

where we have assumed n < ng, which is true for a good conductor. Then the power of
(1.119) can be written as
o|Eol’|TI?  2|Eol?  2|Ep|’Rs

Pt = = = , (1.124)
4o 03577% 77(2J

1+4] 1
Re—Re(n] =Re]— 1l _ * _ [ (1.125)
0ds o0ds 20

is the surface resistance of the metal.

Another way to find the power loss is to compute the power flow into the conductor
using the Poynting vector since all power entering the conductor at z = 0 is dissipated. As
in (1.115b), we have

where

1 a0 & 2|Eol*Re {n}
t
pt — ERe{SF . Z}|z=0 =7,
17+ nol

which for large conductivity becomes, since n < no,
_ 2|Eol?Rs

Pt
ng

: (1.126)

which agrees with (1.124).
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A third method uses an effective surface current density and the surface impedance,
without the need for knowing the fields inside the conductor. From (1.118), the volume
current density in the conductor is

J = %o TEye 7% AIm?, (1.127)
so the total (surface) current flow per unit width in the x direction is
- R o0 Ko TE
Js = / Jdz = XUTEO/ e *dz= X0 O A/m.
0 0 14

Approximating o T /y for large o and using (1.113), (1.105b), and (1.114) gives
oT o8s 2n 08 2(1+j) 2

Y A+ @+ A+])) odsmo o

SO
_ 2E
Jo~ =% Am. (1.128)
no

If the conductivity were infinite, then I' = —1 and a true surface current density of

- R N - - . 1 . 2Ep
J=AxH|0=-2Zx (Hi+ H)|z=0 =XEpg— (1 —-T) =X— A/m
110 1o

would flow, which is identical to the total current in (1.128).
Now replace the exponentially decaying volume current of (1.127) with a uniform
volume current extending a distance of one skin depth. Thus, let

0 for z > 4,
so that the total current flow is the same. Then Joule’s law gives the power lost:

AL R - 2|Eol?R
// | S' dzds = —S/|Js|2ds= LZS (1.130)
7= 2 Js n

0

where [ denotes a surface integral over the conductor surface, in this case chosen as 1 m?.
The result of (1.130) agrees with our previous results for P! in (1.126) and (1.124) and
shows that the power loss in a good conductor can be accurately and simply calculated as

R - R -
= T2 [[15ds = 52 [ 1 s, (113D

in terms of the surface resistance Rs and the surface current Js, or tangentlal magnetlc field
Hy. It is important to realize that the surface current can be found from Js = A x H, as if
the metal were a perfect conductor. This method is very general, applying to fields other
than plane waves and to conductors of arbitrary shape, as long as bends or corners have
radii on the order of a skin depth or larger. The method is also quite accurate, as the only
approximation was that n < 1o, which is a good approximation. As an example, copper at
1 GHz has |n| = 0.012 €2, which is indeed much less than ng = 377 .

EXAMPLE 1.4 PLANE WAVE REFLECTION FROM A CONDUCTOR

Consider a plane wave normally incident on a half-space of copper. If f =1
GHz, compute the propagation constant, intrinsic impedance, and skin depth for
the conductor. Also compute the reflection and transmission coefficients.
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Solution
For copper, o = 5.813 x 107 S/m, so from (1.60) the skin depth is

| 2
8= | —— =2.088 x 10~®m,
wuo

and the propagation constant is, from (1.113),

14

S

= (4.789 + j4.789) x 10° m~1.

The intrinsic impedance is, from (1.114),

14
- 685

= (8.239 + 8.239) x 1073Q,

which is quite small relative to the impedance of free-space (ng = 377 2). The
reflection coefficient is, from (1.105a),

1 —10

r= =1.0£179.99°
n+no
(practically that of an ideal short circuit), and the transmission coefficient is
2
T=—"" —6.181x1075/45° u
n+no

OBLIQUE INCIDENCE AT A DIELECTRIC INTERFACE

We continue our discussion of plane waves by considering the problem of a plane wave
obliquely incident on a plane interface between two lossless dielectric regions, as shown in
Figure 1.13. There are two canonical cases of this problem: the electric field is either in the
xz plane (parallel polarization) or normal to the xz plane (perpendicular polarization). An
arbitrary incident plane wave, of course, may have a polarization that is neither of these,
but it can be expressed as a linear combination of these two individual cases.

The general method of solution is similar to the problem of normal incidence: we will
write expressions for the incident, reflected, and transmitted fields in each region and match
boundary conditions to find the unknown amplitude coefficients and angles.

X
E,, H,
0, 0 Et, Hy
0, z
E;, H;
€1 Mg €21 M2
Region 1 Region 2

FIGURE 1.13 Geometry for a plane wave obliquely incident at the interface between two dielec-

tric regions.
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Parallel Polarization

In this case the electric field vector lies in the xz plane, and the incident fields can be

written as
E; = Eg(Xcos6; — Zsing)e Jkaxsinti+zcostr) (1.132a)
|:|i — Eyefjkl(xsinewrzcosei)’ (1.132b)
n

where k1 = w,/moer and 01 = /uo/€1 are the propagation constant and impedance of
region 1. The reflected and transmitted fields can be written as

E, = EoI'(RCOS@, + 2sing, e iku(xsindr—zcostr) (1.133a)

|:|r _ —EoI’ ye—jkl(xsiner—zcoser)’ (1.133b)
ni

Ei = EgT (Rcos6; — 2sin6;)e Ike(xsint+zcost) (1.134a)

|:|t _ EoT ye—jkz(xsiné)ﬁzcoset). (1.134b)
12

Here, I" and T are the reflection and transmission coefficients, and k, and », are the prop-
agation constant and impedance of region 2, defined as

ko = w/o€2,  m2 = +/1o/€.

At this point we have I, T, 6, and 6; as unknowns.

We can obtain two complex equations for these unknowns by enforcing the continuity
of Ex and Hy, the tangential field components, at the interface between the two regions at
z = 0. We then obtain

cos g e Jkixsing 4 eag g e ikxsing _ T cog g, g kexsint: (1.135a)
ie—jklxsinei _ Le—jklxsiner — le—jkzxsinat' (1.135b)
n n n2

Both sides of (1.135a) and (1.135b) are functions of the coordinate x. If Ex and Hy are
to be continuous at the interface z = 0 for all x, then this x variation must be the same on
both sides of the equations, leading to the following condition:

ki sin@; = kg sin6y = ko sin 6.
This results in the well-known Snell’s laws of reflection and refraction:

ki sing; = ko sin 6. (1.136b)
The above argument ensures that the phase terms in (1.135) vary with x at the same rate

on both sides of the interface, and so is often called the phase matching condition.
Using (1.136) in (1.135) allows us to solve for the reflection and transmission coeffi-

cients as
C0S Oy — 11 COS H;
po= 220 M (1.137a)
12 COS B¢ + 11 COS 6;
212 COS 6
12220 (1.137b)

- 12 COS 6t + 11 COS6;
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Observe that for normal incidence 6; = 0, we have 6, = 6; = 0, so then
— 2
r— n2 — N1 and T = 12 ’
N2+ n1 n2+m

which is in agreement with the results of Section 1.7.

For this polarization a special angle of incidence, 6y, called the Brewster angle, ex-
ists where I' = 0. This occurs when the numerator of (1.137a) goes to zero (6; = 6p):
12 COS 6 = n1 COS 6, which can be rewritten using

k2
cosh =+/1—sin’6 = [1— k—;sinz(?b,
2

1
JV1+ 61/62'

to give

sinfp = (1.138)
Perpendicular Polarization

In this case the electric field vector is perpendicular to the xz plane. The incident field can
be written as

Ei _ Eoyefik1(xsin9i+20059i)’ (1.139a)
Hi _ E(_)A( cos6; + 2siné, )e—jkl(xsinei +zcos€i)’ (1.139b)
ni

where k1 = w. /o€ and n1 = /uo/€1 are the propagation constant and impedance for
region 1, as before. The reflected and transmitted fields can be expressed as

Er — Eorye*jkl(XSiner*ZCOSGr), (1.140a)

- Eol’ . - i

H = 0 ()A(COSGr +2smer)e—Jkl(xsm&r—zcos@r)’ (1.140b)
m

Et — EoTye_jkZ(XSin9‘+ZC059‘), (1_1413)

= EoT s 5 i — j Ko (X sin6¢+zcos 6r)

Hi = ——(—Xcos6; + 2sinfg)e 1% t v, (1.141b)
N2

with ko = w./mo€2 and n2 = /1uo/€2 being the propagation constant and impedance in
region 2.
Equating the tangential field components Ey and Hy at z = 0 gives

efjleSinei + l—wefjklxsiner — Tefjkzxsinet’ (1142&)
_1 A o o T o
—cosgje tkaxsint 4 _ cosgeikexsing — ___ cosgeikeXsint - (1.142p)
n n n2

By the same phase matching argument that was used in the parallel case, we obtain Snell’s
laws

ki sing; = kg sinf; = ko sin6;

identical to (1.136).
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Using (1.136) in (1.142) allows us to solve for the reflection and transmission coeffi-

cients as
€0s 6, — n1coso
po— 1220 T e (1.143a)
12 COS 6 + 11 COS G
212 COS 6
12220 (1.143b)

- 172 COS B + 11 COS 6

Again, for the normally incident case, these results reduce to those of Section 1.7.
For this polarization no Brewster angle exists where I' = 0, as we can see by examin-
ing the possibility that the numerator of (1.143a) could be zero:

12 COS 6 = 11 COS G,
and using Snell’s law to give
K (n5 — n) = (Kgu3 — kin}) sin® 6.
This leads to a contradiction since the term in parentheses on the right-hand side is identi-

cally zero for dielectric media. Thus, no Brewster angle exists for perpendicular polariza-
tion for dielectric media.

EXAMPLE 1.5 OBLIQUE REFLECTION FROM A DIELECTRIC INTERFACE

Plot the reflection coefficients versus incidence angle for parallel and perpendic-
ular polarized plane waves incident from free-space onto a dielectric region with

€ = 2.55.
Solution
The impedances for the two regions are

n = 3772,

377
m o= = S = 236Q.
Ve /255

We then evaluate (1.137a) and (1.143a) versus incidence angle; the results are
shown in Figure 1.14. |

Total Reflectio and Surface Waves

Snell’s law of (1.136b) can be rewritten as

singy = [ sing. (1.144)
€2

Consider the case (for either parallel or perpendicular polarization) where €1 > €. As 6,
increases, the refraction angle 6; will increase, but at a faster rate than 6; increases. The
incidence angle 6; for which 6; = 90° is called the critical angle, 6., where

sinfe = |2 (1.145)

€1

At this angle and beyond, the incident wave will be totally reflected, as the transmitted
wave will not propagate into region 2. Let us look at this situation more closely for the
case of 6; > 6 with parallel polarization.
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FIGURE 1.14 Reflection coefficient magnitude for parallel and perpendicular polarizations of a

plane wave obliquely incident on a dielectric half-space.

When 6, > 0. (1.144) shows that sin6; > 1, so that cos6; = /1 — sin? 6, must be
imaginary, and the angle 6; loses its physical significance. At this point, it is better to
replace the expressions for the transmitted fields in region 2 with the following:

Ei = EoT L Ez g 1Pxgez (1.1464)
ko ko
- EoT .
He = —20 geifxeez, (1.146b)
n2

The form of these fields is derived from (1.134) after noting that — j kp sin é; is still imag-
inary for sin6; > 1 but — jky cos é; is real, so we can replace sin 6; by_,B/ ko and cos 6; by
— ja/ko. Substituting (1.146b) into the Helmholtz wave equation for H gives

Matching Ex and Hy of (1.146) with the X and § components of the incident and reflected
fields of (1.132) and (1.133) at z = 0 gives

c0s 6 e~ 1XSING | [ o g emikaxsingr _ _k—]aTe*jﬂX, (1.148a)
2
L ikaxsing _ T ckoxsing _ T —jpx (1.148b)
mn n 2

To obtain phase matching at the z = 0 boundary, we must have

kising; = ki sing, = B,
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1.9

which leads again to Snell’s law for reflection, 6; = 6;, and to B8 = ki sin6;. Then « is
determined from (1.147) as

o= /B —1& = Jidsinte — K2, (1.149)

which is seen to be a positive real number since sin? 6, > € /1. The reflection and trans-
mission coefficients can be obtained from (1.148) as
_ (=]ja/k)nz — n1cos b
 (—ja/k)nz +n1c0s6
. 212 COS 6
~ (—ja/ko)mz 4 n1cos6;

(1.150a)

(1.150h)

Since I' is of the form (ja — b)/(ja + b), its magnitude is unity, indicating that all incident
power is reflected.

The transmitted fields of (1.146) show propagation in the x direction, along the inter-
face, but exponential decay in the z direction. Such a field is known as a surface wave?
since it is tightly bound to the interface. A surface wave is an example of a nonuniform
plane wave, so called because it has an amplitude variation in the z direction, apart from
the propagation factor in the x direction.

Finally, it is of interest to calculate the complex Poynting vector for the surface wave
fields of (1.146):

2172 i

S=E xH= [EolIT| (2 Jo + >2£>e‘2“2. (1.151)
12 ka ka

This shows that no real power flow occurs in the z direction. The real power flow in the

x direction is that of the surface wave field, and it decays exponentially with distance into

region 2. So even though no real power is transmitted into region 2, a nonzero field does

exist there, in order to satisfy the boundary conditions at the interface.

SOME USEFUL THEOREMS

Finally, we discuss several theorems in electromagnetics that we will find useful for later
discussions.

The Reciprocity Theorem

Reciprocity is a general concept that occurs in many areas of physics and engineering,
and the reader may already be familiar with the reciprocity theorem of circuit theory. Here
we will derive the Lorentz reciprocity theorem for electromagnetic fields in two different
forms. This theorem will be used later in the book to obtain general properties of network
matrices representing microwave circuits and to evaluate the coupling of waveguides from
current probes and loops, as well as the coupling of waveguides through apertures. There
are a number of other important uses of this powerful concept.

3 Some authors argue that the term “surface wave” should not be used for a field of this type since it exists only
when plane wave fields exist in the z < 0 region, and so prefer the term “surface wave-like” field, or a “forced
surface wave.”
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3

FIGURE 1.15 Geometry for the Lorentz reciprocity theorem.

Consider the two separate sets of sources, J;, My and J,, M, which generate the fields
E1, Hi, and E,, Hy, respectively, in the volume V enclosed by the closed surface S, as
shown in Figure 1.15. Maxwell’s equations are satisfied individually for these two sets of
sources and fields, so we can write

V x E; = —jouH; — Mg, (1.152a)
V x Hy = joweEy + Ji, (1.152b)
V x Ey = —jouHy — My, (1.153a)
V x Hy = jweEy + Jy. (1.153b)

Now consider the quantity V - (E; x Ho — E» x Hy), which can be expanded using vector
identity (B.8) to give

V-(Elx|:|2—E2X|:|1)=J_1-E2—J_2-E1+|\7|2-H_1—|\7|1-|:|2. (1.154)

Integrating over the volume V and applying the divergence theorem (B.15), gives

/V~(E1X |:|2—E2X Hl)dvzf(élx |:|2—E2X |:|1)~dS (1.155)
V S
= [(E2 H- i T+ Fu W Ho- Wiy o
\%

Equation (1.155) represents a general form of the reciprocity theorem, but in practice a
number of special situations often occur leading to some simplification. We will consider
three cases.

Sencloses no sources: Then J; = J» = My = My = 0, and the fields E;, Hy and E», H»
are source-free fields. In this case, the right-hand side of (1.155) vanishes, with the result
that

% El X |:|2 -dS = f Ez X H_1 - ds. (1.156)
S S

This result will be used in Chapter 4 when we demonstrate the symmetry of the impedance
matrix for a reciprocal microwave network.

Sbounds a perfect conductor: For example, Smay be the inner surface of a perfectly con-
ducting closed cavity. Then the surface integral of (1.155) vanishes since E; x Hz - i =
(A x Ep) - Hy [by vector identity (B.3)], and A x Ej is zero on the surface of a perfect
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conductor (similarly for E,). The result is
/ (El . J_z — |:|;|_ . |\7|2) dv = / (Ez . jl — |:|2 . l\7|1)dv. (1.157)
% %

This result is analogous to the reciprocity theorem of circuit theory. In words, this result
states that the system response E; or E; is not changed when the source and observation
points are interchanged. That is, E, (caused by J) at J; is the same as E; (caused by Ji)
at Jo.

Sisa sphere at infinity: In this case the fields evaluated on Sare very far from the sources
and so can be considered locally as plane waves. Then the wave impedance relation H =
A x E/n applies to (1.155) to give

(Elx|:|2—E2X|:|1)~ﬁ:(ﬁxE1)~|:|2—(ﬁXE2)-|:|1

1.- 1. -
=—-H;-Hy— —Hy-H; =0,
n n

so that the result of (1.157) is again obtained. This result can also be obtained for the case
of a closed surface Swhere the surface impedance boundary condition applies.

Image Theory

In many problems a current source (electric or magnetic) is located in the vicinity of a
conducting ground plane. Image theory permits the removal of the ground plane by placing
a virtual image source on the other side of the ground plane. The reader should be familiar
with this concept from electrostatics, so we will prove the result for an infinite current sheet
next to an infinite ground plane and then summarize other possible cases.

Consider the surface current density Js = JsoX parallel to a ground plane, as shown
in Figure 1.16a. Because the current source is of infinite extent and is uniform in the x, y
directions, it will excite plane waves traveling outward from it. The negatively traveling

Ground — «— Source
Plane
T]: =J s0'£
|
0 d Z
(@)
«— Image

_— Source

e

A e ——

(b)

FIGURE 1.16 Illustration of image theory as applied to an electric current source next to a ground
plane. (a) An electric surface current density parallel to a ground plane. (b) The
ground plane of (a) is replaced with image current at z = —d.
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wave will reflect from the ground plane at z = 0 and then travel in the positive direction.
Thus, there will be a standing wave field in the region 0 < z < d and a positively traveling
wave for z > d. The forms of the fields in these two regions can thus be written as

ES = Aelho? — g7 lko7), for0 <z <d, (1.158a)
—A . .

Hy = — (R +e % foro<z<d, (1.158b)
10

ES = Be /ko?, forz > d, (1.159a)
B .

Hy = —elko?, forz > d, (1.159b)
1o

where 79 is the impedance of free-space. Note that the standing wave fields of (1.158) have
been constructed to satisfy the boundary condition that Ex = 0 at z= 0. The remaining
boundary conditions to satisfy are the continuity of E at z = d and the discontinuity in the
H field at z = d due to the current sheet. From (1.36), since Mg = 0,

E; = E;f |2-d, (1.160a)
while from (1.37) we have
J=12x J(Hy = HY)lz=d. (1.160b)
Using (1.158) and (1.159) then gives
2j Asinkod = Be 1kd
and Jg = —Ee*i"Od - 2—Acosk0d,
1o 10
which can be solved for A and B:

—Js0m0 __j d

TS0 o jod
2

B = —jJsor)oSinkod.

So the total fields are

ES = —jJsonoe %9sinkgz,  for0 <z <d, (1.161a)
Hy = Jsoe %% coskoz, for0 <z <d, (1.161b)
ES = —j Jsomo sin kode™ 1Koz forz > d, (1.162a)
Hy™ = —j Jso sinkode™ 1402 forz > d. (1.162b)

Now consider the application of image theory to this problem. As shown in Figure
1.16b, the ground plane is removed and an image source of —Js is placed at z= —d. By
superposition, the total fields for z > 0 can be found by combining the fields from the two
sources individually. These fields can be derived by a procedure similar to that in the above,
with the following results:

Fields due to source at z = d:

— 320770 g Jko@@=d) forz> d

| (1.163a)
%W)eikoa—d) forz <d,
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Hy:

Fields due to source at z = —d:

EX:

Hy:

_JSO _j _
e lko(z=d)
2
JsO i _
_eJkO(Z d)
2

Jso110 e~ iko(z+d)

J0m0 ko (2
2

%eﬂ' ko(z-+)

- ;So eiko(z+d)

forz>d

(1.163b)
for z < d.
forz> —d

(1.164a)
forz < —d,
forz> —d

(1.164b)
forz < —d.

The reader can verify that this solution is identical to that of (1.161) for 0 < z < d and to
that of (1.162) for z > d, thus verifying the validity of the image theory solution. Note that
image theory only gives the correct fields to the right of the conducting plane. Figure 1.17
shows more general image theory results for electric and magnetic dipoles.

Original
Geometry
7

@

(b)

©

(d)

Image
Equivalent

i

FIGURE 1.17  Electric and magnetic current images. (a) An electric current parallel to a ground

plane. (b) An electric current normal to a ground plane. (c) A magnetic current

parallel to a ground plane. (d) A magnetic current normal to a ground plane.
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PROBLEMS

1.1 Who invented radio? Guglielmo Marconi often receives credit for the invention of modern radio,
but there were several important developments by other workers before Marconi. Write a brief sum-
mary of the early work in wireless during the period of 1865-1900, particularly the work by Mahlon
Loomis, Oliver Lodge, Nikola Tesla, and Marconi. Explain the difference between inductive com-
munication schemes and wireless methods that involve wave propagation. Can the development of
radio be attributed to a single individual? Reference [1] may be a good starting point.

1.2 A plane wave traveling along the x-axis in a polystyrene-filled region with ¢, = 2.54 has an elec-
tric field given by Ey = Eg cos(wt — kx). The frequency is 2.4 GHz, and Eq = 5.0 V/m. Find the
following: (a) the amplitude and direction of the magnetic field, (b) the phase velocity, (c) the wave-
length, and (d) the phase shift between the positions x; = 0.1 m and xo = 0.15 m.

1.3 Show that a linearly polarized plane wave of the form E = Eg(af + by)e*j koZ \vhere a and b are
real numbers, can be represented as the sum of an RHCP and an LHCP wave.

1.4 Compute the Poynting vector for the general plane wave field of (1.76).

1.5 A plane wave is normally incident on a dielectric slab of permittivity ; and thickness d, where d =
Xo/(4/€r) and A is the free-space wavelength of the incident wave, as shown in the accompanying
figure. If free-space exists on both sides of the slab, find the reflection coefficient of the wave reflected
from the front of the slab.

1
W
r UU
€0 €r€0 €0

l«— d —>

| |
0 d z

1.6 Consider an RHCP plane wave normally incident from free-space (z < 0) onto a half-space (z > 0)
consisting of a good conductor. Let the incident electric field be of the form

E = Egk — jy)e1k?,
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17

18

1.9

1.10

111

and find the electric and magnetic fields in the region z > 0. Compute the Poynting vectors for z < 0
and z > 0 and show that complex power is conserved. What is the polarization of the reflected wave?

Consider a plane wave propagating in a lossy dielectric medium for z < 0, with a perfectly conduct-
ing plate at z = 0. Assume that the lossy medium is characterized by € = (5 — j2)¢g, i = g, and
that the frequency of the plane wave is 1.0 GHz, and let the amplitude of the incident electric field be
4VIm at z = 0. Find the reflected electric field for z < 0 and plot the magnitude of the total electric
field for —0.5 <z < 0.

A plane wave at 1 GHz is normally incident on a thin copper sheet of thickness t. (a) Compute the
transmission losses, in dB, of the wave at the air—copper and the copper—air interfaces. (b) If the sheet

is to be used as a shield to reduce the level of the transmitted wave by 150 dB, what is the minimum
sheet thickness?

A uniform lossy medium with ¢ = 3.0, tané = 0.1, and . = g fills the region between z = 0 and
z =20 cm, with a ground plane at z = 20 cm, as shown in the accompanying figure. An incident
plane wave with an electric field

Ei = x100e" 7% V/m

is present at z = 0 and propagates in the +z direction. The frequency is 3.0 GHz.

(@) Compute §, the power density of the incident wave, and &, the power density of the reflected
wave, at z = 0.

(b) Compute the input power density, Sy, at z= 0 from the total fields at z=0. Does S, =
§-57

=30
tand = 0.1

LT

m

0 I=20cm z

Assume that an infinite sheet of electric surface current density Js = JoX A/m is placed on the z = 0
plane between free-space for z < 0 and a dielectric with € = ¢r¢q for z > 0, as in the accompanying
figure. Find the resulting E and H fields in the two regions. HINT: Assume plane wave solutions
propagating away from the current sheet, and match boundary conditions to find the amplitudes, as
in Example 1.3.

€0 €€

s = XJgA/m

0 z

Redo Problem 1.10, but with an electric surface current density of Js = Jof(e_jﬂ)< A/m, where

B < ko
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A parallel polarized plane wave is obliquely incident from free-space onto a magnetic material with
permittivity €g and permeability wour. Find the reflection and transmission coefficients. Does a
Brewster angle exist for this case where the reflection coefficient vanishes for a particular angle of
incidence?

Repeat Problem 1.12 for the perpendicularly polarized case.
An artificial anisotropic dielectric material has the tensor permittivity [¢] given as follows:

1 3] 0
[€]=€0|:—3j 2 0i|
0 0 4
At a certain point in the material the electric field is known to be E = 3% — 29 + 52. What is D at
this point?
The permittivity tensor for a gyrotropic dielectric material is
€r jK 0
[E]=60|:—jlc €r 0]
0 0 1
Show that the transformations
E+ = Ex— ] Ey, D+ = Dx — jDy,
E7=Ex+jEy, D7=Dx+ij,

allow the relation between E and D to be written as

D, =
5 ]-alg]
Dz =

where [¢’] is now a diagonal matrix. What are the elements of [¢’]? Using this result, derive wave
equations for E4 and E_ and find the resulting propagation constants.

Show that the reciprocity theorem expressed in (1.157) also applies to a region enclosed by a closed
surface S, where a surface impedance boundary condition applies.

Consider an electric surface current density of Js = §/Joe_/3XA/m located on the z = d plane. If a
perfectly conducting ground plane is located at z = 0, use image theory to find the total fields for
z> 0.

Let E = Epp + E¢¢3 + EzZ be an electric field vector in cylindrical coordinates. Demonstrate that
it is incorrect to interpret the expression V2E in cylindrical coordinates as pV2 E, + HV2 Eyp +
2V2E; by evaluating both sides of the vector identity V x V x E = V(V - E) — V2E for the given
electric field.



Transmission Line Theory

Transmission line theory bridges the gap between field analysis and basic circuit theory

and therefore is of significant importance in the analysis of microwave circuits and devices.
Aswewill see, the phenomenon of wave propagation on transmission lines can be approached
from an extension of circuit theory or from a specialization of Maxwell’s egquations; we shall
present both viewpoints and show how this wave propagation is described by equations very
similar to those used in Chapter 1 for plane wave propagation.

2.1

THE LUMPED-ELEMENT CIRCUIT MODEL
FOR A TRANSMISSION LINE

The key difference between circuit theory and transmission line theory is electrical size.
Circuit analysis assumes that the physical dimensions of the network are much smaller
than the electrical wavelength, while transmission lines may be a considerable fraction
of awavelength, or many wavelengths, in size. Thus a transmission line is a distributed-
parameter network, where voltages and currents can vary in magnitude and phase over
its length, while ordinary circuit analysis deals with lumped elements, where voltage and
current do not vary appreciably over the physical dimension of the elements.

As shown in Figure 2.1a, a transmission line is often schematically represented as a
two-wire line since transmission lines (for transverse electromagnetic [TEM] wave propa
gation) always have at least two conductors. The piece of line of infinitesimal length Az of
Figure 2.1a can be modeled as a lumped-element circuit, as shown in Figure 2.1b, where
R, L, G, and C are per-unit-length quantities defined as follows:

R = seriesresistance per unit length, for both conductors, in 2/m.
L = seriesinductance per unit length, for both conductors, in H/m.
G = shunt conductance per unit length, in S/m.
C = shunt capacitance per unit length, in F/m.

48
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i(z,t)

—_—
+
v(z, t)
- EEE—
Az z
@
i(z,t) i(z+Az,1)
—_— —_—
o Y'Y o)
v(z,1) GAz — CAz v(z+Az,t)
o o

Az
(b)

FIGURE 2.1  Voltage and current definitions and equivalent circuit for an incremental length of

transmission line. (a) Voltage and current definitions. (b) Lumped-element equiva-
lent circuit.

The series inductance L represents the total self-inductance of the two conductors,
and the shunt capacitance C is due to the close proximity of the two conductors. The
seriesresistance R represents the resistance due to the finite conductivity of the individual
conductors, and the shunt conductance G is due to dielectric loss in the material between
the conductors. R and G, therefore, represent loss. A finite length of transmission line can
be viewed as a cascade of sections of the form shown in Figure 2.1b.

From the circuit of Figure 2.1b, Kirchhoff’s voltage law can be applied to give

di(z, 1)

v(z,t) — RAzi(z,t) — LAz —v(Z+ Az,t) =0, (2.1a)
and Kirchhoff’s current law leads to
d Az, t
i(2.1) — GAZv(Z + Az 1) — CAZVETAZYD Azt =0, (2.1b)

ot

Dividing (2.1a) and (2.1b) by Az and taking the limit as Az — 0 gives the following
differential equations:

v(z,t) . di(z,1)

TE —Ri(z,t) — L TE (2.29)
di(z,1) B av(z,t)

e —Gu(z,t) - C Pt (2.2b)

These are the time domain form of the transmission line equations, also known as the
telegrapher equations.

For the sinusoidal steady-state condition, with cosine-based phasors, (2.2a) and (2.2b)
simplify to

d\;f) = —(R+ job)I @), (2.33)

d('j(zz) — (G + joC)V (2). (2.30)
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Note the similarity in the form of (2.3a) and (2.3b) and Maxwell’s curl equations of (1.41a)
and (1.41b).

Wave Propagation on a Transmission Line

The two equations (2.3a) and (2.3b) can be solved simultaneously to give wave equations
for V(z) and | (2):

v B
rrr it V(z) =0, (2.4a)
d21
dz(22) —y%1(@2) =0, (2.4b)
where
y=a+ jB =R+ joL)(G + joC) (2.5)

is the complex propagation constant, which is a function of frequency. Traveling wave
solutions to (2.4) can be found as

V(z) = V,fe 7E + Vet (2.6a)
(2) = I e "%+ 15e"?, (2.6b)
where the e 7% term represents wave propagation in the +z direction, and the e¥? term

represents wave propagation in the —z direction. Applying (2.34) to the voltage of (2.6a)
givesthe current on the line:

'<Z>:#

- (Vore 7% — Vg er?).
w

Comparison with (2.6b) shows that a characteristic impedance, Zg, can be defined as

Z_R—i—ij_ R+ joL 27
T T, VGt jeC’ :

to relate the voltage and current on the line as follows:

VA _vV-
=70 = (9]
F

Then (2.6b) can be rewritten in the following form:

AV \Vu
1(z2) = 2 e 72— 9 grz, 2.8
(2) 70 74 (2.8

Converting back to the time domain, we can express the voltage waveform as
v(z,t) = V5| cos(wt — Bz + ¢ T)e™*?
+ |V, | cos(wt + Bz + ¢ )e*?, (2.9)

where ¢+ isthe phase angle of the complex voltage V;E. Using arguments similar to those
in Section 1.4, we find that the wavelength on the lineis
2

A= —, 2.10
5 (2.10)
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and the phase velocity is

vp = = = Af. (2.11)

iSRS

The Lossless Line

The above solution isfor ageneral transmission line, including loss effects, and it was seen
that the propagation constant and characteristic impedance were complex. In many practi-
cal cases, however, the loss of the lineis very small and so can be neglected, resulting in a
simplification of the results. Setting R = G = 0in (2.5) gives the propagation constant as

y=a+ jB=]jovLC,
or

B =wvLC, (2.123)
a=0. (2.12b)

As expected for a losdess ling, the attenuation constant « is zero. The characteristic

impedance of (2.7) reduces to
/L
Zo= c (2.13)

which is now a real number. The general solutions for voltage and current on a lossless
transmission line can then be written as

V() = Vgre 17 vy elf, (2.143)
I(z) = Vo g-ipz _ Yo gip (2.14b)
7o 7o . .
The wavelength is
2 2
A= — = , 2.15)
B w+/LC (
and the phase velocity is
w 1
Vp=— = —. 2.16
"7~ Vic (219

FIELD ANALYSIS OF TRANSMISSION LINES

In this section we will rederive the time-harmonic form of the tel egrapher’s equations start-
ing from Maxwell’s equations. We will begin by deriving the transmission line parameters
(R, L, G, C)intermsof the electric and magnetic fields of the transmission line and then
derive the telegrapher equations using these parameters for the specific case of a coaxial
line.

Transmission Line Parameters

Consider a1 m length of a uniform transmission line with fields E and H, as shown in
Figure 2.2, where S isthe cross-sectional surface area of the line. Let the voltage between
the conductors be Voe* 1% and the current be 1,e*152. The time-average stored magnetic
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FIGURE 2.2 Field lines on an arbitrary TEM transmission line.

energy for this 1 m length of line can be written, from (1.86), as

wm:ﬁ/H.H‘*ds,
4 Js
while circuit theory gives Wy, = L|lo|2/4 in terms of the current on the line. We can thus
identify the self-inductance per unit length as

= LZ/ H - H*ds H/m. (2.17)
[lo]“ Js

Similarly, the time-average stored el ectric energy per unit length can be found from (1.84)

as

we:E/E'.E'*ds,
4 Js

while circuit theory gives We = C|V,|?/4, resulting in the following expression for the

capacitance per unit length:

_ €
Vo ?

From (1.131), the power loss per unit length due to the finite conductivity of the metallic
conductorsis

C / E - E*ds F/m. (2.18)
S

P = H - H*de¢

2 C1+C2
(assuming H is tangential to S), while circuit theory gives P = R|1o|%/2, so the series
resistance R per unit length of lineis

Rs

R=—2
[lol* Jey+c,

H - H*dl Q/m. (2.19)
In (2.19), Rs = 1/04s is the surface resistance of the conductors, and C1 + C» represent
integration paths over the conductor boundaries. From (1.92), the time-average power dis-
sipated per unit length in alossy dielectricis

"
Pq = o / E - E*ds,
2 Js

where ¢” istheimaginary part of the complex permittivity e = ¢’ — je” = €/(1 — j tané).
Circuit theory gives Py = G|V,|2/2, so the shunt conductance per unit length can be
written as

CL)E”

G=—"
Vo ?

/ E - E*ds S/m. (2.20)
s
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FIGURE 2.3 Geometry of acoaxia line with surface resistance Rs on the inner and outer

conductors.

EXAMPLE 21 TRANSMISSION LINE PARAMETERSOF A COAXIAL LINE

The fields of atraveling TEM wave inside the coaxial line of Figure 2.3 can be
expressed as

Vop

E= -2
plnb/a

|:| = —IO¢ e_yz,
2rp

where y is the propagation constant of the line. The conductors are assumed to
have a surface resistivity Rs, and the materia filling the space between the con-
ductors is assumed to have acomplex permittivity ¢ = ¢/ — je” and a permeabil-
ity u = wour. Determine the transmission line parameters.

Solution
From (2.17)—(2.20) and the given fields the parameters of the coaxial line can be
calculated as

2

b
w 1 2
L=—-— —pdpd¢ = —Inb/a H/m,
(27)? /¢=o /p:a ,02'0 pa¢ 2 /
6/ 21 b l 27'[6/
C=—"—""7% —pdpdg = F/m,
(Inb/a)2 /(;):o/pza 0277 ¢ Inb/a m

Rs 1 2 q R /1 1
R = — —_— = — | — -1
(2m)? {/</>=Oazad¢+f¢=0 bzbd¢} 21 <a+b> m
27 we”

we 2 b 1
G=— —pdpd¢p = ——— Sm.
(Inb/a)? /¢,=0/,,=a pzp pdo Inb/a m u

Table 2.1 summarizes the parameters for coaxial, two-wire, and parallel plate lines.
Aswewill seeinthe next chapter, the propagation constant, characteristic impedance, and
attenuation of most transmission lines are usually derived directly from afield theory so-
Iution; the approach here of first finding the equivalent circuit parameters (L, C, R, G) is
useful only for relatively simple lines. Nevertheless, it provides a helpful intuitive concept
for understanding the properties of atransmission line and relates atransmission line to its
equivalent circuit model.
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TABLE 2.1 Transmission Line Parametersfor Some Common Lines

COAX TWO-WIRE PARALLEL PLATE
(3

<o

uw, b nd

L —In - — cosh —
2r a <2a> w

2e’ e e'w

C e il
Inb/a cosh~1(D/2a) d

RS 1 1 Rs 2Rs

R RACEY el 8 s
27 <a + b) a w

G 2rwe” Twe” wew
Inb/a cosh~1(D/2a) d

The Telegrapher Equations Derived from Field Analysis
of a Coaxial Line

We now show that the telegrapher equations of (2.3), derived using circuit theory, can
a so be obtained from Maxwell’s equations. We will consider the specific geometry of the
coaxial line of Figure 2.3. Although we will treat TEM wave propagation more generally
in the next chapter, the present discussion should provide someinsight into the relationship
of circuit and field quantities.

A TEM wave on the coaxial line of Figure 2.3 will be characterizedby E; = H, = 0;
furthermore, due to azimuthal symmetry, the fields will have no ¢ variation, so 9/d¢ = 0.
Thefields inside the coaxial line will satisfy Maxwell’s curl equations,

VxE=—jouH, (2.21q)
V x H = jweE, (2.21b)
where e = ¢/ — je” may be complex to allow for alossy dielectric filling. Conductor loss

will be ignored here. A rigorous field analysis of conductor loss can be carried out but at
this point would tend to obscure our purpose; the interested reader is referred to references

[1] and [2].
Expanding (2.21a) and (2.21b) gives the following two vector equations:
3E¢ ABE 190
—p— ——(pEy) = — H, H 2.22
p 5 +o—— 5 +Zp (PEg) jor(pH, + dHy), (2.229)
OHy 0H, .19 . N N
—p—= — ——(pHy) = E Es). 2.22b
o 5 79 +Zp8p(p ¢) = joe(PE, + ¢Eyp) ( )
Since the Z components of these two equations must vanish, it is seen that E, and Hy must
have the forms
f
Ey = ﬂ (2.2339)
0

Hp = ——. (2.23b)
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To satisfy the boundary condition that E; = 0 a p = a, b, we must have E; = 0 every-
where, due to the form of Eg in (2.238). Then from the 6 component of (2.224), it is seen
that H, = 0. With these results, (2.22) can be reduced to

oE .
z
aH
e ek, (2.240)

From the form of Hy in (2.23b) and (2.24a), E,, must be of the form

E, = h@ (2.25)
P
Using (2.23b) and (2.25) in (2.24) gives
D — jong, (2269
z
3%(22) — _jwech(2). (2.26b)

The voltage between the two conductors can be evaluated as

b b
V(@) = / E,(p,2)dp = h(Z)/ d—p =h(2) Ing, (2.27a9)
p p

=a =a P

and the total current on the inner conductor at p = a can be evaluated using (2.23b) as

2
1(2) = / Hy(a, z)ad¢ = 279(2). (2.27b)
0

Then h(z) and g(z) can be eliminated from (2.26) by using (2.27) to give

V(@ i oplnb/a

1(2),
0z 2
1@ e jen 2@
0z = o Je)Inb/a'

Finaly, using theresultsfor L, G, and C for acoaxial line as derived earlier, we obtain the
telegrapher equations as

VD _ L), (2.284)
0z
8Ia(zZ) = (G + joC)V (). (2.280)

This result excludes R, the series resistance, since the conductors were assumed to have
perfect conductivity. A similar analysis can be carried out for other simple transmission
lines.
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2.3

Propagation Constant, Impedance, and Power Flow
for the Lossless Coaxial Line

Equations (2.24a) and (2.24b) for E,, and Hy can be simultaneously solved to yield awave
equation for E,, (or Hg):

PE, | 5

P + o ek, =0, (2.29)
from which it is seen that the propagation constant is y2 = —w?ue, which, for lossless
media, reducesto

B =w/ue = wv_LC, (2.30)

where the last result is from (2.12). Observe that this propagation constant is of the same
form as that for plane waves in a lossless dielectric medium. This is a general result for
TEM transmission lines.

The wave impedance for the coaxial line is defined as Z,, = E,,/Hg, which can be
calculated from (2.24a), assuming an e~ 1A% dependence, to give

E
Zw:H—Z:aI)‘TM:‘/M/GZﬂ, (231)

This wave impedance is seen to be identical to the intrinsic impedance of the medium, 7,
and isagenera result for TEM transmission lines.
The characteristic impedance of the coaxial lineis defined as

EysInb/a ninb/a nlinb/a
ZO_ = = = —_

lo  2mHy 2 e 21’

(2.32)

where the forms for E, and Hy from Example 2.1 have been used. The characteristic
impedance is geometry dependent and will be different for other transmission line config-
urations.

Finally, the power flow (in the z direction) on the coaxia line may be computed from
the Poynting vector as

1 (. - 1 (2 b Vo I * 1
P==|ExH*ds== — 20 sdpde = =Vl X, 2.33
2/5 x zf,l,zofpza 2np2inbjal dP9? = 3Volo 233

aresult that is in clear agreement with circuit theory. This shows that the flow of power
in atransmission line takes place entirely via the electric and magnetic fields between the
two conductors; power is not transmitted through the conductors themselves. As we will
seelater, for the case of finite conductivity, power may enter the conductors, but this power
isthen lost as heat and is not delivered to the load.

THE TERMINATED LOSSLESS TRANSMISSION LINE

Figure 2.4 showsalosslesstransmission lineterminated in an arbitrary load impedance Z .
This problem will illustrate wave reflection on transmission lines, a fundamental property
of distributed systems.

Assume that an incident wave of the form V,; e~ J5? is generated from a source at
z < 0. We have seen that the ratio of voltage to current for such atraveling waveis Zo, the
characteristic impedance of the line. However, when the line is terminated in an arbitrary
load Z| # Zg, theratio of voltageto current at the load must be Z, . Thus, areflected wave



2.3 The Terminated Lossless Transmission Line 57

L V(2,12 +W I,
Zo B VL_
T \
| z
' 0

FIGURE 2.4 A transmission line terminated in aload impedance Z | .

must be excited with the appropriate amplitude to satisfy this condition. The total voltage
on the line can then be written asin (2.14a), as a sum of incident and reflected waves:

V() = Vg e P2 v elfz, (2.34a)
Similarly, the total current on the line is described by (2.14b):

+ V—
l(z) = 2-e P2 —
Zo Zo

The total voltage and current at the load are related by the load impedance, soat z = O we
must have

—0 glfz, (2.34b)

V(@ Vgt + Vg
ZL = © _ i Zo.
1(0) Vo —Vy
Solving for V,;~ gives
_ - ZoVJr

© T Z +Z °

The amplitude of the reflected voltage wave normalized to the amplitude of the incident
voltage wave is defined as the voltage reflection coefficient, I

Vo_ ZL— 2o

N=—"=——. 2.35
Voo ZL+Zo (239
The total voltage and current waves on the line can then be written as
V(z) = V+(e—j/32 + Fejﬂz)’ (236&)
A :
1(2) = =2 (e 3F2 — relf?). (2.36h)
Zo

From these equations it is seen that the voltage and current on the line consist of a super-

position of an incident and a reflected wave; such waves are called standing waves. Only

when I = 0 is there no reflected wave. To obtain I' = 0, the load impedance Z| must be

equal to the characteristic impedance Zq of the transmission line, as seen from (2.35). Such

aload is said to be matched to the line since there is no reflection of the incident wave.
Now consider the time-average power flow along the line at the point z:

1V
Zo

where (2.36) has been used. The middletwo termsin the bracketsare of theform A — A* =
2j Im{A} and so are purely imaginary. This simplifies the result to

1
Paug = SRe(V @)1 @)°} = Re{1— [*e2f2 4 pe2if? _ |2},

1 V+2
Parg = 52 L “1-rp). 237)
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which shows that the average power flow is constant at any point on the line and that the
total power delivered to the load (Pavg) is equal to the incident power (|VO+|2/22()) minus
the reflected power (|V,|2|T'|2/2Z0). If T = 0, maximum power is delivered to the load,
while no power is delivered for |T"| = 1. The above discussion assumes that the generator
is matched, so that there is no re-reflection of the reflected wave fromz < 0.

When the load is mismatched, not all of the available power from the generator is
delivered to the load. This“loss” iscalled return loss (RL), and is defined (in dB) as

RL = —20log|T| dB, (2.38)

so that a matched load (I = 0) has a return loss of co dB (no reflected power), while a
total reflection (]I'| = 1) has areturn loss of 0 dB (all incident power is reflected). Note
that return loss is a nonnegative number for reflection from a passive network.

If theload is matched to theling, I' = 0 and the magnitude of the voltage onthelineis
IV (2)| = |V, |, whichisaconstant. Such alineis sometimes said to be flat. When the load
is mismatched, however, the presence of areflected wave leads to standing waves, and the
magnitude of the voltage on the lineis not constant. Thus, from (2.364),

IV (@)| = Vg7 |11+ Te?IP2| = |V F||1+ re=2I8¢

_ (2.39)
= IV lI1+ [T O7209),

where ¢ = —z isthe positive distance measured from the load at z = 0, and 6 is the phase
of the reflection coefficient (I' = |I"|el?). This result shows that the voltage magnitude
oscillates with position z along the line. The maximum value occurs when the phase term
el (=280 — 1 and is given by

Vimax = V5" [(1 4 [T']). (2.403)
The minimum value occurs when the phase term el @280 — _1 and is given by
Vimin = [Vo' (1 — |T). (2.40b)

As |T"| increases, the ratio of Vimax 10 Vimin increases, so a measure of the mismatch of a
ling, called the standing wave ratio (SWR), can be defined as

Vi 14T

SWR = = .
Vmin 1- |

(2.41)

This quantity is also known as the voltage standing wave ratio and is sometimes identified
as VSWR. From (2.41) it is seen that SWR is a real number such that 1 < SWR < oo,
where SWR = 1 implies amatched load.

From (2.39), it is seen that the distance between two successive voltage maxima (or
minima) is ¢ = 27 /28 = i /2r = 1/2, while the distance between a maximum and a
minimumis ¢ = /2 = 1/4, where 1 isthe wavelength on the transmission line.

The reflection coefficient of (2.35) was defined as the ratio of the reflected to the
incident voltage wave amplitudes at the load (¢ = 0), but this quantity can be generalized
toany point ¢ along theline asfollows. From (2.34a), withz = —¢, theratio of thereflected
component to the incident component is

Vo—e—j/%

_ —2jpe
VeI — '(0)e~2P¢, (2.42)

re) =

where I'(0) is the reflection coefficient at z = 0, as given by (2.35). This result is useful
when transforming the effect of aload mismatch down the line.
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We have seen that the real power flow on the line is a constant (for alossless line) but
that the voltage amplitude, at least for amismatched line, is oscillatory with position on the
line. The perceptive reader may therefore have concluded that the impedance seen looking
into the line must vary with position, and thisisindeed the case. At adistance ¢ = —z from
the load, the input impedance seen looking toward the load is

S, _ VD Vo (P4 Te ) 1+ [e2ip¢
"N T Ve (eIt e ip0) 0 T 1-Te 2t

Zo, (2.43)

where (2.36a,b) have been used for V (z) and 1 (z). A more usable form may be obtained
by using (2.35) for I' in (2.43):

(ZL + Zo)edPt + (2 — Zp)e 1P
°(ZL + Zo)e T = (ZL — Zo)e 17

Z cospl+ jZosSinpe
OZocosﬂZ + jZLsinpe

Z| + jZotanpe
°Zo+izZitanpe’
Thisisan important result giving the input impedance of alength of transmission line with

an arbitrary load impedance. We will refer to thisresult as the transmission line impedance
equation; some special cases will be considered next.

Zin=1Z2

(2.44)

Special Cases of Lossless Terminated Lines

A number of special cases of lossless terminated transmission lines will frequently appear
in our work, so it is appropriate to consider the properties of such cases here.

Consider first the transmission line circuit shown in Figure 2.5, where aline is termi-
nated in a short circuit, Z| = 0. From (2.35) it is seen that the reflection coefficient for
a short circuit load isT" = —1; it then follows from (2.41) that the standing wave ratio is
infinite. From (2.36) the voltage and current on the line are

V(2) = Vg (e71F2 — elf?) = —2jV; sinpz, (2.45a)
vV F ; ; 2V.F
I(z) = =2 (e 1A% 4 elP?) = 220 cospz, 2.45b
@ =~ ( +elP?) 7, 0P (2.45b)
which showsthat V = 0 at the load (as expected, for a short circuit), while the current isa
maximum there. From (2.44), or theratio V (—¢)/1 (—¢), the input impedance is
Zin = jZotan e, (2.45¢c)

which is seen to be purely imaginary for any length ¢ and to take on all values between
+joo and —joo. For example, when ¢ = 0 we have Zj, = 0, but for £ = 1/4 we have
Zin = oo (open circuit). Equation (2.45c) also shows that the impedance is periodic in ¢,

V(@) |
L .12 +W I,
Zo, B V=0 1z =0

| |
4 0 z

FIGURE 25 A transmission line terminated in a short circuit.
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FIGURE 2.6 (@) Voltage, (b) current, and (c) impedance (Rj, = 0 or co) variation along a short-
circuited transmission line.

repeating for multiples of A/2. The voltage, current, and input reactance for the short-
circuited line are plotted in Figure 2.6.

Next consider the open-circuited line shown in Figure 2.7, where Z | = co. Dividing
the numerator and denominator of (2.35) by Z| and alowing Z| — oo shows that the
reflection coefficient for this case is I' = 1, and the standing wave ratio is again infinite.
From (2.36) the voltage and current on the line are

V() = VoJr(Frjng + ejﬂz) =2V, cospz, (2.463)
Vit ; —2jV5"
() = 2 (e 1P2 _glf2)y — =270 qngz, 2.46b
@ =2 )=, sns (2.460)
V(2,12 I, =0
_ ?ﬁ L
Zy, B ' Z =0
S ?_
_| z

FIGURE 2.7 A transmission line terminated in an open circuit.
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FIGURE 2.8 (@) Voltage, (b) current, and (c) impedance (R;, = 0 or co) variation along an open-

circuited transmission line.

which showsthat now | = 0 at the load, as expected for an open circuit, while the voltage
isamaximum. The input impedanceis

Zin= —jZocotpBe, (2.46¢)

which is also purely imaginary for any length, £. The voltage, current, and input reactance
of the open-circuited line are plotted in Figure 2.8.

Now consider terminated transmission lines with some specia lengths. If ¢ = 1/2,
(2.44) shows that

Zin=ZL, (2.47)

meaning that a half-wavelength line (or any multiple of 1/2) does not alter or transform
the load impedance, regardless of its characteristic impedance.

If the line is a quarter-wavelength long or, more generaly, ¢ = 1/4+ni/2, forn =
1, 2, 3,..., (2.44) shows that the input impedance is given by

2
%

Z.
Such alineisknown as a quarter-wave transformer because it has the effect of transform-

ing the load impedance in an inverse manner, depending on the characteristic impedance
of the line. We will study this case more thoroughly in Section 2.5.

Zin= (2.48)
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z
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FIGURE 2.9 Reflection and transmission at the junction of two transmission lines with different

characteristic impedances.

Next consider atransmission line of characteristic impedance Z feeding aline of dif-
ferent characteristic impedance, Z1, as shown in Figure 2.9. If the load line is infinitely
long, or if it isterminated in its own characteristic impedance, so that there are no reflec-
tions from its far end, then the input impedance seen by the feed line is Z1, so that the
reflection coefficient I is

Z1-7
ro 41240

_ . (2.49)
Z1+ Zg

Not al of the incident wave is reflected; some is transmitted onto the second line with a
voltage amplitude given by atransmission coefficient.
From (2.36a) the voltagefor z < O'is

V(@) =V, (e % +Tel??), 7z <0, (2.50a)

where V" isthe amplitude of the incident voltage wave on the feed line. The voltage wave
for z > 0, in the absence of reflections, is outgoing only and can be written as

V(z) =V Te ¥ forz > 0. (2.50b)
Equating these voltages at z = O gives the transmission coefficient, T, as

Z1-Z0 273

T=14+T=1+ = .
Z1+ Zo Z1+ Zo

(2.51)

The transmission coefficient between two pointsin acircuit is often expressed in dB asthe
insertion loss, IL,

IL = —20log T |dB. (2.52)

POINT OF INTEREST: Decibels and Nepers

Often the ratio of two power levels P1 and P, in a microwave system is expressed in decibels
(dB) as

P
1OIogP—l dB.
2

Thus, apower ratio of 2 isequivalent to 3 dB, whileapower ratio of 0.1 isequivalent to —10 dB.
Using power ratios in dB makes it easy to calculate power loss or gain through a series of
components since multiplicative loss or gain factors can be accounted for by adding the loss or
gainin dB for each stage. For example, asignal passing through a 6 dB attenuator followed by
a23 dB amplifier will have an overall gain of 23 — 6 = 17 dB.
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Decibels are used only to represent power ratios, but if Py = V2/Ry and P, = V.2/Ro,
then the resulting power ratio in terms of voltage ratiosis

V2R Vi |R
10log £ -2 — 20l0g -+ [ 2 g,

V2R, V2| Ra

where Rq, Ry aretheload resistancesand V1, V5 are the voltages appearing across these loads.
If the load resistances are equal, then this formula simplifies to

Vv
20logv—1 dB.
2

Therratio of voltages across equal |oad resistances can also be expressed in terms of nepers
(Np) as

V
In -t Np.
Vo

The corresponding expression in terms of powersis
1 P
—In—=— Np,
2 P P

since voltage is proportional to the square root of power. Transmission line attenuation is some-
times expressed in nepers. Since 1 Np corresponds to a power ratio of 2, the conversion between
nepers and decibelsis

1 Np = 10loge? = 8.686 dB.

Absolute power can also be expressed in decibel notation if a reference power level is
assumed. If we let P, = 1 mW, then the power P can be expressed in dBm as

Py
1 mw

Thus a power of 1 mW is equivalent to 0 dBm, while a power of 1 W is equivalent to 30 dBm,
and so on.

10log dBm

THE SMITH CHART

The Smith chart, shown in Figure 2.10, isagraphical aid that can be very useful for solving
transmission line problems. Although there are a number of other impedance and reflec-
tion coefficient charts that can be used for such problems [3], the Smith chart is probably
the best known and most widely used. It was developed in 1939 by P. Smith at the Bell
Telephone Laboratories [4]. The reader might feel that, in this day of personal computers
and computer-aided design (CAD) tools, graphical solutions have no place in modern engi-
neering. The Smith chart, however, is more than just a graphical technique. Besides being
an integral part of much of the current CAD software and test equipment for microwave
design, the Smith chart provides auseful way of visualizing transmission line phenomenon
without the need for detailed numerical calculations. A microwave engineer can develop
agood intuition about transmission line and impedance-matching problems by learning to
think in terms of the Smith chart.

At first glance the Smith chart may seem intimidating, but the key to its understanding
isto realize that it is based on a polar plot of the voltage reflection coefficient, T. Let the
reflection coefficient be expressed in magnitude and phase (polar) form as I' = |I'|el?.
Then the magnitude |I"| is plotted as a radius (|I'| < 1) from the center of the chart, and
theangled (—180° < 6 < 180°) ismeasured counterclockwise from the right-hand side of
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FIGURE 2.10 The Smith chart.

the horizontal diameter. Any passively realizable (|I'| < 1) reflection coefficient can then
be plotted as a unique point on the Smith chart.

The real utility of the Smith chart, however, lies in the fact that it can be used to
convert from reflection coefficients to normalized impedances (or admittances) and vice
versa by using the impedance (or admittance) circles printed on the chart. When dealing
with impedances on a Smith chart, normalized quantities are generally used, which we
will denote by lowercase letters. The normalization constant is usually the characteristic
impedance of the transmission line. Thus, z = Z/Z represents the normalized version of
the impedance Z.

If alossless line of characteristic impedance Zg is terminated with a load impedance
Z| , thereflection coefficient at the load can be written from (2.35) as

_Z|_—1

= 1o IT'|el?, (2.53)

wherez| = Z| /Zp isthe normalized load impedance. This relation can be solved for z_
intermsof I to give [or, from (2.43) with ¢ = 0]

_ 14 rel?

Sl ML L 2.54
1—|Tel? (54
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This complex equation can be reduced to two real equations by writing I' and z|_ in terms

of their real and imaginary parts, ' = I'r 4+ jT,and z. = r_ + jX, giving
o A+ +
S ETTT

Thereal and imaginary parts of thisequation can be separated by multiplying the numerator
and denominator by the complex conjugate of the denominator to give

r L-re-r (2.55a)
L = —’ .
(1—-T)2+T7
2l
XL = ——. 2.55b
LT a-T)2+r? (2:55b)
Rearranging (2.55) gives
2 2
Iy — s o= .
< ' 1+rL) +T <1+rL> : (2.568)
1\? 12
Ty — 1% + <ri - —) = (—) , (2.56b)
XL XL

which are seen to represent two families of circlesin the I'y, I'j plane. Resistance circles
aredefined by (2.56a) and reactance circles are defined by (2.56b). For example, ther, =1
circle hasitscenter at I'r = 0.5, I'j = 0, and has aradius of 0.5, and so it passes through
the center of the Smith chart. All of the resistance circles of (2.56a) have centers on the
horizontal I'; = 0 axisand passthrough the I" = 1 point on the right-hand side of the chart.
The centers of al of the reactance circles of (2.56b) lie on the vertical I'y = 1 line (off the
chart), and these circles also pass through the I' = 1 point. The resistance and reactance
circles are orthogonal.

The Smith chart can a so be used to graphically solve the transmission line impedance
equation of (2.44) since this can be written in terms of the generalized reflection coefficient
as

Zin= 2o (2.57)

1-—Te-2ipt’
where I isthereflection coefficient at theload and ¢ isthe (positive) length of transmission
line. Wethen seethat (2.57) isof the sameform as (2.54), differing only by the phase angles
of the I terms. Thus, if we have plotted the reflection coefficient IT|el? at the load, the
normalized input impedance seen looking into a length £ of transmission line terminated
with z| can be found by rotating the point clockwise by an amount 28¢ (subtracting 25¢
from 6) around the center of the chart. The radius stays the same since the magnitude of I'
does not change with position along the line (assuming alossless line).

To facilitate such rotations, the Smith chart has scales around its periphery calibrated
in electrical wavelengths, toward and away from the “generator” (which simply means the
direction away from the load). These scales are relative, so only the difference in wave-
lengths between two points on the Smith chart is meaningful. The scales cover arange of
0to 0.5 wavelength, which reflects the fact that the Smith chart automatically includes the
periodicity of transmission line phenomenon. Thus, aline of length A /2 (or any multiple)
reguires arotation of 28¢ = 2m around the center of the chart, bringing the point back to
itsoriginal position, showing that the input impedance of aload seen throughai /2 lineis
unchanged.
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We will now illustrate the use of the Smith chart for a variety of typical transmission
line problems through examples.

EXAMPLE 22 BASIC SMITH CHART OPERATIONS

A load impedance of 40 + j70  terminates a 100 2 transmission line that is
0.3x long. Find the reflection coefficient at the load, the reflection coefficient at
theinput to the line, the input impedance, the standing wave ratio on the line, and
the return loss.

Solution
The normalized load impedance is

z .
7, = =5 =04+ 07,
Zo

which can be plotted on the Smith chart as shown in Figure 2.11. By using a
drawing compass and the voltage coefficient scal e printed below the chart, one can
read off the reflection coefficient magnitude at the load as |I"| = 0.59. This same
compass setting can then be applied to the standing wave ratio (SWR) scale to
read SWR = 3.87 and to thereturn loss (RL) (in dB) scaletoread RL = 4.6 dB.

FIGURE 2.11  Smith chart for Example 2.2.
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Now draw a radia line through the load impedance point and read the angle of
the reflection coefficient at the load from the outer scale of the chart as 104°.

Now draw an SWR circle through the load impedance point. Reading the
reference position of the load on the wavel engths-toward-generator (WTG) scale
gives avalue of 0.106Ax. Moving down the line 0.3) toward the generator brings
us to 0.406A on the WTG scale. Drawing aradial line at this position gives the
normalized input impedance at the intersection with SWR circle of zj, = 0.365 —
j0.611. Then the input impedance of thelineis

Zin = ZoZin = 36.5— j61.1 Q.

The reflection coefficient at the input still has a magnitude of |I"'| = 0.59; the
phaseisread from the radial line at the phase scale as 248°. |

The Combined Impedance—Admittance Smith Chart

The Smith chart can be used for normalized admittance in the same way that it is used for
normalized impedances, and it can be used to convert between impedance and admittance.
The latter technique is based on the fact that, in normalized form, the input impedance of
aload z| connectedtoai/4lineis, from (2.44),

Zin = 1/ZL7

which has the effect of converting a normalized impedance to a normalized admittance.

Since a complete revolution around the Smith chart corresponds to a line length of
A/2, a)/4 transformation is equivalent to a 180° rotation; thisis also equivaent to imag-
ing a given impedance (or admittance) point across the center of the chart to obtain the
corresponding admittance (or impedance) point.

Thus, a Smith chart can be used for both impedance and admittance cal cul ations dur-
ing the solution of a given problem. At different stages of the solution, then, the chart may
be either an impedance Smith chart or an admittance Smith chart. This procedure can be
made less confusing by using a Smith chart that has a superposition of the scales for a
regular Smith chart and the scales of a Smith chart that has been rotated by180°, as shown
in Figure 2.12. Such achart isreferred to as an impedance and admittance Smith chart and
usually has different-colored scales for impedance and admittance.

EXAMPLE 23 SMITH CHART OPERATIONSUSING ADMITTANCES

A load of Z| = 100+ j50 2 terminates a 50 2 line. What are the load admit-
tance and input admittance if the lineis 0.15x long?

Solution
The normalized load impedance isz = 2+ j1. A standard Smith chart can be
used for this problem by initially considering it asan impedance chart and plotting
z,. and the SWR circle. Conversion to admittance can be accomplished with a
A/4 rotation of z| (easily obtained by drawing a straight line through z; and the
center of the chart to intersect the other side of the SWR circle). The chart can
now be considered as an admittance chart, and the input admittance can be found
by rotating 0.15x from y| .

Alternatively, we can use the combined zy chart of Figure 2.12, where conver-
sion between impedance and admittance is accomplished merely by reading the
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FIGURE 2.12  ZY Smith chart with solution for Example 2.3.

appropriate scales. Plotting zp on the impedance scales and reading the
admittance scales at this same point gives y, = 0.40 — j0.20. The actua load
admittance is then

Y =y Yo = ;—L — 0.0080 — j0.0040 S,
0

Then, on the WTG scale, the load admittance is seen to have a reference position
of 0.214x. Moving 0.15) past this point brings us to 0.3644. A radial line at
this point on the WTG scale intersects the SWR circle at an admittance of y =
0.61 + j0.66. The actual input admittanceisthen Y = 0.0122 + j0.0132S. H

The Slotted Line

A dotted lineisatransmission line configuration (usually awaveguide or coaxia line) that
allows the sampling of the electric field amplitude of a standing wave on aterminated line.
With this device the SWR and the distance of the first voltage minimum from the load can
be measured, and from these data the load impedance can be determined. Note that be-
cause the load impedance s, in general, a complex number (with two degrees of freedom),
two distinct quantities must be measured with the slotted line to uniquely determine this
impedance. A typical waveguide sotted line is shown in Figure 2.13.
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FIGURE 2.13 An X-band waveguide slotted line.

Although dlotted lines used to be the principal way of measuring an unknown impedance
at microwave frequencies, they have largely been superseded by the modern vector network
analyzer in terms of accuracy, versatility, and convenience. The dlotted lineis till of some
use, however, in certain applications such as high millimeter wave frequencies or where
it is desired to avoid connector mismatches by connecting the unknown load directly to
the slotted line, thus avoiding the use of imperfect transitions. Another reason for studying
the dlotted line is that it provides an unexcelled tool for learning the basic concepts of
standing waves and mismatched transmission lines. We will derive expressions for finding
the unknown load impedance from slotted line measurements and al so show how the Smith
chart can be used for the same purpose.

Assume that, for a certain terminated line, we have measured the SWR on the line
and ¢min, the distance from the load to the first voltage minimum on the line. The load
impedance Z | can then be determined as follows. From (2.41) the magnitude of the reflec-
tion coefficient on the line is found from the standing wave ratio as

_ SWR-1

M= >—_——=.
SWR+1

(2.58)

From Section 2.3, we know that a voltage minimum occurs when e} @=289 = —1, where
6 is the phase angle of the reflection coefficient, I' = |I"|eJ?. The phase of the reflection
coefficient is then

where ¢nmin is the distance from the load to the first voltage minimum. Actually, since the
voltage minima repeat every A /2, where A is the wavelength on the line, any multiple of
A/2 can be added to ¢y, without changing the result in (2.59) because this just amounts
to adding 26nX/2 = 2xn to 6, which will not change I". Thus, the two quantities SWR
and ¢min can be used to find the complex reflection coefficient T" at the load. It is then
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straightforward to use (2.43) with ¢ = 0 to find the load impedance from I":

14T

ZL=Z .
L 01— T

(2.60)

The use of the Smith chart in solving this problem is best illustrated by an example.

EXAMPLE 24 |IMPEDANCE MEASUREMENT WITH A SLOTTED LINE

Thefollowing two-step procedure has been carried out with a50 €2 coaxia slotted
line to determine an unknown load impedance:

1. A short circuit is placed at the load plane, resulting in a standing wave on
the line with infinite SWR and sharply defined voltage minima, as shown in
Figure 2.14a. On the arbitrarily positioned scale on the slotted line, voltage
minima are recorded at

z=0.2cm, 22cm, 4.2cm.

2. Theshort circuit isremoved and replaced with the unknown load. The standing
wave ratio is measured as SWR = 1.5, and voltage minima, which are not as
sharply defined asthosein step 1, are recorded at

z=072cm, 2.72cm, 4.72cm,
as shown in Figure 2.14b. Find the load impedance.

Solution

Knowing that voltage minima repeat every /2, we have from the data of step 1
that 1 = 4.0 cm. In addition, because the reflection coefficient and input impedance
also repeat every A /2, we can consider the load terminalsto be effectively located
at any of the voltage minima locations listed in step 1. Thus, if we say the load
isat 4.2 cm, then the data from step 2 show that the next voltage minimum away
from the load occurs at 2.72 cm, giving £min = 4.2 — 2.72 = 1.48 cm = 0.37).

VI
}\H\}HH}HH}HH}HH} Short
61 2 3 4 5 circuit

(€Y

Y
\/\/\/\/\*Vmax

™~ Vimin
}HH}HH}HH}HH}HH} Unknmvn
0O 1 2 3 4 5 load

(b)

FIGURE 2.14  Voltage standing wave patternsfor Example 2.4. (a) Standing wave for short-circuit
load. (b) Standing wave for unknown load.
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Applying (2.58)—(2.60) to these data gives

15-1

M=% =
15+1

0.2,

47
0= —(1.48) = 86.4°,
n+4.0( )

I' = 0.2e184 = 0.0126 4+ j0.1996.
The load impedance is then

14T
7, =50 <1+—r> _ 473+ j19.70.

For the Smith chart version of the solution, we begin by drawing the SWR
circle for SWR = 1.5, as shown in Figure 2.15; the unknown normalized load
impedance must lie on this circle. The reference that we have is that the load
is 0.37x» away from the first voltage minimum. On the Smith chart the position
of a voltage minimum corresponds to the minimum impedance point (mMinimum
voltage, maximum current), which is the horizontal axis (zero reactance) to the
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FIGURE 2.15 Smith chart for Example 2.4.
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2.5

left of the origin. Thus, we begin at the voltage minimum point and move 0.371
toward the load (counterclockwise), to the normalized load impedance point,
zL = 0.95+ j0.4, as shown in Figure 2.15. The actual load impedance is then
Z| =475+ j20 Q, in close agreement with the above result using equations.
Note that, in principle, voltage maxima locations could be used as well as
voltage minima positions, but voltage minima are more sharply defined than volt-
age maxima and so usually result in greater accuracy. |

THE QUARTER-WAVE TRANSFORMER

The quarter-wave transformer is a useful and practical circuit for impedance matching and
also provides a simple transmission line circuit that further illustrates the properties of
standing waves on a mismatched line. Although we will study the design and performance
of quarter-wave matching transformers more extensively in Chapter 5, the main purpose
here isthe application of the previously developed transmission line theory to abasic trans-
mission line circuit. We will first approach the problem from the impedance viewpoint and
then show how this result can also be interpreted in terms of an infinite set of multiple
reflections on the matching section.

The Impedance Viewpoint

Figure 2.16 shows a circuit employing a quarter-wave transformer. The load resistance R
and the feedline characteristic impedance Z are both real and assumed to be known. These
two components are connected with a lossless piece of transmission line of (unknown)
characteristic impedance Z1 and length A /4. It is desired to match the load to the Zg line
by using the 1. /4 section of line and so make I = 0 looking into the A /4 matching section.
From (2.44) the input impedance Z;,, can be found as

RL + jZitanpe
121+jR|_tanﬂ£'

To evaluate thisfor ¢ = (2w /1)(A/4) = 7 /2, we can divide the numerator and denomi-
nator by tan 8¢ and take the limit as 8¢ — /2 to get

Zin=2 (2.61)

ZZ
Zin= —*. (2.62)
RL

In order for I' = 0, we must have Zj, = Zg, which yields the characteristic impedance Z;
as

Z1=+/2Z0RL, (2.63)

r
D A4

Zy H:‘> Zy R

erl

FIGURE 2.16  The quarter-wave matching transformer.
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which is the geometric mean of the load and source impedances. Then there will be no
standing waves on the feedline (SWR = 1), athough there will be standing waves on the
A /4 matching section. In addition, the above condition applies only when the length of the
matching section is A/4 or an odd multiple of A/4, long, so that a perfect match may be
achieved at one frequency, but impedance mismatch will occur at other frequencies.

EXAMPLE 25 FREQUENCY RESPONSE OF A QUARTER-WAVE
TRANSFORMER

Consider a load resistance R = 100 2 to be matched to a 50 2 line with a
quarter-wave transformer. Find the characteristic impedance of the matching sec-
tion and plot the magnitude of the reflection coefficient versus normalized fre-
quency, f/f,, where f, isthe frequency at which thelineis A/4 long.

Solution
From (2.63), the necessary characteristic impedanceis

Z1 = /(50)(100) = 70.71 2.

The reflection coefficient magnitude is given as

Zin—Zo
Zin+ Zo

3

IF|=’

where the input impedance Zin, is afunction of frequency as given by (2.44). The
frequency dependence in (2.44) comes from the 8¢ term, which can be written in
termsof f/f, as

B0 = 2 lo\  (2nf vp \ _ nf
- A 4 - Up 4f0 - 2f0 ’
where it is seen that ¢ = 7/2 for f = f,, as expected. For higher frequen-
cies the matching section looks electrically longer, and for lower frequencies it

looks shorter. The magnitude of the reflection coefficient is plotted versus f/f, in
Figure 2.17. |

Il

0.3
0.2

0.1

0.0 ‘ ‘
0.0 1.0 2.0 3.0 40 i,

FIGURE 2.17 Reflection coefficient versus normalized frequency for the quarter-wave trans-

former of Example 2.5.
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This method of impedance matching is limited to real load impedances, although a
complex load impedance can easily be made real, at asingle frequency, by transformation
through an appropriate length of line.

The above analysis shows how useful the impedance concept can be when solving
transmission line problems, and this method is probably the preferred method in practice.
It may aid our understanding of the quarter-wave transformer (and other transmission line

circuits), however, if we now look at it from the viewpoint of multiple reflections.

The Multiple-Reflectio Viewpoint

Figure 2.18 shows the quarter-wave transformer circuit with reflection and transmission
coefficients defined as follows:

I' = overal, or total, reflection coefficient of awave incident on the A/4 transformer
(sameasT in Example 2.5).

I'1 = partial reflection coefficient of awave incident on aload Z1, from the Zg line.

I'> = partial reflection coefficient of awave incident on aload Zg, from the Z4 line.

I's = partial reflection coefficient of awave incident on aload R| , from the Z; line.

T1 = partial transmission coefficient of awave from the Zg lineinto the Z4 line.

To = partia transmission coefficient of awave from the Z4 lineinto the Zg line.

These coefficients can be expressed as

FIGURE 2.18

Z1— 2o
' = ,
Z1+ Zg
Zo— 21
Ty = =T,
2 Zo+ 71 !
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Multiple reflection analysis of the quarter-wave transformer.

(2.64a)

(2.64D)

(2.64¢)
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27,
-4 2.64d
! Z1+ Zo ( )
270
T,= 92 2.64€
> 71+ Zo (2.64e)

Now think of the quarter-wave transformer of Figure 2.18 in the time domain, and imagine
a wave traveling down the Zg feedline toward the transformer. When the wave first hits
the junction with the Z1 line, it sees only an impedance Z; since it has not yet traveled to
the load R and cannot see that effect. Part of the wave is reflected with a coefficient I'1,
and part is transmitted onto the Z4 line with a coefficient T1. The transmitted wave then
travels A/4 to the load, is reflected with a coefficient I's, and travels another A/4 back to
the junction with the Zg line. Part of this wave is transmitted through (to the left) to the
Zo line, with coefficient T,, and part is reflected back toward the load with coefficient I's.
Clearly, this process continues with an infinite number of bouncing waves, and the total
reflection coefficient, I, is the sum of all of these partial reflections. Since each round
trip path up and down the A/4 transformer section results in a 180° phase shift, the total
reflection coefficient can be expressed as

[ = Iy — TyTals + TaTol2l3 — TaTol505 + - -
oo
=11 —-TiToI'3 Z (=T (2.65)
n=0

Since [T'3] < 1 and |T'2| < 1, the infinite series in (2.65) can be summed using the
geometric series result that

o0
Zx”:—, for x| < 1,
—X

to give

T1ToI'3 _ 'y +olf3 — T1TolN3
1+ TeI03 - 1+ ToI03 ’

(2.66)

The numerator of this expression can be simplified using (2.64) to give

(Z1— Zo)? 42129 }

(Z1+ Z0)2  (Z1+ Zo)?

_ (Z1—Zo)(RL + Z1) — (RL — Z1)(Z1+ Zp)
(Z1+ Zo)(RL + Z1)

Fl—Fs(F]2_+T1T2):F1—F3[

=I1-TI73

2(22 - ZoR\)
~ (Z1+Zo)(RL + Z1)’

which is seen to vanish if we choose Z1 = /ZgR_, asin (2.63). Then I of (2.66) is zero,
and the lineis matched. This analysis shows that the matching property of the quarter-wave
transformer comes about by properly selecting the characteristic impedance and length of
the matching section so that the superposition of al of the partial reflections adds to zero.
Under steady-state conditions, an infinite sum of wavestraveling in the same direction with
the same phase velocity can be combined into a single traveling wave. Thus, the infinite
set of waves traveling in the forward and reverse directions on the matching section can be
reduced to two waves traveling in opposite directions. See Problem 2.25.
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2.6

GENERATOR AND LOAD MISMATCHES

In Section 2.3 we treated the terminated (mismatched) transmission line assuming that
the generator was matched, so that no reflections occurred at the generator. In general,
however, both generator and load may present mismatched impedances to the transmission
line. We will study this case and also see that the condition for maximum power transfer
from the generator to the load may, in some situations, involve a standing wave on the line.

Figure 2.19 shows a transmission line circuit with arbitrary generator and load
impedances Zg4 and Z,, which may be complex. The transmission line is assumed to be
lossless, with alength ¢ and characteristic impedance Zg. This circuit is general enough to
model most passive and active networks that occur in practice.

Because both the generator and |oad are mismatched, multiple reflections can occur on
the line, asin the problem of the quarter-wave transformer. The present circuit could thus
be analyzed using an infinite series to represent the multiple bounces, as in Section 2.5,
but we will use the easier and more useful method of impedance transformation. The input
impedance looking into the terminated transmission line from the generator end is, from
(2.43) and (2.44),

e
where I', isthe reflection coefficient of the load:
Z;—Zg
e (2.68)
The voltage on the line can be written as
V(2) = Vg (e + 1yelf?), (2.69)

and we can find V,;© from the voltage at the generator end of the line, wherez = —¢:

Zin - —j
V(=€) = Vg — = V' (el 4 Tye 15,
=) g Zin + Zg 0 ( ‘ )
so that
Zin 1
Vit =V, . —. 2.70
° 9Zin+ Zg (eW + F(ef“%) ( )
This can be rewritten, using (2.67), as
ya e—jﬁ[
A 0 , (2.71)

=V, -
© " 9Z0+Zg (1T Ige2if)

<L SR
—

Vg Q Zin Vin Zy, B

| |
4 0 z

FIGURE 2.19 Transmission line circuit for mismatched load and generator.
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where I'q is the reflection coefficient seen looking into the generator:

Zy—Z
rg=-24—°9 (2.72)
Zg + ZO
The standing wave ratio on the line is then
1+ Tl
= . (2.73)
11Ty

The power delivered to the load is

P = TRe(Vinl*} = 2 jvinlPRed = | = Ly, 2| —Zin 2Re 1 (2.74)
=5 |n|n—2 in Zin =3 g Zin+zg Z . .
Now let Zin = Rin + jXinand Zg = Rq + j Xg; then (2.74) can be reduced to
Rin

1
P= é|v@,|2 (2.75)

(Rin + Rg)2 + (Xin + Xg)z.
We now assume that the generator impedance, Zy, is fixed, and consider three cases of
load impedance.

Load Matched to Line

In this casewe have Z| = Zgp, so I'y = 0, and SWR = 1, from (2.68) and (2.73). Then the
input impedanceis Zj, = Zo, and the power delivered to theload is, from (2.75),

Zg

—_— 2.76
Zo+ RZ+ X2 (276)

1
P=2|Vg?
2| ol

Generator Matched to Loaded Line

In this case the load impedance Z, and/or the transmission line parameters 8¢, Zg are
chosen to make the input impedance Zin, = Zg, so that the generator is matched to the load
presented by the terminated transmission line. Then the overall reflection coefficient, I, is
Zero:

Zin—Z
m_~9 _o. Q.77

I=—=
Zin+zg

There may, however, be a standing wave on the line since I'y, may not be zero. The power
delivered to the load is
1,2 Rg

P= Vgl i,
2ol 4(RZ + X2)

(2.78)

Observe that even though the loaded line is matched to the generator, the power deliv-
ered to the load may be less than that of (2.76), where the loaded line was not necessarily
matched to the generator. Thus, we are led to the question of what is the optimum load
impedance, or equivalently, what is the optimum input impedance, to achieve maximum
power transfer to the load for a given generator impedance.

Conjugate Matching

Assuming that the generator seriesimpedance Z 4 isfixed, we may vary theinput impedance
Zin until we achieve the maximum power delivered to the load. Knowing Zijp, it is then
easy to find the corresponding load impedance Z, via an impedance transformation along
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2.7

the line. To maximize P, we differentiate with respect to the real and imaginary parts of
Zin. Using (2.75) gives
oP 1 —2Rin(Rin + Rg)

=0— + =0,
dRin (Rin + Rg)2 + (Xin + Xg)2 [(Rin + Rg)z + (Xin + Xg)2]2

or
R§ — R+ (Xin+ Xg)* =0, (2.79)
and
oP —2Rin(Xin + Xg)
— =V 2 . 22
9 Xin [(Rin + Rg)* + (Xin + Xg)“]
or

Xin(Xin 4+ Xg) = 0. (2.79b)
Solving (2.798) and (2.79b) simultaneously for R, and X;, gives
Rin=Rg, Xin=—Xg,
or
Zin = Z3. (2.80)

This condition is known as conjugate matching, and it results in maximum power transfer
to theload for afixed generator impedance. The power delivered is, from (2.75) and (2.80),
1,1

P= 2|Vg| 4Rg’ (2.81)
which is seen to be greater than or equal to the powers of (2.76) or (2.78). Thisis also the
maximum available power from the generator. Note that the reflection coefficients I'y, I'g,
and I may be nonzero. Physically, this means that in some cases the power in the multiple
reflections on a mismatched line may add in phase to deliver more power to the load than
would be delivered if the line were flat (no reflections). If the generator impedance is real
(Xg = 0), then the last two cases reduce to the same result, which is that maximum power
is delivered to the load when the loaded line is matched to the generator (Rin = Rg, with
Xin = Xg = 0).

Finally, note that neither matching for zero reflection (Z, = Zg) nor conjugate match-
ing (Zin = Zg) necessarily yields a system with the best efficiency. For example, if Zg =
Zy = Zg then both load and generator are matched (no reflections), but only half the power
produced by the generator is delivered to the load (the other half islostin Z), for atrans-
mission efficiency of 50%. This efficiency can only be improved by making Z4 assmall as
possible.

LOSSY TRANSMISSION LINES

In practice, transmission lines have losses due to finite conductivity and/or lossy dielectric,
but these losses are usually small. In many practical problems|oss may be neglected, but at
other times the effect of loss may be very important, as when dealing with the attenuation
of atransmission line, noiseintroduced by alossy line, or the Q of aresonator, for example.
In this section we will study the effects of loss on transmission line behavior and show how
the attenuation constant can be calcul ated.
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The Low-Loss Line

In most practical microwave and RF transmission lines the loss is small—if this were not
the case, the linewould be of little practical value. When the lossis small, some approxima-
tions can be made to simplify the expressions for the general transmission line parameters
of y =a + jB and Zo.

The general expression for the complex propagation constant is, from (2.5),

¥y =V(R+ joL)(G + jwC), (2.82)

which can be rearranged as

. . R G
= \/(ja)L)(ja)C) <1+ ja)_L> (1+ ja)_c>

R G RG
—joVIC 1~ =) - o2 2
Jo C\/ J <a)L * a)C) @2LC (2839

For a low-loss line both conductor and dielectric loss will be small, and we can assume
that R <« wL and G <« »C. Then, RG « w?LC, and (2.83) reduces to

G
y:ja)vLC\/ -] —+—) (2.84)
wC
If we were to ignore the (R/wL + G/wC) term we would obtain the result that y was
purely imaginary (no loss), so we will instead use the first two terms of the Taylor series
expansion for /1 + x >~ 14 x/2+ - - - to give the first higher order real term for y

ool )]

so that

%( \/7+G\/7>—%<—+GZO) (2.85q)

B~ wvVLC, (2.85h)

where Zg = /L/C is the characteristic impedance of the line in the absence of loss.
Note from (2.85b) that the propagation constant 8 is identical to that of the lossless case
of (2.12). By the same order of approximation, the characteristic impedance Zy can be
approximated as areal quantity:

R+ joL L
Zo= |~ 2C= ~ [ 2.
°=yG+jeCc —VC (2.86)

Equations (2.85)—(2.86) are known as the high-frequency, low-loss approximations for
transmission lines, and they are important because they show that the propagation constant
and characteristic impedance for alow-loss line can be closely approximated by consider-
ing the line as lossless.
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EXAMPLE 26 ATTENUATION CONSTANT OF THE COAXIAL LINE

In Example 2.1 the L, C, R, and G parameters were derived for alossy coaxial
line. Assuming thelossis small, derive the attenuation constant from (2.85a) with
the results from Example 2.1.

Using theresultsfor R and G derived in Example 2.1 gives

[ R (1 1y, .,
o= - -+ — we
2|ninb/al\a b T

where n =,/ /€’ isthe intrinsic impedance of the dielectric materia filling the
coaxia line. In addition, 8 = wv/LC = ws/ue’ and Zg= /L/C = (n/27)
Inb/a. |

Solution
From (2.853),

This method for the calculation of attenuation requires that the line parametersL, C, R,
and G be known. These can sometimes be derived using the formulas of (2.17)—(2.20), but a
more direct and versatile procedure isto use the perturbation method, to be discussed shortly.

The Distortionless Line

As can be seen from the exact equations (2.82)—(2.83) for the propagation constant of a
lossy line, the phaseterm B isgenerally acomplicated function of frequency  when lossis
present. In particular, we note that S is generally not exactly alinear function of frequency,
asin (2.85b), unless the line is lossless. If B is not a linear function of frequency (of the
form g = aw), thenthe phase velocity vp = w/p will vary with frequency. Theimplication
of this is that the various frequency components of a wideband signal will travel with
different phase velocitiesand so arrive at the receiver end of the transmission line at slightly
different times. This will lead to dispersion, a distortion of the signal, and is generally an
undesirable effect. Granted, as we have argued, the departure of 8 from alinear function
may be quite small, but the effect can be significant if the line is very long. This effect
leads to the concept of group velocity, which we will address in detail in Section 3.10.
There is a specia case, however, of a lossy line that has a linear phase factor as a
function of frequency. Such alineis called a distortionless line, and it is characterized by

line parameters that satisfy the relation
R G

= (2.87)

From (2.83) the exact complex propagation constant, under the condition specified by
(2.87), reducesto

iwJiC 1 R R
v=le Ja)L w?L?

- jwm(l— ji>
wl
[C . .
=R/ T+ jovLC = a + jB, (2.88)
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V(2),1(2)

Zin=> Zog B

| |
- 0 z

FIGURE 220 A lossy transmission line terminated in the impedance Z_.

which shows that 8 = w+/LC isnow alinear function of frequency. Equation (2.88) also
shows that the attenuation constant, « = R/C/L, does not depend on frequency, so that
all frequency components of a signal will be attenuated by the same amount (actually,
R is usually a weak function of frequency). Thus, the distortionless line is not loss free
but is capable of passing a pulse or modulation envelope without distortion. To obtain a
transmission line with parameters that satisfy (2.87) often requires that L be increased by
adding series loading coils spaced periodically along the line.

The above theory for the distortionless line was first developed by Oliver Heavi-
side (1850-1925), who solved many problems in transmission line theory and reworked
Maxwell’s original theory of electromagnetism into the modern version that we are famil-
iar with today [5].

The Terminated Lossy Line

Figure 2.20 shows a length ¢ of alossy transmission line terminated in a load impedance
Z|.Thus, y = @ + jB iscomplex, but we assume the lossis small, so that Zg is approxi-
mately real, asin (2.86).

In (2.36), expressions for the voltage and current wave on a lossless line are given.
The analogous expressions for the lossy case are

V(2) = Vo (e7"? +Te’?), (2.89a)
VO+ —yZ z
1(2) = Z—(e vt —Ter?), (2.89b)
0

where I is the reflection coefficient of the load, as given in (2.35), and V,; is the incident
voltage amplitude referenced at z = 0. From (2.42) the reflection coefficient at a distance
¢ fromtheload is

['(¢) = De 2Btg=2et _ pe=2rt (2.90)
Theinput impedance Z;, at adistance ¢ from the load is then

V(= 7 Z| + Zotanhy ¢

Zin = - . 291
"1 Co T Zot ZL tanhyt (29D

We can compute the power delivered to the input of the terminated lineat z = —¢ as

Pin = }Re{V(_g)l*(_g)} _ |V0+|2(eza@ _ |F|Ze—2ai)
2 270

Vo' |2 2\ 200
= 27, (1T @©)%)e™, (2.92)
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where (2.89) has been used for V (—¢) and | (—¢). The power actually delivered to the

load is
1 * VO+|2 2
PL==Re(V(O)I*(0)} = —=— (1 — |T|). (2.93)
2 279
The difference in these powers corresponds to the power lost in the line:
_p _p _ Vg2 20l _ 2(q _ a—2at
Ploss = Pin — PL = 274 [(e 1) + 0[5 (1—e 9] (2.94)

Thefirst term in (2.94) accounts for the power loss of the incident wave, while the second
term accounts for the power loss of the reflected wave; note that both terms increase as o
increases.

The Perturbation Method for Calculating Attenuation

Here we derive a useful and standard technique for finding the attenuation constant of a
low-loss line. The method avoids the use of the transmission line parameters L, C, R, and
G and instead relies on the fields of the lossless line, with the assumption that the fields of
the lossy line are not greatly different from the fields of the lossless line—hence the term,
perturbation method.

We have seen that the power flow along a lossy transmission line, in the absence of
reflections, is of the form

P(z) = Poe™ 2, (2.95)

where P, is the power at the z = 0 plane and « is the attenuation constant we wish to
determine. Now define the power loss per unit length along the line as

P
Po=——= 2aPoe~ 2% = 2aP(2),
where the negative sign on the derivative was introduced so that P, would be a positive

quantity. From this, the attenuation constant can be determined as
o Pe(z)  Pe(z=0)
2P 2P,
This equation states that « can be determined from Py, the power on the line, and Py, the
power loss per unit length of line. It isimportant to realize that P, can be computed from

the fields of the lossless line and can account for both conductor loss [using (1.131)] and
dielectric loss [using (1.92)].

(2.96)

EXAMPLE 2.7 USING THE PERTURBATION METHOD TO FIND
THE ATTENUATION CONSTANT

Use the perturbation method to find the attenuation constant of a coaxia line
having alossy dielectric and lossy conductors.

Solution
From Example 2.1 and (2.32), the fields of the lossless coaxia line are, for a <
p <Dh,
E_ _Yob i
plnb/a
He Yo s

’

2npZo
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where Zg = (n/27) Inb/a isthe characteristic impedance of the coaxial line and
V, is the voltage across the line at z = 0. The first step is to find Py, the power
flowing on the lossless line:

1 _ _ V.2 b 2r dod VAL
Po=—Re/ExH*-d§=|°|/ / pOpde =|°|,
2 Js 2Z0 Jp—a Js—0 2np%Inbja ~ 2Z

as expected from basic circuit theory.

The loss per unit length, Py, comes from conductor loss (Py¢) and dielectric
loss (Pgq). From (1.131), the conductor lossin a1 m length of line can be found
as

Rs -, Rs 1 2 5
Pec=7 |Ht|d5=7 IHg(p = a)|7ade
S z=0 0

2
+/ IHg(p = b)|2bd¢} dz
=0

= RS|V°2|2 (} - E) .
4rzZ§ \a b
Thedielectric lossin al mlength of lineis, from (1.92),

we” _ we” b 27 1 Twe”
Pa= "o [1ERPds =2 [ [" [ |E,pdpdodz = T Vel
‘ 2 Jv 2 Jp=aJp=0J71=0 r ¢ Inb/a °

where ¢” isthe imaginary part of the complex permittivity, e = ¢/ — je”. Finaly,
applying (2.96) gives

Pec + Ped Rs 1 N 1 nwe’Zg
o = = —_ el
2P, 4779 \a b Inb/a
= —RS E + } + 0)6//77’
2pinb/a \a b 2
wheren = \/u/€’. Thisresult is seen to agree with that of Example 2.6. |

The Wheeler Incremental Inductance Rule

Another useful technique for the practical evaluation of attenuation due to conductor loss
for TEM or quasi-TEM linesis the Wheeler incremental inductance rule [6]. This method
is based on the similarity of the equations for the inductance per unit length and resistance
per unit length of atransmission line, as given by (2.17) and (2.19), respectively. In other
words, the conductor loss of aline is due to current flow inside the conductor, which, as
was shown in Section 1.7, is directly related to the tangential magnetic field at the surface
of the conductor and thus to the inductance of theline.

From (1.131), the power lossinto a cross section S of agood (but not perfect) conduc-
toris

R - R -
P, = —5/ |1 Js|%ds = —Sf |H¢|2ds W/m?, (2.97)
2 Js 2 Js
so the power loss per unit length of a uniform transmission lineis

R _
w;%/mfwwm (2.98)
C
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where the line integral of (2.98) is over the cross-sectional contours of both conductors.
From (2.17), the inductance per unit length of thelineis

- ﬁ/gm‘ﬁds, (2.99)

which is computed assuming the conductors are lossless. When the conductors have a
small loss, the H field in the conductor is no longer zero, and thisfield contributes a small
additional “incremental” inductance, AL, to that of (2.99). Asdiscussed in Chapter 1, the
fields inside the conductor decay exponentially, so that the integration into the conductor
dimension can be evaluated as

5
’2‘|° |52 / |He|2d e, (2.100)

since [,° e7%/%dz = 65/2. (The skin depth is 8 = /2/wpc.) Then P, from (2.98) can
bewrittenintermsof AL as

_ R[I2AL  [I2AL  [I]PwAL
Hods U,U«O‘Ssz 2

Wim, (2.101)

since Rs = wup/20 = 1/08s. Then from (2.96) the attenuation due to conductor loss
can be evaluated as
Pg wAL
=—=— 2.102
%= 2P, T 220" (2.102)
since Py, the total power flow down theline, is Py = [112Z/2. In (2.102), AL isevaluated
as the change in inductance when all conductor walls recede by an amount §s /2.
Equation (2.102) can also bewritten in terms of the changein characteristic impedance

since
L L
Zo=4= = —— = Loy, 2.103
°=VeC T /e P (199
so that
BAZg
= 2.104
(673 220 ) ( )

where AZg is the change in characteristic impedance when all conductor walls recede by
an amount &s/2. Yet another form of the incremental inductance rule can be obtained by
using the first two terms of a Taylor series expansion for Zg. Thus,

Ss Ssto
Zo| =) =~ Zo 2.1
0(2> ot Sy (2.105)
so that

5 5 dZo
AZO‘Z°<§>‘Z°=§SW’

where Zg (85 /2) refersto the characteristic impedance of the line when the walls recede by
3s/2, and ¢ refersto adistance into the conductors. Then (2.104) can be written as
470 d¢ ~ 2Zop de¢’

(2.106)

O =
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wheren = /uuo/€ istheintrinsic impedance of the dielectric and Rs isthe surface resistiv-
ity of the conductor. Equation (2.106) is one of the most practical forms of the incremental
inductance rule because the characteristic impedance is known for awide variety of trans-
mission lines.

EXAMPLE 2.8 USING THE WHEELER INCREMENTAL INDUCTANCE RULE
TO FIND THE ATTENUATION CONSTANT

Calculate the attenuation due to conductor loss of acoaxial line using the Wheeler
incremental inductance rule.

Solution
From (2.32) the characteristic impedance of the coaxial lineis

n b
Zog= —In-.
°= 2 a
From theincremental inductance rule of the form givenin (2.106), the attenuation
due to conductor lossis

Rs dZo Ry <d|nb/a_d|nb/a) Rs <1 1)

T 2Zon A 47Zo \ db da )~ 4nz,

o b a

which is seen to be in agreement with the result of Example 2.7. The negative
sign on the second differentiation in this equation is because the derivative for the
inner conductor isin the —p direction (receding wall). |

Regardless of how attenuation is cal culated, measured attenuation values for practical
transmission lines are usually higher. One reason for this discrepancy is the fact that real-
istic transmission lines have metallic surfaces with a certain amount of roughness, which
increases loss, while our theoretical calculations assume perfectly smooth conductors. A
quasi-empirical formulathat can be used to approximately account for surface roughness
for atransmission lineis[7]

2 A2
= ag [1+ Ztan 114 <5_> } : (2.107)
T

S

where o is the attenuation due to perfectly smooth conductors, «;, is the attenuation cor-
rected for surface roughness, A is the rms surface roughness, and §s is the skin depth of
the conductors.

TRANSIENTS ON TRANSMISSION LINES

So far we have concentrated on the behavior of transmission lines at asingle frequency, and
in many cases of practical interest thisviewpoint isentirely satisfactory. In some situations,
however, where short pulses or very wideband signals are propagating on a transmission
ling, it is useful to consider wave propagation from a transient, or time domain, point of
view.
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In this section we will discuss the reflection of transient pulses from terminated trans-
mission lines, including the special cases of a matched line, a short-circuited line, and an
open-circuited line. We will conclude with a description of bounce diagrams, which can be
used to describe multiple reflections of pulses on transmission lines.

Reflectio of Pulses from a Terminated Transmission Line

A transient transmission line circuit is shown in Figure 2.21a, where a DC source is
switched on at t = 0. We first consider the case in which the line has a characteristic
impedance of Zg, the source impedance is Zg, and the load impedance is Zg. It is
assumed that the voltage on the line is initialy zero: v (z,t) = 0 for all z, fort < 0. We
want to determine the voltage response on the transmission line as a function of time and
position.

Because of thefinitetransit time of theling, itsinput impedance will appear to be equal
to the characteristic impedance of thelinefor t < 2¢/vp, where v, isthe phase velocity of
the line. In other words, the line looks infinitely long until the pulse has time to reach the
load and (possibly) reflect back to the input. Therefore, when the switch closesat t = 0,
the circuit appears as a voltage divider consisting of the source impedance and the input
impedance, both being Zo. The initial voltage on the line is thus Vp/2, and this voltage
waveform propagates toward the load with a velocity v,. The leading edge of the pulse
will be at position z onthelineat timet = z/vy, as shown in Figure 2.21b.

The pulsereachestheload at timet = ¢/vp. Sincetheload is matched to the line, there
isno reflection of the pulse from the load. The circuit isnow in asteady-state condition, and
voltage on the lineis constant: v (z,t) = Vp/2for al t > £/vp, as shown in Figure 2.21c.
Thisis, of course, the DC value that we would expect for a voltage divider consisting of
equal source and input impedances.

Next consider the transmission line circuit of Figure 2.22a, where the line is now ter-
minated with a short circuit. Initialy, the input impedance of the line again appears as Z,
and the initial incident pulse again has an amplitude of Vg/2, as shown in Figure 2.22b.

v(z t)

Z Z
| |
0 | z
(@
v \
Vo Vo
2 2
——
0 f 0
0 z=vpt Iz 0 |z

(b) ©

FIGURE 221 Transient response of a transmission line terminated with a matched load.
(a) Transmission line circuit with a step function voltage source. (b) Response
forO <t < £/vp. (c) Responsefor £/vp <t < 2¢/vp; thereisno reflection from
the load.
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v(z, 1)

Z s.C.
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0 z=vpt Iz 2

(b) (©

FIGURE 2.22 Transient response of a transmission line terminated with a short circuit.

(a) Transmission line circuit with a step function voltage source. (b) Response for
0 <t < £/vp. (c) Responsefor £/vp < t < 2¢/vp; theincident pulseis reflected
withT = —1.

The short-circuit load has areflection coefficient of I' = —1, which hasthe effect of invert-
ing the reflected pulse asit travel s back toward the source. The superposition of the forward
and reverse traveling pulses leads to cancellation, as shown in Figure 2.22c, for the period
where £/vp <t < 2¢/vp. When the return pulse reaches the source, at t = 2¢/vp, it will
not be re-reflected because the source is matched to the line. The circuit is then in steady
state, with zero voltage everywhere on the line. Again, thisis consistent with DC circuit
analysis, as the shorted line has zero electrical length at DC and thus appears as a short at
itsinput, leading to aterminal voltage of zero. The voltage waveform at a fixed point z on
the line will consist of a rectangular pulse of amplitude Vp/2 existing only over the time
period z/vp < t < (20 — 2) /vp. This effect can be used in practice to generate pulses of
very short duration.

Finally, consider the effect of a transmission line with an open-circuit termination,
as shown in Figure 2.23a. As in previous cases, the input impedance of the line initialy
appears as Zo, and the initial incident pulse has an amplitude of Vp/2, as shown in
Figure 2.23b. The open-circuit load has a reflection coefficient of I' = 1, which reflects
the incident waveform with the same polarity toward the source. The amplitudes of the for-
ward and reverse pulses add to create a wave with an amplitude of Vo, as shown in Figure
2.23c. Att = 2¢/vy, the return pulse reaches the source, but it is not re-reflected since the
source is matched to the line. The circuit is then in steady state, with a constant voltage
of Vp on the line. By DC analysis, the open-circuited line presents an open circuit at its
terminals, leading to aterminal voltage equal to the source voltage.

Bounce Diagrams for Transient Propagation

The plots in Figures 2.21-2.23 show the voltage of a propagating pulse versus position
aong the transmission line but do not directly show the time variable, nor do they show
very clearly the contribution of reflections on the waveform (especially when multiple
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FIGURE 2.23 Transient response of a transmission line terminated with an open circuit.

(a) Transmission line circuit with a step function voltage source. (b) Response for
0 <t < £/vp.(c) Responsefor £/vp <t < 2¢/vp; theincident pulseis reflected
withT = 1.

reflections are present). An alternative way of viewing the progress of a pulse propagating
in time and position along atransmission line is with a bounce diagram.

As an example, Figure 2.24 shows the bounce diagram for the transient circuit of
Figure 2.23a. The horizontal axis represents position on the line, while the vertical axis
represents time. The ray representing the incident wave beginsat t = z = 0 and travels to
theright (increasing z) and up (for increasing t). Thisray islabeled with the amplitude of
the incident wave, Vo/2. Att = £/vp the incident wave reaches the open-circuit load and
is reflected to produce a wave of amplitude Vy/2 traveling back to the source. The ray for
this reflected wave thus moves to the left and up, until it reaches the source at z = 0 and
t = 2¢/vp, at which point steady state is reached. The total voltage at any position z and
time t can be easily found by drawing a vertical line through the point z and extending
up fromt = 0 tot. The total voltage is found by adding the voltages of each forward or
reverse traveling wave component, as represented by the rays that intersect this vertical
line.

The next example shows how a bounce diagram can be applied to circuits that have
multiple reflections.

0 z Iz

FIGURE 2.24  Bounce diagram for the transient circuit of Figure 2.23a.




2.8 Transients on Transmission Lines 89
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(@Y Zo=100 Q 200 Q

FIGURE 2.25 Circuit for Example 2.9.

EXAMPLE 2.9 BOUNCE DIAGRAM FOR A TRANSIENT CIRCUIT
WITH MULTIPLE REFLECTIONS

Draw the bounce diagram for the transient circuit of Figure 2.25, including the
first three reflections.

Solution
The amplitude of the incident wave is given by avoltage divider as

. 100

t=12 " =
50+ 100

8.0V

The incident ray can be plotted as a line from the origin to the point z = ¢ and
t = ¢/vp. Thereflection coefficients at the generator and load are

_ 50-100 200 — 100

=2 13 and IL=-— —— =1/3
9~ 50+ 100 / L= 2007100 ~ Y

so the amplitude of the wave reflected from the load is 8/3 V. When this wave
reaches the source, it will be reflected to form a wave of amplitude —8/9 V. The
next reflection from the load will have an amplitude of —8/27 V. These four waves

are shown in the bounce diagram of Figure 2.26. |
t
A 8
vp fV
3l
| -8
p 9 V
2l
T 8
v —
b 3 \
11
° 8V
0
0 |z

FIGURE 2.26  Bounce diagram for Example 2.9.
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PROBLEMS

21

22

23

2.4

25

26

2.7

A 75 Q coaxial line has acurrent i (t, z) = 1.8¢0s(3.77 x 10% t — 18.13z7) mA. Determine (a) the
frequency, (b) the phase velocity, (c) the wavelength, (d) the relative permittivity of the line, (€) the
phasor form of the current, and (f) the time domain voltage on the line.

A transmission line has the following per-unit-length parameters. L = 0.5 uH/m, C = 200 pF/m,
R =4.0Q/m, and G = 0.02 S/m. Calculate the propagation constant and characteristic impedance
of thisline at 800 MHz. If the line is 30 cm long, what is the attenuation in dB? Recal culate these
quantitiesin the absence of loss (R = G = 0).

RG-402U semirigid coaxial cable has an inner conductor diameter of 0.91 mm and a dielectric diam-
eter (equal to theinner diameter of the outer conductor) of 3.02 mm. Both conductors are copper, and
the dielectric materia is Teflon. Compute the R, L, G, and C parameters of thisline at 1 GHz, and
use these results to find the characteristic impedance and attenuation of the line at 1 GHz. Compare
your results to the manufacturer’s specifications of 50 2 and 0.43 dB/m, and discuss reasons for the
difference.

Compute and plot the attenuation of the coaxial line of Problem 2.3, in dB/m, over afrequency range
of 1 MHz to 100 GHz. Use log-log graph paper.

For the parallel plate line shown in the accompanying figure, derivethe R, L, G, and C parameters.
Assume W > d.

For the paralel plate line of Problem 2.5, derive the telegrapher equations using the field theory
approach.

Show that the T-model of a transmission line shown in the accompanying figure also yields the
telegrapher equations derived in Section 2.1.
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i(zt) RAz LAz RAz LAZ jz+ Az 1)
— 2 2 2 2 —>
—NVWV YA MWV Y'Y —0
+ +
V(z t) GAz CAz V(z+ Az t)
o )
Az

2.8 Alosdesstransmissionlineof electrical length ¢ = 0.3) isterminated with acomplex load impedance
as shown in the accompanying figure. Find the reflection coefficient at the load, the SWR on theline,
the reflection coefficient at the input of the line, and the input impedance to the line.

=031
O
Zin=> Z,=75Q 7, |z.=30-j20Q
O

29 A 75 Q coaxia transmission line has a length of 2.0 cm and is terminated with a load impedance
of 37.5+ j75 Q. If the relative permittivity of the line is 2.56 and the frequency is 3.0 GHz, find
the input impedance to the line, the reflection coefficient at the load, the reflection coefficient at the
input, and the SWR on the line.

2.10 A terminated transmissionlinewith Zg = 60 €2 hasareflection coefficient at theload of I' = 0.4/60°.
(8) What is the load impedance? (b) What is the reflection coefficient 0.3%. away from the load? (c)
What is the input impedance at this point?

2.11 A 100 €2 transmission line has an effective diel ectric constant of 1.65. Find the shortest open-circuited

length of thisline that appears at itsinput as a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance
of 5nH.

2.12 A lossless transmission line is terminated with a 100 2 load. If the SWR on the lineis 1.5, find the
two possible values for the characteristic impedance of the line.

2.13 Let Zsc be the input impedance of a length of coaxia line when one end is short-circuited, and let
Zoc be theinput impedance of the line when one end is open-circuited. Derive an expression for the
characteristic impedance of the cablein terms of Zsc and Zoc.

2.14 A radio transmitter is connected to an antenna having an impedance 80 + j40 2 with a50 2 coaxial
cable. If the 50 © transmitter can deliver 30 W when connected to a 50 ©2 load, how much power is
delivered to the antenna?

2.15 Calculate standing wave ratio, reflection coefficient magnitude, and return loss values to complete
the entries in the following table:

SWR IT| RL (dB)
1.00 0.00 00
1.01 — —
— 0.01 —
1.05 — —
— — 30.0
1.10 — —
1.20 — —
— 0.10 —
1.50 — —
— — 10.0
2.00 — —

2.50 — —
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2.16

217

2.18

2.19

2.20

Thetransmission linecircuit inthe accompanying figurehasVg = 15V rms, Zg =75 Q, Zo =75 Q,
ZL =60— j40 <, and ¢ = 0.7». Compute the power delivered to the load using three different
techniques:

(@) Find " and compute
Vg2 1
PL = (—g) (=T
0
(b) find Z;, and compute

V,
PL:‘ 9| Re{Zin};

(c) find V| and compute
=]
PL=|=—| Re{Z_}.
ZL
Discuss the rationale for each of these methods. Which of these methods can be used if the lineis
not lossless?

£ = !

-

+
% Zy > Zy D 143 Zy

—

For a purely reactive load impedance of the form Z| = j X, show that the reflection coefficient
magnitude |T"| is always unity. Assume that the characteristic impedance Zg isreal.

Consider the transmission line circuit shown in the accompanying figure. Compute the incident
power, the reflected power, and the power transmitted into the infinite 75 2 line. Show that power
conservation is satisfied.

50 Q A2

AW
1ovév> Z,=50Q 2,=75Q

Pinc —> —— Pyans
Pref -

A generator isconnected to atransmission line as shown in the accompanying figure. Find the voltage
as afunction of z along the transmission line. Plot the magnitude of thisvoltagefor —¢ <z < 0.

100 Q
MWV

| =1.5\1

10V@ Zo=100 Q Z, =80-j40Q

| |
- 0 z

Use the Smith chart to find the following quantities for the transmission line circuit shown in the
accompanying figure:

(8) The SWR ontheline.

(b) Thereflection coefficient at the load.

(¢) Theload admittance.

(d) Theinput impedance of the line.

(e) Thedistance from the load to the first voltage minimum.
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(f) The distance from the load to the first voltage maximum.

| =0.4x

Zin Z,=50Q Z,=60+j50Q

e,

Use the Smith chart to find the shortest lengths of a short-circuited 75 €2 line to give the following
input impedance:

(@ Zin=0.

(b) Zin = oo.

(©) Zin=j75Q.
(d) Zin=-j50%.
(e Zin=jlo%.

Repeat Problem 2.21 for an open-circuited length of 75 2 line.

A dlotted-line experiment is performed with the following results: distance between successive min-
ima = 2.1 cm; distance of first voltage minimum from load = 0.9 cm; SWR of load = 25. If
Zo = 50 2, find the load impedance.

Design a quarter-wave matching transformer to match a40 2 load to a 75 €2 line. Plot the SWR for
0.5 < f/fy < 2.0, where fq isthe frequency at which thelineis A/4 long.

Consider the quarter-wave matching transformer circuit shown in the accompanying figure. Derive
expressionsfor V1 and V —, the respective amplitudes of the forward and reverse traveling waves on
the quarter-wave line section, in terms of V!, the incident voltage amplitude.

. — VvVt
v Vo s
Zy VZoRL R
\ \
3 0 z

Derive equation (2.71) from (2.70).
In Example 2.7, the attenuation of a coaxial line due to finite conductivity is

R 1 n 1
= oinbal\a b/
Show that «¢ is minimized for conductor radii such that x Inx = 1 + x, where x = b/a. Solve this
equation for x, and show that the corresponding characteristic impedance for ¢; = 1is77 Q.

Compute and plot the factor by which attenuation is increased due to surface roughness, for rms
roughness ranging from 0 to 0.01 mm. Assume copper conductors at 10 GHz.

A 50  transmission line is matched to a 10 V source and feeds aload Z| = 100 Q. If the lineis
2.3A long and has an attenuation constant « = 0.5 dB/2, find the powers that are delivered by the
source, lost in the ling, and delivered to the load.

Consider a nonreciprocal transmission line having different propagation constants, 8T and g, for
propagation in the forward and reverse directions, with corresponding characteristic impedances Zar
and Z; . (An example of such aline could be amicrostrip transmission line on a magnetized ferrite
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substrate.) If the line is terminated as shown in the accompanying figure, derive expressions for the
reflection coefficient and impedance seen at the input of the line.

Zin 25, 25 Z

=l 0

2.31 Plot the bounce diagram for the transient circuit shown in the accompanying figure. Include at least
three reflections. What is the total voltage at the midpoint of theline (z = 1/2), at timet = 3¢/vp?

2,=500 100 Q




Transmission Lines and
Waveguides

One of the early milestones in microwave engineering was the development of waveguide
and other transmission lines for the low-loss transmission of power at high frequencies. Al-
though Heaviside considered the possibility of propagation of electromagnetic waves inside
a closed hollow tube in 1893, he rejected the idea because he believed that two conductors
were necessary for the transfer of electromagnetic energy [1]. In 1897, Lord Rayleigh (John
William Strutt) mathematically proved that wave propagation in waveguides was possible for
both circular and rectangular cross sections [2]. Rayleigh also noted the infinite set of wave-
guide modes of the TE and TM type that were possible and the existence of a cutoff frequency,
but no experimental verification was made at the time. The waveguide was then essentially for-
gotten until it was rediscovered independently in 1936 by two researchers[3]. After preliminary
experiments in 1932, George C. Southworth of the AT& T Company in New York presented a
paper on the waveguide in 1936. At the same meeting, W. L. Barrow of MIT presented a paper
on the circular waveguide, with experimental confirmation of propagation.

Early RF and microwave systems relied on waveguides, two-wire lines, and coaxial lines
for transmission. Waveguides have the advantage of high power-handling capability and low
loss but are bulky and expensive, especially at low frequencies. Two-wire lines are inexpensive
but lack shielding. Coaxial lines are shielded but are a difficult medium in which to fabricate
complex microwave components. Planar transmission lines provide an alternative, in the form
of stripline, microstrip lines, slotlines, coplanar waveguides, and severa other types of related
geometries. Such transmission lines are compact, low in cost, and capable of being easily inte-
grated with active circuit devices, such as diodes and transistors, to form microwave integrated
circuits. The first planar transmission line may have been a flat-strip coaxial line, similar to
a stripline, used in a production power divider network in World War 11 [4], but planar lines
did not see intensive development until the 1950s. Microstrip lines were developed at ITT
laboratories [5] and were competitors of stripline. The first microstrip lines used a relatively
thick dielectric substrate, which accentuated the non-TEM mode behavior and frequency dis-
persion of the line. This characteristic made it less desirable than stripline until the 1960s,
when much thinner substrates began to be used. This reduced the frequency dependence of
the line, and now microstrip lines are often the preferred medium for microwave integrated
circuits.

95
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In this chapter we will study the properties of several types of transmission lines and
waveguides that are in common use. As we know from Chapter 2, atransmission line is char-
acterized by a propagation constant, an attenuation constant, and a characteristic impedance.
These quantities will be derived by field theory analysis for the various lines and waveguides
treated here.

We begin with a discussion of the different types of wave propagation and modes that can
exist on general transmission lines and waveguides. Transmission lines that consist of two or
more conductors may support transverse electromagnetic (TEM) waves, characterized by the
lack of longitudinal field components. Such lines have a uniquely defined voltage, current, and
characteristic impedance. Waveguides, often consisting of a single conductor, support trans-
verse electric (TE) and/or transverse magnetic (TM) waves, characterized by the presence of
longitudinal magnetic or electric field components. As we will seein Chapter 4, a unique def-
inition of characteristic impedance is not possible for such waves, athough definitions can
be chosen so that the characteristic impedance concept can be extended to waveguides with
meaningful results.

3.1

GENERAL SOLUTIONS FOR TEM, TE, AND TM WAVES

In this section we will find general solutions to Maxwell’s equations for the specific cases
of TEM, TE, and TM wave propagation in cylindrical transmission lines or waveguides.
The geometry of an arbitrary transmission line or waveguide is shown in Figure 3.1 and
is characterized by conductor boundaries that are parallel to the z-axis. These structures
are assumed to be uniform in shape and dimension in the z direction and infinitely long.
The conductors will initially be assumed to be perfectly conducting, but attenuation can be
found by the perturbation method discussed in Chapter 2.

N

@ (b)
FIGURE 3.1 (@) Genera two-conductor transmission line and (b) closed waveguide.
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We assume time-harmonic fieldswith an el dependence and wave propagation along
the z-axis. The electric and magnetic fields can then be written as

E(X, Y, 2) = [B(X, ) + 2&,(X, y)le” 17, (3.19)
H(x,y,2) = [h(x, y) + 2h,(x, y)]e F?, (3.1b)

where &(x, y) and h(x, y) represent the transverse (%, ¥) electric and magnetic field com-
ponents, and e; and h; are thelongitudinal electric and magnetic field components. In (3.1)
the wave is propagating in the 4z direction; —z propagation can be obtained by replacing
B with —B. In addition, if conductor or dielectric loss is present, the propagation constant
will be complex; jB should then be replaced withy = « + jS.

Assuming that the transmission line or waveguide region is source free, we can write
Maxwell’s equations as

VxE=—jouH, (3.29)
V x H = jweE. (3.2b)

With an e 1#Z z dependence, the three components of each of these vector equations can
be reduced to the following:

9E, . .
— + |BEy = —jopHy, (3.39)
ay
. IE; .
—JBEx — Fale —jopHy, (3.3b)
dEy  9Ex .
)y _ = — H X
aH, . .
£ 4 jBHy = jweEy, (3.4a)
ay
. aH, .
dHy aHx
2= E,. 3.4c
% 3y Jwekey ( )

These six equations can be solved for the four transverse field components in terms of E;
and H; [e.g., Hx can be derived by eliminating Ey from (3.3a) and (3.4b)] asfollows:

Hy = é (weaa—liz — ﬁ%—iz) : (3.59)
Hy = % (weZ—'iZ + ﬂaa—:'/z) , (3.5h)
Ex = ;—gj (ﬁaa—'iz + op 3a|;|/z> , (3.5¢)
Ey = é (_ﬂaaliz + op 8;:) : (3.5d)

where

k2 = k2 — g? (3.6)
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is defined as the cutoff wave number; the reason for this terminology will become clear
later. Asin previous chapters,

k= w/ie = 21/A (3.7

is the wave number of the materia filling the transmission line or waveguide region. If
dielectric loss is present, € can be made complex by using € = ¢q¢r (1 — j tané), where
tan$ isthe loss tangent of the material.

Equations (3.5a)—(3.5d) are general results that can be applied to a variety of wave-
guiding systems. We will now specialize these results to specific wave types.

TEM Waves

Transverse electromagnetic (TEM) waves are characterized by E; = H; = 0. Observe
from (3.5) that if E; = H, = 0, then the transverse fields are also all zero, unless kZ =
0(k? = B?), in which case we have an indeterminate result. However, we can return to
(3.3)«3.4) and apply the condition that E; = H; = 0. Then from (3.3a) and (3.4b), we
can eliminate Hy to obtain

IBZEy = C()ZME Ey,
or
B =w e =K, (3.8

as noted earlier. [This result can also be obtained from (3.3b) and (3.4a).] The cutoff wave
number, ke = /k2 — B2, isthus zero for TEM waves.
The Helmholtz wave equation for Ey is, from (1.42),

32 9% %,
m—ira_yszﬁ—H( Ex =0, (3.9

but for e~1Z dependence, (02/07%)Ey = —B2Ex = —k2Ey, 50 (3.9) reduces to

32 92
—+— | Ex=0. 3.10

ax2 ay2) * (3.10)
A similar result also appliesto Ey, so using the form of E assumed in (3.1a), we can write

VZe(x,y) =0, (3.11)

where VZ = 8%/3x? + 8%/dy? isthe Laplacian operator in the two transverse dimensions.

The result of (3.11) shows that the transverse electric fields, &(x, y), of a TEM wave
satisfy Laplace's equation. It is easy to show in the same way that the transverse magnetic
fields also satisfy Laplace's equation:

VZh(x,y) = 0. (3.12)

The transverse fields of a TEM wave are thus the same as the static fields that can exist
between the conductors. In the electrostatic case, we know that the electric field can be
expressed as the gradient of ascalar potential, ®(x, y):

ex,y) = —Vi®(x,y), (3.13)
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where Vi = X(3/0x) + Y(3/0y) isthe transverse gradient operator in two dimensions. For
therelation in (3.13) to be valid, the curl of € must vanish, and thisisindeed the case here
since

Vi x €= —jouh;z=0.

Using the fact that V- D = €V - € = 0 with (3.13) shows that ®(x, y) also satisfies
Laplace's equation,

V2o(x,y) =0, (3.14)

as expected from electrostatics. The voltage between two conductors can be found as

2
Vip = &1 — $p = / E - de, (3.15)
1
where ®; and & represent the potential at conductors 1 and 2, respectively. The current
flow on agiven conductor can be found from Ampere's law as

I =7§ H.de, (3.16)
C

where C is the cross-sectional contour of the conductor.

TEM waves can exist when two or more conductors are present. Plane waves are al'so
examples of TEM waves since there are no field components in the direction of propaga-
tion; in this case the transmission line conductors may be considered to be two infinitely
large plates separated to infinity. The above results show that a closed conductor (such asa
rectangular waveguide) cannot support TEM waves since the corresponding static potential
in such aregion would be zero (or possibly a constant), leading to € = 0.

Thewaveimpedance of aTEM mode can befound astheratio of thetransverse electric

and magnetic fields:
Ex W M
7 — =2 JE_y 3.17
TEM Hy ~ B Ve =" (3.179)

where (3.4a) was used. The other pair of transverse field components, from (3.33), gives

—E
Zrem = —L = K (3.17b)
HX €
Combining the results of (3.17a) and (3.17b) gives a general expression for the transverse
fieldsas

h(x,y) = ! 2 x &(X,Y). (3.18)
ZTEM
Note that the wave impedance is the same as that for a plane wave in a lossless medium,
as derived in Chapter 1; the reader should not confuse this impedance with the character-
istic impedance, Zo, of atransmission line. The latter relates traveling voltage and current
and is a function of the line geometry as well as the material filling the line, while the
wave impedance relates transverse field components and is dependent only on the material
constants. From (2.32), the characteristic impedance of the TEM lineis Zg = V/I, where
V and | are the amplitudes of the incident voltage and current waves.
The procedure for analyzing a TEM line can be summarized as follows:

1. Solve Laplace’s equation, (3.14), for ®(x,y). The solution will contain severa
unknown constants.
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2. Find these constants by applying the boundary conditions for the known voltages on the
conductors.

3. Compute & and E from (3.13) and (3.1a). Compute h and H from (3.18) and (3.1b).

4. Compute V from (3.15) and | from (3.16).

5. The propagation constant is given by (3.8), and the characteristic impedance is given
by Zo = V/I.

TE Waves

Transverse electric (TE) waves, (also referred to as H-waves) are characterized by E; = 0
and H; # 0. Equations (3.5) then reduce to

_ —iBoH,

M= 7 5 (3.199)

, = _kjgﬁ 88'12, (3.19b)
Ex = _Lfc;_” a 88'_;2, (3.19)
Ey = %‘“ 38'12. (3.19d)

In this case k¢ # 0, and the propagation constant 8 = \/k? — k2 is generally a function of
frequency and the geometry of the line or guide. To apply (3.19), one must first find H;
from the Helmholtz wave equation,

3% 9% ¥,
— 4+ —+ —+k?] H, =0, 3.20
8x2+8y2+822+ z (3.20)
which, since Hz(X, y, 2) = hz(X, y)e‘jﬂz, can bereduced to atwo-dimensional wave equa-
tion for hy:
2 9,
<_8X2 ta kc> h, = 0. (3.21)

since k2 = k? — 2. This equation must be solved subject to the boundary conditions of
the specific guide geometry.
The TE wave impedance can be found as

Ex —-Ey owu Kkp
ZTE = — = = =,
Hy  Hx B p
which is seen to be frequency dependent. TE waves can be supported inside closed con-
ductors, as well as between two or more conductors.

(3.22)

TM Waves

Transverse magnetic (TM) waves (also referred to as E-waves) are characterized by
E; # 0 and H; = 0. Equations (3.5) then reduce to

jCl)E 8Ez
X = WW’
—jwe 0E;
TR

(3.233)

Hy = (3.23b)
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_ —iBIE,
Ex = @ o (3.23¢c)
—jB OE,
= —— 2
V=2 By (3.230)

As in the TE case, ke # 0, and the propagation constant g = \/k? — k2 is a function of
frequency and the geometry of the line or guide. E; is found from the Helmholtz wave

equation,
3% 9% 2,
(_8x2 + P +tozt k“] E; =0, (3.24)

which, since E;(X, Y, 2) = ez(X, y)e‘jf’z, can be reduced to atwo-dimensional wave equa-
tion for e,:

22 92,
S T e,=0 3.25
X2 9y? ke ’ (3.2

since k2 = k? — 2. This equation must be solved subject to the boundary conditions of
the specific guide geometry.
The TM wave impedance can be found as

E —E
Zim = = y=ﬂ=@,

Hy - Hx we k

(3.26)

which isfrequency dependent. Asfor TE waves, TM waves can be supported inside closed
conductors, as well as between two or more conductors.
The procedure for analyzing TE and TM waveguides can be summarized as follows:

1. Solve the reduced Helmholtz equation, (3.21) or (3.25), for h; or e,. The solution
will contain several unknown constants and the unknown cutoff wave number, Kc.

2. Use (3.19) or (3.23) to find the transverse fields from h; or e;.

3. Apply the boundary conditions to the appropriate field components to find the
unknown constants and k.

4. The propagation constant isgiven by (3.6) and the wave impedance by (3.22) or (3.26).

Attenuation Due to Dielectric Loss

Attenuation in atransmission line or waveguide can be caused by either dielectric loss or
conductor loss. If ag is the attenuation constant due to dielectric loss and o is the attenu-
ation constant due to conductor |oss, then the total attenuation constant isa = ag + ac.

Attenuation caused by conductor loss can be calculated using the perturbation method
of Section 2.7; this loss depends on the field distribution in the guide and so must be
evaluated separately for each type of transmission line or waveguide. However, if the line
or guide is completely filled with a homogeneous dielectric, the attenuation due to alossy
dielectric material can be calculated from the propagation constant, and this result will
apply to any guide or line with a homogeneous dielectric filling.

Thus, use of the complex permittivity allows the complex propagation constant to be
written as

y=adq+jp=ki-k?

— /& — w2puoe0er (1 - | tans). (3.27)



102 Chapter 3: Transmission Lines and Waveguides

3.2

In practice, most dielectric materials have small losses (tans « 1), and so this expression

can be simplified by using the first two terms of the Taylor expansion,

2

1 (%2
\/a2+x2:a+—<g>, for x « a.

Then (3.27) reduces to

y =\/k§—k2+jk2tan5

[ jk?tans
~ 2_k2+
ke 2,/kZ — K2
k2tans .
=" Tif (3.28)

since /kZ — k? = jB. In these results, k = w./toeoer is the (real) wave number in the
absence of loss. Equation (3.28) shows that when the loss is small the phase constant g is
unchanged, while the attenuation constant due to dielectric lossis given by

B kZtans
oag = 25

This result appliesto any TE or TM wave, as long as the guide is completely filled with
the dielectric material. It can also be used for TEM lines, where ke = 0, by letting 8 = k:

Ktans
ot = %”Np/m (TEM waves). (3.30)

Np/m (TE or TM waves). (3.29

PARALLEL PLATE WAVEGUIDE

The parallel plate waveguide is the simplest type of guide that can support TM and TE
modes; it can also support a TEM mode sinceit is formed from two flat conducting plates,
or strips, as shown in Figure 3.2. Although it is an idealization, understanding the parallel
plate guide can be useful because its operation is similar to that of many other waveguides.
The parallel plate guide can also be useful for modeling the propagation of higher order
modes in stripline.

€, d

z

FIGURE 3.2 Geometry of aparallel plate waveguide.
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In the geometry of the parallel plate waveguide of Figure 3.2, the strip width, W, is
assumed to be much greater than the separation, d, so that fringing fields and any x vari-

ation can be ignored. A material with permittivity ¢ and permeability w is assumed to fill
the region between the two plates. We will derive solutions for TEM, TM, and TE waves.

TEM Modes

Asdiscussed in Section 3.1, the TEM mode solution can be obtained by solving Laplace's
equation, (3.14), for the electrostatic potential @ (x, y) between the two plates. Thus,

V2o(x,y) =0, for0O<x<W, O<y<d. (3.31)

If we assume that the bottom plate is at ground (zero) potential and the top plate at a
potential of V,, then the boundary conditions for ®(x, y) are

®(x,0) =0, (3.323)
d(x, d) = Vo. (3.32b)

Because thereis no variation in x, the general solution to (3.31) for ®(x, y) is
@(x,y) = A+ By,

and the constants A, B can be evaluated from the boundary conditions of (3.32) to give the
final solution as

(X, y) = Voy/d. (3.33)

The transverse electric field is, from (3.13),

. V,
&(X, y) = —V1®(X, y) = —yf, (3.34)
s0 that the total electric field is
= e “ikz _ o Vo_—jkz
E(X,y,2) =&, y)e '™ = Vg€ (3.35)

wherek = w./x€ isthe propagation constant of the TEM wave, asin (3.8). The magnetic
field, from (3.18), is

H(x,y,2) =h(x,y)e ik =

S|

_ V, )
2x E(X,Y,2) = X—Se’lkz, (3.36)
n

where n = /i/e is the intrinsic impedance of the medium between the paralel plates.
Note that E; = H; = 0 and that the fields are similar in form to a plane wave in a homo-
geneous region.

The voltage of the top plate with respect to the bottom plate can be calculated from
(3.15) and (3.35) as

d .
V=— / Ey dy = Voe /<2, (3.37)
y=0
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as expected. The total current on the top plate can be found from Ampere's law or the
surface current density:

W, W, w WVo iy

| :/ Js-zdx:/ (=Y x H)~zdx=/ Hydx = ——e 1% (3.38)
x=0 x=0 x=0 77d

Then the characteristic impedance is

VvV nd
Z = — = —

0= A
which is seen to be a constant dependent only on the geometry and material parameters of
the guide. The phase velocity is also a constant:

(3.39)

Vp = — — , (3.40)
PT BT e
which is the speed of light in the material medium.
Attenuation due to dielectric lossis given by (3.30). The formulafor conductor atten-
uation will be derived in the next subsection as a special case of TM mode attenuation.

TM Modes

Asdiscussed in Section 3.1, TM waves are characterized by H, = 0 and anonzero E; field
that satisfies the reduced wave equation of (3.25), with 9/ax = 0:

2,
Gﬁ+n)&mw=Q (3.41)

where ke = k2 — B2 is the cutoff wave number, and E,(x, y, 2) = e,(x, y)e FZ. The
general solution to (3.41) is of the form

e;(X,y) = Asin kcy + B coskey, (3.42)
subject to the boundary conditions that
e(x,y)=0, ay=0,d. (3.43)
Thisimpliesthat B=0andk.d = nz forn=0, 1, 2, 3..., or
kc=%”, N=0123.... (3.44)

Thus the cutoff wave number, k¢, is constrained to discrete values as given by (3.44); this
implies that the propagation constant, 3, is given by

p=Jk2—k2 = k2 - (nn/d)2. (3.45)
The solution for e;(x, y) isthen
&(X,y) = Ansin ?, (3.46)

and thus,

E.(X, Y, 2) = Apsin %e‘jﬂz. (3.47)
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The transverse field components can be found, using (3.23), to be

jwe nrcy

Hx = = —An cosTe—JﬂZ, (3.484)
C

Ey = _kjcﬂ An cos%’e‘jﬂz, (3.48D)

Ex = Hy =0. (3.48c)

Observe that for n =0, g = k = /€, and that E; = 0. The Ey and Hy fields are
then constant in y, so that the TMy mode is actually identical to the TEM mode. For n > 0,
however, the situation is different. Each value of n corresponds to a different TM mode,
denoted asthe TM, mode, and each mode has its own propagation constant given by (3.45)
and field expressions given by (3.48).

From (3.45) it can be seen that g isreal only whenk > k.. Becausek = w. /i€ ispro-
portional to frequency, the TM, modes (for n > 0) exhibit a cutoff phenomenon, whereby
no propagation will occur until the frequency is such that k > k. The cutoff frequency of
the TM, mode can be found as

ke _m
NI NI

Thus, the TM mode (for n > 0) that propagates at the lowest frequency is the TM1 mode,
with a cutoff frequency of fc = 1/2d,/ize; the TM, mode has a cutoff frequency equal to
twice this value, and so on. At frequencies below the cutoff frequency of a given mode,
the propagation constant is purely imaginary, corresponding to a rapid exponential decay
of the fields. Such modes are referred to as cutoff modes, or evanescent modes. Because of
the cutoff frequency, below which propagation cannot occur, waveguide mode propagation
is analogous to a high-pass filter response.
The wave impedance of a TM mode, from (3.26), is afunction of frequency:

& _ B _p
HX we k ’

fe (3.49)

Ztm = (3.50)
which we see is pure real when f > f; but pure imaginary when f < f.. The phase
velocity isalso afunction of frequency:
w
vp = —, (3.51)
"B
and is seen to be greater than 1/, /iwe = wlk, the speed of light in the medium, since 8 < k.
The guide wavelength is defined as

g = — (3.52)

and is the distance between equiphase planes along the z-axis. Note that Ag > A = 2n/k,
the wavelength of a plane wave in the material. The phase velocity and guide wavelength
are defined only for a propagating mode, for which g isreal. One may also define a cutoff
wavelength for the TM, mode as

Ac = %. (3.53)
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It is instructive to compute the Poynting vector to see how power propagates in the

TM;, mode. From (1.91), the time-average power passing a transverse cross section of the
paralel plate guideis

1 W d _ B 1 W d
P0=—Re/ / E x H*~2dydx=——Re/ / EyHy dydx
2 Jx=0Jy=0 2 Jx=0Jy=0

WR
; %MMMZ forn>0
WR
- ;(g)we [Aal® | cos® ? dy = WRe(,BC)a)ed
ke y=0 T|An|2 forn=0
C

(3.54)

where (3.48a, b) were used for Ey, Hy. Thus, P, is positive and nonzero when g is readl,
which occurs when f > f.. When the mode is below cutoff, g is imaginary, and then
Po - 0

TM (or TE) waveguide mode propagation has an interesting interpretation when
viewed asapair of bouncing plane waves. For example, consider the dominant TM1 mode,

which has propagation constant
B1 = /K% — (r/d)?, (3.55)

and E; field

E; = Arsin %ye‘iﬁlz

’

which can be rewritten as

E, = ﬁ [ej (my/d—p12) _ e—j(ﬂ)’/d+ﬂ12):| ) (3.56)
2j

Thisresultisin the form of two plane wavestraveling obliquely inthe —y, +zand +y, +z

directions, respectively, as shown in Figure 3.3. By comparison with the phase factor of

(1.132), the angle 6 that each plane wave makes with the z-axis satisfies the relations

ksing = %, (357a)

sothat (/d)? + B2 = k?, asin (3.55). For f > f¢, B isreal and lessthan ki, s0 6 issome
angle between 0° and 90°, and the mode can be thought of as two plane waves alternately
bouncing off of the top and bottom plates.

K

0 z

FIGURE 3.3 Bouncing plane wave interpretation of the TM 1 parallel plate waveguide mode.
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The phase velocity of each plane wave along its direction of propagation (6 direction)
iswlk = 1/,/me, which is the speed of light in the material filling the guide. However, the
phase velocity of the planewavesinthe z directionisw/f1 = 1/, /i€ coso, whichisgreater
than the speed of light in the material. (This situation is analogous to ocean waves hitting
ashoreline: the intersection point of the shore and an obliquely incident wave crest moves
faster than the wave crest itself.) The superposition of the two plane wave fieldsis such that
complete cancellation occurs at y = 0 and y = d, to satisfy the boundary condition that
E; = 0 at these planes. As f decreasesto fc, 81 approaches zero, so that, by (3.57b), 6
approaches 90°. The two plane waves are then bouncing up and down, with no motion in
the 4z direction, and no real power flow occursin the z direction.

Attenuation due to dielectric loss can be found from (3.29). Conductor loss can be
treated using the perturbation method. Thus,

(3.58)

where P, is the power flow down the guide in the absence of conductor loss, as given by
(3.54). Py is the power dissipated per unit length in the two lossy conductors and can be
found from (2.97) as

R w _ 22RW
P =2 —S/ 1G2dx = LY A2 (359)
> )], @

where Rs isthe surface resistivity of the conductors. Using (3.54) and (3.59) in (3.58) gives
the attenuation due to conductor loss as

_ 2we RS B 2k RS

YT Tpd T pnd

As discussed previously, the TEM mode isidentical to the TMg mode for the parallel
plate waveguide, so the above attenuation results for the TM; mode can be used to obtain

the TEM mode attenuation by letting n = 0. For this case, the n = 0 result of (3.54) must
be used in (3.58), to obtain

Np/m, forn > 0. (3.60)

o = & Np/m. (3.61)
nd

TE Modes

TE modes, characterized by E; = 0, can also propagatein aparallel plate waveguide. From
(3.22), with 8/9x = 0, H; must satisfy the reduced wave equation,

2
(% + k§> h,(X, y) = 0, (3.62)

where ke = k2 — 2 is the cutoff wave number and H(x, y, z) = hz(x, y)e 1#Z. The
genera solutionto (3.62) is

hz(X,y) = Asinkcy + B coskgy. (3.63)

The boundary conditionsarethat Ex = 0at y = 0O, d; E; isidentically zero for TE modes.
From (3.19¢) we have
E, — _L‘c"“ (Acoskey — Bsinkey) e 167, (3.64)
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and applying the boundary conditions showsthat A = 0 and
kcz%”, n=123.... (3.65)
asfor the TM case. The final solution for H; isthen
Hz(X, y) = By cos%e_iﬁz. (3.66)

The transverse fields can be computed from (3.19) as

E, — "k”“ By Sin n%ye‘jﬁz, (3.67)
C

Hy = % By sin %’e—iﬁ{ (3.67b)

Ey = Hy = 0. (3.670)

The propagation constant of the TE, mode is given as

p= k2 (%”)2, (3.68)

which is the same as the propagation constant of the TM;; mode. The cutoff frequency of
the TE, modeis

n

fo = 3.69
C 2d\/m7 ( )
which isalso identical to that of the TM,, mode. The wave impedance of the TE, modeis,
from (3.22),
E k
Zre=—=20_71 (3.70)
Hy B B

whichisseento bereal for propagating modes and imaginary for nonpropagating, or cutoff,
modes. The phase velocity, guide wavelength, and cutoff wavelength are similar to the
results obtained for the TM modes.

The power flow down the guide for a TE,, mode can be calculated as

1 w d _ B 1 W d
P0=—Re/ / E x H*~2dydx=—Re/ / EXH}’,"dydx
2 x=0Jy=0 2 x=0 Jy=0

- %mmwﬁ), forn > 0, (3.71)
which is zero if the operating frequency is below the cutoff frequency (8 imaginary).
Note that if n =0, then Ex = Hy = 0 from (3.67), and thus P, = O, implying that
thereisno TEg mode.
Attenuation can be calculated in the same way as for the TM modes. The attenuation
due to dielectric loss is given by (3.29). It is|eft as a problem to show that the attenuation
due to conductor loss for TE modes is given by

_ 2ZRs  2kZRs
~ oppd  kpnd

Np/m. (3.72)
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Attenuation due to conductor loss for the TEM, TM 1, and TE; modes of a parallel

Figure 3.4 shows attenuation versus frequency due to conductor loss for the TEM, TMy,
and TE; modes. Observe that ac — oo as cutoff is approached for the TM and TE

modes.

Table 3.1 summarizes a number of useful results for parallel plate waveguide modes.
Field lines for the TEM, TM1, and TE; modes are shown in Figure 3.5.

TABLE 3.1 Summary of Resultsfor Parallel Plate Waveguide
Quantity TEM Mode TMp Mode TEh Mode
k /e /e w. /€
ke 0 nz/d nr/d
Ac 00 27 /ke =2d/n 27 /ke =2d/n
Ag 27 /k 21/ B 27/B
vp w/k=1//ue /B /B
aq (ktans)/2 (K%tans) /2B (k%tans) /2B
o Rs/nd 2kRs/pnd 2kZRs/kpnd
E, 0 Asin(nry/d)e~ 182 0
H, 0 0 B cos (ny/d)e~1h2Z
Ex 0 0 (jou/ke)Bsin(nry/d)e™ A2
Ey (—Vo/d)e 1F2 (= B/ke)Acos(nry/d)e~1F2 0
Hy (Vo/nd)e™1PZ  (jwe/ke)Acos(nmy/d)e 1£2 0
Hy 0 0 (iB/kc)Bn sin(nry/d)e~ A2
z Z1EM = nd/W Ztm = Bn/k Zte =kn/p
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FIGURE 3.5 Field linesfor the (a) TEM, (b) TM4, and (c) TE; modes of a paralel plate wave-

3.3

guide. Thereis no variation across the width of the waveguide.

RECTANGULAR WAVEGUIDE

Rectangular waveguides were one of the earliest types of transmission lines used to transport
microwave signals, and they are still used for many applications. A large variety of components
such as couplers, detectors, isolators, attenuators, and dlotted lines are commercialy available
for various standard waveguide bands from 1 to 220 GHz. Figure 3.6 shows some of the
standard rectangular waveguide components that are available. Because of the trend toward
miniaturization and integration, most modern microwave circuitry is fabricated using planar
transmission lines such as microstrips and stripline rather than waveguides. Thereis, however,
still a need for waveguides in many cases, including high-power systems, millimeter wave
applications, satellite systems, and some precision test applications.

The hollow rectangular waveguide can propagate TM and TE modes but not TEM
waves since only one conductor is present. We will see that the TM and TE modes of a
rectangular waveguide have cutoff frequencies below which propagation is not possible,
similar to the TM and TE modes of the parallel plate guide.

TE Modes

The geometry of a rectangular waveguide is shown in Figure 3.7, where it is assumed
that the guide is filled with a material of permittivity ¢ and permeability w. It is standard
convention to have the longest side of the waveguide along the x-axis, so that a > b.

TE waveguide modes are characterized by fields with E; = 0, while H; must satisfy
the reduced wave equation of (3.21):

2 8,
(W + P + kc> hz(x,y) =0, (3.73)

with Hz(X, Y, 2) = hy(x, y)e 1#Z; here ke = /k? — B2 is the cutoff wave number. The
partia differential equation (3.73) can be solved by the method of separation of variables
by letting

hz(X, y) = X()Y(y) (3.74)
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Variable attenuator

111

FIGURE 3.6  Photograph of Ka-band (WR-28) rectangular waveguide components. Clockwise

from top: a variable attenuator, an E-H (magic) tee junction, a directional coupler,
an adaptor to ridge waveguide, an E-plane swept bend, an adjustable short, and a

sliding matched load.

and substituting into (3.73) to obtain

1d2x_+ 1d2y
X dx2 Y dy?

+k2=0.

(3.75)

Then, by the usual separation-of-variables argument (see Section 1.5), each of thetermsin
(3.75) must be equal to a constant, so we define separation constants ky and ky such that

FIGURE 3.7
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Geometry of arectangular waveguide.

(3.763)

(3.76D)
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and
kg + K = k¢. (3.77)
The general solution for h; can then be written as
hz(x, y) = (Acoskyx + Bsinkyx)(C coskyy + D sinkyy). (3.78)

To evaluate the constants in (3.78) we must apply the boundary conditions on the
electric field components tangential to the waveguide walls. That is,

ex(X,y) =0, ay=0,Db, (3.7939)
ey(x,y) =0, ax=0,a. (3.79b)

We therefore cannot use h, of (3.78) directly but must first use (3.19c) and (3.19d) to find
& and ey from hy:

—jo

ky(Acostx + Bsinkyx)(—C sinkyy + D coskyy), (3.80a)

ey = kc kx( Asinkyx + B coskyx)(C coskyy + D sinkyy). (3.80b)
Then from (3.79a) and (3.80a) we see that D =0, and ky =nz/b for n=0, 1, 2....
From (3.79b) and (3.80b) we have that B=0and ky = mr/aform=0, 1, 2.... The
final solution for H; isthen

mm X n
Hz(X, ¥, 2) = Amn cos% cos zy

e iz, (3.81)
where Amn is an arbitrary amplitude constant composed of the remaining constants A
and C of (3.78).

The transverse field components of the TEqy, mode can be found using (3.19) and

(3.81):
joopun mm X n ;
Ex = %Amn cos% sin %ye‘lﬂz, (3.82a)
—joum m n ;
Ey= %Amnsin%cos gye 1z (3.82b)
m mrX N ,
Hy = %Amnsi %cos Zye ipz, (3.82c)
n mrx . n
Hy = szg Arnn COS Z sin ’gye isz, (3.82d)

The propagation constant is

e e B R em

which is seen to bereal, corresponding to a propagating mode, when

K> ke = \/m” ”—”).
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Each mode (each combination of m and n) has a cutoff frequency fc,,, given by

ke
fom = o1 Jie 2;T\l/ﬁ\/(m?n>2 * (%)2' (384)

The mode with the lowest cutoff frequency is called the dominant mode; because we have
assumed a > b, the lowest cutoff frequency occurs for the TEjp(m = 1, n = 0) mode:

1
fClO = Za—.
J €

Thus the TE1g mode is the dominant TE mode and, as we will see, the overall dominant
mode of the rectangular waveguide. Observe that the field expressions for E and H in
(3.82) aredl zero if bothm = n = 0; thereis no TEgy mode.

At a given operating frequency f only those modes having f > fc will propagate;
modes with f < f; will lead to an imaginary 8 (or real «), meaning that all field compo-
nentswill decay exponentially away from the source of excitation. Such modes arereferred
to as cutoff modes, or evanescent modes. If more than one mode is propagating, the wave-
guide is said to be overmoded.

From (3.22) the wave impedance that rel ates the transverse el ectric and magnetic fields

(3.85

is

Zte= — = , (3.86)
Hy Hy B
where n = /u/€ is the intrinsic impedance of the material filling the waveguide. Note
that Z7g isreal wheng isrea (a propagating mode) but isimaginary when g isimaginary
(acutoff mode).
The guide wavelength is defined as the distance between two equal -phase planes along
the waveguide and is equal to
2t 2n
A,g = 7 > T = )», (387)
which is thus greater than A, the wavelength of a plane wave in the medium filling the
guide. The phase velocity is

vp = % > % = 1/ /i<, (3.88)
which is greater than 1/ /1€, the speed of light (plane wave) in the medium.

In the vast majority of waveguide applications the operating frequency and guide
dimensions are chosen so that only the dominant TE;g mode will propagate. Because of
the practical importance of the TEjo mode, wewill list the field components and derive the
attenuation due to conductor loss for this case.

Specializing (3.81) and (3.82) to the m = 1, n = 0 case gives the following results
for the TE;g mode fields:

H, = A cos%xe‘j’gz, (3.89)
—1i a . X .
E, = %A s %e—lﬂ{ (3.89b)
T
jBa L TX
H, = ﬁAmsn%e—Jﬁz, (3.89¢)
T
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The cutoff wave number and propagation constant for the TEjg mode are, respectively,

ke = 7/a, (3.90)
— (/@) (3.91)

The power flow down the guide for the TE1g mode can be calculated as

1 a b B
Pm:—Re/ f E x H* - zdydx
2 Jx=0Jy=0
1 a b
= —Re/ / EyH, dydx
2 x=0Jy=0
2 b
a : X
= O Re(f) | A / f 2 ™% dy dx
y=0 a
a),ua3|A10|2b

= TRe(ﬂ). (3.92)
Note that this result gives nonzero real power only when 8 is real, corresponding to a
propagating mode.

Attenuation in a rectangular waveguide may occur due to dielectric loss or conductor
loss. Dielectric loss can be treated by making e complex and using the general result given
in (3.29). Conductor loss is best treated using the perturbation method. The power lost per
unit length due to finite wall conductivity is, from (1.131),

R
P, = 25 | Js|%de, (3.93)

where Rs is the wall surface resistance, and the integration contour C encloses the inside
perimeter of the guide walls. There are surface currents on al four walls, but from sym-
metry the currents on the top and bottom walls are identical, as are the currents on the left
and right side walls. So we can compute the power lost inthewallsat x =0andy =0
and double their sum to obtain the total power loss. The surface current on the x = 0 (left)
wall is

J_s =fxH Ix=0 = X X ZHz|x—0 = —JHz|x=0 = —yAloe_jﬁz, (3.9439)
and the surface current on the y = 0 (bottom) wall is

Js = fi x Hly—o = ¥ x (XHxly=0 + 2Hzly—0)

jBa
S L N T - X JfBZerAlocos?e 1pz, (3.94b)

Substituting (3.94) into (3.93) gives

b a
=R 1%ylPdy+Re [~ [130?+ 13ul?] dx
— X=

2a3
RS|A10|2<b+ +’Z 2 (3.95)
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The attenuation due to conductor loss for the TE;g modeis then

P, 27?Rs(b+a/2+ p%ad/2n?)
2P wpashp

Q¢ =

(2br? + a3k?) Np/m. (3.96)

a3bﬁk

TM Modes

TM modes are characterized by fields with H; = 0, while E; must satisfy the reduced
wave equation (3.25):

N
e T 3y + kg ) e(x,y) =0, (3.97)

with Ez(X, y, 2) = e;(x, y)e 1% and k? = k? — 2. Equation (3.97) can be solved by the
separation-of-variables procedure that was used for TE modes. The general solution is

€,(X, y) = (AcoskyX + B sinkyx)(C coskyy + D sinkyy). (3.98)
The boundary conditions can be applied directly to e;:

e(x,y)=0,  ax=0a, (3.993)
e(x,y)=0, ay=0h. (3.990)

We will seethat satisfaction of these conditions on e, will lead to satisfaction of the bound-
ary conditions by e, and ey.

Applying (3.99a) to (3.98) shows that A=0 and ky = mn/a for m=1, 2, 3....
Similarly, applying (3.99b) to (3.98) showsthat C = 0andky = nz/bforn=1, 2, 3....
The solution for E, then reduces to

E»(X, Y, 2) = Bm sn% sin m;ye bz, (3.100)

where By, isan arbitrary amplitude constant.
Thetransverse field components for the TM,, mode can be computed from (3.23) and
(3.100) as

—jBmm mrzX . Nnmy

Ex = a—kgan cos —— sin—2 e 1z (3.101a)
E, = %&g” Bunn SN % cos ”zye i#z, (3.101b)
Hy = %an sin mZX cos%/e ipz, (3.101c)
Hy = _J:—;;T Bunn cos% sin ”’;ye sz, (3.101d)

Asfor the TE modes, the propagation constant is

B = m _ \/kz _ (m%)z _ (”F”)Z (3.102)
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FIGURE 3.8 Attenuation of various modesin arectangular brass waveguide with a = 2.0 cm.

and is real for propagating modes and imaginary for cutoff modes. The cutoff frequencies
for the TMmn modes are also the same as those of the TEm, modes, as given in (3.84).
The guide wavelength and phase velocity for TM modes are al so the same as those for TE
modes.

Observe that the field expressions for E and H in (3.101) areidentically zero if either
m or n is zero. Thus there is no TMgqg, TMo1, or TM 10 mode, and the lowest order TM
mode to propagate (lowest f¢) isthe TM11 mode, having a cutoff frequency of

foy = ﬁ (%)2 + (1)2, (3.103)

which is seen to be larger than fc,,, the cutoff frequency of the TE;o mode.
The wave impedance rel ating the transverse el ectric and magnetic fieldsfor TM modes
is, from (3.26),

EX_—Ey_@

Ex_ 1
Hy  Hx K (3109

Ztm =

Attenuation due to dielectric loss is computed in the same way as for TE modes, with
the same result. The calculation of attenuation due to conductor loss is left as a problem;
Figure 3.8 shows attenuation versus frequency for some TE and TM modesin arectangular
waveguide. Table 3.2 summarizes results for TE and TM wave propagation in rectangular
waveguides, and Figure 3.9 showsthefield linesfor several of thelowest order TE and TM
modes.

EXAMPLE 3.1 CHARACTERISTICSOF A RECTANGULAR WAVEGUIDE

Consider alength of Teflon-filled, copper K-band rectangular waveguide having
dimensionsa = 1.07 cm and b = 0.43 cm. Find the cutoff frequencies of thefirst
five propagating modes. If the operating frequency is 15 GHz, find the attenuation
due to dielectric and conductor losses.
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TABLE 3.2 Summary of Resultsfor Rectangular Waveguide

Quantity TEmn Mode TMmn Mode
k w./Jte w. /1€
ke V(mr/a)2 + (n7/b)2 V(mr/a)2 + (n7/b)2
p VK- K VK- K¢
N 2w 2w
¢ ke ke
N 27 2
g B B
w w
v @ @
P B B
k2tans k2tans
o
d 28 28
m n ;
E, 0 Bsin X gn MY - ipz
H, Acos X cos MY o~ Bz 0
a b
Ex JOUT 2 cos X in 7Y o167 ~IBMT & cos ™TX g MY -2
2h b 24 b
—jopm m - —jBn m n
Ey szu T Asin X cos Y o2 “z T Bsin X o5 Y iz
kéa a b kéb
Hy Jﬁ;nn A m X cos n”ye—jﬁz jwznrr B msm cos nrrye_“gz
K2 k2b
Hy Jﬂznﬂ Acos X gin 7Y o~ ipz —szemrr Bcos 2% gin Y -ipz
kZb a b kZa
kn Bn
z ZTE = — Zra =
TE= g ™ =~
Solution

From Appendix G, for Teflon, ¢, = 2.08 and tan § = 0.0004. From (3.84) the
cutoff frequencies are given by

o = g () + ('

Computing f¢ for thefirst few values of m and n gives the following results:

Mode m n fc(GHz)
TE 1 0 9.72
TE 2 0 19.44
TE 0 1 24.19
TE, T™M 1 1 26.07
TE, T™M 2 1 31.03
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Thusthe TE1g, TE2g, TEp1, TE11, and TM11 modes will be thefirst five modes to

propagate.
At 15 GHz, k = 453.1 m~1, and the propagation constant for the TE1o mode

e SR o

From (3.29), the attenuation due to dielectric lossis

is

k?tans
odd =
d 2[3

= 0.119 Np/m = 1.03 dB/m.

The surface resistivity of the copper wallsis (o = 5.8 x 107 S/m)

Ro= [2H° _po320.
20

and the attenuation due to conductor loss, from (3.96), is

Rs

% = s (2br? + a%k?) = 0.050 Np/m = 0.434 dB/m.

TE o Modes of a Partially Loaded Waveguide

The above results apply to an empty waveguide as well as one filled with a homogeneous
dielectric or magnetic material, but in some cases of practical interest (such as impedance
matching or phase-shifting sections) a waveguide is used with a partial dielectric filling.
In this case an additional set of boundary conditions are introduced at the material inter-
face, necessitating a new analysis. To illustrate the technique we will consider the TEmno
modes of a rectangular waveguide that is partialy filled with a dielectric slab, as shown
in Figure 3.10. The analysis dtill follows the basic procedure outlined at the end of
Section 3.1.

Since the geometry is uniform in the y direction and n = 0, the TE;;,g modes have no
y dependence. Then the wave equation of (3.21) for h, can be written separately for the
dielectric and air regions as

82
(m + kf,) h,=0,  for0<x<t, (3.1053)
82
(W + ka2> h,=0  fort<x<a, (3.105b)
y
b
€r€o €0
0
t a X

FIGURE 3.10 Geometry of apartially loaded rectangular waveguide.
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where kg and k, are the cutoff wave numbers for the dielectric and air regions, defined as

follows:
B = &ki—K;, (3.1063)
B=/kE—K2. (3.106h)

These relations incorporate the fact that the propagation constant, 8, must be the same in
both regions to ensure phase matching (see Section 1.8) of the fields along the interface at
X =t. The solutionsto (3.105) can be written as

{Acoskdx-|-Bsinkdx for0<x <t
Z=

i (3.107)
C coska(a — x) + Dsinka(a — x) fort <x<a,

where the form of the solution for t < x < a was chosen to simplify the evaluation of
boundary conditionsat x = a.

We need ¥ and z electric and magnetic field components to apply the boundary condi-
tionsat x =0, t, anda. E; = 0 for TE modes, and Hy = 0 since 3/dy = 0. Ey isfound
from (3.19d) as

jouro

kg (—Asinkgx + B coskgx) forO<x <t
ey = » (3.108)
kao[Cs'nka(a—x)—Dcoska(a—x)] fort <x<a.

To satisfy the boundary conditions that Ey =0 at x = 0 and x = a requires that B =
D = 0. We next enforce continuity of tangential fields(Ey, H) at x = t. Equations(3.107)
and (3.108) then give the following:

—-A C

——sinkgt = — sinka(@a —t),

Kd Ka

Acoskyqt = C coska(a —1t).

Because this is a homogeneous set of equations, the determinant must vanish in order to
have anontrivial solution. Thus,

ka tankgt + kg tanka(@a —t) = 0. (3.109)

Using (3.106) allows ky and kg to be expressed in terms of 8, so (3.109) can be solved
numericaly for 8. Thereisan infinite number of solutionsto (3.109), corresponding to the
propagation constants of the TEg modes.

This technique can be applied to many other waveguide geometries involving dielec-
tric or magnetic material inhomogeneities, such as the surface waveguide of Section 3.6 or
the ferrite-loaded waveguide of Section 9.3. In some cases, however, it will be impossible
to satisfy all the necessary boundary conditions with only TE- or TM-type modes, and a
hybrid combination of both types of modes may be required.

POINT OF INTEREST: Waveguide Flanges

There are two commonly used waveguide flanges: the cover flange and the choke flange. As
shown in the accompanying figure, two waveguides with cover-type flanges can be bolted to-
gether to form a contacting joint. To avoid reflections and resistive loss at thisjoint it is heces-
sary that the contacting surfaces be smooth, clean, and square because RF currents must flow
across this discontinuity. In high-power applications voltage breakdown may occur at an imper-
fect junction. Otherwise, the simplicity of the cover-to-cover connection makesit preferable for
general use. The SWR from such ajoint istypically lessthan 1.03.
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An alternative waveguide connection uses a cover flange against a choke flange, as shown
in the figure. The choke flange is machined to form an effective radial transmission line in the
narrow gap between the two flanges; thislineis approximately 1.4/4 in length between the guide
and the point of contact for the two flanges. Another Ag/4 line is formed by a circular axial
groove in the choke flange. Then the short circuit at the right-hand end of this groove is trans-
formed into an open circuit at the contact point of the flanges. Any resistancein this contact isin
series with an infinite (or very high) impedance and thus has little effect. This high impedance
is transformed back into a short circuit (or very low impedance) at the edges of the waveguides
to provide an effective low-resistance path for current flow across the joint. Because there is
a negligible voltage drop across the ohmic contact between the flanges, voltage breakdown is
avoided. Thus, the cover-to-choke connection can be useful for high-power applications. The
SWR for thisjoint is typically less than 1.05 but is more frequency dependent than that of the
cover-to-cover joint.

Hmuluumj:l Contact

N

Contact

N

Cover-to-cover Cover-to-choke
connection connection

Reference: C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill,
New York, 1948.

CIRCULAR WAVEGUIDE

A hollow, round metal pipe also supports TE and TM waveguide modes. Figure 3.11 shows
the geometry of such acircular waveguide, with inner radius a. Because cylindrical geom-
etry isinvolved, it is appropriate to employ cylindrical coordinates. As in the rectangular

FIGURE 3.11 Geometry of acircular waveguide.
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coordinate case, the transverse fields in cylindrical coordinates can be derived from E; or
H; field components for TM and TE modes, respectively. Paralleling the development of
Section 3.1, we can derive the cylindrical components of the transverse fields from the
longitudinal components as

E, = % (ﬂaa—iz + ‘%‘aa—';z) , (3.1108)
Es = % (%aa_iz —ou 88'22) , (3.110b)
H, = é (%38_';2 _ ’388_|:Z> , (3.1100)
Hy = % (a)eaa—iz + %88';2> , (3.110d)

where k2 = k? — 2, and €157 propagation has been assumed. For e15Z propagation,
replace g with —g in all expressions.

TE Modes
For TE modes, E; = 0, and H; isasolution to the wave equation,

VZH, + k*H, = 0. (3.111)
If Hz(p, ¢, 2 = hz(p, ¢)e‘i/52, (3.111) can be expressed in cylindrical coordinates as

(az 19 1 92

W + ;% + FW + kg) hz(p, ¢) = 0. (3112)

As before, we apply the method of separation of variables. Thus, let

hz(p, #) = R(p)P(9), (3.113)
and substitute into (3.112) to obtain

1d2R+ 1dR 1 d2P+k2_o
Rdp2  pRdp p2Pdg2 ° 7
or
2 A2 2
pcd“R  pdR 2 o —1d°P
L oy = 3.114
RaZ TRG TP~ P a2 G114

The left side of this equation depends only on p (not ¢), while the right side depends only
on ¢. Thus, each side must be equal to a constant, which we will call ké. Then,

—-1d?P  ,
P dgp2 7
or
d?p
+KP=o0. (3.115)

dg?
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In addition,
d’R  dR
2 2,2 1,2 _
P W + ,Oa + (,0 ks k¢> R=0. (3.116)
The general solution to (3.115) is
P(¢) = Asinky¢ + B coskye. (3.117)

Because the solution to h, must be periodic in ¢ [i.e., hz(p, ¢) = hz(p, ¢ £ 2mmn)], Ky
must be an integer, n. Thus (3.117) becomes

P(¢) = Asinng + B cosng, (3.118)
and (3.116) becomes
d’R  dR
2R ur 212 _ 12 _
p dp2+pdp+(pkc n)R_o, (3.119)
which isrecognized as Bessel's differential equation. The solutionis
R(p) = Cn(kep) + DYn(kep), (3.120)

where J,(x) and Yn(X) are the Bessel functions of first and second kinds, respectively.
Because Yn(kcp) becomes infinite at p = 0, this term is physically unacceptable for a
circular waveguide, so D = 0. The solution for h; can then be simplified to

hz(p, ) = (Asinng + Bcosng) Jn(kep), (3.121)

where the constant C of (3.120) has been absorbed into the constants A and B of (3.121).
We must still determine the cutoff wave number ke, which we can do by enforcing the
boundary condition that Eiy, = 0 on the waveguide wall. Because E; = 0, we must have
that

From (3.110b), we find E, from H; as
Ey(p. ¢, 2) = J%‘(Asinm;) + Bosng) . (kep)e 42, (3.123)
where the notation J;,(kcp) refers to the derivative of J, with respect to its argument. For
E to vanish at p = a, we must have
J}(kea) = 0. (3.124)

If theroots of J;(x) are defined as py,y,, S0 that J;,(Phm) = 0, where py,,, isthe mth root of
Jy), then ke must have the value
Keyy, = p;m. (3.125)

Values of p;,, are given in mathematical tables; the first few values are listed in Table 3.3.

TABLE 3.3 Valuesof pf, for TE Modes of a Circular Waveguide

n p;]]_ p;12 p;13

0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970




124 Chapter 3: Transmission Lines and Waveguides

The TEnm modes are thus defined by the cutoff wave number ke,., = phn/a. wheren refers
to the number of circumferential (¢) variations and m refers to the number of radial (o)
variations. The propagation constant of the TE,, modeis

2
N T N - (%) , (3.126)

kC /
f — — pnm .
om T on Jme  2majie

Thefirst TE mode to propagate is the mode with the smallest py,,,, which from Table 3.3 is
seen to be the TE;; mode. This mode is therefore the dominant circular waveguide mode
and the one most frequently used. Because m > 1, there is no TEjg mode, but there is a
TEp1 mode.

The transverse field components are, from (3.110) and (3.121),

with a cutoff frequency of

(3.127)

E, = % (Acosng — Bsinng)Jn(kep)e 12, (3.1283)
Ep = J%" (Asinng + B cosng) J; (kep)e P2, (3.128h)
H, = kjcﬁ(Asnn¢>+ B cosng) J/. (kep)e ™ #Z, (3.128¢c)
Hy = “3 (3.128d)
The wave impedanceis
Ze— 2o _ “EBo _ K (3.129)

Hy H, B
In the above solutions there are two remaining arbitrary amplitude constants, A and B.
These constants control the amplitude of the sinng and cosng terms, which are indepen-
dent. That is, because of the azimuthal symmetry of the circular waveguide, both the sinn¢
and cosng terms represent valid solutions, and both may be present in a specific problem.
The actual amplitudes of these terms will depend on the excitation of the waveguide. From
adifferent viewpoint, the coordinate system can be rotated about the z-axis to obtain an h;
with either A=0o0r B=0.
Now consider the dominant TE;; mode with an excitation such that B = 0. Thefields
can be written as

H, = AsingJi(kep)e 12, (3.130a)
E, = %Acoswl(kcp)e—iﬂ{ (3.130)
E, = ch“Asnwl(kcp)e ipz, (3.130¢)
H, = kJCﬂAsmqul(ka)e ipz, (3.130d)
Hy — k“g Acose Iy (kep)e #2, (3.130¢)

cP

E, = 0. (3.130f)
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The power flow down the guide can be computed as
1 a 2r _
—Re/ / ExH* -Zpd¢dp
2 Jp=0Jp=0
1 a 21
= -Re E,H —E,H*)pdpd
5 //;=0/(ﬁ=0<,0¢ ¢p)p¢p

AR ar7ra in2J!
_ o 2|k4 e(ﬂ)/ 0/¢ i [? c052¢J12(kcp) + kgsm2¢312(kc,0)} pdgdp
c p=0/¢=

Po

A ZR a 1
L L

2kg p=0LP
mwulAPReB) ¢,
=4 (P —1) 90, (3.131)

which is seen to be nonzero only when g is real, corresponding to a propagating mode.
(Therequired integral for thisresult is given in Appendix C.)

Attenuation due to dielectric loss is given by (3.29). The attenuation due to a lossy
waveguide conductor can be found by computing the power loss per unit length of guide:

Rs [&" -,
P, = o> | Js|“ad¢
¢=0

Rs o 2 2
=5, (1Mol + 1Ha) ado

2 2 2
_ A RS/ ( p cosz¢+sin2¢)312(kca)ad¢
¢

2 -0 k§a2

A’R 2
_ 7IAI"Rsa <1+ k§a2) 2 (kea). (3132)

2

The attenuation constant is then
P, Rs(kia®+p?)

o = —— =
©T 2P, pkBa(pZ - 1)
Rs [ > k2
= Np/m. 3.133

TM Modes

For the TM modes of the circular waveguide, we must solvefor E; from the wave equation
in cylindrical coordinates:

2 19 19
— i —+ 5 — =0, 3.134
<8p2+p3p+p28¢2+kc)ez ( )

where E; (o, ¢, 2) = €,(p, ¢)e 182, and k? = k? — 2. Because this equation is identical
to (3.107), the genera solutions are the same. Thus, from (3.121),

e(p, ») = (Asinng + B cosng) Jn(kep). (3.135)
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TABLE 34 Valuesof pnm for TM Modesof a Circular Waveguide

n Pn1 Pn2 Pn3

0 2.405 5.520 8.654
1 3.832 7.016 10.174
2 5.135 8.417 11.620

The difference between the TE solution and the present solution is that the boundary con-
ditions can now be applied directly to e, of (3.135) since

Ez(p,p) =0 ap=a. (3.136)
Thus, we must have
Jn(kea) =0, (3.137)
or
ke = pnm/a, (3.138)

where pnm is the mth root of Jy(x), that is, Jn(pnm) = O. Values of pym are given in
mathematical tables; the first few values are listed in Table 3.4.
The propagation constant of the TM,,; modeis

Bom = /K2 — k2 = /2 — (Pl (3.139)
and the cutoff frequency is

fo— ke  Pmm

om T ox Jue  2rna e
Thus, the first TM mode to propagate isthe TM; mode, with pg; = 2.405. Becausethisis
greater than p}; = 1.841 for the lowest order TE;; mode, the TE;; mode is the dominant

mode of the circular waveguide. Aswith the TE modes, m > 1, so thereisno TM1p mode.
From (3.110), the transverse fields can be derived as

—iB

(3.140)

By = (Asnne+ B cosng) J; (kep)e 172, (3.141a)

£ _ —jpn A - - iz b

6= 2, (Acosng — Bsinng) Jn(kep)e , (3.141b)

Hy = J|j)26n(Acosn<z> — Bsinng) Jn(kep)e 7, (3.141c)

cP
Hy = %(Asinmp + Bcosng) J/. (kep)e 172, (3.141d)
The wave impedanceis

Zoy = 22— “Bo _ 1B (3.142)

Ho H, k'

Calculation of the attenuation for TM modes is left as a problem. Figure 3.12 shows the
attenuation due to conductor loss versus frequency for various modes of a circular wave-
guide. Observe that the attenuation of the TEp; mode decreases to a very small value with
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FIGURE 3.12  Attenuation of various modesin acircular copper waveguide with a = 2.54 cm.
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FIGURE 3.13  Cutoff frequencies of the first few TE and TM modes of a circular waveguide

relative to the cutoff frequency of the dominant TE11 mode.

increasing frequency. This property makes the TEg; mode of interest for low-loss trans-
mission over long distances. Unfortunately, this mode is not the dominant mode of the
circular waveguide, so in practice power can be lost from the TEg; mode to lower order
propagating modes.

Figure 3.13 shows the relative cutoff frequencies of the TE and TM modes, and Table
3.5 summarizesresults for wave propagation in circular waveguide. Field linesfor some of
the lowest order TE and TM modes are shown in Figure 3.14.

EXAMPLE 3.2 CHARACTERISTICSOF A CIRCULAR WAVEGUIDE

Find the cutoff frequencies of the first two propagating modes of a Teflon-filled
circular waveguide with a = 0.5 cm. If the interior of the guide is gold plated,
calculate the overall lossin dB for a 30 cm length operating at 14 GHz.

Solution
From Figure 3.13, thefirst two propagating modes of a circular waveguide are the
TE11 and TMo; modes. The cutoff frequencies can be found using (3.127) and
(3.140):

p1.C  1.841(3 x 10°)

TEy: fo = = — 12.19 GHz,
1 °7 2ra/&  27(0.005)/2.08
c 2.405(3 x 108
TMoy : fo— _PoC x19) 1502 GHz

T 2raJ/&  27(0.005)4/2.08
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TABLE 35 Summary of Resultsfor Circular Waveguide

Quantity TEnm Mode TMpm Mode
k w. /1€ /e
Phm Pnm
ke . .
B k2 — k@ k2 — k2
2 2 Zi
Cc kC kc
2 2 Zi
g B 5
Up 8 8
p B
k2tans k2tans
o 2 28
Ez 0 (Asinng + B cosng) Jn(kep)e 162
Hz (Asinng + B cosng) Jn(kep)e™ 1F2 0
Ep _:(gun(Acosncz; — Bsinng) Jn(kep)e 1#2 1P (Asinng + B cosng) J}, (kep)e P2
P
Ep M ;“C“ (Asinng + B cosng) I (kep)e 1#2 %(Acosmﬁ — Bsinng) Jn(kep)e 1#2
o
Hp _Tjﬂ(ASinWD + B cosng) I (kep)e™1F2 Jkaé—en(AcosM) — Bsinng) Jn(kep)e 142
€ o
H¢ _kj%ﬁn(ACOan)— BSinn¢)Jn(kcp)e*jﬁZ #(Asnn¢+ Bcosn¢)Jrq(ka)e7jﬂZ
P c
_ kn _ Bn
z ZtE= 5 ZtmM =

So only the TE;; modeis propagating at 14 GHz. The wave number is

L 2rfve _ 2m(14x 10°)v/2.08

c 3 x 108

=4229m 1,

and the propagation constant of the TE11 modeis

/ 2 2
g = \/kz - <%) = \/(422.9)2 - <%) =208.0m™ L.

The attenuation due to dielectric lossis calculated from (3.29) as

_ K%tan§  (422.9)%(0.0004)
28 2(208.0)

od

= 0.172 Np/m = 1.49 dB/m.

The conductivity of goldiso = 4.1 x 107 S/m, so the surface resistance is

Rs = /| 2H0 _ 0.0367 .
20
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3.5

Then from (3.133) the attenuation due to conductor lossis

Rs [ o k2
oc = + ——— ] = 0.0672 Np/m = 0.583 dB/m.
C ak?’]ﬂ (kc plzl 1 p

The total attenuation is o = ag + ac = 2.07 dB/m, and the loss in the 30 cm
length of guideis

attenuation (dB) = «(dB/m) x L (m) = (2.07)(0.3) = 0.62 dB. |

COAXIAL LINE

TEM Modes

Although we have aready discussed TEM mode propagation on acoaxial linein Chapter 2,
wewill briefly reconsider it here in the context of the general framework that is being used
in this chapter.

The coaxial transmission line geometry is shown in Figure 3.15, where the inner con-
ductor isat apotential of V, volts and the outer conductor isat zero volts. From Section 3.1
we know that the fields can be derived from a scalar potential function, ®(p, ¢), whichis
asolution to Laplace's equation (3.14). In cylindrical coordinates L aplace’s equation takes
the form

19 [ ad(p,¢) 19%®(p, ¢)
b () g O B

This equation must be solved for @ (p, ¢) subject to the boundary conditions

®(a, ¢) = Vo, (3.1444)
®(b, ) = 0. (3.144b)

By the method of separation of variables, let ®(p, ¢) be expressed in product form as

P (p. 9) = R(p)P(9). (3.145)

FIGURE 3.15 Coaxia line geometry.
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Substituting (3.145) into (3.143) and dividing by RP gives
p o ( dR 1d2p
—— | p— ——— =0.
Rap \" dp P d¢?2
By the usual separation-of-variables argument, the two termsin (3.146) must be equal to
constants, so that

(3.146)

p 0 dR

R (p%> = —k3, (3.147)
1d?pP

5 a9 = k2, (3.148)
k2 + k3 = 0. (3.149)

The general solution to (3.148) is
P(¢) = Acosn¢ + Bsinng, (3.150)

where kg = n must be an integer sinceincreasing ¢ by amultiple of 27 should not change
the result. Now, because the boundary conditions of (3.144) do not vary with ¢, the poten-
tial @ (p, ¢) should not vary with ¢. Thus, n must be zero. By (3.149), thisimplies that k,
must also be zero, so that the equation for R(p) in (3.147) reduces to

0 dR
o ("%) =0

R(p) =Clnp + D,

The solution for R(p) isthen

and so
®(p,¢) =Clnp+ D. (3.151)

Applying the boundary conditions of (3.144) gives two equations for the constants C
and D:

d(@ ¢) =Vo=Clna+ D, (3.152a)
®(b,¢) =0=Clnb+ D. (3.152b)
After solving for C and D, we can write the final solution for ®(p, ¢) as
_ VolInblp
D(p,¢) = nba_ (3.153)

The E and H fields can now be found using (3.13) and (3.18), and the voltage, current, and
characteristic impedance can be determined as in Chapter 2. Attenuation due to dielectric
or conductor loss has already been treated in Chapter 2.

Higher Order Modes

The coaxid line, likethe parallel plate waveguide, can also support TE and TM waveguide
modes in addition to the TEM mode. In practice, these modes are usually cut off (evanes-
cent), and so have only a reactive effect near discontinuities or sources, where they may
be excited. It isimportant in practice, however, to be aware of the cutoff frequency of the
lowest order waveguide-type modes to avoid the propagation of these modes. Undesirable
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effects can occur if two or more modes with different propagation constants are propagat-
ing at the same time. Avoiding propagation of higher order modes sets an upper limit on
the size of acoaxial cable or, equivalently, an upper limit on the frequency of operation for
agiven cable. This also affects the power handling capacity of acoaxial line (see the Point
of Interest on power capacity of transmission lines).

We will derive the solution for the TE modes of the coaxia line; the TE1; modeisthe
dominant waveguide mode of the coaxial line and so is of primary importance.

For TE modes, E; = 0, and H; satisfies the wave eguation of (3.112):

(aZ 19 1 92

ﬁ‘l‘;%‘l‘?w‘l‘kg) hz(p,¢) =0, (3.154)

where Hz(p, ¢, 2) = hy(p, p)e”1PZ, and k? = k? — 2. The general solution to this equa-
tion, as derived in Section 3.4, is given by the product of (3.118) and (3.120):

hz(p, ¢) = (Asinng + B cosng)(C Jn(kep) + DYn(Kep)). (3.155)
Inthiscase, a < p < b, sowe have no reason to discard the Y;, term. The boundary condi-
tionsare

E¢(p,¢,2) =0forp=a,h. (3.156)
Using (3.110b) to find E, from H; gives
E, = ‘%‘(Asinnqs + B cosng)[CJ.(Kep) + DY/ (kep)le 72 (3.157)
Applying (3.156) to (3.157) gives two equations:
CJ/(kea) 4+ DY (kca) = 0, (3.158a)
CJ/ (keb) + DY (kcb) = 0. (3.158b)

Because thisis a homogeneous set of equations, the only nontrivial (C # 0, D # 0) solu-
tion occurs when the determinant is zero. Thus we must have

I (ke Yy (keb) = Iy (keb) Yy (ked). (3.159)

Thisisacharacteristic (or eigenvalue) equation for ke. The values of k; that satisfy (3.159)
then define the TEn, modes of the coaxia line.

Equation (3.159) is a transcendental equation, which must be solved numerically for
ke. Figure 3.16 shows the result of such a solution for n = 1 for various b/a ratios. An
approximate solution that is often used in practiceis

2
= e
Once k¢ is known, the propagation constant or cutoff frequency can be determined.
Solutions for the TM modes can be found in a similar manner; the required determinantal
equation is the same as (3.159), except for the derivatives. Field lines for the TEM and
TE11 modes of the coaxial line are shown in Figure 3.17.

EXAMPLE 3.3 HIGHER ORDER MODE OF A COAXIAL LINE

Consider a RG-401U semirigid coaxial cable, with inner and outer conductor
diameters of 0.0645 in. and 0.215in., and a Teflon dielectric with ¢, = 2.2. What
is the highest usable frequency before the TE;; waveguide mode starts to
propagate?
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FIGURE 3.16 Normalized cutoff frequency of the dominant TE;1 waveguide mode for a coaxial

line.

Solution
We have

b 2b 0215

- =—=——=2333

a 2a 0.0645
From Figure 3.16 this value of b/a gives kca = 0.45 [the approximate result is
kea = 2/(1+ b/a) = 0.462]. Thus, k. = 549.4 m~1, and the cutoff frequency of
the TE11 modeis

cke

N

fe = 17.7 GHz.

In practice, a 5% safety margin is usually recommended, so

fmax = (0.95) (17.7 GHz) = 16.8 GHz. m

(b)

FIGURE 3.17 Field linesfor the (a) TEM and (b) TE11 modes of a coaxial line.
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POINT OF INTEREST: Coaxia Connectors

Most coaxial cables and connectors in common use have a 50 © characteristic impedance,
with an exception being the 75 2 cable used in television systems. The reasoning behind these
choicesisthat an air-filled coaxial line has minimum attenuation for a characteristic impedance
of about 77 Q (Problem 2.27), while maximum power capacity occurs for a characteristic
impedance of about 30 ©2 (Problem 3.28). A 50 Q2 characteristic impedance thus represents a
compromise between minimum attenuation and maximum power capacity. Other requirements
for coaxial connectorsinclude low SWR, higher-order-mode—free operation at a high frequency,
high repeatability after a connect—disconnect cycle, and mechanical strength. Connectors are
used in pairs, with amale end and a female end (or plug and jack). The accompanying photo
shows several types of commonly used coaxial connectors and adapters. From top left: Type-N,
TNC, SMA, APC-7, and 2.4 mm.

Type-N: This connector was developed in 1942 and is named after its inventor, P. Nell, of
Bell Labs. The outer diameter of the female end is about 0.625 in. The recommended upper
frequency limit ranges from 11 to 18 GHz, depending on cable size. This rugged but large
connector is often found on older equipment.

TNC: Thisis a threaded version of the very common BNC connector. Its use is limited to
frequencies below 1 GHz.

SMA: Theneed for smaller and lighter connectors led to the development of this connector in
the 1960s. The outer diameter of thefemale end isabout 0.25in. It can be used up to frequencies
intherange of 18-25 GHz and is probably the most commonly used microwave connector today.

APC-7: Thisis a precision connector (Amphenol Precision Connector) that can repeatedly
achieve SWR lessthan 1.04 at frequencies up to 18 GHz. The connectors are “ sexless,” with butt
contact between both inner conductors and outer conductors. This connector is most commonly
used for measurement and instrumentation applications.
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2.4 mm: The need for connectors at millimeter wave frequencies led to the development of
severd variationsof the SMA connector. One of the most common isthe 2.4 mm connector, which
is useful to about 50 GHz. The size of this connector is similar to that of the SMA connector.

SURFACE WAVES ON A GROUNDED DIELECTRIC SHEET

We briefly discussed surface waves in Chapter 1 in connection with the field of a plane
wave totally reflected from adielectric interface, but surface waves can exist in avariety of
geometriesinvolving dielectric interfaces. Here we consider the TM and TE surface waves
that can be excited along a grounded dielectric sheet. Other geometries that can be used as
surface waveguides include an ungrounded dielectric sheet, a dielectric rod, a corrugated
conductor, and a dielectric-coated conducting rod.

Surface waves are typified by afield that decays exponentialy away from the dielectric
surface, with most of thefield contained in or near thedielectric. At higher frequenciesthefield
generally becomes more tightly bound to the dielectric, making such waveguides practical.
Because of the presence of the dielectric, the phase velocity of a surface wave isless than the
velocity of light in a vacuum. Another reason for studying surface waves is that they may be
excited on some types of planar transmission lines, such as microstrip line and dotline.

TM Modes

Figure 3.18 shows the geometry of a grounded dielectric slab waveguide. The dielectric
sheet, of thickness d and relative permittivity e, isassumed to be of infinite extent in the y
and z directions. Wewill assume propagation in the +z direction with an e~ 1#Z propagation
factor and no variation in the y direction (8/dy = 0).

Because there are two distinct regions, with and without a dielectric, we must sepa-
rately consider the field in these regions and then match tangential fields across the inter-
face. E; must satisfy the wave equation of (3.25) in each region:

2

(& +erkg — ﬂz)ez(x, y)=0, for0<x<d, (3.1609)
52
p¥ed + kg — B? ey, y) =0, ford < x < oo, (3.160b)

where E;(X, Y, 2) = (X, y)e~ F2,
We define the cutoff wave numbers for the two regions as

kZ = e kg — B2, (3.1613)
h? = g2 — k3, (3.161b)

Dielectric

\ «
] o

Ground plane

FIGURE 3.18 Geometry of agrounded dielectric sheet.
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where the sign on h? has been selected in anticipation of an exponentially decaying result
for x > d. Observe that the same propagation constant, 8, has been used for both regions.
This must be the case to achieve phase matching of the tangential fields at the x = d inter-
facefor al values of z.

The general solutionsto (3.160) are

€,(X,y) = Asinkcx + B coskex, for0<x<d (3.162a)
e (X, y) = Ce™ + De™™, ford < x < oo (3.162b)

Note that these solutions are valid for ke and h either real or imaginary; it will turn out that
both k; and h are real because of the choice of definitionsin (3.161).
The boundary conditions that must be satisfied are

E;(X,y,2) =0, ax=0, (3.1633)
Ez(X,Y,2) < o0, asX — o0, (3.163b)
Ez(X, Y, 2) continuous at X = d, (3.163c)
Hy (X, y, ) continuous at x = d. (3.163d)

From (3.23), Hx = Ey = H; = 0. Condition (3.163a) impliesthat B = 0in (3.162a). Con-
dition (3.163b) isaresult of arequirement for finite fields (and energy) infinitely far awvay
from a source and impliesthat C = 0. The continuity of E; leadsto

Asinkcd = De™M, (3.164a)
while (3.23b) must be used to apply continuity to Hy, to obtain

% cosked = %e_hd (3.164b)
For anontrivial solution, the determinant of the two equations of (3.164) must vanish,
leading to
ketanked = e h. (3.165)
Eliminating g from (3.1618) and (3.161b) gives
kg +h = (e — DKG. (3.166)

Equations (3.165) and (3.166) constitute a set of simultaneous transcendental eguations
that must be solved for the propagation constants ke and h, given k, and ¢;. These equa-
tions are easily solved numerically, but Figure 3.19 shows a graphical representation of the
solutions. Multiplying both sides of (3.166) by d? gives

(ked)? + (hd)? = (er — 1)(kod)?,

which isthe equation of acircleinthekcd, hd plane, as shown in Figure 3.19. Theradius of
thecircleis v/er — 1kod, which is proportional to the electrical thickness of the dielectric
sheet. Multiplying (3.165) by d gives

kcdtankcd = e hd,

which is also plotted in Figure 3.19. The intersection of these curves implies a solution to
both (3.165) and (3.166). Observe that ke may be positive or negative; from (3.162a) this
is seen to merely change the sign of the constant A. As /e, — 1kod becomes larger, the
circle may intersect more than one branch of the tangent function, implying that more than
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FIGURE 3.19 Graphical solution of the transcendental equation for the cutoff frequency of aTM

surface wave mode of the grounded dielectric sheet.

one TM mode can propagate. Solutions for negative h, however, must be excluded since
we assumed h was positive real when applying boundary condition (3.163b).

For any nonzero-thickness sheet with arelative permittivity greater than unity, thereis
at least one propagating TM mode, which wewill call the TMg mode. Thisisthe dominant
mode of the dielectric slab waveguide, and it has a zero cutoff frequency. (Although for
ko =0, ke = h =0, and dl fields vanish.) From Figure 3.19 it can be seen that the next
TM mode, the TM 1 mode, will not begin to propagate until the radius of the circle becomes
greater than 7. The cutoff frequency of the TM,; mode can then be derived as

nc
2de — 1

Once k; and h have been found for a particular surface wave mode, the field expres-
sions can be found as

fo = n=012,.... (3.167)

Asinkcxe™i#z

EZ(X9 Y» Z) = 3 .
Asink.de hx-d)g-ipz
_—JﬁAcoskcxe_j’SZ

EX(Xv yv Z) - .
_—JﬂASinkcde_h(X_d)e_mz

h

%Acoskcxe‘j/SZ

Hy(xv y9 Z) = .
— 190 A ginkede - g-ibz

h
TE Modes

for0<x<d
(3.168q)

ford < x < o0,

for0<x<d
(3.168h)
ford < x < oo,

for0<x<d
(3.168¢)
ford < x < oo.

TE modes can a so be supported by the grounded diel ectric sheet. The H; field satisfies the

wave equations

52
82
(o2

+ k§> h(x,y) =0,

h2> hz(x,y) =0,

forO<x <d,

ford < x < oo,

(3.169a)

(3.169D)
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with Hz(x, y, 2) = hz(x, y)e~1#? and kZ and h? defined in (3.161a) and (3.161b). As for
the TM modes, the genera solutionsto (3.169) are

hz(x, y) = Asinkcx + B coskex, (3.170a)

hz(x, y) = Ce™ + De ™. (3.170b)
To satisfy the radiation condition, C = 0. Using (3.19d) to find Ey from H; leadsto A =0
for Ey = O at x = 0 and to the equation

-B D
< sinked = Fe—hd (3.171a)

for continuity of Ey at x = d. Continuity of H; at x = d gives
B cosked = De M. (3.171b)
Simultaneously solving (3.171a) and (3.171b) leads to the determinantal equation
—kc cotked = h. (3.172)
From (3.1614a) and (3.161b) we also have that
kS +h? = (& — DKG. (3.173)

Equations (3.172) and (3.173) must be solved simultaneously for the variables k¢ and
h. Equation (3.173) again represents circles in the kcd, hd plane, while (3.172) can be
rewritten as

—ked cot ked = hd,

and plotted as a family of curvesin the kcd, hd plane, as shown in Figure 3.20. Because
negative values of h must be excluded, we see from Figure 3.20 that the first TE mode does
not start to propagate until the radius of the circle, v/e; — 1kod, becomes greater than /2.
The cutoff frequency of the TE,, modes can then be found as

_ (@2n-1)c

fo= ———— forn=1,2 3,.... 3.174
¢ 4d\/€r—1 ( )

| —7 ked
Invalid

solutions

FIGURE 3.20 Graphical solution of the transcendental equation for the cutoff frequency of a TE

surface wave mode. The figure depicts a mode below cutoff.
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Comparing with (3.167) shows that the order of propagation for the TM,, and TE, modes
iSTMo, TE1, TMq, TE2, TMo, . ...
After finding the constants k. and h, the field expressions can be derived as

B cosk.xe 12 for0O<x <d

Hz(X,y,2) = . (3.175a)
B cosk.de~hx—d)g-ifz ford < x < oo,
L—'BBsinkcxe‘jﬁZ for0<x <d

He(X,y,2) = { (3.175b)
_TjﬂBcoskcde_h(x_d)e_“SZ ford < x < oo,
_JkaC)MOBsinkcxe—jﬂZ for0<x<d

EyX,y,2) =1 . (3.175¢)
JQ;IMO B coskcde "*x—dg-ifz ford < x < oo.

EXAMPLE 3.4 SURFACE WAVE PROPAGATION CONSTANTS

Calculate and plot the propagation constants of the first three propagating surface
wave modes of a grounded dielectric sheet with ¢, = 2.55, for d/Ag = 0to 1.2.

Solution

The first three propagating surface wave modes are the TMg, TEjz, and TM;
modes. The cutoff frequencies for these modes can be found from (3.167) and
(3.174) as

d
TMo: fo=0=— — =0,
A0
c d 1
T fom — — oy & =
LT /e =1 o (A —1)
c d 1
™ fos — oy — ==
LT e =1 o (Ve =1

The propagation constants can be found from the numerical solution of (3.165)
and (3.166) for the TM modes and (3.172) and (3.173) for the TE modes. Thiscan
be done with a relatively simple root-finding algorithm (see the Point of Interest
on root-finding algorithms); the results are shown in Figure 3.21. |

POINT OF INTEREST: Root-Finding Algorithms

In several examples throughout this book we will need to numerically find the root of a tran-
scendental equation, so it may be useful to review two relatively simple but effective algorithms
for doing this. Both methods can be easily programmed.

In the interval-halving method the root of f (x) = 0 isfirst bracketed between the values
x1 and xo. These values can often be estimated from the problem under consideration. If a
single root lies between x1 and xo, then f (x1) f (x2) < 0. An estimate, X3, of the root is made
by halving the interval between x; and x». Thus,

_ X1 + X2

X3 2
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FIGURE 3.21  Surface wave propagation constants for agrounded dielectric slab with ¢, = 2.55.

If f(xq) f(x3) < O, then the root must liein the interval x; < x < xg; if f(x3) f(x2) < O, the
root must be in the interval X3 < x < Xo. A new estimate, x4, can be made by halving the
appropriate interval, and this process is repeated until the location of the root has been deter-
mined with the desired accuracy. The accompanying figure illustrates this algorithm for several
iterations.

The Newton—Raphson method begins with an estimate, X, of theroot of f (x) = 0. Then
anew estimate, xp, is obtained from the formula

f(xq)

2= gy

where f/(xq) is the derivative of f(x) at x1. This result is easily derived from a two-term
Taylor series expansion of f(x) near x = x1: f(X) = f(x7) + (X — x1) f/(x1). It can also be
interpreted geometrically as fitting a straight line at x = x; with the same slope as f (x) at
this point; this line then intercepts the x-axis at X = X, as shown in the figure. Reapplying the
above formula gives improved estimates of the root. Convergence is generally much faster than
with the interval-halving method, but a disadvantage is that the derivative of f (x) is required;
this can often be computed numerically. The Newton—Raphson technique can easily be applied
to the case where the root is complex (a situation that occurs, for example, when finding the
propagation constant of aline or guide with loss).

f(X) f(X)

Interval halving Newton—Raphson

Reference: R. W. Hornbeck, Numerical Methods, Quantum Publishers, New York, 1975.
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FIGURE 3.22  Stripline transmission line. (a) Geometry. (b) Electric and magnetic field lines.

3.7

STRIPLINE

Stripline is a planar type of transmission line that lends itself well to microwave integrated
circuitry, miniaturization, and photolithographic fabrication. The geometry of stripline is
shown in Figure 3.22a. A thin conducting strip of width W is centered between two wide
conducting ground planes of separation b, and the region between the ground planes is
filled with a dielectric material. In practice stripline is usually constructed by etching the
center conductor on a grounded dielectric substrate of thickness b/2 and then covering
with another grounded substrate. Variations of the basic geometry of Figure 3.22ainclude
stripline with differing dielectric substrate thicknesses (asymmetric stripline) or different
dielectric constants (inhomogeneous stripline). Air dielectric is sometimes used when it is
necessary to minimize loss. An example of astripline circuit is shown in Figure 3.23.

Because stripline has two conductors and a homogeneous diel ectric, it supportsa TEM
wave, and this is the usual mode of operation. Like paralléel plate guide and coaxial line,
however, stripline can also support higher order waveguide modes. These can usually be
avoided in practice by restricting both the ground plane spacing and the sidewall width
to less than 14/2. Shorting vias between the ground planes are often used to enforce this
condition relative to the sidewall width. Shorting vias should also be used to eliminate
higher order modes that can be generated when an asymmetry is introduced between the
ground planes (e.g., when a surface-mounted coaxial transition is used).

Intuitively, one can think of stripline as a sort of “flattened-out” coax—both have a
center conductor completely enclosed by an outer conductor and are uniformly filled with
adielectric medium. A sketch of thefield lines for stripline is shown in Figure 3.22b.

The geometry of stripline does not lend itself to the ssmple analyses that were used
for previously treated transmission lines and waveguides. Because we will be concerned
primarily with the TEM mode of stripline, an electrostatic analysisis sufficient to give the
propagation constant and characteristic impedance. An exact solution of Laplace’s equa-
tion is possible by a conforma mapping approach [6], but the procedure and results are
cumbersome. Instead, we will present closed-form expressions that give good approxima-
tions to the exact results and then discuss an approximate numerical technique for solving
Laplace’s equation for a geometry similar to stripline.

Formulas for Propagation Constant, Characteristic Impedance,
and Attenuation

From Section 3.1 we know that the phase velocity of a TEM mode is given by

vp = 1//o€oer = ¢/ /er, (3.176)
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FIGURE 3.23  Photograph of a stripline circuit assembly (cover removed), showing four quadra-

ture hybrids, open-circuit tuning stubs, and coaxia transitions.

and thus the propagation constant of striplineis

=== w./Io€0er = /€rKo. (3.177)

Up

In (3.176), c = 3 x 108 m/sec is the speed of light in free-space. Using (2.13) and (2.16)
allows us to write the characteristic impedance of atransmission line as

L JiC 1
Zo— L _vLC_ 1 3.178
°TVc T Cc T ucC 3179)

where L and C are the inductance and capacitance per unit length of the line. Thus, we
can find Zg if we know C. As mentioned previously, Laplace's equation can be solved by
conformal mapping to find the capacitance per unit length of stripline, but the resulting
solution involves complicated special functions [6], so for practical computations simple
formulas have been developed by curve fitting to the exact solution [6, 7]. The resulting
formulafor characteristic impedance is

30 b

L 3.179
/& We + 0.441b° (31758

Zy
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where W is the effective width of the center conductor given by

w
0 for — > 0.35

We W

Fe -— — vk\)/ (3.179b)
(0.35 — W/b)? for 5 < 0.35.

These formulas assume a strip with zero thickness and are quoted as being accurate to
about 1% of the exact results. It is seen from (3.179) that the characteristic impedance
decreases as the strip width W increases.

When designing stripline circuits one usually needs to find the strip width, given the
characteristic impedance (and height b and relative permittivity ), which requires the
inverse of the formulasin (3.179). Such formulas have been derived as

W X for \/erZo < 120 @
v r (3.1804)
b 085—06—x for. /e Zo> 1202,
where
307
X = — 0.441. (3.180b)
A/ Gr ZO

Since striplineisa TEM line, the attenuation due to dielectric lossis of the same form
as that for other TEM lines and is given in (3.30). The attenuation due to conductor loss
can be found by the perturbation method or Wheeler’s incremental inductance rule. An
approximate result is

2.7 x 10 3Rse; Zo

A f Zo<120Q
307 1) or VerZo <
oc = Np/m, (3.181)
0.16R
°B for /& Zo > 120 Q
Zob
with
2W  1b+t, (2b—t
A=1 — In ,
Tt T xbot ( t )
b 0414t 1  47W
B=1+———(05+— + —In—|,
MCETERD ( W 2r )

wheret isthe thickness of the strip.

EXAMPLE 3.5 STRIPLINE DESIGN

Find the width for a 50 € copper stripline conductor with b = 0.32 cm and
er = 2.20. If the dielectric loss tangent is 0.001 and the operating frequency
is 10 GHz, calculate the attenuation in dB/A. Assume a conductor thickness of
t = 0.01 mm.

Solution
Because \/ér Zg = v/2.2(50) = 74.2 < 120 and x = 30r/( /& Zo) — 0.441 =
0.830, (3.180) gives the strip width as W = bx = (0.32)(0.830) = 0.266 cm.
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At 10 GHz, the wave number is

WG
T

=3106mL.

From (3.30) the dielectric attenuation is

_ ktans _ (310.6)(0.001)
-T2~ 2

The surface resistance of copper at 10 GHz is Rs = 0.026 2. Then from (3.181)
the conductor attenuation is

2.7 x 1073Rs; ZoA
T T 30r(b—1)
since A = 4.74. The total attenuation constant is

od

= 0.155 Np/m.

= 0.122 Np/m,

a =oag +ac = 0.277 Np/m.
IndB,
a(dB) = 20loge® = 2.41dB/m.

At 10 GHz, the wavelength on the striplineis
S - c
= 7T

so in terms of wavelength the attenuation is

= 2.02cm,

a(dB) = (2.41)(0.0202) = 0.049 dB/x. |

An Approximate Electrostatic Solution

Many practical problemsin microwave engineering are very complicated and do not lend
themselves to straightforward analytic solutions but require some sort of numerical
approach. Thus it is useful for the student to become aware of such techniques; we will
introduce such methods when appropriate throughout this book, beginning with a numeri-
cal solution for the characteristic impedance of stripline.

We know that the fields of the TEM mode on stripline must satisfy Laplace's equation,
(3.11), in the region between the two parallel plates. The idealized stripline geometry of
Figure 3.22a extends to oo, which makes the analysis more difficult. Because we suspect,
from the field line drawing of Figure 3.22b, that the field lines do not extend very far away
from the center conductor, we can simplify the geometry by truncating the plates beyond
some distance, say |x| > a/2, and placing metal walls on the sides. Thus, the geometry we
will analyze is shown in Figure 3.24, where a > b, so that the fields around the center

N

€

o

N
N

FIGURE 3.24 Geometry of enclosed stripline.
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conductor are not perturbed by the sidewalls. We then have a closed finite region in which
the potential ® (X, y) satisfies Laplace's equation,

V20(x,y) =0 for|x|<a/2,0<y<b, (3.182)

with the boundary conditions
d(X,y) =0, ax ==a/2, (3.1833)
Dd(X,y) =0, ay=0,bhb. (3.183b)

Laplace's equation can be solved by the method of separation of variables. Because
the center conductor at y = b/2 will contain a surface charge density, the potential @ (X, y)
will have a slope discontinuity there because D = —ege; Vi ® is discontinuous at y = b/2.
Therefore, separate solutionsfor @ (x, y) must befoundfor0 <y < b/2andb/2 <y < b.
The general solutionsfor ®(x, y) in these two regions can be written as

o
> Ancosmexsinhn%y for0O<y=<bh/2
n=1
odd
DX, y) = ~ N o (3.18%)
» BncosTsinh?(b—y) forb/2<y<h.
n=1
odd

Only the odd-n terms are needed in (3.184) because the solution is an even function of x.
The reader can verify by substitution that (3.184) satisfies Laplace’s equation in the two
regions and satisfies the boundary conditions of (3.183).

The potential must be continuous at y = b/2, which from (3.184) leadsto

An = By (3.185)

The remaining set of unknown coefficients, A, can be found by solving for the charge
density on the center strip. Because Ey = —d /0y, we have

& nm nmX nry
—%% An (?) cosT coshT for0O<y<h/2
Ey - & nmw nzm X nmw (3.186)
An(— —_— —(b - f 2 .
n;l r]<a>cos a cosha(b Y) orb/2<y<b

odd
The surface charge density onthe stripat y = b/2 is
= eoer[Ey(x, y = b/2%) — Ey(x,y = b/27)]

o0
nmx Nt X nrb
= 206t »_ An(—)cos—— cosh——, (3.187)
%Edl ( a ) a 2a

which is seen to be a Fourier seriesin x for the surface charge density, ps, on the strip at
y = b/2. If we know the surface charge density we could easily find the unknown con-
stants, A, and then the capacitance. We do not know the exact surface charge density, but
we can make a good guess by approximating it as a constant over the width of the strip,

1 for |x| < W/2

= 3.188
Ps(X) {0 for |x| > W/2. ( )
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Equating thisto (3.187) and using the orthogonality properties of the cos(nz x/a) functions
gives the constants A, as

B 2asin(ntW/2a)
"~ (nm)2€ger cosh(nzrb/2a)

The voltage of the strip conductor relative to the bottom conductor can be found by inte-
grating the vertical electric field from y = 0 to b/2. Because the solution is approximate,
this voltage is not constant over the width of the strip but varies with position, x. Rather
than choosing the voltage at an arbitrary position, we can obtain an improved result by
averaging the voltage over the width of the strip:

A (3.189)

W2
1 b/2 - 2a\ . ntW _ nmb
Vaig = 1 / /c.) Ey(X,y)dydx = ZA”(nnW) sn—_—snh—=—. (3.190)
—W/2 n=1

odd

Thetotal charge per unit length on the center conductor is
w2
Q =/ ps(X) dx = W Coul /m, (3.191)
—W/2

so the capacitance per unit length of the stripline is

Q _ w -
Vag X 2a \ . ntW .  nxb
Al —— ) sin——sinh —
,12::1 ”(nnw) 2a 2a
odd

C=

/m. (3.192)

Finally, the characteristic impedance is given by
. _\/T_«/LC_ 1 e
°ZVCc T C TyC <’

wherec = 3 x 108 m/sec.

EXAMPLE 3.6  NUMERICAL CALCULATION OF STRIPLINE IMPEDANCE

Evaluate the above expressions for a stripline having ¢, = 2.55 and a = 100b to
find the characteristic impedance for W/b = 0.25 to 5.0. Compare with theresults
from (3.179).

Solution
A computer program was written to evaluate (3.192). The series was truncated
after 500 terms, and the results for Zg are asfollows.

Zg, L2
Numerical, Formula, Commercial
W/b Eq. (3.192) Eq. (3.179) CAD
0.25 90.9 86.6 85.3
0.50 66.4 62.7 61.7
1.0 43.6 41.0 40.2
2.0 25.5 24.2 24.4

50 111 10.8 11.9
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We see that the results are in reasonable agreement with the closed-form equa-
tions of (3.179) and the results from a commercial CAD package, particularly for
wider strips where the charge density is closer to uniform. Better results could be
obtained if more sophisticated estimates were used for the charge density. |

MICROSTRIP LINE

Microstrip line is one of the most popular types of planar transmission lines primarily
because it can be fabricated by photolithographic processes and is easily miniaturized and
integrated with both passive and active microwave devices. The geometry of a microstrip
line is shown in Figure 3.25a. A conductor of width W is printed on a thin, grounded
dielectric substrate of thickness d and relative permittivity ¢, ; a sketch of the field linesis
shown in Figure 3.25b.

If the dielectric substrate were not present (¢, = 1), we would have a two-wire line
consisting of a flat strip conductor over a ground plane, embedded in a homogeneous
medium (air). This would constitute a simple TEM transmission line with phase veloc-
ity vp = ¢ and propagation constant 8 = k.

The presence of the dielectric, particularly the fact that the dielectric does not fill the
region above the strip (y > d), complicates the behavior and analysis of microstrip line.
Unlike stripline, where all the fields are contained within ahomogeneous dielectric region,
microstrip has some (usually most) of itsfield linesin the diel ectric region between the strip
conductor and the ground plane and some fraction in the air region above the substrate. For
this reason microstrip line cannot support a pure TEM wave since the phase velocity of
TEM fieldsin the dielectric region would be ¢/, /&, while the phase velocity of TEM fields
in the air region would be ¢, so a phase-matching condition at the dielectric—air interface
would be impossible to enforce.

In actuality, the exact fields of a microstrip line constitute a hybrid TM-TE wave and
require more advanced analysi s techniques than we are prepared to deal with here. In most
practical applications, however, the dielectric substrate is electrically very thin (d <« ),
and so thefields are quasi-TEM. In other words, the fields are essentially the same asthose
of the static (DC) case. Thus, good approximations for the phase vel ocity, propagation con-
stant, and characteristic impedance can be obtained from static, or quasi-static, solutions.
Then the phase velocity and propagation constant can be expressed as

C
B = ko/ee, (3.194)

/ Ty / /J?ﬁ/r\

L T e TR

\ X
E
z Ground plane ———-H

@ (b)
FIGURE 3.25 Microstrip transmission line. (a) Geometry. (b) Electric and magnetic field lines.




148 Chapter 3: Transmission Lines and Waveguides

where ¢ is the effective dielectric constant of the microstrip line. Because some of the
field lines are in the dielectric region and some are in air, the effective dielectric constant
satisfies the relation

l<ee<er

and depends on the substrate dielectric constant, the substrate thickness, the conductor
width, and the frequency.

Wewill present gpproximate design formulas for the effective diel ectric constant, charac-
teristicimpedance, and attenuation of microstrip line; theseresultsare curve-fit approximations
to rigorous quasi-static solutions [8, 9]. Then we will discuss additional aspects of microstrip
lines, including frequency-dependent effects, higher order modes, and parasitic effects.

Formulas for Effective Dielectric Constant, Characteristic
Impedance, and Attenuation

The effective dielectric constant of a microstrip line is given approximately by
€r + 1 + €r — 1 1
€ = .
€ 2 2 1+ 12d/W

The effective dielectric constant can be interpreted as the dielectric constant of a homo-
geneous medium that equivalently replaces the air and dielectric regions of the microstrip
line, as shown in Figure 3.26. The phase velocity and propagation constant are then given

(3.195)

by (3.193) and (3.194).
Given the dimensions of the microstrip line, the characteristic impedance can be cal-
culated as
60 8d W
—In{— +— forw/d <1
N (W * ) orwra =
Zo= (3.196)

120

for w/d > 1.
J€e[W/d + 1.393 + 0.667 In (W/d + 1.444)] orw/a =

For a given characteristic impedance Zo and dielectric constant ¢, the W/d ratio can be

found as
8eh
W B m fOI’ W/d < 2
d |2 -1 61
—[B—l—ln(ZB—l)—l—Er {In(B—1)+O.39— H for W/d > 2,
T €r €r
(3.197)
W W
-~ € -~
€ d Id
e /
@ (b)

FIGURE 3.26 Equivalent geometry of a quasi-TEM microstrip line. (@) Origina geometry.
(b) Equivalent geometry, where the dielectric substrate of relative permittivity er
is replaced with a homogeneous medium of effective relative permittivity ee.
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where

Zo [aF1 -1 0.11
A= 20 0.23
6oV 2 +er+1< * er>

5 _ 307
= e

Considering a microstrip line as a quasi-TEM line, we can determine the attenuation
dueto dielectric loss as

koEr (Ee — 1) tané$
oA = —m8@8@8M8M8M8Mm
d 2 /€eler — 1)

wheretan § isthe loss tangent of the dielectric. Thisresult is derived from (3.30) by multi-
plying by a“filling factor,”

Np/m, (3.198)

€ (e — 1)

celer — 1)’
which accounts for the fact that the fields around the microstrip line are partly in air (loss-
less) and partly in the dielectric (lossy). The attenuation due to conductor loss is given
approximately by [8]
~ ZoW

Np/m, (3.199)

Qc
where Rs = /wuo/20 isthe surface resistivity of the conductor. For most microstrip sub-

strates, conductor loss is more significant than dielectric loss; exceptions may occur, how-
ever, with some semiconductor substrates.

EXAMPLE 3.7 MICROSTRIPLINE DESIGN

Design amicrostrip line on a0.5 mm alumina substrate (¢, = 9.9, tand = 0.001)
for a 50 Q characteristic impedance. Find the length of this line required
to produce a phase delay of 270° at 10 GHz, and compute the total loss on this
line, assuming copper conductors. Compare the results obtained from the approx-
imate formulas of (3.195)—3.199) with those from a microwave CAD package.

Solution
First find W/d for Zg = 50 2, and initially guessthat W/d < 2. From (3.197),

A=2142, Wd = 0.9654.

So the condition that W/d < 2 is satisfied; otherwise we would use the expression
for W/d > 2. Then the required line width is W = 0.9654d = 0.483 mm. From
(3.195) the effective dielectric constant is € = 6.665. The line length, ¢, for a
270° phase shiftisfound as

¢ = 270° = pt = Jecko,
ko = ? =209.4m™ 1,
. 270° (7 /180°)

= 8.72mm.
Jeeko
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Attenuation due to dielectric loss is found from (3.198) as ag = 0.255 Np/m =
0.022 dB/cm. The surface resistivity for copper at 10 GHz is 0.026 €2, and the
attenuation due to conductor loss is, from (3.199), «c = 0.0108 Np/cm = 0.094
dB/cm. Thetotal loss on thelineisthen 0.101 dB.

A commercial microwave CAD package gives the following results: W =
0.478 mm, €e = 6.83, £ = 8.61 mm, ag = 0.022 dB/cm, and «c = 0.054 dB/cm.
The approximate formulas give results that are within a few percent of the CAD
data for linewidth, effective dielectric constant, line length, and dielectric attenu-
ation. The greatest discrepancy occurs for the attenuation constant for conductor
loss. |

Frequency-Dependent Effects and Higher Order Modes

The results for the parameters of microstrip line presented in the previous section were
based on the quasi-static approximation and are strictly valid only at DC (or very low
frequencies). At higher frequencies a number of effects can occur that lead to variations
from the quasi-static results for effective dielectric constant, characteristic impedance, and
attenuation of microstrip line. In addition, new effects can arise, such as higher order modes
and parasitic reactances.

Because microstrip lineis not atrue TEM line, its propagation constant is not alinear
function of freguency, meaning that the effective dielectric constant varies with frequency.
The electromagnetic field that exists on microstrip line involves a hybrid coupling of TM
and TE modes, complicated by the boundary condition imposed by the air and dielectric
substrate interface. In addition, the current on the strip conductor is not uniform across
the width of the strip, and this distribution varies with frequency. The thickness of the strip
conductor also has an effect on the current distribution and hence affectstheline parameters
(especially the conductor 10ss).

The variation with frequency of the parameters of atransmission line isimportant for
several reasons. Firgt, if the variation is significant it becomes important to know and use
the parameters at the particular frequency of interest to avoid errorsin design or analysis.
Typicaly, for microstrip line, the frequency variation of the effective dielectric constant is
more significant than the variation of characteristic impedance, both in terms of relative
change and the relative effect on performance. A change in the effective dielectric con-
stant may have a substantial effect on the phase delay through along section of line, while
a small change in characteristic impedance has the primary effect of introducing a small
impedance mismatch. Second, a variation in line parameters with frequency means that
different frequency components of a broadband signal will propagate differently. A varia-
tion in phase velocity, for example, means that different frequency components will arrive
at the output of the line at different times, leading to signal dispersion and distortion of
the input signal. Third, because of the complexity of modeling these effects, approximate
formulas are generally useful only for alimited range of frequency and line parameters,
and numerical computer models are usually more accurate and useful.

There are a number of approximate formulas, developed from numerical computer
solutions and/or experimental data, that have been suggested for predicting the frequency
variation of microstrip line parameters [8, 9]. A popular frequency-dependent model for
the effective dielectric constant has aform similar to the following formula [8]:

_ e — €e(0)
1+G(f)’

where e¢( T) represents the frequency-dependent effective dielectric constant, ¢ istherel-
ative permittivity of the substrate, and €¢(0) isthe effective dielectric constant of the line at

Ee( f) = €r (3200)



3.8 Microstrip Line 151

DC, asgiven by (3.195). The function G( f) can take various forms, but one suggested in
reference[8] isthat G(f) = g(f/fp)z, withg = 0.6 + 0.009 Zg and fp, = Zo/8rd (Zg is
inohms, f isin GHz, and d isin cm). It can be seen from the form of (3.200) that eq( f)
reducesto the DC value €¢(0) when f = 0 and increasestoward ¢, asfrequency increases.

Approximate formulas like the above were primarily developed in the years before
computer-aided design tools for RF and microwave engineering became commonly avail-
able (see the Point of Interest on computer-aided design in Chapter 4). Such tools usually
give accurate results for a wide range of line parameters and today are usualy preferred
over closed-form approximations.

Another potentia difficulty with microstrip lineisthat it may support several types of
higher order modes, particularly at higher frequencies. Some of these are directly related
to the TM and TE surface waves modes that were discussed in Section 3.6, while others
are related to waveguide-type modes in the cross section of the line.

The TMg surface wave mode for a grounded dielectric substrate has a zero cutoff
frequency, as we know from (3.167). Because some of the field lines of this mode are
aligned with the field lines of the quasi-TEM mode of a microstrip line, it is possible for
coupling to occur from the desired microstrip mode to a surface wave, leading to excess
power loss and possibly undesired coupling to adjacent microstrip elements. Because the
fields of the TM¢ surface wave are zero a DC, there is little coupling to the quasi-TEM
microstrip mode until acritical frequency isreached. Studies have shown that thisthreshold
frequency is greater than zero and less than the cutoff frequency of theTM; surface wave
mode. A commonly used approximation is[8]

c 2
fro~ — tan Le. 3.201
=5 e —1 an e ( )

For ¢ ranging from 1to 10, (3.201) gives afrequency that is 35% to 66% of f.1, the cutoff
frequency of the TM; surface wave mode.

When a microstrip circuit has transverse discontinuities (such as bends, junctions, or
even step changes in width), the transverse currents on the conductors that are generated
may allow coupling to TE surface wave modes. Most practical microstrip circuits involve
such discontinuities, so this type of coupling is often important. The minimum threshold
frequency where such coupling becomesimportant is given by the cutoff of the TE; surface
wave, from (3.174):

c
froy ————. 3.202
T2 =1 ( )

For widemicrostrip lines, it is possible to excite atransverse resonance along the x axis
of the microstrip line below the strip in the dielectric region because the sides below the
strip conductor appear approximately as magnetic walls. This condition occurs when the
width is about A/2 in the dielectric, but because of field fringing the effective width of the
strip is somewhat larger than the physical width. A rough approximation for the effective
width is W + d/2, so the approximate threshold frequency for transverse resonanceis

C

fra

It israre that a microstrip line is wide enough to approach this limit in practice.
Finaly, a parallel plate-type waveguide mode may propagate when the vertical spac-
ing between the strip conductor and ground plane approaches A/2 in the dielectric. Thus, an
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approximation for the threshold frequency for this mode (valid for wide microstrip lines)
can be given as

fra~ —2 (3.204)

2d /e
Thinner microstrip lines will have more fringing field that effectively lengthens the path
between the strip and ground plane, thus reducing the threshold frequency by as much as
50%.
The net effect of the threshold frequencies given in (3.201)—3.204) is to impose an
upper frequency limit of operation for a given microstrip geometry. Thislimitisafunction
of the substrate thickness, dielectric constant, and strip width.

EXAMPLE 3.8 FREQUENCY DEPENDENCE OF EFFECTIVE
DIELECTRIC CONSTANT

Use the approximate formula of (3.200) to plot the change in effective dielectric
constant over frequency for a25 Q microstrip line on a substrate having a rela-
tive permittivity of 10.0 and a thickness of 0.65 mm. Compare the approximate
data with results from a CAD model for frequencies up to 20 GHz. Compare the
calculated phase delay at 10 GHz through a 1.093 cm length of line when using
€e(0) versus €¢(10 GHz).

Solution

The required linewidth for a 25 @ impedance is w = 2.00 mm. The effective
dielectric constant for this line at low frequencies can be found from (3.195) to
be €c(0) = 7.53. A short computer program was used to calculate the effective
dielectric constant as a function of frequency using (3.200), and the result is
shown in Figure 3.27. Comparison with a commercial microwave CAD package
shows that the approximate model is reasonably accurate up to about 10 GHz but
gives an overestimate at higher frequencies.

9.0

)

0

g

7]

c
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S 80

8

o

[a)]

(0] |

2 CAD

§ - — — Eq. (3.200)

w70
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5 10 15 20

Frequency (GHz)

FIGURE 3.27 Effective dielectric constant versus frequency for the microstrip line of Example
3.8, comparing the approximate model of (3.200) with data from a computer-aided
design package.
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Using an effective dielectric constant of ¢.(0) = 7.53, we find the phase
delay through a 1.093 cm length of line to be ¢g = /€c(0)kol = 360°. The
effective dielectric constant at 10 GHz is 8.120 (CAD), with a corresponding
phase delay of ¢19 = +/€e(10 GHz)kgt = 374°—an error of about 14°. [ ]

THE TRANSVERSE RESONANCE TECHNIQUE

According to the general solutions of Maxwell’s equations for TE or TM waves given in
Section 3.1, a uniform waveguide structure always has a propagation constant of the form

p=\ke-ke= K-k (3.205)

where ke = . /k2 + k§ is the cutoff wave number of the guide and, for a given mode, is a

fixed function of the cross-sectional geometry of the guide. Thus, if we know k; we can
determine the propagation constant of the guide. In previous sections we determined k¢
by solving the wave equation in the guide, subject to the appropriate boundary conditions.
Although this technique is very powerful and general, it can be complicated for complex
waveguides, especialy if dielectric layers are present. In addition, the wave equation solu-
tion gives a complete field description inside the waveguide, which is often more informa-
tion than we really need if we are only interested in the propagation constant of the guide.
The transverse resonance technique employs a transmission line model of the transverse
cross section of the waveguide and gives a much simpler and more direct solution for the
cutoff frequency. Thisis another example where circuit and transmission line theory offers
asimplified alternative to afield theory solution.

The transverse resonance procedure is based on the fact that in a waveguide at cutoff,
the fields form standing waves in the transverse plane of the guide, as can beinferred from
the “bouncing plane wave” interpretation of waveguide modes discussed in Section 3.2.
This situation can be modeled with an equivalent transmission line circuit operating at
resonance. One of the conditions of such aresonant lineis the fact that, at any point on the
line, the sum of the input impedances seen looking to either side must be zero. That is,

ZL0) +ZLx) =0 fordlx, (3.206)

where Z{ (x) and Z{ (x) are the input impedances seen looking to the right and left,
respectively, at any point X on the resonant line.

The transverse resonance technique only gives results for the cutoff frequency of the
guide. If fields or attenuation due to conductor loss are needed, the complete field theory
solution will be required. The procedure will now be illustrated with an example.

TEo, Modes of a Partially Loaded Rectangular Waveguide

The transverse resonance technique is particularly useful when the guide contains dielec-
tric layers because the boundary conditions at the dielectric interfaces, which require the
solution of simultaneous algebraic equetions in the field theory approach, can be easily
handled as junctions of different transmission lines. As an example, consider a rectangu-
lar waveguide partialy filled with dielectric, as shown in Figure 3.28. To find the cutoff
frequencies for the TEg, modes, the equivalent transverse resonance circuit shown in the
figure can be used. Thelinefor 0 < y < t represents the dielectric-filled part of the guide
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FIGURE 3.28 A rectangular waveguide partialy filled with dielectric and the transverse reso-

3.10

nance equivalent circuit.

and has atransverse propagation constant kyq and a characteristic impedance for TE modes
given by

_ kn _ komo
where ko = w./mto€o and no = +/o/€o- Fort <y < b, the guide is air filled and has a
transverse propagation constant ky, and an equivalent characteristic impedance given by

Zy (3.207a)

7, = Koo, (3.207b)
Applying condition (3.206) yields

Thisequation contains two unknowns, kya and kyq. An additional equation isobtained from
the fact that the longitudinal propagation constant, 8, must be the same in both regions for
phase matching of the tangential fields at the dielectric interface. Thus, with ky = 0,

p= K= e

or
erk§ — kg = kG — ki, (3.209)

Equations (3.208) and (3.209) can be solved (numerically or graphically) to obtain kyq
and kya. There will be an infinite number of solutions, corresponding to the n dependence
(number of variationsin y) of the TEg, mode.

WAVE VELOCITIES AND DISPERSION

We have so far encountered two types of velocities related to the propagation of electro-
magnetic waves:

e The speed of light inamedium (1/./we)
e The phase velocity (vp = w/B)

The speed of light in a medium is the velocity at which a plane wave would propagate in
that medium, while the phase velocity is the speed at which a constant phase point travels.
For a TEM plane wave, these two velocities are identical, but for other types of guided
wave propagation the phase velocity may be greater or less than the speed of light.
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If the phase velocity and attenuation of aline or guide are constants that do not change
with frequency, then the phase of asignal that contains more than one frequency component
will not be distorted. If the phase velocity is different for different frequencies, then the
individual frequency components will not maintain their original phase relationships as
they propagate down the transmission line or waveguide, and signal distortion will occur.
Such an effect is called dispersion since different phase velocities allow the “faster” waves
to lead in phase relative to the “slower” waves, and the original phase relationships will
gradually be dispersed as the signal propagates down the line. In such a case, there is
no single phase velocity that can be attributed to the signa as a whole. However, if the
bandwidth of the signal is relatively small or if the dispersion is not too severe, a group
velocity can be defined in a meaningful way. This velocity can be used to describe the
speed at which the signal propagates.

Group Velocity

Asdiscussed earlier, the physical interpretation of group velocity isthe velocity at which a
narrowband signal propagates. We will derive the relation of group velocity to the propa-
gation constant by considering asignal f (t) in the time domain. The Fourier transform of
thissignal is defined as

oo .
Flw) = f f (e 1“tdt, (3.210a)
—00
and the inverse transform is
1 [ :
f(t)=-— f F(w)e®dw. (3.210b)
2 |

Now consider the transmission line or waveguide on which the signal f (t) is propa-
gating as a linear system, with a transfer function Z (w) that relates the output, Fo(w), of
thelineto theinput, F(w), of theline, as shown in Figure 3.29. Thus,

Fo(w) = Z(w)F (). (3.211)

For alossless matched transmission line or waveguide, the transfer function Z(w) can be
expressed as

Z(w) = Ae 1P = |Z(w)|e 1Y, (3.212)

where Aisaconstant and j is the propagation constant of the line or guide.
The time domain representation of the output signal, fo(t), can then be written as

fo(t) = %/w F(w)|Z(w)|el“Vdw. (3.213)

Flo) = Z(o) > RK)

Fo(@) = Z(w)F(w)

FIGURE 3.29 A transmission line or waveguide represented as a linear system with transfer

function Z (w).
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If | Z(w)| = Alisaconstant and the phase ¢ of Z(w) isalinear function of w, say ¥ = aw,
the output can be expressed as

0 .
fo(t) = 1 / AF (0)el®*ddy = Af (t — a), (3.214)
2 J_~

whichisseentobeareplicaof f (t), except for an amplitude factor A and time shift a. Thus,
atransfer function of the form Z(w) = Ae~1%2 does not distort theinput signal. A lossless
TEM wave has a propagation constant 8 = w/c, which is of this form, so aTEM lineis
dispersionless and does not lead to signal distortion. If the TEM line islossy, however, the
attenuation may be a function of frequency, which could lead to signal distortion.

Now consider a harrowband input signal of the form

s(t) = f(t) coswot = Re[ f (t)eiwo‘}, (3.215)

which represents an amplitude-modulated carrier wave of frequency wo. Assume that the
highest frequency component of f (t) iswm, where wm < wo. The Fourier transform, S(w),
of s(t), is

¢} . .
S(w) = / f (e 1@oteltdt = F(w — wp), (3.216)
—00
where we have used the complex form of the input signal as expressed in (3.215). We will
need to take the real part of the output inverse transform to obtain the time domain output
signal. The spectra of F(w) and S(w) are depicted in Figure 3.30.

The output signal spectrumis

S () = AF (0 — wo)e 72, (3.217)

and in the time domain,

1 = ,
$(t) = —Re S(w)e“tdw
21 o0

1 (3.218)

Wo+wm .
= —Re/ AF (0 — wo)e! @ =ADd.

2n @Wo—Wm

In general, the propagation constant 8 may be a complicated function of w. However,
if F(w) isnarrowband (om < o), then B can often be linearized by using a Taylor series
expansion about wg:

1d28

d
B(w) = B(wo) + d—'B (w — wo) + 573 (w — wo)2 + - (3.219)
O3 PR 2dw w=wq
F(w) aa))
JAAN JAAN
—wn 0 [ 1) —w, 0 w, ®
(€Y (b)

FIGURE 3.30 Fourier spectra of the signals (a) f (t) and (b) s(t).
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Retaining the first two terms gives

B(w) = Bo+ Bolw — wo), (3.220)
where
Bo = B(wo),
_ 9
Po= dw w:wo'

After achange of variablesto y = w — wy, the expression for sy(t) becomes

A . @m . ,
&)(t) — 2_ Re{e] (wot—ﬁoz)/ F(y)e] (t_ﬁoz)y dy}
JT

—om
=A Re{ f(t— ﬂ(’)z)ej (wot—ﬂoz)}
= Af (t - ,362) COS(Cl)ot — ﬂoZ), (3221)

which is a time-shifted replica of the original modulation envelope, f (t), of (3.215). The
velocity of this envelope is the group velocity, vg:

1 (dp\t
v-2-(2)

EXAMPLE 3.9 WAVEGUIDE WAVE VELOCITIES

(3.222)

w=wg

Calculate the group velocity for a waveguide mode propagating in an air-filled
guide. Compare this velocity to the phase velocity and speed of light.

Solution
The propagation constant for amode in an air-filled waveguide is

B= 1€ —Kk = [/ - K.
Taking the derivative with respect to frequency gives
a8 w/c? ko

do ~ Jw/o?—k CB’

so from (3.234) the group velocity is

dg\t o

Vg=|— = —.

g do ko
The phase velocity is vp = w/p = cko/B. Since B < kg, we have that vg <
C < vp, which indicates that the phase velocity of a waveguide mode may be

greater than the speed of light, but the group velocity (the velocity of a narrow-
band signal) will be less than the speed of light. |

SUMMARY OF TRANSMISSION LINES AND WAVEGUIDES

We have discussed a variety of transmission lines and waveguides in this chapter, and here
we will summarize some of the basic properties of these transmission media and their
relative advantages in a broader context.
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TABLE 3.6 Comparison of Common Transmission Lines and Waveguides

Characteristic Coax Waveguide Stripline Microstrip
Modes: Preferred TEM TE1o TEM Quasi-TEM
Other T™,TE T™,TE T™,TE Hybrid TM,TE
Dispersion None Medium None Low
Bandwidth High Low High High
Loss Medium Low High High
Power capacity Medium High Low Low
Physical size Large Large Medium Small
Ease of fabrication Medium Medium Easy Easy
Integration with Hard Hard Fair Easy

We made a distinction between TEM, TM, and TE waves and saw that transmission
lines and waveguides can be categorized according to which type of waves they can sup-
port. We saw that TEM waves are nondispersive, with no cutoff frequency, while TM and
TE waves exhibit dispersion and generally have nonzero cutoff frequencies. Other electri-
cal considerations include bandwidth, attenuation, and power-handling capacity. Mechan-
ical factors are aso very important, however, and include such considerations as physical
size (volume and weight), ease of fabrication (cost), and the ability to be integrated with
other devices (active or passive). Table 3.6 compares several types of transmission media
with regard to these considerations; this table only gives general guidelines, as specific
cases may give better or worse results than those indicated.

Other Types of Lines and Guides

Although we have discussed the most common types of waveguides and transmission lines,
there are many other guides and lines (and many variations) that we are not able to present
in detail. A few of the more popular types are briefly mentioned here.

Ridge waveguide: The practical bandwidth of rectangular waveguide is dlightly less than
an octave (a 2:1 frequency range). This is because the TEzg mode begins to propagate at
a frequency equal to twice the cutoff frequency of the TEjo mode. The ridge waveguide,
shown in Figure 3.31, consists of a rectangular waveguide loaded with conducting ridges
on the top and/or bottom walls. This loading tends to lower the cutoff frequency of the
dominant mode, leading to increased bandwidth and better (more constant) impedance
characteristics. Ridge waveguides are often used for impedance matching purposes, where

FIGURE 3.31  Cross section of aridge waveguide.
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€r2

€r1

FIGURE 3.32  Dielectric waveguide geometry.

the ridge may be tapered along the length of the guide. The presence of the ridge, however,
reduces the power-handling capacity of the waveguide.

Dielectric waveguide: As we have seen from our study of surface waves, metallic con-
ductors are not necessary to confine and support a propagating electromagnetic field. The
dielectric waveguide shown in Figure 3.32 is another example of such a guide, where ¢,
the dielectric constant of the ridge, is usually greater than €1, the dielectric constant of
the substrate. The fields are thus mostly confined to the ridge and the surrounding area.
This type of guide supports TM and TE modes, and is convenient for miniaturization and
integration with active devices. Its small size makesit useful for millimeter wave to optical
frequencies, although it can be very lossy at bends or junctions in the ridge line. Many
variationsin this basic geometry are possible.

Sotline: Slotline is another one of the many possible types of planar transmission lines.
The geometry of adlotline is shown in Figure 3.33. It consists of athin dot in the ground
plane on one side of adielectric substrate. Thus, like microstrip line, the two conductors of
slotline lead to aquasi-TEM type of mode. The width of the slot controls the characteristic
impedance of theline.

Coplanar waveguide: The coplanar waveguide, shown in Figure 3.34, issimilar to the sot-
line, and can be viewed as a slotline with a third conductor centered in the slot region.
Because of the presence of this additional conductor, this type of line can support even
or odd quasi-TEM modes, depending on whether the electric fields in the two slots are in
the opposite direction or the same direction. Coplanar waveguides are particularly useful
for fabricating active circuitry due to the presence of the center conductor and the close
proximity of the ground planes.

Covered microstrip: Many variations of the basic microstrip line geometry are possible,
but one of the more common is the covered microstrip, shown in Figure 3.35. The metallic
cover plate is often used for electrical shielding and physical protection of the microstrip
circuitry and is usually situated several substrate thicknesses away from the circuit. Its
presence, however, can perturb the operation of the circuit enough so that its effect must
be taken into account during design.

N\
\i\
\

FIGURE 3.33  Geometry of aprinted slotline.
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FIGURE 3.34 Coplanar waveguide geometry.

POINT OF INTEREST: Power Capacity of Transmission Lines

The power-handling capacity of an air-filled transmission line or waveguide is usually limited
by voltage breakdown, which occurs at a field strength of about Eq = 3 x 10% V/m for room
temperature air at sealevel pressure. Thermal effects may also serve to limit the power capacity
of some types of lines.

In an air-filled coaxial line the electric field varies as E, = Vo/(p Inb/a), which has a
maximum at o = a (at the inner conductor). Thus the maximum voltage before breakdown is

b
Vmax = Egaln 3 (peak-to-peak),

and the maximum power capacity isthen

220 0 a

As might be expected, this result shows that power capacity can be increased by using a larger
coaxial cable (larger a, b with fixed b/a for the same characteristic impedance). However, prop-
agation of higher order modes limits the maximum operating frequency for a given cable size.

Thus, there is an upper limit on the power capacity of a coaxial line for a given maximum
operating frequency, fmax, which can be shown to be given by

0.025 [ cE4 \2 Eq \2
Prax = —— (—d ) =58 x 1012 (—d ) .
no fmax fmax

Asan example, at 10 GHz the maximum peak power capacity of any coaxial line with no higher
order modes is about 520 kW.

Inan air-filled rectangular waveguide the electricfield variesas Ey = Eq sin(rrx/a), which
has a maximum value of Eq at x = a/2 (the middle of the guide). Thus the maximum power
capacity before breakdown is

which shows that power capacity increases with guide size. For most standard waveguides,
b ~ 2a. To avoid propagation of the TEyg mode we must have a < ¢/ fmax, where fmax isthe

}/ L7

AR\

FIGURE 3.35 Covered microstrip line.
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maximum operating frequency. Then the maximum power capacity of the guide can be shown

to be
0.11 / cEq4 \?2 Eq \?
Pmax=—(—c d) =2.6><1013<—d ) .
o] fmax fmax

Asan example, at 10 GHz the maximum peak power capacity of arectangular waveguide oper-
ating in the TE1g mode is about 2300 kW, which is considerably higher than the power capacity
of acoaxial cable at the same frequency.

Because arcing and voltage breakdown are high-speed transient effects, these voltage and
power limits are peak val ues; average power capacity islower. In addition, it isgood engineering
practice to provide a safety factor of at least two, so the maximum powers that can be safely
transmitted should be limited to about half of the above values. If there are reflections on the
line or guide, the power capacity is further reduced. In the worst case, a reflection coefficient
magnitude of unity will double the maximum voltage on the line, so the power capacity will be
reduced by afactor of four.

The power capacity of aline can be increased by pressurizing the line with air or an inert
gas or by using a dielectric. The dielectric strength (Eq) of most dielectric materials is greater
than that of air, but the power capacity may be further limited by the heating of the dielectric
due to ohmic loss.

Reference: P. A. Rizzi, Microwave Engineering—Passive Circuits, Prentice-Hall, Englewood Cliffs, N.J., 1988.
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PROBLEMS

31

3.2
3.3
3.4

Devise at least two variations of the basic coaxia transmission line geometry of Section 3.5, and
discuss the advantages and disadvantages of your proposed lines in terms of size, loss, cost, higher
order modes, dispersion, or other considerations. Repeat thisexercisefor the microstrip line geometry
of Section 3.8.

Derive equations (3.5a)—(3.5d) from equations (3.3) and (3.4).
Calculate the attenuation due to conductor loss for the TEn mode of a parallel plate waveguide.

Consider a section of air-filled K-band waveguide. From the dimensions given in Appendix I,
determine the cutoff frequencies of the first two propagating modes. From the recommended
operating range given in Appendix | for this guide, determine the percentage reduction in bandwidth
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3.6

3.7

3.8

3.9

3.10

311

that this operating range represents, relative to the theoretical bandwidth for a single propagating
mode.

A 10 cm length of aK-band copper waveguide isfilled with a dielectric material with ¢ = 2.55 and
tans = 0.0015. If the operating frequency is 15 GHz, find the total loss through the guide and the
phase delay from the input to the output of the guide.

An attenuator can be made using a section of waveguide operating below cutoff, as shown in the
accompanying figure. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required
length of the bel ow-cutoff section of waveguideto achieve an attenuation of 100 dB between theinput
and output guides. Ignore the effect of reflections at the step discontinuities.

e —

Propagating \A N N

wave Ev\?vn;e;ent Propagating
wave

Find expressions for the electric surface current density on the walls of a rectangular waveguide for
a TE;g mode. Why can a narrow slot be cut along the centerline of the broad wall of a rectangular
waveguide without perturbing the operation of the guide? (Such a slot is often used in a dlotted line
for a probe to sample the standing wave field inside the guide.)

Derive the expression for the attenuation of the TMmn mode of a rectangular waveguide due to
imperfectly conducting walls.

For the partially loaded rectangular waveguide shown in the accompanying figure, solve (3.109)
with 8 = 0 to find the cutoff frequency of the TE1g mode. Assume a = 2.286 cm, t = a/2, and
e = 2.25.

€=225 | =1

Nl

Consider the partialy filled parallel plate waveguide shown in the accompanying figure. Derive the
solution (fields and cutoff frequency) for the lowest order TE mode of this structure. Assume the
metal plates are infinitely wide. Can a TEM wave propagate on this structure?

Derive equations (3.110a)—3.110d) for the transverse field components in terms of longitudinal
fields, in cylindrical coordinates.
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3.12 Derive the expression for the attenuation of the TMnym mode in a circular waveguide with finite
conductivity.

3.13 A circular copper waveguide has a radius of 0.4 cm and is filled with a dielectric material having
¢r = 1.5and tans = 0.0002. Identify the first four propagating modes and their cutoff frequencies.
For the dominant mode, calculate the total attenuation at 20 GHz.

3.14 Derive the E and H fields of a coaxial line from the expression for the potential given in (3.153).
Also find expressions for the voltage and current on the line and the characteristic impedance.

3.15 Derive atranscendental equation for the cutoff frequency of the TM modes of a coaxial waveguide.
Using tables, obtain an approximate value of kca for the TMg, modeif b/a = 2.

3.16 Derive an expression for the attenuation of a TE surface wave on a grounded dielectric substrate
when the ground plane has finite conductivity.

3.17 Consider the grounded magnetic substrate shown in the accompanying figure. Derive a solution for
the TM surface waves that can propagate on this structure.

€0) Mo

d €01 oy ((

3.18 Consider the partialy filled coaxia line shown in the accompanying figure. Can a TEM wave propa-
gate on thisline? Derive the solution for the TM g, (no azimuthal variation) modes of this geometry.

3.19 A copper stripline transmission line is to be designed for a 100 @ characteristic impedance. The
ground plane separation is 1.02 mm and the dielectric constant is 2.20, with tans = 0.001. At
5 GHz, find the guide wavelength on the line and the total attenuation.

3.20 A copper microstrip transmission line is to be designed for a 100 2 characteristic impedance. The
substrate is 0.51 mm thick, with ¢ = 2.20 and tans = 0.001. At 5 GHz, find the guide wavelength
on the line and the total attenuation. Compare these results with those for the similar stripline case of
the preceding problem.

3.21 A 100 2 microstrip lineis printed on a substrate of thickness 0.0762 cm with a dielectric constant of
2.2. Ignoring losses and fringing fields, find the shortest length of this line that appears at itsinput as
a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance of 5 nH. Using a microwave CAD package
with a physical model for the microstrip line, compute the actual input impedance seen when losses
are included (assume copper conductors and tan§ = 0.001).

3.22 A microwave antennafeed network operating at 5 GHz requires a50 €2 printed transmission line that
is 16 A long. Possible choices are (1) copper microstrip, with d = 0.16 cm, ¢, = 2.20, and tans =
0.001, or (2) copper stripline, withb = 0.32cm, ¢ = 2.20, t = 0.01 mm, andtané = 0.001. Which
line should be used if attenuation isto be minimized?
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3.23

3.24

325

3.26

3.27

3.28

3.29

Consider the TE modes of an arbitrary uniform waveguiding structure in which the transverse fields
are related to Hz asin (3.19). If Hy is of the form Hz(X, y, 2) = hz(x, y)e~1#Z where hy(x, y) is
areal function, compute the Poynting vector and show that real power flow occurs only in the z
direction. Assumethat 8 isreal, corresponding to a propagating mode.

A piece of rectangular waveguide is air filled for z < 0 and dielectric filled for z > 0. Assume that
both regions can support only the dominant TE;g mode and that a TE;og mode isincident on the inter-
facefrom z < 0. Using afield analysis, write general expressions for the transverse field components
of the incident, reflected, and transmitted waves in the two regions and enforce the boundary con-
ditions at the dielectric interface to find the reflection and transmission coefficients. Compare these
results to those obtained with an impedance approach, using Ztg for each region.
Use the transverse resonance technique to derive a transcendental equation for the propagation con-
stant of the TM modes of arectangular waveguide that isair filled for 0 < x < d and dielectric filled
ford < x < a.
Apply the transverse resonance technique to find the propagation constants for the TE surface waves
that can be supported by the structure of Problem 3.17.
An X-band waveguide filled with Rexolite is operating at 9.0 GHz. Calculate the speed of light in
this material and the phase and group velocities in the waveguide.
As discussed in the Point of Interest on the power-handling capacity of transmission lines, the maxi-
mum power capacity of acoaxial lineislimited by voltage breakdown and is given by
2p2
wa‘E b
din -,
no a
where Eq is the field strength at breakdown. Find the value of b/a that maximizes the maximum
power capacity and show that the corresponding characteristic impedance is about 30 2.

Pmax =

A microstrip circuit is fabricated on an alumina substrate having a dielectric constant of 9.9, a thick-
ness of 2.0 mm, and a50 2 linewidth of 1.93 mm. Find the threshold frequencies of the four higher
order modes discussed in Section 3.8, and recommend the maximum operating frequency for this
microstrip circuit.



Microwave Network Analysis

Circuits operating at low frequencies, for which the circuit dimensions are small relative to
the wavelength, can be treated as an interconnection of lumped passive or active components
with unique voltages and currents defined at any point in the circuit. In this situation the circuit
dimensions are small enough such that there is negligible phase delay from one point in the cir-
cuit to another. In addition, the fields can be considered as TEM fields supported by two or more
conductors. Thisleadsto aquasi-static type of solution to Maxwell’s equations and to the well-
known Kirchhoff voltage and current laws and impedance concepts of circuit theory [1]. Asthe
reader is aware, there is a powerful and useful set of techniques for analyzing low-frequency
circuits. In general, these techniques cannot be directly applied to microwave circuits, but it
is the purpose of the present chapter to show how basic circuit and network concepts can be
extended to handle many microwave analysis and design problems of practical interest.

The main reason for doing this is that it is usually much easier to apply the simple and
intuitive ideas of circuit analysis to a microwave problem than it is to solve Maxwell’s equa-
tions for the same problem. In a way, field anaysis gives us much more information about
the particular problem under consideration than we really want or need. That is, because the
solution to Maxwell’s equations for a given problem is complete, it gives the electric and mag-
netic fields at al points in space. However, usually we are only interested in the voltage or
current at a set of terminals, the power flow through a device, or some other type of “terminal”
quantity, as opposed to a minute description of the fields at all points in space. Another reason
for using circuit or network analysisis that it is then very easy to modify the original prob-
lem, or combine several elements together and find the response, without having to reanalyze
in detail the behavior of each element in combination with its neighbors. A field analysis us-
ing Maxwell’s equations for such problems would be hopelessly difficult. There are situations,
however, in which such circuit analysis techniques are an oversimplification and may lead to
erroneous results. In such cases one must resort to afield analysis approach, using Maxwell’s
equations. Fortunately, there are a number of commercially available computer-aided design
packages that can model RF and microwave problems using both field theory analysis and net-
work analysis. It is part of the education of amicrowave engineer to be able to determine when
network analysis concepts apply and when they should be cast aside in favor of more rigorous
analysis.

165
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The basic procedure for microwave network analysis is as follows. We first treat a set of
basic, canonical problemsrigorously, using field analysis and Maxwell’s equations (as we have
done in Chapters 2 and 3, for a variety of transmission line and waveguide problems). When
so doing, we try to obtain quantities that can be directly related to a circuit or transmission
line parameter. For example, when we treated various transmission lines and waveguides in
Chapter 3 we derived the propagation constant and characteristic impedance of the line. This
allowed the transmission line or waveguide to be treated as an idealized distributed component
characterized by its length, propagation constant, and characteristic impedance. At this point,
we can interconnect various components and use network and/or transmission line theory to
analyze the behavior of the entire system of components, including effects such as multiple
reflections, loss, impedance transformations, and transitions from one type of transmission
medium to another (e.g., coax to microstrip). As we will see, a transition between different
transmission lines, or a discontinuity on a transmission line, generally cannot be treated as a
simple junction between two transmission lines, but typically includes some type of equivalent
circuit to account for reactances associated with the transition or discontinuity.

Microwave network theory was originally developed in the service of radar system and
component development at the MIT Radiation Lab in the 1940s. This work was continued at
the Polytechnic Institute of Brooklyn and other locations by researchers such as E. Weber,
N. Marcuvitz, A. A. Oliner, L. B. Felsen, A. Hessel, and many others[2].

4.1

IMPEDANCE AND EQUIVALENT VOLTAGES AND CURRENTS

Equivalent Voltages and Currents

At microwave frequencies the measurement of voltage or current is difficult (or impossi-
ble), unless a clearly defined terminal pair is available. Such aterminal pair may be present
in the case of TEM-type lines (such as coaxial cable, microstrip line, or stripline), but does
not strictly exist for non-TEM lines (such as rectangular, circular, or surface waveguides).

Figure 4.1 shows the electric and magnetic field lines for an arbitrary two-conductor
TEM transmission line. Asin Chapter 3, the voltage, V, of the + conductor relative to the
— conductor can be found as

V=/_E'-d12, (4.1
+

where the integration path begins on the + conductor and ends on the — conductor. It is
important to realize that, because of the el ectrostatic nature of the transverse fiel ds between
the two conductors, the voltage defined in (4.1) is unique and does not depend on the shape
of the integration path. The total current flowing on the 4+ conductor can be determined
from an application of Ampere’'slaw as

| :y§ H.de, 4.2
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FIGURE 4.1 Electric and magnetic field lines for an arbitrary two-conductor TEM line.

where the integration contour is any closed path enclosing the + conductor (but not the
— conductor). A characteristic impedance Zg can then be defined for traveling waves as

Zo = (4.3)

V
=
At this point, after having defined and determined a voltage, current, and characteristic
impedance (and assuming we know the propagation constant for the line), we can proceed
to apply the circuit theory for transmission lines developed in Chapter 2 to characterize this
line as acircuit element.

The situation is more difficult for waveguides. To see why, we will ook at the case
of a rectangular waveguide, as shown in Figure 4.2. For the dominant TE;9 mode, the
transverse fields can be written, from Table 3.2, as

joua TX

Ey(X,y.2) = —Asin?e‘jﬂz = Aey(x, y)e F2, (4.49)
T

Hex.y.2) = P2 asin %Xe‘j’gz = Ahy(x, y)e #2. (4.4b)
T

ERER

0 a X

FIGURE 4.2 Electricfield linesfor the TE;g mode of arectangular waveguide.
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Applying (4.1) to the electric field of (4.4a) gives

V= MAsin”—xe—l'f”/oly. (45)
T a y

Thus it is seen that this voltage depends on the position, x, as well as the length of the
integration contour along the y direction. For example, integrating from y = 0 to b for
x = al2 gives avoltage that is quite different from that obtained by integrating fromy = 0
tob for x = 0. What, then, is the correct voltage? The answer is that there is no “correct”
voltage in the sense of being unique or pertinent for all applications. A similar problem
arises with current, and also impedance. We will now show how we can define equivalent
voltages, currents, and impedances that can be useful for non-TEM lines.

There are many ways to define equivalent voltage, current, and impedance for wave-
guides since these quantities are not unique for non-TEM lines, but the following consid-
erations usually lead to the most useful results[1, 3, 4]:

e \oltage and current are defined only for a particular waveguide mode, and are
defined so that the voltage is proportiona to the transverse electric field and the
current is proportional to the transverse magnetic field.

e |n order to be useful in a manner similar to voltages and currents of circuit theory,
the equivalent voltages and currents should be defined so that their product gives
the power flow of the waveguide mode.

e Theratio of the voltage to the current for asingle traveling wave should be equal to
the characteristic impedance of the line. Thisimpedance may be chosen arbitrarily,
but isusually selected as equal to the wave impedance of theline, or else normalized
to unity.

For an arbitrary waveguide mode with both positively and negatively traveling waves,
the transverse fields can be written as

ex.y)

Eux.y.2) = 8(x. y)(ATe 1P + Amelf?) = =2
1

(Ve 82 L v-elf?), (469

Hi(x,y,2) = h(x, y)(ATe 1P — A—elf?) = %(ﬁe—lﬂz — 17elF?), (4.6b)
2
where & and h are the transverse field variations of the mode, and A*, A~ are the field

amplitudes of the traveling waves. Because E; and H; are related by the wave impedance,
Z,,, according to (3.22) or (3.26), we a'so have that

- 2 xE(X,Y)
h(x,y) = Z—y (4.7
Equation (4.6) also defines equivalent voltage and current waves as
V(z) = Vte P2 4 v —elf?, (4.83)
I(z) = Ite 1Bz _ | —elf?, (4.8b)

with VT /1T =V~ /1~ = Z. This definition embodies the idea of making the equivalent
voltage and current proportional to the transverse electric and magnetic fields, respectively.
The proportionality constants for thisrelationshipareC; = V+/AT =V~/A~ andC; =
IT/AT = 1=/A~, and can be determined from the remaining two conditions for power
and impedance.
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The complex power flow for the incident wave is given by

pt 1|A+|2/é h* . 2ds V+I+*/é h* . 2ds
= — X . = - X . .
2 2C:C; (4.9)

S S

Because we want this power to be equal to (1/2)V 1 ™*, we have the result that

CiCj = / éx h* . 2ds, (4.10)
S

where the surface integration is over the cross section of the waveguide. The characteristic
impedanceis
v+ A\ Cy
Zo=—=—=—, 411
T T TG (10

sinceV*T = CiAand |+ = C,A, from (4.6a) and (4.6b). If it is desired to have Zg = Z,,
the wave impedance (Ztg or Z1y) of the mode, then

C

= 7., (Z1e o Z1w). (4.12a)

Ca2
Alternatively, it may be desirable to normalize the characteristic impedance to unity

(Zo = 1), in which case we have
C
— =1 4.12b
C, ( )

For a given waveguide mode, (4.10) and (4.12) can be solved for the constants C4 and
C», and equivalent voltages and currents defined. Higher order modes can be treated in the
same way, so that ageneral field in a waveguide can be expressed in the following form:

N

- AV AVl ~
Ei(x.y.2) =) (C—”e—lﬁnz + C—”elﬁnz> &n(X, ), (4.133)
=1 In In
Hi(x,y,2) = XN:( I itz _ 1o ejﬁ“2> An(X, ¥) (4.13b)
t » Yo - ~ Czn Czn n ) ) .

where V£ and | are the equivalent voltages and currents for the nth mode, and C1, and
Con arethe proportionality constants for each mode.

EXAMPLE 4.1 EQUIVALENT VOLTAGE AND CURRENT
FOR A RECTANGULAR WAVEGUIDE

Find the equivalent voltages and currents for a TE1g mode in arectangular wave-
guide.

Solution

The transverse field components and power flow of the TE;jg rectangular wave-
guide mode and the equivalent transmission linemodel of this mode can bewritten
asfollows:
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Waveguide Fields

Transmission Line Model

: 82\ X
Ey = (AJre_Jﬁz + A_elﬂz) sn%

-1

Hyx —(A+e—i/SZ - A—ejﬂz) sin%

C ZtE

ab

-1
Pt = — | EyHfdxdy = ——|A"?
2/5 yPaxdy = 2z

TE

V(z) = Vte bz v —elb?

1(z) = | Te— 1Bz _ | —¢lf2
14 i Iy
= (vte Pz _vy e“sz)
7!
1
pt=Zvtt+*
2

We now findthe constantsCy = V*/AT =V~ /A~ andCy = I T/AT =17 /A~
that rel ate the equivalent voltages V * and currents | * to the field amplitudes, A*.

Equating incident powers gives

ab|At]? 1

471e

If we choose Zg = Z1g, then we also have that

Solving for C4, C» gives

C1

Co

which completes the transmission line equivalence for the TE1g mode.

The Concept of Impedance

We have used the idea of impedance in severa different ways, so it may be useful at this
point to summarize this important concept. The term impedance was first used by Oliver
Heaviside in the nineteenth century to describe the complex ratio V /1 in AC circuits con-
sisting of resistors, inductors, and capacitors; the impedance concept quickly becameindis-
pensable in the analysis of AC circuits. It was then applied to transmission lines, in terms
of lumped-element equivalent circuits and the distributed series impedance and shunt ad-
mittance of theline. Inthe 1930s, S. A. Schelkunoff recognized that the impedance concept
could be extended to electromagnetic fields in a systematic way, and noted that impedance
should be regarded as characteristic of the type of field, as well as of the medium [2].
In addition, in relation to the analogy between transmission lines and plane wave propa-
gation, impedance may even be dependent on direction. The concept of impedance, then,

V+I+*:%|A+|2C1C§.

— = Z7E.
2

forms an important link between field theory and transmission line or circuit theory.
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We summarize the various types of impedance we have used so far, and their notation:

e = /u/e =intrinsicimpedance of the medium. Thisimpedanceis dependent only
on the material parameters of the medium, and is equal to the wave impedance for
plane waves.

e Z,=E{/H =1/Y, = wave impedance. This impedance is a characteristic of
the particular type of wave. TEM, TM, and TE waves each have different wave
impedances (Ztem, ZTtm, ZTE), Which may depend on the type of line or guide,
the material, and the operating frequency.

e 7o =1/Yg=VT/IT = characteristic impedance. Characteristic impedance is the
ratio of voltage to current for atraveling wave on atransmission line. Because volt-
age and current are uniquely defined for TEM waves, the characteristic impedance
of a TEM wave is unique. TE and TM waves, however, do not have a uniquely
defined voltage and current, so the characteristic impedance for such waves may
be defined in different ways.

EXAMPLE 4.2 APPLICATION OF WAVEGUIDE IMPEDANCE

Consider arectangular waveguide witha = 2.286 cmand b = 1.016 cm (X-band
guide), air filled for z < 0 and Rexolite filled (¢, = 2.54) for z > 0, as shown in
Figure 4.3. If the operating frequency is 10 GHz, use an equivalent transmission
line model to compute the reflection coefficient of a TE1g wave incident on the
interface fromz < 0.

Solution
The waveguide propagation constantsin the air (z < 0) and the dielectric (z > 0)
regions are

Ba = [k2 - (%)2 =1580m2,

Ba = erk? — (%)2 —304.1m72,

where kg = 209.4 m~1.

Thereader may verify that the TE1o modeisthe only propagating modein ei-
ther waveguide region. We can set up an equivalent transmission line for the TEyg
mode in each waveguide, and treat the problem as the reflection of an incident
voltage wave at the junction of two infinite transmission lines.

TEjp
| i
z=0
Zoa Zog
[ <~ z

FIGURE 43 Geometry of a partially filled waveguide and its transmission line equivalent for

Example 4.2.
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By Example 4.1 and Table 3.2, the equivalent characteristic impedances for
thetwo lines are

koo _ (209.4)(377)

Z = = 500.0 2,
% = g 158.0
kn  komo  (209.4)(377)
%= 8y T g 304.1

The reflection coefficient seen looking into the dielectric filled region is then

Zoy — Zo,
=——==-0.316.

Zog + Zo,
With thisresult, expressions for the incident, reflected, and transmitted waves can
be written in terms of fields, or in terms of equivalent voltages and currents. B

We now consider the arbitrary one-port network shown in Figure 4.4 and derive a
genera relation between its impedance properties and electromagnetic energy stored in,
and the power dissipated by, the network. The complex power delivered to this network is
given by (1.91):

11 - -
szfExH*.d§:P@+2jw(Wm—We), (4.14)
s

where Py is real and represents the average power dissipated by the network, and Wy,
and W, represent the stored magnetic and electric energy, respectively. Note that the unit
normal vector in Figure 4.4 is pointing into the volume.

If we define real transverse modal fields € and h over the terminal plane of the network
such that

Et(x,y,2) = V(2)8(x, y)e 7, (4.158)
Hi(x. y.2) = 1 @h(x, y)e 72, (4.15b)

/éxﬁ-d§=1,
S

then we can express (4.14) in terms of the terminal voltage and current:

with anormalization such that

1 _ 1
P = —/Vl*é xi-ds = Svir, (4.16)
S

2

One-port
network

Zin :,‘>

EH

FIGURE 4.4  Anarbitrary one-port network.
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Then the input impedanceis

. vV VI P Pe + 2jo(Wn — We)

in J I |||2 %“'2 ;_2[“'2 ( )

Thus we see that the real part, R, of theinput impedanceis related to the dissipated power,

while the imaginary part, X, is related to the net energy stored in the network. If the net-
work islossless, then P, = 0and R = 0. Then Zj, is purely imaginary, with areactance

_ 40 (Wi — We)

i (4.18)

which is positive for an inductive load (W, > W,), and negative for a capacitive load
(Wm < We)

Even and Odd Properties of Z(w) and I' (w)

Consider the driving point impedance, Z (), at the input port of an electrical network. The
voltage and current at thisport arerelated asV (w) = Z (w) | (w). For an arbitrary frequency
dependence, we can find the time-domain voltage by taking the inverse Fourier transform
of V(w):

v(t) = %/w V(w)el“tdw. (4.19)

—0o0
Because v(t) must bereal, we have that v(t) = v*(t), or
/ V(w)e!'do = / V*(w)e 1o = / V*(—w)e!tdo,
—0oQ —0o0 —00
where the last term was obtained by a change of variable from w to —w. This shows that
V (w) must satisfy the relation
V(—w) =V (w), (4.20)

which meansthat Re{V (w)} iseven in w, while Im{V (w)} isodd in w. Similar results hold
for I (w), and for Z (w) since

V*(—w) = Z*(—w) | *(—0) = Z*(—0) | (0) = V (0) = Z(@)] (o).

Thus, if Z(w) = R(w) + ] X (w), then R(w) is even in w and X (w) isodd in w. These
results can also be inferred from (4.17).
Now consider the reflection coefficient at the input port:

Z@)~Zo _R@)—Zo+ jX (@)

H ) = ) T 20~ R@) + Zo+ i X(@)

(4.21)

Then
R(@) — Zo— jX(®)
R)+Zo— jX(w)

which shows that the real and imaginary parts of I'(w) are even and odd, respectively,
in w. Finally, the magnitude of the reflection coefficient is

I'—w) =

(o), (4.22)

IT(@)]? = T'(@)T*(w) = [(@)[ (~o) = [T (—w)|?, (4.23)

which shows that |I"(w)|2 and |T" (w)| are even functions of . This result implies that only
even series of theform a + bw? + cw® + - - - can be used to represent | (w)| or |T'(w)|?2.
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4.2

IMPEDANCE AND ADMITTANCE MATRICES

In the previous section we have seen how equivalent voltages and currents can be defined
for TEM and non-TEM waves. Once such voltages and currents have been defined at vari-
ous points in a microwave network, we can use the impedance and/or admittance matrices
of circuit theory to relate these terminal or port quantities to each other, and thus to essen-
tially arrive at a matrix description of the network. This type of representation lends itself
to the development of equivalent circuits of arbitrary networks, which will be quite useful
when we discuss the design of passive components such as couplers and filters. (The term
port wasintroduced by H. A. Wheeler in the 1950s to replace the | ess descriptive and more
cumbersome phrase “two-terminal pair” [2, 3].)

We begin by considering an arbitrary N-port microwave network, as depicted in
Figure 4.5. The ports in Figure 4.5 may be any type of transmission line or transmission
line equivalent of a single propagating waveguide mode. If one of the physical ports of the
network is a waveguide supporting more than one propagating mode, additional electri-
cal ports can be added to account for these modes. At a specific point on the nth port, a
termina plane, ty, is defined along with equivalent voltages and currents for the incident
(Vih, 1) and reflected (V,,, 1,;) waves. The terminal planes are important in providing
a phase reference for the voltage and current phasors. Now, at the nth terminal plane, the
total voltage and current are given by

Vo =V, +V,, (4.24a)
h=1-1,, (4.24b)

as seen from (4.8) when z = 0.
The impedance matrix [Z] of the microwave network then relates these voltages and
currents:

Vi Z11n Zip -+ ZaN Iy
Vool | Zn : I2
Vn ZnN1 ZNN In

Vi, mégr\’/,;—lg

FIGURE 45 Anarbitrary N-port microwave network.
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or in matrix form as
V1= [Z][I] (4.25)

Similarly, we can define an admittance matrix [Y] as

I Yiu Y2 -+ Yin Vs
I> _ Yor Vo
In YNl o cc- - YNN VN
or in matrix form as
[IT=[YIVI]L (4.26)

Of course, the [Z] and [Y ] matrices are the inverses of each other:
[Y]=[z1% (4.27)

Note that both the [Z] and [Y ] matrices relate the total port voltages and currents.
From (4.25), we see that Zjj can be found as

Zi j=— . (4.28)
I T1e=0 for k=]
In words, (4.28) states that Zjj can be found by driving port j with the current 1, open-
circuiting all other ports (so Ix = 0 for k # ), and measuring the open-circuit voltage at
port i. Thus, Zjj isthe input impedance seen looking into port i when all other ports are
open-circuited, and Zjj is the transfer impedance between ports i and j when all other
ports are open-circuited.
Similarly, from (4.26), Yj;j can be found as

Yij = o ,
Vi [Vie=0 for k]

(4.29)
which states that Yjj can be determined by driving port j with the voltage Vj, short-
circuiting all other ports (so Vx = 0 for k # j), and measuring the short-circuit current
at porti.

In general, each Zjj or Yjj element may be complex. For an arbitrary N-port network,
the impedance and admittance matrices are N x N in size, so there are 2N ? independent
quantities or degrees of freedom. In practice, however, many networks are either recipro-
cal or lossless, or both. If the network is reciprocal (not containing any active devices or
nonreciprocal media, such as ferrites or plasmas), we will show that the impedance and
admittance matrices are symmetric, so that Zjj = Zjj, and Yjj = Yji. If the network is
lossless, we can show that all the Zj; or Yjj elements are purely imaginary. Either of these
special cases serves to reduce the number of independent quantities or degrees of freedom
that an N -port network may have. We now derive the above characteristics for reciprocal
and lossless networks.

Reciprocal Networks

Consider the arbitrary network of Figure 4.5 to be reciprocal (no active devices, ferrites, or
plasmas), with short circuits placed at all terminal planes except those of ports 1 and 2. Let
Ea, Ha and Ep, Hp bethefieldsanywhere in the network due to two independent sources,
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a and b, located somewhere in the network. Then the reciprocity theorem of (1.156) states
that

féaxﬁb-d:s,:?gébxﬂa-dg, (4.30)
S S

where S isthe closed surface along the boundaries of the network and through the terminal
planes of the ports. If the boundary walls of the network and transmission lines are metal,
then E¢an = 0 on these walls (assuming perfect conductors). If the network or the transmis-
sion lines are open structures, like microstrip line or slotline, the boundaries of the network
can be taken arbitrarily far from the lines so that Ea, is negligible. Then the only nonzero
contribution to the integrals of (4.30) come from the cross-sectional areas of ports 1 and 2.

From Section 4.1, the fields due to sources a and b can be evaluated at the terminal
planest; and tp as

E1a = V1a61, Hia = l1ahy, (4.31q)
E1b = Vabé1, Hip = laphy, (4.31b)
E2a = V2a€2, Hza = l2ah2, (4.31¢)
Eab = Vané2, Hap = Iapho, (4.31d)

where &1, h;1 and &, h, are the transverse modal fields of ports 1 and 2, respectively,
and the Vs and |'s are the equivalent total voltages and currents. (For instance, Eqp isthe
transverse electric field at terminal plane t; of port 1 due to source b.) Substituting the
fields of (4.31) into (4.30) gives

(V1alw — Vlb'la)/s €1 x hy-dS + (Vaalop — V2b|2a)/S g xhy-d5=0, (432
1 2

where S; and Sy are the cross-sectional areas at the terminal planes of ports 1 and 2.

Asin Section 4.1, the equivalent voltages and currents have been defined so that the
power through a given port can be expressed as VI*/2; then, comparing (4.31) to (4.6)
impliesthat C1 = C2 = 1 for each port, so that

félxﬁl~d§=/é2xﬁz-d§=1. (4.33)
S1 S2
This reduces (4.32) to

Vialiy — Vipl1a + Vaalop — Voploa = 0. (4.34)
Now usethe 2 x 2 admittance matrix of the (effectively) two-port network to eliminate the
Is:

l1=Y11V1+ Y12V2,
I2 =Y21V1 + Y22 Va.
Substitution into (4.34) gives
(V1aVah — VipVoa) (Y12 — Y21) = 0. (4.35)

Because the sourcesa and b are independent, the voltages V14, Vip, V2a, and Vo, cantake
on arbitrary values. So in order for (4.35) to be satisfied for any choice of sources, we must
have Y12 = Y21, and since the choice of which ports are labeled as 1 and 2 is arbitrary, we
have the general result that

Yij = Yiji. (4.36)

Thenif [Y] isasymmetric matrix, itsinverse, [Z], is aso symmetric.
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Lossless Networks

Now consider areciprocal lossless N-port junction; we will show that the elements of the
impedance and admittance matrices must be pure imaginary. If the network islossless, then
the net real power delivered to the network must be zero. Thus, Re{Payg} = 0, where

1

1 1
Pag = E[V]t[u* = 5([21[”)%!]* = E[I]t[Z][l]*

1
= §(|1211|i‘< + |1212|3< + |2221|f +--0)

1 N N
= EZZ Im Zmn 1% (4.37)

n=1m=1

We have used the result from matrix algebrathat ([A][B])' = [B]![A]'. Becausethe I, are
independent, we must have the real part of each self term (1nZnn 1) equal to zero, since
we could set al port currents equal to zero except for the nth current. So,

Re(InZnn 11} = [1n|? Re{Znn} = 0,
or
Re{Znn) = 0. (4.38)
Now let all port currents be zero except for Iy, and I,,. Then (4.37) reduces to
Re{(Inly + Im13)Zmn} =0,

since Zmn = Znm. However, (Inly + Im 1) is a purely real quantity that is, in general,
nonzero. Thus we must have that

Re{Zmn} = O. (4.39)

Then (4.38) and (4.39) imply that Re{Zm,} = 0 for any m, n. The reader can verify that
this also leads to an imaginary [Y] matrix.

EXAMPLE 4.3 EVALUATION OF IMPEDANCE PARAMETERS
Find the Z parameters of the two-port T-network shown in Figure 4.6.

Solution
From (4.28), Z11 can be found as the input impedance of port 1 when port 2 is
open-circuited:
V
Z11 = s =Zpa+ Zc.
111,=0
ZA ZB
° VMWV VMWV °
Pi”#> Vi Zc Vo Pgrt
o o

FIGURE 4.6 A two-port T-network.
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4.3

The transfer impedance Z12 can be found measuring the open-circuit voltage at
port 1 when acurrent I, isapplied at port 2. By voltage division,

Vo Zc

=-2_°C  _7.
|1:0 |2 ZB+ZC

Zip= —
P

The reader can verify that Zo1 = Z12, indicating that the circuit is reciprocal.
Finally, Zo2 isfound as

THE SCATTERING MATRIX

We have already discussed the difficulty in defining voltages and currents for non-TEM
lines. In addition, a practical problem exists when trying to measure voltages and currents
at microwave frequencies because direct measurements usually involve the magnitude
(inferred from power) and phase of a wave traveling in a given direction or of a standing
wave. Thus, equivalent voltages and currents, and the related impedance and admittance
matrices, become somewhat of an abstraction when dealing with high-frequency networks.
A representation more in accord with direct measurements, and with the ideas of incident,
reflected, and transmitted waves, is given by the scattering matrix.

Like the impedance or admittance matrix for an N-port network, the scattering matrix
provides a complete description of the network asseen at its N ports. While the impedance
and admittance matrices relate the total voltages and currents at the ports, the scattering
matrix relates the voltage waves incident on the ports to those reflected from the ports.
For some components and circuits, the scattering parameters can be calculated using net-
work analysis techniques. Otherwise, the scattering parameters can be measured directly
with a vector network analyzer; a photograph of a modern network analyzer is shown in
Figure 4.7. Once the scattering parameters of the network are known, conversion to other
matrix parameters can be performed, if needed.

Consider the N-port network shown in Figure 4.5, where V" is the amplitude of the
voltage wave incident on port n and V,; is the amplitude of the voltage wave reflected
from port n. The scattering matrix, or [S] matrix, is defined in relation to these incident
and reflected voltage waves as

2 Su1 S12 -+ SiN v,
Vy Sn vV,
: B Sn1 - SNN a
vy : vy
or
[V 1=[SI[VF] (4.40)

A specific element of the scattering matrix can be determined as

V"
1 IV =0 for k#j
In words, (4.41) says that Sjj is found by driving port j with an incident wave of voltage
Vj+ and measuring the reflected wave amplitude V;~ coming out of port i. The incident
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FIGURE 4.7  Photograph of the Agilent N5247A Programmable Network Analyzer. This instru-

ment is used to measure the scattering parameters of RF and microwave networks
from 10 MHz to 67 GHz. The instrument is programmable, performs error correc-
tion, and has awide variety of display formats and data conversions.

Courtesy of Agilent Technologies.

waves on all ports except the jth port are set to zero, which means that all ports should
be terminated in matched loads to avoid reflections. Thus, S;j is the reflection coefficient
seen looking into port i when @l other ports are terminated in matched loads, and Sjj is
the transmission coefficient from port j to port i when al other ports are terminated in
matched loads.

EXAMPLE 44 EVALUATION OF SCATTERING PARAMETERS
Find the scattering parameters of the 3 dB attenuator circuit shown in Figure 4.8.

Solution
From (4.41), S11 can be found as the reflection coefficient seen at port 1 when
port 2 isterminated in amatched load (Zg = 50 Q):

— @
_V _r@ _ Zin — %o
Siu= — =T'YNy+_g= —F—— ,
F =0T 2y 7
1 lv) = in 0124 onport 2

8.56 Q 8.56 Q

Port Port
1 141.8Q 5

O O

FIGURE 4.8 A matched 3 dB attenuator with a 50 2 characteristic impedance (Example 4.4).
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but Z? = 8.56 + [141.8(8.56 + 50)]/(141.8 + 8.56 + 50) = 50 €2, 50 S11 = 0.
Because of the symmetry of the circuit, Sy = 0.

We can find Sp1 by applying an incident wave at port 1, V;", and measuring
the outcoming wave at port 2, V. This is equivalent to the transmission coeffi-
cient from port 1 to port 2:

vV,

Sp1 = =
21 v,

+
V; =0

Fromthefact that S1; = Sz2 = 0, weknow that V,- = Owhen port 2 isterminated
in Zo =50 , and that V" = 0. In this case we have that V;* = V; and V, =
V. By applying a voltage V1 at port 1 and using voltage division twice we find
V, = V; asthe voltage across the 50 2 load resistor at port 2:

41.44 50
V2_ =Vo=Vq ( ) ( ) = 0.707V1,

41.44 + 8.56 ) \ 50 + 8.56

where41.44 = 141.8(58.56)/(141.8 + 58.56) istheresistance of the parallel com-
bination of the 50 2 load and the 8.56 2 resistor with the 141.8 Q resistor. Thus,
S12 = Sp1 = 0.707.

If the input power is |V,|2/2Z0, then the output power is |V, |?/2Zg =
1SV, 12/2Z0 = 1S2112/2Z0|V{"1? = |V, 1?/4Z0, which is one-half (—3 dB) of
the input power. ]

We now show how the scattering matrix can be determined from the [Z] (or [Y])
matrix and vice versa. First, we must assume that the characteristic impedances, Zq,, of
all the ports are identical. (This restriction will be removed when we discuss generalized
scattering parameters.) Then, for convenience, we can set Zg, = 1. From (4.24) the total
voltage and current at the nth port can be written as

Vo =V +Vy, (4.429)
h=1F—17 =V} -V . (4.42b)

Using the definition of [Z] from (4.25) with (4.42) gives
[ZIN]=[ZIIVFI = [ZIIVT 1= [VI=[VT]+ V7],
which can be rewritten as
(Z1+UDIVTTI=AZ]-UD V'] (4.43)

where [U] isthe unit, or identity, matrix defined as
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Comparing (4.43) to (4.40) suggests that
[S]= (2] +[UD~*(Z] - VD). (4.44)

giving the scattering matrix in terms of the impedance matrix. Note that for a one-port
network (4.44) reducesto

_ 1n1—1
o+
in agreement with the result for the reflection coefficient seen looking into a load with a
normalized input impedance of z1.

Tofind [Z] interms of [S], rewrite (4.44) as[Z][S] + [U][S] = [Z] — [U], and solve
for [Z] to give

S

[Z] = (U] +[SD (U] —[SD . (4.45)

Reciprocal Networks and Lossless Networks

As we discussed in Section 4.2, the impedance and admittance matrices are symmetric
for reciprocal networks, and are purely imaginary for lossless networks. The scattering
matrices for these particular types of networks also have special properties. We will show
that the scattering matrix for a reciprocal network is symmetric, and that the scattering
matrix for alossless network is unitary.

By adding (4.42a) and (4.42b) we obtain

1
Vn+ = E(Vn + In),
or
1
V= é([Z] + [UD[I]. (4.469)
By subtracting (4.42a) and (4.42b) we obtain
1
Vni = E(Vn - |n),
or
_ 1
[V7]= 5([2]—[U])[|]- (4.46b)
Eliminating [ 1] from (4.46a) and (4.46b) gives
[V™1=(Z]-[UDUAZ]+[UD VT,
so that
[S1=(Z]—-[UDAZ]+up~t (4.47)
Taking the transpose of (4.47) gives
[SI' = {((Z]1+ [UD Y}'(Z] - [UD".

Now [U] isdiagonal, so [U]' = [U], and if the network isreciprocal, [Z] is symmetric. So
that [Z]' = [Z]. The above equation then reduces to

[S]' = (1Z1+ VD H(Z] - [UD),
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which is equivalent to (4.44). We have thus shown that
[S]=I[s]'. (4.48)

so the scattering matrix is symmetric for reciprocal networks.

If the network is lossless, no real power can be delivered to the network. Thus, if the
characteristic impedances of all the ports areidentical and assumed to be unity, the average
power delivered to the network is

1 1
Pavg = ERG{[V]t[I]*} = ERe{([Vﬂ‘ + IV IHAV T = VT
1
= ERe{[Vﬂ‘[Vﬂ* — VIV VNV = VTV TR
Loty — Ty -1ty -1+
=§[V TIV™] _E[V 'V 1"=0, (4.49)

since the terms —[V T1' [V ~1* + [V 1'[V+]* are of the form A — A*, and so are purely
imaginary. Of the remaining terms in (4.49), (1/2)[V*]'[V T]* represents the total inci-
dent power, while (1/2)[V ][V ~]* represents the total reflected power. So, for alossless
junction, we have the intuitive result that the incident and reflected powers are equal:

VAV =V IV (4.50)
Using [V ~] = [S][V "] in (4.50) gives
VIV = [VHSTST IV FT7,
so that, for nonzero [V T,
[SI'[ST* = [U], (4.51)
or [S]*={IS]'}""

A matrix that satisfies the condition of (4.51) is called aunitary matrix.
The matrix equation of (4.51) can be written in summation form as

N
>SSy = sij. foralli, j. (4.52)
k=1

wheredjj = 1ifi = j,and §jj = 0if i # j, isthe Kronecker deltasymbol. Thus, ifi = j,
(4.52) reducesto

N
Z SkiSki = 1, (4.53a)
k=1
whileif i # j, (4.52) reducesto
N
>SSy =0.fori # j. (4.53b)
k=1

Inwords, (4.53a) states that the dot product of any column of [S] with the conjugate of that
same column gives unity, while (4.53b) states that the dot product of any column with the
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conjugate of adifferent column gives zero (the columns are orthonormal). From (4.51) we
also have that

[SI[S]* =[],

so the same statements can be made about the rows of the scattering matrix.

EXAMPLE 45 APPLICATION OF SCATTERING PARAMETERS
A two-port network is known to have the following scattering matrix:

5] [ 015.0°  0.85/—45°
~ | 085450  0.2/0°

Determine if the network is reciprocal and lossless. If port 2 is terminated with a
matched load, what is the return loss seen at port 1? If port 2 is terminated with a
short circuit, what is the return loss seen at port 1?

Solution
Because [S] is not symmetric, the network is not reciprocal. To be lossless, the
scattering parameters must satisfy (4.53). Taking thefirst column[i = 1in(4.539)]
gives

151112 4 [S21]2 = (0.15)% + (0.85)2 = 0.745 # 1,

so the network is not lossless.
When port 2 isterminated with a matched load, the reflection coefficient seen
atport1isT" = Sg1 = 0.15. So thereturn lossis

RL = —20log || = —20l0g(0.15) = 16.5 dB.

When port 2 is terminated with a short circuit, the reflection coefficient seen at
port 1 can be found as follows. From the definition of the scattering matrix and
the fact that V2+ = —V, (for ashort circuit at port 2), we can write

Vl_ = 311V1+ + 812V2+ = 311V1+ — 512V2_,
V2_ = 321Vf— + 322V+ = 821Vf— — 522V2_.
The second equation gives

- _ S ¢
2 7145 L

Dividing the first equation by V1+ and using the above result gives the reflection
coefficient seen at port 1 as

vV, Vy S12521
= -L — S —S19—2 — Syq —
v TR TR T T s,
045 (0.85/—45°)(0.85/45°) 0452,
1+02
So thereturnlossisRL = —20log |I"| = —2010g(0.452) = 6.9 dB. |

An important point to understand about scattering parameters is that the reflection
coefficient looking into port n is not equal to S, unless al other ports are matched (this
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isillustrated in the above example). Similarly, the transmission coefficient from port m to
port n is not equal to Sy, unless all other ports are matched. The scattering parameters
of a network are properties only of the network itself (assuming the network is linear),
and are defined under the condition that al ports are matched. Changing the terminations
or excitations of a network does not change its scattering parameters, but may change the
reflection coefficient seen at agiven port, or the transmission coefficient between two ports.

A Shift in Reference Planes

Because scattering parameters relate amplitudes (magnitude and phase) of traveling waves
incident on and reflected from a microwave network, phase reference planes must be speci-
fied for each port of the network. We now show how scattering parameters are transformed
when the reference planes are moved from their original locations.

Consider the N-port microwave network shown in Figure 4.9, where the original ter-
minal planes are assumed to be located at z, = O for the nth port, where z,, is an arbitrary
coordinate measured along the transmission line feeding the nth port. The scattering matrix
for the network with this set of terminal planesis denoted by [S]. Now consider a new set
of reference planes defined at z,, = ¢,, for the nth port, and let the new scattering matrix be
denoted as [S’]. Then in terms of the incident and reflected port voltages we have that

[V-1=I[SIV™], (4.549)
V71=ISTV"™], (4.54b)

where the unprimed quantities are referenced to the original terminal planesat z, = 0, and
the primed quantities are referenced to the new terminal planesat z, = ¢;.

From the theory of traveling waves on lossless transmission lines we can relate the
new wave amplitudes to the original ones as

V)t =V el (4.55a)
V)~ =V e 0, (4.55b)
| |
vit U vi s Port 1
Vi <—rmf' Vi 4—’1:']'1'[]
| |
7=l ;=0
N-port
network
[S1.[87]
| |
I I ﬂﬂﬂ I
Vi | Vo | Port n
Vi <—f]w Vi <—W
T T
Zy L In Z, I= 0

FIGURE 4.9  Shifting reference planes for an N -port network.




4.3 The Scattering Matrix 185

where 6, = Bnty is the electrical length of the outward shift of the reference plane of
port n. Writing (4.55) in matrix form and substituting into (4.54a) gives

ej91 0 e—jel 0
ejGZ e*jﬂz
) [V71=1[S] . [V'*].
0 elon 0 e~ Ion
Multiplying by the inverse of the first matrix on the left gives
! 0 ke 0
e*1-92 e*J(’z
V~7l= . [S] . [V'*].
0 e~ 10N 0 e IoN
Comparing with (4.54b) shows that
e—j91 0 e—j91 0
e*1-92 e*J'92
[S']= . [S] . ) (4.56)
0 e~ 10N 0 e IoN

which is the desired result. Note that S/, = e=2iths, meaning that the phase of Sy, is
shifted by twice the electrical length of the shift in terminal plane n because the wave
travels twice over this length upon incidence and reflection. This result is consistent with
(2.42), which gives the change in the reflection coefficient on a transmission line dueto a
shift in the reference plane.

Power Waves and Generalized Scattering Parameters

We previously expressed the total voltage and current on atransmission linein terms of the
incident and reflected voltage wave amplitudes, asin (2.34) or (4.42):

V=V +Vy, (4.578)
1 -
| = Z (Vo = Vo). (4.57b)

with Zg being the characteristic impedance of the line. Inverting (4.57) gives the incident
and reflected voltage wave amplitudes in terms of the total voltage and current:

Vo= V+—ZZ°' (4.58a)
Vg = V_—ZZO' (4.58b)
The average power delivered to aload can be expressed as
PL= %Re{VI*} = 2—;0Re{\vo+\2 — Vg Vg VgV = Vg )
= 57 (V5 = e ). (459

where the last step follows because the quantity V™V~ — V'V, * ispureimaginary. This
isaphysicaly satisfying result since it expresses the net power delivered to the load as the
difference between the incident and reflected powers. Unfortunately, this result is only
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Vo

< +

ZL

FIGURE 4.10 A generator with impedance Z ¢ connected to aload impedance Z .

valid when the characteristic impedance is real; it does not apply when Zg is complex, as
in the case of alossy line. In addition, these results are not useful when no transmission
lineis present between the generator and load, asin the circuit shown in Figure 4.10.

In the circuit of Figure 4.10 there is no defined characteristic impedance, nor istherea
voltage reflection coefficient, or incident and reflected voltage or current waves. It is possi-
ble, however, to define a new set of waves, called power waves, which have useful proper-
tieswhen dealing with power transfer between a generator and aload, and can be applied to
circuits like that of Figure 4.10, as well as to problems with lossless or |ossy transmission
lines. We will also see how power waves lead to a generalization of scattering parameters.

Theincident and reflected power wave amplitudes a and b are defined as the following
linear transformations of the total voltage and current:

V 4 Zgl
a:+R

PN (4.609
V —Zxl

where Zr = Rr + j Xr isknown as the reference impedance, and may be complex. Note
that the power wave amplitudes of (4.60) are similar in form to the voltage waves of (4.58),
but do not have units of power, voltage, or current.

Inverting (4.60) gives the total voltage and current in terms of the power wave ampli-

tudes:
Z% Zgrb
_ ZRaT 2RO (4.613)
~Rr
a—>b
| = ) (4.61b)
~/RRr
Then the power delivered to the load can be expressed as
_1 ®| 1 * 2 gk g% I 2
PL = SRe{VI }_ﬁRe{ZR|a| *ab* + Zra*b — Zg |b)| ]
1o 1.0
= 2Ial 2Ibl , (4.62)

since the quantity Zra*b — Z;ab*is pure imaginary. Once again we have the satisfying
result that the load power is the difference between the powers of the incident and reflected
power waves. It isimportant to note that thisresult isvalid for any referenceimpedance Zg.

The reflection coefficient, I'p, for the reflected power wave can be found by using
(4.60) and thefact that V = Z_| at the load:

b V-2Zil  ZL-Zj

2 - . (4.63)
a V + Zgrl ZL + ZR

sz

Observe that this reflection coefficient reduces to our usua voltage reflection coefficient
of (2.35) when Zr = Zg isarea characteristic impedance. Equation (4.63) suggests that
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choosing the reference impedance as the conjugate of the load impedance [5],
Zr = Z}, (4.64)

will have the useful effect of making the reflected power wave amplitude go to zero.!
From basic circuit theory, the voltage, current, and load power for the circuit of
Figure 4.10 are
ZL Vo VZé R

VO ) I = ) PL = 5T 5 (4'65as b? C)
ZL+Zg ZL+Zg 2 |z  + 24

where Z| = R + jX|. Then the power wave amplitudes can be found from (4.60), with
Zr=172F,8s

ZL N zs
V + Zgl ZL+2Zy  ZL+2Z JRL
a= + 2R =V L+ % L+ % = o—L, (4.66&)
2/RRr 2/ RRr ZL+ 24
Z, Z,
V —Z%1 ZL+2Zy ZL+2Z
b= RD_yylbtfs fLts (4.66b)
2VRR 2/ RR

From (4.62) the power delivered to the load is

in agreement with (4.65c¢).

When the load is conjugately matched to the generator, so that Zy = Z|, we have
PL = V02/8RL. Note that selecting the reference impedance as Zr = Z| results in the
condition that b = 0 (and I', = 0), but this does not necessarily mean that the load is
conjugately matched to the generator, nor that maximum power is delivered to the load.
The incident power wave amplitude of (4.66a) dependson Z| and Zg, and is maximum
onlywhenZq = Zf.

To define the scattering matrix for power waves for an N-port network, we assume
the reference impedance for port i is Zgj. Then, analogous to (4.60), we define the power
wave amplitude vectors in terms of the total voltage and current vectors:

[a] = [F1(V]+[ZrIID, (4.679)
[b] = [F1(IV]—[Zr]*[1]). (4.67b)

where [F] isadiagonal matrix with elements 1/2./Re{ZR;j} and [Zr] isadiagona matrix
with elements Zg;. By the impedance matrix relation that [V] = [Z] [I], (4.67) can be
written as

[b] = [F1([2] - [ZRr]*) AZ] +[ZRD T [F]1* [al.

Becauise the scattering matrix for power waves, [Sp |, should relate [b] to [a], we have

[Sp] = [F1(1Z] — [ZR]*) (2] + [ZrDL[FI 1. (4.68)

1 Some authors choose the reference impedance equal to the generator impedance. This has the same effect as
(4.64) when the generator and load are conjugately matched, but the choice of (4.64) leads to a zero reflected
wave even when the conjugate matching condition is not satisfied, and so can be more useful in general.
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4.4

The ordinary scattering matrix for anetwork can first be converted to an impedance matrix,
using arelation similar to (4.45), then converted to the generalized power wave scattering
matrix using (4.68). The generalized scattering matrix has the useful property that the
diagonal elements can be made to be zero by proper selection of the reference impedances.

POINT OF INTEREST: The Vector Network Analyzer

The scattering parameters of passive and active networks can be measured with avector network
analyzer, which is atwo-channel (or four-channel) microwave receiver designed to process the
magnitude and phase of the transmitted and reflected waves from the network. A simplified
block diagram of a network analyzer is shown in the accompanying figure. In operation, the RF
sourceis usualy set to sweep over a specified bandwidth. A four-port reflectometer samplesthe
incident, reflected, and transmitted RF waves; a switch alows the network to be driven from
either port 1 or port 2. Four dual-conversion channels convert these signals to 100-kHz IF fre-
quencies, which are then detected and converted to digital form. Aninternal computer is used to
calculate and display the magnitude and phase of the scattering parameters or other quantities
that can be derived from these data, such as SWR, return loss, group delay, impedance, etc. An
important feature of the network analyzer is the substantial improvement in accuracy made pos-
sible with error-correcting software. Errors caused by directional coupler mismatch, imperfect
directivity, loss, and variations in the frequency response of the analyzer system are accounted
for by using a 12-term error model and a calibration procedure. Another useful feature is the
ability to determine the time-domain response of the network by calculating the inverse Fourier
transform of the frequency-domain data.

20 MHz 100 kHz
1st IF 2nD IF
(S12, S21) ® Ref. ®—>
(S11, S12)
Tes e X
Port —»—(Ei)—» > |y Sample
Device | » IF det. L= and
—O-  under FO— amp hold
Porf test and
1 input X
Test sdlector || Test [ A/D
det. || conv.
So1, S
FWD RE (S21, S22) iL
REV< >source Ref.
Computer
processing
(S22: S12) 19.9 and error
Harmonic MHz correction
generator \_~ = %
Phase Panel :
lock control Display

|~—— RF source and test set —>}«—————— IF processing ——>}<——— Digital processing ——|

THE TRANSMISSION (ABCD) MATRIX

The Z, Y, and S parameter representations can be used to characterize a microwave net-
work with an arbitrary number of ports, but in practice many microwave networks consist
of a cascade connection of two or more two-port networks. In this case it is convenient
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(b)
FIGURE 4.11 (@) A two-port network; (b) a cascade connection of two-port networks.

to define a2 x 2 transmission, or ABCD, matrix, for each two-port network. We will see
that the ABCD matrix of the cascade connection of two or more two-port networks can be
easily found by multiplying the ABCD matrices of the individual two-ports.

The ABCD matrix is defined for atwo-port network in terms of the total voltages and
currents as shown in Figure 4.11a and the following:

V1= AVz + Bly,
l1 =CV2+4 Dly,

[Yll]z[é IIB)}[\I/;] (4.69)

It is important to note from Figure 4.11a that a change in the sign convention of 1>
has been made from our previous definitions, which had I, as the current flowing into
port 2. The convention that 1, flows out of port 2 will be used when dealing with ABCD
matrices so that in acascade network |2 will be the same current that flowsinto the adjacent
network, as shown in Figure 4.11b. Then the |eft-hand side of (4.69) represents the voltage
and current at port 1 of the network, while the column on the right-hand side of (4.69)
represents the voltage and current at port 2.

In the cascade connection of two two-port networks shown in Figure 4.11b we have

HEEEAI,
HEERE!

Substituting (4.70b) into (4.708) gives
Vi|_| A1 Bi||A2 B2 ||Vs
-leelle sl
which shows that the ABCD matrix of the cascade connection of the two networksis equal
to the product of the ABCD matrices representing the individual two-ports. Note that the

or in matrix form as

(4.708b)
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TABLE 41 ABCD Parameters of Some Useful Two-Port Circuits

Circuit ABCD Parameters
° 4 o A=1 B=2
C=0 D=1
O O
[e; I O
A=1 B=0
Y
C=Y D=1
[e; I O
e, O
A= B=jZgps
Zo B <_:osﬁ.e jZosinpe
° | ° C = jYpsinge D = cosp¢
o N:1 °
A=N B=0
1
C=0 D=—
N
[e; O
Y 1
e, I Y3 I O A:l_'_i2 B=—
Ya Y1Y Y3Y
Y. Y.
! 2 C=Y1—|—Y2+% D=1+Y—l
o I [ ° 3 3
z 2172
o, 4 | %L o A=l+z—l B=21+Zz+%
3
1 Zo 3
Z3 = D:1+7
o ; o 3 3

order of multiplication of the matrix must be the same as the order in which the networks
are arranged since matrix multiplication is not, in general, commutative.

The usefulness of the ABCD matrix representation lies in the fact that a library of
ABCD matrices for elementary two-port networks can be built up, and applied in building-
block fashion to more complicated microwave networks that consist of cascades of these
simpler two-ports. Table 4.1 lists a number of useful two-port networks and their ABCD
matrices.

EXAMPLE 4.6 EVALUATION OF ABCD PARAMETERS

Find the ABCD parameters of atwo-port network consisting of a seriesimpedance
Z between ports 1 and 2 (thefirst entry in Table 4.1).

Solution
From the defining relations of (4.69), we have that

A - 1, 5
V2 1,=0
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which indicatesthat A isfound by applying avoltage V1 at port 1, and measuring
the open-circuit voltage V7 at port 2. Thus, A = 1. Similarly,

oVl v
o laly,mo V/Z 0
I1
C=— =0,
Vali,—o
l2lv,0 11 7 [ ]

Relation to Impedance Matrix

The impedance parameters of a network can be easily converted to ABCD parameters.
Thus, from the definition of the ABCD parametersin (4.69), and from the defining relations
for the Z parameters of (4.25) for atwo-port network with 5 to be consistent with the sign
convention used with ABCD parameters,

Vi= 11211 — l2Z12, (4.723)
Vo = l1Z21 — l2Z2, (4.72b)
we have that
V 11Z
A= V—l = 228 747, (4.734)
2l,—0 1121
Vi 11211 — 12Z12 Ih
I2 Vo=0 2 Vo=0 I V=0
11Z Z11Z90 — Z12Z
_g M2 5 ZuZzn—Znla (4.73b)
11Z21 Zn
1 I1
C= = =1/Z2, 4.73c
Valio~ iz (4.73)
| l0Z22/2
D= 1 = 2cz/ca 2/Z2 =Zxp/Z7. (4.73d)
12lv,=0 2

If the network is reciprocal, then Z12 = Z21 and (4.73) can be used to show that AD —
BC =1

Equivalent Circuits for Two-Port Networks

The specia case of atwo-port microwave network occurs so frequently in practice that it
deserves further attention. Here we will discuss the use of equivalent circuits to represent
an arbitrary two-port network. Useful conversions between two-port network parameters
aregivenin Table 4.2.

Figure 4.12a shows a transition between a coaxia line and a microstrip line, and is
an example of a two-port network. Terminal planes can be defined at arbitrary points on
the two transmission lines; a convenient choice might be as shown in the figure. However,
because of the physical discontinuity in the transition from a coaxial line to a microstrip
line, electric and/or magnetic energy can be stored in the vicinity of the junction, leading
to reactive effects. Characterization of such effects can be obtained by measurement or
by numerical analysis (such analysis may be quite complicated), and represented by the
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I

©

FIGURE 4.12 A coax-to-microstrip transition and equivalent circuit representations. (a) Geom-

etry of the transition. (b) Representation of the transition by a “black box.”
(c) A possible equivalent circuit for the transition [6].

two-port “black box” shown in Figure 4.12b. The properties of the transition can then be
expressed in terms of the network parameters(Z, Y, S, or ABCD) of the two-port network.
Thistype of treatment can be applied to avariety of two-port junctions, such as transitions
from one type of transmission line to another, transmission line discontinuities such as
step changes in width or bends, etc. When modeling a microwave junction in this way, it
is often useful to replace the two-port “black box” with an equivalent circuit containing
a few idealized components, as shown in Figure 4.12c. This is particularly useful if the
component values can be related to some physical features of the actua junction. There
is an unlimited number of ways in which such equivalent circuits can be defined; we will
discuss some of the most common and useful types below.

Aswe have seen, an arbitrary two-port network can be described in terms of impedance
parameters as

Vi=Znli+ Z12lo,

(4.74a)
Vo =Zal1+ Z2l,
or in terms of admittance parameters as
1 = Y11V1 + Y12V2,
1 11Vl 12V2 (4.74b)

I =Y21V1+ Yo Vo.

If the network is reciprocal, then Z12 = Z2; and Y12 = Y21. These representations lead
naturally to the T and & equivalent circuits shown in Figures4.13aand 4.13b. Therelations
in Table 4.2 can be used to relate the component values to other network parameters.
Other equivalent circuits can also be used to represent a two-port network. If the
network is reciprocal, there are six degrees of freedom (the real and imaginary parts of
three matrix elements), so the equivalent circuit should have six independent parameters.
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o— 2 -2z | Zy -2y —o0
Zy
o | )
(a)
o ’ —le | ]
Yn+ Yoo + ¥y
o ] | 0

(b)

FIGURE 4.13  Equivalent circuits for areciprocal two-port network. (a) T equivalent. (b) 7 equi-

4.5

valent.

A nonreciprocal network cannot be represented by a passive equivalent circuit using recip-
rocal elements.

If the network is lossless, which is a good approximation for many practical two-
port junctions, some simplifications can be made in the equivalent circuit. As was shown
in Section 4.2, the impedance or admittance matrix elements are purely imaginary for a
lossless network. This reduces the degrees of freedom for such a network to three, and
impliesthat the T and = equivalent circuits of Figure 4.13 can be constructed from purely
reactive elements.

SIGNAL FLOW GRAPHS

We have seen how transmitted and reflected waves can be represented by scattering
parameters, and how the interconnection of sources, networks, and loads can be treated
with various matrix representations. In this section we discuss the signal flow graph, which
is an additional technique that is very useful for the analysis of microwave networks in
terms of transmitted and reflected waves. Wefirst discuss the features and the construction
of the flow graph itself, and then present a technique for the reduction, or solution, of the
flow graph.
The primary components of asignal flow graph are nodes and branches:

e Nodes: Each port i of a microwave network has two nodes, a; and bj. Node a;
is identified with a wave entering port i, while node b; is identified with a wave
reflected from port i. The voltage at anodeis equal to the sum of all signalsentering
that node.

e Branches. A branch is a directed path between two nodes representing signal flow
from one node to another. Every branch has an associated scattering parameter or
reflection coefficient.

At thispoint it is useful to consider the flow graph of an arbitrary two-port network, as
shown in Figure 4.14. Figure 4.14a shows a two-port network with incident and reflected
waves at each port, and Figure 4.14b shows the corresponding signal flow graph represen-
tation. The flow graph gives an intuitive graphical illustration of the network behavior.

For example, awave of amplitude a; incident at port 1 issplit, with part going through
S11 and out port 1 as a reflected wave, and part transmitted through Sz1 to node bo.
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FIGURE 4.14 Thesigna flow graph representation of atwo-port network. (&) Definition of inci-

dent and reflected waves. (b) Signal flow graph.

At node by, the wave goes out port 2; if aload with nonzero reflection coefficient is con-
nected at port 2, thiswave will be at least partly reflected and reenter the two-port network
at node ay. Part of this wave can be reflected back out port 2 via Sy2, and part can be
transmitted out port 1 through Sio.

Two other special networks—a one-port network and a voltage source—are shown in
Figure 4.15, along with their signal flow graph representations. Once a microwave network
has been represented in signal flow graph form, itisarelatively easy matter to solve for the
ratio of any combination of wave amplitudes. We will discuss how this can be done using
four basic decomposition rules, but the same results can aso be obtained using Mason’s
rule from control system theory.

Decomposition of Signal Flow Graphs

A signa flow graph can be reduced to a single branch between two nodes using the fol-
lowing four basic decomposition rulesto obtain any desired wave amplitude ratio.

e Rule 1 (Series Rule). Two branches, whose common node has only one incoming
and one outgoing wave (branches in series), may be combined to form a single
branch whose coefficient is the product of the coefficients of the original branches.

UU a T T
b Q | |
b
@
Vi b
Zs >
Vs - T o b T,
s a(_rU'U'] s
a

(b)
FIGURE 4.15 The signal flow graph representations of a one-port network and a source. (a) A

one-port network and its flow graph. (b) A source and its flow graph.
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FIGURE 4.16 Decomposition rules. (a) Seriesrule. (b) Parallel rule. (c) Self-loop rule. (d) Split-

ting rule.

Figure 4.16a shows the flow graphs for this rule. Its derivation follows from the
basic relation

V3 = S32V2 = S32521 V1. (4.75)

e Rule 2 (Paralel Rule). Two branches from one common node to another common
node (branchesin parallel) may be combined into a single branch whose coefficient
is the sum of the coefficients of the original branches. Figure 4.16b shows the flow
graphsfor thisrule. The derivation follows from the obvious relation

V2 = SaV1+ SpV1i = (Sa + Sp)Vi. (4.76)

e Rule3(Sef-Loop Rule). When anode has aself-loop (abranch that beginsand ends
on the same node) of coefficient S, the self-loop can be eliminated by multiplying
coefficients of the branches feeding that node by 1/(1 — S). Figure 4.16¢ showsthe
flow graphsfor thisrule, which can be derived asfollows. From the original network

we have
Vo = Sp1V1 + SooVo, (4.779)
V3 = SgoVa. (4.77b)
Eliminating V2 gives
S32521
V3 = Vi, 4.78
3= 1 o't (4.78)

which is seen to be the transfer function for the reduced graph of Figure 4.16c.
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FIGURE 4.17 A terminated two-port network.

e Rule4 (Splitting Rule). A node may be split into two separate nodes as long as the
resulting flow graph contains, once and only once, each combination of separate
(not self-loops) input and output branches that connect to the original node. This
ruleisillustrated in Figure 4.16d and follows from the observation that

V4 = SaoVo = S21S40V1 (4.79)
in both the original flow graph and the flow graph with the split node.

We now illustrate the use of each of these rules with an example.

EXAMPLE 4.7 APPLICATION OF SIGNAL FLOW GRAPH

Use signal flow graphs to derive expressions for I, and gy for the microwave
network shown in Figure 4.17.

Solution
The signal flow graph for the circuit of Figure 4.17 is shown in Figure 4.18. In
terms of node voltages, I, is given by theratio by /a;. The first two steps of the
required decomposition of the flow graph are shown in Figures 4.19a and 4.19b,
from which the desired result follows by inspection:
b1 S12521T
lin=—=S —_—

in ar 11 + 1—Suly
Next, oyt IS given by theratio bo/a. The first two steps for this decomposition
are shown in Figures 4.19c and 4.19d. The desired result is

b2 S12821Ts
F = — = S [ ————
out P~ 22 + 1— Syl -

Application to Thru-Reflect-Lin Network Analyzer Calibration

As a further application of signal flow graphs we consider the calibration of a network
analyzer using the Thru-Reflect-Line (TRL) technique[7]. The general problemisshownin
Figure 4.20, where it is intended to measure the scattering parameters of atwo-port device

Vso

Su S2 L
T Spp

by 7

FIGURE 4.18 Signal flow graph for the two-port network with general source and load impe-

dances of Figure 4.17.
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FIGURE 4.19 Decompositions of the flow graph of Figure 4.18 to find I'j; = by /a1 and Tyt =
bs/as. (8) Using Rule 4 on node ay. (b) Using Rule 3 for the self-loop at node b.
(c) Using Rule 4 on node b1. (d) Using Rule 3 for the self-loop at node a3 .

at the indicated reference planes. As discussed in the previous Point of Interest, a network
analyzer measures scattering parameters as ratios of complex voltage amplitudes. The pri-
mary reference plane for such measurementsis generally at some point within the analyzer
itself, so the measurement will include losses and phase delays caused by the effects of the
connectors, cables, and transitions that must be used to connect the device under test (DUT)
to the analyzer. In the block diagram of Figure 4.20 these effects are lumped together in a
two-port error box placed at each port between the actual measurement reference plane and
the desired reference plane for the two-port DUT. A calibration procedure is used to char-
acterize the error boxes before measurement of the DUT; then the actua error-corrected
scattering parameters of the DUT can be calculated from the measured data. M easurement
of aone-port network can be considered as a reduced version of the two-port case.

The simplest way to calibrate a network analyzer isto use three or more known loads,
such as shorts, opens, and matched loads. The problem with this approach is that such
standards are always imperfect to some degree, and therefore introduce errors into the
measurement. These errors become increasingly significant at higher frequencies and as
the quality of the measurement system improves. The TRL calibration scheme does not
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plane for plane for plane for plane fer
port 1 device port 1 device port 2 port 2

FIGURE 4.20 Block diagram of anetwork analyzer measurement of a two-port device.
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rely on known standard loads, but uses three simple connections to allow the error boxes
to be characterized completely. These three connections are shown in Figure 4.21. The
Thru connection is made by directly connecting port 1 to port 2 at the desired reference
planes. The Reflect connection uses a load having a large reflection coefficient, I'_, such
as anominal open or short. It is not necessary to know the exact value of ', as this will
be determined by the TRL calibration procedure. The Line connection involves connecting
ports 1 and 3 together through alength of matched transmission line. It is not necessary to
know the length of the line, and it is not required that the line be lossless; these parameters
will be determined by the TRL procedure.

We can use signal flow graphsto derive the set of equations necessary to find the scat-
tering parameters for the error boxes in the TRL calibration procedure. With reference to
Figure 4.20, wewill apply the Thru, Reflect, and Line connections at the reference plane for
the DUT, and measure the scattering parameters for these three cases at the measurement
planes. For simplicity, we assume the same characteristic impedance for ports 1 and 2, and
that the error boxes are reciprocal and identical for both ports. The error boxes are charac-
terized by a scattering matrix [S] and, alternatively, by an ABCD matrix. Thus Sp; = S12
for both error boxes. Also note that ports 1 and 2 of the error boxes are in opposite posi-
tions since they are symmetrically connected, as shown in thefigure. To avoid confusion in
notation we will denote the measured scattering parameters for the Thru, Reflect, and Line
connections asthe [T], [R], and [L] matrices, respectively.

Figure 4.21a shows the arrangement for the Thru connection and the corresponding
signal flow graph. Observe that we have made use of the fact that Sp; = S12 and that the
error boxes are identical and symmetrically arranged. The signal flow graph can be easily
reduced using the decomposition rules to give the measured scattering parameters at the
measurement planes in terms of the scattering parameters of the error boxes as

b S2082
Tu= —| =Su+-12 (4.800)
a1 lap=0 1-5%
b S2
Tp=—| =2 (4.80b)
2
8lay—0 1-55

By symmetry we have To»; = T11, and by reciprocity we have To; = Tio.
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Block diagram and signal flow graph for the Thru connection.
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FIGURE 4.21b  Block diagram and signal flow graph for the Reflect connection.

The Reflect connection is shown in Figure 4.21b, with the corresponding signa flow
graph. Note that this arrangement effectively decouples the two measurement ports, so
R12 = R21 = 0. The signal flow graph can be easily reduced to show that

(4.81)

By symmetry we have R = Ryj.

The Line connection is shown in Figure 4.21c, with its corresponding signa flow
graph. A reduction similar to that used for the Thru case gives

bl 52252 872}/@
lu=—-1 = T semt (4.822)
al 32:0 1 - Szze Y
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FIGURE 4.21c  Block diagram and signal flow graph for the Line connection.
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By symmetry and reciprocity we have Lo» = L11 and Lo1 = L1».

We now have five equations (4.80)—4.82) for the five unknowns S11, S12, S22, I'L,
and e?*; the solution is straightforward but lengthy. Because (4.81) is the only equation
that contains I' ., we can first solve the four equations in (4.80) and (4.82) for the other
four unknowns. Equation (4.80b) can be used to eliminate S1> from (4.80a) and (4.82),
and then S11 can be eliminated from (4.80a) and (4.824). This|eaves two equationsfor Sy
ande”’:

leezﬂ — lesgz = TlgeV’f — lesgzeﬂ, (4.83&)
e?t (T1y — SpoTr2) — Tlls§2 =L (ez?’e — S%z) — SpoTro. (4.83b)

Equation (4.83a) can be solved for Sy, and substituted into (4.83b) to give a quadratic
equation for e”¢. Application of the quadratic formula then gives the solution for e?¢ in
terms of the measured TRL scattering parameters as

2 2 2 2 2 2 2 12
L+ TH—(Tu— L)+ VL2 + T2 — (T — L] —4L3,T2
2L 15T '

)24

e (4.84)

The choice of sign can be determined by the requirement that the real and imaginary parts
of y be positive, or by knowing the phase of I'| [as determined from (4.83)] to within
0 Now multiply (4.80b) by Sy, and subtract from (4.80a) to get
T11 = S11+ Sz2T12, (4.853)
and similarly multiply (4.82b) by Sy»e~"* and subtract from (4.82a) to get
L1y = S11 + SpoL 177" (4.85b)
Eliminating S11 from these two equations gives Sy intermsof e~ 7¢ as

Tu—Ln

S = T Lot (4.86)
Solving (4.85a) for S11 gives
S11 =T — ST, (4.87)
and solving (4.80b) for Sy2 gives
S2, = T12(1 — S3,). (4.88)
Finally, (4.81) can be solved for I, to give
L Ru — Su (4.89)

- S2, + S22 (R11 — S11)

Equations (4.84) and (4.86)—(4.89) give the scattering parameters for the error boxes, as
well as the unknown reflection coefficient ' (to within the sign), and the propagation
factor e=7*. This completes the calibration procedure for the TRL method.

The scattering parameters of the DUT can now be measured at the measurement refer-
ence planes shown in Figure 4.20, and corrected using the above TRL error box parameters
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to give the scattering parameters at the reference planes of the DUT. Because we are work-
ing with a cascade of three two-port networks, it is convenient to use ABCD parameters.
Thus, we convert the error box scattering parameters to the corresponding ABCD param-
eters, and convert the measured scattering parameters of the cascade to the corresponding
AMBMCMD™ parameters. If we use A'B’C’ D’ to denote the parameters for the DUT, then

we have
A" B™| [A B A B D B
cm D™~ |C DJ||C DJ||C A

where the change in the elements of the last matrix account for the reversal of ports for
the error box at port 2 of the DUT (see Problem 4.25). Then the ABCD parameters for the
DUT can be determined as

-1 -1
A B A B A" B"I[D B
[C’ D’}Z[C D} [cm Dm][c A} : (4.90)

POINT OF INTEREST: Computer-Aided Design for Microwave Circuits

Computer-aided design (CAD) software packages have become essential tools for the anaysis,
design, and optimization of RF and microwave circuits and systems. Several microwave CAD
products are commercially available, including Microwave Office (Applied Wave Research),
ADS (Agilent Technologies), Microwave Studio (CST), Designer (Ansoft), and many others.
RF and microwave CAD packages can be divided into two types: those that use “ physics-based”
solutions, where Maxwell’s equations are numerically solved for physical geometries such as
printed circuit geometries or waveguides, and “circuit-based” solutions, which use equivalent
circuits for various elements, including distributed elements, discontinuities, coupled lines, and
active devices. Some packages combine these two approaches. Both linear and nonlinear mod-
eling, aswell ascircuit optimization, are generally possible. Although such computer programs
can be fast, powerful, and accurate, they cannot serve as a substitute for engineering experience
and a good understanding of microwave principles.

A typical design process usually begins with specifications or design goalsfor the circuit or
system. Based on previous designs and his or her experience, an engineer can develop an initial
design, including specific components and a circuit layout. CAD can then be used to model and
analyze the design, using data for each of the components and including effects such asloss and
discontinuities. The software can be used to optimize the design by adjusting some of the circuit
parameters to achieve the best performance. If the specifications are not met, the design may
have to be revised. CAD tools can also be used to study the effects of component tolerances and
errorsto improve circuit reliability and robustness. When the design meets the specifications, an
engineering prototype can be built and tested. If the measured results satisfy the specifications,
the design process is completed. Otherwise the design will need to be revised and the procedure
repeated.

Without CAD tools the design process would require the construction and measurement
of laboratory prototypes at each iteration, which is expensive and time consuming. Thus, CAD
can greatly decrease the time and cost of a design while enhancing its quality. The simulation
and optimization process is especially important for monolithic microwave integrated circuits
because these circuits cannot easily be tuned or trimmed after fabrication.

CAD techniques are not without limitations, however. Of primary importance is the fact
that any computer model is only an approximation to a“real-world” physical circuit and cannot
completely account for the inevitable differences due to component and fabrication tolerances,
surface roughness, spurious coupling, higher order modes, junction discontinuities, thermal
effects, and a number of other practical issues that can occur with a physical circuit or device.
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DISCONTINUITIES AND MODAL ANALYSIS

By either necessity or design, microwave circuits and networks often consist of transmis-
sion lines with various types of discontinuities. In some cases discontinuities are an un-
avoidable result of mechanical or electrical transitions from one medium to another (e.g.,
a junction between two waveguides, or a coax-to-microstrip transition), and the discon-
tinuity effect is unwanted but may be significant enough to warrant characterization. In
other cases discontinuities may be deliberately introduced into the circuit to perform a cer-
tain electrical function (e.g., reactive diaphragms in waveguide, or stubs on a microstrip
line for matching or filter circuits). In any event, a transmission line discontinuity can
be represented as an equivalent circuit at some point on the transmission line. Depend-
ing on the type of discontinuity, the equivalent circuit may be a simple shunt or series
element across the line or, in the more general case, a T- or w-equivalent circuit may be
required. The component values of an equivalent circuit depend on the parameters of the
line and the discontinuity, as well as on the frequency of operation. In some cases the
equivalent circuit involves a shift in the phase reference planes on the transmission lines.
Oncethe equivalent circuit of agiven discontinuity isknown, its effect can be incorporated
into the analysis or design of the network using the theory developed previously in this
chapter.

The purpose of the present section is to discuss how equivalent circuits are obtained
for transmission line discontinuities; we will see that one approach is to start with afield
theory solution to a canonical discontinuity problem and develop a circuit model with
component values. Thisis thus another example of our objective of replacing complicated
field analyses with circuit concepts. In other cases, it may be easier to measure the network
parameters of an isolated discontinuity.

Figures 4.22 and 4.23 show some common transmission line discontinuities and their
equivalent circuits. Asshown in Figures 4.22a-4.22c¢, thin metallic diaphragms (or “irises”)
can be placed in the cross section of a waveguide to yield equivalent shunt inductance,
capacitance, or a resonant combination. Similar effects occur with step changes in the
height or width of the waveguide, as shown in Figures 4.22d and 4.22e. Similar disconti-
nuities can also be made in circular waveguide. The classic reference for waveguide dis-
continuities and their equivalent circuits is the Waveguide Handbook [8].

Some typical microstrip discontinuities and transitions are shown in Figure 4.23; sim-
ilar geometries exist for stripline and other printed transmission lines such as slotline, cov-
ered microstrip, coplanar waveguide, etc. Although approximate equivalent circuits have
been developed for some printed transmission line discontinuities [9], many do not lend
themselves to easy or accurate modeling, and must be treated by numerical analysis. Mod-
ern CAD tools are usually capable of accurately modeling such problems.

Modal Analysis of an H-Plane Step in Rectangular Waveguide

Thefield analysis of most transmission line discontinuity problemsis difficult, and beyond
the scope of this book. The technique of waveguide modal analysis, however, is relatively
straightforward and similar in principle to the reflection/transmission problems that were
discussed in Chapters 1 and 2. In addition, modal analysisis arigorous and versatile tech-
nique that can be applied to a number of waveguide and coax discontinuity problems, and
lends itself well to computer implementation. We will illustrate the technique by applying
it to the problem of finding the equivalent circuit of an H-plane step (change in width) in
arectangular waveguide.
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FIGURE 4.22 Rectangular waveguide discontinuities.
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The geometry of the H-plane waveguide step is shown in Figure 4.24. |t is assumed
that only the dominant TE;g mode is propagating in guide 1 (z < 0) and isincident on the
junction fromz < 0. It isaso assumed that no modes are propagating in guide 2, although
the analysis to follow is still valid if propagation can occur in guide 2. From Section 3.3,
the transverse components of the incident TEyg mode can be written, for z < 0, as

Ei — gn ﬁe‘jﬂfz
y a ’

_1 . X .
Hi = —sin—e Jfi?
237 a
where
nm
2
=k (5

(4.91a)

(4.91b)

(4.92)
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FIGURE 4.23  Some common microstrip discontinuities. (a) Open-ended microstrip. (b) Gap in

microstrip. (c) Change in width. (d) T-junction. (€) Coax-to-microstrip junction.

is the propagation constant of the TE,,o mode in guide 1 (of width a), and

Komo
78 = o (4.93)

is the wave impedance of the TE,o mode in guide 1. Because of the discontinuity at z = 0
there will be reflected and transmitted waves in both guides, consisting of infinite sets of
TEno modes in guides 1 and 2. Only the TE1g mode will propagate in guide 1, but higher
order modes are also important in this problem because they account for stored energy,
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FIGURE 4.24 Geometry of an H-plane step (change in width) in arectangular waveguide.

localized near z = 0. Becausethereisno y variation introduced by thisdiscontinuity, TEnny
modes for m # 0 are not excited, nor are any TM modes. A more general discontinuity,
however, may excite such modes.

The reflected modes in guide 1 may be written, for z < 0, as

nmx
ZAnsm Lewﬁ‘z’ (4.94q)
o0
An . NTX aa
HY = Z—gsnTeJﬂnZ, (4.94b)
n=1

where A, is the unknown amplitude coefficient of the reflected TE,o mode in guide 1.
The reflection coefficient of the incident TE;g mode isthen A;. Similarly, the transmitted
modes into guide 2 can be written, for z > 0, as

Z Bnsin —e iz, (4.953)
Bn . nmX _igc
HY = — ZQ sin——e Az, (4.95b)
n=1
where the propagation constant in guide 2 is
B = /K2 — (n—”)z (4.96)
n 0 c ’
and the wave impedancein guide 2 is
k
zg =200 (4.97)
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Atz = 0, the transverse fields (Ey, Hy) must be continuous for 0 < x < ¢ ; in addi-
tion, Ey must be zero for ¢ < x < a because of the step. Enforcing these boundary condi-
tions leads to the following equations:

nx
nyrx E Bysn—— for0 < x <c,
Ey=s n?+§ Apsin— = c (4.983)
n=1 0 forc < x < a,
-1 . 7x A X
Hy = — sin— Dy - — —sm—forO X <c. (4.98b
=73 3 +n—1zﬁ Z . <x<c. ( )

Equations (4.98a) and (4.98b) constitute a doubly infinite set of linear equations for the
modal coefficients A, and B,,. Wewill first eliminate the B, and then truncate the resulting
equation to afinite number of terms and solve for the Ap.

Multiplying (4.98a) by sin(mzrx/a), integrating from x = 0 to a, and using the or-
thogonality relations from Appendix D yields

o0 oo
a a
§5m1+§Am ZHZ_:LBnlmn = X_:Bk|mk, (4.99)
where
C
- =/ sin 7% gin X gy (4.100)
x=0 a Cc
isan integral that can be easily evaluated, and
1 ifm=n

is the Kronecker delta symbol. Now solve (4.98b) for By by multiplying (4.98b) by
sin(krx/c) and integrating from x = 0 to c. After using orthogonality relations, we ob-
tain

CBk
Za |k1+ E —|kn = . (4.102)
k

Substituting By from (4.102) into (4.99) gives an infinite set of linear equations for the Ay,
wherem =1, 2,...,

ZZ Imk Ikn An 27 Imk lk1

o0
_Am N ZZ = » ch _ %aml. (4.103)

n=1k=1 k=1

For numerical calculation we can truncate these summationsto N terms, which will result
in N linear equationsfor thefirst N coefficients, A,. For example, let N = 1. Then (4.103)
reduces to

a 22812 2Z%12  a
ZA 1ip, =11 2 4.104
2"t ez czd8 2 (4109
Solving for Az (the reflection coefficient of the incident TEyg mode) gives
Z,- 28
A1 = for N =1, (4.105)

Zg—}-za
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whereZ, = 475 I121 /ac, which lookslike an effective load impedance to guide 1. Accuracy
isimproved by using larger values of N and leads to a set of equations that can be written
in matrix form as

[QI[A] = [P], (4.106)

where [Q] isasquare N x N matrix of coefficients,

N

Qmn = E(Smn + kX_; —CZﬁ ) (4.107)

[P]isan N x 1 column vector of coefficients given by

N

2Z%0mk k1 a
Pm = Z —kC;Ell - §5m11 (4.108)
k=1

and [A] isan N x 1 column vector of the coefficients A. After the A, are found, the B,
can be calculated from (4.102), if desired. Equations (4.106)—(4.108) lend themselves well
to computer implementation, and Figure 4.25 shows the results of such a calculation for
various matrix sizes.

If the width ¢ of guide 2 is such that all modes are cut off (evanescent), then no real
power can be transmitted into guide 2, and al the incident power is reflected back into
guide 1. The evanescent fields on both sides of the discontinuity store reactive power,
however, which implies that the step discontinuity and guide 2 beyond the discontinuity
look like a reactance (in this case an inductive reactance) to an incident TEjp mode in
guide 1. Thus the equivalent circuit of the H-plane step looks like a shunt inductor at the
z = 0 plane of guide 1, as shown in Figure 4.22e. The equivalent reactance can be found
from the reflection coefficient A; [after solving (4.106)] as

a1+ A
X=-jz¢ .
1-A;

Figure 4.25 shows the normalized equivalent inductance versus the ratio of the guide
widths c/a for a free-space wavelength A = 1.4a and for N = 1, 2, and 10 equations. The

(4.109)
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FIGURE 4.25 Equivalent inductance of an H-plane asymmetric step.
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modal analysis results are compared to data from reference [8]. Note that the solution con-
verges very quickly (because of the fast exponential decay of the higher order evanescent
modes), and that the result using just two modesis very close to the data of reference [8].

The fact that the H-plane step appears inductive is a result of the actual value of the
reflection coefficient, A1, but we can verify the inductive nature of the discontinuity by
computing the complex power flow into the evanescent modes on either side of the discon-
tinuity. For example, the complex power flow into guide 2 can be found as

c b B
P:/ / E x H* - 2dxdy
x=0Jy=0 z=0*
C
x=0
c o 0 *
.n Br .. m
=—b/ ZanmLX —Z—L“smix dx
x=0 |1 ¢ m=1 Zi' ¢
be o [By?
2 = Z5*
_ b g 2, (4.110)
2kono “— "

where the orthogonality property of the sine functions was used, as well as (4.95)—4.97).
Equation (4.110) shows that the complex power flow into guide 2 is positive imaginary,
implying stored magnetic energy and an inductive reactance. A similar result can be de-
rived for the evanescent modesin guide 1; thisisleft as a problem.

POINT OF INTEREST: Microstrip Discontinuity Compensation

Because a microstrip circuit is easy to fabricate and allows the convenient integration of pas-
sive and active components, many types of microwave circuits and subsystems are made in
microstrip form. One problem with microstrip circuits (and other planar circuits) is that the
inevitable discontinuities at bends, step changes in widths, and junctions can cause degrada-
tion in circuit performance. This is because such discontinuities introduce parasitic reactances
that can lead to phase and amplitude errors, input and output mismatch, and possibly spurious
coupling or radiation. One approach for eliminating such effects is to construct an equivalent
circuit for the discontinuity (perhaps by measurement), including it in the design of the circuit,
and compensating for its effect by adjusting other circuit parameters (such as line lengths and
characteristic impedances, or tuning stubs). Another approach is to minimize the effect of a
discontinuity by compensating the discontinuity directly, often by chamfering or mitering the
conductor.

Consider the case of a bend in a microstrip line. The straightforward right-angle bend
shown below has a parasitic discontinuity capacitance caused by the increased conductor area
at the corner of the bend. This effect could be eliminated by making a smooth, “swept” bend
with aradiusr > 3W, but this takes up more space. Alternatively, the right-angle bend can be
compensated by mitering the corner, which has the effect of reducing the excess capacitance at
the bend. As shown later, thistechnique can be applied to bends of arbitrary angle. The optimum
value of the miter length, a, depends on the characteristic impedance and the bend angle, but
avalue of a = 1.8W is often used in practice. The technique of mitering can aso be used to
compensate step and T-junction discontinuities, as shown on the next page.
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Reference: T. C. Edwards, Foundations for Microwave Circuit Design, John Wiley & Sons, New York, 1981.

EXCITATION OF WAVEGUIDES—ELECTRIC
AND MAGNETIC CURRENTS

So far we have considered the propagation, reflection, and transmission of guided wavesin
the absence of sources, but obviously the waveguide or transmission line must be coupled
to agenerator or some other source of power. For TEM or quasi-TEM lines, thereisusually
only one propagating mode that can be excited by a given source, although there may be
reactance (stored energy) associated with a given feed. In the waveguide case, it may be
possible for several propagating modes to be excited, along with evanescent modes that
store energy. In this section we will develop a formalism for determining the excitation
of a given waveguide mode due to an arbitrary electric or magnetic current source. This
theory can then be used to find the excitation and input impedance of probe and loop feeds
and, in the next section, to determine the excitation of waveguides by apertures.

Current Sheets That Excite Only One Waveguide Mode

Consider aninfinitely long rectangular waveguide with atransverse sheet of electric surface
current density at z = 0, as shown in Figure 4.26. First assume that this current has X and
Y components given as
- 2AF N mmzX . nmy 2AF Mz . mmx nwy
JTE(X, y) = —x =" cos sin—2> 4 §=—M= g cos—=. (4.111
s (X, Y) b a b +Yy a a b ( )
We will show that such a current excites a single TEp, waveguide mode traveling away
from the current source in both the +z and —z directions.

y

/X

*D‘*\
2

FIGURE 4.26 Aninfinitely long rectangular waveguide with surface current densitiesat z = 0.
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From Table 3.2, the transverse fields for positive and negative traveling TEy,, wave-
guide modes can be written as

n m .. n
Ef = Z7e (Fn) AL cos%x sin gye“ﬁz (4.1129)
b g (M) Ak ™ g MY i
Ef = zTE( - )Amn in—— cos eI, (4.112b)
..M n
HE = j:( ") Ak sin %X cos ’;yewz (4.1120)
HE = i( - ") Ay cos ZX sin ”Eyeﬂﬂz (4.112d)

where the + notation refers to waves traveling in the +z direction or —z direction with
amplitude coefficients AL, and A, respectively.
From (1.36) and (1. 37) the following boundary conditions must be satisfied at z = O:

(EtY—E7)xZ=0, (4.113a)
ix(HF—H) = J. (4.113b)

Equation (4.1124) states that the transverse components of the electric field must be con-
tinuous at z = 0, which when applied to (4.112a) and (4.112b), gives

Abo = A, (4.114)

Equation (4.113b) states that the discontinuity in the transverse magnetic field is equal to
the electric surface current density. Thus, the surface current density at z = 0 must be

Js = §(Hd — Hy) —%(Hyf — Hy)

=R 2Amnn cos WX g 7Yy §/2A$”mn an ™% 005 (4.115)
b a b a a b
where (4.114) was used. This current is seen to be the same asthe current of (4.111), which
shows, by the uniqueness theorem, that such a current will excite only the TEy, mode
propagating in each direction, since Maxwell’s equations and all boundary conditions are
satisfied.
The analogous electric current that excites only the TMm, mode can be shown to be

ZBJr mz _ maXx . nmy 2Bf.nm . mmxx __ nmy
IM(x, mn_" cos sn—2 4+ y=—M_" gin cos—. (4.116
x,y) = a a b TV a b ( )
Itisleft asaproblem to verify that this current excites TMy, modes that satisfy the appro-
priate boundary conditions.
Similar results can be derived for magnetic surface current sheets. From (1.36) and
(1.37) the appropriate boundary conditions are

(Et—E7) x 2= Ms, (4.1173)
Ix(HT=—H") =0. (4.117b)

For a magnetic current sheet at z = 0, the TE,, waveguide mode fields of (4.112) must
now have continuous Hy and Hy field components, due to (4.117b). This results in the
condition that

Ab = —A-. (4.118)
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Then applying (4.117a) gives the source current as

- —XZZTEA+ mm . MmaX nmw AZZTEA"— nmw mnmzX ., Nnmw
MJE = - ™" sin - cosTy—y bm” cos snY.

(4.119)
The corresponding magnetic surface current that excites only the TMpy,, mode can be
shown to be

MIM = —R2BannT g X cos Y V2B cos M X gn Y (4.120)
b a b a a b

These results show that a single waveguide mode can be selectively excited, to the exclu-
sion of all other modes, by either an electric or magnetic current sheet of the appropriate
form. In practice, however, such currents are difficult to generate and are usually only
approximated with one or two probes or loops. In this case many modes may be excited,
but usually most of these modes are evanescent.

Mode Excitation from an Arbitrary Electric
or Magnetic Current Source

We now consider the excitation of waveguide modes by an arbitrary electric or magnetic
current source [4]. With reference to Figure 4.27, first consider an electric current source
J located between two transverse planes at z1 and z,, which generates the fields E*, H+
traveling in the +z direction, and the fields E~, H~ traveling in the —z direction. These
fields can be expressed in terms of the waveguide modes as follows:

ET =) AJET =) Aj@n+ 2em)e 12 7 5 75, (4.1214)
n n

HT =Y ATHY =Y Af(hy + 2hzp)e 2 72 > 75, (4.121b)
n n

E- =) AEy =) A @ —2emlel? z <z, (4.121c)
n n

H™ =Y AjHy =) Aj(=hy +2hznelf? z < 7, (4.121d)
n n

where the single index n is used to represent any possible TE or TM mode. For a given
current J, we can determine the unknown amplitude A by using the Lorentz reciprocity
theorem of (1.155) with M1 = M, = 0 (since here we are only considering an electric
current source),

%(Elx H_z—sz|:|1)~d§=/(|§2‘\]_1—|§1~.3_2)dv,
S Y
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FIGURE 4.27 Anarbitrary electric or magnetic current source in an infinitely long waveguide.
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where S is a closed surface enclosing the volume V, and Ei, H; are the fields due to the
current source Ji (fori = 1 or 2).

To apply the reciprocity theorem to the present problem we let the volume V be the
region between the waveguide walls and the transverse cross-section planes at z; and z».
Thenlet E; = E* and Hy = H*, depending on whether z > z, or z < z4, and let E, Ho
be the nth waveguide mode traveling in the negative z direction:

EZ = En_ = (6h — 2ezn)ejﬁnz,
Ho = Hy = (= + 2hz)elfn?,
Substitution into the above form of the reciprocity theorem gives, with J; = J and J, = 0,
?{(EixH'n——En‘x H‘i).dng E- . Jdv. (4.122)
s v

The portion of the surface integral over the waveguide walls vanishes because the tan-

gentia electric field is zero there; that is, E x H - Z = H - (Z x E) = 0 on the waveguide

walls. This reduces the integration to the guide cross section, Sg, at the planesz; and zo. In
addition, the waveguide modes are orthogonal over the guide cross section:

/ EXx HE . dS= [ (&m=2emm) x (£hy + 2hy) - 2ds
So So

= i/ €m x hp-2ds =0, form #n. (4.123)
So
Using (4.121) and (4.123) then reduces (4.122) to
A,T/ (Ef x Hy — E; x Hn+)~d§+An—/ (Ey x Hy —E; x Hy)-ds
73 1
- / E- . Jdv.
v
Because the second integral vanishes, this further reduces to
A;r/ [(En + Z€zn) X (—ﬁn + Zhzn) — (Bn — Z€zn) x (ﬁn + Zhzn)] - 2ds
12
:—2An+/ én xﬁn.zds:/ E- . Jdv,
Z2 \
or
e - T TiBnz
An Z—/ En JdUZ—/(en_ZeZn)\]eJ n dU, (4124)
Pn \ Pn \
where
So
is anormalization constant proportional to the power flow of the nth mode.
By repeating the above procedure with E; = E;f and Hz = H,, we can derive the
amplitude of the negatively traveling waves as

-1 _ _ -1 o
An = P—/ Ef - Jdv = P—/(én + 2e2n) - Je Pl dy, (4.126)
n Jv n Jv
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These results are quite general, being applicable to any type of waveguide (includ-
ing planar lines such as stripline and microstrip), where modal fields can be defined. Ex-
ample 4.8 applies this theory to the problem of a probe-fed rectangular waveguide.

EXAMPLE 4.8 PROBE-FED RECTANGULAR WAVEGUIDE

For the probe-fed rectangular waveguide shown in Figure 4.28, determine the
amplitudes of the forward and backward traveling TE1g modes, and the input
resistance seen by the probe. Assume that the TE;o mode is the only propagating
mode.

Solution
If the current probe is assumed to have an infinitesimal diameter, the source vol-
ume current density J can be written as

J(X,y,2) = g8 (x - %) 8(z)y for0<y <h.

From Chapter 3 the TEjp modal fields can be written as

g =ysn—,

- —X TX

hi = —-—sn—,
Z1 a

where Z1 = kono/B1 is the TEyp wave impedance. From (4.125) the normaliza-
tion constant Py is

2 ra (b X ab
P =—/ / sin> —dxdy = —.
YT 71 heo y=0 a d Z1

Then from (4.124) the amplitude A is

-1 . TTX a —lgb —Z1lo
Af = — | sin=—elA12|p5 (x — =) s(2)dxdydz = —— = .
1= ) a 0 ( 2) (z)dxdy ) a
Similarly,
. —Z1lg
A1 = 3

o

FIGURE 4.28 A uniform current probe in arectangular waveguide.
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If the TE19 mode is the only propagating mode in the waveguide, then this mode
carries all of the average power, which can be calculated for real Z1 as

1 - - 1 - _
Pz_f E+><H+*~d§+—/ E-xH™*.ds
2 Js, 2 Js,
=/E‘+XH+*.d§
So

a b At 2 X
/ / AL g2 T2 dxdy
x=0Jy=0 Z1 a

ab|AT|2
27,

If the input resistance seen looking into the probeis Rj,, and the terminal current
is lo, then P = 12Rin/2, so that the input resistance is

2P ablAf|? bz,

Rin=— = =
2 2
12 1821 a

3

whichisreal for real Z1 (corresponding to a propagating TE1g mode). [ |

A similar derivation can be carried out for amagnetic current source M (e.g., asmall
loop). This source will also generate positively and negatively traveling waves, which can
be expressed as a superposition of waveguide modes, asin (4.121). For J; = J, = 0, the
reciprocity theorem of (1.155) reducesto

%(El x Hy — Eo x |:|1) -dS = / (|:|1 My — Hy - |\7|1)dv. (4.127)
S \

By following the same procedure as for the electric current case, we can derive the excita-
tion coefficients of the nth waveguide mode as

1 - - 1 _ .
Al = _f Ho - Mdv= — / (—=hn + 2hzn) - Melfrzdy, (4.128)
F)n \Y, F)n \Y

1 - - 1 _ .
A, = _/ H - Mdv=— / (An + 2hgn) - Me™1BnZqy, (4.129)
Pn \ Pn \Y

where P, isdefined in (4.125).

EXCITATION OF WAVEGUIDES—APERTURE COUPLING

Besides the probe and loop feeds of the previous section, waveguides and other transmis-
sion lines can also be coupled through small apertures. One common application of such
coupling is in directiona couplers and power dividers, where power from one guide is
coupled to another guide through small apertures in a common wall. Figure 4.29 shows
avariety of waveguide and other transmission line configurations in which aperture cou-
pling can be employed. We will first develop an intuitive explanation for the fact that a
small aperture can be represented as an infinitesimal electric and/or magnetic dipole, then
we will use the results of Section 4.7 to find the fields generated by these equivalent cur-
rents. Our analysis will be somewhat phenomenological [4, 10]; a more advanced theory
of aperture coupling based on the equivalence theorem can be found in reference [11].
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Coupling aperture Feed Cavity
) waveguide
Waveguide |
\ “T elg ~ | N
4.1
U I [ A
| Waveguide y
< 2 /
(@ (b)
Coupling Microstrip Waveguide
aperture 1 Ground
‘ plane 4 Stripline
5 ~\ « 1/ >
? e ] ) « - [
~ Microstrip 2

FIGURE 4.29

© )

Various waveguide and other transmission line configurations using aperture cou-
pling. () Coupling between two waveguides via an aperture in the common broad
wall. (b) Coupling to a waveguide cavity via an aperture in a transverse wall.
(c) Coupling between two microstrip lines via an aperture in the common ground
plane. (d) Coupling from awaveguide to a stripline via an aperture.

Consider Figure 4.30a, which shows the normal electric field lines near a conducting
wall (the tangential electric field is zero near the wall). If a small aperture is cut into the
conductor, the electric field lines will fringe through and around the aperture as shown
in Figure 4.30b. Now consider Figure 4.30c, which shows the fringing field lines around
two infinitesimal electric polarization currents, P, normal to a conducting wall (without

mi

I

FIGURE 4.30

——>N
—> —>
— —F G
— — Sl
—> —>
@ (b) ©
> 1

)

@
e

(d) (©

Illustrating the development of equivalent electric and magnetic polarization cur-
rents at an aperture in a conducting wall. (a) Normal electric field at a conducting
wall. (b) Electric field lines around an aperture in a conducting wall. (c) Elec-
tric field lines around electric polarization currents normal to a conducting wall.
(d) Magnetic field lines near a conducting wall. (€) Magnetic field lines near an
aperture in a conducting wall. (f) Magnetic field lines near magnetic polarization
currents parallel to a conducting wall.
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an aperture). The similarity of the field lines of Figures 4.30c and 4.30b suggests that an
aperture excited by a normal electric field can be represented by two oppositely directed
infinitesimal electric polarization currents, Pe, normal to the closed conducting wall. The
strength of this polarization current is proportional to the normal electric field; thus,

Pe = e0weNEnS (X — X0)3(y — Y0)8(z — 20), (4.130)

where the proportionality constant o, is defined as the electric polarizability of the aper-
ture, and (Xo, Yo, Zo) are the coordinates of the center of the aperture.

Similarly, Figure 4.30e shows the fringing of tangential magnetic field lines (the nor-
mal magnetic field is zero at the conductor) near asmall aperture. Because these field lines
are similar to those produced by two magnetic polarization currents located parallel to
the conducting wall (as shown in Figure 4.30f), we can conclude that the aperture can be
replaced by two oppositely directed infinitesimal polarization currents, Py,, where

Pm = —amHi8(X — X0)8(Y — Y0)8(z — Z0). (4.131)

In (4.131), an, isdefined as the magnetic polarizability of the aperture.

The electric and magnetic polarizabilities are constants that depend on the size and
shape of the aperture and have been derived for a variety of simple shapes [3, 10, 11].
The polarizabilities for circular and rectangular apertures, which are probably the most
commonly used shapes, are given in Table 4.3.

We now show that the electric and magnetic polarization currents, Pe and Pm, can be
related to electric and magnetic current sources, J and M, respectively. From Maxwell’s
equations (1.27a) and (1.27b) we have

vxE=—jouH —M, (4.1329)
v x H = jweE + J. (4.132b)
Then using (1.15) and (1.23), which define P, and Py, we obtain
v x E = —jouoH — jouoPn — M, (4.1339)
v x H = jwegE + jowPe + J. (4.133b)

Thus, since M has the same role in these equations as jw.oPm, and J has the same role
as jwPe, we can define equivalent currents as

M = jouoPn. (4.134b)

These results alow us to use the formulas of (4.124), (4.126), (4.128), and (4.129) to
compute the fields from these currents.

TABLE 4.3 Electric and Magnetic Polarizations

Aperture Shape ae am
2r3 4r3
Round hole 1] ]
3 3
7ed? wed?

Rectangular slot
(H across slot)

16 16
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Theabovetheory isapproximate because of variousassumptionsinvolved intheeva uation
of the polarizahilities, but generaly it givesreasonable resultsfor aperturesthat are small (where
the term small implies small relative to an electrica wavelength), and not located too close to
edges or corners of the guide. In addition, it isimportant to redize that the equivalent dipoles
given by (4.130) and (4.131) radiate in the presence of the conducting wall to give the fields
transmitted through the aperture. The fields on the input side of the conducting wall are also
affected by the presence of the aperture, and thiseffect isaccounted for by the equivalent dipoles
on theincident side of the conductor (which are the negative of those on the output side). Inthis
way, continuity of tangential fieldsis preserved across the aperture. In both cases, the presence
of the (closed) conducting wall can be accounted for by using image theory to remove the wall
and double the strength of the dipoles. These detailswill be clarified by applying thistheory to
aperturesin transverse and broad walls of waveguides.

Coupling Through an Aperture in a Transverse Waveguide Wall

Consider asmall circular aperture centered in the transverse wall of awaveguide, as shown
in Figure 4.31a. Assume that only the TE;g mode propagates in the guide, and is incident
on the transverse wall from z < 0. Then, if the aperture is assumed to be closed, as in
Figure 4.31b, the standing wave fieldsin the region z < 0 can be written as

. . X

Ey = Ae™7? — e/ sin "=, (4.1353)
-A, i X

He = —2 (e 12 1 gif?ygn ™% 4.1350

X Z:LO( +e) a ( )

where 8 and Z;9 are the propagati on constant and wave impedance of the TE;p mode. From
(4.130) and (4.131) we can determine the equivalent electric and magnetic polarization
currents from the above fields as

- . a b
By = ZeoateE,S (x - E) 5 (y - E) 5(2) =0, (4.1364)
- . a b
P = —RamHyd (x - 5) 5 (y— 5) 5(2)
=R (x - E) 5 (y - E) 5(2), (4.136h)

since E; = 0 for a TE mode. Now, by (4.134b), the magnetic polarization current P, is
equivalent to the magnetic current density

Z10 2

As shown in Figure 4.31d, the fields scattered by the aperture are considered as being
produced by the equivalent currents Py, and — P, on either side of the closed wall. The
presence of the conducting wall is easily accounted for using image theory, which has
the effect of doubling the dipole strengths and removing the wall, as depicted in Figure
4.31e(for z < 0) and Figure 4.31f (for z > 0). Thus the coefficients of the transmitted and
reflected waves caused by the equivalent aperture currents can be found by using (4.137)
in (4.128) and (4.129) to give

_ _ 2i
M = jopuoBPp = % 2L0L0A%m o (x - 6i‘) 5 (y - g) 5(2). (4.137)

4j Awpoam 4] ABam
abZl() h ab ’
4j Awpoam 4j ABam

_ -1 [ . =
Ao = P—m/h10~ (=2jwpoPm)dv = abZis  ab (4.138b)

-1 (- . -
Ajp = Po / h1o - (2jwpoPm)dv = (4.1389)
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FIGURE 431  Applying small-hole coupling theory and image theory to the problem of an aper-

ture in the transverse wall of a waveguide. (a) Geometry of a circular aperture in
the transverse wall of awaveguide. (b) Fields with aperture closed. (c) Fields with
aperture open. (d) Fieldswith aperture closed and replaced with equivalent dipoles.
(e) Fields radiated by equivalent dipolesfor z < 0; wall removed by image theory.
(f) Fields radiated by equivaent dipolesfor z > 0; wall removed by image theory.

since h1g = (—X/Z10) sin(rx/a), and P1g = ab/Z10. The magnetic polarizability ap, is
givenin Table 4.3. The complete fields can now be written as

; 677 . TTX
Ey = [Ae 12 4 (Al — A)el#]sin ’% forz<0,  (4139%)

1 —ipz _ P71 i TX
Hy = ——[—Ae P + (Al — Ael*]sin—, forz <0, (4.139b)

Z10 a

and
E _ A+ _jﬂz . 7TX
y = Alge sin = forz > 0, (4.1404)
—Aly _ig, . TX
Hy = Z—me*“gZ sin %, forz > 0. (4.140b)
10
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T
VAT iB VAT
J\

z=0 z

FIGURE 4.32  Equivalent circuit of the aperture in atransverse waveguide wall.

Then the reflection and transmission coefficients can be found as

_ Ap—A _4jan
A ab
A_—fo _ 4jBam
A ab ’
since Z10 = kono/B. Note that |T'| > 1; this physically unrealizable result (for a passive
network) isan artifact of the approximations used in the above theory. An equivalent circuit
for this problem can be obtained by comparing the reflection coefficient of (4.141a) with

that of thetransmission line with anormalized shunt susceptance, jB, shownin Figure 4.32.
The reflection coefficient seen looking into thislineis

le—Yinzl—(1+jB): —jB
1+vyin 1+@+jB 2+jB°

~1, (4.1418)

T =

(4.141b)

If the shunt susceptance is very large (low impedance), I' can be approximated as
-1 .2
F=————~-1—j—.
1+ (2/jB) B
Comparison with (4.1414a) suggeststhat the apertureis equivalent to anormalized inductive
susceptance,
_—ab
h 2,30lm '

Coupling Through an Aperture in the Broad Wall of a Waveguide

Another common configuration for aperture coupling is shown in Figure 4.33, where two
parallel waveguides share a common broad wall and are coupled with a small centered
aperture. We will assume a TEjp mode incident from z < 0 in the lower guide (guide 1),

YT z
2b

© MW= b

o M-

Z 0 a2 a X

FIGURE 4.33  Two parallel waveguides coupled through an aperture in acommon broad wall.
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and compute the fields coupled to the upper guide. The incident fields can be written as

X .
E, = Asin %e—lﬂ{ (4.1424)
—A | wx _;
Hy = 7o sin %e—lﬁz. (4.142b)

The excitation field at the center of the apertureat (x =a/2, y =b, z=0) is

E, = A (4.143)

Hx = j (4.143b)
Z10
(If the aperture were not centered at x = a/2, the H; field would be nonzero and would
have to be included.)
From (4.130), (4.131), and (4.134), the equivalent electric and magnetic dipoles for
coupling to the fields in the upper guide are

3y = joeoaeAS (x - g) 5(y — b)8(2), (4.1443)
B jouoom A a
My = S22 (x - 5) 3y — b)s(2). (4.144b)

Note that in this case we have excited both an electric and amagnetic dipole. Let the fields
in the upper guide be expressed as

TX

E, = A" sin?eﬂﬂz forz <O, (4.1453)
_ A~ . X +ijBz
H, = 7 sin ?e forz <0, (4.145b)
10
+ +an TX iz
Ey = ATsin ?e forz > O, (4.1463)
—At X
H, = - sin %e"ﬁz forz > 0, (4.146b)
10

where AT, A~ are the unknown amplitudes of the forward and backward traveling waves
in the upper guide, respectively.

By superposition, the total fields in the upper guide due to the electric and magnetic
currents of (4.144) can be found from (4.124) and (4.128) for the forward wave as

-1 — _ —joA MOOm
At = = E, Jy — Hy My)dv = -— . 4.147a
PlO/V( y vy x My)dv P <éoae Zfo) ( )
and from (4.126) and (4.129) for the backward wave as
_ -1 —joA Jeledh)
AT = — Efdy — HiMy)dv = €0e + , 4.147b
P1o v( v o My)du P1o <oae Z% ( :

where P19 = ab/Z10. Note that the electric dipole excites the same fields in both direc-
tions, but the magnetic dipole excites oppositely polarized fields in the forward and back-
ward directions,
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PROBLEMS

41

4.2

4.3

4.4

Consider the reflection of a TE;g mode, incident from z < O, at a step change in the height of a
rectangular waveguide, as shown below. Show that if the method of Example 4.2 is used, the result
I' = 0 is obtained. Do you think this is the correct solution? Why? (This problem shows that the
one-mode impedance viewpoint does not always provide a correct analysis.)

/ X
o /

b
i el b2

N
Il f—
o
N

Consider a series RLC circuit with a current |. Calculate the power lost and the stored electric and
magnetic energies, and show that the input impedance can be expressed asin (4.17).

Show that the input impedance Z of a parallel RLC circuit satisfies the condition that Z (—w) =
Z* ().

A two-port network isdriven at both ports such that the port voltages and currents have the following
values (Zg = 50 Q):

Vy = 10/90°, 11 = 0.2/90°,
Vo =8/0°, Iy =0.16/—90°.

Determine the input impedance seen at each port, and find the incident and reflected voltages at each
port.
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Problems 223

Show that the admittance matrix of alossless N-port network has purely imaginary elements.
Does anonreciprocal lossless network always have a purely imaginary impedance matrix?
Derivethe [Z] and [Y ] matrices for the two-port networks shown in the figure below.

[ | Zg | o) o Ya | Ya o)
Port Port Port Port
1 Zp Zp 2 1 Y8 2
o I I o o I o

(a@ (b)

Consider a two-port network, and let Z(Slé, Z(Szé, ch):, and Zgé be the input impedance seen
when port 2 is short-circuited, when port 1 is short-circuited, when port 2 is open-circuited, and
when port 1 is open-circuited, respectively. Show that the impedance matrix elements are given by

@ @ 52 2 (€] 1Y 52

lu=Zoc L2=1Loc: Lp=In= (Zoc - Zsc) Zoc:
Find the impedance parameters of a section of transmission line with length ¢, characteristic
impedance Zg, and propagation constant j.
Show that the admittance matrix of the two parallel-connected two-port 7 networks shown below
can be found by adding the admittance matrices of the individua two-ports. Apply this result to
find the admittance matrix of the bridged-T circuit shown. What is the corresponding result for the
impedance matrix of two series-connected T-networks?

Yy
o VWY rel
Y8§ § Yg
3 o
Yo
A
YD§ é ¥p

Find the scattering parameters for the series and shunt loads shown below. Show that S12 = 1 — Sq11
for the series case, and that S1» = 1+ Sq3 for the shunt case. Assume a characteristic impedance
Zo.

ALs

O Z O O O
Port Port Port Port
1 2 1 2

e, O e, O

Consider two two-port networks with individual scattering matrices [S”] and [SB]. Show that the
overall Sy1 parameter of the cascade of these networks is given by

A cB
Sp1 = 521521
= AcB "
1-55%1
Consider alossless two-port network. (a) If the network is reciprocal, show that |S1|2 = 1 — |S11/2.

(b) If the network is nonreciprocal, show that it is impossible to have unidirectional transmission,
where S1o = 0and Sp; # 0.



224 Chapter 4: Microwave Network Analysis

414

4.15

4.16

417

4.18

4.19

4.20

4.21

4.22
4.23

A four-port network has the scattering matrix shown as follows. (a) Is this network lossless? (b) Is
this network reciprocal ? (¢) What isthe return loss at port 1 when all other ports are terminated with
matched loads? (d) What is the insertion loss and phase delay between ports 2 and 4 when al other
ports are terminated with matched |oads? (€) What is the reflection coefficient seen at port 1 if ashort
circuit isplaced at the terminal plane of port 3 and all other ports are terminated with matched loads?

0.178/90°  0.6/45° 0.4/45° 0
(5] = 0.6/45° 0 0 0.3/—45°
0.4/45° 0 0 0.5/-45° |’
0 0.3/—-45° 05/-45° 0

Show that it isimpossible to construct a three-port network that is lossless, reciprocal, and matched
at al ports. Isit possible to construct a nonreciprocal three-port network that islossless and matched
at all ports?

Prove the following decoupling theorem: For any lossless reciprocal three-port network, one port (say
port 3) can be terminated in a reactance so that the other two ports (say ports 1 and 2) are decoupled
(no power flow from port 1 to port 2, or from port 2 to port 1).

A certain three-port network islossless and reciprocal, and has S13 = Sp3 and S11 = Soo. Show that
if port 2 is terminated with a matched load, then port 1 can be matched by placing an appropriate
reactance at port 3.

A four-port network has the scattering matrix shown as follows. If ports 3 and 4 are connected with

alossless matched transmission line with an electrical length of 45°, find the resulting insertion loss
and phase delay between ports 1 and 2.

0.2/50° 0 0 0.4/—45°
(5] = 0 0.6/45°  0.7/-45° 0
- 0 0.7/—45° 0.6/45° 0
0.4/—45° 0 0 0.5/45°

When normalized to a single characteristic impedance Zg, a certain two-port network has scatter-
ing parameters Sjj. Find the generalized scattering parameters, Si'}, in terms of the real reference
impedances, Rp1 and Rqp, at ports 1 and 2, respectively.

At reference plane A, for the circuit shown below, choose an appropriate reference impedance, find
the power wave amplitudes, and compute the power delivered to the load. Repeat this procedure for
reference plane B. Assume the transmission line islossless.

100 Q l<— =4 —>|

30V 100 Q

The ABCD parameters of the first entry in Table 4.1 were derived in Example 4.6. Verify the ABCD
parameters for the second, third, and fourth entries.

Derive expressions that give the impedance parameters in terms of the ABCD parameters.

Find the ABCD matrix for the circuit shown below by direct calculation using the definition of the

ABCD matrix, and compare with the ABCD matrix of the appropriate cascade of canonical circuits
from Table 4.1.

< I] Z I| vel
Port Port
1 2
o
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Use ABCD matrices to find the voltage V| across the load resistor in the circuit shown below.

o6
\%

A reciprocal two-port network with its ABCD matrix is shown below at left. Prove that the network
with ports 1 and 2 in reversed positions has the ABCD matrix shown below at right. Choose asimple
asymmetrical network to demonstrate this result.

~——90° ——

50 Q 1:2
MWV §

+
ZO:SOQ VL ZL=25Q

// X
Port Port Port Port
1 1 2 2 1 2 1 2
X

A B
cC D
Derive the expressions for S parametersin terms of the ABCD parameters, as given in Table 4.2.

As shown in the figure below, a variable attenuator can be implemented using a four-port 90° hybrid
coupler by terminating ports 2 and 3 with equal but adjustable loads. (a) Using the given scattering
matrix for the coupler, show that the transmission coefficient between the input (port 1) and the
output (port 4) isgivenas T = jT", where T is the reflection coefficient of the mismatch at ports 2
and 3. Also show that the input port is matched for all values of T'. (b) Plot the attenuation, in dB,
from the input to the output as a function of Z|_/Zg, for0 < Z| /Zg < 10 (let Z|_ bereal).

T
In— Port1 o Potz . o<z 0j10
Hybrid g--131001
[S1="5100]
Out<— Port4 Port3 T 010
u [s] DL ) J

4.28 Use signa flow graphs to find the power ratios P»/P1 and P3/Pq for the mismatched three-port

network shown in the accompanying figure.

0S5, 0
[S]= S12 0 Sy3
0530

R

Port
1

4.29 The ABCD parameters are useful for treating cascades of two-port networksin terms of the total port

voltages and currents, but it is also possible to use incident and reflected voltages to treat cascades.
One way of doing thisiswith the transfer, or T-, parameters, defined as follows:

- [ e
b1 Tor Toz2f[az2]
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where ap, b1 and ay, by are the incident and reflected voltages at ports 1 and 2, respectively. Derive
the T-parameters in terms of the scattering parameters of a two-port network. Show how the
T-parameters can be used for a cascade of two two-port networks.

4.30 Theend of an open-circuited microstrip line has fringing fields that can be modeled as a shunt capac-
itor, Ct, at the end of the line, as shown below. This capacitance can be replaced with an additional
length, A, of microstrip line. Derive an expression for the length extension in terms of the fringing
capacitance. Evaluate the length extension for a 50 € open-circuited microstrip line on a substrate
withd = 0.158cmand ey = 2.2 (w = 0.487 cm, e = 1.894), if thefringing capacitanceisknown to
be Cs = 0.075 pF. Compare your result with the approximation given by Hammerstad and Bekkadal:

e +0.3 w + 0.262d
€e —0.258 w +0.813d /°

1 o
) / / v Lo oc
L\i _OJ o

4.31 For the H-plane step analysis of Section 4.6, compute the complex power flow in the reflected modes
in guide 1, and show that the reactive power is inductive.

4.32 Derive the modal analysis equations for the symmetric H-plane step shown below. (HINT: Because
of symmetry, only the TE,,o modes for n odd will be excited.)

A =0.412d (

\ ° <~—Cc—] a X

z

4.33 Find the transverse E and H fields excited by the current of (4.116) by postulating traveling TMmn
modes on either side of the source at z = 0 and applying the appropriate boundary conditions.

4.34 Aninfinitely long rectangular waveguide is fed with a probe of length d as shown below. The current
on this probe can be approximated as | (y) = lgsink(d — y)/sinkd. If the TE;g mode is the only
propagating mode in the waveguide, compute the input resistance seen at the probe terminals.

al2
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4.35 Consider theinfinitely long waveguide fed with two probes driven 180° out of phase, as shown below.
What are the resulting excitation coefficients for the TE;g and TEog modes? What other modes can
be excited by this feeding arrangement?

f—
o
/ a X

436 Consider asmall current loop on the sidewall of a rectangular waveguide, as shown below. Find the
TE o fields excited by thisloop if theloop is of radiusrg.

>

4.37 A rectangular waveguide is shorted at z = 0 and has an €lectric current sheet, Jsy, located at z = d,
where

2rA . wX

(see the accompanying figure). Find expressions for the fields generated by this current by assuming
standing wave fields for 0 < z < d, and traveling wave fields for z > d, and applying boundary
conditions at z = 0 and z = d. Now solve the problem using image theory, by placing a current
sheet —Jsy at z = —d, and removing the shorting wall at z = 0. Use the results of Section 4.7 and
superposition to find the fields radiated by these two currents, which should be the same as the first
resultsfor z > 0.




|mpedance Matching
and Tuning

This chapter marks a turning point, in that we now begin to apply the theory and tech-
niques of previous chapters to practical problems in microwave engineering. We start with the
topic of impedance matching, which is often an important part of a larger design process for
a microwave component or system. The basic idea of impedance matching is illustrated in
Figure 5.1, which shows an impedance matching network placed between a load impedance
and atransmission line. The matching network isideally lossless, to avoid unnecessary 10ss of
power, and is usually designed so that the impedance seen looking into the matching network
is Zo. Then reflections will be eliminated on the transmission line to the left of the matching
network, although there will usually be multiple reflections between the matching network and
the load. This procedure is sometimes referred to as tuning. Impedance matching or tuning is
important for the following reasons:

e Maximum power is delivered when the load is matched to the line (assuming the gener-
ator is matched), and power lossin the feed line is minimized.

e |mpedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
may improve the signal-to-noise ratio of the system.

¢ Impedance matching in a power distribution network (such as an antenna array feed
network) may reduce amplitude and phase errors.

Aslong astheload impedance, Z , hasapositivereal part, amatching network can aways
befound. Many choicesare available, however, and wewill discussthe design and performance
of several types of practical matching networks. Factors that may be important in the selection
of a particular matching network include the following:

o Complexity—As with most engineering solutions, the simplest design that satisfies the
required specifications is generally preferable. A ssmpler matching network is usually
cheaper, smaller, morereliable, and less lossy than a more complex design.

e Bandwidth—Any type of matching network can ideally give a perfect match (zero
reflection) at a single frequency. In many applications, however, it is desirable to match
aload over aband of frequencies. There are several ways of doing this, with, of course,
a corresponding increase in complexity.

228
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_ '
Matching Load
% network Z
——]

FIGURE 5.1 A lossless network matching an arbitrary load impedance to atransmission line.

¢ |mplementation—Depending on the type of transmission line or waveguide being used,

one type of matching network may be preferable to another. For example, tuning
stubs are much easier to implement in waveguide than are multisection quarter-wave
transformers.

¢ Adjustability—In some applications the matching network may require adjustment to

5.1

match a variable load impedance. Some types of matching networks are more amenable
than othersin this regard.

MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

Probably the simplest type of matching network is the L-section, which uses two reac-
tive elements to match an arbitrary load impedance to a transmission line. There are two
possible configurations for this network, as shown in Figure 5.2. If the normalized load
impedance, zi = Z|/Zo, isinside the 1+ jx circle on the Smith chart, then the circuit
of Figure 5.2a should be used. If the normalized load impedance is outside the 1 + j X cir-
cle on the Smith chart, the circuit of Figure 5.2b should be used. The 1 + jx circle isthe
resistance circle on the impedance Smith chart for whichr = 1.

In either of the configurations of Figure 5.2, the reactive elements may be either induc-
tors or capacitors, depending on the load impedance. Thus, there are eight distinct possibil-
ities for the matching circuit for various load impedances. If the frequency is low enough
and/or the circuit sizeissmall enough, actual lumped-element capacitors and inductors can
be used. This may be feasible for frequencies up to about 1 GHz or so, although modern
microwave integrated circuits may be small enough such that lumped el ements can be used
at higher frequencies as well. There is, however, a large range of frequencies and circuit
sizes where lumped elements may not be realizable. This is a limitation of the L-section

@ (b)
FIGURE 5.2  L-section matching networks. (a) Network for z;_ insidethe 1 + jx circle. (b) Net-

work for z| outsidethe1 + jx circle.
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matching technique. We will first derive analytic expressions for the matching network
elements of the two casesin Figure 5.2, and then illustrate an alternative design procedure
using the Smith chart.

Analytic Solutions

Although wewill discuss asimple graphical solution using the Smith chart, it isalso useful
to have smple expressions for the L -section matching network components. These expres-
sions can be used in a computer-aided design program for L-section matching, or when it
is necessary to have more accuracy than the Smith chart can provide.

Consider first the circuit of Figure 5.2a, and let Z| = R + j X.. We stated that this
circuit would be used when zp = Z| /Zg isinside the 1 + jx circle on the Smith chart,
which impliesthat R > Zg for this case. The impedance seen looking into the matching
network, followed by the load impedance, must be equal to Zg for an impedance-matched
condition:

1

Zo=|X - - .
0= +jB+1/(R|_+JXL)

(5.1)

Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B(XRL — XL Zg) = RL — Zo, (5.28)
XA -BXp) =BZgR. — X,. (5.2b)

Solving (5.2a) for X and substituting into (5.2b) gives a quadratic equation for B. The
solution is

S Xt VRUZo\[R? + X2 — ZoR0

(5.3a)
RZ + X2

Note that since R. > Zg, the argument of the second sguare root is always positive. Then
the series reactance can be found as
1 X. 2o Zo

X == E—
BT R BR

(5.3b)

Equation (5.3a) indicates that two solutions are possible for B and X. Both of these
solutions are physically realizable since both positive and negative values of B and X are
possible (positive X implies an inductor and negative X implies a capacitor, while positive
B implies a capacitor and negative B implies an inductor). One solution, however, may
result in significantly smaller values for the reactive components, or may be the preferred
solution if the bandwidth of the match is better, or if the SWR on the line between the
matching network and the load is smaller.

Next consider the circuit of Figure 5.2b. This circuit is used when z, is outside the
1+ jx circle on the Smith chart, which impliesthat R_. < Zg. The admittance seen |ook-
ing into the matching network, followed by the load impedance, must be equal to 1/Z¢ for
an impedance-matched condition:

1
.
R+ j(X+ X))

— =]

> (5.4)
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Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

BZo(X + XL) = Zo— Ry, (5.59)
(X + XL) = BZoRL. (5.5b)

Solving for X and B gives

X =2/RL(Zo— RL) — X, (5.69)

JZo=RO/RL
n (Zo RL)/RL.

B —
Zy

(5.6b)

Because R < Zg, the arguments of the square roots are always positive. Again, note that
two solutions are possible.

In order to match an arbitrary complex load to aline of characteristic impedance Zo,
the real part of the input impedance to the matching network must be Zg, while the imag-
inary part must be zero. This implies that a general matching network must have at least
two degrees of freedom; in the L-section matching circuit these two degrees of freedom
are provided by the values of the two reactive components.

Smith Chart Solutions

Instead of the above formulas, the Smith chart can be used to quickly and accurately design
L -section matching networks. The procedure is best illustrated by an example.

EXAMPLE 5.1 L-SECTION IMPEDANCE MATCHING

Design an L -section matching network to match a series RC load with animpedance
Z, =200 — j100 2 toal00 2 line at afrequency of 500 MHz.

Solution

The normalized load impedance is zg = 2 — j1, which is plotted on the Smith
chart of Figure 5.3a. This point isinside the 1 + jx circle, so we use the match-
ing circuit of Figure 5.2a. Because the first element from the load is a shunt sus-
ceptance, it makes sense to convert to admittance by drawing the SWR circle
through the load, and a straight line from the load through the center of the chart,
as shown in Figure 5.3a. After we add the shunt susceptance and convert back
to impedance, we want to be on the 1+ jx circle so that we can add a series
reactance to cancel jx and match the load. This means that the shunt suscep-
tance must move us from y_ to the 1 + jx circle on the admittance Smith chart.
Thus, we construct the rotated 1 + jx circle as shown in Figure 5.3a (center at
r = 0.333). (A combined ZY chart may be convenient to use here, if it is not too
confusing.) Then we see that adding a susceptance of jb = j0.3 will move us
along a constant-conductance circle to y = 0.4+ j0.5 (this choice is the short-
est distance from y, to the shifted 1 + jx circle). Converting back to impedance
leavesusat z = 1 — j1.2, indicating that a seriesreactance of x = j1.2 will bring
us to the center of the chart. For comparison, the formulas (5.3a) and (5.3b) give
thesolutionasb = 0.29, x = 1.22.
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This matching circuit consists of a shunt capacitor and a series inductor,
as shown in Figure 5.3b. For a matching frequency of 500 MHz, the capacitor

has avalue of
C=——=0.92pF
27 Zo P
and the inductor has avalue of
XZo
L =——=238.8nH.
ot 38.8n

It is also interesting to look at the second solution to this matching problem. If
instead of adding a shunt susceptance of b = 0.3, we use a shunt susceptance of
b = —0.7, we will moveto apoint on the lower half of the shifted 1 + jx circle,
toy = 0.4 — j0.5. Then converting to impedance and adding a series reactance of
X = —1.2leadsto amatch aswell. Formulas (5.3a) and (5.3b) givethis solution as
b= —-0.69, x = —1.22. This matching circuit is also shown in Figure 5.3b, and
is seen to have the positions of the inductor and capacitor reversed from the first
matching network. At afrequency of f = 500 MHz, the capacitor has a value of

T

(CE COMPONENT (R/Zf OR CONDUCTANCE COMPONENT (G/Yof
.

@
FIGURE 5.3  Solution to Example 5.1. (a) Smith chart for the L-section matching networks.
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38.8nH
YY)
Z,=100Q 0.92 pF == Z, =200-j100 Q
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FIGURE 5.3 Continued. (b) The two possible L-section matching circuits. (¢) Reflection coeffi-

cient magnitudes versus frequency for the matching circuits of (b).

while the inductor has a value of
T 2xfb

Figure 5.3c shows the reflection coefficient magnitude versus frequency for these
two matching networks, assuming that theload impedanceof Z| = 200 — j100 ©

at 500 MHz consists of a 200 2 resistor and a 3.18 pF capacitor in series. There
isnot asubstantial difference in bandwidth for these two solutions. |

=46.1 nH.

POINT OF INTEREST: Lumped Elements for Microwave Integrated Circuits

Lumped R, L, and C elements can be practicaly realized at microwave frequencies if the
length, ¢, of the component is very small relative to the operating wavelength. Over alimited
range of values, such components can be used in hybrid and monolithic microwave integrated
circuits at frequencies up to 60 GHz, or higher, if the condition that £ < 1/10 is satisfied.
Usually, however, the characteristics of such an element are far from ideal, requiring that un-
desirable effects such as parasitic capacitance and/or inductance, spurious resonances, fringing
fields, loss, and perturbations caused by a ground plane be incorporated in the design viaaCAD
model (see the Point of Interest concerning CAD).
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5.2

Air
< bridge
Lossy film
Lossy film
Planar resistor Chip resistor Loop inductor Spiral inductor
Dielectric
= e N7 2
Interdigital Metal-insulator- Chip capacitor
gap capacitor metal capacitor

Resistors are fabricated with thin films of ossy material such as nichrome, tantalum nitride,
or doped semiconductor material. In monolithic circuits such films can be deposited or grown,
whereas chip resistors made from a lossy film deposited on a ceramic chip can be bonded or
soldered in ahybrid circuit. Low resistances are hard to obtain.

Small values of inductance can be realized with a short length or loop of transmission
line, and larger values (up to about 10 nH) can be obtained with a spiral inductor, as shown
in the following figures. Larger inductance values generally incur more loss and more shunt
capacitance; this leads to a resonance that limits the maximum operating frequency.

Capacitors can be fabricated in several ways. A short transmission line stub can provide
a shunt capacitance in the range of 0-0.1 pF. A single gap, or an interdigital set of gaps, in
atransmission line can provide a series capacitance up to about 0.5 pF. Greater values (up to
about 25 pF) can be obtained using a metal-insulator-metal sandwich in either monalithic or
chip (hybrid) form.

SINGLE-STUB TUNING

Another popular matching technique uses a single open-circuited or short-circuited length
of transmission line (a stub) connected either in parallel or in series with the transmission
feed line at a certain distance from the load, as shown in Figure 5.4. Such a single-stub
tuning circuit is often very convenient because the stub can be fabricated as part of the
transmission line media of the circuit, and lumped elements are avoided. Shunt stubs are
preferred for microstrip line or stripline, while series stubs are preferred for slotline or
coplanar waveguide.

In single-stub tuning the two adjustable parameters are the distance, d, from the load
to the stub position, and the value of susceptance or reactance provided by the stub. For
the shunt-stub case, the basic idea is to select d so that the admittance, Y, seen looking
into the line at distance d from the load is of the form Yp + j B. Then the stub susceptance
is chosen as — j B, resulting in a matched condition. For the series-stub case, the distance
d is selected so that the impedance, Z, seen looking into the line at a distance d from the
load is of the form Zg + j X. Then the stub reactance is chosen as —j X, resulting in a
matched condition.

As discussed in Chapter 2, the proper length of an open or shorted transmission line
section can provide any desired value of reactance or susceptance. For a given suscep-
tance or reactance, the difference in lengths of an open- or short-circuited stub is A /4.
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FIGURE 5.4  Single-stub tuning circuits. (&) Shunt stub. (b) Series stub.

For transmission line media such as microstrip or stripline, open-circuited stubs are easier
to fabricate since a via hole through the substrate to the ground plane is not needed. For
lines like coax or waveguide, however, short-circuited stubs are usually preferred because
the cross-sectional area of such an open-circuited line may be large enough (electrically)
to radiate, in which case the stub is no longer purely reactive.

We will discuss both Smith chart and analytic solutions for shunt- and series-stub tun-
ing. The Smith chart solutions are fast, intuitive, and usually accurate enough in practice.
The analytic expressions are more precise, and are useful for computer analysis.

Shunt Stubs

The single-stub shunt tuning circuit is shown in Figure 5.4a. We will first discuss an exam-
pleillustrating the Smith chart solution and then derive formulas for d and ¢.

EXAMPLE 5.2 SINGLE-STUB SHUNT TUNING

For aload impedance Z|. = 60 — j80 2, design two single-stub (short circuit)
shunt tuning networks to match thisload to a50 €2 line. Assuming that theload is
matched at 2 GHz and that the load consists of aresistor and capacitor in series,
plot the reflection coefficient magnitude from 1 to 3 GHz for each solution.

Solution
Thefirst step isto plot the normalized load impedancez,. = 1.2 — j 1.6, construct
the appropriate SWR circle, and convert to the load admittance, y| , as shown on
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the Smith chart in Figure 5.5a. For the remaining steps we consider the Smith
chart as an admittance chart. Notice that the SWR circle intersects the 1+ jb
circle at two points, denoted as y1 and y» in Figure 5.5a. Thus the distance d from

theload to the stub is given by either of these two intersections. Reading the WTG
scale, we obtain

d; = 0.176 — 0.065 = 0.1104,
d> = 0.325 — 0.065 = 0.260x.

Actually, there is an infinite number of distances d around the SWR circle
that intersect the 1 + jb circle. Usually it is desired to keep the matching stub as
close as possible to the load to improve the bandwidth of the match and to reduce

losses caused by a possibly large standing wave ratio on the line between the stub
and the load.

At the two intersection points, the normalized admittances are

y1 = 1.00+ j1.47,
yo = 1.00 — j1.47.
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FIGURE 5.5 Solution to Example 5.2. (a) Smith chart for the shunt-stub tuners.
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FIGURE 5.5 Continued. (b) The two shunt-stub tuning solutions. (c) Reflection coefficient mag-

nitudes versus frequency for the tuning circuits of (b).

Thus, the first tuning solution requires a stub with a susceptance of —j1.47. The
length of a short-circuited stub that gives this susceptance can be found on the
Smith chart by starting at y = oo (the short circuit) and moving aong the outer
edge of the chart (g = 0) toward the generator to the —j1.47 point. The stub
length isthen

£ = 0.095).
Similarly, the required short-circuit stub length for the second solution is
£ = 0.405.

This compl etes the two tuner designs.

To analyze the frequency dependence of these two designs, we need to know
the load impedance as a function of frequency. The series-RC load impedance
isZL=60—j80Q at 2 GHz, so R=60Q and C = 0.995 pF. The two tun-
ing circuits are shown in Figure 5.5b. Figure 5.5¢ shows the calculated reflection
coefficient magnitudes for these two solutions. Observe that solution 1 has a sig-
nificantly better bandwidth than solution 2; thisis because both d and ¢ are shorter
for solution 1, which reduces the frequency variation of the match. [ |
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To derive formulas for d and ¢, let the load impedance be writtenas Z|. = 1/Y| =
RL + j XL. Then theimpedance Z down alength d of line from theload is

R i X j Zot
Z:Z( L+ X0+ 120

- - , 57
°Zo+ J(RL+ X0t ©0
wheret = tan 8d. The admittance at this point is
1
Y=G+jB=_=,
+ 7
where
_ RL(1+t?) (5.8
RZ + (XL + Zot)?’
R2t — (Zo — XLt)(XL + Zot
B L (Zo LHXL + Zot) (5.80)

Zo[R? + (XL + Zot)?]
Now d (which implies t) is chosen so that G = Yo = 1/Zq. From (5.83), this resultsin a
quadratic equation for t:
Zo(RL — Zo)t? — 2X Zot + (RLZo — R — X?) = 0.
Solving for t gives

XL \/RU[(Zo— RL2+ X?] /2o
B RL — Zo
If RL = Zp, thent = — X /2Z¢. Thus, the two principal solutionsfor d are

t

for RL # Zo. (5.9

1
d o tan 1t fort >0
d_Jo2r (5.10)

1
—(r+tan"tt) fort <O.
21

Tofind the required stub lengths, first uset in (5.8b) to find the stub susceptance, Bs = —B.
Then, for an open-circuited stub,

b 1. _,(Bs -1 ,(B

=2 - — )= = — 11

T (Y0> o 0 (Y0>’ .13
and for a short-circuited stub,

=== — == —). 11

- 27Ttan (Bs> o= tan (B) (5.11b)
If the length given by (5.11a) or (5.11b) is negative, A /2 can be added to give a positive

result.

Series Stubs

The series-stub tuning circuit is shown in Figure 5.4b. We will illustrate the Smith chart
solution by an example, and then derive expressions for d and ¢.

EXAMPLE 5.3 SINGLE-STUB SERIESTUNING

Match aload impedance of Z| = 100 4 j80 to a50 2 line using a single series
open-circuit stub. Assuming that the load is matched at 2 GHz and that the load
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consists of aresistor and inductor in series, plot the reflection coefficient magni-

tude from 1 to 3 GHz.

Solution

First plot the normalized load impedance, zp =2+ j1.6, and draw the SWR
circle. For the series-stub design the chart is an impedance chart. Note that the
SWR circle intersects the 1 + jx circle at two points, denoted as z; and z, in
Figure 5.6a. The shortest distance, di, from the load to the stub is, from the WTG

scae,
d; = 0.328 — 0.208 = 0.1204,

and the second distanceis
dr» = (0.5 0.208) + 0.172 = 0.463.

As in the shunt-stub case, additional rotations around the SWR circle lead to ad-
ditional solutions, but these are usually not of practical interest.
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FIGURE 5.6  Solution to Example 5.3. (a) Smith chart for the series-stub tuners.
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FIGURE 5.6 Continued. (b) The two series-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

The normalized impedances at the two intersection points are

71=1—j133,
=1+ ]133

Thus, the first solution requires a stub with a reactance of j1.33. The length of
an open-circuited stub that gives this reactance can be found on the Smith chart
by starting at z = oo (open circuit), and moving along the outer edge of the chart
(r = 0) toward the generator to the j 1.33 point. This gives a stub length of

£1 = 0.397x.
Similarly, the required open-circuited stub length for the second solution is
£2 = 0.103x.

This completes the tuner designs.

If theload isaseriesresistor and inductor with Z| = 100+ j80 Q2 at 2 GHz,
then R=100 2 and L = 6.37 nH. The two matching circuits are shown in
Figure 5.6b. Figure 5.6¢c shows the calculated reflection coefficient magnitudes
versus frequency for the two solutions. |
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To derive formulas for d and ¢ for the series-stub tuner, let the load admittance be
writtenasY, = 1/Z, = G| + j BL. Then the admittance Y down alength d of line from
theload is

_y (GL+jBu) +jtYo

- . , (5.12)
Yo+ Jt(GL + | BL)
wheret = tan 8d and Yo = 1/Zg. The impedance at this point is
1
Z=R+ jX=—-
+ ] v
where
GL(1+1?
- ottt . (5.133)
G{ + (BL + Yot)
G2t — (Yo —tBL)(BL + 1Y,
x = oL Yo L)(BL +1Yp) (5.130)

Yo[G? + (BL + Yot)?]

Now d (which impliest) is chosen so that R = Zg = 1/Yp. From (5.134), thisresultsin a
quadratic equation for t:

Yo(GL — Yo)t® — 2B Yot + (GLYo — GZ — BY) = 0.
Solving for t gives

BL + \/GL [(Yo - G2+ BE] /Yo

t for G Yo. 5.14
Ve L# Yo (5.14)
If GL = Yo, thent = —B| /2Yp. Then the two principal solutionsfor d are
1
o tan~ 't fort >0
dp=1" (5.15)

1
— (7w +tan"'t) fort <O.
21

The required stub lengths are determined by first using t in (5.13b) to find the reactance
X. This reactance is the negative of the necessary stub reactance, Xs. Thus, for a short-

circuited stub,
Ls 1, (X -1 (X
— = —tan — | = —tan - 5.16a
A 21 < Zo > 21 Zo)’ ( )
and for an open-circuited stub,
EO _1 1 ZO 1 —1 ZO
— = —tan — | =—tan — . 5.16b
A 21 ( Xs> 21 X ( )

If the length given by (5.168) or (5.16b) is negative, A/2 can be added to give a positive
result.

DOUBLE-STUB TUNING

The single-stub tuner of the previous section is able to match any load impedance (having
a positive real part) to atransmission line, but suffers from the disadvantage of requiring
a variable length of line between the load and the stub. This may not be a problem for a
fixed matching circuit, but would probably pose some difficulty if an adjustable tuner was
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-~ d—

(b)

FIGURE 5.7 Double-stub tuning. (&) Original circuit with the load an arbitrary distance from the
first stub. (b) Equivalent circuit with the load transformed to the first stub.

desired. In this case, the double-stub tuner, which uses two tuning stubs in fixed positions,
can be used. Such tunersare often fabricated in coaxial line with adjustable stubs connected
in shunt to the main coaxia line. We will see, however, that a double-stub tuner cannot
match all load impedances.

The double-stub tuner circuit is shown in Figure 5.7a, where the load may be an ar-
bitrary distance from the first stub. Although this is more representative of a practical sit-
uation, the circuit of Figure 5.7b, where the load Y| has been transformed back to the
position of the first stub, is easier to deal with and does not lose any generality. The shunt
stubs shown in Figure 5.7 can be conveniently implemented for some types of transmission
lines, while series stubs are more appropriate for other types of lines. In either case, the
stubs can be open-circuited or short-circuited.

Smith Chart Solution

The Smith chart of Figure 5.8 illustrates the basic operation of the double-stub tuner. As
in the case of the single-stub tuner, two solutions are possible. The susceptance of the first
stub, by (or by, for the second solution), moves the load admittance to y; (or y;). These
pointslie on the rotated 1 + jb circle; the amount of rotation is d wavelengths toward the
load, where d is the electrical distance between the two stubs. Then transforming y; (or
y;) toward the generator through alength d of line leaves us at the point y» (or y5), which
must be on the 1+ jb circle. The second stub then adds a susceptance by (or b)), which
brings us to the center of the chart and completes the match.

Notice from Figure 5.8 that if the load admittance, y , were inside the shaded region
of the go + jb circle, no value of stub susceptance by could ever bring the load point to
intersect therotated 1 + jb circle. This shaded region thus forms aforbidden range of 1oad
admittances that cannot be matched with this particular double-stub tuner. A simple way
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Rotated
| + j&
circle

Forbidden
regicn

FIGURE 5.8 Smith chart diagram for the operation of a double-stub tuner.

of reducing the forbidden range is to reduce the distance d between the stubs. This has
the effect of swinging the rotated 1 + jb circle back toward the y = oo point, but d must
be kept large enough for the practical purpose of fabricating the two separate stubs. In
addition, stub spacings near 0 or A/2 lead to matching networks that are very frequency
sensitive. In practice, stub spacings are usually chosen as 1./8 or 31/8. If the length of line
between the load and the first stub can be adjusted, then the load admittance y; can always
be moved out of the forbidden region.

EXAMPLE 54 DOUBLE-STUB TUNING

Design a double-stub shunt tuner to match a load impedance Z| = 60 — j80 Q
to a50 2 line. The stubs are to be open-circuited stubs and are spaced 1. /8 apart.
Assuming that this load consists of a series resistor and capacitor and that the
match frequency is 2 GHz, plot the reflection coefficient magnitude versus fre-
guency from 1 to 3 GHz.

Solution

Thenormalized load admittanceisy, = 0.3 + j0.4, whichisplotted on the Smith
chart of Figure 5.9a. Next we construct the rotated 1 + jb conductance circle by
moving every point on the g = 1 circle A/8 toward the load. We then find the
susceptance of the first stub, which can be one of two possible values:

by =1.314 or b} =-0.114.

We now transform through the A /8 section of line by rotating along a constant-
radius (SWR) circle A /8 toward the generator. This brings the two solutionsto the
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following points:
yo=1-j338 or y,=1+j1.38.
Then the susceptance of the second stub should be
b, =338 or b,=-138.
The lengths of the open-circuited stubs are then found as
01 =0.146), £, = 0.2041 or ¢} = 0.482%, ¢, = 0.3501.

This compl etes both solutions for the double-stub tuner design.

At f = 2 GHz the resistor-capacitor load of Z| = 60 — j80 2 implies that
R=60% and C =0.995 pF. The two tuning circuits are then as shown in
Figure 5.9b, and the refl ection coefficient magnitudes are plotted versus frequency
in Figure 5.9c. Note that the first solution has a much narrower bandwidth than
the second (primed) solution due to the fact that both stubs for the first solution
are somewhat longer (and closer to A /2) than the stubs of the second solution. W
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FIGURE 5.9 Solution to Example 5.4. (a) Smith chart for the double-stub tuners.
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FIGURE 5.9 Continued. (b) The two double-stub tuning solutions. (c) Reflection coefficient mag-

nitudes versus frequency for the tuning circuits of (b).

Analytic Solution
The admittance just to the left of thefirst stubin Figure5.7bis
Y1 =GL + j(BL + By), (5.17)

where Y. = G| + j B isthe load admittance, and B; is the susceptance of the first stub.
After transforming through alength d of transmission line, we find that the admittance just
to the right of the second stub is

GL + j(BL + Bz + Yot)
Y2 = Yo . - —,
Yo+ jt(GL + JBL + jBy)
wheret = tan 8d and Yo = 1/Zg. At this point the real part of Yo must equal Yo, which
leads to the equation

(5.18)

1+1t2 N (Yo— BLt — Bit)?

G2 -GLYo 2 = 0. (5.19)

Solving for G gives

1+t2 4t2(Yy — Bt — Byt)2
GL = Y 1+ [1- . 5.20
-0 [ \/ Y31 +12)2 520
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Because G| isreal, the quantity within the square root must be nonnegative, and so

207 _ 2
0< 4t<(Yg — Bt — Bqt)

<1
- YZ(1+ t2)2 -
Thisimplies that
1+1t2 Yo
0<GL =Y = —, 5.21
=GL=Yo— S pd (5.21)

which gives the range on G| that can be matched for a given stub spacing d. After d has
been set, the first stub susceptance can be determined from (5.19) as

Yo+ \/(1+ t2)G, Yo — G212
) .

Then the second stub susceptance can be found from the negative of the imaginary part of
(5.18) to be

By = —B + (5.22)

Y0, /YoGL (L +12) — G2+ GL Yo
By = .
Gt

The upper and lower signs in (5.22) and (5.23) correspond to the same solutions. The
open-circuited stub length is found as

(5.23)

6w 1. ,(B

— =—t — 1, 5.24

Pl <Y0) (5.243)
and the short-circuited stub length is found as

s -1 (Yo

= = — .24

x o < B ) (5.24)

where B = B or B».

THE QUARTER-WAVE TRANSFORMER

As introduced in Section 2.5, the quarter-wave transformer is a simple and useful circuit
for matching a real load impedance to a transmission line. An additional feature of the
quarter-wave transformer isthat it can be extended to multisection designs in a methodical
manner to provide broader bandwidth. If only a narrow band impedance match isrequired,
a single-section transformer may suffice. However, as we will see in the next few sec-
tions, multisection quarter-wave transformer designs can be synthesized to yield optimum
matching characteristics over a desired frequency band. We will seein Chapter 8 that such
networks are closely related to bandpass filters.

One drawback of the quarter-wave transformer is that it can only match a real load
impedance. A complex load impedance can always be transformed into a real impedance,
however, by using an appropriate length of transmission line between the load and the
transformer, or an appropriate series or shunt reactive element. These techniques will usu-
aly ater the frequency dependence of the load, and this often has the effect of reducing
the bandwidth of the match.

In Section 2.5 we analyzed the operation of a quarter-wave transformer from both
an impedance viewpoint and a multiple reflection viewpoint. Here we will concentrate
on the bandwidth performance of the transformer as a function of the load mismatch; this
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z, z § Z, (red)

FIGURE 5.10 A single-section quarter-wave matching transformer. ¢ = 1g/4 at the design fre-

quency fo.

discussion will also serve asaprelude to the more general case of multisection transformers
in the sectionsto follow.

The single-section quarter-wave matching transformer circuit is shown in Figure 5.10,
with the characteristic impedance of the matching section given as

Z1=+/2Z0oZ.. (5.25)

At the design frequency, fo, the electrical length of the matching section is Ag/4, but at
other frequencies the length is different, so a perfect match is no longer obtained. We will
derive an approximate expression for the resulting impedance mismatch versus frequency.
The input impedance seen looking into the matching section is
ZL + jZat

Zin=21———, 5.26
in 1 71+ i Z.t ( )
wheret = tan 8¢ = tan9, and B¢ = 6 = 7 /2 at the design frequency fo. The resulting re-

flection coefficient is

Zin—Zo  Zu(ZL — Zo) + jt(Z2 — ZoZy)

- = . . (5.27)
Zin+Zo  Ziu(ZL + Zo) + jt (22 + Z0Z,)

Because Z7 = ZoZ, this reduces to
. ZL — Zo
ZL 4+ Zo+ j2JZoZL

The reflection coefficient magnitude is

|ZL — Zo|
[(ZL + Z0)? + 42207, ]"?
_ 1
L+ 202/(ZL — Z0)? + [42Z0Z0 /(Z1 — Zo)21}?
. 1
(14142020 /(ZL — 2021+ [4Z0Z1t2/(ZL — 2021} 2

1

_ , 5.29
(14142020 /(ZL — Z0)?) sec?6)™? 529

(5.28)

Il =

sincel+t? =1+ tan’0 = sec?0.
If we assume that the operating frequency is near the design frequency fp, then ¢ ~
ro/4and6 ~ 7/2. Thensec?6 > 1, and (5.29) simplifiesto

2L — Zol

I'| > ————|cosf| for0H near /2. 5.30
[T 2@' I / (5.30)
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IT|

™ 9=l

FIGURE 5.11  Approximate behavior of the reflection coefficient magnitude for a single-section
quarter-wave transformer operating near its design frequency.

Thisresult givesthe approximate mismatch of the quarter-wave transformer near the design
frequency, as sketched in Figure 5.11.

If we set a maximum value, I'r,, for an acceptable reflection coefficient magnitude,
then the bandwidth of the matching transformer can be defined as

b
AO =2 <§ - em), (5.31)
since the response of (5.29) is symmetric about 0 = /2, and ' =I';y, a 6 = O, and at

0 = — 6. Equating 'y, to the exact expression for the reflection coefficient magnitude
in (5.29) allows us to solve for Opy:

— =1 %
Frzn + ZL — 2o m
or
r 2/ ZoZ
coSOm = il ofL (5.32)
V1-TZI1ZL — Zo
If we assume TEM lines, then
2t vp mf
9 = E = =,
and so the frequency of the lower band edge at 6 = 6y, is
fm = s
T
and the fractional bandwidth is, using (5.32),
fo fo B fo 7
4 r 2JZoZ
—2- Zcost m ocL | (5.33)
7 JI-TZ1ZL = Zo

Fractional bandwidth is usually expressed as a percentage, 100A f/fp%. Note that the
bandwidth of the transformer increases as Z| becomes closer to Zg (a less mismatched
load).

The above results are strictly valid only for TEM lines. When non-TEM lines (such as
waveguides) are used, the propagation constant is no longer alinear function of frequency,
and the wave impedance will be frequency dependent. These factors serve to complicate
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FIGURE 5.12 Reflection coefficient magnitude versus frequency for a single-section quarter-

wave matching transformer with various load mismatches.

the general behavior of quarter-wave transformers for non-TEM lines, but in practice the
bandwidth of the transformer is often small enough that these complications do not sub-
stantialy affect the result. Another factor ignored in the above analysis is the effect of
reactances associated with discontinuities when there is a step change in the dimensions of
atransmission line. This can often be compensated by making a small adjustment in the
length of the matching section.

Figure 5.12 shows a plot of the reflection coefficient magnitude versus normalized
frequency for various mismatched loads. Note the trend of increased bandwidth for smaller
load mismatches.

EXAMPLE 55 QUARTER-WAVE TRANSFORMER BANDWIDTH

Design a single-section quarter-wave matching transformer to match a 10 Q2 load
to a50 Q transmission lineat fo = 3 GHz. Determine the percent bandwidth for
which the SWR < 1.5.

Solution
From (5.25), the characteristic impedance of the matching section is

Z1 =+/ZoZ| = +/(50)(10) = 22.36 2,

and the length of the matching section is A /4 at 3 GHz (the physical length de-
pends on the dielectric constant of the line). An SWR of 1.5 corresponds to a
reflection coefficient magnitude of

_SWR-1 15-1
~ SWR+1 1541
The fractional bandwidth is computed from (5.33) as

Af 4 r NIV
— —=2-_"cos? m ocL
V1-TZI1ZL — Zol

I'm 0.2.

fo b3

oA e 02  2/0)(10)
o J/1—(0.2)2 |10-50]

= 0.29, or 29%. [ |
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5.5

THE THEORY OF SMALL REFLECTIONS

The quarter-wave transformer provides a simple means of matching any real load imped-
anceto any transmission lineimpedance. For applications requiring more bandwidth than a
single quarter-wave section can provide, multisection transformers can be used. The design
of such transformers is the subject of the next two sections, but prior to that material we
need to derive some approximate results for the total reflection coefficient caused by the
partial reflections from several small discontinuities. This topic is generaly referred to as
the theory of small reflections [1].

Single-Section Transformer

We will derive an approximate expression for the overall reflection coefficient, I', for
the single-section matching transformer shown in Figure 5.13. The partia reflection and
transmission coefficients are

Iy = Z; 2 (5.34)
= T, (5.35)

= % (5.36)
Ty = 14T = % (5.37)
To=1+Tp= % (5.38)

We can computethetotal reflection, I', seen by the feed line using either theimpedance
method, or the multiple reflection method, as discussed in Section 2.5. For our present

FIGURE 5.13  Partid reflections and transmissions on a single-section matching transformer.




5.5 The Theory of Small Reflections 251

purpose the latter technique is preferred, so we express the total reflection as an infinite
sum of partial reflections and transmissions as follows:

[ =T+ TiaTalze 20 + T12T21F§F26_4j0 +-

o
= T'1 + T2 T3 27 ) " rhrge 2", (5.39)
n=0
The summation of the geometric series

> 1

D oxM=——— for|x| <1
1-—x

n=0

allows us to express (5.39) in closed form as

Ti2To13e21?
r=r —_
Lt I Toree 210
From (5.35), (5.37), and (5.38), weuse 'y = —T'1, Toy =1+T1,and Tio =1—-T71 in
(5.40) to give

(5.40)

_ '+ F3872j0
14 Tige 2007

If the discontinuities between theimpedances Z1, Z, and Zp, Z| aresmall, then |I'1T'3| =1,
so we can approximate (5.41) as

(5.41)

[~ T+ e 2, (5.42)
Thisresult expressestheintuitive ideathat thetotal reflection isdominated by the reflection
from the initial discontinuity between Z; and Z, (I'1), and the first reflection from the
discontinuity between Z, and Z, (I'se~21?). The e 21? term accounts for the phase delay
when the incident wave travels up and down the line. The accuracy of this approximation
isillustrated in Problem 5.14.

Multisection Transformer

Now consider the multisection transformer shown in Figure 5.14, which consists of N
equal-length (commensurate) sections of transmission lines. We will derive an approximate
expression for the total reflection coefficient I.

Partial reflection coefficients can be defined at each junction, asfollows:

Z1— Zo
I'op = , 5.43
0 Z1+ Zo (5.439)
Zn+l —Zn
= —+, 5.43b
" Zny1+ Zn ( )
ZL —ZN
'N=———. 5.43c
N ZL +2ZN ( )
6 6 -~ —>
O—
Z, 1D Z Z e Zy 4
oO—
Ty Iy I I'y

FIGURE 5.14  Partia reflection coefficients for a multisection matching transformer.
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5.6

We also assume that all Z, increase or decrease monotonically across the transformer
and that Z| isreal. This implies that all T, will be real and of the same sign (I'y > 0
if ZL > Zo; Tnh < 0if ZL < Zp). Using the results of the previous section alows us to
approximate the overall reflection coefficient as

[(@) =To+ e 2% 4 re ™ ...y e 2N, (5.44)

Further assume that the transformer can be made symmetrical, so that 'o = I'y, I'1 =
I'n—1, I'2 = I'n—2, and so on. (Note that this does not imply that the Z, are symmetrical.)
Then (5.44) can be written as

r©) =e N {Fo[eiN9 +e N0 1yl (N=20 4 g I(N=20] 4 . } (5.45)

If N isodd, thelast termis Ty —1)/2(el? + e71%), whileif N iseven, thelast termis Ty 2.
Equation (5.45) is seen to be of the form of a finite Fourier cosine seriesin 6, which can
be written as

reo = 2e~ N0 [FocosNG + I'1c0s(N — 2)6 + - - - 4+ I'ncos(N — 2n)6

1
+ EFN/Z} for N even, (5.46a)

T'©) =26 N[ cosNG + ' cos(N — 2)0 + - - - + T'p cos(N — 2n)@
+---+T(n—p,2c0os6] for N odd. (5.46b)

The importance of these results lies in the fact that we can synthesize any desired
reflection coefficient response as a function of frequency (6) by properly choosing the I'
and using enough sections (N). This should be clear from the realization that a Fourier se-
ries can approximate an arbitrary smooth function if enough terms are used. In the next two
sections we will show how to use this theory to design multisection transformers for two
of the most commonly used passband responses: the binomial (maximally flat) response,
and the Chebyshev (equal-ripple) response.

BINOMIAL MULTISECTION MATCHING TRANSFORMERS

The passband response (the frequency band where a good impedance match is achieved)
of a binomial matching transformer is optimum in the sense that, for a given number of
sections, the responseis asflat as possible near the design frequency. Thistype of response,
which is aso known as maximally flat, is determined for an N-section transformer by
setting the first N — 1 derivatives of |T"(9)| to zero at the center frequency, fo. Such a
response can be obtained with a reflection coefficient of the following form:

r'®) = Al+e 2NN, (5.47)
Then the reflection coefficient magnitude is
T @) = |Alle?Njel? + 17N
= 2N|Al| coso N (5.48)

Notethat |T'(9)| = Ofor 0 = 7r/2,andthat d"|I"(9)|/dO" = 0at® = n/2forn=1,2,...,
N — 1. (¢ = /2 corresponds to the center frequency, fg, for which £ = 1/4 and 6 =
Bt =m/2)
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We can determine the constant A by letting f — 0. Then 6 = 8¢ = 0, and (5.47)
reduces to

ZL - Zo

ro=2Na==-"-_=-",
© Z + 2o

sincefor f = Qall sectionsare of zero electrical length. The constant A can then bewritten
as

NZL—Zo
A=2"N==2 =2 5.49
7L + Zo (5.49)
Next we expand I'(0) in (5.47) according to the binomial expansion:
re) =Ald+e 9N =A% "clled™, (5.50)
n=0
where
N!

N
= 5.51
" (N =n)n! (5.5

arethebinomial coefficients. Notethat C)' = CY_,, C)Y =1, andC}) = N=C}_,. The
key step is now to equate the desired passband response, given by (5.50), to the actual
response as given (approximately) by (5.44):

N
r@ =AY Che @™ =rg+ e 2 + Tpef 4. 4 e 2N,
n=0

This shows that the I'r; must be chosen as
Iy = ACN. (5.52)

where A isgiven by (5.49) and C) isabinomia coefficient.

At this point, the characteristic impedances, Z,,, can be found via (5.43), but asimpler
solution can be obtained using the following approximation [1]. Because we assumed that
the I', are small, we can write

Zn-|-1 —Zn ~ 1— In Zn+1

F i —_ )
" Zn+1 + Zn 2 Zn

sinceInx >~ 2(x — 1)/(x + 1) for x close to unity. Then, using (5.52) and (5.49) gives

Znya L—Zo

z z
In ~ 2 = 2ACN = 2¢27N) = CN~2-NcNin Z—L (5.53)
0

n L+ Zo

which can be used to find Z11, starting with n = 0. This technique has the advantage of
ensuring self-consistency, in that Zy41 computed from (5.53) will be equal to Z, as it
should.

Exact design results, including the effect of multiple reflections in each section, can
be found by using the transmission line equations for each section and numerically solv-
ing for the characteristic impedances [2]. The results of such calculations are listed in
Table 5.1, which gives the exact line impedances for N = 2-, 3-, 4-, 5-, and 6-section
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binomial matching transformers for various ratios of load impedance, Z| , to feed line
impedance, Zg. Thetable givesresultsonly for Z /Zg > 1; if Z /Zp < 1, theresults for
Zo/Z\. should be used but with Z; starting at the load end. This is because the solution is
symmetric about Z| /Zg = 1; the same transformer that matches Z| to Zg can be reversed
and used to match Zg to Z| . More extensive tables can be found in reference [2].

The bandwidth of the binomial transformer can be evaluated as follows. Asin Section
5.4, let I'm be the maximum value of reflection coefficient that can be tolerated over the
passband. Then from (5.48),

I'm = 2V Al cosN 6,

where 6y, < /2 isthe lower edge of the passband, as shown in Figure 5.11. Thus,

1 /T \UN
Om = cos * [5 <ﬁ> } (5.54)
and using (5.33) gives the fractional bandwidth as
Af _2(fo—fm) _,  %m
fo fo - b4
1/N
=2— ;cos_l |:% (%T) :| (5.55)

EXAMPLE 5.6 BINOMIAL TRANSFORMER DESIGN

Design a three-section binomial transformer to match a 50 2 load to a 100
line and calculate the bandwidth for I'yy = 0.05. Plot the reflection coefficient
magnitude versus normalized frequency for the exact designsusing 1, 2, 3, 4, and
5 sections.

Solution
For N =3, Z. =50, and Zp = 100 2 we have, from (5.49) and (5.53),

Z|_ — Zo 1 ZL
N

~ In— = —0.0433.
ZL+Zo 2N+t 74

From (5.55) the bandwidth is

Af L, A 1|1 (Tm\7"
fo e 2 Al

4 1/ 005\
=2——cos | —= = 0.70, or 70%.
- [2 (o.0433> } ’ °

A=2"

The necessary binomial coefficients are

Cozﬁzl,

s_ 3 _
171 ™™
s_ 3 _
2_ .
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FIGURE 5.15 Reflection coefficient magnitude versus frequency for multisection binomial
matching transformers of Example 5.6. Z| = 50 © and Zg = 100 €.

Using (5.53) gives the required characteristic impedances as
Z
n=0: Inz;= |nzo+2—Nc:g|nZ—L
0

50
=1n100 +23(1) In— = 4.518,
n + Q) nlOO
Z1 =917

z
n=1: InZy= |nzl+z—Nc§|nZ—L
0

=1n9L.7+273@3)In S0 _ 4.26,

100
Zy =70.7 Q;

Z
n=2: InZz= InZz—i-Z*NCgan—L
0

50
=1In70.7 + 273(3) In — = 4.00,
n70.7+2"3 55
Z3 =545Q.

To use the data in Table 5.1 we reverse the source and load impedances and
consider the problem of matchinga 100 2 loadtoa50 2 line. Then Z . /Zg = 2.0,
and we obtain the exact characteristicimpedancesas Z1 = 91.7 Q, Z, = 70.7 Q,
and Z3 = 54.5 @, which agree with the approximate results to three significant
digits. Figure 5.15 shows the reflection coefficient magnitude versus frequency for
exact designsusing N = 1, 2, 3, 4, and 5 sections. Observe that greater bandwidth
is obtained for transformers using more sections. |

5.7

CHEBYSHEV MULTISECTION MATCHING TRANSFORMERS

In contrast with the binomial transformer, the multisection Chebyshev matching trans-
former optimizes bandwidth at the expense of passband ripple. Compromising on the flat-
ness of the passband response leads to a bandwidth that is substantially better than that of
the binomial transformer for a given number of sections. The Chebyshev transformer is
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designed by equating I' () to a Chebyshev polynomial, which has the optimum character-
istics needed for thistype of transformer. We will first discuss the properties of Chebyshev
polynomials and then derive a design procedure for Chebyshev matching transformers us-
ing the small-reflection theory of Section 5.5.

Chebyshev Polynomials

The nth-order Chebyshev polynomial is a polynomial of degree n, denoted by T,(x). The
first four Chebyshev polynomials are

T1(X) = X, (5.56a)
To(x) = 2x% - 1, (5.56h)
Ta(x) = 4x3 — 3x, (5.56¢)
Ta(x) = 8x* —8x% + 1. (5.560)

Higher order polynomials can be found using the following recurrence formula:
Tn(X) = 2XTn—1(X) — Th—2(X). (5.57)

The first four Chebyshev polynomials are plotted in Figure 5.16, from which the fol-
lowing very useful properties of Chebyshev polynomials can be noted:

e For —1 <x <1, |Th(x)| < 1. In this range the Chebyshev polynomials oscillate
between +1. This is the equal-ripple property, and this region will be mapped to
the passband of the matching transformer.

e For |X| >1, |Th(x)| >1. This region will map to the frequency range outside the
passband.

e For |x| >1, the | Th(X)| increases faster with X as n increases.

Ta()

6

6

FIGURE 5.16  Thefirst four Chebyshev polynomials, Tn(x).
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Now let x = cosé for |x| < 1. Then it can be shown that the Chebyshev polynomials
can be expressed as
Th(cosH) = cosnd,
or more generaly as
Tn(X) = cos(ncos L x) for |x| < 1, (5.58a)
Ta(x) = cosh(ncosh™tx) forx > 1. (5.58b)

We desire equal ripple for the passband response of the transformer, so it is necessary to
map 6y, to X = 1 and & — 6, to X = —1, where 6, and = — 6, are the lower and upper
edges of the passband, respectively, as shown in Figure 5.11. This can be accomplished by
replacing cosé in (5.58a) with cosé /cos Opy:

cosf cos
Tn = Tn(secOmcosh) = cosn | cost : (5.59)
C0S6m c0S6m

Then | secOmcosh| < 1 for 6 < < — Om, SO |Th(SECHy, cosH)| < 1 over this same
range.

Because cos" 6 can be expanded into a sum of terms of the form cos(n — 2m)é, the
Chebyshev polynomials of (5.56) can be rewritten in the following useful form:

T1(SeCHm cosh) = secHm coso, (5.60a)
To(SeCHm €0SO) = Sec? fm(1 + cos20) — 1, (5.60b)
Ta(SeCHm €0SO) = SeC® O (cos30 + 3¢c0sH) — 3S6CHm COSH, (5.60c)

Ta(SECHm €OSO) = SeC* O (COs40 + 4c0s20 + 3)
—45ec? O (c0S20 + 1) + 1. (5.60d)

These results can be used to design matching transformers with up to four sections, and
will also be used in later chapters for the design of directional couplers and filters.

Design of Chebyshev Transformers

We can now synthesize a Chebyshev equal-ripple passband by making I'(¢) proportional
to Tn(secHmcosh), where N is the number of sections in the transformer. Thus, using
(5.46), we have

r©) = 261Ny cosNG + 'y cos(N — 2)8 + - - - + T cos(N — 2n)8 + - - -]
= Ae INITy (secO cosh), (5.61)

where the last term in the series of (5.61) is (1/2)I'n/2 for N even and I'(n_1),2 cosé for
N odd. Asin the binomial transformer case, we can find the constant A by letting 6 = 0,
corresponding to zero frequency. Thus,

ZL — Zo
') = ———— = ATn(Sectm),
() ZL+ZO N( m)
so we have
_ZL—12p 1

= . 5.62
ZL + Zo Tn(secOm) (562

If the maximum allowable reflection coefficient magnitude in the passband is I'ry, then
from (5.61) I'm= | A| since the maximum value of T, (sec 6y, cos6) in the passband is unity.
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Then (5.62) gives

1
Tn(sectbm) = T
m

Z. — 2o
ZL+ 2o

’

1 1
SeCHm = cosh | — cosh™1 [ —
" [N (Fm

InZy/Zp

which, after using (5.58b) and the approximations introduced in Section 5.6, allows usto
7L — 2o

determine 6, as
ZL+ Zo ﬂ

TR

Once 6, is known, the fractional bandwidth can be calculated from (5.33) as

AT, %
fo b4

~ cosh [i cosh™t (
N

(5.64)

From (5.61), the I', can be determined using the results of (5.60) to expand Ty (Sec 6y, cosH)
and equating similar terms of the form cos(N — 2n)6. The characteristic impedances Z,
can be found from (5.43), although, as in the case of the binomial transformer, accuracy
can be improved and self-consistency can be achieved by using the approximation that
~ 1 Zn+1
In >~ > In 7

This procedure will beillustrated in Example 5.7.

The above results are approximate because of the reliance on small-reflection theory
but are general enough to design transformers with an arbitrary ripple level, I'yy,. Table 5.2
gives exact results [2] for a few specific values of I'y, for N = 2, 3, and 4 sections;, more
extensive tables can be found in reference [2].

EXAMPLE 5.7 CHEBYSHEV TRANSFORMER DESIGN

Design a three-section Chebyshev transformer to match a 100 €2 load to a 50 ©
line with I', = 0.05, using the above theory. Plot the reflection coefficient mag-
nitude versus normalized frequency for exact designsusing 1, 2, 3, and 4 sections.

Solution
From (5.61) with N = 3,

') = 26 1% (I'gcos30 + I'1 cos) = Ae 1% T3(secHim cosh).

Then A = I'y = 0.05, and from (5.63),

_ 1 _1(InZy/Zo
secé)m_cosh[Ncosh ( T )}

_ 1 _1 {In(100/50)
= cosh [3 cosh < 2(0.05)
= 1.408,
S0 Om = 44.7°.
Using (5.60c) for T3 gives

2(Tgcos30 + I'1 cosh) = Asec® Om(cos36 + 3cosh) — 3ASeCHy, CoSH.
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TABLE 5.2 Chebyshev Transformer Design

N=2 N=3
I'm=0.05 I'm=0.20 I'm=0.05 I'm=0.20
Z/Zo| Z1/Zo0 Z2/Zo | Z1/Z0 Z2/Z0 | Z1/Z0 Z2/Z0 Z3/Z0 | Z1/Z0 Z2/Z0 Z3/Zo
1.0 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
1.5 1.1347 1.3219 1.2247 1.2247 1.1029 1.2247 1.3601 1.2247 1.2247 1.2247
2.0 1.2193 1.6402 1.3161 1.5197 1.1475 1.4142 1.7429 1.2855 1.4142 1.5558
3.0 1.3494 22232 | 14565 2.0598 | 1.2171 1.7321 24649 | 1.3743 17321 2.1829
4.0 14500 2.7585 | 1.5651 25558 | 1.2662 2.0000 3.1591 | 14333 2.0000 2.7908
6.0 1.6047 3.7389 | 1.7321 34641 | 1.3383 24495 44833 | 15193 24495 3.9492
8.0 1.7244 46393 | 1.8612 4.2983 | 1.3944 28284 57372 | 15766 2.8284 5.0742
10.0 1.8233 54845 | 1.9680 5.0813 | 14385 3.1623 6.9517 | 1.6415 3.1623 6.0920
N=4
I'm = 0.05 I'm=0.20

Z\/Zo | Z1/Z0 Z2/Zo0 Z3/Z0 Za/Zo | Z1/Zo0 Z2/Z0 Z3/Zo  Z4/Zp

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0892 1.1742 1.2775 1.3772 1.2247 1.2247 1.2247 1.2247

2.0 1.1201 1.2979 1.5409 1.7855 1.2727 1.3634 1.4669 1.5715

3.0 1.1586 14876 2.0167 2.5893 1.4879 1.5819 1.8965 2.0163

4.0 1.1906 1.6414 2.4369 3.3597 1.3692 1.7490 2.2870 2.9214

6.0 1.2290 1.8773 3.1961 4.8820 1.4415 2.0231 2.9657 4.1623

8.0 1.2583 2.0657 3.8728 6.3578 1.4914 2.2428 3.5670 5.3641

10.0 1.2832 2.2268 4.4907 7.7930 1.5163 2.4210 4.1305 6.5950

Equating similar termsin cosné gives the following results:

cos30:

CosH:

2y = ASecs O,

"o = 0.0698;

I'1 = 0.1037.

From symmetry we also have that

n=0:
n=1
n=2:

I's = I'g = 0.0698,
I'o =T1=0.1037.

Then the characteristic impedances are:
InZy =InZg+ 2I'g

2 = 3A(SEC3 Om — SECOm),

— In50 + 2(0.0698) = 4.051
Z1 =57.5Q;

INZ, =InZ; 4+ 2I";

= In57.5+ 2(0.1037) = 4.259
Z; =70.7 Q;

InZz =1InZy+2I',

=1In70.7 + 2(0.1037) = 4.466
Z3=87.0%.
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FIGURE 5.17  Reflection coefficient magnitude versus frequency for the multisection matching

5.8

transformers of Example 5.7.

These values can be compared to the exact valuesfrom Table 5.2 of Z; = 57.37 €,
Zp = 70.71 @, and Z3 = 87.15 Q. The bandwidth, from (5.64), is

Af 40m 44.7°
——2-M_2 4 —1.01
fo e <180°) ’

or 101%. This is significantly greater than the bandwidth of the binomial trans-
former of Example 5.6 (70%), which involved the same impedance mismatch.
The trade-off, of course, is a nonzero ripple in the passband of the Chebyshev

transformer.
Figure 5.17 shows reflection coefficient magnitudes versus frequency for the
exact designs from Table 5.2 for N = 1, 2, 3, and 4 sections. |

TAPERED LINES

In the preceding sections we discussed how an arbitrary real load impedance could be
matched to aline over a desired bandwidth by using multisection matching transformers.
As the number N of discrete transformer sections increases, the step changes in charac-
teristic impedance between the sections become smaller, and the transformer geometry
approaches a continuously tapered line. In practice, of course, a matching transformer
must be of finite length—often no more than a few sections long. This suggests that,
instead of discrete sections, the transformer can be continuously tapered, as shown in
Figure 5.18a. Different passband characteristics can be obtained by using different types of
taper.

In this section we will derive an approximate theory, again based on the theory of small
reflections, to predict the reflection coefficient response as a function of the impedance
taper versus position, Z(z). We will apply these results to a few common types of imped-
ance tapers.

Consider the continuously tapered line of Figure 5.18a as being made up of a num-
ber of incremental sections of length Az, with an impedance change AZ(z) from one
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Z, Z(2) |
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FIGURE 5.18 A tapered transmission line matching section and the model for an incremen-

tal length of tapered line. (@) The tapered transmission line matching section.
(b) Model for an incremental step change in impedance of the tapered line.

section to the next, as shown in Figure 5.18b. The incremental reflection coefficient from
the impedance step at z is given by

_(Z+AZ)-Z _AZ

= ~ . 5.65
(Z+AZ2)+2Z 27 ( )
In thelimit as Az — 0 we have an exact differential:
dZz 1d(nzZ/zZ
dr _ LddnZ/Zo) ., (5.66)

222 dz
since
dinf(z) 1df(2)

dz T f dz

By using the theory of small reflections, we can find the total reflection coefficient at
z = 0 by summing all the partial reflections with their appropriate phase shifts:

1 [t - Z
re = 5/ e‘zlﬂzdi In (—) dz, (5.67)
z=0 z

where 6 = 2p¢. If Z(2) is known, I"(0) can be found as a function of frequency. Alter-
natively, if I'(0) is specified, then in principle Z(z) can be found by inversion. This latter
procedure is difficult, and is generally avoided in practice; the reader is referred to refer-
ences [1] and [4] for further discussion of this topic. Here we will consider three special
cases of Z(z) impedance tapers, and eval uate the resulting responses.

Exponential Taper

Consider first an exponential taper, where

Z(2) = Zpe®* for0<z< L, (5.68)
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FIGURE 5.19 A matching section with an exponential impedance taper. (a) Variation of imped-

ance. (b) Resulting reflection coefficient magnitude response.

asindicated in Figure 5.19a. At z= 0, Z(0) = Z, asdesired. At z= L we wish to have
Z(L) = Z| = Zoe?t, which determines the constant a as

a= lln(ﬂ) (5.69)
L \Zo

We find I (0) by using (5.68) and (5.69) in (5.67):

1[5 _5,,d
== —2jpz | azd

_InZ./Z / " e 2ik7gy
2L 0

_ InZL/Zoe_jﬂLsinﬁL‘
2 BL

(5.70)

Observe that this derivation assumes that 3, the propagation constant of the tapered line, is
not a function of z—an assumption generally valid only for TEM lines.

The magnitude of the reflection coefficient in (5.70) is sketched in Figure 5.19b; note
that the peaks in |T"| decrease with increasing length, as one might expect, and that the
length should be greater than /2 (8L > ) to minimize the mismatch at low frequencies.

Triangular Taper

Next consider atriangular taper for dIn(Z/Zp) /dz, that is,

Zoe2(z/L)2InZL/Zo forO<z=<L/2

Z(2) = Zoe42/L-222/L2-1)INZ /2o fop Li2<z<L,

(5.71)
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FIGURE 520 A matching section with a triangular taper for d(InZ/Zg)/dz. (a) Variation of
impedance. (b) Resulting reflection coefficient magnitude response.

so that the derivativeis triangular in form:;

d(nz/Zo) 4z/L2InZ/Zo for0O<z<L/2 572
dz | @4/L —4z/L)InZ /Zy forL/2<z<L. '
Z(z) isplotted in Figure 5.20a. Evaluating I" from (5.67) gives
1 Z,\ [snBL/2)7?
r@) = Le it n (2L [SNBL/DTY 7
0) 2e n<Zo 5L/2 (5.73)

The magnitude of this result is sketched in Figure 5.20b. Note that, for SL > 2, the
peaks of the triangular taper are lower than the corresponding peaks of the exponential
case. However, the first null for the triangular taper occurs at L = 27, whereas for the
exponential taper it occursat BL = 7.

Klopfenstein Taper

Considering the fact that there is an infinite number of possibilities for choosing an
impedance matching taper, it islogical to ask if thereisadesign that is“best.” For agiven
taper length (greater than some critical value), the Klopfenstein impedance taper [4, 5] has
been shown to be optimum in the sense that the reflection coefficient is minimum over the
passhand. Alternatively, for amaximum reflection coefficient specification in the passband,
the Klopfenstein taper yields the shortest matching section.

The Klopfenstein taper is derived from a stepped Chebyshev transformer as the num-
ber of sections increases to infinity, and is analogous to the Taylor distribution of antenna
array theory. We will not present the details of this derivation, which can be found in
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references[1] and [4]; only the necessary results for the design of Klopfenstein tapers are
given in what follows.

The logarithm of the characteristic impedance variation for the Klopfenstein taper is
given by

InZ(z) = > InZoZ, + coshAA ¢(2z/L -1, A) forO<z<lL, (5.74)
where the function ¢ (x, A) is defined as
X (A1 — y2?
¢u,A>=—4w—x,A>=u/ BAVIZ Y4y forjx <1, (5.75)
0o AJ/1-y?

where 11(x) isthe modified Bessel function. The function of (5.75) has the following spe-
cial values:

$0, A) =0
px, 0) =
o1, A) = COShLL,

A2
but otherwise (5.75) must be calculated numericaly. A simple and efficient method for
doing thisis available [6].

The resulting reflection coefficient is given by

L Cosy/(BL)Z — A?
cosh A

If BL < A, thecos/(BL)2 — AZ term becomes cosh/ A2 — (BL)2.
In (5.74) and (5.76), I'g is the reflection coefficient at zero frequency, given as

') = e P for BL > A. (5.76)

ZL—-Zo 1 ZL
o= ~—In{=—). 5.77
0= Z ¥z 2" ( zo> .77)
The passband is defined as L > A, and so the maximum ripple in the passband is
o
'm= 5.78
™™ cosh A (>.78)

because I' (9) oscillates between +1'g/ cosh Afor L > A.

It is interesting to note that the impedance taper of (5.74) has steps at z= 0 and
L (the ends of the tapered section) and so does not smoothly join the source and load
impedances. A typical Klopfenstein impedance taper and its response are given in the fol-
lowing example.

EXAMPLE 5.8 DESIGN OF TAPERED MATCHING SECTIONS

Design a triangular taper, an exponentia taper, and a Klopfenstein taper (with
I'm = 0.02) to match a50 2 load to a 100 €2 line. Plot the impedance variations
and resulting reflection coefficient magnitudes versus L.

Solution
Triangular taper: From (5.71) the impedance variation is

e22/L)2InZy /2o for0<z<L/2

2(2) = 2o e4z/L—222/L2-1)InZ|/Z0  for Lj2<z<L,
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FIGURE 5.21  Solution to Example 5.8. (a) Impedance variations for the triangular, exponential,
and Klopfenstein tapers. (b) Resulting reflection coefficient magnitude versus fre-
quency for the tapers of ().

with Zg = 100 Q and Z| = 50 Q2. Theresulting reflection coefficient responseis

given by (5.73):
1. [z, [sinBL/2)7?
r@M==zn{— || —————1| .
o=z ”(zo)[ BL/2
Exponential taper: From (5.68) the impedance variation is
2(2) = Zpe** for0<z<lL,
witha = (1/L)InZ_/Zy = 0.693/L. Thereflection coefficient responseis, from

(5.70),
1 ZL\ snpL
=—In{—=— .
ol 2n(20> BL
Klopfenstein taper: Using (5.77) givesI'g as

1 ZL
I'o==In{ =) = 0.346,
°72 (Zo>
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and (5.78) gives A as

_1(To _1 (0.346
A= 1(Z2) = 1(===) =3.543.
cosh (Fm> cosh < 0.02 ) 3.543

The impedance taper must be numerically evaluated from (5.74). The reflection
coefficient magnitude is given by (5.76):

cos/(BL)2 — A2

cosh A

The passhand for the Klopfenstein taper isdefined as BL > A = 3.543 = 1.13x.

Figure 5.21 shows the impedance variations (vs. z/L), and the resulting re-
flection coefficient magnitude (vs. BL) for the three types of tapers. The Klopfen-
stein taper givesthedesired responseof |[T'| < I'y = 0.02for L > 1.13x, which
is smaller than the corresponding lengths of either the triangular or the expo-
nential taper transformer. Also note that, like the stepped-Chebyshev matching
transformer, the response of the Klopfenstein taper has equal-ripple lobes versus
frequency in its passband. |

(@) =To

THE BODE-FANO CRITERION

In this chapter we discussed several techniques for matching an arbitrary load at a single
frequency, using lumped elements, tuning stubs, and single-section quarter-wave trans-
formers. We presented multisection matching transformers and tapered lines as a means of
obtaining broader bandwidths with various passband characteristics. We close our study of
impedance matching with a somewhat qualitative discussion of the theoretical limits that
constrain the performance of an impedance matching network.

We limit our discussion to the circuit of Figure 5.1, where alossless network is used to
match an arbitrary complex load, generally over anonzero bandwidth. From avery genera
perspective, we might raise the following questionsin regard to this problem:

e Can we achieve a perfect match (zero reflection) over a specified bandwidth?

e |f not, how well can we do? What is the trade-off between I'ry,, the maximum allow-
able reflection in the passband, and the bandwidth?

e How complex must the matching network be for a given specification?

These questions can be answered by the Bode—Fano criterion [7, 8] which gives, for
certain canonical types of load impedances, a theoretical limit on the minimum reflec-
tion coefficient magnitude that can be obtained with an arbitrary matching network. The
Bode—Fano criterion thus represents an optimum result that can be ideally achieved, even
though such aresult may only be approximated in practice. Such optimal results are always
important, however, because they specify an upper limit of performance, and so provide a
benchmark against which a practical design can be compared.

Figure 5.22a shows a lossless network used to match a parallel RC load impedance.
The Bode—Fano criterion states that

o0 1 T
In do < —, 5.79
/o T~ RC 679

where I'(w) is the reflection coefficient seen looking into the arbitrary lossless match-
ing network. The derivation of this result is beyond the scope of this text (the interested
reader is referred to references [7] and [8]); our goa hereis to discuss the implications of
thisresult.
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Circuit Bode-Fano limit
Lossless ?
N w) - f 1 T
< )| matchin C—/ R In do < 5=
networkg o Nl RC

@

Lossless *
I'(w) : % R j 1 1
) matchin —In dw < 7RC
networkg 0 0 M)
T

(b)

Lossless
network
()
R
L
(d)

1 dw<LL

'/; $|n|r(w)| R
[

(o) Lossless

< )| matching

network

1 C|w<7T—R

0 nIr(w)l L

FIGURE 5.22 The Bode—Fano limits for RC and RL loads matched with passive and lossless
networks (wg is the center frequency of the matching bandwidth). (a) Parallel RC.
(b) Series RC. (c) Parallel RL. (d) Series RL.

Assume that we desire to synthesize a matching network with a reflection coefficient
response like that shown in Figure 5.23a. Applying (5.79) to this function gives

R 1 1 1 T
In—dw:/ INn—dw = Awln— < —, 5.80
/0 T o Tm Im = RC (.80

which leads to the following conclusions:

e For agiven load (afixed RC product), a broader bandwidth (Aw) can be achieved
only at the expense of a higher reflection coefficient in the passband (I'ry).

e The passband reflection coefficient, I'yy,, cannot be zero unless Aw = 0. Thus a
perfect match can be achieved only at a finite number of discrete frequencies, as
illustrated in Figure 5.23h.

e AsRand/or C increases, the quality of the match (Aw and/or 1/ I'y) must decrease.
Thus, higher-Q circuits are intrinsically harder to match than are lower-Q circuits
(we will discussQ in Chapter 6).

Becauseln (1/|I"|) isproportional to thereturn loss (in dB) at the input of the matching
network, (5.79) can be interpreted as requiring that the area between the return loss curve
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IT|
1
r.l
O %Aw*’ w
@
IT| IT|
Not realizable @ Redlizable @

(b)
FIGURE 5.23  Illustrating the Bode—Fano criterion. (a) A possible reflection coefficient response.

(b) Nonrealizable and realizable reflection coefficient responses.

and the |I'| =1 (RL = 0 dB) axis must be less than or equal to a particular constant.
Optimization then implies that the return loss curve be adjusted so that |[T'| =T'\, over
the passband and |T'| =1 elsewhere, as in Figure 5.23a. In this way, no area under the
return loss curve is wasted outside the passband, or lost in regions within the passband
for which |I"| < I'm. The square-shaped response of Figure 5.23ais therefore the optimum
response, but cannot be realized in practice because it would require an infinite number
of elementsin the matching network. It can be approximated, however, with a reasonably
small number of elements, as described in reference [8]. Finally, note that the Chebyshev
matching transformer can be considered as a close approximation to the ideal passband of
Figure 5.23a when the ripple of the Chebyshev response is made equal to I'y,. Figure 5.22
lists the Bode—ano limits for other types of RC and RL loads.
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PROBLEMS

51

5.2

53

54
55

5.6
5.7

5.8

5.9

5.10
511

512

513

514

Design two lossless L-section matching circuits to match each of the following loads to a 100 Q2
generator at 3GHz. () Z| =150— j200Q and (b) Z|. = 20— j9O Q.

We have seen that the matching of an arbitrary load impedance requires a network with at least two
degrees of freedom. Determine the types of load impedances/admittances that can be matched with
the two single-element networks shown below.

(b)

A load impedance Z|. = 100 + j80 2 isto be matched to a 75 2 line using a single shunt-stub tuner.
Find two designs using open-circuited stubs.

Repeat Problem 5.3 using short-circuited stubs.

A load impedance Z| = 90 + j60 €2 isto be matched to a 75 2 line using a single series-stub tuner.
Find two designs using open-circuited stubs.

Repeat Problem 5.5 using short-circuited stubs.

Inthecircuit shown below aload Z| = 200 + j100 €2 isto be matched to a40 €2 line, using alength
£ of lossless transmission line of characteristic impedance Z;. Find ¢ and Z;. Determine, in general,
what type of load impedances can be matched using such a circuit.

Z,=40Q z 7 |z,=200+j1000

An open-circuit tuning stub is to be made from a lossy transmission line with an attenuation con-
stant «. What is the maximum value of normalized reactance that can be obtained with this stub?
What is the maximum value of normalized reactance that can be obtained with a shorted stub of the
same type of transmission line? Assume «£ is small.

Design a double-stub tuner using open-circuited stubs with a A /8 spacing to match aload admittance
YL = 0.4+ j12)Yp.

Repeat Problem 5.9 using a double-stub tuner with short-circuited stubs and a 31 /8 spacing.

Derive the design equations for a double-stub tuner using two series stubs spaced a distance d apart.
Assume the load impedanceis Z| = R + | X.

Consider matching aload Z) = 200 2 to a 100 2 line, using single shunt-stub, single series stub,
and double shunt-stub tuners, with short-circuited stubs. Which tuner will give the best bandwidth?
Justify your answer by calculating the reflection coefficient for al six solutions at 1.1 fg, where fgis
the match frequency, or use CAD to plot the reflection coefficient versus frequency.

Design a single-section quarter-wave matching transformer to match a 350 2 load to a 100 €2 line.
What is the percent bandwidth of this transformer, for SWR < 2? If the design frequency is 4 GHz,
sketch the layout of a microstrip circuit, including dimensions, to implement this matching trans-
former. Assume the substrate is 0.159 cm thick, with arelative permittivity of 2.2.

Consider the quarter-wave transformer of Figure 5.13 with Z; =100 @, Z, =150 Q, and Z| =
225 Q. Evaluate the worst-case percent error in computing |T'| from the approximate expression
(5.42), compared to the exact result.
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5.16

5.17

518

519

5.20

521

522

523

524
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Problems 271

A waveguide load with an equivalent TE; g wave impedance of 377 ©2 must be matched to an air-filled
X-band rectangular guide at 10 GHz. A quarter-wave matching transformer is to be used, and is to
consist of a section of guide filled with dielectric. Find the required dielectric constant and physical
length of the matching section. What restrictions on the load impedance apply to this technique?

A four-section binomial matching transformer is to be used to match a 12.5 © load to a 50 @
line at a center frequency of 1 GHz. (a) Design the matching transformer, and compute the band-
width for I'm = 0.05. Use CAD to plot the input reflection coefficient versus frequency. (b) Lay out
the microstrip implementation of this circuit on an FR4 substrate having e = 4.2, d = 0.158 cm,
and tan$ = 0.02, with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus
frequency.

Derive the exact characteristic impedance for a two-section binomial matching transformer for a
normalized load impedance Z| /Zg = 1.5. Check your results with Table 5.1.

Calculate and plot the percent bandwidth for an N = 1-, 2-, and 4-section binomial matching trans-
former versus Z| /Zg = 1.5to 6 for 'm = 0.2.

Design a four-section Chebyshev matching transformer to match a 50 2 line to a 30 2 load. The
maximum permissible SWR over the passhand is 1.25. What is the resulting bandwidth? Use the
approximate theory developed in the text, as opposed to the tables. Use CAD to plot the input SWR
versus frequency.

Derive the exact characteristic impedances for a two-section Chebyshev matching transformer for a
normalized load impedance Z| /Zg = 1.5. Check your results with Table 5.2 for I'm = 0.05.

A load of Z|_/Zg = 1.5 isto be matched to a feed line using a multisection transformer, and it is
desired to have a passhand response with [T (9)| = A(0.1+ cos?9) for0 < 6 < . Usethe approx-
imate theory for multisection transformers to design a two-section transformer.

A tapered matching section hasd In(Z/Zg) /dz = Asinzz/L. Find the constant A so that Z(0) =
Zgand Z(L) = Z| . Compute ", and plot |T"| versus L.

Design an exponentially tapered matching transformer to match a 100 €2 load to a50 2 line. Plot ||
versus BL, and find the length of the matching section (at the center frequency) required to obtain
IT'| < 0.05 over a100% bandwidth. How many sections would be required if a Chebyshev matching
transformer were used to achieve the same specifications?

An ultra wideband (UWB) radio transmitter, operating from 3.1 to 10.6 GHz, drives a parallel RC
load with R=75 Q@ and C = 0.6 pF. What is the best return loss that can be obtained with an
optimum matching network?

Consider aseries RL load with R = 80 2 and L = 5 nH. Design alumped-element L -section match-
ing network to match this load to a50 €2 line at 2 GHz. Plot |T"| versus frequency for this network
to determine the bandwidth for which |T'| < I'm = 0.1. Compare this with the maximum possible
bandwidth for thisload, as given by the Bode—Fano criterion. (Assume a square reflection coefficient
response like that of Figure 5.23a.)



Microwave Resonators

Microwave resonators are used in a variety of applications, including filters, oscillators,

frequency meters, and tuned amplifiers. Because the operation of microwave resonatorsis very
similar to that of lumped-element resonators of circuit theory, we will begin by reviewing the
basic characteristics of series and parallel RLC resonant circuits. We will then discuss various
implementations of resonators at microwave frequencies using distributed elements such as
transmission lines, rectangular and circular waveguides, and dielectric cavities. We will also
discuss the excitation of resonators using apertures and current sheets.

6.1

SERIES AND PARALLEL RESONANT CIRCUITS

At frequencies near resonance, a microwave resonator can usually be modeled by either a
series or parallel RLC lumped-element equivalent circuit, and so we will now review some
of the basic properties of these circuits.

Series Resonant Circuit
A series RLC resonant circuit is shown in Figure 6.1a. The input impedanceis
. 1
Zin=R+ joL — | —, (6.1)
wC

and the complex power delivered to the resonator is

P = SVI* = 2212 = 2 2;n |~ i
|n—2 —2 n —2 n Zin
1 1
=112 R+ joL —j—=). 6.2
1 (R jot —1 ¢ ) ©2)

272
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o .5*‘;6

+

@)

1Zin(w) |

0 1 wlwgy
(b)
FIGURE 6.1 A seriesRLC resonator and itsresponse. () A series RLC resonator circuit. (b) Input

impedance magnitude versus frequency.

The power dissipated by theresistor Ris
1 -
Ploss = §|| IR, (6.33)
the average magnetic energy stored in the inductor L is
12
Wn:Z“' L, (6.3b)
and the average electric energy stored in the capacitor C is
1 1 1
We = = Ve?C = 2|1 P—= :
e 4| c|°C 4| | 22C (6.3¢)

where V; is the voltage across the capacitor. Then the complex power of (6.2) can be
rewritten as

Pin = Ploss + 2jo(Wn — W), (6.4)
and the input impedance of (6.1) can be rewritten as

_ 2Pn Plos+ 2jo(Wn — W)

Zin = =
2 1
1 il

(6.5)

Resonance occurs when the average stored magnetic and electric energies are equal, or
Wy, = W, Then from (6.5) and (6.3a), the input impedance at resonanceis

H 0SS

l|||2:R’
2

in =
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which is purely real. From (6.3b,c), Wy, = W implies that the resonant frequency, wg, can

be defined as
1
=, 6.6
o T (6.6)
Another important parameter of a resonant circuit isits Q, or quality factor, which is
defined as
average energy stored
Q=w
energy loss/second
— otttV (6.7)
Ploss

Thus Q is a measure of the loss of a resonant circuit—lower loss implies a higher Q.
Resonator losses may be due to conductor loss, dielectric loss, or radiation loss, and are
represented by the resistance, R, of the equivalent circuit. An external connecting network
may introduce additional loss. Each of these |oss mechanisms will have the effect of low-
ering the Q. The Q of the resonator itself, disregarding external loading effects, is called
the unloaded Q, denoted as Qo.

For the series resonant circuit of Figure 6.1a, the unloaded Q can be evaluated from
(6.7), using (6.3) and the fact that Wy, = W at resonance, to give

2Wn  wol 1
Qo = wo Pox ~ R~ woRC

which shows that Q increases as R decreases.

Next, consider the behavior of the input impedance of this resonator near its resonant
frequency [1]. Let w = wo + Aw, Where Aw is small. The input impedance can then be
rewritten from (6.1) as

(6.8)

1
Zin=R+joL|{1l—- ——
n +Jw ( L()ZLC>

) a)z—a)g
=R+ joL 5 ,
1)

since a)g =1/LC. Now w? — a)(z) = (w — wg)(w + wg) = Aw (2w — Aw) ~ 2wAw for
small Aw. Thus,

Zin~ R+ j2LAw

. ZRQoAa)

~R+j (6.9)

o
This form will be useful for identifying equivalent circuits with distributed element
resonators.

Alternatively, a resonator with loss can be modeled as a lossless resonator whose res-
onant frequency, wo, has been replaced with a complex effective resonant frequency:

wQ < wo (1 + 2%}0) (6.10)

This can be seen by considering the input impedance of a series resonator with no loss, as
given by (6.9) with R = 0:

Zin = j2L(w — wo).
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Then substituting the complex frequency of (6.10) for wg gives

Zin=j2L (w—wo—jzw—(go>
wol

= —+j2L(w —wp) = R+ j2LAw,
Qo
which isidentical to (6.9). Thisisauseful procedure because for most practical resonators
the loss is very small, so the Q can be found using the perturbation method, beginning
with the solution for the lossless case. Then the effect of loss can be added to the input
impedance by replacing wg with the complex resonant frequency given in (6.10).

Finally, consider the half-power fractional bandwidth of the resonator. Figure 6.1b
shows the variation of the magnitude of the input impedance versus frequency. When the
frequency is such that | Zin|2 = 2R?, then by (6.2) the average (real) power delivered to
the circuit is one-half that delivered at resonance. If BW is the fractional bandwidth, then
Aw/wg = BW/2 at the upper band edge. Using (6.9) gives

IR+ jRQy(BW)|? = 2R?,
or

BW = —. (6.11)

Parallel Resonant Circuit

The paralel RLC resonant circuit, shown in Figure 6.2a, is the dual of the series RLC
circuit. Theinput impedanceis

Zin = 1+1+'c_1 (6.12)
n= R oL T1%) ‘
|
—_—
+
\V —> _— C L R
Zin
@
|Zir(w)]
R

0.707R

0 1 wlwg
(b)
FIGURE 6.2 A parale RLC resonator and its response. (a) A parallel RLC circuit. (b) Input

impedance magnitude versus frequency.
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and the complex power delivered to the resonator is

1, 1, 1051
Pin = EVI = EZmIlI = 2|V|
l 1
SV ( + L _ ch) (6.13)
The power dissipated by theresistor, R, is
1 |V|2
Ploss = 5~ (6.144)
the average electric energy stored in the capacitor, C, is
1.2
= Z|V| C, (6.14b)
and the average magnetic energy stored in the inductor, L, is
1
Wn=—|IL| L——IVI2 T (6.14¢)
where || is the current through the inductor. Then the complex power of (6.13) can be
rewritten as
Pin = Ploss + 2o (Wh — W), (6.15)
which isidentical to (6.4). Similarly, the input impedance can be expressed as
2R 2j —
Zin = ZPn _ Ploss + 2j (Wh V\é)’ (6.16)

112 ALR

which isidentical to (6.5).
Asin the series case, resonance occurs when Wy, = Ws. Then from (6.16) and (6.144)
the input impedance at resonanceis

PlOSS

Iin=7—=
G

]

which is a purely real impedance. From (6.14b) and (6.14c), Wy, = W implies that the
resonant frequency, wo, can be defined as

1
JLC’

which isidentical to the series resonant circuit case. Resonance in the case of a parallel
RLC circuit is sometimes referred to as an antiresonance.

From the definition of (6.7), and the results in (6.14), the unloaded Q of the parallel
resonant circuit can be expressed as

wo = (6.17)

2Wn R
H 0ss CUO |—

Qo =

— woRC, (6.18)

since Wy, = W at resonance. This result shows that the Q of the parallel resonant circuit
increases as R increases.
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Near resonance, the input impedance of (6.12) can be simplified using the series ex-
pansion result that

~1—X+---.

14X
Again letting w = wo + Aw, Where Aw issmall, alows (6.12) to be rewritten as[1]

1 1-A _ . -t
In>= =+ —— w/wo + jwoC + jAwC
R JwolL

-1
~ (247182 + janc
~ | = ngL iAw
1 -1
(ﬁ + 2]AwC>
R . R

1+ 2jAwRC 1+ 2jQoAw/wo’
since w3 = 1/LC. When R = oo (6.19) reduces to

. 1
T j2C(w — wp)’

Asin the series resonator case, the effect of loss can be accounted for by replacing wg
in this expression with a complex effective resonant frequency:

[

[

(6.19)

Zin

00 < wo (1 + ZLQO> (6.20)

Figure 6.2b shows the behavior of the magnitude of the input impedance versus
frequency. The half-power bandwidth edges occur at frequencies (Aw/wg = BW2)
such that

R2
|Zinl? = >
which, from (6.19), implies that
BW = —, (6.21)
as in the series resonance case.

Loaded and Unloaded Q

Theunloaded Q, Qg, defined in the preceding sectionsisacharacteristic of the resonator it-
self, in the absence of any loading effects caused by external circuitry. In practice, however,
aresonator isinvariably coupled to other circuitry, which will have the effect of lowering
the overall, or loaded Q, Q, of the circuit. Figure 6.3 depicts a resonator coupled to an

Resonant
circuit R
Q

FIGURE 6.3 A resonant circuit connected to an external load, R .
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6.2

TABLE 6.1 Summary of Resultsfor Seriesand Parallel Resonators

Quantity Series Resonator Parallel Resonator
1 1 1
Input impedance/admittance Zin=R+ joL — j— Yin=—=+ joC — j—
wC R ol
- 2RQpA 1 . 2QpA
wQ R Rwo
_le _ 1|V
Power |oss l30$s—§||| R F’Ioss—E?
Stored magnetic ener Wm = 1|I |2L Wmn = 1|V|2 1
ag % m=g m=7 2L
. 1. -, 1 1.5
Stored electric energy We = - |l |*—— We = -|V|°C
4 L2C 4
Resonant frequency 1 =
w) = —F— wn = ——
0= e 0= JIc
wol 1 R
Unloaded == =" — wonRC = ——
Q Qo=—F 2oRC Qo = o ool
wol R
External Q Qe= — Qe= —
Rp wol

externa load resistor, R, . If the resonator isaseries RLC circuit, theload resistor R adds
in serieswith R, so the effectiveresistance in (6.8) is R + Ry . If the resonator is aparallel
RLC circuit, theload resistor R combinesin parallel with R, so the effective resistancein
(6.18) is RR_ /(R + Ry). If we definean external Q, Qe, as

wol N
R for series circuits

Qe=1 g (6.22)
L for parallel circuits,
o

then the loaded Q can be expressed as
1 1 1

—_— ==+ = 6.23
A~ Q" Q ©:29

Table 6.1 summarizes the above results for series and parallel resonant circuits.

TRANSMISSION LINE RESONATORS

As we have seen, ideal lumped circuit elements are often unattainable at microwave fre-
guencies, so distributed elements are frequently used. In this section we will study the use
of transmission line sections with various lengths and terminations (usually open- or short-
circuited) to form resonators. Because we are interested in the Q of these resonators, we
must consider transmission lines with losses.

Short-Circuited 1/2 Line

A length of lossy transmission line, short circuited at one end, is shown in Figure 6.4.
The line has a characteristic impedance, Zg, propagation constant, 8, and attenuation
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\

e,

Zin:1‘> Zy B«

O

14

FIGURE 6.4 A short-circuited length of lossy transmission line, and the voltage distributions for

n=1=2x/2)andn =2 (£ = \) resonators.

constant, . At the resonant frequency o = wp, the length of the line is ¢ = x/2.
From (2.91), the input impedanceis

Zin = Zptanh(x + jB)L.
Using an identity for the hyperbolic tangent gives

tanhot + j tan ¢
%1 jtenpetanhat’

Observethat Zj, = jZotan B¢ if o = 0 (alosslessline).

In practice it is usually desirable to use a low-loss transmission line, so we assume
that o « 1, and then tanha? ~ of. Again let w = wg + Aw, where Aw is small. Then,
assuming a TEM line, we have

Zin = (6.24)

Bt = wl _ wol n Awl

Up Up Up

where vy is the phase velocity of the transmission line. Because £ = A/2 = mup/wq for
w = wg, We have

and then

Awm Awm Awm
tangl =tan| 7 + —— | = tan ~

200 wo wo

Using these resultsin (6.24) gives

al + j (Awm/wo) . Awm
Zin>~Z ~ 7 2
" 07 + j (Awm/wo)al 0 (aﬂ + o )’ 6.25

since Awal/wg < 1.
Equation (6.25) is of the form

Zin = R+ 2jL Aw,
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which is the input impedance of a series RLC resonant circuit, as given by (6.9). We can
identify the resistance of the equivalent circuit as

R = Zoat, (6.26a)

and the inductance of the equivalent circuit as

z
L= £o7 (6.26b)
2w

The capacitance of the equivalent circuit can be found from (6.6) as

1

C=—.
2
0]

(6.260)

The resonator of Figure 6.4 thus resonates for Aw =0 (¢ = A/2), and its input
impedance at resonance is Zj, = R = Zpa{. Resonance also occurs for £ = ni/2, n =
1,2,3,.... Thevoltage distributions for the n = 1 and n = 2 resonant modes are shown
in Figure 6.4. The unloaded Q of this resonator can be found from (6.8) and (6.26) as

Q="2=-" -2 (6.27)

since ¢ = n at the first resonance. This result shows that the Q decreases as the attenua-
tion of the line increases, as expected.

EXAMPLE 6.1 QOFHALF-WAVE COAXIAL LINE RESONATORS

A )/2 resonator is made from a piece of copper coaxia line having an inner
conductor radius of 1 mm and an outer conductor radius of 4 mm. If the resonant
frequency is5 GHz, compare the unloaded Q of an air-filled coaxial line resonator
to that of a Teflon-filled coaxial line resonator.

Solution

We first compute the attenuation of the coaxial line, using the results of Examples
2.6 or 2.7. From Appendix F, the conductivity of copper iso = 5.813 x 10’ S/m.
The surface resistivity at 5 GHz is

Re= /20 _184%x1020.
20

The attenuation due to conductor loss for the air-filled lineis
_ Rs 1 N 1
%= ninbala " b

1.84 x 1072 1 N 1
2(377)In (0.004/0.001) \ 0.001 ' 0.004

> = 0.022 Np/m.
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For Teflon, ¢, = 2.08 and tan§ = 0.0004, so the attenuation due to conductor loss
for the Teflon-filled lineis

_ 184x107%/2.08 1 1
~ 2(377)In (0.004/0.001) \0.001 ' 0.004

Thedielectric loss of the air-filled lineis zero, but the dielectric loss of the Teflon-
filled lineis

Qc

) — 0.032 Np/m.

og = koé tané

= (1040~ 2'208(0'0004) = 0.030 Np/m.

Finaly, from (6.27), the unloaded Qs can be computed as
B 104.7
ir = — = ————— = 2380,
Qair 20 2(0.022)
104.74/2.08

Qreflon = d = 1218.

20 2(0.032 + 0.030)

Thusit is seen that the Q of the air-filled line is amost twice that of the Teflon-
filled line. The Q can be further increased by using silver-plated conductors. W

Short-Circuited 1/4 Line

A parallel type of resonance (antiresonance) can be achieved using a short-circuited trans-
mission line of length /4. The input impedance of a shorted line of length ¢ is
Zin = Zotanh(a + jB)¢
tanhaf + j tan B¢
01 7 tan gt tanh et
1— jtanhat cot B¢
O tanhat — jeotpe’
where the last result was obtained by multiplying both numerator and denominator by

—j cot B¢. Now assumethat £ = A/4 at w = wp, and let w = wg + Aw. Then, for aTEM
line,

(6.28)

_ wol  Awl . TAw

= e T2 e
and so
cot Bt = cot(z + w) — _tanR® L ZThAe
2 2w0 2wo 2wo
Also, as before, tanh o ¢ >~ ¢ for small loss. Using these resultsin (6.28) gives

1+ jaln Aw/2wg N Zo
ae+ iTAw/2wy ~ ol + jTAw/2wo’

Zin=2 (6.29)

since afmr Aw/2wp < 1. Thisresult is of the same form astheimpedance of aparallel RLC
circuit, as given in (6.19):

B 1

~ (YR) +2jAwC’

Zin
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We can identify the resistance of the equivalent circuit as
Z
R=20
ol
and the capacitance of the equivalent circuit as

(6.30a)

g
4woZo '
The inductance of the equivalent circuit can be found as
1
= a)g_C'

C=

(6.30b)

L (6.30c)

The resonator of Figure 6.4 therefore has a parallel-type resonance for ¢ = 1/4, with an
input impedance at resonance of Zj, = R = Zg/al. From (6.18) and (6.30) the unloaded
Q of thisresonator is

T
Qo = woRC = dal - 20 (6.31)

since ¢ = /28 at resonance.

Open-Circuited A/2 Line

A practical resonator that is often used in microstrip circuits consists of an open-circuited
length of transmission line, as shown in Figure 6.5. This resonator will behave as aparallel
resonant circuit when the length is A/2, or multiples of /2.
The input impedance of an open-circuited lossy transmission line of length ¢ is
1+ jtanpetanhat
tanhat + jtan gl -

Asbefore, assumethat ¢ = 1/2 at w = wo, and let @ = wp + Aw. Then,

Zin = Zocoth(e + jB)E = Z

(6.32)

T Aw
Bt=m+ =2,
wo
\%
n=1
: 0
J4
n=2
o o
Zin:1‘> Zy, B, «
o o

¢

FIGURE 6.5 An open-circuited length of lossy transmission line, and the voltage distributions for
n=1{=x/2)andn =2 (£ = \) resonators.
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and so

Awm Awm
tan B¢ =tan —— =~ )
w wo

and tanha? >~ . Using these resultsin (6.32) gives

Zy

= — . (6.33)
al + | (Awm/wo)

Zin

Comparison with the input impedance of a paralléel resonant circuit, as given by (6.19),
suggests that the resistance of the equivalent RLC circuit is

R=—, (6.34a)
al
and the capacitance of the equivalent circuit is
T
= . 6.34b
2woZo ( )
The inductance of the equivalent circuit is
1
L=—=. (6.34c)
wC
From (6.18) and (6.34) the unloaded Q is
T p
Qo= o 20 20’ (6.3

since ¢ = nr/B at resonance.

EXAMPLE 6.2 A HALF-WAVE MICROSTRIP RESONATOR

Consider a microstrip resonator constructed from a A/2 length of 50 © open-
circuited microstrip line. The substrateis Teflon (¢, = 2.08, tan§ = 0.0004), with
a thickness of 0.159 cm, and the conductors are copper. Compute the required
length of the line for resonance at 5 GHz, and the unloaded Q of the resonator.
Ignore fringing fields at the end of the line.

Solution

From (3.197), the width of a50 © microstrip line on this substrate is found to be
W = 0.508 cm, and the effective permittivity is € = 1.80. The resonant length
can then be calculated as

A c 3x 108
=2 _ X —224cm.

27 2f  2fJée  2(5x 109180
The propagation constant is

_2nf 2nffée  2m(5x 109180

= 151.0 rad/m.
Up c 3 x 108
From (3.199), the attenuation due to conductor lossis
R 1.84 x 1072
o= — = T X — 0.0724 Np/m,

~ ZoW _ 50(0.00508)
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6.3

wherewe used Rs from Example 6.1. From (3.198), the attenuation due to dielec-

triclossis
koer (€e — 1) tané (104.7)(2.08)(0.80) (0.0004)
= = = 0.024 Np/m.
2 Jeeler — 1) 2/1.80(1.08) .
Then from (6.35) the unloaded Q is
Qo = p 151.0 783. [ |

20 2(0.0724 1 0.024)

RECTANGULAR WAVEGUIDE CAVITY RESONATORS

Microwave resonators can also be constructed from closed sections of waveguide. Because
radiation loss from an open-ended waveguide can be significant, waveguide resonators
are usually short circuited at both ends, thus forming a closed box, or cavity. Electric
and magnetic energy is stored within the cavity enclosure, and power is dissipated in the
metallic walls of the cavity as well as in the dielectric materia that may fill the cavity.
Coupling to a cavity resonator may be by a small aperture, or a small probe or loop. We
will seethat there are many possible resonant modes for a cavity resonator, corresponding
to field variations along the three dimensions of the structure.

We will first derive the resonant frequencies for ageneral TE or TM resonant mode of
arectangular cavity, and then derive an expression for the unloaded Q of the TE1g, mode.
A complete treatment of the unloaded Q for arbitrary TE and TM modes can be made
using the same procedure, but is not included here because of its length and complexity.

Resonant Frequencies

The geometry of a rectangular cavity is shown in Figure 6.6. It consists of a length,
d, of rectangular waveguide shorted at both ends (z = 0, d). We will find the resonant

Ey
B m=1
=2
a X
=1 y
d b
z 0
a X
d

z

FIGURE 6.6 A rectangular cavity resonator, and the electric field variations for the TE1g; and

TE102 resonant modes.
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frequencies of this cavity under the assumption that the cavity is lossless, then determine
the unloaded Q using the perturbation method outlined in Section 2.7. Although we could
begin with the Helmholtz wave equation and the method of separation of variablesto solve
for the electric and magnetic fields that satisfy the boundary conditions of the cavity, it is
easier to start with the fields of the TE or TM waveguide modes since these already satisfy
the necessary boundary conditions on the sidewalls (x = 0, a and y = 0, b) of the cavity.
Then it isonly necessary to enforce the boundary conditionsthat Ex = Ey = O ontheend
wallsatz=0,d.

From Table 3.2 the transverse electric fields (Ex, Ey) of the TEyn of TMpyp rectangu-
lar waveguide mode can be written as

Ei(X, Y, 2) = &(X, y) (A*e_jﬁmnz + A‘ejﬁmf‘z), (6.36)

where &(x, y) isthe transverse variation of the mode, and A™, A~ are arbitrary amplitudes
of the forward and backward traveling waves. The propagation constant of the m, nth TE

or TM modeis
pm= ke (- (5 )

wherek = w,/i1€, and p and e are the permeability and permittivity of the material filling
the cavity.

Applying the condition that E; = 0 at z = 0 to (6.36) implies that AT = —A~ (as
we should expect for reflection from a perfectly conducting wall). Then the condition that
E: = Oat z = d leads to the equation

Et(X,y,d) = —&(X, y)AT2j sinfmd = 0.
The only nontrivial (AT # 0) solution occurs for
ﬂmnd =£7T, = 1, 2, 3, ey (638)

which implies that the cavity must be an integer multiple of a half-guide wavelength long
at the resonant frequency. No nontrivial solutions are possible for other lengths, or for
frequencies other than the resonant frequencies.

A resonance wave number for the rectangular cavity can be defined as

mr \ 2 nm\ 2 L7\ 2
= () + (5) + (5)°
Then we can refer to the TEmne of TMpne resonant mode of the cavity, where the in-

dices m, n, ¢ indicate the number of variations in the standing wave pattern in the x, y, z
directions, respectively. The resonant frequency of the TEqne or TMmne mode is given by

k
frne = 27:\;;::;& = Zn;m\/(%)z + (%T)Z + (%‘L’)Z (6.40)

If b < a < d, the dominant resonant mode (lowest resonant frequency) will be the TE;o1
mode, corresponding to the TE;p dominant waveguide mode in a shorted guide of length
Ag/2, and is similar to the short-circuited /2 transmission line resonator. The dominant
TM resonant mode is the TM 119 mode.
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Unloaded Q of the TE19; Mode

From Table 3.2, (6.36), and the fact that A~ = — AT, thetotal fields for the TE;q, resonant
mode can be written as

— atan ™ (e-ibz _ iz
Ey = A"sn— (e e ) (6.412)
—At | 7x - ,
H, — sin== (e 1Pz 4 glfZ), 6.41b
= gsn (e71P2 4 elf?) (6.41b)
jrAT X :
H, = cos— (e71hz _ lf?), 6.41c
z kna a ( ) ( )

Letting Eg = —2j AT and using (6.38) allows these expressions to be simplified to

X lnz
Ey = EgpsSih—sin—, 6.42a
y 0 a d ( )
—jEo . mX 14,74
Hy = sin — cos —, 6.42b
= 3 g (6.42b)
j7Eo X . {nz

cos ,
kna a d

H; (6.42¢)
which clearly show that the fields form standing waves inside the cavity. We can now
compute the unloaded Q of this mode by finding the stored electric and magnetic energies,
and the power lost in the conducting walls and the dielectric filling.

The stored electric energy is, from (1.84),
eabhd

_ 2
/\\/ Ey E;‘,dv = FEO, (643a)

€

We 2

while the stored magnetic energy is, from (1.86),
Wy, = %/V(HXH;{ + H H)dy

Because Zte = kn/B8, with g = B0 = vk? — (7/a)?, the quantity in parentheses in
(6.43b) can be reduced to

( 1 w2 )_ B2 + (m/a)2

— 4+ —
72, " K2p2a?

€

— 1 —
k272 T2 W
showing that Ws = W, at resonance. The condition of equal stored electric and magnetic
energies at resonance also applied to the RLC resonant circuits of Section 6.1.

For small losses we can find the power dissipated in the cavity walls using the per-
turbation method of Section 2.7. Thus, the power lost in the conducting walls is given by
(1.131) as

R
Pe=— |Hy|ds, (6.44)
2 walls
where Rs = /ouo/20 is the surface resistivity of the metallic walls, and Hy is the
tangential magnetic field at the surface of the walls. Using (6.42b), (6.42c) in (6.44)
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gives

Pe

R b a d b
= {2f f |Hx(z=0)|2dxdy+2/ / |H,(x = 0)|?dydz
2 y=0Jx=0 z=0Jy=0

d a
w2 [ [ih(y =0+ IHy =0F] dxdz}
z=0 Jx=0

tab a4 6.45
g2 \ @2 a2 2d " 2a (649

RsE2).2 <€2ab bd  ¢%a  d )
where use has been made of the symmetry of the cavity in doubling the contributions from
thewalsa x =0,y =0, and z= 0 to account for the contributions from the walls at
X =a,y =Db,and z = d, respectively. Therelationsk = 27/) and Ztg = kn/B = 2dn/txr
were also used in simplifying (6.45). Then, from (6.7), the unloaded Q of the cavity with
lossy conducting walls but lossless dielectric can be found as

. 2(,()0We
Qc = =)
_ k3abdp 1
"~ 4n2Rs [(£2ab/d?) + (bd/a?) + (£2a/2d) + (d/2a)]
_ (kad)by 1

. 6.46
212Rs  (2¢2a8b + 2bd3 + ¢2a3d + ad3) (6:46)

Next we compute the power lost in the dielectric materia that may fill the cavity.
As discussed in Chapter 1, a lossy dielectric has an effective conductivity o = we” =
weregtans, where e = €/ — je”’ = ¢reg(1 — j tand), and tans is the loss tangent of the
material. The power dissipated in the dielectric is, from (1.92),

1 B B Vi _ abd 14 E 2
Py = -/ J Efdv =2 / |2y = 2202¢ TR0 (6.47)
2 \VJ 2 \% 8

where E is given by (6.424). Then from (6.7) the unloaded Q of the cavity with a lossy
dielectric filling, but with perfectly conducting walls, is

20We € 1
= =—=— 6.48
Q== " @ (6.49)
Thesimplicity of thisresult isdueto the fact that the integral in (6.43a) for W, cancelswith
the identical integral in (6.47) for Py. This result therefore applies to Qg for an arbitrary
resonant cavity mode. When both wall losses and dielectric losses are present, the total
power lossis P; + Py, so (6.7) gives the total unloaded Q as

-1
Qo = (Qi + %) ) (6.49)

EXAMPLE 6.3 DESIGN OF A RECTANGULAR CAVITY RESONATOR

A rectangular waveguide cavity is made from a piece of copper WR-187 H-band
waveguide, with a = 4.755 cm and b = 2.215 cm. The cavity isfilled with poly-
ethylene (¢, = 2.25, tan§ = 0.0004). If resonanceisto occur at f = 5 GHz, find
the required length, d, and the resulting unloaded Q for the ¢ =1 and ¢ =2
resonant modes.
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Solution
The wave number k is

27 f
k=L cﬁ —157.08 m L.

From (6.40) the required length for resonance can be found as (m = 1, n = 0)

d— L
VkZ = (n/a)2’
fore =1, d= i 20 cm,

=2
/(157.08)2 — (77/0.04755)2
fore =2, d=2(220) =4.40cm.

From Example 6.1, the surface resistivity of copper at 5 GHz is Rs = 1.84 x
102 Q. Theintrinsic impedanceis

377
n=—o =2513Q.
NG

Then from (6.46) the Q due to conductor loss only is
fore =1, Q¢ = 8,403,
fore =2, Qc¢=11,898.
From (6.48) the Q dueto dielectric lossonly is, for both ¢ = 1 and ¢ = 2,

1 1
Qd = s ~ 0.0004 — 200

Then total unloaded Qs are, from (6.49)

1 1\t
fore =1, Qo:(—+—> = 1927,

8403 ' 2500
fore =2, Qo= ! + ! _1—2065
—< <07\ 1188 28500/ T

Note that the dielectric loss has the dominant effect on the Q; higher Q could
be obtained using an air-filled cavity. These results can be compared to those
of Examples 6.1 and 6.2, which used similar types of materials at the same
frequency. |

CIRCULAR WAVEGUIDE CAVITY RESONATORS

A cylindrical cavity resonator can be constructed from a section of circular waveguide
shorted at both ends, similar to rectangular cavities. Because the dominant circular wave-
guide mode is the TE1; mode, the dominant cylindrical cavity mode is the TE117 mode.
We will derive the resonant frequencies for the TEnme and TMm¢ circular cavity modes,
and an expression for the unloaded Q of the TE,m; mode.

Circular cavities are often used for microwave frequency meters. The cavity is con-
structed with a movable top wall to allow mechanical tuning of the resonant frequency,
and the cavity is loosely coupled to a waveguide through a small aperture. In operation,
power will be absorbed by the cavity as it is tuned to the operating frequency of the
system; this absorption can be monitored with a power meter el sewhere in the system. The
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FIGURE 6.7  Photograph of aW-band waveguide frequency meter. The knob rotatesto change the

length of the circular cavity resonator; the scale gives a readout of the frequency.
Photograph courtesy of Millitech Inc., Northampton, Mass.

mechanical tuning dial is usually directly calibrated in frequency, as in the model shown
in Figure 6.7. Because frequency resolution is determined by the Q of the resonator, the
TEp11 mode is often used for frequency meters because its Q is much higher than the Q
of the dominant circular cavity mode. This is also the reason for a loose coupling to the
cavity.

Resonant Frequencies

The geometry of acylindrical cavity is shown in Figure 6.8. Asin the case of the rectan-
gular cavity, the solution is simplified by beginning with the circular waveguide modes,
which already satisfy the necessary boundary conditions on the wall of the circular wave-
guide. From Table 3.5, the transverse electricfields (E,, E4) of the TEnm or TMpm Circular
waveguide mode can be written as

Ei(p, ,2) = &(p, ¢)(Ate 1Fmz 1 A-glfm2) (6.50)

where &(p, ¢) representsthe transverse variation of the mode, and A™ and A~ are arbitrary
amplitudes of the forward and backward traveling waves. The propagation constant of the
TEnm modeis, from (3.126),

/ 2
Bom = /K% — (p”m> , (6.51a)

a

=1

E,.E,

FIGURE 6.8 A cylindrical resonant cavity, and the electric field distribution for resonant modes

withe =1ort = 2.
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while the propagation constant of the TM,, modeis, from (3.139),

Prm \ 2
— k2 _ (Pom
Brm = /K ( . ) : (6.51b)
wherek = w,/ie.

In order to have E; =0 at z= 0, d, we must choose AT = —A~, and A" sinBnm
d=0
or Bnmd = ¢, for £=0,1,23,..., (6.52)

which implies that the waveguide must be an integer number of half-guide wavelengths
long. Thus, the resonant frequency of the TE,m; modeis

2
Phm 154
f — 1, 6.53
e = 2nm\/ (d) (6:5%9
and the resonant frequency of the TMm¢ mode is
e \?
fome = = 6/ Prm? <F>' (6.53b)
r r

Thus the dominant TE modeisthe TE;11 mode, whilethe dominant TM modeisthe TMg10
mode. Figure 6.9 shows a mode chart for the lower order resonant modes of a cylindrical
cavity. Such a chart is useful for the design of circular cavity resonators, as it shows what
modes can be excited at a given frequency for a given cavity size.

20x 10°
> >
NS
15x 108 i
s‘é‘ ™ 110
(&)
N
I
>3
o7 10x 108
[
©
S
TMogo
5x 108 V
0 2 4 6

(2ald)?

FIGURE 6.9 Resonant mode chart for acylindrical cavity.

Adapted from data from R. E. Collin, Foundations for Microwave Engineering, 2nd edition,
Wiley—| EEE Press, Hoboken, N.J., 2001. Used with permission.
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Unloaded Q of the TE,;;; Mode

From Table 3.5, (6.50), and the fact that AT = — A~ the fields of the TEm: mode can be
written as

H; = HoJn (png,p> cosng sin %ﬁz (6.54a)
H : ¢
H, = pako J <pnmp) cosng coslz, (6.54b)
Phm a d
__RA2 H / ¢
Hy = pan %3 (pnmp) sinng cosiz, (6.54¢)
(pﬁm)zp a d
jkna’nH / _ . Anz
E, = l(g/ )2p0‘]” <p”mp>snn¢sn7, (6.54d)
nm
H /
Ey =2 knaHo 3 ( PomP cosng sin E_nz (6.54€)
T o "\ a d
E, =0, (6.54f)

wheren = /i/e and Hg = —2j A™.
Because the time-average stored electric and magnetic energies are equal, the total
stored energy is

€ d 27 pa ) )
We=5 [ [ [ (1B +IER)odpdioz
=0J¢=0Jp=0
ek?n?ardHZ /a J/2<pr’1mp>+< na >2J2(pgmp) oo
4(p;1m)2 p=0 . a PhmpP " a

ek?n?atHérd n\?2 ,
=9 " |1- (p’_> I2(Phm)» (6.55)
nm

w

8(Phm)?

where the integral identity of Appendix C.17 has been used. The power loss in the con-
ducting wallsis

Pc= %/ ||:|tan|2dS
S
R d 2
= {/ [~ 1Mot = a2+ Hato = 2012 adpez
z=0J¢=0
27 pa
+2/ / [|Hp(Z=0)|2+|H¢(Z=0)|2] pdpdq&}
$=0Jp=0

2
Rs 2o, da ( Ban )2 Ba? n2
_ R da |, 1— . (6.56
> 7 Hy Iy (Pam) { 2 |: + (Phm)? + Phm (Phm)? (©%9

Then, from (6.8), the unloaded Q of the cavity with imperfectly conducting walls but
lossless dielectric is

n 2
_woW _ (ka)®pad t ( p,am>

- / 2
R 4(phm)Rs ad|q, Ban 2 +<,3/_a2>2(1_ 2 )
2 (Phm)? Pnm (Phm)*

Qc . (6.57)
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1.0
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Qd4Aq
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QRy7m
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FIGURE 6.10 Normalized unloaded Q for various cylindrical cavity modes (air filled).

Adapted from datafrom R. E. Collin, Foundations for Microwave Engineering, 2nd edition,
Wiley— EEE Press, Hoboken, N.J., 2001. Used with permission.

From (6.52) and (6.51) we seethat 8 = ¢x/d and (ka)? are constants that do not vary with
frequency, for a cavity with fixed dimensions. Thus, the frequency dependence of Q¢ is
given by k/Rs, which varies as 1/,/T; this gives the variation in Q. for a given resonant
mode and cavity shape (fixed n, m, ¢, and a/d).

Figure 6.10 shows the normalized unloaded Q due to conductor loss for various res-
onant modes of a cylindrical cavity. Observe that the TEg;1 mode has an unloaded Q
significantly higher than that of the lower order TE111, TMo10, Or TM 111 mode.

To compute the unloaded Q due to dielectric loss, we must compute the power dissi-
pated in the dielectric. Thus,

1( - -, we” 2 2
Pd_E/VJ-Edv— > /V[IEpI +|E¢|]dv

B C()6//'(27]23.2H57.[d a na 2 2 pﬁmp 3/2 pﬁmp d
= v n + Jy pap
4( pnm) p=0 PrhmP a a

we”k2n2a4Hg ( n \?
= " T7 0 1q_ J2(Phr). 6.58
B(Pn)? ) | oo ©59
Then (6.8) givesthe unloaded Q dueto dielectric loss as
oW € 1

— == 6.59
Py €” tané (6.59)
where tan§ is the loss tangent of the dielectric. This is the same as the result for Qg of
(6.48) for the rectangular cavity. When both conductor and dielectric losses are present,
the total unloaded cavity Q can be found from (6.49).

Qg4 =

EXAMPLE 6.4 DESIGN OF A CIRCULAR CAVITY RESONATOR

A circular cavity resonator with d = 2a is to be designed to resonate at 5.0 GHz
in the TEg11 mode. If the cavity is made from copper and is Teflon filled (¢ =
2.08, tan§ = 0.0004), find its dimensions and unloaded Q.
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Solution

_ 2rfoun&  27(5x 10°)/2.08
B c B 3x 108

From (6.534) the resonant frequency of the TEg1; modeis

2
c Po1 T\2
for1 = Po r
N < a ) +<d) '

with py; = 3.832. Then, sinced = 2a

2 for1/€r k= (&)2_{_ (£>2.

c

K —=151.0m?!

Solving for a gives

J(Ph)? + (1/2)? 2 2
e Po1 . 7/ :\/(3.832) + (/2 _o7aem

151.0

sowe haved = 5.48 cm.

The surface resistivity of copper a 5 GHz is Ry = 0.0184 Q2. Then from
(6.57), withn =0, m=¢ =1, and d = 2a, the unloaded Q due to conductor
lossesis

ka)3nad 1 k
_( a/) 172a = Xan _ 59,300,

4(ppy)°Rs [ad/2+ (Ba/py)?]  2Rs
where (6.51a) was used to simplify the expression. From (6.59) the unloaded Q
dueto dielectric lossis
1 1

Q4= Gns = 0.0004
and the total unloaded Q of the cavity is

Qc

= 2500,

Qc Qd

This result can be compared with the rectangular cavity case of Example 6.3,
which had Qg = 1927 for the TE191 mode and Qg = 2065 for the TE1g2> mode.
If this cavity were air filled, the Q would increase to 42,400. |

-1
Qo = (i + i) = 2300.

DIELECTRIC RESONATORS

A small disc or cube (or other shape) of dielectric material can also be used as amicrowave
resonator. The operation of such adielectric resonator is similar in principle to the rectan-
gular or cylindrical cavity resonators previously discussed. Dielectric resonators typically
use materials with low loss and a high dielectric constant, ensuring that most of the fields
will be contained within the dielectric. Unlike metallic cavities, however, there is some
field fringing or leakage from the sides and ends of a dielectric resonator (which are not
metalized), leading to a small radiation loss and consequent lowering of Q. A dielectric
resonator is generally smaller in size, cost, and weight than an equivalent metallic cavity,
and it can easily be incorporated into microwave integrated circuits and coupled to planar
transmission lines. Materials with dielectric constants in the range of 10-100 are generally
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used, with barium tetratitanate and titanium dioxide being typical examples. Conductor
losses are absent, but dielectric loss usually increases with dielectric constant; Qs of up
to severa thousand can sometimes be achieved, however. By using an adjustable metal
plate above the resonator, the resonant frequency can be mechanically tuned. Because of
these desirable features, dielectric resonators have become key components for integrated
microwave filters and oscillators.

Below we present an approximate analysis for the resonant frequencies of the TEq1s
mode of a cylindrical dielectric resonator; this mode is the one most commonly used in
practice, and is analogous to the TEg;1 mode of acircular metalic cavity.

Resonant Frequencies of TEg; Mode

The geometry of acylindrical dielectric resonator is shown in Figure 6.11. The basic oper-
ation of the TEgys mode can be explained as follows. The dielectric resonator is considered
asashort length, L, of dielectric waveguide open at both ends. The lowest order TE mode
of this guide is the TEp; mode, and is the dual of the TMg; mode of a circular metal-
lic waveguide. Because of the high permittivity of the resonator, propagation along the
z-axis can occur inside the dielectric at the resonant frequency, but the fields will be cut
off (evanescent) in the air regions around the dielectric. Thus the H field will look like
that sketched in Figure 6.12; higher order resonant modes will have more variations in the
z direction inside the resonator. Because the resonant length for the TEgs mode is less
than 1q/2 (where 14 is the guide wavelength of the TEg; dielectric waveguide mode), the
symbol § = 2L/Ag < 1is used to denote the z variation of the resonant mode. The equiv-
alent circuit of the resonator looks like a length of transmission line terminated in purely
reactive loads at both ends.

Our analysisfollowsthat of reference[2], and involves the assumption that amagnetic
wall boundary condition can beimposed at p = a. This approximation is based on the fact
that the reflection coefficient of awave in a high dielectric constant region incident on an
air-filled region approaches +1:

Fzﬁo—n:ﬁ—l
n+n Je+1

This reflection coefficient is the same as that obtained at an ideal magnetic wall boundary
condition, or a perfect open circuit.

We begin by finding the fields of the TEq; dielectric waveguide mode with a magnetic
wall boundary condition at p = a. For TE modes, E; = 0, and H; must satisfy the wave

— 1 ase¢ — oo.

FIGURE 6.11 Geometry of acylindrical dielectric resonator.
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H,(p=0)

D

FIGURE 6.12 Magnetic wall boundary condition approximation and distribution of Hz versus z

equation
(V2 +K)H, =0,
where

‘ Jeko for|zl < L/2
ko for |z] > L/2.

Because 9/0¢ = 0, the transverse fields are given by (3.110) asfollows:

E, — jopo IH;

¢ = kg 8p ’
—jB dH;

H = 22272
P kg 8,0

for p = 0 of the first mode of acylindrical dielectric resonator.

(6.60)

(6.61)

(6.622)

(6.62b)

where k2 = k? — p2. Because H, must befinite at p = 0 and zero at p = a (the magnetic

wall), we have

H; = HoJo(kep)et /P2,

(6.63)

where ke = po1/a, and Jo(po1) = O (po1 = 2.405). Then from (6.62) the transverse fields

are
S |
E¢ _ Jopro oJé(kcp)eiJﬂZ,
ke
" |
Hy = FPH0 3 pyetine,

ke

(6.643)

(6.64b)
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In the dielectric region, for |z| < L/2, the propagation constant isreal:

2
B = eks—KZ= Erkg—<%) : (6.65a)
and awave impedance can be defined as
Ey  wuo
Zyg= —2 = —, 6.65b
H, B ( )

In the air region, for |z| > L/2, the propagation constant will be imaginary, so it is conve-

nient to write
o=/k2 K= /(%)Z—kg, (6.664)

and to define awave impedance in the air region as

Zy = 120 (6.66b)
o

which is seen to be imaginary.

From symmetry, the H, and E, field distributions for the lowest order mode will be
even functions about z = 0. Then the transverse fields for the TEg;s mode can be written
for|z| < L/2as

Es = AJy(kep) cospz, (6.673)

H, = %Jé(kcp)sinﬁz, (6.67h)
andfor|z] > L/2as

Ey = BIj(kep)e @, (6.68a)

H, = l;—SJé(kcp)e‘“'Z', (6.68b)

where A and B are unknown amplitude coefficients. In (6.68b), the + sign is used for
z> L/20rz < —L/2, respectively.
Matching tangential fields at z=L/2 (or z= —L/2) leads to the following two

equations:
L
Acos% = Be Y2, (6.69a)
—jA . BL B a2
= —el/2 6.69b
Zq sin > Zae ( )
which can be reduced to a single transcendental equation:
_ . pL BL
—iZ —=Z —.
jZasin > d COS 2
Using (6.65b) and (6.66b) allows this to be simplified as
AL«
tan’= = =, 6.70
an 2~ B (6.70)

where B isgiven by (6.65a) and « is given by (6.664). This equation can be solved numer-
ically for ko, which determines the resonant frequency.
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This solution is approximate since it ignores fringing fields at the sides of the res-
onator, and it yields accuracies only on the order of 10% (usually not accurate enough for
practical purposes), but it serves to illustrate the basic behavior of dielectric resonators.
More accurate solutions are available in the literature [3].

The unloaded Q of the resonator can be calculated by determining the stored energy
(inside and outside the dielectric cylinder), and the power dissipated in the dielectric and
possibly lost to radiation. If the latter is small, the unloaded Q can be approximated as
1/tan §, asin the case of the metallic cavity resonators.

EXAMPLE 6.5 RESONANT FREQUENCY AND Q OF A DIELECTRIC
RESONATOR

Find the resonant frequency and approximate unloaded Q for the TEp;s mode
of adielectric resonator made from titania, with ¢, = 95 and tan§ = 0.001. The
resonator dimensionsarea = 0.413 cmand L = 0.8255 cm.

Solution
The transcendental equation of (6.70) must be solved for kg, with 8 and « given
by (6.65a) and (6.66a). Thus,

AL«
tan— = —
an 25
where
a = /(2.405/a)2 — k3,
B = k2 — (2.405/a)2,
and
2 f
ko= —.
c
Because o and 8 must both be real, the possible frequency rangeisfrom f1 to fo,
where
L= S C2AD) ) ea Gy,
2t 2n/&a
ckp  c(2.405)
27 o 2ra 804 GHz

Using the interval-halving method (see the Point of Interest on root-finding
algorithms in Chapter 3) to find the root of the above equation gives a resonant
frequency of about 3.152 GHz. This compares with a measured value of about
3.4 GHz from reference [2], indicating a 10% error. The approximate unloaded
Q, dueto dielectricloss, is

1
= —— = 1000.
Qq — [

EXCITATION OF RESONATORS

Resonators are not useful unless they are coupled to external circuitry, so we now discuss
how resonators can be coupled to transmission lines and waveguides. In practice, the way
in which thisis done depends on the type of resonator under consideration; some examples
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@ (b)

© )

FIGURE 6.13 Coupling to microwave resonators. (8) A microstrip transmission line resonator
gap coupled to a microstrip feedline. (b) A rectangular cavity resonator fed by a
coaxia probe. (c) A circular cavity resonator aperture coupled to a rectangular
waveguide. (d) A dielectric resonator coupled to amicrostrip line.

of resonator coupling techniques are shown in Figure 6.13. We will discuss the operation
of some of the more common coupling techniques, notably gap coupling and aperture
coupling. We begin by discussing the coupling coefficient for a resonator connected to a
feed line, and the subject of critical coupling. A related topic of practical interest is how
the unloaded Q of aresonator can be determined from the two-port response of aresonator
coupled to atransmission line.

The Coupling Coefficien and Critical Coupling

Thelevel of coupling required between aresonator and its attached circuitry depends on the
application. A waveguide cavity used as afrequency meter, for example, isusualy loosely
coupled to its feed guide in order to maintain high Q and good accuracy. A resonator used
in an oscillator or tuned amplifier, however, may be tightly coupled in order to achieve
maximum power transfer. A measure of the level of coupling between a resonator and
a feed is given by the coupling coefficient. To obtain maximum power transfer between
a resonator and a feed line, the resonator should be matched to the line at the resonant
frequency; the resonator is then said to be critically coupled to the feed. We will illustrate
these concepts by considering the series resonant circuit shown in Figure 6.14.

FIGURE 6.14 A seriesresonant circuit coupled to afeedline.
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From (6.9), the input impedance near resonance of the series resonant circuit of
Figure 6.14 is given by

2RQpA
Zn=R+ j2LAw = R+jm, (6.71)
o
and the unloaded Q is, from (6.8),
wol
Qo= LR. (6.72)

At resonance, Aw = 0, so from (6.71) the input impedance is Zj, = R. In order to match
the resonator to the line we must have

R = Zo. (6.73)
In this case the unloaded Q is
L
Qo = ‘”ZL (6.74)
0
From (6.22), the external Q is
wol
Qe =5 = Qu. (6.75)
0

which shows that the external and unloaded Qs are equal under the condition of critical
coupling. Theloaded Q is half thisvalue.
We can define the coupling coefficient, g, as

_ Qo
9T Q.
which can be applied to both series (g = Zo/R) and parallel (g = R/Zg) resonant circuits,

when connected to a transmission line of characteristic impedance Zg. Three cases can be
distinguished:

(6.76)

1. g < 1: Theresonator is said to be undercoupled to the feedline.
2. g = 1: Theresonator is critically coupled to the feedline.
3. g > 1: Theresonator is said to be overcoupled to the feedline.

Figure 6.15 shows a Smith chart sketch of the impedance loci for the series resonant
circuit, as given by (6.71), for various values of R corresponding to the above cases.

A Gap-Coupled Microstrip Resonator

Consider a A/2 open-circuited microstrip resonator proximity coupled to the open end of
a microstrip transmission line, as shown in Figure 6.13a. The gap between the resonator
and the microstrip line can be modeled as a series capacitor, so the equivalent circuit can
be constructed as shown in Figure 6.16. The normalized input impedance seen by the
feedlineis

(6.77)

4 _j(l/wC+ZocotﬂJZ) o (tanﬂ£+bc>

= — =
Zg Zo be tan B¢

where b, = ZpwC isthe normalized susceptance of the coupling capacitor, C. Resonance
occurswith z = 0, or when

tan B¢ + b, = 0. (6.78)
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FIGURE 6.15 Smith chart illustrating coupling to a series RLC circuit.

The solutions to this transcendental equation are shown in the graph of Figure 6.17. In
practice, b, « 1, so the first resonant frequency, wi, will be close to the frequency for
which ¢ = & (the first resonant frequency of the unloaded resonator). The coupling of
the resonator to the feedline has the effect of lowering its resonant frequency.

We now wish to simplify the driving point impedance of (6.77) to relate this resonator
to aseries RLC equivalent circuit. This can be accomplished by expanding z(w) in aTaylor
series about the resonant frequency, w1, and assuming that b; is small. Thus,

dz(w) dz(w) d(BL)
_ _ = (0 — )2 2PD) : 6.79
Z(w) = Z(w1) + (0 — w1) 9o w1+ (w wl)d(ﬂg) do |, . (679
c ¢
o—]}—o o
ZO ZO
- :
Feed line Gap Open-circuit
capacitance /2 resonator
z

FIGURE 6.16  Equivalent circuit of the gap-coupled microstrip resonator of Figure 6.13a.
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Bt=wtlv,

_bC = —(I.)CZO

FIGURE 6.17 Solutions to (6.78) for the resonant frequencies of the gap-coupled microstrip

resonator.

since, from (6.77) and (6.78), z(w1) = 0. Then,

dz | .sec®Bt  1+tan®B 14bE ]

d(Be) wl_JtanZ,Bé_] w2pe o2

where we have used (6.78) and the assumption that b, <« 1. Assuming a TEM line, we
haved(B¢)/dw = £/vy, Where vy isthe phase velocity of theline. Because £ >~ mvp/w1, the
normalized impedance can be written as

lo—w1)  jrl-—o1)

Z(w) ~ (6.80)

So far we have ignored losses, but for a high-Q resonator loss can be included by re-
placing the resonant frequency, w1, with the complex resonant frequency given by w1 (1 +
1/2Qo), which follows from (6.10). Applying this procedure to (6.80) gives the input
impedance of the gap-coupled |ossy resonator as

T  m(w — w1)
2Qob2

Note that an uncoupled A/2 open-circuited transmission line resonator looks like a parallel
RLC circuit near resonance, but the present case of a capacitive coupled A/2 resonator |00ks
like a series RLC circuit near resonance. This is because the series coupling capacitor has
the effect of inverting the driving point impedance of the resonator (see the discussion of
impedance invertersin Section 8.5).

At resonance the input resistance is R = Zon/ 2Qob§. For critical coupling we must

have R = Zg, or
b
= |—. .82
be ‘/ZQO (6.82)

The coupling coefficient of (6.76) isfound to be
_Zo _ 2Qob?
TR ox

If be < /7/2Q, then g < 1 and the resonator is undercoupled; if be > +/7/2Q, then
g > 1 and the resonator is overcoupled.

Z(w) = (6.81)

w1b2

(6.83)
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EXAMPLE 6.6 DESIGN OF A GAP-COUPLED MICROSTRIP RESONATOR

A resonator is made from an open-circuited 50 2 microstrip line and is gap cou-
pledtoa50 2 feedline, asin Figure 6.13a. Theresonator hasalength of 2.175 cm,
an effective dielectric constant of 1.9, and an attenuation of 0.01 dB/cm near its
resonance. Find the value of the coupling capacitor required for critical coupling,
and the resulting resonant frequency.

Solution

The first resonant frequency will occur when the resonator is about ¢ = 1g/2
in length. Ignoring fringing fields, we find that the approximate resonant fre-
guency is

3x 108
fo= 2o _C X — 5.00 GHz.

T g 20 e 2(0.02175)4/19
This result does not include the effect of the coupling capacitor. From (6.35) the
unloaded Q of this resonator is
B b b (8.7 dB/Np)

T 20 Age  20a  2(0.02175m)(1dB/m)

Qo

From (6.82) the normalized coupling capacitor susceptanceis

T T
be = /Z—Q0 = /2(628) = 0.05,

so the coupling capacitor has a value of

c_ be 0.05
T wZo  27(5 x 109)(50)

which should provide critical coupling of the resonator to the 50 Q2 feedline.
Now that C isdetermined, the exact resonant frequency can be found by solv-
ing the transcendental equation of (6.78). Because we know from the graphical so-
lution of Figure 6.17 that the actual resonant frequency is slightly lower than the
unloaded resonant frequency of 5.0 GHz, it is an easy matter to calculate (6.78)
for several frequenciesin thisvicinity, which leadsto avalue of about 4.918 GHz.
Thisisabout 1.6% lower than the unloaded resonant frequency. Figure 6.18 shows
a Smith chart plot of the input impedance of the gap-coupled resonator for
coupling capacitor values that lead to undercoupled, critically coupled, and over-
coupled resonators. |

— 0.032 pF,

An Aperture-Coupled Cavity

As afinal example of resonator excitation, we consider the aperture coupled waveguide
cavity shown in Figure 6.19. Asdiscussed in Section 4.8, asmall aperturein the transverse
wall of awaveguide acts as a shunt inductance. If we consider the first resonant mode of
the cavity, which occurs for the cavity length £ = Ag/2, then the cavity can be considered
as atransmission line resonator shorted at one end. The aperture-coupled cavity can then
be modeled by the equivalent circuit shown in Figure 6.20. This circuit is basically the
dual of the equivalent circuit of Figure 6.16, for the gap-coupled microstrip resonator, so
we will approach the solution in the same manner.
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Example 6.6 versus frequency for various values of the coupling capacitor.
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FIGURE 6.19 A rectangular waveguide aperture coupled to arectangular cavity.
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FIGURE 6.20 Equivalent circuit of an aperture-coupled cavity resonator.
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Smith chart plot of input impedance of the gap-coupled microstrip resonator of
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The normalized input admittance seen by the feedlineis

Z tan 8¢ + X

where X, = wlL/Zg is the normalized reactance of the aperture. An antiresonance occurs
when the numerator of (6.84) vanishes, or when

tange +x. =0, (6.85)

which issimilar in form to (6.78), for the case of the gap-coupled microstrip resonator. In
practice, X « 1, sothefirst resonant frequency, w1, will be closeto the resonant frequency
for which 8¢ = 7, similar to the solution illustrated in Figure 6.17.

Using the same procedure as in the previous section, we can expand the input admit-
tance of (6.84) in a Taylor series about the resonant frequency, w1, assuming X, < 1, to
obtain
Y(w) dy(w) d(B¢)

wl+...=(w )—d(,BE) —da) wl_|_...’
(6.86)

Y(w) = Y(w1) + (0 — w1)

since, from (6.84) and (6.85), y(w1) = 0. Then,

dy(a))__seczﬂﬂ__1+tan2,8£__1+xEN j
dge)y  “ta? e otan?ge o x2 T xP

N

For the rectangular waveguide,
ds d T ko
do ko ﬂc
where c is the speed of light. Then the normalized admittance of (6.86) can be reduced to

_ kot RELS
Y(w) = x2BC (0 —w1) = x2p2C
In (6.87), ko, B, and x should be evaluated at the resonant frequency, w1.
L osscan now beincluded by assuming ahigh-Q cavity, and replacing w1 in the numer-
ator of (6.87) with w1(1+ j/2Qo), to obtain

mKow1 J mko(w — wl)
2Qop2cx? p2cx?

At resonance the input resistanceis R = 2Qo,32cx|_ Zo/mKows . To obtain critical cou-
pling we must have R = Zp, which yields the required aperture reactance as

X, = Zo /%. (6.89)

From X, the necessary aperture size can be found.

The next resonant mode for the aperture-coupled cavity occurs when the input impe-
dance becomes zero, or Y — oo. From (6.84) it is seen that this occurs at a frequency such
that tan 8¢ = O, or B¢ = 7. In this case the cavity is exactly 1¢/2 long, so anull in the
transverse electric field exists at the aperture plane, and the aperture has no effect. This
mode is of little practical interest because of this negligible coupling.

The excitation of a cavity resonator by an electric current probe or loop can be ana-
lyzed by the method of modal analysis, similar to that discussed in Sections 4.7 and 4.8.

(@ — w1). (6.87)

Y(w) x~ (6.88)
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FIGURE 6.21 A two-port network consisting of a series RLC resonator in series with atransmis-

sion line.

The procedure is complicated, however, by the fact that a complete modal expansion re-
quires fields having irrotational (zero curl) components. The interested reader is referred
to references [1] and [4].

Determining Unloaded Q from Two-Port Measurements

Direct measurement of the unloaded Q of aresonator is generally not possible because of
the loading effect of the measurement system, but it is possible to determine unloaded Q
from measurements of the frequency response of the loaded resonator when it is connected
to atransmission line. Both one-port (reflection measurement) and two-port (transmission
measurement) techniques are possible; we will describe how unloaded Q can be found
from atwo-port measurement.

Figure 6.21 shows a series RLC resonator inserted in series in a transmission line
of characteristic impedance Zg, forming a two-port network. Maximum transmission oc-
curs at resonance since the impedance of the series resonator is minimum at resonance.
Off resonance, the resonator impedance increases, and the insertion loss increases. The
result isthat the network of Figure 6.21 has a two-port transmission response (as given by
|S1]) of the form shown in Figure 6.22. The loaded Q can be determined from (6.21) as
QL = fo/BW, where fg is the resonant frequency, and BW is the half-power bandwidth
(in Hz), where the transmission response is 3 dB lower than at resonance.

The unloaded Q can be expressed in terms of the loaded Q and the coupling coeffi-
cient, g. From (6.23),

1 1 1 1 Q0> 1
— =t —=—(1+=)=—(@1+09), (6.90)
Q Qe Qo Qo ( Qe Qo
0
/’\\
S // \\
4 \
/ \
10 e AN
—~ // \\
S sl ol =
= —Q,=1000,g=0.5
@ ——Qy=1000,g=4.0
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FIGURE 6.22  Frequency response of the transmission characteristics of the resonator network of

Figure 6.21 for two values of unloaded Q and coupling coefficient.
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6.7

since g = Qou/Qe from (6.76). Rewriting (6.90) gives
Qo=01+90Qc. (6.91)

Because Qo = woL/R for the series resonator, and the external Q is Qe = wolL/2Zp, asa
result of the line loading at each end of the resonator, the coupling coefficient is
_ 279
==

At resonance, the impedance of the series RLC resonator reducesto Z = R. The scattering
parameter S for the two-port network of Figure 6.21 can be found in terms of the series
resonator impedance using the results of Table 4.2 (or from Problem 4.11). At resonance,

279 279 g

(6.92)

20 = S 70 20+ R 149 653
Solving for g gives
S1(wo)
= 6.94
9=1- S1(wo) (659

The procedure for finding the unloaded Q from measured scattering parameter data (or
from data produced by computer modeling) is to first find the coupling coefficient using
(6.94), then find the loaded Q from the 3 dB bandwidth, and finaly, using (6.91), find Q.
Notethat $1 should be areal number at resonance, assuming phase reference planes at the
resonator circuit. If the resonator appears as a parallel RLC circuit, it is easy to show that
the result for g in (6.94) should be inverted.

CAVITY PERTURBATIONS

In practical applications cavity resonators are often modified by making small changesin
their shape, or by introducing small pieces of dielectric or metallic materials. For exam-
ple, the resonant frequency of a cavity resonator can be easily tuned with a small screw
(dielectric or metallic) that enters the cavity volume, or by changing the size of the cavity
with amovable wall. Another application involves the determination of dielectric constant
by measuring the shift in resonant frequency when a small dielectric sample is introduced
into the cavity.

In some cases, the effect of such perturbations on the cavity performance can be cal-
culated exactly, but often approximations must be made. One useful technique for doing
thisis the perturbational method, which assumes that the actual fields of a cavity with a
small shape or materia perturbation are not greatly different from those of the unperturbed
cavity. Thus, this technique is similar in concept to the perturbational method introduced
in Section 2.7 for treating loss in good conductors, where it was assumed that there was
not a significant difference between the fields of a device with good conductors and one
with perfect conductors.

In this section we derive expressions for the approximate change in resonant frequency
when a resonant cavity is perturbed by small changes in the material filling the cavity, or
by small changesin its shape.

Material Perturbations

Figure 6.23 shows a cavity perturbed by a change in the permittivity (Ae), or permeability
(Aw), of al or part of the material filling the cavity. If Eg, Hp are the fields of the original
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FIGURE 6.23 A resonant cavity perturbed by a change in the permittivity or permeability of the

material in the cavity. (a) Original cavity. (b) Perturbed cavity.

cavity, and E, H are the fields of the perturbed cavity, then Maxwell’s curl equations can
be written for the two cases as

V x Eg = —jwouHo, (6.953)
V x Ho = jwoeEo, (6.95h)
VxE=—jou+AnH, (6.96a)
V x H = jw(e+ AgE, (6.96b)

where wyg is the resonant frequency of the original cavity, and w is the resonant frequency
of the perturbed cavity. . .
Multiply the conjugate of (6.95a) by H, and multiply (6.96b) by E}, to get
H.V x ES: ja)oul:|'|:|6k,
Es-V x H=jo(+ A9E} - E.

Subtracting these two eguations and using the vector identity (B.8) that V - (A x B) =
B-VxA—-A-V x Bgives

V- (E§ x H) = joouH - Hf — jw(e + AOEf - E. (6.974)
Similarly, multiply the conjugate of (6.95b) by E, and multiply (6.96a) by Hg, to get
E.V x HS = — jwoeES - E,
Hs -V x E=—jo(u+AwHg - H.
Subtracting these two equations and using vector identity (B.8) gives

V- (E x H) = —jo(u+ Ap)HE - H + jwoeE] - E. (6.97b)

Now add (6.97a) and (6.97h), integrate over the volume Vg, and use the divergence theorem
to obtain

f V-(ngH+ExHg‘)dvzyg(ég‘xH_+Exl—_|5)~d§=0
Vo S

=] / {[woe — w(€ + ADIES - E + [wop — w(u + Ap)HE - Hidv, (6.98)
Vo
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where the surface integral is zero because fi x E = 0 on S. Rewriting gives

w—wo _ ~Jy(AE By + AuH - Hiydy 6.99)
1) fvo(eE ~EJ +uH - Hydv
Thisis an exact equation for the change in resonant frequency due to material pertur-
bations, but is not in a very usable form since we generally do not know E and H, the
exact fields in the perturbed cavity. However, if we assume that Ae and Ap are small,
we can approximate the perturbed fields E, H by the original fields Eg, Ho, and w in
the denominator of (6.99) by wo, to give the approximate fractional change in resonant
frequency as

w—wy _ — Jy(AclEol? + Ap|Hol*)dv
o [y, (€lEol? + ulHoHdv

(6.100)

Thisresult showsthat any increasein ¢ or w at any point in the cavity will decrease the
resonant frequency. The reader may also observe that the terms in (6.100) can be related
to the stored electric and magnetic energies in the original and perturbed cavities, so that
the decrease in resonant frequency can be related to the increase in stored energy of the
perturbed cavity.

EXAMPLE 6.7 MATERIAL PERTURBATION OF A RECTANGULAR CAVITY

A rectangular cavity operating in the TE1g1 mode is perturbed by the insertion
of athin dielectric slab into the bottom of the cavity, as shown in Figure 6.24.
Use the perturbational result of (6.100) to derive an expression for the change in
resonant frequency.

Solution
From (6.42a)—(6.42c), the fields for the unperturbed TEjp; cavity mode can be
written as
. X . 7wz
Ey = Asn—sin—,
y a d
—JA
HX=—J sinn—xco nz’
ZTE a d
jrA X z
HZ=—JJT cos ™ sn %
kn a

y X
/
L7
b N 7
& | __
el
t e €
0 d z

FIGURE 6.24 A rectangular cavity perturbed by athin dielectric dab.
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The integral can then be evaluated as

a t d
/ (Ae|Eol? + ApHolHdv = (¢ — 1)60/ / / | Ey|?dzdydx
Vv x=0Jy=0Jz=0

(er — 1)egA2atd
2 )

The denominator of (6.100) is proportional to the total energy in the unperturbed
cavity, which was evaluated in (6.43); thus,

A2,

_ _ abde
/(6|E0I2+MIH0I2)dv = 2
Vv

Then (6.100) gives the fractional change (decrease) in resonant frequency as

w—wy —(er — Dt
wo b u

Shape Perturbations

Changing the size of a cavity, or inserting a tuning screw, can be considered as a change
in the shape of the cavity and, for small changes, can aso be treated by the perturbation
technique. Figure 6.25 shows an arbitrary cavity with a perturbation in its shape; we will
derive an expression for the change in resonant frequency.

As in the case of material perturbations, let Eg, Ho, wo be the fields and resonant
frequency of the original cavity and let E, H, » be the fields and resonant frequency of the
perturbed cavity. Then Maxwell’s curl equations can be written for the two cases as

V x Eg = —jwouHo, (6.1014a)
V x Ho = jwoeEo, (6.101b)
V x E = —jouH, (6.1029)
V x H = joweE. (6.102b)

Multiply the conjugate of (6.101a) by H, and multiply (6.102b) by EZ, to get
H-V x Ef = joouH - Hg,

Eg -V x H = joeE] - E.

=50

(b)
FIGURE 6.25 A resonant cavity perturbed by achangein shape. (a) Original cavity. (b) Perturbed

cavity.
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Subtracting these two equations and using vector identity (B.8) gives
V- (E§ x H) = joouH - H} — joeE] - E. (6.103a)
Similarly, multiply the conjugate of (6.101b) by E and (6.102a) by H¢ to get
E.V x Al = —jwoeE - EL,
HS -V x E=—jouHg - H.
Subtracting and applying vector identity (B.8) gives
V- (E x H) = —jouH§ - H + jogeE - E} (6.103b)

Now add (6.103a) and (6.103b), integrate over the volume V, and use the divergence the-
orem to obtain

fV-(ExH3+E3xﬂ)dv=y§(|§xﬂg+é3‘xH)~d§
\% S

:fESX I:|'d§=—j(w—wo)/(6E~ES—l—,ul:l-H_g)dv, (6.104)
S \%

sinceix E=00nS.
Because the perturbed surface S= S — AS, we can write

%ESXI—_I'dé:?g ngl—?-dé—yg ngH‘.dg??ﬁ Es x H - ds,
S S AS AS

because i x Eg = 0 on S. Using this result in (6.104) gives

—j fcEX x H-ds
©— wp = JfA_S* 0% T2 (6.105)
[ (E Ej+ A - ADd

whichisan exact expression for the new resonant frequency, but not avery usable onesince
we generally do not initially know E, H, or w. If we assume A Sissmall, and approximate
E. H by the unperturbed values of Eg, Ho, then the numerator of (6.105) can be reduced
asfollows:

?ﬁ Eg x H 'dézjg Ej x Ho-dS = —jwo/ (¢|Eol? — ulHo/®dv,  (6.106)
AS AS AV

where the last identity follows from conservation of power, as derived from the conjugate
of (1.87) with o, Js, and Mg set to zero. Using thisresult in (6.106) gives an expression for
the approximate fractional change in resonant frequency as

w—wo fAv(W H_0|2 — €] EO|2)dU
@0 [y, (ulHol?2 + €[Eo>)dv

(6.107)

where we have also assumed that the denominator of (6.105), which represents the total
energy stored in the perturbed cavity, is approximately the same as that for the unperturbed
cavity.
Equation (6.107) can be written in terms of stored energies as follows:
w—wy AW — AW
wo  Wn+We
where AW, and AW are the changes in the stored magnetic energy and electric energy,
respectively, after the shape perturbation, and W, + W is the total stored energy in the

(6.108)
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cavity. These results show that the resonant frequency may either increase or decrease,
depending on where the perturbation is located and whether it increases or decreases the
cavity volume.

EXAMPLE 6.8 SHAPE PERTURBATION OF A RECTANGULAR CAVITY

A thin screw of radiusrg extends a distance ¢ through the center of the top wall of
arectangular cavity operating in the TE19; mode, as shown in Figure 6.26. If the
cavity isair filled, use (6.107) to derive an expression for the change in resonant
frequency from the unperturbed cavity.

Solution
From (6.428)—(6.42c), the fields for the unperturbed TEjo; cavity can be written
as
N S 74
Ey = Asin—sin—,
y a d
—JA . 7nx nz
Hy = —— sih— cos—,
X ZTE a d
H; = —j e cosn—x Tz

If the screw is thin, we can assume that the fields are constant over the cross
section of the screw and can be represented by thefieldsat x = a/2, z = d/2:

Then the numerator of (6.107) can be evaluated as
/ (1|Hol? — €|Eo|*)dv = —€g f A’dv = —eoA?AV,
AV AV

where AV = nﬁrg is the volume of the screw. The denominator of (6.107) is,

from (6.43),
- - abdegAZ  VpegA?
/(M|H0|2+6|E0|2)dv= 20 = °2° ,
Vo
y
/x
///
X A |
// *»Uif
/// Zro
0 d z

FIGURE 6.26 A rectangular cavity perturbed by atuning post in the center of the top wall.
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where Vp = abd isthe volume of the unperturbed cavity. Then (6.107) gives

w—wy —20mr3 2\

o abd Vo

which indicates alowering of the resonant frequency. |
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PROBLEMS

6.1

6.2

6.3

6.4

6.5

A series RLC resonator with an external load is shown below. Find the resonant frequency, the un-
loaded Q, and the loaded Q.

25Q 50nH  0.79 pF

Resonator Load

Derive an expression for the unloaded Q of a transmission line resonator consisting of a short-
circuited transmission line 11 long.

A transmission line resonator isfabricated from aA/4 length of open-circuited line. Find the unloaded
Q of thisresonator if the complex propagation constant of thelineisa + 8.

Consider the resonator shown below, consisting of a 1/2 length of lossless transmission line shorted
at both ends. At an arbitrary point, z, on the line, compute the impedances Z and Zr seen looking
to the left and to the right, respectively, and show that Z| = Z}. (This condition holds true for any
|ossless transmission line resonator and is the basis for the transverse resonance technique discussed
in Section 3.9.)

0 z z Za L=AI2 z

A resonator is constructed from a 3.0 cm length of 100 €2 air-filled coaxia line, shorted at one end
and terminated with a capacitor at the other end, as shown below. () Determine the capacitor value



6.6

6.7

6.8

6.9

6.10

6.11
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to achieve the lowest order resonance at 6.0 GHz. (b) Now assume that loss is introduced by placing
a 10,000 2 resistor in parallel with the capacitor. Calculate the unloaded Q.

3.0cm

R_1o4gg___:l‘_z Z,=100Q
L

A transmission line resonator is made from alength ¢ of lossless transmission line of characteristic
impedance Zg = 100 Q. If the line is terminated at both ends as shown below, find ¢/ for the first
resonance, and the unloaded Q of this resonator.

0.1Q Zy= 100 0.1Q

—j50Q —i50Q
J T T

Write the expressions for the E and H fields for a short-circuited /2 coaxial line resonator, and
show that the time-average stored el ectric and magnetic energies are equal .

A series RLC resonant circuit is connected to a length of transmission line that is /4 long at its
resonant frequency, as shown below. Show that, in the vicinity of resonance, the input impedance
behaves like that of a parallel RLC circuit.

R L
o AMA— YN
Zo=> 2 (b® ¢
2 N4
@fy

A rectangular cavity resonator is constructed from a 2.0 cm length of aluminum X-band waveguide.
The cavity isair filled. Find the resonant frequency and unloaded Q of the TE1g; and TEzgy resonant
modes.

Derive the unloaded Q for the TM 111 mode of arectangular cavity, assuming lossy conducting walls
and lossless dielectric.

Consider the rectangular cavity resonator partialy filled with dielectric as shown below. Derive a
transcendental equation for the resonant frequency of the dominant mode by writing the fields in
the air- and dielectric-filled regions in terms of TE;g waveguide modes, and enforcing boundary
conditionsat z=0,d —t, and d.
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6.12 Determine the resonant frequencies of a rectangular cavity by carrying out a full separation-of-
variables solution to the wave equation for Ez (for TM modes) and Hz (for TE modes), subject to
the appropriate boundary conditions of the cavity. [Assume a solution of the form X(X)Y (y)Z(2).]

6.13 Find the unloaded Q for the TMmo resonant mode of acircular cavity. Consider both conductor and
dielectric losses.

6.14 Design a circular cavity resonator to operate in the TE11q; mode with maximum unloaded Q at a
frequency of 6 GHz. The cavity is gold plated and filled with a dielectric material having ef = 1.5
and tan§ = 0.0005. Find the cavity dimensions and the resulting unloaded Q.

6.15 Anair-filled rectangular cavity resonator hasitsfirst three resonant modes at the frequencies 5.2, 6.5,
and 7.2 GHz. Find the dimensions of the cavity.

6.16 Consider the microstrip ring resonator shown below. If the effective dielectric constant of the
microstrip lineis eg, find an equation for the frequency of thefirst resonance. Suggest some methods
of coupling to this resonator.

O <«

6.17 A circular microstrip disk resonator is shown below. Solve the wave equation for TM o modes for
this structure, using the magnetic wall approximation that H, = 0 at p = a. If fringing fields are
neglected, show that the resonant frequency of the dominant mode is given by

1.841c
2ra /e

6.18 Compute the resonant frequency of acylindrical dielectric resonator with ¢, = 36.2, 2a = 7.99 mm,
and L = 2.14 mm.

6.19 Extend the analysis of Section 6.5 to derive a transcendental equation for the resonant frequency of
the next resonant mode of the cylindrical dielectric resonator. (Hz odd in z.)

fi10 =

6.20 Consider the rectangular dielectric resonator shown below. Assume a magnetic wall boundary con-
dition around the edges of the cavity, and allow evanescent fieldsin the -z directions away from the
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6.22

6.23

6.24
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dielectric, similar to the analysis of Section 6.5. Derive a transcendental equation for the resonant
frequency.

N

o))

A high-Q resonator useful at millimeter wave frequencies is the Fabry-Perot resonator, which con-
sists of two paralel metal plates (see figure below). A plane wave traveling at normal incidence
between the two plates will exhibit resonance when the plate separation is equal to a multiple of
/2. (8) Derive an expression for the resonant frequency of a Fabry-Perot resonator having a plate
separation d and mode number ¢. (b) If the plates have conductivity o, derive an expression for
the unloaded Q of the resonator. (¢) Use these results to find the resonant frequency and unloaded
Q of a Fabry-Perot resonator having d = 4.0 cm, with copper plates, and with a mode number
=25

A pardlel RLC circuit, with R = 1000 €2, L = 1.26 nH, C = 0.804 pF, is coupled with a series
capacitor, Cg, to a50-Q2 transmission line, as shown bel ow. Determine Cq for critical coupling to the
line. What is the resonant frequency?

An aperture-coupled rectangular waveguide cavity has a resonant frequency of 9.0 GHz and an
unloaded Q of 11,000. If the waveguide dimensions area = 2.5 cm and b = 1.25 c¢cm, find the nor-
malized aperture reactance required for critical coupling.

A microwave resonator is connected as a one-port circuit, and its return loss is measured versus
frequency. At resonance the return lossis 14 dB, while at 2.9985 GHz and at 3.0015 GHz the return
lossis 11 dB (the half-power points). Determine the unloaded Q of the resonator. Do this for both
series and parallel resonators.

A microwave resonator is measured in a two-port configuration like that shown in Figure 6.21. The
minimum insertion loss is measured as 1.94 dB at 3.0000 GHz. The insertion loss is 4.95 dB at
2.9925 GHz and at 3.0075 GHz. What is the unloaded Q of the resonator?
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6.26 A thin slab of magnetic material is inserted next to the z = 0 wall of the rectangular cavity shown
below. If the cavity is operating in the TE1g; mode, derive a perturbational expression for the change
in resonant frequency caused by the magnetic material.

y /x
/
| //
Lo
’ M I:’/ I
r | fa 0
e T2 ] ——
//7_
‘7
, /
|t} d z

6.27 Derive an expression for the change in resonant frequency for the screw-tuned rectangular cavity of
Example 6.8 if the screw islocated at x = a&/2, z = 0, where Hy is maximum and Ey is minimum.



Power Dividers and
Directional Couplers

Power dividers and directional couplers are passive microwave components used for power
division or power combining, asillustrated in Figure 7.1. In power division, an input signal is
divided into two (or more) output signals of lesser power, while a power combiner accepts
two or more input signals and combines them at an output port. The coupler or divider may
have three ports, four ports, or more, and may be (ideally) lossless. Three-port networks take
the form of T-junctions and other power dividers, while four-port networks take the form of
directional couplers and hybrids. Power dividers usualy provide in-phase output signals with
an equal power division ratio (3 dB), but unequal power division ratios are also possible. Di-
rectional couplers can be designed for arbitrary power division, while hybrid junctions usually
have equal power division. Hybrid junctions have either a 90° or a180° phase shift between the
output ports.

A wide variety of waveguide couplers and power dividers were invented and characterized
a the MIT Radiation Laboratory in the 1940s. These included E- and H-plane waveguide
T-junctions, the Bethe hole coupler, multihole directional couplers, the Schwinger coupler,
the waveguide magic-T, and various types of couplers using coaxia probes. In the mid-1950s
through the 1960s, many of these couplers were reinvented to use stripline or microstrip tech-
nology. Theincreasing use of planar lines also led to the development of new types of couplers
and dividers, such as the Wilkinson divider, the branch line hybrid, and the coupled line direc-
tional coupler.

We will first discuss some of the general properties of three- and four-port networks, and
then treat the analysis and design of severa of the most common types of power dividers,
couplers, and hybrids.

7.1

BASIC PROPERTIES OF DIVIDERS AND DOUPLERS

In this section we will use properties of the scattering matrix developed in Section 4.3 to de-
rive some of the basic characteristics of three- and four-port networks. We will also define

317
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Divider > P;=aP; P,=P,+P5| Divider [——P;
P or ~— or
coupler ——> P,=(1-a)P; coupler ~——P;

@ (b)
FIGURE 7.1  Power division and combining. (a) Power division. (b) Power combining.

isolation, coupling, and directivity, which are important quantities for the characterization
of couplers and hybrids.

Three-Port Networks (T-Junctions)

The simplest type of power divider is a T-junction, which is a three-port network with two
inputs and one output. The scattering matrix of an arbitrary three-port network has nine

independent elements:
S11 S12 Si3
[S]=]S21 S22 Sp3|. (7.1

Sa1 Sz2 Ss3
If the device is passive and contains no anisotropic materials, then it must be reciprocal
and its scattering matrix will be symmetric (Sjj = Sji). Usually, to avoid power loss, we
would like to have a junction that islossless and matched at all ports. We can easily show,
however, that it isimpossible to construct such athree-port lossless reciprocal network that
ismatched at al ports.
If al ports are matched, then Sjj = 0, and if the network is reciprocal, the scattering

matrix of (7.1) reducesto
0 S12 Si3
[S]=]S12 0 Sz |. (7.2)

Si3 S»3 O

If the network is also lossless, then energy conservation requires that the scattering matrix
satisfy the unitary properties of (4.53), which leads to the following conditions[1, 2]:

|S12/% + |S13]® = 1, (7.33)
1S121% + 152312 = 1, (7.30)
|S13l? + |S23)? = 1, (7.30)
Si3S23 = 0, (7.3d)
S33S12 = 0, (7.3e)
S1pS13 = 0. (7.3f)

Equations (7.3d)—(7.3f) show that at least two of the three parameters (S12, S13, Sp3) must
be zero. However, this condition will always be inconsistent with one of equations (7.3a)—
(7.3c), implying that a three-port network cannot be simultaneously lossless, reciprocal,
and matched at all ports. If any one of these three conditions is relaxed, then a physically
realizable deviceis possible.

If the three-port network is nonreciprocal, then Sjj # Sji, and the conditions of input
matching at all ports and energy conservation can be satisfied. Such adeviceis known asa
circulator, and generally relies on an anisotropic material, such as ferrite, to achieve non-
reciprocal behavior. Ferrite circulators will be discussed in more detail in Chapter 9, but
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we can demonstrate here that any matched lossless three-port network must be nonrecip-
rocal and, thus, a circulator. The scattering matrix of a matched three-port network has the

following form:
0 Sz Si3
[S]=[Saz1 O Sz |. (7.4

Sa1 S22 O

If the network islossless, [S] must be unitary, which implies the following conditions:

S31532 =0, (7.59)
$51S23 =0, (7.5b)
S12813 =0, (7.5¢)
|S12/% + |S13* = 1, (7.5d)
1S21/% + S23]” = 1, (7.56)
15112 + 1S5/ = 1. (7.5f)

These equations can be satisfied in one of two ways. Either

S12=3S23=351=0, [Sa]=[Sz2|=[S13/=1, (7.6a)
or

S21 =332 =S13=0, |[S12| =[Sz3| = [Sa1| =1 (7.6b)

These results shows that Sjj # Sji for i # j, which implies that the device must be non-
reciprocal. The scattering matrices for the two solutions of (7.6) are shown in Figure 7.2,
together with the symbols for the two possible types of circulators. The only difference
between the two casesisin the direction of power flow between the ports; solution (7.6a)
corresponds to a circulator that allows power flow only from port 1 to 2, or port 2 to 3, or
port 3 to 1, while solution (7.6b) corresponds to a circulator with the opposite direction of
power flow.

Alternatively, a lossless and reciprocal three-port network can be physically realized
if only two of its ports are matched [1]. If portsland 2 are the matched ports, then the
scattering matrix can be written as

0 S S13
[S]=|:512 0 523]- (1.7)

S13 Sp3 Sz

® ®
@ (b)

FIGURE 7.2 Two types of circulators and their scattering matrices. (a) Clockwise circulation.

(b) Counterclockwise circulation. The phase references for the ports are arbitrary.
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FIGURE 7.3 A reciprocal lossless three-port network matched at ports 1 and 2.

To be lossless, the following unitarity conditions must be satisfied:

S13S23 =0, (7.89)

S12513 + 833833 = 0, (7.80)
§53S12 + S33813 = 0, (7.80)

|12/ + |S13? = 1, (7.80)

|S12/° + 1S23l” = 1, (7.8¢)

|S13]? + [S23l® + Sgs? = 1. (7.8f)

Equations (7.8d) and (7.8€) show that |S13] = |S23], so (7.88) leads to the result that S13 =
Sp3 = 0. Then, |S12| = |S33| = 1. The scattering matrix and corresponding signal flow
graph for this network are shown in Figure 7.3, where it is seen that the network actu-
ally degeneratesinto two separate components—one a matched two-port line and the other
atotally mismatched one-port.

Finally, if the three-port network is alowed to be lossy, it can be reciprocal and
matched at al ports; this is the case of the resistive divider, which will be discussed in
Section 7.2. In addition, alossy three-port network can be made to have isolation between
its output ports (e.g., Sp3 = S32 = 0).

Four-Port Networks (Directional Couplers)

The scattering matrix of areciprocal four-port network matched at all ports has the follow-
ing form:

0 Si12 S13 Suis
S;2 0 Sz S
S13 S23 0 Sz
Si14 Soa Sz O

If the network is lossless, 10 equations result from the unitarity, or energy conservation,
condition [1, 2]. Consider the multiplication of row 1 and row 2, and the multiplication of
row 4 and row 3:

[S]= (7.9

SI3523 + Sf4324 =0, (7.10a)
S:T4513 + 854823 =0. (7.10b)
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Multiply (7.10a) by S3,, and (7.10b) by Sj;, and subtract to obtain

S34(1S131% — [S24/%) = 0. (7.12)

Similarly, the multiplication of row 1 and row 3, and the multiplication of row 4 and row
2, gives

1,523 + Si4Sa1 = O, (7.12a)
1,512 + 3,523 = 0. (7.12b)

Multiply (7.12a) by S12, and (7.12b) by Sz4, and subtract to obtain
S23(1S121” — [Saal?) = 0. (7.13)

One way for (7.11) and (7.13) to be satisfied isif S14 = Spz = 0, which resultsin a direc-
tional coupler. Then the self-products of the rows of the unitary scattering matrix of (7.9)
yield the following equations:

112/ + |S13/? = 1, (7.14a)
|S12/% + |S24/* = 1, (7.14b)
|S13/% + |Saal?® = 1, (7.140)
|S24/% + Sal” = 1, (7.14d)

which imply that |S13| = |S24| [using (7.14a) and (7.14b)], and that |S12] = |S34] [using
(7.14b) and (7.14d)].

Further simplification can be made by choosing the phase references on three of the
four ports. Thus, we choose S1» = S34 = «, S13 = Bel?, and Sp4 = Bel?, where « and
arereal, and 6 and ¢ are phase constants to be determined (one of which we are still free
to choose). The dot product of rows 2 and 3 gives

S72S13 + S54S34 = 0, (7.15)
which yields arelation between the remaining phase constants as
0+¢=m+2nm. (7.16)

If we ignore integer multiples of 27, there are two particular choices that commonly occur
in practice:

1. A Symmetric Coupler: § = ¢ = 7/2. The phases of the terms having amplitude 8
are chosen equal. Then the scattering matrix has the following form:

0O o jB O
[S] = JO/; 8 g Jf : (7.17)
0O jB a O

2. An Antisymmetric Coupler: & = 0, ¢ = 7. The phases of the terms having ampli-
tude 8 are chosen to be 180° apart. Then the scattering matrix has the following

form:
0O « B O
[S] = Z 8 8 _aﬁ . (7.18)
0O -8B a« O
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Input @ @ Through
- ——— — —
Isolated @ @ Coupled

Input @ @ Through
Isolated @ @ Coupled

FIGURE 7.4 Two commonly used symbolsfor directional couplers, and power flow conventions.

Note that these two couplers differ only in the choice of reference planes. In addition,
the amplitudes & and g are not independent, as (7.14a) requires that

o+ p2=1 (7.19)

Thus, apart from phase references, an ideal four-port directional coupler has only one de-
gree of freedom, leading to two possible configurations.

Another way for (7.11) and (7.13) to be satisfied isif |S13| = |Sz4] and |S12| = |Sz4l.
If we choose phase references, however, such that S13 = Spq4 = « and S12 = Sz4 = jB
[which satisfies (7.16)], then (7.10a) yields a(Sz3 + Si,;) = 0, and (7.12a) yields (S}, —
S»3) = 0. These two equations have two possible solutions. First, S14 = Sy3 = 0, whichis
the same as the above solution for the directional coupler. The other solution occurs for
a = B = 0,whichimpliesthat S12 = S13 = Sp4 = S3q4 = 0. Thisisthe degenerate case of
two decoupled two-port networks (between ports 1 and 4, and ports 2 and 3), which is of
trivial interest and will not be considered further. We are thus left with the conclusion that
any reciprocal, lossless, matched four-port network is adirectional coupler.

The basic operation of adirectional coupler can beillustrated with theaid of Figure 7.4,
which shows two commonly used symbolsfor adirectional coupler and the port definitions.
Power supplied to port 1 is coupled to port 3 (the coupled port) with the coupling factor
|S13]2 = B2, while the remainder of the input power is delivered to port 2 (the through
port) with the coefficient |S12|2 = «? = 1 — B2. In an ideal directional coupler, no power
is delivered to port 4 (the isolated port).

The following quantities are commonly used to characterize adirectional coupler:

P
Coupling = C = 10log Fl = —20log B dB, (7.20a)
3
o P3 B
Directivity = D = 10log — = 20log — dB, (7.20b)
Py [S14]
P
Isolation = | = 10|ogF1 — —20log |S14| dB, (7.20c)
4
. P
Insertionloss = L = 10Iogp—1 = —20log|S12| dB. (7.20d)
2

The coupling factor indicates the fraction of the input power that is coupled to the out-
put port. The directivity is a measure of the coupler’s ability to isolate forward and back-
ward waves (or the coupled and uncoupled ports). The isolation is a measure of the power
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delivered to the uncoupled port. These quantities are related as
| =D+ C dB. (7.21)

Theinsertion loss accounts for theinput power delivered to the through port, diminished by
power delivered to the coupled and isolated ports. Theideal coupler hasinfinite directivity
and isolation (S14 = 0). Then both @ and 8 can be determined from the coupling factor, C.

Hybrid couplers are specia cases of directional couplers, where the coupling factor is
3 dB, which impliesthat « = g = 1/+/2. There are two types of hybrids. The quadrature
hybrid has a 90° phase shift between ports2 and 3 (6 = ¢ = 7/2) when fed at port 1, and
is an example of asymmetric coupler. Its scattering matrix has the following form:

01ij o0
1010 0 j
[51_72 i 001 (7.22)

0j 10

The magic-T hybrid and the rat-race hybrid have a 180° phase difference between ports
2 and 3 when fed at port 4, and are examples of an antisymmetric coupler. Its scattering
matrix has the following form:

0 1 1 0
11 0 0 -1

[81—72 10 0 1 (7.23)
0 -1 1 0

POINT OF INTEREST: Measuring Coupler Directivity

The directivity of adirectiona coupler is a measure of the coupler’s ability to separate forward
and reverse wave components, and applications of directional couplers often require high (35dB
or greater) directivity. Poor directivity will limit the accuracy of areflectometer, and can cause
variations in the coupled power level from a coupler when there is even a small mismatch on
the through line.

The directivity of a coupler generaly cannot be measured directly because it involves a
low-level signa that can be masked by coupled power from a reflected wave on the through
arm. For example, if acoupler hasC = 20dB and D = 35 dB, with aload having areturn loss
RL = 30 dB, the signal level through the directivity path will be D + C = 55 dB below the
input power, but the reflected power through the coupled arm will only be RL + C = 50 dB
below the input power.

One way to measure coupler directivity uses a sliding matched load, as follows. First, the
coupler is connected to a source and a matched load, as shown in the accompanying left-hand
figure, and the coupled output power is measured. |If we assume an input power Pj, this power
will be P; = C2P;, where C = 10(—CB)/20 js the numerical voltage coupling factor of the
coupler. Next, the position of the coupler is reversed, and the through line is terminated with a
sliding load, as shown in the right-hand figure.

P, Vo (Pmax Pmin)
cﬂ Lo Jr oad:
O $ ~ <
W s e 5

- l Kom

Changing the position of the sliding load introduces a variable phase shift in the signal re-
flected from the load and coupled to the output port. The voltage at the output port can be
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written as
C .
Vo =V (— + C|r\e*19>,
D
where V; istheinput voltage, D = 10(P 98)/20 > 1 jsthe numerical value of the directivity, |T|
is the reflection coefficient magnitude of the load, and 6 is the path length difference between

the directivity and reflected signals. Moving the sliding load changes 6, so the two signals will
combine to trace out a circular locus, as shown in the following figure.

ImV,

The minimum and maximum output powers are given by

C 2 C 2
Pmn=Pi (= —-CI'l) , Pmax=Pi(=+CIT|) .
min i (D | |) max i (D +C| |)
Let M and m be defined in terms of these powers as follows:
2 2
Mo e :< D ) m:Pmax:<l+|F|D)’
Pmax 1+T|D Pmin 1-rb

These ratios can be accurately measured directly by using a variable attenuator between the
source and coupler. The coupler directivity (numerical) can then be found as

DM 2m
- m+1/

This method requiresthat |T'| < 1/D or,indB, RL > D.

Reference: M. Sucher and J. Fox, eds., Handbook of Microwave Measurements, 3rd edition, Volume I, Polytech-
nic Press, New York, 1963.

THE T-JUNCTION POWER DIVIDER

The T-junction power divider is a simple three-port network that can be used for power
division or power combining, and it can be implemented in virtually any type of transmis-
sion line medium. Figure 7.5 shows some commonly used T-junctions in waveguide and
microstrip line or stripline form. The junctions shown here are, in the absence of transmis-
sionlineloss, lossless junctions. Thus, as discussed in the preceding section, such junctions
cannot be matched simultaneousdly at all ports. We will analyze the T-junction divider be-
low, followed by a discussion of the resistive power divider, which can be matched at all
ports but is not lossless.

Lossless Divider

The lossless T-junction dividers of Figure 7.5 can al be modeled as a junction of three
transmission lines, as shown in Figure 7.6 [3]. In general, there may be fringing fields and
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NN/

€) (b)

(©
FIGURE 7.5 Various T-junction power dividers. (a) E-plane waveguide T. (b) H-plane wave-

guide T. (c) Microstrip line T-junction divider.

higher order modes associated with the discontinuity at such a junction, leading to stored
energy that can be accounted for by alumped susceptance, B. In order for the divider to be
matched to the input line of characteristic impedance Z, we must have
Y-—'B+1+1—1 (7.24)
R N P '
If the transmission lines are assumed to be lossless (or of low l0ss), then the characteristic
impedances are redl. If we also assume B = 0, then (7.24) reduces to

1 . 1 1
Z1 2 Zo
In practice, if B is not negligible, some type of discontinuity compensation or a reac-

tive tuning element can usually be used to cancel this susceptance, at least over a narrow
frequency range.

(7.25)

FIGURE 7.6  Transmission line model of alossless T-junction divider.
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The output line impedances, Z1 and Z2, can be selected to provide various power
divisionratios. Thus, for a50 2 input line, a3 dB (equal split) power divider can be made
by using two 100  output lines. If necessary, quarter-wave transformers can be used to
bring the output line impedances back to the desired levels. If the output lines are matched,
then the input line will be matched. There will be no isolation between the two output
ports, however, and there will be a mismatch looking into the output ports.

EXAMPLE 7.1 THE T-JUNCTION POWER DIVIDER

A lossless T-junction power divider has a source impedance of 50 €2. Find the out-
put characteristic impedances so that the output powersarein a2:1 ratio. Compute
the reflection coefficients seen looking into the output ports.

Solution
If the voltage at the junction is Vo, as shown in Figure 7.6, the input power to the
matched divider is

1Vv¢
Pln: __7
2Zp
while the output powers are
1v¢ 1
pp=--9_Zp
1 27, 3 in,
b _ 1Vv¢ 25
2727, 3"

These results yield the characteristic impedances as
z
Zo = % —75Q.

The input impedance to the junction is
Zin = 75||150 = 50 2,

so that the input is matched to the 50 €2 source.

Looking into the 150 2 output line, we see an impedance of 50| 75 = 30 €,
while at the 75 € output line we see an impedance of 50| 150 = 37.5 Q. The
reflection coefficients seen looking into these ports are

30 — 150
M=o _ _0666
1= 30+ 150 :
37.5-75
o= o2 2 0333
3751 75 m

Resistive Divider

If athree-port divider containslossy components, it can be made to be matched at all ports,
although the two output ports may not be isolated [3]. The circuit for such a divider is
illustrated in Figure 7.7, using lumped-element resistors. An equal-split (—3 dB) divider is
shown, but unequal power division ratios are also possible.
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FIGURE 7.7  An equal-split three-port resistive power divider.

Theresistive divider of Figure 7.7 can easily be analyzed using circuit theory. Assum-
ing that all ports are terminated in the characteristic impedance Zo, the impedance Z, seen
looking into the Zg/3 resistor followed by aterminated output line, is

Zo 47,
Z=—+2Z20=—. 7.26
3 + Zo 3 (7.26)
Then the input impedance of the divider is
Zo 2Zp
Zn=—+—=Z2 7.27
in 3 + 3 0, ( )

which shows that the input is matched to the feed line. Because the network is symmetric
from al three ports, the output ports are also matched. Thus, S13 = Sy = S33 = 0.

If the voltage at port 1 is V4, then by voltage division the voltage V at the center of the
junction is

2Z/3 2
1Z0/3+220/3 3

Vi, (7.28)

and the output voltages are, again by voltage division,

z 3. 1
0 =V (7.29)

Vo=Vz=V_—2"" __2y_
2T N 20 Z0/3 4 T 2

Thus, Sp1 = S31 = S23 = 1/2, so the output powers are 6 dB below the input power level.
The network is reciprocal, so the scattering matrix is symmetric, and it can be written as

1 011
[S]=§|:1 0 1:|. (7.30)

110

The reader may verify that thisis not a unitary matrix.
The power delivered to the input of the divider is
1V2

Pip = = —=, 7.31
=37, ( )
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7.3

while the output powers are

1(1/2vy)2  1V2 1
1d/2v)”  1Vi by (7.32)

Py = Py = =
2T T 77, 820 4

which shows that half of the supplied power is dissipated in the resistors.

THE WILKINSON POWER DIVIDER

The lossless T-junction divider suffers from the disadvantage of not being matched at all
ports, and it does not have isolation between output ports. The resistive divider can be
matched at all ports, but even though it is not lossless, isolation is still not achieved. From
the discussion in Section 7.1, however, we know that a lossy three-port network can be
made having all ports matched, with isolation between output ports. The Wilkinson power
divider [4] issuch anetwork, with the useful property of appearing losslesswhen the output
ports are matched; that is, only reflected power from the output ports is dissipated.

The Wilkinson power divider can be made with arbitrary power division, but we will
first consider the equal-split (3 dB) case. This divider is often made in microstrip line or
stripline form, as depicted in Figure 7.8a; the corresponding transmission line circuit is
given in Figure 7.8b. We will analyze this circuit by reducing it to two simpler circuits
driven by symmetric and antisymmetric sources at the output ports. This “even-odd” mode
analysis technique [5] will also be useful for other networks that we will study in later
sections.

Even-Odd Mode Analysis

For simplicity, we can normalize all impedances to the characteristic impedance Zo, and
redraw the circuit of Figure 7.8b with voltage generators at the output ports as shown in
Figure 7.9. This network has been drawn in aform that is symmetric across the midplane;
the two source resistors of normalized value 2 combine in parallel to give a resistor of
normalized value 1, representing the impedance of a matched source. The quarter-wave
lines have anormalized characteristic impedance Z, and the shunt resistor has anormalized
value of r; we shall show that, for the equal-split power divider, these values should be
Z =+/2andr = 2, asgivenin Figure 7.8.

V2z, Zo
Z A
/ A
' X2z, |
/A =% !
7
(@

a (b)

FIGURE 7.8 The Wilkinson power divider. (a) An equal-split Wilkinson power divider in mi-

crostrip line form. (b) Equivalent transmission line circuit.
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, %%
r/2 Vg2

r/2

+V3

1
— VWV
Port 3 Vg3

FIGURE 7.9 The Wilkinson power divider circuit in normalized and symmetric form.
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Now define two separate modes of excitation for the circuit of Figure 7.9: the even
mode, where Vg, = Vg3 = 2V, and the odd mode, where Vg, = —Vg3 = 2Vg. Superpo-
sition of these two modes effectively produces an excitation of Vo = 4Vp and Vgz = 0,
from which we can find the scattering parameters of the network. We now treat these two

modes separately.

Even mode: For even-mode excitation, Vg2 = Vg3 = 2V, so V5 = V3, and therefore no
current flows through the r/2 resistors or the short circuit between the inputs of the two
transmission lines at port 1. We can then bisect the network of Figure 7.9 with open circuits
at these points to obtain the network of Figure 7.10a (the grounded side of the 1. /4 lineis

not shown). Then, looking into port 2, we see an impedance

ZZ
Zien =5

2
Port 2

Fort |

(a)
Port 2
+V7 |

Forr 1

323

(7.33)

FIGURE 7.10 Bisection of the circuit of Figure 7.9. (a) Even-mode excitation. (b) Odd-mode

excitation.
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since the transmission line looks like a quarter-wave transformer. Thus, if Z = +/2, port 2
will be matched for even-mode excitation; then V5 = Vg since Z{, = 1. The r/2 resistor
is superfluous in this case since one end is open-circuited. Next, we find V' from the
transmission line equations. If welet x = O at port 1 and x = —A /4 at port 2, we can write
the voltage on the transmission line section as

V(x) = V(e I 4 relfx),
Then

Vi =V(=A/4 =jVT(@1L-T) =V, (7.34Q)
r+1
r—1

VE=VO) =VTA+T) =V (7.34b)

The reflection coefficient I' is that seen at port 1 looking toward the resistor of normalized

value 2, so
po2-v2
2+ 2
and
VE = —jVov2. (7.35)

Odd mode: For odd-mode excitation, Vg2 = —Vg3 = 2Vp, and so V) = —V., and there is
avoltage null along the middle of the circuit in Figure 7.9. We can then bisect this circuit
by grounding it at two points on its midplane to give the network of Figure 7.10b. Looking
into port 2, we see an impedance of r/2 since the parallel-connected transmission line is
A /4 1ong and shorted at port 1, and so looks like an open circuit at port 2. Thus, port 2 will
be matched for odd-mode excitation if we select r = 2. Then V) = Vg and V = 0; for
this mode of excitation all power isdelivered to ther/2 resistors, with none going to port 1.
Finally, we must find the input impedance at port 1 of the Wilkinson divider when
ports 2 and 3 are terminated in matched loads. The resulting circuit is shown in Figure
7.11a, where it is seen that this is similar to an even mode of excitation since Vo = V3.
No current flows through the resistor of normalized value 2, so it can be removed, leav-
ing the circuit of Figure 7.11b. We then have the parallel connection of two quarter-wave
transformers terminated in loads of unity (normalized). The input impedanceis

1
Zn=3(v2) =1 (7.36)
In summary, we can establish the following scattering parameters for the Wilkinson
divider:
S11=0 (Zin = 1l at port 1)
Soo =S33 =0 (ports 2 and 3 matched for even and odd modes)
VE4+ VP
S12 =Sy = % = —j/v2  (symmetry dueto reciprocity)
Vs +V,
S13=S31=—j/V2 (symmetry of ports 2 and 3)

So3=S3=0 (due to short or open at bisection)
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Port 2

Port 2

(b)
FIGURE 7.11 Analysis of the Wilkinson divider to find S11. () The terminated Wilkinson di-

vider. (b) Bisection of the circuit in ().

The preceding formula for Sy applies because all ports are matched when terminated
with matched loads. Note that when the divider is driven at port 1 and the outputs are
matched, no power isdissipated in the resistor. Thusthe divider islossless when the outputs
are matched; only reflected power from ports 2 or 3 is dissipated in the resistor. Because
S23 = Sgp = 0, ports 2 and 3 areisolated.

EXAMPLE 7.2 DESIGN AND PERFORMANCE OF A WILKINSON DIVIDER

Design an equal-split Wilkinson power divider for a 50 2 system impedance at
frequency fo, and plot the return loss (S11), insertion loss (S2; = Sz1), and isola
tion (Sg3 = S32) versus frequency from 0.5fg to 1.5 fq.

Solution
From Figure 7.8 and the above derivation, we have that the quarter-wave trans-
mission lines in the divider should have a characteristic impedance of

Z=+2Z,=707%,
and the shunt resistor a value of
R =270 =100 .

The transmission lines are A /4 long at the frequency fo. Using a computer-aided
design tool for the analysis of microwave circuits, the scattering parameter mag-
nitudes were calculated and plotted in Figure 7.12. |
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FIGURE 7.12  Frequency response of an equal-split Wilkinson power divider. Port 1 is the input
port; ports 2 and 3 are the output ports.

Unequal Power Division and N-Way Wilkinson Dividers

Wilkinson-type power dividers can also be made with unequal power splits; a microstrip
line version is shown in Figure 7.13. If the power ratio between ports 2 and 3 is
K2 = P3/P5, then the following design equations apply:

1+ K2
Zoz = Zoy/ 3 (7.373)

Zop = K%Zg3 = ZovVK (1 + K?2), (7.37b)
1
R =2 (K + R)' (7.37¢)

Note that the above results reduce to the equal-split case for K =1. Also observe that the
output lines are matched to the impedances R, = ZpK and Rz = Zp/K, as opposed to the
impedance Z; matching transformers can be used to transform these output impedances.

The Wilkinson divider can also be generalized to an N-way divider or combiner [4],
as shown in Figure 7.14. Thiscircuit can be matched at all ports, with isolation between all
ports. A disadvantage, however, is the fact that the divider requires crossovers for the re-
sistorsfor N > 3, which makes fabrication difficult in planar form. The Wilkinson divider
can also be made with stepped multiple sections, for increased bandwidth. A photograph
of afour-way Wilkinson divider network is shown in Figure 7.15.

FIGURE 7.13 A Wilkinson power divider in microstrip form having unequal power division.
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FIGURE 7.14  An N-way, equal-split Wilkinson power divider.

7.4

WAVEGUIDE DIRECTIONAL COUPLERS

We now turn our attention to directional couplers, which are four-port devices with the
characteristics discussed in Section 7.1. To review the basic operation, consider the direc-
tional coupler schematic symbols shown in Figure 7.4. Power incident at port 1 will couple
to port 2 (the through port) and to port 3 (the coupled port), but not to port 4 (the isolated
port). Similarly, power incident in port 2 will couple to ports 1 and 4, but not 3. Thus,
ports 1 and 4 are decoupled, as are ports 2 and 3. The fraction of power coupled from port
1 to port 3 is given by C, the coupling coefficient, as defined in (7.20a), and the leakage
of power from port 1 to port 4 is given by 1, the isolation, as defined in (7.20c). Another
quantity that characterizes a coupler is the directivity, D = | — C (dB), which istheratio

LT ‘b. . ;
L] .'

o
—

A

4

FIGURE 7.15 Photograph of afour-way corporate power divider network using three microstrip

Wilkinson power dividers. Note the isolation chip resistors.
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.
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of the powers delivered to the coupled port and the isolated port. Theideal coupler is char-
acterized solely by the coupling factor, astheisolation and directivity areinfinite. Theideal
coupler is aso lossless and matched at all ports.

Directional couplers can be made in many different forms. We will first discuss wave-
guide couplers, followed by hybrid junctions. A hybrid junction is a specia case of a
directional coupler, where the coupling factor is 3 dB (equal split), and the phase relation
between the output ports is either 90° (quadrature hybrid), or 180° (magic-T or rat-race
hybrid). Then we will discuss the implementation of directional couplersin coupled trans-
mission line form.

Bethe Hole Coupler

The directional property of all directional couplersis produced through the use of two sep-
arate waves or wave components, which add in phase at the coupled port and are canceled
at the isolated port. One of the simplest ways of doing this is to couple one waveguide
to another through a single small hole in the common broad wall between the two wave-
guides. Such a coupler is known as a Bethe hole coupler, two versions of which are shown
in Figure 7.16. From the small-aperture coupling theory of Section 4.8, we know that an
aperture can be replaced with equivalent sources consisting of electric and magnetic dipole
moments [6]. The normal electric dipole moment and the axial magnetic dipole moment
radiate with even symmetry in the coupled guide, while the transverse magnetic dipole mo-
ment radiates with odd symmetry. Thus, by adjusting the relative amplitudes of these two
equivalent sources, we can cancel the radiation in the direction of the isolated port, while
enhancing the radiation in the direction of the coupled port. Figure 7.16 shows two waysin
which these wave amplitudes can be controlled; in the coupler shown in Figure 7.16a, the

y
/ X
,: ______________ /_/: _____ /| @ (1solated)
= . @ (Through)
(Coupled) B | .~ /======—-C T | o
(Inpuy D |~ P b /a

©)

(Through)

(Input) @ |

@ (Isolated)
(b)

FIGURE 7.16 Two versions of the Bethe hole directiona coupler. (a) Parallel waveguides.
(b) Skewed waveguides.
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two waveguides are parallel and the coupling is controlled by s, the aperture offset from
the sidewall of the waveguide. For the coupler of Figure 7.16b, the wave amplitudes are
controlled by the angle, 6, between the two waveguides.

First consider the configuration of Figure 7.16a, with an incident TEjp mode into
port 1. These fields can be written as

. X ;
E, = Asin %e—lﬂ{ (7.384)
—A . X _;
Hy = - sin ”a e iz, (7.38b)
jTA TX _ipz
H, = cos—e ip?, (7.38c)

where Z19 = kono/B is the wave impedance of the TEjg mode. Then, from (4.124) and
(4.125), this incident wave generates the following equivalent polarization currents at the
apertureatx =s,y=b,z=0:

Pe = cone§ASi %Sa(x —95(y —b)s(2), (7.39%)

- —X . @ws , jm
Pm=—amA|=—sn—+2
" om [Zlo a * paZio

cos %S}S(x —95)8(y —Db)é(2). (7.39b)

Using (4.128a) and (4.128b) to relate P and Py, to the currents J and M, and then using
(4.118), (4.120), (4.122), and (4.123), gives the amplitudes of the forward and reverse
traveling waves in the top guide as
_ . 1 - _
Al =— [ Ejy-Jdv+ — | Hjy- Mdv
10 10/, 0 Py J,

—jwA LTS poom . ,mS w2 s
= sn— — —— (9N — 4+ —5— COS2 — s 7.40
" [éoae a 22, ( a " B2a? a (7.409)

-1 (-, - 1 L
A :—/E+~Jdv+—/H+~Mdv
10 [=} ; 10 PlO ; 10

—jwA LTS LTS 2 s
= TOR qesi? IS Hoom (g2 TS T 2T (7.40b)
P1o a zz, a p2a? a

where Pig = ab/Zyg is the power normalization constant. Note from (7.40a) and (7.40b)
that the amplitude of the wave excited toward port 4 (Afo) is generally different from that
excited toward port 3 (A ) (because H;” = —H, ), so we can cancel the power delivered
to port 4 by setting Afo = 0. If we assume that the aperture is round, then Table 4.3 gives
the polarizabilities as e = 2r3/3 and am = 4r3/3, where rois the radius of the aperture.
Then from (7.40a) we obtain the following condition for Afo =0

4M0> . o TS 420 s
2¢0 — — | SN — — cos’ — =0

2 9
( a  p2a?zi, a

rs 272 TS

2 _5p2yqn2 7S _ 7S
(kg —2%) sin 7= 2 S o

47T2 2 . 27TS 27'[2
__k0> In® — = ——,

a a?
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anS g2 M (7.41)
a \4n2—k2a2 \/2—2 .
0 2(x§ — a?)

The coupling factor is then given by

or

C = 20log i_ dB (7.42a)
Ao
and the directivity by
Ao
D = 20log | —| dB. (7.42b)
A
10

Thus, a Bethe hole coupler of the type shown in Figure 7.16a can be designed by first
using (7.41) to find s, the position of the aperture, and then using (7.42a) to determine the
aperture size, ro, to give the required coupling factor.

For the skewed geometry of Figure 7.16b, the aperture may be centered at s = a/2,
and the skew angle 6 adjusted for cancellation at port 4. In this case, the normal electric
field does not change with 6, but the transverse magnetic field components are reduced by
cos6. We can account for the skew angle by replacing o, in the previous derivation by
am €cos6. The wave amplitudes of (7.40a) and (7.40b) then become, for s = a/2,

—jwA
Al = TIOR oz — LXM cosp ). (7.439)
P10 z2,
_ —ja)A MO%m
0= €oe + —5— €ost . (7.43b)
P10 zz,
Setting Airo = Oresultsin the following condition for the angle 6:
4
2¢0 — # cos6 = 0,
Zio
or
k6
Ccost = —. 7.44
257 (7.44)
The coupling factor then simplifiesto
akar3
C =20log|—| = —20log —— dB. (7.45)
10 3abp

The angular geometry of the skewed Bethe hole coupler is often a disadvantage in
terms of fabrication and application. In addition, both coupler designs operate properly
only at the design frequency; deviation from this frequency will alter the coupling level
and the directivity, as shown in the following example.

EXAMPLE 7.3 BETHE HOLE COUPLER DESIGN AND PERFORMANCE

Design a Bethe hole coupler of the type shown in Figure 7.16a for an X-band
waveguide operating at 9 GHz, with a coupling of 20 dB. Calculate and plot the
coupling and directivity from 7 to 11 GHz. Assume a round aperture.
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Solution
For an X-band waveguide at 9 GHz, we have the following constants:

a = 0.02286 m,

b = 0.01016 m,

Ao = 0.0333 m,

ko = 188.5m™1,

B =129.0m™1,

Z10 = 550.9 Q,

Pio = 4.22 x 107" m?/Q.

Equation (7.41) can be used to find the aperture position s:

A
sn> -1 oo

4 2(r5—a?)
a
s = —sin~10.972 = 0.424a = 9.69 mm.
T

The coupling is 20 dB, so

C =20dB = 20log

10

I

or

A Z g0 _ g,

AlO

thus, |Ajy/ Al = 1/10. Now use (7.40D) to find ro:

1 o Lotm 72 uoom
= = 4+ —— 1(0.944) — —————(0.056) |.
10 P {(ane 72 >( ) ,32a22§0( )

Ao

A

Because ae = 2r3/3 and am = 4r3/3, we obtain
0.1=1.44 x 10°3,
or
ro = 4.15 mm.

This completes the design of the Bethe hole coupler. To compute the coupling
and directivity versus frequency, we evaluate (7.42a) and (7.42b), using the ex-
pressions for A}, and Afo given in (7.404) and (7.40b). In these expressions the
aperture position and size are fixed at s = 9.69 mm and rg = 4.15 mm, and the
frequency is varied. A short computer program was used to calculate the data
shown in Figure 7.17. Observe that the coupling varies by lessthan 1 dB over the
band. The directivity isvery large (>60 dB) at the design frequency but decreases
to 15-20 dB at the band edges. The directivity is a more sensitive function of
frequency because it depends on the cancellation of two wave components. W

337
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FIGURE 7.17  Coupling and directivity versus frequency for the Bethe hole coupler of Exam-
ple7.3.

Design of Multihole Couplers

As seen from Example 7.3, a single-hole coupler has a relatively narrow bandwidth, at
least in terms of itsdirectivity. However, if the coupler is designed with a series of coupling
holes, the extra degrees of freedom can be used to increase this bandwidth. The principle
of operation and design of such amultihole waveguide coupler isvery similar to that of the
multisection matching transformer.

First let us consider the operation of the two-hole coupler shown in Figure 7.18. Two
parallel waveguides sharing a common broad wall are shown, although the same type of
structure could be made in microstrip line or stripline form. Two small apertures are spaced
Ag/4 apart and couple the two guides. A wave entering at port 1 is mostly transmitted
through to port 2, but some power is coupled through the two apertures. If aphasereference
istaken at thefirst aperture, then the phase of the wave incident at the second aperture will
be —90°. Each aperture will radiate a forward wave component and a backward wave
component into the upper guide; in general, the forward and backward amplitudes are
different. In the direction of port 3, both wave components are in phase because both have
traveled 4 /4 to the second aperture. However, we obtain a cancellation in the direction of
port 4 because the wave coming through the second aperture travels 14/2 further than the
wave component coming through the first aperture. Clearly, this cancellation is frequency
sensitive, making the directivity a sensitive function of frequency. The coupling is less
frequency dependent since the path lengths from port 1 to port 3 are always the same.

@ (Isolated) (Coupled)

©)
(Out of phase) ~ <—A4/4—> (In phase) J
K ! I f ! I

Fam
A A
0° —90°

@  (Inpup) (Through) (@

FIGURE 7.18 Basic operation of atwo-hole directional coupler.
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FIGURE 7.19 Geomeltry of an (N + 1)-hole waveguide directional coupler.

Thus, in the multihole coupler design, we synthesize the directivity response, as opposed
to the coupling response, as afunction of frequency.

Now consider the general case of the multihole coupler shown in Figure 7.19, where
N + 1 equally spaced apertures couple two parallel waveguides. The amplitude of the inci-
dent wave in the lower left guideis A and, for small coupling, is essentially the same asthe
amplitude of the through wave. For instance, a 20 dB coupler has a power coupling factor
of 10~20/10 — 0,01, so the power transmitted through waveguide A is 1 — 0.01 = 0.99 of
the incident power (1% coupled to the upper guide). The voltage (or field) drop in wave-
guide Ais+/0.99 = 0.995, or 0.5%. Thus, the assumption that the amplitude of theincident
field isidentical at each aperture is agood one. Of course, the phase will change from one
aperture to the next.

As we saw in the previous section for the Bethe hole coupler, an aperture generally
excites forward and backward traveling waves with different amplitudes. Thus, let

Fn denote the coupling coefficient of the nth aperture in the forward direction.
By, denote the coupling coefficient of the nth aperture in the backward direction.

Then the amplitude of the forward wave can be written as

N
F= A iANdS R (7.46)
n=0

since al components travel the same path length. The amplitude of the backward waveis

N
B=A Z Bne2ifnd (7.47)
n=0

since the path length for the nth component is 28nd, where d is the spacing between the
apertures. In (7.46) and (7.47) the phase reference is taken at the n = 0 aperture.

From the definitions in (7.20a) and (7.20b) the coupling and directivity can be com-
puted as

N
F
C = —20log K‘ = —20log| Y " Fy|dB. (7.48)
n=0
B N B —2jpnd
D = —20log —‘ = —20log ZH’N—”Q
F Zn:O Fn
N -
= —C —20log|) " Bye~ 2| gB. (7.49)

n=0
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Now assume that the apertures are round holes with identical positions s relative to
the edge of the guide, with r, being the radius of the nth aperture. Then we know from
Section 4.8 and the preceding section that the coupling coefficients will be proportional
to the polarizabilities e and oy of the aperture, and hence proportional to r2. So we can
write

Fo = KerS, (7.502)
By = Kpr2, (7.50Db)

where Ky and K, are constants for the forward and backward coupling coefficients that are
the same for all apertures, but are functions of frequency. Then (7.48) and (7.49) reduce to

N
C = —20log |K¢| — 20log ) "r7 dB, (7.51)
n=0

N -
Z rr?e—zmnd

n=0
= —C — 20log |Kp| — 20log S dB. (7.52)

D = —-C — 20log |Kp| — 20log

In (7.51), the second term is constant with frequency. The first term is not affected
by the choice of ry,, but is a relatively slowly varying function of frequency. Similarly,
in (7.52) the first two terms are slowly varying functions of frequency, representing the
directivity of asingle aperture, but thelast term (S) isasensitive function of frequency due
to phase cancellation in the summation. Thus we can choose the ry, to synthesize a desired
frequency response for the directivity, while the coupling should be relatively constant with
frequency.

Observe that the last termin (7.52),

S = , (7.53)

N
Z rr?e—ZJﬁnd
n=0

is very similar in form to the expression obtained in Section 5.5 for multisection quarter-
wave matching transformers. As in that case, we can develop coupler designs that yield
either abinomial (maximally flat) or aChebyshev (equal ripple) response for the directivity.
Another interpretation of (7.53) may be recognizable to the student familiar with basic
antenna theory, as this expression is identical to the array pattern factor of an (N + 1)-
element array with element weightsr 2. In that case, too, the pattern may be synthesized in
terms of binomial or Chebyshev polynomials.

Binomial response: Asin the case of the multisection quarter-wave matching transformers,
we can obtain a binomial, or maximally flat, response for the directivity of the multihole
coupler by making the coupling coefficients proportional to the binomial coefficients. Thus,

rs =kCp, (7.54)
where k is a constant to be determined, and CN is a binomial coefficient given in (5.51).

To find k, we evaluate the coupling using (7.51) to give

N
C = —20log|Ks| — 20logk — 20log » " Cp dB. (7.55)
n=0
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Because we know Kz, N, and C, we can solve for k and then find the required aperture
radii from (7.54). The spacing, d, should be 1.4/4 at the center frequency.

Chebyshev response: First assume that N is even (an odd number of holes), and that the
coupler issymmetric, sothat ro = ry, r1 = ry—1, €tc. Then from (7.53) we can write S as

N N/2
S=|> rye M = 2% "rIcos(N — 2n)0,
n=0 n=0

where 8 = Bd. To achieve a Chebyshev response we equate this to the Chebyshev polyno-
mial of degree N:

N/2
S = 22 r3cos(N — 2n)6 = k| Ty (secén cosh)|, (7.56)
n=0

where k and 6y, are constants to be determined. From (7.53) and (7.56), we see that for
0=0,S= Zr’}'zo r3 = K| Tn (sec6m)|. Using thisresult in (7.51) gives the coupling as

C = —20log|Ks| — 20logS|,_,
= —20log |Ks| — 20logk — 20log | Ty (sec6m)| dB. (7.57)

From (7.52) the directivity is

D = —-C — 20log |Kp| — 20log S
Tn (SeCOm)

- 7.
T (sec Oy cosH) (7.58)

Ks
= 20log — + 20log
Kp
The term log K¢/Ky, is a function of frequency, so D will not have an exact Chebyshev
response. This error is usualy small, however. We can assume that the smallest value of
D will occur when Ty (secm cosf) = 1, since |Tn (Secm)| > |Tn (Sechdny cosh)|. So if
Dpin is the specified minimum value of directivity in the passband, then 6, can be found
from the relation

Dmin = 20109 T (secém) dB. (7.59)

Alternatively, we could specify the bandwidth, which then dictates 6, and Dpin. In either
case, (7.57) can then be used to find k, and then (7.56) solved for the radii, ry,.

If N isodd (an even number of holes), theresultsfor C, D, and Dy in (7.57), (7.58),
and (7.59) till apply, but instead of (7.56), thefollowing relation is used to find the aperture
radii:

(N=1)/2
S=2 Z r3cos(N — 2n)6 = k| Ty (sec b, cos)|. (7.60)
n=0

EXAMPLE 74 MULTIHOLE WAVEGUIDE COUPLER DESIGN

Design afour-hole Chebyshev coupler in an X-band waveguide using round aper-
tures located at s = a/4. The center frequency is 9 GHz, the coupling is 20 dB,
and the minimum directivity is 40 dB. Plot the coupling and directivity response
from 7 to 11 GHz.
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Solution
For an X-band waveguide at 9 GHz, we have the following constants:

a = 0.02286 m,
b = 0.01016 m,
20 = 0.0333m,
ko =188.5m%
B =129.0m™%
Z10 =550.9Q,
Pio = 4.22 x 107" m?/Q.

From (7.40a) and (7.40b), we obtain for an apertureat s = a/4:

2kg . o TS 28% (. 5 TS 2 s 5
Ki| = sin? — — = [sin? = + —-— cos® — | | = 3.953 x10°,
Kl 3noP1o |: a k(2) a + B2a? a x

2k ,ms 282 (. ,ms 2 s
IKp| = ——2 smzn—jLi it - T o) | = 3.454 x10°
3noP1o a k2 a a2 a

For afour-hole coupler, N = 3, so (7.59) gives

40 = 20log T3(secty) dB,
100 = Ta(sechm) = cosh[3cosh™(sechm)],

where (5.58b) was used. Thus 6, = 70.6° and 109.4° at the band edges. Then
from (7.57) we can solve for k:

C = 20 = —2010g(3.953 x 10°) — 20logk — 40 dB,
20logk = —171.94,
k =253 x 102

Finally, (7.60) and the expansion from (5.60c) for T3 allow usto solvefor the radii
asfollows:

S = 2(rg cos30 + r¥cos) = k[ sec® O (cos 39 + 3c0s6) — 3sechin cosd ],
-8 =ksec®0n = ro=rz3=326mm,
2rd = 3k(sec® O — secln) = rp=rp =451 mm.

The resulting coupling and directivity are plotted in Figure 7.20; note the in-
creased directivity bandwidth compared to that of the Bethe hole coupler of
Example 7.3. |
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FIGURE 7.20 Coupling and directivity versus frequency for the four-hole coupler of Exam-

7.5

ple 7.4.

THE QUADRATURE (90°) HYBRID

Quadrature hybrids are 3 dB directiona couplers with a 90° phase difference in the out-
puts of the through and coupled arms. This type of hybrid is often made in microstrip line
or stripline form as shown in Figure 7.21 and is also known as a branch-line hybrid. Other
3 dB couplers, such as coupled line couplers or Lange couplers, can also be used as quadra-
ture couplers; these components will be discussed in later sections. Here we will analyze
the operation of the quadrature hybrid using an even-odd mode decomposition technique
similar to that used for the Wilkinson power divider.

With reference to Figure 7.21, the basic operation of the branch-line coupler is as
follows. With al ports matched, power entering port 1 is evenly divided between ports 2
and 3, with a 90° phase shift between these outputs. No power is coupled to port 4 (the
isolated port). The scattering matrix has the following form:

0j 10
-1(j 0o o0 1

[S] Zl100 (7.61)
01 j 0

Observe that the branch-line hybrid has a high degree of symmetry, as any port can be used
astheinput port. The output ports will always be on the opposite side of the junction from
the input port, and the isolated port will be the remaining port on the same side as the input
port. This symmetry is reflected in the scattering matrix, as each row can be obtained as a
transposition of the first row.

(Inputy @ @ (Output)

-1 N[>

(Isolated) (@) ® (Output)

e
z z
0 ZoN2 0

FIGURE 7.21  Geometry of abranch-line coupler.
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FIGURE 7.22  Circuit of the branch-line hybrid coupler in normalized form.

Even-Odd Mode Analysis

We first draw the schematic circuit of the branch-line coupler in normalized form, asin
Figure 7.22, where it is understood that each line represents a transmission line with in-
dicated characteristic impedance normalized to Zo. The common ground return for each
transmission lineis not shown. We assume that awave of unit amplitude A1 = 1isincident
at port 1.

The circuit of Figure 7.22 can be decomposed into the superposition of an even-mode
excitation and an odd-mode excitation [5], as shown in Figure 7.23. Note that superimpos-
ing the two sets of excitations produces the original excitation of Figure 7.22, and since the
circuit islinear, the actual response (the scattered waves) can be obtained from the sum of
the responses to the even and odd excitations.

Because of the symmetry or antisymmetry of the excitation, the four-port network can
be decomposed into a set of two decoupled two-port networks, as shown in Figure 7.23.
Because the amplitudes of the incident waves for these two-ports are +1/2, the amplitudes

@ 1 / 12 1 ® % 1 1 %
i Open-ci rcwted stubs

Line of symmetry = =
1=0 (2 separate 2-ports)
V = max

+1/2 +1/2
i € 1 1?2 1 @ — 1 U2 1

Q e
BT T e ?— e, L 111 }—l
=] [ = £ /%
1 2 1 1
@ i / %1 Short-cmﬁed stubs El

Line of antisymmetry =
V=0 (2 separate 2-ports)
I = max

(b)

FIGURE 7.23 Decomposition of the branch-line coupler into even- and odd-mode excitations.
(a) Even mode (e). (b) Odd mode (o).
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of the emerging wave at each port of the branch-line hybrid can be expressed as

By = %Fe + %Fo, (7.629)
By = %Te + %To, (7.62b)
Bz = %Te — %To, (7.62c)
By = %re - %ro, (7.62d)

where T'e o and Te  are the even- and odd-mode reflection and transmission coefficients
for the two-port networks of Figure 7.23. First consider the calculation of T'e and T, for
the even-mode two-port circuit. This can best be done by multiplying the ABCD matrices
of each cascade component in that circuit, to give

¢ 8- L 0 -3 )

———
Shunt r4 Shunt (7.63)
Y =] Transmisson Y =1J

ine

wherethe individual matrices can be found from Table 4.1, and the admittance of the shunt
open-circuited A/8 stubsisY = jtan 8¢ = j. Then Table 4.2 can be used to convert from
ABCD parameters (defined herewith Z, = 1) to S parameters, which are equivalent to the
reflection and transmission coefficients. Thus,
A+B-C-D —1+j—-j+1 2
_A+B-C-D_ (1] J-+)/\/_:O’ (7.642)
A+B+C+D  (-1+4j+j-1/V2
B 2 B 2 -1
CA+BA4CHD  (—1+j+j-D/V2 V2

Similarly, for the odd mode we obtain

e

(1+]j). (7.64p)

e

A B 171 j ]
=" , 7.65
€ 2l @
which gives the reflection and transmission coefficients as
1
To=—(1—j). 7.66b
0 ﬁ( )] ( )
Using (7.64) and (7.66) in (7.62) gives the following results:
Bi=0 (port 1 is matched), (7.673)
By = —%2 (half-power, —90° phase shift from port 1 to 2), (7.67b)
B3 = —%2 (half-power, —180° phase shift from port 1 to 3), (7.67¢c)
B4=0 (no power to port 4). (7.67d)

These results agree with the first row and column of the scattering matrix given in
(7.61); the remaining elements can easily be found by transposition.
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FIGURE 7.24  Photograph of an eight-way microstrip power divider for an array antennafeed net-
work at 1.26 GHz. Thecircuit uses six quadrature hybridsin aBailey configuration
for unegual power division ratios (see Problem 7.33).

Courtesy of ProSensing, Inc., Amherst, Mass.

In practice, due to the quarter-wave length requirement, the bandwidth of abranch-line
hybrid is limited to 10%—20%. However, as with multisection matching transformers and
multihole directional couplers, the bandwidth of a branch-line hybrid can be increased to
a decade or more by using multiple sections in cascade. In addition, the basic design can
be modified for unequal power division and/or different characteristic impedances at the
output ports. Another practical point to be aware of is the fact that discontinuity effects at
the junctions of the branch-line coupler may require that the shunt arms be lengthened by
10°-20°. Figure 7.24 shows a photograph of a circuit using severa quadrature hybrids.

EXAMPLE 75 DESIGN AND PERFORMANCE OF A QUADRATURE HYBRID

Design a 50 @ branch-line quadrature hybrid junction, and plot the scattering
parameter magnitudes from 0.5 fg to 1.5 fo, where fg isthe design frequency.

Solution
After the preceding analysis, the design of aquadrature hybrid istrivial. Thelines
are A /4 at the design frequency fg, and the branch-line impedances are

2 _50
V22

The calculated frequency response is plotted in Figure 7.25. Note that we obtain
perfect 3 dB power division at ports 2 and 3, and perfect isolation and return loss
at ports 4 and 1, respectively, at the design frequency fp. All of these quantities,
however, degrade quickly as the frequency departs from fo. |

=354 Q.

40
0.5f, fo 1.5f,

FIGURE 7.25 Scattering parameter magnitudes versus frequency for the branch-line coupler of
Example 7.5.
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FIGURE 7.26  Various coupled transmission line geometries. (@) Coupled stripline (planar, or

7.6

edge-coupled). (b) Coupled stripline (stacked, or broadside-coupled). (c) Coupled
microstrip lines.

COUPLED LINE DIRECTIONAL COUPLERS

When two unshielded transmission lines are in close proximity, power can be coupled from
one line to the other due to the interaction of the electromagnetic fields. Such lines are re-
ferred to ascoupled transmission lines, and they usually consist of three conductorsin close
proximity, although more conductors can be used. Figure 7.26 shows several examples of
coupled transmission lines. Coupled transmission lines are sometimes assumed to operate
in the TEM mode, which is rigorously valid for coaxial line and stripline structures, but
only approximately valid for microstrip line, coplanar waveguide, or slotline structures.
Coupled transmission lines can support two distinct propagating modes, and this feature
can be used to implement a variety of practical directional couplers, hybrids, and filters.

The coupled lines shown in Figure 7.26 are symmetric, meaning that the two conduct-
ing strips have the same width and position relative to ground; this simplifies the analysis
of their operation. We will first discuss the basic theory of coupled lines and present some
design data for coupled stripline and coupled microstrip line. We will then analyze the
operation of a single-section coupled line directional coupler and extend these results to
multisection coupled line coupler design.

Coupled Line Theory

The coupled lines of Figure 7.26, or other symmetric three-wire lines, can be represented
by the structure and equivalent circuit shown in Figure 7.27. If we assume TEM prop-
agation, then the electrical characteristics of the coupled lines can be completely deter-
mined from the effective capacitances between the lines and the velocity of propagation
on the line. As depicted in Figure 7.27, C1o represents the capacitance between the two
strip conductors, and C11 and Co; represent the capacitance between one strip conductor

Y

C11 —l— —l— 22

FIGURE 7.27 A three-wire coupled transmission line and its equivalent capacitance network.




348 Chapter 7: Power Dividers and Directional Couplers

\*//E\ | .

/ l / § Cll% _____ L % Co
I Z
! H-wall

(a)
//
14 -V
+ / [// f
Nt Y/ 2, 2y
N/ |T|

/ & :/ J \ => C11—|J:_| = |_:L|—sz
| z
| E~wall

()

FIGURE 7.28 Even- and odd-mode excitations for a coupled line, and the resulting equivalent
capacitance networks. (a) Even-mode excitation. (b) Odd-mode excitation.

and ground. Because the strip conductors are identical in size and location relative to the
ground conductor, we have C11 = C2. Note that the designation of “ground” for the third
conductor has no specia relevance beyond the fact that it is convenient, since in many
applications this conductor is the ground plane of a stripline or microstrip circuit.

Now consider two special types of excitations for the coupled line: the even mode,
where the currents in the strip conductors are equal in amplitude and in the same direction,
and the odd mode, where the currentsin the strip conductors are equal in amplitude but in
opposite directions. The electric field lines for these two cases are sketched in Figure 7.28.
Because the line is TEM, the propagation constant and phase velocity are the same for
both of these modes: 8 = w/vp and vy = ¢/,/€r, wWhere ¢ is the relative permittivity of
the TEM line.

For the even mode, the electric field has even symmetry about the center line, and no
current flows between the two strip conductors. This leads to the equivalent circuit shown,
where C12 is effectively open-circuited. The resulting capacitance of either line to ground
for the even modeis

Ce =C11 =Cpp, (7.68)

assuming that the two strip conductors are identical in size and location. Then the charac-
teristic impedance for the even modeis

Ce Ce o UpCe’

Zoe = (7.69)

where vy = ¢/ /ér = 1/4/LeCe = 1/4/LoCy is the phase velocity of propagation on the
line.

For the odd mode, the electric field lines have an odd symmetry about the center line,
and avoltage null exists between the two strip conductors. We can imagine this as aground
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plane through the middle of C12, which leads to the equivalent circuit shown. In this case
the effective capacitance between either strip conductor and ground is

Co=C11+2C12=Cx + 2Cyp, (7.70)

and the characteristic impedance for the odd modeis

Lo VLo 1

Zoo = [—= = .
0o Co Co UpCo

(7.70)

Inwords, Zge (Zgo) isthe characteristicimpedance of one of the strip conductorsrelativeto
ground when the coupled line is operated in the even (odd) mode. An arbitrary excitation
of a coupled line can always be treated as a superposition of appropriate amplitudes of
even- and odd-mode excitations. This analysis assumes the lines are symmetric, and that
fringing capacitances are identical for even and odd modes.

If the coupled line supports a pure TEM mode, such as coaxia line, paralel plate
guide, or stripline, analytical techniques such as conforma mapping [7] can be used to
evaluate the capacitances per unit length of line, and the even- and odd-mode character-
istic impedances can then be determined. For quasi-TEM lines, such as microstrip line,
these results can be obtained numerically or by approximate quasi-static techniques[8]. In
either case, such calculations are generaly too involved for our consideration, but many
commercial microwave CAD packages can provide design data for a variety of coupled
lines. Here we will present only graphical design data for two cases of coupled lines.

For a symmetric coupled stripline of the type shown in Figure 7.26a, the design graph
in Figure 7.29 can be used to determine the necessary strip widths and spacing for a given
set of characteristic impedances, Zg. and Zgo, and the dielectric constant. This graph

20f 001
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\/gZOO

FIGURE 7.29 Normalized even- and odd-mode characteristic impedance design data for sym-

metric edge-coupled striplines.
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FIGURE 7.30 Even- and odd-mode characteristic impedance design data for symmetric coupled
microstrip lines on asubstrate with ¢ = 10.

should cover ranges of parameters for most practical applications, and can be used for
any dielectric constant, since the TEM mode of stripline allows scaling by the dielectric
constant.

For coupled microstrip lines, the results do not scale with dielectric constant, so design
graphs must be made for specific values of dielectric constant. Figure 7.30 shows such a
design graph for symmetric coupled microstrip lines on a substrate with ¢, = 10. Another
difficulty with coupled microstrip linesisthe fact that the phase velocity isusually different
for the two modes of propagation because the two modes operate with different field con-
figurations in the vicinity of the air—dielectric interface. This can have a degrading effect
on coupler directivity.

EXAMPLE 7.6 |IMPEDANCE OF A SIMPLE COUPLED LINE

For the broadside coupled stripline geometry of Figure 7.26b, assume W > S
and W > b, so that fringing fields can be ignored, and determine the even- and
odd-mode characteristic impedances.

Solution

We first find the equivalent network capacitances, C11 and C12 (because the line
is symmetric, C22 = C11). The capacitance per unit length of broadside parallel
lines with width W and separationd is

L
C=—Fm,
d

where ¢ isthe substrate permittivity. This formulaignores fringing fields.
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C11 is formed by the capacitance of one strip to the ground planes. Thus the
capacitance per unit lengthis

= _ 2€|’ €0W

Cu F/m.

The capacitance per unit length between the stripsis

- eregW

Cpo= F/m.

Then from (7.68) and (7.70), the even- and odd-mode capacitances are

Ce=Cu= 2;rio\SN F/m,
Co = C11 4+ 2C12 = 261 €gW <L + E) F/m.
b—-s S
The phase velocity onthelineisvp = 1/, /éreojto = ¢/ \/€r, SO the characteristic
impedances are
Zoe = L =10 b5 :
UpLe 2W /er
Zoo = i— =10 ! .
vpCo 2W /& [1/(b — S) +1/S] [ ]

Design of Coupled Line Couplers

With the preceding definitions of the even- and odd-mode characteristic impedances, we
can apply an even-odd mode analysis to a length of coupled line to arrive at the design
equations for a single-section coupled line coupler. Such aline is shown in Figure 7.31.
This four-port network is terminated in the impedance Zg at three of its ports, and driven
with a generator of voltage 2Vo and internal impedance Zg at port 1. We will show that
a coupler can be designed with arbitrary coupling such that the input (port 1) is matched,
while port 4 isisolated. Port 2 is the through port, and port 3 is the coupled port. In Figure
7.31, aground conductor is understood to be common to both strip conductors.

For this problem we will apply the even-odd mode analysis technique in conjunction
with the voltages and currents on the line, as opposed to the reflection and transmission
coefficients. So, by superposition, the excitation at port 1 in Figure 7.31 can be treated as
the sum of the even- and odd-mode excitations shown in Figure 7.32. From symmetry we
canseethat 17 = I3, 17 = 15, V] = V§,and V; = V5 for theeven mode, while 1) = —12,
I =—13, VY =-Vg, and V, = —V7 for the odd mode. The input impedance at port 1
of the coupler of Figure 7.31 can then be expressed as

Vl_Vf-i-Vf

Zin=—— .
TR

(7.72)

If we let Z be the input impedance at port 1 for the even mode, and Z?, be the input
impedance for the odd mode, then we have

Zo+ jZoetano
Zoe + jZotan6’
Zo+ jZpotan®
% 7% + jZotand’

Z8 = Zoe (7.739)

20 =2 (7.73b)
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FIGURE 7.31 A single-section coupled line coupler. (a) Geometry and port designations. (b) The
schematic circuit.
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FIGURE 7.32 Decomposition of the coupled line coupler circuit of Figure 7.31 into even- and
odd-mode excitations. () Even mode. (b) Odd mode.
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since, for each mode, the line looks like a transmission line of characteristic impedance
Zoe OF Zgo, terminated in aload impedance, Zo. Then by voltage division,

70
V2 =vg—n__ 7.743)
1= 0701 7, (7.743)
ZE
VE = Vool (7.74b)
Zien + Zo
and
Vo
I = —5—, (7.759)
Zion =+ Zo
Vo
19 = ———. 7.75b

n

Using these resultsin (7.72) yields

Zin = Zion(zien + ZO) + Zien(zion + ZO) = Zo+ 2(Zionzien _ Z(Z)) ] (7.76)
Z8 + 7o + 270 Z8 + 70 + 220
Now if we let
Zo=+/Z0eZ0o, (7.77)
then (7.73a) and (7.73b) reduce to
76 _ ZOEVZOO + jv/Zoe tan®
n VZoe + jv/Zootand’
20 _ ZOO\/ZOe + jv/Zoo tané
n «/200+j«/20etan9’
sothat Z£ 2% = ZoeZgo = Z, and (7.76) reduces to
Zin = Zo. (7.78)

Thus, as long as (7.77) is satisfied, port 1 (and, by symmetry, al other ports) will be
matched.

Now if (7.77) issatisfied, so that Zj, = Zo, we havethat V1 = Vo, by voltage division.
The voltage at port 3is

Z¢ Z9
Va=VE4 V0 =VE_VO=y, in___ __%in__ | 7.79
3=Va HVg=Vi— W °[Z$n+zo z;’n+zo] (7.79)

where (7.74) has been used. From (7.73) and (7.77), we can show that
Zien _ Zo+ jZoetan®
Zie + Zo 270+ j(ZOG—|—ZOO)tan9’

n

Zion Zo+ jZootano
Zion +Zo 2Zo+ j(Zoe + Zgo) tan@’

so that (7.79) reduces to

J(Zoe — Zoo) tan 6

V3 = - .
3 0270 1 [(Zoe + Zoo) tand

(7.80)
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Now define the coupling coefficient, C, as

Zoe — Z
— 0~ 20 (7.81)
Zoe + Zoo
which we will soon seeis actually the midband voltage c