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Preface 

“. . . [The conception of an idea] does not at all admit of exposition like other branches of 
knowledge; but as a result of continued application to the subject itself and communion 
therewith, it is brought to birth in the soul on a sudden, as light that is kindled by a leaping 
spark, and thereafter it nourishes itself.” 

-Plat0 (427-347 B.C.), 7th Epistle, 341. 

Metamaterials represent an exciting emerging research area that promises to bring 
about important technological and scientific advancements in diverse areas such as 
telecommunications, radars and defense, nanolithography with light, microelectron- 
ics, medical imaging, and so on. This book includes contributions from some of the 
top experts in the field in an effort to document in an authoritative, but understand- 
able, way the most important and most recent developments. Presently, a universally 
accepted definition of metamaterials does not exist. Broadly spealung, metamateri- 
als are artificial media with unusual electromagnetic properties. Some researchers 
restrict metamaterials to be artificially structured periodic media (in fact, effective 
material parameters can be defined even for nonperiodic media in analogy to amor- 
phous materials) in which the periodicity is much smaller than the wavelength of 
the impinging electromagnetic wave. The underlying nature of the subwavelength 
periodic inclusions enables them to act as artificial “molecules” that scatter back 
the impinging electromagnetic fields in a prescribed manner. This process can be 
macroscopically characterized by means of effective material parameters such as per- 
mittivity, a permeability, and a refractive index. This definition of metamaterials is 
directly related to the classic work in artificial dielectrics that has been carried out at 
microwave frequencies in the 1950s and 1960s. Yet others do not impose strict limits 
to the size of the constituent unit cells, thus extending the definition of metamaterials 
to include structures such as photonic crystals. 

In this book, both artificial dielectric and photonic crystal types of metamaterials 
are covered. Its scope, however, is restricted to metamaterials that support the 
“unusual” electromagnetic property of negative refraction. Negative refraction can 
be supported in isotropic media for which a negative permittivity and a negative 
permeability, hence a negative refractive index, can be defined. These latter materials 

xiii 



xiv PREFACE 

are referred to in the book as “left-handed,” “negative-refractive-index (or negative 
index),” and “double-negative” materials. However, negative refraction need not be 
limited to isotropic media, nor does it have to be associated with a negative index of 
refraction. The underlying physical properties of several such classes of negative- 
refraction metamaterials are presented and are related to corresponding emerging 
applications such as lenses and antennas, imaging with super-resolution, microwave 
passive devices, interconnects for wireless telecommunications, and radar/defense 
applications. The implementation of negative-refraction metamaterials at optical 
frequencies is also covered in this book. 

Chapter 1, by Iyer and Eleftheriades, describes the fundamentals of isotropic 
metamaterials in which a simultaneous negative permittivity and permeability, hence 
a negative refractive index, can be defined. The emphasis is placed on the theory, 
design, and experiments involving planar transmission-line based metamaterials, al- 
though bulk split-ring-resonator/wire metamaterials are also described. Furthermore, 
this chapter attempts to historically link metamaterials with the classic body of work 
in artificial dielectrics carried out in the fifties and sixties. Moreover, in this opening 
chapter the reader can find a comprehensive summary of the various terms that are 
used throughout the text by various authors to describe these kind of metamaterials. 
Chapter 2, by Eleftheriades, builds on these fundamentals in order to describe a range 
of useful microwave devices and antennas. Chapter 3, by Grbic and Eleftheriades, 
describes in a comprehensive manner the theory and the experiments behind a super- 
resolving negative-refractive-index planar transmission-line lens. Furthermore, it 
explains how to extend the transmission-line-based metamaterial to three dimen- 
sions. Chapter 4, by Ziolkowski, describes numerical simulation studies of negative 
refraction of Gaussian beams and associated focusing phenomena. Chapter 5, by 
Schurig and Smith, describes in an exhaustive way the theory and the unique advan- 
tages of shaped lenses made out of negative-refractive-index metamaterials. Chapter 
6 ,  by Balmain and Luttgen, introduces a new hnd  of transmission-line metamaterial 
that is anisotropic and supports the formation of sharp beams called resonance cones. 
This chapter describes the theory and some of the microwave applications of these 
unique negative-refraction metamaterials. The next two chapters are devoted to the 
potential implementations of negative-refraction metamaterials at optical frequencies. 
Specifically, Chapter 7, by Luo and Joannopoulos, explains how to obtain negative 
refraction and associated super-resolving imaging effects using dielectric photonic 
crystals. This chapter is unique in that these photonic crystals support negative refrac- 
tion (of power flow), but without an underlying effective negative refractive index. 
On the other hand, in Chapter 8, Sarychev and Shalaev prescribe a method for real- 
izing negative-refractive-index metamaterials at optical frequencies using plasmonic 
(metallic) nanowires. Chapter 9, by Alh and Engheta, deals with another interesting 
topic, namely the unusual propagation phenomena in metallic waveguides partially 
filled with negative-refractive-index metamaterials. Finally, Chapter 10, by Moja- 
hedi and Eleftheriades, introduces metamaterials in which the refractive index and 
the underlying group velocity are both negative. Such metamaterials and associated 
electrical interconnects could find applications in dispersion compensation. 
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Lastly, a note on the notation: Since this book includes contributions from both 
engineers and physicists, some of the notation is inconsistent. In particular, Chap- 
ters 5, 7, and 8 use a time-harmonic variation of exp(-jut) whereas the rest use 
exp( +jut). 

We would like to thank Rohin Iyer, Ashwin Iyer, and Suzanne Erickson for their 
tireless help in editing this material. We would also like to acknowledge our associate 
publisher at Wiley, Mr. George Telecki, and editorial assistant, Ms. Rachel Witrner, 
as well as Amy Hendrickson at TeXnology Inc. for their cheerful assistance. One of 
the editors, G. V. Eleftheriades, would like to dedicate this book to his wife, Maria, 
for her inspiring courage during times of extreme personal hardship while preparing 
this book. 

G. V. ELEFTHERIADES AND K. G. BALMAIN 

Toronto, January 2005 



This Page Intentionally Left Blank



1 Negative-Refractive-Index 
Transmission-Line Metamaterials 

ASHWIN K. IYER and GEORGE V. ELEFTHERIADES 

The Edward S. Rogers, Sr. Department of Electrical and Computer Engineering 
University of Toronto 
Toronto, Ontario, M5S 3G4 
Canada 

1.1 INTRODUCTION 

1.1.1 Veselago and the Left-Handed Medium (LHM) 

In the 1960s, Victor Veselago of Moscow’s P. N. Lebedev Institute of Physics exam- 
ined the feasibility of media characterized by a simultaneously negative permittivity 
6 and permeability p [ 11. He concluded that such media are allowed by Maxwell’s 
equations and that plane waves propagating inside them could be described by an 
electric field intensity vector E, magnetic field intensity vector H, and wavevec- 
tor k, forming a left-handed triplet, in seeming opposition to wave propagation in 
conventional media, in which these three quantities form a right-handed triplet, and 
accordingly labeled these materials left-handed media (LHM) and right-handed me- 
dia (RHM), respectively. The two arrangements are illustrated in Fig. 1.1. Moreover, 
although E, H, and k form a left-handed triplet, E, H, and the Poynting vector S 
maintain a right-handed relationship; thus, in LHM the wavevector k is antiparallel to 
the Poynting vector S. Viewed in retrospect, it seems what Veselago was describing 
was the backward wave. For this reason, some researchers use the term “back- 
ward wave media” to describe left-handed materials [2]. Certainly, one-dimensional 
backward wave lines are not new to the microwave community; in fact, through 
backward waves, Veselago’s left-handed medium is intimately tied to many familiar 
concepts and known one-dimensional structures, including the backward wave am- 
plifier/oscillator (for example, see Refs. 3,4) and backfire antennas that operate in a 
higher-order negative spatial harmonic (see Ref. 5). However, what is remarkable in 
Veselago’s work is his realization that two- or three-dimensional isotropic and homo- 
geneous media supporting backward waves ought to be characterized by a negative 

1 



2 NEGATIVE-REFRACTIVE-INDEX TRANSMISSION-LINE METAUATERIALS 

Fig. 1.1 Orientation of field quantities E, H, Poynting vector S, and wavevector k in 
right-handed media (RHM) and left-handed media (LHM). 

Fig. 1.2 Refraction at a two-medium interface as determined by phase matching. The support 
of backward waves by an LHM insists on negative refraction (case 2). After Refs. [26,27]. 
Copyright @ 2002 IEEE. 

refractive index, which is defined by taking the negative branch of the square root 
in the definition n = k&i. Consequently, when such media are interfaced with 
conventional dielectrics, Snell’s Law is reversed, leading to the negative refraction 
of an incident electromagnetic plane wave. Such a material, in realized form, could 
appropriately be called a metamaterial, where the prefix meta, Greek for “beyond” or 
“after,” suggests that it possesses properties that transcend those available in nature. 

1.1.2 Negative Refraction at a Planar Interface 

One way to understand negative refraction is through the idea of phase matching. To 
illustrate, consider the two-medium interface of Fig. 1.2, where medium 1 ( M I )  is an 
RHM and medium 2 (M2) is unspecified for the moment. A plane wave originating 
in M I  is incident on the interface with wavevector kl, and it establishes a refracted 
wave in M2 with wavevector kz such that their tangential components klt and kzt 



INTRODUCTION 3 

Fig. 1.3 Focusing of the rays of a cylindrical excitation by an LHM slab embedded in an 
RHM. 

are equal, according to the conservation of the wave momentum. Having specified 
the tangential components, we immediately recognize that there are two possibilities 
for the normal component of kz: the first case, in which kz is directed away from 
the interface, and the second case, usually describing reflected waves, in which kz is 
directed towards the interface. These two cases are represented as Case 1 and Case 
2 in Fig. 1.2. By the conservation of energy, the normal components of the Poynting 
vectors S1 and SZ must remain in the positive z-direction through both media. 
Thus, Case 1 depicts the usual situation in which MZ is a conventional positive- 
index medium; however, if Mz is a medium supporting propagating backward waves 
(LHM), then the wavevector kz must be directed oppositely to the Poynting Vector 
S Z  (i.e., with a normal component in the negative z-direction). Therefore, refraction 
in media that support backward waves must be described by the second case, in 
which power is propagated along the direction of phase advance, and so is directed 
through a negative angle of refraction. Thus, MZ can be seen to possess an effectively 
negative refractive index. 

1.1.3 Flat Lenses and Focusing 

Harnessing the phenomenon of negative refraction, entirely new refractive devices 
can be envisioned, such as a flat “lens” without an optical axis, also proposed by 
Veselago. This is shown in Fig. 1.3. In general, nonparaxial rays experience spherical 
aberration; that is, for an arbitrary selection of positive and negative refractive indices, 
each ray intercepts the principal axis at a different point. However, it is not fortuitous 
that Veselago chose, as his example, the case of an LHM slab with refractive index 
n L H M  = -1, embedded in vacuum ( n R H M  = +I), such that the relative index of 
refraction is n R E L  = n L H M / n R H M  = -1. In this special case, 10il and )Ot 1 become 
equal, and all the component rays are focused to the same point. Furthermore, for 
~ R E L  = -1, the slab thickness d, source distance s1, and external focal length fz in 
Fig. 1.3 are related through h = s1 + fz, so that the phase lag (positive optical path 
length) incurred in the two RHM regions is fully compensated by the phase advance 
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(negative optical path length) incurred in the LHM slab. Thus, the phase of the source 
is exactly restored at the image plane. 

1.2 BACKGROUND 

1.2.1 Artificial Dielectrics 

In natural dielectrics, local electromagnetic interactions at the atomic or molecular 
level produced by an applied field result in a macroscopic response that may be 
described by an electric permittivity and magnetic permeability. These constitutive 
parameters acquire meaning only when the lattice exhibits some degree of spatial or- 
der and the wavelength of the impressed field is much longer than the lattice spacing. 
It would seem, therefore, that any effort to synthesize particular material parameters 
requires access to the scatterer itself, the atom or molecule in question, a degree 
of precision that makes the task prohibitively difficult. However, it is apparent that 
the long-wavelength condition can be met at scales far more accessible than those 
of atoms and molecules; indeed, for sufficiently long wavelengths-for example, 
those corresponding to RF/microwave frequencies-electromagnetic scatterers may 
be fabricated with entirely practicable dimensions, and would react to applied fields 
much like the atoms and molecules of a crystal lattice. Furthermore, at wavelengths 
substantially longer than the obstacle spacing, ordered arrays of these inclusions 
would behave like effective media and exhibit dielectric properties. These are hardly 
novel ideas; indeed, they were intensely scrutinized a half-century ago during the 
investigation of synthetic media known as artificial dielectrics. The term “artificial 
dielectric” was introduced in 1948 by Winston E. Kock of Bell Laboratories to de- 
scribe electromagnetic structures of practicable dimension that could be designed to 
mimic the response of natural solids to electromagnetic radiation [6].  His ideas were 
motivated by the pressing need at the time for lightweight, low-loss substitutes for 
natural dielectrics when large devices were required. His earlier research examined 
the design of antennas using large, metallic lenses comprising parallel metal plates, 
as substitutes for heavy dielectric lens aerials [7,8]. Kock’s metallic lenses, resem- 
bling stacked electromagnetic waveguides, exhibited superluminal phase velocities 
and accordingly advanced the phase of the incoming radiation relative to propagation 
in vacuum. Furthermore, at wavelengths substantially longer than the plate spacing, 
his lenses behaved like media with an effective, positive index of refraction less than 
unity. It wasn’t long before Kock realized that his phase-advance metallic lenses 
were merely a subset of a much wider category of electromagnetic structures whose 
behaviour, at certain frequencies, boasted an irrefutable likeness to their dielectric 
counterparts. Aiming toward the design of phase-delay lenses, Kock established 
numerous analogies between the electromagnetic response of his metallic structures 
and the electrodynamics of natural dielectrics. First, he noted that any analogy at- 
tempting to capture the refraction characteristics of artificial dielectrics must, as in 
natural dielectrics, require that the wavelength in the (effective) medium be much 
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longer than the lattice spacing. Operated in a long-wavelength regime, the periodic 
perturbations of artificial dielectrics appear diminutive in contrast to the wavelength, 
allowing effective macroscopic material parameters to be defined. When the wave- 
length in the medium becomes comparable to the lattice spacing, diffraction effects 
are expected, analogous to the diffraction of X rays by solids. In either case, it is 
implicitly established that a lattice of conducting plates acts much like the crystalline 
lattices of a solid. Kock noted that the individual conducting elements of his lattice, 
indeed, behaved like electric dipoles under the influence of an impressed field, in 
becoming polarized and establishing a net dipole moment. Drawing on his back- 
ground in microwaves, Kock acknowledged that his conducting elements could be 
said to capacitively load free space, much like the discrete capacitive shunt loading 
of waveguides to reduce the phase velocity of the guided waves. The associated 
displacement of charge is reflected in the charge on the capacitor plates, and so the 
capacitance is effectively modified by the conducting obstacle; for a large array of 
conducting scatterers, this change may be modeled by an effective positive permit- 
tivity greater than €0. Kock also recognized that, at higher frequencies, the existence 
of eddy currents on the surface of the conductors prevents the penetration of mag- 
netic field lines into the conductors, and the consequent condensation of magnetic 
field lines (viewed, similarly, as a change in inductance) results in a diamagnetic 
response. Kock’s experimentation on artificial dielectrics consisting of conducting 
strips, spheres, and disks showed that numerous other phenomena related to the 
crystalline nature of solids, including anisotropy, scattering due to diffraction, and 
frequency dispersion (including anomalous dispersion), are evident, suggesting that 
the analogy between artificial and natural dielectrics is not only sound, but seems 
to transcend even their most fundamental dissociations. Essentially, Kock‘s ideas 
acknowledged that natural dielectrics, or, equivalently, substances with corrugations 
on the atomic scale, are superfluous for many applications in the microwave or even 
terahertz or far infrared range, where the wavelengths are long enough to make the 
fabrication of an artificial dielectric practicable. In this sense, artificial dielectrics are 
also intimately connected to today’s photonic crystals, in which the refractive index 
is periodically modulated in space so as to achieve stopbands in desirable frequency 
regions and for preferred angles of propagation, mimicking the energy band structure 
of solids. These devices have found numerous uses as filters and waveguides at 
optical frequencies (see Chapter 7). For a thorough treatment of artificial dielectrics, 
the interested reader is referred to Chapter 12 of Ref. 9 and to the list of early works 
provided therein. 

1.2.2 Negative Permittivity 

It is well known that plasmas are described by a permittivity function that becomes 
negative below a plasma frequency wp  , causing the propagation constant in the plasma 
to become imaginary. In this frequency region, electromagnetic waves incident on 
the plasma suffer reactive attenuation and are reflected. Thus, the plasma frequency 
bears a resemblance to the modal cutoff frequencies of particular electromagnetic 
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waveguides, below which the waveguide environment can be perceived as an induc- 
tively loaded free space, as observed in 1954 by R. N. Bracewell [lo]. The idea of 
modeling plasmas using artificial dielectrics was examined as early as 1962 by Walter 
Rotman [ 111. Rotman considered Kock’s artificial dielectrics, and he employed the 
well-known theory for the analysis of periodic microwave networks (for example, 
see Ref. 4) to determine their dispersion characteristics. His analysis, however, could 
not explicitly consider the permittivity of the media and, instead, was limited to the 
consideration of their index of refraction. Rotman noted that an isotropic electrical 
plasma could be modeled by a medium with an index of refraction below unity, 
provided that its permeability was near that of free space. Consequently, the sphere- 
and disk-type media were excluded, since the finite dimensions of these conducting 
inclusions transverse to the applied electric field give the effective medium a diamag- 
netic response. What remained was the “rodded” dielectric medium, or conducting 
strip medium, consisting of thin wire rods oriented along the incident electric field. 
The dispersion characteristics of this medium showed that it does, indeed, behave 
like a plasma. The idea of a negative permittivity was implicit in many such works, 
but it was not until nearly a quarter-century later, when Rotman’s rodded dielectric 
was rediscovered, that it was made clear exactly how a wire medium resembled a 
plasma. 

It is evident that in the construction of electromagnetic structures of any sort 
in the microwave range, we rely on the properties of metals. Essentially, metals 
are plasmas, since they consist of an ionized “gas” of free electrons. Below their 
plasma frequency, the real component of the permittivity of bulk metals can be said 
to be negative. However, the natural plasma frequencies of metals normally occur 
in the ultraviolet region of the electromagnetic spectrum, in which wavelengths are 
extremely short. This condition certainly precludes the use of realizable artificial 
dielectrics in the microwave range, which, moreover, must operate in the long- 
wavelength regime. Although the permittivity is negative at frequencies below the 
plasma frequency, the approach toward absorptive resonances at lower frequencies 
increases the dissipation, hence the complex nature of c. Thus, to observe a negative 
permittivity with low absorption at microwave frequencies, it would be necessary to 
somehow depress the plasma frequency of the metal. 

This problem was addressed by Pendry et al. [ 121 (and simultaneously by Sieven- 
piper et al. [13]), who proposed the familiar structure of Rotman consisting of a 
mesh of very thin conducting wires arranged in a periodic lattice, but approached the 
problem from a novel standpoint. Due to the spatial confinement of the electrons 
to thin wires, the effective electron concentration in the volume of the structure is 
decreased, which also decreases the plasma frequency. More significant, however, 
is that the self-inductance of the wire array manifests itself as a greatly enhanced 
effective mass of the electrons confined to the wires. This enhancement reduces the 
effective plasma frequency of the structure by many orders of magnitude, placing it 
well into the gigahertz range. Thus, an array of thin metallic wires, by virtue of its 
macroscopic plasma-like behaviour, produces an effectively negative permittivity at 
microwave frequencies. 
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Fig. 1.4 The split-ring resonator (SRR) of Pendry et al. [14] in cylindrical and planar form, 
activated by a magnetic field normal to the plane of the rings. 

1.2.3 Negative Permeability 

Before dismissing the possibility of achieving p < 0 using natural isotropic sub- 
stances, Veselago momentarily contemplated the nature of such a substance. He 
imagined a gas of magnetic “charges” exhibiting a magnetic plasma frequency, be- 
low which the permeability would assume negative values. The obstacle, of course, 
was the constitutive particle itself, the hypothetical magnetic charge. It is important 
to note that in the effort to synthesize a negative effective permittivity, Rotman and 
Pendry relied on the analogies their structures shared with the simplified electrody- 
namics of natural substances. Indeed, as acknowledged by Veselago himself [ 11, it is 
a much more difficult task to synthesize an isotropic negative permeability, for which 
there exists no known electrodynamic precedent. 

In 1999, Pendry et al. [14] claimed to have developed microstructured artificial 
materials exhibiting strange magnetic properties. The work first developed expres- 
sions for the magnetic properties of materials resembling the wire mesh, in which the 
fields and currents are oriented along the wire axis. Ultimately, the work concluded 
that such materials are strictly diamagnetic and that the permeability approaches the 
free-space value as the radius of the wires is decreased, a response which may be 
expected of simple artificial dielectrics [9]. However, by giving the cylinders an inter- 
nal electromagnetic structure resembling a parallel-plate capacitor wrapped around a 
central axis, Pendry et al. noticed a very different behaviour. The resulting split-ring 
resonator (SRR), depicted in Fig. 1.4, exhibits strong electric fields, supported by 
a very large capacitance, between the rings. Furthermore, although currents cannot 
traverse the gaps, the application of magnetic fields oriented normal to the plane of 
the rings induces simultaneous currents in both rings. This synthesized capacitance, 
along with the natural inductance of the cylindrical structure, results in a resonant 
response characterized by an effective relative permeability of the form 
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which has been appropriately modified from the original to refer to a e+jwt time 
variation. Here, T represents the radius of the SRR, a is the lattice spacing of SRRs 
lying in the same plane, 1 is the spacing between planes, p represents the resistive 
losses of the metal sheets, and C is the sheet capacitance between the two sheets. 
It is clear from the resonant form of peff that an artificial medium composed of 
SRR arrays would exhibit an effective permeability that attains large values near the 
resonance, limited only by the amount of resistive loss. This resonance frequency is 
given by 

However, pefj  seems to possess another, more familiar trait: When B -+ 0, the 
permeability expression can become negative if the second term of (1.1) is greater 
than one. This occurs at an effective magnetic plasma frequency wmp, given by 

The quantity T T ~ / u ~ ,  which we shall denote F ,  is the fractional area occupied 
by the rings, or filling factor. When embedded in air, arrays of SRRs appear to 
exhibit a stopband in the frequency region enclosed by wo and wmp, suggesting that 
the permeability is negative in this region. Although the phenomenon is evidently 
narrowband, the magnetic plasma frequency can be happily placed in the gigahertz 
range. Thus, comprising purely nonmagnetic materials, the SRR array of Pendry et al. 
had successfully simulated an artificial magnetic plasma, the substance hypothetically 
envisioned by Veselago, for which the effective permeability assumes negative values 
at microwave frequencies. 

1.2.4 The First LHM 

The work of Pendry et al. had yielded two distinct electromagnetic structures: Rot- 
man’s rodded artificial dielectric, unearthed and recast as a microwave plasma with 
E < 0, and the SRR, which exhibits p < 0 at microwave frequencies. The in- 
evitable connection to Veselago was quickly made by Smith and Schultz et al. at the 
University of California at San Diego, in association with Pendry, who immediately 
engaged themselves in realizing the first LHh4 as a composite of conducting wires and 
SRRs [ 15-17]. For easy fabrication using standard microwave materials, the copper 
SRRs were implemented in planar form on fiberglass substrates, and numerous such 
boards were assembled into a periodic array. The UCSD team approached the task of 
characterizing the SRR array quite systematically, first through numerical simulations 
and then through simple transmission experiments in both one and two dimensions, 
confirming that the SRR provides a negative permeability for magnetic fields oriented 
normal to the plane of the rings. However, that an array of SRRs embedded in air 
creates a stopband in the vicinity of the SRR resonance frequency is not conclusively 
indicative of a negative effective permeability, since the SRR medium could possess 
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Fig. 1.5 Transmission-line model for Wire/SRR medium with d << A. 

an electric response as well (see Refs. 18 and 19). The approach taken by Smith et al. 
was to insert the SRR array into a printed wire medium, known to exhibit a negative 
permittivity below its effective plasma frequency, anticipating frequency bands in 
this range in which propagation had been restored by a negative permeability. In- 
deed, their simulations and experiments revealed a region of propagation enclosed 
by the resonance and magnetic plasma frequencies of Pendry’s SRR, suggesting that 
the SRR array had, in fact, provided a negative effective permeability [20]. More 
intriguing, however, would be the nature of this region of propagation, in which the 
wire/SRR composite medium possesses simultaneously negative effective permittiv- 
ity and permeability, the indelible signature of left-handedness. 

It should be noted that Smith et al. employed a slightly different expression 
for the resonant form of peff than (l.l), which ensured that the effective relative 
permeability approached unity in the infinite-frequency limit. This expression, along 
with the expression typically employed for the effective relative permittivity, is shown 
below: 

Based on these expressions, it was,shown in Ref. 22 that the wire/SRR medium 
embedded in vacuum possesses a direct L-C transmission-line analogue. The unit 
cell for this equivalent transmission line is shown in Fig. 1.5. The vacuum perme- 
ability and permittivity are represented by the series inductor L, = pod and shunt 
capacitor Csh = cod, and the cell dimension d is assumed to be much smaller than 
the applied wavelength. The parallel RLC circuit in the series branch models the 
resonant response of the SRR and the inductor in the shunt branch models the effect 
of the wire array. The complex propagation constant for an equivalent transmission 
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line consisting of an infinite cascade of such unit cells is given by 

A comparison between (1.6) and the propagation constant produced by the product 
of (1.4) and (1 S), reveals the transmission-line model interpretation of the SRR and 
wire resonance frequencies: 

1 
wo = - a 

where F = L,/Ls is the filling factor. The value of this transmission-line model in 
describing the characteristics of negative-refractive-index media will be considered 
in the following sections. 

Once it had been shown that propagation is restored in the medium when the 
effective material parameters are simultaneously negative, it remained only to apply 
the composite medium in experiment to verify whether it possessed a negative ef- 
fective index of refraction, as Veselago hypothesized nearly thirty years earlier. The 
long-anticipated results were finally reported in Science [21]. R. A. Shelby, D. R. 
Smith, and S. Schultz at UCSD had experimentally verified negative refraction using 
a composite wire/SRR negative-refractive-index medium. Square SRRs printed on 
one side of a fiberglass substrate were coupled with wires printed on the reverse side, 
and the individual boards were assembled into a two-dimensional periodic, prism- 
shaped square lattice and embedded in air, as depicted in Fig. 1.6. The rings were 
designed for resonance around 10.5 GHz, where an LHM passband had previously 
been observed. The sample was irradiated by a microwave beam at 10.5 GHz incident 
at 18.43", and a microwave detector was scanned azimuthally around the exit point in 
the plane of incidence. A control sample made of Teflon reported a positive angle of 
refraction of 27", corresponding to the well-known refractive index of Teflon of + 1.4, 
and calibrating the apparatus. Using the wire/SRR metamaterial, the same beam 
was observed to exit at an angle of -61°, which, applied to Snell's Law, yields an 
effectively negative index of refraction of -2.7. Resonant at 10.5 GHZ, the wire and 
SRR media exhibited a bandwidth of approximately 500 MHz, or 5%, over which 
the refractive index was negative and in approximate agreement with the dispersion 
characteristics predicted by the product of the material parameter expressions of the 
wire and SRR media. The UCSD experiment had realized the LHM, and Veselago's 
seminal work was to be gloriously resurrected. 
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Fig. 1.6 Depiction of the wirdSRR metamaterial of Shelby et al. [21] used to verify negative 
refraction. 

1.2.5 Terminology 

Before concluding this section, it is perhaps useful to summarize the nomenclature 
found in the literature that has evolved for the description of metamaterials possess- 
ing these unique properties. The most frequently used terms are “left-handed,” 
“negative-refractive-index” (or simply “negative-index”), “backward wave,” and 
“double-negative” materials. We have already mentioned all terms and justified 
their origin except the last. The term “double-negative” media [23] originates from 
the fact that these materials are characterized by simultaneously negative permit- 
tivity and permeability. In our opinion, all four names are justified and have their 
advantages and disadvantages. However, we will not engage here in a further dis- 
cussion on nomenclature because we believe it to be of secondary importance. In 
our research group at the University of Toronto, we have used the self-contained 
term “negative-refractive-index” to describe these metamaterials because this term 
conveys one of their most fundamental and surprising aspects and, moreover, is able 
to capture the imagination of the nonspecialist. Nevertheless, we also liberally use 
the term “left-handed” for historical reasons. 
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Fig. 1.7 Unit cell for adistributed transmission-line network model of a planar homogeneous 
medium. After Ref. [27]. Copyright @ 2002 IEEE. 

1.3 TRANSMISSION-LINE THEORY OF 
NEGATIVE-REFRACTIVE-INDEX MEDIA 

The essential paradigm governing the synthesis of artificial media was the establish- 
ment of direct analogies with natural media. Such artificial dielectrics consisted of 
discrete electromagnetic scatterers periodically arranged into ordered arrays, analo- 
gous to the atoms and molecules in a crystal lattice. At wavelengths on the order of 
the lattice constant, these structures, like solids, exhibited diffraction effects, and at 
longer wavelengths, an effective refractive index could be defined. Central to each of 
these developments is the notion that all materials, natural or artificial, are granular at 
some level of scale; hence, artificial dielectrics were naturally and exclusively stud- 
ied according to methods used to characterize natural dielectrics. For example, the 
investigation of such materials has traditionally begun with the determination of the 
electric polarizability and magnetization of the scatterer, followed by the application 
of the Lorentz theory for dielectrics, or they have been treated macroscopically as 
scattering problems. 

The above methods of analysis, however rigorous, do not directly provide any 
insight into the synthesis of artificial media to possess specific effective material 
parameters, let alone the exotic parameters associated with negative-refractive-index 
metamaterials. For this we may look to the familiar transmission-line model, which 
represents natural media using a distributed network of reactances, a unit cell of 
which is shown in Fig. 1.7 for the planar case. Modeling natural media in this 
fashion interprets the notion of granularity through the process of discretization; that 
is, Maxwell’s equations are solved in discrete spatial increments, or unit cells, in 
which the relevant field quantities are regarded to be quasi-static. The nature of the 
impedances and admittances in the 2-D unit cell of Fig. 1.7 can be determined using 
this approach, which we present herein. We begin with the statement of Maxwell’s 
differential curl equations in the frequency domain, and we assume time-harmonic 
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Fig. 1.8 Volume of space representing region in which fields may be considered quasi-static. 

fields with time variation e+jwt: 

V x E = - j w B  (Faraday’s Law) (1 3) 
V x H = J +jwD (Amphe-Maxwell’s Law) (1.9) 

In homogeneous, isotropic media, these are supplemented by material constitutive 
relations of the form 

B = p(w)H 

D = E(w)E 

(1.10) 

(1.11) 

where the dispersive nature of the material parameters p(w)  and E(W) has been 
emphasized for generality. 

We now suppose there exists a volume of space represented as a three-dimensional 
unit cell of dimensions Ax, Ay, and Az, each of which is diminutive in compar- 
ison to the wavelength of the impressed field, thus enforcing the quasi-static field 
condition. This is depicted in Fig. 1.8. In the interest of ultimately studying a thin 
planar geometry, we may assume that there is no field variation in the y-direction 
so that d/dy -+ 0, and the electromagnetic interactions supported by the resulting 
planar geometry may then be described by a combination of TE, and TM, modes. 
In anticipation of modeling dielectrics using distributed circuit analogies, we now 
develop expressions for the quasi-TMy case, in which the predominant electric and 
magnetic field components are E,, H,, and H,, related by the following expressions 
in the lossless case: 

(1.12) 

(1.13) 

(1.14) 
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Spatial discretization of Maxwell’s equations over this cube results in the following 
expressions: 

E~(xo + AX, ZO) - E y ( ~ 0 ,  ZO) = -jwp(w)H,A~ 
Ey(20, zo + Az) - E,(xo, ZO) = + ~ w ~ ( w ) H , A z  

(1.15) 

(1.16) 

and 

[H&O, zo + AZ) - ~ X ( ~ 0 , Z O ) l  AX 
- [H,(xo + AX, ZO) - H,(xo, ZO)] AZ = + j w t ( w ) E , ( ~ o ,  ZO)AZAZ (1.17) 

The definitions of potential difference and current using field quantities are as follows: 

a’ 

Vat - Va = - E * dl 

I = i H .  dl 

(1.18) 

(1.19) 

where a - a‘ is any path connecting the bottom and top faces of the cube, and C 
is a suitably chosen closed contour slicing its bottom or top face. Since the fields 
are quasi-static within the volume of the unit cell, the integrals degenerate into the 
simple products V, = E,Ay (assuming the bottom face of the unit cell is taken 
as the zero reference potential), I, = -H,Ax and I ,  = H,Az. Furthermore, 
defining the impedance and admittance quantities 2, = jwp(w)AzAy/Az, 2, = 
jwp(w)AyAz/Az, Y = jwt(w)A~Az/Ay and rearranging, (1.15)-(1.17) reduce 
to 

and 

The first (second) equation suggests that the potential difference between the front and 
back (left and right) faces of the cube of Fig. 1.8 results from a current drawn by an 
effective impedance 2, (2,). The third equation suggests that the potential difference 
between the top and bottom faces is given by the current drawn by an admittance 
Y .  These results are familiar, because they are merely a two-dimensional rep- 
resentation of the transmission-line telegrapher’s equations. Equivalently, these are 
Kirchhoff’s voltage and current laws for the per-unit-length lumped-element model of 
the symmetric transmission-line unit cell of Fig. 1.7. The nature of the impedances 
and admittances at a particular frequency w = wo is evident in the expressions 
Zx = jwp(wo)AxAy/Az, Z, = jwp(wo)AyAz/Ax, Y = jw~(w~)AxAz/Ay, 
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Fig. 1.9 Determination of the impedance and admittance quantities in Fig. 1.7 by mapping 
quasi-static field quantities in the unit cell of Fig. 1.8 to currents and voltages. 

and this is illustrated in Fig. 1.9. The presence of uniform electric fields through- 
out the area AxAz of the unit cell over its thickness Ay describes a parallel-plate 
capacitor filled with the medium E(WO), p(w0) whose capacitance is given by the 
familiar relation C = ~(wo)AxAz/Ay. The presence of quasi-static magnetic fields 
is akin to oppositely directed currents in the parallel plates whose flux contributions 
are linked through an area AyAz for currents flowing across a distance of Ax and 
through AxAy for currents flowing across Az. This yields an inductance within the 
unit cell of L, = p(wo)AxAy/Az in the x-direction and L, = p(wo)AyAz/Ax 
in the z-direction. More interesting however, are the distributed capacitance and 
inductance, which are, evidently, related to E(WO) and p(w0) through a constant term 
given by the geometry of the unit cell; for the isotropic medium, when the dimen- 
sions of the unit cell are infinitesimal compared to the wavelength (the continuous 
limit), the distributed capacitance and inductance are identically equal to the isotropic 
material parameters. The result, therefore, is that any homogeneous and lossless di- 
electric can be modeled at a particular frequency wo by discrete unit cells containing 
only inductors and capacitors, apportioned such that the per-unit-length capacitance 
and inductance (i.e., these are distributed capacitances and inductances), through 
the geometry of the unit cell, represent the effective material parameters E(WO) and 

Under the assumption of a two-dimensionally isotropic, cubic unit cell (2 = 2, = 
Z,, d = Ax = A y = Az) the above impedance and admittance expressions become 
Z = jwp(w)d, Y = jw~(w)d, so that the effective material parameters modeled by 
the transmission-line network are expressed by 

P(W0). 

( 1.23) 

(1.24) 

For any conventional medium (or RHM) that is isotropic, nonmagnetic, and possesses 
a relative permittivity E , ,  we require p(w) = pa and E(W) = ~ ~ € 0 ,  and so we must 
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Fig. 1.10 2-D transmission-line unit cell describing a medium with p(w)  = po and E ( W )  = 
E , E O  using a per-unit-length series inductance and shunt capacitance. 

choose 2 = jwpod and Y = jwE,Eod. This implies a two-dimensional medium in 
a low-pass topology whose unit cell possesses a series inductance L = pod (H) and 
shunt capacitance C = crEOd (F), as shown in Fig. 1.10. Here, L' = po = L/d 
(Wm) and C' = E,EO = C / d  (F/m) are the corresponding distributed quantities, both 
of which, it should be noted, are positive and real. The reader will also recall that the 
development that yielded this unit cell assumed no losses, which could, otherwise, 
have been modeled by a resistance in series and a conductance in shunt. 

In the continuous limit, with d/X -+ 0, the corresponding propagation constant ,B, 
which is obtained from the circuit wave equation, 

(1.25) 

reduces to that of a standard transmission line, filled with a nonmagnetic dielectric 
with relative permittivity €rt 

p = *tJ_i?T = w m  = w d e =  W / V d  (1.26) 

This dispersion relation reveals the variation of the propagation constant with fre- 
quency, and is presented in two formats for the continuous medium case in Fig. 1.1 1. 
The w-p curve of Fig. 1.1 la  shows the variation of the propagation constant along a 
particular axis of propagation in the x-z plane as a function of frequency, and Fig. 
1.1 1 b shows the variation of the propagation constant as a function of propagation 
direction at a particular frequency. Accordingly, the latter diagram is known as an 
equifrequency surface (EFS). The w-,B curve provides the magnitude of the phase 
and group velocities in the medium, and the EFS provides their specific directions. 
When the unit cell is cubic and electrically infinitesimal, the distributed structures 
model isotropic media, and the EFS of the planar network is circular. The phase 
velocity is defined as the ratio q, = w / p ,  whose magnitude is given by the slope 
of the line from the origin of the w-p curve to a point (WO, PO) in Fig. l . l l a  and 
whose direction is given by the line connecting the origin to a point (&, on 
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Fig. 1.11 Dispersion relation for medium with 1-1 = po and 6 = E,EO described using (a) an 
w-p curve and (b) an equifrequency surface (EFS). 

the EFS of Fig. 1.1 lb. The group velocity is defined as wg = (ap/aw)-l, which is 
the slope of the tangent to the W-P curve at (WO, Po) and which is directed along the 
gradient to the EFS, taken in the direction of increasing frequency. It is evident from 
Fig. 1.1 l a  that the propagation constant of conventional isotropic RHM modeled 
by a distributed series inductance and shunt capacitance varies proportionally with 
frequency, as would be expected in conventional dielectrics at low frequencies. It is 
also clear from Fig. 1.1 l b  that the resulting phase and group velocities are parallel 
and equal (dispersionless medium) and are given by 

(1.27) 
1 - W 1 

v+=-=- P m-&z=3 

That the phase and group velocities are both positive results from the choice of the 
positive root in (1.27). The choice is arbitrary since it serves only to select one of two 
solutions related through a space reversal or, equivalently, one of the two branches 
of the w-/3 curve or diametrically opposite directions of the EFS. However, to avoid 
the needless confusion associated with the term “negative group velocity,” it is quite 
logical to define the phase velocity according to the branch of the w-p curve that 
supports a “positive group velocity,” which represents power flow in the reference 
direction. Accordingly, in RHM, a positive phase velocity means that the phase lags 
in the direction of the group velocity (in this case, parallel to the Poynting vector), 
a fact that is invariant to the sign selected for the root. Thus, the refractive index, 
which can be defined as the ratio between the speed of light in vacuum and the phase 
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velocity in the medium, is positive: 

(1.28) 

Furthermore, the wave impedance of the effective medium is exactly equal to the 
characteristic impedance of the distributed network in the continuous limit, as ex- 
pected: 

(1.29) 

1.3.1 Application of the Transmission-Line Theory of Dielectrics to the 
Synthesis of LHM 

That Maxwell’s equations can be represented in entirety by appropriate circuit equa- 
tions, and consequently that natural media could be represented by distributed circuit 
networks, was recognized as early as 1944 by G. Kron [24], who employed the 
method of spatial discretization of Maxwell’s equations to arrive at Kirchhoff’s volt- 
age and current laws for three-dimensional media, and by J. R. Whinnery and s. 
Ram0 [25], who treated two-dimensional media, although it was only four years 
later that W. Kock introduced the term ‘artificial dielectric’. This trend suggests 
that, having availed of our familiarity with circuits to model the behaviour of natural 
media, we may now apply the same principles to synthesize the behaviour of artificial 
media. That is, the elegance of the distributed circuit concept lies in the fact that 
it is applicable to any homogeneous dielectric, since we are free to specify L’ and 
C’, and it therefore allows us to examine the scope of distributed L-C networks 
for reproducing the exotic material parameters associated with LHM. Specifically, 
Veselago’s postulation of a negative permittivity and permeability prompts us to ask 
whether the L‘ and C‘ parameters in a network representation can also be made 
negative. Naturally, from an impedance perspective, imposing a negative L’ and C’, 
or equivalently a negative series impedance -jwL‘d and shunt admittance -jwC’d, 
essentially exchanges their reactive and susceptive roles, so that the series inductor 
becomes a series capacitor, and the shunt capacitor becomes a shunt inductor. The 
unit cell of the emerging dual structure is shown in Fig. 1.12, and it is easily recog- 
nized as having the topology of a two-dimensional high-pass filter network. The 
effective permittivity and permeability represented by this topology can, once again, 
be obtained using (1.23) and (1.24), which result in 

l / j w C d  1 p ( w )  = - = -- 

E(W)  = - - 
3w w2Cd 

j w  w2Ld 
1 -- - 

l / j w L d  

(1.30) 

(1.31) 

Contrary to the results for the RHM unit cell, the effective material parameters 
of the dual network are prominently negative. However, they are no longer con- 
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Fig. 1.12 2-D dual transmission-line unit cell describing a medium with simultaneously 
negative, dispersive parameters p = -lp(w)l and E = - I E ( w ) ~  using a per-unit-length 
series capacitance and shunt inductance. 

stants, and are, instead, explicit functions of frequency; in fact, their particular 
dispersive forms ensure that the time-averaged stored electric and magnetic energies 
associated with this medium are positive, so that the conservation of energy is not 
violated [l ,  91. Thus, the simple dual high-pass network, with distributed series 
capacitance C’ = Cd (Fern) and shunt inductance L’ = Ld (H.m), satisfies the prin- 
cipal requirement for left-handed behaviour: The effective material parameters are 
simultaneously negative. Therefore, the network may legitimately be described as 
an LHM. This novel conception of the negative LHM permeability and permittivity 
in terms of an equivalent series capacitance and shunt inductance was investigated 
in Refs. 26 and 27, which presented the above dispersion analysis as well as simu- 
lations of negative refraction and focusing in two-dimensional dual L-C arrays for 
both continuous implementations (d/X t 0) and periodic implementations using 
finite-length transmission-line segments, in which the size of the unit cell was shown 
to affect the dispersion properties of the network (described in Section 1.4). The 
latter work also presented an experimental verification of these ideas using a small, 
transmission-line based, planar negative-refractive-index lens with which focusing 
was demonstrated. A similar theory was followed in Ref. 28, which discussed the 
continuous implementation of the one-dimensional dual L-C line, and in Ref. 29, 
which described some interesting devices and circuits. A stripline implementation 
of the one- and two-dimensional dual L-C medium was also suggested in Ref. 30. 

The propagation constant associated with the dual structure, found through the 
application of (1.30) and (1.3 l), boasts a peculiar inverse relationship with frequency, 

(1.32) 

and the corresponding w-p curve and EFS are as shown in Fig. 1.13. In this case, 
the phase and group velocities are antiparallel and are given by 

(1.33) 
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Fig. 1.13 Dispersion relation for medium with simultaneously negative, dispersive para- 
meters p = -Ip(w)l and E = -le(w)l described using (a) an w-@ curve and @) an 
equifrequency surface (EFS). 

where the choice of the negative root in (1.33) has ensured a positive group velocity 
(in this case also parallel to the Poynting vector), in accordance with our adopted 
convention. These results are familiar because they return us to the phenomenon of 
the backward wave: that is, since the phase and group velocities (Poynting vector) 
are antiparallel, negative refraction can be expected at an interface between an RHM 
and LHM constructed from a dual L-C network by virtue of phase matching at the 
interface. Indeed, the one-dimensional simplification of the above two-dimensional 
analysis leads to the familiar high-pass filter, which is known to support a funda- 
mental spatial harmonic in which the Poynting vector and wavevector are oppositely 
directed [3]. The backward wave manifests itself in the fact that, in LHM, the phase 
leads in the direction of positive group velocity, or power flow, and so the index 
of refraction should, accordingly, be negative, and it is clear that the relationship 
between the effective wave impedance and network characteristic impedance is also 
preserved: 

(1.35) 

It is noteworthy that the above development has, once again, assumed no losses; it is, 
therefore, evident that the dual L-C representation of the LHM does not require losses 
to synthesize simultaneously negative effective material parameters. Furthermore, 
unlike the wire/SRR negative-refractive-index media described in Ref. 2 1, the dual 
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L-C medium does not rely explicitly on resonators to synthesize the required negative 
material parameters [22,31]. On this note, let us revisit the transmission-line model 
of the wire/SRR medium that was described earlier in this chapter (Fig. 1.5). It was 
previously noted that the effective permeability function of (1 . l )  assumed negative 
values in the frequency region enclosed by wo and wmp. In the transmission-line 
model of the wirdSRR medium, this range corresponds exactly to the frequency 
region in which the series branch is capacitive. Similary, the effective permittivity is 
negated below weP, where the shunt branch is inductive. Thus, in the frequency region 
in which a negative refractive index is achieved, the wirdSRR medium can be said 
to reduce to the dual L-C circuit topology described herein. In this sense, the SRR 
introduces an “excess” resonance that may be avoided by implementing the series 
capacitance directly. In doing so, we are able to realize extremely large bandwidths 
over which the negative refractive index property is maintained. Indeed, it is evident 
from Fig. 1.13 that the continuous, dual L-C medium exhibits a backward-wave 
characteristic over an infinite range of frequencies. 

The above results describe an isotropic dual L-C medium; Balmain et al. [32] have 
developed transmission-line based anisotropic metamaterials, which have demon- 
strated negative refraction and focusing into a spot on the order of X/25. These 
metamaterials, consisting of a two-dimensional periodic L-C grid over ground with 
series capacitors loading one grid axis and series inductors loading the other (and 
shunt inductors to ground in some implementations [33-35]), are excited by a point 
source between ground and the anisotropic grid, which forms a resonant path that can 
be made to scan with frequency; this phenomenon is akin to the “resonance cones” 
observed in anisotropic plasmas, and such anisotropy is described by hyperbolic 
equifrequency surfaces. More on these fascinating anisotropic media can be found 
in Chapter 6. 

1.4 PERIODICALLY LOADED NEGATIVE-REFRACTIVE-INDEX 
TRANSMISSION-LINE (NRI-TL) METAMATERIALS 

The practical realization of the dual L-C unit cell of the previous section requires us 
to endow the continuous medium with small physical dimensions provided by a host 
transmission-line medium and a unit cell inductance and capacitance that must be 
realized using either lumped printed or discrete (chip) inductors and capacitors. Many 
such cells must then be arranged periodically into a two-dimensional lattice, and the 
array must be excited at guide wavelengths longer than the cell dimension to enforce 
the homogeneity condition, so that the resulting periodic structure can be regarded as 
distributed. Under these conditions, we may expect that such a structure will exhibit 
the unusual left-handed properties proven for its continuous couqterpart (albeit limited 
in some quantifiable sense by the imposed periodicity), includin a negative refractive 

transmission-line network (for which the relevant distributed parameters are known) 
with discrete or printed reactive elements. We shall hereinafterlrefer to this structure 

index. We therefore consider a design that periodically loads a P wo-dimensional host 
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Fig. 1.14 Practical, periodic implementation of the continuous 2-D unit cell of Fig. 1.12 
consisting of a transmission-line host medium periodically loaded with inductors and capacitors 
in a dual configuration. After Ref. [36]. Copyright @ 2003 Optical Society of America, Inc. 

as a negative-refractive-index transmission-line (NRI-TL) metamaterial. The unit 
cell for the periodic, two-dimensional NRI-TL metamaterial is depicted in Fig. 1.14, 
and it shows the host transmission lines loaded with series capacitors and a shunt 
inductor [27,36]. The host transmission line, which possesses a propagation constant 
k and provides the dimension d of the unit cell, can be characterized by a total phase 
shift 8 = kd in both the IC- and z-directions, along with a characteristic impedance 
20. 

1.4.1 Dispersion Characteristics 

For periodic structures, the propagation constant and characteristic impedance are 
obtained through the periodic analysis of microwave networks, in which an infinite 
periodic array is characterized using a transmission (ABCD) matrix representation 
of a single unit cell with periodic boundary conditions. The problem is solved by 
invoking the Floquet-Bloch Theorem, which states that the terminal electric and 
magnetic fields (voltages and currents) will describe the effective propagation of a 
“wave” only if they are related through a frequency-dependent phase shift given by an 
effective propagation constant. The topology of the unit cell and choice of reference 
plane also specify the effective characteristic impedance, or Bloch impedance, of the 
structure. 

The continuous, two-dimensional dual L-C structure of the previous chapter rep- 
resented an isotropic medium at all frequencies, hence the circularity of its equifre- 
quency surface (EFS) shown in Fig. 1.13b. However, the use of finite-length transmis- 
sion lines in the practical NRI-TL structure, although providing the needed dimen- 
sionality, results in a spatial anisotropy that makes the propagation and impedance 
characteristics a function of the propagation angle 4, as well as frequency. EFSs 
for a representative periodically loaded transmission-line metamaterial are shown for 
the lowest (LH) passband in Fig. 1.15, where the darker curves near the periphery 
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Fig. 1.15 Equifrequency surfaces of the reduced Brillouin zone in the lowest (LH) passband 
for a representative, periodically loaded transmission-line metamaterial indicating the symme- 

(PZ = n / d ,  Pz = n / d ) ,  where d is the unit cell dimension, or lattice spacing. 
try points r (Pz = Pz = O), X (Px = n / d ,  P, = 0). 2 (PZ = 0,  Pz = n / d ) ,  and M 

represent lower frequencies and the lighter curves near the centre represent higher 
frequencies. The labels on the figure identify the symmetry points of the reduced Bril- 
louin zone [37], where l? represents ,Bx = ,Bz = 0, X represents PZ = n / d ,  PZ = 0,Z 
represents PX = 0, ,Bz = n/d, M represents ,Bz = n/d, Pz = n / d ,  and d is the period 
of the lattice, or the dimension of the unit cell of Fig. 1.14. The spatial anisotropy 
evident in Fig. 1.15 is a consequence of the fact that waves scattered by a particular 
unit cell are restricted to propagation along the axes of the host transmission-line 
medium, impacting the propagation characteristics along the diagonals (4  = n/4) 
most severely. This can be seen in Fig. 1.16a, which depicts an array of NRI-TL unit 
cells viewed from above (the 2--2 plane of Fig. 1.14). Although this anisotropy can be 
minimized by making the interconnecting lines electrically small, it is clear that the 
full description of propagation in the NRI-TL structure requires a two-dimensional 
periodic analysis (see Ref. 38 and Chapter 3). Nevertheless, anid propagation along 
the NRI-TL metamaterial (that is, at 4 = 0 or 4 = n/2) is a highly representative 
case that provides physical insight into its behaviour and considerably simplifies 
the analysis. This is unlike propagation along a one-dimensional NRI-TL metama- 
terial, since we must account for the effect of the transverse loading by the host 
transmission-line medium. This can be intuitively understood by considering the 
picture of axial propagation in the two-dimensional grid, as shown in Fig. 1.16b. For 
axial propagation in z (or, employing the notation of Fig. 1.15, the I'-2 direction) the 
impedance in z is infinite, and so no current flows in this direction. Consequently, 
each of the two transverse transmission-line segments become open-circuited at their 
centres, and, therefore, contribute capacitively to the unit cell. This is illustrated in 
Fig. 1.17. Thus, the equivalent NRI-TL unit cell for axial propagation may be de- 
picted as in Fig. 1.18, where the shunt branch now includes the combined admittance 
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open 

open 

Fig. 1.16 Plane wave incident on an array of NRI-TL unit cells (top view) at (a) angle 4 
and (b) axially (4 = 0, 4 = n/2) ,  resulting in the formation of open circuits in the medium 
transverse to the direction of propagation. After Ref. [27]. Copyright @ 2002 IEEE. 

Fig. 1.17 Capacitive loading due to host TL medium transverse to direction of axial propa- 
gation. 

of the open-circuited stubs 2Yoc = 2(-jZo cot(13/2))-~ [27]. A periodic analysis 
applied to this equivalent NRI-TL unit cell reveals the axial propagation constant and 
terminal Bloch impedance Zg: 

cospd = cose - 1 
cos 2 6  - + - 1 (- 1 + -) 1 sine} { 2 W 2 L O C O  2 2w cozo LOYO 

(1.37) 

The reader may wish to note that the terms enclosed in curly brackets in (1.36) repre- 
sent the dispersion relation of the one-dimensional NRI-TL line and that the additional 
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Fig. 1.18 Symmetric NRI-TL unit cell modeling axial propagation in the 2-D NRI-TL grid. 

term represents the correction to cos pd required to account for the transverse TL seg- 
ments in the two-dimensional medium. Thus, the behaviour of electromagnetic waves 
propagating axially through the infinite two-dimensional NRI-TL periodic structure 
is thoroughly characterized by (1.36) and (1.37), provided that the properties of the 
host medium (0 , 20) and the loading elements (LO, CO) are given. 

One suitable host transmission line is the microstrip, which is a class of electro- 
magnetic waveguide consisting of a strip conductor and a backplane, separated by a 
thin dielectric. Microstrip lines are easily integrated with discrete or printed passive 
components, as well as active components, and the equipment required to design, 
construct, and test a microstrip circuit is inexpensive and readily accessible. Their 
use is further validated by the ease with which they may be fabricated and integrated 
with existing planar RF/microwave circuits and devices. Microstrip-based NRI-TL 
structures employing both discrete loading using chip elements [27] and printed 
elements [39,40] are depicted schematically in Fig. 1.19. Assuming quasi-static con- 
ditions, we may replace the inhomogeneous space surrounding the microstrip with 
a homogeneous dielectric with effective permittivity ~p = cefjq, ,  as described in 
Refs. 4 and 41, for which the intrinsic impedance may be represented as q e f f ,  and the 
per-unit-length capacitance C' and inductance L' are related through the microstrip 
characteristic impedance 20. Although the propagation constant along the microstrip 
k = can be said to be equal to that in the homogeneous surrounding medium 
(owing to the quasi-TEM nature of the microstrip fields), p = &,/-, the char- 
acteristic impedance 20 = d m  is not, in general, equal to the wave impedance 
q e f f  = d* and is, instead, related to it by a factor g determined by the 
mapping of the quasi-static field quantities E and H to voltqges and currents 7 
through the geometry of the transmission line. Thus, the effect f the geometry is also 
evident in the relationship between the per-unit-length capaci taP nce and inductance of 
the transmission line and the permittivity and permeability of the intrinsic medium: 

(1.38) 



26 NEGATIVE-REFRACTIVE-INDEX TRANSMISSION-LINE METAMATERIALS 

Fig. 1.19 Microstrip-based NRI-TL medium employing loading with (a) discrete inductors 
and capacitors and (b) vias and printed gaps. 

(1.39) 

For example, consider the field cell of Fig. 1.8 for propagation in the z-direction. 
The per-unit-length capacitance and inductance are C' = e(wo)Az/Ay and L' = 
p(wo)Ay/Az, respectively, and these yield 20 = ( A y / A ~ ) d m .  The 
factor g = Ay/Az is explicitly seen in all three quantities. For microstrip lines of 
width w and substrate height h, for which the field distributions are not as simple, g 
may be determined through a mapping of the quasi-static fields and is as follows (see 
Refs. 4,41,42, and 36): 

ln(8hlw + w/4h), w/h  5 1 
[w/h  + 1.393 + 0.6671n(w/h + 1.444)]-l, w/h  > 1 

(1.40) 

In the previous discussion on transmission-line networks representing continuous 
media, the frequency response of the dual L-C structure permitted propagation at all 
frequencies, as would be expected for a continuous medium. However, in loading 
the unit cells periodically across finite lengths of transmission line, the dispersion 
diagram develops frequency bands in which propagation is forbidden. Indeed, it 
is evident from (1.36) that the axial propagation constant p can assume imaginary 
values at frequencies lying within such stopbands. Choosing the representative 
values LO = 5.6 nH, CO = 1.0 pF, E,. = 2.94, h = 1.524 mm, w = 0.4 mm, and 
d = 5 mm, the full dispersion relation is of the form depicted in Fig. Although Figs. 
1.20a and 1.20b reassure us that the introduction of finiteness and periodicity to the 
NRI-TL structure has not affected its left-handed characteristic at low frequencies, the 
previously infinite extent of the left-handed passband has been truncated and replaced 
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Fig. 1.20 Dispersion relation for a representative NRI-TL medium (LO = 5.6 nH, CO = 
1.0 pF, E ,  = 2.94, h = 1.524 mm, w = 0.4 mm, and d = 5 mm) as obtained through 
periodic analysis: (a) The lowest left-handed (LH) passband, corresponding to the fundamental 
spatial harmonic, is enclosed by a Bragg frequency W B  and a stopband with cutoffs W C , ~  and 
W C , ~ ,  followed by a right-handed (RH) passband. (b) Reduced Brillouin zone depicted for 
higher frequencies, showing stopbands at I?-points (darkly shaded regions near 3 GHz and 
42 GHz) and 2-points (lightly shaded). 

with a chain of passbands separated by finite stopbands. The darkly shaded regions 
(near 3 GHz and 42 GHz) and lightly shaded regions of Fig. 1.20b correspond 
to stopbands in which cospd 2 1 and cospd 5 -1, respectively, the edges of 
which may be described as the I?-point and the Z-point, respectively, of the reduced 
Brillouin zone for the planar, two-dimensional periodic structure depicted in Fig. 
1-14. It should be noted that, although the I?-point stopbands shown in 1.20b become 
increasingly narrower with frequency (spanning approximately 900 MHz around 
3 GHz and 140 MHz around 42 GHz), they nevertheless represent frequency regions 
in which waves propagating in the infinite periodic structure experience severe Bragg 
reflection and exhibit zero group velocity. 
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It is evident from Fig. 1.20 that successive passbands alternately exhibit left- 
or right-handedness (using Veselago’s terminology), corresponding to particular 
backward- or forward-wave spatial harmonics, since the concavity of the disper- 
sion surface changes with frequency. Although all periodic structures support an 
infinite number of forward- and backward-wave spatial harmonics [3] the dispersion 
diagrams of Fig. 1.20 show that the periodic NRI-TL network supports a backward 
wavefundamental spatial harmonic (extending over the region -7r < pd < 0). 

We now examine Fig. 1.20a in more detail. Beginning at dc (i.e., where 8 -+ 0) 
and proceeding upwards, we first encounter a cutoff frequency near 1 GHz where 
the effective axial phase shift per unit cell pd is equal to 7r. Since the effect of the 
transmission lines 8 is diminutive at these frequencies, the structure looks and behaves 
like a simple high-pass filter at its Bragg resonance, below which the incident waves 
are entirely reflected. Entering the left-handed passband, which supports backward 
waves and, therefore, exhibits negative values of ,8, the magnitude of the phase shift 
per unit cell decreases quickly, and the corresponding effective wavelength becomes 
much longer than the period of the lattice. The homogeneous, or effective medium, 
limit is achieved when approaching the edge of the first stopband, where ,8d = 0 and 
the effective wavelength in the medium is regarded to be infinite. It is true that, as 
frequency is increased, 8 also increases; however, the unit cell may be designed such 
that it remains electrically small even as 

When 8 is small, cos 8 -+ 1 and sin 8 --+ 0. This is a first-order approximation that 
expands these functions to a single term in their Taylor expansions and essentially 
produces the results obtained for the continuous L-C networks considered in the 
previous section [see (1.32)], which possessed an infinite left-handed band (i.e., 
p --+ 0 only as w --f 00). Hereafter, we employ a second-order analysis that retains 
a second term in the Taylor expansion of cos 8 and sin 0. The resulting form of the 
dispersion relation is as follows: 

-+ 0. 

(1.41) 
e2 1 1 

cospd = 1--- 

The Bragg frequency encountered when pd = 7r is approximately given by 

1 
(1.42) 

wB = 2- 

A more accurate expression for W B  can be found in Ref. 27. 

1.4.2 Effective Medium Limit 

As frequency is increased, we enter the homogeneous limit, which is of greatest 
interest to the present development, since, as mentioned previously, this is also the 
effective medium limit in which we shall find our effective material parameters. In 
the homogeneous limit, we retain the second-order terms in the expansion of cos pd, 
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and arrive at the following expression: 

(1.43) 

from which it is evident that the loading due to the transverse TL medium serves to 
double 8 in the factor containing the inductance LO, the physical meaning of which 
shall be revealed shortly. By expressing 8 and 20 in terms of the host transmission- 
line equivalent permittivity ~ p ,  permeability ,up, and geometric factor g ,  the axial 
propagation constant in the effective medium limit is given to be 

which has also been represented in terms of the effective material parameters E N ( W )  

and ~ N ( w )  that we seek. The picture is completed in the determination of the Bloch 
impedance, which, under the same set of second-order assumptions, reduces to 

where the relationship between the Bloch impedance and effective wave impedance 
has been defined analogously to that in the host transmission-line medium presented 
in (1.39). Revealed by the effective axial propagation constant and wave impedance 
are the effective constitutive parameters of the NRI-TL metamaterial in the effective 
medium limit: 

9 
w2 Lod 

E N ( W )  = 2Ep - - 

( 1.46) 

( 1.47) 

from which it can be seen that each consists of a positive contribution due to the host 
transmission-line medium, and a negative, dispersive contribution due to the loading 
(corresponding to a negative effective susceptibility). This is unlike the continuous 
dual L-C medium discussed previously, in which the material parameters (1.30) 
and (1.3 1) were negative over all frequencies; with the host medium in place, the 
negation of the material parameters requires that the series and shunt branches be 
dominated by CO and LO, respectively. Also evident is the fact that the contribution 
of the open-circuited stubs of the transverse TL medium is, effectively, to double the 
relative permittivity ~p of the host medium [27]. Consequently, the per-unit-length 
capacitance C' of a transmission-line segment, given by Eplg, can be represented 
as 2ep/g in the two-dimensional transmission-line medium. Accordingly, the char- 
acteristic impedance seen by a wave propagating axially through a two-dimensional 
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transmission-line medium is less than that seen in a one-dimensional transmission 
line by a factor of 4. Until now, we have used the symbol 20 to denote the charac- 
teristic impedance of the one-dimensional transmission line. In what is to follow, we 
generalize 20 to mean, simply, “characteristic impedance,” and we request that the 
reader recognize its application to the one- and two-dimensional cases through the 
context of the discussion. 

The transition frequencies, beyond which the material parameters become positive, 
are the zeros of the permittivity and permeability functions, or the plasma frequencies 
of the effective medium. By setting p = 0, the edges of the stopband are analytically 
determined to be 

I 1  
(1.49) 

It is evident from these equations that the stopband cutoffs are pushed to infinity 
as the period d is reduced, arbitrarily widening the bandwidth of the LH passband 
and essentially restoring the continuous case [22,27]. Although an infinitesimal cell 
period is impracticable, what is important is that the dispersion characteristics of the 
NRI-TL metamaterial are inherently controllable and are not restricted by unnec- 
essary resonances [22,3 11. Consequently, negative-refractive-index metamaterials 
based on the dual L-C concept can be expected to offer dramatically larger operating 
bandwidths than the wire/SRR composite medium; supporting results are presented 
in Section 1.6, as well as in Refs. 27 and 36. 

1.4.3 Closure of the Stopband: The Impedance-Matched Condition 

One particularly interesting feature, independent of the cell period d, is that the 
stopband shown in Fig. 1.20a may be closed by setting w c , ~  = W C , ~ ,  which adjoins 
the LH and RH passbands and leads to 

which is an impedance-matched condition that states that the characteristic impedance 
of the host medium is equal to that of the underlying purely LH distributed medium 
consisting of the loading elements alone. Condition (1 SO) of closing the stopband 
in a transmission-line NRI metamaterial was originally reported in equation 29 of 
Ref. 27, and subsequently adopted by Sanada et al. [43]. 

The closure of the stopband is illustrated in Fig. 1.21a for a NRI-TL design that 
differs from the design represented in Fig. 1.20 only in the choice of the loading 
inductance LO, which has been increased to lower the upper band edge and thus meet 
the impedance-matched condition. Alternatively, the loading capacitance CO could 
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have been decreased while maintaining the original value of LO. In either case, it is 
the impedance quantity d m  that must change to meet 20. It is evident from Fig. 
1.21 that this condition permits, at least in theory, the restoration of a nonzero group 
velocity at the point p = 0, or the r-point, if Brillouin zone notation is employed. 

Although we have shown that the impedance-matched condition ensures the clo- 
sure of the stopband at the I?-point and restores propagation into the RH passband that 
follows, we must recall that this result was derived under the assumption of homo- 
geneity, which required both that we be sufficiently close to the r-point and that we 
operate at frequencies low enough to ensure that the effect of the interconnecting host 
medium is diminutive. Of course, any periodic structure supports an infinite number 
of spatial harmonics and, consequently, exhibits an infinite number of stopbands at 
higher frequencies, both at the r-points and at the Z-points. It should, therefore, 
be interesting to see what effect, if any, the impedance-matched condition of (1 SO) 
has on these higher stopbands. To investigate these higher bands, the small-angle 
approximations employed for the transmission-line host medium parameter 0 in the 
preceding analysis must be abandoned, and we must revisit the full dispersion relation 
of (1.36). At the I?-points (p = 0), it can be shown that the general solutions to (1.36) 
are in the form of transcendental equations: 

8 2 c 0  
cot - = -e 

2 &  
9 

(1.51) 

(1.52) 

The corresponding solution ‘pairs’ of (1.5 I)-( 1.52) cooperatively describe the edges 
of a single r-point stopband. As in (1.48)-(1.49), when the host medium parameters 
are specified, one edge of each stopband is determined by the series loading capac- 
itance CO, while the other is determined by the shunt loading inductance LO. What 
is immediately evident from the form of these equations is that the solutions can be 
made to coincide when 

(1.53) 

which is the impedance-matched condition of (1.50). The result, therefore, is that the 
closure of the first stopband through (1.50) guarantees that each one of the infinitely 
many successive r-point stopbands in the reduced Brillouin zone is closed. This 
is illustrated in Fig. 1.21b, which, when compared to Fig. l.2Ob, indicates that the 
application of (1 SO) eliminates the I?-point stopbands near 3 GHz and 42 GHz, and, 
indeed, at all other I?-points. 

It can be shown that further manipulations of (1.50) result in 

(1.54) 
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Fig. 1.21 Dispersion relation for an NRI-TL medium designed for a closed stopband (LO = 
10 nH, CO = 1 .O pF, cv = 2.94, h = 1.524 mm, w = 0.4 mm, and d = 5 mm) as obtained 
through periodic analysis: (a) Closure of the stopband through the application of (1 S O )  adjoins 
the LH and RH passbands, indicating the restoration of a nonzero group velocity at the point 
of closure. (b) Reduced Brillouin zone depicted for higher frequencies, in which all stopbands 
at r-points have been eliminated, but those at 2-points (lightly shaded) remain. 

which states that the effective wave impedance of the periodically loaded 2-D NRI- 
TL metamaterial designed for a closed stopband is matched to the effective wave 
impedance of an unloaded 2-D transmission-line grid. This provides some insight 
into the design of interfaces between positive-refractive-index (PRI) effective media 
and NRI-TL metamaterials. Interfaces are essential to the demonstration of negative 
refraction and focusing (see the following sections of this chapter), and impedance- 
matched interfaces are crucial to the demonstration of perfect lensing (see Chapter 3). 
Specifically, the above results suggests the use of a 2-D unloaded transmission-line 
host grid (microstrip in the present discussion, with effective material parameters 
( p p ,  2 ~ p )  in the homogeneous limit) as our PRI medium. What is also evident from 
(1.50) and (1.54) is that the impedance-matched condition is frequency insensitive, 
suggesting that such an interface will be matched over all frequencies where the 
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structure remains isotropic and homogeneous (the regime in which (1.46)-( 1.47) 
retain their meaning) [44]. 

1.4.4 Equivalent NRI-TL Unit Cell in the Effective Medium Limit 

In the previous discussion on continuous media, we developed the following expres- 
sions for the propagation constant p and characteristic impedance ZO: 

zo=g 
(1.55) 

(1.56) 

where 2' and Y' are per-unit-length quantities. For a unit cell of dimension d and 
under the assumption of homogeneity, these distributed parameters can be represented 
by a total series impedance per unit cell 2' = Z/d and shunt admittance per unit 
cell Y' = Y / d .  When (1.55) and (1.56) are modified to reflect this and are equated 
to the NRI-TL axial propagation constant (1.44) and Bloch impedance (1.45), the 
following expressions for Z and Y result: 

(1.57) 

This result suggests that the assumption of homogeneity reduces the practical NRI- 
TL unit cell, consisting of a reactively loaded transmission-line host medium, into an 
equivalent circuit consisting of a single series impedance Z and shunt admittance Y .  
The nature of these elements is revealed through the substitution of (1.46) and (1.47) 
into (1.58): 

(1.60) 

where the quantities p p g  and c p / g ,  describing only the host medium, have been 
recognized as the transmission-line distributed inductance L' and capacitance C', 
respectively. It is immediately evident that the series branch of the equivalent unit 
cell consists of an inductor, contributed by L' over the length d of the unit cell, in 
series with a capacitor provided by the loading. Similarly, the shunt branch consists 
of a capacitor, contributed by 2C' over the length d of the unit cell, in parallel with an 
inductor provided by the loading. This equivalent unit cell is depicted in Fig. 1.22, 
and its topology is also evident from the effective material parameter expressions 
(1.46)-(1.47), to which the transmission-line medium contributed positively and the 
loading contributed negatively [27]. In the absence of loading, the material parameters 
degenerate to those of the host medium, modeled in Fig. 1.22 by an inductor and 
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Fig. 1.22 Unit cell for the practical NRI-TL network describing axial propagation in the 
homogeneous limit. The host transmission-line medium, which appears embedded as an 
equivalent series inductor and shunt capacitor, is loaded using a lumped (e.g., chip or printed) 
series capacitor and shunt inductor. After Ref. [27]. Copyright @ 2002 IEEE. 

capacitor arranged in a low-pass topology. When the loading is dominant, the 
material parameters become negative, and the equivalent unit cell is restored to the 
dual topology. Thus, it is seen that the equivalent unit cell of Fig. 1.22, along with 
the dispersion relation from which it was derived, include the complete FW and 
LH responses of the periodically loaded NRI-TL metamaterial [27]. This topology 
also accounts for the magnetic and electric plasma frequencies [equivalently, the 
edges of the first r-point stopband in the NRI-TL dispersion relation, (1.48)-( 1.49)], 
which are, respectively, equal to the series and shunt resonances of the equivalent 
unit cell. This perspective also reveals that the closure of this stopband by way 
of the impedance-matched condition of (1.50), in fact, causes the series and shunt 
branches of Fig. 1.22 to resonate at the same frequency, at which the equivalent circuit 
represents a direct connection from input to output (see also Ref. 45). Under these 
conditions, the NRI-TL medium, yet periodic, appears to be completely unperturbed 
(i.e., homogeneous). 

The topology of Fig. 1.22 can also be literally taken as a model for a one- 
dimensional NRI transmission line. As an example, we suggest here an implemen- 
tation based on a coaxial host medium, depicted in Fig. 1.23a. The outer conductor 
has been made semi-transparent in order to see the internal structure. The series 
capacitors are realized by chopping the central conductor and inserting cylindrical 
parallel plates, which may be filled with a high-permittivity dielectric or glue. The 
shunt inductors are realized using thin metallic pins connecting the central and outer 
conductors. This structure differs from the microstrip implementation in that it 
is completely shielded and the host medium supports a pure TEM mode; further- 
more, although the loading is most certainly lumped, this structure is unlimited by 
component self-resonances and may consequently be realized at higher frequencies. 
Finite-element full-wave simulation results for a representative design verify that such 
a structure supports backward waves and, as shown in Fig. 1.23b, can be designed to 
have a stopband that is, for all practical purposes, closed (compare with Fig. 1.21a). 
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Fig. 1.23 (a) Implementation of one-dimensional NRI-TL structure using coaxial host 
medium. The outer conductor has been made semitransparent in order to see the internal 
structure. (b) Dispersion relation for a representative impedance-matched (closed-stopband) 
coaxial NRI-TL design obtained by finite-element full-wave simulation. 

When thus designed and operated at the frequency of closure, the one-dimensional 
line can be expected to “transmit,” with no net phase incurred, electric fields from 
input to output. 

We now pose the following question: What is the nature of the impedance-matched 
NRI-TL medium at the other (I?-) points of closure in higher bands? Certainly, the 
equivalent unit cell of Fig. 1.22 is not helpful in answering this question, since its 
topology was based on the assumption that the interconnecting transmission lines are 
electrically short. In higher bands, the electrical length of the interconnecting lines, 
0, is large, and the stopband edges described by (1.51) and (1.52) occur when the 
physical length of the interconnecting lines, d, is near an integer multiple of X/2. For 
the design represented in Fig. 1.2 1 for which d = 5 mm, the first two such instances 
occur at frequencies of approximately 21 GHz (d = A/2) and 42 GHz (d = A); while 
we know from Fig. 1.21 that the latter point, indeed, represents a point of stopband 
closure, the former seems to lie inside a 2-point stopband, where propagation is 
forbidden. The discrepancy is resolved when one considers the effect of the loading 
by the transverse transmission-line medium in the 2-D grid. Referring to Fig. 1.16b, 
it is clear that the open circuits formed due to axial propagation at 21 GHz occur at 
a distance of X/4 from the node; thus, these quarter-wavelength lines create short 
circuits to ground at the node site, ensuring no propagation at this frequency. At 
42 GHz, the interconnecting lines are one wavelength long; thus, the half-wavelength 
open-circuited stubs produce an open circuit at the node site, and propagation is 
once again permitted. It is noteworthy that a one-dimensional impedance-matched 
MI-TL line would have permitted propagation under both conditions. 
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Departing slightly from the above condition (i.e., d is either slightly shorter or 
slightly longer than A), we see that the propagation characteristics as measured at each 
node begin to resemble those in the homogeneous limit, returning us to the question 
of how impedance matching will affect the propagation characteristics at higher I?- 
points. In this regime, the interconnecting lines may be represented by a cascade 
of continuous, symmetric L-C unit cells (one-dimensional versions of the topology 
depicted in Fig. l.lO), and the periodic loading may be modeled by a solitary, 
symmetrical dual L-C unit cell (Fig. 1.12) at each node of the two-dimensional 
structure. This is depicted in Fig. 1.24a. The dual L-C unit cells at the nodes of the 
structure appear as a periodic perturbation on the propagation characteristics of the 
transmission lines, which becomes weaker as the lines become electrically longer, 
hence the reduction in width of the higher-order I?-point stopbands observed in Fig. 
1.20. It is, therefore, a reasonable guess that the closure of the stopbands through 
the impedance-matched condition of (1 SO) would eliminate the perturbation entirely, 
locally restoring the propagation characteristics of the NRI-TL structure to those of 
the host transmission lines. This can be verified by noting the interaction of the dual 
L-C unit cell in Fig. 1.24a with its nearest L-C neighbours, which, it should be 
noted, represent one-dimensional transmission lines with per-unit-length inductance 
L’ and and capacitance C’, crossing at the two-dimensional node. This region of 
interest is enclosed by the marquee in Fig. 1.24a. The impedance-matched condition 
(which, the reader will recall, implicates L’ and 2C’ for the two-dimensional case) 
ensures that, at the frequency of closure, L’ (over some appropriately small length) 
resonates with the capacitive loading to form a series short circuit, which permits, 
simultaneously, two of the shunt C’ (over the same small length) to resonate with 
the inductive loading to create a shunt open circuit. What remains (depicted in Fig. 
1.24b) is a node representing a two-dimensional grid of transmission lines, with the 
node capacitance doubled to accommodate the two directions of propagation. Thus, 
the closure of the higher-order I?-point stopbands through the impedance-matched 
condition does, indeed, eliminate the perturbation otherwise contributed by the dual 
L-C loading, so that the propagation characteristics are restored to those of the host 
transmission-line medium alone. 

1.5 MICROWAVE CIRCUIT SIMULATIONS 

To verify negative refraction and focusing using the transmission-line metamaterial 
concept, we must recreate the conditions illustrated in the phase-matching argument 
of Fig. 1.2-namely, an interface between a positive-refractive-index transmission- 
line (PRI-TL) medium and a NRI-TL medium. The periodic PRI-TL medium must 
be excited with the Floquet-Bloch equivalent of a plane wave to observe negative 
refraction, and of a cylindrical wave to see focusing. The phase progression must 
then be monitored in both media. 

The distributed network approach lends itself to examination using microwave 
circuit simulations. These were performed using Agilent’s Advanced Design System 
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Fig. 1.24 (a) Node of NRI-TL metamaterial at frequencies at which the interconnecting 
transmission lines are electrically long, employing the continuous L-c and dual L-C unit 
cells of Figs. 1.10 and 1.12. (b) Reduction of the NRI-TL node in (a) to that of a two- 
dimensional transmission-line grid under impedance-matched conditions. 

(ADS) microwave circuit simulator [46], which represents the unit cell as a network 
of idealized cascaded transmission-line models. The design of a PRI--1-TL 
interface begins with the selection of a generic host transmission-line medium (char- 
acterized by a particular phase shift and characteristic impedance at a selected design 
frequency), which is periodically loaded using inductors and capacitors. While it is 
clear that the NRI-TL array must be designed according to the proposed dual L-C 
topology to realize a particular negative refractive index at the design frequency, this 
generally requires that the PRI-TL medium be loaded as well, but in a conventional 
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Fig. 1.25 Schematic representation of PRI-TUNRI-TL interface using 2-D L-c loaded unit 
cells. 

low-pass L-C topology. The final design therefore consists of two large, periodic 
arrays of 2-D L-C loaded unit cells, a portion of which is schematically represented 
in Fig. 1.25. We now present negative refraction and focusing simulation results, 
which originally appeared in Refs. 26 and 27. 

1.5.1 Negative Refraction 

A suitable PRI-TLINRI-TL interface was designed for a frequency of 2 GHz using 
42 x 42-cell PRI-TL and NRI-TL metamaterial arrays with effective per-unit-cell 
phase shifts of PpRI-TLd = +0.25 and PNRI-TLd = -0.5, respectively, yielding 
a relative refractive index, n R E L ,  of -2. The unit cells comprising the arrays 
are 5 mm square, the characteristic impedances of both media are designed to be 
equal to 377 R (free space) to prevent reflections at the interface, and the arrays are 
terminated at their boundaries using resistors matched to 377 R. The corresponding 
equivalent, absolute index of refraction of the NRI-TL metamaterial could therefore 
be determined to be -2.4. To maintain n R E L  = -2, the loading elements of the 
PRI-TL unit cell were chosen so that the absolute index of refraction of the PRI-TL 
medium was +1.2. 

The plane-wave excitation kl shown in Fig. 1.2 was synthesized by placing a 
series of sequentially phased voltage sources along the leftmost boundary of the PRI- 
TL array. Their progressive phase specifies the tangential wavevector components 
klt = kzt ,  hence the effective propagation constants in both media, and the conditions 
for refraction across the interface. One such excitation is shown in Fig. 1.26, for an 
incident angle of epRI=+2go. Since the interface was designed for n R E L  = -2, 
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Fig. 1.26 Plane wave illuminating a PRI-TUNRI-TL interface at 2 GHz (relative refractive 
index -2, finite air-filled transmission lines with d = 5 mm included in each unit cell) at 
an incident angle of $29”. Refraction observed at -14’. The axes are labeled according 
to cell number, and the right-hand-side vertical scale designates radians. After Refs. [26,27]. 
Copyright @ 2002 IEEE. 

Veselago’s “negative Snell’s Law” predicts refraction at -14’. Indeed, the steepest 
phase descent in the NRI-TL metamaterial is observed at ONRI-TL = -14’ from the 
normal, verifying Snell’s Law for the given design parameters. The curvature of the 
wavefronts in the lower portion of the PRI-TL medium and the consequent rippling 
effect in the lower portion of the NRI-TL medium are due to the fact that voltage 
sources were not placed on the lower boundary of the PRI-TL region to assert the 
phase of the incident plane wave at these points (see Ref. 47 for improved results). 
Furthermore, small reflections are apparent from the use of 377 52 terminating resistors 
throughout; this is strictly valid only at normal incidence, and must, in general, be 
modified by a factor related to the angle of incidencehefraction. Nevertheless, 
this circuit arrangement unambiguously demonstrates the phenomenon of negative 
refraction in the NRI-TL metamaterial and reaffirms the idea of a “negative Snell’s 
Law,” as predicted by Veselago. 

1.5.2 Focusing 

The source depicted in the focusing arrangement of Fig. 1.3 represents a point source 
emanating spherical waves in a three-dimensional medium or an infinite line source 
emanating cylindrical waves in a two-dimensional medium. Sources in the planar 
media under study model the latter case, and they may be synthesized by applying a 
voltage to ground at a single node in the PRI-TL region. Thereafter, it remains only 
to examine the magnitude and phase of the node voltages to ground in the NRI-TL 
region to observe the focusing effect. The reversal of power flow predicted by the 
negative Sneli’s Law suggests that focusing in the MI-TL medium should manifest 
itself as a concentration of the node voltages near the expected focal plane. However, 
to justify these expectations, it is necessary to examine, with equal attention, the 
evolution of a cylindrical wave excited in a PRI-TL medium (which we shall denote 
PRI-TL1) as it enters a second PRI-TL medium (F‘RI-TL2). In the this case, n R E L  is 
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Fig. 1.27 Point source illuminating a PRI-TUPRI-TL interface at 2 GHz (TZREL = +2,  
finite air-filled transmission-lines with d = 5 mm included in each unit cell). No focusing is 
observed in either phase or magnitude. The axis labels refer to cell number. After Refs. [26,27]. 
Copyright @ 2002 IEEE. 

positive, and Snell’s Law predicts a continued divergence from PRI-TL1 to PRI-TL2. 
To verify this notion, a 42x21-cell PRI-TL array was interfaced with a 42x63-cell 
PRI-TL array designed such that TZREL = f2. The source in PRI-TL1 was placed 
11 cells from the interface and the voltage magnitudes and phases at the nodes in 
both media were observed. Figure 1.27 presents these results, and confirms that the 
cylindrical wave excitation diverges into PRI-TL2. As was observed in the negative 
refraction results of Fig. 1.26, small reflections are apparent at the upper and lower 
edges; this result, although unwanted, is somewhat comforting, since it verifies that 
power is continually carried outward in all directions from the source, even after 
entering the second medium. 

We now consider focusing across a PRI-TLNRI-TL interface with n R E L  = -2 .  
The sizes of the two arrays and the location of the source are left unchanged. As 
shown in Fig. 1.28, the corresponding magnitude and phase results show increased 
voltage amplitudes in the NRI-TL region along the source axis, as well as a dramatic 
reversal of the concavity of the wave fronts at both the PRI-TL/NRI-TL boundary 
and the expected focal point. It is important to note that the focal region resembles 
an elongated “beam” rather than a “spot,” and this can be directly attributed to the 
choice of a relative refractive index of -2 .  In this case, as was previously noted, 
geometric optics predicts spherical aberration. However, as a reference, one can 
make use of the fact that, in the paraxial limit, the focus in the NRI-TL metamaterial 
should appear at twice the distance of the source from the interface, or near cell 43 of 
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Fig. 1.28 Point source illuminating a PRI-TUNRI-TL interface at 2 GHz (TZREL = -2, 
finite air-filled transmission-lines with d = 5 mm included in each unit cell). Focusing is 
observed in both phase and magnitude. The axis labels refer to cell number. After Refs. [26,27]. 
Copyright @ 2002 IEEE. 

the composite array. Indeed, the phase fronts undergo a strong change in concavity 
in this region, indicating the convergence of the component rays of the cylindrical 
wave. Furthermore, minimal reflections are observed near the upper and lower edges 
of the array, indicating that the direction of power flow has truly been reversed. For a 
detailed discussion on these designs and their associated results, including full-wave 
simulations of focusing, we refer the reader to Refs. 26 and 27. 

1.6 EXPERIMENTAL VERIFICATION OF FOCUSING 

The synthesis of the microstrip-based NRI-TL metamaterial prototypes to be de- 
scribed in this section employed standard printed circuit board (PCB) fabrication 
techniques comprising the following essential steps: A mask is generated using 
a CAD software package (e.g., Agilent’s ADS microwave circuit simulator); pho- 
toresist is applied to the sample through spinning or lamination and hardened by 
exposure to UV light through the mask; the excess photoresist is removed, and the 
sample is etched in acid to reveal the microstrip host medium. The loading elements 
are realized using chip inductors and capacitors, which are soldered manually to the 
PCB. Another purely printed implementation presented and investigated in Refs. 39 
and 40 employs vias and printed gaps, as in Fig. 1.19b. The resulting NRI-TL 
metamaterial is then interfaced with a PRI-TL medium, which can be synthesized 
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using a parallel-plate waveguide or, alternatively, an unloaded microstrip host grid 
resembling a parallel-plate waveguide, to ensure good matching between the two 
media. 

The first left-handed medium to successfully demonstrate focusing was a planar, 
microstrip-based NRI-TL lens comprising 11 x 6  cells measuring 5 mm on each side, 
and printed on a 1.524 mm (60 mil) Rexolite substrate [27]. An adjacent parallel- 
plate waveguide was used as a PRI-TL region. We refer the interested reader to 
the above reference for a full characterization of this proof-of-concept prototype, 
which, in addition to experimentally verifying the focusing property predicted by 
Veselago [ 11 and the wideband, low-loss properties of the NRI-TL metamaterial, 
also helped dispel some fundamental doubts raised over the validity of the negative 
index phenomenon [48-5 11. The following discussion, however, shall be restricted 
to a second, larger prototype employing an unloaded microstrip grid as the PRI-TL 
instead of a parallel-plate waveguide [36]. 

The device under consideration consists of a PRI-TL region measuring 21 x21 
cells (105 mmx 105 mm) and an adjacent NRI-TL region measuring 21 x40 cells 
(105 mmx 200 mm), as shown in Fig. 1.29. The unloaded microstrip grid constituting 
the PRI-TL medium and the NRI-TL host medium has a period d = 5 mm and 
comprises w = 0.4-mm-wide microstrip lines etched onto a Rogers RT Duroid 6002 
ceramic ( E ~  = 2.94) substrate of height h = 1.524 mm (60 mil). In the NRI-TL 
region, 5.6-nH chip shunt inductors are embedded into rectangular holes punched 
into the substrate at each cell site, and chip capacitors of 1 pF are surface-mounted 
between gaps separating the unit cells. To maintain uniformity throughout, 2-pF 
capacitors are placed at the array edges, followed by matching resistors. The inset 
of Fig. 1.29 depicts the NRI-TL unit cell, and the corresponding PRI-TL unit cell 
consists of the microstrip grid alone. The PRI-TL medium was excited in the centre 
using a shorted SMA (coaxial) connector placed beneath the grid surface (indicated 
by the arrow in Fig. 1.29), and transmission S-parameter readings were taken at 
each unit cell using an HP8753D vector network analyzer connected to a near-field 
detecting probe (also depicted in Fig. 1.29) that was scanned over the grid surfaces 
using a computer-controlled stepper motor. The detecting probe (essentially a short 
vertical dipole) was designed to measure the vertical electric fields through capacitive 
coupling at a small distance above the device plane. The measured fields, in actuality, 
are fringing fields; nevertheless, these are proportional to the fields within the NRI-TL 
structure and represent their phase and relative magnitudes faithfully. 

The microstrip parameters of this design yield E e f f  = 2.1119, g = 0.544186, 
2 ~ p  = 2 ~ , f f ~ o ,  and p p  = p o ,  where we remind the reader that c e f f  represents 
the effective permittivity surrounding a single microstrip line. These values, along 
with the loading values, place the first Z-point Bragg frequency at W B  = 27rx 
960 MHZ and place the first r-point stopband cutoffs at W C , ~  = 27rx2.72 GHz and 
W C , ~  = 2 ~ ~ 3 . 6 3  GHz. The dispersion characteristics of this NRI-TL design, as 
determined through a periodic analysis of the NRI-TL unit cell, were first presented 
in Fig. 1.20. In Fig. 1.30, the LH passband of the TL theory is presented (dashed 
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Fig. 1.29 Experimental prototype NRI-TL lens consisting of a 21x40-cell 
(105 mmx200 mm) NRI-TL metamaterial interfaced with a 21 x21-cell(105 mmx 105 mm) 
PRI-TL region. The inset magnifies a single NRI-TL unit cell, consisting of a microstrip grid 
loaded with surface-mounted chip capacitors and a chip inductor embedded into the substrate 
at the central node. The near-field detecting probe is also depicted, and the arrow indicates 
the location of the vertical excitation probe beneath the PRI-TL surface. After Ref. [36]. 
Copyright @ 2003 Optical Society of America, Inc. 

curve) and compared with experimental dispersion data (solid curve) extracted from 
the average observed phase shift per unit cell (pd) for the region pd = { -T, 0 )  and is 
reflected in the pd = 0 axis for the space-reversed solution. At each frequency, this 
value was obtained from the line-of-best-fit corresponding to the slope of the phase 
advance profile along the central row (row 11) of the NRI-TL device. Also depicted 
in Fig. 1.30 is the theoretical dispersion of the PRI-TL medium using the parameters 
( p p ,  2 ~ p ) ,  and the intersection of the PRI-TL and theoretical NRI-TL dispersion 
curves indicates wo = 27rx2.18 GHz, the frequency at which the relative refractive 
index between the NRI-TL and PRI-TL media, nREL,  is equal to -1. The reader will 
recall that this is the special case in which Veselago envisioned that propagating waves 
emanating from a source would be perfectly focused without spherical aberration. 

The experimentally obtained dispersion relation is largely in excellent agreement 
with that predicted by periodic analysis of the corresponding infinite structure and 
exhibits a left-handed characteristic extending from the Bragg frequency at 960 MHz 
to approximately 2.5 GHz, corresponding to a bandwidth of over 85%. As previously 
noted, the extremely wideband nature of NRI-TL metamaterials is a direct conse- 
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Fig. 1.30 Experimentally obtained NRI-TL dispersion relation (solid curve) indicating the 
Bragg frequency at 960 MHz and a well-defined NRI region extending to approximately 
2.5 GHz (data obtained for region pd = -7r to ,6d = 0 and reflected in the pd = 0 axis 
for the space-reversed solution). Also depicted are the theoretical NRI-TL (dashed curve) and 
PRI-TL (dotted curve) dispersion relations. The intersection of the PRI-TL dispersion with 
the experimental NRI-TL dispersion at W ;  differs slightly from the predicted intersection at 
WO.  After Ref. [36]. Copyright @ 2003 Optical Society of America, Inc. 

quence of the fact that these media do not rely explicitly on resonances to synthesize 
the negative index property [22,31]. The fluctuations at low frequencies result from 
the fact that measurements taken at any finite interval (d = 5 mm in the present case) 
cannot adequately sample the rapidly varying phase in the approach towards W E ,  

where the guided waves begin to experience the coarseness of the transmission-line 
grid. This phenomenon, which becomes evident near d = X/4 [36], may therefore be 
used to establish a lower frequency limit on the condition of homogeneity in NRI-TL 
metamaterials required to validate the concept of a negative refractive index. 

The effective refractive index can be computed from the dispersion data as 
n = &/wd, where c is the speed of light in vacuum and 4 is the measured av- 
erage phase shift per unit cell pd. In the most well defined guided-wave region 
from 1.17 GHz to 2.03 GHz, the absolute refractive index lies between -14.76 and 
-2.63. Since the PRI-TL grid is expected to possess an absolute refractive index 
of = +2.05, the relative refractive index between the two media, n R E L ,  

varies from approximately -7.20 to -1.28. The condition n R E L  = -1, which was 
predicted to occur near wo = 2 ~ ~ 2 . 1 8  GHz, and indicated in Fig. 1.30 by the inter- 
section between the theoretical NRI-TL and PRI-TL dispersion curves, is achieved 
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Fig. 1.31 Experimental data showing field magnitude and phase distributions in PRI-TL and 
NRI-TL regions at 2.09 GHz (PRI-TL: cells -10 to 10, NRI-TL cells 11 to 50). The -3-dB 
contour indicates a maximum beam width of 32 mm, corresponding to 0.46 wavelengths in 
the NRI-TL metamaterial, which is suggestive of subwavelength focusing. After Ref. [36]. 
Copyright @ 2003 Optical Society of America, Inc. 

near wb = 27r x 2.09 GHz, approximately where the experimental NRI-TL dispersion 
curve intersects the theoretical PRI-TL dispersion curve. This deviation is an artifact 
of the contradirectional coupling between the backward-wave mode and a surface 
wave mode, weakly bound to the MI-TL/air boundary, whose dispersion follows the 
light line (not depicted). This phenomenon is discussed in greater depth in Refs. 39 
and 52. 

The magnitude and phase of the measured vertical electric fields over the structure 
at 2.09 GHz are depicted in Fig. 1.31. Cells - 10 to 10 on the horizontal axis indicate 
the extent of the PRI-TL medium, and cells 11 to 50 indicate that of the NRI-TL 
metamaterial. Once again, the increased transmission at the focal plane and conver- 
gent progression of the phase fronts are indicative of focusing. The experimental 
phase distribution reveals a guide wavelength at 2.09 GHz of XNRI -TL=~O mm, 
suggesting, from the measured field magnitudes, a maximum -3-dB beam width of 
32 mm, corresponding to O . ~ ~ X N R I - T L .  This is suggestive of subwavelength focus- 
ing, consistent with the proposal of Pendry [53], although the PRI-TL and NRI-TL 
regions were not designed to be impedance-matched at this frequency. The behav- 
iour of the field distribution as the frequency is varied also exhibits characteristics 
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typical of NRI-TL focusing, and animations showing the evolution of the measured 
field magnitude and phase as frequency is varied can be found online at the internet 
address listed in Ref. 36. For the present purpose, a simple description of this be- 
haviour should suffice. Beginning at WB,  where it is clear that the effective NRI-TL 
wavelength is small, the transmission from the PRI-TL region into the NRI-TL region 
steadily increases, and the first evidence of a focused beam becomes apparent near 
1.3 GHz. At this frequency, the PRI-TL and NRI-TL regions exhibit distinct phase 
lag and phase advance characteristics, respectively, and as the frequency is increased, 
the structure enters the region of homogeneity and the phase distribution indicates 
a steadily increasing guide wavelength. Near 1.8 GHz the transmission at the focal 
plane increases, and at approximately 2 GHz, where, according to the dispersion 
data, it is expected that the device will encounter the condition ~ R E L  = -1, the 
focus appears. As the frequency is increased (accompanied by a diminishing relative 
refractive index) the focal spot recedes slowly to the interface. Here, the experimen- 
tally obtained field distributions also indicate what seem to be surface-wave effects at 
the PRI-TL/NRI-TL boundary that appear near, and persist well beyond, wb. These 
phenomena (which are evident at the PRI-TLNRI-TL interface in Fig. 1.31) are 
reminiscent of the surface modes described in [ 12,541, which vary exponentially 
away from the PRI-TL/NRI-TL interface and are known to participate in the focus- 
ing process. Beyond the stopband edge near 2.5 GHz, the phase exhibits a near-zero 
progression, and transmission into the NRI-TL region is weak. 

1.7 CONCLUSION 

In a seminal 1967 work, Veselago proposed that materials with simultaneously neg- 
ative permittivity and permeability are physically permissible and possess a negative 
index of refraction. His conceptual exploration of this phenomenon revealed that, 
through negative refraction, planar slabs of such media would cause light or elec- 
tromagnetic radiation to focus in on itself. Over thirty-five years later, following a 
short but intense flurry of research dedicated to the study of these theories, Veselago’s 
principal ideas have been verified experimentally using electromagnetic artificial di- 
electrics. These structures have been popularly referred to as metumateriuls, a term 
that emphasizes their unique transcendent properties. 

It is well known that dielectric properties like permittivity and permeability can 
be modeled using distributed L-C networks. For a conventional dielectric, the 
per-unit-length capacitance and inductance can be directly related to the free-space 
permittivity and permeability, respectively, implying the use of a low-pass topology. 
In this chapter, it was shown that reversing the positions of the inductor and capac- 
itor is equivalent to negating the effective material parameters, yielding a high-pass 
configuration, the dual of the conventional topology. The resulting structures were 
referred to as negative-refractive-index transmission-line (NRI-TL) metamaterials. 
Under certain conditions, these structures exhibit simultaneously negative material 
parameters, and their dispersion characteristics indicate the support of backward 
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waves. A practical, periodic, two-dimensional implementation using a microstrip 
host medium, reactively loaded in a dual configuration using lumped or printed ele- 
ments, was then presented. The essential features of the practical NRI-TL dispersion 
relation were obtained using the method of periodic analysis of microwave networks. 
These were simplified to identify a regime in which the NRI-TL periodic structure 
may be perceived as a homogeneous effective medium and reveal expressions for 
its effective material parameters. Through the appropriate selection of the proper- 
ties of the host medium and loading, these characteristics could be designed and 
controlled, and interesting new phenomena were noted, such as the closure of the 
NRI-TL stopband at ,8 = 0. These principles were then applied to the design of 
planar interfaces between positive-refractive-index transmission-line (PRI-TL) me- 
dia and NRI-TL metamaterials, which were used in microwave circuit simulations 
to verify negative refraction and focusing. The simulated structures were then fab- 
ricated, and experimental results demonstrated focusing of an incident cylindrical 
wave and dispersion characteristics depicting an extremely broadband region over 
which the refractive index remains negative, in excellent correspondence with theory 
and simulations; furthermore, these results were suggestive of the subwavelength 
focusing phenomenon predicted by Pendry. 

The success of NRI-TL metamaterials establishes that the conceptualization and 
design of LHM may rely not entirely on physical ideas but also on more familiar 
practical concepts like the design of artificial dielectrics and the backward wave. The 
NRI-TL concept also offers some advantages, including the fact that these structures 
need not be lossy and do not rely explicitly on resonances to synthesize the negative 
material parameters and, thus, offer dramatically increased operating bandwidths. 
Moreover, their unit cells are connected through a transmission-line network and they 
may therefore be equipped with lumped printed or discrete elements, which permit 
them to be compact over a broad range of frequencies. The flexibility thus gained 
enables NRI-TL metamaterials to be scalable from the MHz to the tens of GHz range. 
In addition, by employing tunable loading elements, the effective material properties 
can be dynamically varied and optimized for specific applications. Furthermore, in 
the planar form described in this chapter, these metamaterials inherently support 2-D 
wave propagation and are thus well-suited to applications in RF/microwave devices 
and circuits. Most importantly, as effective media, their effective material parameters 
are simultaneously and inherently negative. 

The ability to bend electromagnetic waves at negative angles has important and nu- 
merous implications and great potential for application. One can envision devices that 
employ the phase-advance characteristic of NRI-TL metamaterials in phase compen- 
sation, coupler, and antenna applications; many such novel microwave devices have 
been realized and are described in Chapter 2. Of course, the most intriguing property 
of LHM, hence NRI-TL metamaterials, is the subwavelength resolution property 
suggested by Pendry; based on these notions and preliminary experimental data cor- 
roborating Pendry’s theories, lenses may be designed to extend the near field and 
resolve features significantly below the conventional diffraction limit. The first such 
lens to experimentally demonstrate these ideas is a NRI-TL lens, and it is described 
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in Chapter 3. This has obvious implications to photolithography and electromag- 
netic probing applications-for example, biomedical imaging or microscopy-which 
should benefit greatly as the technology develops in the appropriate directions. 
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2.1 INTRODUCTION 

This chapter describes a number of microwave devices and antenna applications of 
the transmission-line metamaterials examined in Chapter 1. Such RFMicrowave 
devices include lenses that can overcome the diffraction limit, small and broadband 
phase-shifting lines, backward leaky-wave antennas, small and low-profile anten- 
nas, antenna feed networks and baluns, novel power-combining architectures, and 
high-directivity coupled-line couplers. As explained in Chapter 1, the term “metama- 
terials” is meant here to refer to artificial media with properties that transcend those 
of natural media (“meta” means “beyond” in Greek). Specifically in this chapter we 
consider periodic media for which the periodicity is much smaller than the wave- 
length of the incident electromagnetic wave. Therefore, effective material parameters 
such as a permittivity, a permeability, and a refractive index can be defined. This 
definition establishes a direct relationship with artificial dielectrics [ 11. In this chap- 
ter, we will limit our discussion to isotropic metamaterials in which the permittivity 
and permeability are simultaneously negative, hence leading to a negative refractive 
index [2]. Such “left-handed” or “negative-refractive-index” (NRI) media were first 
implemented using periodic arrays of thin wires to synthesize negative permittivity 
and split-ring resonators to synthesize negative permeability [3,4]. This led to the 
first experimental demonstration of negative refraction of cylindrical waves at mi- 
crowave frequencies (X band). A different approach for implementing NRI media has 
been proposed in Refs. 5 and 6 by loading a planar network of printed transmission 
lines (TL) with series capacitors and shunt inductors in a dual (high-pass) config- 
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uration, when compared to a standard transmission line. A two-dimensional (2-D) 
NRI medium was interfaced with a commensurate conventional dielectric, arguably 
leading to the first experimental demonstration of focusing from a left-handed meta- 
material [6,7]. This transmission-line methodology for making planar NRI media 
results in wide operating bandwidths over which the refractive index remains nega- 
tive; for example, Ref. 7 reports focusing due to negative refraction over an octave 
bandwidth. Moreover, a three-region planar lens arrangement was used to observe 
focusing beyond the diffraction limit [8,9], as was predicted by 9. B. Pendry [ 101. A 
similar TL approach was followed by T. Itoh, C. Caloz, and co-workers leading to 
interesting and useful microwave circuits [ 11,121. This chapter is limited to isotropic 
NRI metamaterials synthesized using loaded transmission lines. However, intriguing 
and useful planar anisotropic transmission-line metamaterials have been developed 
by K. G. Balmain et al. [ 13,141 and are described in Chapter 6. 

2.2 FUNDAMENTAL PROPERTIES 

Veselago was the first to examine in the open literature the feasibility of media charac- 
terized by simultaneously negative permittivity and permeability [2]. He concluded 
that such media are allowed by Maxwell’s equations and that plane waves propagating 
in them would have their electric field, E, magnetic field, H, and propagation con- 
stant, k, forming a left-handed triplet. Therefore, he coined the term “left-handed” 
to describe these hypothetical media. Also, Veselago realized that one has to choose 
the negative branch of the square root to properly define the corresponding refractive 
index, that is, n = --&i . Thus, such left-handed media support negative re- 
fraction of electromagnetic waves, something that was demonstrated experimentally 
more than three decades later by Shelby, Smith, and Schultz [3]. Moreover, due to 
the fact that E, H, and k form a left-handed triplet whereas the E and H vectors 
and the Poynting vector S form a right-handed triplet, Veselago concluded that in 
left-handed media the propagation constant k is antiparallel to the Poynting vector 
S. In retrospect, what Veselago was describing were backward waves. Certainly, 
one-dimensional backward-wave lines are not new to the microwave and antenna 
communities, and there is an interesting connection to familiar concepts and struc- 
tures [15,16]. However, what is remarkable and surprising in Veselago’s work is 
his realization that isotropic and homogeneous media supporting backward waves 
should be characterized by a negative refractive index. Consequently, when such 
two- or three-dimensional media are interfaced with conventional dielectrics, Snell’s 
Law is reversed, leading to the negative refraction of an incident electromagnetic 
plane wave. One way to understand negative refraction is through the notion of phase 
matching as is explained in Fig. 1.2. Another way to show this is by invoking the 
radiation condition, as discussed in the next section. 

An issue worth clarifying here is the terminology “negative group velocity,” which 
was used by Veselago in his original paper to characterize left-handed media [2]. 
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As was previously mentioned, what Veselago had in mind were backward waves, 
in which the phase velocity is antiparallel to the group velocity [and the phase 
advances under an exp(jwt) time-harmonic variation], although he never mentioned 
backward waves explicitly in Ref. 2. Hence, if we define the phase velocity to be 
negative, then in left-handed media the group velocity should be positive to describe 
power flowing away from the source. In this context, negative group velocity would 
indicate anomalous dispersion which prevails in conventional dielectric media close 
to absorption lines. Such left-handed media exhibiting negative phase velocity and 
anomalous negative group velocity have recently been realized by inserting lossy 
resonators in transmission-line metamaterials [ 171. A detailed description of these 
negative-group-velocity MI loaded TL structures can be found in Chapter 10. 

Harnessing the phenomenon of negative refraction, entirely new refraction-based 
devices can be envisioned such as a flat lens without an optical axis, also proposed by 
Veselago, as shown in Fig. 2.1. Of course this is a peculiar kind of lens since it does not 
bring to focus incident plane waves. However, lenses that do not focus plane waves 
are not unusual; one example is the hyperhemispherical oil-immersion lens used in 
optical microscopy. More interesting lens applications are described in Chapter 5. 
Other intriguing possibilities predicted by Veselago include the reversal of (5erenkov 
radiation [ 181 and of the Doppler shift [ 191. Each of these new phenomena can be 
utilized to make useful new devices. For example, the reversal of cerenkov radiation 
inspired the development of backward-wave antennas radiating their fundamental 
spatial harmonic [ 18,201, whereas the reversal of the Doppler shift can be exploited 
for making wideband millimeter-wave sources [ 191. 

2.3 EFFECTIVE MEDIUM THEORY 

A practical periodic 2-D transmission-line based NRI metamaterial can be realized 
using an array of unit cells, each as depicted in Fig. 2.2. A host transmission-line 
medium (e.g., microstrip) is periodically loaded using discrete series capacitors and 
shunt inductors [5-71. From the onset, the key observation is that there is a corre- 
spondence between negative permittivity and a shunt inductor (L), as well as between 
negative permeability and a series capacitor (C). This allows one to synthesize arti- 
ficial media (metamaterials) with a negative permittivity and a negative permeability 
and hence a negative refractive index [6,7]. When the unit cell dimension d is much 
smaller than a guided wavelength, the array can be regarded as a homogeneous ef- 
fective medium and as such can be described by effective constitutive parameters 
p ~ ( w )  and E N ( W ) ,  which are determined through a rigorous periodic analysis to be 
of the form [7] (assuming 2-D TM, wave propagation in Fig. 2.2) 

Here EP and pup are positive constants which are proportional to the per-unit-length 
capacitance and inductance of the host transmission line medium, respectively. This 
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Fig. 2.1 Veselago’s lens. As shown, negative refraction is utilized in order to focus a point to 
a point. This leads to a peculiar lens with flat surfaces and no optical axis. The rays converge 
to the same point when n = -1, thus leading to aberration-free focusing and no reflections 
from the lens surfaces. The thickness of the lens is half the distance from the source to the 
image. The arrows represent 5 vectors; PRI, positive refractive index; NRI, negative refractive 
index. 

Fig. 2.2 Unit cell for the 2-D transmission-line-based NRI metamaterial. A host transmission 
line is loaded periodically with series capacitors and shunt inductors in a dual (high-pass) 
configuration. After Ref. [7]. Copyright @ 2003 Optical Society of America, Inc. 

particular arrangement of the inclusions LO and CO provides the desired negative 
material contribution that diminishes with frequency w. In fact, the underlying 
dependence on 1/w2 is important for satisfying the Poynting Theorem (conservation 
of energy) in such a dispersive medium [ 1,2]. On the other hand, the geometrical 
factor g relates the characteristic impedance of the transmission-line network to the 
wave impedance of the effective medium. Moreover, the factor of 2 in front of 6 p  is 
required in order to properly account for the loading from the z-directed (2-directed) 
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TLs when propagating along the z-axis (z-axis); note that for the l-D case this 
factor becomes 1. When the parameters are simultaneously negative, these structures 
exhibit a negative effective refractive index and have experimentally demonstrated 
the predicted associated phenomena, including negative refraction, focusing, and 
focusing with subwavelength resolution [5-91. A physical interpretation of the 
negative material parameters of (2.1) in terms of elementary electric and magnetic 
dipoles is provided in Chapter 3. 

Once it is established that a negative permittivity and permeability characterizes 
these media, then the refractive index is given by n = &,/m where one has to 
choose the correct branch of the square root. For this purpose, consider low-loss 
propagation in which the permeability is slightly complex such that p~ = & - jp: 
with ph < 0 and p; > 0 (passive medium). Under this limit of low-loss propagation, 
the refractive index can be approximated by 

Moreover, a plane wave propagating along the positive z-axis exp( -jkonz) should 
decay with distance. Hence, the imaginary part of the refractive index n = n’ - jn” 
should be positive; that is, one has to choose the negative branch of the square root 
in (2.2) to satisfy the radiation condition at infinity. 

2.4 A SUPER-RESOLVING NEGATIVE-REFRACTIVE-INDEX 
TRANSMISSION-LINE LENS 

Classical electrodynamics imposes a resolution limit when imaging using conven- 
tional lenses. This fundamental limit, called the “diffraction limit,” in its ultimate 
form, is attributed to the finite wavelength of electromagnetic waves. The electro- 
magnetic field emanating from a luminous object, lying over the z-y plane, consists 
of a continuum of plane waves exp( - j k z x  - jk,y) exp( - j k z z ) .  Each plane wave 
has a characteristic amplitude and propagates at an angle with the optical z-axis 
given by the direction cosines (k , /ko ,  k , / k ~ ) ,  where k ~ ,  is the propagation constant 
in free space. The plane waves with real-valued direction cosines (k: + k; < ki) 
propagate without attenuation, while the evanescent plane waves with imaginary 
direction cosines (k: + ki > k:) attenuate exponentially along the optical z-axis. 
A conventional lens focuses only the propagating waves, resulting in an imperfect 
image of the object, even if the lens diameter were infinite. The finer details of the 
object, carried by the evanescent waves, are lost due to the strong attenuation these 

waves experience (exp( -z $-.u) kp + k2 - k2) when traveling from the object to the 
image through the lens. The Fourier transform uncertainty relation kt-m,,,Ap N 2n, 
relating the maximum transverse wavenumber ktmas to the smallest transverse spa- 
tial detail Ap. implies that spatial details smaller than a wavelength are eliminated 
from the image, 

(2.3) Ap N 2n/ko = X 
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This loss of resolution, which is valid even if the lens diameter were infinite, con- 
stitutes the origin of the diffraction limit in its ultimate form. For the typical case 
of imaging a point source, the diffraction limit manifests itself as an image smeared 
over an area approximately one wavelength in diameter, in compliance with equation 
(2.3). 

In 2000, John Pendry extended the analysis of Veselago’s lens (see Fig. 2.1) 
to include evanescent waves and observed that such lenses could overcome the 
diffraction limit [ 101. Pendry suggested that Veselago’s lens would allow “perfect 
imaging” if it were completely lossless and its refractive index n were exactly equal 
to -1 relative to the surrounding medium. The left-handed lens achieves imaging 
with super-resolution by focusing propagating waves as would a conventional lens 
(see Fig. 2. l), but in addition it supports growing evanescent waves which restore 
the decaying evanescent waves emanating from the source. This restoration of 
evanescent waves at the image plane extends the maximum accessible wavenumbers 
kt-mas > ICo and allows imaging with super-resolution. The physical mechanism 
behind the growth of evanescent waves is quite interesting: Within the NRI (left- 
handed) slab, multiple reflections result in both growing and attenuating evanescent 
waves; however, n = -1 corresponds to a resonant phenomenon in which the 
attenuating solution is canceled out, thus leaving only the growing wave present. 
This is achieved because when n = -1 the second NRWRI interface in Fig. 2.1 
corresponds to an infinite reflection coefficient whereas the first PRI/NRI interface 
is matched. A quantitative description of the latter point-of-view is outlined in the 
Appendix at the end of this chapter. In a sense, one may think of Veselago’s lens as 
an inverse system that exactly restores propagation in free space (at least the entire 
region behind the source). 

A picture of a planar version of Veselago’s lens that was constructed at the Uni- 
versity of Toronto is shown in Fig. 2.3 [9]. The NRI lens is a slab consisting of a 
5 x 19 grid of printed microstrip strips, loaded with series capacitors (CO) and shunt 
inductors (LO). This NRI slab is sandwiched between two unloaded printed grids 
that act as homogeneous media with a positive index of refraction. The first unloaded 
grid is excited with a monopole (point source) attached to the leftmost grid, which is 
imaged by the NRI lens to the second unloaded grid. The vertical electric field over 
the entire structure is measured using a detecting probe (for details, see Ref. 7). 

The measured half-power beamwidth of the point-source image at 1.057 GHz is 
0.21 effective wavelengths, which is appreciably narrower than that of the diffraction- 
limited image corresponding to 0.36 wavelengths (see Fig. 2.4a). The enhancement 
of evanescent waves for the specific structure under consideration was demonstrated 
in Ref. 22. Figure 2.4b shows the measured vertical electric field above the central 
row of the lens, which verifies the exponential growth of the fields inside the NRI 
medium predicted in Ref. 9. Since there is some controversy regarding losses in NRI 
metamaterials, it could be useful to report that the loss tangent of the NRI medium 
at 1.05 GHz is estimated to be tan 6 = 0.062, which attests to the low-loss nature 
of the NRI transmission-line lens. However, even such a slight loss is sufficient to 
deteriorate the growth of evanescent waves to kt-mas = 3ko [9]. This implies that a 
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Fig. 23 Photograph of a planar super-resolving Veselago lens around 1 GHz. Reprinted 
figure with permission from Ref. [9]. Copyright @ 2004 by the American Physical Society. 

resolution equal to X/6 is achieved; in comparison, a conventional lens would have 
produced a diffraction-limited image with a resolution of X/2 at best (peak-to-null 
beamwidth). The periodic Green’s function formulation described in Ref. 21 can 
be extended to quantitatively characterize the resolution limitations of these NRI-TL 
lenses due to material and mismatch losses. The full details are described in Chapter 
3, where it is shown that the maximum transverse wavenumber in the structure of 
Fig. 2.3 can be approximated by 

where Qc is the quality factor of the loading series capacitors and koh is the electrical 
length of the NRI slab in radians. This result is compatible with the analysis in Ref. 23, 
which is, however, carried out in terms of the effective lossy material parameters. 
This is quite an interesting result since it informs one that (i) in order to double 
the resolution, the quality factor of the capacitors has to quadruple, and so on, and 
(ii) electrically thin lenses will lead to higher resolution. Another silent conclusion 
that can be drawn from (2.4) is the answer to the question: What will happen to an 
evanescent wave when the thickness of the NRI region h starts increasing to infinity? 
Will the evanescent wave amplitude diverge to infinity? Clearly, (2.4) suggests 
that the answer is no, since as the thickness h increases, the maximum transverse 
wavenumber kt-max decreases inversely proportionally to h, thus eventually clipping 
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Fig. 2.4 (a) The interior dotted line designates the experimental E-field source pattern. The 
exterior dotted line designates the diffraction-limited E-field image. The intermediate solid 
line designates the measured image pattern and the line with the circles indicates the theoretical 
image pattern with losses included. (b) Experimental verification of growing evanescent waves 
in a super-resolving NRI-TL lens. The dotted lines indicate the location of the NRI region and 
the solid lines indicate the location of the source (left) and external image (right). 

the growth of that particular evanescent wave. Indeed, for a given Qc and frequency, 
there is a characteristic thickness hcu,o, after which all evanescent waves will start 
attenuating instead of growing. This can be determined from (2.4) by insisting that 
&,, < 1, that is, 

As was mentioned before, the super-resolving imaging properties of the structure 
shown in Fig. 2.3 have been theoretically investigated by means of a rigorous periodic 
Green’s function analysis in Ref. 21. From this analysis, it is quite useful to actually 
examine the complete 2-D profile of the vertical electric field above the structure 
of Fig. 2.3. This is shown in Fig. 2.5 for the ideal, lossless case. First, observe 
the nature of the cylindrical waves formed in the three regions of the PRI/NRI/PRI 
lens. By inspection, one can verify that the phase center of these cylindrical waves 
in the three regions indeed coincide with the location of the source, internal and 
external images (foci) predicted by the ray picture of Fig. 2.1. What is remarkable 
is that the so identified location of the external (or internal) image does not coincide 
with the location of maximum field intensity. Indeed, the maximum field intensity 
takes place at the exit interface of the NRI lens and along the line joining the source 
and the images. This is due to the peculiar function of the PRI/NRI/PRI structure, 
which enhances the amplitude of the evanescent waves emanating from the source 
(see the Appendix at the end of this chapter). Another interesting aspect arising from 
examining Fig. 2.5 is that, ideally, the entire half-space behind the source is perfectly 
reproduced by the half-space in front of the external image. 
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Fig. 2.5 Vertical electric field (magnitude) above the structure of Fig. 2.3; lossless case. The 
dashed lines indicate the location of the NRI region and the solid lines indicate the location of 
the source (left) and external image (right). (After Ref. [21].) 

The analysis of Ref. 21 also reveals that, due to the periodicity of these realistic 
structures, the maximum possible transverse wavenumber is limited to 

where d is the periodicity. Therefore, even for a lossless lens, the longitudinal 
wavenumber Ic ,  never assumes infinite values and the solution to the imaging problem 
avoids the singularities encountered when the NRI lens is assumed homogeneous 
[ 101. This cutoff transverse wavenumber will yield an absolute upper bound to the 
resolution that can be achieved when a NRI periodic lens is sandwiched between two 
homogeneous dielectric media. 

Another question that is often raised concerns the origin of the energy stored in 
the growing evanescent waves: From where does this energy come? This question is 
not difficult to answer if one considers the PRI/NRI/PRI setting as a resonator which 
stores energy in the form of evanescent waves. Consequently, this energy is stored 
during the transient period, much like in any passive resonator. In other words, one 
has to keep in mind that what is shown in Fig. 2.5 is the steady-state solution. For a 
quantitative treatment of this aspect, the reader is referred to Ref. 24, in which it is 
actually shown that there is an intrinsic time scale associated with any desired lateral 
resolution (i.e., one has to wait longer and longer in order to resolve finer and finer 
spatial details). 



62 MICROWAVE DEVICES AND ANTENNAS USING NRI-TL METAMATERIALS 

Fig. 2.6 Phase compensating structure based on a conventional TL and a NRI (backward- 
wave) line. 

Finally, the corresponding dispersion characteristics for these distributed structures 
were derived in Ref. 25 using periodic two-dimensional transmission-line theory. In 
the case that the loading is achieved using printed instead of chip loading lumped 
elements-for example, microstrip gaps and vias or coils to implement series capac- 
itors and inductors, respectively [26]-the corresponding dispersion characteristics 
have been examined using finite-element electromagnetic simulations in Ref. 27. 

2.5 COMPACT AND BROADBAND PHASE-SHIFTING LINES 

In conventional positive-refractive-index (PRI) transmission lines (TLs), the phase 
lags in the direction of positive group velocity, thus incurring a negative phase. It 
therefore follows that phase compensation can be achieved at a given frequency by 
cascading a section of a NRI line (e.g., backward-wave line) with a section of a PRI 
line to synthesize positive, negative, or zero transmission phase at a short physical 
length (see Fig. 2.6) [28]. 

The structure of Fig. 2.6 can be rearranged to form a series of symmetric metama- 
terial unit cells as proposed in Refs. 6 and 28. Such a unit cell is shown in Fig. 2.7 
and it is nothing but a transmission line of characteristic impedance 20, periodically 
loaded with series capacitors CO and shunt inductors LO [6]. A representative disper- 
sion diagram for typical host transmission line and loading parameters is shown in 
Fig. 2.8. The metamaterial phase-shifting lines can then be constructed by cascading 
these unit cells. The edges of the stopband fcl and fc2 in Fig. 2.8 are determined 
at the series resonance between the inductance of the transmission-line section and 
the loading capacitor CO, and the shunt resonance between the capacitance of the 
transmission-line section and the loading inductance LO, respectively. Alternatively, 
these are the frequencies at which the effective permeability p ~ ( w )  and effective 
permittivity E N ( W )  vanish: 
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Fig. 2.7 Unit cell of a metamaterial phase-shifting line comprising a host transmission line 
periodically loaded with series capacitors and shunt inductors. After Ref. [28]. Copyright 
@ 2003 IEEE. 
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Fig. 2.8 The dispersion diagram for the periodic structure of Fig. 2.7 with typical line and 
loading parameters. The edges of the stopband are designated by fcl and fc2. After Ref. [28]. 
Copyright @ 2003 IEEE. 

Hence by setting the effective material parameters of equation (2.1) to zero, these 
cutoff frequencies are readily determined to be 
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Fig. 2.9 Top: A 2-stage phase-shifting line (16 mm). Bottom: A Cstage phase-shifting line 
(32 mm) at 0.9 GHz. Note: Reference -360" TL line (283.5 mm, not shown). 

where the characteristic impedance of the host transmission line is 20 = g&& = 
G. By equating fcl and fc2, the stopband in Fig. 2.8 can be closed, thus allowing 
one to access phase shifts around the zero mark. The condition for a closed stopband 
is therefore determined to be 

This condition also implies that the transmission line of Fig. 2.6 is matched to the NRI 
line. The closed stopband condition (2.9) was originally derived in Ref. 6 (equation 
29) and later also reported in Ref. 29. Under this condition, it has been shown in 
Ref. 28 that the total phase shift per unit cell is 

(2.10) 

This expression can be interpreted as the sum of the phase incurred by the host 
transmission line and a uniform backward wave L-C line as shown in Fig. 2.6. 

Various l-D phase-shifting lines were constructed in coplanar waveguide (CPW) 
technology at 0.9 GHz, as shown in Fig. 2.9. The simulated and measured phase and 
magnitude responses for a 2-stage and a 4-stage 0" phase-shifting lines are shown 
in Fig. 2.10, compared to the phase response of a conventional -360" TL. It can 
be observed that the experimental results correspond very closely to the simulated 
results, highlighting the broadband nature of the phase-shifting lines as well as their 
small losses. 

In summary, these metamaterial phase-shifting lines offer some significant advan- 
tages when compared to conventional delay lines. They are compact in size, can 
be easily fabricated using standard etching techniques, and exhibit a linear phase 
response around the design frequency. They can incur either a negative or a positive 
phase, as well as a 0" phase depending on the values of the loading elements, while 
maintaining a short physical length. In addition, the phase incurred is independent 
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Fig. 2.10 Phase and magnitude responses of 2- and 4-stage 0" phase-shifting lines compared 
to a conventional -360" TL at 0.9 GHz; (- - -) measured, (-) Agilent-ADS simulation. 

of the length of the structure. Due to their compact, planar design, they lend them- 
selves easily toward integration with other microwave components and devices. The 
metamaterial phase-shifting lines are therefore well suited for broadband applications 
requiring small, versatile, linear devices. 

It should be pointed out that these phase-shifting lines offer an advantage in terms 
of size and bandwidth when phase shifts about the zero-degree mark are needed. In 
this scenario, the proposed devices are superior to corresponding delay lines about 
one wavelength long. This advantage arises from their short electrical length, which 
implies a broadband response (always when comparing to a one-wavelength delay 
line). For electrically long PRI/NRI phase-shifting lines, their broadband nature 
could be retained if the constituent NRI section is designed to also exhibit a negative 
group velocity as was done in Ref. 17. In this case, not only the signs but also 
the slopes of the propagation constants (vs. frequency) of the M I  and PRI lines 
compensate, thus leading to a broadband response. However the difficulty now is 
how to synthesize a negative group velocity over a broad bandwidth. Moreover, the 
NRI lines of Ref. 17 are lossy and restoring amplifiers would need to be included for 
acceptable performance. 

2.6 SERIES-FED ANTENNA ARRAYS WITH REDUCED BEAM 
SQUINTING 

The one-dimensional ( 1-D) metamaterial phase-shifting lines presented in the previ- 
ous section can be used to develop compact, broadband, nonradiating, metamaterial 
feed networks for antenna arrays. These can be used to replace conventional TL- 
based feed networks, which can be bulky and narrowband [30]. For series-fed arrays, 
the proposed metamaterial feed networks have the advantage of being compact in 
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Fig. 2.11 Series-fed linear array using conventional -2n transmission-line meandered feed 
lines. 

size, therefore eliminating the need for conventional TL meander lines. In addition, 
the metamaterial feed networks are more broadband when compared to conventional 
TL feed networks, which enables series-fed broadside arrays to experience less beam 
squint when operated away from the design frequency. 

In a typical series-fed linear array designed to radiate at broadside, the antenna 
elements must be fed in phase. In addition, an interelement spacing d E  of less than 
half a free-space wavelength ( d E  < A0/2) is necessary to avoid capturing grating 
lobes in the visible region of the array pattern. In order to achieve these design 
constraints, traditional designs employing TL-based feed networks have resorted to 
a meander-line approach, as shown in Fig. 2.11. This allows the antenna elements to 
be physically separated by a distance of d E  = A0/2, while still being fed in phase 
with a one-guided-wavelength A, long meandered line that incurs a phase of -2n 
radians. Because the phase incurred by the TLs is frequency-dependent, a change 
in the operating frequency will cause the emerging beam to squint from broadside, 
which is generally an undesirable phenomenon. In addition, the fact that the lines 
are meandered causes the radiation pattern to experience high cross-polarization 
levels, particularly in CPW implementations, as a result of parasitic radiation due to 
scattering from the corners of the meandered lines [3 13. These feed networks employ 
nonradiating metamaterial phase-shifting lines within a series-fed linear array (see 
Fig. 2.12) to mitigate some of the problems encountered with conventional TL-based 
feed networks. 

The phase-shifting lines presented in Ref. 28, whose unit cell is shown again in 
Fig. 2.13a, can incur an arbitrary insertion phase, are compact in size and exhibit 
a more linear, flatter phase response with frequency compared to conventional TL 
delay lines. In order to ensure that the phase-shifting lines do not radiate, they can 
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Fig. 2.12 Series-fed linear array using 0' metamaterial (MM) feed lines. 
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Fig. 2.13 (a) A 1-D metamaterial phase-shifting unit cell. (b) A combined slow-wave 
metamaterial phase-shifting line. 

be operated in the NRI backward-wave region, while simultaneously ensuring that 
the propagation constant of the line exceeds that of free space. This will effectively 
produce a slow-wave structure with a positive insertion phase, @ M M .  Cascading 
this with a conventional TL, which inherently incurs a negative insertion phase, 
@ T L 2 ,  results in a combined slow-wave metamaterial phase-shifting h e ,  as shown 
in Fig. 2.13b. If @ M M  and @ T L ~  are equal but opposite in value, then the structure will 
incur a zero insertion phase, given by @O = @ M M  + @ T L ~  = 0. The metamaterial 
phase-shifting lines can incur a positive, negative, or zero insertion phase, by adjusting 
the values of the loading elements CO and LO. Thus, for a given section of TL with 
intrinsic phase shift @ T L ~  = u m d T L 1  and characteristic impedance 20, the phase 
shift for an n-stage metamaterial line is given by (2.1 l), subject to the impedance 
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matching condition of (2.12): 

(2.1 1) 

(2.12) 

Assuming that the same type of TL sections are used for TL1 and TL2, then 20, 
L, and C will be the same for both lines. Therefore, @TL2 is given by @TL2 = 
w m d ~ ~ 2 .  Correspondingly, for a transmission line of length A,, the phase as a 
function of frequency is given by @A, = w m A , .  The scan angle for each of the 
metamaterial-based and TL-based linear arrays with an interelement phase shift @O 

can therefore be written as 

(2.14) 

The metamaterial-based and TL-based feed networks were evaluated in CPW tech- 
nology at a design frequency of 2 GHz. Two designs were considered: An array with 
an interelement spacing of d E  = A0/2, and an array with a spacing of dE = A0/4. 
The corresponding scan-angle characteristics for the metamaterial-based and TL- 
based linear arrays with d~ = X0/2 are shown in Fig. 2.14a. It can be observed 
that the scan angle for the TL-fed array exhibits its full scanning range from +90° to 
-90" within a bandwidth of 2.67 GHz, while the corresponding scanning bandwidth 
for the metamaterial-fed array is 4.27 GHz. Thus, the metamaterial-fed array offers 
a more broadband scan angle characteristic, while simultaneously eliminating the 
need for meander lines. Also shown in Fig. 2.14a is the scan-angle characteristic 
for a low-pass loaded slow-wave TL, also of length A0/2. It can be observed that 
the performance of this line is identical to that of the TL feed line (the two curves 
are on top of each other in Fig. 2.14a). Thus, although the low-pass loaded line 
can eliminate the need for meander lines, it does not provide the advantage of an 
increased scan-angle bandwidth that the metamaterial feed lines offer. 

The scan-angle characteristics for the X0/4 feed network are shown in Fig. 2.14b. 
It can be observed that the bandwidth of the scanning angle for the TL-fed array 
and the low-pass loaded TL array decreases to 1.07 GHz, while the corresponding 
scanning bandwidth for the metamaterial-fed array remains at 4.27 GHz. Thus, as 
the spacing between the antenna elements decreases, the scan-angle characteristic 
for a metamaterial-fed array remains constant, while the corresponding scan-angle 
characteristic for the TL-fed array becomes more narrowband. 

Once more it should be pointed out that an even more broadband response could 
be achieved (especially for longer interelement spacings) if the NRI-TL sections in 
Fig. 2.13b are designed to also exhibit a negative group velocity [17]. However such 
lines are inherently lossy and restoring amplifiers would need to be inserted in them. 
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Fig. 2.14 (a) Scan-angle performance of a series-fed linear array with dE = xo/2 using 
different feeding techniques. (b) Scan-angle performance of a series-fed linear array with 
d E  = x0/4 using different feeding techniques. 

Fig. 2.15 (a) Metamaterial balun; An example design in microstrip at 1.56 GHz on a R03003 
substrate (E, = 3.0, height = 0.762 mil). (b) Block diagram for the balun's architecture. 
After Ref. [32]. Copyright @ 2005 IEEE. 

2.7 A BROADBAND METAMATERIAL BALUN IN MICROSTRIP 

Baluns are particularly useful for feeding two-wire antennas, where balanced currents 
on each branch are necessary to maintain symmetrical radiation patterns with a given 
polarization. Two-wire antennas have input ports that are closely spaced, therefore 
their feeding structures should be chosen to accommodate for this requirement. A 
broadband balun with such a quality can be synthesized using the phase-shifting lines 
discussed previously in Section 2.5 [28]. 

The proposed metamaterial (MM) balun is shown in Figs. 2.15a and 2.15b and 
consists of a Wilkinson power divider, followed by a +90° MM phase-shifting line 
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Fig. 2.16 (a) Measured and simulated return loss for port 1 of the metamaterial balun. (b) 
Measured and simulated isolation S23 and through (S2, and &I) magnitude responses of the 
metamaterial balun. After Ref. [32]. Copyright @ 2005 IEEE. 

along the top branch and a -90" MM phase-shifting line along the bottom branch 
[33]. In order to match the phase response of the -90" MM line with that of 
the +go" MM line, and therefore create a broadband differential output phase, the 
slopes of their phase characteristics are designed to be equal at the design frequency. 
Moreover, to ensure that the MM phase-shifting lines do not radiate, each unit cell 
is operated in the region outside the light cone on the Brillouin diagram. Thus, the 
+goo MM phase-shifting line is operated in the NRI backward-wave region, while 
simultaneously ensuring that its phase velocity does not exceed that of free space, 
resulting in a slow-wave structure with a positive insertion phase. Correspondingly, 
the -90" MM phase-shifting line is operated in the positive-refractive-index (PRI) 
forward-wave region, while simultaneously ensuring that its phase velocity also does 
not exceed that of free space, resulting in a slow-wave structure with a negative 
insertion phase. 

The MM Wilkinson balun was implemented in microstrip technology on a Rogers 
R03003 substrate at a design frequency of fo = 1.5 GHz. A five-stage design 
was chosen for the +90° MM phase-shifting line as well as for the -90" MM 
phase-shifting line. The experimental results were compared with the simulated ones 
obtained using Agilent's ADS. Figure 2.16a shows the measured versus the simulated 
return loss magnitude response for port 1, demonstrating good agreement between 
the two, indicating that the device is well matched, especially around fo = 1.5 GHz. 
The measured and simulated return losses for ports 2 and 3 exhibit similar responses. 
Figure 2.16b shows excellent isolation for the device, as well as equal power split 
between the two output ports. Moreover, the insertion loss on each output port is 
better than 0.5 dB. 

Figure 2.17a shows the measured versus the simulated phase responses of the two 
balun branches. The experimental results agree very closely with the simulated ones. 
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Fig. 2.17 (a) Measured and simulated phase responses of (+go" MM line) and S31 

(-90" MM line) of the MM balun. (b) Measured and simulated differential phase comparison 
between the MM balun and the TL balun. After Ref. [32]. Copyright @ 2005 IEEE. 

It can be observed that the phase of S 2 l  is exactly equal to +90" at fo = 1.5 GHz, 
while the phase of S31 is exactly equal to -90" at fo = 1.5 GHz, and that the phase 
responses of the two branches are quite similar. 

Figure 2.17b shows the measured and simulated differential output phase of the 
MM balun, with excellent agreement between the two. It can be observed that the 
differential output phase remains flat over a large frequency band, which follows 
directly form the fact that the phase characteristics of the +90° and -90" lines 
shown in Fig. 2.17a correspond very closely. The flat differential output phase has a 
180" f 10" bandwidth of 1.16 GHz, from 1.17 to 2.33 GHz. Since the device exhibits 
excellent return loss, isolation and through characteristics over this frequency range, 
it can be concluded that the MM balun can be used as a broadband single-ended to 
differential converter in the frequency range from 1.17 to 2.33 GHz. 

For comparison, a distributed TL Wilkinson balun employing -270" and -90" 
TLs instead of the +90° and -90" MM lines was also simulated, fabricated and 
measured at fo = 1.5 GHz, and the differential output phase of the TL balun is also 
shown in Fig. 2.17b. It can be observed that the phase response of the TL balun is 
linear with frequency, with a slope equal to the difference between the phase slopes 
of the -270" and -90" TLs. Since the gradient of the resulting phase characteristic 
is quite steep, this renders the output differential phase response of the TL balun 
narrowband. Thus, the TL balun exhibits a measured differential phase bandwidth 
of only 1 1 %, from 1.42 to 1.58 GHz, compared to 77% exhibited by the MM balun. 
In addition, the TL balun occupies an area of 33.5 cm', compared to 18.5 cm2 for 
the MM balun. Thus, the MM balun is more compact, occupying only 55% of the 
area that the conventional TL balun occupies. Furthermore, the MM balun exhibits 
more than double the bandwidth compared to a lumped-element implementation 
using low-passhigh-pass lines, which typically exhibits a bandwidth around 30%. 
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This can be attributed to the fact that the low-pass line has a linear phase response, 
while the response of the high-pass line has a varying slope with frequency. Thus, 
the shapes of the phase responses of the two lines do not match, resulting in a more 
narrowband differential output phase. 

It should be pointed out that, although we have considered here the case of 
producing a broadband 180" response, the same method can be utilized to produce 
other desired differential phase responses over a broad bandwidth (i.e., a +45" line 
and a -45' line could be utilized in Fig. 2.15b to produce a broadband 90" differential 
phase-shift, useful in I/Q RF receiver front ends). 

2.8 BROADBAND POWER COMBINERS USING ZERO-DEGREE 
PHASE-SHIFTING LINES 

The zerodegree phase shifting lines described previously can be used to implement 
novel broadband power combiners. The basic idea can be understood by considering 
Fig. 2.18a. As shown, a number of three-terminal gain devices (in this case field-effect 
microwave transistors) are combined in parallel using one wavelength lines to connect 
the input (gate) and output (drain) terminals of the devices (FETs). Since the devices 
are connected in phase, a power-combining effect takes place. This method leads to 
a reduced real-estate usage when compared to standard power-combining schemes 
by means of corporate power-dividingkombining trees. However, the architecture of 

Fig. 2.18 (a) Conventional power-combining scheme using one-wavelength interconnecting 
lines. (b) Metamaterial power-combining scheme using zero-degree phase-shifting intercon- 
necting lines. 
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Fig. 2.19 (a) Return loss of conventional (dotted line) vs. metamaterial (solid line) power- 
combining scheme; 4-stages of ATF-34143 PHEMTs. @) Transducer gain of conventional 
(dotted line) vs. metamaterial (solid line) power-combining scheme; 4-stages of ATF-34143 
PHEMTs. 

Fig. 2.18a is inherently narrowband since the devices are combined in phase only at 
the frequency where the interconnecting lines are exactly one wavelength long. To 
this end, the zero-degree phase-shifting lines described earlier in Section 2.5 could be 
harnessed to replace these one-wavelength lines. Since the corresponding zero-degree 
phase-shifting lines could be made significantly shorter than the one-wavelength lines 
they replace, the resulting scheme shown in Fig. 2.18b is not only physically smaller, 
but also significantly more broadband than that shown in Fig. 2.18a. The architecture 
of Fig. 2.18b is similar to the scheme of series-fed antennas described earlier in 
Section 2.6 [30]. 

To evaluate the proposed power-combining architecture, microwave circuit sim- 
ulations have been carried out using realistic devices. Specifically, Figs. 2.19a and 
2.19b show the simulated return loss and transducer power gain as a function of 
frequency when combining four Agilent ATF-34143 PHEMT transistors using the 
scheme of Fig. 2.18b. The same figures also shows the corresponding quantities 
when one-wavelength interconnecting lines are used according to the conventional 
scheme of Fig. 2.1 8a. Clearly, the metamaterial-based power-combining scheme is 
significantly more broadband compared to its traditional counterpart. 

2.9 ELECTRICALLY SMALL RING ANTENNA WITH VERTICAL 
POLARIZATION 

Another example of harnessing the phase-shifting lines of Ref. [28] is to wrap around a 
zero-degree phase-shifting line to implement a small printed antenna. This is shown 
in Fig. 2.20 for a realization at 1.5 GHz. As shown, there are four metamaterial 
phase-shifting sections arranged in a square ring. Each constituent section comprises 
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TOP View 

Side View 
LO co Lo 

Fig. 2.20 Diagram of the metamaterial ring antenna at 1.5 GHz. The loading capacitance 
and inductance required to feed the v i a  in phase are co = 3.70 pF and Lo = 71.08 nH. 

a negative-refractive-index (NRI) microstrip transmission line (TL), designed to incur 
a zero insertion phase at the antenna operating frequency. This allows the inductive 
posts to ground, which act as the main radiating elements, to be fed in phase. Hence, 
the antenna operates as a 2-D array of closely spaced monopoles that are fed in 
phase through a compact feed network. This leads to a ring antenna with a small 
footprint (diameter of X/25) and a low-profile (height X/31) capable of radiating 
vertical polarization. Figure 2.21 shows the measured versus the simulated return 
loss obtained from an equivalent circuit model based on Fig. 2.7. It can be observed 
that the antenna is well-matched at 1.5 1 GHz, with a measured return loss bandwidth 
below -10 dB of approximately 1.5%. This bandwidth can be increased to 3 4 %  if 
the dielectric substrate is reduced to about the size of the ring or if the via height is 
increased. Moreover, the ring antenna could be implemented entirely in air, in which 
case also the bandwidth increases to > 5%. In fact, such low-cost air-filled ring 
antennas could be attractive for emerging multiple-input-multiple-output (MIMO) 
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Fig. 2.21 Measured and simulated (HFSS and circuit models) return loss for the metamaterial 
ring antenna. 

wireless telecommunication systems. Specifically, two or three such low-profile 
antennas could be mounted on hand-held or laptop units in orthogonal directions for 
creating independent channels based on polarization diversity. Figure 2.22 shows 
the measured versus the simulated E- and H-plane patterns obtained from Agilent’s 
HFSS, which demonstrates good agreement. It can be observed that the antenna 
exhibits a radiation pattern with a vertical linear electric field polarization, similar 
to a short monopole on a finite ground plane. The radiation in the back direction 
is reduced compared to the forward direction due to the effect of the finite ground 
plane used; however, it is not completely eliminated. Moreover, there is good 
cross-polarization purity in the E-plane, with a maximum measured electric field 
cross-polarization level of -17.2 dB. In the H-plane, the maximum electric field 
cross-polarization level is only -6.6 dB. 

The loading with chip passive lumped elements is effective at RF and low mi- 
crowave frequencies. At higher frequencies, these can be replaced by printed lumped 
elements. For example, a fully printed version of this antenna at 30 GHz, in which 
the loading lumped-element chip capacitors and inductors were replaced by gaps and 
vias respectively, was reported in Ref. 34. 

2.10 A LEAKY-WAVE BACKWARD ANTENNA RADIATING ITS 
FUNDAMENTAL SPATIAL HARMONIC 

The transmission-line (TL) approach to synthesizing NRI metamaterials has led to the 
development of a new kind of leaky-wave antenna (LWA). By appropriately choosing 
the circuit parameters of the dual TL model, a fast-wave structure can be designed 
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Fig. 2.22 (a) E-plane and (b) H-plane measured and simulated patterns. 

Fig. 2.23 (a) Backward leaky-wave antenna based on the dual TL model at 15 GHz [ 18,201. 
(b) Unidirectional backward leaky-wave antenna design at 15 GHz. Reprinted with permission 
from Ref. [18]. Copyright @ 2002 American Institute of Physics. 

that supports a fundamental spatial harmonic which radiates toward the backward 
direction [ 18,201. 

The CPW implementation of this leaky-wave antenna is shown in Fig. 2.23a. The 
gaps in the CPW feedline serve as the series capacitors of the dual TL model, while the 
narrow lines connecting the center conductor to the coplanar ground planes serve as 
the shunt inductors. The capacitive gaps are the radiating elements in this leaky-wave 
antenna, and excite a radiating transverse magnetic (TM) wave. Due to the antiparallel 
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currents flowing on each pair of narrow inductive lines, the shunt inductors remain 
nonradiating. Simulated and experimental results for this bidirectional leaky-wave 
antenna were reported in Ref. 18. Simulation results for a unidirectional LWA design 
were also presented in Ref. 20. The unidirectional design is simply the leaky-wave 
antenna described in Ref. 20 backed by a long metallic trough as shown in Fig. 2.23b. 
Since the LWA's transverse dimension is electrically small, the backing trough can 
be narrow (below resonance). The trough used is one quarter wavelength in height 
and in width and covers the entire length of the antenna on the conductor side of 
the substrate. It acts as a waveguide below cutoff and recovers the back radiation, 
resulting in unidirectional far-field patterns. 

Here, we present experimental results for the unidirectional design proposed in 
Ref. 20. As noted in Ref. 20, a frequency shift of 3%, or 400 MHz, was observed in 
the experiments compared to the method of moments simulations of the LWA using 
Agilent's Advanced Design System. As a result, the experimental unidirectional 
radiation patterns are shown at 14.6 GHz while the simulation patterns are shown 
at 15 GHz. The E-plane and H-plane patterns are shown in Figs. 2.24a and 2.24b, 
respectively. A gain improvement of 2.8 dB was observed for the unidirectional 
design over the bidirectional design, indicating that effectively all of the back radiation 
is recovered with the trough. 

It should be pointed out that a complementary forward unidirectional leaky-wave 
antenna, also radiating the fundamental spatial harmonic, has been reported in Ref. 35. 
As was first noted in Ref. 35, both the forward and the backward LWAs offer the 
advantage of a simple feed, unlike the conventional microstrip LWA which operates 
on a higher-order mode and thus requires a special feed mechanism to guard against 
the excitation of the fundamental microstrip mode [36]. Moreover, the same approach 
can be extended to 2-D leaky metamaterial surfaces that can form pencil, instead of 
fan, beams which can be frequency scanned about the broadside direction [37]. 

2.11 A HIGH-DIRECTIVITY BACKWARD NRUMICROSTRIP COUPLER 

A peculiar coupled-line coupler (see Fig. 2.25) can be realized using a regular mi- 
crostrip (MS) line that is edge-coupled to a negative-refractive-index (NRI) line 
[38,39]. Such a coupler exhibits co-directional phase but contradirectional Poynting 
vectors on the lines, thus leading to backward power coupling. 

Using coupled-mode theory, it can be shown that coupled modes with complex- 
conjugate propagation constants are excited in this coupler at the frequency where the 
propagation constants of the two isolated lines become equal [39]. For a sufficiently 
long coupler operated at this frequency, the exponentially increasing modes can be 
discarded, in which case line voltagdcurrent expressions take the following form: 
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Fig. 2.24 (a) E-plane pattern for the unidirectional leaky-wave antenna. (-) Experimental 
co-polarization; (- . -) experimental cross-polarization; (- - -) simulated co-polarization using 
Agilent ADS. f = 15 GHz. (b) H-plane pattern for the unidirectional leaky-wave antenna. 
(-) Experimental co-polarization; (- -) experimental cross-polarization; (- - -) simulated 
co-polarization using Agilent ADS. f = 15 GHz. 

Here, yc and 'yrr are complex conjugate eigenvalues, yc = a + j/3 and 2, is the 
impedance of the symmetric c-mode on the MS line. If port 1 (see Fig. 2.25) is 
excited, from (2.15) it can be shown that 

Equation (2.16) demonstrates that there is complete backward transfer of power 
from port 1 to port 2 (see Fig. 2.25). In order to compare the performance of a 
MS/NRI coupler to its regular MSMS counterpart of equal length, line spacing, and 
propagation constant, a benchmark microstrip coupler was designed and is shown in 
Fig. 2.25. This benchmark MS/NRI coupler was constructed with unit cells 5 mm 
long and loading elements of 2.7-nH shunt inductors and 0.9-pF series capacitors 
for the NRI line. The line widths are 2.45 mm (MS) and 2 mm (NRI), and the 
transverse line separation is 0.4 mm. The corresponding performance of this 3-unit 
cell MS/NRI coupler is compared to that of a quarter-wavelength regular MSMS 
coupler at 2.8 GHz, when the isolated propagation constants of the two lines are 
similar. This comparison is shown in Figs. 2.26a and 2.26b, from which it is evident 
that, compared to its conventional counterpart of the same length and line spacing, this 
new MS/NRI coupler exhibits better performance in terms of coupled power (higher 
coupling), lower return loss and isolation, without any bandwidth degradation or 
significant change in insertion loss. This results in improved directivity (20 dB) 
when compared to the ordinary MSMS quarter-wavelength coupler (7 dB). 
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Fig. 2.25 MS/NRI and MSMS (x/4) couplers of equal length, line spacing, and propagation 
constants designed for operation at 2.8 GHz. (Port 1: input; port 2: coupled; port 3: through; 
port 4 isolated.) 
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Fig. 2.26 (a) Comparison of coupled power levels for the MS/NRI and the MS/MS couplers. 
(b) Comparison of isolation for the MYNRI and the MSMS couplers. 

A 3-dB coupler has also been constructed and tested as shown in Fig. 2.27 [39]. 
Corresponding simulation and experimental results for this coupler are presented in 
Figs. 2.28a and 2.28b. As shown, the measured power splits between the through 
and coupled ports at the level of -3.03 dB and -3.68 dB respectively, using this 
6-cell-long coupler (24 mm) at the design frequency of 3 GHz. Moreover, the return 
loss and isolation are found to be below -20 dB, whereas the directivity is better than 
20 dB. For low coupling applications (e.g., reflectometry, VSWR signal monitoring, 
etc.), the directivity can be optimized in practice to values in the range of 35 dB, 
which is very difficult to achieve with conventional microstrip couplers [41]. 
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Fig. 2.27 A 3-dB MS/NRI coupled line coupler (6 unit cells long) constructed on a 50-mil 
Rogers TMM4 (E, = 4.6) substrate. After Ref. [39]. Copyright @ 2004 IEEE. 
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Fig. 2.28 (a) Simulation and experimental results for 3-dB MS/NRI coupled-line coupler: 
Return loss and coupled power. (b) Simulation and experimental results for 3-dB MS/NRI 
coupled line coupler: Through power and isolation. 

Figure 2.29 shows the dispersion diagram of the coupled modes for the 3-dB 
coupler. In the same diagram, the dispersion curves of the isolated microstrip and 
NRI (backward-wave) transmission lines that make up the coupler are also depicted. 
As shown, both Ansoft HFSS finite-element simulations and coupled-mode theory 
results verify the formation of a stopband in the dispersion diagram of the coupler at 
the location where the dispersion curves of the isolated lines meet. Therefore, the 
two eigenmodes of the coupler become complex, thus leading to exponential field 
decay along the lines. This enables enhanced coupling and high isolation with only 
moderate line lengths and interline spacings. Pierce [16] pointed out the existence of 
the coupled mode stopband and suggested that it occurs when a mode in a periodic 
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Fig. 2.29 Coupled-mode dispersion diagram for the 3-dB MSlNRI coupled-line coupler of 
Fig. 2.27. After Ref. [39]. Copyright @ 2004 IEEE. 
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Fig. 230 Physical mechanism by which power continuously leaks from the microstrip line 
to the NRI line. 

structure couples to a higher-order backward-wave spatial harmonic. The unique 
feature presented here is that this coupling takes place between two lines involving 
their fundamental spatial harmonics. 

At the point where the dispersion curves of the two isolated lines comprising 
the coupler meet, the corresponding attenuation constant is maximum [40]. Around 
this point and within the “contradirectional” stopband of Fig. 2.29, one could think 
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that the miscrostrip mode continuously “leaks” power backwards to the NRI line as 
suggested in Fig. 2.30. This leakage effect has to be described in terms of a complex 
propagation constant, which is consistent with the previously presented analysis. 
At this frequency, the corresponding coupled-line system supports leaky complex 
conjugate modes (a f j p )  which are associated with complex conjugate impedances 
(20 k j A 2 ) .  The attenuation of these modes is accounted for by the backward power 
leakage from the excited line to the coupled line. It is assumed that the imaginary parts 
of the mode impedances are small, which is valid for moderate spacing between the 
two lines. If port 1 of the coupler is excited with a matched source and the remaining 
ports are terminated with an impedance of 20, then the scattering parameters for 
a coupler of length D can be derived by applying the boundary conditions at the 
four ports. Ignoring second- and higher-order terms in AZ/Zo, these parameters are 
listed below in equations (2.17) to (2.20), with port 2, port 3 and port 4 referring to 
the coupled, through and isolated ports, respectively [41]. It can be seen from (2.17) 
that the return loss is minimized when the line spacing of the coupler is increased, 
as it causes A 2  to become smaller. From (2.18), the coupled power decreases with 
line spacing (causing the attenuation factor a to decrease), and it increases with 
coupler length D. Hence a coupler with a length on the order of a few l/a’s will 
direct almost all the input power to the coupled port. Finally, (2.20) reveals that it is 
possible to obtain perfect isolation when the length of the coupler is made to be an 
integer multiple of half its guide wavelength: 

A 2  
2 0  

,911 = j- tanh(aD) 

,921 = j tanh(aD) 

,931 = e-jpDsech(aD) 

(2.17) 

(2.18) 

(2.19) 

(2.20) ,941 = - sin(PD)sech(aD) 

It should be pointed out that a structure related to this backward-wave coupler has been 
reported in Ref. 42. Specifically, Ref. 42 deals with a rectangular metallic waveguide 
which is partially filled with a NRI metamaterial slab along the longitudinal direction. 
This problem and the corresponding theory are presented in detail in Chapter 9. 
Moreover, a different backward-wave coupler comprising two negative-refractive- 
index lines, operating about their radiating p = 0 region, has been described in 
Ref. 43. On the other hand, the same topology of two identical coupled NRI lines has 
been used to report a forward coupler in Ref. 11, although it is unclear under which 
conditions this same topology can lead to either a backward or a forward coupler. 

. A 2  
2 0  

2.12 PHASE-AGILE BRANCH-LINE MICROSTRIP COUPLERS 

Two types of branch-line couplers are described here that utilize a combination 
of regular microstrip (MS) and negative-refractive-index lines [45]. Interesting and 
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Fig. 2.31 MS/NRI Branch-line couplers: (a) Type 1. (b) Type 2. After Ref. [45]. Copyright 
@ 2004 IEEE. 

useful phase compensation (0" phase shift) at the output port and a choice of 90" phase 
shift at the through port, with respect to the input, can be synthesized. Moreover, one 
of the two orthogonal dimensions of the coupler is significantly reduced, compared 
to a corresponding conventional branch-line coupler, but without any bandwidth 
degradation (see Fig. 2.31) . 

The two different coupler designs are denoted as type 1 and type 2. The former 
uses regular microstrip lines (MS) for the low-impedance branches and NRI lines 
for the high-impedance ones (see Fig. 2.31a). The latter (type 2) is the dual of the 
former (type 1) and utilizes NRI lines for the low-impedance branches and microstrip 
lines for the high-impedance ones (see Fig. 2.31b). In both couplers, the power splits 
equally between the two output ports with a 0" phase shift (with respect to the input) 
at the coupled port. Furthermore, the type 1 MS/NRI branch-line coupler offers a 
negative phase quadrature (-90") while type 2 provides a positive phase quadrature 
(+go") at their through ports with respect to the input port. 

Figures 2.32a and 2.32b show the measured and simulated phase response at the 
through and coupled ports of the two types of MS/NRI branch-line couplers. These 
results verify the previously described phase relationships among the input and output 
ports. These kinds of couplers could find several applications. For example, Fig. 2.33 
shows a combination of a type 1 MS/NRI metamaterial coupler with two conventional 
branch-line couplers in a 1:4 power-divider network. In this arrangement, the input 
power is divided equally among the four output ports but with a linear phase taper 
having a step of 90". Such a feed network can be utilized for antenna beamforming. 

2.13 CONCLUSION 

The emerging field of negative-refractive-index metamaterials is very exciting for 
two interrelated reasons. On the one hand, there is new science being developed as- 



84 MICROWAVE DEVICES AND ANTENNAS USING NRI-TL METAMATERIALS 

I 
1.05 1.1 1.15 1.2 

Frequency (GHz) 

(b) 

Fig. 2.32 (a) Output phase response for branch-line coupler type 1. (b) Output phase response 
for branch-line coupler type 2. After Ref. [45]. Copyright @ 2004 IEEE. 

Fig. 2.33 A 1:4 power-dividing feed network with a 90" phase taper. 

sociated with these fascinating phenomena and their interpretation. These intriguing 
phenomena include negative refraction, growing evanescent waves and surpassing the 
classical diffraction limit, reversal of the Cerenkov and Doppler effects, and others yet 
to be discovered! On the other hand, these new phenomena can be harnessed to make 
RF/microwave passive devices including antennas and their feed networks offering 
unique properties in terms of functionality, size reduction, and performance. In this 
chapter a number of these devices based on negative-refractive-index transmission- 
line metamaterials have been demonstrated. Specifically, we have presented lenses 
that can overcome the diffraction limit, compact and broadband phase-shifting lines, 
baluns, electrically small antennas, series-fed antenna arrays with reduced beam 
squinting, novel broadband power-combining schemes, backward leaky-wave anten- 
nas, small antennas and high-directivity coupled-line couplers. For more applications 
and properties of metamaterials the reader is referred to Refs. 46 and 47. 
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APPENDIX 

Consider the two-dimensional lens of Fig. 2.3 and let us assume that the origin of 
the coordinate system is located at the second interface. A simple transmission-line 
equivalent circuit for T M ,  wave propagation along the longitudinal z-direction is 
shown in Fig. A.l  (e.g., see Ref. 15, pp. 306-309). We will now carry out the wave 
propagation analysis based on the homogeneous limit. The reader is referred to 
Chapter 3 for the more general discrete periodic case. 

The longitudinal wavenumbers in the PRI and NRI regions for evanescent waves 
are given by 

kz P R I =  JG, k y R ' =  J- (A.1) 

Since the refractive index is n = -1, these are equal, that is, 

On the other hand, the transverse characteristic impedances are 

Since -PNRI  = ~ P R I  > 0,  this implies that the PRI region is inductive, Im( 2,'"') > 
0,  whereas the NRI region is capacitive, Im(ZfR') < 0. Furthermore, these are 
conjugately matched, that is, ZrRI + Z f R I  = 0 [10,21,44]. 

Let us now write down the general form of the evanescent voltage waves in the 
three regions of Fig. A. 1. 

First PRI medium: VI = e--kz(Z+h) + Re+kz(z+h) (A.4) 

Second PRI medium: V, = &e-kzz (A@ 

NRI medium: V, = V,,, + V,,f = V$e--kzz + V$I'2e+kzZ (A.5) 
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k, , Z y  

Fig. A.l Equivalent transmission-line network for a negative-refractive-index slab sand- 
wiched between two semi-infinite positive-refractive-index (PRI) regions. 

The corresponding current waves will be given by 

('4.7) First PRI medium: II = e-kz(z+h)/ZfR' - Re+kz(Z+h)/ZfR' 

NRI medium: I2 = V$e-kzz/ZrR' - V $ ? 2 e + k z z / Z ~ R '  (A.8) 

Second PRI medium: 13 = &e-"'"/ZfR' (A.9) 

Now let us impose the boundary conditions. At the first interface, z = -h: 

VI = VZ =+ 1 + R = V$e+kzh + V$rze-kzh (A. 10) 

Also, 

At the second interface, z = 0: 

vz = v3 + v$ + vcr, = v, (A.12) 

Also, 

I2 = I3 + v$/z,""' - v:rz/z,NRI = v,/zfRr (A.13) 

By dividing (A.12) and (A.13) one obtains the familiar expression 

zPR' - z ; R I  
r2 = (A. 14) Z p  + ZPRI 

Also, from (A. 10) and (A. 1 l), 

(A.15) 
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From (A. 10) it follows that 

(A.16) 

On the other hand, from (A. 12) and (A. 16) the transmitted voltage wave is 

Now let us apply the limit that at resonance Z f R r  + Z y R r  = 0 and hence, from 
(A.14), I72 + 00. Under this limit, (A.15) implies that the first interface is matched, 
that is, 

R = O  (A. 18) 

Moreover, from (A.16) and (A.18), V$ vanishes as well, that is, V$ -+ 0 (no incident 
wave in the NRI region). On the other hand, the product V$r2 remains finite-that 
is, V$r2 -+ e+“.--and hence, from (A. 17), 

vt -+ e+kzh (A. 19) 

In summary, the final voltage waves in the three regions are 

First PRI medium: V1 = e-kz(z+h) (A.20) 

NRI medium: V2 = 0 + Vrep = e+kzhe+kzz (A.21) 

Second PRI medium: V, = e+kzde-kzz (A.22) 

Observe the growing exponential wave in the NRI region and the annihilation of 
the incident wave. Moreover, there are no voltages that blow up to infinity anywhere 
within the lens. On the other hand, the ratio of the voltages between the second 
(NRWRI) and first (PRI/NRI) interface is given by 

The reader is reminded that the distance from the source to the image is twice the 
thickness of the lens, h (see Fig. 2.1). Therefore, (A.23) implies that the exponential 
growth within the lens exactly counters the exponential decay in the two PRI media, 
thus perfectly restoring the amplitude of the evanescent wave. A key aspect for this 
restoration process is that it happens for any transverse wavenumber kz (of course, 
up to the cutoff k, determined by (2.5) in the lossy case and (2.6) in the lossless 
case). This latter observation is essential for imaging where ideally all transverse 
wavenumbers should be restored for “perfect” imaging. Incidentally, it should be 
pointed out that the analysis presented in this Appendix can be extended in a trivial 
manner to show that restoration is also achieved for propagating waves in compliance 
with the ray picture of Fig. 2.1 (the details are presented in Chapter 3). 
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This chapter focuses on planar microwave lenses that are based on the transmission- 
line (TL) approach to implementing negative-refractive-index (NRI) media. The 
transmission-line approach involves loading a planar network of transmission lines 
with series capacitors and shunt inductors in order to synthesize an isotropic and 
homogenous NRI medium. This planar high-pass network will be referred to as the 
dual TL since it is the dual of a conventional low-pass TL. The chapter starts with the 
theory behind 1-D and 2-D dual transmission lines. Microwave network theory and 
an effective medium approach are used to describe the propagation characteristics 
of the dual TL. A physical interpretation of how a series capacitor leads to negative 
permeability and a shunt inductor to negative permittivity is also given. 

A dual TL implementation of the NRI or “left-handed” lens described by V. G. Vese- 
lago is presented and characterized in this chapter [l]. This lens is referred to as 
the NRI-TL lens. The ability of a NRI-TL lens to form images that overcome the 
diffraction limit is demonstrated. This entails showing that the NRI-TL lens fo- 
cuses propagating waves and restores the amplitude of evanescent waves at its foci. 
Super-resolution (imaging beyond the diffraction limit) is shown analytically for the 
NRI-TL lens, and supporting experimental evidence is presented. The resolution 
limitations of practical NRI-TL lenses are discussed in detail. 
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(a) Conventional TL (b) Distributed dual TL 

Fig. 3.1 Distributed transmission line (TL) representations. 

3.1 THE DISTRIBUTED DUAL TRANSMISSION LINE 

The synthesis of the original split-ring resonatodwire negative-refractive-index (NRI) 
medium was based on separately considering an array of straight conducting wires to 
attain negative permittivity and an array of split-ring resonators to attain negative per- 
meability [2,3]. Here a different approach is taken, originating from the analogy that 
is readily drawn between transverse electromagnetic (TEM) propagation on transmis- 
sion lines (TLs) and plane-wave propagation in a homogeneous isotropic medium with 
positive material parameters, E and p. This equivalence forms the basis of a numeri- 
cal technique for solving Maxwell’s equations called the transmission-line modelling 
method [4,5]. Comparing the differential equations governing transmission-line and 
plane-wave propagation, the distributed inductance Lo and capacitance Co of the 
transmission line depicted in Fig. 3.la become equivalent to the permeability p and 
permittivity E of the medium supporting plane-wave propagation: 

This transmission-line model of a medium with positive material parameters, E and 
p, also offers insight into devising materials with negative E and p. Intuition suggests 
that in order to synthesize a negative-refractive-index medium (E < 0 and p < 0), the 
series reactance and shunt susceptance shown in Fig. 3.la should become negative, 
given that the material parameters are directly proportional to these circuit quantities 
[6-91. This change in sign implies the distributed system with series capacitors and 
shunt inductors shown in Fig. 3. l b  [ 101. It is the dual of the conventional transmission 
line and as a result will be referred to as the distributed dual TL. 

As in the case of a conventional transmission line, the propagation constant and 
characteristic impedance of the distributed dual TL can be found from the distributed 
(per-unit-length) impedance 2 and distributed admittance Y (assuming a ejwt time- 
harmonic progression) [ 101: 
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(3.3) 

The positive square root is chosen in (3.3) because we are dealing with power flow 
in the positive z-direction of a passive structure and therefore 2, must be a positive 
quantity. The sign (3~) of the square root in (3.2), which determines the sign of the 
propagation constant k ,  is not as obvious. For the time being, we will assume that 
k is a negative quantity as in (3.2). The phase (up )  and group (vg) velocities of the 
waves guided by the distributed dual TL are 

W 
up = = - w 2 m  

v g = x = m  
dw 1 

The expressions above indicate that the distributed dual TL supports backward 
waves-that is, waves that have phase and group velocities of opposite sign. Since 
the group velocity vg represents energy flow in this lossless system, a positive group 
velocity identifies power flow in the positive direction. The phase velocity is negative 
for such power flow, reassuring us that the propagation constant given by k = w/vp  
is in fact negative, as initially assumed in 3.2. Since the refractive index n is the ratio 
of up to c (the speed of light in a vacuum), one may also say that the refractive index 
is negative even for this 1-D distributed dual TL. 

3.2 THE PERIODIC DUAL TRANSMISSION LINE 

The distributed dual TL shown in Fig. 3.lb is a hypothetical structure which cannot 
be realized, but can be approximated by periodically loading a conventional TL 
with series capacitors (2C) and shunt inductors ( L )  as depicted in Fig. 3.2. For 
short interconnecting transmission-line lengths (pd << 1, where ,f3 is the propagation 
constant of the interconnecting transmission lines and d is the unit cell dimension), 
this periodic dual TL approaches the distributed dual TL shown in Fig. 3.lb. This 
periodic dual TL will be referred to as simply the dual TL from this point on. 

pd 
In 2 L+l 

pd 
2 -- --+ --I-t- 

Fig. 3.2 A 1-D periodic dual transmission line. It is realized by periodically loading a host 
TL with series capacitors and shunt inductors. 
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The propagation characteristics of an infinite dual TL can be derived from a single 
unit cell using the Floquet Theorem. This theorem serves as a basis for the study 
of periodic structures. The Floquet Theorem may be stated as follows [ 1 11: “For a 
given mode of propagation at a given steady-state frequency, the fields at one cross 
section differfrom those one period away only by a complex constant.” A unit cell 
of the dual TL consists of a length d of transmission line with a shunt inductor L at 
its center and 2C capacitors at its ends. The Bloch voltages and currents on either 
side of the nth unit cell in an infinite cascade can be related using the transmission 
(ABCD) matrix of the unit cell (see Fig. 3.2) [12]: 

A B  (:)=( C D ) (  21;) 
where A, B ,  C,  D are the elements of the transmission matrix for unit cell. The 
transmission matrix of the unit cell is the product of the transmission matrices of the 
constitutive circuit elements: the capacitor 2C, the p d / 2  section of transmission line, 
the inductor L, the second p d / 2  section of transmission line and second 2C capacitor 
(see Fig. 3.2). According to the Floquet Theorem, the guided voltage and current 
waves in one cell differ by a complex constant from those one period away. In other 
words, the voltage and current at the (n + 1)th terminal differs from the voltage and 
current at the nth terminal by a complex constant e-jkd: 

where k is a complex number commonly referred to as the Bloch wavenumber. 
Bringing all the terms to one side of the equation yieldsthe following homogeneous 
matrix equation: 

Setting the determinant equal to zero for this homogeneous matrix equation, gives us 
the dispersion equation for the dual TL: 

A + D  cos(kd) = - 
2 (3.9) 

The dispersion equation can be further simplified when the unit cell is symmetric 
( A  = D )  about its center, as is the case for the dual TL [ 121: 

cos(kd) = A (3.10) 

Using (3.8) and (3.10), a periodic impedance known as the Bloch impedance 
(213 = 2 = 2) can be defined at the terminals of the unit cell: 

(3.11) 
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The f superscripts denote the Bloch impedance solutions for forward (+) and reverse 
(-) traveling waves. Forward traveling waves carry power in the positive z-direction 
and reverse traveling waves carry power in the negative z-direction. Expressing the 
matrix elements (A, B, C, D) in terms of the transmission-line parameters (pd, 2,) 
and inductor L and capacitor 2C values, the dispersion relation (3.10) and Bloch 
impedance expression (3.11) simplify to 

(3.13) 

Just as a conventional TL is described by its characteristic impedance and propaga- 
tion constant, the dual TL is characterized by its Bloch impedance .ZB and Bloch 
wavenumber k. The dispersion equation (3.12) defines the passbands and stopbands 
of the dual TL. Yet, it is not obvious from the dispersion relation that the dual TL 
can support a backward-wave propagation band. One may implicitly differentiate 
(3.13) and check whether the group and phase velocities are of opposite sign for a 
given set of transmission-line parameters and L, C values. A simpler approach is 
to take a closer look at the Bloch impedance under certain assumptions. First, the 
dual TL is assumed to have short interconnecting TL sections (pd << 1) so that it 
resembles the hypothetical distributed dual TL from the previous section. Next, a 
small per-unit-cell phase shift kd << 1 is assumed so that the Bragg condition is 
avoided. These two conditions restrict the operation to the long wavelength regime. 
In the frequency range where 2, tan(pdl2) < A, the numerator of the Bloch 
impedance becomes negative. Power flow in the positive z-direction requires that 
the Bloch impedance remains positive. Therefore, the denominator of the Bloch 
impedance must also be negative, implying that the wavenumber k is a negative 
quantity. A negative wavenumber given positive power flow implies backward-wave 
propagation. Note that the only way to get a propagating solution (a real-valued k) 
is to further assume that 2, tan(pd/2) < &. 

This argument can be made mathematically as well. With the above-mentioned as- 
sumptions (pd << 1, kd << 1). the dispersion relation and Bloch impedance simplify 
to 

where Lo and C, are the per-unit-length inductance and capacitance of the unloaded 
transmission line: p = w a  and Z, = ,/m. When wL, < A, the 
series reactance of the dual TL becomes negative making the effective permeability 
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d 

Fig. 3.3 Parallel-plate waveguide with periodic shunt inductive sheets. The periodic spacing 
d of the sheets is much smaller than the wavelength of operation. 

negative. Similarly when WC, < A, the shunt susceptance becomes negative 
making the permittivity negative. When both series reactance and shunt susceptance 
are negative, the dual TL supports backward waves and acts as a negative-refractive- 
index medium. 

3.3 INTERPRETING NEGATIVE PERMITTIVITY AND 
PERMEABILITY 

It has been shown that the periodic dual TL depicted in Fig. 3.2 supports backward 
waves. Circuit analysis brings us to this conclusion, but it does not provide us with a 
physical understanding of how a series capacitor leads to negative permeability and a 
shunt inductor to negative permittivity. In this section, the simplest transmission-line 
geometry is studied in order to develop this physical understanding. A parallel-plate 
waveguide operating in its TEM mode of operation is considered [ 131. A parallel- 
plate waveguide is chosen for its convenient geometry that lends itself to simple 
mathematical expressions. The waveguide is infinite in both the 2- and t-directions 
and is sufficiently thin (thickness = h, in the y -direction) such that higher-order TE 
and TM modes are cut off. The waveguide serves as the host TL in the dual TL 
model. First, the parallel-plate waveguide is loaded with shunt inductive sheets (see 
Fig. 3.3) in order to understand how shunt inductors give rise to a negative effective 
permittivity. Next, the same waveguide is loaded with capacitive transverse slots (see 
Fig. 3.4) in order to understand how periodically spaced series capacitors give rise to 
a negative effective permeability. Finally, a parallel-plate waveguide simultaneously 
loaded with capacitive transverse slots and shunt inductive sheets is studied. 

3.3.1 Negative Permittivity 

A parallel-plate waveguide that is loaded with vertical (9-directed) inductive sheets is 
depicted in Fig. 3.3. The inductive sheets serve as the shunt inductors in the dual TL 
model. They are infinitely thin and periodically spaced at a distance d from each other 
that is much smaller than the wavelength of operation (d << A), so that quasi-static 
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Fig. 3.4 Parallel-plate waveguide with capacitive transverse slots. The periodic spacing of 
the transverse slots is much smaller than the wavelength of operation. 

approximations can be made. An inductive sheet can be implemented in practice as 
an array of closely spaced thin vias between the two plates of the waveguide. 

First, a qualitative description is given of how inductive sheets give rise to a 
negative permittivity. In short, the impinging voltage wave (or equivalently the 
vertical electric field intensity E) between the top and bottom plates of the parallel- 
plate waveguide produces an electric flux density Do = e,,E in the y-direction. 
The voltage also excites an electric surface current density Jind along the inductive 
sheets. This surface current density Jind produces an electric polarization P that is 
antiparallel to the electric flux density Do that is present in an unperturbed parallel- 
plate waveguide [14,15]. When the electric polarization P caused by the inductive 
sheets overcomes Do, the effective permittivity of the medium becomes negative. 

Now let us proceed with the detailed mathematical formulation. A surface im- 
pedance Zind can be defined for the inductive sheets. This surface impedance is the 
ratio of the tangential electric field to the tangential magnetic field, over the inductive 
sheet’s surface. The surface impedance has units of Ohms per square. A section of 
the inductive sheet W wide in the x-direction has an impedance equal to Z,h,/W R. 
The surface current density Jind excited on the inductive sheet can be related to the 
impinging electric field intensity E by the surface impedance Zind: 

(3.16) 
b i n d  

where E is simply the potential difference V between the parallel-plates divided 
by the waveguide height h,. Since the current sheet is inductive, it has a surface 
impedance of the form &nd = j w L ,  where L has units of Henry per square. As 
such, the surface current density on the inductive sheets can be rewritten as 

(3.17) 

The inductive sheets can now be replaced by periodically spaced sheets of surface 
current Jind,  as shown in Fig. 3.5. Since the spacing d is much smaller than A, the 
array of current sheets can be treated as a continuous current density J (amps / m2) 
over the entire parallel-plate waveguide, where J is given by 
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Fig. 3.5 Replacing the inductive sheets with periodically spaced sheets of electric surface 
current Jind. The top plate of the parallel-plate waveguide is shown with dashed lines. 

J = Jind/d (3.18) 

This continuous current density J is depicted in Fig. 3.6. Ampere’s Law can now be 
written for the inductively loaded parallel plate waveguide as follows: 

V x H = j w e , E + J  (3.19) 

where E = -Ec. Substituting in the expression for J yields 

V x H = j w  E,E------ ( w2Ld 

From the above equation, the total electric flux density 
parallel-plate waveguide is 

(3.20) 

in the inductively loaded 

(3.21) 

The effective permittivity of the inductively loaded parallel-plate waveguide can be 
obtained by dividing Dtotal by E: 

1 
E = E o - -  

w2Ld 
(3.22) 

The electric polarization P (the electric moment per unit volume) resulting from the 
inductive sheets is therefore 

(3.23) 

The electric polarization P is antiparallel to the electric flux density Do = E,E 
that would be present in an unperturbed parallel-plate waveguide. Equation (3.21) 
has the form D = EE = E,E + P = (1 + x&,E, where xe is the electric 
susceptibility. Therefore, the electric susceptibility of the inductively loaded parallel- 
plate waveguide is X e  = &iLd. The electric susceptibility is negative, since the 
electric polarization produced by the inclusions (the inductive sheets) is antiparallel 
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Fig. 3.6 Replacing the periodically spaced electric current sheets Ji,,d (Nm) with a contin- 
uous electric current density J (Nm2). 

Y 

< 
d 

Fig. 3.7 Cancellation of the electric currents induced on the inductive sheets by the impinging 
magnetic field intensity H. The electric currents are shown with arrows. 

to the electric flux density Do = E,E. At frequencies where xe < -1, the effective 
permittivity c = eo( l  + xe) of the inductively loaded waveguide becomes negative. 
The situation where the electric polarization P overcomes the impinging flux density 
Do (xe < -1) may seem unexpected or impossible at first. It implies that the 
response, P, is greater than the initial excitation Do. This, however, is not uncommon. 
Consider the situation where the field strength inside a passive resonator is much 
greater than its initial excitation. The large response simply builds up with time. 
From the above analysis, we see that effective permittivity of this system can be 
tuned by varying the sheet inductance L. 

In deriving the effective permittivity of the inductively loaded parallel-plate wave- 
guide, it was assumed that the impinging magnetic field intensity H does not affect 
the electric polarization. Using Faraday’s Law, it can be shown that this assumption 
is true for the inductively loaded parallel-plate waveguide with d << A. According 
to Faraday’s Law, the time-varying H field induces circulating electric currents in 
the loaded waveguide as depicted in Fig. 3.7, causing the electric currents induced in 
the vertical inductive sheets to cancel. From this simple argument, we see that the 
impinging H does not induce electric dipoles and the electric polarization remains 
unaffected. 
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3.3.2 Negative Permeability 

A parallel-plate waveguide with transverse slots of gap width dgap is depicted in 
Fig. 3.4. The parallel-plate waveguide serves as the host transmission line and the 
slots as the series capacitors in the dual TL model. The slots are periodically spaced 
at a distance d that is much smaller than the wavelength of operation (d << A). As in 
the previous section, a qualitative description of how capacitive transverse slots give 
rise to negative permeability is first given. The impinging electric current density 
J ,  in the top and bottom plates of the waveguide (or equivalently the magnetic 
field intensity H) produces a time-varying magnetic flux density between the plates 
B, = p o H .  This same electric current density J, also excites potential drops across 
the periodically spaced transverse slots. These potential drops generate a magnetic 
polarization P, that is antiparallel to the magnetic flux density B, that is present in 
an unperturbed parallel-plate waveguide. When the magnetic polarization P, due 
to the slots overcomes the magnetic flux density B,, the effective permeability of the 
capacitively loaded parallel-plate waveguide becomes negative [ 161. 

Now let us proceed with the mathematical formulation. The voltage across a slot 
can be related to the electric current density ( Js) in the plates of the parallel-plate 
waveguide by the per-unit-width capacitance (C)  of the slot: 

J,  = jwCVgap  (3.24) 

where C has units of pF/m in the 2-direction. We have simply equated the displace- 
ment current density across the slot to the electric current density in the plates of the 
parallel-plate waveguide. Using conformal mapping, the value of C can be derived 
[ 171: 

(3.25) 

From Ampere’s Law, we find that the electric current density J,  is equal to the 
average magnetic field intensity H between the plates of the parallel-plate waveguide. 
Therefore, (3.24) can be rewritten as 

H 
V g a p  = - 

j w c  
(3.26) 

Next we apply Faraday’s Law to the cross section of the capacitively loaded parallel- 
plate waveguide depicted in Fig. 3.8: 

E . d l + 1 3 E - d l =  - jwp ,  H . d A  (3.27) 

The line integral of theelectric field over 13 is simply Vgap given by (3.26). Therefore, 
(3.27) can be rewritten as 

Ll E .  dl = d + l ,  s,, 

(3.28) 
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Fig. 3.8 Applying Faraday's Law to the cross section of the parallel-plate waveguide with 
capacitive slots. 

1 

d 

X 

Fig. 3.9 A parallel-plate waveguide possessing a permeability p, and a magnetic current 
density (M,). 

Since both the height h, and the spacing d of the gaps is assumed to be much smaller 
than A, Vgap can be averaged over the cross-sectional area of the unit cell (A1 = hod) 
and brought into the integrand, yielding 

s E - d l = L l  
11+/2  

(3.29) 

This equation has the same form as Faraday's Law when applied to a parallel- 
plate waveguide possessing a permeability p, and magnetic current density M, (see 
Fig. 3.9): 

E * d l =  ( - ~ w ~ , H - M , ) . ~ A  (3.30) 

This suggests that the capacitor acts as a magnetic current density M, given by the 
following expression: 

(3.31) 

s 1 1 + h  Ll 
Hi - H 

M s = y -  
gwCh,d jwCh,d 

Expressed in differential form, (3.29) and (3.30) become 

H 
gwCh,d 

V x E = -jwpoH - - (3.32) 
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Fig. 3.10 Replacing the capacitive transverse slots with periodically spaced magnetic current 
densities k f s l o t .  

V x E = -jwp,H - M, (3.33) 

The link between the capacitive slot and the magnetic current M ,  can be established 
in a more intuitive manner using Love’s Equivalence Principle. The electric field 
intensity across the slot is equal to Egap = Vgap/dgap.  Substituting this result into 
(3.26) yields 

(3.34) 

By Love’s Equivalence Principle, the slot can be replaced by an equivalent magnetic 
surface current density Mslot that is covered by a perfect electric conductor [ 181, as 
shown in Fig. 3.10. The value of Mslot is given by 

where the normal unit vector fi is taken in the negative y-direction, since the region 
of interest is within the parallel-plate waveguide. Therefore, we have a parallel-plate 
waveguide with periodically spaced magnetic current densities. Substituting (3.34) 
into (3.35) yields an expression for Mslot: 

(3.36) 

Assuming the slot is narrow, the total magnetic current (Im) per unit cell length d is 

(3.37) 

The closely spaced (d << A) magnetic currents I, can be averaged over the cross- 
sectional area of the unit cell in order to find the continuous magnetic current density 
M, (see Fig. 3.9): 

I, HP M --=- 
’- hod jwCh,d 

(3.38) 

The value of M, given by (3.31) has now been recovered using the notion that the 
slot acts as a magnetic current, giving us further physical insight. 
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Now let us get back to deriving the effective Permeability of the capacitively 
loaded parallel-plate waveguide. Equation (3.32) can be rewritten in the following 
form: 

(3.39) 

From the above equation, we see that the total magnetic flux density Btotaz in the 
capacitively loaded parallel-plate waveguide is 

1 
Btotal = ( Po - -) w2Chod €3 (3.40) 

The effective permeability of the slotted parallel-plate waveguide can be obtained by 
dividing Btotal by H: 

1 
1 

p = p 0 - -  w2Chod 
(3.41) 

The magnetic polarization P, (the magnetic moment per unit volume) resulting 
from the capacitive slots is therefore 

-H 
poCw2dho 

P, = (3.42) 

Equation (3.40) has the form Btotal = pH = po(H + P,) = (1 + xm)poH, where 
X ,  is the magnetic susceptibility. Therefore, the effective magnetic susceptibility 

The susceptibility is of this slotted parallel-plate waveguide is X ,  = poCwzdh, .  

negative since the slots generate a magnetic polarization P, that is antiparallel to 
the magnetic flux density B, = poH of an unperturbed parallel-plate waveguide. At 
frequencies where X ,  < -1, the effective permeability p = po(l + xm) becomes 
negative. From the expression above, we see that the effective permeability of this 
system can be tuned by varying the slot capacitance. 

To derive the effective permeability of the slotted parallel-plate waveguide, the 
total magnetic flux Btotal between the plates was divided by the impinging H field. It 
was, however, assumed that the impinging electric field E does not affect the magnetic 
polarization. It will be shown through symmetry arguments that this assumption is 
in fact true for the slotted parallel-plate waveguide considered. The y components 
of the circulating electric field around each slot cancel due to their close spacing 
(d << A) and only the longitudinal (z-directed) electric field is excited, as shown in 
Fig. 3.1 1. For this reason, the impinging y-directed electric field E cannot couple to 
the slots resulting in an unchanged magnetic polarization. 

-1 

3.3.3 Combining Negative e and Negative p 

In the previous two sections, it was shown that shunt inductors give rise to negative 
electric polarization while series capacitors give rise to negative magnetic polariza- 
tion. Specifically, the impinging time-varying E field excites electric currents along 
the inductive sheets which produce an electric polarization P that is antiparallel to 
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electric field lines 

d 
-< 

d 

X 

Fig. 3.11 Cancellation of the vertical electric field components produced by adjacent slots in 
the parallel-plate waveguide with capacitive transverse slots 

the electric flux density Do that would be present in an unperturbed parallel-plate 
waveguide. Similarly, the impinging time-varying H field excites magnetic currents 
in the capacitive slots which produce a magnetic polarization P, that is antiparallel 
to the magnetic flux density B, that would be present in an unperturbed parallel-plate 
waveguide. Ensuring that xm < -1 for the slotted waveguide leads to a structure 
with negative p, while xe  < -1 for the inductively loaded waveguide leads to a 
structure with negative E. Consequently, one may argue that combining both the 
inductive sheets and capacitive slots into a single parallel-plate waveguide will lead 
to simultaneously negative p and E .  In order to design the permittivity and permeabil- 
ity independently as in the previous two sections, the induced electric and magnetic 
currents in the combined structure (with inductive sheets and capacitive slots) should 
not interact with each other. Again, it will be shown through symmetry arguments 
that this is in fact the case in the combined dual TL parallel-plate waveguide. 

The magnetic field intensity produced by adjacent inductive sheets cancels due to 
their close spacing as shown in Fig. 3.12. Therefore, the electric current density ( J i n d )  

along the inductive sheets does not produce a time-varying magnetic flux between the 
plates of the loaded waveguide and, as a result, does not induce an electromotive force 
across the slots. Consequently, the electric currents along the inductive sheets do not 
magnetically couple to the induced magnetic currents of the capacitive slots. Recall 
that the electric field radiated by the inductive sheets is vertical (y-directed) while the 
electric field radiated by the closely spaced slots is horizontal (z-directed); therefore, 
not only are the induced electric and magnetic dipoles magnetically decoupled, they 
are also electrically decoupled. 

3.4 THE 2-D DUAL TRANSMISSION LINE 

Transmission-line analysis, together with the Floquet Theorem, was used to show that 
the 1-D dual TL supports backward waves and acts as a 1-D negative-refractive-index 
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Fig. 3.12 Cancellation of magnetic field produced by adjacent inductive sheets. 

Fig. 3.13 The unit cell of the 2-D dual transmission line. After Ref. [ 191. Copyright @ 2003 
IEEE. 

medium. The same approach can be taken to show that a 2-D network of transmission 
lines [ 191 loaded with series capacitors and shunt inductors acts as a two-dimensional 
negative-refractive-index medium. The 2-D network of loaded transmission lines 
will be referred to as the 2-D dual TL. A schematic of the 2-D dual TL is shown in 
Fig. 3.13. The analysis of the 2-D dual TL presented in the previous two chapters 
was restricted to propagation along the principal axes (2- and z- in Fig. 3.13). In 
this section, the Floquet Theorem is applied in two dimensions and the propagation 
characteristics of the 2-D dual TL are found for all directions of propagation. Voltage 
and current relationships, Bloch impedance expressions and dispersion equations are 
first developed for a generalized 2-D periodic electrical network. These basic relations 
are then applied to the 2-D dual TL. Various resonances are examined which define 
the passbands and stopbands of the 2-D dual TL . Expressions for effective material 
parameters at frequencies of backward-wave homogeneous and isotropic operation 
are also derived, which provide a simplified understanding of the underlying band 
structure. 
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Fig. 3.14 The unit cell of a general 2-D periodic electrical T-network. After Ref. [19]. 
Copyright @ 2003 IEEE. 

3.4.1 The Generalized 2-D Periodic Electrical Network 

The propagation characteristics of the generalized 2-D periodic electrical network 
shown in Fig. 3.14 will be investigated in this section and the results subsequently 
applied to the 2-D dual TL. This generic four-port electrical network is studied since 
it applies to a wide range of circuits and electromagnetic structures. The network can 
provide insight into recent electromagnetic bandgap structures and planar anisotropic 
metamaterials [20-231. The general formulation applies to non-reciprocal periodic 
structures as well. The periodic electrical network depicted in Fig. 3.14 is general 
in the sense that the unit cell is represented by a generic T-network of transmission 
(ABCD) matrices. As illustrated, the four series branches of the T-network are 
characterized by four separate transmission matrices while a fifth transmission matrix 
represents the shunt branch. Four different series branches are considered to account 
for anisotropies that may exist in a structure. An infinite structure consisting of a 
2-D array of such unit cells can be analyzed by applying the Floquet Theorem to 
the Bloch voltages and currents at the ports of the unit cell. As shown in Fig. 3.14, 
the voltage and current at one port can be related to those at the opposite port by a 
wavenumber k, or k, in the 5- and a-directions, respectively: 
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where V1 to V4 and I1 to I4 represent the Bloch voltages and currents at the four ports 
of the unit cell . Two equations can be obtained by applying Kirchhoff’s voltage law 
(KVL) in the 5- and z-directions. One equation relates V, to I,, while the other 
relates V, to I,. Applying KVL from port 3 to port 4 yields a third equation relating 
V,, I,, V, and I,. Finally, applying Kirchhoff’s current law to the central node of 
the T-network provides a fourth equation relating V,, I,, V,, and I,. These four 
equations form the following system of linear homogeneous equations: 

f l l  f 1 2  0 0 

( F ) ( ; ) = ( f 3 1  O f 3 2  O f 2 3  f 3 3  f 3 4  f 2 4 )  ( ; ) = ( ; ) (3.45) 

f 4 1  f 4 2  f 4 3  f 4 4  

where 

R1= A1 D1- BlCl 
R2 = A2 D2 - BzC2 
R3 = A3 0 3  - B3C3 

R4 = A4D4 - B4C4 (3.47) 

Substituting the first two rows of the coefficient matrix F into the last two rows and 
assuming the series branches of the T-network are reciprocal (R1 = R2 = R3 = 
R4 = 1) yields the following simplified system of linear homogeneous equations: 
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(B1D3 + B3Dl)e-j’~’ 
B3e-jkxd + B1 

-(B2D4 + B 4 D ~ ) e - j ~ ” ~  
B4e-jkzd + B2 

1 + e -2 jkxd  - e- jkzd  (c1B3 + B1C3 + AID3 + DlA3 + B 1 D 3 ~ 5 + D 1 B 3 D z  B5 

B1+ B3e-jkxd 

1 + e - z j k z d  - e-jkZd(CzB4 + B2C4 + A2D4 + D2A4) 

B2 + B4e-jkzd 

911 = 

912 = 

921 = 

(3.49) g22 = 

For a nontrivial solution, the determinant of the coefficient matrix G must vanish. This 
yields the following dispersion equation for the generalized 2-D periodic electrical 
network that is reciprocal: 

The periodic TL networks that will be analyzed in this chapter act as isotropic 
media. They consist of T-networks with identical series branches so the following 
simplifications apply: 

(3.51) 

Given these simplifications, the dispersion equation (3.50) reduces to 

0 = B D  cos(kXd) + C O S ( ~ , ~ )  + 2 - 4AD - BD- ~ 5 1  (3.52) [ B5 

This dispersion relation defines the various passbands and stopbands of a periodic 
electrical T-network with identical series branches. 

Bloch impedances as in a standard 1-D periodic structure [12] can be defined 
using the first two rows of matrix F in (3.45). The Bloch impedances, which will be 
denoted as 2, and Z,, are the ratio of the voltage and current at ports 1 and 2 of the 
unit cell. The Bloch impedances for power flow in the positive 2- and z-directions 
are therefore 

(3.53) 

(3.54) 
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If the periodic structure consists of unit cells with identical series branches defined 
by ( 3.5 l), the Bloch impedance expressions simplify to 

V, - j B  
I, D tan(k,d/2) 

z,=-= 

(3.55) 

(3.56) 

Finally, an expression that relates V, and V, can be found, given a direction of 
propagation defined by k, and k,. It can be derived using the first row of matrix G 
in (3.48): 

Once more, assuming that the series branches consist of identical networks, (3.57) 
reduces to 

(3.58) 

In summary, (3.43) defines the relationship between the voltages and currents at ports 
1 and 3, while (3.44) specifies the relationship between the voltages and currents at 
ports 2 and 4. The Bloch impedances (3.53)-(3.56), on the other hand, define the 
dependence between the voltage and current at the same port. Equations (3.57) and 
(3.58) complete the picture by specifying the dependence between the voltages at 
ports 1 and 2. All four port voltages and currents can now be related given k, and 
kz. 

3.4.2 Periodic Analysis of the 2-D Dual Transmission Line 

The expressions derived in the previous section for a generalized 2-D periodic elec- 
trical network will now be applied to the 2-D dual TL shown in Fig. 3.13, in order to 
study its propagation characteristics. The 2-D dual TL has identical reciprocal series 
branches which can be represented by the transmission matrix of a 2 C  capacitor 
connected in series with a pd/2  section of transmission line [ 121: 

(339) 
where Z,, is the characteristic impedance, /3 the propagation constant, and d the length 
of the interconnecting transmission-line sections. The shunt branch is represented by 
the transmission matrix of a series inductance L: 

(3.60) 
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Substituting the matrix elements of the 2-D dual TL given by (3.59) and (3.60) into 
the general dispersion equation (3.52) yields 

where /3 = w/vb, q, is the phase velocity of the interconnecting transmission lines 
and k,, and k,, are the wavenumbers in the z- and z-directions, respectively. This 
dispersion equation defines the underlying band structure of the 2-D dual TL. 

Similarly, substituting the matrix elements of the dual TL into the general Bloch 
impedance equations (3.55) and (3.56), yields the Bloch impedances of the 2-D dual 
TL: 

These expressions for Z,, and Z,, resemble the Bloch impedance expression ZB for 
the 1-D dual TL given by (3.13). The only difference is that the wavenumber k in the 
l-D dual TL is replaced by k,, and k,, for the respective z- and z-directions in the 
2-D dual TL. The unit cells of the 2-D dual TL are symmetrical, therefore the Bloch 
impedances looking into the positive and negative z- and z-directions are negatives 
of each other. Just as a conventional TL is described by its characteristic impedance 
and propagation constant, the 2-D dual TL is characterized by its dispersion equation 
and by the z- and z-directed Bloch impedances. 

A dispersion characteristic for a representative 2-D dual TL is plotted in Fig. 3.15 
in the form of a Brillouin diagram. A physical understanding of this band structure 
can be gained through examining the various resonances which identify the location 
and nature of the 2-D dual TL's passbands and stopbands. It is clear from the high- 
pass configuration (series C and shunt L) of the 2-D dual TL that a stopband exists at 
low frequencies of operation. However, as the frequency is increased, the unit cells 
begin to resonate marking the onset of the structure's first passband of operation. The 
frequency at which the first passband begins (point a in Fig. 3.15) can be solved for 
by setting k,d = k,d = w in dispersion equation (3.61). Rearranging this dispersion 
equation yields the following expression: 

o = cos (F) [(4 - -) 1 cos (T) +2sin (T) (L + 5)] 
2w2LC Z,WC 2wL 

(3.63) 
The start of the passband (a) is found by setting the second product term in (3.63) 
equal to zero. Setting this term to zero is equivalent to computing the resonant 
frequency, WI, of the unit cell with all four terminals short-circuited to ground as 
shown in Fig. 3.16. This is evident from the fact that the Bloch impedances 2, 
and Z, vanish when k,,d = k,,d = x .  At WI, a resonance occurs between the 
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L = 11.278nH 

Wave Vector 

Fig. 3.15 Brillouin diagram for a representative 2-D dual TL. After Ref. [19]. Copyright 
@ 2003 IEEE. 

Fig. 3.16 Resonance identifying the onset of the backward-wave passband in the 2-D dual 
TL (w1). After Ref. [19]. Copyright @ 2003 IEEE. 

four parallel sections of pd/2 transmission lines grounded by 2C capacitors and the 
loading inductor L: 

where 01 = w~/v&. The left-hand side of (3.64) represents the impedance of 
the series branch in the 2-D dual TL: a pd/2  section of TL terminated in a 2C 
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capacitor. Within this first passband of operation (between points a and b), the 
structure supports backward-wave (BW) propagation because the wavevector k, = 
[k,,, kzn] and direction of power flow (given by the gradient to the dispersion surface) 
are antiparallel. A more intuitive explanation as to why this band supports backward 
wave propagation is provided in the next section. As the frequency is increased 
within the backward-wave passband, the magnitude of the wavenumbers decreases 
from k,, = k,, = 7r/d at the initial resonance (point a) to k,, = k,, = 0 at point b. 
At point b, the 2-D dual TL enters its second stopband region which extends to point 
c. The frequencies w2 and w3 of the stopband edges (points b and c in Fig. 3.15) can 
be solved for by setting k,,d = k,,d = 0 in the dispersion relation. The stopband 
edge, w2, is found by setting the first term in (3.61) to zero: 

(3.65) 

where p p  = wp/v+. The frequency, w2, represents either point b or c depending on 
the relative values of L and C in the 2-D dual structure. Equation (3.65) indicates that 
at wp,  the resonance shown in Fig. 3.17aoccurs. The ports and central node of the unit 
cell act as if they are shorted to ground, thereby short-circuiting the shunt inductors. 
At this resonance, each shorted p d / 2  transmission-line section resonates with a 2C 
capacitor. In other words, the series inductance L0d/2 (where 2, = d m )  of 
each p d / 2  TL section resonates with the 2C capacitor. 

The other stopband edge, w3 (either point b or c), can be solved for by setting the 
second term in (3.61) equal to zero: 

-- - yo tan (F) 1 

W3(4L) 
(3.66) 

where Yo = l/Zo is the characteristic admittance of interconnecting transmission- 
line sections and ,B3 = w3/v4. This expression suggests that the resonance depicted 
in Fig. 3.17b occurs at wg. The central node and ports of the unit cell act as if they 
are open-circuited, thereby open-circuiting the series capacitors. Accordingly, each 
open-circuited p d / 2  section of transmission line resonates with a 4L inductor. In 
other words, the shunt capacitance C0d/2 (where 2, = d a )  of each p d / 2  TL 
section resonates with a 4L inductor. 

Beyond the second stopband, there exists another passband supporting forward- 
wave propagation that extends from points c to d. Its upper cutoff frequency w4 

(labelled d in Fig. 3.15) can be found by setting the first term in (3.63) equal to zero: 

cos (Y )  = 0 (3.67) 

where ,04 = W ~ / V + .  This occurs when the interconnecting transmission-line sections 
become an odd multiple of half a wavelength. It is important to note that as the 
electrical length of the interconnecting transmission lines vanishes, the stopband 
edges wz and w3 are pushed to infinity. As a result, large bandwidths of NRI operation 
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(a) Resonance identifying w2. The series 
2C  capacitance resonates with a Dd/2 short- 
circuited section of TL. 

(b) Resonance identifying w3. The shunt 4L 
inductance resonates with a pd/2 section of 
open-circuited TL. 

Fig. 3.17 Resonances identifying the band edges of the stopband just above the backward- 
wave passband. After Ref. [19]. Copyright @ 2003 IEEE. 

are achievable with such TL structures. This was confirmed by the experimental 
focusing results of Ref. 24, which reported a backward wave propagation band over 
an octave bandwidth. 

In order to eliminate the stopband that extends from point b to c in Fig. 3.15 and 
allow a continuous transition between the backward-wave propagation band (between 
points a and b) and the forward-wave propagation band (between points c and d), one 
can make the resonances at wz and w3 coincide. The required condition for closing 
the stopband can be derived by setting w2 = w3 and combining (3.65) and (3.66). 
The condition for closing the stopband simplifies to [25] 

(3.68) 

recalling that 2, is the characteristic impedance of the interconnecting transmission 
lines and L and C are the loading inductance and capacitance, respectively. 

3.4.3 The 2-D Dual TL as an Effective Medium 

Within a given frequency range of the backward-wave passband, the 2-D dual TL 
shown in Fig. 3.13 appears isotropic and homogeneous. This frequency range occurs 
near the top of the backward-wave passband, just below point b in Fig. 3.15. The 2-D 
dispersion surface of the backward-wave passband has been plotted in Fig. 3.18 with 
the points a and b labelled as in Fig. 3.15. This dispersion surface has been plotted 
for the same L-C loading elements and transmission-line parameters identified in 
Fig. 3.15. As can be seen in Fig, 3.18, the fixed-frequency contours of the 2-D 
dispersion surface are circular just below point b, indicating that the propagation is 
isotropic: the phase velocity does not vary with direction. The frequency range of 
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b 

kzd (radians) kxd (radians) 

Fig. 3.18 Dispersion surface of the backward-wave (BW) passband in the 2-D dual TL. 

isotropic propagation is also sufficiently far from any Bragg conditions so that the 
2-D dual TL appears homogeneous. Since the 2-D dual TL is both isotropic and ho- 
mogeneous, it can be considered an effective medium. As a result, effective material 
parameters such as permittivity and permeability can be assigned to it. An effective 
medium perspective provides additional insight and a simplified understanding of the 
2-D dual TL's propagation characteristics. 

The frequency range where the 2-D dual TL acts as an effective medium occurs 
when the interconnecting transmission-line sections are electrically short (pd  << 1) 
and the per-unit-cell phase delay is small. The per-unit-phase delays remain small 
when the right-hand side of (3.61) is much less than 1. Under these two conditions, 
the dispersion equation (3.61) simplifies to 

(3.69) 

The wavenumber k, is simply the intrinsic wavenumber of the medium; that is, 

kzn = k, sin 4, k,, = kn cos 4 (3.70) 

where 4 is angle between k, and the z-axis. This dispersion equation can also 
be rewritten in terms of the distributed inductance Lo and capacitance Co of the 
interconnecting TL sections: 

ki = k;, + kzn = ( w L  - - w i d )  (w2co-&) (3.71) 
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where Z, = d m  and p = w-\/Lac,. The dispersion equation above (3.71) 
closely resembles the dispersion equation (3.14) of the 1-D dual TL. The only differ- 
ence is that the distributed shunt capacitance appears as 2C0 in the 2-D dual TL as 
opposed to simply C, in the 1-D dual TL. The reason for this becomes apparent if we 
consider on-axis propagation in the 2-D dual TL. For propagation along the z-axis, 
the s-directed Bloch impedance Z,, becomes infinite and the pd/2 TL sections that 
run in the z-direction appear as open-circuited stubs. For short TL sections (pd << l), 
the open-circuited TL stubs appear as a shunt capacitance Cod along the z-directed 
TL sections. Therefore, the distributed capacitance of the 2-D TL network becomes 
effectively twice that of a 1-D TL. The open-circuited stubs contribute a distributed 
capacitance C, and the z-directed TL section contributes C,, thereby making the 
effective distributed shunt capacitance 2C0 [4]. 

For frequency bands of homogeneous and nearly isotropic propagation, the Bloch 
impedance expressions reduce to the following: 

1 

p - m  (3.72) 
cos $ ’ sin 4 ’ d 2P-  

where Z, = Z, z n  z,, = - z n  z,, = - 

where Z, is the intrinsic impedance of the 2-D dual TL. The Bloch impedances of 
(3.72) can also be rewritten in terms of Lo, C, and w: 

(3.73) 
W L O  - &j 

coscp’ sin$’ d w 2 c 0  - &J where Z, = Z, 272 z,, = - z n  z,, = - 

In short, the intrinsic wavenumber k, and intrinsic impedance Z, can be found by 
considering propagation along one of the principal (2- or z-) axes, at a frequencies 
of isotropic and homogeneous propagation. For example, if propagation along the 
z-axis is used, we obtain 

k, = k,, when k, = 0 ,  Z, = Z,, when k, = 0 (3.74) 

The effective material parameters p, and E ,  of the 2-D dual TL can now be found 
using the intrinsic wavenumber k, and intrinsic impedance 2,. Having the effective 
material parameters allows one to make comparisons with idealized isotropic and 
uniform negative-refractive-index materials considered in most theoretical studies 
[26-43]. In addition, it allows one to directly compare the 2-D dual TL and the 
widsplit-ring resonator medium which is readily described in terms of effective 
material parameters [4447]. Just as the material parameters filling a parallel-plate 
waveguide can be related to the waveguide’s TL parameters for a TEM mode of 
operation, the effective material parameters of the 2-D dual TL can be related to k, 
and 2,. The effective permeability p,, as in all isotropic and homogeneous media, is 
given by the product of the wave impedance vn and wavenumber k,, divided by the 
angular frequency w. Similarly, the effective permittivity E, is given by k, divided 
by the product of 77, and w: 

(3.75) 
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d 

Grouid Plane 

Fig. 3.19 Microstrip implementation of the 2-D dual TL. The capacitors can be implemented 
as packaged components or printed elements. 

The wave impedance vn can be related to the intrinsic impedance 2, by a geometrical 
factor g2, where v = Z n / g 2 .  Therefore, the effective material parameters become 

(3.76) 

For unit cell geometries that are rectangular boxes of dimension d x d x h,, such as 
the microstrip implementation shown in Fig. 3.19, the geometrical factor g2 = h,/d. 
Finally, the distributed capacitance C, and inductance Lo of a transmission line can 
be expressed in terms of the material parameters of the host medium and another 
geometrical factor g in the following manner: 

P = Lo/g 
E = cog 

(3.78) 

(3.79) 

In other words, the geometrical factor g relates the characteristic impedance 2, of 
the interconnecting transmission-line sections to the wave impedance of the host 
medium: 

@" 9 

This leads to the following expressions for E ,  and p n  in terms of the host material's 
6 and p: 

1 

(3.80) P g  - wZCd Pn = 
Q2 

(3.81) 

Planar unit cell geometries such as the microstrip implementation depicted in Fig. 3.19 
can be approximated as a parallel-plate waveguide of thickness h, filled with a 
dielectric having material parameters p n  and en. 
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Equation (3.80) indicates that the loading series capacitor provides a negative 
magnetic susceptibility xm = - g2>Cd, since it reduces the effective permeability of 
the host medium. On the other hand, (3.8 1) indicates that the loading shunt inductance 
provides a negative electric susceptibility xe = -&, since it reduces the host 
medium’s permittivity. Within the backward-wave propagation band, the negative 
electric and negative magnetic susceptibilities dominate and the effective material 
parameters ( E , ,  p,) become negative. Therefore, the structure acts as a NRI medium 
at these frequencies. The negative material parameters explain the backward-wave 
nature of the propagation within the first passband of operation. Equations (3.80) and 
(3.81) also suggest that at high frequencies the effective material parameters become 
positive, due to a decrease of the electric and magnetic susceptibilities. The positive 
material parameters give rise to a high-frequency passband supporting forward-wave 
propagation. This propagation band corresponds to the passband in Fig. 3.15 that 
extends from c to d. At frequencies between the backward-wave and forward-wave 
propagation bands, one of the effective material parameters ( E ,  or p,) is positive while 
the other is negative. This causes the wavenumber k, to be imaginary, indicating the 
existence of a stopband. This corresponds to the stopband stretching from point b to 
c in Fig. 3.15. 

3.5 THE NEGATIVE-REFRACTIVE-INDEX (NRI) TL LENS 

In the 1960s Victor G. Veselago theoretically investigated the electrodynamics of 
materials possessing negative permittivity E and negative permeability p. Veselago 
showed that electromagnetic waves undergo negative refraction as they pass from 
a regular medium with positive material parameters (eP and p p ) ,  such as air, to a 
medium with negative material parameters ( E ,  and p,). Therefore, these materials 
with negative c and p possess a negative refractive index (NRI). Veselago explained 
how negative refraction allows a flat slab of material with negative material parameters 
to act as an unusual lens which focuses rays of light emanating from a source to 
an image on the opposite side of the slab. Figure 3.20 depicts the imaging of a 
monochromatic source by the NRI flat lens system (slab) envisioned by Veselago. 
The flat lens shown has E,(w) = -ep  and p,(w) = -pp at the frequency of 
operation. The rays in Fig. 3.20 denote the negative refraction of the propagating 
Fourier components. This simple ray diagram suggests that an internal focus exists 
within the slab at z = 2dl and an external focus exists beyond the second slab interface 
at z = 2dz - 2dl.The evanescent Fourier components, not shown in Fig. 3.20, decay 
away from the source in the positive refractive index (PRI) media on either side of the 
lens. The PRI medium would typically be air with pp = po and ep  = E , .  In 2000, 
John B. Pendry discovered that evanescent waves grow inside the NRI lens such that 
they are restored to their original source amplitudes at the foci [26]. Therefore, the 
decay the evanescent waves experience on either side of the lens is compensated 
by the growth within the lens. On the contrary, evanescent waves decay within a 
conventional curved lens and are lost at the focal plane, thereby creating an imperfect 
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image which is limited in resolution to approximately one wavelength. Therefore, it 
can be said that the flat NRI lens described by Veselago achieves “perfect imaging” 
since it focuses the source’s/object’s propagating waves and restores the amplitude of 
the evanescent waves at the focal plane. The NRI lens completely recreates the source 
plane at the internal and external focal planes. The “perfect imaging” predicted by 
Pendry only occurs when the lens and the surrounding PRI medium are lossless and 
two specific conditions are met. The NRI and PRI media 

1. must be impedance matched 

2. must have a relative refractive index of -1 with respect to each other. 

These two conditions ensure that the material parameters of the lens (p,, en)  are 
the negative of those for the surrounding medium: p,=-pp and E,, = -tp. The 
impedance match eliminates any reflections at the interfaces of the NRI lens and 
the relative refractive index of -1 ensures there are no aberrations; all Fourier 
components focus to the same point. Another important constraint to “perfect” 
or “near perfect” imaging is that the source’dobject’s evanescent spectrum must 
reach the NRI lens. In other words, the first interface of the lens must be in the 
sourceWobject’s near field, which extends to approximately X/2 from an elementary 
source. Therefore, the distance dl should be less than X/2 in Fig. 3.20. For distances 
longer than this, the evanescent waves typically fall below the noise floor of the 
system and are lost. 

It was shown in the previous section that for a given frequency range, the 2-D 
dual TL acts as an isotropic and homogeneous medium with simultaneously negative 
values of permittivity and permeability. In this section, a transmission-line imple- 
mentation of Veselago’s flat lens using the 2-D dual TL will be introduced. The 
continuous NRI slab depicted in Fig. 3.20 will be replaced by a network of 2-D dual 
TL unit cells which will be referred to as the negative-refractive-index transmission- 
line (NRI-TL) lens, and the PRI media on either side of the lens will be replaced by 
a 2-D network of unloaded transmission lines. In addition, the conditions for “per- 
fect imaging” using the NRI-TL lens will be derived. The peculiar electromagnetic 
phenomena associated with negative E and p materials such as negative refraction, 
the growth of evanescent waves and “perfect imaging” will be demonstrated using 
the NRI-TL lens in the subsequent sections. 

3.5.1 The Transmission-Line Implementation of Veselago’s NRI Lens 

Veselago’s flat lens depicted in Fig. 3.20 consists of a NRI lens with PRI media on 
either side of the lens. A practical implementation of Veselago’s lens using periodic 
TL-based networks is depicted in Fig. 3.21. The NRI lens is implemented as a network 
of 2-D dual TL cells which is finite in the z-direction and infinite in the 2-direction. 
The PRI media on either side of the lens are semi-infinite 2-D networks of unloaded 
TL unit cells shown in Fig. 3.22, which will be referred to as TL meshes. A TL mesh 
acts more or less as a parallel-plate waveguide at frequencies well below the Bragg 
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Fig. 3.20 Veselago's flat negative-refractive-index lens (the rays represent wavevectors). 

condition of ,Od = T. Both the TL mesh and NRI-TL lens shown in Fig. 3.21 are 
operated at frequencies of homogeneous and isotropic propagation and therefore, can 
be justifiably called effective media. At these frequencies, the 2-D dual TL exhibits 
backward-wave propagation (antiparallel phase and group velocities) characteristics 
and the TL mesh forward-wave propagation (parallel phase and group velocities) 
characteristics, as would a NRI and PRI medium respectively [ 191. For clarity, the 
2-D space shown in Fig. 3.21 is divided into four regions: A, B, C, and D. Region 
A extends from -00 < z 5 0 and region B extends from 0 5 z 5 hd ,  where h is 
a positive integer. The z = 0 line will be referred to as the source plane. Region C 
encompasses the NRI-TL lens. It extends from hd 5 z 5 Id, where 1 is a positive 
integer. The boundary between regions B and C will be referred to as the first 
interface because it corresponds to the distance z = d l  in Fig. 3.20. The TL mesh 
on the opposite side of the NRI-TL lens (Id 5 z < 00) will be labelled region D. 
Likewise, the boundary between regions C and D will be referred to as the second 
interface since it corresponds to the distance z = dz in Fig. 3.20. 

Since Region C encompasses the NRI-TL lens, the Bloch impedance expressions 
and wavenumbers within this region are given by the Bloch impedance expressions 
(3.62) and dispersion equation (3.61) for a 2-D dual TL. Regions A, B, and D are 
TL meshes, therefore the Bloch impedances and wavenumbers in these regions are 
given by the Bloch impedances and dispersion equation for a TL mesh. To study the 
MI-TL lens, we must first investigate the propagation characteristics of a TL mesh. 

3.5.2 Propagation Characteristics of the TL Mesh 

The TL mesh and 2-D dual TL are electrical networks, therefore it is natural to 
describe them in terms of propagation constants and impedances rather than effective 
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Fig. 3.21 The negative-refractive-index transmission-line (NRI-TL) lens: a practical imple- 
mentation of Veselago's flat lens. The array of currents provides a Bloch wave excitation (see 
text). After Ref. [50]. Copyright @ 2003 IEEE. 

Fig. 3.22 The unit cell of the transmission-line mesh (PRI medium). The unit cell consists 
of two crossed transmission lines. 

material parameters, which are commonly used to describe NRI media. Both TL 
networks can be completely characterized in terms of their dispersion equations which 
define the propagation constant, and Bloch impedance expressions that establish the 
relationship between voltage and current. The dispersion equation (3.61) and Bloch 
impedances Z,, and Z,, (3.62) have already been derived for the 2-D dual TL 
network. The dispersion equation for the TL mesh can be found by simply setting 
C -+ 00 and L -+ 00 in (3.61). The dispersion equation for TL mesh is therefore 
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sin2 ( y )  + sin2 ( y )  = 2 sin2 (:) (3.82) 

where w is the angular frequency, k,, and k,, are the wavenumbers in the x- and 
t-directions, respectively, d is the unit cell dimension, /? is the propagation constant 
of the interconnecting TL sections, and Z, is their characteristic impedance. The 
wavenumbers k,, and k,, can be related to the intrinsic wavenumber of the TL mesh 
by the following equations: 

k,, = kpsin(+), k,, = k,cos(+) (3.83) 

where + is the angle between wavevector k, and the z-axis. Similarly, the Bloch 
impedances of the TL mesh can be found by setting L 4 0;) and C 4 0;) in (3.62) 
[ 191: 

tan (9) tan (9) 
tan (v) ’ tan (v) zx, = 20 z * p  = 20 (3.84) 

Under conditions of isotropic and homogenous propagation (Pd << l), the intrinsic 
wavenumber and intrinsic impedance of the TL mesh are found by considering 
propagation along one of the main axes: 

kp = k,, when k,, = 0, Z, = Z,, when k,, = 0 (3.85) 

This leads to the following approximate expressions for the dispersion equation and 
Bloch impedances of the TL mesh: 

k i  = 2P2 = w2L02Co (3.86) 

sin+’ ZP Z - 6 = .&$ (3.87) ,- Jz z,, = - ZP z,, = - 
cos + ’ 

Similarly, the effective material parameters of the TL mesh can be derived: 

(3.88) kPVP - - N O = - -  kPZP z P Lo -- l -4  
C L p = w -  - 

g2w wg2 g2 g2 

(3.89) 

where the vp is the effective wave impedance of the TL mesh and the geometrical 
factors g, g2 are as previously defined for the 2-D dual TL. For planar unit cell 
geometries such as the microstrip implementation depicted in Fig. 3.23 the geomet- 
rical factor g2 = h,/d and the TL mesh can be approximated as a parallel-plate 
waveguide of thickness h, filled with a dielectric having material parameters p, and 
c,, under isotropic and homogeneous conditions. 
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Fig. 3.23 A microstrip implementation of the TL mesh. 

3.5.3 Conditions for “Perfect” Imaging in the NRI-TL Lens 

Now that the Bloch impedances and dispersion equations have been defined for the 
TL mesh and 2-D dual TL, the conditions needed to achieve “perfect” imaging can 
be expressed in terms of the L,C components and the TL parameters pd, 2,. The 
2-D dual TL and TL mesh are ideal, therefore they satisfy the lossless requirement 
of “perfect” imaging. Both TL networks must also be operated at a frequency where 
they behave as effective media with homogeneous and nearly isotropic propagation 
characteristics. It is clear from the dispersion equations (3.61) and (3.82) that such 
propagation characteristics exist when k,d << 1, k,d << 1, and pd << 1. The first 
condition for “perfect” imaging” requires the relative refractive index between the 
TL mesh and 2-D dual TL to be -1. This involves making the intrinsic wavenumber 
k, in the TL mesh and k, in the 2-D dual TL (NRI-TL lens) equal in magnitude but 
opposite in sign: k, = -k,. This condition can be met by equating the right-hand 
sides of (3.61) and (3.82). The second condition for “perfect imaging” requires that 
there be an impedance match between the TL mesh and NRI-TL lens. This condition 
can be met by equating the Bloch impedance expression for the TL mesh and 2-D 
dual TL. This involves setting the numerator of (3.62) equal to the negative of the 
numerator in (3.84). Assuming that the same TL parameters (Dd, 2,) are used for 
the 2-D dual TL and TL mesh, the two conditions of “perfect imaging” reduce to the 
following two simple expressions: 

1 
tan - = ____ ( y )  4wC2, 

(3.90) 

(3.91) 

It is worth mentioning that (3.90) is identical to (3.68), which is the condition for 
closing the stopband between the backward-wave propagation band and the next 
higher forward-wave band in the 2-D dual TL network. 

Table 3.1 lists the electrical parameters of a representative TL mesh and 2-D dual 
TL that satisfy the conditions of “perfect imaging” at a frequency of 1 GHz. The 
two complementary networks are impedance-matched and have a relative refractive 
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Table 3.1 Electrical parameters for the TL mesh and dual TL structure at 1 GHz 

0.33859 rad 90.00000 R 128.20565 R 0.23885 rad 21.25569 nH 2.58637 pF 

index of -1 with respect to each other at a frequency of 1 GHz. For simplicity, the 
same transmission-line parameters (Z, and pd) are utilized in both structures; as a 
result they only differ by the shunt L and series C components in the 2-D dual TL. 
Figure 3.24 shows the magnitude of the wavenumbers (k, and k,) for all propagation 
directions at 1 GHz for the TL mesh and 2-D dual TL defined in Table 3.1. The 
two plots are fixed-frequency contours of their respective dispersion surfaces at a 
frequency of 1 GHz. It is evident from the plot that the magnitude of the refractive 
index is the same for both structures, since the two curves overlap. The structures are 
also isotropic since the plots are circular, indicating that there is no spatial dispersion: 
the magnitudes of k, and k, do not change with direction of propagation 4. It is 
important to note that for any direction of power flow, the wavevectors in the two 
complementary networks are antiparallel. The z-directed Bloch impedances ( Zzp, 
Zzn) have been plotted in Fig. 3.25a as a function of propagation direction 4. Due 
to the symmetry of the cell, the Bloch impedances are plotted only for 4 = 0" to 
90". The impedances exhibit a 1/ cos 4 relationship as would a perpendicularly 
polarized electromagnetic wave. They asymptotically approach infinity at 90" given 
that the z-directed current is zero for a Bloch wave propagating along the x-axis. The 
x-directed Bloch impedances (Zzp, Zzn) for both networks are shown in Fig. 3.25b. 
In this case, the impedances exhibit a 1/ sin 4 relationship. They asymptotically 
approach infinity for 4 = 0, since the s-directed current is zero for Bloch wave 
propagation along the z-axis. Most importantly, Figs. 3.25a and 3.25b show that the 
two complementary networks are matched for all angles of propagation. 

Now that the intrinsic impedances Zn and Z, and the intrinsic wavenumbers k, 
and k, of the TL mesh and 2-D dual TL defined in Table 3.1 have been derived, we 
can compute their respective effective material parameters. Knowing the effective 
material parameters allows one to directly compare the NRI-TL lens, shown in 
Fig. 3.21, to Veselago's idealized lens shown in Fig. 3.20. In order to calculate the 
effective material parameters, we must first assume some unit cell dimensions. A 
planar geometry is assumed for both the 2-D dual TL and TL mesh (see Figs. 3.19 and 
3.23,respectively) withunitcelldimensionsdxdxt = 8.4mmx8.4mmx 1.524mm. 
These dimensions are chosen since they are the unit cell dimensions of a NRI-TL 
lens that was designed at the University of Toronto [48]. Due to the fact that the unit 
cells are planar, the geometrical factor g2 = t / d  = 5.5118. Using (3.76) and (3.77) 
for 2-D dual TL and using (3.88) and (3.89) for the TL mesh defined in Table 3.1, 
the effective material parameters work out to be 

Pn = -2.5392, en = -1.4575, ~p = 2.5392, e p  = 1.4575 (3.92) 
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Fig. 3.24 Fixed-frequency contours of the dispersion equations for the 2-D dual TL and TL 
mesh defined in Table 3.1. After Ref. [50]. Copyright @ 2003 IEEE. 
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Fig. 3.25 Bloch impedances as a function of incident angle for the 2-D dual TL and TL mesh 
defined in Table 3.1. After Ref. [50]. Copyright @ 2003 IEEE. 

The material parameters of the 2-D dual TL are simply the negative of those in the TL 
mesh. Thus, both TL networks are impedance matched and their relative refractive 
index is -1. In effect, we have shown that the TL mesh and 2-D dual TL are suitable 
PRI and NRI media for realizing Pendry’s “perfect” lens in the microwave regime. 

3.6 REFLECTION AND TRANSMISSION THROUGH THE LOSSLESS 
NRI-TL LENS 

Now that the TL meshes and the NRI-TL lens depicted in Fig. 3.21 have been 
characterized as both electrical networks and effective media, and the conditions for 
“perfect imaging” have been defined, we can proceed to investigate the reflection and 
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transmission of Bloch waves through the MI-TL lens. In this section, the voltage 
and current solutions are derived in regions A to D (see Fig. hefgrbic-GRBIFG22)for 
both propagating and evanescent Bloch wave excitations. This is done in order 
to demonstrate analytically negative refraction and the growth of evanescent waves 
within the NRI-TL lens. These results are then combined with an “array scanning” 
approach in the next section to analytically demonstrate “perfect imaging” using the 
NRI-TL lens. 

A Bloch wave excitation is achieved at the source plane (z  = 0) of the NRI-TL lens 
by placing an infinite array of y-directed current sources along the z-axis, as shown 
in Fig. 3.21. The current sources have equal amplitude I, and possess a progressive 
phase shift of -<. The current source at coordinate (z, z )  = (rd, 0) has a phase shift 
of -re, where T is an integer and d is the unit cell dimension. The infinite array of 
current sources actually excites two Bloch waves in the homogeneous and isotropic 
TL mesh. One Bloch wave in region A and one in region B. The Bloch wave in region 
B has a propagation direction 4 dictated by the phase-matching condition along the 
source plane: c = k,,d. This leads to the following expression for & familiar from 
antenna array analysis: 

(3.93) 

The direction of propagation of the second Bloch wave excited in region A is 7r - &. 
Propagating waves are excited by the infinite current array as long as 161 < Ik,dl. 
On the other hand, if the magnitude of the progressive phase shift < exceeds I kpdl 
(It1 > lkpdl) ,  then evanescent waves are excited by the infinite current array which 
decay in amplitude away from the source plane in the z-direction. 

Recall that the first interface is located at z = hd (h = 2 in Fig. 3.21) while the 
second interface of the lens is located at z = Id (I = 6 in Fig. 3.21). The phase 
matching condition along these two interfaces further dictates that the transverse 
wavenumbers must all be equal: k,d = k,,d = k,,d = <. Given the current array 
excitation, the voltage at any point (z, z )  = (md, nd) (where m and n are integer 
values) can be represented as a sum of an incident and a reflected Bloch voltage wave 
within each region. Matching the Bloch currents and voltages at the interfaces results 
in the following voltage solution: 

z 2 Id (reg. D) 
(3.94) 
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The voltage coefficients of the incident Bloch waves (Vl , Vz, V4, Vi) and the reflected 
waves (V3, Vs) are given by the following expressions: 

Vl = v2 + v3 

(3.95) 

The expressions rl and rZ are the Fresnel reflection coefficients initially seen by an 
incident Bloch voltage wave at the first and second interfaces respectively, while TI 
and T2 are the corresponding Fresnel transmission coefficients. They are given by 
the following expressions: 

The z-directed terminal currents Iz(md,  n d )  generated by the current array excitation 
can also be evaluated in the four regions (A to D) by dividing the voltage expressions 
of (3.125) by the z-directed Bloch impedances of the corresponding region: 

1, (md, nd) = J L e j k z p n d e - j m C  
ZZ P 

z 5 0 (reg. A) 

~,(md, nd) = [ z e - j k z n ( n - h ) d  

x e j k z n ( n - h ) d  e-jrnC hd 5 z 5 Id (reg. C )  

z 2 Id (reg. D) 

1 - 
Z z n  

~ ~ ( ( m d ,  n d )  = & e - j k z p ( n - l ) d e - j m €  
ZZ P 

(3.97) 
Since the progressive phase shift is equal to the transverse wavenumbers (E = k,d), 
the wavenumbers k,, and k,, can be found using dispersion equations (3.82) and 
(3.61), respectively: 

k,,d = 2 sin-’ { [z sin’ (F) - sin2 (:)I ’} (3.98) 
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The signs (+ or -) of these wavenumbers are determined by the radiation condition. 
The radiation condition stipulates that propagating waves carry power away from 
their source toward infinity and evanescent waves decay in amplitude away from 
their source toward infinity. For propagating waves, it is therefore assumed that the 
z-directed Bloch impedances are positive quantities. This restricts k,, to have a 
negative real part and k,, to have a positive real part [according to (3.62) and (3.84)] 
for frequencies of isotropic propagation. In other words, the TL mesh supports 
forward-wave propagation and the dual TL network backward-wave propagation. 
Evanescent waves are assumed to decay, therefore k,, and Ic,, are required to have 
negative imaginary parts: -jazn, -jazp. As a result, Z,, has an inductive reactance 
(X,,) and Z,, a capacitive reactance ( X z n )  for evanescent waves [see (3.62) and 
(3.84)]. In summary, the following conditions apply to lossless “perfect imaging” 
[ 491 : 

k z p  = -kzn, zzn = Zzp for propagating waves (3.100) 

k z p  = kzn, Z,, = -Z,, for evanescent waves (3.101) 

For the particular case of propagating waves incident on the “perfect” NRI-TL lens, 
the Fresnel coefficients become I’l = r2 = 0 and TI = Tz = 1. This implies that 
there are no reflections at the two interfaces of the NRI-TL lens, causing the voltage 
coefficients of the reflected waves to vanish; that is, V3 = V, = 0. The situation is 
quite different for evanescent waves. For evanescent waves incident on the “perfect” 
NRI-TL lens, the Fresnel coefficients rl , rZ7 Tl T2 become infinite and therefore 
V3 = V .  = 0. The fact that the voltage coefficient V, = 0 implies that the first 
interface of the NRI-TL lens is impedance matched to the TL mesh. On the other 
hand, V4 = 0 suggests that the incident evanescent wave within the NRI-TL lens 
(which decays in the positive z-direction) vanishes. The only wave present inside 
the NRI-TL lens is the reflected evanescent wave with voltage coefficient V5. This 
reflected evanescent wave decays in the negative z-direction. A wave that decays 
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in the negative z-direction is in fact a wave that grows in the positive z-direction. 
Therefore, what we have is in fact a growing evanescent wave within the lens! 

Under the conditions of “perfect imaging,” the voltage solution [given by (3.125)] 
for both propagating and evanescent waves simplifies to the following: 

Ioz,P e j k Z p n d e - j m <  V( rnd ,nd )  = - 
2 1 z 5 0 (reg. A) 

0 5 z 5 hd (reg. B) 

where k,, = -ja,, for evanescent waves. The voltage solution for region C (3.102) 
shows that the source plane voltage (voltage along z = 0) is recovered at z = 2hd 
(n = 2h). This corresponds to the location of the internal focal plane of the NRI- 
TL lens. Equivalently, the voltage expression for region D (3.102) indicates that the 
source plane voltage is again recovered at z = 2(1- h ) d  (n = 21 - 2h),  corresponding 
to the location of the external focal plane of the NRI-TL lens. 

3.6.1 Phase Compensation of Propagating Waves 

In Fig. 3.26, the phase of the terminal voltages in all four regions (A to D) are shown 
for the NRI-TL lens depicted in Fig. 3.21, under a propagating Bloch wave excitation 
by the current array. The electrical parameters of the TL mesh and 2-D dual TL used 
are those defined in Table 3.1. In these calculations, the amplitude of the current 
sources was set to I ,  = 19.1517 mA so that the voltage amplitude (V,( = 1 V at 
z = 0. The progressive phase shift of the current sources is set to 5 = 0.169295 
radians. According to (3.93), this progressive phase shift 5 excites a Bloch wave in 
Region B that is incident at an angle of q5 = 7r/6 radians normal to the first interface. 
As in Fig. 3.21, h = 2 and 1 = 6 are used in the computation. The voltage phase 
progression in Fig. 3.26 clearly shows the negative refraction of a propagating Bloch 
wave incident at 7r/6 radians. As anticipated, the phase of the incident plane wave 
(z = 0) is restored along the internal (z = 2hd = 4d) and external focal plane 
[ z  = 2(1 - h)d  = 8d].  Therefore, the MI-TL lens acts as a phase compensator for 
propagating plane waves, much like a conventional lens [ 19,501. 

3.6.2 Growth and Restoration of Evanescent Waves 

Next, a progressive phase shift 5 exceeding kpd is considered. The transverse 
wavenumber k,, = (/ti exceeds the intrinsic wavenumber k, in regions A and 
B, forcing the array of current sources to excite an evanescent Bloch wave. In 
other words, the z-directed wavenumber takes the form k,, = -jazp. The voltage 
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Contour plot of the voltage phase in regions A, B, C, and D for a propagating Bloch 
wave excitation along the source plane (n = 0). The dashed lines identify the interfaces of 
the NRI-TL lens. After Ref. [50]. Copyright @ 2003 IEEE. 

expression for region C in (3.102) becomes 

Equation (3.103) indicates that there is a growing evanescent wave within theNRI-TL 
lens, as predicted by Pendry [26]. In the same manner, it can also be shown that the 
voltages in regions A, B and D are decaying waves. Fig. 3.27 shows the magnitude 
plot of the terminal voltages for a current array excitation with progressive phase 
shift 5 = 0.5698. The TL mesh and 2-D dual TL structure defined in Table 3.1 are 
used once again. According to (3.98), this <‘corresponds to a,& = 0.4463. The 
current amplitude is set to I ,  = 28.5328 mA in order to yield a voltage amplitude of 
IVz I = 1 V at z = 0. As anticipated, the voltage plot indicates a growing evanescent 
wave within the NRI-TL lens (region C) and a decaying evanescent wave in the 
TL mesh regions (A, B, and D). The evanescent wave reaches a maximum at the 
second interface of the lens. Along the internal ( z  = 2hd = 4d) and external focus 
( z  = 2(1 - h)d  = 8 4 ,  the amplitude of the source ( z  = 0) is restored. Unlike 
a conventional curved lens, the NRI-TL lens restores the amplitude of evanescent 
waves and truly acts as a “perfect lens” [50,51]. The Bloch impedances for this 
evanescent wave excitation in the positive s- and z-directions are 

Z,, = 70.095j R, 
Z,, = -70.095j R, Zxn = -52.289 S2 (3.104) 

Within the TL meshes (regions A, B, and D), the s-directed Bloch impedance is 
positive and real, indicating that there is net power flow in the positive z-direction. 

Z,, = 52.289 52 
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Fig. 3.27 Contour plot of the voltage magnitudes in regions A, B, C, and D for an evanescent 
Bloch wave excitation along the source plane (n = 0). The dotted lines identify the interfaces 
of the NRI-TL lens. After Ref. [50]. Copyright @ 2003 IEEE. 

Conversely, the s-directed Bloch impedance is negative within the NRI-TL (region 
C), indicating that there is net power flow in the negative s-direction. This suggests 
that for growing evanescent waves, power flow circulates in the s-direction, forming 
an “S” pattern as one moves from region A to D. The z-directed Bloch impedances 
are both reactive due to the fact that the evanescent wave does not transport energy 
in the z-direction. The fact that the z-directed Bloch impedances are complex 
conjugates of each other under the conditions of “perfect imaging” reveals that 
the growth of evanescent waves is in fact a resonant phenomenon. The condition 
Z,, = -Zzp is equivalent to the condition for the existence of a surface plasmon 
(s-polarizedperpendicularly polarized) at the interface between uniform M I  and 
PRI semi-infinite half-spaces [52]: 

(3.105) 
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This can be shown by substituting the definitions of p p ,  p n  for the TL mesh and dual 
TL network into (3.105): 

(3.106) 

which is equivalent to Zzn = -Zzp for frequency bands of isotropic and homoge- 
neous propagation in the dual TL network and TL mesh. A surface plasmon is an 
electromagnetic mode that decays into both media but propagates along an inter- 
face. The evanescent waves decaying from the source couple to the surface plasmon 
resonances at the two interfaces of the NRI-TL lens. This interaction between the 
surface plasmons and the decaying incident wave is in fact what produces the growing 
evanescent wave within the lens. For an in-depth discussion of surface plasmons the 
reader is referred to Refs. 29 and 52-56. 

3.7 THE SUPER-RESOLVING NRI TRANSMISSION-LINE LENS 

In the previous section, the incidence of propagating and evanescent Bloch waves 
on the NRI-TL lens was studied by deriving the voltage and current solution for a 
y-directed current array excitation. Here, the voltage and current solution resulting 
from a single y-directed current source is derived, in order to study the super resolving 
ability of the NRI-TL lens. A transformation known as “analytical array scanning” 
[57,58] is applied to the previous solutions for a current array excitation in order to 
find the Green’s functions or voltage and current solutions due to a single current 
source [50]. The technique is essentially a Bloch wave expansion technique analogous 
to the spectral domain (plane-wave expansion) technique for continuous media [59]. 
Finally, the resolution limits imposed by periodicity, loss, and impedance mismatches 
are considered for the NRI-TL lens. 

A schematic of the single current source and NRI-TL lens setup being examined 
is shown in Fig. 3.28. The terminal voltages in all four regions (A to D) caused by a 
single current source excitation at the origin can be found by integrating the voltage 
solutions of (3.125) from -7r 5 < 5 7r and dividing the result by 27r: 

z 2 Id 

(3.107) 

The integration in (3.107) represents a superposition of the phased current array 
solutions (analyzed in the previous section) over the entire phase space: -T 5 < 5 T. 
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Fig. 3.28 Imaging of an elementary current source using a NRI-TL lens. 

This integration cancels out all the current sources in the infinite array along the source 
plane z = 0 except for the one located at z = 0, which has a zero phase for each 
phased current array solution. The cancellation of current sources occurs due to the 
simple fact that [58] 

(3.108) 

z 2 Id 
(3.109) 

Given the conditions of "perfect" imaging [(3.100) and (3. lol)], the terminal voltages 
at the source plane (z  = 0) are completely recovered at the internal (z  = 2hd) and 
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external focus [z  = 2(2 - h ) d ] .  Under these conditions, the terminal voltages at all 
three planes are 

(3.1 10) 

Under isotropic and homogeneous propagation characteristics, the terminal voltages 
simplify to 

where k,d = 5. The expression above is a zeroth-order Hankel function of the 
second kind, > H, (k,md), with a truncated spatial spectrum - r / d  5 k, 5 
n / d .  The periodicity is what truncates the spatial spectrum. The terminal voltage 
magnitudes at the source and external focal plane are shown in Fig. 3.29 for the NRI- 
TL lens depicted in Fig. 3.28 with ( 2  - h)d  = 4d. These voltages are computed using 
(3.107) for the TL mesh and 2-D dual TL defined in Table 3.1. In the computation, 
the current source is set to I ,  = 52.17e-j1.1604 mA in order to yield a voltage of 1 V 
at the source. As shown in Fig. 3.29, the terminal voltages along the external focal 
plane are identical to those at the source plane. 

Under the conditions of “perfect imaging,” the terminal currents at the source 
plane (z  = 0) are also completely recovered at the internal and external focal planes. 
Under these conditions, the z-directed terminal currents at all three planes are given 
by the following expression: 

I,k 2 d (2) 

I,sinc( mn) 
I ’ (md ,  n d  = 0)  = 2 (3.112) 

Hence, there is a current null at the terminal of each unit cell (5 = m d )  except for 
m d  = 0. The terminal current magnitudes at the source and external focal plane are 
shown in Fig. 3.30 for the NRI-TL lens depicted in Fig. 3.28 with (1 - h)d  = 4d. 
These currents are computed using (3.109) for the TL mesh and 2-D dual TL defined 
in Table 3.1. The current source is again set to I, = 52.17e-j1.I6O4 mA for this 
computation. 

In addition to the source and image, the diffraction-limited voltage and current 
patterns are also shown in Figs 3.29 and 3.30. The two diffraction-limited patterns 
for voltage, V&1 and V,,, are plotted in Fig. 3.29. The diffraction-limited pattern 
V&, is obtained by inverse Fourier transforming only the propagating Bloch voltage 
spectrum (Bloch waves) of the source [60]: 

(3.113) 

This diffraction-limited pattern assumes that the evanescent spectrum of the source is 
lost in the imaging process, and the image comprises only of propagating waves. This 
is generally the case with conventional imaging systems such as curved dielectric 
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Fig. 3.29 Magnitude of the terminal voltages at the source plane (n = 0) and external 
focal plane (n = 8 )  at 1 GHz when imaging a current source using the NRI-TL lens. The 
normalized diffraction-limited patterns are also shown. After Ref. [SO]. Copyright @ 2003 
IEEE. 

lenses [26]. Under isotropic and homogeneous conditions, V&-, reduces to the 
following (recall < = k,d): 

(3.1 14) 

where k,, is approximated by the isotropic dispersion equation: 

k,, = 4- (3.1 15) 

The diffraction-limited pattern is a Bessel function of the first kind, of order 
zero. This Bessel function has its first zeros at k,md = f2 .4048.  Therefore, the 
null-to-null beamwidth of V&-1 is Ax = 4.8O9/kp = 0.77X, where X = 2 n / k p  is 
the wavelength of operation. The beamwidth corresponds to 4.809/ (kpd)  unit cells 
in the TL mesh. For the NRI-TL lens defined in Table 3.1 kpd = 0.33859, therefore 
the beamwidth of V&l shown in Fig. 3.29 is 14.2 unit cells. 

Due to the close proximity of the source and image when imaging using a NRI 
lens, a second diffraction-limited pattern V d g 2  has also been plotted in Fig. 3.29. 
This diffraction-limited pattern takes into account the attenuated evanescent waves 
that reach the external focal plane. It represents the best image one can hope to 
achieve with a conventional lens in the near field. To obtain Vdw2, the propagating 
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distance (L) 

Fig. 3.30 Normalized magnitude of the terminal currents at the source plane (n = 0) and 
external focal plane (n = 8) at 1 GHz. The normalized diffraction-limited patterns are also 
shown. 

Bloch waves emanating from the source are focused, whereas the evanescent Bloch 
waves are assumed to exponentially decay from the source to image with attenuation 
factors corresponding to that in the TL mesh: 

IoZ,k,d a l d  e - j ( k z p + k z n P e - j k , m d  

dkX l a / ,  k,, 
& ~ 2 ( 7 4  = 7 

where k,, is given by the following isotropic dispersion equations: 

for k,  < k,  k,, = -kzn = d k ,  2 - kx2 

k,, = k,, = - j d k x 2  - kP2 for k,  > k, (3.1 17) 

and D = (1 - h)d  is the thickness of the NRI-TL lens in the z-direction. Both 
diffraction-limited patterns, v d g ,  and V d 8 . 2  are quite similar in Fig. 3.29 since the 
source-to-image separation for the NRI-TL lens defined in Table 3.1 is sufficiently 
large such that most of the evanescent wave contribution is removed from V d g 2 .  The 
source-image separation is 2 k p D  = 8kpd = B(0.33859) = 2.71 rad or equivalently 
0.43X, which is very close to the approximate limit of 0.5X to which the near-field 
extends. 

As with voltage, diffraction-limited patterns for current can also be defined. The 
two diffraction-limited patterns for current, and 1d$2, are plotted in Fig. 3.30. 
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Contour plot of the voltage magnitude when imaging a current source using the 
NRI-TL lens. After Ref. [50]. Copyright @ 2003 IEEE. 

Following the same convention, Idfll is the diffraction-limited pattern that neglects 
the evanescent wave contribution and Idfl.2 is the diffraction-limited current pattern 
that takes into account the attenuated evanescent waves that reach the external focal 
plane: 

where k,, is approximated using (3.115); 

where k,, is given by (3.117). The diffraction-limited current pattern is a 
sinc function which has its first zeros at k,md = fn. Therefore, the null-to-null 
beamwidth of Id@l is Ax = 2n/ (k , )  = A. This beamwidth corresponds to 2 n / ( k p d )  
unit cells in the TL mesh. For the NRI-TL lens defined in Table 3.1 kpd = 0.33859, 
therefore the beamwidth of v d @ ,  shown in Fig. 3.29 is 18.6 unit cells. 

The current and voltage images plotted in Figs. 3.29 and 3.30, respectively, clearly 
show finer resolution than the diffraction-limited patterns. Therefore, the practical 
microwave lens depicted in Fig. 3.28 acts as a “superlens” allowing imaging beyond 
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Fig. 3.32 Contour plot of the voltage phase when imaging a current source with the NRI-TL 
lens. 

the diffraction limit and the usual restrictions of the wavelength of operation. This 
super-resolving ability is due to the lens’ ability to restore evanescent waves. 

To gain a better understanding of the “perfect imaging” taking place, the entire 
voltage solution (for regions A, B, C, D) is shown in Figs. 3.31 and 3.32. Figure 
3.31 is a contour plot of the voltage magnitudes at the terminals of the unit cells 
in both TL mesh regions and the NRI-TL lens. These results were computed by 
numerically solving the integrals in (3.107). High-voltage amplitudes are evident 
near the second interface (n = 6) due to the growing evanescent waves in the NRI- 
TL lens. Figure 3.33 explicitly plots the voltage magnitude along the central row 
(m = 0). The plot reveals that the source amplitude is recovered at [n, m] = [4,0] and 
[n, m] = [6,0], the internal and external focus, respectively. The voltage magnitude 
is the highest along the central row (m = 0) since the evanescent waves all add in 
phase. In addition, the voltage magnitudes further from the central row (m = 0) form 
three distinct cylindrical waves with centers that identify the source [n, m] = [0, 01, 
the internal focus [n, m] = [4,0] in the NRI-TL lens, and the external focus [n, m] = 
[8,0] (refer to Fig. 3.28). To further clarify the nature of the “perfect imaging,” the 
phase distribution of the terminal voltages is shown in Fig. 3.32. Three cylindrical 
waves are again revealed by the phase plot which identify the source and the internal 
and external foci. Furthermore, a region of constant phase is formed along the central 
row at the second interface [n, m] = [6,0]. The fact that the phase is constant is 
consistent with the notion that this region is dominated by-the evanescent Bloch 
waves. 

The magnitude and phase plots of the voltage solution show that the region to the 
left of the source (n 5 0) is exactly recreated in the region to the right of the external 
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Fig. 3.33 Voltage magnitudes along the central row (m = 0) at 1.0 GHz when imaging 
an elementary current source using the NRI-TL lens. The vertical solid lines identify the 
source (n  = 0) and external focal plane (n  = 8) while the vertical dashed lines identify the 
interfaces of the NRI-TL lens. 

focus (n 1 8). The two half-spaces are completely identical. To an observer located 
in the region n 2 8, it appears that the source is located at the external focus. The 
“perfect imaging” observed is peculiar in the sense that the phase center does not 
coincide with the location of maximum signal amplitude, as in conventional optics. 
The maximum signal amplitude occurs at the lens’ second interface [n, m] = [6,0] 
while the phase center (the external focus) occurs at [n, m] = [8,0]. 

3.7.1 The Effect of Periodicity on Image Resolution and the Growth of 
Evanescent Waves 

According to Fourier optics, the minimum feature A x  that can be resolved by a lens 
is related to the maximum transverse wavenumber k,  = k,,,, that contributes to the 
image, by the Fourier transform relationship: kxmaxAx N 27r. When imaging using 
conventional lenses, evanescent waves are lost due to the attenuation they experience 
from the sourcdobject to the focal plane. Therefore, k,,,, is bounded by the 
wavenumber of the surrounding medium kp.  and the minimum resolvable feature 
remains on the order of a wavelength: A x  - 27r/kp = A. Lenses with numerical 
apertures less than 1 are further limited by the fact that not all the propagating 
wavenumbers k,  are captured by the lens. As was shown, the NRI-TL lens (or NRI 
lenses in general) supports growing evanescent waves which restore some of the 
object’s evanescent spectrum at the focal plane [26]. This results in k,,,, > kp  and 
the minimum resolvable feature A x  - 2 ~ / k , m a ,  becomes smaller than a wavelength 
( A x  I A). Hence, the ratio Re = k,,,,/kp, which has been referred to as the 
resolution enhancement, can be used as a figure of merit for lenses [34,61]. For 



THE SUPER-RESOLVING NRI TRANSMISSION-LINE LENS 141 

example, a conventional lens cannot surpass a resolution enhancement Re = 1 and 
a perfect lens has a Re --+ 00, while Re for a practicalhmperfect NRI lens lies 
somewhere in between 1 < Re < 00. 

The integration limits of the voltage and current solutions of (3.107) and (3.109) 
reveal that the periodicity of the PRI (TL mesh) and NRI (2-D dual TL) media impose 
a resolution limit. According to the integration limits, the maximum 2-directed Bloch 
wavenumber is k, = k,,,, = r / d .  This yields a resolution enhancement of 

(3.120) 

Accordingly, the periodicity required for a given Re is given by the following ex- 
pression: 

(3.121) 

The lossless NRI-TL lens depicted in Fig. 3.28 and defined by the parameters in Table 
3.1 would therefore have a resolution enhancement of Re = r/ .33859 = 9.3. In 
other words, the image would only include Bloch waves with transverse wavenumbers 
intherange0 I [kxpl 5 9.3kp. FortheNRI-TLlenssystemshowninFig. 3.28, k,,, 
is limited right at the source. This occurs because, in addition to the NRI-TL lens 
being periodic, the PRI medium (TL mesh) in which the current source is embedded 
is periodic as well. This explains why there is no apparent loss in resolution at 
the focal planes given by (3.110). A “perfect image” of a spatially filtered source is 
obtained. Conversely, if the source were in a continuous medium, its spatial spectrum 
would include wavenumbers in the range -00 < k,  < 00 and the resolution would 
be limited solely by the periodicity of the NRI lens. In this case, “perfect imaging” 
could not be achieved but super resolution (k,,,, > k p )  would still be possible. 

It is important to realize that k,,,, places a limit on the maximum a2,, the 
“amplification” factor of the Bloch evanescent waves [see (3.99)]. This limitation 
on azn prevents the voltages and currents from growing to unphysically large values 
at the second interface of a practical lens having finite thickness D = ( I  - h)d.  In 
fact, the periodicity provides a natural mechanism by which the amplitudes of the 
evanescent waves are limited. The finer the periodicity, the larger the maximum 
amplitude of the growing evanescent waves and the higher the resolution [50]. 

3.7.2 The Optical Transfer Function of the NRI-TL Lens 

As with other imaging systems, linear systems theory and Fourier analysis can be 
applied to the NRI-TL lens. Namely, the lens can be characterized mathematically 
using the techniques of frequency analysis by defining an optical transfer function 
that maps the spatial spectrum of the source to that of the image [62].  Before we 
proceed, however, a few terms need to be defined. The spatial spectrum of the 
terminal voltages along the external focal plane [n = 2(1 - h)] will be labelled the 
Bloch voltage spectrum of the image Fv(c) .  Similarly, the spatial spectrum of the 
terminal voltages incident along the source plane (n = 0) will be labelled the Bloch 
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voltage spectrum of the source SV (c) .  The two spectra are given by the following 
expressions derived from (3.94): 

v2 IoZZp S v ( 0  = - = - 
2iT 4iT 

(3.122) 

The Bloch voltage spectrum of the source extends from -n / (k ,d )  5 k x / ( k p d )  5 
n/ (k ,d ) .  The Bloch voltage spectrum of the source is plotted in Fig. 3.34 for the 
NRI-TL lens defined in Table 3.1. The current source is set to I ,  = 52.17e-j1.1604 
m A  so that the source voltage is 1 V. Since k,d = 0.33859 radians for this particular 
lens, its Bloch voltage spectrum spans -9.3 5 k x / k ,  5 9.3. 

Now that the Bloch voltage spectra of the source and image have been defined, 
an optical transfer function (OTF) can be defined that describes the lens’ spatial 
frequency response. The optical transfer function for the NRI-TL lens is simply the 
ratio of the Bloch voltage spectrum of the image Fv(E) to the Bloch voltage spectrum 
of the source Sv(E): 

(3.124) 

where D = (I - h)d is the thickness of the NRI-TL lens in the z-direction. The 
terminal voltages along the external focal plane of the NRI-TL lens depicted in 
Fig. 3.28 can be recovered by an inverse discrete-space Fourier transform of F,(<): 

V ( m , n  = 21 - 2h)  = Fv(<)e- jmcdc = Sv(c)Te-jmc d( (3.125) 

It is a discrete-space Fourier transform because we are only dealing with the unit 
cell terminals; a discrete set of points. Note that under the conditions of “perfect 
imaging” the OTF is unity (T = l), therefore S v ( c )  = Fv(5)  and the terminal 
voltages along the source and external focal plane become identical. 

Just as the voltage spectra of the source and image have been defined, the current 
spectra can also be defined. The spatial spectrum of the terminal currents along the 
external focal plane I Z ( n  = 21 - 2h)  will be labelled the Bloch current spectrum 
of the image FI(J ) ,  while the spatial spectrum of the incident terminal currents 
I , (n = 0) along the source plane, the Bloch current spectrum of the source Sr(J). 
The Bloch current spectra of the source and image are given by 

L L 

(3.126) 

(3.127) 

The Bloch current spectrum of the source is uniform and spans - n / ( k P d )  5 
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Fig. 3.34 Magnitude of the Bloch voltage spectrum of the source sv(<). 
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Fig. 3.35 Magnitude of the Bloch current spectrum of the source s~(<) .  

k , / ( k p d )  5 .rr/(k,d). The current spectrum of the source for the NRI-TL lens 
defined in Table 3.1 is plotted in Fig. 3.35 for I, = 52.17e-j1.1604 mA. The ratio 
of FI(J) to SI(<) is simply the O F  of the NRI-TL lens. As before, the terminal 
currents along the external focal plane [ Iz (n  = 21 - 2h)] can be recovered by a 
discrete-space inverse Fourier transform: 

Iz(m, n = 21 - 2h) = FI(<)e-jmc d< = SI(<)Te-jmc d< (3.128) 
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For the particular case of “perfect imaging,” T = 1 and the terminal currents at the 
external focal plane are identical to those at the source plane. 

Thus far, it was assumed that the current source is placed at the terminals of a unit 
cell. However, if the current source is placed at the central node of a TL mesh unit 
cell, the Bloch voltage spectrum of the source changes slightly to the following: 

IOZZ, cos2 (q)  
St(0 = 

47~ cos2 (%) 
The Bloch voltage spectrum of the image then becomes Fh(E) = TS&(J).  

(3.129) 

3.7.3 The Resolving Capability of a Lossy NRI-TL Lens 

Using the concept of the optical transfer function, the limitations on image resolution 
imposed by impedance mismatches and losses are explored in this section [ 131. The 
analytical formulation of imaging using the lossless NRI-TL lens presented earlier is 
expanded in order to study these effects. The models of the 2-D dual TL and TL mesh 
are extended to include losses. A conductance 2G is added in parallel with the series 
capacitor 2C and a resistance R is added in series with the shunt inductance L, in the 
2-D dual TL unit cell depicted in Fig. 3.36. These dissipative elements account for 
the losses inherent to practical capacitors and inductors, and are commonly expressed 
in terms of quality factors, QL for the inductor and Q c  for the capacitor: 

WL w c  
QL = - Qc = G R ’  

(3.130) 

The loss in the interconnecting TLs can be accounted for by a complex propagation 
constant: /3 = - ~ C Y T L  f PTL. This loss can be expressed in terms of a TL quality 
factor: 

PTL 
QTL = - 

~ C Y T L  
(3.131) 

Accounting for the lossy components simply means replacing 2C with 2C( 1 - j / Q c )  
and L with L( l  - ~ / Q L )  in the dispersion relation (3.61) and Bloch impedance 
expressions (3.62) for the lossless 2-D dual TL: 

(3.1 32) 

1 
’ 0  tan (9) - Z w C ( l - j / Q c )  

1 
’ 0  tan (9) - S w C ( l - j / Q c )  

, z z n =  
tan ( y )  tan ( y )  zzn = 

(3.133) 
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Fig. 3.36 The unit cell of the lossy 2-D dual TL. The conductance 2G and resistance 
R account for the losses inherent to the series capacitor 2C and shunt inductor L. The 
loss in the interconnecting TLs is accounted for by the complex propagation constant P = 
- jaTL  + PTL. 

where ,f3 = - - j a ~ ~  + PTL = / 3 ~ ~ ( 1  - ~ / ( ~ Q T L ) ) .  The dispersion equation and 
Bloch impedance expressions for the TL mesh remain the same, other than the fact 
that the propagation constant p is now a complex number. Correspondingly, the lossy 
effective material parameters for the 2-D dual TL become 

Recall that to achieve “perfect imaging,” the TL mesh and 2-D dual TL must be 
lossless, that is the quality factors must be infinite: QL = QC = QTL -, 00. 

Under the conditions of “perfect imaging” [see (3.100) and (3.101)], there is 
perfect transmission T = 1 for both propagating and evanescent Bloch waves and the 
resolution enhancement of the NRI-TL lens is limited only by the lens’ periodicity 
given by (3.120). However, the loss and impedance mismatch of practical NRI-TL 
lenses further limit the resolution enhancement beyond that imposed by periodicity. 
The effect of losses and impedance mismatches can be studied by plotting the OTF (T 
vs. k, /k , )  for variations in TL parameters (Zo, Pd), quality factors (Qc, QL,  QTL), 
and L-C component values. In general, losses and impedance mismatches remove 
some of the higher transverse wavenumbers k,  (evanescent Bloch waves) from the 
image that capture the subwavelength features of the sourcdobject. Essentially, the 
image becomes a spatially lowpass filtered version of the source. As was shown in 
Refs. 29 and 34, the resolution enhancement of an imperfect lens can be estimated 
by examining the denominator of the OTF (3.124). 
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(a) symmetric polariton (b) antisymmetric polariton 

Fig. 3.37 Electric field profile of the polaritons of the NRI-TL lens. The vertical dashed lines 
identify the interfaces of the NRI-TL lens. 

First, let us examine a lossless impedance mismatch between the NRI-TL lens and 
the TL meshes on either side. A lossless impedance mismatch refers to the situation 
when the Fresnel reflection coefficient I'l is a real number. At the design frequency, 
this type of mismatch introduces a pole in the OTF (3.124) since the I?: term in 
the denominator of the OTF is a positive real number. For small Bloch impedance 
mismatches (good NRI-TL lens designs), this pole occurs for an evanescent Bloch 
wave having a large transverse wavenumber k, > kp and therefore a decaying 
longitudinal wavenumber k,, = -ja,,. Setting the denominator of (3.124) equal 
to zero yields 

r12 = e 2 a ~ m D  (3.136) 

where k,, = -jazn is related to k, by dispersion equation (3.61). This pole 
disproportionately augments the evanescent Bloch waves in its vicinity and as a 
result distorts the image. Additionally, as k, increases beyond the vicinity of the 
pole, the first term in the denominator of the OTF (3.124) begins to dominate and 
T exponentially drops in magnitude. Therefore, the transverse wavenumber (k,) 
identifying the pole can be used as a conservative estimate of k,,,,, the maximum 
transverse wavenumber contributing to the image. However, the losses inherent to 
practical lenses dampen this pole resonance in T. Pole resonances such as this 
represent the excitation of polaritons of the NRI-TL lens [29,53,55,56]. Equation 
(3.136) is the transverse resonance condition for guided modes that have an evanescent 
profile (polaritons), that is imaginary z-directed wavenumbers (a,,, aZp) both inside 
and outside the NRI-TL lens as depicted in Fig. 3.37. The surface plasmons at 
the two interfaces of the NRI-TL lens [given by (3.106)] couple and give rise to 
these polaritons. The incident evanescent Bloch wave with transverse wavenumber 
k,  = k,,,, pumps the guided polariton and eventually drives the fields of the mode 
to infinity under lossless conditions, effectively drowning out the source and its image. 
By taking the square roots of (3.136), the dispersion relation for the symmetric and 
antisymmetric polaritons of the NRI-TL lens shown in Fig. 3.37 can be derived: 
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-Zzn coth ( T) QznD = Z,, 

-Zzn tanh ( T) QznD = Z,, 

(3.137) 

(3.138) 

where D = (1 - h)d is the thickness of the NRI-TL lens. The dispersion relations of 
the symmetric and antisymmetric polaritons are plotted in Fig. 3.38 for the NRI-TL 
lens shown in Fig. 3.28 with parameters defined in Table 3.1. This NRI-TL lens 
design satisfies the conditions of “perfect imaging”; therefore neither polariton is 
explicitly excited at the design frequency of 1 GHz. The dispersion curves asymp- 
totically approach 1 GHz as the transverse wavenumber k, increases. If the lens was 
mismatched, however, a polariton dispersion relation would have crossed the 1-GHz 
horizontal line (see Fig. 3.38) at a finite k,, identifying the wavenumber k,,,,. By 
expressing Z,, and Zz, in the above dispersion equations (3.137) and (3.138) in 
terms of p n  and p,, the dispersion relations become the same as those for polaritons 
of a uniform NRI slab for perpendicular / s-polarization [29,53,55,56,63-67]: 

-& coth (T) QznD = - ~p 

Qzn Q Z P  

(3.139) 

-- Pn tanh (y) = (3.140) 
Q z n  Q Z P  

As the electrical thickness of the lens is increased, the polariton cutoff wavenumber 
(the pole in the OTF) moves to a lower attenuation constant (azp) corresponding to 
a lower k,,,,. This results in decreasing resolution enhancement Re = k x m a x / k p  
with increasing lens thickness (D = 1 - h), for a fixed impedance mismatch defined 

The effect of losses on the OTF is now considered in detail. In this case, rl 
is primarily due to the added losses in the NRI-TL lens so that rl is an imaginary 
number. This implies that r12 is a negative real number, therefore this mismatch due 
to loss does not introduce a pole in the OTF (3.124). Nevertheless, it still attenuates 
the higher transverse wavenumbers. Equating the two terms in the denominator of the 
OTF (3.124) provides a conservative estimate of the transverse wavenumber k,,,, 
at which T exponentially drops in magnitude: 

by r1. 

-r12 = e2ffznD (3.141) 

This transverse wavenumber is approximately the -643 point in the OTFs low pass 
response when T is plotted versus k,. As before, it can be used as an estimate for 
k,,,,. A general formula for estimating k,,,,, whether the resolution enhancement 
Re is limited by loss or by a lossless impedance mismatch, is 

lrll = e f fznD (3.142) 

Assuming the MI-TL lens is well-designed (rl is small), the situation given by 
(3.142) occurs for a large transverse wavenumber (k, >> kn) such that I k, 1 - lazn I. 
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0.5 1 1.5 
kxd (radians) 

Fig. 3.38 Dispersion relations for the polaritons of a NRI-TL lens. The dispersion relation 
for the symmetric polariton is shown with a dotted line and the antisymmetric polariton with 
a solid line. The triangles identify k ,  = k ,  (the intrinsic wavenumber in the NRI-TL lens) 
and the circles identify k,  = k,  (the intrinsic wavenumber in the TL mesh). The dispersion 
relation for a bulk mode (kzn is real and k,, is imaginary) of the NRETL lens is shown with 
the dash-dot line. 

The resolution enhancement Re of the NRI-TL lens then simplifies to 

Substituting in the effective permittivities and permeabilities of the TL mesh and 2-D 
dual TL into the above equation, the expression for the Re of a uniform NRI lens 
(perpendicular polarization) is recovered [34]: 

(3.144) 
1 x 

Re 2 --In ISplE 
2lr 

where Sp = (pn + pp)/(pp - pn) and A = 2 n / k p  is the wavelength of radiation. 
For small arguments (pd << 1, kpd << 1, k,d << l ) ,  namely conditions under 

which the dimensions considered are much smaller than a wavelength, the resolution 
enhancement (3.143) further reduces to 

1 1 - - Ic,D I n  I -2Z,pdwC(  1 - j / Q c )  + 1 I (3.145) 
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Both (3.144) and (3.145) show that the approximation Ik,l N lazn\ is in fact a 
magnetostatic approximation [29]. It neglects the smaller effect of mismatches 
caused by the shunt inductor L, which represents the permittivity of the NRI-TL lens. 
Only the larger effect of mismatches due to C, which represents the permeability of 
the NRI-TL lens, is considered. 

The last four equations-(3.142) to (3.145)-apply to both lossless impedance 
mismatches and mismatches due to loss. For the latter, the TL mesh and dual TL 
network are assumed to be mismatched only due to component losses (QL, Q c ,  
QTL), such that (3.90) and (3.91) are still satisfied for p = PTL. Substituting (3.91) 
[2Zo&~d N l/(wC)] into (3.145) reduces Re to the following simple expression 
for the loss-limited case: 

(3.146) 

In this magnetostatic limit (near field for perpendicular polarization), the expres- 
sion Q = 1 /Qc  + ~ / ( ~ Q T L )  can be thought of as the resolution quality factor of 
this fascinating resonator-the NRI-TL lens. Typically, the capacitor quality factor 
Q c  is smaller than ~ Q T L ,  therefore the expression for the loss-limited resolution 
enhancement can be further approximated as 

(3.147) 

The resolution enhancement Re of the NRI-TL lens is approximately equal to the 
natural logarithm of the capacitor quality factor Q c  divided by the electrical thickness 
of the lens in radians. The logarithmic dependence on the quality factor places severe 
restrictions on losses. For instance, in order to double the resolution enhancement 
Re of a NRI-TL lens with a given electrical thickness, one must square its resolution 
quality factor. In addition, the inverse relationship with kpd indicates that electrically 
thin lenses perform better than thicker ones. At a certain lens thickness, the losses 
inherent to a NRI-TL lens overcome the growth the evanescent wave experiences 
and the corresponding contribution to the image is lost. Losses also prevent the 
amplitude of an evanescent wave from diverging as the lens thickness D = (1 - h)d 
approaches infinity, as is the case in lossless NRI-TL lenses and lossless uniform NRI 
lenses. In terms of the uniform left-handed lens, Q c  represents the imaginary part 
of the lens’ permeability p n  [see (3.76)] which gives rise to an imaginary Fresnel 
reflection coefficient rl that limits resolution. The effect of QL, which represents 
the imaginary part of the lens’ permittivity, on image resolution is much smaller than 
that associated with Q c  and therefore it is neglected [34]. This same dependence 
of resolution enhancement Re on deviations in permeability has been observed for a 
uniform left-handed lens for S-polarized/perpendicularly polarized waves in Refs. 29, 
34, and 39. 
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Fig. 3.39 A photograph of an experimental NRI transmission-line lens designed at the Uni- 
versity of Toronto. The 2-D dual TL and TL mesh unit cells are shown in the left and right 
inset, respectively. Reprinted figure with permission from Ref. [48]. Copyright @ 2004 by 
the American Physical Society. 

3.8 AN EXPERIMENTAL NRI-TL LENS 

A photograph of an experimental NRI-TL lens that was designed at the University 
of Toronto is shown in Fig. 3.39 [48]. A schematic of this same lens is shown in 
Fig. 3.40 for clarity. The experimental set up consists of a lens made of a 2-D dual 
TL network sandwiched between two TL meshes. The interfaces of the experimental 
lens are located at h = 2.5 and 1 = 7.5. The source is attached to the central node of 
a TL mesh unit cell; therefore its voltage spectrum is defined by (3.129). It is located 
2.5 cells away from the first interface of the lens at the location [n, m] = [0, 01, 
and the image is located at [n, m] = [lo, 01 (2.5 cells from the second interface of 
the lens). The experimental NRI-TL lens shown in Fig. 3.39 extends 5 cells in the 
z-direction [D = ( I  - h ) d  = 5 4  and 19 cells in the 2-direction (-9 5 m 5 9). The 
TL meshes on either side of the lens extend 12 cells in the z-direction and 19 cells 
in the z-direction. Therefore, the overall experimental setup depicted in Fig. 3.39 is 
29 x 12 cells. 

Microstrip implementations of the TL mesh and 2-D dual TL were chosen for 
the experimental NRI-TL lens, as shown in Fig. 3.39. The interconnecting TLs are 
microstrip lines with metal thickness of 17 microns and width of 750 microns (see 
insets of Fig. 3.39). These microstrip lines were etched on a 60 mil (t = 1.52 nun) 
thick grounded microwave substrate with a dielectric constant = 3.00 and a loss 
tangent tan 6 = 0.0013. The unit cells of the TL mesh and 2-D dual TL, which are 
d x d = 8.4 x 8.4 mm in dimension, are identical other than the L, and C loading 
elements. Off-the-shelf packaged capacitors and inductors were used for L and C 
loading elements. The quality factors of the inductors and capacitors that were used in 
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Fig. 3.40 A schematic of the experimental NRI transmission-line lens shown in Fig. 3.39. 
After Ref. [68]. Copyright @ 2005 IEEE. 

the experimental NRI-TL lens are QL = 44 and Qc = 150 at 1.0 GHz, respectively. 
In addition, the quality factor of the interconnecting microstrip transmission lines 
was estimated to be QTL = 221 at 1 GHz, using a commercial transmission-line 
calculator. 

A few differences exist between the theoretical set up depicted in Fig. 3.40 and 
the experimental one shown in Fig. 3.39. In the theoretical calculations, a y-directed 
current source is the elemental source being imaged. In the experiment, the elemental 
source is realized by a y-directed monopole that is fed by a coaxial cable through the 
TL mesh ground plane. The monopole attaches the center conductor of the coaxial 
cable to the central node of a TL mesh unit cell, while the outer conductor of the 
coaxial cable attaches to the TL mesh ground plane. Instead of measuring the node 
voltages in the entire structure (as in the theoretical calculations presented earlier), 
the vertical electric field is detected above the surface of the entire experimental 
structure. The electric field is detected through proximity coupling using a coaxial 
probe that is scanned approximately 0.8 mm above the surface of the entire structure. 
A Hewlett-Packard Vector Network Analyzer model 8753D is connected to measure 
the transmission coefficient between the monopole and the probe. This normalized 
transmission coefficient is proportional to the experimental node voltages. These 
experimental node voltages can be directly compared to the theoretically predicted 
ones in order to analyze image resolution and lens performance. Another difference 
between the theoretical and experimental setup is that the theory assumes that the 
NRI-TL lens and the TL meshes on either side are infinite in the transverse z-direction 
while the experimental lens is finite (19 cells). This is a valid approximation since 
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Fig. 3.41 The magnitude of the measured vertical electric field detected 0.8 mm above the 
surface of the entire experimental structure at 1.057 GHz. The plot has been normalized with 
respect to the source amplitude (dB scale). Strong fields are evident at the second interface 
(n = 7.5) of the NRI-TL lens. 

the source is placed quite close to the experimental lens and the numerical aperture of 
the NRI-TL lens is NA = 0.96. The edges of the experimental setup was terminated 
in matching impedances. These matching impedances can be found by taking the 
ratio of voltage to current at the node of interest [see (3.107) and (3.109)]. 

The best focusing results were observed at 1.057 GHz for this experimental NRI- 
TL lens, a frequency slightly higher than the design frequency of 1.00 GHz. The 
frequency offset was primarily due to the variation in chip inductors and capacitors 
from their nominal values, as well as fabrication tolerances in printing the grid lines. 
The magnitude and phase of the measured vertical electric field above each unit cell 
in the entire experimental structure is shown in Figs. 3.41 and 3.42, respectively, at a 
frequency of 1.057 GHz. As shown, the enhancement of evanescent waves is quite 
evident along the central row (m = 0), near the second interface of the NRI-TL lens. 
The high voltage magnitude and lack of phase progression indicate that evanescent 
Bloch waves dominate this region. Figure 3.43 explicitly plots the magnitude of 
the measured electric field along the central row (m = 0 )  to highlight the growing 
evanescent fields within the NRI-TL lens. 

The measured vertical electric field along the external focal plane (n = 10) is 
shown in Fig. 3.44. Plotted in the same figure is the measured vertical electric 
field along the source plane (n = 0). as well as the two difffaction-limited patterns. 
Both of the diffraction-limited patterns, one that takes into account the attenuated 
evanescent waves at the external focal plane (vdifl) and the other that neglects 
them completely (Vdiffl). are quite similar. This suggests that the distance between 
source and image (0.54X) is sufficiently long such that evanescent waves passing 
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Fig. 3.42 The phase of the measured vertical electric field detected 0.8 mm above the surface 
of the entire experimental structure at 1.057 GHz. The phase has been normalized with respect 
to the source (degrees). A lack of phase progression is evident near the second interface of the 
NRI-TL lens where the evanescent waves dominate. 

through a conventional lens would not reach the external focal plane. Therefore, any 
enhancement in image resolution can be attributed to the experimental NRI-TL lens’ 
ability to restore evanescent waves at the external focal plane. 

The measured electric field (image) above the external focal plane is evidently 
narrower than the theoretical diffraction-limited patterns. The measured half-power 
beamwidth is 0.21 X compared to 0.36 X for the diffraction-limited patterns. This 
narrowing of the beamwidth beyond the diffraction limit is due to the growing 
evanescent waves evident in Figs. 3.41 and 3.43. Nevertheless, the image is still 
imperfect since the source beamwidth is narrower than that of the image. This is not 
surprising since we have shown earlier that slight mismatches at the lens interfaces 
significantly degrade the resolution enhancement Re. More will be said about this in 
the next section. 

3.9 CHARACTERIZATION OF AN EXPERIMENTAL NRI-TL LENS 

Both the TL mesh and 2-D dual TL unit cells used in the experimental NRI-TL lens 
were simulated using a commercial Finite Element Method (FEM) electromagnetic 
solver. In the FEM simulations, ideal capacitances and inductances were used to 
model the packaged components. The ideal capacitance and inductance values were 
extracted at 1 GHz from the S-parameter files provided by the respective manu- 
facturers. Using the FEM solver, the intrinsic Bloch impedances and propagation 
constants of the TL mesh and 2-D dual TL were matched at a frequency of 1 GHz: 
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Fig. 3.43 The measured vertical electric field above the central row (rn = 0) at 1.057 GHz 
(linear scale). The vertical solid lines identify the source (n = 0) and external focal (n = 10) 
plane while the vertical dashed lines identify the interfaces of the NRI-TL lens. The growth of 
the evanescent waves within the NRI-TL lens is clear. Reprinted figure with permission from 
Ref. [48]. Copyright @ 2004 by the American Physical Society. 
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Fig. 3.44 The normalized measured vertical electric field at the source (n = 0) and the 
external focal plane (n  = 10) at 1.057 GHz along with the theoretical diffraction-limited 
images (linear scale). Reprinted figure with permission from Ref. [48]. Copyright @ 2004 by 
the American Physical Society. 

Z, = Z, = 90 R, k,d = -k,d = 0.33859 radians. Since the same TL parameters 
(P, Z,) were used in the TL mesh and dual TL network, the parameters p, Z,, L, C 
can be extracted from Zn, Z,, k,, k, by employing (3.61), (3.82), (3.62), and (3.84). 
These extracted values are those listed in Table 3.1. They are based on the intrinsic 
Bloch impedances (Zn, 2,) and wavenumbers (k , ,  k p )  obtained through full-wave 
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Table 3.2 Intrinsic wavenumbers and impedances 

-0.338 - 0.Ollj 89.986 - 1.53ljn 0.339 - 0 . O O l j  90.000 + 0.003j 

analysis (with periodic boundary conditions) and therefore take into account mutual 
coupling interactions within and between the unit cells as well as parasitics introduced 
by the junctions in the microstrip TLs. 

The quality factors (QL = 44, Qc = 150, QTL = 221 at 1 GHz) and the 
parameters of the experimental TL lens listed in Table 3.1 can be utilized to compute 
the lossy Zn, Z,, kp, kn parameters using (3.82), (3.132), (3.84), and (3.133). The 
lossy parameters are listed in Table 3.2. From these lossy parameters, the effective 
material parameters of the experimental lens can be estimated using (3.88), (3.89), 
(3.134), and (3.135): 

pn = -2.539 - O.O38j, 

p p  = 2.539 - O.OOSj, 

En = - 1.456 - 0.071 j 

e p  = 1.458 - 0.003j 

(3.148) 

(3.149) 

If we use the effective material parameters, the refractive indexes n, and np of the 
NRI-TL lens and TL mesh, respectively, can be found: 

n, = kn/ko - 1.924 - 0.0622, np = kp/ko = 1.925 - 0.004i (3.150) 

where k, = w / c  is the wavenumber in free space and cis the speed of light in vacuum. 
It is evident from the imaginary parts of the refractive indexes, that losses are higher 
in the NRI-TL lens than the TL mesh. This is due to the lossy L,C chip components 
used in the experimental NRI-TL lens . Nevertheless, the 2-D dual TL is still a 
relatively low-loss composite medium with a loss tangent of only tan 6 = 0.064. 

Having theoretically characterized the experimental NRI-TL lens, its performance 
and resolution enhancement can be predicted and directly compared to the experi- 
mental results. The resolution enhancement of the experimental lens can be estimated 
using either (3.144) or (3.146), depending on whether one views the NRI-TL lens 
arrangement shown in Fig. 3.39 as an electrical network or an effective medium. The 
Re derived for uniform isotropic NRI slabs (3.144) can be used given that the slab 
thickness of the dual TL network is D = ( 1  - h)d = (5)0.84 cm = 4.2 cm, and the 
operating wavelength is A = 2nd/(kpd) = 2~(0.84)/0.339 = 15.59 cm. Substi- 
tuting these two values and the effective material parameters p p  and p, into (3.144) 
results in Re = 2.8. Alternately, the resolution enhancement Re of the experimental 
lens can be estimated from the quality factors (Qc = 150, QTL = 221) and the elec- 
trical thickness of the lens [kpD = 5(0.339) radians] using (3.146). The estimated 
resolution enhancement is therefore Re = ln[1/150 + 1/(442)]/[5(0.339)] = 2.8 
which is the same as the previous estimate based on material parameters. These 
estimates can be verified by finding the bandwidth of the theoretically predicted OW 
shown in Fig. 3.45 at a 1-GHz frequency of operation. The OTF is computed using 
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Fig. 3.45 Theoretical and approximate experimental optical transfer functions for the NRI-TL 
lens. 

(3.124) given the quality factors (QL, Qc, Q T L )  and parameters listed in Table 3.1 
that model the experimental lens. Figure 3.45 indicates that the 0°F magnitude drops 
to 0.5 (-6 dB) at approximately k, /k ,  = 3, justifying both of the preliminary Re 
estimates, one based on the effective material parameters (3.144) and the other solely 
based on quality factors (3.146). The approximate OTF of the experimental NRI-TL 
lens at 1.057 GHz is also shown in Fig. 3.45. The best experimental focusing was 
observed at 1.057 GHz; therefore, experimental results at this frequency will be used 
when making comparisons to the theoretical results at 1.0 GHz. The experimental 
OTF was obtained by dividing the transverse spectrum at the external focal plane 
(n = 10) by the transverse spectrum at the source plane (n = 0). The experimental 
OTF is only approximate since it includes both incident and reflected waves present 
at the source plane, whereas the theoretical OTF only takes into account the incident 
wave. The experimental OTF shows a sharp cutoff at approximately Re = 3 corrob- 
orating our theoretical prediction of the lens’ resolution enhancement. The spikes in 
the passband of the transfer function are due to the asymmetries in the experimental 
source due to reflections at the edges of the experimental setup. 

Next, the theoretically predicted voltage along the external focal plane (n = 10) 
is compared to the normalized vertical electric field detected above the external focal 
plane in the experimental setup. Both the experimental and theoretical images are 
plotted in Fig. 3.46 and show close agreement. The experimental image beamwidth is 
captured accurately by the expanded analytical formulation that includes losses. The 
theoretical current (Iz) image is also shown in Fig. 3.46 for the experimental NRI-TL 
lens. The current image is representative of the z component of the magnetic field 
intensity H, that would be detected along the external focal plane of the experimental 
NRI-TL lens. The current image has its first nulls at x = f 3 d  or approximately 
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Fig. 3.46 Measured and theoretical electric field image as well as the theoretical fI, field 
image at the external focal plane (n = 10). The current (1;) image represents the fI, field 
image just as the voltage (v’) image represents the E-field image. 

fX/6.  Since the Bloch current spectrum of the image is uniform (see Fig. 3.35), a 
null-to-null beamwidth of X/3 for the current image again suggests that Re = 3 for 
the experimental NRI-TL lens. The beamwidth of the source (shown in Fig. 3.44) 
is limited predominantly by the periodicity to Re = n/k,d.  The broadening of the 
electric field image beyond that of the source arises from the mismatch between the 
TL mesh and dual TL network, due to added losses in the dual TL network. The 
added losses are introduced by the quality factors of the components used and further 
limit the resolution enhancement of the experimental lens to Re = 2.8 beyond that 
imposed by periodicity Re = 9.3. Even small losses in the NRI-TL lens degrade its 
resolution enhancement Re as is evident from (3.146). 

3.10 AN ISOTROPIC 3-D TRANSMISSION-LINE METAMATERIAL 
WITH A NEGATIVE REFRACTIVE INDEX 

In this section we explain how to extend the transmission-line approach to synthesiz- 
ing isotropic 3-dimensional(3-D) NRI metamaterials. The 3-D NRI transmission-line 
metamaterial presented here draws on Gabriel Kron’s work with 3-D electrical net- 
works [69]. In 1943, Kron conceived a 3-D network representation of Maxwell’s 
equations in a charge-free medium with positive E and p as shown in Fig. 3.47a. This 
pioneering work by Kron laid the foundation for the transmission-line matrix method 
(TLM) developed by Johns, for the numerical solution of Maxwell’s equations [4,70]. 
As depicted in Fig. 3.47a, there are two orthogonally oriented transmission lines with 
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(a) Kron's unit cell (3-D transmission line unit cell) 

Fig. 3.47 3-D transmission-line unit cells. 

per-unit-length inductance Lo and capacitance C, on each face of Kron's cubic unit 
cell. The symmetry of the unit cell naturally suggests isotropic wave propagation. 
Each component of the electric field E lies along the corresponding shunt capacitors 
while each component of the magnetic field H is supported by an orthogonally- 
oriented inductive loop (there are three orthogonal loops that can be identified when 
examining any comer of the cube). Kron established a formal analogy between Lo 
and C,, and the corresponding permeability and permittivity of the space being rep- 
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resented. Earlier in the chapter it was recognized that in order to synthesize negative 
permittivity and permeability one should switch the positions of the inductors and 
capacitors as they appear in a conventional (forward-wave) transmission-line system. 
When this is done, the series capacitors produce a negative permeability, and the 
shunt inductors produce a negative permittivity. Applying this same prescription to 
Kron’s unit cell leads to the structure shown in Fig. 3.47b, which we will refer to as 
the 3-D dual transmission line [71]. The fact that the two-wire transmission lines on 
each side of the cube are now backward-wave lines [ 101 further supports the view that 
the emerging medium has an isotropic negative refractive index. The 3-D dual TL can 
be implemented by loading a 3-D network of transmission lines (with characteristic 
impedance 2, and intrinsic propagation constant p) with lumped L,C elements as 
shown in Fig. 3.47b. The characteristic impedance 2, and propagation constant ,6 
of the transmission lines can also be expressed in terms of the transmission line’s 
per-unit-length capacitance Co and inductance Lo: 

(3.151) 

where w is the angular frequency. 
In order to understand the wave propagation within the 3-D dual TL depicted 

in Fig. 3.47b, consider the on-axis propagation of a plane wave having an E-field 
polarized in the z-direction and propagating along the x-axis. In this case, virtual 
electric walls (tangential E field vanishes) are formed at the top and bottom faces of 
the cubic unit cell, whereas virtual magnetic walls (tangential H field vanishes) are 
formed at the midpoint of the right and left faces of the cube shown in Fig. 3.47b. 
The resulting equivalent circuit for on-axis propagation is shown in Fig. 3.48. The 
short-circuited and open-circuited stubs periodically load the axial transmission line 
with series L,dl inductors and shunt C,dl capacitors, where d l  is the length of the 
interconnecting transmission lines. A dispersion relation for on-axis propagation can 
be derived from the schematic shown in Fig. 3.48 [19]: 

where k is the wavenumber in the 3-D dual TL and d is the dimension of the unit 
cell. Using equation (3.151) and assuming that Icd and the phase shift ,6dl along the 
interconnecting lines is small (homogeneous limit), equation (3.152) simplifies to the 
following: 

(3.153) 
2C0d1 1 2L0d1 1 

w2Cd 
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Fig. 3.48 
along the z-axis). 

1-D transmission-line model for propagation along the x-axis (E-field is polarized 

where 
€0 

9 
c 0 -  --, L o  = Po9 (3.154) 

and c0 and po are the permittivity and permeability of free space, since we are 
assuming that the transmission lines are embedded in free space. The first factor under 
the square root is equal to the effective permittivity (E,) of the 3-D dual TL, whereas 
the second term is equal to the effective permeability (p,). The proportionality 
constant g depends on the geometry of the interconnecting transmission lines. It 
relates the characteristic impedance of the transmission lines to the wave impedance 
of free space in the following manner: 

zo = g / ”  
€0 

(3.155) 

Observe that the material parameters ( E , ,  p,) become negative when the loading terms 
(the second term in each factor) overcome the corresponding per-unit-length capaci- 
tance 2C0 and inductance 2L0 of the 3-D transmission-line system. The wavenumber 
Ic becomes negative and the propagation becomes backward-wave (antiparallel phase 
and group velocities) when 

(3.156) 
1 

and 2wL0 < - 2 w c 0  < - 
WLdl  w C d l  

1 

To physically implement the metamaterial depicted in Fig. 3.47b, one needs to 
select an appropriate host transmission-line system. A natural choice is to use parallel 
broadside strips printed on the two faces of a microwave substrate. The resulting unit 
cell is shown in Fig. 3.49. Indeed, the topology of the unit cell suggests a method 
for constructing the 3-D dual TL. One can print each pair of parallel strips on three 
separate microwave printed circuit boards (PCB). By interleaving the three PCBs 
that lie along the three Cartesian planes, one can construct each unit cell (shown 
in Fig. 3.49). In this way, the 3-D metamaterial will be composed of three sets of 
orthogonally interleaved PCBs. The required series capacitors and shunt inductors 
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........... ......... U........ ,.*: .*,." 

Fig. 3.49 Physical implementation of the 3-D negative-refractive-index metamaterial (3-D 
dual TL) using Lo, co loaded parallel strip transmission lines. 

can be implemented in printed form using gap or interdigital capacitors and vias 
through the PCBs, respectively. 

For the specific case of parallel strips having width W and separation h, well known 
quasi-static formulas for microstrip lines can be utilized to estimate the geometrical 
factor g [12]: 

2 
= 2W/L + 1.393 + 0.6671n(2W/h + 1.444) 

(3.157) 

For simplicity we have assumed that the parallel strips are printed in free space. 
Equations (3.15 1)-(3.157) will yield only approximate expressions for the imple- 
mentation of the 3-D dual TL of Fig. 3.49 since they do not take into account the 
parasitics associated with the bends in the parallel strip transmission lines. In order to 
verify that the 3-D dual TL, shown in Fig. 3.49 does in fact behave as a 3-D isotropic 
negative-refractive-index medium, the structure was simulated using a commercially 
available finite-element electromagnetic solver. The dimensions of the simulated 3-D 
dual TL are shown in Fig. 3.49. The L, C components were modelled as lumped 
elements having the following values: L = 40.0 nH and C = 2.5 pF. 

The simulated 3-D Brillouin diagram is shown in Fig. 3.50. The two fundamental 
bands exhibit backward-wave propagation and overlap for on-axis propagation (from 
I? to X). These two bands correspond to the two orthogonal polarizations that are 
possible for on-axis propagation. Since the two bands overlap, the structure behaves 
identically for both TE and TM polarizations. From X to R, however, the two bands 
split. One band slopes downwards between X and R, while the other slopes upwards 
from X, peaks at a frequency of 1.15 GHz at M and then slopes back down to R. 
Due to this splitting, the two bands exhibit identical backward-wave propagation only 
between 1.15 GHz and 1.37 GHz, which can be considered the useful backward-wave 
bandwidth. In addition to these two bands there is also another mode present, which 
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1 

1 

Fig. 3.50 Brillouin diagram for the 3-D negative refractive index medium (fullwave eigen- 
mode solution). 

we will call the spurious mode (see Fig. 3.50). This spurious mode coexists with 
the two backward-wave bands. A similar spurious mode has been observed in the 
numerical dispersion analysis of 3-D formulations of the TLM numerical method 

At a frequency of 1.23 GHz, the backward bands have a wavenumber k equal 
to -ko, where k, = 25.8 radm is the wavenumber in free space at this frequency. 
Therefore, the 3-D dual TL possesses a relative refractive index equal to n = -1. 
At 1.23 GHz, the cell size is 1/24 the wavelength of free space. In addition to 
the backward-wave bands, the spurious mode is also present at this frequency (see 
Fig. 3.50). To see what adverse effects the spurious mode may have on the perfor- 
mance of the 3-D NRI medium when it is interfaced to free space, as in the case of 
Veselago’s lens (a flat slab of NRI material with n = -1 in free space as described 
earlier), one can examine different equifrequency contours of the dispersion surface 
at 1.23 GHz. In Fig. 3.51a, the equifrequency contour along the (100) plane is 
shown. This contour depicts propagation along one of the three Cartesian planes (the 
wavevector k lies within a Cartesian plane). The two backward-wave bands appear 
as two concentric and overlapping circles. This indicates that propagation is isotropic 
and identical for both polarizations. 

The spurious mode manifests itself at the four corners of Fig. 3.51a (around the 
M points), at much larger wavenumbers. From Fig. 3.51a it becomes clear that 
highly attenuating evanescent waves incident from free space on the 3-D dual TL 
could in fact couple to this (propagating) spurious mode. For this specific geometry, 
the 3-D dual TL behaves as a NRI material with n = -1 for all propagating waves 
and evanescent waves with transverse wavenumbers up to approximately 5k0 (see 
Fig. 3.51a). Finally, the equifrequency contour along the (110) plane is shown in 
Fig. 3.51b. The two backward-wave bands for the two orthogonal polarizations 
appear again as two concentric and overlapping circles with wavenumbers k equal to 

~721. 
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(a) Equifrequency contour along the (100) plane at 
1.23 GHz 

R X 

(b) Equifrequency contour along the (1 10) plane at 1.23 GHz 

Fig. 3.51 Equifrequency contours at 1.23 GHz. 

-ko. The spurious band now appears on either side of the backward-wave circles, 
near the edges of the cubic first Brillouin zone. 

From the equifrequency contours at 1.23 GHz, two general observations can be 
made. First, that the dispersion surfaces of the backward-wave bands are two con- 
centric and overlapping spheres, as in an isotropic homogeneous medium. Second, 
that the spurious band is confined to regions of the reciprocal lattice near the edges 
of the first Brillouin zone. From the 3-D Brillouin diagram shown in Fig. 3.50, one 
also observes that as the frequency of operation is increased from 1.15 GHz to 1.37 
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GHz, the refractive index of the 3-D dual TL decreases, and the dispersion surface of 
the spurious mode approaches those of the backward-wave bands. 

To summarize, a 3-D negative refractive index medium has been outlined that 
exhibits homogeneous and isotropic backward-wave propagation at microwave fre- 
quencies. This is valid for all propagating plane-waves impinging on the medium 
from free space regardless of polarization. However, an additional spurious mode 
has also been shown to coexist with the backward-wave propagation bands. This 
spurious mode can be excited by highly attenuating evanescent waves (5k,) incident 
on the structure from free space. Nevertheless, the resolution of a practical NRI 
lens made out of this medium would most likely be limited by loss rather than the 
excitation of this spurious mode as was explained earlier in this chapter [48]. 

Furthermore, it should be pointed out that the method outlined in this section 
can form the basis for synthesizing isotropic and anisotropic metamaterials with 
prescribed material parameters (other than simultaneously negative permittivity and 
permeability). For example, by appropriately loading the host 3-D network of parallel 
strips only with series capacitors, a broadband band-gap magnetic medium can be 
synthesized. 
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In this chapter, the interactions of continuous-wave (CW) and pulsed Gaussian 
beams with double-negative (DNG) metamaterials are considered. The DNG meta- 
materials are represented as lossy, dispersive Drude model media. Several DNG 
media including those with 1Z,eal(wo) M -1 and n,ea[(WO) < -1 at a specified tar- 
get frequency fo = wo/2n are considered. Subwavelength focusing of a diverging, 
normally incident pulsed Gaussian beam with a planar DNG slab is demonstrated. 
This effect is also used to realize a phase cornpensatorheam translator system with 
DPS-DNG pairs. The negative angle of refraction behavior associated with the nega- 
tive index of refraction exhibited by DNG metamaterials is demonstrated. The trans- 
mitted beam resulting from both 3-cycle and CW Gaussian beams that are obliquely 
incident on a DNG slab are shown to have this property. The scattered fields resulting 
from Gaussian beams with angles of incidence beyond the critical angle interacting 
with DNG metamaterial slabs are shown to have a negative Goos-Hanchen (lateral) 
shift. Focusing of a nearly planar CW Gaussian beam with a concave DNG lens is 
also discussed. It is shown that the resulting focal region is subwavelength both in 
the directions transverse and parallel to the beam axis. Several potential applications 
for these effects in the microwave and optical regimes are highlighted. 

4.1 INTRODUCTION 

Understanding the interaction of Gaussian beams with media reveals both propagation 
and scattering properties of those media. Gaussian beams are paraxial solutions of 
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Fig. 4.1 Wave processes involved in scattering from an interface. 

the scalar wave equation 

having the form 

( V 2 + k 2 )  U = O  

~ ( z ,  y, z )  = u(z, y, z)e-jkz (4.2) 

where the wavenumber k = w&@ = 27r/X, the coefficient u(z,y,.z = 0) = 
exp[-(z2 + y2)/wg] has a Gaussian distribution in the plane z = 0, and the time 
convention exp(jwt) is assumed throughout. Thus, the fundamental Gaussian beam 
is represented as (see, for instance, Ref. 1, pp. 436-439) 

V(z, y, z )  = WOe-jkze-(p/W(z)12e--j(Z/LR)[P/W(z))2e--jtan-' ( Z / L R )  (4.3) 
4 2 )  

where the Rayleigh or near-to-far-field distance is 

the waist of the beam is 

W2(.) = 20; [I + ($)2] = . l o "  [1+  ($)"I (4.5) 

and p = d m .  This means at z = LR the waist is ~ ( L R )  = f i  200 and the 
intensity for p = 0 is 1 / 2  of its initial value; that is, the Gaussian beam expands and 
decreases its amplitude as it propagates. It can be viewed as a superposition of plane 
waves having wavenumbers primarily in a paraxial cone surrounding the direction of 
propagation (i.e., k, x k - k % / ( 2 z ) ) .  Consequently, as a Gaussian beam propagates 
in a medium, one can investigate the rate of the spread of a beam's waist and the rate 
of the decay of its amplitude to reveal interesting characteristics of that medium. 

A material will be denoted throughout as a double positive (DPS) medium if its 
relative permittivity ET = E / E O  and permeability pr = p/po are both positive. On 
the other hand, the relative permittivity and permeability are both negative in a double 
negative (DNG) medium; that is, E, < 0 and pr < 0. Consider a semi-infinite slab 
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of metamaterial (an artificially realized material such as a DNG medium) embedded 
in free space. 

Consider a perpendicularly polarized (s-polarized or TE) incident wave (i.e., the 
electric field is polarized perpendicular to the plane of incidence) that is incident 
on the slab at an angle of incidence einc as shown in Fig. 4.1. The reflected and 
transmitted waves are known to satisfy the law of reflection and Snell's Law [2]: 

= einc (4.6) 

(4.7) 

where the index of refraction in either medium (i = inc, trans) is given by the 

ntrans sin @trans = ninc sin einc 

where EO and po are the free space permittivity and permeability. The reflection and 
transmission coefficients are given by the expressions 

where the wave impedance in either medium (i = inc, trans) is 

(4.1 1) 

They thus depend on the angle of incidence and the properties of both media. 
We will consider in most cases below a metamaterial that is DNG and is matched 

to free space. This means that Er  < 0 and p r  < 0 SO that n < 0 and qtrans = qinc. 

Consequently, for normal incidence (i.e., Oinc = 0), one finds R = 0 and T = 1 for 
a matched metamaterial. On the other hand, for any oblique angle of incidence onto 
a DNG interface, Snell's Law indicates that the transmitted angle will be negative. 
The value of the reflection and transmission coefficients then depends on the index in 
the DNG region. For any einc, one still has R = 0 and T = 1 when ntrans = -nine 
since simply = -einc. However, for example, for ntTans = -6.0 nine one 
has Otrans = -3.268' at Binc = 20' so that R = -0.03 and IRI2 = 9.17 x 
The existence and the effects of this negative angle of refraction have been discussed 
by several groups (e.g., see Refs. 3-1 1). 

Nonetheless, there had been some controversy about this negative angle of re- 
fraction [ 121 despite initial experimental verification [8] with 3-D metamaterial con- 
structs. More recent planar DNG transmission line [ 131 and related planar refractive 
cone experiments [14] have more clearly verified this effect. Matching of a DNG 
metamaterial to free space has been reported [ 151. 

To confirm many of the predicted unusual propagation and scattering proper- 
ties associated with DNG metamaterials, the interaction of pulsed Gaussian beams 
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with DNG metamaterial slabs has been studied numerically. Because the selected 
problems were designed relative only to a choice of wavelength, they represent the 
behavior of DNG metamaterials in the microwave regime as well as in the optical 
regime. The numerical simulations are obtained with the finite-difference time do- 
main (FDTD) method; the modeling environment is discussed in Section 4.2. The 
FDTD numerical approach was emphasized because it removes any questions as to 
the choices associated with signs resulting from the DNG properties. The results for 
normally incident Gaussian beam interactions with a DNG slab matched to free space 
are presented in Section 4.3. It will be shown that a planar DNG slab does indeed 
focus a diverging Gaussian beam. This effect is also used to realize a phase compen- 
satorheam translator system with DPS-DNG pairs. The interactions of an obliquely 
incident Gaussian beam with a matched DNG slab are considered in Section 4.4. 
The presence of the negative angle of refraction for the transmitted power flow is 
clearly demonstrated. Both ultrafast and CW pulsed Gaussian beams are considered. 
Interesting effects including the generation of strong surface waves and backward 
waves in the n,,,l(wo) x -1 case are clearly demonstrated. Demonstration of the 
Goos-Hanchen effect for Gaussian beams is discussed in Section 4.5. Both DPS and 
DNG media are considered. The lateral shift that occurs in the DNG case is shown to 
be the opposite of the one for the DPS case. Many of the simulation results presented 
in Sections 4.3-4.5 were reported initially in Refs. 16 and 17; the corresponding 
FDTD movies are available online. Focusing of a nearly planar CW Gaussian beam 
with a concave DNG lens is considered in Section 4.6. Several suggested practical ap- 
plications for the negative refraction effects are considered throughout. Conclusions 
are given in Section 4.7. 

4.2 2-D FDTD SIMULATOR 

A two-dimensional (2-D) simulation environment with a perpendicularly polarized 
(s-polarized, TE) field was utilized for these Gaussian beam interaction studies. It 
was convenient and provided all of the necessary physics. The field components were 
assumed to be the set: H,, E,, and H,. The same effects have been confirmed with 
the analogous parallel polarization (p-polarized, TM) field configurations. 

As in Refs. 9, 16 and 17, lossy Drude polarization and magnetization models 
were used to simulate the DNG medium. In the frequency domain, this means the 
permittivity and permeability were described as 

(4.12) 

(4.13) 
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The corresponding time domain equations for the polarization, Py , and the normalized 
magnetization fields, Mnx = p0Mx and Mnz = p0M2, are 

a,"Py + repy = E O W & E ~  

@Mnx + rmMnx = POWpmMnx 2 (4.14) 
2 2 

at Mnz + rmMnz = PowpmMnz 

The normalized magnetization was introduced to make the electric and magnetic 
field equations completely symmetric. The Drude model is preferred over a Lorentz 
model for these studies since it provides a much wider bandwidth over which the 
negative values of the permittivity and permeability can be obtained. This also means 
that the overall simulation times can be significantly shorter using the Drude models, 
particularly for low loss media; that is, it will take longer to reach a steady state 
in the corresponding Lorentz medium case because the resonance region where the 
permittivity and permeability acquire their negative values will be very narrow. By 
introducing the electric and magnetic currents 

(4.15) 

the field and current equations used to model the beam interaction with a DNG 
medium become 

1 

PO 
atHx = +- ( & E y  - KX) 

1 
= +- EO [ (&Hx - d x H z )  - J y  ] 

(4.16) 

(4.17) 
. I  

a tJy+r ,Jy  = E O W ; ~ E ~  

In a DPS medium the corresponding field and current equation set is simply 

The equation sets for the DNG medium cases, (4.16) and (4.17), and for the DPS 
medium cases, (4.18), were solved self-consistently and numerically with the FDTD 
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approach [ 18,191; that is, these equations were discretized with a standard leapfrog in 
time, staggered grid approach. The electric field component was taken at the center 
of the square cells for integer time steps; the magnetic field components were taken 
along the cell edges for half-integer time steps. The electric and magnetic currents 
were located at the cell centers but with their time assignments opposite to the 
corresponding electric and magnetic field components-that is, the magnetic current 
components were sampled at integer time steps and the electric current component 
was sampled at half-integer time steps. This allowed a FDTD stencil that properly 
simulated the matched medium conditions. 

Several matched slab cases were Considered. In those cases the parameters for 
the electric and magnetic Drude models were identical; that is, wpe = wpm = wp 
and re = rm = r. In all cases, only low loss values were considered by setting 

s-'. This means that the index of refraction will have the form = 

Consequently n 

(4.19) 

(4.20) 

Thus by adjusting the plasma frequency wp, one can obtain a desired value of n,,,l 
at a specified frequency. 

In all cases, the center frequency of interest to define the index of refraction 
was chosen to be fo = 30 GHz, corresponding to a free-space wavelength A0 = 
1.0 cm. This value was selected to connect these results to those presented in 
Refs. 9, 16, and 17. Note again that all of the results to be presented can be 
achieved in a similar fashion at any desired set of microwave, millimeter, or optical 
frequencies with the appropriate frequency values in the Drude models and the 
corresponding FDTD simulation parameters. For the matched DNG nreal (wo) M - 1 
cases, these parameters were wp = 27~fifo = 2.66573 x 10'' rads and, hence, 
r = 3.75 x lop4 wp. For the matched DNG n,.,,l (wg) M -6 cases, these parameters 
were wp = 27rJSfo = 4.98712 x 10l1 rads and, hence, r = 2.01 x lo-* wp. The 
real part of the index of refraction for these cases is shown in Fig. 4.2. The input time 
signals were all multiple cycle m-n-m pulses given by the expressions 

for t < 0 

gm(t) sin(&) for 0 < t < rnTp 
for mTp < t < (m + n)Tp 

gOrj(t)  sin(wt) for (rn + n)Tp < t < (m + n + m)TP 
f o r ( m + n + m ) T , < t  

(4.21) 
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Fig. 4.2 Frequency response of the real part of the index of refraction associated with the 
lossy Drude models used in the FDTD simulations. After Ref. [16]. Copyright @ 2003 
Optical Society of America, Inc. 

where if we have the terms xon(t)  = t/(mTp) and xo8(t) = [t - (m + n)Tp]/(mTp), 
then the two time derivative smooth functions are 

Son (t ) = 1 Ox:,, ( t )  - 15x:,, (t  ) + 6 ~ : ~  ( t )  

g08(t) = 1 - [10x:dt) - 15x&(t) + 6$8(t)] (4.22) 

These smooth excitation functions generate minimal noise as the waves are introduced 
into the FDTD simulation region. Each cycle has the period Tp = l / fo .  The function 
gOn(t) goes smoothly from 0 to 1 in m-periods; the function go8(t) goes smoothly 
from 1 to 0 in m-periods. The function f(t) thus turns on in m-periods, turns off in 
m-periods, and maintains a constant amplitude for n-periods. All the CW cases below 
were turned on in 2-cycles and were then held constant for the entire simulation time, 
Ttotal; that is, m = 2 and (m + n) Tp >> Ttotal. The ultrafast input signals were 
1 - 1 - 1 (3-cycle) pulses. Thus the input time signals had their spectra centered on 
fo with either broad (3-cycle) or narrow (CW) bandwidths. 

The simulation space was discretized into squares with a side length A = 
X0/100 = 100pm. The time step was set at 0.95 of the two dimensional Courant 
value A/(&); that is, At = 22.39 ps. The simulation space was truncated with 
a 10-cell layer Two Time Derivative Lorentz Material (2TDLM) model absorbing 
boundary condition [20,21]. The simulation region (z  versus 2) for the normal 
incidence beam cases was 830 cells x 640 cells; for the phase compensator / beam 
translator case it was 930 cells x 640 cells, for the oblique incidence cases it was 
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930 cells x 1040 cells; for the Goos-Hanchen cases it was 520 cells x 1040 cells; 
and for the concave lens case it was 650 cells x 720 cells. The simulation space 
was separated into total field and scattered field regions. The Gaussian beams were 
launched into the total field region using a total field-scattered field (TF-SF) formu- 
lation [ 18,191. The Gaussian beam values (4.3) were assigned to the Ell component 
of the field on the TF-SF boundary. This source approach has been used successfully 
for a variety of applications (e.g., in Ref. 22). 

It is to be noted that the use of this purely numerical simulation approach to study 
the beam interaction has had several advantages. Very complicated structures, as 
well as the DNG material itself, could be incorporated into the simulation region. 
Moreover, narrowband and broadband excitation pulses can be handled in the same 
simulation environment. However, and most importantly, there are no choices in- 
volved in defining derived quantities to explain the wave physics; for example, no 
wavevector directions nor wave speeds are stipulated a priori. The FDTD simula- 
tor does not know which way the wave should refract at a DPS-DNG interface or 
whether it should focus or diverge a beam in a DNG region. It simply calculates what 
is specified by Maxwell’s equations in the various regions. In this manner, it has 
provided an excellent approach to studying the wave physics associated with DNG 
metamaterials. 

4.3 NORMAL INCIDENCE RESULTS 

The normal incidence set of cases considered here deal with the issue of whether a 
planar DNG slab can focus a diverging Gaussian beam or not. The focal plane of the 
beam was taken to be the TF-SF boundary. The driving signals were all CW. The 
spatial distribution of the incident beam is defined by (4.3) as EY(q Z T F ~ F ~ ~ ~ , , , )  = 
V(z, y = 0 ,  z = 0) and thus varies spatially as exp (-z2/wi) on that boundary- 
that is, its amplitude falls to e-l at its waist wo. The Gaussian beam that is generated 
then has many wavevectors associated with it. Wavevectors off the beam axis point 
away from it for a diverging beam and toward it for a converging beam. Because in 
all cases the beam was generated in a DPS region, the beam will begin expanding 
according to (4.3) as soon as the beam leaves the TF-SF boundary. 

Because it was expected that a DNG medium would have a negative index of 
refraction and would focus the beam-that is, it would bend the wavevectors of a 
diverging beam back toward the beam axis-a strongly divergent beam was sought. 
A diffraction-limited beam, whose waist was 50 cells (X0/2), was used. This beam 
thus had a near-to-far field distance LR = 7rw;/Xo = (7r/4) Xo M 79 cells. Note 
that the corresponding intensity waist on the TF-SF boundary was X H W H M  = 

[-iw; lr1(1/2)]~’~ = 0.589 wo M 29 cells. The TF-SF boundary was thus set 
at 2x0 = ~ L R  = 200 cells away from the DNG interface. This allowed sufficient 
distance for the beam to diverge before it hit the interface; that is, its waist at 
the interface was w = f i  wo M 112 cells. The DNG slab also had a depth of 
2x0 = 200 cells; its width was 6x0 = 600 cells. Thus if the DNG slab refocuses the 
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i 

Fig. 4.3 The FDTD simulation geometry for the Gaussian beam normally incident on a DPS 
or DNG slab. The TF-SF boundary is the second horizontal line and the beam axis is the 
center vertical line. Electric field sampling points were located at the intersections of the beam 
axis and the horizontal lines. The location of the slab region in the DNG simulations is shown 
in gray. 

beam, the waist of the beam at the back face of the DNG slab should be approximately 
(the Drude medium has some small losses ) the same as its initial value. 

4.3.1 Flat DNG Lenses 

To illustrate that the FDTD approach reproduces the expected Gaussian beam prop- 
agation properties, consider the results shown in Figs. 4.3 and 4.4. The FDTD 
simulation space used to investigate beam propagation in free space is shown in 
Fig. 4.3. The electric field intensity in the simulation region is shown for several 
instants in time in Fig. 4.4. The grayscale varies from very light to dark to light 
gray representing small to medium to large intensity values. Twenty-one snapshots 
in time were captured at equal time intervals for 3000 time steps; the first frame in 
Fig. 4.3 represents the problem configuration at time zero. This simulation geometry 
is the one used for both the DPS and DNG cases. The location of the DNG slab is 
shown in dark gray. The DNG slab’s boundary is then superimposed on the frames 
in Fig. 4.4 to allow for further comparisons to the actual DNG cases. The beam 
clearly diverges as it propagates in Fig. 4.4. The rate of expansion agrees precisely 
with the analytical results (4.5). The beam interaction with a matched DNG slab 
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(a) t = 300At (b) t = 600At 

(c) t = 900At (d) t = 2700At 

Fig. 4.4 FDTD-predicted electric field intensity distributions illustrate the expansion of the 
Gaussian beam as it propagates in a free space region in which n(u) = +1. After Ref. [16]. 
Copyright @ 2003 Optical Society of America, Inc. 
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having nreal(wo) M -1 is shown in Fig. 4.5. The DNG slab was 2x0 = 200 cells 
deep and it was 2x0 = 200 cells away from the TF-SF plane. The focal plane of 
the source beam was taken at the TF-SF plane. The simulation was run for 5000 
time steps and 21 snapshots were obtained. The frames show clearly that the planar 
DNG medium turns the diverging wavevectors toward the beam axis and, hence, acts 
as a lens to focus the beam. The focal plane of the beam in the DNG medium is 
located at the back face of the DNG slab because, by design, the distance from the 
TF-SF boundary is equal to the depth of the slab. Since all angles of refraction are 
the negative of their angles of incidence for the nreal (wg) M -1 slab, the initial beam 
distribution is essentially recovered at the back face of the slab. The intensity of the 
electric field along the beam axis and along the front and back faces was sampled at 
the same time that each field distribution snapshot was obtained. The intensity along 
the beam axis at t = 4500 At is plotted in Fig. 4.6; the intensities along the front and 
back faces of the DNG slab are given in Fig. 4.7 for t = 750 At and t = 4500 At, 
respectively. These times were selected because the beam then has its maximum 
value along the beam axis. The peaking of the beam toward the back face is evident 
in Fig. 4.6. The beam intensity is seen in Fig. 4.7 to have narrowed from a half width 
at half maximum of 50 cells = 0.5 A0 at the front face to 30 cells = 0.3 A0 at the 
back face. Thus, as designed, the initial half-width at half-maximum of the intensity 
is recovered at the back face. Note that the peak intensity is about -0.86 dB or 18% 
lower than its TF-SF boundary value. This variance stems from the presence of 
additional wave processes, such as surface wave generation, and from dispersion and 
loss in the actual Drude model used to define the DNG slab in the FDTD simulations. 
We note that if, as shown in Ref. 9, a point source is a distance d/2 from the front 
face of an nrea~(wo) M -1 slab of depth d, then the first focus of the source is found 
in the center of the slab a distance d / 2  from the front face and the second focus is 
located beyond the slab at a distance d / 2  from the back face. As the source distance 
is moved further away from the front face of the slab, the focus in the slab will 
move closer to the back face of the slab. This would be the anticipated configuration 
in most practical beam applications where the source is further away from the slab 
than its depth. However, if one wants to take advantage of the growing evanescent 
waves in a DNG slab to reconstruct a source at its image focus location beyond the 
slab and if the slab has even a small amount of loss, the slab will have to be thin 
to achieve the desired subwavelength focusing there. The source and its image will 
then have to be very near, respectively, to the front and back faces of the slab. The 
configuration will then become completely a near-field one; that is, the "perfect lens" 
situation is thus lost to only near-field configurations when real media with losses 
are involved. Nonetheless, since the near field occurs for z 5 LR, this distance may 
be nontrivial for some applications. For instance, with wo N A0 one has LR N 3Ao 
so that at ISM frequencies (e.g., at fo = 2.45 GHz, LR N 36.7 cm). This is still 
an interesting distance, for example, for medical microwave imaging of parts of the 
body. The corresponding results for the Gaussian beam interacting with the matched 
DNG slab with n,,,l(wo) M -6 are shown in Figs. 4.8-4.10. The DNG slab was 
again 2x0 = 200 cells deep and 2x0 = 200 cells away from the TF-SF plane. The 
focal plane of the source beam was again taken at the TF-SF plane. The simulation 
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(a) t = 500At (b) t = lOOOAt 

(c) t = 1500At (d) t = 4500At 

Fig. 4.5 FDTD-predicted electric field intensity distributions illustrate the focusing of the 
Gaussian beam as it propagates in the nr,,i(w) M -1 DNG slab. Focusing at the back face 
of the slab is observed. After Ref. [16]. Copyright @ 2003 Optical Society of America, Inc. 
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Fig. 4.6 Gaussian beam interaction with aDNG slab having nreal(w) M -1. The intensity 
of the electric field along the beam axis at t = 4500At is shown. The front and back face 
locations of the DNG slab are indicated by the dashed vertical lines. The predicted focusing of 
the electric field intensity at the back face of the DNG slab is apparent. Sharp discontinuities in 
the derivatives of the field across the DPS-DNG interface are also observed. After Ref. [16]. 
Copyright @ 2003 Optical Society of America, Inc. 

was run for 8000 time steps to allow for the (six times) slower speed of the beam in 
the DNG slab, and 21 snapshots were again obtained. The intensity along the beam 
axis at t = 4800 At is plotted in Fig. 4.9; the intensities along the front and back faces 
of the DNG slab are given in Fig. 4.10 for t = 750 At and t = 4800 At, respectively. 
In contrast to the nreal(w0) x -1 case, when the beam interacts with the matched 
DNG slab with nrea l (WO)  x -6, there is little focusing observed. The negative 
angles of refraction dictated by Snell's Law are shallower for this higher magnitude 
of the refractive index-that is, etrans M - sin-' [sin 0in,/6]. Hence, rather than 
a strong focusing, the medium channels power from the wings of the beam toward 
its axis, and maintains its amplitude as it propagates into the DNG medium. The 
width of the beam at the back face is only slightly narrower yielding only a slightly 
higher peak value there in comparison to its values at the front face. The strong axial 
compression of the beam caused by the (factor of 6) decrease in the wavelength in 
the nreal (WO) x -6 slab is seen in Figs. 4.84.10. 

Note that in all the DNG cases the beam appears to diverge significantly once it 
leaves the DNG slab. The properties of the DNG medium hold the beam together as 
it propagates through the slab. Once it leaves the DNG slab, the beam must begin 
diverging; that is, if the DNG slab focuses the beam as it enters, the same physics will 
cause the beam to diverge as it exits. Moreover, there will be no focusing of the power 
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Fig. 4.7 Gaussian beam interaction with a DNG slab having nreal(w) x -1. The cross 
section of the intensity of the electric field along the front face (at t = 750At) and back 
face (at t = 4500At), orthogonal to the beam axis, are shown. The expected focusing and 
narrowing of the beam at the back face are observed. After Ref. [16]. Copyright @ 2003 
Optical Society of America, Inc. 

from the wings to maintain the center portion of the beam. The rate of divergence of 
the exiting beam will be determined by its original value and the properties and size 
of the DNG medium. Also note that a beam focused into a DNG slab will generate a 
diverging beam within the slab and a converging beam upon exit from the slab. This 
behavior has also been confirmed with the FDTD simulator. 

One potential application for these results is clearly the use of a matched, flat DNG 
slab with an index of refraction n,,,~(wg) x -1 as a lens. There is little reflection 
loss and the beam is nicely focused. This could have applicability, for instance, in 
a variety of near-field microwave optical systems. Another potential application is 
to channel the field into a particular location-for example, to use a large negative 
index (i.e., n,,,l(wo) x -6), DNG slab as a superstrate (overlayer) on a detector 
so that the beam energy would be channeled efficiently onto the detector’s face. 
Most superstrates, being simple dielectrics, defocus the field. Often one includes a 
curved DPS lens over a detector face to achieve the focusing effect. The flatness of 
the DNG slab has further advantages in packaging the detectors into an array or a 
system. Yet another potential application is to combine the negative index properties 
of the DNG slab with its negative refraction properties to realize a low loss phase 
compensatorheam translator. 
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(a) t = 800At (b) t = 1600At 

(c) t = 2400At (d) t = 4800At 

Fig. 4.8 FDTD predicted electric field intensity distribution for the normally incident 
Gaussian beam interaction with a DNG slab having nTea1(u) M -6. Channeling of the 
beam in the DNG slab is observed; the wings of the beam are seen to feed the center of the 
beam. After Ref. [16]. Copyright @ 2003 Optical Society of America, Inc. 
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Fig. 4.9 Gaussian beam interaction with a DNG slab having nTe,i (w )  M -6. The intensity 
of the electric field along the beam axis at t = 4800At is shown. The DNG slab front and 
back face locations are indicated by the dashed vertical lines. Sharp discontinuities in the 
derivatives of the field across the DPS-DNG interface and maintenance of the center intensity 
are observed. After Ref. [16]. Copyright @ 2003 Optical Society of America, Inc. 

4.3.2 Phase Compensator/Beam Tkanslator 

Consider the FDTD geometry shown in Fig. 4.11. The Gaussian beam is again 
launched from the TF-SF boundary which is 2x0 = 200 cells away from the front 
face of a 2Xo = 200 cells-deep DPS slab whose index n(w)  = +3 and that is stacked 
together with a 2x0 = 200 cells-deep DNG slab whose index n,,,~(w~) M -3. The 
beam will expand in the DPS slab and will be refocused in the DNG slab. There 
should be only a small loss in amplitude in this process since the DNG slab is only 
slightly lossy. Thus the electric field intensity (in principle) could be maintained over 
the 4X0 = 400 cells distance through the slabs. Moreover, the phase of the beam at 
the output face of the stack will then be the same as its value at the entrance face; 
that is, the accumulated phase across the DPS-DNG pair of slabs at the excitation 
frequency is 

w0 
Re(lCDPSdDPS+lCL)NGdDNG)w=wo = - [nDPS(wO)+nreal ,  DNG(w0)] (2AO) 0 

C 
(4.23) 

The FDTD simulation was run for 8000 time steps; 21 snapshots in time were 
obtained at equal intervals. The FDTD predicted electric field intensity distributions 
for this phase compensationheam translator geometry at selected times are shown 
in Fig. 4.12. The expansion of the beam in the DPS slab and the refocusing of the 
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Fig. 4.10 Gaussian beam interaction with a DNG slab having n,,,l(w) M -6. The intensity 
of the electric field along the front face (at t = 750At) and back face (at t = 4800At), 
orthogonal to the beam axis, are shown. There is only a slight narrowing in the waist of the 
beam after its propagation through the entire DNG slab. After Ref. [16]. Copyright @ 2003 
Optical Society of America, Inc. 

beam in the DNG slab are apparent. The values of the electric field intensity along 
the beam axis are shown in Fig. 4.13 for t = 8000 At. The values of the electric 
field intensity transverse to the beam axis at the front face (t = 3600 At) and at 
the back face (t = 8000 At) are shown in Fig. 4.14. The waist of the intensity of 
the beam is clearly recovered at the back face. There is only a -0.323 dB (7.17%) 
reduction in the peak value of the intensity of the beam when it reaches the back face. 
The phase at the entrance and exit faces is the same. The phase compensator thus 
translates the beam from its front face to its back face with low loss. Using multiple 
matched DPS-DNG stacks, one could produce a phase-compensated, time-delayed, 
waveguiding system. Each pair in the stack would act as shown in Figs. 4.12414. 
Thus the phase compensationlbeam translation effects would occur throughout the 
entire system. Moreover, by changing the index of any of the DPS-DNG pairs, one 
changes the speed at which the beam traverses that slab pair. Consequently, one can 
change the time for the beam to propagate from the entrance face to the exit face of 
the entire DPS-DNG stack. In this manner one could realize a volumetric, low-loss 
time delay line for a Gaussian beam system. 
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Fig. 4.11 The FDTD simulation geometry for the phase compensatorlbeam translator system. 
The TF-SF boundary (second horizontal line from the top) and the beam axis (center vertical 
line) are shown. Electric field sampling points were located at the intersections of the beam 
axis and the horizontal lines. The location of the DPS slab region is shown in dark gray; the 
location of the DNG slab region is shown in light gray. 

4.4 OBLIQUE INCIDENCE RESULTS 

The oblique incidence set of cases that have been considered deal with the primary 
issue of whether a DNG medium will provide a negative angle of refraction or not. 
Both CW (very large number of cycles) and 3-cycle pulse cases were simulated. The 
center of the focal plane of the source beam, the focal plane being orthogonal to 
the beam axis, was the intersection of the beam axis with the TF-SF plane. The 
beam launched from the TF-SF plane had a waist of 100 cells (A,) in that focal 
plane. The larger beam waist was selected in this study so that the DNG medium did 
not impact the beam shape as much as the beam propagated through the slab. The 
TF-SF boundary was set at 3x0 = 300 cells away from the DNG interface. This 
allowed a sufficient distance for the entire beam associated with the 3-cycle pulse 
to be present in the simulation space before it interacted with the DNG slab. In all 
cases the angle of incidence of the beam was Oinc = 20" and the slab depth was 
2x0 = 200 cells. Recall that for an angle of incidence einc = 20°, the amplitude 
reflection and transmission coefficients are, respectively, R = 0 and T = 1.0 for 
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(a) t = 400At (b) t = 1200At 

Fig. 4.12 FDTD-predicted electric field intensity distribution for the phase compen- 
satorheam translator system. The Gaussian beam is normally incident on a stack of two 
slabs, the first being a DPS slab with .(w) = +3 and the second being a DNG slab with 
nTea l (w~)  x -3. The initial beam expansion in the DPS slab is compensated by its refocus- 
ing in the DNG slab. The Gaussian beam is translated from the front face of the system to its 
back face with only a slight attenuation. 

(c) t = 2400At (d) t = 8000At 



190 GAUSSIAN BEAM INTERACTIONS WITH DNG METAMATERIALS 

-, . I . ; .  I I 

Cell number 

Fig. 4.13 The intensity distribution at t = 8000At along the beam axis of the phase 
compensatorheam translator system shows the initial decay of the intensity as the beam 
expands in the DPS slab (front and back face locations are denoted by the left and middle 
vertical dashed lines) and its recovery in the DNG slab (middle and right vertical dashed lines). 
The intensity at the input face is almost completely recovered at the output face. 

the nreal(wO) x -1 case and R = 0.03 and T = 0.97 for the n r e a l ( W 0 )  x -6 
case. Hence, the reflected beam intensity will be very small (lRI2 = 9.17 x 
in comparison to the transmitted beam intensity for the latter case. Consequently, 
the reflected beam is either absent or is not noticeable in the intensity figures shown 
below. The configuration of the FDTD simulations is shown in Fig. 4.15. The results 
for the CW Gaussian beam interacting with the n,,,l (wo) x -1 DNG slab are shown 
in Fig. 4.16. The simulation was run for 5000 time steps; 21 snapshots in time were 
obtained at equal intervals. The negative angle of refraction is clearly seen. The beam 
was sampled along the front face of the slab and at the plane 2A0 = 200 cells from 
the rear face. It was found that, as predicted by Snell’s Law with a negative angle 
of refraction in the DNG medium, the centroids of the beam at those planes were 
coincident. Despite the oblique nature of the propagation, the beam did focus the 
beam in the DNG slab towards its back face. The discontinuities in the derivatives of 
the fields at the DPS-DNG interfaces are clearly seen (the V-shaped patterns at both 
interfaces). The results for the 3-cycle pulsed Gaussian beam interaction with the 
nTe,1(w0) x -1 DNG slab are shown in Fig. 4.17. The simulation was run for 2500 
time steps; twenty-six snapshots in time were obtained at equal intervals. Several 
interesting effects can be highlighted. Notice that the ultrafast pulse generates a 
strong surface wave. As predicted in Refs. 23 and 24, surface waves are strongly 
generated as the beam interacts with the DPS-DNG interface in this nTeal (w0) x - 1 
case. Moreover, as this surface wave propagates away from the interaction region, it 
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Cell number 

Fig. 4.14 The intensity distribution transverse to the beam axis of the phase compen- 
satorheam translator system at the front face (at t = 3600At) and at the back face (at 
t = 8000At) shows that the waist of the beam intensity has been recovered as the beam 
propagates through the entire 4x0 long system with only a -0.323 dB attenuation of the peak 
intensity. 

generates a backward wave into the source side of the slab. These backward waves 
have been observed in, for instance, Ref. 25. Because of the broad bandwidth of 
the pulse, the dispersive effects of the Drude slab, the large angles involved, and the 
presence of several distinct wave processes, large distortions in the beam are also 
present in this example as it propagates through the DNG slab. The results for the 
CW Gaussian beam interacting with the n,.,,l(wo) x -6 DNG slab are shown in 
Fig. 4.18. The negative angle of refraction is again clearly seen. However, because 
of the change in wavelength in the DNG slab, the beam becomes highly compressed 
along the beam axis. Because the wave speed in the DNG slab correspondingly 
slows down by a factor of 6, the simulation was run for 8000 time steps. Again, 
21 snapshots in time were obtained at equal intervals. The discontinuities in the 
derivatives of the fields at the DPS-DNG interfaces are again clearly seen. Note that, 
as also predicted in Ref. 24, surface waves are not strongly generated as the beam 
interacts with the DPS-DNG interface when n,.,,l(~o) < 0 and nTeal ( W O )  # -1. In 
contrast to the n,,,l (WO)  M - 1 case, there was little focusing in the DNG slab. Also 
note that, as anticipated, the reflected beam is not readily apparent in this matched 
slab case. The results for the 3-cycle pulsed Gaussian beam interaction with the 
nreal(wo) M -6 DNG slab are shown in Fig. 4.19. The simulation was run for 5000 
time steps; 21 snapshots in time were obtained at equal intervals. Several interesting 
effects can be highlighted. Notice that even with its oblique angle of propagation 
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Fig. 4.15 The FDTD geometry for the oblique incidence cases illustrating the negative angle 
of refraction effects. The TF-SF boundary (second horizontal line from the top) and the beam 
axis (oblique line) are shown. The centers of the beam at the TF-SF boundary and at the front 
face of the slab are located at the intersection of the vertical lines with the oblique line. Electric 
field sampling points were located at the intersections of the right (center) vertical line and the 
horizontal lines. The location of the DNG slab region is shown in gray. 

through the slab and with its high degree of axial compression, the propagation of 
the pulsed Gaussiam beam is well-behaved. Also note that its takes quite some time 
for the entire beam to return into the free space medium through the back face of the 
slab. This dispersive effect causes the ultrafast beam to become quite spread out in 
time. The beam again quickly expands once the centroid of the beam exits the DNG 
slab. All of these cases clearly show the presence and effects of the negative angle of 
refraction realized when an obliquely incident Gaussian beam interacts with a DNG 
slab. Fine resolution-in-time movies of the behavior of the electric field amplitude 
(rather than the intensity) in the interaction cases discussed in this section show that 
the phase propagation is indeed in the direction opposite to the power flow shown in 
the figures given here. These results thus confirm many of the fundamental properties 
of Gaussian beam interactions with a DNG medium. 

4.5 GOOS-UNCHEN EFFECT 

It is well known that when a Gaussian beam is obliquely incident beyond the critical 
angle on an interface from a higher index of refraction DPS medium to a lower one, 
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(a) t = 750At (b) t = 1250At 

(c) t = 2000At (d) t = 5000At 

Fig. 4.16 FDTD predicted electric field intensity distribution for the interaction of the CW 
Gaussian beam that is incident at 20" to a DNG slab having nTeal(w0) x -1. A negative 
angle of refraction equal and opposite to the angle of incidence is observed. After Ref. [16]. 
Copyright @ 2003 Optical Society of America, Inc. 
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(a) t = 600At (b) t = 800At 

(c) t = 1200At (d) t = 2000At 

Fig. 4.17 FDTD-predicted electric field intensity distribution for the interaction of the 3- 
cycle pulsed Gaussian beam that is incident at 20' to a DNG slab having n,,,l(wo) M -1. 
A negative angle of refraction of the transmitted pulsed beam is observed. The generation of 
a backward wave at the front interface is also observed. 



GOOS-aNCHEN EFFECT 195 

(a) t = 1200At (b) t = 2000At 

(c) t = 3200At (d) t = 8000At 

Fig. 4.18 FDTD-predicted electric field intensity distribution for the interaction of the CW 
Gaussian beam that is incident at 20' to a DNG slab having nreal(u0) M -6. A shallow 
negative angle of refraction is observed because of the higher magnitude of the index of 
refraction in the DNG slab. The beam is also compressed axially in the DNG slab because of 
this higher refractive index. After Ref. [16]. Copyright @ 2003 Optical Society of America, 
Inc. 
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(a) t = 750At (b) t = 2000At 

(c) t = 2750At (d) t = 4500At 

Fig. 4.19 FDTD-predicted electric field intensity distribution for the interaction of the 3- 
cycle pulsed Gaussian beam that is incident at 20" to a DNG slab having nTeal(u0) x -6. 
A negative angle of refraction of the pulsed beam refracted into the DNG slab is observed. 
Very large dispersion of the pulsed beam transmitted out of the back face of the DNG slab is 
also observed. 
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the centroid of the reflected Gaussian beam will experience a positive lateral shift 
along the interface from the purely specular reflection point of the centroid of the 
incident beam [26]. This Goos-Hanchen shift results from the wavevector direc- 
tion dependence of the reflection coefficient (4.9). Several groups have considered 
the Goos-Hiinchen shift when the second medium is DNG [11,16,17,27,28]. In 
particular, if 2 is the direction along the interface and z is the direction orthogo- 
nal to it, then the corresponding wavevector components k, and k, are related as 
k, = ,/- in both media. If k , ~  represents the parallel component of the 
wavevector corresponding to the center of the incident beam, then an approximate 
expression for the reflected beam is [26] 

Ev(q z )  = R(k,o) e-jkzo"(kso) Ev, inc(x - @'(k,o), z )  (4.24) 

where the reflection coefficient (4.9) is rewritten in the form 

R(k,) = exp [ j  @(kz)l (4.25) 

Equation (4.25) defines the phase function as @ = - j  In R; its derivative @' = 
a @ / a k ,  is then readily obtained for use in (4.24). 

For an incident DPS medium with cr(w) = +9.0 and p,(w) = +1.0 (hence, 
n(w)  = +3) and for the transmission DPS medium with e,(w) = +3.0 and pr (w)  = 
+1.0 (hence, n ( w )  = +a), the critical angle is €Jc, = sin-'(nz/nl) = 35.26'. 
Calculating the lateral shift Q'(k,o) with a simple Matlab program for an angle of 
incidence of 40°, one finds that the shift should be +31.6 cm for the frequency fo. 
For the corresponding FDTD simulations, this would mean that the centroid of the 
reflected beam would be shifted approximately 32 cells positively along the interface 
away from the incident beam center. If, on the other hand, the transmission medium 
is a DNG Drude medium with Re[c,(wo>] M -3.0 and Re[pr(w0)] M -1.0, hence, 
nreal(w0) ra -d, then the wavevector components parallel to the interface in either 
medium must be equal, but the components normal to it are equal in magnitude 
and opposite in sign. This will cause the phase term @'(k,o) to have the opposite 
sign in the DNG medium case. Thus, one would expect the lateral shift to be 
-31.6 cm, hence, approximately -32 cells from the incident beam center on the 
interface. These theoretical results are pictorially represented in Fig. 4.20. The 
FDTD simulation results for the Goos-Hanchen effect in the DPS and DNG media 
are shown, respectively, in Figs. 4.21-4.23. The basic FDTD geometry is shown 
in Fig. 4.21. The CW Gaussian beam was launched with a center frequency fo 
and a 1.0 A0 waist from the TF-SF interface with a 40' angle of incidence in both 
cases. The incident beam was focused at the center of the front faces of the slabs. 
The TF-SF interface was 2Ao = 200 cells from the front faces of the slabs. The 
slabs were 2x0 = 200 cells deep. The simulations were run for 6000 time steps; 
21 snapshots in time were obtained at equal intervals. As shown in Figs. 4.22 and 
4.23, the specular-like reflection process for the above-critical-incidence Gaussian 
beam was realized. The presence of different beam centers is somewhat apparent 
when both figures are compared. However, to make this comparison quantitative, 
the electric field intensity distribution measured at t = 6000 At along the plane two 
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(a) DPS Case 

&) DNG Case 

Fig. 4.20 A Gaussian beam obliquely incident from a higher refractive index magnitude 
medium to a lower one with an angle of incidence beyond the critical angle will generate a 
reflected beam that experiences (a) a positive Goos-H%nchen lateral shift in a DPS medium 
and (b) a negative Goos-Hachen lateral shift in a DNG medium. 

cells in front of the TF-SF plane for the DPS and for the DNG cases are shown in 
Figs. 4.24 and 4.25, respectively. The location in this plane of the initial beam center 
and the specularly reflected beam center as well as the location of the predicted 
Goos-Hanchen-shifted beam centers are indicated. Figures 4.24 and 4.25 clearly 
show the opposite lateral shifts between the DPS and the DNG cases. An analysis of 
the centroids of the reflected beams yielded a lateral shift of approximately +31 cells 
in the DPS case and -33 cells in the DNG case, in very reasonable agreement with 
the predicted values of +32 cells and -32 cells, respectively. The small discrepancy 
appears to be due to the FDTD sampling location which is slightly in front of the TF- 
SF plane where the analytical result is obtained. Simulations with finer-resolution 
FDTD meshes show a decrease in the discrepancy. Note that in the DNG case, there is 
a time delay for the emergence of the reflected beam from the DNG slab, in agreement 
with the DNG dispersion behavior characterized in Ref. 29. Also note that there is 
some wave penetration into both the DPS and DNG slabs as shown in Figs. 4.22 and 
4.23, respectively. In the DPS case the penetration occurs with a positive angle of 
refraction, but in the DNG case it occurs with a negative angle of refraction. 

4.6 SUBWAVELENGTH FOCUSING WITH A CONCAVE DNG LENS 

We note that the reason that we considered expanding Gaussian beams in all of the 
cases presented up to this point is the inability of a planar DNG slab to focus a flat 
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Fig. 4.21 The FDTD geometry for the Goos-Hiinchen cases. The TF-SF boundary (second 
horizontal line from the top) and the beam axis (oblique line) are shown. The centers of the 
beam at the TF-SF boundary and at the front face of the slab are located at the intersection 
of the vertical lines with the oblique line. Electric field sampling points were located at the 
intersections of the center (right) vertical line and the horizontal lines. The location of the 
DNG slab region is shown in gray. 

beam or plane wave. The negative angle of refraction can occur only if there is 
oblique incidence. To focus a flat Gaussian beam (one with nearly an infinite radius 
of curvature), one must resort to a curved lens. However, in contrast to focusing 
(diverging) a plane wave with a convex (concave) lens composed of a DPS medium, 
one must consider focusing (diverging) a plane wave with a concave (convex) lens 
composed of a DNG medium. 

The FDTD concave DNG lens geometry is shown in Fig. 4.26. A Gaussian beam 
with a waist of 2 A0 = 200 cells was launched from the TF-SF boundary and was 
normally incident on the concave lens. The TF-SF boundary was 2 A0 = 200 cells 
from the front of the lens. The lens was a DNG medium with nVeal(wo) x -1. It 
was formed by removing a parabolic section from the back side of a slab that was 
1.5 A0 = 150 cells deep and 6 A0 = 600 cells wide. If (20, ZO) denotes the location 
of the focus and f D N G  denotes the focal length, the parabolic section was defined by 
relation 

(. - .0>2 
z - z o =  - f D N G  

4 f D N G  
(4.26) 

The focal length was set to be fDNG = A0 = 100 cells . The location of the focus 
was chosen to be at the center of the back face of the slab. Thus, the parabolic section 
began 0.5 A0 = 50 cells into the slab and terminated 1.5 A0 = 150 cells from its 
front face. The full width of the removed parabolic section at the back face was 

A DPS plano-convex lens of index n D p s  with a similar radius of curvature 
R = 2 f D N G  = 2Ao (the dark gray region in Fig. 4.26) would have a focus located 
a distance f D p S  = R / ( n ~ p s  - 1) = 2 A o / ( n D p S  - 1) from its back face. Thus, 
to have the focal point within the very near field , as it is in the DNG case, the 
index of refraction would have to be very large. In fact, to have it located at the 

2 x 2 f D N G  = 4x0 = 400 cells. 
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(a) t = 1200At 

(b) t = 2100At 

(c) t = 4800At 

Fig. 4.22 FDTD-predicted electric field intensity distribution for the interaction of the CW 
Gaussian beam and the DPS slab. The beam is incident at 40" in a DPS medium with E, (w )  = 
+9.0 and pT(w) = +1 [hence, n ( w )  = +3] onto a DPS slab having e,(w) = +3.0 and 
p,(w) = +1 [hence, n ( w )  = +fi]. Some penetration of the beam into the slab occurs 
with a positive angle of refraction. The reflected beam propagates away from the interface 
in the total field region through the TF-SF boundary into the scattered field region. After 
Ref. [16]. Copyright @ 2003 Optical Society of America, Inc. 
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(a) t = 1200At 

(b) t = 2100At 

(c) t = 4800At 

Fig. 4.23 FDTD-predicted electric field intensity distribution for the interaction of the CW 
Gaussian beam and the DNG slab. The beam is incident at 40" in a DPS medium with E~ (w ) = 
+9.0 and pT(w) = +1 [hence, n(w) = +3] onto aDNG slab having Re[&,.(w~)] = -3.0 
and Re[pT(wo)] = -1 [hence, nTeal(w) = -41. Some penetration of the beaminto the 
slab occurs with a negative angle of refraction. The reflected beam propagates away from the 
interface in the total field region through the TF-SF boundary into the scattered field region. 
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12 

1.0 - - 

Cell number 

Fig. 4.24 The electric field intensity distribution measured at t = 6000At at two cells in 
front of the W-SF plane for the total internal reflection DPS slab case. The positions of the 
incident beam center and the specularly reflected beam center are indicated by the dashed 
vertical black lines. The theoretical positive Goos-Hmchen shift position is indicated by the 
vertical solid black line. After Ref. [16]. Copyright @ 2003 Optical Society of America, Inc. 

back face would require n D p S  t 00. This would also mean that very little of 
the incident beam would be transmitted through such a high-index lens because 
the magnitude of the reflection coefficient would approach one; that is, the process 
would become very inefficient. In contrast, the DNG lens achieves a greater bending 
of the incident waves with only moderate absolute values of the refractive index 
and can be matched to the incident medium. Moreover, since the incident beam 
waist occurs at the lens, the expected waist of the focused beam would be wj,,,, M 
( . ~ D P S / L R ) W O  = ( X O ~ D P S ) / ( T ~ O )  = X O / [ ~ ( ~ D P S  - 1) POI. Hence, foran~rmal  
glass lens nDps M 1.5. the waist at the focus would be wj,,,, M #!0/1.57 x 64cells 
and the corresponding intensity half-max waist would be 0.589 wf,,,, M 38 cells. 
The longitudinal size of the focus is the depth of focus, which for the normal glass lens 
would be 2 (T w~,,,, /XO) x 257 cells. Again, to achieve a focus that is significantly 
subwavelength using a DPS lens, a very large index value would be required and 
would lead to similar disadvantages in comparison to the DNG lens. 

The FDTD-predicted electric field intensity distributions are shown in Fig. 4.27. 
The simulation was first run for 10000 time steps; 26 snapshots in time were obtained 
at equal intervals. The selected snapshots illustrate the focusing of the beam by 
the lens. It was found that the peak intensity in the focal region varies its location 
periodically. This behavior is illustrated by Figs. 4 . 2 7 ~  and 4.27d. A second sim- 
ulation was also run for 10000 time steps; 21 snapshots in time were obtained at 
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Cell number 

Fig. 4.25 The electric field intensity distribution measured at t = 6000At at two cells in 
front of the TF-SF plane for the total internal reflection DNG slab case. The positions of 
the incident beam center and the specularly reflected beam center are indicated by the dashed 
vertical black lines. The theoretical negative Goos-Hhchen shift position is indicated by the 
vertical solid black line. 

equal intervals between time steps 9000 and 10000. It was found that the intensity 
peaked at the focal point, for instance, at t = 9100 At. The FDTD predicted electric 
field intensity distribution at that time is shown in Fig. 4.28. In comparison with 
Figs. 4 . 2 7 ~  and 4.27d, the peak occurs in the center of the focal region as expected. 
The electric field intensity along the beam axis at t = 9100 At is shown in Fig. 4.29. 
The corresponding electric field intensity transverse to the beam axis at the rear face 
of the lens is shown in Fig. 4.30 and is compared there to the intensity across its front 
face at t = 2000 At (before the waves reflected from the concave section interact 
with the sample points on the front face). The radius of the focus along the beam axis 
(half-intensity radius) is measured to be 19 cells M X0/5 and along the transverse 
direction it is 17 cells M X0/6. This subwavelength focal region, which is achieved 
with a matched lens whose index magnitude Inreal(wo) I M 1, is significantly smaller 
than would be expected from the corresponding, traditional DPS lens. 

Even though the focal point is in the extreme near field of the lens, the focal 
region is nearly symmetrical and has a resolution that is much smaller than a wave- 
length. Such a subwavelength source has a variety of favorable features that may 
have applications, for example, in high-resolution imaging with near-field scanning 
microscopy (NSOM) systems. In particular, the field intensity has been concentrated 
into a subwavelength region without a guiding structure. It could thus act as a much 
smaller NSOM aperture source than is available with a typical tapered optical fiber 
probe and without the associated aperture effects. 
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Fig. 4.26 The TF-SF boundary (second horizontal line from the top) and the beam axis 
(center vertical line) are shown. Electric field sampling points were located at the intersections 
of the center vertical line and the horizontal lines. The location of the DNG lens region is 
shown in light gray. The dark gray region is air, as is all of the white region surrounding the 
lens. 
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(a) t = 800At (b) t = 1600At 

(c) t = 4000At (d) t = 5600At 

Fig. 4.27 FDTD-predicted electric field intensity distributions for the DNG concave lens. 
The concave DNG lens focuses the beam as expected. The slab outline and the beam axis are 
provided for visual references. 
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Fig. 4.28 FDTD-predicted electric field intensity distributions for the DNG concave lens at 
t = 9100At. The peak of the intensity occurs at the predicted focal point. 

PDTD cell number 

Fig. 4.29 FDTD-predicted electric field intensity distributions for the DNG concave lens at 
t = 9100At along the beam axis. The locations of the front and back faces of the lens along 
the beam axis are defined by the dashed vertical lines. The location of the predicted focus is 
defined by the dot-dashed vertical line. The peak of the intensity occurs at the predicted focal 
point. 
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7.0 1 "i 2.0 1.0 

QoO 

FDTD cell number 

Fig. 430 FDTD-predicted electric field intensity distribution for the DNG concave lens at 
t = 9100At along the back face and transverse to the beam axis. The corresponding intensity 
across the front face at t = 200OAt is also shown. Significant focusing of the intensity of 
the beam at the predicted focal point has been realized with the concave lens. 
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4.7 CONCLUSIONS 

The interactions of Gaussian beams with DPS and DNG slabs were illustrated with 
numerical FDTD simulations. Both normal incidence and oblique incidence cases 
were considered. The normal incidence results demonstrated that Gaussian beams 
can be focused using a planar DNG slab. The oblique incidence results clearly 
demonstrated the negative refractive angle behavior associated with a DNG-DPS 
interface. Power flow at the negative angles predicted by Snell’s Law was confirmed. 
The negative refractive effects were realized with both many-cycle (CW) and 3-cycle 
pulsed Gaussian beams. A negative lateral Goos-Hanchen shift was demonstrated 
for a beyond-critical-angle Gaussian beam scattering from a DNG slab in comparison 
to the usual positive lateral Goos-Hanchen shift realized with the corresponding DPS 
configuration. 

A number of interesting applications for DNG media arise from these results. 
Subwavelength focusing from a planar slab was demonstrated. A phase compen- 
satorbeam translator constructed from a stack of DPS-DNG slabs was presented 
that translated an input beam to essentially the same beam at the output of the system 
with low loss over several wavelengths. Focusing using a concave DNG lens was 
illustrated. It was shown that, in contrast to typical DPS lens systems, the focal region 
can be made to be significantly subwavelength and nearly symmetrical. 

A variety of planar and volumetric realizations of DNG metamaterials have been 
reported in the literature and experiments with them have confirmed various aspects 
of the DNG effects demonstrated here. Similar physics and engineering aspects of 
DNG metamaterials have also begun to be considered in the millimeter, terahertz, and 
optical regimes. However, it should be noted that other approaches to achieve similar 
effects have also been considered. For instance, the negative refractive angle behavior 
has already begun to be exploited through the DPS photonic band-gap super-prism 
effect (e.g., see Refs. 31-33), for applications which include WDM switches and 
couplers. 

Numerical experiments such as those discussed here will be a dominating design 
environment for any eventual successful exploitation of the DNG metamaterial prop- 
erties. Their flexibility in handling various types of excitations, material choices, 
and complex combinations and configurations of those materials provide an advan- 
tageous approach to study the physics and engineering aspects of metamaterials. 
Nonetheless, the eventual usefulness of metamaterials for many potential practical 
applications will depend greatly on clever fabrication concepts and implementations 
in those scenarios. The metamaterial area is rich in novel physical effects; their 
engineering realizations may have profound impact on a number of devices and 
systems. 
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5.1 INTRODUCTION 

The index of refraction of a material is a commonly used parameter that describes 
some of the most fundamental interactions between a material and an electromagnetic 
wave. A wave incident on the interface between two materials having different re- 
fractive indices will have its trajectory bent-r refracted-by an amount determined 
by the angle of incidence, and the ratio of the refractive indices of the two materials. 
The refractive index is usually taken with reference to vacuum. Air, for example, has 
a refractive index close to unity over most of the electromagnetic spectrum, indicating 
that there is little difference in wave propagation in air versus vacuum. 

The phenomenon of refraction enables a material to alter the paths of electromag- 
netic waves incident on its interface. Because the path of the wave is changed in a 
manner depending on the angle made with respect to the interface, the interface can 
be shaped so that specific functions or operations can be performed on the incident 
wave. One of the most important such operations is focusing, and in this case the 
shaped material is called a lens. Lenses have widespread application and are used 
at nearly all electromagnetic wavelengths, from radio to optical. Lens design and 
fabrication (using positive index materials) are mature and sophisticated technolo- 
gies. Imaging systems having numerous lens elements, each with different surface 
curvature and material composition, are routinely produced with increasingly greater 
precision. 

However, the ultimate quality that can be realized by a lens system is limited by 
the materials available. Formerly, all known materials transparent to electromagnetic 
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radiation have had a positive refractive index. Consequently, all known lenses have 
had a positive refractive index. The optimization of a lens system that used conven- 
tional materials therefore included this inherent constraint. However, this constraint 
is not fundamental in origin. As first pointed out by Victor Veselago, and as we will 
discuss, the refractive index of a material can, in principle, be negative. Veselago 
noted that lens elements produced from negative index materials-if such were ever 
found-would behave in a very different way from positive index lenses. For exam- 
ple, a convex negative index lens would cause an incident beam to diverge rather than 
to converge. Likewise, a concave negative index lens would act to focus an incident 
beam [I]. 

In addition to changing the nature of convex and concave lenses, Veselago also 
noted that a planar slab with a refractive index equal to minus one could refocus the 
rays from a nearby source-something not possible with any positive index material. 
This property of a negative refractive index has proven in recent years to have greater 
consequences. A Fourier optic analysis of the planar negative index slab reveals 
that it can produce a focus with greater resolution than suggested by the diffraction 
limit associated with all previously known passive optical elements. Because of this 
unexpected property, the planar slab has been called a “perfect lens,” although it has 
little in common with traditional lenses [2]. 

While the perfect lens does offer a working distance equal to its thickness, it 
does not possess a focal length and does not focus radiation from distant sources. 
Since many applications (cameras, telescopes, antennas, etc.) require the ability to 
focus radiation from distant objects, the detailed behavior of negative index lenses 
with curved surfaces is of interest. Such lenses can focus far field radiation in 
the same manner as traditional positive index lenses. Negative refractive index 
therefore increases the parameter space for lens design and provides several important 
advantages. Spherical profile lenses composed of negative index media can be more 
compact, they can be matched to free space, and here we demonstrate that they can 
also have superior focusing performance. 

The monochromatic imaging quality of a lens can be characterized by the five 
Seidel aberrations: spherical, coma, astigmatism, field curvature, and distortion. 
These well-known corrections to the simple Gaussian optical formulas are calculated 
from a fourth-order expansion of the deviation of a wave front from spherical. (A 
spherical wave front converges to an ideal point focus in ray optics.) The coefficients 
in this expans’ Jn quantify the non-ideal focusing properties of an optical element for 
a given object and image position. There is an asymmetry of several of the Seidel 
aberrations with respect to index about zero. Considering that an interface with 
a relative index of +1 is inert and one of relative index -1 is strongly refractive, 
this asymmetry is not surprising. However, we will conclude that this asymmetry 
can yield superior focusing properties for negative index lenses. The basis for this 
assertion is not obvious. 

The purpose of this chapter is to explain how to perform a geometric optic analy- 
sis of optical systems-particularly lenses-that incorporate isotropic negative index 
media. Hopefully, this chapter will elucidate all the analytical steps that lead to the 
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conclusions above. Section 5.2 derives Fermat’s Principle from Maxwell’s equa- 
tions allowing for the possibility of simultaneously negative electric permittivity and 
magnetic permeability. This establishes the validity of geometric optics for this case 
and yields an appropriate generalized definition for refractive index. All the most 
important results of geometric optics, such as equal angle reflection, Snell’s Law, and 
Gaussian imaging, can be derived from Fermat’s Principle. Section 5.3 describes the 
Gaussian optic results of spherical surfaces and interfaces separating media of op- 
posite refractive index sign. Section 5.4 goes beyond Gaussian optics and describes 
aberration calculations, with very interesting results for thin lenses. 

5.2 GEOMETRIC OPTICS 

Maxwell’s equations together with scalar response functions, E and p, are a valid 
description of electromagnetic fields in linear isotropic media, regardless of the sign 
of E and p. Negative material response is a well known property of resonant magnetic 
or electric systems [3], and Maxwell’s equations have been accurately describing 
these systems for quite some time. However, in the past, these systems always had 
either magnetic or electric resonances, and never both in the same frequency range. 
If only one response function is negative, the wavevector, which obeys 

must have a significant imaginary part, and the wave solutions 

ei(k,r-wt) 

will not propagate over significant distances. Geometric optics, which is a useful 
simplification that is accurate only when all material, and field variation length scales 
are large compared with wavelength, is not then applicable. Thus the question of 
extending geometric optic concepts like Snell’s Law or Fermat’s Principle to these 
systems does not arise. With the recent demonstration of simultaneously negative E 

and p [4] and negative refraction [5], it is important to re-derive Fermat’s Principle 
with attention to the signs of the response functions. Our approach will be to derive 
Fermat’s Principle from the eikonal equation of geometric optics, and is quite different 
from Veselago’s original derivation of Snell’s Law from the boundary matching of 
fields [ 13. 

In this section we will derive a variational principle of the form 

6 f ( ~ , p ) d s  = 0 
C J 

where f is some, as yet undetermined, function of the material properties and C is the 
path of a light ray. This equation states that the integral of the function f is stationary 
with respect to small variations of the path from the physical path of a light ray. We 
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will use only Maxwell's equations, the constitutive relations, and the assumption that 
a light ray follows the Poynting vector. We will then see the relationship this function 
f has to the usual definition of refractive index 

Throughout this chapter the square root symbol will denote the positive square root 
and will only be applied to real positive numbers. 

Maxwell's source free equations (in SI units) are 

dB 
V x E = - -  at 

dD 
V X H Z -  at 

(5.2a) 

(5.2b) 

(5 .2~)  

(5.2d) 

and the constitutive relations are 

where the unsubscripted E and p refer to the relative permittivity and permeability. 
We will use solutions of the form 

(5.3a) 

(5.3b) 

where < (r) is a real function of position, and e (r) and h (r) are potentially complex 
functions of position. These solutions are completely general since we have arbitrary 
functions representing both the phase and amplitude of the harmonic field at every 
point in space. Later, to enter the geometric optic approximation, we will assume 
that e (r) and h (r) are slowly varying amplitude functions, and that the relatively 
rapidly varying oscillation of these wave solutions is represented by < (r). This latter 
function, called the eikonal, appears in the phase factor, 

e-ikoC(r) = ,-id~(r) 

where we define +(r)  to be the phase as a function of position. We note that < 
represents the phase in units of the free-space wavelength. 

0 
4 < = - A  

21r 

If the phase, 4, changes by 2lr, then the eikonal, <, changes by the free space 
wavelength, Ao. We also use the eikonal to define what we mean by a light ray. A 
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light ray is a continuous path that is normal to the surfaces of constant C. These 
surfaces we call the wave fronts or phase fronts. 

Substituting (5.3) into (5.2) and using the vector identities, 

V - (Ae@) = (V . A + Vlc, + A) e$ 

V x (Ae@) = (V x A + V $  x A)e@ 

with some rearrangement we arrive at 

where 

1 
iko VC X e -pqoh=  -V x e 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

is the impedance of free space. This quantity is just the ratio of the magnitude of the 
electric to the magnetic field for a free-space plane wave. In the SI system qoH and 
E have the same units. 

Now we make the geometric optic approximation. We assume that the spatial 
variation of the amplitude factors, e (r) and h (r), and the material response functions, 
E and p, are slow compared to the phase variation given by the eikonal in the factor 
eikoc(r). All derivatives of the amplitude factors and the material response functions 
appear on the right-hand side of (5.4), and the derivatives of the eikonal appear on 
the left-hand side of (5.4). Formally, we arrive at the geometric optic approximation 
by taking the limit of (5.4) as A0 -+ 0-that is, as ko -+ co-and obtain 

Vc x qoh + .ze = 0, 

VC x e - pqoh = 0, 

(5 Sa) 

(5.5b) 
VC.e=O,  (5%) 

VC*h=O (5.5d) 

Note that this limiting procedure is valid arbitrarily close to a material discontinuity, 
as long as the interface radius of curvature is large compared to wavelength. If we 
add the condition that light rays are continuous across discontinuities, as required 
by the conservation of energy, then geometric optics and Fermat’s Principle are still 
valid. Now we can eliminate the field amplitudes and solve for the eikonal. Solving 
(5.5b) for qoh and substituting into (5.5a), we obtain 

VC x (VC x e)+Epe = 0 
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Using the usual vector identity for the double cross product we find 

V<(V<-e)  - e(VC+ VC) +epe = 0 (5.6) 

The first term in (5.6) is zero by (5%). Since e is not zero everywhere, we arrive at 

VC * VC = ep. (5.7) 

This dimensionless equation is referred to as the eikonal equation of geometric optics. 
Normally, the right-hand side is replaced by the square of the refractive index, but 
we will leave it as is until we establish an appropriate definition for this quantity. Up 
to this point, we have not deviated much from the derivations in Born and Wolf [6] 
or Kong [7]. 

The eikonal equation is one of the primary relations we will use in deriving 
Fermat’s principle. The other key ingredient is the time average of the harmonic 
Poynting vector, 

1 
2 

(S) = -Re(E x H*) (5.8) 

Substituting (5.3) into (5.8) we find that the phase factor common to both E and H 
drops out, leaving just the (potentially complex) amplitude functions, 

1 
2 

(S) = -Re (e x h*) 

Solving (5.5b) for h and substituting into (5.9) we obtain 

(5.9) 

1 (S) = - RE (ex (VC x e l ) )  
2PrlO 

Here we have assumed that p is real. This is appropriate since we will generally 
apply geometric optics only to low-loss media, where p has a negligible imaginary 
part. Again, using the double cross-product identity, we find 

1 (S) = - Re (VC (e . e*) - e* (e - VC)) 
2PVO 

The first term is real, and the second term is zero by ( ~ S C ) ,  thus 

1 
(S) = -e e*V< 

2PVO 

The magnitude of this vector is given by 

Using the eikonal equation (5.7), this reduces to 
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Fig. 5.1 The stationary path, c, between points rl and r2 is normal to the surfaces of 
constant c. 

Thus the unit vector is given by 

(5.10) 

Now we see the essence of media with negative material response functions. In a 
positive material the power flows in the direction of maximum phase advance defined 
by the gradient of the eikonal, but in a negative material the power flows in the 
opposite direction. 

We will now begin the actual proof of Fermat's Principle. The variational path 
integral we are interested in gives the phase change between two points, rl and 1-2, 

along a light ray represented by a curve, C (Fig. 5.1). From the fundamental theorem 
of calculus, we have 

Ac = c (r2) - c (r1) = J, dC 

Using the chain rule to expand the differential we obtain 

where r is the position along the curve and s is the path length. The derivative of the 
position vector with respect to the path length is just a unit vector tangent to the path. 
If our path is a light ray, then it points in the direction of the Poynting vector. Since 
a light ray delivers power and must do so in a direction along its path, we obtain 

Now we will examine the first variation of our path integral. This variation represents 
the change in the value of the integral when we evaluate it along a path infinitesimally 
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nearby the path C and with the same endpoints as C: 

( 6 V ( - t + V ( - 6 t )  ds (5.11) 

We note that a nearby curve is displaced transverse to C, this displacement is per- 
pendicular to the gradient of < and parallel to the surfaces of constant (. Thus we 
have 

6C = 0 

v (6() = 0 
and trivially 

Switching the order of the variation and the gradient yields 

6VC = 0 (5.12) 

Thus the first term of the integrand of the right hand side of (5.11) is zero. For 
evaluating the second term in this integrand, we note that the derivative of the 
position vector with respect to path length will be a unit vector on any path. On a 
path nearby to C we will call this vector x. The normalization condition f o r t  is 

- -  
t * t = ( t  + 6t) * ( t  + 6t) = 1 

t . t + 2 t .  6t  + 6t * 6t = 1 
Expanding we have 

If we drop the second-order term and use that fact that, t t = 1, we obtain 

t * b t = O  

From (5. lo), t is parallel (or antiparallel) to VC, so we have 

V( * 6t = 0 (5.13) 

and the second term in the integrand is zero. Thus we have shown that the first 
variation of the integral (5.11) is zero. The last step in our proof is to rewrite the 
integrand in terms of E and p only, then we will have a useful tool that enables us to 
determine the paths of light rays between point pairs given only the properties of the 
intervening materials. Using (5.10) for t ,  we have 

If we apply the eikonal equation (5.7), this simplifies to 

V( .  t = sign(p) &ji 

and our variational principle becomes 

6 sign (p )  &ids = 0 
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t 

Fig. 5.2 The path ? deviates from the path r by an amount 6y. 

Comparing with the usual form of Fermat’s principle 

(5.14) 

we can choose to keep the usual definition of index, (5.1), and write a modified 
Fermat’s principle 

6 sign ( p )  nds  = 0 s, 
or redefine the refractive index as 

n = sign ( p )  @ (5.15) 

and maintain the form (5.14). We find the latter more aesthetically pleasing. On the 
subject of aesthetics, the definition (5.15) has a rather displeasing lack of symmetry 
with respect to the permittivity and permeability. Noting that geometric optics is 
only relevant when E and p have the same sign we can use an equivalent, symmetric 
definition for the refractive index. 

The integral in (5.14) is often referred to as the optical path length, OPL [8], so that 
Fermat’s Principle can also be written rather succinctly as 

60PL = 0 

5.2.1 Path Variation Example 

Since the arguments that lead up to (5.12) and (5.13) are rather formal, we here give 
an example, using a specific path and parameterized variation. These are shown in 
Fig. 5.2. The unvaried path is given by 

r (z) = z2, z E [0, 11 (5.16) 
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and the varied path is given by 
- 
r(x) =x; i+f (x)dyF,  x E [ O , l ]  (5.17) 

where the function f. 

defines a linear ramp diverging away from the unvaried path along the first half of its 
length, and converging along the second half. For the unvaried path, the unit tangent 
vector is given by 

since the path length and the x-coordinate are identical. For the varied path we have, 
more generally, - dF dFds t= -=- -  

ds dxdx 
The path length along the varied path is 

s (x) = JzqLq = X d i T z p  
and the differential path length is 

ds 
dx 
- = &Ti.@ = 1 + 26y2 + . . * 

Thus, to first order we can neglect the difference in path length, and the unit tangent 
vector is then 

- d F  
dx 

t x - = 2 + f’ (x) dy? 

6t = t - t = f’(x)dy? 

and the variation in the unit tangent vector is 
- 

which is orthogonal to t, 

just as formally deduced above. 

t . d t = O  

For evaluating 6VC (I), we perform an expansion of 05 (F) 

VC (F)  = VC (r) + V (VC (r)) .6r + . - . 
the second term of which is the variation that we seek, 

6VC (r) = V (VC (r)) 6r (5.18) 

In this example, the difference in the position vector is given by subtracting (5.16) 
from (5.17) 

dr =F- r = f (x) 6yy 
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Substituting into (5.18) we obtain 

Interchanging the gradient and the partial y differentiation, 

but on the light ray we have 

(5.19) 

and the gradient of the eikonal has no y-component; the eikonal has no variation 
in the y-direction since this is parallel to the constant c surfacesl; that is, the wave 
fronts: 

(5.20) 

Substituting (5.20) back into (5.19), we see that the variation of the gradient is zero, 

SO< (r) = 0 

5.3 GAUSSIAN OPTICS 

5.3.1 Single Surface 

As we shall show, the familiar results of Gaussian optics apply in the presence of 
media with negative refractive index. Here we will derive these results using Fermat’s 
Theorem and a notation that we believe will lead to less confusion and sign errors. 
We feel this is necessary as many descriptions of Gaussian optics have complicated 
and confusing sign conventions even without the possibility of negative index. 

Gaussian optics is a first-order approximation of the paths of rays that lie close to an 
optic axis, where the optic axis is a line on which are centered spherical surfaces that 
define either an interface between media or a reflective surface. The results obtained 
will be accurate if the angle between a ray and the optic axis is sufficiently small 
that the length of the ray and its projection on the optic axis are approximately equal, 
and the ray intersects the spherical surface within a cone angle that is sufficiently 
small that the cosine of that angle is approximately one. The results obtained are 
both simple and useful for approximating the behavior of real optical systems that 
are apertured to relatively small angles around the optic axis [S]. 

The central result of Gaussian optics is a relationship between pairs of points and 
a spherical surface. The pairs of points are called conjugate focal points. A point 
source object placed at one member of the pair causes a point image to appear at the 
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other member of the pair. The geometric optic representation of a point source is 
either a spherically symmetric eikonal, 

c (r) = c (I. - rill 
or, equivalently, an infinite set of rays that have a common intersection point. Each 
one of these rays intersects the spherically symmetric surface and passes through both 
focal points. Plane waves, which are represented by planar constant eikonal surfaces, 
or equivalently, by rays that are parallel, are a special case that can be handled by 
letting the focal point approach infinity. 

We will represent the conjugate focal pairs by the Cartesian vectors, 

rl = 21% + y1y + ZIP 
1 2  = 22% + y27 + 22% 

where the z-axis will be the optic axis. For the case of a surface that is an interface 
between media, (i.e., refraction), rl will represent the rays to the left of the interface 
on the optic axis (smaller z)  and 1-2, the rays to the right (larger z). For the case of a 
reflecting surface, rl and 1 2  will represent rays on the same side of the surface. The 
surface is defined by its center of curvature 

.. 
c = cz 

and a vertex 

which is an intersection of the sphere with the optic axis. The components of these 
vectors inherit the usual sign conventions of Cartesian vectors, so there is no arbitrary 
convention to remember. If there is just one surface, as will be the case for most of 
this section, we will set the zero of our z-axis to be the vertex of this one surface and 
simplify our results. 

Now we note that a focal point and the set of rays it represents need not lie on the 
same side of the surface. This is the meaning of real and virtual images. A real focal 
point is a ray intersection that lies on the same side of the interface as its set of rays. A 
virtual focal point is a ray intersection that lies on the opposite side of the interface as 
its set of rays. A virtual focal point is a convergencddivergence that electromagnetic 
waves do not actually reach, because the waves are interrupted by the interface. If the 
interface were not present, the waves would converge to and diverge from the focal 
point. Thus, while a real focal point can be projected onto a screen, a virtual focal 
point can only be observed through its apparent properties from outside the media in 
which it appears to occur. The parameter that characterizes the reality/virtuality of a 
focal point we will call a. This parameter will be plus one for a real focal point and 
minus one for a virtual focal point. For the case of a single interface with the vertex 
located at the origin, we have 

h 

v = 212 

a1 = -sign(zl) 
a2 = sign (z2) 

(5.21a) 

(5.2 1 b) 
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so that focal point, rl, will be real if its z-component is negative, and so on. For the 
reflector case with rays on the left side of the reflector, we have 

cri = - sign (zi)  (5.22) 

and for the reflector case with rays on the right side of the reflector we have 

cri = sign ( z i )  (5.23) 

These definitions may seem a bit formal and unnecessary for an intuitive concept, but 
the result is that one application of Fermat’s Principle will handle all of these cases in a 
systematic way. Also, later, when we tackle the significantly more complex problem 
of aberrations, this formalism will help make the calculations more conceptually 
manageable. 

Using the above definitions, we can now derive the Gaussian formulas. We wish 
to find a relationship that will be satisfied by focal point pairs. Fermat’s Theorem 
states that the optical path length between such pairs will be stationary with respect 
to choice of path. We already know the paths are straight lines inside a homogeneous 
medium, so the path is completely parameterized by choosing the point on the surface 
that is the common endpoint of the two straight segments (Fig. 5.3), 

OPL = nds = crlnlll + crzn212 s, (5.24) 

where the integral, which is constant over each of the two segments, has been 
performed as shown. The coefficients of the geometric path lengths, Zi, are explained 
as follows. ni is just the index of the media in which the integration paths lie. cri 

must also be present because the integration direction must be reversed for virtual 
focal points. When both focal points are either real or virtual, the total integration 
path is from a divergence to a convergence or vice versa, and the integration path 
can always follow the wave direction. However, if one focal point is real and one 
virtual, then both focal points are either divergences or convergences. For example, 
the virtual image of a light source viewed in a flat mirror is also a light source. 

We parameterize the surface point by an angle, 9 ,  which is the angle of the 
surface radius referred to the positive optic axis. According to Fermat, if we take the 
derivative of this optical path length with respect to 8,  we must obtain zero, 

(5.25) 

We use the law of cosines to calculate the (always positive) distance, 1. 

l 2  = R2 + ( z  - c)’ - 2R (2 - C) cos I9 (5.26) 

where R = 1.1 is the radius of the surface, the center of which is located at c = c2. 
One can confirm by checking all the possible cases that this formula is correct 
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Fig. 5.3 Optical paths for four differnet configurations. (a) A case of refraction. Both focal 
points 1 and 2 are real and on opposite sides of the surface, which has its center to the right 
of the vertex. (b) A case of refraction. Both points are virtual. (c) A case of reflection. Both 
points 1 and 2 are real and on the same side of the surface, which has its center to the left of 
the vertex. (d) A case of reflection. Focal point 1 is real and 2 is virtual. 

regardless of the relative positions of z, c and the vertex. Differentiating (5.26) 
implicitly with respect to 8, we find 

dl 
d8 

21- = 2 R ( z  - c)sinO 

Substituting (5.27) into (5.25), we obtain 

w n 1  a 2 n 2  --R ( z 1  - c) sin 8 + --R ( z 2  - c) sin 8 = 0 
11 12 

which can be rearranged to 

(5.27) 

(5.28) 

This exact relationship is complicated by the presence of 11 and 12 which depend on 
8. This equation gives different relationships between focal point pairs for different 
angles. This is consistent with the fact that spherical surfaces have spherical aberra- 
tion when not considered in the Gaussian optic limit. In the Gaussian limit, cos 8 M 1 
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(5.29) 

Substituting (5.29) into (5.28), we obtain 

which is the general result of Gaussian optics applicable to both refraction and 
reflection. Specializing for refraction by using (5.21) yields 

For reflection we have n1 = 7x2, and using either (5.22) or (5.23) gives the same 
result, 

These results can be written in a more familiar form as 

and 

(5.30) 

(5.31) 

Both (5.30) and (5.31) include the special case of flat surfaces by taking the limit 
c + 00. For example, taking this limit of (5.31) yields the familiar result for plane 
mirrors, 22 = -z1. 

Now we will use these equations to examine some of the unique and interesting 
properties of refraction across a surface separating media with refractive index of 
opposite sign. First, we will find the dependence of the surface curvature on relative 
index, which we define as n = nz/nl, when both focal points are real, z1 < 0 and 
2 2  > 0. Using (5.30), we obtain 

n - 1  
C =  

n/ lz2l + 1/ 1.211 
(5.32) 

Since n is the index on side 2 relative to side 1, this media will be convex if c is 
positive and concave if c is negative. We see that when n is positive, the sign of 
the curvature is completely determined by the factor, n - 1. When n is greater than 
one, the surface must be convex. We all know that a focusing lens must be convex. 
However, when 0 < n < 1 the surface must be concave. If this is surprising, it is 
because materials with index less than one are not commonly used for lenses. (Of 
course, n is the relative index, so an air lens embedded in glass would be an example 
of a lens with index less than one.) We also note that this equation correctly predicts a 
problem for focusing with n = 1 media. As we approach the n = 1 limit where there 
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is no discontinuity in material properties across the interface, and thus no refraction, 
the interface radius of curvature must approach zero! 

Stranger things occur when the index is less than zero. In this case (5.32) has a 
pole, and the factor in the denominator may be either positive or negative. This pole, 
which occurs at n = - 122/21 I, indicates that the interface should be flat (c + 00) 

in that case. The possibility of a flat interface, between media of oppositely signed 
index, creating a real image, was first pointed out by Veselago [ 11. 

The case of refraction at an n = -1 interface is directly analogous to reflection. 
Substituting n2/nl = -1 into (5.30), we obtain 

1 1 2  
z+g=, (5.33) 

which is identical to (5.31). The difference is that here the two focal points represent 
rays on opposite sides of the surface whereas for reflection they represent rays on 
the same side of the surface. A source in front of a flat or convex mirror yields 
virtual images, but in front of a plane or convex surface on n = -1 media, yields 
real images. 

An important special case of Gaussian optics occurs when one focal point is at 
infinite distance from the surface. One often wants to know how a surface affects 
parallel light. If we again define n = n2/n1, using (5.30) we find the following 
limits. 

n 
lim z2 = c- 

21 -00 n - 1  
1 

lim z1 =-c- 
2 2 - 0 0  n - 1  

from which the reality parameters are 

0 2  =sign c- 
( n r 1 )  

01 =sign c-- 
( n y 1 )  

(5.34a) 

(5.34b) 

Equation (5.34a) indicates the reality of a focal point when its conjugate represents 
parallel rays from outside media of index n. Equation (5.34b) applies when the 
parallel rays originate inside the media. 

Using (5.34) we complete Table 5.1. We see from this table that negative index 
does not exhibit opposite behavior to positive index. With respect to the reality of 
images, it is actually index between zero and one that behaves oppositely to index 
kreater than one. n = 1 is frequently a symmetry point for focusing properties 
because refractive power goes to zero at this index value. 

Up to this point we have only considered on-axis focal points. In Gaussian optics, 
the positions of focal points along the optic axis (their z-coordinates) can be found 
independently of their transverse positions (2- and y-coordinates). One may work 
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Table 5.1 The reality of images created by a single surface acting on parallel rays 

Parallel Rays Surface n < O  O < n < l  l < n  

outside convex real virtual real 
concave virtual real virtual 
convex virtual virtual real 
concave real real virtual 

inside 

out the focal points’ coordinates along the optic axis first, and then determine their 
transverse positions afterward. Furthermore, we will only consider optical systems 
composed of surfaces that are smooth (differentiable) and rotationally symmetric 
about the optic axis. This rotational symmetry requires that all focal points will lie 
in the same plane. We will define this plane to be the z-z plane. Since, at this point, 
we already know the z-components of the focal points, all that remains is to find the 
2-components. To accomplish this we note the following. Any ray linking a pair 
of focal points will establish the relationship between their transverse positions. We 
choose the ray that passes through the vertex. This simplifies the problem since a 
smooth, rotationally symmetric surface is well approximated by a plane for points 
near the vertex. For the purpose of analyzing small deviations of the path around this 
particular ray, we will treat the surface as planar. 

We begin as before, with the two straight segment optical path. The optical path 
length is then given by 

O P L  = crlnlll+ 1 2 2 7 4 2  

To apply Fermat’s Principle, we will find the path that is stationary with respect to 
displacements of the 2-coordinate of the intersection with the surface around zero, 
which we will call u,, the z component of the vertex. (Later this component will be 
set to zero.) The derivative of the optical path with respect to this parameter must be 
zero. 

(5.35) 

For our approximately planar interface, the length of the geometric path segments is 
given by 

Differentiating this implicitly, we obtain 

l 2  = z2 + (v, - 2 ) 2  

dl 
dux 

21- = 2(ux - x) 

and setting u, to zero, 
X - - -- 
1 

Substituting (5.37) into (5.35) yields 

(5.36) 

(5.37) 

(5.38) 
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Now we use the Gaussian optic limit, 1 M (21, to obtain 

(5.39) 

As above, we can specialize this equation for refraction or reflection. For refraction, 
we apply (5.21), and (5.39) becomes 

2 1  2 2  
nl- = 722- 

2 1  22  
(5.40) 

For reflection, we use the fact that nl = 712, and either (5.22) or (5.23), and (5.39) 
becomes 

(5.41) 2 1  2 2  - + - = o  
.z1 22  

If z 1  is infinite then x 1  will also be infinite. Equation (5.40) or (5.41) will allow us 
to calculate the ratio, E, from which we can calculate a direction for the rays that 
are represented by this focal point: 

(5.42) 

All rays connected to this focal point are parallel and point in the direction, &.  This 
can be applied to focal point 2 as well. In fact, as seen from (5.30) or (5.31), both 
focal points can be at infinite distance, if the surface is flat, c -+ 00. For the reflection 
case, this describes a plane wave reflecting on a plane mirror. 

The transverse position of the focal points also has some interesting behavior for 
negative refractive index. Using, n = n 2 / n 1 ,  we rewrite (5.40) as 

(5.43) 

which also defines the transverse magnification at focal point 2 relative to 1, M 2 1 .  

The sign of the magnification is given by 

sign ( M 2 1 )  = -sign (n )  sign ( a 1 a 2 )  

From this we can complete Table 5.2, and we note that, with respect to image 
inversion, negative index has the opposite behavior of positive index. 

A very simple result is obtained for the transverse magnification of a flat surface 
on n = -1 media. Letting c -+ 00 in (5.33) and substituting into (5.43), we find 

This is part of the story of the perfect lens. 
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Table 5.2 The relative transverse orientation of images focused by a single surface 

Focal Points Q1Q2 n < O  O < n  

reallreal 1 upright inverted 
reallvirtual -1 inverted upright 
virtuallvirtual 1 upright inverted 

5.3.2 Multiple Surfaces 

The results of the previous section can be easily extended to describe optical systems 
with multiple refractive interfaces. The interfaces are described by their centers of 
curvature 

ci = caz 

and vertices 
vi = viz 

The set of material regions separated by these surfaces have refractive indices, ni, 
and focal points 

Since at most one vertex can be located at the origin, the vertices’ coordinates must 
appear in the refraction formula for the z-coordinate 

ri = xi? + yiy + ziZ 

(5.44) 
ni+1 - ni - ni+ 1 ni 

Zi+ l  - Vi Z i  - Vi C i  - V i  

and the transverse, x-coordinate, 

(5.45) 

In these expressions, the ith interface separates the ith and (i + 1)th material regions. 
The multiple interface reality parameter does not explicitly appear in the above 
expressions, but is used below to calculate aberrations. 

-sign(zi-wj), i = j  
sign (zi - vj) , i = j + 1 

Qa . = 
*J (5.46) 

The multiple interface reality parameter has two indices. The first index indicates 
which material region the rays being described lie in. The second index indicates 
which bounding interface of this material region is being considered. The reality of 
a focal point depends on the interface considered (e.g., a focal point may be real with 
respect to its left side interface, but virtual with respect to its right side interface). 

Reflective surfaces may be included in multi-interface optical systems by replacing 
them with interfaces of relative index equal to minus one. In this way the optical 
axis which is folded back on itself by a mirror may be unwrapped. A suitable 
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Fig. 5.4 Two surface refraction of a lens. (a) Refraction at surface 1 .  (b) Refraction at 
surface 2. (c) Combined refraction. As shown, this is a thick lens, since the two surface 
vertices are a finite distance apart. 

mapping of the indices of refraction, ni, and the z-coordinates of the focal points will 
not be described here, but is not difficult to generate. For example, self consistent 
solutions for multiple reflections between opposing mirrors can yield a Gaussian 
optical description of a cavity. 

5.3.3 Thin Lenses 

The simplest multiple surface optical system, and by far the most common, is the 
thin lens. A thin lens is a combination of two surfaces (Fig. 5.4), where we assume 
the distance between surface vertices is zero to make the analysis easier. Thin lens 
formulas are a good first approximation to real lens behavior. A complete description 
of rays passing through a thin lens would include the locations of three focal points. 
Usually, we are only interested in the two that are external to the lens. We will refer to 
the two surfaces as surface 1 and surface 2. Each surface has an associated center of 
curvature, c1 and c2, but since the distance between the vertices is zero, there is only 
one vertex and we will set it to be at the origin. The three media regions separated 
by the two surfaces will call regions 1, 2, and 3. Regions 1 and 3, our surrounding 
media, will have index nl = n3 = 1. Region 2 will be our lens media with 722 = n. 
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Applying (5.44) to each surface we obtain the two equations 

n 1 n - 1  

22 21 c1 

1 n 1 - n  

23 22 c2 

- - -= -  

- - -= -  

Adding (5.47) together, we obtain the familiar lens makers’ equation [8]: 

(5.47a) 

(5.47b) 

(5.48) 

From this we can see how to make positive and negative index lenses of the same 
focal length, f .  One way, which retains the same surface curvature magnitude, is 
as follows. Reflect the value of the index around one, and change the sign of the 
curvature of both surfaces: 

1 2 4 2 - n  

c1 -+ -c1 

c2 4 -c2 

This transformation leads to a thin lens that is unchanged with respect to Gaussian 
optics, that is, it has the same focal length. The lenses will, however, be different with 
regard to their optical aberrations and reflectivity or transmissivity. We can also find 
a relationship for the transverse components. Applying (5.45) to the two surfaces, 

2 1  2 2  - = n- 
21 22 
2 2  2 3  n- = - 
22 23 

Again, we add these together, 
(5.49) 2 1  z3 

21 23 

- = -  

We find that the transverse and longitudinal magnifications are equal. 

M = % - - 3  - - 
2 1  21 

The index does not explicitly appear in (5.49). The relationship between the transverse 
components is only affected by index through the focal length, which determines the 
relationship between 21 and 23. 

5.4 ABERRATIONS 

Optical systems usually deviate from the approximations that were necessary to 
derive the simple Gaussian optical formulas. Spherical interfaces do not result in 
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perfectly sharp focal points. It is desirable to quantify the sharpness of a focus so the 
performance of an optical system can be evaluated or compared with other systems, 
or optimized by adjusting various geometrical or optical material parameters. This 
sharpness quantification is carried out by calculating the optical path length of a 
general ray which passes through the optical system to the desired focal point. This 
general ray deviates from the Gaussian limit according to parameters that will be 
defined below. 

The optical path length of a reference ray is also calculated. If every general 
ray had the same optical path length as the reference ray, then the electromagnetic 
waves represented by these rays would all arrive in phase at the focal point. Thus, 
at the focal point, the fields would be very large; at other points, where the paths 
have different optical lengths, the waves would be out of phase and the fields small. 
In the geometric optical limit, if all rays arrive at a focal point via paths with the 
same optical length, then that focal point is a perfect point focus. So we quantify 
the quality of a focus by the difference in path length of a general ray from the 
reference ray. Specifically, we examine how this path-length difference depends on 
the parameters that describe the deviation of the general ray from Gaussian optics. 

After describing this method of calculating optical aberrations in more detail, we 
will give the results for one important case, the thin lens. Then we will discuss the 
unique properties of the aberrations of thin lenses composed of negative index media. 

Texts on optical aberrations contain an amazing number of algebraic expressions 
containing an amazing array of symbols with seemingly arcane meanings to the be- 
ginner. This is due in part to the long history of optical analysis. Over the centuries, 
scientists have produced a great deal of algebraic data. We will take a different 
approach here by assuming that the reader either (a) only wants to understand con- 
ceptually the method of calculating aberrations or (b) wishes to calculate aberration 
coefficients using a symbolic math computer program. To this end, we will break 
down the calculation procedure into operations that are either easy to implement or 
already implemented in such a program and will not reproduce any of the algebraic 
steps. For all but the simplest optical systems, the algebraic manipulations are quite 
complex, but can often be handled by a symbolic math program. 

The steps to calculating the aberrations of an optical system are as follows. (1) 
Define the system optic elements. (2) Define aperture stop and find exit pupil. (3) 
Calculate the positions of the desired focal points. (4) Find the general and reference 
ray. (5) Calculate the optical path length difference. (6) Expand this difference in a 
series. 

The coefficients in this series give a simple quantitative summary of the quality 
of the focus generated by the optical system. The lowest order terms in the series 
(of which there are five) are the well-known Seidel aberrations and are referred to by 
the names: spherical aberration, coma, astigmatism, field curvature, and distortion. 
Each of these coefficients also has a geometric interpretation which is discussed in 
many optics texts, such as Hecht [8] or Mahajan [9], but will not be discussed here. 



ABERRATIONS 235 

Fig. 5.5 A five-layer optical system. (a) The system is defined by the indices of the layers, 
ni, the vertices, vi, and the centers of curvature, q. The fourth surface is flat so that c4 is at 
infinity. (b) The aperture stop (aperture 2) and its images are shown. Aperture 1 is real, and 
apertures 3,4,  and 5 are virtual since they do not appear in their respective layers. The image 
of the aperture stop in the last layer, 5, is the exit pupil. (c) The focal points, ri, are shown 
connected by three rays. r3 and r4 are virtual focal points. Virtual rays are shown white. (d) 
The general ray passes through all the focal points and intersects the exit pupil at point, p. (e) 
The reference ray passes through all the focal points and intersects the exit pupil on the optic 
axis at point 
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5.4.1 System Optic Elements 

The first step is to define the optical system. For our purposes an optical system is 
some number, N, of media layers, which possess homogenous indices of refraction, 
ni, and are oriented normal to a single linear optic axis. (As mentioned in the 
previous section, optical systems that are folded by mirrors may be transformed to 
simple linear systems.) The layers are joined at interfaces which are rotationally 
symmetric about the optic axis and are often spherical surfaces. In the latter case 
the surfaces can be defined by the position of there vertices, 'ui, and the positions of 
there centers of curvature, ci. 

If a surface is not spherical, it will, in any case, be approximated by a sphere for the 
purposes of locating the positions of the Gaussian focal points. So even for aspheric 
surfaces the radius of curvature at the optic axis is always needed, as is the vertex. 
For an aspheric, other parameters may also be required to define the surface, such 
as the eccentricity for a conic section. A system definition for a five-layer system is 
shown in Fig. 5.5a. 

5.4.2 Aperture Stop and Exit Pupil 

The aperture stop is the object that limits the extent to which light rays deviate 
laterally from the optic axis. This could be the outer radius of lens or an adjustable 
diaphragm, as in a camera. In any case, we will assume that all points that define the 
aperture stop lie in a plane normal to the optic axis. It is not immediately obvious 
why the aperture stop enters into the calculation of aberrations. At first glance, the 
aperture stop seems to affect only the amount of light entering the optical system, but, 
in fact, it plays a key role in parameterizing the deviation of rays from the Gaussian 
limit. In addition to this role, the position of the aperture stop can enable trade-offs 
of one aberration for another. This can be quite advantageous in some cases, but will 
not be discussed here. 

The aperture stop is a real object. If we imagine that the aperture stop is illumi- 
nated, light scattering off of it will form images associated with each layer in our 
optical system. We can use equations (5.44) and (5.45) to find these sets of image 
points, which may be either real or virtual. The images of the aperture stop in the 
first and last layer are called the entrance pupil and exit pupil, respectively [8]. By 
convention, it is the exit pupil that is used for aberration calculations. It is worth 
noting that, in the Gaussian limit, a ray that passes through the center of the aperture 
stop also passes through the center of the exit pupil, and a ray which grazes the rim 
of the aperture stop (a peripheral ray) also grazes the rim of the exit pupil. Figure 
5.5b shows our optical system with the aperture stop (AS) and its images, including 
the exit pupil (XP) ,  which in this case is a virtual object whose apparent position is 
within the second to last layer. 

Since the calculations of Gaussian optics and its corrections (aberrations) apply to 
rays in the local neighborhood of the optic axis, which is always free of obstruction, 
it is clear that specifics of the aperture stop such as radius or shape are irrelevant. 
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What is relevant is the position of the plane of the aperture stop, which gives us the 
position of the plane of the exit pupil along the optic axis. The point of intersection, 
p, of a ray with the exit pupil plane is the parameter we seek. It is one of the two 
parameters that we will use to expand the deviation of rays from the Gaussian optic 
limit. When both these parameters lie close to the optic axis, the perfect focusing of 
Gaussian optics is nearly achieved. When these parameters deviate from the optic 
axis, we find aberrations from the point focus. 

A significant simplification occurs for an optical system composed of a single thin 
lens. In this case, the aperture stop will frequently be located at the plane of the 
lens-that is, the common vertex of both the surfaces of the lens. By (5.48) we see 
that the aperture stop and both of its Gaussian images will all lie at this same common 
position. Now the parameter, p, is just the intersection of a ray with the lens plane, 
which is both simple and intuitive. 

5.4.3 Focal Points 

The procedure for calculating the Gaussian focal points, ri, for a multiple surface 
optical system is described above. In aberration calculations, the last focal point, 
r N ,  plays a special role. r N  is the other parameter used to expand the deviation of 
rays from the Gaussian optic limit. We note here that the equations that give the 
relationships between the focal points (5.44) and (5.45) can be solved by a symbolic 
math program. Probably, the program will even handle the values of infinity used to 
represent flat surfaces or parallel rays from a distant source. As mentioned above, if 
any of the surfaces are aspherical, they are approximated by spherical surface near 
the optic axis. The positions of the Gaussian focal points are based on these spherical 
approximations. 

5.4.4 General and Reference Ray 

Next we find the general and reference rays. These rays are not the rays one would 
compute in ray tracing; they do not obey Snell’s Law or Fermat’s Principle, exactly. 
These are Gaussian rays, and thus they always pass through the Gaussian focal point. 
A Gaussian ray can be completely defined by the set of focal points plus one additional 
point. Conceptually, we begin finding the straight line drawn through the last focal 
point, r N ,  and a general point on the exit pupil, p, Fig. 5.5d. This line intersects 
the last surface SN- 1 at some point S N -  1 .  The resulting line segment between r N  

and S N - ~  is one segment of the general ray. One can write a general function for a 
symbolic math program that performs this function and represent it as follows: 

(5.50) 

where f is a function that returns s, the intersection of a surface S and the line through 
two arbitrary points p and q. For a spherical surface, S will be represented by the 
vertex v and the center of curvature c. For computing the general ray we begin with 

(5.51) 
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as described above. The general ray then refracts at this surface and continues along 
a line that passes through the next focal point, r N - 1 .  S N - 1  and r N - 1  now define a 
line which will intersect S N - 2  at 8N-23 

We then continue, in reverse, along our optical system using 

until we arrive at SO. Only the first operation is unique in that it used the general 
point on the exit pupil, p, as the first surface point. The reference ray is calculated 
in exactly the same way, except that the reference ray passes through the center of 
the exit pupil (an also the center of the aperture stop). We will use the notation 
p = p~ + pi[, where pi1 is the component of p along the optic axis and thus points 
to the center of the exit pupil, and PI is the lateral position of the point p within the 
exit pupil and referred to the optic axis. Then the surface intersection points of the 
reference ray, ( ~ i ,  are given by 

U N - 1  = f (PI17 r N ;  S N - 1 )  

and 
ai-1 = f (ni, ri; Si-1) 

The deviation of the general ray from the reference ray is set by the deviation of 
the general point on the exit pupil, p, from the center of the exit pupil, PI[. This 
deviation is given by PI, and thus the components of PI together with X N  become 
the basis of the series expansion parameters. 

For the case when zi is infinite, we may need a slightly different function 

s = F(p,F; S) 

that finds the intersection of the surface S and a line that passes through p and points 
in direction F. The successive use of the functions f or ?is the step that generates 
the most algebraic complexity. For an optical system with many interfaces, the 
complexity may overwhelm the symbolic math program. Use of any symmetries in 
calculating the si may help. Allowing some parameters of the system to be numeric 
may help. Often it is desirable to see the analytical dependence of the aberration 
coefficients on an optical system parameter, but if not, let it be numeric. Numerics 
can always be combined with each other and simplified more easily. All parameters 
in this calculation can be numeric except the components of PI, and XN since we 
wish to perform an analytical series expansion with these parameters. 

5.4.5 Optical Path-Length Difference 

We now come to the penultimate step in our procedure, calculating the optical 
path-length difference of the general and reference ray. We generalize the optical 
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Table 5.3 Simplification of the optical path lengtha 

a0 1 a11 Order 

-1 
+1 
+1 

+1 
+1 
-1 

"The reality parameters are calculated for each possible ordering of the surface intersections, 81, s2. and 
the focal point, r 1 .  

path-length formula for single surfaces to multiple surfaces as follows. 
general ray we have 

For the 

N-1 

OPL = C aiini Iri - si l+  ai+1,*ni+l lsi - ri+ll (5.54) 

which is just a generalization of (5.24) using the multiple surface reality parameter 
(5.46). 

Examining the first two terms in the sum (5.54), we will explain an important 
simplification: 

OPL = aoono Iro - sol+alonl Is0 - rl l+allnl  Irl - s l l + a 2 1 n 2  Is1 - r 2 l + . . .  

(5.55) 
We can collapse the two terms in n 1  as follows. First, we note that SO, rl. and s1 
are collinear since so was the intersection of So and the line through and rl and s1. 

Using Table 5.4.5, we see each possibility for the relative order of these points along 
the positive z-direction, and the corresponding values for the reality parameter. In 
each case the sum of the two terns in n 1  simplify, resulting in 

OPL = aoono J r o  - sol + nl Is0 - s11 + a21122 Is1 - r2l  + . - .  

i=O 

Applying this simplification to (5.54), we obtain 

N-2 

OPL = a00120 I r O  -sol + C ni 1% - %+I( + a N , N - l n N  ISN-1 - r N I  

i=O 

We can similarly obtain the optical path length for the reference ray 

N-2 

OPLref = aOOn0 IrO - + ni Iui - ca+ll + a N , N - l n N  (ON-1 - r N I  
i=O 

and then the optical path-length difference is 

AOPL E OPL - OPLref 
N-2 

= croon0 (1.0 - sol - ~ro - gal) + C ni ( ~ s i  - si+ll- 10i - ui+ll> 
i = O  

f a N , N - l n N  (ISN-1 - r N I  - ION-1 - r N I )  
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It may be desirable to break up this sum to do the series expansion. It is most likely 
beneficial to compute coefficients for corresponding pairs of segments of the general 
and reference rays. Only these pairs will be small for small values of the expansion 
parameters. 

The first and last terms in the sum correspond to ray segments that connect to 
the first focal point, ro, and the last focal point, r N .  In these terms the focal points 
appear explicitly. This is a problem if these focal points lie at infinity. In this case 
we have calculated only a direction for the focal points, Pi. Using this direction, we 
can calculate the path-length difference for this case. For example, if the first focal 
point lies at infinity we have 

AOPLo = (YOOTZO (1.0 - sol - Iro - sol) = no (go - so) .Po 

5.4.6 Expand the Difference 

Now we come to the last step, computing the expansion. We have the expression, 
AOPL, that we wish to expand, so let us discuss the expansion parameters. Due 
to the rotational symmetry of our optical system, the path length difference can only 
depend on the expansion parameters in z-axis rotationally invariant combinations. 
(Recall that our choice of using the x-axis for lateral deviations was arbitrary.) These 
rotationally invariant combinations are the three inner products of PI and r N I .  which 
are the general point on the exit pupil relative to the pupil’s center, and the lateral 
deviation of the last focal point from the optic axis. We define parameters to represent 
these invariants: 

p = P I * P I  =Pz+P;  

Y E  PI ‘ r N I  =PxXN 
2 d r N I  . r N L  = XN 

We need to invert these expressions to substitute this new expansion parameter set 
for the old one: 

Now we substitute into the expression for AOPL and do the expansion: 

m 

l,m,n=O 

By the rotational symmetry of our system, the first nonzero terms are second order 
in p, y, 6 and thus fourth order in p~ and T N I .  These aberrations are shown, with 
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Table 5.4 The lowest-order aberrations are second order in the rotational invariants, 
a, p, y, and fourth order in p l  and r N l a  

P 7 6 Aberration P l  T N l  cos (9 )  

2 0 0 spherical 4 0 0 
1 1 0 coma 3 1 1 
0 2 0 astigmatism 2 2 2 
1 0 1 field curvature 2 2 0 
0 1 1 distortion 1 3 1 

"The aberrations, with their traditional names, are shown in traditional ordering, from highest to lowest 
i n p l .  

their traditional names, in Table 5.4. The ordering is from highest to lowest in p l ,  
which is the ordering of greatest to least impact for a system that uses significant 
aperture (compared with surface radius of curvature) to focus objects that are close to 
the optic axis. In a system where field of view is the key figure of merit (for example, 
in a survey telescope), the reverse ordering may be more appropriate. 

5.4.7 Example: Thin Lenses 

Now we examine the lowest-order aberrations for the important case of thin spherical 
lenses, with the aperture stop in the plane of the lens. These coefficients can be found 
by the above procedure. 

1 
c 2 0 0  = - 32 f 3n (n  - 1)2 [ n 3 + ( n - 1 ) 2 ( 3 n + 2 ) p 2 + 4 ( n + 1 ) p q + ( n + 2 ) q 2 ]  

(5.56a) 

(5.56b) 

(5.56~) 

(5.56d) 

COll = 0 (5.56e) 

These coefficients are called the Seidel aberrations. Also appearing in these expres- 
sions arep, the position factor, and q, the shape factor, where we follow the definitions 
of Mahajan [9]. The position factor is given by 
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where f is the focal length and z3 is the image position. Through the thin spherical 
lens imaging equation, 

1 1 1  _ _ _ -  - - = (n - 1) (i - i) 
z3 z1 f 

where z1 is the object position and c1 and c2 are the centers of curvature, the position 
factor is directly related to the magnification, 

z3 P + l  M = - = -  
z1 P - 1  

c2 + c1 q r -  
c2 - c1 

A lens with a shape factor of 0 is symmetric, and f l  is a plano-curved lens. Using 
the shape and position factor, all thin spherical lens configurations are described. 

We will first examine the very important case of a source object at infinite distance. 
This is a position factor of -1. We are left with two parameters that can be used 
to reduce aberrations, n and q. We will set the value of q to eliminate one of the 
aberrations and compare the remaining aberrations as a function of index. We will 
restrict our attention to moderate values of index. At large absolute values of index, 
the aberrations approach the same value independent of sign, but dielectric lenses with 
high index have significant reflection coefficients due to the impedance mismatch to 
free space. 

The usual ordering of the aberrations is from highest to lowest in the order of T, 
the aperture coordinate. This is the ordering of most image degradation to least if 
one is forming images with significant lens aperture, but small to moderate image 
size, which is a common occurrence in applications. Thus, spherical aberration is 
an obvious target for elimination. However, there are no roots of CZOO for values 
of index greater than one, which is why this aberration is referred to as spherical 
aberration, since it appears to be inherent to spherical lenses. The usual practice is to 
eliminate coma (the next in line), and it so happens that the resulting lens has a value 
for the spherical aberration that is very near the minimum obtainable. Adjusting the 
shape factor, q, is often called lens bending. If we bend the lens for zero coma-that 
is find the roots of C110 with respect to q-we obtain 

The shape factor is given by 

(2n + 1) (n - 1) 
n + l  

Qc = (5.57) 

We plug this value for q and p = -1 into (5.56) and plot the remaining three nonzero 
aberration coefficients as well as qc in Fig. 5.6. We note that there are two values 
of index where q = 1, which represent a plano-concave/convex lens. Setting (5.57) 
equal to one, we obtain 

(5.58) 

the roots of which are the ubiquitous golden ratios, n = q5 = 1.62 and n = 1 - q5 21 
-0.62. We also note that there is a window of index values near n = -0.7 where 

n 2 - n - 1 = 0 .  
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Fig. 5.6 Top plot shows spherical aberration (long dash), astigmatism (short dash), field 
curvature (very short dash), and shape factor (light gray) as a function of index for a lens 
focusing an object at infinity and bent for zero coma. Thin gray vertical lines indicate 
properties for lenses shown in ray tracing diagrams (bottom), meridional profile (left), and 
image spot (right). Incident angle is 0.2 radians and lenses are f/2. Index, shape factor, 
relative rms spot size, and spot diagram zoom are shown tabularly. In the meridional profile, 
optic axis and Gaussian image plane are shown as well as lens principle planes (short vertical 
lines). In the spot diagram, Gaussian focus is at the center of cross hairs. Reprinted figure 
with permission from Ref. [lo]. Copyright @ 2004 by the American Physical Society. 



244 NEGATIVE INDEX LENSES 

0.6,- 

n 

Fig. 5.7 All as in Fig. 5.6, except the following. The lens is bent for zero spherical aberration. 
Coma is shown with medium-length dashing. Spot size, rTm8. is relative to bottom lens spot 
in Fig. 5.6. All spot diagrams are at the same scale. Reprinted figure with permission from 
Ref. [lo]. Copyright @ 2004 by the American Physical Society. 
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n 

- I -  
I xx I 
I 

-0 i -  
I 

Fig. 5.8 All as in Fig. 5.6, except the following. Lens configuration with object and image at 
finite positions and bent for zero spherial aberration and coma. Position factor is shown dark 
gray. Real image object pairs only occur when position factor is in shaded region, lpl < 1. 
Lens pairs are f/1.23, f/1.08, and flO.90 and have magnifications -1, -2, and -3. In 
the second-to-last spot diagram, horizontal (lox) and vertical ( 1 0 0 ~ )  zooms are not equal. 
Reprinted figure with permission from Ref. [ 101. Copyright @ 2004 by the American Physical 
Society. 
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both the spherical aberration and field curvature are small. There is no equivalent 
window in positive index. 

Several ray tracing diagrams with both meridional rays and ray spot diagrams are 
shown for specific values of index in Fig. 5.6. The reference lens has index 4, which 
is close to typical values used in visible optical lenses and near enough to n = 1 for 
reasonably low reflection. The lenses of negative index shown are in fact closer to 
n = -1, which is the other index which permits perfect transmission, so this is a fair 
comparison. The negative index lenses all show significantly tighter foci than the 
positive index lens. 

If we attempt to bend a lens with p = -1 to obtain zero spherical aberration, we 
obtain the two solutions 

2 (n2 - 1) f n d F 5  
n + 2  q3 = 

These expressions have real values only for n 5 1/4, so an implementation of such 
a lens (embedded in free space) is not possible with normal materials. 

It is a surprising and significant result that negative index permits an entire family 
of spherical aberration free spherical lenses that can focus a distant object to a real 
focus (Fig. 5.7). The solution with the negative sign in the expression for q, (solid 
curves) has less coma for moderate negative values of index, so ray tracing diagrams 
are shown for that solution. We note that at n = -1, the field curvature is also 
zero; thus this lens has only two of the five Seidel aberrations, namely, coma and 
astigmatism. For a positive index reference we use the zero coma, n = 4 lens from 
above. Here again, negative index lenses achieve a tighter focus than a comparable 
positive index lens. 

Now we examine the case of 1pI < l-that is, a real object and real image both at 
finite position. Since p and q are both free parameters, we can conceivably eliminate 
two aberrations. If we eliminate spherical aberration and coma, the resulting lens 
is called uplanutic [6]. It is a well-known, though incorrect, result that a spherical 
lens can only have virtwl aplanatic focal pairs. The correct statement is that only 
negative index spherical lenses can have real aplanatic focal pairs. 

If we set (7200 and C I ~ O  to zero and solve for p and q, we obtain four solutions, 
the two nontrivial ones are given by 

(5.59a) 

We will focus on the solution with a minus sign for p and the plus sign for q. This 
solution has smaller aberrations for lens configurations that magnify an image. The 
other solution is better for image reduction. Inserting the expressions (5.59) into 
(5.56) we have plotted the two remaining nonzero coefficient as well as the values 
of p,, and qSc (Fig. 5.8). Ray diagrams are shown for lenses with magnifications 
of -1, -2, and -3. Also shown is a reference positive index lens for each. The 
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reference lenses (which cannot be aplanatic) are of moderate index, 4, with the 
same magnification and f/# as the lenses they are compared to. They are bent 
for zero coma but also have spherical aberration near the minimum possible for the 
configuration. Again the negative index lenses produce superior foci. 

The lens of index -1 and magnification -1 is particularly interesting. At this 
index value the field curvature is also zero. This remarkable lens configuration has 
only one of the five Seidel aberrations, astigmatism. This is confirmed by ray tracing, 
which shows a one-dimensional “spot” at the image plane. This is perfect focusing 
in the sagittal plane. Perfect focusing also occurs in the meridional plane, in front of 
sagittal focus. 

One may ask why this asymmetric lens, q = -1, performs so well in a symmetric 
configuration, p = 0. This lens can be equivalently viewed as a biconcave doublet 
with one component having index -1 and the other having index 1-that is, free 
space. Driven by this observation, we found that all biconcave doublets with arbitrary 
indices of f n  have identical focusing properties. The only observable difference is 
in the internal rays, which are always symmetric about the planar interface but make 
more extreme angles at higher index magnitude. 

Using the current optical system design paradigm, aberrations are minimized 
by combining elements with coefficients of opposite sign. However, more elements 
mean greater complexity and cost. Taking advantage of an expanded parameter space 
that includes negative index can reduce the number of required elements-possibly 
even to one. 
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6.1 INTRODUCTION 

A “metamaterial” in the present context is taken to mean an interconnected electri- 
cal network of various components or basic elements such as capacitors, inductors, 
resistors, metal wires (or strips), transmission-line segments, waveguide segments, 
diodes, and transistors. Although the metamaterial is made of discrete elements, these 
elements are usually densely packed and periodic such that the interelement spacing 
is decidedly smaller than a free-space wavelength for the frequency range in use. Al- 
though the basic elements are usually small, in general they cannot always be viewed 
as infinitesimal (as they would be in the context of circuit theory) because their di- 
mensions can be an appreciable fraction of a wavelength and their interactions can be 
electromagnetic. The consequence of this is that the metamaterial generally tends to 
behave as if it were a continuous material, albeit one with electromagnetic properties 
quite unlike those of more familiar materials such as dielectrics or semiconductors. 
The evolution of isotropic metamaterial research has followed the now well-known 
progression beginning with the 1968 continuous-medium theoretical postulate of 
Veselago [ 11, Pendry’s work on lens-like focusing in 2000 [2], experimental verifica- 
tion [3], and theoreticaYexperimenta1 development of a two-dimensional (2-D) L-C 
loaded-transmission-line model [4]. 

In principle, the metamaterial could be one-, two-, or three-dimensional, but 
the choices become more limited as one gets closer to applications. The three- 
dimensional (3-D) case is sufficiently complicated to make its construction and testing 
definitely challenging, especially at microwave frequencies. The one-dimensional 
(1-D) case is fundamentally a transmission line and therefore by definition it cannot 
exhibit the anisotropy featured in this chapter, so the realistic choice for the present 
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chapter narrows rapidly to the 2-D case. This is not a severe constraint because the 
2-D case enables relatively easy use of well-known, standard, printed-circuit-board 
techniques for construction, thus ensuring both ready access to the circuit board for 
experimental electrical testing and straightforward computational modeling. 

Regarding anisotropy, many know that the most familiar medium that is highly 
electrically anisotropic is a magnetized plasma (often termed a “magnetoplasma”) 
in which electrons move under the influence of steady magnetic fields and oscil- 
lating electric fields. This is the medium that enables radio wave propagation in 
the ionosphere and reflection from it, as well as electromagnetic wave acceleration 
of charged particles in a nuclear fusion reactor. Early theoretical work on antenna 
fields influenced by ionospheric anisotropy was carried out by Bunkin [5], Kogelnik 
[6], and Kuehl [7] and it led to sharply focused near and far fields measured in the 
laboratory and called “resonance cones” by Fisher and Gould [8], thus launching an 
area of study that continues actively to the present [9]. A relationship between these 
plasma media and metamaterials emerges from the plasma permittivity matrix whose 
elements can be either positive or negative, with the positive elements suggesting 
metamaterials made of capacitors and the negative elements suggesting metama- 
terials made of inductors [lo]. To represent strong anisotropy, this leads directly 
to both computational and physical metamaterial models consisting of orthogonal 
interconnections of capacitors and inductors. 

This parallel between the plasma and the metamaterial does have a weakness be- 
cause, in the plasma, the rotation (that is, gyration) of the charged particles around the 
ambient steady magnetic field gives rise to off-diagonal elements in the permittivity 
matrix which are not present in a network of orthogonal capacitors and inductors. 
However, in plasma representations of the near fields of small sources such as short 
antennas [ 111, the off-diagonal terms are often neglected, thus producing a permit- 
tivity matrix with only diagonal elements, two of which are identical, which amounts 
to the “uniaxial” approximation often referred to in crystal optics (see Chapter 7 in 
[ 121). It is this approximation that carries over readily into the field of metamaterial 
electromagnetics because of its usefulness in representing large, distributed networks 
of capacitors and inductors, as has been shown in earlier papers [13,14], and as will 
be seen in the sections to follow. 

6.2 HOMOGENEOUS ANISOTROPIC-MEDIUM ANALYSIS 

Consider a uniaxial anisotropic medium that is spatially homogeneous yet electrically 
anisotropic in two dimensions y and z and is further constrained such that all field 
quantities are independent of the 2-coordinate under the condition that a/& _= 0. 
This same constraint will also be imposed on the sources of the fields, sources which 
are infinitely long, filamentary, electric and magnetic current densities designated 
J and M, of constant magnitude and phase over their entire lengths. Thus, in 
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rectangular coordinates, Maxwell's equations take the form 

0 -a/& a / a y  

-a/ay 0 0 
(6.1) 

These equations can be written in two entirely separate groups which are therefore 
independent groups, as follows, the first group being 

and the second group being 

In (6.3)-(6.5), the fields can propagate in the y- and z-directions only, and the only 
electric field component is Ex. Thus these fields may be termed transverse electric 
or TE referred to the direction of propagation. In (6.6)-(6.8), the fields are similarly 
constrained to propagate in the y- and z-directions only, and the only magnetic 
field component is H,. Thus these fields may be termed transverse magnetic or 
TM referred to the direction of propagation. Because the present chapter concerns 
anisotropic media, our consideration becomes limited to the TM fields given by 
(6.6)-(6.8) in which anisotropy enters whenever cyy and E,, are different. 

In (6.6)-(6.8), for simplicity, the source will now be limited to the magnetic 
current density M,, which will be further constrained to be filamentary with Mx = 
K S ( y ) b ( t ) ,  where K is the total magnetic current. With the electric current densities 
now set to zero, equations (6.6) and (6.7)-when combined with (6.8)-readily permit 
elimination of E, and E, to yield 

(EZZ)-'d2Hx/dy2 + (Eyv)-'d2Hx/aZ2 + U ~ ~ O E O H ,  = jw&oMZ (6.9) 

This equation has the general form of a Helmholtz equation with a source term on 
the right-hand side. If we are concerned with near fields only, we can employ a 
low-frequencynong-wavelength (quasi-static) approximation as in [ 1 11 and set the 
third term on the left-hand side equal to zero, giving 

(Ezz)-ld2Hx/dy2 + (Eyu)-'d2Hx/az2 = j w ~ o K S ( y ) S ( z )  (6.10) 
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If the permittivities E,, and E,, are made different to produce anisotropy but 
are both positive, the above partial differential equation is elliptic and the effects of 
anisotropy are relatively weak. However, if the two permittivities are of opposite 
sign, the partial differential equation is hyperbolic and the influence of anisotropy 
becomes very strong. In fact, equation (6.10) then takes on the same general form as 
a wave equation but one that involves only space coordinates rather than the familiar 
wave equation in space-time coordinates. 

Solution of equation (6.10) can proceed through the use of the Fourier transform 
pair 

W 

T(k) = / / f ( r ) e - j k " d y d z  

-W 

W 

f ( r )  = i / / f ( k ) e i L " d k , d k ,  

(W2 -W 

Application of (6.11) to (6.10) yields the k-space equation 

(6.11) 

(6.12) 

(6.13) 

By solving algebraically and applying the inverse transform (6.12), one gets 

The anisotropy factor a now can be introduced such that 

(6.15) 

Without loss of generality, a can be taken to have a positive real part and z can be 
assumed to be positive. 

2 
a = E,,/E%Z 

The denominator in the integrand of (6.14) can be factored to give 

The calculus of residues can be employed to give 

- W  

and symmetry invoked to give 

sin (k ,y )  dk, 
2n H x ( r )  = 

0 

(6.17) 

(6.18) 
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With the aid of the Fourier sine transform numbered (6.2) in [ 151, one gets 

From equations (6.6)-(6.8), 

K a2.z 
2n a222 + y2 

E, = j -  

(6.19) 

(6.20) 

(6.21) 

With 9 and 2 as unit vectors, the displacement current density Jd can be derived 
as 

J d  = jwD 
= j w  (90, + PDZ) 
= j w ~ o  (jkyyEy + %zzEz)  (6.22) 

The essential features of equations (6.19) to (6.22) can be displayed by considering 
the highly anisotropic special case with 

Eyy = +1 
E,Z = -1 

(6.23) 
(6.24) 

For this case, (6.19) exhibits a logarithmic singularity along y = z which is the char- 
acteristic surface of the hyperbolic partial differential equation deduced from (6.10). 
In three dimensions, if the fields originated from a point source, this characteristic 
surface would be a cone widely known in the context of anisotropic plasma physics as 
the “resonance cone,” a term which was apparently first used by Fisher and Gould [8] 
and which is in current use-for example, by James [9]. It is convenient to continue 
to use this terminology in the present work in which the fields are essentially 2-D. 

It is of particular interest to calculate the displacement current density vector J d  
in the direction parallel to the surface of the resonance cone. This can be done by 
defining new unit vectors t parallel to the cone surface and G perpendicular to it, 
setting 

Q = ( 9 + P > / 4  
G = ( Y - P ) / &  

9 = ( Q + G ) / &  

2 = ( Q - G ) / J i  

together with the corresponding inverse relations 

From (6.22), this leads to 

Jd=*[.(--)+G(-)] 1 1 

2& .z-y Z + Y  

(6.25) 
(6.26) 

(6.27) 
(6.28) 

(6.29) 
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which shows that the parallel (t) component of the displacement current density 
abruptly changes sign (reverses phase) as it passes through its maximum magnitude 
on the resonance cone axis at y = z. To put it another way, under hyperbolic condi- 
tions, the near field of the infinitely long magnetic current filament is characterized 
by contiguous, counterflowing streams of displacement current running along either 
side of the resonance cone axis and parallel to it. In this way, the highly anisotropic 
medium generates within itself a near-field energy-transport mechanism that is anal- 
ogous to a two-conductor transmission line. Further, because this result stems from a 
basic Green’s function in the theory of highly anisotropic media, similar phenomena 
should be observable in a wide range of situations involving anisotropic electromag- 
netic metamaterials, an assertion that will be tested in the following sections of this 
chapter. 

6.3 FREE-STANDING ANISOTROPIC-GRID METAMATERIAL 

The grid to be simulated is shown in Fig. 6.la. excited at one comer by a V-shaped 
dipole center-fed with a 1-V source. The computer program used in the simulation 
is a thin-wire code employing piecewise-sinusoidal expansion and testing functions 

The L and C parameters are chosen to produce a high-magnetic-field resonance 
cone extending comer-to-comer from the feed point along the diagonal line, as shown 
in Fig. 6.lb. Figure 6.2 shows in simulation that the phase variation of the current 
flowing along the diagonal corresponds within 2% to propagation at the velocity of 
light in vacuum. Figure 6.3 shows that the currents to either side of the diagonal 
propagate at very nearly the same phase velocity, but more significant is their phase 
difference which is within 10 degrees of being exactly out-of-phase. What we see 
here is an example of the counterflowing currents already noted in Section 6.2 of this 
chapter for a homogeneous anisotropic medium, a medium quite unlike the present 
thin anisotropic grid which is certainly not homogeneous. To wrap up the present 
section, we note in Fig. 6.4 that the three currents on and adjacent to the diagonal are 
similar in magnitude, displaying only small undulations indicative that the degree of 
edge mismatch is correspondingly small. 

6.4 ANISOTROPIC GRID OVER INFINITE GROUND 

As shown in Fig. 6Sa, for the purpose of simulation the anisotropic L-C grid is 
positioned over an infinite ground plane. Each grid wire junction is connected 
to ground by a vertical wire that contains either a voltage generator or a resistor, 
depending on the requirement. Excitation of the grid is provided by a 1-V source 
connected between the grid comer and the ground plane. Around the periphery 
of the grid, power absorption is provided by load resistors inserted in the vertical 
wires. Elsewhere under the grid, high-value resistors are inserted in the vertical 
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* ,  .. . .  . .  

Fig. 6.1 (a) A free-standing or “floating,” anisotropic, L x  loaded grid; that is, a grid with 
no ground plane present. A typical interior subregion is shown in the inset. The grid is excited 
by a V-shaped, center-fed 1.75-GHz dipole formed around the lower-left half of the square cell 
in the lower-left comer of the grid. The grid is 24 cells square, each cell being 1 cm square. 
The wire radius is 0.1 mm. The lumped loads per 1-cm wire segment are L = 25.32 nH, c 
= 0.25 pF, damping resistance 3.2 0. (b) Contour plot of vertical (2-directed) magnetic field 
strength magnitude at the center of each cell for the configuration in Fig. 6.la, displaying a 
resonance cone at a 45-degree angle along the line 2 = y determined by the equality of the 
capacitive and inductive reactance magnitudes in each unit cell. 

wires, their only purpose being to allow approximate calculation of the open-circuit 
grid-to-ground voltage. This voltage is derived from the vertical currents calculated 
from running the moment-method computer program. Otherwise, these resistors have 
negligible effect on the results of the simulation. A typical example of the results is 
shown in Fig. 6.5b as a contour plot of the grid-to-ground voltage in the vicinity of a 
45-degree corner-to-comer resonance cone. The phase of the current flowing along 
the diagonal is shown in Fig. 6.6, in which the phase progression is that of a forward 
wave propagating at a velocity 4% slower than the velocity of light in vacuum. 
Figure 6.7 shows the phase of the currents parallel and immediately adjacent to the 
diagonal, currents that differ in phase by 209 degrees close to the source, increasing 
somewhat with distance. In other words, these currents are approximately out-of- 
phase. Figure 6.8 shows all three currents to be similar in magnitude. 
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No Ground Plane 

Fig. 6.2 Phase of current flowing along the grid diagonal which is the center line of the 
resonance cone. It indicates a forward wave with refractive index of 0.98 propagating away 
from the source (increasingly negative phase). 

No Ground Plane 
270 I . I . l . l . l . I . I .  

Distance [cm] 

Fig. 6.3 Phase of currents flowing parallel to the diagonal, along the two lines of available 
data points closest to the diagonal, designated on the plot as being “above” and “below” the 
diagonal. Note that these currents are approximately out-of-phase. 
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Fig. 6.4 Magnitude of currents flowing along the grid diagonal and adjacent to it. 

6.5 ANISOTROPIC GRID WITH VERTICAL INDUCTORS, OVER 
INFINITE GROUND 

The configuration with vertical inductors is shown in Fig. 6.9a, the purpose being 
to enable significant vertical current flow hence vertically polarized radiation in 
directions along the ground plane or elevated above it. Previously, the use of inductors 
to ground had been used successfully to generate radiation from a one-dimensional 
transmission-line antenna design as shown by Grbic and Eleftheriades (see [17] and 
[ 181). For the present simulation, Fig. 6.9b shows the grid-to-ground voltage with 
a resonance cone along the diagonal line clearly in evidence. Figure 6.10 is a plot 
of the current phase for the current flowing along the diagonal, with the refractive 
index indicating a fast forward wave. Figure 6.1 1 shows the phase of the currents 
flowing parallel to and immediately adjacent to the diagonal, currents that differ in 
phase by 205 degrees close to the source (thus being approximately out-of-phase), 
with phase difference increasing somewhat with distance and showing considerable 
similarity to Fig. 6.7 except for the fast-wave property similar to that of Fig. 6.10. 
Figure 6.12 shows all three currents to be similar in magnitude as in the cases 
considered in Sections 6.3 and 6.4. However, the present case includes vertically- 
oriented inductors to ground so their currents deserve special attention on account 
of their contributions to radiation. The vertical current phase beneath the diagonal 
(center of the resonance cone) is presented in Fig. 6.13, in which the refractive index 
of 0.29 indicates a fast wave. Comparable refractive indices are calculated beneath 
the lines of data points to either side of the diagonal (Fig. 6.14). Comparable vertical 
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so1 

\ 
Infinite ground plane 

(a) 

Fig. 6.5 (a) Anisotropic grid positioned over an infinite ground plane. The source is a 1-V 
1.80-GHz voltage generator inserted in the vertical wire segment between grid and ground, 
located at the lower-left comer of the grid. The grid is 1 cm above ground. Resistive loads 
of 150 R per segment end are inserted in the vertical wire segments between grid and ground 
around the grid periphery, to minimize reflections from the grid edge. High-resistance resistors 
(50 MQ) are inserted in the vertical wire segments between all interior grid-wire intersections 
and ground, to enable deduction of grid-to-ground voltages from segment currents. (b) Contour 
plot of grid-to-ground voltage showing a resonance cone concentrated along the grid diagonal, 
for the configuration of Fig. 6.5a. 

current magnitudes are noted beneath the resonance cone (Fig. 6.15) with high values 
limited to the feed region. In Fig. 6.16, the horizontal-plane radiation pattern exhibits 
a major lobe in a direction approximately broadside to the resonance cone, a result 
that is consistent with the forward phase progression across the resonance cone that 
is apparent in Figs. 6.13 and 6.14. 
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Fig. 6.6 Phase of current flowing along the grid diagonal as a function of distance from the 
source. It indicates a forward wave with refractive index of 1.04 propagating away from the 
source. 

Height Above Ground: I cm 

0 5 10 15 20 25 30 35 

Distance [cm] 

Fig. 6.7 Phase of currents flowing parallel to the diagonal as in Fig. 6.3. Note that these 
currents, when compared with those in Fig. 6.3, remain approximately out-of-phase. 
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Fig. 6.8 Magnitude of currents flowing along the grid diagonal and adjacent to it. 

\ 

(a) 

Infinite Ground Plane 

Fig. 6.9 (a) Anisotropic grid over an infinite ground plane as in Fig. 6.5 but now excited at 
1.65 GHz and having inductors (33 nH per segment end) from all interior grid-wire intersections 
to ground. (b) Contour plot of grid-to-ground voltage, for the configuration of Fig. 6.9a. 
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Fig. 6.10 

Inductors to Ground - Height: 1 cm 
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Phase of current flowing along the grid diagonal for the configuration 

Inductors to Ground - Height: 1 cm 

0 5 10 15 20 25 30 35 

Distance [an] 

of Fig. 6.9. 

Fig. 6.11 Phase of currents flowing parallel to the diagonal. 
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Fig. 6.12 Magnitude of currents flowing along the grid diagonal and parallel to it. 

inductors to Ground - Height: 1 cm 

Distance [cm] 

Fig. 6.13 Phase of vertical currents flowing beneath the anisotropic grid’s diagonal. 
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Inductors to Ground - Height: 1 cm 
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Fig. 6.14 Phase of vertical currents flowing beneath lines parallel to the diagonal of the 
anisotropic grid. 
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Fig. 6.15 Magnitude of vertical currents flowing beneath both the diagonal of the anisotropic 
grid and the adjacent parallel lines. 
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Fig. 6.16 Vertically polarized, horizontal-plane radiation pattern with main lobe in a direction 
approximately broadside to the resonance cone. 
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6.6 CONCLUSIONS 

For an infinitely long, filamentary magnetic current line source, the quasi-static near 
fields have been calculated, showing clearly the high-field resonance cone extending 
outward from the source at an angle determined by the ratio of the permittivity 
matrix elements of opposite sign. Of special interest is the displacement current 
density flowing parallel to the resonance cone, which abruptly reverses sign as it 
passes through infinite magnitude exactly on the cone, bringing us to the conclusion 
that the resonance cone near field consists of a pair of counterflowing, contiguous 
displacement currents. While this has been found for a particular case, that case is 
a fundamental Green’s function in the theory, suggesting that this conclusion may 
be quite generally applicable. The significance lies in the inescapable analogy with 
a two-conductor transmission line, which explains the ease with which even a small 
source in such a medium can inject power into the near field and from there into the far 
field. This makes plausible the finding of a number of authors that even a very small 
antenna in such a medium exhibits an unexpectedly large radiation resistance, some 
being so startled by this finding that they referred to it as an “infinity catastrophe” 
(see page 753 in the book by Felsen and Marcuvitz [ 121). 

Having seen this basic example of counterflowing currents in a homogeneous, 
uniaxially anisotropic medium, we have tested its applicability to anisotropic meta- 
materials by considering in simulation an evolutionary sequence. The sequence 
consisted of a free-standing anisotropic grid, such a grid over and parallel to a ground 
plane, and this same grid over ground but with each grid wire intersection connected 
to ground by a vertical inductor-loaded wire to carry radiating currents. In each case, 
under excitation by a small source, the anisotropic grid exhibited a resonance cone 
and carried currents parallel to the cone that were approximately out-of-phase, so 
that they could reasonably be described as counterflowing. It therefore appears that 
counterflowing currents and related effective coupling to a radiation field are likely 
to be found in a wide variety of resonance-cone metamaterials. 
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7.1 INTRODUCTION 

The propagation of light waves in complex optical media has remained a topic of 
considerable interest ever since the introduction of diffraction gratings. Its simplest 
description has been presented in the form of the so-called efective medium theory, 
in which a composite metamaterial is approximated to be a uniform medium with 
“effective” values of optical constants, that is, permittivity E and permeability p. 
Recent work by Pendry, Smith, and co-workers [ 1-51 opened a new window in the 
effective medium theory. A new class of composite metallic structures, which can 
be described by an effective uniform medium with E < 0 and p < 0, was predicted 
and experimentally realized in the microwave regime. These composite media have 
come to be known as “left-handed metamaterials,” which was predicted by Veselago 
to lead to a variety of unusual electromagnetic phenomena a long time ago [6].  
One of the most notable properties of these materials is the possibility of negative 
refraction, in which the refractive index n of the material must be taken to be the 
negative square root of the product of E and p, n = -fi, if the conventional 
Snell’s Law of refraction is applied. Another intriguing proposal associated with 
left-handed metamaterials, discovered recently by Pendry [4], is the possibility of a 
perfect lens, which in principle allows light to be focused down to a spot size much 
smaller than the wavelength and beyond the classical diffraction limit. Such novel 
findings have generated much excitement in the old discipline of electromagnetism 
and become of great interest to the general scientific community. Several experiments 
from different laboratories have been reported confirming the existence of negative 
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refraction in these artificial structures and supporting the viewpoint of an effective 
uniform material with E < 0 and p < 0 [7-101. 

The aim of the present work is to discuss the two unconventional light phenomena 
enabled by left-handed materials, namely, negative refraction and subwavelength 
focusing, in general photonic crystals. Photonic crystuls (PCs) refer to a fairly broad 
class of composite optical materials, and a brief introduction to them is provided in 
Section 7.1.1. In contrast to the effective medium theory of left-handed metamaterials, 
in which the composite structure is regarded as effectively uniform and the unusual 
properties of light are identified as the consequences of E and p < 0, our approach 
shows that similar anomalies can occur as a direct result of the photonic crystal 
effects by taking the effects of the microstructures into full account. The underlying 
physical principles discussed in this work are based on complex Bragg scattering 
phenomena and are very different from those in a left-handed metamaterial. The 
refractive properties of photonic crystals based on the present viewpoint are also 
known asphotonic crystu2line optics, and they have been discussed by several authors 
in recent literature in parallel to the work on left-handed materials [ 11-13]. Here we 
address the optics for both propagating and evanescent waves in photonic crystals, 
following our recent papers on photonic crystalline superlenses [ 14-17]. We give 
certain general criteria under which these anomalous phenomena are possible in 
general photonic crystals and present several specific numerical examples. Our 
findings reveal that negative refraction and subwavelength imaging are very general 
phenomena beyond the concept of left-handed materials. For example, they can be 
expected with dimension-scaled dielectric photonic crystals at optical frequencies, 
whereas the optical regime is inaccessible by simple scaling for the current metallic 
left-handed structures due to the large loss in metals . Another important implication 
is that the designs of structures supporting these unusual effects can be much simpler 
and flexible, owing to the universality of photonic crystals. In particular, effects 
inside a two-dimensional (2-D) can be entirely captured by a 2-D arrangement, and 
three-dimensional (3-D) crystals enables truly 3-D phenomena. Very recently, a 
number of experimental work have been reported verifying the basic predictions of 
our work [18,19]. 

7.1.1 Introduction to Photonic Crystals 

In this section we give a very brief introduction to the subject of photonic crystals. 
Interested readers are referred to the original papers [20,21] and reviews [22] for 
more detailed discussions of the topics presented here. 

Photonic crystals were first discussed by Yablonovitch in 1987 with a famous 
analogy of photons to electrons: a lattice of electromagnetic scatterers can tailor the 
properties of light in much the same way as crystalline solids do to electrons. In 
particular, when the lattice constants are on the order of the wavelength of light and 
the scattering strength of each scatterer is strong, the propagation of light waves inside 
such a lattice will be strongly modified by the photonic lattice structure. The basic 
problem is then to determine what the new photonic modes are inside such a lattice, 
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usually specified by a position-dependent, periodic permittivity E(r). Maxwell’s 
equations can be cast in a stationary state form as 

W 2  

C2 
OF = -F (7.1) 

where 0 is a position-dependent Hermitian operator containing E(r), F is the elec- 
tromagnetic (EM) field, and w is the frequency of the stationary state (for example, 
when F is the magnetic field H, 0 = V x E-l(r)Vx). The form in equation 
(7.1) provides an explicit analogy to Schrodinger’s equation for electrons in solids: 
O corresponds to the periodic atomic potentials and the square frequency w2/c2 
corresponds to the energy eigenvalue. The solution to equation (7.1) in a photonic 
crystal can be classified using the fundamental concepts in the band theory of elec- 
trons. According to Bloch’s Theorem, the eigenmode F can be made Bloch-periodic 
with a Bloch wavevector k that lies within a Brillouin zone. The eigenfrequency w 
then emerges as a function of k and band index n: w = wn(k), which maps out the 
photonic band structure as k is varied throughout the Brillouin zone. A photonic 
band gap can result for a frequency range in which no eigenmodes are allowed. 
Actual photonic band structures are usually calculated using numerical techniques 
similar to those developed in the studies of the electronic band structure, such as 
the plane-wave expansion [23]. On the other hand, there exist a number of physical 
differences between EM eigenmodes in photonic crystals and electron Bloch waves 
in crystals. Of particular importance is the extremely wide generality of the princi- 
ples of photonic crystals. This is because there are no fundamental lengthscales in 
Maxwell’s equations, and the band structure may be scaled to arbitrary frequencies 
provided that the photonic lattice is correspondingly scaled. A system designed at 
the microwave regime can therefore be “scaled” to designs at other wavelengths 
(e.g., the optical regimes) using identical parameters in fractions of wavelength. This 
is vastly different from the electronic case in which the Bohr radius sets a natural 
lengthscale for the quantum system. Moreover, as the EM waves are vector fields, the 
photonic band structure contains information about light polarization and is richer 
than its scalar-wave counterpart in the electronic problems. Finally, it is worth not- 
ing that numerical results of photonic band structure are essentially exact within the 
linear response approximation and can be more reliable than those of electronic band 
structures, which are almost always complicated by the effects of electron4ectron 
interaction and Fermi statistics. 

Photonic crystals have been proposed to revolutionize the generation and prop- 
agation of light waves. Indeed, the existence of a photonic band gap in a range of 
frequencies prohibits light propagation in all possible directions. This has led not 
only to novel photon-atom bound states that alter the fundamental physics of light 
emission, but also to the concept of basic building blocks for optical materials that 
can be used to construct devices for practical applications. Deliberate defect struc- 
tures inside the band gap adds a new design dimension for versatile light control. 
Ultrahigh-Q cavities may be introduced as point defects in a perfect crystal to realize 
resonance channel add-drop filters and ultra-low threshold lasers. Channels for ef- 
ficient light transportation are formed by line defects which can guide light through 
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extremely sharp corners. Furthermore, by combining the index-guiding mechanism 
of slab waveguides with two-dimensional photonic band-gap effects, control and 
manipulation of light in full three dimensions can be realized with present planar 
lithographic techniques. These developments echo with the past band-gap engineer- 
ing in semiconductor electronics and suggest that photonic crystals may be used to 
tailor the properties of light in much the same way. 

The rest of this work is divided into two parts. In this first part we address the 
problem of how negative refraction of propagating waves occurs in photonic crystals. 
We then include evanescent waves and study their influence on wave transmission in 
detail in the second part, where it is demonstrated that photonic crystals can give rise 
to the spectacular phenomena of Veselago-Pendry superlensing. In the concluding 
section, the main ideas of this work are briefly summarized. 

7.2 NEGATIVE REFRACTION IN PHOTONIC CRYSTALS 

7.2.1 Analysis of Refraction in Uniform Materials 

Let us first revisit the problem of light refraction on the interface between free space 
and a uniform material with permittivity c and permeability p. under a coordinate 
system whose z-axis is perpendicular to the interface. The incident wave of a definite 
incident direction can be represented as a plane wave of a constant frequency (CW) 
w. In this simple case, all the propagating optical modes inside the material are 
plane waves, and the system is invariant under an arbitrary translation in the Oxy 
plane. The refraction process at the interface will thus conserve the wavevector 
component parallel to the interface. We can then analyze the problem in terms of 
the dispersion contours-that is, the contours formed by the wavevectors of all the 
allowed propagating waves inside a medium corresponding to the same frequency. 
These contours arejust circles k2 = epu2 /c2 ,  with aradius I w/cinthe material. 
The refracted waves can be found on the dispersion contours (or equifrequency 
dispersion contours) by conserving the surface-parallel component of the wavevector 
from the incident wave. Geometrically, the refracted waves are obtained from the 
points on the free-space contour representing the incident wave by drawing a line 
perpendicular to the interface and finding its intersections with the material dispersion 
contour. In this way, a set of possible refracted wavevectors can be obtained, whose 
directions represent the possible directions of the phase advancement in the material. 
Finding the direction of refraction requires a little bit of care as this direction is 
usually associated with that of the energy flow. For a CW wave, this direction is 
given by the group velocity u = dw/ak of the refraction wave-that is, the gradient 
direction on the dispersion contour. This gradient direction in this example is the 
same as that of the wavevector in a normal medium with E > 0 and p > 0, but 
is antiparallel to that of the wavevector for left-handed materials because of their 
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contour 

Fig. 7.1 Illustration of refraction in uniform media. (a) Positive refraction in a medium with 
E > 0 and p > 0. (b) Negative refraction in a medium with E ,  0 and p C 0. Thin arrows 
stand for wavevector directions, and thick arrows indicate the direction of energy flow. 

negative group velocities.* Moreover, a refracted wave must propagate away from 
the interface, and thus we must have u .i > 0. Combining these analyses, we arrive 
at the situation depicted in Fig. 7.1. In particular, for a left-handed material, both 
the parallel component of the refracted group velocity and the z-component of the 
refracted wavevector are reversed compared to a normal medium. This is precisely 
captured by a negative index of refraction n = -&i, a natural consequence of 
left-handed materials. 

7.2.2 Analysis of Refraction in Photonic Crystals 

The analysis in Section 7.2.1 is general and can in fact be easily extended to the case 
of a photonic crystal, with little changes in essence. A photonic crystal system is 
invariant under translations of an integral number of lattice constants, and it supports 
CW propagating waves that can be specified by a Bloch wavevector k and a band 
index n. Thus the dispersion contours can be formed by all the Bloch wavevectors 
within the first Brillouin zone at the same frequency. For a semi-infinite crystal, 
the symmetry reduces to the translations of an integral number of surface periods 
parallel to the interface, and correspondingly the conserved quantity in a refraction 
process is the component of the Bloch wavevector parallel to the interface within 
the s u ~ a c e  Brillouin zone. An equivalent and perhaps easier alternative is provided 
by the extended-zone scheme, in which the bulk-crystal dispersion contours consist 
of all the wavevectors, including all that differ from the Bloch wavevectors in the 
first Brillouin zone by a reciprocal lattice vector. The refraction process may then be 
analyzed by matching the wavevectors inside the bulk crystal to that of the incident 
wave and also reducing the solution wavevectors to the first Brillouin zone to find 
the refracted Bloch modes. To obtain the refraction directions, the Poynting vectors 
needs to be calculated for each of these modes. This procedure is facilitated by the 

*It can be easily verified from Maxwell’s equations that the Poynting’s vector E x H is antiparallel to the 
wavevector k if 6 < 0 and p < 0. 
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following important result: The group velocity u = dw/dk continues to represent 
the energy transport vector (i.e., the average Poynting vector divided by the average 
energy density) for every Bloch mode inside the crystal. This is the photonic analogue 
of the expected velocity equation for Bloch electrons in solid state physics [24] and 
can be proven along similar lines [25]. Hence, the refracted beams travel along 
the gradient directions on the dispersion contour. The extension of the geometric 
refraction analysis from uniform materials to photonic crystals is thus complete. 

In general, the refraction in photonic crystals can be more complicated than in 
uniform media. A single incident wave can produce multiple refracted Bloch-wave 
orders, if there are multiple branches of dispersion contours at the same frequency 
or if the interface is not along major crystal symmetry directions. This results in 
a scenario similar to simple Bragg scattering in the elementary case of diffraction 
gratings. Moreover, the presence of strongly scattering crystal structures can modify 
the dispersion relation of light so much that the shapes of the dispersion contours 
are far from being circular. The gradient directions on these contours and thus the 
refraction directions can be very different from those expected in a uniform material. 
Furthermore, the strength of each refraction wave can be quite different from either 
refraction in uniform media or simple diffractions. In the extreme case, the occurrence 
of a photonic band gaps can eliminate entirely waves on certain directions. These 
considerations illustrate that photonic crystal structures can give rise to nontrivial 
effects in refraction, and we will refer to them as complex Bragg scattering. In 
the following, we examine in detail how the complex Bragg scattering in photonic 
crystals gives rise to negative refraction. 

As a specific example, we consider a 2-D square lattice of air holes in a dielectric 
background E = 12.0, with a lattice constant a and a hole radius T = 0.35~.  Light 
waves propagating in the plane of 2-D periodicity can be classified into the usual 
TE and TM polarizations, and for simplicity let us look at waves having a magnetic 
field parallel to the cylinders (TE modes). The photonic band structure of this crystal 
can be calculated numerically using plane wave expansion, and it is shown as the 
dispersion contours in Fig. 7.2. Here we observe that due to the negative-definite 
effective mass d2w/dkidkj at the M point, the frequency contours are convex in 
the vicinity of M and have inward-pointing group velocities. According to our 
approach, for frequencies that correspond to all-convex contours near M, negative 
refraction occurs as illustrated in Fig. 7.3. The distinct refracted propagating modes 
are determined by the conservation of the frequency and the wavevector component 
parallel to the air/photonic-crystal interface. If the interface normal is along r M  [( 11) 
direction] and the contour is everywhere convex, then an incoming plane wave from 
air will couple to a single Bloch mode that propagates into this crystal on the negative 
side of the surface normal. Negative refraction is thus realized in the first band of the 
photonic crystal. To verify this, we proceed with a computational experiment using 
finite-difference time-domain (FDTD) simulations. Here, a continuous-wave (CW) 
Gaussian beam of frequency wo = 0.195(2m/a) and a half-width c = 1.7(2wc/w0) 
is launched at 45" incidence toward the (11) crystal surface of ourphotonic crystal and 
subsequently refracts into it. A snapshot of this refraction process is shown in Fig. 7.4, 
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Fig. 7.2 Several constant-frequency contours of the first band of a model photonic crystal, 
drawn in the repeated zone scheme. Frequency values are in units of 27rc/a. Reprinted figure 
with permission from Ref. [ 141. Copyright @ 2002 by the American Physical Society. 

which clearly demonstrates that the overall electromagnetic energy indeed travels on 
the reversed side of the surface normal. If we look closely at the refracted field patterns 
in the crystal, we can see that there are constant-phase regions lying on parallel straight 
lines and forming “phase fronts” in the photonic crystal. However, there are multiple 
ways of constructing parallel lines connecting these discrete regions, corresponding 
to multiple choices of phase-front definitions. This reflects the fact that, in a photonic 
crystal, k is only defined up to a reciprocal lattice vector G. For the present situation, 
we choose the phase fronts for the refracted beam to be the set of constant-phase 
lines with the largest wavelength in the crystal, which corresponds to the smallest Ikl 
and hence the unique k representing the Bloch phase in the first Brillouin zone. The 
normals of the phase-fronts defined in this way now points toward the positive side 
of the surface normal; that is, the phase velocity exhibits positive refraction in our 
example. 

It is clear from this example that the notion of a backward wave or a left-handed 
material is in fact not a prerequisite for negative refraction. The physics of our 
example differ from those of left-handed materials in that the lowest band now has 
k . aw/dk 1 0 everywhere within the first Brillouin zone, meaning that the group 
velocity is never opposite to the Bloch wavevector k. In this sense, we are operating 
in a regime of forward waves and positive effective index. Such a scenario can 
also happen in a right-handed medium with hyberbolic dispersion relations, such as 
those induced by anisotropy. For example, the TE modes in a uniform nonmagnetic 
medium with dielectric tensor 

(with €1 > 0 and €2 < 0) have a dispersion relation k;/c1 - k:/Ic21 = w2/c2. 
Similar negative refraction will then happen on the (01) surface. Again, the phase 
velocity always makes an acute angle with the group velocity. 
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incident beam 

Fig. 7.3 (a) Negative-refracted beams constructed from dispersion contours and conservation 
of interface-parallel wavevector. Thick arrows indicate group-velocity directions, and thin 
mows stand for phase-velocity directions. (b) Schematic diagram of refraction rays in the 
crystal. Reprinted figure with permission from Ref. [ 141. Copyright @ 2002 by the American 
Physical Society. 

7.2.3 Dispersion Contours of 2-D Photonic Crystals 

So far, our discussion has been centered on a particular polarization (TE) in a particular 
band of a particular photonic crystal. It is straightforward to extend similar arguments 
to other systems: the key quantity of interest is the dispersion contours of a photonic 
crystal. For reference purposes, we give in Figs. 7.5-7.8 the dispersion contours of 
the first few bands in common 2-D dielectric photonic crystals. The normal-incident 
transmission coefficients through a finite slab of such photonic crystals for interface 
termination along major symmetry directions are also given adjacent to the band 
structures in these figures. These transmission curves exhibit oscillatory features 
when the frequency is inside a band, which vanishes once the frequency is inside a 
band gap. The oscillatory features are similar to the Fabry-Perot effect and become 
more rapid for thicker slabs. The coupling strength of external plane waves to Bloch 
photon modes can be qualitatively inferred from the transmission spectrum by the 
average transmission value over these oscillations. The dispersion contours given 
in these figures are the photonic analogy of the Fermi surface of metals in electron 
band theory [13]. In the first few bands of most crystals, the shapes of dispersion 
contours are relatively simple with one or two branches, but these shapes can become 
exceedingly complex for higher bands. In this work, we will be mostly concerned 
with simple shapes and circular-like dispersion surfaces; the use of the high-curvature, 
strongly anisotropic part of the dispersion surfaces are demonstrated in the so-called 
superprism effect [ 1 I]. For square lattices, negative refraction is most easily realized 
near the top of the first or the second band where the photonic “effective mass” is 
negative. Near the top of the first band, the dispersion contours becomes all-convex 
around the comer of the first Brillouin zone M-point, and negative refraction can 
be realized on the (11) interface exactly as what we presented above. Near the top 
of the second band, the dispersion contour becomes all-convex around a comer of 
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Fig. 7.4 FDTD simulation of negative refraction in a photonic crystal. Shown is a snapshot 
of the magnetic field perpendicular to the plane (darker shades for larger magnitude). The 
dielectric boundaries are outlined. The arrows and texts illustrate the various important. Also 
shown in straight lines are two possible ways of construction phase fronts from the field pattern. 
The set of phase fronts with the maximum wavelength (XI) is chosen to be that of the refracted 
beam. 
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the second band, which is I' in the reduced-zone scheme. Although the shape of 
the contours appears circular and may suggest an isotropic behavior resembling that 
of a left-handed material, there is usually a marked difference between transmission 
values on (10) and (1 1) interfaces at the frequencies corresponding to the top of the 
second band, as shown for example in Fig. 7.6. The (10) surface is usually favored 
in the second band. For triangular lattices, because the first Brillouin zone is closer 
to being isotropic, the frequency range for negative refraction near the top of the first 
band is smaller. In this case, the dispersion contours in the second band appear to be 
more isotropic and closer to being circular, and the (10) incidence interface is again 
favored. 

7.2.4 All-Angle Negative Refraction 

To obtain a left-handed-material behavior and to set the foundation for the phenomena 
of superlensing discussed later in this work, we will look further for the condition 
of all-angle negative refraction; that is, for all incident angles one obtains a single 
negative-refracted beam inside the photonic crystal. This is also the case of practical 
interest because AANR precludes modes with very small group velocities, which are 
close to band edges and are generally difficult to couple to from an external plane 
wave. Moreover, AANR also eliminates the effect of total external reflection, which 
exists for some angles if the absolute value of the effective index is less than unity 
and might be undesirable in some applications. To realize AANR, sufficient criteria 
are that the crystal contours be both all-convex and larger than the vaccum contours, 
and the frequency be below 0.5(2m/a,) where a, is the surface periodicity of the 
crystal. It can be seen from the results displayed here that in 2-D the structures 
that may fulfill the AANR requirements are square-lattice crystals in their first band 
or triangular-lattice crystals in their second band (TM polarization only). This can 
actually be understood from the following intuitive argument. In the periodic-zone 
scheme, the dispersion contour for the first few bands of photonic crystals may be 
constructed by (a) joining all the spherical contours of an effective uniform medium 
which are centered on the reciprocal lattice sites and (b) rounding the sharp parts of 
the joint surface across Brillouin zone boundaries. For a given Brillouin zone comer 
C, we expect that the more neighboring reciprocal-lattice sites C has, the stronger the 
resulting rounding effect, and the easier it is for the dispersion contours to become 
all-convex around C. Thus, a rough rule to choose the optimum geometric lattice 
for negative refraction is just to maximize the number N of C's nearest-neighbor 
reciprocal lattice sites. If negative refraction is to be realized in the first band, then 
C is a comer of the first Brillouin zone, and a 2-D square lattice (N = 4) performs 
better than a 2-D triangular lattice ( N  = 3). If negative refraction is to be realized 
in the bands after folding once, then C is a corner of the second Brillouin zone (I' in 
this case), and the triangular lattice with N = 6 is thus preferred. 



NEGATIVE REFRACTION IN PHOTONIC CRYSTALS 279 

transmission 

(11) surface (rw 

1 - 0  
transmission 

transmission 

(11) surface OM) 

1 - 0  n transmission 

Fig. 7.5 Band structure, transmission coefficients, and dispersion contours for the first few 
bands of a 2-D square lattice of rods in air. The rods have a dielectric constant E = 12, the 
lattice constant is a, and the rod radius is 0.2a. 
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Fig. 7.6 Band structure, transmission coefficients, and dispersion contours for the first few 
bands of a 2-D square lattice of holes in a high-index background with dielectric constant 
E = 12. The lattice constant is a and the hole radius is 0.4a. 
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Fig. 7.7 Band structure, transmission coefficients, and dispersion contours for the first few 
bands of a 2-D triangular lattice of rods in air. The rods have a dielectric constant E = 12, the 
lattice constant is a, and the rod radius is 0.2a. 
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Fig. 7.8 Band structure, transmission coefficients, and dispersion contours for the first few 
bands of a 2-D triangular lattice of holes in a high-index background with dielectric constant 
E = 12. The lattice constant is a and the hole radius is 0 . 4 ~ .  
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7.2.5 Negative Refraction in Three-Dimensionally Periodic Systems 

Is it possible to generalize the intuition in Section 7.2.4 to three-dimensional (3-D) 
situations? If so, for negative refraction to be realized in the fundamental (i.e. the 
first two) bands, a simple cubic (sc) reciprocal lattice with N = 8 should be used, 
resulting in a sc crystal with (111) surface termination. If negative refraction in 
the bands after folding once are considered, the face-centered cubic (fcc) reciprocal 
lattice which has N = 12 should be chosen, giving a body-centered cubic (bcc) 
structure in real space. It is, however, important to keep in mind that the intuition 
and arguments here are mostly based on scalar-wave assumptions, and the vectorial 
nature of light waves will usually bring significant complications in a 3-D situation. 
For example, the dispersion surface in even the first two bands becomes the two 
branches of one complex connected surface, a situation similar to that in optics of 
anisotropic crystals. The simple picture of refraction considered above is thus usually 
accompanied by the occurrence of the peculiar phenomena familiar in the optics of 
crystals, such as bifringence and conical refraction. Nevertheless, in the geometric 
lattice of bcc crystals having N = 12, we have found a particular configuration 
enabling the simple picture of single-beam AANR in full 3-D. This consists of a bcc 
lattice of large low-index voids in a high-index background. A configuration that 
can give good performance is cubic air voids of size 0 .75~  (sides parallel to those 
of the conventional bcc cell whose size is a) in germanium at infrared wavelengths 
with E = 18 (qualitatively similar band structure can result in slightly different 
designs-for example, spherical air voids in Si with E = 12, which may present a less 
challenging task in terms of fabrication). The band structure of this photonic crystal 
is shown in Fig. 7.9. There is a large frequency range in the third band within which 
the dispersion surface forms a single all-convex, near-spherical surface and is larger 
than that of free space, as shown in Fig. 7.9b. This situation is similar to the second 
band of 2-D triangular lattices, and it is important to find out the particular surface 
orientation on which the crystal modes can couple to external plane waves with a 
significant efficiency. The interesting point here is that there is only one band in 
this frequency range in full 3-D, and thus the refraction phenomena will be strongly 
polarization-dependent. For example, along the (001) direction, the two degenerate 
polarizations of normal-incidence radiation in free space and the single-degenerate 
photonic-crystal mode belong to different irreducible representations of the surface 
symmetry group. As a result, they do not couple with each other, and thus the (001) 
surface should not be used as the interface for negative refraction. Instead, the (101) 
interface, whose symmetry group has different irreducible representations for the 
two polarizations, should be used. Along the normal direction on this interface, the 
crystal mode favors coupling with waves polarized along the (lox) and does not 
couple with those polarized along (010). This dependence of coupling efficiency 
on polarization direction illustrates another important difference between photonic 
crystals in their higher bands and an isotropic, uniform left-handed material with a 
negative refractive index. 
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Fig. 7.9 (a) Band structure (solid line) of a 3-D photonic crystal for negative refraction. The 
shaded region is the AANR frequency range for this crystal. The dashed lines are light lines 
along r H  and FN. Insets are the shape and special symmehy vertices of the first Brillouin 
zone and a computer rendering of the crystal in real space. (b) The dispersion contour of the 
crystal in (a) at w = 0.407(27rc/a) in a periodic zone scheme. Reprinted with permission 
from Ref. [15]. Copyright @ 2002 American Institute of Physics. 

7.2.6 Case of Metallic Photonic Crystals 

It should become clear from the discussion in previous sections that negative refrac- 
tion is an unambiguous physical effect that can take place in 2-D and 3-D dielectric 
photonic crystal systems. The principles presented here are general and can be 
extended to other systems. We now discuss metallodielectric photonic crystals as 
a particular example of alternative possible systems. These crystals are made by 
inserting metallic elements into a dielectric background or an all-dielectric photonic 
crystal. They provide another common implementation of the photonic-crystal con- 
cept through the strong scattering off metallic surfaces and are specially useful at 
microwave frequencies where most metals can be treated as lossless. Such systems 
were studied in detail in the past from the viewpoint of forbidden band gaps, and it 
is the properties of propagating waves in these systems that are of interest here. 

It is noteworthy that the left-handed metamaterial studied by Smith et al. was 
also made with periodic arrangement of metallic elements. In this regard, there are 
important differences between the physics of a left-handed material, which is based on 
the simultaneous negativity of E and p, and those of the metallic photonic crystals here, 
which takes place by means of complex Bragg scattering, as mentioned in the general 
introduction in Section 7.1. Moreover, while the left-handed metamaterials currently 
have 2-D functionalities but require an intrinsically 3-D analysis, the metallic photonic 
crystals present a much simpler concept in design: A 2-D analysis suffices for all 
2-D effects, and a 3-D crystal can realize truly 3-D phenomena. Compared to 
its all-dielectric counterpart, a metallic photonic crystal is also interesting because 
electromagnetic fields are strongly expelled from the inside of the metals. For crystals 
containing ideal metals, which have a penetration depth of zero and are adopted here 
for simplicity, they can represent the voids-in-high-index all-dielectric structures in 
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the theoretical limit of injnite dielectric contrast. The required background refractive 
indices can thus be lowered and make A A M  accessible to a broader range of 
materials. For example, for TM-polarized waves traveling in a square lattice of 
metallic rods embedded within a background dielectric € b  = 9, the band structure 
shown in Fig. 7.10 already exhibits an appreciable phase-space region where the 
dispersion surface becomes all-convex around the M point. This situation can be 
reproduced using rods of radii ranging from O.la to 0.3~. In contrast, for the 
corresponding all-dielectric system (the metallic rods replaced by air voids) with the 
same modest filling ratio, there is no complete photonic band gap, the rounding of the 
dispersion surface does not occur until fairly close to the gap edge, and the anomalous 
photon propagation effects are weak until T > 0.3~. Moreover, the metallic photonic 
crystal does not require a background material. If no high-index materials are used 
and the background is free space, the photon frequencies will need to be scaled by a 
factor of 6 = 3. Negative refraction will exist in a large frequency range, although 
only for a limited range of incident angles.* For metallodielectric systems in 3-D, 
we have found that a bcc lattice of nonoverlapping metallic spheres in a background 
dielectric can produce AANR in full 3-D for a background permittivity of 6 = 3 and 
sphere diameter of 0.85a, a being the side length of the conventional bcc cell. It is 
worth noting that this 3-D crystal has very important advantages over an all-dielectric 
structure in achieving AANR: The index requirement for the background matrix is 
quite low and can be satisfied by many materials, and straightforward fabrication 
procedures at microwave length scales are available at present using layer-by-layer 
stacking of solid matrix holding metallic spheres. 

7.2.7 Summary 

In this part we have studied negative refraction of light in various 2-D and 3-D 
photonic crystals and demonstrated that negative refraction can arise in general 
photonic crystals without requiring a backward-wave to be formed. We focused on the 
method of dispersion surfaces and explained how it can be applied to understand and 
predict some of the anomalous properties concerning light propagation (e.g. AANR). 
In practice, as can be seen from Fig. 7.4 and Figs. 7.5-7.8, the refraction processes 
also occur with an appreciable coupling efficiency, usually greater than or on the 
order of 50%, except close to a band edge. Thus, as long as we work in the AANR 
frequency range and use the appropriate crystal interface, the coupling efficiency 
will not pose a serious difficulty in negative refraction. It is noteworthy that this 
transmission value is almost three orders of magnitude larger than the transmission 
realized in the left-handed materials. We will discuss next in more detail the unusual 
transmission property for metamaterials and photonic crystals. 

'The increased frequencies will make the crystal phase space much smaller than that of free space and 
destroy AANR. 
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Fig. 7.10 First few TM bands of a 2-D square lattice of metallic cylinders in dielectric 
computed by FDTD. The photonic dispersion relations are indicated by the circles connected 
by solid lines. The broken line is the light line centered on the M point. The shaded region is 
the AANR frequency range. The left inset is a schematic illustration of the photonic crystal 
(filled circle stands for metals in a background dielectric). The right inset is a portrayal of the 
Brillouin zone and the refraction in wavevector space. Air modes and photonic-crystal modes 
are marked out on their respective dispersion surfaces. The long and thin arrows indicate the 
phase velocity k, and the short and thick arrows indicate the group (energy) velocity dwldk .  
The shaded areas represent the phase space corresponding to the AANR frequency range. 

7.3 SUBWAVELENGTH IMAGING WITH PHOTONIC CRYSTALS 

Early in the 1960s, when Veselago first studied the electrodynamics of materials 
having negative values of E and p, he found that for a material having E = -1 and 
p = -1, the refraction of light is particularly interesting. He observed that the 
refraction angle must be exactly negative of the incident angle, and the reflection 
coefficient is exactly zero for all incident angles. Veselago thus proposed that all 
the light rays emitted by a point optical source in front of a flat slab of left-handed 
material must be exactly refocused, first inside the slab and then behind the slab. In 
2000, Pendry considered this problem further and included evanescent waves in his 
analysis. He discovered a rather striking transmission property of the slab and made 
the intriguing prediction that negative refractive indices can lead to a perfect lens. 
For completeness, here we briefly review the Veselago-Pendry analysis. 

7.3.1 Veselag+Pendry Left-Handed Lens 

We use a coordinate system as shown in Fig. 7.11 where the z-axis is perpendicular to 
the slab interface. Instead of a point source, we first consider incident waves as plane 
waves incident on a semi-infinite left-handed material, with a transverse wavevector k 
along the z-axis and polarized perpendicular to the 2-2 plane, as shown in Fig. 7.1 la. 
As discussed along with Fig. 7.lb, the refraction direction can be determined from 
Snell’s Law, in which the negative values of E and p leads to a negative refractive 
index n = -&i. For E = -1 and p = -1, n = -1, and the refraction angle 
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Fig. 7.11 Schematic illustration of the perfect imaging effect of a flat slab of left-handed 
material with E = -1 and p = -1. (a) Transmission of a single plane wave into a semi- 
infinite left-handed material. @) A point image placed in front of the slab is focused to an 
image behind the slab. 

becomes the exact negative of the incident angle. In terms of the (z, z )  components 
of the wavevectors, the incident wave is specified as (k, p = d m ) ,  and the 
refraction wave is (k, q). Let the amplitude of the incident, reflected, and refracted 
waves be i, T ,  and t ,  and matching the electric and magnetic fields across the interface 
gives 

Ei + Er = Et 

With E = -1 and p = -1, q = -JEpw2/c2 - k2 = ' - p  for propagating waves 
(k < w/c) ,  and the solution to the above system is 

E, = 0 

Et = Ei 

that is, there is no reflection. In this way, Veselago showed that the imaging effect 
of a slab of left-handed materials as shown in Fig. 7.11 satisfies u + v = h, and is 
aberration-free in the sense of geometric optics. However, if k2 > Epw2/c2, p has 
a positive imaginary part representing evanescent waves, and q = -p  would imply 
that such waves become growing in left-handed materials, a possibility first noted by 
Pendry. Such a growing field is of course prohibited in a semi-infinite left-handed 
material by the boundary condition at infinity, indicating that the extension of the 
Veselago analysis to evanescent waves is nontrivial. Thus in equations (7.3)-(7.4), 
we must reverse the sign of q, so that for evanescent waves q = +id- = p 
to maintain a decaying wave as z 4 00. Equation (7.4) thus reduces to 

Ei - Er = - Et (7.7) 
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which is compatible with equation (7.3) only if Ei = 0. Therefore, an electromag- 
netic state whose amplitudes are exponentially decaying away from the interface can 
exist without any incident waves for for all k > w/c,  if the left-handed material has 
E = -1 and p = -1. Such a state is known as an interface photon state, and any inci- 
dent evanescent light will pump energy into this state indefinitely. Pendry considered 
further a left-handed material slab of a finite thickness h and calculated the interac- 
tion between the two localized interface swces. In this case, the left-handed material 
region is limited to a finite region, and the growing field can exist. A transmission 
calculation of an evanescent incident wave of transverse wavevector k > w/c for the 
slab in Fig. 7.1 lb  using similar field-matching on the boundary gives 

Thus the left-handed slab can provide an amplification factor of e m h ,  ef- 
fectively restoring the field amplitude over distance h travelled in vacuum. As long 
as E = -1 and p = -1 holds, this analysis can be applied in an identical manner 
to waves of all polarizations and all incident wavevectors. For a system imaging a 
point source as shown in Fig. 7.1 lb, the condition u + v = h guarantees that on the 
image plane all the evanescent waves are restored to exactly the same amplitude as 
they are on the source plane. Pendry thus concluded that such a left-handed material 
slab forms a pe$ect lens. Because evanescent waves correspond to the fine details 
on the source plane that are normally lost during propagation through any classical 
imaging system, Pendry’s analysis seems to offer a novel avenue of high-resolution 
imaging beating the classical diffraction limit. 

While the focusing effect appears to be a straightforward consequence of the ray 
optics, the feasibility of an aberration-free, perfect image is a theoretically controver- 
sial issue. In particular, it was pointed out that the perfect lens effect is very fragile 
and can be easily destroyed by a small amount of absorption loss in a realistic sys- 
tem. Moreover, even in the ideal lossless limit considered by Pendry, a spatial region 
(-v I vf 5 v) with highly divergent field amplitudes exists, where the amount 
of time required to build up the electromagnetic energy density tends to infinity. 
Moreover, when evanescent waves are important and the subwavelength features are 
of central interest, the usual effective medium model of the metamaterial places se- 
vere constraints on the lattice constant a: It must be smaller than the subwavelength 
details one is seeking to resolve. The question of whether and to what extent the 
Pendry effect occurs in the more general case of photonic crystals is the subject of 
the following investigation. 

The first issue is whether a slab of a negative refractive photonic crystal can 
focus in the sense of Veselago. We use the FDTD method to perform numerical 
experiments on the AANR crystals studied in the previous sections. For the 2-D 
case, we use a (1 1)-orientated section of dielectric photonic crystals as shown in Fig. 
7.12. Depicted here are snapshots of the electromagnetic field for a CW point source 
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Fig. 7.12 FDTD simulation of the focusing effect of 2-D AANR photonic crystals (lattice 
constant a). (a) H, field for the TE modes (air holes of diameter 0 . 7 ~  in dielectric E = 12). 
(b) E, field for the TM modes (dielectric rods ( E  = 14) of diameter 0 . 6 ~  in air). Darker 
shades correspond to larger field magnitudes. Reprinted figure with permission from Ref. [ 141. 
Copyright @ 2002 by the American Physical Society. 

placed in front of the slab. When the frequency is chosen to lie within the lowest 
AANR frequency range, images corresponding to the focus of the point source behind 
the slab are clearly discernible in both TE and TM cases. In Fig. 7.13 we also show 
the simulation results for a point dipole transmitted through the 3-D AANR crystal 
studied in the previous section. A significant portion (roughly 27% out of a possible 
50%) of the total dipole radiation goes through the slab and becomes refocused into 
a wavelength-sized image below the slab, demonstrating that the Veselago focusing 
effect can occur in full 3-D. If the dipole is pointing along the wrong polarization 
(OlO) ,  then most of the radiation will be reflected and the focusing action is rather 
weak. 

Furthermore, the focused images can exhibit subwavelength resolutions. As an 
example, in the 2-D TE case the time-averaged intensity distribution around the 
focus shows a transverse size of only 0.67X. We would like to understand this last 
possibility in detail by studying the transmission of evanescent waves through a slab 
of such photonic crystals to see how Pendry’s analysis is modified in this case. It is 
important to note that the transmission of evanescent waves considered here differs 
fundamentally from its conventional implication of energy transport, since evanescent 
waves need not carry energy in their decaying directions. Evanescent transmission 
amplitudes is thus allowed to greatly exceed unity, just as in Pendry’s perfect lens 
effect. We discuss two mechanisms linking amplification of evanescent waves to 
the existence of bound slab photon states. These bound states are decoupled from 
the continuum of propagating waves; thus our findings are distinct from the effect 
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Fig. 7.13 Six 2-D snapshots of electric field along (lOi) during an FDTD simulation of the 
focusing effect for the 3-D AANR photonic crystal in Fig. 7.9. A point dipole pointing along 
(lOi) is used. (a)-(c) Slices through the two perpendicular planes containing (101) direction, 
taken from the instant when the dipole reaches its peak to the instant when the image reaches 
its peak. The dielectric structure is outlined. 

of Fano resonances in electromagnetism, recently studied in the context of patterned 
periodic structures and surface-plasmon assisted energy transmission. We will show 
that, as for the problem of negative refraction, the effect of subwavelength imaging 
exists for photonic crystals and does not in general require a negative refractive 
index. Moreover, a cutoff for the transverse wavevector of evanescent waves that 
can be amplified exists naturally for photonic crystals, and no divergence will occur 
at large transverse wavevectors for photonic crystals and physical metamaterials. 
Furthermore, we study the detailed image pattern for a 2-D crystal and demonstrate 
a subtle and very important interplay between propagating and evanescent waves. 

7.3.2 Origin of Near-Field Amplification 

As a first step, we consider the transmission of a light wave through a lossless dielectric 
structure as shown in Fig. 7.14. The structure is periodic in the transverse direction, 
and the incident light has a definite frequency w (with a free-space wavelength 
X = 27rc/w) and has a transverse wavevector k. A finite slab is assumed to have 
a thickness of h and a mirror symmetry with respect to z = -h/2 as shown in 
Fig. 7.14a. The transmission through the slab can be conceptually constructed 
by first considering the transmission through a single aidphotonic-crystal interface 
(Fig. 7.14b), and then summing up all the contributions as light bounces back and forth 
inside the slab. The incident field Fin, the reflected field F,,fl, and the transmission 
field Ftrans are formally related to each other by the transmission matrix t and the 
reflection matrix P through Ftrans = tFi, and F,,fl = rFin, where all fields are 
column vectors expressed in the basis of eigenmodes of the corresponding medium 
with transverse wavevector/Bloch-wavevector k. The overall transmission through 
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Fig. 7.14 Illustration of lightwave transmission through a photonic crystal. (a) Transmission 
through a slab of photonic crystal. Fin and F,.,fl, are measured at the left interface of the 
slab ( z  = -h) and Ftrans is measured at the right interface (z = 0). (b) Transmission 
through a single air/photonic-crystal interface. Fin, F,,fl, and Ftrans are all measured at 
the interface. k is the transverse wavevector and a, is the surface periodicity. Reprinted figure 
with permission from Ref. [17]. Copyright @ 2003 by the American Physical Society. 

the slab can be written as 

In equation (7.9), tap and tp-a are the transmission matrices through the individual 
interfaces from air to the photonic crystal and from the photonic crystal to air, 
respectively, rp-a is the reflection matrix on the crystal/air interface, and Tk,p is the 
translation matrix that takes the fields from z = -h to z = 0 inside the crystal. 
When h is an integral multiple of the crystal z-period, Tk,p is diagonal with elements 
e i k z h ,  where I c ,  is the z-component of the Bloch-wavevector k + k,ri of the crystal 
eigenmode with Sk, 2 0. We now discuss the possibility of amplification in t-for 
example, in the zeroth-order diagonal element too describing waves with no change 
in the transverse wavevector. 

In general, equation (7.9) describes a transmitted wave that is exponentially small 
for large enough I kl . This may be seen from the special case of a slab of a uniform ma- 
terial with permittivity E and permeability p, where all the matrices in equation (7.9) 
are built from the basis of a single plane wave and thus reduce to a number. In particu- 
lar, = exp(iIc,h) = exp(ihdqm2/c2 - lkI2) = exp(-hJlk12 - E C U J ~ / C ~ ) ,  

which becomes exponentially small as Ikl goes above &LL/c. Equation (7.9) thus 
becomes a familiar elementary expression: 

(7.10) 
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Equation (7.10) has an exponentially decaying numerator, while for fixed rp-a the 
denominator approaches 1. Thus, waves with large enough )k) usually decay during 
transmission, in accordance with their evanescent nature. 

There exist, however, two mechanisms by which the evanescent waves can be 
greatly amplified through transmission, a rather unconventional phenomenon. The 
first mechanism, employed by Pendry as in Section 7.3.1, is based on the fact that 
the reflection and transmission coefficients across individual interfaces can become 
divergent, which we refer to as single-interface resonance. For example, under 
the conditions of single-interface resonance, ta--p,tp-a,rp-a + 00, and in the 
denominator of equation (7.10), the term ri - ,  exp(2ik2h) dominates over 1. In this 
limit,* equation (7.10) becomes 

tp-ata-p -ik,h too = e (7.11) 

The divergences in the numerator and denominator of equation (7.11) cancel each 
other, and the net result is that for large lkl, 

too = exp(-ik,h) = exp(-hJlk12 - epw2/c2) 

leading to amplification of exactly the right degree to focus an image. The same 
arguments can be applied to the general case of equation (7.9), as long as k2 is regarded 
as the z-component of the eigenwavevector with the smallest imaginary part, which 
produces the dominant term in eikzh. As elements of rp-a grow sufficiently large, 
the matrix product Tk,prp-aTk,prp--a dominates over the identity matrix. Since in 
this case, the matrix under inversion in equation (7.9) scales as exp(-2SC2h) and 
the rest scales as exp(-Sk,h), the amplification behavior is still present in a general 
element of t .  The transmission too can be represented by equation (7.1 1) with the 
coefficients to the exponential replaced by smooth functions of w and k. 

The second mechanism for enhancement of evanescent waves relies on a direct 
divergence in the overall transmission-that is, an overall resonance. This is clear 
from equation (7.9) for the uniform medium, whose denominator becomes zero when 
1 - rE-a exp(2ik2h) = 0, which is the condition for transverse guiding via total 
internal reflection. An evanescent incident wave can satisfy this condition exactly. It 
thus holds that a direct divergence can exist in the overall transmission of evanescent 
waves without any accompanying single-interface resonance, and therefore finite and 
strong amplification of evanescent waves results when the incident wave does not 
exactly satisfy but is sufficiently close to the resonance condition. In this case, there 
is no upper limit on the amplification and the transmission can even exceed that 
prescribed by equation (7.11); hence there is the potential to form an image provided 
that the correct degree of amplification is induced. These arguments are also valid in 

*Although equations (7.9) and (7.10) are derived with the summation of an infinite series that breaks down 
in this limit, it can be- shown by analytical continuation arguments that these equations remain valid in the 
sense that a vanishing small amount of loss exists in the system. 
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equation (7.9), at or near the singular points of 1 - Tk,prp--aTk,prp-a whose inverse 
occurs in the transmission. If we write the relation between the light frequency w and 
wavevector k at these singular points as w = wo (k), then close to such a resonance 
the transmission too is described by 

(7.12) 

where CO(W, k) is a smooth function of w and k. For a given w, the issue is then to 
design photonic crystals with the appropriate dispersion relation wo(k) so that (7.12) 
approximates the required amount of amplification. 

Both mechanisms of evanescent wave amplification here involve some divergences 
in the transmission process. Similar to that discussed in Section 7.3.1, such a 
divergence physically means that energy is being pumped indefinitely by the incident 
wave into the transmitted and reflected fields, whose amplitudes increase in time 
without limit. Equivalently, a finite field inside the structure can be produced by zero 
incident field; that is, it is a bound (guided) electromagnetic mode. A bound photon 
mode on the aidphotonic-crystal interface leads to a single-interface resonance, and 
a bound photon state inside the slab leads to an overall resonance. In the overall 
resonance case, the dispersion relation of the bound photon mode is just w = wo(k) 
in equation (7.12). A similar equation can also be used to represent the zeroth-order 
term in tp-a close to a single-interface resonance: 

(7.13) 

with the single-interface bound photon dispersion relation wp-a(k) and a smooth 
function Cp-a(~, k). Cp-a and CO here represent the coupling strength between the 
incidence wave and the respective bound photon state. It is instructive to compare 
these two amplification mechanisms by their applicable ranges. In an ideal material 
slab with E ( W , ~ )  = -1 and p(wsp) = -1, every evanescent wave is amplified by 
a single-interface resonance. For a slab, rp-a diverges for any incident k and no 
overall resonance happens. However, both E and p are necessarily dispersive, and the 
condition E = -1 and p = -1 can occur only at a single surface-plasmon frequency 
wsp.  Detuning from wsp we can satisfy the guiding condition 

(7.14) 

at two separate frequencies wf, above and below wsp, reflecting the fact that the 
surface photon states on the two interfaces of the slab interact with each other forming 
symmetric and antisymmetric combinations. In the general case, equation (7.14) can 
be satisfied and bound photon states inside the slab form even without the prior 
existence of interface states-that is, without rp-a diverging. Thus both mechanisms 
may be available to amplify evanescent waves. To have a single-interface resonance in 
equation (7.9), it is required that the term associated with single-interface reflections 
dominate over 1. This can be expressed as 

(7.15) 



294 NEGATIVE REFRACTION AND SUBWAVELENGTH IMAGING IN PCS 

For an overall resonance, the condition becomes 

in order to produce an amplification magnitude similar to that in equation (7.1 1). We 
note that Cp-a and Co are roughly on the same order of magnitude if the bound pho- 
ton modes inside the slab are constructed from combinations of the surface photon 
states. It is thus clear that in the general case, amplification of evanescent waves re- 
quires operating much closer to an exact resonance in the single-interface-resonance 
mechanism than in the overall-resonance mechanism. In addition, the overall reso- 
nance can in principle happen near a bulk-guided mode that is not evanescent inside 
the photonic-crystal slab. Thus, in general, amplification is more easily achieved 
using an overall resonance than using a single-interface resonance. In the following, 
therefore, we make primary use of the second resonance mechanism and realize 
amplification of evanescent waves in the manner discussed here. 

Thus amplification can arise from the coupling between the incident evanescent 
field and bound photon states with an infinite lifetime, which usually exist below the 
light line.* With Bragg scattering, in a periodic structure the range of wavevector 
region below the light line is limited by the first surface Brillouin zone. What 
happens to transmission of evanescent waves whose wavevectors lie beyond the first 
surface Brillouin zone and become folded back into the light cone? In this case, the 
associated slab photon resonance mode changes from a bound state to a leaky state, 
and its frequency wo(k) becomes complex-that is, wo(k) -+ wo(k) - iy(k), with 
w and y real. This situation is described by the element t,, o f t  with n # 0 and n 
indexing the surface diffraction orders. When the incidence k is sufficiently close to 
that of a leaky photon mode the transmission becomes 

(7.17) 

which always has a finite magnitude. In principle, Itn,[ can also reach values larger 
than unity provided that y is small enough. However, as n goes away from 0 the 
spatial variation in the incident wave becomes more rapid. The leaky photon state, 
on the other hand, always maintains a constant field profile with variations on a fixed 
spatial scale, roughly that of each component in a cell of the crystal. Hence, for n 
sufficiently far from 0, CO in (7.17), determined by the overlap between the incident 
wave and the slab photon modes, must always approach zero, and so must It,,, 1. 
The numerical results presented later in this work indicate that, for the structure 
considered here, the transmission for evanescent waves coupling to leaky modes with 
n # 0 is always small and the possible amplification effect can be ignored. 

We have thus shown that an amplified transmission of evanescent waves at a given 
w and k is not restricted to materials with E < 0 or p < 0 only, and can be achieved 

In certain occasions, due to reasons of modal symmetry, they can also appear in discrete locations above 
the light line. 
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by coupling to bound photon states in general. Another feature of this approach 
is that, with the single-interface resonance-amplification mechanism, the reflection 
coefficient T can vanish, but in the overall-resonance mechanism here an amplified 
transmission process also implies an amplified reflected evanescent field in general. 
Since the latter mechanism is used in our numerical calculations below, most of the 
effects that arise due to the transmitted evanescent waves should also be expected 
in the reflected waves as well. These might lead to nontrivial consequences, for 
example a feedback on the emitting source. In this work, we assume the source field 
is generated by some independent processes and ignore the potential influences of 
these effects. 

7.3.3 Photonic-Crystal Superlenses 

We now consider the problem of Pendry superlensing at a given frequency w in 
photonic crystals. An ideal point source emits a coherent superposition of fields 
FS,,,ce(k) of different transverse wavevectors k ,  with Ikl < w/c  being propagating 
waves and IkJ > w / c  being evanescent waves. When such a point source is placed 
on the z-axis, the optical axis, at z = -h - u, the image intensity distribution in 
z 2 0 becomes 

(7.18) 

In equation (7.18), Tk,,a(Z) is the translation matrix in air that takes the fields 
through a distance z, T k  is a polarization vector, rt stands for transverse coordinates, 
k, = k + G,, with G ,  indexing the surface reciprocal vectors, and k, is the 
transverse wavevectors in the air basis. = (. . . , TkeXp(ik,  rt), . . .) is a row 
vector representing polarizations and phases of the air plane-wave basis, and its 
dot product with the column vector of the transmitted field amplitude produces the 
complex field amplitude. The integral is carried out over the first surface Brillouin 
zone. In the case of a uniform material, it is over the entire transverse k-plane. 

Conventional lenses only image the portion of the propagating incident field with 
Ikl < kM for kM < w/c,  limited by the numerical aperture. Pendry’s perfect lens, 
on the other hand, not only focuses all propagating waves with negative refraction 
but also amplifies all evanescent waves, so that all Fourier components of the source 
field reappear perfectly in the image plane. Here, we use the term superlens to 
denote a negative-refractive slab that not only focuses all propagating waves by 
negative refraction without the limitation of a finite aperture, but also amplifies at 
least some evanescent waves in a continuous range beyond that of the propagating 
waves. In this context, superlensing refers to the unconventional imaging effects 
due to the presence of the additional near-field light. The phenomena considered 
here thus contain the main features of Pendry’s perfect lens. In general, however, 
the magnitude of transmission will not reproduce exactly that required for perfect 
image recovery, and the resulting image will be impegect and possess quantitative 
aberrations. We focus our attention on 2-D situations (the z-z plane) where most of 
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the quantities can be treated as scalars. F,,,,,, (k) = 1 is used for all k’s, appropriate 
for a point source in 2-D. 
Our starting point here is the focusing by negative refraction of all propagating 

waves with k < w/c (AANR). All propagating waves with k < w/c can thus 
go through the photonic-crystal slab with transmission of order unity and thereby 
focus into a real image (i.e. an intensity maximum) behind the slab. Superlensing 
requires amplified transmission for an additional range of transverse wavevectors 
w/c < k < kM. In Pendry’s perfect lens, kM = 00. The important difference for 
superlensing with a photonic crystal is that kM is in general finite. This is clear 
from the discussion in Section 7.3.2, where a finite high cutoff to the transmission 
spectrum results from the Bragg scattering of light to leaky photon modes. This finite 
kM makes the image reconstruction process through a photonic-crystal superlens no 
longer divergent even in the lossless case. Physically, the amplification of evanescent 
waves requires near-resonance coupling and the resulting growth of an approximate 
bound photon state during transmission. Amplification of larger Ic components 
thus requires exponentially higher energy density in the bound photon mode and an 
exponentially longer time interval to reach a steady state. Our numerical results are 
mainly calculated in the frequency domain and therefore represent the steady-state 
behavior after the transients have died away in$nire time. 

To actually realize amplification of evanescent waves, one must design the photonic- 
crystal structure carefully so that equation (7.16) holds for all evanescent waves with 
w/c < k < kM. For large k, k, = + d v  has a large positive imaginary 
part, and therefore the operation frequency w should be very close to the resonance 
frequency wo(k) of a bound photon state for the amplification to cancel the decay 
outside the crystal. This means that for large k, wo(k) must approach a “flat” line 
near w within the AANR range, as shown in Fig. 7.15. In general, there are two 
classes of bound photon modes within a photonic-crystal slab. One consists of those 
guided by the slab as a whole, similar to the guided modes in a uniform dielectric 
slab. The other class includes those guided by the aidslab interfaces; that is, they are 
linear combinations of interface states, which decay exponentially both in air and in 
the crystal away from the slab interfaces. Although both classes of bound modes can 
be employed to achieve amplification for a given k, most of the wavevector region 
w / c  < k < ?r/a, within the AANR frequency range involves a partial photonic 
band gap and can only accommodate the interface photon states. Furthermore, the 
interface states are known to depend on the fine details of the interface structure (e.g., 
the interface termination position) and can be tuned to be any frequency across the 
band gap at least for a single k-point. Thus, the slab interface photon states are at- 
tractive candidates for achieving flat bound photon bands within the AANR range for 
superlensing. We will give one 2-D design that meets this goal by simply adjusting 
the crystal-interface termination position. 

What is the ultimate limit to the imaging resolution of a photonic-crystal superlens? 
The image of a point source can be interpreted as an intensity peak on the constant-z 
plane of AANR focusing, and the resolution of such a peak can be measured by the 
distance between the nearest minima around this intensity peak. Taking into account 
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Fig. 7.15 Schematic illustration of superlensing in photonic crystals. The light-shaded region 
is the light cone, and the dark shaded region is the AANR frequency range. The curve marked 
wo(k) outside the light cone is a bound photon band inside a photonic-crystal slab. The 
operating frequency w is marked by the broken line. Amplification of evanescent waves 
requires that Iw - wo(lc)I be small for k > w/c,  which in turn requires that the wo(k)  
curve beflat. In this repeated zone scheme, a bound photon state may only exist in the range 
w / c  < k < 27r/a, - w/c,  which imposes an upper cutoff for superlensing using photonic 
crystals. Reprinted figure with permission from Ref. [ 171. Copyright @ 2003 by the American 
Physical Society. 

the decay of evanescent light as it travels in air, the image field can be estimated 
using a simplified model. In this model, we assume unit total transmission from the 
source plane to the image plane for (k( < k ~ ,  and zero transmission for Ik( > k ~ .  
The intensity profile on the image plane then reads 

(7.19) 

which has a peak at x = 0 with a transverse size of A = 2 7 r / k ~ ,  measured by 
the distance between the first zeroes around the peak. This image size is zero in a 
material with E = -1 and p = -1, since k~ = 00, leading to the interpretation 
of a perfect image. In a photonic crystal, quantitative estimates of the minimum 
possible A (i.e., maximum possible k ~ )  may be obtained by looking at Fig. 7.15. In 
the best situation, all the interface modes with k < 0.5(27r/as) can be used directly 
for amplification if they satisfy (7.16),* which gives k~ 2 0.5(27r/as). Since this 
estimate ignores the strong Bragg-scattered wave components in the interface states 
near the surface Brillouin zone edge, it is a conservative estimate. From Fig. 7.15, we 
also deduce the maximum wavevector of a “flat” interface band below the light line 

*The nonzero slope of (7.16) at the surface Brillouin zone edge is usually negligible. 
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that can be coupled to at frequency w to be (1 - waS/2ac)(2~/a,) = 2n/a,  - w/c,  
which is an overestimate. Putting these results together, we thus obtain the ultimate 
resolution limit of a photonic-crystal superlens to be 

(7.20) 

According to the Rayleigh criteria, the minimum feature size that can be resolved by 
such a device is A/2. Thus, the resolution of a photonic-crystal superlens at a single 
frequency is only limited by its surface periodicity a, instead of the wavelength of 
operation A. Our considerations also give a guide line for designing high-resolution 
superlenses: For a given wavelength, the smaller the a, (i.e., the lower in the band 
structure one operates with AANR), the better the resolutions will be. In principle, by 
using sufficiently large dielectric constants and contrast in its constituents, a photonic- 
crystal superlens can be designed to operate at a wavelength arbitrarily larger than 
a,. A similar superlensing trend is also suggested with localized plasmon polariton 
resonances in metallic photonic crystals. If, furthermore, a sufficiently flat interface 
band is achieved in the AANR frequency range of such a photonic-crystal slab by 
manipulating its interface structures, imaging arbitrarily exceeding the diffraction 
limit is possible. Therefore, there is no theoretical limit to superlensing in general 
photonic crystals. In practice, of course, available materials, material losses, and 
unavoidable imperfections in interface structures will limit the performance of such 
superlenses. 

It must be noted that the image of a superlens considered here is substantially 
different from conventional real images of geometric optics. Conventional real 
images always correspond to an intensity maximum-that is, a peak in the intensity 
distribution both in 2- and z-directions. When only the propagating waves are 
transmitted through the superlens, they similarly produce an intensity maximum at 
the image of AANR in z > 0. The position of this image may be estimated by paraxial 
geometric optics around the z-axis. However, when evanescent waves are included, 
they bring distortions to the image and the new intensity maximum is no longer at 
the position of the AANR focusing. A simple illustration of this phenomenon is 
provided by OUT simplified cutoff model. The full expression of the image in this 
model with a high cutoff k M  > w/c can be written as 

where z = v is assumed to be the focusing plane of AANR. Inside the absolute value 
sign of equation (7.21), the first term has a constructive interference at z = v and 
represents an intensity maximum there, but the second term always always displays 
asymmetric amplitude distributions in z around z = v. Thus, for k~ > w/c the 
overall intensity distribution no longer has a maximum at the AANR focusing plane. 
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The detailed image pattern has a sensitive dependence on the interplay between the 
propagating and evanescent waves. 

For kM slightly above w / c ,  the strength of evanescent waves is comparable to that 
of propagating waves. An intensity maximum still exists in the region z > 0, but 
is shifted away from z = 2) toward the slab. This intensity maximum thus appears 
as a real image similar to conventional optics. In general it will have a transverse 
size smaller than 2 7 r / k ~ ,  the transverse size of the peak in the plane z = 2). This 
situation may be called the moderate subwavelength limit, and the image resolution 
will always be a fraction of the wavelength. 

When kM exceeds a certain threshold, evanescent waves begin to dominate the 
image pattern. In this case, an intensity maximum completely disappears in the region 
z > 0 where the intensity along z-axis becomes monotonically decreasing with z. 
The kM threshold for this behavior can be estimated to be about kM,th = 1.35w/c, 
with a transverse size of the intensity maximum about half a wavelength at this 
threshold, using the simplified model equation (7.2 1). This crude qualitative estimate 
can be compared to the following numerical results. The case of superlensing with 
kM > kM,tll can thus be called the extreme subwavelength limit. From another 
viewpoint, at w / c  << kM, X >> a,, and if we also assume that the slab thickness 
h is small compared to A, the system may be regarded to be in the near-static limit. 
The absence of an intensity maximum in z > 0 may then be understood simply by 
the elementary fact that in electrostatics/magnetostatics potentials can never reach 
local extrema in a sourceless spatial region. Thus, in the extreme subwavelength 
limit the imaging effect of a superlens is in the transverse direction only. Compared 
to a conventional lens, whose image intensity generally follows a power-decaying 
law, the superlens has a characteristic region between the slab and the image where 
an exponentially growing intensity distribution exists. 

A related effect is that the intensity generally becomes higher for kM > w / c  
than for kM 5 w / c .  This occurs in the simplified model equation (7.21) due to 
the addition of evanescent wave components. Note also that in this model no exact 
resonant divergence is present in the transmission, and that the intensity enhancement 
effect is prominent in the region between the slab and the plane z = 21. A more general 
situation occurs when the operating frequency w falls inside the narrow frequency 
range of the bound photon bands, so that a distinct number of bound mode with near- 
zero group velocities can be excited on resonance. The contribution from one such 
exact resonance pole at w = wo( ko) to the transmission in the limit of a vanishingly 
small amount of loss may be estimated as 

The integral over k ,  though not suitable for analytical evaluation in general, can 
usually be regarded as having a finite value and depending on the detailed behavior 
in Co(w, k ) .  The influence of each pole on the transmitted image is thus inversely 
proportional to the group velocity of the bound photon state at the resonance, and 
is strongest for modes with the smallest group velocities. When coupled to flat 
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interface bands with very small group velocities, the image field has a wide spatial 
distribution in z > 0 dominated by the pattern of excited bound photon modes, 
sometimes extending beyond the plane z = v. Thus, we can call this regime of 
superlensing enhanced suguce resonance. On the one hand, such an effect could be 
useful in applications where a large field amplitude is desired. On the other hand, 
since a surface resonance is a deloculized distribution, there is very little information 
contained within the image about the transverse location of the source. This is a 
subtle point to be avoided in imaging applications. 

In many experimental situations, light intensity is the quantity that is responsible 
for most physical effects and can be measured directly. Both a subwavelength 
transverse resolution and a spatial region with high intensity can thus serve as direct 
experimental evidence of superlensing. From the viewpoint of applications, imaging 
in the transverse direction below the diffraction limit is sufficient and desirable for 
many situations, such as sensingldetecting or strong focusing for active phenomena. 
Our considerations indicate the possibility of a variety of image patterns impossible 
in conventional geometric optics in the image of a superlens, based on the interplay 
between near-field and far-field light. With a photonic crystal, a flexible superlens 
may be constructed in which all of these physical effects are readily observable. 

7.3.4 Numerical Results 

In this section, we study superlensing in photonic crystals numerically. We focus on 
a square lattice of "+"-shaped air voids oriented along the (11) direction in a lossless 
dielectric E = 12, with the various sizes specified in Fig. 7.16a. The lattice constant 
of the square lattice is a, and the surface periodicity is a, = f i a .  This structure 
possesses a similar band structure to the one studied in Section 7.2 and also allows for 
efficient numerical calculations of transmission through a finite slab in the frequency 
domain. The TE polarization is assumed, and similar results can be expected for TM 
modes as well. 

7.3.4.1 Sutface Band Structure The bound photon bands on the photonic-crystal 
slab are calculated by planewave expansion using the supercell approach. The results 
are presented in Fig. 7.16a. Below the light cone and inside the region of the projected 
infinite-crystal band structure, the modes are bound photon states guided by the slab as 
a whole. The modes inside the partial photonic band gap are the interface states guided 
around the aidslab interfaces. The field profiles of the symmetric and antisymmetric 
combinations of the surface modes on the two interfaces are also shown in Fig. 7.16b. 
Deep in the gap where the confinement is strong, the splitting between these two 
bands becomes small and the two bands merge into one curve on Fig. 7.16a. The 
crystal thickness h and the associated surface termination position are chosen so that 
the interface modes are two flat, nearly degenerate bound photon bands near the 
frequency w = 0.192(27rc/a) within the AANR frequency range. This situation thus 
approximately realizes is in Fig. 7.15 and is well-suited for achieving superlensing. 
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Fig. 7.16 Bound TE photon modes in a 2-D photonic crystal slab. (a) Left panel: The 
photonic-crystal slab used in calculation. The parameters are a, = f i a ,  bl = 0.5a,, 
bz = 0.2a, and h = 4 . 5 1 6 ~ ~ .  Right panel: The calculated band structure of bound photon 
modes, plotted on top of interface-projected band structure (the lightly filled region bounded 
by curves). The dark-filled region indicates the light cone. The shaded rectangular region 
is the AANR frequency range of this photonic crystal. (b) Distribution of the magnetic field 
perpendicular to the plane for the surface photonic modes at Ic = 0.45( 27r/a,). Left and right 
panels represent odd and even mirror symmetries. Darker shades indicate larger magnitudes 
of the magnetic field. Reprinted figure with permission from Ref. [ 171. Copyright @ 2003 by 
the American Physical Society. 

7.3.4.2 Tmnsmission Spectrum The transmission calculations can be performed 
in the frequency domain with the scattering-matrix method. To compare the results 
with those obtained from eigenmode computation by planewave expansion, we fix 
the incident wavevector and calculate the frequency spectrum of the transmission. 
The calculated transmission data are presented on a logarithmic scale in Fig. 7.17a. 
The pronounced peaks in the spectrum represent resonant excitation of the bound 
photon states by the incident evanescent radiation and approach infinity in the limit of 
continuous numerical sampling points in frequency. From the comparison between 
the transmission peaks and the interface band structure in Fig. 7.17b, we obtain 
excellent agreement between the two numerical methods. Near each resonance, the 
transmission of evanescent waves reaches large amplification values well exceeding 
unity, providing the basis of superlensing. 
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Fig. 7.17 Frequency spectrum of transmission and links to bound slab photon modes. (a) 
Zeroth-order transmission ( ) tool2)  versus frequency through the photonic-crystal slab in Fig. 
7.16 for various transverse wavevectors, plotted on a logarithmic scale. (b) The transmission 
curves in (a) plotted on the bound photon band structure of the slab. The arrows indicate 
the transverse wavevector for each transmission curve. The shaded region is the light cone. 
Reprinted figure with permission from Ref. [17]. Copyright @ 2003 by the American Physical 
Society. 

7.3.5 Image Patterns of a Superlens 

We calculate the transmission as a function of incident wavevector k at a fixed 
frequency w close to that of the interface modes, using the method of Section 7.3.4.2. 
The complex transmission data for these planewaves are then summed up at each 
z according to equation (7.18) to obtain the image generated by a point-dipole 
source placed at (2, z)  = (0, -h - u). In all calculations, u = O.la, is used, 
and the k sampling points range from k = -5(2n/a,) to k = 5(27r/a,) in steps 
of 0.001(27r/a,), to model the continuous range of --oo < k < 00. This finite 
resolution corresponds to a finite transverse overall dimension of the structure of 
1000 periods and is sufficient for illustrating the prominent features in the image 
pattern.* Our results are summarized in Figs. 7.18,7.19, and 7.20. The frequency is 
shifted by only 0.001(27rc/a) from one figure to the next. In all cases the transmission 
for propagating waves is nearly the same. However, large differences in the field 
patterns for z > 0 can be observed, suggesting that a fine control over the transmission 
of evanescent waves is possible. 

'The transmission near exact resonances in an infinite structure in principle requires a much higher 
computational resolution. 
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Fig. 7.18 Transmission and intensity distribution in the image space for w = 
0.193 (27rc/a), for a photonic crystal slab in Fig. 7.16 illuminated by a point source. (a) 
(too(’ for k < 0.5(27r/aS)) plotted on a logarithmic scale versus the incident transverse 
wavevector. The gray curve indicate the transmission required for perfect image reconstruc- 
tion at the AANR focusing plane. The effective high cutoff of the transverse wavevector kM 
is marked out in broken lines. (b) The intensity distribution in real space. The right interface 
of the slab is at z = 0. (c) The cross section of (b) in the plane of z = 0 . 6 ~ ~  = 0.16X. 
(d) The cross section of (b) with 2 = 0. Reprinted figure with permission from Ref. [17]. 
Copyright @ 2003 by the American Physical Society. 
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For w = 0.193(2nc/a) (Fig. 7.18), the operating frequency is outside the fre- 
quency range of the interface bands. The calculated transmission shown in Fig. 7.18a 
exhibit smooth behavior throughout the whole range of wavevectors. Note that the 
magnitude of transmission oscillates around order unity for the evanescent waves for 
0.27(2x/as) < k < 0.73(2x/as), but for k > 0.73(2n/as) it drops precipitously to 
a low level below 1 x This confirms our expectation that the bound photon band 
below the light cone (0.27 < kas/2.rr < 0.73) should lead to amplified transmis- 
sion of evanescent waves and that the amplification effect should disappear once the 
evanescent wave is coupled back into the continuum. In the calculated image shown 
in Fig. 7.18b, a clear intensity maximum at (z, z )  = (0,0.6as = 0.16X) in free space 
can be observed. Cross sections of this maximum in both the z- and the z-axes are 
shown in Figs. 7 . 1 8 ~  and 7.18d, respectively. The transverse z-size of this peak 
is 0.66X < A, demonstrating that the contribution of evanescent waves to imaging 
is comparable to that of propagating waves. This situation, however, still produces 
an intensity maximum and is therefore in the moderate subwavelength regime. The 
imaging pattern is similar to what we obtained previously using the FDTD method 
before, in which an intensity maximum was identified to be a real image. Mean- 
while, in the present case, the geometric image plane of AANR focusing calculated 
from constant-frequency contours of this photonic crystal is at z = 1.4a, = 0.38X. 
In that plane, the intensity distribution in z is similar to that in Fig. 7.18c, with 
a transverse size A = 0.71X. This value corresponds to an effective high cutoff 
kM M 1.4w/c = 0.38(2n/aS), which is close to the approximate threshold k~ value 
in the simplified model obtained in Section 7.3.3. We also plot the amplification 
required to restore the source perjiectly at the image plane in red lines in Fig. 7.18a, 
which can be compared to the actual transmission data and the effective cutoff k ~ .  
Although the focusing is not perfect, the range w / c  < k < kM roughly indicates the 
interval in which the actual transmission follows the behavior in the ideal case. 

If w is decreased slightly to w = 0.192(2m/a) (Fig. 7.19), the frequency falls 
within the narrow range of the interface-band frequencies. The transmission increases 
dramatically, and pairs of peaks in the transmission spectrum occur, representing 
excitation of interface-state combinations of even and odd mirror symmetry. These 
interface modes have large amplitudes, as evidenced by the compressed shade table 
in Fig. 7.19b and the exponential decay of intensity along z-axis in Fig. 7.19d, and 
they now completely dominate the image. The focusing effect of propagating waves 
becomes insignificant compared to this strong background. If the field distribution in a 
plane of constant z is measured, an example shown in Fig. 7.19c, many closely spaced, 
near-periodic strong peaks appear, in striking contrast to the familiar appearance of 
a focused optical image. Here, this pattern of intensity distribution persists for 
increasing z in the near field and even appears on the focusing plane of AANR 
z = 1 h s  = 0.31X. Due to the exponential decay of intensity along the z-axis and 
the deloculized field distribution in the transverse direction, neither the z-coordinate 
nor the transverse location of the source can be easily retrieved from this image 
pattern. which is hence undesirable for imaging purposes. We infer the effective 
cutoff wavevector by the width of the central peak A = 1 . 8 ~ ~  = 0.49X on the plane 
of AANR image and obtain kM = 0.56(2n/as), as marked out on Fig. 7.19a where 
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Fig. 7.19 (a)-(d) Numerical results similar to those shown in Fig. 7.18 for w = 
0.192 (27rc/a). Part c is a plot in the plane of z = 0 . 6 ~ ~  = 0.16X. Reprinted figure 
with permission from Ref. [ 171. Copyright @ 2003 by the American Physical Society. 

the transmission curve for pefect image reconstruction is also plotted. It is evident 
that the actual transmission deviates significantly from the ideal case. 

An image pattern with intermediate behavior between these two scenarios can 
occur, for example, if we take w to be w = 0.191(2m/a) (Fig. 7.20). This frequency 
is outside the interface-band frequency range, and consequently the transmission 
becomes smooth again. Amplified evanescent waves are still present in the image 
space, which create an exponentially decaying intensity profile along the z-axis 
as shown in Fig. 7.2Od. In contrast to the case in Fig. 7.19, a distinct intensity 
peak can now appear within the plane of z = a, = 0.27X shown in Fig. 7.20c, 
with a size significantly smaller than wavelength. Here we have actually achieved 
A = 0.45X at approximately the same location as calculated from AANR. This 
image size is consistent with the general prediction of equation (7.20), in which 
a,X/(X - a,) = 0.37X and 2a, = 0.54X for the present photonic crystal. We infer 
the high cutoff wavelength kM in this case to be kM = 2 . 2 ~  / c  = 0.6(2?r/a,), 
corresponding to the extreme subwavelength limit. In this limit, there is no intensity 
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Fig. 7.20 (a)-(d) Numerical results similar to those shown in Fig. 7.18 
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for w = 
0.191 (27rc/a). Part (c) is a plot in the plane of z = a, = 0.27X. Reprinted figure 
with permission from Ref. [17]. Copyright @ 2003 by the American Physical Society. 

maximum in z > 0, and the calculated transmission for Ic < kM also displays 
similar trend in Ic-dependence as the ideal transmission for perfect image recovery. 
We have therefore found a superlensing situation quite similar to that considered in 
Pendry’s perfect lens, in the present case with an upper cutoff and without requiring 
negative-index materials. 

These computational results establish that superlensing is possible with carefully 
designed photonic crystals and demonstrate large modifications to the image field 
distribution due to the presence of evanescent light. In the example structure, each of 
these image patterns can appear in a narrow frequency range inside that of AANR, 
as summarized in the detailed interface band structure in Fig. 7.21. 

7.3.6 Discussion 

For completeness, we show in Fig. 7.22 the calculated near-field intensity distribu- 
tions in z > 0 for a point source of various frequencies throughout the first photonic 
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Fig. 7.21 Detailed surface band structure and its influence on subwavelength imaging. The 
filled circles are the divergence peaks in the calculated transmission tlirough the structure in 
Fig. 7.17. The dark-shaded area in the upper left comer is the light cone. The frequency range 
for imaging with none or moderate subwavelength contribution is from 0.1928 to 0.1935. 
The frequency range for extreme subwavelength superlensing is from 0.1905 to 0.1911. The 
region between them is the region of the flat surface bands for enhanced surface resonance. 
The particular sequence of these three frequency ranges here are due to the shape of the surface 
bands and can be different in other systems. Reprinted figure with permission from Ref. [17]. 
Copyright @ 2003 by the American Physical Society. 

band, with all other parameters the same as those in Section 7.3.5. It is clear, that 
for frequencies lower than the AANR range (w = 0.050,0.100, and 0.145(27rc/a)), 
since most of the propagating waves do not experience negative refraction and are 
not focused, a broad background peak is always present in the transverse direction. 
An interesting feature to observe is that w = 0.145(27rc/a) is close to the band edge 
where there are many flat bands of guided modes that can be resonantly excited. Con- 
sequently, significant subwavelength features appear on the broad background behind 
the slab. However, the overall resolution is now determined by the background, which 
is spatially broad and does not correspond to a subwavelength imaging effect. For 
frequencies above the AANR range (w = 0.194, and 0.210(27rc/a), since some of 
incident propagating radiation from air will experience total external reflection, the 
transverse resolution is always limited to be larger than or equal to the operating 
wavelength. All these can be compared to w = 0.193(27rc/a), where the extraordi- 
nary superlensing enhancement in both the imaging resolution and intensity is shown. 
From this analysis, we conclude that the onlyfrequencies at which one can observe 
superlensing are inside the AANR range and close to a $at surface band. 

The above discussion has focused on ideal situations with no material absorption 
of light or structural imperfections. In practice, material losses are always present, 
which means that no transmission considered here will be truly infinite. In general, 
appreciable material losses will impose severe limitations to the amplification of 
evanescent waves, in a manner similar to that of the intrinsic energy leakage rate of 
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Fig. 7.22 Numerical results of the imaging for various frequencies throughout the first 
photonic band for the structure in Fig. 7.16. (a) Intensity distribution along the transverse 
direction, commonly measured at z = 0 . 5 ~ ~  for several frequencies shown as insets. The 
transverse intensity distribution at larger z values has a similar background but weaker near- 
field modulations. (b) Intensity distribution along the z-axis for the shown frequencies. The 
inset numbers are the frequencies corresponding to each curve, in units of (27rcla). Reprinted 
figure with permission from Ref. [17]. Copyright @ 2003 by the American Physical Society. 

a crystal mode above the light line. It is also of course expected that, in the limit 
of extremely small material loss, our findings about the image of a superlens will 
remain valid. As an example, we show the calculated focusing effect in slightly lossy 
photonic crystals in Fig. 7.23. The losses are modeled as a positive imaginary part 
on the permittivity E of the dielectric host, and results are calculated at the extreme 
subwavelength frequency w = 0.191(2m/a) for E starting from E = 12 + 0.01i 
up to 1 2  + 0.052. As the losses increase, the strength of the transmitted near-fields 
is attenuated, and the subwavelength features in the central image peak gradually 
disappear. It is clear that a resolution at or below A = 0.5X for a localized intensity 
peak in 2 is still achievable if E 5 12 + 0.012. The effects of surface imperfections 
on subwavelength imaging can also be qualitatively analyzed. We consider these 
defects to occur only on a length scale that is smaller than a lattice constant, and thus 
much smaller than the operating wavelength, with correspondingly little influence on 
propagating waves. Since the transmission of evanescent waves depends critically 
on the bound interface photon states, which in turn depend sensitively on the surface 
structure, imperfections are expected to be most influential on the crystal surface. 
Their effects may thus be minimized by improving the surface quality. Another kind 
of structural imperfection is a finite lateral size of the crystal. We have applied the 
FDTD method to such finite systems and have found that, for a 20-period-wide slab, 
a focusing resolution around A = 0.6X can be still obtained. These considerations 
suggest that the effects described in this work should be observable in realistic 
situations. 

Our discussion on the image of a 2-D superlens can be put to experimental 
verification in various ways. In the microwave regime, the TM modes in 2-D 
photonic crystals can be realized by a 2-D photonic-crystal slab sandwiched between 
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Fig. 7.23 Calculated transverse intensity distribution for imaging with lossy photonic crystals. 
Each curve correspond to the intensity calculated for a different host material permittivity as 
shown in the insets. The crystal and the point source are otherwise identical to those in Fig. 
7.20. The intensity is plotted in the plane z = a, at the frequency w = 0.191(2m/a). 
Reprinted figure with permission from Ref. [17]. Copyright @ 2003 by the American Physical 
Society. 

two metal plates. At optical wavelengths, 2-D crystals may be obtained by replacing 
the metallic components with multilayer films with a large gap, or simply by index 
guiding. A more interesting extension of these phenomena would be to a full 3-D 
system. For example, the resolution of focusing in 3-D with infinite aperture and 
without evanescent waves is still limited by the wavelength A, while the surface 
periodicity discussed in equation (7.20) should be replaced by the reciprocal of 
the minimum radius of the surface Brillouin zone. We show here in Fig. 7.24 the 
results of the computed bound photon modes of a slab of the 3-D photonic crystal 
studied in Section 7.2.5. As discussed there, this photonic crystal enables AANR 
in full 3-D and is most effective for waves polarized along (101). The interface 
band structure along I'K and r M  computed here, complicated as it may seem at 
first sight, bears a striking similarity to the TE and TM slab polariton bands of a 
dispersive negative-index materials when the polarization is taken into account. For 
the particular interface termination shown in Fig. 7.24, it is possible to obtain surface 
states within the AANR range of this photonic crystal. Since there is still a vast 
amount of freedom in tuning the fine details of the crystal surface structure without 
breaking the periodicity, it can be further expected that particular designs exist which 
lead to flat surface bands and can enable superlensing in full 3-D. This tunability and 
flexibility in our approach should make photonic crystals a powerful and beautiful 
candidate in manipulating and focusing light on subwavelength scales. 

7.4 CONCLUSIONS 

In this work we have explained in detail the principles of negative refraction and 
subwavelength imaging and have presented specific examples of these anomalous 



310 NEGATIVE REFRACTION AND SUBWAVELENGTH IMAGING IN PCS 

0.5 

0.4 

%”.’ 0.2 

0.1 

Fig. 7.24 Bound photon modes and projected band structure for a 3-D photonic crystal 
capable of AANR. The solid lines are bound photon modes, and the broken lines axe the 
outlines for projected photonic band structure on the surface Brillouin zone. The light shaded 
region is the light cone. The dark-shaded range is the AANR frequency range. A cross 
section of the crystal and the surface Brillouin zone are shown as insets. The thickness of 
the photonic-crystal slab is h = 3 . 4 7 ~ .  Reprinted figure with permission from Ref. [17]. 
Copyright @ 2003 by the American Physical Society. 

optical phenomena in photonic crystal systems. Our discussions are general and 
cover 2-D/3-D dielectdmetallic systems. For propagating waves, photonic crystals 
demonstrate an example of a class of metamaterial in which negative refraction 
occurs without an effective negative index. For evanescent waves, photonic crystals 
also permit existence of special bound electromagnetic states which can be used to 
amplify evanescent waves and focus light to subwavelength resolutions. We have 
discussed in detail the peculiar features that arise from the interplay of propagating 
and evanescent light in the images of Veselago-Pendry superlensing. We hope that 
this work serves as a useful guide for the readers to understand the fundamentals of 
photonic crystals and to discover novel applications of these new materials on their 
own. 
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8.1 INTRODUCTION 

The optical properties of nanostructured materials have been intensively studied 
during the last decade. Among particularly important problems in this field are 
the focusing and guiding light on nanometer scales beyond the diffraction limit 
of the conventional far-zone optics. In object imaging, the near-field part of the 
radiation contains all information about the scatterer. As the distance from the object 
increases, the evanescent portion of the scattered field exponentially decays, resulting 
in information loss on the “fine” (subwavelength) features of the scatterer. The usual 
way to solve this problem suggests either using shorter wavelengths or measuring 
in the near zone; both these methods have their limitations. A new way to solve 
this imaging problem has been proposed by Pendry, who further developed earlier 
studies on negative refraction [ 1,2]. According to Pendry, when the scattered light 
passes through a material with a negative refractive index (specifically, it should be 
equal to -l), the evanescent components of the scattered field grow exponentially, 
allowing the restoration of the scatterer image with subwavelength resolution. Despite 
the obvious importance of such a superlens, it is worth noting here that possible 
applications for materials with negative refraction can go far beyond this idea. This 
is because the refractive index enters most of optical “laws” so that the possibility 
of its sign reversion can result in their serious revision and new exciting applications 
resulting from this. 

Smith, Padilla, Vier, and Schultz [3] have demonstrated such negative-index ma- 
terials (also referred to as double-negative or left-handed materials, LHMs, because 
the electric, magnetic vectors and the wavevector form a left-handed system, in this 
case) in the microwave range. (For recent references see the special issue of Optics 
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Express [4]  and Refs. 5 and 6). In our earlier papers [4,7], we proposed a first 
LHM (based on a nanowire composites [8]) that can have negative refraction in the 
near-IR and visible spectral ranges. A similar nanowire system was later considered 
by Panina et al. 191. 

In this chapter we discuss the electrodynamics of nanowires materials and study 
the behavior of nanowire plasmon modes. We also describe how nanowire composites 
can be used for developing LHMs in the neur-ZR and visible parts of the spectrum. 

The rest of the chapter is organized as follows. In the next section we discuss 
the interaction of a single metal nanowire with an electromagnetic wave (we refer to 
such a wire as a “conducting stick”). Section 8.3 describes the effective properties of 
composites comprising conducting sticks. In Section 8.4 we present computer simu- 
lations for the local electromagnetic field in stick composites. Section 8.5 discusses 
the magnetic response of two parallel conducting sticks and effective properties of 
composites comprising pairs of such sticks. In Section 8.6 we show that the forward 
and backward scattering by planar nanowire system can be characterized by their 
effective dipole and magnetic moments. Section 8.7 summarizes our results. 

8.2 ELECTRODYNAMICS OF A SINGLE METAL NANOWIRE 

Composite materials containing conducting sticks dispersed in a dielectric matrix 
have new and unusual properties at high frequencies. When frequency w increases, the 
wavelength X = 2 m / w  of an external electromagnetic field can became comparable 
in size with the stick length 2a. In this case, one might think that the sticks act as 
an array of independent micro-antennas and an external wave should be scattered in 
all directions. Yet, we show that composite materials have well-defined dielectric 
and magnetic properties at high frequencies. Such “effective-medium” description 
is possible because a very thin conducting stick interacts with an external field like 
a dipole. Therefore, we can still use the effective dielectric constant E~ or effective 
conductivity ue = - iw~,/47r to describe the interaction of stick composites with 
an external electromagnetic wave. However, we note the formation of large stick 
clusters near the percolation threshold may result in scattering. 

Since conducting stick composites are supposed to have effective parameters for all 
concentrations p outside the percolation threshold, we can use the percolation theory 
to calculate the effective conductivity ue. However, the theory has to be generalized 
to take into account the nonquasi-static effects. The problem of effective parameters 
of composites beyond the quasi-static limit has been considered in Refs. [8] and 
[ 10-151. It was shown there that the mean-field approach can be extended to find the 
effective dielectric constant and magnetic permeability at high frequencies. Results 
of these considerations can be briefly summarize as follows. One first finds the 
polarizability for a particle in the composite illuminated by an electromagnetic wave 
(the particle is supposed to be embedded in the “effective medium” with dielectric 
constant E e ) .  Then, the effective dielectric permittivity Ee is determined by the self- 
consistent condition requiring that the averaged polarizability of all particles should 
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vanish. Thus, for the nonquasi-static case, the problem is reduced to calculation 
of the polarizability of an elongated conducting inclusion. That is, we consider 
the retardation effects resulting from the interaction of a conducting stick with the 
electromagnetic wave scattered by the stick. 

The diffraction of electromagnetic waves on a conducting stick is a classical prob- 
lem of the electrodynamics. A rather tedious theory for this process is presented in 
several textbooks [16,17]. We show below that the problem can be solved analyti- 
cally in the case of very elongated sticks when the aspect ratio a /b  is so large that 
In(+) >> 1. 

We consider a conducting stick of length 2a and radius b illuminated by an 
electromagnetic wave. We suppose that the electric field in the wave is directed 
along the stick and the stick is embedded in a medium with E = 1. The external 
electric field excites in the stick and electric current I ( z ) ,  where z is the coordinate 
along the stick, measured from its midpoint. The dependence I ( z )  is nontrivial when 
the wavelength X is of the order of or smaller than the stick length. There is also a 
nontrivial charge distribution q(z) along the stick in this case. The charge distribution 
q ( z )  determines the polarizability of the stick. To find I ( z )  and q(.z), we introduce 
the potential U ( z )  of the charges q(z)  distributed over the stick surface. From the 
equation for the electric charge conservation we obtain the following formula: 

which relates the charge per unite length q(z )  and the current I ( z ) .  Note that the 
electric charges q are induced by the external field Eo and they can be expressed as 
the divergence of the polarization vector, q = - 4 ~  div P. Then, the polarization 
P can be included in definition of the electric displacement D so that d ivD =O. 
However, in calculating the high frequency field in a conducting stick it is convenient 
to explicitly consider charges generated by the external field. 

To find an equation for the current I ( z )  we treat a conducting stick as a prolate 
conducting spheroid with semiaxes a and b. The direction of the major axis is 
supposed to coincide with direction of the electric field Eo exp( -iwt) in the incident 
wave. The electric potential of the charge q(z )  is given by the following solution to 
Maxwell’s equations (see, e.g., Ref. [ 171, p. 377): 

(8.2) 
where the integration in the first integral is performed over the surface of the stick, 
r and r‘ are two points on the surface of the stick with the coordinates z and z‘, 
respectively, p( z )  = b d w  is the radius of the cross section at the coordinate 
z, and k = w / c  is the wavevector of the external field. In transition to the second 
expression in equation (8.2), we neglect terms of the order of p(z) /a  < b/a << 1. We 
dividethelast integral inequation (8.2) intotwoparts, settingq(z’) exp(ik Iz - 2’1) = 
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q(z )  + [q(z‘) exp(ik Iz - z‘ l)  - q(z) ] ,  that is, 

The first integral in equation (8.3) is given by 

(8.4) 

The second integral in equation(8.3) has no singularity at z = z’, and therefore 
its value is - q(z), which is an odd function of the coordinate z. We assume for 
simplicity that q(z )  is proportional to z and in this approximation 

where the Ei(z) function is defined as 

Ei(z) = [exp (it) - 11 / t  dt I” 
By substituting equations (8.4) and (8.5) in equation (8.3), we obtain 

where the capacitance C is given by 

1 C =  
2 [ln(2a/b) - eia + Ei(a k)] 

The capacitance C takes the usual value C = 1/ [2 ln(2alb) - 21 , in the quasi-static 
limit ka --f 0. The retardation effects result in additional terms in equation(8.8) 
that have small magnitudes in comparison with the leading logarithmic term. This 
result is obtained within the logarithmic accuracy: its relative error is on the order of 
1/ ln(a/b), and the ratio a/b  is assumed so large that its logarithm is also large. 

By substituting equation (8.7) into equation (8. l), we obtain the following equa- 
tion: 

which relates the current I ( z )  and the surface potential U ( z ) .  The electric current 
I ( z )  and electric field E ( z )  on the stick surface are related by the usual Ohm’s Law 

E (2) = R I  ( z )  (8.10) 

where R is the impedance per unit length. Since the stick is excited by the external 
field EO exp( -iwt) which is parallel to its axis, the electric field E(z )  is equal to 

E ( z )  = Eo - - d U ( z )  + iEAz(z )  
dz C 

(8.11) 
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We consider now the vector potential A, (z) induced by the current I ( z )  flowing in 
the stick and obtain A, (z) by the same procedure as was used to estimate the potential 
U. Thus, with the same logarithmic accuracy we find 

dz’ 
a I@‘) exp (ik Iz - 2’1) 

c -a JW A, ( z )  = 1 / 
dz‘ (8.12) 

2 a I(z‘) exp(ik Iz - 2’1) - I ( z )  
Iz - zq 

2 - I ( z )  In (F) + 1 J 
C -a C 

where c is the speed of light. To estimate the second integral in equations (8.12), 
we approximate the current I ( z ) ,  which is an even function of z ,  as I ( z )  = 

I(0) [1 - ( ~ / a ) ~ ]  ; thus we obtain for z << a that 

(8.13) 
a I(z’) exp (ik (I - 2’1) - I ( z )  1 

21 - I ( z )  [-1+ 1 (ka)] 
Iz - zq C 

where the function Z(s) is given by 

Z(z) = [2 + 2eix (iz - 1) + z2] z-2 + 2 Ei(z) (8.14) 

By substituting equation (8.13) in equation (8.12), we obtain the following relation 
between the vector potential and current: 

L 

C 
A , ( t )  = - I ( z )  (8.15) 

where L is the inductance per unit length, 

(8.16) 

The last term in equation (8.16) is much smaller than the first one when 2 ln(2alb) >> 
1. Nevertheless, we keep this term since, as we show below, it plays an important 
role in the electromagnetic response. Equation (8.16) is invalid near the ends of the 
stick; however, in calculating the polarizability, this region is unimportant. 

By substituting equations (8.1 1) and (8.15) in equation(8.10), we obtain the 
following form of Ohm’s Law: 

(8.17) 

To obtain a closed equation for the current I ( z ) ,  we differentiate equation (8.9) with 
respect to z and substitute the result into equation(8.17) for d U ( z ) / d z .  Thus we 
obtain 

(8.18) 
dz2 
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with the boundary conditions requiring the vanishing current at the ends of the stick, 

I(-a) = 0, I (a )  = 0 (8.19) 

A solution for equation (8.18) gives the current distribution I ( z )  in a conducting stick 
irradiated by an electromagnetic wave. Then we can calculate the charge distribution 
and the polarizability of the stick. 

As mentioned, we consider the conducting stick as a prolate spheroid with semi- 
axes such that a >> b. To determine the impedance R in equation(8.18) we recall 
that the cross-section area of a spheroid at coordinate z is equal to nb2[1 - ( ~ / a ) ~ ] ;  
thus we have the following expression for the impedance: 

1 
nb2[1 - ( z / ~ ) ~ ] o &  

R =  (8.20) 

where u& is the renormalized stick conductivity taking into account the skin effect. 
We assume that the conductivity urn changes due to the skin effect in the same way 
as the conductivity of a long wire of radius b (see, e.g., Ref. [ 181, Section 61), 

where JO and J1 are the Bessel functions of the zeroth and first order, respectively, 
and the parameter A is equal to the ratio of the stick radius b and the skin depth, 

A = b d s / c  (8.22) 

When the skin effect is weak (i.e., A << 1) the function f (A) = 1 and the renor- 
malized conductivity uh is equal to the stick conductivity r ~ ;  = urn. In the opposite 
case of a strong skin effect (A >> l), the current I flows within a thin skin layer at 
the surface of the stick. Then equation(8.22) gives ah = (1 - i)orn/A << urn. 

For further consideration, it is convenient to rewrite equations (8.18) and (8.19) 
in terms of the dimensionless coordinate z1 = z / a  and dimensionless current I1 = 
I/ ( ok,.rrb2Eo) . We introduce the dimensionless relaxation parameter 

(1 - eia + Ei(a I c ) )  

where EL = 247ru&/w is the renormalized dielectric constant for metal, and 

g = (b/a)2 [ln(2a/b) - 11 (8.24) 

is the depolarization factor for a very prolate ellipsoid (see, e.g., Ref. [ 181, Section 
4). We also introduce the dimensionless frequency 

(8.25) 1 l + e i a k ( - l  + i a I c + a 2 k 2 )  

2 ( a l ~ ) ~  log(2 a/b) 
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In transition to the second equality in equation (8.25) we assume that log(2 a/b)  >> 1. 
By substituting parameters y and R in equations(8.18) and (8.19), we obtain the 
following equation for the dimensionless current: 

(8.26) 

11 (-1) = 11 (1) = 0 

To understand the physical meaning of equation (8.26). let us consider first the quasi- 
static case when the skin effect is negligible and ka << 1. Then, it follows from 
equations(8.23) and (8.26) that R2y N A << 1. Therefore, we can neglect the 
second term in the square brackets in equation (8.26) and find the current, 

(8.27) 

and electric field Em inside a conducting stick as [see equations (8.10) and (8.20)] 

(8.28) 
1 

1 + EmS 
Em = - EO 

As anticipated, the electric field Em is uniform and coincides with the quasi-static 
internal field in a prolate conducting spheroid. Note that we assume that em >> 1. 

In the opposite case of a strong skin effect, the product R2y N A is much larger 
than unity: R2y >> 1. Therefore, we can neglect the first term in the square brackets 
in equation (8.26) and find that 

(8.29) 

As follows from this equation the current has maxima when cos(R) M 0, which 
corresponds to the well-known antenna resonance [ 16,171 at wavelengths X = A, = 
2a/ (2n + 1) , with n = 0,1,2, .  . . . 

In the general case of arbitrary 52 and y, the solution for equation (8.26) cannot 
be expressed as a finite set of known special functions [ 191. Still, this equation can 
be readily solved numerically. The numerical integration of equation (8.26) shows 
that for large enough wavelengths (A > XI), the solution can be approximated by the 
simple equation 

(8.30) 

which is an interpolation for equations (8.27) and (8.29). 
When the current I is known, we can calculate the specific polarizability Pm of a 

conducting stick am = (VEo)-l (cm - 1) 1 Em dV, where V = 4 m b 2 / 3  is the 

volume of the stick. Assuming em >> 1, we obtain 

c* 

(8.31) ';m ff, = 
1 + y cos(R) 
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Above, we assumed that the stick is aligned with the electric field of the incident 
electromagnetic wave. Stick composites can be formed by randomly oriented rods. 
In this case, we have to modify equation(8.31) for the stick polarizability. We 
consider a conducting stick directed along the unit vector n and suppose that the stick 
is irradiated by an electromagnetic wave with the electric field 

E=Eo exp[i(k.r)] (8.32) 

where k is the wavevector inside the composite. The current I in a strongly elongated 
stick is excited by the component of the electric field, which is parallel to the stick 

where z is the coordinate along the stick. 

Eo and has the following magnitude: 
The field E,, averaged over the stick orientations is aligned with the external field 

(8.34) 

The current in the stick is a linear function of the filed Ell. Since the average field E,, 
is aligned with Eo. the current averaged over the stick orientations is also parallel to 
the external field Eo. 

To obtain the current ( ( I ( z ) ) )  averaged over the stick orientations and the average 
stick polarizability ((P,)), we substitute the field E,* (z) given by equation (8.34) 
into equation(8.18) for the field Eo. Hereafter, the sign ((. . .)) stands for the 
average over stick orientations. Then, the current ((I)), the polarizability ((P,)), 
and the effective dielectric permittivity depend on frequency w and, in addition, on 
the wavevector k. This means that a conducting stick composite is a medium with 
spatial dispersion. This result is easy to understand, if we recall that a characteristic 
scale of inhomogeneity is the stick length 2a, which can be of the order of or 
larger than the wavelength. Therefore, it is not surprising that the interaction of an 
electromagnetic wave with such composite has a nonlocal character and, therefore, 
the spatial dispersion is important. One can expect that additional waves can be be 
excited in the composite in the presence of strong spatial dispersion. 

Below we consider wavelengths such that X > XZ; therefore, we can expand 
E,* (z) in a series as 

(8.35) 

and restrict ourselves to the first term, when considering the dielectric properties. 
Since the average field is given by E,* (z) = E0/3, then the average current is equal 
to ((I)) = I / 3 ,  where the current I is defined by equation(8.30). As a result, the 
stick polarizability averaged over the orientations is equal to ((P,)) = P,/3, where 
P, is given by equation (8.31). 
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Fig. 8.1 Conducting stick composite. 

8.3 CONDUCTING STICK COMPOSITES: EFFECTIVE MEDIUM 
APPROACH 

Here we consider composites that contain very elongated conducting inclusions, 
“sticks,” embedded in a dielectric host with dielectric constant &d as shown in Fig. 8.1. 
The sticks are randomly distributed in the host. The problem here is to calculate the 
macroscopic dielectric response of such a composite. Metal-dielectric composites, 
where conducting inclusions are very elongated, can have various important applica- 
tions (see, e.g., Refs. [8,13,15,20-221 and references therein). Here we show that 
conducting stick composites can be employed as metamaterials with tunable effective 
dielectric and magnetics properties. 

To calculate the effective properties of a composite, we use a self-consistent 
approach known as the effective medium theory (EMT) [23-251. The EMT has the 
virtue of mathematical and conceptual simplicity, and it is a method that provides a 
quick insight into the effective properties of metal-dielectric composites. Usually, 
the EMT is based on the assumption that metal and dielectric grains are embedded 
in the same homogeneous effective medium whose properties should be determined 
self-consistently. This assumption should be modified to take into account intrinsic 
structures of conducting stick composites. 

Let us consider a small domain of the composite with the size 1 - b << a. 
The probability that the domain contains a conducting stick is estimated as p (1) N 
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Z3N(p) N b3N(p),  where N(p)  is the stick concentration. The probability p ( 1 )  
is small even for the concentrations p corresponding to the percolation threshold 
p ,  N b/a [8], where it is estimated as p (I) N b3N(pc) N << 1. Therefore, 
the dielectric constant of such a domain is equal to E d ,  with the probability close to 
unity. On the other hand, we can prescribe the bulk effective dielectric constant Ee 

to the domain with the size 1 much larger than the stick length 2a. Thus we obtain 
that the local dielectric constant E( I) depends on the scale under consideration: for 
1 < a, the dielectric constant e (1) is equal to E (0) = &d and, for I > a, e ( 2 )  = ee.  
We use a simple assumption that a conducting stick is surrounded by a medium with 
the dielectric constant given by 

E (I) = Ed + (ee - & d ) l / a ,  1 < a 

&(I) = e e ,  1 > a  (8.36) 

We can summarize the main assumptions for our effective-medium theory suggested 
first in Ref. [8] as follows: 

1. Each conducting stick is embedded in the effective medium with the dielectric 
constant € ( I )  that depends on the scale I as described by equation (8.36). The 
value of ee is to be determined self-consistently. 

2. The dielectric regions are assumed to be spherical and they are embedded in 
the effective medium with the dielectric constant Ee.  

3. The effective permittivity ee is determined by the condition that the polariz- 
ability averaged over all inclusions should vanish [lo-121. 

Since sticks are randomly oriented, the dielectric regions of the composite are 
supposed to have spherical shapes, as assumed above. The specific polarizability of a 
dielectric region is given then by the known quasi-static equation (see, e.g., Ref. [23]) 

(8.37) 

The polarizability of a conducting stick embedded in the effective medium (8.36) 
is obtained from equation(8.31), by replacing in the numerator efn with efn/ee. 
The scale dependence of the local dielectric constant in equation (8.36) results in a 
modification of the the parameter y [see equation (8.23)] to 

where ij = 
that the average polarizability should vanish gives the following equation: 

[ln(l + Pa&&,) - 11 and x = &ka [8]. Then the condition 
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where p is the volume concentration of the conducting sticks and the sign ((. )) 
denotes the average over the orientations. 

To understand the composite properties at high frequencies, we consider a solu- 
tion of equation (8.38) for the stick concentration p below the percolation threshold 

<< p << b/a. Assuming that &d << ltel << a/b,  we obtain the explicit 
equation for the effective dielectric permittivity 

where functions Ei(x) and R (x) are defined in equations (8.6) and(8.25), respec- 
tively. 

We consider now the effective dielectric permittivity te for the case of a perfect 
metal (la,[ --f 00). Then the electromagnetic field does not penetrate in a metal and, 
as follows from equation (8.21), and the renormalized conductivity EL also tends to 
infinity. We neglect the second term in the denominator of equation (8.39) and obtain 
that the effective permittivity e, has maxima when Re R = n / 2  +nn, n = 0,1,2. . . , 
which approximately corresponds to the wavelengths A, = ( 4 4 6 )  / (1 + 271). 

Now we consider the behavior of the effective dielectric constant near the lowest 
resonance frequency wo = KC/ ( 2 ~ 6 ) .  By expanding the denominator of equa- 
tion(8.39) in a power series of w - wo and taking into account that EL -+ 00 and 
ln(a/b)  >> 1, we obtain 

(8.40) 

where wC; = wo [l + 2 (n  - 2 )  / (n2 log(2a/b))]  = wo and the loss factor y = 
(n2 - 4) / [n2 1og(2a/b)] << 1. 

It is interesting to point out that the effective dielectric constant is independent of 
the metal conductivity E,, as it should be for the limiting case when the electromag- 
netic field does not penetrate to the metal. At the resonance frequency w = wz the 
real part of te changes its sign and it becomes negative when w > w g .  The imaginary 
part of te has a maximum at the resonance and its magnitude 

4n a2 
9 (n2 - 4 ) P F  

&: ((do) N &d (8.41) 

does not depend on the conductivity of the sticks. We obtain that the imaginary 
part of the effective dielectric constant does not vanish for composites with perfectly 
conducting sticks. The presence of the effective losses, in this case, is due to the 
excitation of the internal modes in the composite. When E, and the dielectric host 
have no losses, the amplitudes of these modes continuously increase with time. In 
real composites, there are always some losses in the conducting sticks as well as 
in the dielectric host. Therefore, the internal field should stabilize at some large 
values. Thus, one can anticipate the existence of giant local fields in conducting stick 
composites. 
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Fig. 8.2 Real (a) and imaginary (b) parts of the permittivity for a composite filled with 
aluminum-coated fibers 20 mm long (thickness N 1 pm). The fiber volume concentration is 
0.01% and 0.03%. Points indicate experimental data and line describe theoretical results. 

Microwave metamaterials with negative dielectric permittivity were first obtained 
earlier [13,20]. In Fig. 8.2 we present experimental and theoretical results obtained 
in Ref. [ 131 for the microwave dielectric function of composites containing very thin 
aluminum microwires. In such metamaterials the real part of E~ becomes negative 
for the frequency above the resonance as seen in Fig. 8.2. 

8.4 CONDUCTING STICK COMPOSITES: GIANT ENHANCEMENT OF 
LOCAL FIELDS 

We consider now the field distribution in thin (N 10 nrn) but relatively long (- 1 pm) 
metal sticks. A problem of field distribution around such metal particles can hardly 
be solved analytically. We describe a numerical model based on the discrete dipole 
approximation (DDA) following our papers [4,7]. This approach was first introduced 
by Purcell and Pennypacker [26]. 
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Fig. 8.3 Long stick modeled by chains of spheres. After Ref. [4]. Copyright @ 2003 Optical 
Society of America, Inc. 

In the DDA approximation, a conducting stick is represented by a large amount 
of small spherical particles of some radius R as shown in Fig. 8.3. Each particle 
is placed in a node of a cubic lattice with period a. The position of individual 
particles is denoted by ri. It is supposed that the particle radius R is much smaller 
than the wavelength X so that interactions of particles are well described by their 
dipole moments di. Each particle is subjected to an incident field Eo and to the 
field scattered by all other particles. Therefore, the dipole moments of particles are 
coupled to the incident field and to each other and can be found solving the following 
coupled-dipole equations (CDEs): 

(8.42) 

where a is the polarizability of a particle, Eo(ri) is the incident field at point ri, and 
G(ri - rj)dj gives the field produced by dipole dj at the point ri and G(ri - rj) is 
the free-space dyadic Green's function: 

with Gd = Gapdp. The Greek indices represent Cartesian components and the 
summation over the repeated indices is implied. The polarizability a of an individual 
dipole is given by Lorentz-Lorenz formula with the radiative correction introduced 
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Fig. 8.4 EM field distribution for a long needle. The wavelength of incident light is 540 nm. 
The angle between the wavevector of incident light and the needle is (a) 0' and (b) 30'. After 
Ref. [4]. Copyright @ 2003 Optical Society of America, Inc. 

by Draine [27]: 

(8.44) 
& -1 QLL 

E m  + 1' 
CYLL = R 3 m  a =  

1 - i (2/3) (kR)3 CELL 

Results of calculations for (8.42) depend on the intersection ratio r/R-that is, the 
ratio of the distance between neighboring particles and its radius (see Fig. 8.3). We 
choose the ratio as r / R  M 1.66 to reproduce the quasi-static polarizability of an 
elongated metal ellipsoid. 

In our numerical simulations [4,7], a single nanostick was represented by four 
parallel chains of spherical particles to take into account the skin effect (see Fig. 8.3). 
Specifically, we consider the field distribution in the vicinity of a conducting stick 
with roughly 2b = 30 nm thickness and 2a M 15 pm long, illuminated by a plane 
wave with the wavelength of 540 nm. Our results, shown in Fig. 8.4, clearly identify 
the interference pattern between irradiation and the plasmon polariton wave excited 
on the metal surface. Similar interference patterns were observed in experiments 
[28,29]. Note that the electromagnetic field is concentrated around the wire surface, 
which suggests the possibility to use nanowires as nano waveguides. 

Simulations for shorter sticks (2a = 480 nm) presented in Fig. 8.5 also show the 
existence of sharp plasmon resonances [4,7] when the wavelength of the light is a 
multiple of surface plasmon (half) wavelengths. The enhancement of the local field 
intensity in the resonance can reach the magnitude of lo3. The spatial area where the 
field concentrates is highly localized around the nanowire, and it can be as small as 
100 nm. This plasmon resonance is narrowband, with the spectral width in a single 
nanowire about 50 nm, which corresponds to the discussed above equations (8.39) 
and (8.40). 

In a composite with metal sticks randomly distributed in a dielectric substrate, the 
metal-dielectric transition occurs at a significantly smaller metal concentration than 
in the case of percolation films formed by spherical particles. In the 2-D case of a 
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Fig. 8.5 The intensity distribution of the electric field at surface plasmon polariton resonance 
in a silver nanowire excited by a plane electromagnetic wave. The angle between the nanowire 
and the wavevector of the incident light is 30 degrees. The wavevector and E vector of the 
incident irradiation are in the plane of the figure; the needle length is 480 nm. After Ref. [4]. 
Copyright @ 2003 Optical Society of America, Inc. 
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Fig. 8.6 Field distribution in nanowire percolation Ag composite for the incident wavelength 
of 550 nm (left) and 750 nm (right). In both figures the case of normal incidence with (El 1.) 
is considered. After Ref. [4]. Copyright @ 2003 Optical Society of America, Inc. 

wire composite, the percolation threshold is close to the inverse of the stick aspect 
ratio [8], and hence it can be arbitrary small for sufficiently long sticks. 

We simulate composites by a random distribution of identical metal nanowires over 
a dielectric surface. In these simulations, the length of individual nanowires is given 
by 2a = 480 nm, while their diameter is 30 nm. Figure 8.6 shows the intensity [El2 of 
the local electric field at wavelengths X = 540 and 750 nm. Our simulations exhibit 
the existence of localized plasmon modes in such composites. Similar to localization 
of quasi-static plasmon modes [ 301, the localization of plasmon-polaritons bounded 
in the metal nanowires leads to large enhancement of local optical fields. Our 
simulations suggest that the local intensity enhancement factor reaches lo3. 

Our simulations also show that plasmon modes cover a broad spectral range. The 
incident field at a given wavelength excites small resonant parts of the percolation 
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Fig. 8.7 Current in the two-stick circuit excited by external magnetic field H. The displace- 
ment currents, “closing” the circuit, are shown by dashed lines. 

system, resulting in a large enhancement of the local fields in these elements. In 
our case, such resonating elements can be single nanowires or groups of nanowires. 
Different clusters of wires resonate at different frequencies and all together cover a 
broad spectral range where the stick composite has plasmon modes. 

8.5 MAGNETIC RESPONSE OF CONDUCTING STICK COMPOSITES 

We consider now a metal-dielectric composite consisting of pairs of parallel metal 
sticks embedded in a dielectric host. We assume that the volume concentration p 
of the sticks is less than the percolation threshold p < p ,  N b/u << 1. We also 
suppose that neither the sticks nor the dielectric have magnetic properties. One might 
think that the composite has no magnetic properties under such conditions. Indeed, 
the magnetic response of a single conducting stick is small even at high frequencies 
(Ref, [18], Section 59). Since we have concentration p << 1, one could anticipate 
that the response of the entire composite is also small. 

In reality, as we show below, the composite may have a giant magnetic response 
at some frequencies. The reason for such a behavior is the resonant response of the 
stick pairs to a high-frequency magnetic field. The external magnetic field excites 
electric currents in these stick pairs. The magnetic moments for the currents flowing 
in the stick pairs result in the magnetic response of the composite. Consider a pair of 
the sticks and suppose that an external magnetic field H = Ho exp( -iwt) is applied 
perpendicular to their plane. This field excites a circular current I in the system of 
two parallel sticks. The circular current I flows in one stick in one direction and in the 
opposite direction in another stick as shown in Fig. 8.7. The displacement currents 
flowing between the two sticks close the circuit. The considered two-stick circuit 
acts as the well-known two-wire transmission line excited by an external magnetic 
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field. The current I in the two-wire line can be calculated from the Telegrapher's 
equation (see, e.g., Refs. [ 171 and [31] ). The electrodynamics processes in the line 
of two wires, separated by a distance d are determined by the impedance per unit 
length, 

W 
2-L2 z=-- 2 

uk.rrb2 c2 
(8.45) 

where u& and b are the renormalized stick conductivity [see equation (8.21)] and 
radius, respectively. The parameter L2 is the self-inductance per unit length for a 
system of two parallel straight wires having a cross section of radius b. We define 
the inductance L2, following the procedure used to define the inductance of a single 
stick [see derivation of equation (8.16)]. Thus we obtain 

(8.46) 

where d is the distance between the axes of the wires. Another important parameter is 
the mutual capacity per unit length C2 of two wires. The approach that has been used 
to define a capacitance of a single stick [see equation(8.8)l results in the following 
equation for C2 

1 
6 

L2 = 4ln(d/b) - ( d / a ) 2  + - ( d k ) 2  [3 + 4iak + 6 log(2 a / d ) ]  

(8.47) 
4 log(d /b)  - 3 (d/a)2 + (d k ) 2  [2 log(2ald) - 1) / 2  

where &d is the permittivity of the dielectric host. The capacitance C2 determines 
the value of the displacement currents flowing between the two wires. Following 
the procedure described in Section 8.2, we introduce the current I as the current in 
a single stick. This current depends on the coordinate z along the stick. We also 
introduce the potential difference U ( z )  between the two sticks. Using Faraday's Law 

(8.48) 

Ed 
c2 = 

f E d 1  = iW C J I H d s  
(a,b,c,d) S 

where S = d x d z  is the area restricted by the contour (a ,  b, c, d )  as shown in Fig. 8.7, 
we find 

- .- d u  - - Z I  (2) + idkHo 
d z  

(8.49) 

The current I (z) depends on the coordinate z since it can go out from one stick and 
come into another stick. The second equation for I (2) and U (z) is obtained from the 
charge conservation law. Considering the currents in the sticks and the displacement 
current between them we find 

(8.50) 

The combination of equations (8.49) and equation (8.50) gives the second-order dif- 
ferential equation for the current, 

(8.51) 

-a < z < a ,  I ( - a )  = I ( a )  = 0 
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where the parameter g equals 

and EL = i4ncr&//w is the renormalized metal permittivity [see equation (8.21)]. 
Note that we still assume that d/a << 1 and d Ic << 1. For the perfect metal 
([ELI --t oo), the parameter g does not depend on the metal properties. We solve 
equation(8.51) for the current I(z) and calculate the magnetic moment m for the 
circuit in the two sticks, 

(8.53) 

where j ( r )  is the density of the current in the two conducting sticks and the density of 
the displacement currents. Integration in equation (8.53) goes over the two conducting 
sticks as well as over the space between them where the displacement currents are 
flowing. From equations (8.5 lF(8.53) we obtain the magnetic moment for the system 
of two sticks: 

rn = 2 H 0 a ~ C z ( k d ) ~  (8.54) 

Let us now estimate quantitatively the effective magnetic permeability pe of the 
conducting stick composite. We suppose that the stick pairs are oriented in one 
direction. Taking into account the definition of the effective magnetic permeability 
peHo = H + 4 r M ,  where M is the magnetic moment per unite volume, we obtain 
from equation (8.54) the following equation for the component of pe perpendicular 
to the pairs: 

tan(ga) - ga 

(d3 

m a tan(ga) - ga 
pe x 1 + 47rn- NN 1 + 4np-C2adk2 (8.55) 

HO b (d3 
where n is the density of the stick pairs, p = bdan is the volume concentration of the 
pairs, and parameters C2 and g are given by equations (8.47) and (8.52), respectively. 
The effective magnetic permeability pe of the conducting stick composite is shown 
in Fig. 8.8 for the concentration p = 0.2. The permeability pe reaches its maximum 
at the resonance and becomes negative for the wavelength below the resonance. 
The length of a pair 2a = 400 nm is much smaller than the resonance wavelength 
N 2 pm. Therefore, the spatial dispersion effects, discussed at the end of Section 8.2, 
can be neglected and the composite has a well-defined magnetic permeability. Thus, 
composite materials formed by pairs of metal nanowires can act as left-handed 
material with negative refraction in the optical range. 

8.6 PLANAR NANOWIRE COMPOSITES 

In the sections above, we considered the response of conducting stick composites 
to the electric and magnetic fields. In this section, we consider a planar compos- 
ite comprising regular array of pairs of parallel nanowires (see Fig. 8.9), which is 
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Fig. 8.8 Optical magnetic permeability p = pi + p2 (p i ,  continuous line; pz, dashed line) 
of the composite containing pairs of silver sticks; a = 200 nm, d = 50 nm, b = 10 nm. 

Fig. 8.9 A layer of pairs of parallel nanowires. After Ref. [4]. Copyright @ 2003 Optical 
Society of America, Inc. 

illuminated by a plane electromagnetic wave impinging perpendicular to the plane 
of the composite. First, we show that in the far zone the field scattered by pairs of 
nanowires can be approximated by the effective dipole and magnetic moments even 
when the size of the pair is comparable with the wavelength X of the incident light. 
Then we consider the optical properties of a layer of such nanowire pairs. 

Electric and magnetic fields at the distance R away from the nanowire pair with 
dimensions 2a x d x 2b (see Fig. 8.9) are derived from the vector potential A that 
for large distances, R >> A, bl , b2, d, takes the following standard form: 

A = (eikr/cR) / e--ik(n’r)j(r) dr 

where j(r) is the current density inside the nanowires and vector n is the unit vector 
in the observation direction. We introduce the vector d directed from one nanowire to 
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another, and assume that the coordinate system has its origin in the center of the system 
so that the centers of the wires have the coordinates d/2 and -d/2, respectively. The 
electromagnetic wave is incident in the plane of the wires perpendicular to them (see 
Fig. 8.9), that is, the wavevector k 1 1  d. Then, the vector potential A can be written 
as 

where j, and j 2  are the currents in the wires, and z is the coordinate along the wires 
(z I d). As known, the dipole component is dominated in scattering by a thin 
antenna even for an antenna size comparable to the wavelength (see, e.g., Ref. [34]). 
Therefore we can approximate the term e-ikn.z in equation (8.56) by unity. Note 
that for the forward and backward scattering, which are responsible for the effective 
properties of a medium, this term is exactly equal to one. 

We consider the system where the distance d between the wires is much smaller 
than the wavelength and expand equation (8.56) in a series over d. This results in 

The first term in the square brackets in equation(8.57) gives the effective dipole 
moment P for the system of two nanowires and its contribution to the scattering can 
be written as Ad = -ik ( e ikR/R)  P, where 

P =  p(r)dr (8.58) 

and p is the local polarizations. The integration in equation (8.58) is over the volume 
of both wires. The second term in equation(8.57) gives the magnetic dipole and 
quadrupole contributions to the vector potential: 

J 

where M is the magnetic moment of two wires, 

J 

dr (8.60) 

and the integration is over the volume of the wires as in equation (8.58). 
We show now results of our numerical simulations for the optical properties of gold 

nanowires (Fig. 8.10). According to our simulations, both the dielectric and magnetic 
moments excited in the nanowire system are opposite to the excited field when the 
wavelength of the incident field is below resonance. Thus, in this frequency range, a 
composite material based on parallel nanowire pairs have the dielectric permittivity 
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Fig. 8.10 Dielectric (a) and magnetic (b) moments in nanowire pairs as functions of wave- 
lengths. The distance between the nanowires in the pairs is varied: d = 0.15pm (l), 
d = 0.23 pm (2), d = 0.3 pm (3), and d = 0.45 p m  (4); for all plots, a = 0.35 pm and 
b = 0.05 pm. The moments are normalized to the unit volume. After Ref. [4]. Copyright 
@ 2003 Optical Society of America, Inc. 

and magnetic permeability both negative and thus the composite acts as a left-handed 
material. These results are in good qualitative agreement with equations (8.31) and 
(8.54) which were derived for the case of needles with a high aspect ratio. 

We consider now the transmittance and reflectance of a planar nanowire composite 
when an electromagnetic wave impinges normal to its plane. We take into account 
the dipole P and magnetic M moments given by equations (8.58) and (8.60), respec- 
tively, since they are responsible for the main contribution to forward and backward 
scattering. The second term in equation (8.59) describes a quadrupole contribution, 
which vanishes for the forward direction. (see discussion in Ref. [4]). 

Maxwell’s equations for the composite can be written in the following form 

47r 
curlE = ikH, curlH = -j-ikE (8.61) 

where j is the current in the nanowires. We split the current j in two parts j = jp+jM. 
Here j, is the circular current in the nanowire pair. This current can be presented 
as j, = ccurl m with the vector m vanishing outside the composite. Then equa- 
tions (8.61) can be rewritten as 

c 

4n 
curlE = ik (H’ + 4nm), curlH’ = -jp-ikE (8.62) 

c 

where H’ = H - 47rm. We suppose that z = 0 is the principal plane of the 
composite and the electromagnetic wave is incident along the z-axis. We average 
equations (8.62) over the (2, y} plane and integrate them over the space between the 
two reference planes placed in front ( z  = -a) and behind ( z  = a) the composite. 
The distance a is chosen so that d << a << l / k .  After the integration, equations (8.62) 
take the following form 
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where El = E ( -a) ,  E2 = E (a) ,  H1 = H (-a), H2 = H (a) ;  P1 = P/ (blbzd) 
and MI = M/ (blbad) are the dipole and magnetic moments of the nanowire pairs. 
These moments are given by equations (8.58) and (8.60) which are normalized to the 
volume of the pairs, p is the filling factor, that is, the ratio of the area covered by the 
nanowires and the total area of the film. 

The moments PI and MI are proportional to the effective electric and magnetic 
fields, respectively. For the dilute case ( p  << 1) considered here we can write P1 
and MI as 4.rrpP1 = c (E2 + El) / 2  and 4.rrpM1 = p (H2 + HI) / 2 ,  where the 
coefficients e and p are the effective dielectric constant and magnetic permeability 
of the nanowire composite. Then equations (8.63) take the following form: 

We match equation (8.64) at z = -a with the plane wave solution 

E = EO [exp( ikz)  + r e x p ( - i k z ) ]  

that holds in front of the film ( z  < -u) and match equations(8.64) at z = a with 
the solution E = Eot exp(ikz)  that holds behind the film. EO is the amplitude of 
the impinging wave, T and t are reflection and transmission coefficients, respectively. 
This matching results in two equations for T and t. Solutions to these equations 
allow us to find the reflection R and transmittance TT  coefficients of the nanowire 
composite in the following form 

l 2  (8.65) 
2dk ( E  - p) 4 + d2k2ep 

’ = I(-2 + idke) ( -2  + i d k p )  
R =  1 

( -2  + idk&) (-2 + i dkp)  

When E = p, the reflectance vanishes while the transmittance is given by T = 
1(2 + idke) / (2 - idke)12. If E = p and it is a real number, the reflectance T = 1. 
Still, the interaction of the electromagnetic wave with the composite results in the 
phase shift 2 arctan(d ka /2 )  for the transmitted wave. The phase shift is positive 
if E = p > 0 and the shift is negative when E = p < 0. The last case corresponds 
to a left-handed material. Thus, a negative phase of the transmitted electromagnetic 
wave indicates the left-handedness of the composite. 

8.7 CONCLUSIONS 

We presented a detailed study of the electrodynamic properties of metal-dielectric 
composites consisting of elongated conducting inclusions-conducting sticks-em- 
bedded in a dielectric host. Conducting stick composites have new and unusual 
properties at high frequencies when surface plasmon-polaritons are excited in the 
sticks. The effective dielectric permittivity has strong resonances at some frequencies. 
The real part vanishes at the resonance and acquires negative values for frequencies 
above resonance. The dispersion behavior does not depend on the stick conductivity 
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and takes the universal form when the stick conductivity tends to infinity. The surface 
plasmon-polaritons can be localized in such composites. 

We show that composites consisting of nonmagnetic inclusions may have a large 
magnetic response in the optical spectral range. The effective magnetic response is 
strong in a composite comprising pairs of parallel nanowires and results from the 
collective interactions of the nanowires in pairs with an external magnetic field. A 
giant paramagnetic response can occur in this case, in some frequency ranges. The 
composite materials based on plasmonic nanowires can have a negative refractive 
index and thus act as left-handed materials in the optical range of the spectrum. 
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In this chapter, we provide an overview of some of the results of our analytical 
studies of wave guiding properties of planar structures containing double-negative 
(DNG) and single-negative (SNG) metamaterials, in which, respectively, both or one 
of the material parameters (i.e., permittivity and permeability) possess negative real 
parts in a certain band of frequency. We have shown how guided modes in such struc- 
tures exhibit unusual features. In particular, we discuss and review our theoretical 
results on planar waveguides with DNG and SNG metamaterials and their uncon- 
ventional features, such as the possibility of guiding electromagnetic energy with 
lateral dimensions below the diffraction limit, large-aperture monomodal waveguid- 
ing using conjugate SNG bilayers, modal excitation by current sources and power 
flow distribution in the partially filled DNG waveguides, dispersion peculiarities of 
surface wave propagation along the DNG open slab waveguides, and anomalous 
contradirectional (backward) coupling between the DNG and dielectric open planar 
waveguides. Physical insights into our findings are also given. 
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9.1 INTRODUCTION 

Since the pioneering work of Smith, Schultz, and their co-workers [ 11, in which they, 
inspired by the work of Pendry [2,3], constructed a composite medium exhibiting 
negative refraction resulting from the negative real parts for its effective permittivity 
and permeability in the microwave regime, the interest in the fundamental aspects and 
the potential applications of these exotic metamaterials has grown considerably. The 
features of such a double-negative (DNG) medium (which is also referred to as a left- 
handed (LH) medium) had been postulated almost forty years ago by Veselago [4], 
but since then no sample of such a material had been found in nature or synthesized 
until the work reported in Ref. 1. Various properties of this class of metamaterials are 
now being studied by several groups worldwide, verifying their anomalous physical 
properties and salient features, and many ideas and suggestions for their potential 
applications have been proposed (see, e.g., Refs. 1-55). As one such idea, in some 
of our earlier works we theoretically suggested the possibility of having ultrathin, 
subwavelength cavity resonators in which a layer of the DNG medium is paired with 
a layer of conventional material (i.e., a “double-positive (DPS)” medium) [37-391. 
Owing to the antiparallel nature of the phase velocity and Poynting vectors in a DNG 
slab, we theoretically found the possibility of resonant modes in electrically thin 
parallel-plate structures containing such DNG-DPS bilayer structures [37-40]. We 
then extended our work to fully analyze the guided modes in parallel-plate waveguides 
containing a pair of DNG and DPS slabs [41,42]. Later in Ref. 43, we showed the 
effects of the anomalous mode coupling between DNG and DPS open waveguides 
located parallel to, and in proximity of, each other. Some other research groups have 
also explored certain aspects of waveguides involving DNG media (see, e.g., Refs. 

We have also been interested in exploring the properties of “single-negative 
(SNG)” materials in which only one of the material parameters, not both, has a 
negative real value. These SNG media also exhibit interesting properties when they 
are paired in a conjugate manner. These media include the epsilon-negative (ENG) 
media, in which the real part of permittivity is negative but the real permeability is 
positive, and the mu-negative (MNG) media, in which the real part of permeability 
is negative but the real permittivity is positive. The idea of constructing an effective 
DNG medium by having layers of SNG media has been explored by Fredkin and Ron 
[481. We have analyzed in detail the wave reflection from and transmission through 
a pair of juxtaposed ENG and MNG slabs, revealing interesting properties such as 
resonances, transparency, anomalous tunneling, and zero reflection [47]. In our 
analysis, we also utilized appropriate distributed circuit elements in the transmission- 
line model for the pair of ENG-MNG layers, and we have theoretically explained and 
justified the unusual field behavior in these paired ENG-MNG structures. We have 
also shown that such lossless pairs may exhibit “interface resonance” phenomena, 
even though each slab alone does not manifest such an effect [47]. As a further 
contribution to the topic of wave interaction with SNG and DNG media, in our 
earlier work on metamaterial planar waveguides [42,54] we studied the properties 

49-53). 



PARALLEL-PLATE WAVEGUIDES WITH DNG AND SNG METAMATERIALS 341 

of guided modes in waveguides filled with a pair of SNG layers, showing possible 
unconventional features for such guided modes. 

In this chapter, we review some of our results on guided modes in planar wave- 
guides with DNG and/or SNG layers, which we have already reported elsewhere 
and the interested reader is referred to for detailed information, and in addition we 
present the analysis for certain other planar guided-wave structures containing these 
metamaterials. We discuss how their unconventional features may be utilized to over- 
come certain physical limitations present in conventional waveguides with standard 
DPS materials: for example, we note the possibility of guiding of waves in ultra-thin 
structures with lateral dimension below the diffraction limits. Other notable features 
are also discussed here. 

Although the structures considered here are simple 2-D geometries, their waveguid- 
ing features indeed provide physical insights into exciting ideas and characteristics 
for other waveguide geometries filled with such metamaterials, with potential appli- 
cations in the design of future devices and components for miniaturization of RF and 
optical interconnects. 

In our analysis described in this chapter, all materials are assumed to be lossless, 
homogeneous, and isotropic, unless otherwise specified. Furthermore, it is worth 
noting that passive SNG and DNG metamaterials are inherently dispersive [4,5], and 
thus their material parameters may vary considerably with the frequency. Therefore, 
for the sake of simplicity, we fix the frequency of operation w and we consider the 
values of permittivity and permeability of SNG, DNG, and DPS materials at this given 
frequency. All other parameters of the waveguides-for example, layer thicknesses 
and longitudinal wavenumbers-may vary. 

9.2 PARALLEL-PLATE WAVEGUIDES WITH DNG AND SNG 
METAMATERIALS 

In this section we briefly review our results revealing some of the anomalous features 
of parallel-plate waveguides partially or totally filled with layers of metamaterials. 
The interested reader is referred to our work for further detail [42]. The geometry 
is depicted in Fig. 9.1, where the region between two infinite perfectly electric 
conducting (PEC) plates separated by the distance d = d l  + da is filled with a 
pair of parallel layers made of any two of ENG, MNG, DNG, and DPS materials. 
A monochromatic time-harmonic excitation ejWt is assumed. The two slabs are 
characterized by their thicknesses d l  and dz and their constitutive parameters ~ 1 ,  p1 
and E Z ,  pz, which are assumed real. In our general formulation, we do not assign 
any specific sign to these parameters. Later, however, we show how different signs 
will lead to different properties for guided modes. The Cartesian coordinate system 
(2, y, 2) is shown in Fig. 9.1. and 2 is chosen as the direction of propagation of guided 
modes. As we have done in Ref. 42, satisfying the appropriate boundary conditions 
at y = dl  and y = -dz, the electric and magnetic field expressions for the TE” mode 
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1' 

Fig. 9.1 Geometry of the parallel-plate waveguide filled with a pair of layers made of any two 
of epsilon-negative (ENG), mu-negative (MNG), double-negative (DNG), and double-positive 
(DPS) materials. After Ref. [42]. Copyright @ 2004 IEEE. 

are written as 

where ETE is the mode amplitude, determined by the excitation, and k z E  = 
,/- with k: = w2piai for i = 1,2. The corresponding expressions for 
the T M x  modes may be easily obtained through duality. For ENG and MNG slabs, 
where one of the material parameters is negative, we have k: < 0, and for propagat- 
ing modes with real /3 the transverse wavenumber kti is always imaginary. However, 
for DPS and DNG slabs, kt > 0 and the transverse wavenumber kti may be real 
or imaginary, depending on the value of p. The field expressions in (9.1) and (9.2) 
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and the corresponding expressions for the TM case, however, remain valid for any 
such cases. By applying the boundary conditions for the tangential components of 
the electric and magnetic fields at the interface y = 0, one finds the following two 
dispersion relations for the TE and TM modes, respectively: 

Depending,on the choice of material parameters, the above dispersion relations reveal 
interesting characteristics for the guided modes present in this waveguide. A complete 
analysis of these features of guided modes for different metamaterials may be found 
in Ref. 42. In the rest of this section, we will highlight and summarize some of the 
unusual properties of propagating guided modes in parallel-plate waveguides filled 
with pairs of ENG, MNG, and/or DNG slabs. 

9.2.1 Large-Aperture Monomodal Waveguides with ENGMNG Pairs 

It is well known that in conventional waveguides filled with standard DPS materials 
a large aperture (i.e., the distance between the two plates, d = dl  + d2) provides an 
easier coupling of the incident plane-wave energy with the waveguide. However, at 
the same time this may present a disadvantage of exciting several propagating guided 
modes, which may cause signal dispersion and limitation on the communication 
performance. Therefore, usually the waveguide aperture is carefully chosen to allow 
the guide to operate above the dominant cutoff frequency (in order to have at least one 
mode propagating in the structure), but below the second- and higher-order cutoff 
frequencies (to avoid multimodal propagation). When the ENG-MNG pairs are 
chosen to fill the waveguide in Fig. 9.1, however, this limitation may be overcome. 
Even a wide aperture, in fact, may allow monomodal propagation inside such a 
waveguide, since (9.3) and (9.4) may admit only one single solution for real p, as we 
have studied in Ref. 42. 

If a parallel-plate waveguide, in fact, is totally filled with only an ENG or MNG 
material, it cannot support any propagating mode (as is intuitively expected). How- 
ever, pairing of the ENG-MNG materials allows an “interface resonance” at the 
interface between these two conjugate slabs, providing the possibility of propagating 
guided modes in such a waveguide [42,54]. In particular, for an ENG-MNG wave- 
guide, equations (9.3) and (9.4) may be solved for the thickness d2 as a function of 
the other waveguide parameters, yielding 
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Owing to the single-valuedness of the hyperbolic tangent functions, these dispersion 
relations lead to single solutions, differently from the standard DPS case, for which 
the counterparts to equations (9.5) and (9.6) would have been multivalued. This 
implies that, if propagating modes can exist in such a waveguide (and this depends 
on the following conditions 

(9.8) 

derived in Ref. 42), these modes are of finite number, which does not increase 
if the waveguide thickness is increased. Several combinations of the waveguide 
parameters, in particular, show a single-solution for the dispersion relations (9.5) and 
(9.6), suggesting a monomodal propagation in such waveguides, independent of the 
total aperture size (e.g., even with a very large aperture). It should be noted that the 
field distribution is concentrated around the interface between the conjugate slabs 
(e.g., at the ENG-MNG interface) and decays towards the metallic walls, giving 
rise to a surface-plasmon-like propagation for these modes and thus justifying why 
an increase in d = dl + d2 beyond a certain limit does not sensibly affect the 
modal properties of this waveguide. Figure 9.2 depicts the dispersion diagrams [i.e., 
equation (9.5) with dl, d2 and PTE as parameters] for the single TE mode in two 
different ENG-MNG waveguides. In panel (a), the interface between the ENG- 
MNG media does not support a surface wave, whereas in the case shown in panel (b) 
it does, and the corresponding PTE for the surface wave represents an asymptote for 
the required value of d2 (since for this value of PTE the second metallic plate may 
be infinitely far). In Fig. 9.2, the value of 

(9.9) 
1 

d; = - tanh-' 
lk2 I 

has been shown, which represents the particular case of a one-dimensional (l-D) 
cavity resonator with PTE = 0 and dl being arbitrarily large. In this case, no other 
resonant mode is supported in this l-D cavity, regardless of the thickness of the first 
slab, implying that an ultra-thin or very thick l-D cavity with a single resonant mode 
is possible. 
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Fig. 9.2 Dispersion diagram for TE mode in an ENG-MNG waveguide, illustrating the 
relationship among normalized d l  and dz and normalized real-valued PTE, as described in 
(9.5), for two sets of material parameters for a pair of ENG-MNG slabs at a given frequency: 
(a) when E I  = - 2 ~ 0 ,  we have p1 = po, E Z  = 2.50, and p2 = -2po; and (b) when 
~1 = -5.50, we have pi = 2p0, ~2 = 2.50, and p2 = -PO. The set of material parameters 
chosen in (a) does not allow a TE surface wave at the ENG-MNG interface, while the set 
chosen in (b) does. The value of ds is given by (9.9). After Ref. [42]. Copyright @ 2004 
IEEE. 
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9.2.2 Waveguiding in Ultra-thin Structures with Lateral Dimension Below 
Diffraction Limits 

In conventional waveguides, guided modes may not be supported with the lateral 
dimensions below a certain limit, generally close to X/2. Specifically, in a closed 
waveguide with a metallic wall, reducing the cross-sectional size of the guide leads 
to cutting off the modes (and eventually the dominant mode), whereas in an open 
conventional dielectric waveguide, decreasing the size of the cross section results in 
broadening the lateral spread of the guided modes (and eventually leading to leakage 
of modes). This limitation may be removed by employing pairs of DNG, DPS, and/or 
SNG metamaterials filling the waveguide of Fig. 9.1, as it is described below. (For 
the open waveguides, this issue is discussed in Section 9.4.) 

If the thicknesses Ikl I d l  and (k2l d2 are assumed to be very small, equations (9.3) 
and (9.4) may be approximated, respectively, by 

P2 y"-- 
PI 

(9.10) 

(9.1 1) 

where y is shorthand for d l / d z  and obviously should always be a positive quantity. 
We note the fact that these approximate expressions are valid for thin waveguides 
loaded with any pair of slabs, since they have been obtained directly from the general 
dispersion relations (9.3) and (9.4). This point is physically justified considering the 
fact that in thin waveguides the transverse behavior of the field, which determines 
the possibility of a mode to propagate, is similar for DPS, DNG, and SNG materials, 
since the hyperbolic and trigonometric sinusoidal functions have somewhat similar 
behavior in the limit of small arguments. 

For a thin waveguide filled with a pair of DPS-DPS layers (and similarly with a 
pair of ENG-ENG, DPS-ENG, MNG-MNG, DNG-MNG, or DNG-DNG layers), 
equation (9.10) may never be satisfied, because for these pairs p 2 / p 1  > 0 and thus 
no TE mode may propagate in such a thin waveguide, as expected. This represents 
the diffraction limit mentioned above for standard waveguides. On the other hand, 
equation (9.1 1) will provide the approximate value for PTM of the dominant TM 
mode, if PTM turns out to be a real quantity for a given set of y and material 
parameters. We note that ,&M depends on the ratio of layer thicknesses, not on the 
total thickness. Therefore, this TM mode has no cutoff thickness; that is, there is 
not a thickness below which this TM mode may not propagate. For a DPS-DPS or 
DNG-DNG thin waveguide, this TM mode exists for any ratio y, and its PTM is 
sandwiched between kl and k2, which are effectively the two limits of equation (9.11) 
for y -+ 00 and y -+ 0, respectively. This implies that the TM field distribution 
in the transverse section of a DPS-DPS or DNG-DNG thin waveguide has to be 
expressed using the exponential functions in one of the two slabs (in the one with 
smaller wavenumber) and the sinusoidal functions in the other slab. The allowable 
ranges of variation of PTM in (9.11) in terms of y are shown in Fig. 9.3 for various 



PARALLEL-PLATE WAVEGUIDES WITH DNG AND SNG METAMATERIALS 347 

PT.4, 

Ik, I 

.............................. 

> 
............... C ............. 

. . ?  

* .  
DPS-DPS 
DPS-DNG 

i * ; \  ; , :  
: 1 , j \  ENG-MNG 
: * i \  
i . ;  
; . i \  
! ' i  
/ . i  ' 
: * :  - -  
i t  i 

1 * ;\ : 

- - - - - - _ _ - -  - -  - 
....................................................................................................................................... f .  . 

............................................................................................................ 

Y 

Fig. 9.3 p of the dominant TM mode for thin waveguides (with lateral thickness much less 
than the diffraction limit) filled with a pair of DPS-DPS, ENG-MNG, or DPS-DNG slabs, 
versus y = d l  /dz. (a) The material parameters are chosen such that €1 = f 2 ~ 0 ,  /I = fpo, 
€2 = ft3€0, and p = fpo  for which (k2 1 > Ik1 I. (b) The two slabs have been interchanged 
that is, slab 1 and 2 in (a) are now slabs 2 and 1 in (b), respectively, thus )k2I < lkl I .  Here 
we are concerned only with the positive real solutions for ,&M, but its negative real solutions 
are simply obtained by flipping its sign. After Ref. [42]. Copyright @ 2004 IEEE. 
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pairs of slabs. As shown in this figure, the ENG-MNG pair behaves differently: The 
existence of a no-cutoff dominant TM mode is restricted to the waveguides with y in 
the range between / 1 ~ 2 1  and 11121 / Ip11. However, its wavenumber PTM is not 
restricted to any interval; that is, an ENG-MNG waveguide may have a dominant 
no-cutoff TM mode with &M ranging from zero to infinity (Fig. 9.3). The range of 
variation of PTM in the thin DPS-DNG waveguide indeed differs from the ones in the 
thin ENG and in the standard DPS-DPS waveguides. Here PTM may attain values 
only outside the interval between llcll and llc2l (effectively “complementary” to the 
standard DPS-DPS case where PTM is in this interval), and y should also be outside 
the range between -pz /p1  and - - E ~ / Q .  The fact that thin waveguides loaded with 
“conjugate” pairs of metamaterials (e.g., DPS-DNG or ENG-MNG) may support 
nonlimited PTM may offer interesting possibilities in designing very thin resonant 
cavities, as already proposed in Refs. 37-39, for which /3 = 0 when y = - p ~ / p 1 ,  
or for very thin waveguides having guided modes with high P, which may give rise 
to compact resonators and filters. A similar observation regarding the possibility of 
PTM to be very large has also been made by Nefedov and Tretyakov [51]. 

Considering the TE case, a thin waveguide with a pair of ENG-MNG slabs (or 
also a pair of DNG-ENG, DPS-MNG, or DPS-DNG slabs) has p2/pI < 0, and 
thus (9.10) may be satisfied for a certain value of y. Equation (9.10) seems to be 
effectively independent of PTE. However, we should note that in such a limit, the 
wavenumber PTE of the guided mode may essentially attain any real value, as can 
be seen in Figs. 9.2a and 9.2b around the region where llcl I d l  -+ 0 and Ik21 d2 + 0. 
In such a limit, no matter how thin these layers are (as long as they satisfy (9.10)), 
one (and only one) propagating mode may exist. In other words, this waveguide does 
not have a cutoff thickness for the TE modes, and thus they can support a guided 
mode, even though the lateral dimension can be well below the diffraction limit. This 
feature represents also a generalization of the analysis for the DPS-DNG thin cavity 
shown in Refs. 37-39. This may provide an interesting possibility for transporting 
RF or optical signals in ultra-thin guiding structures with cross-sectional dimensions 
below the diffraction limits. The case of open waveguides with such a property will 
be discussed in the next section. 

9.2.3 Power Propagation in DPS-DNG Waveguides 

In the previous section, we reviewed the field modal structure in the DPS-DNG and 
ENG-MNG planar waveguides and cavities, highlighting the possibility of modes 
with no cutoff thickness resulting in guided propagation in subwavelength waveguides 
and also monomodal waveguides with electrically large apertures. In this section, 
we approach the problem of the mode excitation in the DPS-DNG waveguides, in 
order to analyze how these peculiar modes are excited and understand how they carry 
power in these waveguides. (Parts of these results were first presented in a recent 
symposium [40].) 

First, let us consider a planar current sheet at the interface between the two 
materials filling the waveguide-that is, on the y = 0 plane. Similar to what we have 
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shown in Ref. 44 for the unbounded problem, we intuitively expect that the radiation 
from such a current source possess the typical backward behavior in the DNG slab. 
In other words, we expect to find two antiparallel power flows in the two slabs of 
the DPS-DNG waveguide. The solutions given in Ref. 44 may be easily extended 
to this case by augmenting the field expressions with the waves reflected from the 
parallel plates. An electric current source J = i J e-jpzb (y), therefore, excites a 
TE electromagnetic mode in the waveguide with the following expressions: 

where D (p) = % cot [ k t l d l ] + F  cot [kt2dz] is thecommondenominator. Wenote 
the analogy with equations (9.1)-(9.2) for the expression of the waveguide modes. 
All the field components share the same denominator, which represents the dispersion 
relation for these modes and is identically zero when (9.3) is satisfied. When this 
happens, in fact, the field amplitude diverges, since the structure is behaving like a 
resonator driven at the frequency of resonance, similar to what was obtained in Ref. 44 
for the surface modes (i-e., surface waves) supported by a DPS-DNG interface. 

The extension to an arbitrary distribution of current at the interface is of course 
straightforward: Assuming a sheet of electric current J = 2 J (z) b (y) (again 
exciting TE modes), this may be expanded using the standard Fourier transform: 

m 

J = 2 Lrn J (p) dp e-jpx b (y) (9.14) 

where J(p)  is the Fourier transform of J ( z ) .  Each infinitesimal contribution, 
J (p)  dp, induces a TE mode in the waveguide, expressed by (9.12)-(9.13). There- 
fore, the total electric field in the waveguide may be expressed as 

j ( p )  e - j B z  
SinW ( d  

O I Y < d l  

-d2 < y < 0 

m dp, 
- j w m  .Lm D ( P )  

- j w m  .Lm D(P 

(9.15) 
j ( p )  , - j@z ~inlfdz(~~;)l dp, 

E = i  
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The magnetic field may obviously be written in a similar way and is not reported 
here. As expected, the integrand poles coincide again with the dispersion relations 
for the waveguide modes. For a sheet current source in a finite range 1x1 < 5, the 
evaluation of the field at a point sufficiently far from the source region is promptly 
performed by solving the residue problem for only the real roots of the denominator, 
which correspond to the propagating guided modes supported by the waveguide. For 
nondegenerate modes, these are single roots, and the integral may be substituted by 
the residue sum: 

(9.16) 

where ,& represent the M real roots of D (0). 
In the particular case of a line current at the origin, the current expression becomes 

J = 2 I S  (x) S (y), and thus j (p)  = &. The electric field in the first slab may be 
expressed as 

which represents the explicit superposition of the A4 propagating guided modes in 
the waveguide with transverse wavenumbers ktln = d m .  The other field 
components may be easily obtained in a similar way. 

The case of an arbitrary current J (2, y) in a closed region S (not necessarily 
distributed at the interface as supposed up to now) with finite volume may be studied 
by applying the conservation of energy. If the electric current is again supposed to be 
directed along 2, exciting only TE modes, the total electric field in the waveguide may 
be expressed as a superposition of the infinite modes expressed by (9.1)-(9.2). Each 
of them is characterized by a longitudinal wavenumber Pn, which is a solution of 
the dispersion relation (9.3), being a real quantity for propagating guided modes and 
an imaginary quantity when the corresponding mode is evanescent. The amplitude 
of each mode Eon is of course dependent on the source J (2, y). In order to relate 
these two quantities, we may apply the conservation of energy for the DPS-DNG 
waveguide. 

Consider the expression of the Poynting vector inside the waveguide: 
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where 

(9.18) 

where * stands for complex conjugation. Considering real values for the pns, the 
above expression shows that for the DPS-DNG waveguide every mode carries a real 
power in the s-direction, just like the conventional case of DPS-DPS waveguides. 
The difference, however, is in the fact that the power flows in the two slabs are 
antiparallel in the DPS-DNG case, as intuitively expected. The total net power 
flowing out from a given cross section of the DPS-DNG waveguide section, therefore, 
leads to the algebraic sum of the two power flows-that is, the difference between 
the magnitudes of the two oppositely directed power flows. (This is analogous to the 
findings in Ref. 44.) Therefore, while in a standard (DPS-DPS) waveguide a mode 
with a positive real On (and with a positive phase velocity) carries power along the 
positive s-direction, in a DPS-DNG waveguide the phase velocity and the direction 
of power flow do not necessarily point in the same direction. In other words, a guided- 
mode’s total net power flowing out of any cross section in the DPS-DNG waveguide 
may be either parallel or antiparallel with the phase velocity of that mode. Therefore, 
fixing the source region inside a DPS-DNG waveguide and considering the fact that 
for any guided mode its net power should flow away from the source, the sign of p, 
may then be determined such that this net power condition is satisfied. Depending on 
the material parameters and slab thicknesses, the wavenumber pn might be parallel 
or antiparallel with the direction of the net power flowing away from the source. 

Following the previous considerations, in the DPS-DNG waveguide, like in any 
standard waveguide, the entire electric and magnetic fields may be decomposed into 
modes carrying power in the positive 2-direction and modes carrying power in the 
negative s-direction. Due to the waveguide symmetry, such decomposition has the 
general form 

M/2 M/ 2 
E = C ane,e-jpnz + C bne;fejpnz 

n=l n= 1 
(9.19) 

where the pn set is composed by those M / 2  real solutions of (9.3) that each carries 
a positive net power flowing away from a closed mathematical surface containing S. 
Such Pns are not all necessarily positive as we usually expect in a conventional DPS- 
DPS waveguide. The expressions for en and h, in (9.19) may be easily deduced 
from (9.1)-(9.2). 
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For any two given modes in the DPS-DNG waveguide, the following general 
orthogonality relation is still valid: 

(9.20) 

where Pn is the net power carried by the nth mode, normalized to the squared 
module of its amplitude, and bmn is the Kronecker delta function. As in a standard 
waveguide, the above relation guarantees that in DPS-DNG waveguides there is no 
power coupling between the two distinct (nondegenerate) modes. 

The real power taken away from the current source by the nth mode may be 
calculated from (9.19) and, depending on the net-power-flow direction, is given by 
the upper or lower part of the following expression: 

(9.21) 

Owing to the conservation of energy, this quantity should be equal to the net real 
power of the nth mode flowing out of a closed mathematical surface containing S- 
that is, from two oppositely oriented cross sectional surfaces perpendicular to the 
z-axis. The real net power flowing out of each oriented section S for the nth mode 
is: 

(9.22) 

and, by symmetry,  ID^^^ = lbnI2. Therefore, by equating the two expressions, the 
values of the mode amplitude are given as 

(9.23) 

In the case of the line source J = 2 I6 (z) 6 ( 9 )  placed at the origin, the field 
expression for every propagating mode coincides with the one in (9.17). In fact, for 
the electric field of the nth mode, we have 
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d i  
2 //Re [en x h:] dS = 2 1 sin2 (ktn2d2) sin2 ( k t , ~  (d l  - y)) dy 

WclOCLl 
S 

(9.24) 

We now focus on the denominator of the expression in (9.23). This denominator is 
proportional to the net power carried by the nth mode in the DPS-DNG waveguide. 
Unlike the case of the standard waveguide in which the net power for each mode with 
a non-zero real P is always positive, for the DPS-DNG waveguide such a net power 
may become zero due to the algebraic sum of the two oppositely-directed power 
flows in the DPS and DNG layers, implying that the denominators in (9.23) may 
go to zero under certain conditions. In these situations the field amplitude of such 
a mode becomes infinitely large. This is due to the fact that under such conditions 
the corresponding mode carries two oppositely directed power flows in the DNG and 
DPS slabs, equal in magnitude and opposite in direction, and therefore the waveguide 
is effectively behaving like a cavity resonator (although it is “open” ended). If the 
source drives a resonating mode in a cavity at its resonant frequency, it is known that 
in the ideal lossless scenario the induced field will diverge in the steady-state regime. 
In fact, we note that even in a conventional DPS-DPS waveguide whose dispersion 
relation has a solution for p = 0, the waveguide becomes a cavity resonator for 
p = 0, and an analogous phenomenon happens as the denominator of (9.23) goes to 
zero, as is clearly understandable. 

Equation (9.24) reveals the conditions under which the net power may become 
zero. According to this relation, for a DPS-DPS waveguide, only when pn = 0, 
a zero net power is achieved, which relates to the mode bouncing back and forth 
between the two parallel walls of the waveguide (i.e., a cavity resonator). However, 
when a DPS-DNG waveguide is considered, in addition to the case of Pn = 0, 
another condition can lead to zero net power and that is 

sin 2kt1,dl sin 2kt2,d2) 
dl - (2ktin ) - - d2 - (2ktzn 

IpiI sin2 (ktlndl) 
(9.25) 

Ip2I sin2 (kt2nd2) 

which can have solutions with Pn # 0. In order to understand this condition 
physically, let us consider a DPS-DNG monomodal waveguide, for which the only 
mode of propagation is a “forward” mode-that is, for which the phase flow is parallel 
to the energy flow. Such a mode carries its power in a unusual way: an observer 
located in the DPS slab sees a certain amount of power flowing away form the 
source, and he can measure such a power flow in the first slab, which is proportional 
to the left side of (9.25). The total power he measures, however, is bigger than 
the quantity actually taken away from the source. The exceeding part, however, 
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cannot be used by the observer, since this power has to flow back to the source in 
the DNG slab to maintain equilibrium and energy conservation. This may appear to 
be counterintuitive, but it is all physically justifiable. In fact this description is very 
similar to what happens in a simple case of a normally incident plane wave which 
is partially reflected from a simple vacuum-dielectric interface. If an observer were 
able to distinguish between the incident and reflected power flows in this analogy, 
he would measure a higher value for the incident power than the net power actually 
flowing in the forward direction into the dielectric half space. If the reflecting surface 
is a perfect metal, all the radiation would be reflected back and the observer would 
not measure any net power flowing in one or another direction, even though each of 
the two power flows by itself carries a nonzero power. 

In the DPS-DNG waveguide, the negative refraction [4] present at the interface 
between the two slabs effectively acts as a reflecting mechanism orthogonal to the 
interface, which partially (or totally) reflects the impinging power. From an electro- 
magnetic point of view, the resonance condition, therefore, may be simply explained 
as the condition for which the equivalent orthogonal surface becomes totally reflect- 
ing, effectively transforming the waveguide into a cavity resonator. What we obtain 
is essentially a form of a standing wave, as in a usual cavity or in a Bragg reflector; 
however, unlike those cases, here the forward and backward waves are flowing in 
spatially separated regions in the two slabs. In Fig. 9.4, the electric and magnetic 
field variation along the cross section of a very thin DPS-DNG waveguide are shown. 
The waveguide total cross section is taken to be only one-hundredth of the wave- 
length in the first slab. Note that the ratio of the slab thicknesses satisfies (9.10) with 
a good approximation. Applying the previous formulas to this case, we obtain that 
if P = PI - P2 (i.e., the net power carried by this mode, obtained as the difference 
between the power flows in the two slabs) we have PI = 1.125P and P2 = 0.125P. 
This conceptual example shows in principle the possibility of the energy transport by 
a very thin monomodal DPS-DNG waveguide with a very small electrical thickness 
while still supporting a mode carrying a nonzero net power. 

There are other interesting issues related to the anomalous power propagation in 
DPS-DNG waveguides. A first topic concerns the relation between the power flows 
in the two slabs: We have seen that every mode in the DPS-DNG waveguide carries 
its power as two oppositely directed power flows in the two parallel slabs. Moreover, 
we have addressed the orthogonality properties of such modes, guaranteeing no power 
exchange between two distinct modes. Therefore, for each propagating mode, one 
would think that the portion of the power traveling away from the source in one of 
the two slabs may return back in the other slab. If true, this would imply that, in some 
section of the waveguide, a portion of the power from the first slab should cross the 
interface of the two slabs to revert its path. However, the Poynting vector expression 
(9.18) clearly reveals that no real net power crosses the interface between the two 
slabs, since every mode carries real power only along the longitudinal direction. 
In other words, it appears that the two antiparallel power flows travel separately in 
the two slabs, and the two powers do not vary in quantity along any homogeneous 
waveguide section. We may interpret the power propagation in such a waveguide as 
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Fig. 9.4 Distribution of the normalized electric and magnetic field in a DPS-DNG thin 
waveguide with €1 = 2&0, p1 = PO,  &2 = - 3 ~ 0 ,  p2 = -3p0, p = 0.47kl. 

sketched in Fig. 9.5: The portion of power which comes backward towards the source 
in the waveguide may be regarded as if exchanged in “loops” between the two slabs, 
each one-half of a longitudinal wavelength long. This sketch is well supported by the 
ray-theory approximation and the fact that at the DPS-DNG interface the refraction is 
negative. On the sections in which the loops cross the interface, however, transverse 
net power is zero, since in the lossless condition the two transverse power fluxes 
across the interface are equal and antiparallel, consistent with equation (9.18) in 
which no real net power crosses across the interface between the DPS and DNG 
slabs. When the loss is present, the field decays with 2 = 2 and a small transverse 
exchange of power is present, as can be verified by introducing a small loss in 
equation (9.18). In the lossless scenario, if no net power flows transversely, where, 
then, will the backward flow towards the source come from? In our analysis, we 
deal with an infinitely long DPS-DNG waveguide whose cross section does not vary 
with 2, and has no interruptions or abruptions. In this case no transverse energy flow 
is required, since the modal structure is the same at every cross section. The issue 
arises in practical situations where a finite length of the waveguide is considered. The 
answer to our question about the transverse flow of power can be found exactly at the 
section where an interruption or an abruption is present. At such discontinuities, local 
reactive nonpropagating evanescent modes are excited in addition to the propagating 
guided modes, and they induce a real power flow in the transverse direction. In the 
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Fig. 9.5 Flow of energy in "loops." At a given section z = f, the power flow in the transverse 
plane due to one loop is balanced by the flow due to the next one and thus no net transverse 
energy flow is present, if loss is neglected. 

vicinity of these discontinuities, therefore, the exchange of power between the two 
slabs takes place and the backward flow is generated. Figure 9.6 shows the results 
of a mode-matching analysis of an abruption between a DPS-DNG waveguide (on 
the left) and an empty waveguide (on the right). The two waveguides support 
only one propagating mode each, whose longitudinal (real part of) Poynting vector 
distributions are described by the solid lines on the two sides of the abruption. The 
black mows represent the local real part of the Poynting vector in each point of 
the waveguide. As may be clearly seen from the figure, far enough away from the 
abruption the arrows show the longitudinal power flow as given by the propagating 
modes only. In the DPS-DNG waveguide, in fact, they are oppositely directed and 
completely separated from each other. In the vicinity of the abruption, however, the 
distribution of the real part of the Poynting vectors (the black arrows) is rearranged by 
the presence of the evanescent non-propagating modes and they clearly reconstruct 
the transmitted mode (on the right of the abruption) and feed the backward flow (on 
the left of the abruption). 

It should be mentioned that a similar behavior may be obtained in inhomoge- 
neously filled circular waveguides loaded by ferrite rods, or in other nonhomoge- 
neous circular waveguides in the neighborhood of the cutoff frequency, as shown by 
Clarricoats [56] and Waldron [57], in which standard dielectrics have been used. In 
these cases the supported modes carry power in such a way that in some regions of 
the waveguide cross section a negative power flux density is present (i.e., the power 
flow direction is antiparallel to the phase flow direction), while in the rest of the cross 
section the power flux density is positive. These "regions" of negative and positive 
power flux density may vary as the mode wavenumber changes in such inhomoge- 
neously filled circular waveguides, whereas in our DPS-DNG planar waveguides, the 
separation between the two oppositely directed power flows is clearly distinguished. 



OPEN SLAB WAVEGUIDES WITH DNG METAMATERIALS 357 

9.3 OPEN SLAB WAVEGUIDES WITH DNG METAMATERIALS 

In this section we analyze another guiding structure involving metamaterials, namely 
the case of an open planar waveguide consisting of a metamaterial slab supporting 
a surface-plasmon mode. (Some of our results for these guided-wave structures 
were first presented in Ref. 43.) The geometry is shown in Fig. 9.7, together with 
a Cartesian coordinate system for a DNG slab of thickness 2d and constitutive 
parameters E and p, surrounded by free space with parameters EO and po. 

The TE spectrum of propagating modes in this open waveguide may be split 
into even and odd modes. The solution of the boundary-value problem yields the 
following expressions for the electric field of even and odd T E x  modes, respectively: 

where ELE and ELE are the mode amplitudes, and kTE = d m  with 
k2 = w2p 6. The corresponding expressions for the magnetic fields may be easily 
derived from the Maxwell equations: 

(9.28) 
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Fig. 9.6 Mode-matching analysis of an abruption. The biack arrows represent the real part of 
the Poynting vector. On the left we have a DPS-DNG waveguide with one propagating mode 
with power distribution described by the solid line on the left. On the right there is an empty 
parallel-plate waveguide that supports again only one propagating mode with field distribution 
given by the solid line on the right. 

(9.29) 
The expressions for the TM" polarization may be obtained from duality and are not 
reported here. In the following we will focus on the TE polarization, but similar 
considerations may be made for the TM polarization. 

Applying the proper boundary conditions for the magnetic fields at the three 
interfaces, we obtain the following dispersion relations for the even and odd TE 
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Fig. 9.7 Geometry of the open waveguide: a double-negative (DNG) slab surrounded by 
empty space. 

guided modes, respectively: 

(9.30) 

(9.31) 

The analogous dispersions for the TM case may be promptly obtained substituting 
p and PO with E and EO, respectively. These dispersion relations are valid for any 
complex value of E and p. In particular, in the limit of no loss (i.e., for real-valued 
constitutive parameters) these equations remain valid also when we consider negative 
parameters. 

In the case of a standard DPS material, as is well known, propagating guided- 
mode solutions for the dispersion relations (9.30)-(9.3 1) are possible only when 
ko < /3 < k, yielding the real-valued expressions in both sides of the equations. In 
particular, the first even mode has no cutoff; that is, even when d -+ 0, a solution 
for ,Be does still exist, and + k:. This implies that, although a surface wave 
is always supported by the DPS slab waveguide, conceptually even in the limit of 
the slab thickness tending to zero, when the slab thickness is too small the lateral 
distribution of the field of such a guided mode is widespread in the region surrounding 
the slab [as may be clearly verified from equations (9.26)-(9.29)], and essentially the 
mode becomes weakly guided. Therefore, when the guiding structure with the DPS 
material becomes very thin, the effective cross section of the guided mode becomes 
very large (in the limit of zero slab thickness the guided mode is simply a uniform 
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plane wave). In other words, if even consider to reduce the slab thickness, the guided 
mode will travel with a transverse section much larger than the slab lateral dimension. 
(On the other hand, to confine the guided mode near the guiding slab, one needs to 
increase the slab thickness, which leads to increasing Be. But in this case, the effective 
cross section of the guided mode is still not small, because now the slab thickness is 
not small.) This issue is indeed another manifestation of the diffraction limitation, 
which does not traditionally allow the signal transport in a guided structure thinner 
than a given dimension determined by the wavelength of operation. 

The planar slab waveguide made of a DNG material may, in principle, overcome 
this limitation. In order to have a better insight into the differences between a DNG 
and a DPS slab waveguide, let us rewrite the dispersion relations (9.30) and (9.31) as 

(9.32) 

(9.33) 

where kto = d q ,  kte = d m ,  and A k 2  E k2 - k i .  In this form, the 
two sides of the dispersion relations (9.32)-(9.33) may be easily plotted as a function 
of (k,d), with ( A k  d)  as a varying parameter (Fig. 9.8), and thus the intersections of 
the two sides represent the solutions of (9.32) and (9.33)-that is, the propagating 
surface modes supported by the structure. In the figure, the circular dots indicate 
the propagation modes along a standard DPS slab, whereas the squares represent the 
modes in a DNG open slab waveguide with parameters & and p similar in magnitude, 
but opposite in sign, with those of the DPS slab. In the standard DPS case, as already 
anticipated, the first even mode (associated to the most left branch of the tangent in 
Fig. 9.8) does not show a cutoff thickness, since solutions are expected also when 
( A k  d )  -+ 0. In this case, however, the intersection is found for ( k t d )  -+ 0, that is, 
for ,Be -+ k z .  No odd modes, on the other hand, may propagate in very thin DPS 
open slab waveguides. 

For the DNG case, the situation is different: The right-hand sides of the equations 
change sign and now the first odd mode has no cutoff thickness, even though the 
requirement of (k td )  -+ 0 is not required any more, but instead Po increases as 
the slab thickness is reduced (and as a result the fields of such an odd mode are 
concentrated and confined more near the slab surface). This is a key advantage of 
such DNG open slab waveguides in design of very thin open waveguides with a 
concentrated cross section of guided mode. This may clearly overcome the usual 
diffraction limit for guided modes mentioned above, and it can provide a solution 
for transport of RF and optical energy in structures with small lateral dimension 
below the diffraction limit with possible applications to miniaturization of optical 
interconnects. Ideally in the lossless case, there is in principle no limitation on the 
compactness of such waveguides and confinement of the guided mode. However, in 
practice the loss is present and may limit the performance, and thus should be taken 
into consideration. 



OPEN SLAB WAVEGUIDES WITH DNG METAMATERIALS 361 

Fig. 9.8 Plots of the left- and right-hand sides of the dispersion relations (9.18) and (9.19) 
for DPS and DNG materials with p = fpo. 

Another peculiar distinction between the DNG and DPS cases may be noticed from 
Fig. 9.8: In the DPS case the derivatives of the two curves at the intersection points 
have always opposite signs, and due to the monotonic behavior of these curves, they 
will intercept only once per branch. As the slab thickness is decreased, the modes 
gradually disappear, as shown in Fig. 9.8. [As an example, let us take the second- 
order even mode in Fig. 9.8. When we reduce the slab thickness, the intersection of 
the two curves moves to the left and at the cutoff (i.e., at the minimum thickness for 
which this mode still propagates) both sides of the equation become identically zero. 
This point represents the cutoff dimension for this mode, and, as is evident from the 
dispersion relations, the corresponding /3 equals k0.3 

In the DNG case, on the other hand, the two sides of equations (9.32) and (9.33) 
share the same sign for their derivatives and therefore they may share more than one 
intersection point per branch. In the lower (i.e., negative) part of Fig. 9.8, in fact, 
it may be seen that the first even mode branch in the DNG case, now at the cutoff 
thickness of second-order even mode in the DPS case, has two distinct solutions. For 
that slab thickness, one of them does not correspond to /3 = ko. However, if the 
slab thickness is decreased a little more, this even mode in the DNG case does not 
disappear and its /3 will anomalously increase, together with the field ratio confined 
inside the slab. The value of d representing the slab thickness for the second-order 
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Fig. 9.9 Dispersion curves for odd modes in DNG and DPS slabs with p = f4p0,  & = 
f 2 & o  

mode cutoff in the DPS slab is not the cutoff dimension for the first even mode in 
the DNG slab. The actual cutoff dimension in this case, instead, is lower and it is 
achieved when the two curves in Fig. 9.8 are tangent to each other. The lower odd 
mode does not have a cutoff dimension, but the mode has a point with /3 = ko, at 
which the mode is completely unbounded. Starting from this point and decreasing the 
slab thickness further, however, its p anomalously increases toward infinity (contrary 
to the DPS case), causing a more confined guided mode in a thinner DNG slab. 

These features are clearly evident in the dispersion plots in Fig. 9.9, where the 
odd dispersion relation (9.33) is solved numerically and directly plotted as Po versus 
the variable ( 2 A k  d). This figure shows the anomalous features of guided modes 
in the DNG open slab waveguide, most notably in the neighborhood of the cutoff 
(for p N ko) and for the lowest odd mode having p greater than k .  In the region 
where /3 is near ko, we may analytically study the behavior of odd and even modes 
by substituting p + ko + bp, A k  2d ---f mr + 2 d< in the corresponding dispersion 
relations, where m is the integer index of the mode order (which is even when even 
modes are considered and odd for odd modes). The first-order approximation for 
both the dispersion relations yields: 

Therefore, in the left part of Fig. 9.9 the curves are well approximated by square 
roots, for which the branch is determined by the sign of p .  For each DNG branch, as 
anticipated from the previous remarks on Fig. 9.8, there is an interval of values for d 
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below the “DPS cutoff’ dimension for which two DNG modes with the same order 
are present with different P’s. The DNG cutoff dimension is at the lower end of this 
interval, when the derivative of the dispersion curve is zero. These points all belong 
to the line: 

(9.35) -P0PAk2 

@-i [P’ (P2 - cL3 + k 2 d  - P2k021 
d =  

which has been shown as a dotted line on the plot. 
From the above relation (9.35), one can see that for the DPS case the derivative of 

the dispersion curve will never be zero, since d should remain positive. In Fig. 9.9, 
the DPS curves are indeed monotonically growing. In the DNG case, on the other 
hand, the locus of the minima is represented by the intersections of (9.35) with the 
dispersion curves. In the special case of p = -PO, (9.35) is interestingly simplified 
into d = ,*. The physical meaning of relation (9.35) and the particular behavior 

of the DNG plots in Fig. 9.9 will become clearer, once we discuss the characteristics 
of power flow in such guided-wave structures, as we show in the following. 

In presence of an excitation (such as an impressed current source), the power 
carried by each mode may be evaluated using the Poynting Theorem, similarly to 
what was done in the previous section for the closed waveguide, exploiting the 
orthogonality relation between each pair of nondegenerate modes. In this case, the 
values of the amplitudes EO in the field expressions (9.26)-(9.29) can be expressed 
in terms of the current source as follows: 

(9.36) 

where V is the volume occupying by the impressed volume current source J, S is a 
mathematical surface orthogonal to the slab axis, with its unit normal vector pointing 
outwards with respect to the source, en and h, are the normalized transverse fields, 
proportional to (9.26)-(9.29), but carrying unit power. The superscripts for EO refer 
to the direction of power flow, i.e., E$ and E; are the amplitudes for the modes 
carrying power in the positive and negative 2-direction, respectively. 

It now becomes important to clarify which propagating modes we expect to carry 
power in the positive and in the negative direction. This may be achieved by analyzing 
the 2 component of the Poynting vector. 
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The total power flowing across a given cross section is obtained by the algebraic 
sum of two separate power flows: Pemptyr the one in the empty space region IyI > d, 
and Pslab,  the one flowing inside the slab. The two power flows are in general 
expressed as 

(9.39) 

(9.40) 

In the DPS case, relations (9.39) and (9.40) reveals that for any propagating mode 
the power flow is parallel to the phase flow (which is defined by the sign of 0). This 
means that each mode with positive p carries “positive” power, given by the sum 
of Pempty and Pslab, which flows to the right, away from the source. Conversely, 
a mode with a negative p carries a power to the left (negative sense of the z axis). 
This fact is reflected in the monotonic behavior of the DPS dispersion curves in 
Fig. 9.9, since the derivative dp, which is proportional to the group velocity $ 
for our monochromatic excitation, is always positive for positive p’s and negative for 
negative p’s. 

In the DNG case, on the other hand, for every mode the signs of Pempty and Pslab 

are opposite, which implies that each mode carries two oppositely directed power 
flows, similar to what we have verified in a parallel-plate DPS-DNG waveguide in 
Ref. 38. The net power effectively carried by each mode is given by the algebraic 
sum of the two opposite power flows, which may be positive or negative, even if 
positive ,l? are considered. In other words, we may find “backward” modes for which 
the direction of the net power flow is antiparallel with the direction of p. The more 
the guided mode is confined, the more the proportion of the power is concentrated 
inside the DNG slab, resulting in a backward mode. For high enough values of d in a 
DNG slab, most part of the power flow may be confined inside the slab and thus the 
direction of net power flow is opposite to the direction of p. A reduction in the slab 
dimension, in this case, is related to a reduction in the value of ,lpI (as can be seen 
from the second odd mode in Fig. 9.9). and therefore the proportion of the power 
flow outside the slab is increased. Consequently, there is one value for the DNG slab 
thickness, for which lPempty) equals IPslabI. In this case, no net power is actually 
extracted from the source, since all the power Pempty flowing away in one direction 
will come back as P & b  in the other direction. This special value of d does indeed 
satisfy relation (9.35) and it is represented by the minimum point in each dispersion 
curve. If one wants to decrease the value of even further (i.e., to obtain a less 
confined mode in the slab) one will have to increase the slab dimension, as seen 
from Fig. 9.9. This effect is physically related to the fact that at this special point 
there is a switch in the direction of net power flow, and the related group velocity 
- dw 

d(Ak 2d) 

d(yT) changes its sign. At this minimum, for which the group velocity do OC - 
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goes to zero and no net power is carried by the mode, the structure effectively acts 
as an open “cavity resonator” and the field amplitude in (9.36) diverges, since no 
net power is effectively carried away from the source. (This is similar to exciting 
a closed cavity resonator at its resonant frequency.) The phenomenon is analogous 
to the case of parallel-plate DPS-DNG waveguide analyzed in the previous section. 
The dispersion relation plots for the odd modes in the DPS and DNG slabs, for both 
positive and negative p’s, are shown in Fig. 9.10, underlining the direction of power 
flow according to the aforementioned arguments. 

It is worth noting the importance of the first odd mode in the DNG slab. This 
mode, which is always a “forward” mode, has no cutoff thickness. Specifically, in 
the ideal lossless assumption, in principle there is no limit on the reduction of the 
slab thickness: As the thickness d is reduced further, the value of p is increased, 
the guided mode becomes more confined, and effective cross section of such modes 
is decreased. This feature, which is contrary to what we have in the standard DPS 
slab waveguide, can also be exhibited in the ENG and MNG slab waveguides that 
are effectively plasmonic waveguides. Therefore, the DNG slab waveguides, and 
also plasmonic waveguides, may potentially offer solutions to the problem of RF 
and optical energy transmission via guided structures with lateral cross section below 
the diffraction limits. Even if a limit is imposed due to the presence of inevitable 
ohmic loss in the slab material, we may still be able to overcome the diffraction limit 
by designing subwavelength slabs supporting a confined propagating beam. Finally, 
it is important to note that for such a thin DNG slab, the value of ,5 can be much 
larger than the free space wavenumber ko, implying very small guide wavelength 
A, f 27r/,5 << A,. This may lead to exciting possibilities for design of ultra-thin 
cavities and devices using such DNG, ENG, MNG, or plasmonic slabs. This issue 
will be reported in a future paper. 

9.4 THE CONTRADIRECTIONAL (BACKWARD) COUPLERS 

In this section we describe the analysis of the coupling between two open slab 
waveguides; one made of conventional DPS materials and the other with a DNG 
metamaterial. (Some of the results of our analysis of the coupling phenomenon 
between the DPS and DNG slab waveguides were first presented in Ref. 43.) In the 
previous section, we described some of the unusual features of the DNG open slab 
waveguides, in particular the fact that such a waveguide supports guided modes in 
which the portion of the power flowing in the surrounding vacuum is antiparallel with 
respect to the portion flowing inside the DNG slab. Due to this anomalous property of 
the DNG open waveguide, one may intuitively expect that the coupling between such 
a DNG open waveguide and a standard DPS waveguide placed in its proximity could 
be “contradirectional” or “backward”; that is, if one of the two waveguides is excited 
to carry power in one direction, the second waveguide, through the coupling, might 
“redirect” back some of this power in the opposite direction. It is interesting to note 
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P 

Fig. 9.10 Similar to Fig. 9.9, but emphasizing also the power flows, for positive and negative 
0 .  

that an analogous phenomenon has been observed and studied in the negative-index 
transmission-line couplers investigated by others [ 16,191. 

The coupling problem between the DNG and DPS open slab waveguides may be 
addressed by extending the analysis of surface-wave propagation in a planar dielectric 
slab, developed in the previous section, to the case in which the geometry is perturbed 
by the presence of a second slab. Clearly, the electromagnetic field distribution will 
be modified and part of the power flow guided by one slab may flow into the other 
one, owing to the coupling effect, as it happens between any two open waveguides 
placed close to each other. 

The geometry of the problem is shown in Fig. 9.11, in which the two open slab 
waveguides separated and surrounded by a simple medium (e.g., free space) are 
considered. In this figure, a simple physical description of the contradirectional 
coupling of power flows in the two slabs is also given in terms of the phase and 
Poynting vectors. 

Performing a rigorous modal analysis of the structure by starting from the Maxwell 
curl equations and imposing the suitable boundary conditions at all the interfaces, 
similar to what was done in the previous section, we obtain the following dispersion 
relation for the supported TE modes: 

Displ Dispz = clc2 (9.41) 
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Fig. 9.11 The geometry of the contradirectional coupler with the DNG and DPS slab wave- 
guides, with a sketch of the power flows for a given supported mode. After Ref. [43]. Copyright 
@ 2002 IEEE. 

where Dispi = 0 (with i = 1,2) is the modal dispersion relation of each slab alone 
(i.e.. without coupling), represented by the product of the dispersion relations of even 
and odd TE modes in the isolated slab. These formulas are consistent with relations 
(9.30) and (9.31) (with a slight modification due to the different notation for the slab 
thickness): 

D ~ S P ~  = (,/=cot (,/=$) + pi,/=) . 

The coefficients on the right side of (9.41) are given by 

c .  - -e  -h (p: - p:) + pi l~q - p~5l~;l sin (4Gci i )  (9.43) 

and they take into account the coupling effect. We note that the dispersion relation 
(9.41) is valid for any complex en and pn (n = l,2).The TM mode dispersion 
relation may be straightforwardly obtained using the duality principle. When the two 
waveguides are far apart (i.e., h is sufficiently large) the coupling term on the right 
side of the dispersion relation vanish, and equation (9.41) reduces into the dispersion 
relations for the two “decoupled” open waveguides, as expected. In this case, the 
modes in each waveguide are unperturbed, and thus there is no coupling present. 

* - 2  
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When h is reduced, however, the modes supported by each one of the two wave- 
guides have field distributions that extend into the region occupied by the other 
waveguide. This can perturb their field distributions and their wavenumbers, and 
the new modes satisfy the exact dispersion relation (9.41) with a field distribution 
obtainable by solving the boundary value problem (their expressions are not reported 
here for sake of brevity). 

If h is not too small, the presence of one waveguide will perturb only slightly 
the guided modes that are derived for each waveguide separately. For an illustrative 
example, Fig. 9.12 shows the real part of the longitudinal component of Poynting 
vector distribution for the geometry of Fig. 9.11, first using the modes obtained for the 
two “isolated” waveguides (left panel) in which they have wavenumbers @yo coup’ing 

, respectively, and then using the exact solutions of the boundary- 
value problem (right panel). From this figure, it is clear how the mode distribution 
is slightly changed by the presence of the coupling between the two waveguides. 
The two modes have been chosen to have similar p, and the two waveguides carry 
power in opposite directions. Clearly, following relation (9.27) the wavenumbers are 
also slightly modified by the cou ling effect, and the new wavenumbers, taking the 
coupling into account, are PI coupEng and p r p l i n g  . In the following we will show 
how such modifications may be explained and justified. 

Assuming that the coupling is not very strong and that the mode distribution is 
not dramatically modified by such coupling, we may approach the problem using 
a perturbation technique [%I. Let the unperturbed geometry be defined by the 
following constitutive parameters: 

and g o  coupling 

EZ inregion 2 
EO elsewhere 

p2 inregion 2 
po elsewhere (9.44) 

that is, the unperturbed case is represented by the presence of only the second wave- 
guide surrounded by vacuum. The “perturbed” problem, characterized by &) (y) 
and j&l) (y) as in Fig. 9.11, consists of the geometry of interest, with the two wave- 
guides separated by the distance h. The perturbing functions Aal = d’) - d’) and 
Apl  = p( l )  - p(’) are obviously different from zero only in region 1. (Analogously, 
we may define the perturbing functions Aez and Apz obtained by considering the 
second waveguide as the perturbation. In such a case, AQ and Apz are of course 
different from zero only in region 2.) 

Since the field distribution is only slightly perturbed by the coupling, as shown in 
Fig. 9.12, we apply the standard perturbation technique [58] to approximate the per- 
turbed fields as a superposition of the proper modes of the two open waveguides that 
are derived separately in the two unperturbed cases. In other words, the perturbed 
field {E’(z, y), H’(z, y)} is approximated by a linear superposition of the unper- 
turbed fields in each slab that are obtained by solving the exact dispersion relation 
(9.41) in the limit of h -+ 00. 
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Fig. 9.12 Real part of the longitudinal component of Poynting vector distribution for the 
DPS and DNG waveguides, each supporting one mode. (a) Neglecting the coupling-that is, 
when the two waveguides are considered individually. (b) Solving exactly the boundary-value 
problem including the coupling effect. 
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If the two waveguides are monomodal and they support, respectively, the modes 
{el(y), hl(y)} and {e2(y), h2(y)} [with field expressions given by (9.26)-(9.29)] 
the total perturbed fields may be expressed as 

The amplitudes of the two modes vary with x, since, due to the coupling between 
the two modes, we expect a variation of the field and the power distribution as the 
modes travel in the coupled waveguides. The longitudinal wavenumbers p1 and /32 

are the solutions of the respective unperturbed dispersion relations Displ = 0 and 
Disp2 = 0. The e and h expressions are normalized to carry unit power along the 
x-direction. In the case of a multimodal excitation, formula (9.45) may obviously be 
rewritten as 

where Ni is the number of real solutions for propagating guided modes for Dispi = 0 
(i = 1, 2). 

Applying theLorentz reciprocity theorem [58],  one may write a set of N1 equations 
(varying m = 1 . . . N1) for the unperturbed modes of the first waveguide: 

(9.47) 

(9.48) 
-W 

= - j w  EoAE~E'(z, y) - ek2(y)ejPm1" + p0Ap2H1(x, y) h&2(y)ejPm1zdy s 
sz 
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where A and B are defined as in (9.47). Applying the mode orthogonality and 
considering the fact that for not-too-close waveguides we have 

(ei, x hkm* + ein* x hkm) endy << (ei, x hin* + ein* x hi,) - 2dy  

(9.49) 

-W 7 -W 7 
due to the decaying behavior of the modes outside the waveguide, (9.47) and (9.48) 
may be approximated by the coupling equations: 

(9.50) 

(9.5 1) 

with 

Ckml  = 5 s [A&2&(9) ' ekZ(9) + &2hL1(9) ' hkZ(!/)] dy 
SZ 

Ckm2 = s [A&lekn,(y) ' ekl(9) + b l  h&(!/) . hkl(Y)] dy 
s1 

Equations (9.50) and (9.51) represent a set of N I  + N2 differential equations to be 
solved for the a (x) unknowns. 

The system admits solutions of the form a,i = amie 3rmrz, where the coeffi- 
cients y satisfy the algebraic system: 

( 0 )  _ '  . 

(9.52) 

and the relations ymi + Pmi = K, for i = 1, 2 and any m, with K an arbitrary 
parameter. Imposing the condition that the determinant of (9.52) is zero, together 
with the latter relations, gives a system to be solved for the ymi, after which the 
coefficients a (z) may be determined with suitable boundary conditions. 

In general, using the reciprocity theorem it may be shown that Ckml = fC&..  
This represents a generalization of the well-known formula (with the plus sign) valid 
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for a standard directional coupler with waveguides [58] .  The sign here depends on 
the direction of the coupling: The plus is valid for any directional coupling for which 
the two modes are either both forward or both backward modes; and the minus for a 
contradirectional coupling for which the two modes carry their net power in opposite 
directions. We should also be reminded that a non-negligible coupling between the 
two modes with a sufficiently high value of the coupling coefficient C, is possible 
only when the two P’s  are close enough. 

Let us now consider the coupling between two given modes with longitudinal 
wavenumbers P11 and Plz in the waveguide coupler in Fig. 9.13. At z = 0, only 
the second waveguide is excited. As is conventionally done, by solving the system 
(9.52) we obtain the amplitude coefficients: 

. 4  -0 
all (z) = AeJ 
a12 (z) = A e j  Clll 412;p11z [ 

2 lZz sin (Sz) 
(9.53) 

sin (sz) + js cos (sz)] 

with S = /( v)2 + ClllC112 and where A is related to the amplitude of the 
excitation. 

When two conventional DPS slabs are considered, as in a standard waveguide 
directional coupler (Fig. 9.13a), the coupling of one waveguide with the other is 
“directional,” since the two modes (which must have somewhat similar 0) carry 

power in the same direction. In this case, S = 

always a real quantity. The power carried by the two distinct modes is 

which shows the sinusoidal exchange of power, typical of a directional coupler [58] .  
In this case it is well known that the maximum power transferred from one mode to 
the other is given by 

where P2 (0) = &S2 is the power in the second mode at the beginning of the 
coupling (at z = 0). This value is obtained when the length of the coupler is chosen 
to be L = g. These are well-known classic results and, of course, they correspond 
to the interference of two perturbed modes [solutions of (9.41)], which propagate in 
the whole structure and interfere along the coupler [43,58]. 

Let us now analyze the case depicted in Fig. 9.13b-that is, when the waveguide 
coupler consists of a DPS and a DNG slab. In this case, provided that one of the 
supported modes concentrate most of its power in the DNG slab (and not in its 
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Fig. 9.13 (a) Standard directional coupler with DPS-DPS waveguides (similar to one in 
Ref. [58], page 226). (b) Contradirectional (backward) coupler formed by a DPS and a DNG 
slab. 

surrounding region), a contradirectional coupling is expected, since the two nonper- 
turbed modes, which must have similar p to allow a significant coupling, should 
support power flows with opposite directions in the two materials (as derived in the 

previous section) and therefore S = /r - /C111I2. Notice that in this 

case, whatever power is coupled in the DNG slab, we expect to find it in port 1 and 
not in port 3, typical of a contradirectional coupling. 

We now assume that the values of the two nonperturbed betas ,811 and ,812 are 
fixed. These values are close numbers and correspond to two nonperturbed modes, 
of which the one in the DNG is backward (since it concentrates its power flow inside 
the DNG slab). When the distance between the two waveguides is sufficiently large, 
the coupling is very weak between the two modes and we may assume that the 

corresponding coupling coefficient satisfies IC111I2 < (v)’. In this case, 
S is a real quantity and the exchange of power remains sinusoidal as in a standard 
directional coupler. However, when we decrease the distance h between the two 
waveguides, the spatial period of the power exchange between the two waveguides 
increases (since C~ll increases with the coupling), contrary to the case of two DPS 
waveguides in which such spatial period would decrease. The closer the waveguides 
are, the longer the coupler should be to achieve the maximum power transfer from 
port 2 to port 1. Even with this anomaly, reducing the distance between the two 
waveguides leads to the increase of the value of the total coupled power, since this 
quantity still follows relation (9.55). Eventually, as we decrease h further, we reach 
a point for which S = 0 and the spatial period of the sinusoidal exchange of coupled 
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Fig. 9.14 Reflectivity of a contradirectional (backward) coupler for different values of its 
parameters. This may effectively be similar to the corresponding reflectivity of conventional 
grating (e.g., Ref. [58], page 240). However, here the "reflected power is in a separate channel 
and is isolated from the "incident" one. In other words, their power flows are spatially localized 
in the two different waveguides. 

power becomes infinite. At this point, in principle a "complete" exchange of power 
cannot be achieved with a finite coupler. 

It is important to mention that these features may also be confirmed through solv- 
ing the modes from the exact dispersion relation (9.41). In a standard waveguide 
directional coupler, when we fix the geometry of the two waveguides, and therefore 

, as h is reduced the exact solutions of fix the values of Byo 
(9.41) pypzing and PY?'ling move farther from each other, and their interference 
spatial period consequently decreases. When instead we consider an antidirectional 
coupler with a DPS and a DNG, it may be verified that the two solutions 
and p y p l i n g  move closer as h is reduced, thus increasing the spatial period of their 
coupling. We get to a point (which is given in the approximate perturbation analysis 
by the condition S = 0) at which the two supported modes have the same beta (i.e., 

), and the interference is no longer present (i.e., its period 
is infinite). By decreasing the distance h further, and consequently increasing the 
coupling coefficient Clll, an imaginary S is resulted in the perturbation approach- 
that is, an exponential variation (rather than a sinusoidal variation) for the power 
exchange, in which the power is "redirected" back to port 1 continuously and expo- 
nentially with a factor that increases as h decreases. In the exact approach, this is 
due to the fact that the two modes, shares the same real part, but starts having two 
oppositely-valued imaginary parts! The contradirectional (i.e., backward) coupler 
with a strong coupling, therefore, becomes somehow similar to a periodically corru- 

and PY c o u p l i n g  

p y p l i n g  - c o u p l i n g  
- Pz 
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gated waveguide (grating reflector [58]) in its stopband, but with the unusual feature 
that the “reflected” power is effectively flowing in a separate channel and is isolated 
from the “incident” one, which implies that their power flows are spatially localized 
in the two different waveguides. These results may be summarized in Fig. 9.14, 
where the reflectivity of the contradirectional (backward) coupler is plotted versus 
the difference between the two nonperturbed wavenumbers for different values of the 
coupling factor. 
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10.1 INTRODUCTION 

In recent years, two discoveries have led to the possibility of manufacturing materials 
and structures with dispersive behaviors previously thought unattainable. These 
are media with an effective negative index of refraction (NIR) also known as the 
left handed media (LHM) or negative-refractive-index metamaterials [ 1-41, and the 
possibility of measuring superluminal* or negative group velocities also generically 
referred to as abnormal group velocities [5-91. In this manuscript we study the 
underlying physics and manifestations of these rather unusual behaviors, and we 
will see how a medium can be manufactured that simultaneously demonstrates both 
properties. But before proceeding, let us describe our motivation behind this approach 
and see how combining these two effects may lead to the design of new classes of 
materials with novel and counterintuitive dispersive effects, a subject we have termed 
“Dispersion Engineering.” 

The fact that any physically realizable medium must be dispersive is the conse- 
quence of the principle of causality, which demands that no effect precedes its cause 
[ 101. In the simple case of one-dimensional analysis, the dispersive behavior of a 
medium can be described by the dependence of the propagation vector on frequency 
(or equally well the dependence of the frequency on the wavevector) according to 

‘The term superZuminaZ implies group velocities in excess of the speed of light in vacuum. 
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Ref. 11 

(10.1) 

In equation (10.1) the coefficients of expansion up, and vg are the phase and group 
velocities, and $ is the group velocity dispersion (GVD) given by 

1 2 
- - -1wo + v,yw - wo) + ,$(w - wo) + * .  * 

(10.2) 

With the photonic dispersion relation k (w)  = w n,(w)/c, the dispersive effects of 
equation (10.1) can be also described in terms of the phase index (commonly referred 
to as the index of refraction, np) and its higher-order derivatives according to 

W 

C 
k(w)  = -nP(w) 

(10.3) 

In equation (10.3) the second coefficient of expansion is the group delay which is 
related to the phase index by 

n, = np + w dn,(w)/dw (10.4) 

The relations between the phase index and phase velocity, group index and group 
velocity are then as follows: 

(10.5) 

(10.6) 

So far, in discussing the dispersive effects signified by phase velocity, group velocity, 
group velocity dispersion, and so on, we have made an implicit assumption that the 
medium under consideration has a non-negligible spatial extent, or more rigorously 
L > A, where L is the physical length of the one dimensional medium and A is 
the wavelength of the excitation. However, the aforementioned dispersive effects 
can be formulated in a more general way that is equally applicable to both spatially 
extended (L > A) or spatially negligible systems (L < A). This formulation relies 
on the notion of transfer function (impulse response) which can be used to relate the 
input and the output. The transfer function, also sometimes referred to as the system 
response or network function, is a complex quantity given by 

(10.7) 
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With a relatively constant value for the transmission function magnitude, or equally 
well a sufficiently narrowband excitation, the phase of the transfer function can be 
expanded in a Taylor series according to 

or 

(10.9) 

where the phase delay (T~), group delay ( T ~ ) ,  and group delay dispersion (GDD) are 
given by 

1 2 $(w) = - T ~ W O  - Tg(W - W O )  - -GDD(w - W O )  + . * *  

2 

T - _  PI 
P -  

wo 

GDD=-- 

(10.10) 

(10.11) 

(10.12) 

The connections between the phase and group delays are applicable to both spa- 
tially extended and spatially negligible systems [equations (10.1 1) and (10.12)], and 
the phase and group velocity (applicable to a spatially extended system, X > L) is 
then as follows: 

C L vg = - = -  
79 

(10.13) 

(10.14) 

In fact, equation (10.14) can be obtained using more rigorous arguments based on 
the Fourier transform theorem [12], or more intuitively by considering the wave 
propagation through a slab of thickness L , matched to its surrounding media (i.e., 
no reflection at the interfaces), having the transmission function T = exp(j4) = 
exp[-j k(w)  L]. Finally, two more points are worth mentioning. First, from equation 
(10.14) it is clear that for a physical system of length L the sign of the group velocity 
and group delay are the same. Second, when discussing a spatially extended system, 
the fundamental requirements of causality, also referred to as “primitive causality,” 
must be augmented with relativistic causality, also referred to as “macroscopic” or 
“Einstein causality” [13]. We note that the concept of primitive causality is more 
general than macroscopic causality since it does not rely on the existence of a finite 
speed (c) for propagation of the “cause.” 

Now, the notion of “Dispersion Engineering,” alluded to earlier, reflects our desire 
to synthesize and control various dispersive effects, and in particular their associated 
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signs, as manifested by the phase delay, group delay, group delay dispersion, and 
so on [see equation (10.9) or similarly equations (10.1) or (10.3)]. In the remaining 
parts of this manuscript, we focus only on the first two terms of the expansion-that 
is, the phase and group delays or equally well the phase and group velocities-and 
leave the consideration of the group delay dispersion to later times. 

From a physical point of view, the phase and group delays are the delays en- 
countered by sinusoidal time harmonics and the wave packet envelope (composed 
of such harmonics) as they propagate through the media, respectively. Under usual 
propagation conditions, both the phase and group velocities (read phase and group 
delays) are positive, indicating the fact that both the sinusoidal time harmonics and 
the pulse envelope move away from the source. 

In the case of negative phase but positive group velocity (read negative phase 
but positive group delays) the sinusoidal time harmonics move toward the source 
while the wave packet envelope moves away from the source. This phenomenon is 
sometimes referred to as backward-wave propagation [ 141 and is the signature of the 
LHM studies so far [4,15-171. 

More interestingly, under some conditions, it is also possible to observe positive 
phase but negative group velocities (read positive phase but negative group delays) 
[ 18-21]. Under these circumstances, for a finite-length medium exhibiting such 
abnormal behavior and illuminated by a source outside, the observer will note that the 
sinusoidal time harmonics move away from the source but the wave packet envelope 
(inside the medium) moves toward the source. Stated otherwise, our observer will 
note that the peak (envelope) of a well-behaved pulse will emerge from the medium 
prior to the peak of the incident pulse entering it. This counterintuitive behavior is a 
subclass of the so-called “abnormal group velocities,” which will be revisited shortly 
in the next section. 

Finally, by combining the backward waves and abnormal group velocities, one can 
synthesize a medium with simultaneous negative phase and group velocities (read 
negative phase and group delays.) Under this condition, both the sinusoidal time 
harmonics and the wave packet envelope move toward the source. This case is of 
particular interest to us and will be investigated theoretically and experimentally in 
the following sections. 

In Section 10.2 we revisit the concept of abnormal group velocities (superluminal 
or negative) and will provide a short overview of the field. We begin our study of 
the NRI media exhibiting both negative phase and negative group velocities with 
the simple case of slab having a Lorentzian magnetic and electric response. This 
simple case will set the stage for more detailed analysis of NRI media realized 
by periodically loading a transmission line which exhibits both negative phase and 
group delays. The theoretical and experimental studies of such media can be found 
in Section 10.4. For the sake of brevity, the results of similar observations in an LHM 
consisting of split-ring resonator (SRR) and strip wires will be presented elsewhere, 
whereas an interested reader may consult Ref. 22 for a brief description of this 
situation. Finally, we summarize our work in Section 10.5. 
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10.2 ABNORMAL GROUP VELOCITY 

Soon after Einstein’s formulation of special relativity in 1905, the question of wave 
propagation in a medium with Lorentz-Lorenz dispersion captured the attention of 
the researchers of the time [23]. It was known, at least theoretically, that within the 
region of anomalous dispersion for such medium the group velocitydescribing the 
velocity by which the peak and hence the envelope of a well-behaved wave packet 
travels-can exceed the speed of light in vacuum; that is, it becomes superluminal. 
On its face value, this theoretical possibility was in contrast with the requirements of 
relativistic causality as formulated by Einstein. Sommerfeld and then his postdoctoral 
fellow, Brillouin, undertook the analysis of this problem, the result of which was 
published in 1914 and later republished and expanded in Ref. 23. The two authors 
defined or clarified many velocity terms such as phase, group, energy, “signal,”+ 
and most importantly the first and second forerunner (precursor) velocities. One 
important aspect of their work was establishing the fact that the velocity of the 
earliest field oscillations known as the front will never exceed the speed of light 
in vacuum; and in fact, under all circumstances it remains exactly luminal. While 
this seminal work confirmed the compatibility of the relativistic causality and wave 
propagation in a Lorentzian medium, Brillouin along with many others considered 
the superluminal or negative group velocities as unphysical, and perhaps a mere 
mathematical consideration [24-261. 

Decades later, in 1970, Garret and McCumber revisited the same problem and 
concluded that under certain easily satisfied conditions, superluminal or negative 
group velocities may be observed and are therefore physical [27]. In their work, they 
considered the propagation of Gaussian packets and showed that these could travel 
at abnormal group velocities without significant distortion of the pulse shape even 
though the pulse was attenuated. 

Chu and Wong (1982) were the first to experimentally demonstrate the existence 
of abnormal group velocities for picosecond laser pulses propagating through the 
excitonic absorption line of a GaP:N sample [28]. Since then, abnormal group 
velocities have been measured in various structures including photonic crystals, 
undersized waveguides, misaligned horn antennas, side-by-side prisms, and inverted 
media [6,8,20,21,29-331. 

Figure 10.1 summarizes the results. Consider a medium of length L, excited 
from left by a smoothly varying pulse (such as a Gaussian or Sinc). The pulse on 
the right is the transmitted pulse (output). Under normal propagation conditions the 
medium group index [see equation (10.4)] is greater than one, which implies a group 
delay larger than L / c  and a group velocity less than c. In other words, the output 
pulse peak (envelope) is delayed as compared to the input. On the other hand, for 

t The “signal” velocity as defined by Sommerfeld and Brillouin is approximately the velocity of the half- 
maximum point, and by their own admission is an arbitrary construct. In other words, in light of new 
observations of abnormal velocities, the so-called “signal” velocity should not be confused with genuine 
information velocity, which is constrained by relativistic causality. 
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Fig. 10.1 A well-behaved wave packet incident from left and traveling through a medium of 
length L. 

0 < ng < 1, the group velocity is larger than c and the group delay is less than L/c .  
This is the case of superluminal group velocity. When the group index approaches 
zero (n, t 0), the group velocity grows unbounded (vg t 00) and the group delay 
approaches zero ( T ~  t 0). To the observer, the peak of the output pulse in Fig. 10.1 
appears at the right interface (z  = L )  at the same time the peak of the input wave 
packet is at the left interface (z  = 0). Now, if we continue with our analysis and 
consider a negative group index (ng < 0), then both the group velocity and group 
delay are also negative (vg < 0, T~ < 0). Under this condition, the observer notes 
that the peak of the output leaves the medium prior to the peak of the input entering 
it, as it is depicted in Fig. 10.1. 

While Fig. 10.1 depicts the pulse propagation in space, better insight may be 
obtained by considering the behavior in time. Figure 10.2 shows the abnormal wave 
propagation in the time domain. The picture is equally applicable to both cases of 
superluminal or negative group velocities. Whereas in the later case the input and 
output are to be understood as the input to and output from the medium of length L 
(depicted in Fig. lO.l), in the former case the input is to be understood as a wave 
packet traveling a distance L through vacuum and the output is a pulse traveling 
through a medium of the same length with 0 < ng < 1. There are two points worth 
emphasizing. 

First, for the passive medium, the superluminal or negative group velocity is 
accompanied by attenuation of the pulse. In other words, for such a medium, the 
wave packets depicted in Fig. 10.2 are considered to be normalized to their respective 
maximum values. However, such attenuation is not a necessary condition for all cases 
of abnormal group velocities. In fact, it has been shown that an inverted medium 
(a medium with gain) can display abnormal group velocities without attenuation 

Second, as Fig. 10.2 shows and as discussed in more detail in Sections 10.4.4.2 
and 10.4.4.3, while the peak of the output precedes the input peak, the earliest part 
of the output pulse-presented by a discontinuity in the envelope or higher-order 
derivatives of the envelope-is retarded with respect to the input. In other words, 
while the peak of the output is advanced in time, its front is not. In this sense, the 
“genuine information” conveyed by our electromagnetic pulse (for example, a “1” or 

[ 18-2 1,341. 
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Fig. 10.2 The input and output wave packets. The output pulse travels with superluminal or 
negative group velocities, while its front (the discontinuity) propagates at luminal speed. 

a “0”) is carried by the points of nonanalyticity (discontinuities) [8,9], and therefore 
from the theoretical point of view there is no contradiction between the behavior 
depicted in Fig. 10.2 and the requirements of causality. It must be added that for a 
Lorentzian medium, the oscillation frequency of the points of nonanalyticity (front) is 
extremely high while their associated amplitude is very low; hence, from a practical 
point of view, the detection of the front and precursor fields may not be the most 
convenient scheme for routine detection of signals. 

10.3 WAVE PROPAGATION IN A SLAB WITH NEGATIVE INDEX OF 
REFRACTION 

A brief review of current literature shows that the meaning of negative group velocity 
and its connection with LHM is mired by misunderstandings and misconceptions 
[2,4,35,36]. The subject of negative group velocity in such media is of particular 
interest, since most theoretical and experimental studies presented so far only consider 
the case of antiparallel phase and group velocities (backward waves) for which the 
group velocity is positive and points away from the radiating source, while the phase 
velocity is negative and points toward the source [3.4,15,36]. To begin our discussion 
of negative group velocity and group delay in LHM, we start with the simple case of 
a slab with simultaneous negative permittivity and permeability. 

The medium is characterized by [3] 

(10.15) 
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Fig. 10.3 The real and imaginary parts of the index of refraction. weo = 0 GHz, wep = 
2n x 28 GHz, wmo = 2 l ~  x 21 GHz, wmP = 2n X 23 GHz. Y~ = 1.6 x an 
Tm = 4 x 1 o g s - 1 .  

and by 

(10.16 

where wepr wmp are the electric and magnetic plasma frequencies and weO, wmo ar 
the electric and magnetic resonance frequencies respectively. The -ye and ym are th 
phenomenological electric and magnetic damping constants. In regions for which th 
real parts of the effective permeability and permittivity are both negative, the inde 
of refraction is also negative [4]. Figure 10.3 shows the real and imaginary parts o 
the effective index calculated from nej j  = ,/=,/=. 

Figure 10.4 shows the geometry of the problem under consideration. A slal 
of thickness L with dispersion characteristics depicted in Fig. 10.3 is irradiated b, 
plane waves from a source located to its left at negative z-values. The transmissio 
coefficient (magnitude and phase) can then be calculated according to 

(10.17 

where t i , j  and ri,j are the Fresnel transmission and reflection coefficients correspond 
ing to the slab boundaries and k2 is given by 

21T 
x k2 = -712 cos O2 (10.18 

In the following we assume that the NIR medium is surrounded by vacuum (nl 

123 = 1 )  and is illuminated at normal incidence (8, = 0). 
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Fig. 10.4 A slab with NIR irradiated by a source to its left. 
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Fig. 10.5 Transmission magnitude and phase for a 1-cm-thick section of an NIR medium. 
All material parameters are the same as in Fig. 10.3. 

Figure 10.5 shows the transmission function (magnitude and phase) for a left- 
handed slab, 1 cm thick. Note that in the vicinity of minimal transmission, corre- 
sponding to the region of anomalous dispersion, the slope of the transmission phase 
changes sign, implying a change of the sign for the group delay and group velocity. 

The group delay and the real part of the index are plotted in Fig. 10.6. From the 
figure it is evident that group delay and hence the group velocity are negative within 
the region of anomalous dispersion and are positive away from it. Note that the real 
part of the index is negative from 18 to 25.4 GHz, while at the frequency vt = 21.2 
GHz the group delay changes sign from negative to positive. 
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Fig. 10.6 Group delay and real part of the index for a 1-cm-thick section of NIR medium. 
All material parameters are the same as in Fig. 10.3. 

This implies that for frequencies greater than vt the group velocity is positive, 
whereas the phase velocity remains negative, corresponding to the backward-wave 
propagation discussed earlier. The fact that the group velocity is positive for frequen- 
cies greater than vt can also be seen from the behavior of the index of refraction in 
Fig. 10.6. In this frequency range, w dn/& is positive and larger than n, indicating 
a positive value for the group velocity calculated from* 

C C vg = = -  
n+wdn/du ng 

(10.19) 

where n9 is the group index. The existence of regions of negative grouphegative 
phase velocities, and positive grouphegative phase velocities (backward waves) for 
the above case can also be verified using full-wave simulations. 

From the above discussions it is clear that LHM, similar to right-handed media 
(RHM), possesses an anomalous dispersion region in which the group velocity is 
negative. However, the LHM anomalous dispersion region differs from that of RHM 
in at least two respects. First, in the case of LHM, the negative group velocity is also 
accompanied with a negative phase velocity. Second, at the minimal dispersion point 
(dn/dw = 0) or frequency interval for which dn/dw M 0 the LHM exhibits a group 

*Equation (10.19) assumes perfect matching between the slab and the surrounding media, that is, r12 = 
~ 2 3  = 0. The effects of mismatches (interfaces) which produce negligible positive delays will not alter 
the conclusions presented above. Note that equation (10.1 1). which is used to plot the group delay in 
Fig. 10.6, takes into account the positive delays associated with the interfaces. 
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Fig. 10.7 Group delay for detuned (solid curve) and non-detuned (dashed curve) lDPC with 
8 LHM slabs separated by air. 

velocity given by 

C 
vg x v, = - c 0 

n 
(10.20) 

which is negative, in contrast to the case of LHM. 
Finally, note that negative refractive index is an artificial dispersion in which the 

characteristics of the underlying subwavelength unit cell control the overall dispersive 
behavior. It is then possible to slightly vary the frequency response of each unit cell 
(detuning) in order to broaden the frequency range over which negative phase and 
group delays are exhibited. As a proof of concept, Fig. 10.7 shows the group delays 
for a one-dimensional photonic crystal (IDPC) consisting of 8 RHM slabs separated 
by air. For the detuned structure (solid curve), the magnetic resonance of each slab is 
increased by 1 GHz as compared to the previous layer-starting with wmo = 21 GHz 
for the first slab-while keeping all other parameters the same as before. The figure 
also shows the group delay for the lDPC without detuning (dashed curve). As a 
result of detuning, the negative group delay bandwidth in Fig. 10.7 has increased 
from 1.7 GHz to 2 GHz (an increase of 18%) while the absolute value of negative 
group delay has decreased (from -3.7 ns to -0.97 ns). The above tradeoff between 
the bandwidth and the amount of negative delay is a fundamental design constraint. 
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Fig. 10.8 A unit cell of a transmission line loaded with lumped series impedance 2, and 
shunt admittance Ysh.  

10.4 PERIODICALLY LOADED TRANSMISSION LINE WITH AN 
EFFECTIVE NEGATIVE INDEX OF REFRACTION AND 
NEGATIVE GROUP INDEX 

In the previous section we discuss the ideal, but not practical, case of a slab or 
multiple slabs having an effective negative index of refraction. Here, we concentrate 
on the actual structures that are manufactured to exhibit such responses. We begin 
with the general theory of the periodically loaded transmission line (PLTL) and show 
how such a device can be modified in order to exhibit combinations of positive or 
negative phase and group delays. 

10.4.1 General Theory of PLTL Exhibiting Negative Phase Delay 

Figure 10.8 shows the unit cell of a transmission line repeatedly loaded with lumped 
series impedance (Z,) and shunt inductance (Ysh). This periodic structure can be 
considered as an effective medium, provided that the dimensions of the unit cell are 
small as compared to the excitation wavelength. The study of such PLTL with the 
help of a dispersion diagram is a subject well examined in electromagnetic theory 
[37,38] and will be used in our analysis. 

The loading elements Z,, and Ysh can be chosen such that the overall result is a 
medium exhibiting backward-wave propagation-that is, a medium with an effective 
negative index of refraction. This approach in designing a medium with backward- 
wave propagation (negative phase velocity) is well-described in other chapters of this 
book and will not be repeated here. It suffices to say that a two-dimensional version 
of such a PLTL has been used to demonstrate focusing of a radiating cylindrical 
source [ 151. 
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20 = 150 R 
d = 2 c m  

Fig. 10.9 Unit cell of the propos d loaded transmission line which exhibits n gative refractive 
index as well as negative group delay. 'Qpical component values are also shown. After 
Ref. [41]. Copyright @ 2004 IEEE. 

10.4.2 Frequency Domain Simulations 

For the PLTL discussed in Section 10.4.1 the loading elements 2, and Ysh can be 
chosen such that the resulting structure exhibits both negative group delay (negative 
group velocity) and negative phase delay (negative phase velocity). Figure 10.9 
shows the unit cell of such a PLTL [39]. Using the ABCD transmission matrix, the 
complex propagation constant ( y )  of the periodic structure is given by 

cos kd ('8 + Y8h202) sin kd z s x h  

2 
coshyd = cos[(a + j p ) d ]  = cos kd + j 

(10.21) 
Here, a and p are the attenuation and phase constants of the periodically loaded 
medium, whereas k ,  20, and d are the propagation constant, the characteristic im- 
pedance, and the length of the unit cell for the unloaded line, respectively. 

In order for our PLTL to exhibit a region of anomalous dispersion with negative 
group delay in addition to negative phase delay (an effective negative index), the line 
is loaded in series with capacitor C, and an R,L,C, resonator, and in shunt with an 
inductor L& [40]. The series impedance (2,) and shunt admittance (Y&) of (10.21) 
are then given by 

220  

(10.22) 

1 
x h  = 7 (10.23) 

JwL8h 
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Fig. 10.10 Dispersion diagram (solid curve) of the proposed transmission line medium 
exhibiting simultaneous negative refractive index and negative group velocity in the first 
passband. Dotted curve shows the dispersion of the periodic medium without the &LTCT 
resonators. After Ref. 1401. Copyright @ 2003 IEEE. 

Note that the resonant frequency of the parallel R, LTC, resonator, fo = 1 / 2 7 r m ,  
is also approximately the center frequency of the region of anomalous dispersion. 

Figure 10.10 (solid curve) shows the dispersion diagram of the proposed periodic 
structure. The component values used to produce the curves are indicated in Fig. 10.9. 
The characteristic impedance of the unloaded line used in the simulation is 150 R and 
the length of the unit cell (d) is 2 cm. The first passband extends from frequency fl to 
f4 which also spans the region of anomalous dispersion (fi < f < f3). The second 
stopband (f4 < f < f5) and second passband (f > f5). along with the appropriate 
signs for the phase and group velocities in each branch are also shown. 

Figure 10.10 indicates that within the first passband (f1 < f < f4) branches 
marked I and I1 can describe the wave propagation in our PLTL. A question then 
can be asked. Which of the two branches correctly describes the wave propagation 
through the structure? To answer this, we may consider the following. First, the 
dashed curve in Fig. 10.10 shows the dispersion relation for a transmission line 
without the RTLTCT resonant circuit. As stated in Section 10.4.1 and described in 
Ref. 15, such a transmission line has been shown to exhibit an equivalent negative 
index of refraction-that is, a negative value for @-which designates the branch 
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Fig. 10.11 (a) Calculated 1521 I for the PLTL of Fig. 10.9 with different number of stages. 
(b) Calculated unwrapped S21 phase for the same transmission line with different number of 
stages. After Ref. [40]. Copyright @ 2003 IEEE. 

I as the appropriate choice. We may now consider the presence of the R,L,C, 
resonator as a perturbation to the previously studied case, and as such we once again 
must choose branch I as our dispersion curve. Second, the difference in the insertion 
phase for two transmission lines with different lengths can be used to deduce the 
proper branch. This point is discussed in the next section, and again it is seen that 
branch I correctly describes the wave propagation in our PLTL. Finally, we should 
note that within the second passband (f > f ~ ) ,  the dispersive behavior depicted by 
the branch IV properly describes the wave propagation for our PLTL. 

At this point, a few remarks regarding the relative signs of the phase and group 
velocities are in order. As Fig. 10.10 shows, for branch I and within the frequency 
range fl < f < fi the phase and group velocities are antiparallel (have opposite 
signs). This traditionally describes backward-wave propagation [ 141 and is the 
regime under which the theoretical and experimental work in Refs. 3, 15, and 36 
were carried out. The frequency range fi < f < f3 of branch I corresponds to the 
region of anomalous dispersion for which the phase and group velocities are parallel 
and are both negative. This frequency interval designates a band for which the term 
negative group velocity can be correctly used in connection with NRI metamaterials. 
The frequency range f3 < f < f4 is once again the region of backward-wave 
propagation, whereas for f > f5 in branch IV the PLTL behaves as a normal medium 
with parallel and positive phase and group velocities. 

To properly describe the wave propagation through a finite length PLTL, a unit 
cell of which was shown in Fig. 10.9, we will use the scattering matrix formulation. 
In order to closely emulate the experimental results of the next section, we will 
monotonically increase the number of unit cells from one to four and terminate the 
transmission line with a 50-R impedance. 

Figures 10.1 l a  and 10.1 lb  show the Szl (transmission function) magnitude and 
phase for the PLTL as the number of unit cells is increased. The frequency bands 
corresponding to the first and second passbands and stopbands along with the region 
of anomalous dispersion are also displayed. As expected, within the region of 
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Fig. 10.12 Calculated group delay for the PLTL of Fig. 10.9 with 1, 2, 3, and 4 stages. 
This figure only shows the region of anomalous dispersion and its vicinity. After Ref. [40]. 
Copyright @ 2003 IEEE. 

anomalous dispersion (fz < f < f3), the transmission magnitude is minimal, and 
it is within this frequency band that the negative group delay is to be observed 
[18]. Figure 10.1 l b  shows the unwrapped transmission phase for the same range of 
frequencies. From the figure it is clear that within the region of anomalous dispersion 
(f2 < f < f3) the derivative of the phase function (4) reverses its sign, hence 
implying the existence of a negative group delay and group velocity. 

The fact that our PLTL, within the frequency bands f1 < f < f4, exhibits 
an equivalent negative index of refraction can also be verified from Fig. 10.11b. 
Assuming an unbounded medium (i.e., neglecting the mismatches*), the difference 
between the insertion phases of two PLTLs of lengths dl and d2 is given by 

(10.24) 

Note that for dz > dl and normal media (n > 0), the difference in the insertion 
phase calculated from (10.24) is negative (A4 c 0), whereas from Fig. 10.1 lb, in the 
frequency band 0.5 < f < 2.3 GHz, it is positive, indicating an equivalent negative 

*Including effects of the boundaries (mismatches) only complicates the calculations but will not change 
the final conclusions. 
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refractive index. Interestingly, as Fig. 10.1 lb  implies, for the second passband 
(f > 2.3 GHz) A4 is negative, implying a normal transmission line operation. 
Finally, we expect that as the number of stages increases, the finite-length PLTL 
more closely approximates the dispersion characteristics of infinitely long PLTL 
depicted in Fig. 10.10. 

Figure 10.12 shows the calculated group delay [equation (10.1 l)] for our PLTL 
with 1, 2, 3, and 4 unit cells. In accordance with the results for an infinitely long 
PLTL depicted in Fig. 10.10, it is seen that for a finite-length PLTL, the group delay 
is negative within the frequency band f2 < f < f3 and is positive away from the 
anomalous dispersion region. It must be noted that as the length of the finite-length 
PLTL is increased, the amount of negative delay (in absolute value sense) is also 
increased. In other words, longer transmission lines produce more time advances 
(negative delays) as compared to shorter lines, however, at the cost of reducing the 
transmitted signal amplitude. In the next section a frequency-domain setup is used 
to verify these theoretical predictions. 

10.4.3 Frequency Domain Measurements 

To verify our theoretical predictions, a coplanar waveguide (CPW), printed on Rogers 
5880 substrate with dielectric constant of 2.2 and thickness of 0.381 mm, was de- 
signed. The CPW line was periodically loaded with surface-mounted chips of size 
1.5 mm by 0.5 mm, such that one unit cell was approximately 2 cm long. To perform 
the experiment, PLTLs with 1, 2, 3, and 4 unit cells were fabricated. Figure 10.13 
shows a PLTL with 3 stages. The device was connected to a vector network analyzer 
(HP-8722C), and in order to measure the transmission function (&I) a full two-port 
calibration was performed. 

The magnitude and phase of ,521 are displayed in Figs. 10.14a and 10.14b respec- 
tively. The stopbands, passbands, and anomalous dispersion bands are also shown. 
Figure 10.14a clearly indicates that, in accordance with the theoretical predictions of 
the previous section, as the number of unit cells is increased, the magnitude of the 
insertion loss also increases. Furthermore, as discussed earlier, Fig. 10.14b shows 
that in the frequency band f~ < f < f4 the phase differences (A+) between two 
PLTLs of different lengths (d2 > d l )  are positive, implying that the PLTLs exhibit an 
effective negative index of refraction. On the other hand, for f > f4 ,  A+ is negative, 
indicating a normal transmission line behavior. Finally, in Fig. 10.14b the region of 
anomalous dispersion (f2 < f < f3) can be identified by the reversal of the slope. 

While the overall agreement between the theoretical predictions of Figs. 10.11a 
and 10.11b and the experimental results of Figs. 10.14a and 10.14b is good, in 
general, a shift of 50 to 80 MHz can be detected. For example, the experimental 
value for the center frequency of the region of anomalous dispersion is 1.29 GHz, 
whereas the theoretically predicated value is approximately 1.37 GHz. Moreover, 
around the resonances, more losses are predicted by the simulations as compared to 
the experimental results. 
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Fig. 10.13 PLTL with 3 stages. The board is Rogers 5880 with a substrate thickness of 0.381 
mm, arelative permittivity of 2.2, a loss tangent of O.ooo9, and volume and surface resistivities 
of 2 x lo7 MRecm and 3 x lo8 Ma,  respectively. The copper cladding thickness is 17 pm. 
The center conductor of the waveguide has a width of 4 mm, and the slots have a width of 5 
mm. After Ref. [41]. Copyright @ 2004 IEEE. 
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Fig. 10.14 (a) Measured S21 magnitudes of the PLTLs with one, two, three, and four unit 
cells. (b) Measured unwrapped S21 phases of the same PLTLs. After Ref. [40]. Copyright 
@ 2003 IEEE. 



PLTL WITH AN EFFECTIVE NIR AND NEGATIVE GROUP INDEX 399 

-4 

-5 
1 .o 1.2 1.4 1.6 1.8 2.0 

Frequency (GHz) 

Fig. 10.15 Measured group delay for the PLTL with 1,2,3, and 4 unit cells. Larger negative 
delays (in an absolute sense) are measured for longer transmission lines. After Ref. [40]. 
Copyright @ 2003 IEEE. 

These discrepancies can be accounted for by considering a few factors. First, in all 
of our simulations we have used the nominal values associated with the surface-mount 
lumped elements provided by the manufacturer. Our experience has shown that in 
many cases, in part due to the embedded parasitics, the actual measured values can 
be significantly different. Second, in our simulations the resistance and conductance 
associated with the inductor L, and the capacitor C, have been ignored. The effect 
of this series resistance for the inductor and conductance for the capacitor is to reduce 
the overall impedance of the parallel R,L,C,. resonant circuit, hence reducing the 
theoretically predicted insertion losses. Third, for the PLTLs with more than one 
stage, the resonant frequency for each stage is slightly different from the others 
due to variations in the component values. This nonhomogeneity was not taken into 
account in our theoretical model, and in practice it broadens the anomalous dispersion 
region, thus reducing the overall measured insertion losses in addition to decreasing 
the slope of the phase within this region. 

The group delay for each truncated PLTL is shown in Fig. 10.15. The frequency 
band of interest is the anomalous dispersion region (f2 < f < f3) in which the group 
delay is more negative for longer transmission lines. The measured maximum group 
delay for the four-stage PLTL is approximately -4 ns compared to -7 ns obtained 
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from the simulations. This difference is attributed to the decrease in slope of the 
transmission phase as discussed above. 

10.4.4 Time Domain Simulations 

In our discussion of Section 10.1 we observed that the phase delay is the delay 
associated with underlying sinusoidal harmonics, whereas the group delay is the 
delay of the pulse envelope. In a system supporting negative phase delay the output 
sinusoidal harmonics lead the input, while in a system with negative group delay, 
the peak of the output wave packet precedes the peak of the input wave packet. In 
this section, we theoretically and experimentally study these effects directly in the 
time domain [41]. Since the concept of negative phase delay (phase lead) is well 
understood within standard circuit analysis, we spend most of our time describing the 
negative group delay for structures supporting both behaviors. We start our discussion 
with simulating a PLTL which exhibits negative or positive phase or group delays 
depending on the frequency of operation and show how despite the counterintuitive 
shift of the pulse envelope to earlier times, Einstein’s causality is not violated. 

10.4.4.1 Negative Group Delay In order to study time-domain behavior of our 
PLTL, three loaded CPW transmission lines with unit cells depicted in Fig. 10.9 
were considered. The only difference between the unit cell studied here and the one 
discussed in Sections 10.4.2 and 10.4.3 is that the value of R, was reduced from 
300 R to 150 0. The total lengths of the lines with one, two, and three unit cells 
were 2,4, and 6 cm, respectively. The transmission lines were excited with Gaussian 
pulses of temporal length 30 ns, modulated at the resonance frequency of the series 
R,L,C, loading element (1.3 GHz). Using the specification sheet for the Rogers 
5880 samples with conductor thickness of 17 pm, the substrate and conductor losses 
were included in our analysis, whereas the lumped components used in the simulation 
were assumed to be ideal. 

The simulations were performed using Agilent’s Advanced Design System (ADS), 
where Fig. 10.16 shows the calculated voltage waveforms at the input and output of 
the loaded lines. The peaks of all three output pulses precede the input peaks by an 
amount proportional to the length of the line. In other words, since the longer lines 
have more unit cells, they generate a larger negative group delay. This negative delay 
is mostly due to the series RTLTCT resonator and thus resonant absorption losses 
are also introduced, as indicated by the drop in magnitude of the output voltage 
waveforms. For example, in the case of the 2-cm transmission line, a negative delay 
of -0.89 ns is predicted while the output voltage peak is approximately 15 percent of 
the input. Note that some of the predicted losses are due to mismatched impedances 
between the loaded transmission line (150 R) and the source (50 0). 

10.4.4.2 Luminal Front Velocity Figure 10.16 shows that the pulse peak and 
envelope propagate with a negative group delay and consequently the pulse travels 
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Fig. 10.16 Time-domain simulations showing negative group delay for the 2-cm, 4-cm, and 
6-cm transmission lines, with delays of -0.89 ns, -1.17 ns, and -1.53 ns, respectively. 
After Ref. [41]. Copyright @ 2004 IEEE. 

with a negative group velocity. Contrary to the traditional point of view, negative 
and superluminal group velocities are therefore physical and measurable and do not 
contradict the requirements of relativistic causality. While a rigorous analysis of this 
point can be found elsewhere [S], a short justification can be provided by considering 
the following: Every causal signal has a starting point in time, before which the signal 
does not exist. This starting point is marked by a discontinuity in the pulse envelope 
or higher-order derivatives of the envelope, at which point the pulse is no longer 
analytic. These points of nonanalyticity are the conveyers of genuine informution 
and can be shown to propagate at exactly the speed of light c under all circumstances 
[S, 9,231 and thereby fulfill the requirements of the relativistic causality. In short, 
for a smoothly varying pulse, presented by an analytical function, there is no more 
information in the pulse peak than in its earliest parts. 

The propagation of these discontinuities can be examined using time-domain 
simulations as shown in Fig. 10.17. The discontinuities in the pulse waveform were 
established by introducing a “turning-on” point, commonly referred to as the front. 
The propagation of the front through the PLTLs of different lengths, having negative 
group delays, can be seen by examining the first 0.3 ns of the pulse evolution, shown 
on a logarithmic scale in Fig. 10.17. The output pulse fronts for the three structures 
all suffer the expected positive luminal delays with respect to the input fronts, given 
by L/c ,  where L is the length of the transmission line. Thus the simulations show 
that causality is preserved as seen by the fact that discontinuities in the pulse travel 
at exactly the speed of light in vacuum. 

While the simulations indicate the causal propagation of information by the points 
of nonanalyticity, the amplitudes associated with these fronts are particularly small, 
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Fig. 10.17 Time-domain simulations of the modulated pulse fronts, plotted on a logarithmic 
(dB) scale. The input pulse front always precedes the output front by a time equal to L/c,  
where L is the length of the line. On the other hand (see Fig. 10.16), the output peak precedes 
the input peak. After Ref. [41]. Copyright @ 2004 IEEE. 

making their experimental detection a challenging task. This difficulty is one of 
the reasons that we practically detect a “signal” by observing its maximum or half- 
maximum points, which in turn can be made to propagate superluminally or with 
negative velocities. 

10.4.4.3 Physical Mechanism Underlying Negative Group Dehy The mecha- 
nism behind the pulse advancement can be also explained in terms of pulse reshap- 
ing. We can study the time evolution of a pulse by considering the spatiotemporal 
voltage distributions of the individual Fourier components making up the pulse. The 
system under study, shown schematically in Fig. 10.18, consists of two sections of 
regular transmission line occupying the regions z < 0 and z > a, surrounding a 
PLTL section of length a. The PLTL is assumed to be a transmission line of length 
2 cm, having a dispersive behavior determined by the dispersion relation (10.21) and 
operated within the anomalous dispersion band. That is, the PLTL exhibits both 
negative refractive index and negative group velocity properties. 

Consider a modulated Gaussian pulse, with center frequency in the anomalous dis- 
persion band, excited on the z < 0 transmission line segment. By Fourier analysis, 
this waveform can be decomposed into many single-frequency sinusoidal compo- 
nents. 
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z = o  z=a  

Fig. 10.18 A transmission line consisting of two regular lines (z  < 0 and z > a) and a 
PLTL (0 < z < a) used for the simulations that explain the mechanism behind negative 
group delay. After Ref. [41]. Copyright @ 2004 IEEE. 

The peak of the pulse is formed at the position where these individual frequency 
components interfere constructively, and the nulls of the pulse are formed where 
these components interfere destructively. 

The space- and time-dependent voltage distribution V, (z ,  t) for the nth spectral 
component of the Gaussian pulse is given by 

G, COS(U,~ - k , ~ ) ,  E < O  

Vn(z,  t )  = G,e-&n* cos(w,t - &z), 0 < z < a (10.25) I G,e-&na cos(w,t - k,[z - a] - Pna), z > a 

Here wn and G, are the frequency and amplitude of the nth harmonic, and k, is the 
propagation constant on the regular transmission line, in the regions z < 0 and z > a. 
In the PLTL section 0 < z < a, the propagation and the attenuation constants of the 
nth harmonic are /3, and a,, respectively, calculated from the dispersion relation 
(10.21). Note that, according to (10.25), the peak of the pulse strikes the interface 
z = 0 at t = 0. 

Figure 10.19a displays three spectral components of a Gaussian pulse with fre- 
quencies in the anomalous dispersion band at the instant t = -13 ns, calculated from 
(10.25). In addition to the underlying harmonics, Fig. 10.19a also displays the pulse 
envelope, so that the peak location can be clearly identified. It is evident from the 
figure that the frequency components add up in phase and a peak is formed in the 
z < 0 section of the transmission line. 

As time progresses, the pulse propagates along the transmission line and the early 
part of the pulse encounters the PLTL section. By virtue of the phase compensation 
caused by the anomalous dispersion, the negative group delay transmission line re- 
arranges the relative phases of the individual frequency components. Since the phase 
response of the line is approximately linear and the magnitude response is approxi- 
mately flat over the bandwidth of the Gaussian pulse, the frequency components add 
up to produce a close copy of the original pulse, in the region z > a. This output 
pulse appears at t = -0.5 ns, before the input peak reaches the first interface, as 
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Fig. 10.19 Simulations illustrating the pulse-reshaping mechanism which underlies the nega- 
tive group delay. (a) Three main frequency components of the Gaussian pulse and the resulting 
pulse envelope 13 ns before the input peak reaches the loaded transmission line interface. (b) 
The same three frequency components 0.5 ns before the input peak reaches the interface; at 
this point a peak has been already formed at the output. After Ref. [41]. Copyright @ 2004 
IEEE. 

shown in Fig. 10.19b. Note that the output pulse amplitude is reduced in magnitude 
relative to the input pulse, though the envelope retains its basic shape. Figure 10.19b 
thus shows that the peak of the output pulse appears at the output terminal 0.5 ns 
before the input peak reaches the input terminal. Note that the effects of reflections 
from the interfaces in these simulations have been ignored. These reflections produce 
standing waves in the 0 < z < a section, and thus cause a further reduction in the 
transmitted pulse amplitude; however, they do not affect the location of the pulse 
Peak- 

10.4.5 Time-Domain Measurements 

To verify our theoretical predictions, coplanar waveguides with 1,2, and 3 unit cells 
depicted in Fig. 10.9 were manufactured (recall that in our time-domain analysis the 
value of h!,. is 150 0). The experimental setup used to measure the group delay is 
schematically shown in Fig. 10.20. A baseband Gaussian pulse of temporal width 
40 ns was created with a Tektronix AWG2041 arbitrary waveform generator (ARB) 
and was modulated with a Rohde & Schwartz SMV03 vector signal generator at 
frequencies between 1.1 and 1.5 GHz. The modulated signal was then divided by a 
1 x 2 splitter. Any discrepancy in length between the two cables joining the splitter 
to the oscilloscope will introduce an inherent delay between the two paths, thereby 
affecting the accuracy of the final group delay measurements. Therefore, both outputs 
of the splitter were initially connected to the Channels 1 and 3 of an Agilent 54846 
Infiniium oscilloscope (bandwidth 2.25 GHz) for a calibration measurement. The 
delay was measured on the Infiniium scope and electronically equalized to OkO. 1 ns, 
using the oscilloscope internal functions. After this calibration step, the CPW was 
inserted into the Channel 3 cable, as indicated in Fig. 10.20. In this way, both the input 
and output signal of the PLTL were simultaneously recorded on the oscilloscope. 

Figure 10.21a shows the behavior of the 3-stage loaded transmission line operated 
at 1.1 1 GHz, in the band of positive group delay-that is, away from the anomalous 
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shown in Fig. 10.19b. Note that the output pulse amplitude is reduced in magnitude 
relative to the input pulse, though the envelope retains its basic shape. Figure 10.19b 
thus shows that the peak of the output pulse appears at the output terminal 0.5 ns 
before the input peak reaches the input terminal. Note that the effects of reflections 
from the interfaces in these simulations have been ignored. These reflections produce 
standing waves in the 0 < z < a section, and thus cause a further reduction in the 
transmitted pulse amplitude; however, they do not affect the location of the pulse 
peak. 

10.4.5 Time-Domain Measurements 

To verify our theoretical predictions, coplanar waveguides with 1,2, and 3 unit cells 
depicted in Fig. 10.9 were manufactured (recall that in our time-domain analysis the 
value of R, is 150 0). The experimental setup used to measure the group delay is 
schematically shown in Fig. 10.20. A baseband Gaussian pulse of temporal width 
40 ns was created with a Tektronix AWG2041 arbitrary waveform generator (ARB) 
and was modulated with a Rohde & Schwartz SMV03 vector signal generator at 
frequencies between 1.1 and 1.5 GHz. The modulated signal was then divided by a 
1 x 2 splitter. Any discrepancy in length between the two cables joining the splitter 
to the oscilloscope will introduce an inherent delay between the two paths, thereby 
affecting the accuracy of the final group delay measurements. Therefore, both outputs 
of the splitter were initially connected to the Channels 1 and 3 of an Agilent 54846 
Infiniium oscilloscope (bandwidth 2.25 GHz) for a calibration measurement. The 
delay was measured on the Infiniium scope and electronically equalized to OfO.l ns, 
using the oscilloscope internal functions. After this calibration step, the CPW was 
inserted into the Channel 3 cable, as indicated in Fig. 10.20. In this way, both the input 
and output signal of the PLTL were simultaneously recorded on the oscilloscope. 

Figure 10.21a shows the behavior of the 3-stage loaded transmission line operated 
at 1.1 1 GHz, in the band of positive group delay-that is, away from the anomalous 



PLTL WITH AN EFFECTIVE NIR AND NEGATIVE GROUP INDEX 405 

Fig. 10.20 Schematic diagram of the experimental setup used to measure negative group 
delay in the time domain. After Ref. [41]. Copyright @ 2004 IEEE. 
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Fig. 10.21 Time-domain experimental results for the 3-stage negative delay circuit at two 
frequencies. (a) Positive delay at a center frequency of 1.11 GHz, 160 MHz below resonance. 
(b) Negative group delay at the resonance frequency of 1.27 GHz. After Ref. [41]. Copyright 
@ 2004 IEEE. 

dispersion band. For this case a positive group delay of approximately +1.5 ns, 
due to propagation along the 6-cm line, was observed. Under normal conditions, 
therefore, the peak of the output pulse appears at a later time than the peak of the 
input pulse. In contrast, Fig. 10.21b shows the input and output pulses when the 
PLTL is operated within the anomalous dispersion band, at the resonance frequency 
of 1.27 GHz, where a negative group delay of -3.1 ns was measured. Note that 
in Fig. 10.21b the output peak precedes the input peak; this unusual outcome is the 
meaning of negative group delay. 
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Fig. 10.22 Experimental results showing extracted pulse envelopes for the 1-, 2- and 3- 
stage transmission lines, with delays of -1.6 ns, -1.9 ns, and -3.1 ns, respectively. After 
Ref. [41]. Copyright @ 2004 IEEE. 

Figure 10.22 shows the measured input pulse (solid curve) and output pulses 
(dashed curves) at the point of maximum negative group delay, approximately 1.27 
GHz, for the 1-, 2-, and 3-stage circuits. For clarity, only the pulse envelopes are 
shown. These curves are the experimental validation of Fig. 10.16. The envelopes 
were extracted from the raw data by fitting a three-parameter Gaussian curve. The 
peak arrival times were acquired from the Gaussian fit parameters to within f 0 . 2  ns. 
At the RrLrCr resonance frequency, the 1-, 2- and 3-stage circuits exhibit group 
delays of -1.6 ns, -1.9 ns and -3.1 ns, respectively. Note that, as expected, 
the greatest negative delay and the greatest attenuation are found for the longest 
transmission line, and the least negative delay and least attenuation are found for the 
shortest line. 

In comparing Figs. 10.16 and 10.22 the trend that longer lines have greater nega- 
tive delay and greater insertion loss is common to both simulation and experiment; 
however, there are also some discrepancies. For example, there is generally less 
attenuation and more pulse advancement in the experiments. These discrepancies 
are due to the differences between the components used in the simulations and those 
in the actual devices. First, nominal values for the components were used in the 
simulations. In practice, however, the components have manufacturer stated* toler- 
ances of f5%. By including these tolerances in our simulations, we found that the 
discrepancies between the measured and calculated group delay can be reduced by 
half. The group delay is particularly sensitive to changes in the resistor or capacitor 
in the RrLrCr resonator, and variation in these component values will affect the 

‘As alluded to in Section 10.4.3, the actual tolerance may well be above the manufacturer stated values. 
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slope of the transmission phase, thus altering the amount of negative group delay. 
Second, and more importantly, the simulations use ideal component models, and 
thus the self-resonant behaviors of the capacitors and inductors were not included. 
In practice, the self-resonances can change the overall impedance of the RrLrCr 
resonator, thereby altering the device attenuation and negative group delay. These 
two effects may be included in the simulations if measured S-parameters are used for 
each component, a tedious but effective method of improving the agreement between 
experiment and simulation. 

10.5 CONCLUSIONS 

In this chapter we have studied the dynamics of wave propagation in a general medium 
having both an effective negative refractive index and a negative group velocity. Our 
study was motivated by our desire to control the dispersive effects such as phase 
velocity, group velocity, and group velocity dispersion in general, and the associated 
signs of the first two effects in particular. 

We began our studies by formulating equivalent ways of describing the aforemen- 
tioned dispersive effects in terms of the phase index and its higher-order derivatives, 
or more generally by formulating these effects in terms of various delays such as 
phase delay, group delay, group delay dispersion, and so on. Our attention has 
been focused on the phase and group delays and their associated signs, leaving the 
remaining dispersive terms for later considerations. 

We then proceeded to discuss the concept of abnormal group velocities for which 
the group velocity can become superluminal (exceeding the speed of light in vacuum) 
or negative, without violating the principles of relativistic causality. This then served 
as a conduit to bring together the two notions of negative phase and negative group 
velocities (negative phase and negative group delays) in structures that can exhibit 
both behaviors in addition to normal wave propagation (positive phase and group 
velocities) or backward waves (negative phase but positive group velocities.) 

We continued our analysis with the case of a single slab possessing Lorentzian 
electric and magnetic responses. This case was chosen for both its generality and 
simplicity. We theoretically showed that such a medium can support both negative 
phase and group velocities. 

We then considered a practical periodically loaded transmission line (PLTL) to 
demonstrate some of the above theoretical considerations. A CPW transmission 
line was periodically loaded with series capacitor and shunt inductor in addition to 
a resonant RLC circuit such that the overall transmission line exhibited positive or 
negative phase velocity and positive or negative group velocity depending of the exact 
combination. Assuming an infinitely long PLTL, the structure was studied using 
periodic analysis. For a finite-length structure, the scattering matrix formulation 
was used to calculate the medium’s response. The theoretical findings were further 
confirmed using frequency-domain measurements. We also performed theoretical 
and experimental studies of our PLTL in the time domain. It was observed that such a 
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medium can be made to operate with both negative phase and group delays (negative 
phase and group velocities) for which the output peak envelope precedes the input 
Peak. 
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