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Nader Engheta, Andrea Alù, Richard W. Ziolkowski, and
Aycan Erentok

2.1 Introduction 43

2.2 Subwavelength Cavities and Waveguides 44

2.3 Subwavelength Cylindrical and Spherical Core–Shell Systems 54

2.4 ENG–MNG and DPS–DNG Matched Metamaterial Pairs for Resonant
Enhancements of Source-Generated Fields 60

2.5 Efficient, Electrically Small Dipole Antennas: DNG Nested Shells 62

vii



viii CONTENTS

2.6 Efficient, Electrically Small Dipole Antennas: ENG Nested Shells—Analysis 70

2.7 Efficient, Electrically Small Dipole Antennas: HFSS Simulations of Dipole–ENG
Shell Systems 73

2.8 Metamaterial Realization of an Artificial Magnetic Conductor for Antenna
Applications 76

2.9 Zero-Index Metamaterials for Antenna Applications 80

2.10 Summary 83

References 83

CHAPTER 3 WAVEGUIDE EXPERIMENTS TO CHARACTERIZE PROPERTIES
OF SNG AND DNG METAMATERIALS 87

Silvio Hrabar

3.1 Introduction 87

3.2 Basic Types of Bulk Metamaterials with Inclusions 88

3.2.1 Thin-Wire Epsilon-Negative (ENG) Metamaterial 88

3.2.2 SRR Array Mu-Negative (MNG) Metamaterial 89

3.2.3 DNG Metamaterial Based on Thin Wires and SRRs 91

3.3 Theoretical Analysis of Rectangular Waveguide Filled with General
Metamaterial 91

3.4 Investigation of Rectangular Waveguide Filled with 2D Isotropic ENG
Metamaterial 96

3.5 Investigation of Rectangular Waveguide Filled with 2D Isotropic MNG
Metamaterial 99

3.6 Investigation of Rectangular Waveguide Filled with 2D Uniaxial MNG
Metamaterial 100

3.7 Investigation of Rectangular Waveguide Filled with 2D Isotropic DNG
Metamaterial 105

3.8 Investigation of Subwavelength Resonator 106

3.9 Conclusions 110

References 110

CHAPTER 4 REFRACTION EXPERIMENTS IN WAVEGUIDE
ENVIRONMENTS 113

Tomasz M. Grzegorczyk, Jin Au Kong, and Ran Lixin

4.1 Introduction 113

4.2 Microscopic and Macroscopic Views of Metamaterials 114

4.2.1 Microscopic View: Rods and Rings as Building Blocks of
Metamaterials 114

4.2.2 Macroscopic View: Effective Medium with Negative Constitutive
Parameters 116

4.2.2.1 Modeling Metamaterials 116

4.2.2.2 Properties of Metamaterials 118

4.3 Measurement Techniques 123

4.3.1 Experimental Constraints 123

4.3.1.1 Obtaining a Plane-Wave Incidence 123

4.3.1.2 Contacting Issue with Waveguide Walls 125

4.3.2 Measurements of Various Rings 125

4.3.2.1 Axially Symmetric SRR 125

4.3.2.2 Omega (�) SRR 128



CONTENTS ix

4.3.2.3 Solid-State Structure 131

4.3.2.4 S Ring 135

4.4 Conclusion 138

Acknowledgments 138

References 139

SECTION II

TWO-DIMENSIONAL PLANAR NEGATIVE-INDEX STRUCTURES 141

CHAPTER 5 ANTENNA APPLICATIONS AND SUBWAVELENGTH FOCUSING
USING NEGATIVE-REFRACTIVE-INDEX TRANSMISSION LINE
STRUCTURES 143

George V. Eleftheriades

5.1 Introduction 143

5.2 Planar Transmission Line Media with Negative Refractive Index 144

5.3 Zero-Degree Phase-Shifting Lines and Applications 145

5.3.1 Nonradiating Metamaterial Phase-Shifting Lines 149

5.3.2 Series-Fed Antenna Arrays with Reduced Beam Squinting 150

5.3.3 Broadband Wilkinson Balun Using Microstrip Metamaterial
Lines 153

5.3.4 Low-Profile and Small Ring Antennas 157

5.4 Backward Leaky-Wave Antenna Radiating in Its Fundamental Spatial
Harmonic 160

5.5 Superresolving NRI Transmission Line Lens 162

5.6 Detailed Dispersion of Planar NRI-TL Media 164

Acknowledgments 167

References 167

CHAPTER 6 RESONANCE CONE ANTENNAS 171

Keith G. Balmain and Andrea A. E. Lüttgen
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PREFACE

While we were organizing, coordinating, and guest editing the October 2003
special issue of the IEEE Transactions on Antennas and Propagation on the
topic of metamaterials, we began toying with the idea of editing a book on this
topic with contributions from experts who are active in this area of research. The
senior acquisitions editor of the IEEE Press, Cathy Faduska, was also interested
in a book project on this timely topic, and during the 2002 IEEE Antennas
and Propagation Society International Symposium in San Antonio, Texas, she
suggested to us, and encouraged us, to begin this project. And finally, with a
longer time dilation than expected, we have completed this book.

The amount of research in this metamaterials area has grown extremely
quickly in this time frame. We have tried to capture, through the selected authors,
both some interesting physics and engineering explorations in this area. Why
this two-pronged approach? We note that physics asks how nature works, and
engineering asks how the works of nature can be used. Thus, we wanted to
include some of the metamaterial fundamentals and how they are already being
applied.

What is a “metamaterial”? In recent years, there has been a growing inter-
est in the fabricated structures and composite materials that either mimic known
material responses or qualitatively have new, physically realizable response func-
tions that do not occur or may not be readily available in nature. The unconven-
tional response functions of these metamaterials are often generated by artificially
fabricated inclusions or inhomogeneities embedded in a host medium or con-
nected to or embedded on a host surface. Exotic properties for such metamaterials
have been predicted; many experiments have confirmed our basic understanding
of many of them. The underlying interest in metamaterials is the potential to have
the ability to engineer the electromagnetic and optical properties of materials for
a variety of applications. The impact of metamaterials may be enormous: If one
can tailor and manipulate the wave properties, significant decreases in the size
and weight of components, devices, and systems along with enhancements in
their performance appear to be realizable.

The pursuit of artificial materials for electromagnetic applications is not
new; this activity has a long history which dates back to Jadagis Chunder Bose
in 1898 when he worked and experimented on the constructed twisted elements
that exhibit properties nowadays known as chiral characteristics. In the early part
of the twentieth century, Karl Ferdinand Lindman studied wave interaction with
collections of metallic helices as artificial chiral media. Artificial dielectrics were
explored, for example, in the 1950s and 1960s for lightweight microwave antenna
lenses. Artificial chiral materials were investigated extensively in the 1980s and
1990s for microwave radar absorbers and other applications. The developments of

xv
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electromagnetic bandgap (EBG) structured materials and single-negative (SNG)
and double-negative (DNG) materials and their fascinating properties have driven
the recent explosive interest in metamaterials.

We have divided this book into two major classes of metamaterials: the SNG
and DNG metamaterials and the EBG structured metamaterials. The SNG and
DNG metamaterials involve inclusions and interinclusion distances that are much
smaller than a wavelength and, as a consequence, such media can be described
by homogenization and effective media concepts. On the other hand, the EBG
metamaterials involve distances that are on the order of half a wavelength or more
and are described by the Bragg reflection and other periodic media concepts. We
have furthered subdivided each of these classes into their three-dimensional (3D
volumetric) and two-dimensional (2D planar or surface) realizations. Examples
of these types of metamaterials are presented, and their known and anticipated
properties are reviewed in this book.

This book begins with DNG metamaterial concepts, simulations, and exper-
iments in Chapters 1 to 6. In Chapter 1 we present a brief recapitulation of the
history of artificial materials and metamaterials and their exotic properties, includ-
ing negative indices of refraction, negative angles of refraction, and focusing
using planar slabs. This is followed in Chapter 2 with theoretical and numeri-
cal studies of SNG and DNG metamaterials and their particular applications to
waveguiding environments and to antennas and is presented by us and our stu-
dents, Andrea Alù and Aycan Erentok. Next in Chapter 3 Silvio Hrabar describes
several waveguide experiments that have been used to characterize the proper-
ties of SNG and DNG metamaterials. Tomasz Grzegorczyk, Jin Au Kong, and
Ran Lixin present in Chapter 4 their several experiments in waveguide environ-
ments to demonstrate the negative refraction properties of DNG metamaterials. In
Chapter 5 George Eleftheriades discusses the realization of planar metamaterials
and their demonstration of many of the exotic properties of DNG metamate-
rials, including evanescent wave growth and subwavelength focusing. The use
of a planar metamaterial to realize resonance cone antennas is shown by Keith
Balmain and Andrea Lüttgen in Chapter 6. Christophe Caloz and Tatsuo Itoh
describe in Chapter 7 a variety of microwave coupler and resonator applica-
tions of negative-refractive-index planar structures. The book is then transitioned
into a review of EBG metamaterial concepts, simulations, and experiments in
Chapters 8 to 14. Maria Kafesaki and Costas Soukoulis provide a historical
perspective and a review of the fundamental principles in modeling 3D peri-
odic structures with an emphasis on volumetric EBGs in Chapter 8. Peter de
Maagt and Peter Huggard describe in Chapter 9 the fabrication, experimenta-
tion, and applications of EBG structures. In Chapter 10 Boris Gralak, Stefan
Enoch, Gérard Tayeb present their work on superprism effects and EBG antenna
applications. Dan Sievenpiper provides in Chapter 11 a review of the theory,
fabrication, and applications of high-impedance ground planes. In Chapter 12
Yahya Rahmat-Samii and Fan Yang discuss their development of complex arti-
ficial ground planes for antenna engineering. Stefano Maci and Alessio Cucini
address frequency-selective EBG surfaces in Chapter 13. Finally, John McVay,
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Nader Engheta, and Ahmad Hoorfar describe in Chapter 14 their application of
space-filling curves to realize high-impedance ground planes.

In all chapters, the authors have presented recent research advances asso-
ciated with a diverse set of metamaterials. As noted, the chapters include a
combination of theoretical, numerical, and experimental contributions to the
understanding of the behavior of metamaterials and to their potential applica-
tions in components, devices, and systems. We sincerely hope that the work
presented provide the newcomer to metamaterial research with the ability to
come up to speed with a basic understanding of metamaterials and their poten-
tial for a variety of applications. For the advanced metamaterial researcher, the
material reviews the state-of-the-art as viewed by many seasoned veterans in this
area. In both cases, the extensive reference lists should provide ample additional
reading materials for further considerations.

We would like to thank Cathy Faduska, Anne Reifsnyder, Developmental
Editor, and Lisa Van Horn, Production Editor, at IEEE Press for their efforts in
interfacing between us, IEEE Press, and John Wiley & Sons. When problems
arose, they provided excellent support. Most of all, we would like to thank all
the contributing authors for their time and wonderful efforts. We believe that the
outcome is an impressive resource for future efforts.

We sincerely hope that the materials presented here will stimulate dis-
cussions and new avenues of research in this very exciting research area of
metamaterials. We note

Science never solves a problem without creating ten more.

George Bernard Shaw (1856–1950)

Have fun reading!
Nader Engheta

Richard W. Ziolkowski
Philadelphia, Pennsylvania
Tucson, Arizona
May 2006
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CHAPTER1
INTRODUCTION, HISTORY,
AND SELECTED TOPICS IN
FUNDAMENTAL THEORIES
OF METAMATERIALS

Richard W. Ziolkowski and Nader Engheta

1.1 INTRODUCTION

To the best of our knowledge, the first attempt to explore the concept of “arti-
ficial” materials appears to trace back to the late part of the nineteenth century
when in 1898 Jagadis Chunder Bose conducted the first microwave experiment
on twisted structures—geometries that were essentially artificial chiral elements
by today’s terminology [1]. In 1914, Lindman worked on “artificial” chiral media
by embedding many randomly oriented small wire helices in a host medium [2].
In 1948, Kock [3] made lightweight microwave lenses by arranging conduct-
ing spheres, disks, and strips periodically and effectively tailoring the effective
refractive index of the artificial media. Since then, artificial complex materials
have been the subject of research for many investigators worldwide. In recent
years new concepts in synthesis and novel fabrication techniques have allowed
the construction of structures and composite materials that mimic known material
responses or that qualitatively have new, physically realizable response functions
that do not occur or may not be readily available in nature. These metamateri-
als can in principle be synthesized by embedding various constituents/inclusions
with novel geometric shapes and forms in some host media (Fig. 1.1). Various
types of electromagnetic composite media, such as double-negative (DNG) mate-
rials, chiral materials, omega media, wire media, bianisotropic media, linear and
nonlinear media, and local and nonlocal media, to name a few, have been studied
by various research groups worldwide.

As is well known, in particulate composite media, electromagnetic waves
interact with the inclusions, inducing electric and magnetic moments, which in
turn affect the macroscopic effective permittivity and permeability of the bulk
composite “medium.” Since metamaterials can be synthesized by embedding
artificially fabricated inclusions in a specified host medium or on a host surface,
this provides the designer with a large collection of independent parameters (or

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.
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6 CHAPTER 1 INTRODUCTION, HISTORY, AND SELECTED TOPICS

Figure 1.1 Generic sketch of a volumetric metamaterial synthesized by embedding vari-
ous inclusions in a host medium.

degrees of freedom)—such as the properties of the host materials; the size, shape,
and composition of the inclusions; and the density, arrangement, and alignment of
these inclusions—to work with in order to engineer a metamaterial with specific
electromagnetic response functions not found in each of the individual con-
stituents. All of these design parameters can play a key role in the final outcome
of the synthesis process. Among these, the geometry (or shape) of the inclusions
is one that can provide a variety of new possibilities for metamaterials processing.

Recently, the idea of complex materials in which both the permittivity and
the permeability possess negative real values at certain frequencies has received
considerable attention. In 1967, Veselago theoretically investigated plane-wave
propagation in a material whose permittivity and permeability were assumed to
be simultaneously negative [4]. His theoretical study showed that for a monochro-
matic uniform plane wave in such a medium the direction of the Poynting vector
is antiparallel to the direction of the phase velocity, contrary to the case of plane-
wave propagation in conventional simple media. In recent years, Smith, Schultz,
and their group constructed such a composite medium for the microwave regime
and demonstrated experimentally the presence of anomalous refraction in this
medium [5, 6].

For metamaterials with negative permittivity and permeability, several
names and terminologies have been suggested, such as “left-handed” media
[4–10]; media with negative refractive index [4–7, 9]; “backward-wave media”
(BW media) [11]; and “double-negative (DNG)” metamaterials [12], to name a
few. Many research groups all over the world are now studying various aspects
of this class of metamaterials, and several ideas and suggestions for future appli-
cations of these materials have been proposed.

It is well known that the response of a system to the presence of an
electromagnetic field is determined to a large extent by the properties of the
materials involved. We describe these properties by defining the macroscopic
parameters permittivity ε and permeability µ of these materials. This allows
for the classification of a medium as follows. A medium with both permittivity
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Figure 1.2 Material classifica-
tions.
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and permeability greater than zero (ε > 0, µ > 0) will be designated a double-
positive (DPS) medium. Most naturally occurring media (e.g., dielectrics) fall
under this designation. A medium with permittivity less than zero and permeabil-
ity greater than zero (ε < 0, µ > 0) will be designated an epsilon-negative (ENG)
medium. In certain frequency regimes many plasmas exhibit this characteristic.
For example, noble metals (e.g., silver, gold) behave in this manner in the infrared
(IR) and visible frequency domains. A medium with the permittivity greater than
zero and permeability less than zero (ε > 0, µ < 0) will be designated a mu-
negative (MNG) medium. In certain frequency regimes some gyrotropic materials
exhibit this characteristic. Artificial materials have been constructed that also have
DPS, ENG, and MNG properties. A medium with both the permittivity and per-
meability less than zero (ε < 0, µ < 0) will be designated a DNG medium. To
date, this class of materials has only been demonstrated with artificial constructs.
This medium classification can be graphically illustrated as shown in Figure 1.2.

While one often describes a material by some constant (frequency-
independent) value of the permittivity and permeability, in reality all material
properties are frequency dependent. There are several material models that have
been constructed to describe the frequency response of materials. Because the
magnetic field of an electromagnetic wave is smaller than its electric field by
the wave impedance of the medium in which it is propagating, one generally
focuses attention on how the electron motion in the presence of the nucleus and,
hence, the basic dipole moment of this system are changed by the electric field.
Understanding this behavior leads to a model of the electric susceptibility of the
medium and, hence, its permittivity. On the other hand, there are many media for
which the magnetic field response is dominant. One can generally describe the
magnetic response of a material in a fashion completely dual to that of the elec-
tric field using the magnetic susceptibility and, hence, its permeability. While the
magnetic dipoles physically arise from moments associated with current loops,
they can be described mathematically by magnetic charge and current analogs of
the electric cases.

One of the most well-known material models is the Lorentz model. It is
derived by a description of the electron motion in terms of a driven, damped
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harmonic oscillator. To simplify the discussion, we will assume that the charges
are allowed to move in the same direction as the electric field. The Lorentz model
then describes the temporal response of a component of the polarization field of
the medium to the same component of the electric field as

d2

dt2
Pi + �L

d

dt
Pi + ω2

0Pi = ε0χLEi (1.1)

The first term on the left accounts for the acceleration of the charges, the second
accounts for the damping mechanisms of the system with damping coefficient �L,
and the third accounts for the restoring forces with the characteristic frequency
f0 = ω0/2π . The driving term exhibits a coupling coefficient χL. The response
in the frequency domain, assuming the engineering exp(+jωt) time dependence,
is given by the expression

Pi(ω) = χL

−ω2 + j�Lω + ω2
0

ε0Ei(ω) (1.2)

With small losses �L/ω0 � 1 the response is clearly resonant at the natural
frequency f0. The polarization and electric fields are related to the electric sus-
ceptibility as

χe,Lorentz(ω) = Pi(ω)

ε0Ei(ω)
= χL

−ω2 + j�Lω + ω2
0

(1.3)

The permittivity is then obtained immediately as εLorentz(ω) = ε0[1 +
χe,Lorentz(ω)].

There are several well-known special cases of the Lorentz model. When
the acceleration term is small in comparison to the others, one obtains the Debye
model:

�d

d

dt
Pi + ω2

0Pi = ε0χdEi χe,Debye(ω) = χd

j�dω + ω2
0

(1.4)

When the restoring force is negligible, one obtains the Drude model:

d2

dt2
Pi + �D

d

dt
Pi = ε0χDEi χe,Drude(ω) = χD

−ω2 + j�Dω
(1.5)

where the coupling coefficient is generally represented by the plasma frequency
χD = ω2

p . In all of these models, the high-frequency limit reduces the permittivity
to that of free space.

Assuming that the coupling coefficient is positive, then only the Lorentz
and the Drude models can produce negative permittivities. Because the Lorentz
model is resonant, the real part of the susceptibility and, hence, that of the
permittivity become negative in a narrow frequency region immediately above
the resonance. On the other hand, the Drude model can yield a negative real part

of the permittivity over a wide spectral range, that is, for ω <

√
ω2

p − �2
D .

Similar magnetic response models follow immediately. The corresponding
magnetization field components Mi and the magnetic susceptibility χm equations
are obtained from the polarization and electric susceptibility expressions with
the replacements Ei → Hi , Pi/ε0 → Mi . The permeability is given as µ(ω) =
µ0[1 + χm(ω)].
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Metamaterials have necessitated the introduction of generalizations of these
models. For instance, the most general second-order model that has been intro-
duced for metamaterial studies is the two-time-derivative Lorentz metamaterial
(2TDLM) model [13–15]:

d2

dt2
Pi + �L

d

dt
Pi + ω2

0Pi = ε0χαω2
pEi + ε0χβωp

d

dt
Ei + ε0χγ

d2

dt2
Ei

χe,2TDLM(ω) = χαω2
p + jχβωpω − χγ ω2

−ω2 + j�Lω + ω2
0

(1.6)

This 2TDLM model incorporates all the standard Lorentz model behaviors includ-
ing the resonance behavior at ω0 but allows for additional driving mechanisms
that are important when considering time-varying phenomena. It satisfies a gen-
eralized Kramers–Krönig relation and is causal if χγ > −1. It has the limit-
ing behaviors limω→0 χe,2TDLM(ω) → χα and limω→∞ χe,2TDLM(ω) → χγ . The
high-frequency behavior has the peculiar property that if −1 < χγ < 0, then
0 < limω→∞ ε(ω) < 1, which leads to the interesting but still controversial trans-
vacuum-speed (TVS) effect [16, 17].

1.2 WAVE PARAMETERS IN DNG MEDIA

One must exercise some care with the definitions of the electromagnetic properties
in a DNG medium. Ziolkowski and Heyman thoroughly analyzed this concept
mathematically and have shown that in DNG media the refractive index can be
negative [12]. In particular, in a DNG medium where ε < 0 and µ < 0, one
should write for small losses:

√
ε =

√
εrε0 − jε′′ ≈ −j

(
|εrε0|1/2 + j

ε′′

2|εrε0|1/2

)
√

µ =
√

µrµ0 − jµ′′ ≈ −j

(
|µrµ0|1/2 + j

µ′′

2|µrµ0|1/2

) (1.7)

accounting for the branch-cut choices. This leads to the following expressions
for the wavenumber and the wave impedance, respectively:

k = ω
√

ε
√

µ ≈ −ω

c
|εr |1/2|µr |1/2

[
1 + j

1

2

(
ε′′

|εr |ε0
+ µ′′

|µr |µ0

)]

η =
√

µ√
ε

≈ η0
|µr |1/2

|εr |1/2

[
1 + j

1

2

(
µ′′

|µr |µ0
− ε′′

|εr |ε0

)] (1.8)

where the speed of light c = 1/
√

ε0µ0 and the free-space wave impedance η0 =√
µ0/ε0. One sees that the index of refraction

n = kc

ω
=

√
ε

ε0

√
µ

µ0
= −

[(
|εr‖µr | − ε′′

ε0

µ′′

µ0

)
+ j

(
ε′′|µr |

ε0
+ µ′′|εr |

µ0

)]1/2

≈ −|εr |1/2|µr |1/2
[

1 + j
1

2

(
ε′′

|εr |ε0
+ µ′′

|µr |µ0

)]
(1.9)
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has a negative real part. Its imaginary part is also negative corresponding to the
passive nature of the DNG medium.

The index of refraction of a DNG metamaterial has been shown theoreti-
cally to be negative by several groups (e.g., [8,12,18]), and several experimental
studies have been reported confirming this negative-index-of-refraction (NIR)
property and applications derived from it, such as phase compensation and elec-
trically small resonators [19], negative angles of refraction (e.g., [6,19–24]), sub-
wavelength waveguides with lateral dimension below diffraction limits [25–30],
enhanced focusing (see [7, 31]), backward-wave antennas [32], Čerenkov radia-
tion [33], photon tunneling [34,35], and enhanced electrically small antennas [36].
These studies rely heavily on the concept that a continuous-wave (CW) excita-
tion of a DNG medium leads to a NIR and, hence, to negative or compensated
phase terms.

1.3 FDTD SIMULATIONS OF DNG MEDIA

In this chapter and in Chapter 2, we present several finite-difference time-domain
(FDTD) simulation results for wave interactions with DNG media, in addition
to analytical descriptions. Consequently, we briefly discuss some of the features
of the FDTD simulator specific to the DNG structures. It should be emphasized
that the use of this purely numerical simulation approach does not involve any
choices in defining derived quantities to explain the wave physics, for example,
no wave vector directions or wave speeds are stipulated a priori. In this manner,
it has provided a useful approach to studying the wave physics associated with
DNG metamaterials.

As in [12,22,23,37], lossy Drude polarization and magnetization models are
used to simulate the DNG medium; specifically the permittivity and permeability
are described in the frequency domain as

ε(ω) = ε0

(
1 − ω2

pe

ω(ω − j�e)

)

µ(ω) = µ0

(
1 − ω2

pm

ω(ω − j�m)

) (1.10)

where ωpe, ωpm and �e, �m denote the corresponding plasma and damping fre-
quencies, respectively. These models are implemented into the FDTD scheme
by introducing the associated electric and magnetic current densities and the
equations that govern their temporal behavior.

Ji,Drude = d

dt
Pi

d

dt
Ji,Drude + �eJi,Drude = ε0ω

2
pEi

Ki,Drude = d

dt
Mi

d

dt
Ki,Drude + �mKi,Drude = ω2

pHi

(1.11)
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The choices of the space and time locations of the discretized electric and mag-
netic currents, as well as the polarization and magnetization fields, are made self-
consistently following the conventional FDTD method [38]. The simulation space
is truncated with a metamaterial-based absorbing boundary condition [15,39]. The
FDTD cell size in all of the cases presented here was λ0/100 to minimize the
impact of any numerical dispersion on the results.

Although in some of the analytical and numerical studies, as well as exper-
iments, considered by other groups (e.g., [5, 6, 18, 40–43]) the Lorentz model
and its derivatives have been used, here the Drude model is preferred for the
FDTD simulations for both the permeability and permittivity functions because
it provides a much wider bandwidth over which the negative values of the per-
mittivity and permeability can be obtained. This choice is only for numerical
convenience and it does not alter any conclusions derived from such simulations;
that is, the negative refraction is observed in either choice. However, choosing
the Drude model for the FDTD simulation also implies that the overall simula-
tion time can be significantly shorter, particularly for low-loss media. In other
words, the FDTD simulation will take longer to reach a steady state in the corre-
sponding Lorentz model because the resonance region where the permittivity and
permeability acquire their negative values would be very narrow in this model.

1.4 CAUSALITY IN DNG MEDIA

As for the causality of signal propagation in a DNG medium, we note that
if one totally ignores the temporal dispersion in a DNG medium and consid-
ers carefully the ramifications of a homogeneous, nondispersive DNG medium
and the resulting NIR, one will immediately encounter a causality paradox in
the time domain, that is, a nondispersive DNG medium is noncausal. However,
a resolution of this issue was uncovered in [44] by taking the dispersion into
account in a time-domain study of wave propagation in DNG media. The causal-
ity of waves propagating in a dispersive DNG metamaterial was investigated
both analytically and numerically using the one-dimensional (1D) electromagnetic
plane-wave radiation from a current sheet source in a dispersive DNG medium.
A lossy Drude model of the DNG medium was used, and the solution was gen-
erated numerically with the FDTD method. The basic 1D geometry is shown in
Figure 1.3. The signal direction of propagation (D.O.P.) is from left to right.

A causal result would show that the signal arrives at point 1 before point
2; an NIR result would then show that the peaks of the signals received at point
2 occur before those at point 1 once steady state is reached. The FDTD predicted
results, shown in Figure 1.4, confirm this behavior.

Figure 1.3 One-dimensional FDTD
simulation region.

D.O.P

1 2

Source
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Figure 1.4 Time-domain electric fields predicted by the FDTD simulator at points 1 and
2 shown in Figure 1.3. From [44]. Copyright  2003 by the American Physical Society.

Figure 1.5 A comparison of the FDTD-generated time history of a wave propagating
in a dispersive Drude medium and an approximate solution consisting of a causal prop-
agating envelope and the expected NIR sinusoidal signal shows very good agreement in
the steady-state region away from the leading and trailing edges where dispersion plays a
significant role. From [44]. Copyright  2003 by the American Physical Society.
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The analogous problem in a nondispersive DNG medium was also consid-
ered, and it was shown that the solution to this problem is not causal, in agreement
with similar observations given in [18]. An approximate solution was constructed
that combined a causal envelope with a sinusoid which has the nondispersive NIR
properties; it compared favorably with the FDTD results for the dispersive DNG
case, as shown in Figure 1.5. It was thus demonstrated that causal results do
indeed require the presence of dispersion in DNG media and that the dispersion
is responsible for a dynamic reshaping of the pulse to maintain causality. The
CW portions of a modulated pulse (i.e., excluding its leading and trailing edges)
do obey all of the NIR effects expected from a time-harmonic analysis in a
bandlimited “nondispersive” DNG medium. Therefore, one can conclude that the
CW analyses of DNG media are credible as long as very narrow bandwidth pulse
trains are considered for any practical realizations. This has been the case in all
of the experimental results reported to date of which we are aware. Moreover,
time delays for the realization of the NIR effects are inherent in the processes
dictated by the dispersive nature of the physics governing these media.

1.5 SCATTERING FROM A DNG SLAB

The reflection and transmission coefficients associated with a normally incident
plane wave that scatters from a DNG slab embedded in a medium have been
derived. The geometry is shown in Figure 1.6. The slab has an infinite extent in
the transverse directions; it has a thickness d in the direction of propagation of the
incident plane wave. Let the medium before and after the slab be characterized
by ε1, µ1 and the slab be characterized by ε2, µ2. For a normally incident plane
wave, the reflection and transmission coefficients for the slab are

R = η2 − η1

η2 + η1

1 − e−j2k2 d

1 − [(η2 − η1)/(η2 + η1)]2e−j2k2 d

T = 4η2η1

(η2 + η1)2

e−jk2 d

1 − [(η2 − η1)/(η2 + η1)]2e−j2k2 d

(1.12)

where the wavenumber ki = ω
√

εi
√

µi and wave impedance ηi = √
µi/

√
εi for

i = 1, 2. For the case of normal incidence, if we consider a matched DNG
medium, one would have η2 = η1 so that R = 0 and T = e−jk2d = e+j |k2|d . The

Figure 1.6 Plane-wave scattering from
slab of thickness d.

Reflected wave

Incident wave

d

Transmitted wave
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medium would thus add a positive phase to the wave traversing the slab, whereas
in a DPS medium the wave would experience a negative phase variation. This
means that a matched DNG slab could be used to compensate for phase changes
incurred by passage of a plane wave through a DPS slab; that is, one can force
kDPSdDPS + kDNGdDNG = 0. This phase compensation, to be discussed later in
this chapter, is an interesting feature of DNG metamaterials that can lead to
exciting potential applications.

When the plane wave is obliquely incident, Eq. (1.12) is straightforwardly
modified by introducing the transverse impedance and longitudinal wavenumber
components. If, in addition, the incident wave is evanescent, that is, when the
transverse component of the wave vector of the incident wave is greater than
the wavenumber of the medium (k2

t > ω2µ1ε1 and k2
t > ω2µ2ε2), the transverse

wave impedance in each medium (with a no-loss assumption) becomes purely
imaginary, that is, η1,transverse = jX1,transverse and η2,transverse = jX2,transverse, and
the longitudinal component of the wave vector in each medium also becomes
purely imaginary, that is, k1,longitudinal = jα1 and k2,longitudinal = jα2 [45,46]. (The
proper choice of sign for α1 and α2 will be discussed shortly.) However, it can
be shown that this transverse wave impedance in the DPS and DNG media
have opposite signs; that is, if one has a capacitive reactance, the other will
have an inductive reactance so that sgn[X1,transverse] = −sgn[X2,transverse], where
sgn(x) = +1 (−1) for x > 0 (x < 0) [45, 46]. When we choose the so-called
matched condition for which µ2 = −µ1 and ε2 = −ε1, one can demonstrate that
X1,transverse = −X2,transverse. Inserting these features into the generalized form of
Eq. (1.12), one would observe that again R = 0, but now T = e−jk2,longitudinal d =
eα2d . What is the proper sign for α2? A detailed discussion, including a variety
of physical insights, on this issue can be found in, for example, [45, 46]. Here
we briefly review this point. It is known that at the interface between a DPS
and a DNG medium, the tangential components of the electric and magnetic
fields should be continuous according to Maxwell equations. However, since the
permittivity and the permeability of these two media each has opposite signs,
the normal spatial derivatives (normal with respect to the interface) of these
tangential components are discontinuous at this boundary [19]. In other words, if
the tangential component of the electric field (or the magnetic field) is decreasing
as the observation point gets closer to this interface from the DPS side, the same
tangential component should be increasing as the observer is receding from the
interface in the DNG side. Moreover, one should remember that according to
Eq. (1.12) the overall reflection coefficient for the “incident” evanescent wave in
this case is R = 0. Therefore, as this evanescent wave reaches the first interface
of the matched DNG slab from the DPS region, it is decaying, that is, α1 < 0, and
no “reflected” evanescent wave will be present in this DPS medium. However,
as we move just past the first interface into the DNG region, the tangential
components of the field in the vicinity of the interface inside the DNG region
should “grow” in order to satisfy the discontinuity condition of the normal spatial
derivative mentioned above. (Note that if the evanescent wave decayed inside
this matched DNG slab, the tangential components of the field at the DPS–DNG
interface would have similar slopes, inconsistent with the boundary condition
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mentioned above.) Therefore, in the transmission coefficient expression T = eα2d ,
one should have α2 > 0. As a result, such a matched DNG slab can compensate
the decay of the evanescent wave in the DPS region through the growth of the
evanescent wave inside the DNG slab. This issue was originally pointed out
by Pendry in [7] and is the basis behind the idea of subwavelength focusing
and “perfect” lensing [7]. We emphasize that this growth of an evanescent wave
inside the DNG slab does not violate any physical law, since each of these
evanescent waves carries no real power, and indeed this scenario represents
the presence of an interface resonance at the boundary between the DPS and
DNG regions [45, 46]. Furthermore, this phenomenon can also be described and
justified using distributed circuit elements, which provide further insight into
related features associated with this problem [45, 46].

An interesting question arises here: If one gets a growing evanescent wave
inside the slab, as justified above for the case of a finite-thickness matched DNG
slab, what should one see for a semi-infinite matched DNG medium when an
“incident” evanescent wave is approaching this interface? In other words, when
we have a single interface between matched semi-infinite DPS and semi-infinite
DNG media, what will happen for an ‘incident’ evanescent wave? This is a
markedly different problem. In this case, we only deal with one interface, and
the reflection and transmission coefficients for such an interface can be easily
expressed as

RDPS–DNG = η2,transverse − η1,transverse

η2,transverse + η1,transverse

and

TDPS–DNG = 2η2,transverse

η2,transverse + η1,transverse

For the matched condition, as discussed above, we have η1,transverse = jX1,transverse

and η2,transverse = jX2,transverse with X1,transverse = −X2,transverse. Therefore, one
gets RDPS–DNG = ∞ and TDPS–DNG = ∞, which implies that there is an inter-
face resonance at this boundary. This is indeed another indication that such an
interface can indeed support a surface plasmon wave, which is an important fac-
tor in understanding the behavior of this interface [45,46]. Similarly, the Fresnel
“reflection” and “transmission” coefficients for an incident evanescent wave for
this configuration become infinite (the circuit analog of this phenomenon has also
been studied [45, 46]). This is analogous to exciting a resonant structure (such
as an L–C circuit) at its resonant frequency, which also leads to infinite fields
in the structure when there are no losses present. Consequently, when there is a
source in front of the interface between two semi-infinite matched DNG and DPS
media, a resonant surface wave may be excited along the interface, resulting in
an infinitely large field value. However, the fields on both sides of this interface,
albeit infinitely large, decay exponentially as they move away from it; that is,
the field distribution represents a surface wave propagating along the interface.
This explains and justifies the presence of RDPS–DNG = ∞ and TDPS–DNG = ∞.
In summary, for a single matched DPS–DNG interface, one finds an evanes-
cent wave in each medium whose amplitude is infinite at the interface but decays
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exponentially as the wave recedes away from it. On the other hand, for a matched
DNG slab the presence of two interfaces allows a resonant interaction that pro-
duces a net exponential growth of the evanescent wave components inside the
slab despite their exponential decay outside of it.

1.6 BACKWARD WAVES

Consider the source problems shown in Figure 1.7. A current sheet of the form

Js = I0e
−jk0xxδ(z)x̂ (1.13)

is located on the interface between two semi-infinite media. In one case both
regions are DPS media, and in the other one is a DPS medium and the other is a
DNG medium. The wavenumbers in each medium satisfy the dispersion relation

k2
i,x + k2

i,z = k2
i = ω2εiµi (1.14)

where region 1 labels z > 0 and region 2 labels z < 0. Boundary conditions
require the wave numbers tangential to the interface be the same in each medium,
that is, k1,x = k2.x = k0x ; thus for propagating waves they also require the prop-
agation constants normal to the interface be given as

kDPS
z = +

√
ω2εDPSµDPS − k2

0x kDNG
z = −

√
ω2εDNGµDNG − k2

0x (1.15)

The wave vectors in each region are thus given by the expressions

k1 = k0xx̂ + k1zẑ k2,DPS = k0xx̂ − k2zẑ k2,DNG = k0xx̂ + |k2z|ẑ (1.16)

Similarly, the Poynting’s vector in each region is determined to be

〈S1〉(x, y, z, ω) = 1

2ωε1

∣∣∣∣k2z

ε2

I0

k1z/ε1 + k2z/ε2

∣∣∣∣
2

(k0x x̂ + k1zẑ) (1.17)

z

x
DPS

DPS

z

xDPS

DNG

Figure 1.7 Current sheet located at inter-
face between two semi-infinite half spaces.
Blue arrows represent the wave vectors,
black arrows the Poynting vectors.
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〈S2,DPS〉(x, y, z, ω) = 1

2ωε2

∣∣∣∣k1z

ε1

I0

k1z/ε1 + k2z/ε2

∣∣∣∣
2

(k0x x̂ − k2zẑ)

〈S2,DNG〉(x, y, z, ω) = 1

2ω|ε2|
∣∣∣∣k1z

ε1

I0

k1z/ε1 + |k2z|/|ε2|
∣∣∣∣
2

(−k0xx̂ − |k2z|ẑ)
(1.18)

Thus one finds that the Poynting vector and wave vector directions are the same
when both regions are DPS media and the generated waves are in the forward
direction, that is, in the direction of positive phase advance along the source.
In contrast, the Poynting vector in the DNG medium is pointed causally away
from the source and is opposite to the wave vector direction, which is toward
the source. Moreover, the flow of power of the wave generated in the DNG
medium is opposite to the positive phase direction of the source. The backward-
wave nature of the wave generated in the DNG medium is thus established. The
details of this problem can be found in [47].

1.7 NEGATIVE REFRACTION

The phenomenon of negative refraction is studied by considering the scattering
of a wave that is obliquely incident on a DPS–DNG interface as shown in
Figure 1.8. Enforcing the electromagnetic boundary conditions at the interface,
one obtains the law of reflection and Snell’s Law from phase matching:

θrefl = θinc θtrans = sgn(n2) sin−1
(

n1

|n2| sin θinc

)
(1.19)

Note that if the index of refraction of a medium is negative, then the refracted
angle, according to Snell’s law, should also become “negative.” This suggests
that the refraction is anomalous, and the refracted angle is on the same side of
the interface normal as the incident angle is. The wave and Poynting vectors
associated with this oblique scattering problem are also obtained:

kinc = k1(cos θincẑ + sin θincx̂)

krefl = k1(− cos θincẑ + sin θincx̂)

ktrans = k2(cos θtransẑ + sin θtransx̂)

(1.20)

Figure 1.8 Geometry of
the scattering of a wave
obliquely incident upon a
DPS–DNG interface. z
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Sinc = 1

2

|E0|2
η1

(cos θincẑ + sin θincx̂)

Srefl = 1

2

|RE0|2
η1

(− cos θincẑ + sin θincx̂)

Strans = 1

2

|TE0|2
η2

(cos θtransẑ + sin θtransx̂)

(1.21)

Assuming that the transmitted wave is propagating in a DPS medium, it is clear
that the Poynting and wave vectors are in the same direction. However, if the
transmitted wave is propagating in a DNG medium, the index is less than zero
and one obtains immediately from Snell’s law that

ktrans = −|n2|ω
c

(cos |θtrans|ẑ − sin |θtrans|x̂)

Strans = 1

2

|TE0|2
η2

(cos |θtrans|ẑ − sin |θtrans|x̂)

so that the wave and Poynting vectors point in opposite directions, the Poynting
vector being directed in a causal direction away from the interface.

This negative-refraction behavior was verified with FDTD calculations [22].
The electric field intensity distributions were obtained with the 2D FDTD simula-
tor when a f0 = 30 GHz (needless to say, this choice is arbitrary; the numerical
results presented here can be obtained at any frequency with a proper scaling of

Figure 1.9 The NIR behavior has been confirmed with FDTD simulations. From [22].
Copyright  2003 by The Optical Society of America.
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the parameters) perpendicularly polarized CW Gaussian beam is incident on a
DPS–DNG interface with θinc = 20◦. To reduce the effect of reflection and thus
to observe the negative refraction more clearly, the parameters of these slabs
were chosen such that the slabs are impedance matched to free space. Therefore,
the electric and magnetic Drude models were selected to be identical, that is,
ωpe = ωpm = ωp and �e = �m = �. Only low loss values were considered by
setting � = 10+8s−1 � ωp. This means that the index of refraction had the form

n(ω) =
√

ε(ω)

ε0

√
µ(ω)

µ0
= 1 − ω2

p

ω(ω − j�)
= 1 − ω2

p

ω2 + �2
− j

�

ω

ω2
p

ω2 + �2

≈ 1 − ω2
p

ω2
− j

�ω2
p

ω3
(1.22)

The DNG slab had nreal(ω0) ≈ −1, by setting ωp = 2π
√

2f0 = 2.66573 ×
1011 rad/s and, hence, � = 3.75 × 10−4ωp . As can be seen in Figure 1.9, the
negative angle of refraction is clearly seen. The refracted angle is equal and
opposite to the angle of incidence. The discontinuities in the derivatives of the
fields at the DPS–DNG interfaces (i.e., the so-called V-shaped patterns at both
interfaces) are clearly seen. A simulation movie of this case is available in [22].

1.8 PHASE COMPENSATION WITH A DNG MEDIUM

As we reviewed in our recent paper [48], one of the interesting features of DNG
media is their ability to provide phase compensation or phase conjugation due
to their negative refraction. Here, we provide an illustrative example to highlight
the insight behind this phenomenon. Consider a slab of conventional lossless
DPS material with positive index of refraction n1 and thickness d1 and a slab of
lossless DNG metamaterial with negative refractive index −|n2| and thickness
d2. Although not necessary, but for the sake of simplicity in the argument, we
assume that each of these slabs is impedance matched to the outside region
(e.g., free space). Let us take a monochromatic uniform plane wave normally
incident on this pair of slabs. As this wave propagates through the slab, the
phase difference between the exit and entrance faces of the first slab is obviously
n1k0d1, where k0 ≡ ω

√
ε0µ0, while the total phase difference between the front

and back faces of this two-layer structure is |n1|k0d1 − |n2|k0d2, implying that
whatever phase difference is developed by traversing the first slab, it can be
decreased and even compensated for by traversing the second slab. If the ratio of
d1 and d2 is chosen to be d1/d2 = |n2|/|n1| at the given frequency, then the total
phase difference between the front and back faces of this two-layer structure will
become zero. This means that the DNG slab acts as a phase compensator in this
structure [19,27]. We should note that such phase compensation/conjugation does
not depend on the sum of thicknesses, d1 + d2, rather it depends on the ratio of
d1 and d2. So, in principle, d1 + d2 can be any value as long as d1/d2 satisfies
the above condition. Therefore, even though this two-layer structure is present,
the wave traversing this structure would not experience any phase difference
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between the input and output faces. This feature can lead to several interesting
ideas in device and component designs, as will be discussed later.

Such phase compensation has been verified using the FDTD simulator, as
shown in Figure 1.10. The FDTD predicted electric field intensity distribution for
a perpendicularly polarized CW Gaussian beam incident on this DPS–DNG slab
pair is shown. A Gaussian beam was launched toward the DPS–DNG slab pair,
each slab having a thickness of 2λ0. The DPS slab had n(ω) = +3, while the
DNG slab had nreal(ω0) ≈ −3. As is evident from Figure 1.10, the beam expands

nreal(w) = +3

nreal(w) = −3

Figure 1.10 FDTD predicted electric field intensity distribution for phase compen-
sator–beam translator system DPS–DNG stacked pair. The Gaussian beam is normally
incident on a stack of two slabs, the first being a DPS slab with nreal(ω) = +3 and the
second being a DNG slab with nreal(ω0) ≈ −3. The initial beam expansion in the DPS
slab is compensated by its refocusing in the DNG slab. The Gaussian beam is translated
from the front face of the system to its back face with only −0.323 dB attenuation over
the 4λ0 distance.
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in the DPS slab and then the negative-refraction property refocuses it in the DNG
slab, and the waist of the intensity of the input beam is recovered at the back
face. The electric field intensity could, in principle, be maintained over the total
thickness of 4λ0. There is only a −0.323-dB (7.17%) reduction in the peak value
of the intensity of the beam when it reaches the back face. Moreover, the phase
of the beam at the output face of the stack is the same as its value at the entrance
face. Therefore, the beam emerges at the output of the slab pair in phase with
the input beam and only slightly smaller in amplitude. Thus the DPS–DNG slab
pair, in essence, translates the field from one location to another with low losses;
that is, it acts as a beam translator.

Using multiple matched DPS–DNG stacks, one could produce a phase-
compensated, time-delayed, waveguiding system. Each pair in the stack would
act as shown in Figure 1.10. Thus the phase compensation–beam translation
effects would occur throughout the entire system. Moreover, by changing the
index of any of the DPS–DNG pairs, one changes the speed at which the beam
traverses that slab pair. Consequently, one can change the time for the beam to
propagate from the entrance face to the exit face of the entire DPS–DNG stack.
In this manner one could realize a volumetric, low-loss time delay line for a
Gaussian beam system.

This phase compensation can lead to a wide variety of potential applications
that could have a large impact on a number of engineering systems. One such set
of applications offers the possibility of having subwavelength, electrically small
cavity resonators and waveguides with lateral dimension below diffraction limits.
These ideas are briefly reviewed in Chapter 2.

1.9 DISPERSION COMPENSATION IN A TRANSMISSION
LINE USING A DNG MEDIUM

The DNG medium, because of its dispersive nature, might also be used as an
effective dispersion compensation device for time-domain applications. The dis-
persion produces a variance of the group speed of the signal components as they
propagate in the DNG medium. Cheng and Ziolkowski have considered the use of
volumetric DNG metamaterials for the modification of the propagation of signals
along a microstrip transmission line [49]. If one could compensate for the dis-
persion along such transmission lines, signals propagating along them would not
become distorted. This could lead to a simplification of the components in many
systems. Microstrip dispersion can be eliminated by correcting for the frequency
dependence of the effective permittivity associated with this type of transmission
line. As shown in [50, 51], for a microstrip transmission line of width w and a
conventional dielectric substrate height h one has the approximate result for the
effective relative permittivity of the air–substrate–microstrip system:

εeff(f ) = εr − εr − εes

1 + G(f/fd)2
(1.23)
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where the constants

fd = Zc

2µ0h
G = 0.6 + 0.0009Zc

the characteristic impedance is
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)2



with F1 = 6 + (2π − 6) exp[−(30.666h/w)0.7528], and the electrostatic relative
permittivity is
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∼= εr + 1
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The goal is to design a length of metamaterial-loaded transmission line that
can be included in some manner with the same length of microstripline to
make the paired system dispersionless; that is, we want to produce a dispersion-
compensated segment of transmission line. This means we want to introduce a
metamaterial with relative permittivity εMTM and permeability µMTM so that the
overall relative permittivity and permeability of the system is

ε(f )

ε0
= εeff(f ) + εMTM(f )

µ(f )

µ0
= 1 + µMTM(f ) (1.24)

in such a manner that the wave impedance in the metamaterial remains the same
as it is in the original substrate, that is,

Z =
√

µ(f )

ε(f )
= Z0

√
1 + µMTM(f )

εMTM(f ) + εeff(f )
= Z0

√
1

εeff(f )
(1.25)

and the index of refraction in the medium compensates for the dispersion effects
associated with the microstrip geometry itself; that is, the effective index of the
pair becomes that of free space,

neff(f ) =
√

εeff(f ) +
√

ε(f )

ε0

√
µ(f )

µ0

=
√

εeff(f ) +
√

εeff(f ) + εMTM(f )
√

1 + µMTM(f ) = 1 (1.26)

These conditions are satisfied if εeff(f )[1 + µMTM(f )] = εMTM(f ) + εeff(f ) so
that

µMTM(f ) = 1√
εeff(f )

− 1 εMTM(f ) = εeff(f )µMTM(f ) (1.27)



1.10 SUBWAVELENGTH FOCUSING WITH A DNG MEDIUM 23

Figure 1.11 Real part of index of refraction of microstrip only, of metamaterial (MTM)
only, and total MTM-dispersion-compensated transmission line.

We note that the effective permittivity and permeability of such a metamaterial
should be negative, implying that a DNG material must be utilized for this pur-
pose. [The range of validity of condition (1.27) should be consistent with that
of the effective medium approximation (1.23).] A plot of the index of refraction
of the uncompensated line, the metamaterial compensator, and the dispersion-
compensated line is shown in Figure 1.11 for a microstrip transmission line at
10 GHz using Roger’s Duroid 5880 substrate. The substrate had the relative per-
mittivity εr = 2.2 and its height was h = 31 mils = 0.7874 mm. The width of the
transmission line was w = 2.428 mm = 95.6 mils to achieve a 50  impedance.
As shown in Figure 1.11, in principle, complete dispersion compensation is
theoretically possible.

1.10 SUBWAVELENGTH FOCUSING
WITH A DNG MEDIUM

Another interesting potential application of a DNG medium that results from its
negative-refraction properties was first theoretically suggested by Pendry [7]. It is
the idea of a “perfect lens” or focusing beyond the diffraction limit. In his analysis
of the image formation process in a flat slab of lossless DNG material, Pendry
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showed that the evanescent spatial Fourier components can be ideally recon-
structed in addition to the faithful reconstruction of all the propagating spatial
Fourier components. The evanescent wave reconstruction is due to the presence
of the “growing exponential effect” in the DNG slab discussed in Section 1.5.
This effect in theory leads to the formation of an image with a resolution higher
than the conventional limit. His idea has motivated much interest in studying
wave interactions with DNG media.

Various theoretical and experimental works by several groups have explored
this possibility; they have shown the possibility and limitations of subwave-
length focusing using a slab of DNG or negative-index metamaterials [52, 53].
The subwavelength focusing in the planar 2D structures made of negative-index
transmission lines has also been investigated [31]. The presence of the grow-
ing exponential in the DNG slab has also been explained and justified using the
equivalent distributed circuit elements in transmission line model [46]. It has also
been shown that “growing evanescent envelopes” for the field distributions can be
achieved in a suitably designed, periodically layered stacks of frequency-selective
surfaces (FSSs) [54].

It was shown analytically in [12] that the perfect-focus solution exists only
for the frequency-independent, lossless DNG slab case for which εr = µr = −1.
For all other cases, a line source will produce paraxial foci. If the line source
is located z0 away from the front face of the slab, the foci produced by a DNG
slab have been shown analytically [12] to occur at the distances zf 1 = |n2||z0|
and zf 1 = d(1 + 1/|n2|) − |z0| away from that face and the source. Thus for an
nreal(ω0) ≈ −1 planar slab of thickness d , the first focus is located at zf 1 = |z0|
and the second is at zf 2 = 2d − |z0|. The electric field intensity predicted by the
FDTD simulator for a lossy Drude slab with nreal(ω0) ∼= −1 and � = 10−5ω0

is shown in Figure 1.12a. The line source is 50 cells in front of a 100-cell-
deep slab. The location of the source and the expected locations of the two
foci are indicated by the intersections of the vertical and horizontal black lines.
The transverse profiles of the intensity along the horizontal lines are shown in
Figure 1.12b. While the foci appear where expected, they are not perfect. As
explained in [12], the perfect focus is not obtained because of the presence of
dispersion and the large generation of surface waves which take energy away from
the focusing mechanism. The transverse full width at half maximum (FWHM) of
the input intensity and the intensities at zf 1 = 50 cells and zf 2 = 150 cells from
the front interface are 29, 31, and 34 cells, respectively. Nonetheless, since a cell
is λ0/100, these distances are all subwavelength. The appearance of the paraxial
foci is demonstrated in Figure 1.13a. The line source is 10 cells in front of a 120-
cell-deep lossy Drude slab with nreal(ω0) ∼= −6 and � = 10−5ω0. The location
of the source and the expected locations of the two foci are again indicated by
the intersections of the vertical and horizontal black lines. The paraxial focusing
(channeling) of the beam within the slab is readily apparent. The waist of the
beam occurs where the focus within the slab is located. The transverse profiles
of the intensity along the front interface and along the horizontal foci lines are
shown in Figure 1.13b. The FWHM of these profiles are, respectively, 23, 28,
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(a)

(b)

Figure 1.12 (a) The FDTD predicted electric field intensity distribution illustrates
the focusing of the field generated by a line source in a nreal(ω0) ≈ −1 DNG slab.
(b) Transverse profiles of the electric field intensity distribution at various locations.
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(a)

(b)

Figure 1.13 (a) The FDTD predicted electric field intensity distribution illustrates
the focusing of the field generated by a line source in a nreal(ω0) ≈ −6 DNG slab.
(b) Transverse profiles of electric field intensity distribution at various locations. Channel-
ing of the beam in the DNG slab is observed; the wings of the beam are seen to feed the
center of the beam.
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and 32 cells. Again, the FWHM of the intensity profile of the beam at the foci
is subwavelength.

To emphasize the beam dynamics further, the electric field intensity distri-
bution for a case for which the source is far from the slab is given in Figure 1.14a.
The line source is 180 cells in front of a 360-cell-deep lossy Drude slab with
nreal(ω0) ∼= −1 and � = 10−5ω0. The paraxial focusing of the beam within the
slab and external to it is readily apparent. The waists of the beam within the
slab and beyond it occur at the predicted locations of the point foci. The longi-
tudinal profile of the intensity along the beam axis is given in Figure 1.14b. The
location of the beam foci coincide with the locations of the predicted point foci.
These results correlate nicely to those shown in [42] for the corresponding lossy
Lorentz slab.

The use of a planar DNG slab as a lens is illustrated with an FDTD
simulation of the focusing of a Gaussian beam. A diverging CW-modulated
Gaussian beam is assumed to be normally incident on such a planar DNG slab
nreal(ω0) ≈ −1. The waist of the beam was λ0/2 at the total field–scattered field
plane from which it was launched into the simulation space. This source plane
was 2λ0 away from the DNG interface so that there would be sufficient distance
for the beam to diverge before it hit the interface. The DNG slab also had a
depth of 2λ0. Thus the locations of the foci are degenerate at zf 1 = |z0| = 2λ0

and zf 2 = 2d − |z0| = 2λ0, which occur at the back face of the slab. The waist
of the beam at this focus should be approximately the same as it is in the source
plane. This behavior is illustrated in Figure 1.15. This result clearly shows that
the planar DNG medium turns the diverging wave vectors toward the beam axis
and, hence, acts as a lens to focus the beam. Since all angles of refraction are
the negative of their angles of incidence for the nreal(ω0) ≈ −1 slab, the initial
beam distribution is essentially recovered at the back face of the slab; that is,
as designed, the focal plane of the beam in the DNG medium is located at the
back face of the DNG slab. From the electric field intensity obtained from the
FDTD simulation, we note that the peak intensity is about 18 percent lower than
its value at the original waist of the Gaussian beam. This variance stems from
the presence of additional wave processes, such as surface wave generation, and
from dispersion and loss in the actual Drude model used to define the DNG slab
in the FDTD simulation.

The corresponding results for the Gaussian beam interacting with the
matched DNG slab with nreal(ω0) ≈ −6 reveals related but different results. In
contrast to the nreal(ω0) ≈ −1 case, when the beam interacts with the matched
DNG slab with nreal(ω0) ≈ −6, there is little focusing observed. The negative
angles of refraction dictated by Snell’s law are shallower for this higher magni-
tude of the refractive index, that is, θtrans ≈ − sin−1[sin(θinc)/6]. Rather than a
strong focusing, the medium channels power from the wings of the beam toward
its axis, hence maintaining its amplitude as it propagates into the DNG medium.
This difference in behaviors between the two types of DNG slabs is illustrated in
Figure 1.16. A Gaussian beam is launched from a source plane which is 2λ0 from
the front of a pair of DNG slabs. Each slab is λ0 deep. The first DNG slab has
nreal(ω0) ≈ −1 and the second has nreal(ω0) ≈ −6, both having � = 10−5ω0.
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(a)

(b)

Figure 1.14 (a) The FDTD predicted electric field intensity distribution illustrates
the focusing of the field generated by a line source in a nreal(ω0) ≈ −1 DNG slab.
(b) Longitudinal profile of electric field intensity distribution. The actual beam foci
coincide with the predicted locations of the point foci.
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Figure 1.15 The FDTD pre-
dicted electric field intensity
distribution illustrates the focus-
ing of a diverging Gaussian
beam with a nreal(ω0) ≈ −1
DNG slab. The source and slab
distances were selected to have
the DNG slab focus the beam
at its output face. From [22].
Copyright  2003 by the
Optical Society of America.

The FDTD predicted electric field intensity distribution given in Figure 1.16a

shows the beam is initially focused by the nreal(ω0) ≈ −1 slab, as expected. The
nreal(ω0) ≈ −6 slab then channels the beam through it with only minor focusing.
The strong axial compression of the beam caused by the (factor of 6) decrease in
the wavelength in the nreal(ω0) ≈ −6 slab is apparent. The longitudinal profile
of the electric field intensity along the beam axis is shown in Figure 1.16b. It
shows the field is being focused throughout both slabs and the slab pair produces
an output intensity that is larger than its input value.

We note that in all of the focusing cases considered the beam appears to
diverge significantly once it leaves the DNG slab. The properties of the DNG
medium hold the beam together as it propagates through the slab. Once it leaves
the DNG slab, the beam must begin diverging; that is, if the DNG slab focuses
the beam as it enters, the same physics will cause the beam to diverge as it exits.
Moreover, there will be no focusing of the power from the wings to maintain
the center portion of the beam. The rate of divergence of the exiting beam will
be determined by its original value and the properties and size of the DNG
medium. We also point out that a beam focused into a DNG slab will generate a
diverging beam within the slab and a converging beam upon exit from the slab.
This behavior has also been confirmed with the FDTD simulator.

It must be mentioned that a planar DNG slab is unable to focus a collimated
beam (i.e., flat beam) or a plane wave, since the negative angle of refraction can
occur only if there is oblique incidence. To focus a flat Gaussian beam (one
with nearly an infinite radius of curvature), one must resort to a curved lens. In
contrast to focusing (diverging) a plane wave with a convex (concave) DPS lens,
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(a)

(b)

Figure 1.16 (a) The FDTD predicted electric field intensity distribution illustrates the
focusing of a Gaussian beam in the first nreal(ω0) ≈ −1 DNG slab and the channeling of
the resulting beam in the second nreal(ω0) ≈ −6 DNG slab. (b) Longitudinal profile of
electric field intensity distribution. The slab pair focuses the beam and produces an output
amplitude which is expectedly larger than its input value.
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(b)

(a)

Figure 1.17 (a) Planoconcave DNG lens configuration. (b) The FDTD predicted electric
field intensity distribution illustrates the focusing of a Gaussian beam with the planocon-
cave lens. The focal spot has both the longitudinal (0.19λ0) and transverse (0.17λ0)
dimensions approximately equal.
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one must use a concave (convex) DNG lens to achieve a focus (divergence).
Such a planoconcave DNG lens with nreal(ω0) ≈ −1 is shown in Figure 1.17a.
It was formed by removing a parabolic section from the back side of a slab
that was 1.5λ0 deep and 6.0λ0 wide. The focal length was chosen to be λ0,
and the location of the focus was chosen to be at the center of the back face
of the slab. The full width of the removed parabolic section at the back face
was 4λ0. A Gaussian beam with a waist of 2λ0 was launched 2λ0 distance away
from the planar side of this lens and was normally incident on it. It is known
that a DPS planoconvex lens of index nDPS with a similar radius of curvature
R = 2λ0 (the red region in Fig. 1.17a) would have a focus located a distance
fDPS = R/(nDPS − 1) = 2λ0/(nDPS − 1) from its back face. Thus, to have the
focal point within the very near field, as it is in the DNG case, the index of
refraction would have to be very large. In fact, to have it located at the back
face would require nDPS → ∞. This would also mean that very little of the
incident beam would be transmitted through such a high-index lens because the
magnitude of the reflection coefficient would approach 1. In contrast, the DNG
lens achieves a greater bending of the incident waves with only moderate absolute
values of the refractive index and is impedance matched to the incident medium.
Moreover, since the incident beam waist occurs at the lens, the expected waist of
the focused beam would be wfocus ≈ (λ0fDPS)/(πw0) = λ0/[π(nDPS − 1)] [55].
For a normal glass lens nDPS ≈ 1.5; hence, the transverse waist at the focus would
be wfocus ≈ λ0/1.57 and the corresponding intensity half-maximum waist would
be 0.589wfocus. The longitudinal size of the focus is the depth of focus, which for
the normal glass lens would be 2(πw2

focus/λ0). Again, to achieve a focus that is
significantly subwavelength using a DPS lens, a very large index value would be
required and would lead to similar disadvantages in comparison to the DNG lens.
However, for the DNG planoconcave lens, one obtains more favorable results.
Figure 1.17b shows a snapshot of the FDTD-predicted electric field intensity
distribution when the intensity is peaked at the focal point. The radius of the
focus along the beam axis (half-intensity radius) is measured to be about λ0/5
and along the transverse direction it is about λ0/6. This subwavelength focal
region is significantly smaller than would be expected from the corresponding,
traditional DPS lens. Moreover, even though the focal point is in the extreme
near field of the lens, the focal region is nearly symmetrical and has a resolution
that is much smaller than a wavelength.

1.11 METAMATERIALS WITH A ZERO INDEX
OF REFRACTION

Metamaterials, in which the permittivity and/or permeability are near zero and
thus the refractive index is much smaller than unity, can offer exciting potential
applications. Their location on the ε − µ space diagram is represented by the red
dot in Figure 1.18. Planar metamaterials that exhibit both positive and negative
values of the index of refraction near zero have been realized experimentally by
several research groups [8, 31, 32, 56–62] and are discussed in several chapters
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Figure 1.18 The zero-index
media lie at the intersection of the
various types of materials.
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of this book. Within these studies, there have also been several demonstrations,
both theoretically and experimentally, of planar metamaterials that exhibit a zero
index of refraction within a specified frequency band. In particular, by matching
the resonances in a series–parallel lumped-element circuit realization of a DNG
metamaterial at a specified frequency, the propagation constant as a function of
frequency continuously passes through zero (giving a zero index) with a nonzero
slope (giving a nonzero group speed) in its transition from a DNG region of
its operational behavior to a DPS region [56, 59, 63]. Several applications of
these series–parallel metamaterials have been proposed and realized (e.g., phase
shifters, couplers, and compact resonators).

Several investigations have also presented volumetric metamaterials that
exhibit near-zero-index medium properties, for instance [64–68]. These zero-
index electromagnetic bandgap (EBG) structure studies include working in a
passband. By introducing a source into a zero-index EBG with an excitation
frequency that lies within the EBG’s passband, Enoch, Tayeb, and co-workers
produced extremely narrow antenna patterns [66–68, Chapter 10]. Alù et al. have
also shown theoretically that, by covering a subwavelength tiny aperture in a flat
perfectly conducting screen with a slab of materials with µ � µo, one can signif-
icantly increase the power transmitted through such a hole, due to the coupling
of the incident wave into the leaky wave supported by such a layer [69]. By
covering both sides of the hole, not only can one increase the transmitted power
through the hole but this power can be directed as a sharp beam in a given
direction [69, 70].

These results stimulated a study by Ziolkowski [71] that details the prop-
agation and scattering properties of a passive, dispersive metamaterial that is
matched to free space and has an index of refraction equal to zero. One-, two-,
and three-dimensional problems corresponding to source and scattering configura-
tions have been treated analytically. The 1D and 2D results have been confirmed
numerically with FDTD simulations. It has been shown that the electromagnetic
fields in a matched zero-index medium [i.e., εreal(ω0) ∼= 0, µreal(ω0) ∼= 0 so that
Z(ω0) = Z0 and nreal(ω0) ∼= 0] take on a static character in space, yet remain
dynamic in time, in such a manner that the underlying physics remains associated
with propagating fields.
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To illustrate this behavior, consider Maxwell’s equations:

∇ × Eω = −jωµHω ∇ · (εEω) = ρω
(1.28)∇ × Hω = jωεEω + Jω ∇ · (µHω) = 0

When εreal(ω0) ∼= 0 and µreal(ω0) ∼= 0, Maxwell’s equations reduce to

∇ × Eω = 0 ∇ · (εEω) = 0
(1.29)

∇ × Hω = Jω ∇ · (µHω) = 0

The equations on the right are automatically satisfied in the zero-index medium
if the fields are finite. Thus one obtains staticlike equations for the fields within
a zero-index medium. For an infinite cylindrical zero-index medium surrounded
by free space, the solutions for a infinite line current

Jω(ρ, φ, z) = I0
δ(ρ)

2πρ
ẑ (1.30)

are

Eω(ρ, φ, z) = −Z0
I0

2πa

jH
(2)
0 (k0a)

H
(2)
1 (k0a)

ẑ

Hω(ρ, φ, z) = I0

2πρ
φ̂

(1.31)

for r ≤ a and

Eω(ρ, φ, z) = −Z0
I0

2πa

jH
(2)
0 (k0ρ)

H
(2)
1 (k0a)

ẑ

Hω(ρ, φ, z) = I0

2πa

H
(2)
1 (k0ρ)

H
(2)
1 (k0a)

φ̂ (1.32)

for r > a, where k0 = ω
√

ε0
√

µ0. Thus the solution inside the cylinder has a
spatially constant electric field and magnetostatic magnetic field, whereas outside
the cylinder, cylindrical waves propagate away from the source. Nonetheless,
there is power flowing outward from the source in both regions; that is, the
time-averaged Poynting’s vector is

〈Sω〉 = Z0I
2
0

(2πa)2

1

|H(2)
1 (k0a)|2

2

πk0ρ
ρ̂ (1.33)

If the spectrum of the time history driving the source is localized, one can eas-
ily take into account the time variations of the fields. In particular, one can
approximately write

H(ρ, φ, z, t) = I0

2πρ
f (t)φ̂

E(ρ, φ, z, t) ≈ −Z0
I0

2πa
f (t)ẑ

(1.34)

These 2D results have been confirmed with FDTD simulations. The FDTD
predicted electric field distributions at various times are shown in Figure 1.19
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Figure 1.19 An infinite
line source is located at
the center of a matched
zero-index infinite cylin-
der. The FDTD predicted
electric field intensity
distributions are shown for
(a) t = 0, (b) t = 240�t ,
and (c) 1800�t . A cylin-
drical wave propagates
away from the cylinder
while a uniform electric
field intensity devel-
ops within the cylinder.
From [71]. Copyright 
2004 by the American
Physical Society.

t = 1800 ∆t
(c)

t = 0
(a)

t = 240 ∆t
(b)

at the initial time, early in the simulation, and at the end of the simulation.
The infinite line source is driven at 30 GHz, is orthogonal to the plane, and is
centered in the zero-index cylinder, which had a 0.6λ0 = 60-cell radius. The time
sequence shows that the electromagnetic field energy propagates radially outward
through the zero-index cylinder into the free-space region. The cross-sectional
profiles of the electric and magnetic field distributions are given in Figures 1.20a

and b, respectively. The electric field is clearly spatially constant throughout the
entire cylinder but varies in time. On the other hand, the magnetic field component
within the cylinder has taken on the predicted magnetostatic spatial characteristics
and also varies in time. The electromagnetic field within the matched zero-index
cylinder transitions to an oscillatory, propagating field once it exits the cylinder
and enters free space. Comparisons of the time histories at various locations
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(a)

(b)

Figure 1.20 Cross-sectional profiles of (a) electric field and (b) magnetic field when a
line source is driven at the center of a zero-index cylinder. From [71]. Copyright  2004
by the American Physical Society.
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within the cylinder show that there is zero phase difference between any two
points once steady state has been achieved.

There have been related discussions [72–74] of metamaterials that exhibit
“nihility,” basically the zero-index properties described here. The generaliza-
tion to more general bianisotropic media in which only the chiral parameters
are nonzero has been considered in [74]. The latter suggests the intriguing
possibility of force-free electromagnetic field configurations in metamaterials
exhibiting such chiral nihility. Force-free magnetic fields are used, for example,
to explain the behavior of plasmas associated with solar prominences and sphero-
maks (toroidal plasma states). All of these zero-index medium examples simply
further illustrate how “exotic” the physical properties of metamaterials can be.

1.12 SUMMARY

In this chapter, we briefly reviewed the history and several selected topics asso-
ciated with the fundamental properties of DNG metamaterials. We have shown
how wave interaction with such materials can lead to interesting, unconventional
features not observed in standard DPS media. A more comprehensive review
can be found in our recent paper [48]. These physics characteristics can lead to
exciting engineering concepts with future potential applications. Some of these
concepts will be reviewed in Chapter 2.
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CHAPTER2
FUNDAMENTALS OF
WAVEGUIDE AND ANTENNA
APPLICATIONS INVOLVING
DNG AND SNG METAMATERIALS

Nader Engheta, Andrea Alù, Richard W. Ziolkowski, and
Aycan Erentok

2.1 INTRODUCTION

In this chapter, we discuss some of the salient and unconventional features of
cavity resonators, waveguides, scatterers, and antennas loaded or covered with
double-negative and/or double-positive (DNG, DPS) metamaterials. Before start-
ing this review, we should point out an important and general observation, which
applies to each of the applications presented here: The unconventional electro-
magnetic characteristics of metamaterials are exhibited when these materials are
paired with other materials with at least one oppositely signed constitutive param-
eter. In other words, when we pair a DNG material with a DPS, epsilon-negative
(ENG), or mu-negative (MNG) layer, we may obtain interesting wave propaga-
tion properties that may be absent if we paired one DNG layer with another one.
If the entire universe had been filled with DNG materials, we would not have
had the possibility of exploiting these unusual features. (That is, in such a DNG
world, the main difference we would have experienced is the Poynting vector
being antiparallel with the phase velocity, but since this property would have
been present at all points, it would not have had any practical utility.)

We also note that indeed the interface between two media with at least one
pair of oppositely signed parameters can play a major role in offering anomalous
behaviors for the combined structure. At the boundary between such two media,
using the Maxwell equations one can write the continuity of the tangential electric
and magnetic field components as

1
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∣∣∣Interface = 1
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where ∂/∂n represents the normal derivative and εi and µi , i = 1, 2, are the
permittivity and permeability in the two media, respectively. It is clear that the
normal derivatives of these tangential components are not necessarily continu-
ous, and furthermore, if µ1 and µ2 and/or ε1 and ε2 have opposite signs, then
the derivatives of the tangential fields on both sides of the interface will have
opposite signs. As a result, we observe a “V-shaped” discontinuity (see Fig. 1.9)
for the tangential components of fields at the interface between such media [1],
which may imply a concentrated resonant phenomenon at that interface (similar
to the current and voltage distributions at the junction between an inductor and a
capacitor at the resonance of an L–C circuit). As will be described later in this
chapter, this feature can lead to interesting characteristics for wave interaction in
devices and components containing metamaterials.

It is also important to note that this “interface resonance” is essentially
independent of the total thickness of the paired layers, since it arises along the dis-
continuity between two such conjugate materials [2]. The mechanism behind this
resonance can be described in several ways, one of which is the equivalent cir-
cuit approach [2]. This resonant characteristic, which may occur in subwavelength
structures formed by pairing such media, has provided us with ideas for cavities,
waveguides, scatterers, antennas, and lenses that may operate with dimensions
below the conventional diffraction limits. Here, we review some of these ideas
and concepts.

2.2 SUBWAVELENGTH CAVITIES AND WAVEGUIDES

As anticipated in the previous paragraph, the interface resonance at the junction
between two conjugate materials with at least one pair of oppositely signed
constitutive parameters would provide a concentrated resonant phenomenon. In
some of our works, we have utilized this effect to design thin, subwavelength
cavity resonators and parallel-plate waveguides in which a layer of DNG material
is paired with a layer of DPS material or in which ENG and MNG materials are
paired together or with DPS materials [1, 3–5]. By exploiting the antiparallel
nature of the phase velocity and Poynting vectors in a DNG slab, indeed we
found the possibility of resonant modes in electrically thin parallel-plate structures
containing such bilayered structures.

The geometry in this simple case is depicted in Figure 2.1 and consists
of two parallel plates, perfect electric conductors (PECs), filled by two stacked
planar slabs of homogeneous and isotropic materials with constitutive parameters

Figure 2.1 Geometry of the 1D parallel-
plate waveguide filled with a pair of layers
made of any two of ENG, MNG, DNG, and
DPS materials. From [3], copyright  2004
by the Institute of Electrical and Electronics
Engineers (IEEE).
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ε1, ε2, µ1, µ2 and thicknesses d1, d2. In [3] we have shown how the judicious
choice of these parameters, involving pairing of DPS and DNG or ENG and
MNG materials (or in other words the choice of oppositely signed values for the
permittivities and/or permeabilities) provides interesting possibilities for having
waveguides with no cutoff modes supporting fast and slow waves, independent
of the total thickness of the waveguide, or also electrically large waveguides
supporting only one single propagating mode.

In the thin-waveguide limit we have shown how, unlike the standard
DPS–DPS case, the dispersion relation for the supported modes depends not
on the total thickness of the waveguide d = d1 + d2 but instead on the ratio of
the two slab thicknesses d1/d2, leading to the theoretical possibility of having
waveguides supporting a resonant mode even when the total thickness tends to
electrically small values [3]. This is evident in Figure 2.2, where the two cases of
a DPS–DPS and a DPS–DNG waveguide are compared. Their dispersion plots
for transverse electric (TEx) polarization are sketched in the figure, showing the
minimum total thickness of the waveguide, d1 + d2, required to have a supported
mode propagating with the factor e−jβx for any pair (d1, β). The dispersion
relation for TEx polarization can be written in an implicit form as

µ1

kTE
t1

tan(kTE
t1 d1) = − µ2

kTE
t2

tan(kTE
t2 d2) (2.1)

with kt1 =
√

ω2ε1µ1 − β2 and ω being the monochromatic radian frequency of
excitation.

The figure clearly highlights the main difference between the two cases: In
a standard DPS–DPS waveguide the minimum required thickness to have a TE
propagating mode inside a parallel-plate waveguide has a finite value (i.e., the
cutoff thickness), whereas in a DPS–DNG waveguide, independent of the value
of β, a mode can be supported if the ratio d1/d2 is sufficiently close to the value
of −µ2/µ1. It is interesting to emphasize that this phenomenon may be inter-
preted in terms of the compact resonance present at the interface between the two
conjugate materials composing the slabs (in the DPS–DNG case): The resonance
that happens “spatially” in a standard DPS–DPS waveguide, for which the trans-
verse dimension has to be comparable with the wavelength of operation, may be
substituted in the DPS–DNG waveguide by the interface resonance present at
the junction between the two slabs, which effectively acts as a compact resonant
“circuit” loading the waveguide. This allows, in principle, a marked reduction
of the waveguide lateral dimension, which has also been shown experimentally
(see, e.g., [4]). It is also worth noting how Figure 2.2 predicts the special case
of a subwavelength cavity resonator, whose dispersion plot is shown on the
β = 0 cut. As anticipated in [1], the possibility of a resonant cavity with sub-
wavelength dimension loaded with conjugate materials may open up interesting
venues and applications. Along the same line, 2D and 3D subwavelength cavities
or Fabry–Perot components may be envisioned, which offer the realistic possi-
bilities of going beyond the diffraction limitations in several applications [5, 6].

Another interesting case arises from the anomalous behavior of ENG–MNG
waveguides. Their interface resonance again can provide the possibility of sub-
wavelength resonant modes, but it can also be combined with the rapidly decaying
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(a)

(b)

Figure 2.2 Dispersion plots for
(a) DPS–DPS and (b) DPS–DNG
waveguides. From [7]. Copyright 
2003 by the Institute of Electrical and
Electronics Engineers (IEEE).
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property of the field away from the interface due to the evanescent behavior of
the electromagnetic fields in ENG and MNG media. This property, as proposed
in [3], allows designing electrically thick waveguides with monomodal behavior,
which may be useful in those applications where monomodality is a key issue.

In [7] we have analyzed in more detail the mode excitation in such wave-
guides filled with conjugate materials, showing its peculiar flow of energy that
consists of two antiparallel flows in the two material slabs. Every mode in such a
waveguide is in fact characterized by a forward powerflux flowing in the region
with the positive constitutive parameter (permittivity or permeability depending
on the polarization of interest) and a backward power flux in the other region,
meaning that the Poynting vector and the phase flow are parallel in the “positive”
medium and antiparallel in the “negative” one. This implies that the net power
flow, the one actually carried by the mode, may be forward moving (when the first
flow dominates), backward moving (when the second one is dominant), or even
zero (when the two fluxes are the same but with opposite directions), suggesting
the possibility of unusual resonant modes with a nonzero phase velocity (i.e., they
would be similar to a standing wave in a standard resonator but with incident
and reflected waves spatially separated in the two different materials).

Figure 2.3, as an example, shows the results of a mode-matching analysis
of a discontinuity between a DPS–DNG parallel-plate waveguide (on the left)
and an empty waveguide (on the right). The two waveguides support only one
propagating mode each, whose real parts of the longitudinal Poynting vector
distributions are described by the solid lines on each side of the discontinuity.
The black arrows represent the real part of the Poynting vector at each point of
the waveguide. As can be clearly seen from the figure, far enough away from
the discontinuity the arrows show the power flow is longitudinal as given by

Figure 2.3 Mode-matching analysis of a discontinuity. The black arrows represent the
real part of the Poynting vector. On the left we have a DPS–DNG waveguide with one
propagating mode with power distribution described by the red line. On the right there is
an empty parallel-plate waveguide that supports again only one propagating mode with
field distribution given by the blue line. From [7]. Copyright  2005 by the Institute of
Electrical and Electronics Engineers (IEEE).
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the propagating modes only. In the DPS–DNG waveguide portion, as mentioned
above, they are oppositely directed and well separated from each other; that is,
there is no transverse exchange of power for each mode, as required by the
orthogonality relations. In the vicinity of the discontinuity, however, the distri-
bution of the real part of the Poynting vectors (the black arrows) is rearranged
by the presence of the evanescent nonpropagating modes, and they clearly recon-
struct the transmitted mode (on the right of the discontinuity) and interestingly
feed the backward flow (on the left of the discontinuity).

In [8] we have also studied this waveguide problem with a circuit model
approach, showing how this inherent resonance at the interface between such
two conjugate materials may be explained with an LC tank circuit analogy. To
discuss the details of this analysis, we first need to review the circuit equivalence
for wave propagation in general isotropic media.(The reader is referred to [3] for
more details.)

Considering the propagation of a transverse magnetic (TMz) plane wave in
a homogeneous isotropic medium, one can write from Maxwell’s equations

∂Ex

∂z
= −jωµ̃eqHy

∂Hy

∂z
= −jωε̃eqEx (2.2)

where µ̃eq and ε̃eq are shorthand notations for µ̃eq ≡ µ
[
1 − k2

x/(ω
2µε)

]
and

ε̃eq ≡ ε and ε, µ are the material permittivity and permeability [9]. (By duality,
one can easily write the corresponding terms for the TE case as well, which
are µ̃eq ≡ µ and ε̃eq ≡ ε

[
1 − k2

x/(ω
2µε)

]
.) These expressions may obviously be

viewed as analogs to the transmission line (TL) equations ∂V/∂z = −jωLeqI ,
∂I/∂z = −jωCeqV , with the equivalent series inductance per unit length Leq

and equivalent shunt capacitance per unit length Ceq being proportional to µ̃eq

and ε̃eq, that is,
Leq ∝ µ̃eq Ceq ∝ ε̃eq (2.3)

Clearly the TL analogy may in general offer an interesting physical interpretation
and alternative insight, effectively linking the voltage and current distributions
along a circuit network to their local counterparts represented by the electric and
magnetic fields. This is well known in the DPS case [9], but it can be easily
extended to the metamaterial parameters, as it has been shown in [2, 8]. We
note that even in a conventional DPS material, where µ and ε are positive, the
value of Leq in the TM case and Ceq in the TE case may become negative when
k2
x > ω2µε, that is, for an evanescent wave. As is well known, a negative equiva-

lent inductance or capacitance at a given frequency may be interpreted effectively
as a positive capacitance or inductance at that frequency, respectively [2]. There-
fore, for the TM case the evanescent plane-wave propagation in a DPS medium
may be modeled using a TL with a negative series inductance per unit length
and a positive shunt capacitance per unit length, which effectively implies a pos-
itive series capacitance per unit length and a positive shunt capacitance per unit
length. In such a C –C line, which is a ladder network made of capacitors, the
currents and voltages cannot “propagate” along the line, but instead they have an
evanescent behavior, consistent with their electromagnetic counterpart. When a
DNG material or an ENG or MNG medium is used, their suitable equivalent TL
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models may exhibit anomalous properties consistent with the features of wave
propagation in such media. In general, one may consider Table 2.1 showing the
equivalent TL model for plane waves in lossless homogeneous isotropic media,
with all of the possibilities for signs of the real part of their permittivity and
permeability, both for the cases of propagating and evanescent waves. When
losses are present, µ and/or ε have complex values, which translates into positive
series resistances and/or shunt conductances in the TL model.

Returning to the waveguide problem, a standard transverse resonance tech-
nique [9] may be employed that considers the possible resonance between the
parallel plates as a mode which bounces from one plate to the other. Obviously
the way in which each medium should be considered as a TL may be obtained
from Table 2.1, by considering the transverse wavenumbers in the two media for
the guided mode with waveguide wavenumber κ . A sketch of this analysis is
given in Figure 2.4. The DPS–DPS waveguide is here represented by two stan-
dard L–C segments closed by two short circuits representing the metallic plates.
It is well known that such a circuit structure can resonate only when its length is
comparable with the wavelength of operation. For a DPS–DNG waveguide the
situation is different: At the interface between the two layers, conjugate elements
from the L–C and C –L lines may go into resonance, justifying the anoma-
lous behavior of the metamaterial waveguides and the peculiar “V-shaped” field
distributions. The same technique may be exploited to study waveguides filled
with other different pairs: ENG–MNG waveguides may support subwavelength
modes when their equivalent subwavelength L–L and C –C TL segments go
into resonance together. Similarly, DPS–ENG or DPS–MNG waveguides may
show similar properties for the polarizations for which DPS materials behave
respectively as MNG or ENG materials for the evanescent waves propagating
into them (see Table 2.1). The choice of the guided wavenumber β therefore
should ensure an appropriate evanescent tail in the transverse distribution of the
mode in the DPS material.

Similar anomalous behavior may be verified in open waveguides, based
on surface wave propagation along DNG slabs [10]. Here the pairing with DPS
materials is ensured by the presence of the surrounding free space or the possi-
ble presence of a dielectric cover/cladding. The interface between the two media
again provides a resonant guide for anomalous modes propagating along the
surface. Figure 2.5 shows the dispersion diagram for the surface wave propaga-
tion along a DNG slab (black lines), as compared with the case of a standard
DPS slab (red lines). It is important to note the differences in the dispersion
plots, clearly evident in the lower branch of the DNG modes (i.e., the lowest
order mode). In this plot, �k =

√
ω2µε − ω2µ0ε0 and 2d is the thickness of

the planar slab. In a standard DPS slab, the surface wave propagation is pos-
sible when ω

√
ε0µ0 = k0 < β < kDPS = ω

√
εDPSµDPS, as confirmed by all of

the branches for the DPS case (red lines). In a DNG slab, on the other hand,
the lowest branch has no cutoff thickness, since its wavenumber β unconven-
tionally increases as the thickness of the slab is decreased. This implies that a
subwavelength planar slab would be characterized by a slow surface plasmon
mode (with a large value of β for its e−jβx propagation factor, possibly even
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(b)

(a)

Figure 2.4 Parallel-plate waveguides: (a) filled with standard materials; (b) filled with
DPS–DNG pair and their equivalent distributed circuit elements and TL models. In both
cases, when the waveguide supports a given mode or the cavity is resonating, the cor-
responding equivalent circuit should be resonant at that frequency. The behavior of the
voltages and currents along the circuit gives an insight to the corresponding behavior
of the fields in the waveguide, and moreover, the intrinsic resonances between conju-
gate elements in (b) suggest an explanation for the anomalous behavior of metamaterial
waveguides. From [8]. Copyright  2003 by the Society of Photo-Optical Instrumentation
Engineers (SPIE).
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Figure 2.5 Dispersion plots of odd surface modes supported by slabs of DPS (red lines)
and DNG (black lines) materials. The blue dotted line joins the minima of the black lines,
which are the loci for which the surface wave does not carry any net power. From [7],
Copyright  2005 by the Institute of Electrical and Electronics Engineers (IEEE).

larger than |kDNG| = ω
√|εDNGµDNG|). Its field distribution would be highly con-

centrated around the two surfaces of the slab (i.e., at the DPS–DNG interfaces),
allowing the effective cross section of the guided mode to become narrower than
the conventional diffraction limits. Also in this case the peculiar power flow in
this open waveguide would see opposite power flows inside and outside the slab.
The net flow may be forward, that is, parallel with the phase flow, backward
(antiparallel), or zero, for which we are at the minimum points in the dispersion
curves shown in Figure 2.5. The blue dotted line in the figure joins all of these
minima, and it can be shown that it is tangent at infinity with the lowest order
mode of the DNG slab.

To describe the difference between a DNG and a DPS slab waveguide, let
us consider the following situation. In a standard open dielectric waveguide one
may be able to find a mode with zero cutoff thickness; that is, this mode can still
be guided even when the DPS slab thickness becomes electrically very small.
However, in this case the lateral field distribution of such a mode is spread out
in the space around the slab when the slab section is electrically too thin, and
the effective cross section of the guided mode may become much larger than the
slab’s lateral dimension (see Figs. 2.6a and b). On the other hand, when a DNG
slab is considered, a highly concentrated guided mode (lowest order odd mode)
propagating along the material slab may still be found even for very thin DNG
slabs. In fact, the thinner the DNG slab is, the more confined the lowest order odd
mode becomes (see Figs. 2.6c and d). This can lead to the possibility of build-
ing ultrathin open waveguides overcoming the standard diffraction limitation in
energy transport [10] and may offer potential applications for miniaturization of
interconnects.
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(a) (b)

(c) (d )

Figure 2.6 Schematic comparison between (a, b) DPS and (c, d) DNG open slab
waveguides. For the standard DPS case, as the slab waveguide becomes thinner, the
lateral distribution of the guided mode will be spread out (i.e., the mode will be weakly
guided). [Compare (a) with (b).] However, in the DNG open slab, the lowest order odd
mode will be more confined as the DNG slab gets thinner [compare (c) and (d)].

The unusual power flow properties of a DNG open slab waveguide led us
to the conceptualization of “antidirectional” couplers when two of these open
waveguides (one DNG and one DPS) are placed at the proximity of each other
and thus are coupled together [11]. When we juxtapose two open waveguides,
one with forward and the other with backward behavior, it becomes possible to
provide an anomalous coupling with the backward feeding of port 1 from port 2,
as depicted in Figure 2.7. In this figure a sketch of the power flows in each region
of such an idealized coupler is also shown for a given modal distribution (with
fixed β of propagation), highlighting the anomalous Poynting vector distribution
in such complex configurations.
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(b)

(a)

Figure 2.7 (a) Geometry and possible application of antidirectional coupler with
DNG and DPS open slab waveguides placed in parallel and in proximity of each other.
From [11]. Copyright  2002 by the Institute of Electrical and Electronics Engineers.
(b) This can lead to the “backward” coupling of energy from port 2 to port 1.

2.3 SUBWAVELENGTH CYLINDRICAL AND SPHERICAL
CORE–SHELL SYSTEMS

In the previous sections we highlighted how a judicious pairing of materials with
oppositely signed parameters may provide a means to realize compact resonant
structures and subwavelength guided-wave systems through the presence of the
interface resonances. When concentric spherical (or coaxial cylindrical) shells
of such pairs of materials are considered, similar interface resonances may be
induced with appropriate designs [12–14]. In this way one may form subwave-
length (3D or 2D) resonant structures that support resonant modes effectively
independent of the total width of the object. When the coaxial cylindrical shells
are covered by a metallic cylinder, for instance, a thin subwavelength metal-
lic waveguide may be designed with a propagating mode independent of its
total size; when instead the two shells are surrounded by free space, we may
have an open subwavelength waveguide or a resonant scatterer [10, 12, 13]. In
the case of the scatterer, we have analyzed the possibility of a large scattering
width (or cross section) from electrically small objects, showing that when the
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Figure 2.8 Cross section of spherical
structure composed of two concentric
layers of different isotropic materials
(DPS–DNG in figure).

corresponding material polariton (i.e., natural mode) becomes resonant (caused
by the interface resonance when subwavelength objects are considered), a high
scattering is expected from small DPS–DNG or ENG–MNG coaxial cylindrical
or spherical shells [12].

Similar to the planar geometry discussed in the previous section, here also
in the limit of electrically small objects the condition for such resonances depends
not as much on the total size of the small scatterers—as is the case when standard
DPS materials are considered—but rather on the ratio of the core–shell radii. In
particular, consider the spherical geometry depicted in Figure 2.8, where a two-
layered spherical scatterer is surrounded by free space and excited by a plane
wave. The scatterer is composed of a core material with constitutive parameters
ε1, µ1 and radius a1 and a cover with parameters ε2, µ2 and radius a. Again, a
resonant condition for the polariton of order n (corresponding to an ejnϕ angular
variation) may be achieved independent of the total size of the scatterer, provided
that the ratio of the core–shell radii a1/a satisfies the following conditions for
the two polarizations:

TE : γ ≡ a1

a
� [2n+1]

√
[(n + 1)µ0 + nµ2][(n + 1)µ2 + nµ1]

n(n + 1)(µ2 − µ0)(µ2 − µ1)

TM : γ ≡ a1

a
� [2n+1]

√
[(n + 1)ε0 + nε2][(n + 1)ε2 + nε1]

n(n + 1)(ε2 − ε0)(ε2 − ε1)

(2.4)

These conditions have been obtained in the quasi-static limit and are therefore
valid only in the limit of subwavelength spheres, but a general theory valid for
larger objects has been presented in [12]. It is interesting to note, however, again
in the subwavelength limit, that here the resonant condition is represented by a
geometric “filling” ratio of the structure rather than an overall spatial limit, as
it occurs with DPS materials. As anticipated, the interface resonance here again
plays a key role, similar to what happens in a lumped circuit where the judicious
choice of inductors and capacitors are sufficient to induce a resonance at the
required frequency.

It should be noted that the physical constraint 0 ≤ a1/a ≤ 1 should be
satisfied in (2.4), which restricts the possible range of material parameters for
existence of these resonances. These ranges of parameters for the case of the TM
scattering mode are shown in Figure 2.9. We can see from this figure that, for
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Figure 2.9 Regions for which the resonant condition (2.4) for the TM-polarized scat-
tered wave is satisfied, with the corresponding values for a1/a between zero and unity.
The “forbidden” regions indicated with the “brick” symbols present values of ε1 and ε2

for which the condition (2.4) for the TM case cannot be fulfilled. From [12]. Copyright 
2005 by the American Institute of Physics.

such a TM resonance to exist, we should at least have one of the parameters ε1

or ε2 negative; that is, we should have SNG or DNG materials for one of the
layers.

Another interesting feature of this configuration is the possibility of exciting
higher order resonant polaritons in subwavelength scatterers. When considering
a conventional DPS small scatterer, generally the scattering field is weak and
dominated by the dipolar (n = 1) term. By increasing its size, this first-order
polariton may be brought into resonance. However, higher order terms also start
to contribute significantly in the scattering field. Equation (2.4) then ensures the
possibility of choosing the material parameters appropriately, and their filling
ratio, so that a higher order resonant scattering condition may be obtained by a
subwavelength conjugate pair of shells. In other words, one would be able to build
a subwavelength open-cavity resonator that may “hit” higher order resonances
instead of the dipolar one.

This phenomenon, as reported in [14], may be particularly interesting if
we consider the higher directivity in the scattering (or radiation) pattern of the
higher order multipoles. In other words, instead of the usual broad beam of a
dipolar scattering, the resonant scattering induced by these subwavelength scat-
terers may be modeled by properly choosing the filling ratio of the DPS–DNG
pair [following Eq. (2.4)] in order to have scattered beams with higher direc-
tivity toward specific directions. For the standard DPS scatterers, it is known
that the resonances of higher order scattering terms may be achieved only with
electrically large objects (which correspond to the classical relation between the
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beam directivity and the size of the aperture from which they are generated),
and their radiation/scattering patterns would then contain not only the desired
resonant order but also contributions from other scattering multipoles. However,
for a subwavelength small scatterer made of DPS–DNG bilayer or a DPS–ENG
bilayer, one may achieve a scattering pattern that is dominated by a higher order
multipole, even though the size of the object is small. Clearly, this ideal phe-
nomenon may be limited by the presence of ohmic losses and the sensitivity of
this phenomenon to the design parameters, as discussed in [12, 14].

Figure 2.10a gives the absolute values of the first-order scattering coeffi-
cient in terms of the ratio of the radii for various values of the outer radius for a
DPS–ENG concentric spherical bilayer. It can be seen how for a smaller outer
radius of this scatterer the scattering coefficient remains the same when the ratio
of the two shell radii is chosen properly. As already mentioned, here indeed the
ratio of the two radii, rather than the outer radius, plays a more important role for
having a resonating mode supported by this system. This implies the presence
of resonant modes or polaritons in subwavelength scatterers. In Figure 2.10b,
the resonant peaks of the scattering coefficient cTM

1 are compared, in a logarith-
mic scale, for a DPS–ENG (black) and a DPS–DPS (red) scatterer. This clearly
shows how this subwavelength scatterer, which is partially composed of mate-
rials with a negative parameter, may act as a “compact resonator,” occupying a
very small volume but exhibiting a large resonant scattering cross section.

Analogous results may also be found for tiny cylindrical objects made of a
core–shell pair with oppositely signed parameters, which may be employed not
only as a scatterer but also as a leaky-wave radiator or as an open waveguide,
hinting again to the possibility of decreasing the working dimensions of such
devices. A similar analysis may be applied to more complex geometries, and in
this quasi-static limit similar conditions on the ratio of geometric parameters may
be straightforwardly derived for such resonances.

It is worth noting that another set of ratio of radii may be obtained for
which an “opposite” effect occurs; that is, the total scattering cross section of
this object may be drastically reduced and thus the object becomes essentially
“transparent”. This condition, as a counterpart to Eq. (2.4), reads as

TE: γ ≡ a1

a
� [2n+1]

√
(µ2 − µ0)[(n + 1)µ2 + nµ1]

(µ2 − µ1)[(n + 1)µ2 + nµ0]

TM: γ ≡ a1

a
� [2n+1]

√
(ε2 − ε0)[(n + 1)ε2 + nε1]

(ε2 − ε1)[(n + 1)ε2 + nε0]

(2.5)

for the two polarizations. This implies that for a given dielectric or metallic cylin-
der or sphere it is possible to choose a suitable metamaterial “cover” layer with
proper material parameters in order to make the object effectively transparent,
leading to interesting applications and concepts, as discussed in [15].

As an example, we show in Figure 2.11 the comparison between the radial
component of the scattered electric field in the near zone of a standard metallic
perfectly conducting sphere and that of the same sphere covered with a suitable
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Figure 2.10 Magnitude of scattering coefficient cTM
1 versus ratio of radii a1/a: (a)

for the ENG–DPS spherical scatterer with ε1 = −3ε0, ε2 = 10ε0, µ1 = µ2 = µ0

with the outer radius a as a parameter; (b) for a1 = 0.01λ0, ε1 = 10ε0, ε2 = ±1.2ε0,
µ1 = µ2 = µ0, as a comparison with a DPS–DPS case (logarithmic scale). From [12].
Copyright  2005 by the American Institute of Physics.
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Figure 2.11 Contour
plots of distribution of
magnitude of radial com-
ponent of scattered electric
field in x –z plane induced
by plane wave traveling
along z direction with
electric field along x axis:
(a) for perfectly conduct-
ing sphere with a1 = λ0/5;
(b) for the same sphere,
covered with ε2 = 0.1ε0,
µ2 = µ0, a = 1.087a1.

(a)

(b)

metamaterial cover satisfying condition (2.5). From this figure one can clearly
see the drastic reduction of the scattered field after the cover is placed over the
original sphere. In the contour plots in Figure 2.11 the red colors correspond to
lower values of the field and the blue colors to higher values. It is interesting
to see that the field distribution in the metal is similar in the two cases, but the
scattered field in the exterior region is drastically reduced when a thin cover is
introduced that is suitably designed.
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2.4 ENG–MNG AND DPS–DNG MATCHED
METAMATERIAL PAIRS FOR RESONANT ENHANCEMENTS
OF SOURCE-GENERATED FIELDS

We have mentioned that if one forms a pair of complementary SNG materials,
the resulting structure can be regarded as the join of two reactive impedances
with opposite signs. Such a pairing can be designed to produce a resonance phe-
nomenon. Consider, as an example, the simple geometry shown in Figure 2.12.
An infinite planar electric current sheet Js = I0δ(z)x̂ is sandwiched between two
semi-infinite material slabs with the indicated thicknesses. The bottom slab is
terminated with a PEC; the region above the slabs is free space. It is straight-
forward to obtain the electromagnetic fields in the region above the slabs. One
finds

Eωx,1(x, y, z) = Ae−jk1z Hωy,1(x, y, z) = A

η0
e−jk1z (2.6)

A = −η2η3e
+jk1d1

I0

ZTotal

(
T12e

−jk2d1

1 − R12e−j2k2d1

)(
1 − e−j2k3d2

1 + e−j2k3d2

)
(2.7)

where the wavenumbers ki = ω
√

εi
√

µi and the wave impedances ηi = √
µi/

√
εi

for i = 1,2,3 and the terms

R12 = η1 − η2

η1 + η2

ZTotal = η2
1 + R12e

−j2k2d1

1 − R12e
−j2k2d1

+ η3
1 − e−j2k3d2

1 + e−j2k3d2

(2.8)

The total impedance term ZTotal represents the sum of the input impedances seen
by the source looking toward the PEC and toward the free-space interface. A
resonance occurs when this total impedance is zero. The corresponding emitted
fields will become resonantly large.

PEC

d2

d1

x

z
e1, m1

e2, m2

e3, m3

Js
→

Figure 2.12 Current source sandwiched between two slabs, one terminated with a PEC
and the other having an interface with free space, ε1 = ε0, µ1 = µ0.
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Configurations for which this resonance can occur include those cases where
the two input impedances are equal in magnitude and opposite in sign. This can
be achieved by setting η3 = −η2 = −η and 2k2d1 = 2k3d2 = ψ so that

ZTotal = η2
1 + R12e

−j2k2d1

1 − R12e−j2k2d1
+ η3

1 − e−j2k3d2

1 + e−j2k3d2
= η

1 + R12e
−jψ

1 − R12e−jψ
− η

1 − e−jψ

1 + e−jψ

R12 = η1 − η2

η1 + η2
= η0 − η

η0 + η
(2.9)

The total impedance can then be made to be zero if |η| → ∞ so that R12 = −1.
This means that the remaining interface should act like a PEC to form an effective
resonant cavity.

One way to achieve these conditions is to set d1 = d2 = d and then have
µ2 = |µ| � +1 and ε2 → −δ, δ � 1, so that η2 = √

µ2/ε2 = √|µ|/√−δ →
+j∞ in the top slab and µ3 = −|µ| � −1 and ε3 → +δ, δ � 1, so that η3 =√

µ3/ε3 = √−|µ|/√δ → −j∞ in the bottom slab, that is, to have the slabs
be a matched ENG–MNG pair. These choices give the impedance conditions
η3 = −η2 = −η, and hence R12 → −1 and the wavenumber conditions 2k2d1 =
2k3d2 = ψ = −2jω

√|δ|√|µ|d , independent of the size of d . Note that because
these phase terms are imaginary, one would actually want d to be much smaller
than a wavelength so that the amount of decay of the fields in regions 2 and 3
will be minimal, even with δ � 1. A naturally small resonant cavity situation is
thus obtained. These material conditions could be achieved, for example, with
the capacitively loaded loop (CLL) metamaterial block introduced in [16,17] for
artificial magnetic conductor (AMC) studies. The top slab would be constructed
with CLL elements having their resonance frequency above the operating fre-
quency (slightly smaller elements than those designed to operate at the operating
frequency) while the bottom slab would have different CLL elements with their
resonance frequency below the operating frequency (slightly larger elements than
those designed to operate at the operating frequency).

The resonance condition can also be achieved with a DPS–DNG matched
pair. In particular, if one sets η3 = η2 = η and 2k2d1 = −2k3d2 = ψ so that

R12 = η1 − η2

η1 + η2
= η0 − η

η0 + η

ZTotal = η2
1 + R12e

−j2k2d1

1 − R12e−j2k2d1
+ η3

1 − e−j2k3d2

1 + e−j2k3d2
= η

1 + R12e
−jψ

1 − R12e−jψ
+ η

1 − e+jψ

1 + e+jψ

= η
1 + R12e

−jψ

1 − R12e
−jψ

− η
1 − e−jψ

1 + e−jψ
(2.10)

then the total impedance can again go to zero if R12 → −1. Thus, resonance
occurs if the lower slab is a DNG metamaterial of thickness d2 = d that has
µ3 → −∞ and ε3 → −δ, δ � 1, while the upper slab is a DPS metamaterial of
thickness d1 = d that has µ2 → +∞ and ε2 → +δ, δ � 1, so that η3 = η2 =
η = √|µ|/δ → +∞ and 2k2d1 = −2ω

√|δ|√|µ|d = −2k3d2 = −ψ .
Note that the actual distances d1, d2 in either the ENG–MNG or the

DNG–DPS configuration could again be scaled along with the actual mate-
rial parameters. In particular, the impedance and phase conditions are satisfied
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if d1/d2 = |µ3|/|µ2| = |ε3|/|ε2|. Thus, the slab thicknesses could be scaled to
match their permeability and permittivity ratios.

2.5 EFFICIENT, ELECTRICALLY SMALL DIPOLE
ANTENNAS: DNG NESTED SHELLS

One can then ask the following question: Can a DNG (or SNG) layer be used
as an alternative paradigm to modify the input impedance of an antenna or even
match it to free space, thus providing the possibility of improving the antenna
performance? This problem has been studied analytically and numerically by
Ziolkowski and Kipple [18]. They have considered the possibility of matching
an electrically small electric dipole antenna to free space by surrounding it with
a DNG shell and have successfully demonstrated that this dipole–DNG shell
system produces a much larger radiated power when compared to that produced
by the same antenna in free space [18].

Consider an ideal electrically small electric dipole antenna of length  that
is driven by the current I0 at the frequency f0 corresponding to the wavelength
λ = 1/(f0

√|ε‖µ|) and that is embedded in a DPS medium so that (as explained
in Chapter 1) the wavenumber k = ω

√
ε
√

µ > 0 and the wave impedance η =√
µ/

√
ε > 0. It produces the complex power at the radius r given by [19]

P =
∫
©
∫
S

(
1

2
Eω × H∗

ω

)
• r̂ dS = η

(π

3

) ∣∣∣∣I0

λ

∣∣∣∣
2 [

1 − j
1

(kr)3

]
= Prad + jPreac

(2.11)
[using the engineering convention for time-harmonic signals: exp(+jωt)]. The
(well-known) capacitive reactive power component in Eq. (2.11) is very large
near an electrically small antenna (e.g., for the distance r = a, where a is the
radius of the smallest sphere that can surround the antenna) and severely limits
its efficiency as a radiator, that is, the reactance ratio Preac/Prad � 1 for ka � 1
indicating that the radiated power is much smaller than the reactive power for
an electrically small radiator. The dipole’s reactive power is dominated by the
electric field energy, that is, Preac = ω(Wm − We) ≈ −ωWe, where We and Wm

are the corresponding time-averaged electric and magnetic field energies. It was
then noticed that this capacitive reactance becomes an inductive reactance when
the same antenna is embedded in a DNG medium for which (as explained in
Chapter 1) the wavenumber k = ω

√
ε
√

µ = −ω
√|ε|√|µ| < 0 while the wave

impedance η = √
µ/

√
ε = √|µ|/√|ε| > 0 [18]. Basically, the negative permit-

tivity loading the capacitor makes it act as an inductor. This behavior suggested a
possible means of resonantly matching these capacitive and inductive behaviors.
Consequently, the possibility of naturally matching an electrically small electric
dipole antenna to free space by surrounding it with a hollow DNG shell has been
considered.

We have demonstrated with analytical and numerical investigations [18] that
the capacitance exhibited by an electrically small electric dipole antenna in free
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space can be matched by the inductance of a surrounding lossless DNG shell,
creating an effective LC resonator configuration which significantly increases
the real power radiated by the dipole with a corresponding decrease in the
total reactance ratio. In particular, the three-region (two-nested-sphere) geometry
used in the majority of our investigations is shown in Figure 2.13. The dipole
antenna is located along the vertical z axis at the center of the nested spheres.
Relations for the electric and magnetic vector potentials, and for the resulting
electric and magnetic fields, were obtained in a straightforward manner for each
region. The unknown coefficients in those relations were found by applying the
appropriate electromagnetic boundary conditions, that is, by making the nonzero
tangential fields Eθ and Hφ continuous across each shell interface. The resulting
equations, presented in [18], were straightforward to obtain and solve numer-
ically. They have been generalized to include passive losses in the medium
parameters; that is, the medium parameters were set to ε = εrε0 − jε′′ and
µ = µrµ0 − jµ′′, where εr , µr < 0 and ε′′, µ′′ > 0. An electrically small dipole
antenna  = 100 µm = λ0/300 driven at f0 = 10 GHz (free-space wavelength

r
2

r
1

D.O.P.

Eθ

HΦ

Source

SourceReceiver

Receiver

D.O.P.

Ex

Hy

x

z

y

z

x

y

Figure 2.13 Three-region (two-nested-sphere) geometries used to investigate reciprocity
of scattering (upper) and source (lower) problems. For both cases, region 1 is given by
(ε1, µ1) for r ≤ r1, region 2 has (ε2, µ2) for r1 < r ≤ r2, and region 3 has (ε3, µ3) for
r2 < r . The direction of propagation (D.O.P.) of the wave leaving the source and inci-
dent on the receiver is shown. From [20]. Copyright  2005 by the American Physical
Society.
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λ0 = 3.0 cm) was embedded in a small sphere of DPS material (free space) with
a radius r1 = 100 µm, which in turn was surrounded by a DNG shell of outer
radius r2 with the permittivity and permeability values (ε2r , µ2r ) = (−3, −3)

and equal electric and magnetic loss tangents LT = ε′′/|εr |ε0 = µ′′/|µr |µ0 set
to the fixed values LT = 0, 0.00001, 0.0001, 0.001. The external region r > r2

was assumed to be free space.
The radiated power gain, that is, the power radiated by the dipole–DNG

shell system normalized by the power radiated by an ideal dipole antenna in
free space, whose length is equal to the diameter of the outer sphere that pro-
duces the maximum radiated power, was obtained. Both the dipole antenna in
the DNG shell and the free-space reference dipole antenna were ideal and were
driven with 1.0 A current at their terminals. These radiated power gain results
are plotted as a function of the DNG shell’s outer radius in Figure 2.14. As
reported in [18], the maximum in the lossless case occurs at r2,max = 185.8 µm.
The fact that this configuration is a natural mode of this system and produces
a resonant enhancement despite the fact that it is much smaller than a free-
space wavelength (r2,max ≈ λ0/161) is surprising but in complete agreement
with the subwavelength resonator concepts introduced earlier in this chapter. The
occurrence of this natural mode was confirmed mathematically by demonstrating

Figure 2.14 Radiated power gain for electrically small electric dipole antenna located
at the center of various lossless and lossy DNG shells with inner radius r1 = 100 µm.
From [20]. Copyright  2005 by the American Physical Society.
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Figure 2.15 Contour plot of magnitude of the real part of magnetic field distribution
produced by the z-oriented resonant electrically small electric dipole–lossless DNG shell
system. From [20]. Copyright  2005 by the American Physical Society.

that the determinant of the solution system approaches zero for these material and
geometry parameters. Because the enhanced radiated power gain occurs when the
dipole–DNG shell interactions are resonant, the losses simply reduce the peak of
the response and cause a broadening of the resonance region. They do not make
the effect disappear. The contour plot of the magnitude of the real part of the mag-
netic field distribution for the dipole–DNG shell system with r1 = 100 µm and
r2 = 185.8 µm given in Figure 2.15 illustrates the natural mode that is excited
by the electrically small dipole antenna.

Recent work by Alù and Engheta has shown a direct correlation between the
behavior of nested DPS–DNG and nested ENG–MNG systems [2] and has addi-
tionally demonstrated resonant scattering from nested metamaterial shells [12],
including various combinations of DPS, DNG, ENG, and MNG shells. Their
findings led us to investigate the possibility of reciprocity between the radiation
and scattering resonances for a variety of nested metamaterial shells [20]. Should
reciprocity be observed, we then hypothesized that the SNG nested sphere geome-
tries, composed of various combinations of ENG and MNG metamaterial shells
and found to support these lowest order TM (dipole) scattering resonances, would
also maximize the power radiated by an electrically small electric dipole antenna.
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We thus anticipated that the electrically small electric dipole antenna could be
matched with a nested set of MNG–ENG shells—or even a single ENG shell—in
place of the DNG shell used previously. The possibility of matching an electri-
cally small antenna with an ENG material alone is especially appealing, since
ENG materials are found in nature or have been manufactured artificially.

The reciprocal scattering problem is also shown in Figure 2.13. The source
and receiver have been interchanged. A plane wave polarized along the x direc-
tion is incident from infinity along the −z axis onto the nested two-sphere
configuration. However, because the nested spheres are electrically small, only
the transverse magnetic with respect to the r-direction TMr (n = 1, m = 1) mode
(mode number n for the polar angle θ , m for the azimuthal angle φ) of this plane
wave causes any significant response and was used in the calculations below.
The scattering can thus be viewed in terms of an induced dipole antenna oriented
along the x axis. This mode also provided the best match to the above z-oriented
electrically small electric dipole antenna analysis, which corresponds to radiation
of the TMr (n = 1, m = 0) mode. Because the scattering of this lowest order
mode from the nested spheres can be described as the excitation of an effective
dipole antenna located at their center, the nested electrically small spheres act as
a dipole receiver. The dipole antenna strength is directly related to the energy

Figure 2.16 Gain of energy stored in inner sphere when the TMr (n = 1, m = 1) mode
scatters from various lossless DPS–DNG shell systems with inner radius r1 = 100 µm.
From [20]. Copyright  2005 by the American Physical Society.
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captured by the spheres; resonant scattering occurs when the electromagnetic
energy captured by the spheres is resonant. We thus represent the signal at the
receiver for the reciprocal problem as the energy captured by the interior DPS
sphere.

The electric and magnetic field relations for the three-region scattering
geometry and the corresponding derived scattering parameters were obtained
and calculated. The simulator was validated using well-known cases, including
dielectric Mie scattering from each shell interface with a DPS interior; its output
was also compared to data provided by Alù and Engheta [12,13]. The DPS–DNG
systems were then analyzed numerically for scattering resonances.

The energy received and stored in the inner DPS sphere as a result of an
incident 10-GHz TMr (n = 1, m = 1) wave scattering from the lossless nested
DPS–DNG r1 = 100-µm configuration used in the source problem is shown in
Figure 2.16, plotted as a function of the DNG shell’s outer radius. The energy
stored in the inner DPS sphere is normalized relative to the energy that would be
stored in that sphere if all three regions were composed of free space. The peak in
the normalized stored energy for the (ε2, µ2) = (−3.0ε0, −3.0µ0) case occurs at
r2,max = 185.8 µm ≈ λ0/161, the same radius at which the source problem gain

Figure 2.17 Energy stored in real components of the electric and magnetic fields in
inner DPS sphere when TMr (n = 1, m = 1) mode scatters from the lossless DPS–DNG
shell system with inner radius r1 = 100 µm.
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was maximized. The determinant of the TMr (n = 1, m = 1) scattering coefficient
matrix produces a sharp minimum at this radius, indicating the presence of a
natural mode. The ratio r2,max/r1 agrees with the value predicted by the resonant
scattering expression given in [12, 13], obtained from a quasi-static (kri � 1,
i = 1, 2) approximation of the scattering matrices. When considering the energy
stored in the real and imaginary components of the electric and magnetic fields
within the inner sphere, it was found that the energy stored in the real part of
the magnetic field goes to a local maximum while the energy stored in the real
part of the electric field goes to local minimum for the resonant geometry. Put
another way, the magnetic fields in the DPS–DNG scattering system become
completely real at the resonant configuration, while the electric fields become
completely imaginary. The same behavior is exhibited in the dipole–DNG shell
system. This result is summarized in Figure 2.17.

This indicates that the resonant DPS–DNG system is behaving as a TM res-
onator with matched capacitance and inductance. The magnitude of the real part
of the magnetic field distribution generated for this case is shown in Figure 2.18.
Clearly, the same natural mode of the nested sphere system found in the source

Figure 2.18 Contour plot of magnitude of real part of the magnetic field distribu-
tion produced when TMr (n = 1, m = 1) mode is scattered from the resonant lossless
DPS–DNG shell system. From [20]. Copyright  2005 by the American Physical Society.
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Figure 2.19 Total scattering cross section normalized by unity cross-section value
when TMr (n = 1,m = 1) mode scatters from various lossless DPS–DNG shell systems
with inner radius r1 = 100 µm. From [20]. Copyright  2005 by the American Physical
Society.

problem was excited in the scattering problem. Reciprocity of the source and
scattering problems in the presence of the DNG shell is thus established.

To further emphasize this reciprocity, the total scattering cross section data
for the TMr (n = 1, m = 1) mode normalized to its unity value σunity = 3 ×
(2π/k2

0), as seen in Figure 2.19, also exhibits resonant enhancements for the
same geometry. In fact, the dipole scattering coefficient is seen to go to one
at the critical radius, r2,max ≈ λ0/161, again despite the extremely small size of
the scatterer. As noted above, the incident wave induces a dipole moment over
the inner DPS sphere, which then reradiates as an electrically small antenna.
A resonant response results from the presence of the inductive DNG shell that
matches this capacitive element to free space.

The energy (detector) and the total scattering cross section for the r1 = 100-
µm DPS–DNG shell systems with (ε2, µ2) = (−2.9ε0, −2.9 µ0) and (ε2, µ2) =
(−3.1ε0, −3.1 µ0) are also given, respectively, in Figures 2.16 and 2.19 for com-
parison. The nested sphere configuration is resonant for a smaller outer shell
radius when the index of refraction of the shell is more negative. Reciprocity
between these scattering results and the corresponding dipole source results has
been verified.
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2.6 EFFICIENT, ELECTRICALLY SMALL DIPOLE
ANTENNAS: ENG NESTED SHELLS—ANALYSIS

Along with the DPS–DNG analyses, source and scattering resonances were
analyzed for a wide variety of DPS–SNG and MNG–ENG systems. They
were also studied [21] for related four-region (three-nested-sphere) configu-
rations, for example, for a nested DPS–MNG–ENG–DPS configuration. For
example, several source and scattering resonances for configurations with sim-
ilar sizes and material parameters as the “supergain” case presented above
were observed, including (1) inner MNG sphere with (εr , µr) = (1, −1) and
radius r1 = 100.0 µm and surrounding ENG shell with (εr , µr) = (−3, 3) and
r2 = 185.8 µm, (2) inner DPS, free-space sphere with radius r1 = 99.9 µm and
surrounding ENG shell with (εr , µr) = (−3, 1) and r2 = 185.8 µm, and (3) an
example four-region case with an inner DPS, free-space sphere with radius r1 =
100.0 µm surrounding MNG shell with (εr , µr) = (1, −5) and r2 = 133.9 µm
and outer ENG shell with (εr , µr) = (−5, 1) and r3 = 185.8 µm.

The DPS–ENG case is of particular interest due to the relative ease of
manufacturing a DPS–ENG system while still exploiting the resonance proper-
ties emphasized by the DPS–DNG scattering cases. In particular, the fact that
the shell must be inductive to achieve a resonant match with an electrically small
dipole antenna infers that an ENG shell should be adequate to achieve similar
results. In particular, the inner electrically small DPS sphere with the electrically
small dipole antenna driving it acts as a capacitive element. Similarly, the electri-
cally small ENG shell also acts as a capacitive dipole element but with a negative
permittivity. Hence, the ENG shell effectively acts as an inductive element. A

Capacitive
element

Electrically small
DPS sphere driven

with a dipole antenna

Electrically small ENG
spherical shell acts as a

dipole antenna

Inductive
element

LC
RESONATOR

Figure 2.20 An electrically small ENG shell combined with an electrically small dipole
antenna can also lead to a resonant system.
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Figure 2.21 Radiated power gain for electrically small electric dipole antenna located
at the center of various lossless ENG shells with inner radius r1 = 100 µm. From [20].
Copyright  2005 by the American Physical Society.

properly designed LC pair will be resonant at the desired operating frequency.
This behavior is summarized in Figure 2.20.

With a dipole antenna of length  = 100 µm in free space surrounded by
a lossless ENG shell with inner radius r1 = 100 µm and material properties
(εr , µr) = (−3.0, 1), the radiated power gain as a function of the outer radius
is shown in Figure 2.21. The resonant peak occurs at r2,max = 185.9 µm. The
resonant behavior for lossless ENG shells with material properties (εr , µr) =
(−2.9, 1) and (εr , µr) = (−3.1, 1) are also shown in Figure 2.21 for compari-
son. The radiated power gain for all of these systems is comparable in magni-
tude to that of the electrically small dipole–lossless DNG shell case shown in
Figure 2.14. Potentially more manufacturable cases have also been considered;
the results indicate that an ENG shell may indeed provide a practical alternative
to a DNG shell for purposes of resonantly matching a TMr -producing antenna
to free space.

The distributions of the magnitude of the real parts of the electric and
magnetic fields at the resonance are shown in Figures 2.22a and b, respectively.
Clearly, the same TMr resonance that was found in the dipole–DNG system is
excited in the dipole–ENG case.
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(a)

Figure 2.22 Analytically predicted distributions of the magnitude of the real parts
of (a) electric and (b) magnetic fields for the z-oriented resonant electrically small
dipole–ENG shell system.

(b)
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2.7 EFFICIENT, ELECTRICALLY SMALL DIPOLE
ANTENNAS: HFSS SIMULATIONS OF DIPOLE–ENG SHELL
SYSTEMS

To investigate several practical issues associated with the dipole–ENG shell sys-
tem, we have developed an appropriate numerical model using Ansoft’s High Fre-
quency Structure Simulator (HFSS). This package is a full-wave, vector Maxwell
equation solver that utilizes a finite-element approach. The 3D objects and the
simulation region are discretized with tetrahedra; thus, even a curved boundary
is approximated locally with straight segments. The dipole antenna is modeled
with two cylindrical wires with a gap source. Consequently, the physical size and
shape of the antenna is included in the model and there is a discrete approxima-
tion of the spherical shell. The HFSS model thus includes several perturbations
that in fact could impact the resonant mode of the system that we are trying to
excite.

The HFSS-predicted radiated power gain is shown in Figure 2.23. There has
been a shift in the resonance frequency due to the extra capacitance introduced
by the finite radius of the dipole antenna. Nonetheless, the shape and peak of the
gain curve match the analytical results very well. The HFSS-predicted electric
field values for the resonant configuration along the broadside direction from the
middle of the gap outward are compared to the corresponding analytical results
in Figure 2.24. The differences between the results near the origin are due to the

Figure 2.23 Comparison of HFSS and analytically predicted radiated power gains for
the resonant electrically small dipole–ENG shell system.
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Figure 2.24 Comparison of HFSS and analytically predicted magnitudes of real part of
electric field along the broadside direction from the electric dipole antenna in the resonant
electrically small dipole–ENG shell system.

presence of the gap source in the HFSS model. The HFSS-predicted electric and
magnetic field distributions are shown in Figures 2.25a and b, respectively. Very
good agreement with the analytical results is obtained. Moreover, the actual field
distributions near the dipole antenna are now apparent.

In summary, the resonant enhancement of the power radiated by an electri-
cally small electric dipole antenna when it is surrounded by a properly designed
DNG shell is found to correlate with the scattering enhancements produced by
the same DPS–DNG shell configuration. These resonant enhancements occurred
even though the sizes of these configurations were very small compared to the
radiation wavelength. Fundamental TM scattering resonances that have been
observed for various nested MNG–ENG and DPS–ENG configurations have
additionally been found to correlate with resonances in the radiation produced
by an electrically small electric dipole antenna centered within those systems.
The DPS–ENG results are of particular interest, due to the known possibil-
ity of manufacturing ENG materials. The DPS–ENG system produces radiated
and scattered power gains of the same order of magnitude as the DNG-based
system. Numerical solutions of the dipole–ENG shell system obtained with
the commercial software package HFSS agreed very well with the analytical
results.

Current work is focusing on the development of an approach for determin-
ing the “best” shell configuration given specific material and size constraints. We
are also investigating the effects of nonideal dipole antennas and their associated
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(a)

(b)

Figure 2.25 HFSS-predicted distributions of magnitude of the real parts of the
(a) electric and (b) magnetic fields for the z-oriented resonant electrically small electric
dipole–ENG shell system.

matching networks on these dipole–metamaterial shell systems. Experimental
designs to realize the predicted match between a real TMr -producing antenna and
an ENG coating, as well as between other types of antennas and the appropriate
metamaterials, and to demonstrate that metamaterials can significantly increase
an antenna’s radiated power are also currently under investigation.



76 CHAPTER 2 FUNDAMENTALS OF WAVEGUIDE AND ANTENNA APPLICATIONS

2.8 METAMATERIAL REALIZATION OF AN ARTIFICIAL
MAGNETIC CONDUCTOR FOR ANTENNA APPLICATIONS

The SNG medium parameters predicted to achieve the resonant source configura-
tions considered in Section 2.4 dealt with metamaterial slabs that had extremely
low permittivities and large permeabilities to make the magnitude of their wave
impedances approach infinity. Such high-impedance metamaterial slabs act as
AMCs and have many antenna applications. In particular, consider the scattering
of a normally incident plane wave from a semi-infinite slab of thickness d having
a wave impedance η and wave number k, as shown in Figure 1.6. The reflection
S11 and transmission S21 coefficients from such a slab are readily derived and
are found to be

S11 = η − η0

η + η0

1 − e−j2kd

1 − [(η − η0)/(η + η0)]2e−j2kd

S21 = 4ηη0

(η + η0)2

e−jkd

1 − [(η − η0)/(η + η0)]2e−j2kd

(2.12)

It is straightforward to see that if η → ∞, an in-phase reflection then occurs,

lim
|η|→∞

S11 = +1 lim
|η|→∞

S21 = 0 (2.13)

independent of the thickness of the slab. This zero-phase or in-phase reflection
condition characterizes an AMC.

Several planar and volumetric metamaterial structures have been investi-
gated that act as AMCs [22–28]. As shown in later chapters, these include the
Sievenpiper mushroom surfaces and frequency selective surfaces (FSSs) such as
the University of California Los Angeles (UCLA) uniplanar, compact photonic
bandgap (UC-PBG) surfaces. It has been shown by Erentok et al. [17] that a
volumetric metamaterial constructed from a periodic arrangement of CLL ele-
ments acts as an AMC when the incident wave first interacts with the capacitor
side of the CLLs and as an AEC from the opposite direction. This behavior is
illustrated in Figure 2.26. The associated HFSS simulations of the scattering of
a plane wave normally incident on such a CLL-based metamaterial block have
been used to demonstrate that such a block has effective material properties that
exhibit a two-time-derivative Lorentz material (2TDLM) behavior for the perme-
ability and a Drude behavior for the permittivity. This effective material behavior
is illustrated in Figure 2.27. The resonance of the real part of the 2TDLM model
and the zero crossing of the real part of the Drude model occur at the same fre-
quency at which the in-phase reflection occurs. This concurrence of the critical
frequencies of both models produces a metamaterial slab with a high-impedance
state at that frequency, that is, limω→ω0

√
µ(ω)/ε(ω) → ∞. Numerical simula-

tion and experimental results for the CLL-based metamaterial slab have shown
good agreement [17].

The use of the finite two-CLL-deep metamaterial AMC block for anten-
nas has also been considered [17]. Numerical simulations of the interaction of a
dipole antenna with such a metamaterial block have shown the expected AMC
enhancements of the radiated fields. The dipole–AMC block configuration is
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Acts as an
AEC

Acts as an
AMC

Figure 2.26 The two-CLL-deep based metamaterial block acts as an artificial magnetic
conductor (AMC) when the plane wave is incident upon the capacitive gaps and acts as
an artificial electric conductor (AEC) when the plane wave is incident from the opposite
direction.

Figure 2.27 Effec-
tive relative permittivity
εr = ε′

r + jε′′
r and per-

meability µr = µ′
r + jµ′′

r

extracted from HFSS
simulation results of scat-
tering of a plane wave
that is normally incident
on a two-CLL-deep-based
AMC block. From [17].
Copyright  2005 by the
Institute of Electrical and
Electronics Engineers.

shown in Figure 2.28a. The behaviors of this system as a function of the antenna
length  and the distance of the antenna from the block h have been studied. As
shown in Figure 2.28b, it has been found that resonant responses are obtained
when the distance between the dipole and the metamaterial block is optimized.
Significantly enhanced electric field values in the reflected field region and front-
to-back ratios have been demonstrated. The E-plane and H -plane patterns of
the dipole–AMC block system and of the free-space dipole are compared in
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(a)

(b)

Figure 2.28 (a) Dipole antenna and two-CLL-deep AMC block configuration.
(b) HFSS-predicted resonant interaction between the dipole antenna and the two-CLL-
deep-based AMC block results in very large front-to-back ratios.

Figures 2.29a and b, respectively, for the optimized case of a  = 0.325λ0

antenna driven at 10 GHz (λ0 = 30 mm) near the two-CLL-deep-based AMC
block with dimensions 5.5 mm × 6.6 mm × 25.4 mm. The broadside power from
the dipole antenna is more than doubled in the presence of this AMC block. The
realized front-to-back ratio, as shown in Figure 2.28b for this case, is 44.3 dB
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Figure 2.29 The far-field
(a) E-plane and (b) H-plane
patterns of the dipole antenna
and two-CLL-deep-based AMC
block system (solid line),
shown in Figure 2.28a, are
compared to those produced
by a free-space dipole antenna
(dotted line).

(a) E-plane pattern

(b) H-plane pattern

(164.25). The corresponding HFSS-predicted near-field electric field distribu-
tions in the E and H planes for the resonant frequency 9.987 GHz are shown
in Figures 2.30a and b, respectively. These field distributions show that there is
very good isolation between the front and back sides of the two-CLL-deep-based
AMC block even in the near field of the system.
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(a) E-plane

(b) H-plane

Figure 2.30 Near-field HFSS-predicted electric field distributions of a 0.325λ0 dipole
antenna when it is in resonance at 9.987 GHz with the two-element-deep CLL-based
AMC block: (a) E plane; (b) H plane.

2.9 ZERO-INDEX METAMATERIALS FOR ANTENNA
APPLICATIONS

An example of the use of a zero-index slab in antenna applications is to obtain
a highly directive beam (e.g., [29–31] and Chapters 1 and 11). Consider a line
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source that is located in the center of a slab of matched zero-index metamaterial,
that is, εreal(ω0) ≈ 0 and µreal(ω0) ≈ 0. The cylindrical wave generated by the
line source will create a spatially constant, time-varying electric field distribution
in the slab [32]. From Snell’s law one knows that the waves transmitted out of
the slab will have a transmitted angle of zero for any angle of incidence since
the index of the incident medium is zero,

θexterior = sin−1
(

ninterior

nexterior
sin θinterior

)
= 0 ninterior = 0

This means the field radiated from any zero-index slab will propagate away
from it in a direction orthogonal to the face of the slab from which it is emitted.
Consequently, the cylindrical wave generated by the line source will be converted
into a wave with a planar wave front as the wave emerges from the matched zero-
index slab. Moreover, because the entire face of the slab will be driven in phase,
it will then act as a uniformly driven aperture. Such an aperture will generate
the most directive beam; that is, the far-field pattern of the aperture has the
total divergence angle θdivergence = λ0/D, where D is the largest dimension in
the aperture. This also means that the output beam will become narrower as the
slab, and hence the aperture, is made wider.

To convert the maximum amount of power from the source into a directive
beam, one long face of the slab should be terminated with a perfect magnetic
conductor (PMC). The PMC will cause an in-phase reflection of the wave being
generated in the slab. A PEC should not be used because it will short out the
constant electric field that is generated in the slab. Other configurations with PMC
and PEC walls are possible if the walls are located at particular distances away
from the slab so that the resulting reflected waves interact constructively with
those being generated by the source toward the observer. Because the electric
field will become constant throughout the slab, any thickness slab will generate
the same directive beam for the same width. Thus, the slab can be designed to be
very thin. Consequently, the PMC configuration will generate the largest radiated
power into a directive beam with the most compact design.

Such an electrically thin PMC-backed, line-source-driven, matched zero-
index slab has been modeled with a finite-difference time-domain (FDTD) sim-
ulator [33]. In particular, an electric line source is centered in a 10.2λ0 × 0.1λ0

metamaterial slab. The metamaterial is modeled as a low-loss Drude material
having εreal(ω0) ≈ 0 and µreal(ω0) ≈ 0 at f0 = ω0/2π = 30 GHz. The long side
of the slab away from the observer was terminated with a finite PMC ground
plane (i.e., to avoid shorting out the electric field in the slab, a PMC rather than a
PEC ground plane was used). The FDTD-predicted electric field intensity distri-
butions at several times are shown in Figure 2.31. As predicted, the line source
generates a cylindrical wave that forms a spatially constant electric field, which in
turn causes the slab to emit a beam with planar wave fronts. The zero-index slab
causes the entire output face of the slab to have the same phase, thus resulting
in a highly directive output beam.

Finally, because a matched zero-index slab transforms cylindrical waves
generated by an internal line source into planar wave fronts, it was anticipated
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(a)

PMC

Line
  source

(b)

(c)

Figure 2.31 Electric field intensity radiated by a line source centered in a λ0/10 thick
zero-index slab that is terminated in a PMC sheet: (a) t = 167 �t ; (b) t = 1000 �t ;
(c) t = 4833 �t .

that such a slab would do the same to the fields radiated by an external line
source. This wave front transformer behavior was demonstrated in [32]. It was
characterized with the FDTD simulator and the FDTD results confirmed the
expected behavior.
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2.10 SUMMARY

In this chapter, we reviewed some of the interesting features of DNG and SNG
metamaterials, particularly when they are juxtaposed with complementary meta-
materials and/or conventional DPS media. The phenomenon of the interface
resonance was one of the reasons behind some of the unusual resonant properties
of such a combination of metamaterials. A variety of unusual and interesting cav-
ity, waveguide, and antenna properties that rely on such interface resonances were
discussed. These features may lead to a number of exciting potential applications
of metamaterials with impacts on the performance of various engineering sys-
tems. A further overview of these metamaterial properties and their engineering
applications can be found in [34].
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CHAPTER3
WAVEGUIDE EXPERIMENTS TO
CHARACTERIZE PROPERTIES
OF SNG AND DNG
METAMATERIALS

Silvio Hrabar

3.1 INTRODUCTION

Effective permittivity and effective permeability are basic engineering parameters
of metamaterials. The metamaterials possessing negative values for the real parts
of one of these parameters [single-negative (SNG) material] and metamaterials
possessing negative values for the real parts of both parameters [double-negative
(DNG) material] were introduced in 2000 [1]. Since then there has been a need
for experimental characterization of these metamaterials. The first choice might
be a direct use (or modification) of a standard free-space method widely used
in characterization of continuous materials. This method involves measurement
of the transmission and reflection coefficients of a slab sample illuminated by a
plane wave emanated from a highly directive antenna. One should use a rather
large slab (with typical transversal dimensions of 10 wavelengths) in order to
avoid diffraction at the edges. On the other hand, a bulk metamaterial usually
comprises an array of small scatterers (the inclusions) embedded into a host
material at a small mutual distance (a fraction of a wavelength). Manufacturing
of such a large metamaterial sample is a rather time-consuming and expensive
task at the present state of the art. Thus, the free-space technique does not appear
to be a convenient method of testing the bulk metamaterials.

The first experimental investigations of SNG and DNG metamaterials were
performed in a so-called scattering chamber [1, 2]. Briefly, a scattering chamber
is a thin (thinner than half of a wavelength) metallic box containing a small
metamaterial sample surrounded by electromagnetic absorbers. If one launches a
transverse electric (TE) polarized wave into such a chamber, its small thickness
will prevent excitation of any standing waves (e.g., the excitation of waveguide
modes) in the vertical direction. In addition, absorbers prevent the excitation of
waveguide modes in the horizontal direction. Since the parallel metallic plates
(a bottom and a top of the box) impose periodic boundary conditions, the whole
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setup simulates a scenario in which a plane transverse electromagnetic (TEM)
wave impinges on an infinite metamaterial slab at normal incidence.

Contrary to the methods with plane-wave excitation, one may turn to the
waveguide methods. The waveguide environment is well defined and completely
closed, the diffraction is not present, and the testing space is rather small, relaxing
the requirements on the sample size. Of course, this environment is obviously
different than free space, and one should be very careful in any interpretation of
the results, particularly in the case of an anisotropic metamaterial. It is interesting
that the literature is sparse in experimental investigations of metamaterials in
waveguide environments. Therefore, the purpose of the research presented in this
chapter is twofold: the characterization of bulk SNG and DNG metamaterials in
a waveguide environment and an investigation of the properties of a waveguide
filled with a metamaterial as a new guiding structure.

3.2 BASIC TYPES OF BULK METAMATERIALS
WITH INCLUSIONS

Almost all bulk metamaterials used at the present state of the art are based on only
two structures: a dense array of thin wires and an array of split-ring resonators
(SRRs).

3.2.1 Thin-Wire Epsilon-Negative (ENG) Metamaterial

It has been shown [3–5] that an array of parallel wires (Fig. 3.1) exhibits a high-
pass behavior for an incoming plane wave whose electric field is parallel to the
wires.

Below a special frequency (a cutoff frequency of the array) there is no
propagation and an electromagnetic wave will experience total reflection. This
behavior is similar to the propagation of the electromagnetic waves in plasma.
If a lattice constant (a) is much smaller than a wavelength (a � λ), the wire
array can be thought of as a continuous plasma like material described by an
equivalent macroscopic relative permittivity (ejωt time dependence is assumed

E
H

P

y

x

z

ε’reffx >0

εreffz

ffp

1

0

a

ε’reffz <0

a ε’reffy >0

(a) (b) (c)

Figure 3.1 (a) Array of thin conducting wires. (b) Unit cell. (c) Effective permittivity of
array: solid lines, real part; dashed lines, imaginary part.
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with ω = 2πf being the angular frequency [3–5]):

εreff,z = ε′
reff,z − jε′′

reff,z = 1 − f 2
p

f 2 − jγf
(3.1)

Here, εreff,z denotes the effective relative permittivity in the z direction. The
symbols f and fp represent the frequency of the signal and the cutoff frequency
of the array (“plasma frequency”), respectively, while the factor γ represents the
losses. The plasma frequency generally depends on the geometry of the system
(a lattice constant and wire radius), and different equations for the prediction
of its value can be found in the literature [3–5]. The relative permittivity in the
transversal directions (x direction and y direction) is always positive and, in a case
of thin wires, is approximately equal to that of the vacuum (εreff,x ≈ 1, εreff,y ≈ 1).
Strictly speaking, the permittivity in the direction parallel to the wires (z direction)
also depends on the component of the wave vector in the z direction [5]. Thus
Eq. (3.1) applies only if there is no component of the wave vector in the z

direction, that is, if the propagation takes place only in the transversal (x –y)
plane. This requirement was met in the scattering chamber [1,2], and it can also
be met in the waveguide environment with the fundamental TE mode. In this
case the wire medium can be considered as an isotropic 2D ENG metamaterial
described by a scalar relative permittivity εreff,z.

3.2.2 SRR Array Mu-Negative (MNG) Metamaterial

Since the first theoretical introduction in [6], an array of SRR inclusions (Fig. 3.2)
has been widely used for the synthesis of MNG metamaterials [1, 2, 7–12]. A
single SRR can be thought of as a small, capacitively loaded loop antenna [8,9].
If this antenna operates slightly above the resonant frequency, the local scattered
magnetic field will be almost out of phase with the incident field. Thus, the
resultant local magnetic field will be lower than that of the incident field. It leads
to the negative magnetic polarization and negative effective permeability of the
resulting metamaterial. It was shown [1, 6, 7, 11] that the effective permeability
of this metamaterial has the form given by

µeff = µ′
eff − jµ′′

eff = 1 − f 2
mp − f 2

0

f 2 − f 2
0 − jγf

(3.2)

where f is the frequency of the signal, fmp denotes the frequency at which (in
the lossless case) µeff = 0 (“magnetic plasma frequency”), the symbol f0 stands
for the frequency at which µeff diverges (the resonant frequency of the SRR),
and γ represents the losses. The dependence of µeff on frequency is qualitatively
sketched in Figure 3.2c. In general, fmp and f0 depend both on the lattice constant
and the inherent geometric parameters of the SRR itself (inner and outer radii of
the rings, the width of the gap between the rings, and the slit width [6]).

Equation (3.2) describes the simplified SRR model that does not take into
account the minor electrical polarization [6], which obviously influences the
effective permittivity. Furthermore, the SRR shows some small bi-anisotropic
effects [7]. All these effects are neglected throughout this experimental investi-
gation, and the SRR is treated as a purely magnetic particle.
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Figure 3.2 (a) Array of SRRs. (b) Unit cell: upper, 1D case; lower, 2D case.
(c) Effective permeability of array: solid lines, real part; dashed lines, imaginary part.

It is obvious from the upper part of Figure 3.2b that an SRR is inherently
an anisotropic particle. If the magnetic field vector of the incident plane wave is
perpendicular to the SRR, it will give rise to the induced currents that eventu-
ally will yield the negative permeability. On the contrary, if the magnetic field
vector is parallel to the SRR, it cannot give rise to the induced currents and
the presence of the SRR does not affect the effective permeability. Due to this,
the pioneering experimental study [1] actually dealt with an anisotropic meta-
material. That metamaterial supported backward-wave propagation only for the
magnetic field direction perpendicular to the SRRs (it can be loosely said that
the DNG metamaterial used in [1] was actually one dimensional). If one wants
to achieve a nearly isotropic 2D MNG metamaterial, one should use at least two
SRRs per unit cell (Fig. 3.2b, lower). Similar to the case of a thin-wire ENG
metamaterial, the experiments performed to date in the scattering chamber [1,2]
have dealt with either 1D or 2D metamaterials. Thus, one concludes that a gen-
eral SRR-array-based MNG metamaterial can be described by a 2 × 2 uniaxial
permeability tensor:

µ = µ0

[
µtr 0

0 µlr

]
= µ0(µ

′
r − jµ′′

r ) = µ0µr (3.3)

where µ0 is the absolute permeability and µtr and µlr are the relative perme-
abilities in the transversal (x) and longitudinal (y) directions, respectively. If one
deals with an anisotropic SRR-based metamaterial that contains one SRR per unit
cell (Fig. 3.2b, upper), the longitudinal (y-directed) permeability will be approx-
imately equal to that of the vacuum (µlr ≈ 1). In contrast, if one deals with a
nearly isotropic SRR-based MNG metamaterial (Fig. 3.2b, lower), the transversal
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Figure 3.3 (a) DNG
metamaterial based on
thin wires and SRRs.
(b) Unit cell: upper, 1D
case; lower, 2D case. (a) (b)
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permeability (x directed) and the longitudinal permeability (y directed) will be
equal (µtr = µlr ).

3.2.3 DNG Metamaterial Based on Thin Wires and SRRs

The first DNG metamaterial reported in the literature [1] was actually a combi-
nation of the thin-wire-based ENG structure and the SRR-based MNG structure
(Fig. 3.3). It was assumed that the new composite material exhibited a macro-
scopic permittivity equal to that of the thin-wire ENG medium and a macroscopic
permeability equal to the permeability of the SRR-based MNG medium. (This
is a simplified model which neglects any interactions between the SRRs and
the wires [14]). In this chapter, it is assumed that a general 2D bulk metama-
terial available at the present state of the art can be fully described by a scalar
macroscopic permittivity inherited from the thin-wire-based ENG medium (3.2)
whereas the macroscopic permeability has the form of a uniaxial 2 × 2 tensor
(3.3) associated with the SRR-array-based MNG medium. This general 2D bulk
DNG metamaterial can be either magnetically anisotropic (Fig. 3.3b, upper) or
magnetically isotropic (Fig. 3.3b, lower).

3.3 THEORETICAL ANALYSIS OF RECTANGULAR
WAVEGUIDE FILLED WITH GENERAL METAMATERIAL

Let us analyze a rectangular waveguide filled with the general metamaterial
described in the previous section (the metamaterial having an isotopic scalar per-
mittivity and a uniaxial anisotropic permeability; Fig. 3.4). The wave equation
for such a waveguide [11] reads as

∇ × µ−1
r (∇ × E) = k2

0εrE k0
2 = ω2µ0ε0 (3.4)
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Figure 3.4 Rectangular waveguide filled with
general metamaterial.

where E is the electric field, k0 the free-space propagation factor, and ε0 and
εr the free-space permittivity and relative permittivity in the medium, respec-
tively. Assuming that the propagating waves are TE modes, one derives [11] the
dispersion equation

k2
x

µlr

+ k2
y

µtr

= εrk
2
0 (3.5)

From (3.5) one easily finds the expression for the longitudinal propagation factor:

ky = ±
√

εrµtr

(
k2

0 − k2
x

εrµlr

)
= βy − jαy kx = mπ

d
m = 1, 2, 3, . . .

(3.6)
where d is the waveguide width (Fig. 3.4), m is an integer, and kx and ky are the
propagation factors in the transversal and longitudinal directions, respectively.
The symbols βy and αy are the phase factor and attenuation factor, respectively.
One should note that there are always two different solutions for the square root in
(3.6) and, therefore, two different solutions for the longitudinal propagation factor
ky . The proper, physically meaningful solution is chosen by the requirement that
αy > 0 in the lossy case [11], since every physical flow of energy must decay
away from the source. If the filling material is lossless (ε′′

r = 0, µ′′
r = 0), Eq. (3.6)

can be rearranged into the following compact, more convenient form:

ky = ±k0

√√√√εrµ
′
tr

[
1 −

(
fc

f

)2
]

= βy fc = fc0√
εrµ

′
lr

fc0 = mc

2d
(3.7)

where f is the frequency of the signal, whereas fc0 and fc are, respectively,
the cutoff frequencies of an empty waveguide and the same waveguide filled
with material. Now one can analyze the influence of different types of fillings on
the propagation of waves in the waveguide. In the familiar case of an isotropic
DPS material (ε′

r > 0, µ′
tr > 0, µ′

lr > 0), the detailed analysis [11] shows that a
physically meaningful solution (αy > 0) for f > fc is given by the positive sign
in front of the square roots in (3.6) and (3.7) for the lossy and lossless cases,
respectively. These solutions have a positive phase factor (βy > 0); hence, the
propagation is described by forward waves. Below the cutoff frequency (f < fc),
the wave vector component ky becomes imaginary in the limiting lossless case
(3.7); hence, there is no propagation. One notices that a waveguide filled with an



3.3 ANALYSIS OF RECTANGULAR WAVEGUIDE FILLED WITH GENERAL METAMATERIAL 93

Figure 3.5 Influence of type of meta-
material filling rectangular waveguide
on wave propagation in waveguide.
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isotropic double-positive (DPS) material shows the very well known high-pass
behavior (Fig. 3.5).

A similar analysis shows that there is no wave propagation for all fre-
quencies (both for f < fc and f > fc) if a waveguide is filled either with
an isotropic ENG material (ε′

r < 0, µ′
r > 0) or with an isotropic MNG material

(ε′
r > 0, µ′

r < 0) (Fig. 3.5).
In the case of an isotropic DNG filling (ε′

r < 0, µ′
r < 0) one must choose

the solution of the wave vector component with the negative sign in front of the
square root in both the lossy case (3.6) and the lossless case (3.7) for frequencies
above the cutoff frequency (f > fc). Now, one notices that βy < 0 in (3.6),
indicating that the propagation is described by backward waves. Below the cutoff
frequency (f < fc) one must choose the positive sign in front of the square root
in the lossy case (3.6), which yields an imaginary ky in the limiting lossless case
(3.7). Thus, there is no wave propagation below the cutoff frequency and the
waveguide again shows the familiar high-pass behavior (but with backward-wave
propagation above the cutoff) (Fig. 3.5).

A very interesting but counterintuitive case occurs if the waveguide is
filled with a uniaxial MNG material with negative transversal permeability (ε′

r >

0, µ′
tr < 0, µlr > 0). In the lossy case, the physically meaningful solution above

the cutoff frequency is given by the positive sign in front of the square root
in (3.6), which now yields a negative sign in front of the square root in the
lossless case (3.7). The wave vector component ky in (3.6) becomes imaginary,
but now there is no wave propagation above the cutoff frequency. On the contrary,
below the cutoff frequency one must choose the solution with a negative sign in
front of the square root in (3.6) in the lossy case and again the solution with a
negative sign in front of the square root in the lossless case (3.7). Consequently,
in this case one becomes aware of the peculiar fact that wave propagation is
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now possible below the cutoff frequency [10, 11]. This propagation is in the
form of backward waves [due to βy < 0 in (3.6) and (3.7)]. From Figure 3.5,
one concludes that now all of the TE modes can propagate below the cutoff
frequency. Hence, a waveguide filled with a uniaxial MNG material with negative
transversal permeability exhibits a low-pass behavior, and it can be considered
as the dual of an ordinary waveguide.

The analysis presented so far has dealt only with dispersionless (nonphys-
ical) material. In reality, every passive material has dispersion, due to energy
conservation [15]. Therefore, any passive metamaterial can exhibit negative per-
meability (or negative permittivity) only within a limited frequency band. Due to
this, all of the explained effects and propagation properties sketched in Figure 3.5
can occur only within a finite frequency band dictated by the dispersion properties
of the particular metamaterial used to fill the waveguide.

The propagation of waves in a waveguide filled with a general metamaterial
can be analyzed in a simple intuitive way using transmission line theory [11].
For the sake of simplicity let us, for the moment, assume that the metamaterial
filling is lossless. The rectangular waveguide can be thought of as an ordinary,
two-wire TEM transmission line loaded with an infinite number of short-circuited
stubs (Fig. 3.6a).

The main two-wire transmission line can be modeled with a distributed
series inductance and a distributed shunt capacitance (Fig. 3.6b). The distributed
capacitance of the main line represents the permittivity of the metamaterial filling
(ε). Let us first consider the energy flow along the waveguide (represented by the
longitudinal component of the Poynting vector P� in Fig. 3.6b). This longitudinal
flow is responsible for the existence of the nonzero transversal magnetic field vec-
tor Ht and therefore the existence of the distributed inductance associated with the
transversal permeability (µt ). The energy flow down the stub is responsible for the
existence of the nonzero longitudinal magnetic field vector Hl and the distributed
series inductance of the stub associated with the longitudinal permeability (µl).
Bearing in mind that the input admittance of a short-circuited stub can be mod-
eled as a parallel tank circuit, one derives the equivalent circuit of the differential
section of the waveguide filled with a general metamaterial (Fig. 3.6c).

(c)(a) (b)

tZ = jw

Y1 = jw

∆l

l d2Y2 =
jw

π2
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Ye

Yin stub~ml,e

~mt

d/2
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Hl Pt

E

Ht
Pl

~ e

��

d

Figure 3.6 (a) Transmission line representation of rectangular waveguide. (b) Expla-
nation of distributed inductance and capacitance. (c) Equivalent transmission line circuit.
From [11] Copyright  2005 by the Institute of Electrical and Electronics Engineers, Inc.
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In the equivalent circuit in Figure 3.6c, the symbol Z represents the
impedance per unit length of the waveguide, Y1 and Y2 the shunt admittances,
and d the transverse dimension of the waveguide. The wave impedance (Zw) of
the waveguide filled with a general lossless metamaterial is given by [11]

Zw = ±
√

Z

Y
= ±

√
µ0µtr

ε0εr [1 − (fc/f0)2]
Y = Y1 + Y2 fc = fc0√

εrµlr

(3.8)
Now, one can easily understand the propagation properties of the different

cases shown in Figure 3.5. If the waveguide is filled with an ordinary DPS
material, the series reactance Z will always be positive (since µtr > 0). Below
the cutoff frequency, the stubs are shorter than one-quarter of the wavelength,
and the shunt admittance Y2 shows an inductive character (since µtr > 0). The
tank circuit formed by the shunt capacitance and the shunt inductance operates
below the resonant frequency (fc) and the overall shunt admittance [Y in (3.8)]
has an inductive character. In that case, the ratio Z/Y in (3.8) is negative, and
the wave impedance Zw is an imaginary number (a pure reactance), indicating
total reflection and therefore the absence of wave propagation. The waveguide
behaves as the transmission line, for which both the series impedance and the
shunt admittance have an inductive character (L–L transmission line, see the
first row in Table 3.1). This type of transmission line obviously supports only
evanescent waves and wave propagation is not possible. Above the resonant
frequency (fc), the admittance of the tank circuit exhibits a capacitive behavior
and the ratio Z/Y becomes a positive real number. The transmission line now
has the usual form (series inductance and parallel capacitance), an L–C line (see
the first row in Table 3.1); and the propagation of waves is possible in the form
of ordinary forward waves.

In the case of an isotropic ENG filling, the capacitance in the tank circuit in
Figure 3.6b will have a negative sign (due to εr < 0). This negative capacitance

TABLE 3.1 Comparison of Equivalent Transmission Line Circuits Representing
Waveguide Filled with Different Types of Metamaterials

Type of Equivalent Transmission Line
(Series Element–Shunt Element)Type of Waveguide

Filling µr εr f < fc f > fc

Isotropic DPS µrl = µrt = µr , εr > 0 L–L L–C

µr > 0
Isotropic ENG µrl = µrt = µr , εr < 0 L–L L–L

µr > 0
Isotropic MNG µrl = µrt = µr , εr > 0 C –C C –C

µr < 0
Isotropic DNG µrl = µrt = µr , εr < 0 C –C C –L

µr < 0
Uniaxial MNG µrl > 0, µrt < 0 εr > 0 C –L C –C
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actually behaves as an ordinary (positive) inductance at a single frequency, yield-
ing an L–L type of transmission line (the second row in Table 3.1). Similarly, in
the case of an isotropic MNG filling both the series and the shunt inductances are
negative (due to µr < 0), and they can be modeled as equivalent capacitances
yielding a C –C type of transmission line that does not support propagating waves
(the third row in Table 3.1).

In the case of an isotropic DNG filling, a series negative inductance (µr < 0)
behaves as a capacitance whereas a negative capacitance (εr < 0) behaves as an
inductance. One ends up with a C –L transmission line (for f > fc) that supports
backward-wave propagation.

In the peculiar case of a uniaxial MNG filling, one realizes that the series
and shunt inductances are independent. The series inductance is negative (due to
µtr < 0), that is, it behaves as capacitance, whereas the shunt inductance has a
positive sign (due to µlr > 0). This leads to the C –L type of transmission line
for frequencies below the cutoff frequency, indicating backward-wave propa-
gation [11].

Above the cutoff frequency (f > fc), one has a C –C type of transmission
line (due to the capacitive behavior of the tank circuit), which explains its low-
pass behavior.

To test the theory presented here, several different rectangular waveguides
were fabricated using copper, and they were filled with different metamaterials.
The scattering parameters of the experimental waveguides were measured using
an HP 8720B network analyzer. These experiments and their results are discussed
in the following sections.

3.4 INVESTIGATION OF RECTANGULAR WAVEGUIDE
FILLED WITH 2D ISOTROPIC ENG METAMATERIAL

A standard X-band waveguide (cross section of 22.5 mm × 10 mm, fc0 =
6.6 GHz) was filled with a 2D isotropic ENG wire-based metamaterial designed
to have fp = 15 GHz (the equations given in [4] were used in this design). The
metamaterial was comprised of a 20 × 4 array of thin (diameter of 0.4 mm) cop-
per wires (Fig. 3.7a). The wires were stretched between the upper and lower
walls of the waveguide and were soldered to the waveguide body. The wires
formed a rectangular grid with lattice constant a = 4.5 mm. The rows next to
the waveguide walls were located at a distance 2.25 mm from the wall (Fig. 3.7b).
It was shown in Section 3.2.1 that one can consider the wire medium as a 2D
isotropic dielectric medium if there is only the fundamental TE01 mode in the
waveguide. It was also shown (Section 3.3) that a waveguide filled with a disper-
sionless (nonphysical) 2D isotropic ENG material does not support propagation
of the electromagnetic waves. In this experiment, the plasma frequency of the
wire-based ENG metamaterial was higher than the cutoff frequency of an empty
waveguide (fp > fc0). Therefore, one concludes that the presence of the wire
medium should shift the waveguide cutoff to a higher frequency due to the nega-
tive value of the effective permittivity below the plasma frequency. It can be seen
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Figure 3.7 (a) Rectangular waveguide with 2D isotropic ENG metamaterial. (b) Top
view of waveguide. (c) Measured transmission coefficient (S21). (d) Extracted effective
relative permittivity: solid line, real part; dashed line, imaginary part.
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that the measured transmission coefficients (S21) of the experimental waveguides
(Fig. 3.7c) are in good agreement with the theoretical predictions. Irregularities
in the S21 curve at frequencies above 15 GHz are primarily caused by the exci-
tation of higher order waveguide modes, which have not been taken into account
in the presented theoretical analysis.

It was also attempted to determine the effective permittivity of the ENG
wire-based metamaterial. Since the operating frequency band of the ENG mate-
rial is located below the plasma frequency, one assumes that the influence of
the negative permittivity on the propagation in a waveguide will be much more
pronounced than the influence of the losses. Let us, for the moment, assume
that losses are so small that they can be neglected. In that case, the effective
permittivity can be determined in a very simple manner using a transmission line
analogy. A waveguide filled with an isotropic ENG material can be thought of as
an L–L transmission line (the second row in Table 3.1). From basic transmission
line theory it is very well known that the input impedance of any infinitely long
transmission line is equal to its characteristic impedance. However, the L–L

transmission line is essentially a reactive structure that supports only evanes-
cent waves and the fields decay very rapidly with distance along the line (the
waveguide). The manufactured waveguide was 80 mm long (approximately two
guiding wavelengths at 10 GHz), and it was expected that all of the fields would
die off before the electromagnetic waves reached the far end of the waveg-
uide. Therefore, the input impedance of the waveguide was equal to the wave
impedance (3.8).

Now, let us analyze the influence of the losses. One can model losses with
additional resistance connected in series with a shunt inductance L; thus the wave
impedance would become a complex number. The fields along this new L–RL
line would decay even more rapidly due to losses, and the input impedance would
be again equal to the wave impedance.

The waveguide filled with the isotropic ENG metamaterial was terminated
with a standard X-band waveguide matched load, and the input impedance was
measured with a network analyzer for frequencies below and above the cutoff
frequency. At first, it was noted that the input impedance at frequencies below
the cutoff frequency was almost pure reactance, confirming that the hypothesis
of small losses was correct. Assuming that the input impedance was equal to the
wave impedance of the waveguide, the effective permittivity of the metamaterial
filling was calculated from (3.8), which was modified by introducing the complex
effective permittivity εr = ε′

r − jε′′
r . The ambiguity of the sign in front of the

square root in (3.8) was resolved by a simple intuitive fact that the imaginary
part of wave impedance of an L–RL type of transmission line must have an
inductive character (a positive sign of Im{Zw}). It can be seen that the real part of
the extracted relative permittivity (Fig. 3.5d) is indeed negative and qualitatively
obeys a parabolic dependence on frequency, as was theoretically predicted [3–
5]. It also can be noticed that the imaginary part of the permittivity is rather
small (less than 0.25); thus the experimental wire-based ENG metamaterial had
low losses.
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3.5 INVESTIGATION OF RECTANGULAR WAVEGUIDE
FILLED WITH 2D ISOTROPIC MNG METAMATERIAL

The double ring [7], which is a special case of the SRR [6], was used for the
fabrication of a metamaterial with negative permeability. It consists of two con-
ductive rings placed back to back on a thin dielectric substrate with their slots
oriented in opposite directions (Fig. 3.8a). The rings were designed to have their
resonant frequency [f0 in (3.2)] at 7.8 GHz, and they were fabricated using
a standard etching process applied to the Cu-clad substrate, which has a dou-
ble copper cladding (thickness of 0.7 mm, εr = 2.6). The rings had an outer
diameter of 4 mm with trace widths equal to 1.0 mm and slit widths equal to
0.5 mm. To achieve a 2D isotropic metamaterial, four double rings were used in
an arrangement of the unit cell shown in Figure3.8b. A standard X-band waveg-
uide (fc0 = 6.6 GHz) was filled with 40 double rings (10 × 2 unit cells, each
with the dimensions 7 × 7 mm) as depicted in Figure 3.8c. Since the resonant
frequency of the double ring (and therefore the band associated with the nega-
tive permeability) is located above the cutoff frequency of the empty waveguide
(fp > fc0), it was expected that a stop band would occur. The measured trans-
mission coefficient of the experimental waveguide (Fig. 3.8d) indeed revealed
the existence of this stop band above the cutoff frequency.

Figure 3.8 Waveguide
filled with 2D isotropic
MNG metamaterial:
(a) double-ring inclusion;
(b) arrangement of unit cell;
(c) top view of waveguide;
(d) measured transmission
coefficient (S21).
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The effective permeability of an isotropic MNG metamaterial cannot be
determined in a simple way, as it was done in the case of the isotropic ENG
medium. The double-ring resonator operates in the vicinity of the resonant fre-
quency, where the high currents flowing along the particle cause losses. The
influence of these losses may be significant. Consequently, it would be highly
desirable to measure both the real and imaginary parts of the effective permeabil-
ity. The equivalent series impedance (Z in Fig. 3.6c) would then consist of an
inductance (associated with µ′) and a resistance (associated with µ′′). Similarly,
an equivalent shunt admittance, Y2, is composed of both a susceptance and a
conductance. The wave impedance in the presence of the magnetic losses and
the new equivalent distributed elements are given by the expressions

Z = ωµt
′′ + jωµt

′ Y2 = π2

ωd2(µl
′2 + µl

′′2)
µl

′′ − j
π2

ωd2(µl
′2 + µl

′′2)
µl

′

µt = µl = µ Y1 = jωε Zw =
√

Z

Y1 + Y2

(3.9)
Unfortunately, one cannot extract µ’ and µ” directly from (3.9) since both the
numerator and denominator of the wave impedance Zw include an unknown com-
plex permeability. One may try to use a standard transmission/reflection technique
to determine the unknown permeability. However, the insertion loss in the stop
band (Fig. 3.8d) is very high (∼75 dB), primarily due to the negative real part
of the permeability, that is, due to the evanescent nature of the field. The output
signal is very weak and close to the noise floor of the network analyzer. It causes
a high measurement uncertainty (particularly in the measurement of the phase of
the transmission coefficient). One should use a waveguide whose length is short
enough to meet the constraints associated with the network analyzer dynamics.
On the other hand, the waveguide must contain a large enough number of inclu-
sions to allow the use of effective media theory (i.e., to have homogenization
be applicable). Additional difficulties are caused by the fact that one should use
at least two different lengths of the waveguides (i.e., two different numbers of
rows with unit cells in Fig. 3.8c) in order to resolve the ambiguity associated
with the background mathematics. Hence, it appears that the determination of
the relative permeability of an isotropic SRR-based MNG metamaterial is a quite
complicated task; it was not attempted in this experimental investigation.

3.6 INVESTIGATION OF RECTANGULAR WAVEGUIDE
FILLED WITH 2D UNIAXIAL MNG METAMATERIAL

The following experiments on a waveguide filled with a 2D uniaxial MNG meta-
material were carried out to verify the peculiar phenomenon of propagation below
the cutoff frequency of the corresponding empty waveguide. The same double-
ring inclusions used in the previous experiments were used for the construction
of the uniaxial MNG metamaterial.
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To verify the theoretical analysis, it was decided first to insert the inclusions
into a waveguide that operates above the cutoff frequency. Nine double rings were
placed along the line of symmetry of a 60-mm-long section of a standard J-band
waveguide (d = 35 mm) with a lattice constant a = 6 mm (see Fig. 3.9a). Using
the theory presented in Section 3.2.2, one concludes that the filling should act as
an uniaxial MNG metamaterial described by a permeability tensor of the form
given by Eq. (3.3). The real part of the longitudinal relative permeability (µ′

lr ) is
approximately equal to unity, whereas the real part of the transversal permeability
(µ′

tr ) may be negative within a finite frequency band.
The measured transmission coefficient (S21) is depicted with the dashed

curve in Figure 3.9b. Since the resonant frequency of the inclusions is higher
than the cutoff frequency of the waveguide, the negative transverse permeability
causes the stop band, as was predicted by the theoretical analysis in Section 3.3.

With these experiments completed, a new experimental waveguide was
fabricated from copper, with a length of 60 mm and a square cross section of
12 mm × 12 mm (fc0 = 12.5 GHz). Nine double rings were again placed along
the line of symmetry of the waveguide to form a metamaterial with a lattice con-
stant a = 6 mm. The waveguide was directly interfaced with two standard J-band
waveguides without tapers or any other matching element and the transmission
coefficient (S21) was measured using the network analyzer (the solid curve in
Fig. 3.9b). One can clearly see the propagation passband located well below the
cutoff frequency of the corresponding empty waveguide, a phenomenon that was
reported for the first time in [10] and further investigated in [11, 12]. Accord-
ing to the theory presented in Section 3.3, the propagation of electromagnetic
waves within the passband observed in Figure 3.9b takes place in the form of
backward waves.

A very simple method of verification of the backward-wave propagation
was proposed in [11]. It is based on the properties of the phase distribution
along the transmission line (Fig. 3.9c). At a fixed frequency, the phase of a
signal (argument of the transmission coefficient S21) decreases along an ordinary
(forward-wave) transmission line. Thus, a physically longer ordinary transmission
line should exhibit a smaller argument of S21. In contrast, the phase of a signal
increases along the backward-wave transmission line since the direction of phase
velocity is opposite to the energy flow.

The physically longer backward-wave transmission line exhibits a larger
argument of S21. Using standard microwave engineering terminology, one may
say that the physically longer backward-wave transmission line appears to be elec-
trically shorter. Following this principle, an additional longer waveguide (length
of 66 mm) was manufactured and was filled in the same manner with 10 double
rings. The phases of the transmission coefficients of both waveguides were mea-
sured across the passband; the results are shown in Figure 3.9d . It can be seen that
the physically longer waveguide indeed appears to be electrically shorter. This
is a direct proof of the backward-wave propagation and the theory presented
in Section 3.3. One can also notice that an increase of the frequency causes
a corresponding decrease of the phase of the transmission coefficient. Thus, a
backward-wave transmission line does obey Foster’s theorem [16].
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Figure 3.9 (a) Rect-
angular waveguide filled
with 2D uniaxial MNG
metamaterial. (b) Measured
transmission coefficient
(S21): dashed line, reso-
nance of inclusion located
above cutoff; solid line,
resonance of inclusion
located below cutoff.
(c) Phase along different
kinds of transmission lines.
(d) Measured phase of S21

parameter across passband
of waveguides filled with
2D uniaxial metamaterial.
From [11] Copyright 
2005 by the Institute of
Electrical and Electronics
Engineers, Inc.
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Theoretically, the wave propagation is possible at an arbitrary frequency
below the cutoff frequency of the corresponding empty waveguide, provided that
the transverse permeability of the metamaterial filling is negative. Therefore, the
classical constraint on the minimum transverse dimension of a waveguide does
not hold in this case, that is, the waveguide width can be arbitrarily smaller than
half of the wavelength in the filling material. This property may be used for
waveguide miniaturization [11].

This waveguide miniaturization was tested with an experimental waveguide
filled with the 2D uniaxial MNG metamaterial described above (Figs. 3.9a, b). It
has a transverse width that is approximately 30 percent of the width of a standard
J-band waveguide. In principle, the reduction in size can be arbitrarily large if
it were possible to fabricate an appropriate metamaterial that has a negative
transverse permeability at some low frequency below the cutoff frequency of
the corresponding empty waveguide. In the case of a metamaterial with resonant
inclusions, this can be accomplished by increasing the capacitive loading of the
rings. To test the proposed approach, a laboratory model of this different type
of metamaterial was fabricated. It was comprised of 12 solid copper rings (inner
radius of 6 mm, outer radius of 8 mm, thickness of 1 mm, slit width of 1 mm;
see inset in Fig. 3.10). Each ring was loaded with a 33-pF chip capacitor (2 mm
× 2 mm × 1 mm in size). This inclusion behaves similarly to the SRR [8, 9].
The rings were mounted on a foam with a lattice constant of 8 mm, and the
assembly was inserted into a 115-mm-long section of waveguide (cross section
of 16 mm × 16 mm, fc0 = 9.4 GHz) along its line of symmetry. Measurements
of the transmission coefficient revealed a backward-wave passband located at a
frequency of 350 MHz (Fig. 3.10). The transverse dimension of this waveguide
was approximately only 3.7 percent of half of the wavelength.

The measured transmission coefficients of both of the waveguides filled
with the uniaxial MNG metamaterial (Figs. 3.9d and 3.10) revealed very narrow
operating bandwidths (5 to 10 percent). A narrow bandwidth is the direct conse-
quence of the resonant nature of the metamaterial filling. This drawback might be

Figure 3.10 Measured
S21 parameter of experi-
mental waveguide (with
cross section 16× 16 mm)
filled with a uniaxial MNG
material based on capaci-
tively loaded rings. Inset:
capacitively loaded ring.
From [11] Copyright 
2005 by the Institute of
Electrical and Electronics
Engineers, Inc.
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overcome in the future using some other types of metamaterial which would have
a larger bandwidth. Another obvious drawback is the large insertion loss, almost
25 dB, in the measurement results given in Figure 3.9b. The main reason for
this poor result is the big difference between the wave impedance of the experi-
mental waveguide and the feeding J-band waveguide. Since the waveguides are
directly interfaced, there is an abrupt change in the waveguide cross section that
causes the large mismatch. Therefore, one-stub waveguide tuners were added at
the input and output ends of the waveguide in an attempt to match the feeding
and the experimental waveguides. It was possible to achieve an insertion loss of
approximately 5 dB with a corresponding return loss of 15 dB (not shown in the
figures). Thus, the measured insertion loss was approximately 0.8 dB/cm. This
result was obtained without any optimization either of the metamaterial design
parameters or the location of the metamaterial filling inside the waveguide. It is
envisaged that it should be possible to further decrease this insertion loss by an
optimization of the design parameters.

It would still be interesting to estimate the amount of losses associated
with the double-ring inclusion itself, that is, to determine the associated complex
permeability. In a previous section it was concluded that this determination is
a difficult problem in the case of an isotropic MNG metamaterial. Fortunately,
in the case of a uniaxial MNG metamaterial the losses are associated only with
the series impedance Z in Eq. (3.9) (since µl = µ0). In other words, the denom-
inator of Zw depends only on the geometry of the waveguide (dimension d)
and the free-space permittivity and permeability (ε0 and µ0), as in the lossless
case given in Eq. (3.8). Thus, one can simply measure the wave impedance Zw

and directly calculate the unknown complex permeability µt . The same standard
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Figure 3.11 Extracted effective relative permeability of uniaxial MNG metamaterial
based on double-ring inclusions: solid line, real part; dashed line, imaginary part.
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J-band waveguide filled with one row of double-ring inclusions, which was used
for the measurements of the stop band in Figure 3.9b, was terminated with a
standard J-band waveguide matched load. The input impedance was measured
at the frequency of the stop band (where the metamaterial filling has a nega-
tive transverse permeability). Assuming that the input impedance is equal to the
wave impedance, the complex permeability was calculated from Eq. (3.9). The
recovered values of the effective permeability are depicted in Figure 3.11.

It can be seen from Figure 3.11 that the curves for both µ′ and µ′′ qualita-
tively agree with the theoretical curves. The real part of the permeability becomes
negative in a narrow frequency band (7.75 to 7.9 GHz) and reaches a minimal
value of ∼ −0.7. This relatively small value of negative permeability indicates
that there was a significant influence on its value by the losses associated with
the high current density along the rings in the vicinity of the resonant frequency.

3.7 INVESTIGATION OF RECTANGULAR WAVEGUIDE
FILLED WITH 2D ISOTROPIC DNG METAMATERIAL

Following the basic ideas presented in [1, 2], the double rings were interleaved
with wires (Fig. 3.12a) to achieve a DNG metamaterial. As was done in the

Figure 3.12 Waveguide
filled with 2D isotropic
DNG metamaterial:
(a) inclusion based on
double ring and thin wire;
(b) arrangement of unit cell;
(c) top view of waveguide;
(d) measured transmission
coefficient (S21).

wire

double ring

(b)(a)

(d)

(c)

1 2 10
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experiment with the isotropic MNG filling (Section 3.5), four double rings were
used in the arrangement of the unit cell shown in Figure 3.12b. A standard X-
band waveguide (fc0 = 6.6 GHz, length of 70 mm) was filled with 40 double
rings (with properties identical to those used in the previous experiments with
the MNG filling) and 40 copper wires (again with properties identical to those
used in the previous experiments with the isotropic ENG filling). This waveg-
uide contained 10 × 2 unit cells, each with dimensions 7 × 7 mm, as depicted in
Figure 3.12c. It was expected that such a structure would behave as a waveguide
filled with a DNG metamaterial and, thus, would exhibit propagation above the
cutoff frequency of the corresponding empty waveguide in the form of backward
waves (Fig. 3.5). The measured transmission coefficient (S21) of this waveguide
is shown in Figure 3.12d . It can be seen that a passband appeared in the vicinity
of the particle’s resonance, as expected. Again it was attempted to verify the
backward-wave nature of the propagation. Therefore, an additional waveguide
filled with 9 × 2 unit cells (overall length of 63 mm) was fabricated. Measure-
ments of the phase of the transmission coefficient across the passband again
revealed (not shown in figures) that the physically longer waveguide appeared
to be electrically shorter; thus the propagation was indeed in a form of back-
ward waves.

3.8 INVESTIGATION OF SUBWAVELENGTH RESONATOR

The very interesting idea of a thin, subwavelength resonator that consists of a
combination of a DPS slab and a DNG slab sandwiched between two infinite
conducting planes was introduced theoretically in [13]. The equivalent transmis-
sion line model is a short-circuited forward-wave stub connected in parallel with
a short-circuited backward-wave stub (Fig. 3.13). As explained in [13], the phase
delay introduced by the forward-wave line can be completely compensated by
the phase advance of the backward-wave line for some special line lengths d1

and d2. In that case, the overall phase shift is equal to zero and the phase of
the resultant electric (or magnetic) field is equal at any point along the structure;
that is, a resonance condition is met. This mechanism is fundamentally different
from the conventional case of an ordinary resonator with two forward-wave stubs
where the overall phase shift must be a multiple of 2π due to the phase delays.

Zin1

backward-wave
line

Z01Z02

Zin2
d1d2

β1β2

x0
forward-wave
line

Figure 3.13 Transmission line model of subwave-
length resonator. From [17] Copyright  2004 the
Institute of Electrical and Electronics Engineers, Inc.
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Using conventional transmission line theory, one derives the input
impedances of the stubs (Fig. 3.13) as

Zin1 = jZ01 tan(β1d1) Z01 =
∣∣∣∣
√

µ1

ε1

∣∣∣∣
(3.10)

β1 = +ω|√µ1ε1| β1 > 0

Zin2 = jZ01 tan(β2d2) = −jZ02 tan(|β2|d2) Z02 =
∣∣∣∣
√

µ2

ε2

∣∣∣∣
(3.11)

β2 = −ω|√µ2ε2| β2 < 0

From (3.10) and (3.11) and bearing in mind that the sum of Zin1 and Zin2 must
be zero, one derives the resonance condition for the structure [13]:

tan(ω|√µ1ε1|d1)

tan(ω|√µ2ε2|d2)
=

√
µ2/ε2√
µ1/ε1

(3.12)

If the lengths d1 and d2 are much shorter than a wavelength, the expression (3.12)
simplifies to [13]

d1

d2
≈

∣∣∣∣µ2

µ1

∣∣∣∣ (3.13)

Thus, the resonance condition can be met for the line lengths d1 and d2, which are
arbitrarily shorter than the wavelength, provided that their ratio satisfies (3.13).
It is interesting to notice that for short line lengths the resonance condition does
not depend on the permittivity at all. This is explained by the equivalent circuit
sketched in Figure 3.14. The differential length of the forward-wave line can
be modeled with the well-known L-C equivalent circuit, whereas the backward
line can be modeled as a C –L line, as was explained in Section 3.3. One can
approximate a very short line (much shorter than a wavelength) with only one
differential element. Since the lines are terminated with short circuits, the dis-
tributed admittances are short circuited, and, thus, one is left only with series
impedances. Thus, the series inductance of the forward-wave line can come into
resonance with the series capacitance of the backward-wave line (which actually
occurs because the inductance is negative as a result of the negative permeability).
This series resonance explains the condition given by (3.13).

Figure 3.14 Equivalent circuit of resonator
for short line lengths. From [17] Copyright 
2004 by the Institute of Electrical and Electronics
Engineers, Inc.
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To test this remarkable idea experimentally, it is not necessary to use an
isotropic DNG metamaterial since the whole structure is essentially one dimen-
sional. One actually only needs the 1D structure that supports backward-wave
propagation. This fact initiated the idea of a possible design of a subwavelength
resonator based on the miniaturized waveguide filled with the uniaxial MNG
metamaterial described in Section 3.6 [17]. A 55-mm-long waveguide (cross
section of 16 mm × 16 mm, fc0 = 9.4 GHz) was partially filled with an uniaxial
MNG metamaterial based on the same capacitively loaded rings introduced in
Section 3.6 (350 MHz resonant frequency). Four rings were mounted on a foam
with a lattice constant of 8 mm and were then inserted along the line of symmetry
of a waveguide spanning 35 mm in length (Fig. 3.15). The N connectors were

the inclusion

 waveguide part
(backward-wave line)

the slot

N connector

x0

 coaxial part
(forward-wave line)

N connector

matched load

to network analyzer  (S21)

scanning loop

the inclusion

 waveguide part
(backward-wave line)

the slot

N connector

x0

 coaxial part
(forward-wave line)

N connector

coupling loop 1 sliding short

1 to network analyzer  (S21)

 short

2

scanning loop

coupling loop 2coupling
loop3

coupling
 loop 3

coupling loop 1

coupling loop 2

1 2

Figure 3.15 Experimental subwavelength resonator. Upper: measurement of incident
magnetic field. Lower: measurement of standing-wave distribution. From [17] Copyright
 2004 by the Institute of Electrical and Electronics Engineers, Inc.
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mounted at both ends of the waveguide. The first ring was (via a small loop)
inductively coupled to the N connector mounted at the left end of the waveguide.
The copper rod (3 mm diameter and 20 mm length) was inserted along the line
of symmetry of the right-hand side of the waveguide. The rod was soldered to
the central pin of the N connector mounted at the right end of the waveguide.
The very left end of the rod was inductively coupled to the last (fourth) ring.
The left-hand part of this fabricated structure behaved as a waveguide filled with
a uniaxial MNG filling while the right-hand part behaved as an ordinary coaxial
line (due to the inserted rod). In this way a hybrid waveguide–coaxial structure
was fabricated which was essentially the cascade of a forward-wave transmis-
sion line and a backward-wave transmission line. A slit was machined on the
top wall of the structure to enable the insertion of a small loop antenna. The
forward-wave part of the structure was terminated with a coaxial matched load,
and the structure was excited with a continuous-wave (CW) signal at a frequency
of 350 MHz (frequency at which the metamaterial-filled waveguide part behaved
as a backward-wave line). Since the structure was terminated with a matched
load, only the presence of the incident wave was expected. The phase distri-
bution of the incident magnetic field along the structure was measured by the
help of a small loop and the network analyzer (schematic diagram in upper part
of Fig. 3.15). The results of the measurements are given in Figure 3.16 (solid
line). It can be seen that the phase increased along the backward-wave part and
decreased along the forward-wave part of the structure. There are some irreg-
ularities in the phase distribution in the vicinity of the inductive loops due to
mismatch. It can also be noticed that there is a steeper slope for the curve in the
backward-wave part and, thus, β2 > β1.

In the next experiment, the backward-wave part of the structure was ter-
minated with a short circuit and the forward-wave part was terminated with a
sliding short. The structure was excited with an additional loop that was located

Figure 3.16 Measured
phase distribution of H field:
solid line, phase of incident
wave; dashed line, phase of
standing wave. From [17]
Copyright  2004 by the
Institute of Electrical and
Electronics Engineers, Inc.
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near the fixed short circuit (schematic diagram in lower part of Fig. 3.15). The
phase distribution was again scanned along the structure for different settings of
the sliding short. It was possible to excite the structure at only one position of
the sliding short (d1 = 35 mm, d2 = 70 mm). The measured distribution of the
phase along the structure was approximately uniform (dashed line in Fig. 3.16),
indicating the presence of the predicted resonance. Thus, it was indeed possible
to meet the resonance conditions, although the overall length of the structure was
much smaller than a wavelength (approximately λ/10). This proves the basic idea
introduced theoretically in [16]. The resonance conditions were met for a ratio
d2/d1 equal to 2; consequently, the equivalent permeability of the backward-wave
part calculated with Eq. (3.13) was equal to −2.

3.9 CONCLUSIONS

The basic properties of SNG and DNG metamaterials have been experimentally
investigated in a waveguide environment. The obtained experimental results were
found to be in good agreement with the theoretical predictions. It was shown that
a waveguide filled with an isotropic SNG (either ENG or MNG) metamaterial
does not support the propagation of electromagnetic waves. The waveguide filled
with an isotropic DNG material supports the propagation of backward waves
above the cutoff frequency. The waveguide filled with a uniaxial MNG metama-
terial supports propagation of backward waves at an arbitrary frequency below
the cutoff frequency provided that the transverse permeability is negative. This
peculiar phenomenon can be used for waveguide miniaturization. Such a minia-
turized waveguide was used for the experimental verification of the previously
introduced idea of a subwavelength resonator.
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CHAPTER4
REFRACTION EXPERIMENTS IN
WAVEGUIDE ENVIRONMENTS

Tomasz M. Grzegorczyk, Jin Au Kong, and Ran Lixin

4.1 INTRODUCTION

In 1968, the existence of “electromagnetics of substances with simultaneously
negative values of ε and µ” was postulated theoretically [1], and a descrip-
tion of some of the properties related to these media was presented, such as
negative index of refraction, backward phase, left-handed triad, reversed Vav-
ilov–Čerenkov effect, reversed Doppler effect, flat lens, anisotropy frequency
dispersions, and so on. In the late 1990s, the realization of these substances at
microwave frequencies was studied in two steps: first, it was shown that negative
values of ε (the permittivity) could be achieved at microwave frequencies [2] and,
second, that negative values of µ (the permeability) could also be achieved at
similar frequencies [3]. These two respective effects, based on particular shapes
of metallizations, were further studied in [4] and the first experimental verification
of a negative index of refraction was reported in [5].

This chapter reviews two main topics related to the experimental study
of these new media, also referred to as metamaterials: the refraction of waves
at their boundaries and their experimental implementation and verification in
waveguide environments. The first topic is briefly reviewed theoretically based
on the dispersion relations exhibited by the media, from which the refraction
of the wave vectors and the Poynting power can be obtained. Few instances
of negative refraction are identified, which can all be measured experimentally.
The second topic deals with the experimental aspect of the work, which aims
at verifying some of the properties outlined theoretically. Toward this purpose,
we first review a few possible implementations of these new substances and
then show how they are used in experimental setups. Most of the measurements
performed to characterize these substances have been carried out in a parallel-
plate waveguide, essentially because it efficiently shields the sample from the
perturbations of the external environment and because the boundary conditions
allow the samples to remain small yet of seemingly infinite extent. However, it
turned out that some structures are not well suited for waveguide measurements,
essentially because of contacting issues with the boundaries of the waveguide.

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.
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Therefore, some groups have resorted to open-space measurements, for which
successful results have been reported at the cost of much larger samples [6].

4.2 MICROSCOPIC AND MACROSCOPIC VIEWS OF
METAMATERIALS

The substances postulated in [1] have not yet been found in nature and need
to be fabricated in the laboratory. Currently, they are realized as an arrange-
ment of metallizations properly oriented in space, yielding metamaterials that are
therefore intrinsically inhomogeneous and microscopic. On the other hand, the
metallizations themselves as well as their separations are very small compared to
the operating wavelength. Calling upon the effective medium theory, it is there-
fore legitimate to look for bulk properties, in this case a bulk permittivity and
permeability, that govern the macroscopic behavior of the medium.

These two views, the microscopic view on one hand and the macroscopic
view on the other, are two aspects of the same problem that are connected by
retrieval algorithms which, from a set of parameters measured on the microscopic
metamaterials, yield the bulk properties of the macroscopic metamaterials. Vari-
ous retrieval algorithms have been published in the literature [7–9], all with the
same purpose of establishing the connection between the metallizations and the
constitutive parameters of the effective medium. In the next section, we shall
briefly describe both points of view to ascertain how these metamaterials are
realized and how they are modeled.

4.2.1 Microscopic View: Rods and Rings as Building Blocks of
Metamaterials
Current implementations of metamaterials rely on “infinite” rods and split-ring
resonators (SRRs) to achieve a negative permittivity and a negative permeability,
respectively. The rings can take various shapes, some of which will be detailed
in the forthcoming sections. The rings are the building blocks to achieve an
effective frequency-dispersive permeability, which has been shown to obey the
frequency-dispersive Lorentz model [3] illustrated in Figure 4.1a:

µr = 1 − f 2
mp − f 2

mo

f 2 − f 2
mo + iγmf/2π

, (4.1)

where the subscript r refers to relative values, γm is the magnetic damping factor,
and fmo and fmp are the magnetic resonant and plasma frequencies, respectively,
with fmo < fmp . It is seen that for frequencies between fmo and fmp the perme-
ability assumes negative values. The shape of the rings, their effective radii, the
width of their metallizations, and many other factors directly translate into their
properties and govern their resonant and plasma frequencies, which are directly
related to the bandwidth where negative values occur. Hence, it is of little sur-
prise that the design and optimization of the geometry of the rings have been an
active area of research.

The rods, on the other hand, require little optimization as such but impose
a tremendous limitation on the experimental realization in that they need to be
infinite or very long to operate as an effective plasma medium described by the
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(a)

(b)

Figure 4.1 Permittivity, permeability, and associated isotropic index of refraction for a
medium characterized by a Drude model and a Lorentz model. For the sake of illustra-
tion, the characteristic frequencies have been chosen as fep = 18 GHz, fmo = 12 GHz,
fmp = 15 GHz. (a) Real part of relative permittivity and relative permeability. (b) Real
and imaginary part of index of refraction.
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frequency-dispersive Drude model illustrated in Figure 4.1a:

εr = 1 − f 2
ep

f 2 + iγef/2π
(4.2)

where fep is the electric plasma frequency and γe the electric damping factor.
Within a waveguide environment, the constraint of infinite rods requires them to
touch the plates of the parallel-plate waveguide (PPW), which turned out to be
an effect very difficult to guarantee in experiments and of tremendous impact.
In this regard as well, it is therefore of little surprise that researchers have tried
to bypass the infinite-rod requirement and to find alternative ways to achieve a
negative permittivity.

As a result of this research, many variations of rings and rods have been
devised to achieve negative permittivities and permeabilities. We shall describe
here the main ones known to date, which have been successfully characterized
and measured in experiments. The driving criteria in optimizing these geometries
have been to increase the bandwidth where negative properties can be measured,
to reduce the losses of the effective medium, and to yield stable and repeatable
results in measurements. A quick overview of the various geometries can be found
in Table 4.1, where five designs are depicted: the edge-coupled SRR [3, 4], the
broadside SRR [10], the axially symmetric SRR [11], the omega SRR [12, 13],
and the S ring [14]. The first ring has been often used in the literature and a
variety of theoretical and experimental papers have studied its properties. For
this reason, we shall not give further details concerning this ring and refer the
reader directly to the open literature. Instead, we shall focus on the other ring
designs, which are less commonly found.

4.2.2 Macroscopic View: Effective Medium with Negative
Constitutive Parameters

4.2.2.1 Modeling Metamaterials The macroscopic view of metamaterials
consists in replacing the succession of rings and rods by a homogeneous effective
medium characterized by bulk constitutive parameters. This approach is possible
since the rings and the separations between the rods are very small compared to
the operating wavelength.

At first, isotropic constitutive parameters were sought, namely a scalar
permittivity (ε) and a scalar permeability (µ). From the measurements of the
reflection and transmission coefficients, the retrieved permittivity and perme-
ability were shown to obey a Drude model and a Lorentz model, respectively,
described by Eqs. (4.1) and (4.2) and shown in Figure 4.1a.

The isotropic approximation, however, is valid for a single polarization
impinging onto a metamaterial containing rings in two dimensions, such as in the
original experiment [5]. Later versions of metamaterials were constructed using
rings in one direction only, thus breaking the isotropy and creating intrinsically
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TABLE 4.1 Overview of Geometries and Features of Main Rings Known to Date

Nomenclature Geometry Features

Edge-coupled
SRR

• Presents an asymmetry which seems
detrimental to good transmission in
waveguides (seen in simulations)

• Contact issue of the rods

Broadside SRR • Similar to the previous ring but cancels
bi-anisotropy

• Contact issue of the rods

Axially symmetric
SRR

• Numerical simulations show a very good
transmission and a good field symmetry

• Contact issue of the rods

Omega SRR • Single structure combining a ring and a
rod

• Two rings back to back cancel bi-
anisotropy

• Contact issue of the rods

S ring • Single structure producing a permittivity
and a permeability effect

• No rod issue, which is a very significant
advantage in waveguide measurements

• Wide bandwidth

anisotropic metamaterials. The relative constitutive parameters had therefore to
be considered in tensor form, and biaxial media became the accepted model,
described by

ε = diag[εx, εy, εz] µ = diag[µx,µy, µz] (4.3)

Obviously, depending on the incident polarization, only some of these parameters
are relevant. In this chapter, we consider transverse electric (TE) incident waves
polarized in the ŷ direction, so that the relevant parameters are (εy, µx, µz) in
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the dispersion relation:

k2
x

εyµz

+ k2
z

εyµx

= k2
0 (4.4)

Therefore, depending on the presence or not of rods in the ŷ direction, εy is either
described by a Drude model or by a constant which we take equal to 1 since
the background medium in the metamaterial is essentially free space. Similarly,
depending on the orientation of the ring, either µx or µz (or both) obey the
Lorentz model and are equal to 1 otherwise.

As we shall see in the next section, most of the experiments performed
on metamaterials are based on transmission and refraction at boundaries. These
concepts are straightforward in the isotropic case: Snell’s law provides the
refracted angles while the Fresnel coefficients provide the transmission levels.
For anisotropic media, where an index of refraction cannot be uniquely defined,
the refraction has to be obtained from the dispersion relations and the fact that
the direction of the Poynting vector coincides with ∇kω [15, 16]. Note that after
some calculations, a generalization of Snell’s law can still be obtained for the
refraction of both the wave vector and the Poynting vector, as has been shown
in [17].

4.2.2.2 Properties of Metamaterials The fundamental properties that can
be measured in an experimental configuration are the level of transmission and
the refraction of an incident wave. These features can be measured in a waveg-
uide environment on both isotropic and anisotropic metamaterials: Refraction
phenomena are governed by the laws derived in [17], while the levels can be
obtained by a direct generalization of Fresnel’s reflection and transmission coef-
ficients [18]. Depending on the signs of εy , µx , and µz, the metamaterial may or
may not refract negatively an incident plane wave from free space. The possible
combinations are summarized in Table 4.2 [19], and an illustration of each case
is shown in Table 4.3. All the power refraction cases listed in Table 4.2 can be
directly measured experimentally, while it is much more difficult to measure the
refraction angles of the phase.

The measurements are most commonly performed using either a slab or
a prism geometry. The slab configuration is very versatile and can be used to
measure the transmission levels of plane waves at normal as well as at oblique
incidences, to measure the deflection of a Gaussian beam [20–23], or to measure
the focusing properties of metamaterials when a point source or a line source is
used. The prism geometry is essentially used to measure the refraction properties
and has been the setup most commonly used to identify positive or negative
refraction. In addition, the slab configuration could also be used to measure the
backward phase propagating inside an isotropic metamaterial. This measurement
is directly feasible in numerical simulations [24] but is very delicate to perform
in measurements, and for this reason, we shall omit it from our discussion.

Transmission Through a Slab The transmission of a plane wave normally
incident onto a metamaterial slab has been one of the first experiments performed
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TABLE 4.2 Nature of Dispersion Relation for Various Cases of Signs for εy , µx , and µz
and Angles of Transmission of Wave Vector θk and Transmitted Poynting Vector θs

Case Number εy µx µz

Dispersion
Relation Shape θk θs

1 + + + Ellipse + +
2 − − − Ellipse − −
3 − − + Hyperbola 1 − +
4 + + − Hyperbola 1 + −
5 + − + Hyperbola 2 − +
6 − + − Hyperbola 2 + −

Note: The signs + or − refer to positive or negative values, respectively, and phase matching is taken along the
x̂ direction. Circles are degenerate cases of ellipses. An illustration of hyperbola 1 and 2 can be seen in
Table 4.3. Cases 5 and 6 are valid only when phase matching exists.

to indicate a frequency region where both the permittivity and the permeability
are negative. The concept is directly related to the index of refraction n shown
in Figure 4.1b. Neglecting the losses, we see that when n is purely imaginary [in
the frequency regions (10 GHz, 12 GHz) and (15 GHz, 18 GHz) in Fig. 4.1b],
the wave vector is also purely imaginary and the wave is strongly attenuated
inside the slab. When n is real on the other hand, either positive or negative, the
wave vector is also real and propagation occurs. In the example of Figure 4.1b,
transmission would therefore occur in the frequency bands of (12 GHz, 15 GHz)
and (18 GHz, 20 GHz) and would be surrounded by stop bands (note that having
a real index of refraction does not necessarily yield a good transmission level
since the slab can still be mismatched to air). Examples of transmission will
be given subsequently with various ring geometries to show that the passband
effect is indeed very clearly observed in measurements, independently of the ring
geometry used.

However, the logical implication of this experiment should be well under-
stood: It is because the retrieved parameters are negative between 12 and 15 GHz
in the example above that the transmission band witnessed in the measurements
can be identified as LH (where LH stands for left handed, a terminology borrowed
from [1]) and not because there is a transmission band that the constitutive param-
eters can be concluded to be negative. Therefore, the transmission experiment
alone is not a verification of an LH behavior since complex coupling mecha-
nisms within the metamaterial itself can perturb the effective permittivity and
permeability enough to make them become positive, in which case a transmis-
sion would also be witnessed. Consequently, the transmission experiment is only
an indication of the frequency band in which the metamaterial might exhibit LH
properties and by no means constitutes a proof. Further experiments are necessary
to ascertain the properties of the medium.

Refraction Negative refraction is sometimes viewed as the key property
that justifies the interest in these metamaterials. In the previous setup, a plane
wave is made normally incident onto a metamaterial, where “normally” refers
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TABLE 4.3 Illustration in Spectral and Spatial Domains of Transmitted Waves in Cases 2,
3, and 6 of Table 4.2

εy µx µz Dispersion Illustration
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Note: The blue circle represents the free-space dispersion relation in the (kx , kz) plane which supports an
incident wave shown by the thin blue arrow. The red circle or hyperbola represents the dispersion relation of the
medium. The dashed curves correspond to the dispersion relation of the corresponding media at a slightly higher
frequency. When a transmitted wave is supported, its wave vector and power direction are shown by a thin red
arrow and a thick red arrow, respectively. The illustrations on the right have been calculated analytically for a
Gaussian beam incident from the top-left corner onto a flat boundary.
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to a zero incidence angle when the boundary of the medium and the principal
axes of the biaxial medium are aligned. Under these circumstances, no refraction
is witnessed since the dispersion relations are not rotated. Refraction can there-
fore be obtained either by rotating the axes of the metamaterial or by having
the plane wave impinging at oblique incidence onto the slab. The latter setup
is easier to realize in experiments since the same slab as in the transmission
measurements can be used. The former, although more difficult, has also yielded
good experimental results.

The immediate generalization of the transmission experiment mentioned
above is therefore to create a beam obliquely incident onto a negative metamate-
rial. The isotropic version of this setup has been theoretically studied in [20–22],
then experimentally realized in [23], while the anisotropic version can directly
be generalized knowing the refraction laws presented in [17]. The deflection of
the beam can therefore be predicted theoretically and measured experimentally.

Another refraction experiment, made popular by the setup used in [5], is to
use a prism-shaped metamaterial: The wave impinges at normal incidence on the
first boundary without experiencing refraction, propagates through the metama-
terial, and impinges onto the second boundary at an incident angle determined
by the angle of the prism. This setup is not the most general, though, since the
incident angle at the second boundary is exactly opposite to the rotation angle
of the dispersion relation. Yet, for this particular point on the dispersion relation,
refraction occurs which can be measured to be either positive or negative.

Focusing The experiments listed above make all use of a plane-wave
or Gaussian source to create an almost uniform phase front impinging onto a
metamaterial. Yet, another source can be used which takes advantage of the
negative-refraction property of certain metamaterials, namely a point source or a
line source in two dimensions. Theoretically, a line source can be decomposed
into a spectrum of plane waves where all propagating and all evanescent waves
are included (in other words, the Hankel function can be represented as an integral
of plane waves). Hence, propagating waves from a line source can all be treated
separately with the plane-wave refraction laws derived in [17], where one must
still make the distinction between isotropic and anisotropic metamaterials.

This ray diagram for the propagating waves in the isotropic case, already
presented in [1], reveals an interesting focusing pattern: For a slab thick enough,
the propagating waves emanating from a point source are bent negatively at the
first and second interfaces and yield an image inside and an image outside the
slab. This focusing of a point source is therefore achieved using a slab, yielding
the “flat-lens” effect illustrated in Figure 4.2.

This ray diagram is only relevant for propagating waves, which form only
a portion of the spectrum of a line source. In general, evanescent waves are
not considered because of their exponential decay, which makes their contribu-
tion in the image plane negligible. However, isotropic metamaterials exhibit the
remarkable and unique property of amplifying the evanescent waves, allowing
them to contribute in the image plane in addition to the propagating waves. This
truly unique property has been pointed out in [25], where it is shown that since
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Figure 4.2 Concept of flat lens
with anisotropic metamaterial. The
rays emanating from the source (S)
are refocused by a slab of proper
thickness to form an image both
inside (I1) and outside (I2) the slab.
Note that this concept was already
mentioned in [1].

the evanescent waves are now contributing to the image, the diffraction limit
of standard lenses can be overcome and a perfect lens can be realized (where
“perfect” means with a perfect resolution). Of course, this would happen in ideal
conditions, when the medium is lossless and made such that (ε, µ) = (−ε0,−µ0),
which are very stringent constraints. However, even if a perfect case cannot be
achieved making perfect resolution unachievable so far, subwavelength focusing
is still possible.

The amplification of evanescent waves has already been proven
theoretically [25] and verified numerically using methods such as the finite-
difference time-domain method [26]. However, no conclusive three-dimensional
experiments have been provided yet. It should be mentioned, however, that the
amplification of evanescent waves has been reported for planar transmission
line–based structures [27, 28] and that subwavelength experiments have been
reported already in [29] with silver plates, namely using a medium where the
permittivity only is negative, as had been suggested in [25].

Figure 4.2 clearly shows that refocusing a line source by a slab is closely
related to a negative-refraction phenomenon. From Table 4.2, it is seen that two
instances of anisotropic metamaterial can also achieve negative refraction of the
power: cases 4 and 6. The latter is less interesting since part or all the rays
are totally reflected but would be negatively refracted if they were transmitted.
Case 4 is more interesting, though, since all the spectrum is transmitted and all
the propagating rays experience a negative refraction of the power. Contrary to
the isotropic case of Figure 4.2, however, the refraction angles are not such that
the negatively refracted rays all converge to a single point. Instead, the crossing
region is smeared in an area around the perfect lens image.

The experimental verifications of focusing by both an isotropic slab and an
anisotropic slab have been presented in the literature [30–32]. However, more
experimental verifications are still needed before we can claim that this phe-
nomenon is well understood.



4.3 MEASUREMENT TECHNIQUES 123

4.3 MEASUREMENT TECHNIQUES

Measuring the properties of metamaterials proves to be an essential complement
to the theoretical works developed in parallel. The transmission levels as well as
the positive or negative refractions described in the previous section can all be
measured experimentally without many difficulties, providing strong verifications
of the new properties postulated. In the following sections, we shall illustrate
some of these experiments carried out on metamaterials based on various ring
designs. Most of the measurements reported in this chapter have been performed
with an HP8350B source and an HP82592A plug-in option, which can output
15 dBm in frequency-scanning mode between 20 MHz and 20 GHz, or up to
17 dBm at a fixed frequency. The source was modulated by a 28.8-KHz square
wave in order to be plugged into an HP8756A scalar network analyzer and the
detector used was an HP11664A.

4.3.1 Experimental Constraints

4.3.1.1 Obtaining a Plane-Wave Incidence The first step to perform trans-
mission measurements on metamaterials is to obtain a proper incident beam. In
most cases, a plane wave is the ideal input, but it cannot be obtained experi-
mentally. However, an approximated plane wave can be created by eliminating
the interference from the external environment as much as possible. This can be
achieved using a PPW configuration with microwave absorbers on the two lateral
sides [5], which yields a nonnormalized plane wave. Figure 4.3 shows the cou-
pling method of the source, such that a TE01 mode is fed into the PPW chamber
and a similar coupler is used for the reception. Figure 4.4 shows the amplitude
and phase of the output electromagnetic wave, indicating that at each frequency
the output beam is indeed a nonnormalized plane wave with a Gaussian-like
amplitude distribution.

For the experiments, a sample of metamaterial is placed inside the PPW
chamber. The position of the sample (the sample being a slab or a prism in our
cases, depending on the properties measured) is a result of a trade-off between
incidence and reception: It needs to be far enough from the source so that the
wave front exiting the waveguide coupler has enough space to flatten out and
to approach a plane-wave front while it has to be far enough from the recep-
tion to minimize all near-field effects. In addition, the plane-wave assumption is
only valid within a region around the symmetry axis of the propagating channel
in Figure 4.3, since the tapering effect of the absorbers cannot be avoided, and
neither can the Gaussian far-field distribution due to the aperture source. For this
reason, working with wide samples in the transverse direction guarantees more
controlled experimental conditions.

The first experiments with this setup were performed with a slab aperture
D = 5 cm at frequencies around 10 GHz, yielding an approximate far-field limit
of 2D2/λ ≈ 17 cm [33]. The distance between the source and the sample was
1 m, allowing the phase front of the incident beam to flatten out, while the
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Figure 4.3 Picture of waveguide coupler being fed into PPW (in which top plate has
been removed).

Figure 4.4 Amplitude of incident beam as it leaves the waveguide coupler shown in
Figure 4.3. It is seen that a high amplitude is kept close to the center of the propagating
channel and tapers off toward the absorbers.
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distance from the sample to the receiver was about 30 cm, well beyond the far-
field limit. Later, the experiment was repeated by progressively shrinking the
dimensions of the propagating channel, and it has been found that a distance
between source and reception of about 40 cm is enough to yield the expected
results.

4.3.1.2 Contacting Issue with Waveguide Walls Another stringent exper-
imental constraint relates to the infinite-rod requirement. In theory, a plasma
medium is obtained for the permittivity when infinite aligned rods are closely
spaced together. The effective medium thus created exhibits a uniaxial permit-
tivity tensor, where the permittivity component aligned with the rods obeys a
Drude model. Most of the designs of metamaterials (yet not all, as will be shown
subsequently) rely on this effect to produce a negative permittivity.

Invoking the boundary conditions of the electric field and the image theory,
researchers have immediately realized that rods oriented perpendicularly to the
top and bottom plates of a PPW behave as if they were infinite. Experimentally,
this requires the rods to be touching the top and bottom plates of the PPW,
which turned out to be very challenging since all the boards on which the rods
are printed need to be cut of the exact same height, and the metallizations of
the rods need to extend until the very edge of the boards. Guaranteeing these
properties throughout a whole set of rods turns out to be very difficult, yet
crucial.

4.3.2 Measurements of Various Rings

Negative metamaterials are realized from the arrangement of rings and rods or
rings alone and exhibit specific transmission and refraction properties which have
been outlined in the previous sections. In this section, we present how these two
properties are measured within an experimental framework when the metama-
terials are realized based on the ring geometries shown in Table 4.1. Since the
first geometry in the table (the edge-coupled SRR) and its immediate variation
(the broadside SRR) have been extensively studied in the literature, we shall
concentrate here on the other geometries solely: namely the axially symmetric
SRR, the omega SRR, and the ‘S’ ring.

4.3.2.1 Axially Symmetric SRR The geometry of the axially symmetric ring
is shown in Figure 4.5. A set of specific dimensions is proposed in the cap-
tion, which corresponds to resonant and plasma frequencies of fmo ≈ 8 GHz,
fmp ≈ 9 GHz, and fep ≈ 11 GHz. Obviously, as has been mentioned before,
these frequencies are directly related to the thicknesses of the metallizations, the
gaps, and other geometric parameters in the design of the SRR itself which can
be designed to achieve other frequency values than the ones proposed above.

Measuring the transmission level through a slab of metamaterial within a
waveguide environment is fairly straightforward: Two waveguide ports are used
as transmitter and receiver and are located on opposite sides of an aluminum plate.
A slab of metamaterial is located in between the two waveguide ports, and the
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Figure 4.5 Unit cell of
axially symmetric ring:
a = 12 mm, b = 5.04 mm,
c = 2.5 mm, d = 0.6 mm,
e = 1 mm, w = g = 0.24 mm,
L1 = 3.13 mm, L2 = 2.2 mm,
εr = 4.6.

Figure 4.6 Transmission level through empty waveguide and 6-cm-thick slab of
absorbers. The attenuation is seen to be less than −30 dB throughout the frequency
range, which is acceptable. This type of absorber has been used for all the experiments
reported in this chapter.

sides are padded with absorbers to reduce reflections and noise measured by the
transmission port. The characteristics of the absorbers used in the experiments
reported in this chapter are shown in Figure 4.6. The absorption level is seen
to be less than −30 dB, an acceptable level for these types of measurements.
Depending on the orientations of the rings and rods within the slab, transmission
or no transmission within specific frequency bands is expected.

The transmission experiment was performed on a slab sample of negative
metamaterial, as shown in Figure 4.7, composed of rings-only building blocks,
as shown in Figure 4.5. The measurements were performed on a structure of
10 × 60 unit cells while the numerical simulations, because of limitation in com-
puter memory, were performed on a structure of 8 × 18 unit cells. The respective



4.3 MEASUREMENT TECHNIQUES 127

Figure 4.7 Slab of metamaterial realized based on unit cell of Figure 4.5. All PC boards
are pasted on a frame made of organic plastic in which multiple grooves have been
etched.

results are shown in Figure 4.8a and b. Since no rods are present in the struc-
ture, the permittivity is positive and equal to 1, and only the permeability can
assume negative values. Therefore, as expected, the simulation results show a stop
band between 8 and 9 GHz, in between the plasma and resonant frequencies of
the permeability. The measurement results of Figure 4.8a show a similar stop
band at similar frequencies, indicating that the rings indeed operate as expected.
The low transmission witnessed at about 6 GHz corresponds to the cutoff fre-
quency of the 3-cm waveguide coupler and is therefore not an effect due to the
metamaterial.

Following the transmission experiment, a refraction experiment can be per-
formed to look for frequency regions where negative refraction occurs. In this
case, the unit cell of the metamaterial contains both rings and rods and is shaped
into a prism structure of the same dimensions as the one described in [5]. The
angle and levels of transmission are recorded as functions of frequency, and the
results are summarized in Figure 4.9. It is clearly seen that there exists a stand
alone peak in the frequency region between 8.2 and 8.7 GHz at a refraction
angle of about −30◦. Consequently, within this frequency band where both the
permittivity and the permeability are negative, an effective index of refraction
assuming negative values is created, although the power associated with this
frequency band is low.
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(a)

(b)

Figure 4.8 Transmission level through 5-cm-thick slab of negative metamaterial based
on unit cell shown in Figure 4.5 where rod has been removed: (a) experiments; (b) sim-
ulations. The stop band between 8 and 9 GHz corresponds to the frequency band where
µ < 0. The lower cutoff corresponds to the cutoff of the waveguide coupler used in the
experiment.

4.3.2.2 Omega (�) SRR The � ring is a geometry that has already been
studied in another context. In fact, in 1992 already, � rings were introduced as
a way to achieve pseudochirality or bi-anisotropy [34, 35]. More recently, these
geometries have been shown to exhibit frequency-dependent responses associated
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Figure 4.9 Transmission level through prism of metamaterial based on unit cell shown
in Figure 4.5.

with negative values of permittivities and permeabilities, and the inherent bi-
anisotropic character of these rings has been canceled by printing two reversed
� patterns back to back on each side of a substrate board [12].

The current realizations of metamaterials based on � structures use this
configuration, as can be seen in Figure 4.10. For the purpose of realization, three
�’s are stacked in series to form the unit cell in the vertical direction. The FR4
substrate on which the metallizations are printed has a thickness of 0.4 mm,
which is small in order to increase the coupling between the back-to-back �

rings and to cancel their respective chiral effects. Figure 4.10a shows the basic
unit cells of the �-like structure while Figure 4.10b shows various dielectric
cards repeated with a periodicity of 2.5 mm. This metamaterial is then used for
the transmission and refraction experiments.

The power transmission experiment and simulations have been performed
on a metamaterial slab consisting of 10 × 80 unit cells and 10 × 40 unit cells,
respectively, along the ŷ and ẑ directions (for a beam incident in the ẑ direction).
The simulation results are shown in Figure 4.11a, where a clear transmission
band is seen between 12 GHz and 13 GHz. The corresponding measured results
are shown in Figure 4.11b, where a similar transmission band is seen between
12 GHz and 13.2 GHz. The frequency corresponding to the peak value of the
power is 12.6 GHz, corresponding to a wavelength in air of about 24 mm. There-
fore, the 4-mm repetition of the unit cell in the ẑ direction and the 3.4-mm
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Figure 4.10 Illustration of (a) unit cell and (b) final metamaterial based on � structure.
The unit cell measures 2.5 mm, 10 mm, and 4 mm for the x̂, ŷ, and ẑ directions, respec-
tively. Other parameters are a = 0.4 mm, b = 1.5 mm, c = 2.9 mm, R1 = 1 mm, and
R2 = 1.4 mm.

repetition of the unit cell in the ŷ direction correspond to approximately one-
sixth or less of the wavelength so that the slab can be regarded as a homogeneous
material at these frequencies.

Figure 4.12 shows the result of the refraction experiment in which the setup
is similar to the one described in Figure 2 in [5]. Since the size of the basic
unit cell in this metamaterial is smaller than that in [5] (4 mm × 2.5 mm vs.
5 mm × 5 mm), the angle of the hypotenuse and the longer side of the triangular
prism is about 15.46◦ instead of 18.43◦. The experimental results are shown
in Figure 4.12a, where a peak at negatively transmitted angles can be seen at
around 12.6 GHz. The band that would correspond to an LH behavior of the
metamaterial extends over 1.2 GHz, which agrees very well with the passband
witnessed in the power transmission experiment. It should also be mentioned that
the losses of the prism at 12.6 GHz are smaller than 14 dB, which is acceptable.
Figure 4.12b shows a 2D power–angle plane extracted from Figure 4.12a at 12.6
GHz, from which the refracted beam is seen to bend at an angle of about 27◦,
corresponding to an effective index of refraction of about −1.7.

Finally, it is important to mention the sensitivity of the experiment to the
electrical contact of the arms of the �’s with the top and bottom plates of the
PPW. The trend that has been witnessed, confirmed by numerical simulations,
is to see a wider and less lossy LH frequency band when the electric contact is
improved. This suggests that within an experimental measurement a pressure has
to be applied between the two plates of the PPW or the arms of the �’s need to
be separately treated to ensure contact. This issue, although rarely mentioned in
the literature, has proven to be of tremendous importance in designs which rely
on a rod-like structure for the realization of the negative permittivity.
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(a)

(b)

Figure 4.11 Transmission results for material shown in Figure 4.10: (a) simulations; (b)
experiments.

4.3.2.3 Solid-State Structure A major drawback in most metamaterials real-
ized to date is the losses that they exhibit. Although the LH properties are
undoubtedly verified experimentally, the level of transmission exhibited by these
metamaterials is still too low to make them useful in industrial applications. Var-
ious causes have been identified as a possible origin of losses, one of them being
mismatch. Another major drawback of most of the current implementations of
negative metamaterials is their mechanical fragility: Being essentially constituted
of dielectric boards separated by air, they are very delicate to manipulate.
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(a)

(b)

Figure 4.12 Results of prism experiment for geometry shown in Figure 4.10: (a)
transmission level as function of frequency and angle; (b) transmission level at 12.6 GHz.

A way that appears to avoid both drawbacks is to realize a solid-state meta-
material. By solid-state metamaterial, we mean here a rigid structure composed
of a periodic arrangement of rings small compared to the wavelength and which
exhibits LH properties at certain frequencies. Such a solid-state metamaterial can
be easily obtained with standard hot-press techniques used in the manufacture
process of multilayered printed circuit boards obtained by the compression of
multiple PC boards at high temperature [36]. Note that this concept was also
postulated in [8] and realized by using high-dielectric spacers between the rings,
although not compressed together.
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(a)

(b)

Figure 4.13 Toward a solid-state metamaterial: (a) machine used to compress samples;
(b) solid-state metamaterial.
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Figure 4.14 Concept of solid-state metamaterial.

Figure 4.13 shows the machine where the hot compression is performed and
the photograph of the original compressed sample. The material thus produced
has more stable and better characteristics, both from a mechanical standpoint (it
is less fragile) and an electromagnetic standpoint (it exhibits less mismatched
boundaries).

The fabrication process is illustrated here on a metamaterial based on the �

ring described in the previous section. Figure 4.14 shows the concept underlying
the production of solid-state metamaterial samples from a succession of dielectric
boards.

In this case, two types of dielectric boards are alternated: The first type
contains two stacked � rings with their corresponding inverted images and the
second one does not contain any metallization. The geometry of the � rings is
different from the previous ones: The inner and outer radii of the � pattern are
1.5 and 1.9 mm, respectively; the length of the arm is 2.3 mm; the gap between
the two arms is 0.4 mm; the width of the printed track is 0.4 mm; and each
unit cell occupies a 5-mm space. The boards without � patterns have the same
permittivity as those on which the � patterns are printed. The final product of
this process is shown in Figure 4.15, where the solid-state metamaterial measures
5 cm × 1 cm × 9 cm.

The transmission level as function of frequency is shown in Figure 4.16,
where a very clear passband can be identified around 8.8 GHz. A closer examina-
tion reveals that the bandwidth where high transmission occurs is about 1 GHz,
which is very significant, and the level at 8.85 GHz (the exact central frequency
of the passband) is −14.8 dBm. To estimate the insertion losses of the meta-
material slab, we have measured the transmission power with and without the
metamaterial sample. The corresponding value at 8.85 GHz is −9.8 dBm, which
can be approximated as the power incident upon the interface of the slab and air.
Thus, with a return loss at the incident interface, the maximum insertion loss of
the slab composed of 10 unit cells is less than 5 dB, which corresponds to less
than 0.5 dB/unit cell. Such a level is comparable with the one exhibited currently
by microwave devices and indicates that such a solid-state metamaterial could
be used in industrial applications.
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Figure 4.15 Photograph of solid-state material.

Figure 4.16 Trans-
mission level through
solid-state metamaterial of
Figure 4.15.

The results obtained from the refraction by a prism are illustrated in
Figure 4.17. A clear deflection toward negative angles can be seen between
8.3 and 9.3 GHz, again with small losses.

4.3.2.4 S Ring The last structure we shall review here is the S structure
depicted in Figure 4.18. This ring has been extensively studied in [14, 37] both
theoretically and numerically, and we shall only review two of its interesting
properties here.



136 CHAPTER 4 REFRACTION EXPERIMENTS IN WAVEGUIDE ENVIRONMENTS

Figure 4.17 Trans-
mission result through
solid-state prism shown in
Figure 4.15.

Figure 4.18 Unit cell
of the S-ring geom-
etry: e = 0.5 mm,
L1 = L2 = 2.8 mm,
w = 0.4 mm, a = 5.4 mm,
b = 4 mm, c = 2.5 mm.

The first property of foremost importance is that the S ring does not require
the addition of a rod to exhibit a negative permittivity at similar frequencies to
where it exhibits a negative permeability. In fact, all the rings exhibit a frequency-
dispersive permittivity response, in addition to the required frequency-dispersive
permeability response (see, e.g., [38] for the broadside-coupled SRR). However,
the interesting region of permittivity response where negative values are achieved
is usually much higher in frequency than the region where the permeability is
negative, making this effect not usable. The S ring, on the contrary, exhibit a
negative-permittivity response at similar frequencies as the negative-permeability
response. In addition to being a design advantage since a single entity can now
control both parameters, it is mostly an experimental advantage since it avoids
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Figure 4.19 Photograph of S-based solid-state metamaterial.

the necessity of ensuring the electrical contact between the plates of the PPW
and the rodlike structure present in other designs.

A realization of a metamaterial based on this structure is shown in
Figure 4.19. As can be seen, the top and bottom arms of the S shape are not
reaching the edges of the dielectric boards, which indicates that they need not
be in contact with the PPW. A prism experiment based on the metamaterial of
Figure 4.19 has been performed, yielding the results shown in Figure 4.20. A
high transmission peak corresponding to negatively refracted angles can be seen
between 10.9 and 13.5 GHz, indicating a bandwidth of operation of 2.6 GHz. In
addition, the insertion losses were estimated in the same way as in the solid-state
case, revealing losses of about 0.7 dB per unit cell. The S ring therefore yields a
low-loss metamaterial where LH properties are obtained over a large bandwidth.

The second important feature of this ring is that its shape can be easily
modified to achieve desired frequency responses: The two loops in the S pattern
need not necessarily be of the same size or, if needed, additional loops can be
added. The whole frequency response of the S ring can be directly predicted
from its circuit model, as has been shown in [37]. The various capacitances and
inductances are directly related to the geometry of the ring and can be modified
or new elements can be added to achieve new properties. This flexibility has been
illustrated in [39], where a modified S-ring design has been proposed to achieve
two frequency bands where the effective index of refraction is negative, while
the overall transmission exhibits small losses over a large frequency band. Such
flexibility is of the foremost importance for the use of negative metamaterial in
industrial applications.
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Figure 4.20 Transmission through prism of metamaterial as shown in Figure 4.19.

4.4 CONCLUSION

This chapter has presented various experiments on metamaterials, emphasizing
properties such as transmission and negative refraction. It should be noted, how-
ever, that negative refraction can also be achieved with traditional anisotropic
media, while some anisotropic metamaterials do not exhibit it. Therefore, the
negative or positive refraction should be merely viewed as a consequence of the
deeper properties of metamaterials. Among some other consequences, we can
also list focusing, backward phase, reversed Čerenkov radiation, reversed Doppler
shift, and so on. In this regard, all the experimental works on metamaterials are
fundamentally important. By offering repeatable experimental verifications, they
help us to understand this class of media and lead us to the exploration of their
designs and applications.
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CHAPTER5
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AND SUBWAVELENGTH
FOCUSING USING
NEGATIVE-REFRACTIVE-INDEX
TRANSMISSION LINE
STRUCTURES

George V. Eleftheriades

5.1 INTRODUCTION

In the 1960s Victor Veselago asked whether Maxwell’s equations permit materials
with simultaneously negative permittivity and permeability [1]. His conclusion
was positive and he predicted a number of unusual electromagnetic phenomena
associated with such hypothetical media. A characteristic property of these mate-
rials is that plane waves propagating in them would have their phase velocity
antiparallel to the group velocity; hence these media would support backward
waves. Likewise the vectors describing the electric field, the magnetic field, and
the propagation direction would follow the left-handed rule; hence he coined
the term “left handed” to describe these hypothetical media. Moreover, Veselago
associated this backward-wave (BW) property with the notion of negative refrac-
tion and he described several unusual focusing devices (e.g., lenses) that operate
based on negative refraction.

It was only recently, though, that people understood how to implement these
left-handed or negative-refractive-index (NRI) media. The first such implemen-
tation was produced at the University of California at San Diego and comprised
a volumetric periodic array of straight metallic wires and split-ring resonators
to synthesize negative effective permittivity and negative permeability, respec-
tively [2].

Portions of this material also appears in Negative-Refraction Metamaterials: Fundamental
Principles and Applications, G.V. Eleftheriades and K.G. Balmain, Eds., IEEE PRESS/Wiley,
Copyright  2005, John Wiley & Sons.

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.
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Another way to implement materials that support the phenomenon of
negative refraction was subsequently proposed based on the concept of loading
planar transmission line (TL) grids with reactive elements (see Section 5.2). In
this chapter we present a number of radio frequency (RF)/microwave passive
devices that have been developed at the University of Toronto based on the con-
cept of TL NRI metamaterials. The emphasis is placed on focusing and antenna
applications (including their feed networks).

5.2 PLANAR TRANSMISSION LINE MEDIA WITH
NEGATIVE REFRACTIVE INDEX

A 2D NRI metamaterial (MTM) can be physically implemented by reactively
loading a host TL grid. A representative unit cell of such a periodic NRI-TL
medium is depicted in Figure 5.1.

Specifically, a host TL medium (e.g., microstrip) is periodically loaded
with discrete series capacitors and shunt inductors [3,4]. From the onset, the key
observation is that there is a correspondence between negative permittivity and a
shunt inductance (L) as well as between negative permeability and a series capac-
itance (C). This allows the synthesis of artificial media (MTMs) with a negative
permittivity and a negative permeability and hence a negative refractive index.
When the unit-cell dimension d is much smaller than a guided wavelength, the
array can be regarded as a homogeneous effective medium and as such can be
described by effective constitutive parameters µN (ω) and εN (ω), which are deter-
mined through a rigorous periodic analysis to be of the form shown in Eq. (5.1)
(assuming 2D transverse magnetic (TMy) wave propagation in Fig. 5.1)

εN(ω) = 2εp − g

ω2L0 d
µN(ω) = µp − 1/g

ω2C0 d
(5.1)

where εp and µp are positive constants describing the host TL medium and they
are proportional to the per-unit-length capacitance and inductance of this host TL
medium, respectively. On the other hand, the geometric factor g relates the char-
acteristic impedance of the TL network to the wave impedance of the effective
medium. Moreover, the factor of 2 in front of the effective permittivity of the 2D
medium is necessary to properly account for scattering at the edges of the unit
cell (this factor becomes 1 for 1D media). These TL media support backward

Figure 5.1 Unit cell for 2D NRI-TL metamaterial.
A host TL is loaded periodically with series capacitors
and shunt inductors in a dual (high-pass) configu-
ration. From [7], copyright  2003 by the Optical
Society of America.
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waves in which the phase and group velocities are antiparallel; hence, they imple-
ment the left-handed or NRI media envisioned by Veselago, as was pointed out
in [4,5]. The relationship between 1D BW lines (but in the ideal case without any
host medium) and left-handed lines was also pointed out in [6]. Naturally, due
to the host microstrip medium, the practically realizable unit cell of Figure 5.1
contains both positive- and negative-refractive-index responses, as implied by
Eq. (5.1), which was originally stipulated in [4, 5, 7] and in [8]. This particular
arrangement of the inclusions L0 and C0 provides the desired negative material
contribution that diminishes with frequency ω and ensures compatibility with the
Poynting theorem for dispersive media [1]. When the parameters are simultane-
ously negative, these structures exhibit a negative effective refractive index and
have experimentally demonstrated the predicted associated phenomena, includ-
ing negative refraction and focusing [3,4,7,9] and focusing with subwavelength
resolution [10, 11].

In practical realizations, the subwavelength unit cell of Figure 5.1 is
repeated to synthesize artificial 2D materials with overall dimensions that are
larger than the incident electromagnetic wavelength. Therefore, the resulting
structures are by definition distributed. However, the loading lumped elements
could be realized either in chip [3, 4] or in printed form [5, 12, 13].

5.3 ZERO-DEGREE PHASE-SHIFTING LINES
AND APPLICATIONS

In conventional positive-refractive-index (PRI) TLs, the phase lags in the direc-
tion of positive group velocity, thus incurring a negative phase. It therefore fol-
lows that phase compensation can be achieved at a given frequency by cascading
a section of a NRI line (e.g., BW line) with a section of a PRI line to synthesize
positive, negative, or zero transmission phase over a short physical length (see
Fig. 5.2) [14]. This idea of phase compensation is inherent in Veselago’s flat-lens
idea and was also proposed for implementing thin subwavelength resonators [15].

A physical implementation of this concept using TLs is shown in Figure 5.3.
The structure of Figure 5.3 can be rearranged to form a series of symmetric MTM
unit cells as proposed in [4,14]. Such a unit cell is shown in Figure 5.4, and it is
nothing but a TL of characteristic impedance Z0 periodically loaded with series
capacitance C0 and shunt inductance L0. A representative dispersion diagram for
typical host TL and loading parameters is shown in Figure 5.5.

Figure 5.2 Method of phase compensation
using conventional TL and BW lines.
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Figure 5.3 Phase-compensating structure
based on conventional TL and NRI (BW)
lines.

Figure 5.4 Unit cell of MTM phase-shifting
line comprising host TL periodically loaded
with series capacitors and shunt inductors.
From [34], copyright  2005 by the Institute
of Electrical and Electronics Engineers, Inc.

The MTM phase-shifting lines can then be constructed by cascading a series
of these unit cells. The edges of the stop band, fc1 and fc2, in Figure 5.5 are
determined at the series resonance between the inductance of the TL section and
the loading capacitance C0 and at the shunt resonance between the capacitance
of the TL section and the loading inductance L0, respectively. Alternatively
these are the frequencies at which the effective permeability µN (ω) and effective
permittivity εN (ω) vanish, εN(ω) = 0, µN(ω) = 0. Hence, by setting the effective
material parameters of Eq. (5.1) to zero, these cutoff frequencies are readily
determined to be

fc1 = 1

2π

√
1/g

µpC0 d
(5.2)

fc2 = 1

2π

√
g

εpL0 d
(5.3)

where the characteristic impedance of the host transmission line is Z0 =
g
√

µp/εp = √
L/C. By equating fc1 and fc2, the stop band in Figure 5.5 can be

closed, thus allowing access to phase shifts around the zero mark. The condition
for a closed stop band is therefore determined to be

Z0 =
√

L0

C0
(5.4)

This condition also implies that the PRI TL of Figure 5.2 is matched to the NRI
line. The closed stop-band condition (5.4) was originally derived in [4] Eq. (29)
and subsequently also reported in [8]. Under this condition, it has been shown
in [14] that the total phase shift per unit cell is

βeff ≈ ω
√

LC + −1

ω
√

L0C0
(5.5)
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Figure 5.5 Dispersion diagram for periodic structure of Figure 5.4 with typical line and
loading parameters. The edges of the stop band are designated by fc1 and fc2. From [14],
copyright  2003 by the Institute of Electrical and Electronics Engineers, Inc.

This expression can be interpreted as the sum of the phase incurred by the host
C –L TL and a uniform BW L–C, line as shown in Figures 5.2 and 5.3.

Various 1D phase-shifting lines were constructed in coplanar waveguide
(CPW) technology at 0.9 GHz, as shown in Figure 5.6. The simulated and mea-
sured phase responses for two- and four-stage zero-degree phase-shifting lines are
shown in Figure 5.7, compared to the phase response of a conventional −360◦

TL. Also shown is the magnitude response of the two- and four-stage 0◦ lines.
It can be observed that the experimental results correspond very closely

to the simulated results, highlighting the broadband nature of the phase-shifting
lines and their small losses.

It can be concluded that the MTM phase-shifting lines offer some significant
advantages when compared to conventional delay lines. They are compact in size,
can be easily fabricated using standard etching techniques, and exhibit a linear
phase response around the design frequency. They can incur either a negative
or a positive phase as well as a zero-degree phase depending on the values of
the loading elements while maintaining a short physical length. In addition, the
phase incurred is independent of the length of the structure. Due to their compact,
planar design, they lend themselves easily to integration with other microwave
components and devices. The MTM phase-shifting lines are therefore well suited
for broadband applications requiring small, versatile, linear devices.

It should be pointed out that these phase-shifting lines offer an advantage
in terms of size and bandwidth when phase shifts about the zero-degree mark are
needed. In this case, the proposed devices have a clear advantage when compared
to a corresponding delay line about the one-wavelength mark (see Fig. 5.7). The
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Figure 5.6 Top: Two-stage phase-shifting line (16 mm). Bottom: Four-stage phase-
shifting line (32 mm) at 0.9 GHz. Note: Reference −360◦ TL line, 283.5 mm (not
shown).

Figure 5.7 Phase responses of one-, four-, and eight-stage zero-degree phase-shifting
lines compared to conventional −360◦ TL at 0.9 GHz: (– – –) measured; ( ) Agilent-
ADS Simulation. Also shown is the amplitude response for the two- and four-stage
devices.
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significant advantage arises from the short electrical length of these zero phase
shift lines, which also implies a broadband response (always when comparing to a
one-wavelength delay line). Examples of harnessing these advantages in practical
applications are discussed below. It should be pointed out that for electrically
long PRI/NRI phase-shifting lines their broadband nature could be retained if
the constituent NRI section is also designed to exhibit a negative group velocity,
as was done in [16]. In this case not only the signs but also the slopes of the
propagation constants (vs. frequency) of the NRI and PRI lines compensate, thus
leading to inherently broadband response. Of course the difficulty now becomes
the issue of how to synthesize a negative group velocity over a broad bandwidth.
Moreover the NRI lines of [16] are lossy and, hence, restoring amplifiers would
need to be included for acceptable performance.

5.3.1 Nonradiating Metamaterial Phase-Shifting Lines

Any artificial TL that supports fast waves, that is, waves whose phase velocity is
greater than the speed of light, will tend to radiate into free space if its electrical
length is sufficiently long. When the MTM lines presented in the previous section
are used to create zero-degree phase-shifting lines, the phase incurred by each
unit cell and therefore the propagation constant are equal to zero at the design
frequency. Since the phase velocity is defined as vφ = ω/β, its value will be
infinite at the design frequency. Thus the lines will support fast waves that will
tend to radiate when they are long enough. A typical dispersion diagram with a
closed stop band [see Eq. (5.4)] for a zero-degree MTM phase-shifting line of
the type shown in Figure 5.4 is depicted in Figure 5.8. If the MTM lines are
designed to operate anywhere within the radiation cone of the Brillouin diagram,
the lines will be prone to radiation.

To ensure that the MTM phase-shifting lines do not radiate, they can be
operated in the NRI BW region, while simultaneously ensuring that the propaga-
tion constant of the line exceeds that of free space. This will effectively produce a
slow-wave structure with a positive insertion phase, �MM. The Brillouin diagram

Figure 5.8 Dispersion diagram
for zero-degree MTM unit cell;
the horizontal line designates the
operating frequency.
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Figure 5.9 Dispersion diagram
indicating regions of propagation
outside radiation cone; the hori-
zontal line designates the operating
frequency.

Figure 5.10 Nonradi-
ating (slow-wave) MTM
phase-shifting line.

for this scenario is shown in Figure 5.9. It can be observed that at the design
frequency, propagation occurs outside of the radiation cone.

By cascading the MTM line of Figure 5.9 with a conventional (PRI) TL that
inherently incurs a negative insertion phase, �TL, a composite slow-wave MTM
phase-shifting line is obtained that does not radiate, as shown in Figure 5.10.
Furthermore, If �MTM and �TL are equal but opposite in sign, then the structure
will incur a zero insertion phase, given by

�0 = �MTM + �TL = 0 (5.6)

Thus, it has been shown that it is possible to construct MTM phase-shifting
lines that do not radiate, which can then be used for the design of antenna feed
networks, without affecting the radiation patterns.

5.3.2 Series-Fed Antenna Arrays with Reduced Beam Squinting

An example of utilizing the slow-wave phase-shifting lines of the previous section
to feed a set of in series printed dipole antennas has been reported in [17]. The
main idea is to use zero-degree phase-shifting lines to feed the dipoles of a series-
fed array in phase. Due to the broadband nature of these lines, the resulting array
patterns squint much less with frequency when compared to their conventional
series-fed counterparts using meandered one-wavelength lines.

In a typical series-fed linear array designed to radiate at broadside, the
antenna elements must be fed in phase. In addition, an interelement spacing dE

of less than a half a free-space wavelength (dE < λ0/2) is necessary to avoid
capturing grating lobes in the visible region of the array pattern. To achieve
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Figure 5.11 Series-fed linear array using
conventional −2π TL meandered feed lines.

Figure 5.12 Series-fed linear array using
Zero-degree MTM feed lines.

these design constraints, traditional designs employing TL-based feed networks
have resorted to a meander line approach, as shown in Figure 5.11. This allows
the antenna elements to be physically separated by a distance dE = λ0/2 while
still being fed in phase with a one guided-wavelength λg long meander line that
incurs a phase of −2π rad. Because the phase incurred by the TLs is frequency
dependent, a change in the operating frequency will cause the emerging beam
to squint from broadside, which is generally an undesirable phenomenon. In
addition, the fact that the lines are meandered causes the radiation pattern to
experience high cross-polarization levels, particularly in CPW implementations
as a result of parasitic radiation due to scattering from the corners of the meander
lines. The proposed feed networks employ nonradiating MTM phase-shifting lines
within a series-fed linear array (see Fig. 5.12) to mitigate some of the problems
encountered with conventional TL-based feed networks.

Assuming that the same type of TL sections are used for TL1 and TL2,
then Z0, L, and C will be the same for both lines. Therefore, �TL2 is given by
�TL2 = ω

√
LCdTL2. Correspondingly, for a transmission line of length λg , the

phase as a function of frequency is given by �λg = ω
√

LCλg . The scan angle
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Figure 5.13 Scan angle
performance of series-fed
linear array with dE = λ0/2
using different feeding
techniques.

for each of the MTM- and TL-based linear arrays with an interelement phase
shift �0 can therefore be written as

θSCAN,MTM = sin−1
(

− �0

k0dE

)
= sin−1

(
−�MTM + �TL2

k0dE

)
(5.7)

θSCAN,TL = sin−1
(

− �0

k0dE

)
= sin−1

(
− �λg

k0dE

)
(5.8)

The MTM- and TL-based feed networks were evaluated in CPW technology
at a design frequency of 2 GHz. Two designs were considered: an array with
an inter-element spacing of dE = λ0/2 and an array with a spacing dE = λ0/4.
The scan angle characteristics for the MTM- and TL-based linear arrays with
dE = λ0/2 are shown in Figure 5.13. It can be observed that the scan angle for
the TL-fed array exhibits its full scanning range from +90◦ to −90◦ within a
bandwidth of 2.67 GHz, while the corresponding scanning bandwidth for the
MTM-fed array is 4.27 GHz. Thus, the MTM-fed array offers a more broadband
scan angle characteristic while simultaneously eliminating the need for meander
lines. Also shown in Figure 5.13 is the scan angle characteristic for a low-pass
loaded TL also of length λ0/2. It can be observed that the performance of this
line is identical to that of the TL feed line. Thus, although the loaded line can
eliminate the need for meander lines, it does not provide the advantage of an
increased scan angle bandwidth that the MTM feed lines offer.

The scan angle characteristics for the λ0/4 feed network are shown in
Figure 5.14. It can be observed that the bandwidth of the scanning angle for
the TL-fed array and the loaded TL array decreases to 1.07 GHz, while the
corresponding scanning bandwidth for the MTM-fed array remains at 4.27 GHz.
Thus, as the spacing decreases between the antenna elements, it can be seen
that the scan angle characteristic for a MTM-fed array remains unchanged, while
the corresponding scan angle characteristic for the TL-fed array becomes more
narrow band. This is consistent with the previous observation that electrically
short phase-shifting lines exhibit a broader bandwidth.
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Figure 5.14 Scan angle
performance of series-fed
linear array with dE = λ0/4
using different feeding
techniques.

5.3.3 Broadband Wilkinson Balun Using Microstrip
Metamaterial Lines

Baluns are particularly useful for feeding two-wire antennas, where balanced
currents on each branch are necessary to maintain symmetric radiation patterns
with a given polarization. Two-wire antennas have input ports that are closely
spaced; therefore their feeding structures should be chosen to accommodate for
this requirement. This precludes the use of certain balun designs whose output
ports are spaced far apart [18].

Printed balun designs can generally be classified as distributed-TL or
lumped-element type. Distributed-TL designs are inherently narrow band due
to the frequency dependence of the TLs used. These can be made broadband;
however, they usually require TLs that are at least several wavelengths long and
are therefore not very compact [19]. Lumped-element designs, albeit compact,
can suffer from a relatively narrow-band differential output phase resulting from
the inherent mismatch between the phase response of the low-pass/high-pass
output lines that they employ [20].

The proposed MTM balun, shown in Figures 5.15 and 5.16, consists of a
Wilkinson power divider followed by a +90◦ MTM phase-shifting line along the
top branch and a −90◦ MTM phase-shifting line along the bottom branch. The
design of the balun was based on the MTM unit cell shown in Figure 5.10 and
was carried out by first selecting appropriate values for the loading elements of
the +90◦ MTM line to produce a +90◦ phase shift at the design frequency f0

while maintaining a short overall length. Then, the pertinent parameters for the
−90◦ MTM line were calculated such that the shape of the phase responses of the
+90◦ and −90◦ MTM lines matched, thus maintaining a 180◦ phase difference
over a large bandwidth.

To match the phase response of the −90◦ MTM line with that of the +90◦

MTM line and therefore create a broadband differential output phase, the slopes of
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Figure 5.15 Photograph of fabricated
MTM balun. From [34], copyright
 2005 by the Institute of Electrical
and Electronics Engineers, Inc.

Figure 5.16 Proposed architecture
of TMM balun. From [34], copyright
 2005 by the Institute of Electrical and
Electronics Engineers, Inc.

their phase characteristics must be equal at the design frequency, thus satisfying

d�MTM+
dω

∣∣∣∣
ω0

= d�MTM−
dω

∣∣∣∣
ω0

(5.9)

Moreover, to ensure that the MTM phase-shifting lines do not radiate, each unit
cell must be operated in the region outside the light cone on the Brillouin diagram.
Thus, the +90◦ MTM phase-shifting lines must be operated in the NRI backward-
wave region, while simultaneously ensuring that the propagation constant of the
line exceeds that of free space, resulting in a slow-wave structure with a positive
insertion phase. Correspondingly, the −90◦ MTM phase-shifting lines must be
operated in the PRI forward-wave region, while simultaneously ensuring that the
propagation constant of the line also exceeds that of free space, resulting in a
slow-wave structure with a negative insertion phase (see Section 5.2.1).

The MTM Wilkinson balun was implemented in microstrip technology on
a Rogers RO3003 substrate with εr = 3 and height h = 0.762 mm at a design
frequency f0 = 1.5 GHz. A five-stage design was chosen for the +90◦ MTM
phase-shifting line as well as the −90◦ MTM phase-shifting line. The experimen-
tal results were compared with the simulated results obtained using Agilent-ADS.

Figure 5.17 shows the measured versus the simulated return loss magnitude
response for port 1, showing good agreement between the two, indicating that
the device is well matched, especially around f0 = 1.5 GHz. The measured and
simulated return losses for ports 2 and 3 exhibit similar responses.

Figure 5.18 shows excellent isolation for the device as well as equal power
split between the two output ports.
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Figure 5.17 Measured
and simulated return loss
magnitude responses for
port 1 of MTM balun.
From [34], copyright 
2005 by the Institute of
Electrical and Electronics
Engineers, Inc.

Figure 5.18 Measured and simulated isolation (S23) and through (S21 and S31) magni-
tude responses of MTM balun. From [34], copyright  2005 by the Institute of Electrical
and Electronics Engineers, Inc.
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Figure 5.19 Measured
and simulated phase
responses of S21 (+90◦

MTM line) and S31

(−90◦ MTM line) of
MTM balun. From [34],
copyright  2005 by the
Institute of Electrical and
Electronics Engineers,
Inc.

Figure 5.19 shows the measured versus simulated phase responses of the
two balun branches. The experimental results agree very closely with the simu-
lated results. It can be observed that the phase of S21 is exactly equal to +90◦ at
f0 = 1.5 GHz, while the phase of S31 is exactly equal to −90◦ at f0 = 1.5 GHz
and the phase characteristics of the two branches are quite similar.

Figure 5.20 shows the measured and simulated differential output phases of
the MTM balun, with excellent agreement between the two. It can be observed
that the differential output phase remains flat for a large frequency band, which
follows directly from the fact that the phase characteristics of the +90◦ and −90◦

lines correspond very closely. The flat differential output phase has a 180◦ ±
10◦ bandwidth of 1.16 GHz, from 1.17 to 2.33 GHz. Since the device exhibits
excellent return loss and isolation and through characteristics over this frequency
range, it can be concluded that the MTM balun can be used as a broadband single-
ended to differential converter in the frequency range from 1.17 to 2.33 GHz.

For comparison, a distributed TL Wilkinson balun employing −270◦ and
−90◦ TLs instead of the +90◦ and −90◦ MTM lines was also simulated, fabri-
cated, and measured at f0 = 1.5 GHz, and the differential output phase of the TL
balun is also shown in Figure 5.20. It can be observed that the phase response
of the TL balun is linear with frequency, with a slope equal to the difference
between the phase slopes of the −270◦ and −90◦ TLs. Since the gradient of the
resulting phase characteristic is quite steep, this renders the output differential
phase response of the TL balun narrow band. Thus, the TL balun exhibits a mea-
sured differential phase bandwidth of only 11 percent, from 1.42 to 1.58 GHz,
compared to 77 percent exhibited by the MTM balun. In addition, the TL balun
occupies an area of 33.5 cm2 compared to 18.5 cm2 for the MTM balun. Thus,
the MTM balun is more compact, occupying only 55 percent of the area that
the conventional TL balun occupies. Furthermore, the MTM balun exhibits more
than double the bandwidth compared to a lumped-element implementation using
low-pass/high-pass lines, which typically exhibits a bandwidth of 32 percent [20].
This can be attributed to the fact that the low-pass line has a linear phase response,
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Figure 5.20 Measured
and simulated differential
phase comparison between
MTM balun and TL balun.
From [34], copyright 
2005 by the Institute of
Electrical and Electronics
Engineers, Inc.

while the response of the high-pass line has a varying slope with frequency. Thus,
the shapes of the phase responses of the two lines do not match, resulting in a
more narrow-band differential output phase.

5.3.4 Low-Profile and Small Ring Antennas

A final example of harnessing the previously described MTM lines is to use
a zero-degree phase-shifting line wrapped around in a closed loop in order to
implement a small printed antenna. This is shown in Figure 5.21 for a realization
at 1.5 GHz. As shown, there are four MTM phase-shifting sections arranged in
a square ring. Each constituent section comprises a zero-degree phase-shifting
line in a microstrip configuration designed to incur a zero insertion phase at the
antenna operating frequency. This allows the inductive posts to ground, which act
as the main radiating elements, to be fed in phase. Hence, the antenna operates as
a 2D array of closely spaced monopoles that are fed in phase through a compact
feed network. This leads to a ring antenna with a small footprint (diameter of
λ/25) and a low profile (height λ/31) capable of radiating vertical polarization.

The measured return loss obtained indicates a good matching of >25 dB at
1.51 GHz with a −10-dB bandwidth of approximately 2 percent. This bandwidth
can be increased to 3 to 4 percent if the dielectric substrate is reduced to about
the size of the ring or if the via height is increased. Figure 5.22 shows the mea-
sured versus the simulated E- and H -plane patterns obtained with Ansoft’s High
Frequency Structure Simulator (HFSS), which demonstrates good agreement. It
can be observed that the antenna exhibits a radiation pattern with a vertical linear
electric field polarization, similar to a short monopole on a finite ground plane.
The radiation in the back direction is reduced compared to the forward direction
due to the effect of the finite ground plane used; however it is not completely
eliminated. Moreover, there is good cross-polarization purity in the E plane, with
a maximum measured electric field cross-polarization level of −17.2 dB. In the
H plane, the maximum electric field cross-polarization level is only −6.6 dB.
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Figure 5.21 Diagram of MTM ring antenna at 1.5 GHz. The loading capacitance and
inductance required to feed the vias in phase are C0 = 3.70 pF and L0 = 71.08 nH.

The loading with chip passive lumped elements is effective at RF and low
microwave frequencies. At higher frequencies, these can be replaced by printed
lumped elements. For example, a fully printed version of this antenna at 30 GHz,
in which the loading lumped-element chip capacitors and inductors were replaced
by gaps and vias respectively, was reported in [21]. Finally it should be noted that
the measured radiation efficiency of these antennas (but with a truncated ground
plane) in the frequency range between 1 and 2 GHz turns out to be between 30
and 50 percent (using the gain comparison method).

Other interesting applications of MTMs for the design of small and efficient
antennas can be found in [22].
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Figure 5.22 Measured
and simulated (Ansoft’s
HFSS) antenna patterns
at 1.51 GHz: (a) E plane
and (b) H plane. From [5],
copyright  2002 by the
American Institute of
Physics.

(a)

(b)
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5.4 BACKWARD LEAKY-WAVE ANTENNA RADIATING
IN ITS FUNDAMENTAL SPATIAL HARMONIC

The TL approach to synthesizing NRI metamaterials has led to the development
of a new kind of leaky-wave antenna (LWA). As was described previously, by
appropriately choosing the circuit parameters of the dual TL model, a fast-wave
structure can be designed that supports a fundamental spatial harmonic which
radiates toward the backward direction (i.e., toward the feed) [5, 23].

A CPW implementation of this LWA is shown in Figure 5.23. The gaps in
the CPW feed line serve as the series capacitors of the dual TL model, while
the narrow lines connecting the center conductor to the coplanar ground planes
serve as the shunt inductors (shorted stubs). The capacitive gaps are the radiating
elements in this LWA and excite a radiating TM wave. Due to the antiparallel
currents flowing on each pair of the narrow inductive lines, they remain non-
radiating. Simulated and experimental results for this bidirectional LWA were
reported in [5]. Simulation results for a unidirectional LWA design were also
presented in [23]. The unidirectional design is simply the LWA described in [5]
backed by a long metallic trough, as shown in Figure 5.24. Since the LWA’s
transverse dimension is electrically small, the backing trough can be narrow
(below resonance). The trough used is a quarter wavelength in height and width

Figure 5.23 Backward LWA based
on the TL model at 15 GHz. From [5],
copyright  2002 by the American
Institute of Physics.

Figure 5.24 Unidirectional
BWA antenna design at 15 GHz.
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and covers the entire length of the antenna on the conductor side of the substrate.
It acts as a waveguide below cutoff and recovers the back radiation, resulting in
unidirectional far-field patterns.

A complementary forward unidirectional LWA is also reported in [24]. The
periodic structure of [24] also operates on the fundamental spatial harmonic and
hence can be thought of as a MTM with a positive phase velocity. Here, we
describe experimental results for the unidirectional design proposed in [23]. As
noted in [23], a frequency shift of 3 percent, or 400 MHz, was observed in the
experiments compared to the method-of-moments simulations of the LWA using
Agilent’s Advanced Design System (ADS). As a result, the experimental unidi-
rectional radiation patterns are shown at 14.6 GHz while the simulation patterns
are shown at 15 GHz. The E- and H -plane patterns are shown in Figures 5.25

Figure 5.25 E-plane pattern for
unidirectional LWA: (–, blue) exper-
imental copolarization; (– ·–, green)
experimental cross-polarization;
(– – –, red) simulated copolarization
using Agilent ADS (F = 15 GHz).

Figure 5.26 H -plane pattern for
unidirectional leaky-wave antenna:
(–, blue) experimental copolar-
ization; (– ·–, green) experimental
cross-polarization.
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and 5.26, respectively. A gain improvement of 2.8 dB was observed for the
unidirectional design over the bidirectional design, indicating that effectively all
of the back radiation is recovered with the trough.

A similar LWA implemented in a microstrip configuration was also reported
in [25]. In that implementation varactor diodes were utilized to steer the beam
from the backward to the forward direction in a design with a closed stop band
[see Eq. (5.4)].

5.5 SUPERRESOLVING NRI TRANSMISSION LINE LENS

Standard diffraction theory imposes a resolution limit when imaging using con-
ventional lenses. This fundamental limit, called the diffraction limit, is attributed
to the finite wavelength of the electromagnetic waves. The electromagnetic field
emanating from a luminous object, lying over the x –y plane, consists of a con-
tinuum of plane waves exp(−jkxx − jkyy) exp(−jkzz). Each plane wave has a
characteristic amplitude and propagates at an angle with respect to the optical
z axis given by the direction cosines (kx/k0, ky/k0), where k0 is the propaga-
tion constant in free space. The plane waves with real-valued direction cosines
(k2

x + k2
y < k2

0) propagate without attenuation, while the evanescent plane waves
with imaginary direction cosines (k2

x + k2
y > k2

0) attenuate exponentially along the
optical z axis. A conventional lens focuses only the propagating waves, resulting
in an imperfect image of the object, even if the lens diameter were infinite. The
finer details of the object, carried by the evanescent waves, are lost due to the

strong attenuation that these waves experience [exp(−z

√
k2
x + k2

y − k2
0)] when

traveling from the object to the image through the lens. The Fourier transform
uncertainty relation kt max	ρ ∼ 2π , relating the maximum transverse wavenum-
ber kt max to the smallest transverse spatial detail 	ρ, implies that spatial details
smaller than a wavelength are eliminated from the image (	ρ ∼ 2π/k0 = λ).
This loss of resolution, which is valid even if the lens diameter were infinite,
constitutes the origin of the diffraction limit in its ultimate form. For the typical
case of imaging a point source, the diffraction limit manifests itself as an image
smeared over an area approximately one wavelength in diameter.

In 2000, John Pendry extended the analysis of Veselago’s lens (an NRI slab
with a refractive index n = −1) to include evanescent waves and observed that
such lenses could overcome the classical diffraction limit [11]. Pendry suggested
that Veselago’s lens would allow “perfect imaging” if it were completely lossless
and its refractive index was exactly equal to n = −1 relative to the surrounding
medium. The left-handed lens achieves imaging with superresolution by focus-
ing propagating waves as would a conventional lens, but in addition it supports
growing evanescent waves which restore the decaying evanescent waves ema-
nating from the source. This restoration of evanescent waves at the image plane
extends the maximum accessible wavenumbers kt max > k0 and allows imaging
with superresolution. The physical mechanism behind the growth of evanescent
waves is quite interesting: Within the NRI slab multiple reflections result in both
growing and attenuating evanescent waves. However, when the index n = −1, a
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Figure 5.27 Photograph
of planar superresolving
Veselago lens around
1 GHz [10]. From [10],
copyright  2004 by
the American Physical
Society.

Figure 5.28 Experimental
verification of subwave-
length focusing. From [10],
copyright  2004 by the
American Physical Society.

resonant phenomenon occurs in which the attenuating solution is canceled out,
thus leaving only the growing wave present. In a sense, one may think of Vese-
lago’s lens as an inverse system that exactly restores propagation in free space.

A picture of a planar version of Veselago’s lens that was constructed at the
University of Toronto is shown in Figure 5.27. The NRI lens is a slab consisting
of a 5 × 19 grid of printed microstriplines loaded with series capacitors (C0) and
shunt inductors (L0). This NRI slab is sandwiched between two unloaded printed
grids that act as homogeneous media with a positive index of refraction. The first
unloaded grid is excited with a monopole (point source) which is imaged by the
NRI lens to the second unloaded grid. The vertical electric field over the entire
structure is measured using a detecting probe (for details, see [7]).

The measured half-power beam width of the point source image at
1.057 GHz is 0.21 effective wavelengths, which is appreciably narrower than
that of the diffraction-limited image corresponding to 0.36 wavelengths (see
Fig. 5.28). The enhancement of the evanescent waves for the specific structure
under consideration was demonstrated in [26]. Figure 5.29 shows the measured
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Figure 5.29 Experimen-
tal verification of growing
evanescent waves in
superresolving NRI-TL
lens. From [10], copyright
 2004 by the American
Physical Society.

vertical electric field above the central row of the lens, which verifies the expo-
nential growth of the fields inside the NRI medium predicted in [26]. Since there
is some controversy regarding losses in NRI MTMs, we hereby report that the loss
tangent of the NRI medium at 1.05 GHz is estimated to be tan(δ) = 0.062, which
attests to the low-loss nature of the NRI TL lens. However, even such a slight loss
is sufficient to deteriorate the growth of evanescent waves to kt max = 3k0 [10].
The superresolving imaging properties of the structure shown in Figure 5.26 have
been theoretically investigated by means of a rigorous periodic Green’s function
analysis in [27]. Furthermore, the corresponding dispersion characteristics for
these distributed structures were derived in [28] using periodic 2D TL theory.
In the case that the loading is achieved using printed instead of chip loading
lumped elements, for example, microstrip gaps and vias or coils to implement
series capacitors and inductors, respectively [12], the corresponding dispersion
characteristics have been examined using finite-element electromagnetic simu-
lations in [13]. Finally an elegant and insightful explanation for the growth of
evanescent waves in NRI media based on successive resonances in equivalent
L–C ladder networks can be found in [29].

5.6 DETAILED DISPERSION OF PLANAR NRI-TL MEDIA

To further understand the nature of the modes excited in 2D planar NRI TL media,
consider again the loaded TL unit cell of Figure 5.1. To physically implement
this unit cell in microstrip, one can use series gaps to realize the series capacitors
and vias to the ground to implement the shunt inductors [9,12,13]. The resulting
structure is shown in Figure 5.30 and consists of patches connected with vias to a
ground plane. A top covering plate is also included here; for open structures this
plate can be considered placed at infinity. This configuration can be identified
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Figure 5.30 Two-dimensional unit cell with relevant dimensions and material
parameters. From [31], copyright  2004 by the Institute of Electrical and Electronics
Engineers, Inc.

with the well-known “mushroom” structure proposed by Sievenpiper et al. as a
means of implementing an electromagnetic bandgap surface [30].

Consider now the example in which the geometry of Figure 5.30 is loaded
with lumped components. Specifically, the via is loaded by an ideal lumped induc-
tor (L = 11.6 nH) and the patch edges are loaded by series lumped capacitors
(C = 2 pF). This additional loading results in a pronounced BW behavior which
is easily achievable by adjusting the lumped component values. The correspond-
ing dispersion diagram was computed using the multiconductor transmission line
(MTL) theory in [31]. The so-computed results for axial propagation are shown
in Figure 5.31, where they are compared with those obtained from a full-wave
finite-element method (FEM) commercial solver. Also shown is the dispersion
predicted by the simple TL theory of Section 5.2. This diagram is interesting
since it reveals an additional stop band that forms at the intersection of the light
line and the BW dispersion curve predicted by simple TL theory. With reference
to Figure 5.30, the reason that this stop band forms is due to a contradirectional
coupling between the BW mode supported by the mushroom surface and the
bottom ground plane and the forward transverse electromagnetic (TEM) mode
supported by the bottom and top metallic plates. If the top plate is open, this stop
band persists since now the TEM mode degenerates to a surface wave mode [13].
The simple TL model does not capture this stop band since it only accounts for
the BW mode. On the other hand, the MTL model does predict the stop band
since it accounts for both modes.

In fact, the MTL theory enables one to examine the nature of this stop
band, which is quite interesting in several ways. In reality, this is a peculiar stop
band which describes a mode conversion phenomenon between the backward-
and forward-wave (TEM) modes identified above. The two strongly coupled
modes are actually characterized by complex-conjugate propagation constants.
From Figure 5.31, at the peak of the lowest passband, the value of the complex
propagation constant times the period d , (γ d), is equal to (0.125π)j , a pure
imaginary number, and at the minimum of the second passband its value is
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Figure 5.31 On-axis dispersion of loaded version of structure shown in Figure 5.30.
From [31], copyright  2004 by the Institute of Electrical and Electronics Engineers, Inc.

(0.066π)j . The MTL analysis reveals that within the stop band the imaginary part
of γ d varies continuously from (0.125π)j to (0.066π)j , but γ d also acquires
a real part corresponding to exponential growth/decay. For this structure the
value of γ d at the center of the stop band (f = 1.38 GHz) is (0.089π)j ±
0.1457. For an infinite structure, one must eliminate the sign corresponding to
the exponential growth. This behavior should be taken carefully into account
when designing NRI TL media. For example, in the superlens design of the
previous section, it was made sure that propagation takes place outside of this
contradirectional stop band. On the other hand, this stop band and the underlying
mode conversion effect can be exploited to implement novel coupled-line BW
couplers in which a microstripline (forward mode) is coupled to a NRI line
(backward mode) [32]. The corresponding exponential field variation implied
by the complex propagation constants leads to short coupling lengths and large
coupling coefficients. Incidentally, this analysis reveals the true nature of the
electromagnetic bandgap that is achievable with Sievenpiper’s mushroom surface.
Indeed, this is a leaky stop band that describes a mode conversion phenomenon
and thus care must be exercised in the various intended bandgap applications.
In particular, one should be careful such that unwanted radiation leakage effects
due to mode conversion do not take place when this surface is operated as an
electromagnetic bandgap surface.

Another silent feature of the dispersion diagram in Figure 5.31 is revealed
by examining the slope of the dispersion line within the stop band. As shown,
this slope becomes negative, which means that the corresponding parallel-plate
waveguide mode develops a negative group velocity within the stop band. It is
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well known that anomalous group velocity effects can be observed in absorptive
stop bands (see, e.g., [16]). However, the stop band of Figure 5.31 is associated
not with absorption but rather with mismatch (reflection) losses, a situation that
is more relevant to the case of propagation within the stop band of the distributed
Bragg reflector described in [33].
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CHAPTER6
RESONANCE CONE ANTENNAS

Keith G. Balmain and Andrea A. E. Lüttgen

6.1 INTRODUCTION

The class of antennas considered here is low profile, consisting of a top-layer grid
erected over a ground plane, a geometry realizable using printed-circuit-board
techniques. The top layer is a planar network of low-loss, interconnected, reactive
elements embedded in a conducting grid (or mesh) of square cells. The reactive
elements in each cell are orthogonally aligned, with adjacent elements having
reactances of opposite sign, thus giving near-zero net reactance (i.e., resonance)
around the periphery of any cell. It is apparent that such a loaded grid is highly
anisotropic, a property of central importance for this chapter.

Suppose we define a low-impedance path across the planar, anisotropic
grid, a path that follows a trail of approximately canceling reactances. If this
grid were not planar but rather three dimensional, continuous, and lossless, then
this new medium could be characterized by a permittivity matrix having only
diagonal terms that are positive (capacitive) or negative (inductive). For such a
case in particular, two of the three diagonal terms would have to be of opposite
sign, a condition that would make the medium uniaxial, a wave propagation
term familiar in crystallography. In such a medium, a localized signal source
generates strong fields that tend to be concentrated over a conical surface with
an apex at the source, a surface known as a “resonance cone.” For the planar,
anisotropic grid medium of primary interest here, a similar phenomenon occurs,
with the fields of a small source concentrated along radial lines that lie in the
grid plane and extend outward from the source, lines which for convenience we
shall continue to call resonance cones.

For application to low-profile antennas which involve an anisotropic grid
over and parallel to a ground plane, the horizontal grid currents will be accompa-
nied by the oppositely directed image currents required to produce zero tangential
electric field strength on the ground plane. The horizontal currents thus pro-
duce zero radiation immediately over the ground plane, a situation which would
severely limit the scope of antenna applications.

A solution to this problem is to introduce vertical currents that track the
resonance cones, taking advantage of the fact that such vertical currents would
have codirected image currents, thus producing additive, vertically polarized far
fields close to the ground plane. The introduction of vertical currents tied to

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.

171



172 CHAPTER 6 RESONANCE CONE ANTENNAS

the resonance cones can be achieved by connecting reactive elements from the
anisotropic grid to the ground plane, provided that the reactive elements have
sufficiently high impedances that they do not prevent the occurrence of the res-
onance cones. This approach will be described in the remainder of this chapter,
enabling the design of horizontally radiating resonance cone antennas.

6.2 PLANAR METAMATERIAL, CORNER-FED,
ANISOTROPIC GRID ANTENNA

Previous moment method simulations and near-field scanning experiments for
a corner-fed, anisotropic grid over ground [1, 2] indicated that it performed as
expected, with the near field exhibiting resonance cones extending outward from
the corner source. These cones are analogous to the resonance cones that are
well known for their high fields and outward power flow in studies of antennas
in highly anisotropic plasmas [3], as sketched in the example of Figure 6.1.

The relevant plasma parameters are often displayed in the CMA diagram
of Figure 6.2 (so named after Clemmow, Mullaly, and Allis), which shows the
regions in parameter space in which the relevant partial differential equation
describing the wave propagation is hyperbolic in the spatial coordinates, that
is, the parameter regions where resonance cones exist. As well, the same figure
displays the influence of the plasma medium. Representing the anisotropic plasma
in terms of capacitors and inductors, it also indicates in circuit terms how the
plasma influences the near fields and input impedance of a small probe immersed
in the plasma [4].

Now, returning to the planar, anisotropic, wire-grid-over-ground geome-
try of immediate concern, we can appreciate better the formation of resonance
cones as high-field regions that extend outward over the circuit board from the
corner feed point [5]. The cone directions depend on the reactances of the orthog-
onal inductors and capacitors (or their distributed equivalents) that are embedded
in the planar wire grid, which in turn is positioned over a ground plane and
is parallel to it. In these early simulations, no circuit elements were connected

Figure 6.1 Monopole
antenna near fields in a highly
anisotropic (resonant) plasma,
showing characteristic cones
(resonance cones) extending
from the antenna ends and the
feed point at the antenna cen-
ter, under the assumption that
the antenna currents decrease
linearly to zero at the antenna
ends.
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Figure 6.2 CMA plasma
parameter diagram showing
the elliptic and hyperbolic
regions in parameter space,
with ωc indicating the elec-
tron cyclotron frequency and
ωp the plasma frequency.
The capacitors and inductors
are oriented in the directions
of positive and negative
permittivities, thus enabling
characterization of the
impedance properties of the
plasma medium surrounding a
small probe [4].

between the grid and ground, apart from the terminating resistors around the grid
periphery.

Early in the course of this research, it was noted that the cone fields of what
appears to be a dominant mode exhibit rapid phase reversals as the observation
point moves transversely across the cone. In particular, this phase reversal applies
to the currents flowing in the cone vicinity such that the net radial, outward
currents tend to be equal and opposite on the two sides of the cone, in a manner
similar to that of the currents on a two-wire transmission line. Further, one can
see in the simulations an apparent second dominant mode having fields and
currents resembling those in a parallel-plate waveguide, that is, currents that do
not exhibit phase reversal in a cut across a resonance cone. The two dominant
modes appear to be coupled and consequently are summed automatically in the
course of carrying out the moment method simulation.

In extending the above near-field work on a small structure (one-tenth of
a wavelength on a side) to a radiating structure at least an order of magnitude
larger, a clue for success arises from the work of Grbic and Eleftheriades [6, 7],
in which fast-wave radiation from a one-dimensional periodic transmission line
was enabled by the addition in each unit cell of an inductor extending from a
horizontal wire over ground to the ground plane, together with a series capacitor
inserted in the horizontal wire. Accordingly, for the present expanded grid-over-
ground configuration, a vertically oriented inductor was connected from each
grid–wire intersection to ground, as shown in Figure 6.3.

Even with the much larger square grid, a well-defined resonance cone still
exists, as seen in the simulation results of Figure 6.4. Figure 6.5 shows that
phase reversal across the resonance cone is maintained and, further, that the
phase progression is from the upper left in the figure to the lower right. The
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Figure 6.3 Uniform
anisotropic planar L-C grid
over ground, with corner
feed, resistive edge-loading,
and inductors to ground. The
source is at 750 MHz, and the
grid is 48 cm square, 2 cm
high over ground, with each
cell in the grid measuring 2 cm
by 2 cm.

Figure 6.4 Grid-to-ground voltage for a flat, corner-fed antenna over ground at
750 MHz. The horizontal-grid part of the structure is located at 2 cm above the ground
plane.

result is vertically polarized, unidirectional radiation in the horizontal plane (see
Figs. 6.6 and 6.7) approximately at right angles to the cone (i.e., broadside to the
cone), thus corresponding to the direction of phase progression noted above. The
unidirectional property of the radiation appears to arise from the superposition of
the two modes, one symmetric and one asymmetric, in such a way as to produce
cancellation of the radiated fields in one direction together with addition in the
opposite direction.
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Figure 6.5 Longitudinal (diagonal) current oriented in the direction of the resonance
cone, showing magnitude (color) and phase (contour lines). Note the tendency for phase
reversal across the resonance cone.

Figure 6.6 Horizontal-plane, vertically polarized radiation pattern at 750 MHz for a flat,
corner-fed antenna located 2 cm above the ground plane.
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Figure 6.7 Vertical-plane radiation pattern (at angle of maximum horizontal-plane radia-
tion) at 750 MHz for a flat, corner-fed antenna located 2 cm above the ground plane.

Figure 6.8 shows the relative absorbed power distribution around the grid
periphery. There are peaks at points 1 and 96 simply because they are adjacent to
the feed point. The points more than a free-space wavelength away are numbered
from 24 to 72. There is a local maximum at point 48 exactly on the diagonal
(i.e., at the upper right corner). Thus this point is over 1.5 free-space wavelengths
from the feed point, which is neither near nor far so it can be said to be at an
intermediate distance. Strong fringes are visible to one side of the resonance cone
maximum, from points 49 to 59. These fringes become stronger with increasing
distance from the source as in homogeneous, anisotropic plasmas, as shown in
the book by Mareev and Chugunov [8].

A remaining challenge on the way to better antenna performance is the
nonuniformity along the cone axis of the vertical current distribution which is
weighted in favor of the feed point, a characteristic commonly observed in leaky-
wave antennas. Initial results with lowered grid height near the feed point (for
reduced radiation there) were promising. A version of this latter idea with a planar
but sloped grid was then tried, in expectation of first flattening and ultimately
tapering the radiating source distribution, in order to strengthen the main lobe of
the radiation pattern and ultimately to reduce the side lobes. A conceptual sketch
of the sloped-grid configuration is shown in Figure 6.9.

A plot of grid-to-ground voltage for the sloped grid is shown in Figure 6.10,
but this does not properly represent the spatial distribution of the vertical currents
that actually generate the vertically polarized radiation in the horizontal plane. A
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Figure 6.8 Normalized power (i.e., relative power) absorbed at 750 MHz by resistors
attached to ground along the grid edges. The maximum occurs at the upper right corner
(Point No. 48).

better approximate representation of the radiating source distribution is postulated
as the product of each vertical current multiplied by its height, a distribution
which we shall call the “excitation,” as shown in Figure 6.11, and which is
relatively uniform along the cone, thus suggesting an improved radiation pattern
arising from the sloped configuration.

The horizontal-plane radiation pattern of Figure 6.12 shows a well-defined
main lobe, low back radiation, and symmetric side lobes, indicating that improved
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Figure 6.9 Schematic view of sloped antenna. The generator is located between the
ground plane and the lower left corner of the grid. Not shown are the grid-to-ground
inductors and edge-terminating resistors.

Figure 6.10 Grid-to-ground voltage for sloped antenna. This grid has 24 × 24 cells of
size 2 cm × 2 cm each. The lower left corner is located 0.25 cm above the ground plane
and the slope angle is 3.8◦ .
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Figure 6.11 Excitation for same sloped antenna as in Figure 6.9.

Figure 6.12 Horizontal-plane far-field pattern for same sloped antenna as in Figure 6.9.
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Figure 6.13 Vertical-plane far-field pattern (at angle of maximum radiation φ) for sloped
antenna shown in Figure 6.9.

functioning has been achieved, albeit with the disadvantage of high side-lobe
levels. A lower level secondary lobe is visible in the backfire direction at 223◦,
being more sharply defined than in the case of the flat antenna (Fig. 6.6). The
vertical-plane pattern of Figure 6.13 exhibits a single maximum in the horizontal
direction.

Further insight was sought through the computation of the real part of the
Poynting vector at the ground-plane level both beneath the anisotropic grid and
for a moderate distance beyond it. These results, along with the vertical electric
field on the ground plane, are displayed in Figure 6.14. The E-field magnitude
contour at moderate distance strongly resembles the radiation pattern in the far
field (Fig. 6.12), indicating the rapid evolution with distance from near field to
far field.

A slight additional improvement was achieved by bending the grid in the
middle, as indicated in the sketch given in Figure 6.15, making it roof shaped
with the peak of the roof running between two opposite corners. This leaves the
remaining two opposite corners close to ground level and therefore amenable to
source or load attachment, a situation which has the advantage of allowing the
main beam to be switched from one side of the array to the other by switching the
feed point to the opposite corner. This double-sloped antenna exhibits properties
so similar to the single-sloped antenna that little is to be gained by showing
them here. Nevertheless, it can be noted that the double-sloped antenna does
exhibit slightly lower side lobes adjacent to the main beam, compared with the
single-sloped antenna.



6.3 RESONANCE CONE REFRACTION EFFECTS IN A LOW-PROFILE ANTENNA 181

(a)

(b)

Figure 6.14 (a) Near-field and (b) intermediate-distance fields of sloped antenna. Both
figures show in color the vertical electric field on the ground plane. In the lower figure,
areas outside the square outline of the metamaterial are included and the color scale is
adjusted to better visualize the lower levels there. The 0.15-V/m contour has approxi-
mately the same shape as the horizontal-plane pattern in Figure 6.12. The arrows indicate
the Poynting vector on the ground plane.

6.3 RESONANCE CONE REFRACTION EFFECTS IN A
LOW-PROFILE ANTENNA

It is postulated that multiple resonance cone refraction has the potential to pro-
duce contained cone configurations, meaning cone near-field patterns that never
reach the edge of the planar anisotropic metamaterial supporting the resonance
cones. Computer simulation was carried out for a four-quadrant, anisotropic
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Figure 6.15 Schematic view of double-sloped antenna grid over ground plane.

planar metamaterial with a source centrally located on an outside edge. The
result was the expected backward-cone refraction across each inner boundary
between any two adjacent metamaterial quadrants with interchanged L–C loads,
thus producing generally the closed-square-loop cone configuration. However,
for any arbitrary interior source location, there were always cones that reached
the edges of the planar metamaterial, thus producing undesirable scattering and
foiling the attempt to achieve cone containment.

It was realized that the problem of cones reaching the outer boundary of the
anisotropic grid could be solved by introducing a third interior refractive bound-
ary between regions with interchanged L and C [9]. This leads to a checkerboard
grid with a 3 × 2 arrangement of alternating, relatively large, square anisotropic
regions which one could call “macrocells,” each composed of many of the small,
basic cells which one could then call “microcells,” as shown in Figure 6.16. The
transition regions between macrocells consist of rows and columns of micro-
cells where each half of each microcell has the characteristics of the adjacent
medium. With a source as shown at board center, the resonance cone pattern can
be established using the principles outlined in the papers by Balmain, Lüttgen,
and Kremer [1, 2]. The result is the fully contained, double-square pattern of
Figure 6.17. As the frequency departs from the design center value, each square
of the cone pattern breaks up into the expanding and contracting square spi-
rals depicted in Figure 6.18, in which perfect cone containment is no longer
possible. Nonetheless, containment can still be approximated with the aid of
expanding-spiral attenuation through various loss processes, including radiation.
As already mentioned in the context of a corner-fed antenna, the generation of
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Figure 6.16 Metamaterial configuration designed for resonance cone containment at
1 GHz.

resonance cone radiation can be enabled by dropping inductors to ground from
the anisotropic L–C loaded grid [5, 6].

In the present case, the same concept was tried as depicted in Figure 6.19
using grid dimensions expanded by an order of magnitude. Resonance cone for-
mation and directional steering were still clearly in evidence, albeit with some
additional cone pattern complexity. It was expected that resonance cone radiation
would be degraded by cone interaction with the edges of the planar grid (due to
power absorption and scattering), a problem that conceivably could be addressed
by using refraction to divert the cones away from the edges, as already described
for the configuration with no inductors to ground.

For the expanded six-macrocell configuration, the voltage distribution pat-
tern of Figure 6.20 shows evidence of expanding and contracting square spirals.
In general, the expanding spirals weaken before reaching the grid edges due to a
combination of radiation and ohmic losses, while the contracting spirals curl up
until, with sufficiently low losses, they shrink to become a pair of vortices with
square cross sections, each located near the intersection of two interior bound-
aries. Each vortex is accompanied by a relatively high current to ground through
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Figure 6.17 Double-square resonance cone pattern simulated at 1 GHz for configuration
of Figure 6.16.

Figure 6.18 Schematic view of expected cone directions at frequencies higher and lower
than diagonal cone frequency.

the closest vertical inductors, as can be seen more vividly in Figure 6.21, thus
making each vortex an induced source of radiation that is vertically polarized and
mainly horizontally directed. Figure 6.22 is included to clarify the relationship
between the voltage pattern and the layout of the wire grid and the macrocell
boundaries.
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Figure 6.19 Low-profile,
six-macrocell antenna
configuration composed of
microcells 1 cm2 for oper-
ation at 1 GHz. Adjacent
macrocells have microcells
with interchanged inductors
and capacitors. The crosses
indicate the grid nodes that
are connected to the ground
plane through inductors.

Figure 6.20 Grid-to-ground voltage at 1 GHz for low-profile antenna containing six
macrocells, with each inter-macrocell transition involving interchanged L and C loads in
its microcells, as in Figure 6.19.

Figure 6.23 combines the voltage pattern with the Poynting vector real
parts as calculated in the grid plane. The power flow is seen to track the expand-
ing resonance cones and to follow the contracting cone pattern into a pair of
counterrotating vortices.

Clearly the vortices could have a strong influence on the total radiation pat-
tern, governed by the fact that their vertical currents are in phase and separated by
a little less than half a free-space wavelength, thus producing near-null radiation
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Figure 6.21 Surface and contour plots of node voltage at 1 GHz.

Figure 6.22 Grid-to-ground voltage at 1 GHz as shown in Figure 6.20. Here the wire
intersections are indicated by crosses, and the boundary regions (transition bands) separat-
ing the six macrocells are clearly marked.
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Figure 6.23 Grid-to-ground voltage as shown in Figure 6.20. The arrows indicate the
Poynting vectors in the grid plane.

fields in the horizontal plane, in the 0◦ and 180◦ directions, and additive fields in
the orthogonal directions. The null-field effects are evident in the horizontal-plane
radiation pattern of Figure 6.24. Figure 6.25 shows the vertical-plane pattern for
φ = 90◦.

The final influence on the radiation pattern comes from the six macro-
cell regions on the anisotropic grid, because, for a given propagation direction
(especially for directions parallel to the grid edges) the macrocell regions exhibit
alternating passband and stop-band behavior. The stop-band property can strongly
attenuate the amplitude of any wave attempting to traverse the region in question.
In the antenna context it functions as a stop region and therefore as an internal
reflector. Following the same line of thinking, one is led to the view that the pass-
band behavior of a region points to its function as a pass region or, in the antenna
context, as an internal director. Finally, in these cases where the anisotropic grid
structure over ground is functioning as an antenna, its height is typically 1 cm
at a frequency of 1 GHz, or 1

30 th of a wavelength, making the structure clearly
a low-profile antenna. Here, the outcome of all this is a unidirectional, vertically
polarized low-profile antenna with radiation concentrated close to the horizontal
plane.

The unidirectional radiation patterns of Figures 6.24 and 6.25 are of special
interest. A likely major contributor to them is the macrocell immediately below
the source (i.e., in the negative y direction from the source). Figure 6.23 shows
fairly high power flow in the negative y direction spread over most of this
macrocell as well as high grid-to-ground voltage implying high currents in the
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Figure 6.24 Horizontal-plane, vertically polarized, E-field radiation pattern for low-
profile antenna in Figure 6.19.

Figure 6.25 Vertical-plane E-field radiation pattern for low-profile antenna of
Figure 6.19.

vertical inductors. However, for power flow in the negative y direction, the L–C

loading (Fig. 6.19) is indicative of backward-wave propagation in a transmission
line mode. This means that the phase velocity is in the positive y direction, thus
contributing to the unidirectional radiation pattern in Figure 6.24.
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6.4 CONCLUSIONS

The basic corner-fed, low-profile, orthogonal L–C grid over ground can be trans-
formed into an effective vertically polarized antenna by the addition of a vertical
inductor between each grid–wire intersection and ground such that relatively
strong vertical currents are induced along the resonance cone line. This type of
antenna exhibits a unidirectional horizontal-plane radiation pattern with its main
lobe in a direction approximately at right angles to the resonance cone line.

For a low-profile L–C grid over ground, it is known that resonance cone
refraction can occur at an interface defined by a change in grid properties, an
effect that is especially strong when the refractive interface is defined by inter-
change of the L–C elements in the grid. When the refractive interfaces are
arranged so as to create six contiguous square regions separated by such inter-
faces, a frequency exists at which the resonance cones return to the location
of a centrally located original source. For a total array sufficiently small, the
cones then retrace their paths, forming a pattern of two touching squares with
a common point at the source, but the cones never reach the edge of the array.
If, as mentioned above, inductors are connected between each grid intersection
and ground, the cone directions are altered and radiation is enhanced, especially
for a sufficiently large array. When the cone pattern includes an inward spiral,
a vortex is formed where the vertical currents reach a peak, thus forming an
induced secondary source of radiation. For the particular case considered, there
are actually two vortices equidistant from the source, resulting in a pair of in-
phase induced point sources of radiation. Moreover, one of the six regions in the
array exhibits pronounced backward-wave propagation, thus contributing to the
observed unidirectional radiation pattern.
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5. K. G. Balmain, A. A. E. Lüttgen, and G. V. Eleftheriades, “Resonance cone radiation
from a planar, anisotropic metamaterial,” paper presented at the 2003 IEEE AP-S Inter-
national Symposium and USNC/CNC/URSI North American Radio Science Meeting,
Columbus, OH, June 23, 2003, abstract, URSI Digest, p. 24.

6. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radi-
ation from a negative refractive index metamaterial,” J. Appl. Phys., vol. 92, no. 10,
pp. 5930–5935, Nov. 2002.

7. A. Grbic and G. V. Eleftheriades, “Leaky CPW-based slot antenna arrays for
millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 50, no. 11,
pp. 1494–1504, Nov. 2002.

8. E. A. Mareev and Y. V. Chugunov, Antennas in Plasmas (in Russian), Nizhny Nov-
gorod: Institute of Applied Physics, Academy of Science of the USSR, 1991.
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CHAPTER7
MICROWAVE COUPLER AND
RESONATOR APPLICATIONS OF
NRI PLANAR STRUCTURES

Christophe Caloz and Tatsuo Itoh

7.1 INTRODUCTION

From the first experimental demonstration of a left-handed (LH) material [1],
constituted by negative-permittivity (ε) thin wires (TWs) [2] and negative-
permeability (µ) split-ring resonators (SRRs) [3], effectively homogeneous1 arti-
ficial structured materials with unusual properties, called metamaterials (MTMs),
have emerged as a new paradigm of physics and engineering. The LH structures,
which are characterized by backward-wave propagation or negative refractive
index (NRI) and many related properties, have been the most popular MTMs. In
fact, backward-wave propagation has been known for decades in periodic struc-
tures [4, 5], but the novelty of LH materials is the fact that they are effectively
homogeneous fundamental-mode structures (hence the term “MTMs”), fully char-
acterizable in terms of their constitutive parameters ε and µ, whereas previously
known backward-wave structures were scattering media based on the propagation
of (negative) space harmonics.

The TW SRR structures of the type presented in [1] are inherently narrow
band or severely lossy due to their resonant nature. In contrast, nonresonant
transmission line (TL) MTMs, exhibiting simultaneously broad bandwidth and
low losses, have been recently introduced [6–8]. The LH TLs have then been
extended and generalized to the concept of composite right/left-handed (CRLH)
structures where mixed contributions of both the LH and right-handed (RH)
structures occur in practice, have been accurately described and applied to a vast
of suite guided-, radiated-, and refracted-wave applications [9, 10].

1 That is, seen as homogeneous by electromagnetic waves, which implies a structural unit size p

much smaller than wavelength λ, p � λ.

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
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Figure 7.1 Incremental circuit model of uniform LH TL: (a) TL section; (b) incremental
circuit model.

7.2 COMPOSITE RIGHT/LEFT-HANDED TRANSMISSION
LINE METAMATERIALS

7.2.1 Left-Handed Transmission Lines

A LH TL is the dual of a RH TL, exhibiting series capacitance (C) and shunt
inductance (L). A uniform LH TL2 with its incremental circuit model is shown
in Figure 7.1 [11].

The transmission characteristics of this TL are easily obtained from the
telegrapher equations [12]. Considering a lossless medium for simplicity,3 we
have

γ = jβ =
√

Z′Y ′ = −j
1

ω
√

L′
LC′

L

→ β = − 1

ω
√

L′
LC′

L

< 0 (7.1)

Zc =
√

Z′

Y ′ = +
√

L′
L

C′
L

> 0 (7.2)

vp = ω

β
= −ω2

√
L′

LC′
L < 0 vg =

(
∂β

∂ω

)−1

= +ω2
√

L′
LC′

L > 0 (7.3)

where it is unambiguously found that the propagation constant β is negative,
indicating backward-wave propagation, the characteristic impedance Zc is posi-
tive, and the phase velocity vp and the group velocity vg are respectively negative
and positive, that is, antiparallel. These characteristics are the attributes of a LH
transmission medium.

7.2.2 Composite Right/Left-Handed Structures

Figure 7.2 shows microstrip planar examples of series-C/shunt-L TL structures.
In addition to the LH series-C/shunt-L contributions, these structures also exhibit

2 In strict terms, a uniform TL would require a strictly homogeneous LH material, which is not
known to exist as a natural substance. However, effectively homogeneous LH TLs are available in
structured artificial architectures, as will be shown further.
3 The loss mechanism in a LH TL is identical to that in a RH medium and is treated in [13].
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(a) (b)

Figure 7.2 Planar CRLH TL structures in microstrip technology, constituted of series
interdigital capacitors and shunt stub inductors (including via connections to ground). The
gray areas represent the ground planes and the black areas represent the metal traces. The
unit cell size p is much smaller than the guided wavelength (at least, p < λg/4) to ensure
effective homogeneity of the structure and subsequent effective-uniformity behavior of the
TL. (a) One-dimensional structure. (b) Two-dimensional structure.

RH series-L/shunt-C natural effects due to the currents in the fingers of the
interdigital capacitors and to the trace-to-ground capacitances. In fact, any phys-
ically realizable LH structure includes combined LH and RH contributions.
Therefore, the concept of CRLH materials was introduced to describe practical
planar LH MTMs [9].

Figure 7.3 shows the equivalent incremental circuit model and the disper-
sion diagram of a corresponding microwave network (Section 7.2.3) CRLH TL.

(a)

0 bp

w

+p−p

wse

wsh w0
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PRH

CRLH

CRLH

LH GAP

RH GAP

unbalance GAP

(b)

Z’
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w2L’L

1

L’R C’L

C’R L’L

∆z 0

wse

wsh

→

−

−

Figure 7.3 Incremental circuit model of CRLH TL. The subscripts R and L stand for
RH and LH, respectively. (a) Unit-cell prototype. (b) Corresponding microwave network
dispersion diagram computed by (7.12) [corresponding to idealized uniform TL relations
(7.4) and (7.7) (bandwidth extending from ω = 0 to ω = ∞), except for existence of LH
and RH gaps]. According to (7.5), ωse < ωsh or ωse > ωsh, depending on the LC param-
eters. The curves for a purely LH (PLH) structure (LR = CR = 0) and for a purely RH
(PRH) structure (LL = CL = ∞) are also shown for comparison.
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The model reveals that a CRLH MTM is LH at lower frequencies (only LL, CL

as ω → 0) and RH at higher frequencies (only LR, CR as ω → ∞), as illus-
trated in the dispersion diagram, which is straightforwardly obtained from the
telegrapher equations as

γ = α + jβ = js(ω)
√

χ ′ (7.4a)

with

χ ′ = ω2L′
RC′

R + 1

ω2L′
LC′

L

− 1

L′
LC′

L

(
1

ω2
se

+ 1

ω2
sh

)
(7.4b)

where ωse and ωsh are the series and shunt resonances, respectively, given by

ωse = 1√
L′

RC′
L

(rad/s) ωsh = 1√
L′

LC′
R

(rad/s) (7.5)

and where s(ω) is a sign function equal to +1 if ω < min(ωse, ωsh) (LH range)
and to −1 if ω > max(ωse, ωsh) (RH range). In general, a gap exists between the
LH and RH ranges due to the distinct eigenfrequencies ωse, ωsh, where vg = 0 (vg

is the slope of the dispersion curves). It can be shown that maximum attenuation
α in the gap occurs at the frequency ω0 = 1/ 4

√
L′

RC′
RL′

LC′
L = √

ωseωsh [10]. In
addition, the characteristic impedance is given by

Zc = ZL

√
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2 − 1

(ω/ωsh)
2 − 1

ZL =
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L′
L

C′
L
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√

L′
R

C′
R

(7.6)

In the particularly interesting situation where ωse = ωsh, called the balanced
case, the series/shunt resonances cancel each other, which closes up the center
gap (Figure 7.3a). We have then ω0 = ωse = ωsh and

β(bal) = ω

√
L′

RC′
R − 1

ω
√

L′
LC′

L

Z(bal)
c = ZL = ZR (7.7)

where the LH and RH contributions clearly decouple in the expression of
β(ω) and Zc is seen to be frequency independent, meaning that broadband
matching is possible. In addition, we have, at the transition frequency ω0,

β(bal)(ω0) = 0, v
(bal)
p (ω0) = ∞, λ(bal)(ω0) = ∞, v

(bal)
g (ω0) = 1/

(
2
√

L′
RC′

R

)
=√

L′
L/

(
2C′

R

√
C′

L

)
�= 0, showing that infinite-wavelength nonzero group veloc-

ity is achieved at the arbitrarily designed transition frequency ω0. The phase
origin is transferred from direct current (DC) to ω0 from a RH to a CRLH TL.4

The equivalent MTM constitutive parameters are obtained by mapping the tele-
grapher equations to Maxwell equations in a transverse electromagnetic (TEM)
waveguide [15, 16],

µ = µ(ω) = L′
R − 1

ω2C′
L

ε = ε(ω) = C′
R − 1

ω2L′
L

(7.8)

4 This bears resemblance with low-pass to bandpass filter transformation, but conventional
bandpass filters are not backward-wave and effective structures.
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from which the refractive index n = √
µrεr is seen to be negative and positive for

frequencies below and above ω0, respectively. The CRLH constitutive parameters
are observed to be frequency dispersive.5

7.2.3 Microwave Network Conception and Characteristics

An effectively uniform CRLH TL, related to an effectively homogeneous CRLH
MTM and corresponding to the model of Figure 7.3a, can be implemented in
structured configurations, such as those shown in Figure 7.2. In this case, real LC
components are used and the TL is realized by the (periodic or not) repetition of
a unit cell with small average electrical length, 	φ < π/2, or p < λg/4, where
p is the average cell size. The transformation from the idealized uniform CRLH
TL of Section 7.2.1 to a practical microwave network CRLH TL is based on the
relations6

Z′ = Z

p
= j

[
ω

(
LR

p

)
− 1

ω(CLp)

]
→ L′

R = LR

p
C′

L = CLp (7.9a)

Y ′ = Y

p
= j

[
ω

(
CR

p

)
− 1

ω(LLp)

]
→ C′

R = CR

p
L′

L = LLp (7.9b)

The resulting microwave network TL may be conveniently analyzed as a circuit
by using the transmission (or ABCD) matrix formalism [12] for a line includ-
ing an arbitrary number of cells N , and all the transmission characteristics are
then easily obtained from standard conversion into scattering parameters [12]. In
particular, the dispersion and attenuation diagrams are obtained from the trans-
mission parameter S21 by7

β =
{ −ϕunwrapped(S21,N )/d + ς (7.10a)

α = − ln |S21,N |/d (7.10b)

A structured CRLH TL exhibits, as apparent in Figure 7.3a and shown in
Figure 7.3b, a passband behavior, with a transmission bandwidth delimited by
the cutoff frequencies [10]8

ωcL = ω0

√√√√ξω2
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ξω2

0
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2
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∣∣∣∣1 −
√

1 + ωL

ωR

∣∣∣∣ ωL�ωR≈ ωL

2
(7.11a)

5 Frequency dispersion is a necessary condition, imposed by the (dispersive) entropy condition
W = [∂(ωε)/∂ω]E2 + [∂(ωµ)/∂ω]H 2 > 0 [14], for ε < 0, µ < 0 to be possible. We verify here
that W = [C ′

R + 1/(ω2L′
L)]E2 + [L′

R + 1/(ω2C ′
L)]H 2 > 0.

6 Per-unit-length immittances (impedance Z′ in �/m and admittance Y ′ in S/m) are replaced by
real immittances (impedance Z in � and admittance Y in S). Prime variables represent per- or
time-unit-length quantities, while nonprimed variables represent real quantities (inductances in H
and capacitances in F).
7 Here ς is a phase offset associated with ω0 so that β(ω0) = 0.
8 These formulas are based on the assumption that the line is infinite. However, if N > 3 − 5, the
cutoffs are sharp enough so that they are clearly defined and these formulas are then extremely
accurate.
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where ξ = LRCL + LLCR + (2/ωL)2. Characteristics of unbalanced and a bal-
anced CRLH TLs obtained in this manner are exemplified in Figure 7.4.

In addition, the following analytical dispersion relation is obtained by apply-
ing the Bloch–Floquet theorem [12, 17]:

γ = α + jβ = 1
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Figure 7.4 Scattering parameters of an ideal N = 10-cell microwave LC network
CRLH TL. (a) Unbalanced case, with parameters LR = 2 nH, CR = 1 pF, LL = 2.5 nH,
CL = 0.75 pF, Zc = 50 � (ZR = √

LR/CR = 44.72 �, ZL = √
LL/CL = 57.54 �).

From (7.11), fcL = 1.51 GHz, f0 = 3.63 GHz, and fcR = 8.69 GHz. (b) Dispersion
relation for the line of (a) computed by (7.10a). (c) Balanced case, with parameters
LR = 2.5 nH, CR = 1 pF, LL = 2.5 nH, CL = 1 pF, Zc = 50 � (ZL = √

LL/CL =
ZR = √

LR/CR = 50 �). From (7.11), fcL = 1.32 GHz, f0 = 3.18 GHz, and
fcR = 7.69 GHz. (d) Dispersion relation for the line of (c) computed by (7.10a).
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Figure 7.5 Microstrip CRLH TL. (a) Prototype, including N = 24 cells. (b) Unit-
cell layout and parameters p = 6.1 mm, �c = 5.0 mm, wc = 2.4 mm, �s = 8.0 mm,
ws = 1.0 mm, width of digits 0.15 mm, and all spacings 0.1 mm. (c) Dispersion diagram
obtained: (1) experimentally from S21 measurement using (7.10a); (2) by LC network
simulation with extracted parameters LR = 2.45 nH, CR = 0.50 pF, LL = 3.38 nH,
CL = 0.68 pF (ZL/ZR = 1.01, f0 = 3.9 GHz); (3) by the uniform TL approximation
(7.4) with L′C ′ parameters computed by (7.9a).

where χ is expression (7.4) without the primes. Application of Taylor’s approx-
imation in the last term shows the equivalence between the network realization
[Eq. (7.12)] and the uniform idealization [Eq. (7.9)] via the relations (7.9). This
relation is plotted in Figure 7.3b. Extension to a 2D (or even 3D) CRLH TL is
straightforward [16] by writing γ = γxx̂ + γyŷ = (αx + jβx)x̂ + (αx + jβx)ŷ,

β =
√

β2
x + β2

y and using a solid-state physics crystallographic formalism for the
Brillouin zones [18].

7.2.4 Microstrip Technology Implementation

In principle, CRLH TLs and CRLH MTMs can be implemented in any technol-
ogy. We consider here (distributed) microstrip implementations of the type shown
in Figure 7.2 [19]. The four parameters (LR, CR, LL, CL) of a balanced9 CRLH
TL of transition frequency ω0 matched to ports of impedance Z0 and with a given
fractional bandwidth are obtained from Eq. (7.6) (nonprimed), (7.11), and (7.12)
(with ω0 = ωse = ωsh). These components are then synthesized by using the
parameter extraction procedure exposed in [20] from full-wave simulations of one
isolated cell of the distributed structure. Figure 7.5 shows a microstrip balanced
CRLH TL prototype with its dispersion relation. Near fields at a few fractions
of wavelength distance from the top of the line are shown in Figure 7.6 and
demonstrate the unusual behavior of the guided wavelength, which is increasing
in the LH range to ω0 where it becomes infinite and then decreasing in the LH
range, as expected from (7.7) with β = s(ω)2π/λ.

9 A balanced design is most often desired as it allows broadband matching.
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2.9 3.4 3.9 4.4 4.9

(a)

Figure 7.6 Distribution of magnitude of the electric field just above line of Figure 7.5a:
(a) full-wave simulation (method of moments); (b) near-field measurement with vertical
monopole.

7.3 METAMATERIAL COUPLERS

Two novel edge-coupled coupled-line CRLH MTM couplers are presented in this
section, a symmetric “impedance coupler” (IC) [20] and an asymmetric “phase
coupler” (PC) [21].10 The geometry and anticipated port designation for these two
couplers are shown in Figure 7.7. These two couplers are based on fundamentally
different principles but exhibit the advantage of providing arbitrary coupling lev-
els (up to quasi-complete coupling), whereas conventional edge-coupled couplers
are typically limited to less than 10-dB maximum coupling, while conserving the
broad-bandwidth benefit of their conventional counterparts. Detailed information
on conventional microwave couplers is available in [22].

7.3.1 Symmetric Impedance Coupler

In a coupler constituted of two identical (symmetric) TEM TLs, the field solu-
tions may be represented by the superposition of an even (e) mode and an odd
(o) mode, which are both also TEM. As a consequence (of their TEM nature),
these two modes have the same propagation constant βe = βo = nk0 (n is the
refractive index of the dielectric medium of the TL). In contrast, these two modes
have different characteristic impedances, Zce �= Zco because their equivalent TL
capacitances are different. The matching condition to ports of impedance Z0 is
achieved with the condition

Zc =
√

ZceZco (7.13)

from which the scattering parameters, referred to Figure 7.7, are S11 = 0, S41 = 0,

S21 =
√

1 − k2
√

1 − k2 cos θ + j sin θ
S31 = jk sin θ√

1 − k2 cos θ + j sin θ
= CZ (7.14)

10 These terms (IC and PC) are introduced to avoid confusion possibly arising from the unusual
coupling phenomena occurring in the couplers described here.

2.9 3.4 3.9 4.4 4.9

(b)
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Figure 7.7 Geometry and port designation of general coupled-line coupler. The coupled
and isolated ports are exchanged between the cases of an IC (conventional backward-wave
coupler) and the case of a PC (conventional forward-wave coupler) in the conventional
(conv.) case. In contrast, the MTM PC presented here has the same port configurations as
the conventional and the MTM ICs.
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Figure 7.8 Impedance coupling edge-coupled directional coupler, constituted of two
interdigital/stub CRLH TLs with same unit cell as TL of Figure 7.5a: (a): complete cou-
pling nine-cell prototype; (b) 3-dB three-cell prototype. In both cases, the line spacing
s = 0.3 mm.

where θ = β� is the electrical length of the coupler and k = (Zce − Zco)/(Zce +
Zco) is the coupling factor, so called because it corresponds to maximum coupling
CZ , obtained for θ = π/2, or � = λ/4.11 If the two lines are not perfectly TEM
but quasi-TEM, we have βe ≈ βo, so that θe ≈ θo (= θ ) and, therefore, the above
relations are still approximately valid.12

Let us consider the coupled-line structure composed of two (identical)
quasi-TEM microstrip CRLH TLs similar to that of Figure 7.5a, shown in
Figure 7.8 and corresponding to the even–odd models of Figure 7.9. These

11 This coupler may be called an IC, since coupling depends on the difference between the
even–odd impedances.
12 Better approximations would be
Zc = [

(Zce sin θe + Zco sin θo)/(Zce sin θo + Zco sin θe)
] √

ZceZco and
θ = (θe + θo) /2 = (2π�/λ0)(εee + √

εeo)/2 [22]. The nonperfectly TEM nature of the TLs alters
isolation (S41 �= 0).
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Figure 7.9 Equivalent circuit model for unit cell of IC CRLH coupler, e.g., the one
of Figure 7.8, and corresponding even–odd mode TL models. The topology of the
models of both the even and the odd TLs are identical to that of a simple CRLH TL
(Fig. 7.3a), where LR has been replaced by LRe = LR + 2Lm and CL has been replaced
by CLo = CL + 2Cm, Lm and Cm being the mutual inductance and coupling capacitance,
respectively.

even–odd models are seen to be identical to that of an isolated CRLH TL
(Fig. 7.3a without primes) under the substitutions

LR → LR + 2Lm = LRe (even) CR → CR + 2Cm = CRo (odd) (7.15)

It follows, using (7.6) (without primes), that the even–odd characteristic
impedances read

Zce = ZL

√
1 − (ω/ωse,e)2

1 − (ω/ωsh)2
Zco = ZL

√
1 − (ω/ωse)2

1 − (ω/ωsh,o)2
(7.16)

where ωse,e = 1/
√

LReCL, ωsh,e = 1/
√

LLCR , ω0e = √
ωse,eωsh and ω0o =√

ωseωsh,o. Because each of the two lines in isolation is balanced with the param-
eters (LR, CR, LL, CL), the even–odd equivalent lines, having different param-
eters, are necessarily unbalanced, which results in the emergence of even–odd
gaps. The IC operates in these gaps, which are designed to overlap each other.
Since matching is obtained within the even–odd TL gaps, we need to generalize
the expression of the IC coupling coefficient in (7.14) by changing θ = β� into
θ = γ � = (α + jβ)�, where αe ≈ αo ≈ α and βe ≈ βo ≈ β. The IC coupling
coefficient CZ then becomes

CZ = S31 = (Zce − Zco) tanh
[
(α + jβ)�

]
2Zc + (Zce + Zco) tanh

[
(α + jβ)�

]
|β| ≈ 0,

α� > 1
≈

× Zce/Zc − Zco/Zc

2 + (Zce/Zc + Zco/Zc)
(7.17)
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Figure 7.10 Circuit simulated even–odd characteristic impedances (magnitude) for
coupler of Figure 7.8. Left-hand axis: magnitudes of impedances. Right-hand axis: square
root of product of impedances appearing in (7.13). The parameters of the even–odd TLs
are Lm = 1.0 nH, Cm = 0.8 pF, fse,e = 3.14 GHz, f0e = 3.67 GHz, fsh,e = 4.30 GHz,
fse,o = 3.13 GHz, f0o = 3.68 GHz, and fsh,o = 4.33 GHz. The Zce/Zco crossing fre-
quency is ωeq − 3.59 GHz and Z0 = 50 �. Here Z0e = Z0o at a frequency ωeq, which can
be determined from (7.16) [20].

where the approximation in the last term holds in the even–odd gaps (β ≈ 0)
if the length of the coupler is sufficient so that α� > 1. By using (7.13) to
eliminate either Zce or Zco and also taking into account the fact that Zci =
j Im(Zci) (i = e, o) (Figure 7.10), this expression is further transformed, by defin-
ing ξ = Zc/Im(Zco) = Im(Zce)/Zc, to13

CZ ≈ ξ + ξ−1

2j + (ξ − ξ−1)
with |CZ| ≈ ξ + ξ−1√

4 + (ξ − ξ−1)2
= 1 (7.18)

This final relation demonstrates that complete backward coupling is achieved
in this IC if its length is such that α� > 1 over a bandwidth which depends
essentially on the even–odd bandwidth via the parameters in (7.15).14 Figure 7.10
illustrates the highly unusual behavior of the even–odd characteristic impedances.

The performances of the quasi-0-dB15 IC coupler of Figure 7.8a are pre-
sented in Figure 7.11: Close-to-zero coupling is achieved in the range from 3.2
to 4.6 GHz (36 percent) with a directivity of approximately 25 dB. The coupler

13 The last equality is easily verified by developing the denominator as√
4 + (ξ − ξ−1)2 =

√
ξ2 + ξ−2 + 2 =

√
(ξ + ξ−1)2 = ξ + ξ−1, which is equal to the numerator.

14 Note that the length corresponding to maximal coupling is not necessarily λ/4 (or odd multiples
of this quantity) as for the conventional coupler case.
15 Although it is not directly useful in practice (a simple strip connection would be more
reasonable!), this quasi-complete power coupler shows that any level of coupling can be easily
obtained, by reducing the length of the coupler and increasing its spacing, since coupling up to
almost 0 dB is achievable.
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for quasi-0-dB coupler of
Figure 7.8a: (a) S11 and S21;
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length is around 1.05λe (λe is the effective permittivity of the conventional
microstrip on the same substrate). The IC shown in Figure 7.8b is a 3-dB coupler
with an amplitude balance of 2 dB over a bandwidth of 50 percent from 3.5 to
5.8 GHz and quadrature phase balance of 90◦ ± 5◦ from 3.5 to 4 GHz [20].

7.3.2 Asymmetric Phase Coupler
When the two lines constituting the coupler are different, the coupled-line struc-
ture is asymmetric, and the even–odd analysis has to be replaced by the more
involved c/π mode analysis [22]. An intermediate problem is the symmetric
(identical line) coupler constituted of nonperfect TEM (βe �= βo) TLs. If the
spacing in this coupler is sufficiently large so that Z0e ≈ Z0o (due to negligible
edge capacitance between the lines) and therefore CZ = S31 ≈ 0 from (7.14),
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Figure 7.12 Phase coupling edge-coupled directional coupler. (a) The 0-dB coupling
prototype constituted of one conventional microstripline (line A) and one interdigital/stub
CRLH TL (line B) operated exclusively in its LH range. (b) Equivalent circuit model
for the unit cell. The design parameters of the (nine-cell) CRLH TL (bottom line) are the
same as in Figure 7.5. The microstripline (cµs) is modeled by the parameters Lcµs and
Ccµs representing the equivalent series inductance and shunt capacitance, respectively,
for one (lumped-implemented) unit cell. The parameters Cm and Lm represent the cou-
pling capacitance and mutual inductance, respectively. The spacing between the lines is
s = 0.3 mm and the length of the coupler is � = 62 mm.

coupling is based on even–odd velocities16 and occurs at port 4 while port 3
becomes isolated17 (Fig. 7.7). We have in general for the coupling coefficient
Cθ = S41 [22]

S41 = −2j

√
p

1 + p
exp

(−j (βc + βπ)�

2

)
sin

[
(βc − βπ)�

2

]
A→B≈

− j exp

(−j (βe + βo)�

2

)
sin

[
(βe − βo)�

2

]
(7.19)

where the last expression is an approximation for the symmetric coupler when
the two lines (A and B) tend to become identical (then βc,π → βe,o and p → 1).
This equation reveals that maximum coupling occurs for the coupler length18

� = π

|βc − βπ |
A→B≈ π

|βe − βo| = λ0

2
∣∣√εee − √

εeo

∣∣ (7.20)

Figure 7.12 shows the CRLH of interest, which consists of a CRLH TL
identical to that of Figure 7.5a coupled to a conventional microstripline. In this
coupler, the coupled/isolated ports are inverted due to the propagation constant β

and Poynting S vector orientations shown in Figure 7.12a. In addition, we assume
that the CRLH TL is operated exclusively in its LH range. Since polarities in an
isolated RH TL and in an isolated LH TL are opposite (βLH − ‖βRH), the isolated

16 This coupler may be called a PC, since coupling depends on the difference between the
even–odd phases.
17 It is therefore also called a forward coupler.
18 At microwaves, in practice, this length is prohibitively large (hundreds of λ’s!) due to the typical
quasi-TEM nature of the lines and their large spacing, and this type of coupler is therefore not
used in its conventional form. In contrast, forward-wave coupling is very common in photonics.
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Figure 7.13 Results for PC
of Figure 7.12. (a) Measured
scattering parameters. (b)
Phase constants in isolated
conventional and CRLH TLs
(left-hand axis) and right-hand
term of (7.21) (right-hand
axis). The extracted param-
eters are LR = 2.21 nH,
CR = 0.45 pF, LL = 3.04 nH,
CL = 0.61 pF, Lcµs = 1.64 nH,
Ccµs = 0.33 pF, Lm =
0.27 nH, and Cm = 0.33 pF.
The corresponding frequen-
cies computed from (7.11)
(with LL = CL = 0 and
LR = Lcµs, CR = Ccµs

for the microstripline) are
fcµs = 13.6 GHz, f CRLH

cL =
1.8 GHz, f CRLH

0 = 4.3 GHz,
f CRLH

cR = 11.9 GHz. The fre-
quency computed from the
coherence condition (7.21) is
fmax = 2.8 GHz.

microstrip (RH) and CRLH (LH) TLs may be considered an approximation of
the c/π equivalent TLs: βµsp → βc → βe and βCRLH → βπ → βo. While the
small difference |βe − βo| leads to poor coupling in the conventional case, we
have here βo → −|βCRLH|, so that the difference in the denominator of (7.20) is
turned into a sum,

�max = π

βµsp + |βCRLH| (7.21)

which shows that despite βµsp ≈ |βCRLH|, tight coupling can be achieved over a
short length!

The performances of the PC shown in Figure 7.12a are presented in
Figure 7.13a. Quasi-0-dB coupling is achieved over the range from 2.2 to
3.8 GHz (53 percent) with the excellent directivity of 30 dB. Figure 7.13b shows
that the value of (7.21) has the expected maximum in the center of the coupler
bandwidth for its actual length d .
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7.4 METAMATERIAL RESONATORS

7.4.1 Positive, Negative, and Zero-Order Resonance in CRLH
Resonators

Being effectively uniform or effectively homogeneous structures, CRLH MTMs
can also be used as resonators when open or short ended.19 As in conventional
resonators, CRLH structures resonate when their length is a multiple of half
a wavelength. But because of the transfer of the phase origin from frequency
zero to the transition frequency ω0, a CRLH structure supports negative (LH-
band) resonances and a unique zero-order resonance at ω0 in addition to the
conventional positive resonances (RH band) [10, 23]

� = |m|λ
2

or θm = βm� =
(

2π

λ

)
·
(

mλ

2

)
= mπ (7.22a)

with

m = 0,±1, ±2, . . . ± ∞ (7.22b)

as illustrated in Figure 7.14. An interesting feature of the dual modes ±m is
their similar field and impedance characteristics due to their identical magnitude
of β±.

If the CRLH structure were strictly uniform, an infinite number of modes
would exist, equidistant for ω → ∞ (linear RH dispersion) and strongly com-
pressed for ω → 0 (hyperbolic LH dispersion), as apparent in Figure 7.14a.
In practice, a CRLH TL is constructed with a finite number N of finite size
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Figure 7.14 CRLH TL resonator: (a) dispersion relation and resonance frequencies
ωm of corresponding resonator based on uniform TL (Section 7.2.2); (b) typical field
distributions of resonance modes (voltage/current distribution for an open/short-circuited
metal/slot TL).

19 It will be essential to realize that what resonates in these structures is not the unit cell, which is
invisible to electromagnetic waves due to effective uniformity, but the overall structure constituted
of several cells.
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cells, which leads to passband characteristics (Section 7.2.3) and consequently
to the existence of a finite number 2N − 1 of resonant modes, as illustrated in
Figure 7.15.20

Let us focus now on the particularly interesting mode m = 0 of the CRLH
TL resonator [23].21 For this mode, the impedances for open- and short-ended
coupling excitations, illustrated in Figure 7.16, are derived as

Z
open
in = −jZc cot(β�)

β→0≈ −j
Zc

β�
=

√
Z′/Y ′

√
Z′Y ′�

= 1

Y ′(Np)
= 1

NY
(7.23a)

Zshort
in = jZc tan(β�)

β→0≈ −jZcβ� =
√

Z′

Y ′
√

Z′Y ′� = Z′(Np) = NZ (7.23b)

which correspond to N times the admittance and impedance of a unit cell, respec-
tively, and show that the zero resonant angular frequency is ωsh and ωse for open-
and short-ended conditions, respectively.22 The quality factors are then

Q
open
0 = 1/(NG)

ωsh(LL/N)
= 1

G

√
CR

LL

Qshort
0 = NR

ωse(NLR)
R

√
CL

LR

(7.24)
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Figure 7.15 Resonances of network (Section 7.2.3) balanced periodic LC network
CRLH TL resonator constituted of N unit cells (here N = 4). The field distributions are
similar to those shown in Figure 7.14b. The length of the resonator � and the period p are
related by � = Np, which results in Brillouin zone edges of ±Nπ/� = ±π/p.

20 In this figure, a periodic implementation is assumed. The points β = ±π/p are not “overall
structure” resonances but correspond to unit-cell resonances in the Bragg regime.
21 For the resonator application, the balance condition is not necessary, i.e., we may have ωse �= ωsh
22 Consequently, if the structure is balanced (ωse = ωsh), the zero-order mode can be excited with
either with short or open terminations.
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Figure 7.16 CRLH TL resonator and equivalent circuits in terms of unit-cell immit-
tances Z and Y . Each unit cell is identical to the LC cell shown in Figure 7.3a (without
primes). (a) Open-ended case. (b) Short-ended case.

This zero-order resonator exhibits the remarkable property that constant
magnitude and phase resonance can be achieved at an arbitrary frequency, not
depending on the physical length of the structure but only on the LC loadings.23

Another interesting property of this resonator is that, as seen in (7.24), the open-
ended resonator is only affected by shunt losses (extremely small in a planar
structure with standard substrates) while the short-ended resonator is only affected
by series losses.

7.4.2 Zero-Order Antenna

As an illustration of the application of a zero-order CRLH resonator, we consider
the zero-order antenna demonstrated in Figure 7.17 [24].24 The zero-order res-
onating antenna shown in the inset of Figure 7.17a is open ended (i.e., ωres = ωsh)
and features about a 75 percent footprint reduction in comparison with a corre-
sponding conventional patch antenna. Figure 7.17b shows the radiation patterns
for the 4-cell antenna of Figure 7.17a; the patterns for a much larger, 30-cell
antenna with identical unit cell and resonating at the same frequency show that

23 In low-frequency lumped resonators, resonance also only depends on the LC values but the
phase origin is still at ω = 0 whereas it is at the arbitrary frequency ω0 here.
24 It should also be noted that one of the most remarkable applications of the CRLH concept is a
novel and unique backfire-to-endfire (including broadside) leaky-wave antenna, described, for
instance, in [9, 10].
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Figure 7.17 Zero-order resonant-
type CRLH antenna composed of
4 cells and excited by induction
at f = 7.61 GHz. (a) Return loss
with antenna picture and layout
shown as insets [here the stubs
are terminated by virtual ground
(large) patch capacitors instead
of direct via connections to the
ground]. (b) Measured radiation
patterns (exp., experimental; sim.,
simulated; co, copolarization; cross,
cross-polarization). Also shown is
the simulated patterns for a 30-cell
antenna composed of the same
cells and resonating at a very close
frequency (f = 7.75 GHz).

resonance does not depend on the physical length but only on the CRLH param-
eters. The perfectly uniform current distribution in the zero-order mode may
mitigate the loss resistance Rl with respect to the radiation resistance Rr and
therefore provide higher efficiency η = Rr/(Rr + Rl).

7.4.3 Dual-Band Ring Antenna

After an application of the CRLH mode m = 0, we will consider another appli-
cation, for the mode m = ±2, which is the dual-band resonating ring antenna
presented in Figure 7.18 [25]. In this resonator, the mode m = 1 is not allowed
due to the boundary condition ξ(ϕ0 + 2π) = ξ(ϕ0) (ξ is the voltage or current
along the loop) associated with the loop configuration (Fig. 7.18a). The mode
m = 0 is also prohibited because the center point where all stubs are intercon-
nected (without via ground connection) is not a virtual ground for this specific
mode. The interesting feature here is the aforementioned fact that the dual ±m

modes (here ±2) have similar field and impedance characteristics, which allows
dual-band operation with a single and simple feeding mechanism. Figure 7.18b

shows that the radiation patterns of the two modes are very similar except for
the lower gain due to smaller aperture in the lower mode.
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Figure 7.18 Dual-band ring res-
onator antenna (meas., measured; sim.,
simulated; co, copolarization; cross,
cross-polarization). (a) Return loss with
antenna prototype in inset. (b) Radiation
patterns at the two operation frequencies
f−2 = 1.93 GHz and f+2 = 4.16 GHz.
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7.5 CONCLUSIONS

Novel coupler and resonator applications of the powerful CRLH MTM concept
have been presented. A diversity of other CRLH practical devices and structures
have also been developed [10]. It is expected that many more MTM effects and
components will be discovered in the near future.
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CHAPTER8
HISTORICAL PERSPECTIVE AND
REVIEW OF FUNDAMENTAL
PRINCIPLES IN MODELING
THREE-DIMENSIONAL
PERIODIC STRUCTURES WITH
EMPHASIS ON VOLUMETRIC
EBGs

Maria Kafesaki and Costas M. Soukoulis

8.1 INTRODUCTION

8.1.1 Electromagnetic (Photonic) Bandgap Materials
or Photonic Crystals

Electromagnetic bandgap (EBG) materials [known as photonic crystals (PCs) or
photonic bandgap (PBG) materials] are a novel class of artificially fabricated
structures which have the ability to control and manipulate the propagation of
electromagnetic (EM) waves [1–3]. Properly designed photonic crystals can pro-
hibit the propagation of light, or allow it along only certain directions, or localize
light in specified areas. They can be constructed in one, two, and three dimensions
(1D, 2D, and 3D) with either dielectric or/and metallic materials.

The ability of PCs to control the propagation of light has its origin in their
photonic band structure. The concept of photonic band structure [4, 5] arises
in analogy to the concept of electronic band structure. Just as electron waves
traveling in the periodic potential of a crystal are arranged into energy bands
separated by bandgaps, we expect the analogous phenomenon to occur when EM
waves propagate in a medium in which the dielectric constant varies periodically
in space. Photonic bandgap materials or PCs are the structures which show such a
phenomenon, that is, produce a forbidden frequency gap in which all propagating
states are prohibited. The investigation of these materials is a topic of intensive
studies by many groups, both theoretically and experimentally [1–3].
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The PBG property of PCs makes them the EM analog of the electronic
semiconductor crystals, although in the EM case the periodicity alone does not
guarantee the existence of a full PBG. Nonetheless, a great advantage of the PCs
is that although in semiconductors the periodicity is predetermined, the periodicity
in the PCs can be changed at will, thus changing the frequency range of the PBG.
Such structures have been built in the microwave and recently in the far-infrared
regime, and their potential applications continue to be examined. However, the
greatest scientific challenge in the field of PCs is to fabricate composite structures
possessing spectral gaps at frequencies up to the optical region.

The first prescription for a periodic dielectric structure [6] that possesses a
full PBG rather than a pseudogap was given by Ho, Chan, and Soukoulis at Iowa
State University (ISU). This proposed structure was a periodic arrangement of
dielectric spheres in a lattice-like diamond. It was found that PBGs exist over a
wide region of filling ratios, for both dielectric spheres in air and air spheres in
a dielectric, and for refractive index contracts between spheres and host as low
as 2. However, this diamond dielectric structure is not easy to fabricate, espe-
cially in the micrometer- and submicrometer-length scales for infrared or optical
devices. In the same time frame as ISU’s findings about the diamond structure [6],
Yablonovitch was devising [7] an ingenious way of constructing a structure with
the symmetry of the diamond lattice. This was achieved by properly drilling
cylindrical holes through a dielectric block. Such a structure with only three
sets of holes (three-cylinder structure) became the first experimental structure [7]
that demonstrated the existence of a (full or complete) PBG, in agreement with
the predictions [8] of the theoretical calculations. This is a successful example
where the theory was used to design dielectric structures with desired properties.
It is very interesting to note that after 15 years since the introduction [6] of the
diamond lattice by the ISU group, it still possesses [9] the largest PBG.

Another example of a successful synergy between theory and experiment
is encountered in the layer-by-layer structure (see Fig. 8.1), the so-called wood
pile structure. The layer-by-layer structure was designed by the ISU group [10]
and has a full 3D PBG over a wide range of structural parameters. The structure
consists of layers of rods, with a stacking sequence that repeats every fourth layer.
It was first fabricated [11] by stacking alumina cylinders, and it was demonstrated
to have a full 3D PBG at 12 to 14 GHz.

Another interesting class of PCs is the A7 class of structures [12]. These
structures have rhombohedral symmetry and can be generated by connecting
lattice points of the A7 structure by cylinders. The A7 class of structures can be
described by two structural parameters that can be varied to optimize the gap. For
special values of the parameters the structure reduces to simple cubic, diamond,
and the Yablonovitch three-cylinder structure. Gaps as large as 50 percent are
found [12] in the A7 class of structures for well-optimized values of the structural
parameters; fabrication of these structures would be a very interesting task.

The fabrication and the testing of PC structures is a task that has attracted
intensive efforts, dating back to the original efforts by Yablonovitch [15]. Fab-
rication can be either easy or extremely difficult, depending upon the desired
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Figure 8.1 Layer-by-layer structure, producing full 3D PBG. The structure is con-
structed by an orderly stacking of dielectric rods with a simple 1D pattern of rods in each
layer. Although rods of rectangular cross section are shown here, the rods may also be of
circular or elliptical cross sections.

wavelength of the bandgap and the level of dimensionality. Since the wave-
length of the bandgap scales directly with the lattice constant of the PC, lower
frequency structures that require larger dimensions are easier to fabricate. At
the other extreme, optical wavelength PBGs require PC lattice constants less
than 1 µm. Building PCs in the optical regime is a major challenge in PBG
research and requires methods that push the current state-of-the-art micro- and
nanofabrication techniques. Clearly, the most challenging PBG structures are
fully 3D structures with bandgaps in the infrared or optical regions of the spec-
trum. This area of PBG research has been one of the most active, and perhaps
most frustrating, in recent years.

The first attempts toward PBG structures operating in the infrared or optical
regime have targeted the miniaturization of the existing microwave PBG struc-
tures. Since 1991, both Yablonovitch and Scherer have been working toward
reducing the size of Yablonovitch’s [7] three-cylinder structure to micrometer-
length scales [16]. However, it is very difficult to drill uniform holes of apprecia-
ble depth with micrometer diameters. Thus, Scherer’s efforts were only partially
successful in producing a PC with a gap at optical frequencies. Another approach
for the miniaturization of Yablonovitch’s three-cylinder structure was undertaken
by a group at the Institute of Microtechnology in Mainz, Germany, in collab-
oration with FORTH, in Greece, and the ISU, using deep X-ray lithography
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(LIGA) [17]. In this method polymethylmethacrylate (PMMA) resist layers with
thickness of 500 µm were irradiated to form a “three-cylinder” structure. Since
the dielectric constant of the PMMA is not large enough for the formation of
a PBG, the holes in the PMMA structure were filled with a ceramic material.
After the evaporation of the solvent, the samples were heat treated, and a lattice of
ceramic rods corresponding to the holes in the PMMA structure remained. A few
layers of this structure were fabricated; it was measured to have a bandgap cen-
tered at 2.5 THz. A scanning electron microscopy (SEM) view of this structure,
with a lattice constant of 114 µm is shown in Figure 8.2. Recent experiments are
currently trying to fill the PMMA holes with a metal.

Attempts at the miniaturization of the layer-by-layer wood pile structure
shown in Figure 8.1 include a miniature version that was fabricated [18] by
laser rapid prototyping using a laser-induced direct-write deposition from the
gas phase. The structure consisted of oxide rods that were submicrometer in
size; the measured PBG was centered at 2 THz. Recent work at Sandia National
Laboratory by Lin [19] and at Kyoto University by Noda [20] has demonstrated
growth up to five layers of the layer-by-layer wood pile structure at both the 10-
and 1.5-µm wavelengths. The measured transmittance of these structures showed
bandgaps centered at 30 and 200 THz, respectively. These are really spectacular
achievements. They were able to overcome very difficult technological challenges
in planarization, orientation, and 3D growth at the required micrometer-length
scales.

Figure 8.2 “Inverse” Yablonovitch three-cylinder structure fabricated by LIGA.
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Another approach to obtain PCs in submicrometer regimes is by using
colloidal suspensions. Colloidal suspensions have the ability to spontaneously
form bulk 3D crystals with lattice parameters on the order of 1 to 10 nm.
Also, 3D dielectric lattices have been developed from a solution of artificially
grown monodisperse spherical SiO2 particles. However, both these procedures
give structures with a quite small dielectric contrast ratio (less than 2), which
is not enough to achieve a full bandgap. Much effort is going into finding new
methods for increasing the dielectric contrast ratio in these structures. Several
groups [21–28] are trying to produce ordered macroporous materials of tita-
nia, silica, and zirconia by using the emulsion droplets as templates, around
which material is deposited through a sol–gel process. Subsequent drying and
heat treatment have yielded solid materials with spherical pores left behind the
emulsion droplets. Another very promising technique in fabricating PCs at opti-
cal wavelengths is 3D holographic lithography [29]. Very recently, high-quality
large-scale wood pile structures operating at 1.5 µm have been fabricated by
direct laser writing [30].

Since the fabrication of 3D PCs at optical wavelengths is still a difficult
process, an alternative method has been proposed: A three-layer dielectric struc-
ture is created in the vertical direction, with the central layer having a higher
dielectric constant than the upper and lower dielectric layers, and a 2D PC is
patterned in that layered structure. In such a structure light is confined in the
vertical direction by traditional waveguiding due to dielectric index mismatch
and in the lateral direction by the presence of a 2D PC. There are two routes that
have been followed, one where the upper and lower dielectric layers are air and
the other where the upper and lower dielectric layers have dielectric constants
smaller than the central layer but much higher than 1. The first structure is called
a self-supported membrane [31], while the second is referred to as a regular
waveguide [32]. It is not yet resolved which structure has lower losses [31–35].
It is clear, however, that for optoelectronic applications the membrane-based PCs
might not be easy to use. It is therefore of considerable importance to find out
what type of structure has the lowest losses and the best efficiency of bends.

One of the most challenging applications of the miniature PCs is in the
telecommunication regime, for the construction of fully photonic integrated cir-
cuits (PICs). Essential building blocks for the realization of PC-based PICs are
PC waveguides, waveguide bends, and combiners, which are constructed by prop-
erly forming defects in the PCs. Light then is confined in the defects’ path and
is guided along this 1D channel, the PC waveguide, because the 3D PC prevents
it from escaping into the bulk crystal. Simulations have predicted very exciting
results that would have significant impact on applications, but the inclusion of
defects in an already difficult-to-build 3D PC further complicates the fabrication
requirements.

8.1.2 Left-Handed Materials or Negative-Index Materials

Recently, there have been many studies about metamaterials that have a neg-
ative refractive index n. These materials, called left-handed materials (LHMs),
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Figure 8.3 Schematic of a combination of SRRs and continuous wires. Such a combina-
tion is the most common way up to now to obtain LHMs.

theoretically discussed first by Veselago [36], have simultaneously negative elec-
trical permittivity ε and magnetic permeability µ. A practical realization of such
metamaterials, employing split-ring resonators (SRRs) and continuous wires (see
Fig. 8.3), was first proposed by Pendry [37, 38] who also suggested that a slab
of metamaterial with n = −1 could act as a perfect lens [39].

The first realization of some of Pendry’s ideas was achieved by Smith et al.
in 2000 [40], and since then various new samples (composed of SRRs and wires)
have been prepared [41,42], all of which have been shown to exhibit a passband
in which it was assumed that ε and µ are both negative. This assumption was
based on measuring independently the transmission T of the wires alone and then
the T of the SRRs alone. If the peak in the combined metamaterial composed of
SRRs plus wires was in the stop bands for the SRRs alone (which is thought to
correspond to negative µ) and for the wires alone (which is thought to correspond
to negative ε), the peak was considered to be left handed (LH). Further support
for this interpretation was provided by the demonstration that some of these
materials exhibit negative refraction of EM waves [43].

Subsequent experiments [44] have reaffirmed the property of negative ref-
raction, giving strong support to the interpretation that these metamaterials can
be correctly described by negative permeability due to the SRRs and negative
permittivity due to the wires. However, as was shown in [45], this is not always
the case since the SRRs, in addition to their magnetic response, which was first
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described by Pendry [38], exhibit also a resonant electric response in frequen-
cies not far from the magnetic response frequency. The electric response of the
SRRs, which is demonstrated by closing their air gaps (destroying their resonant
magnetic response), is identical to that of cut wires and it is added to the elec-
tric response (ε) of the wires. Consequently, the effective plasma frequency ω′

p

of the combined system of wires and SRRs (or closed SRRs) is always lower
than the plasma frequency of only the wires, ωp. With this consideration and
the analytical expressions for ε and µ which stem from it [45], one is able to
explain and reproduce all of the low-frequency transmission T and reflection R

characteristics of the SRRs plus wires based LHMs.
Moreover, considering the electric response of the SRRs and combining

it with the fact that closing of the SRR gaps leaves this response unchanged,
an easy criterion [45] to identify if an experimental transmission peak is LH or
right handed (RH) is readily obtained: If closing the gaps of the SRRs in a given
LHM structure removes from the T spectrum the peak close to the position of
the SRR dip, this is strong evidence that the T peak is indeed LH. If the gap
above the peak is removed, the peak is most likely RH. This criterion is very
valuable in experimental studies, where one cannot easily obtain the effective ε

and µ. The criterion is used experimentally and is found that some T peaks that
were thought to be LH turned out to be RH [46].

There has also been a significant amount of numerical work [47–52] in
which the complex transmission and reflection amplitudes for a finite length of
metamaterial were calculated. Using these data a retrieval procedure was applied
to obtain the effective permittivity ε and permeability µ under the assumption
that the metamaterial can be treated as homogeneous. This procedure confirmed
[53,54] that a medium composed of SRRs and wires could indeed be characterized
by effective ε and µ with negative real parts over a finite frequency band and
thus a refractive index also having a negative real part.

Recently, efforts have been made to fabricate LH structures at the terahertz
frequency range. A magnetic response has been observed from SRRs at 2 THz
[55], 6 THz [56] and 100 THz [57]. This response was experimentally observed
through the electric excitation of the magnetic resonance (EEMR) [58], that
is, the excitation of the magnetic resonance through the external electric field.
This EEMR effect occurs for given orientations of the gaps of the SRR with
respect to the external electric field, independently of the propagation direction,
and makes possible the experimental characterization of small artificial magnetic
structures [58] as it eliminates the necessity of in-plane incidence of an external
EM field.

8.2 THEORETICAL AND NUMERICAL METHODS

To study theoretically and numerically the propagation of EM waves in PCs
and LH materials, a variety of theoretical and numerical methods have been
employed. These methods are used to calculate either the band structure of such
materials (considering them as infinite) or the transmission properties of finite
PC or LH slabs.
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The most widely used methods, which can be applied to both PCs and LH
materials, are the plane-wave (PW) method, the transfer matrix method (TMM),
and the finite-difference time-domain (FDTD) method. In the following we will
describe these methods and present their capabilities and main disadvantages.

The starting point in all these methods is Maxwell’s equations in isotropic
materials:

∇ · D = 0 ∇ · H = 0 (8.1)

∇ × E = −∂B
∂t

∇ × H = ∂D
∂t

(8.2)

where

D(r) = ε0ε(r)E(r) B(r) = µ0µ(r)H(r) (8.3)

8.2.1 Plane-Wave Method

The PW method [59, 60] is mainly used to calculate the dispersion relation, and
hence the band structure of perfect PCs, considering them as infinite systems,
or of PCs with isolated defects, in combination with a supercell scheme [2].
It is usually applied to lossless, dielectric, nonmagnetic media. The dispersion
relation is calculated by transforming the problem into an eigenvalue problem,
which gives the eigenfrequencies ω(k) for each wave vector k.

Since the media under study are characterized by a spatially varying dielec-
tric function ε(r), Maxwell’s equations (8.2), considering a harmonic time depen-
dence of the form e+jωt and µ = 1, are recast to their time-harmonic form

∇ × E = −jωµ0 H ∇ × H = jωε(r)ε0 E (8.4)

The two equations in (8.4) can be combined to generate equations containing
only the magnetic or only the electric field:

∇ × (ε−1(r)∇ × H) = ω2

c2
0

H (8.5)

and

∇ × (∇ × E) = ω2

c2
0

ε(r)E (8.6)

with c2
0 = 1/µ0ε0. The eigenfrequencies ω are obtained by the solution of either

Eq. (8.5) or Eq. (8.6). Here we will proceed using Eq. (8.5).
At this point, we have to note that the vector nature of the wave equations

(8.5) and (8.6) is of crucial importance. Early attempts [2] adopting the scalar
wave approximation led to qualitatively wrong results, as unphysical longitudinal
modes appeared in the solutions.

In the simplest and most common case, where ε(r) is a real and frequency-
independent periodic function of r, the solution of the problem scales with the
spatial period of ε(r): For example, reducing the size of the structure by a factor
of 2 will not change the spectrum of EM modes other than scaling all frequencies
up by a factor of 2.
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Because of the periodicity of the problem, we can translate the periodic
function ε−1(r) of (8.5) into the reciprocal space, writing it as a sum of plane
waves with their wave vectors being given by the reciprocal lattice vectors G,
that is,

ε−1(r) =
∑

G

ε−1(G) exp(−jG · r) (8.7)

Moreover, we can make use of Bloch’s theorem to expand the magnetic field of
(8.5) in terms of Bloch waves:

H(r) =
∑

K

HK exp(−j K · r) (8.8)

where K = k + G, k is a vector in the first Brillouin zone (BZ), HK are the
Fourier components of the periodic amplitude of the k Bloch wave, and the
summation is taken in fact over the vectors G.

The substitution of Eqs. (8.7) and (8.8) into Eq. (8.5) leads to the eigenvalue
problem ∑

K′
ε−1

K,K′K × (K′ × HK′) = −ω2

c2
0

HK (8.9)

where ε−1
K,K′ = ε−1(K − K′) = ε−1(G − G′) [see (8.7)].

At this point we have to note that dielectric functions with sharp spatial
discontinuities require an infinite number of plane waves in their Fourier expan-
sion; this cannot be achieved in realistic calculations where the sums have to be
truncated. To avoid this problem, we smear out the interfaces of the dielectric
objects in the unit cell. For example, for modeling a cylinder of radius a with a
dielectric function ε, we employ the smeared dielectric function

ε(r) = 1 + ε − 1

1 + exp[(r − a)/w]
(8.10)

where the width w of the interface is chosen as a small fraction of the radius
a (≈ 0.01a − 0.05a). In practice, we incorporate the smearing and define the
dielectric function ε(r) over a grid in real space; then we compute its transform in
our finite plane-wave basis set to obtain ε(G − G′); then the term ε−1(G − G′) of
(8.9) is obtained by the inversion of the ε(G − G′) matrix. This procedure yields
much better convergence than the alternative method of determining ε−1(r) in
real space and then performing a Fourier transform to obtain ε−1(G − G′).

The transversality of the H field implies that K · HK = 0; thus, HK can be
written as

HK = hK,1e1 + hK,2e2 (8.11)

where the unit vectors e1 and e2 form with K an orthogonal triad (e1, e2, K).
The solution of (8.9) for the magnetic field (8.11) then reduces to the eigenvalue
system ∑

K′
MK,K′hK′ = ω2

c2
0

hK (8.12)
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which gives the allowed frequencies ω(k). In (8.12)

MK,K′ =| K || K′ | ε−1
K,K′

(
e2·e′

2 −e2·e′
1

−e1·e′
2 e1·e′

1

)

hK =
(

hK,1

hK,2

)
hK′ =

(
hK′,1
hK′,2

)
(8.13)

and the unit vectors e′
1 and e′

2 form an orthogonal triad with K′.
As was mentioned earlier, in the above eigenfrequency calculation we used

the wave equation for the magnetic field, Eq. (8.5), and not Eq. (8.6) for the elec-
tric field. In principle, we also could follow the same procedure for Eq. (8.6).
However, the resulting eigenvalue problem would then be either an eigenvalue
problem with a non-Hermitian matrix M or a generalized (instead of a simple)
eigenvalue problem, which requires, in both cases, a more demanding com-
putational procedure for its solution than the one associated with Eq. (8.12).
Consequently, it is advantageous to use Eq. (8.5) rather than Eq. (8.6) to obtain
the band structure of a PC.

In practice, the photonic band structure given by the frequencies ω(k) is
computed over several sets of high-symmetry points in the Brillouin zone or
on a grid in the Brillouin zone if the density of states is needed. A plane-wave
convergence check is an essential step in that computation.

The first structure [2] considered by researchers with the plane-wave
approach was a face-centered-cubic (fcc) structure composed of low-index dielec-
tric spheres in a high-index dielectric (ε) background. There is no full bandgap
(i.e., gap for all directions in the BZ and thus for all directions of propagation of
the EM waves) between the second and third bands, while a sizable complete gap
exists between the eighth and ninth bands (8–9 gap). The 8–9 position of the
gap is a generic feature of the band structure of fcc PBG materials that is worth
mentioning. The size (gap width over midgap frequency) of the full bandgap is
about 8 percent for a refractive index contrast of 3.1.

A structure that has been investigated thoroughly, as was mentioned in the
introduction, is the diamond structure [3,6,8,9]. The diamond structure presents
a full 3D PBG between the second and third bands (2–3 gap) for a wide range
of filling ratios. This gap exists for (i) high-dielectric spheres on the sites of the
diamond lattice, (ii) low-dielectric spheres on the diamond sites, and (iii) the dia-
mond structure connected by dielectric rods. The best performing gap (29 percent)
is reached for the diamond structure with 89 percent air spheres, that is, a multiply
connected sparse structure. A similar large gap (30 percent) is also found for the
diamond structure connected with dielectric rods with about a 30 percent dielec-
tric filling fraction. These gap magnitudes have been obtained for a refractive
index contrast of 3.6, appropriate for a GaAs background and air spheres.

The band structure and the corresponding density of states (DOS) for a
diamond lattice is shown in Figure 8.4, for a system of dielectric spheres of
n = 3.6 and a filling ratio 0.34. This filling ratio corresponds to the diamond
close packing, where the 2–3 full bandgap ceases to exist. The system shown in
Figure 8.4 was first studied by Ho, Chan, and Soukoulis [6] by the PW method. It
was soon realized [2,13] that for a 0.34 filling ratio with such high-index spheres
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Figure 8.4 Band structure (left plot) and DOS calculation (right plot) for diamond
lattice of dielectric spheres in air. The spheres’ index of refraction is n = 3.6 and their
filling ratio is 34 percent. Both the band structure and the DOS are calculated through the
PW method, employing a very large number of PWs.

the PW method is very difficult to converge. The same conclusion was reached
by Moroz [61]. When one is using the PW method, one has to exercise extreme
care when handling dielectric spheres having a high index of refraction, that is,
one needs a lot of terms in the Fourier transform to obtain accurate results. Even
today’s PW methods, especially the MIT photonic bands (MPBs) package [62],
still need an extrapolation to infinitely many PWs to yield convergent results.
Band structure calculations of PCs with high-index dielectric spheres might give
better convergent results if the multiple scattering (or photonic-KKR) method [61]
was used.

8.2.2 Transfer Matrix Method

While the method described in the previous section focuses on a particular wave
vector [i.e., gives ω = ω(k)], there are complementary methods that focus on a
single frequency [i.e., give k = k(ω)], like the TMM. The TMM was first used
to calculate the band structure of a PC by Pendry and MacKinnon [63].

The TMM is able to calculate the band structure of PC-based structures,
including structures of complex or frequency-dependent dielectric functions (like
metallic ones). This feature is not readily available through the PW method. The
main power of the TMM, though, is its ability to calculate the stationary scattering
properties, that is, the complex transmission (t) and reflection (r) amplitudes,
of finite slabs of PCs and of LH materials. Such calculations are extremely
useful in the interpretation of experimental measurements of the transmission
and reflection data.
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The calculation of the transmission and reflection coefficients for PW scat-
tering from a slab of PC or LH metamaterial is performed by assuming that the
slab, which is finite along the direction of the incoming incident wave (z direction
here), is placed between two semi-infinite slabs of vacuum and employing the
time-harmonic Maxwell equations (8.4). (By imposing periodic boundary condi-
tions, the slab is considered infinite along the directions perpendicular to that of
the propagation direction of the incident wave.)

The approach used with the TMM consists of the calculation of the EM
field components at a specific z plane (e.g., after the slab) from the field com-
ponents at a previous z plane (e.g., before the slab). For the implementation of
this procedure Eqs. (8.4) are discretized, employing a rectangular grid on which
the fields and the material parameters are defined. The result is a system of local
difference equations:

Ex(i, l, k + 1) = Ex(i, l, k) + jcωµ0µ(i, l, k)Hy(i, l, k)

+ jc

aωε0ε(i, l, k)
{a−1[Hy(i − 1, l, k) − Hy(i, l, k)]

− b−1[Hx(i, l − 1, k) − Hx(i, l, k)]}
− jc

aωε0ε(i + 1, l, k)
{a−1[Hy(i, l, k) − Hy(i + 1, l, k)]

− b−1[Hx(i + 1, l − 1, k) − Hx(i + 1, l, k)]} (8.14)
Ey(i, l, k + 1) = Ey(i, l, k) − jcωµ0µ(i, l, k)Hx(i, l, k)

+ jc

bωε0ε(i, l, k)
{a−1[Hy(i − 1, l, k) − Hy(i, l, k)]

− b−1[Hx(i, l − 1, k) − Hx(i, l, k)]}
− jc

bωε0ε(i, l + 1, k)
{a−1[Hy(i − 1, l + 1, k) − Hy(i, l + 1, k)]

− b−1[Hx(i, l, k) − Hx(i, l + 1, k)]} (8.15)
Hx(i, l, k + 1) = Hx(i, l, k) − jcωε0ε(i, l, k + 1)Ey(i, l, k + 1)

+ jc

aωµ0µ(i − 1, l, k + 1)
{a−1[Ey(i, l, k + 1)

− Ey(i − 1, l, k + 1)] − b−1[Ex(i − 1, l + 1, k + 1)

− Ex(i − 1, l, k + 1)]} − jc

aωµ0µ(i, l, k + 1)

× {a−1[Ey(i + 1, l, k + 1) − Ey(i, l, k + 1)]

− b−1[Ex(i, l + 1, k + 1) − Ex(i, l, k + 1)]} (8.16)
Hy(i, l, k + 1) = Hy(i, l, k) + jcωε0ε(i, l, k + 1)Ex(i, l, k + 1)

+ jc

bωµ0µ(i, l − 1, k + 1)
{a−1[Ey(i + 1, l − 1, k + 1)

− Ey(i, l −1, k+1)]−b−1[Ex(i, l, k+1)−Ex(i, l −1, k+1)]}
− jc

bωµ0µ(i, l, k + 1)
{a−1[Ey(i + 1, l, k + 1)−Ey(i, l, k + 1)]

− b−1[Ex(i, l + 1, k + 1) − Ex(i, l, k + 1)]} (8.17)
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In the above equations ε(i, l, k) and µ(i, l, k) are the relative electrical
permittivity and magnetic permeability at the grid cell (i, l, k) and a, b, c are the
dimensions of each grid cell along the x, y, z directions, respectively. We have to
mention that the components Ez, Hz are eliminated from further consideration,
due to the transversality of the fields, and that the field components Ex(i, l, k),
Ey(i, l, k), Hx(i, l, k), Hy(i, l, k) are defined at different points of their associated
grid cell (i, l, k) (they are mutually displaced by a half grid cell). Special attention
has to be taken with the material discretization because the symmetries of the
structure also have to be maintained in the discretized system.

Equations (8.14) to (8.17) connect the field components at the k + 1 plane
with those at the k plane. After rearrangement of terms they can take the form(

E(k + 1)

H(k + 1)

)
= T

(
E(k)

H(k)

)
(8.18)

The matrix T is the transfer matrix, which allows one to compute the whole
solution from a previously known z slice. In the vacuum the matrix T can be
diagonalized exactly; its left and right eigenvectors define the PW basis for the
scattering problem. By propagating the vacuum basis vectors through the sample
and by subsequent decomposition of the results with respect to the vacuum basis
again, one obtains the T matrix of the slab. With T known, the scattering ampli-
tudes r and t can be obtained by using the relation between T and the scattering
matrix S in this basis:

T =
(

t+ − r+t−1r r+t−1

−t−1r t−1

)
S =

(
t+ r+
r t

)
(8.19)

(S defines the transmission and reflection amplitudes for waves incident from the
left or right of a slab, t∓ and r±.) For economy of computer time and memory,
the transfer matrices of the sample slices can be applied consecutively and algo-
rithmically, that is, not as matrix multiplications. Intermediate renormalization
steps account for the exponential growth of some modes inside the sample and
keep the simulation stable [48]. Implementations of the TMM can be made to
be quite efficient because they rely mainly on linear algebra operations such as
matrix factorization and successive inversion.

For the calculation of the band structure k(ω) of a system, one has to
compute the eigenvalues of T while also applying periodic boundary conditions
along the direction of propagation. Details about this procedure can be found
in [63].

The TMM method has been extensively applied to band structure calcu-
lations of PCs containing absorptive and frequency dispersive (e.g., metallic)
materials. It has been applied also to the simulation of the scattering proper-
ties of finite PCs, PCs with defects, PCs with complex and frequency-dependent
dielectric functions [64], and LHMs composed of SRRs of various shapes and
metallic wires [45, 50]. In all these cases the agreement between the theoretical
calculations and the experimental results, where available, has been very good.

In Figure 8.5 we show an example of the application of the TMM method
to the calculation of the transmission coefficient through a slab of a metamaterial
composed of rectangular SRRs printed on a dielectric board and of closed SRRs
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Figure 8.5 TMM calculation for transmission coefficient versus frequency for system
composed of rectangular SRRs (solid red line) and a system of closed SRRs (SRRs with
no gaps) (green dashed line). The system length along the propagation direction is 10
unit cells. The inset shows the geometry of the unit cell (1 SRR attached on a dielectric
board). The relative permittivity for the metal is taken to be εm = (−3 + j5.88)105 and
for the dielectric board εb = 12.3. All relative permeabilities are 1. The unit-cell size is
6a × 14a × 14a, where a is the discretization length and c the light velocity in air. Figure
from [45], copyright  2004 by the American Physical Society.

[45]. As has been already mentioned, when the gaps of the SRRs are closed,
their magnetic response is switched off while their electric response remains
unchanged. This can be seen clearly in Figure 8.5; the spectrum of the closed
SRRs is almost identical to that of the SRRs, with the exception of the dip at
ωa/c ≈ 0.04 (where µ < 0) and the peak at ωa/c ≈ 0.095 (where µ < 0, ε < 0,
i.e., a LH peak; the µ < 0 here is due to the presence of the inner ring, which
also exhibits a magnetic response [65]).

8.2.3 Finite-Difference Time-Domain Method

Like the TMM, the FDTD method can be also used to calculate both band struc-
ture and scattering properties of PCs and LHM, and it also involves discretization
of the Maxwell equations. The difference here is that, while the TMM is employed
for steady-state solutions, the FDTD method is used for general time-dependent
solutions. The steady-state solutions then are obtained through fast Fourier trans-
forming the time-domain results. This permits the study of both the transient and
the steady-state response of a system. An additional advantage is the possibility
of obtaining a broadband steady-state response with just a single calculation, as
the excitation signal can be a pulse rather than a monochromatic wave.

Since FDTD is a time-domain method, the starting point for its implemen-
tation is the time-dependent Maxwell equations, specifically Eqs. (8.2). The curl
equations (8.2) are discretized using a rectangular grid (which stores the field
components and the material properties ε and µ) and central differences for the
space and time derivatives. The procedure results in a set of finite-difference
equations, which updates the field components in time. The equations for the



8.2 THEORETICAL AND NUMERICAL METHODS 229

update of Ex and Hx read as follows:

En+1
x (i, l, k) = En

x (i, l, k)

+ �t

ε0ε(i, l, k)

[
H

n+1/2
z (i, l + 1/2, k) − H

n+1/2
z (i, l − 1/2, k)

b

− H
n+1/2
y (i, l, k + 1/2) − H

n+1/2
y (i, l, k − 1/2)

c

]
(8.20)

Hn+1/2
x (i, l, k) = Hn−1/2

x (i, l, k)

+ �t

µ0µ(i, l, k)

[
En

y (i, l, k + 1/2) − En
y (i, l, k − 1/2)

c

− En
z (i, l + 1/2, k) − En

z (i, l − 1/2, k)

b

]
(8.21)

The corresponding equations for Ey , Ez, Hy , Hz are similar to the above. The
FDTD equations for various types of materials, together with computational pro-
cedure, source incorporation procedure, stability criteria, and so on, are presented
in a very clear and complete way in [66]. Here we just review some of the main
points of the FDTD calculation procedure as it is applied to PCs and LHMs, to
familiarize the reader with the method and to facilitate the comparison with the
other methods. In Eqs. (8.20) and (8.21) En

x (i, l, k) and Hn
x (i, l, k) are the x com-

ponents of the electric and magnetic field in the (i, l, k) ≡ (ia, lb, kc) grid cell
at the n time step (where t = tn = n�t), and so on; a, b, c are, respectively, the
dimensions of the grid cell along the x, y, z directions and �t is the time step.

Here, as in the TMM, the different EM field components are located at
different points of their associated grid cell, following the well known Yee scheme
[66]: the E-field components, which are calculated at times n�t , are located at
the face-centered points of the grid cell, while the H-field components, which
are calculated at times (n + 1/2)�t , are located at the edges of the grid cell
(every E component is surrounded by four circulating H components and vice
versa). This scheme results in second-order accuracy and a complete fulfillment
of all four of Maxwell’s equations, although only two equations [Eqs. (8.2)] are
directly employed.

Using the FDTD equations [e.g., (8.20) and (8.21)], one can obtain E(t)

and H(t) at any point within a finite slab and, through fast Fourier transforming,
E(ω) and H(ω). The transmission (reflection) coefficient, T (R), is then calculated
by dividing the Fourier transform of the transmitted (reflected) Poynting vector
S = Re[E(ω) × H∗(ω)]/2 by the incident Poynting vector. Note that what is
calculated is the power coefficient T = |t |2 (R = |r|2), a real quantity, and not
the complex transmission (reflection) amplitude.

The transmission calculation procedure usually consists of sending a pulse
(e.g., a Gaussian) and then obtaining the transmitted frequency-domain fields1

E(ω), H(ω) and thus T . The slab along the directions perpendicular to the

1 Usually the transmitted fields at different detection points after the sample are detected, and an
average of the resulting pointing vectors is taken.
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direction of propagation of the incident wave can be considered as either infi-
nite or finite. The first case is achieved by using periodic boundary conditions
at the associated boundaries and the second by using absorbing boundary condi-
tions (i.e., the incident wave at the boundaries is absorbed by them). Absorbing
boundary conditions are also used to close the computational cell in the propaga-
tion direction. The most efficient absorbing boundary conditions that have been
applied to date are the perfectly matched layer (PML) conditions [66], while
Liao’s conditions [66, 67] are also efficient and widely used.2

Equations (8.20) and (8.21) and the corresponding ones for the other field
components describe dielectric media with no losses. The FDTD study of dielec-
tric media with losses (ε = εr − jεi) is achieved usually by introducing a con-
ductivity σ = ωε0εi through an external current (J = σE) added to the first of the
equations given in Eqs. (8.2). This leads to a modification of the terms appearing
in the standard finite-difference equations but leaves the computational procedure
unaltered (see [66]).

To model dispersive materials, such as metals, as is required, for example,
in the study of metallic PCs or of LH materials, one has to introduce a specific
dispersion model [e.g., Drude model, ε(ω) = 1 − ω2

p/(ω2 − jωγ )] and translate
the equation D = ε0ε(ω)E [see Eqs. (8.3)] into the time domain [68]. The result
is an additional FDTD equation on the top of the standard FDTD equations.
(Note that the relation D = ε0εE does not hold in the time domain when disper-
sive materials are involved; thus D and E have to be calculated independently
within the FDTD procedure.) A similar procedure is employed also for magnetic
materials, µ = µ(ω) [68].

The FDTD method [66,69] is an excellent tool for the study of transmission
through finite slabs, as it can model almost arbitrary material combinations and
microstructure configurations. It has been utilized in many systems, containing
dielectric or metallic components [70–74] as well as in materials with nonlinear
dielectric properties [75–77]. Methods to transform the output near fields to radi-
ating far fields have also been employed [66]; this is particularly necessary for
antenna problems, where far-field radiation patterns are desired.

The FDTD method, as was mentioned earlier, can also be utilized for band
structure calculations [73,78,79]. In this case the computational domain is usually
a single unit cell of the periodic structure, with periodic boundary conditions in
all its boundaries. An excitation containing a wide frequency range is used to
excite the allowed modes for each wave vector. These modes appear as spikes
in the Fourier transform of the time-domain fields.

An example of the application and the potential of the FDTD method is
shown in Figure 8.6. Figure 8.6(a) shows the magnetic field (at a specific time
point) of a Gaussian (in-space) beam which undergoes reflection and refraction
at the interface between air and a hexagonal PC constructed with dielectric rods
in air at a frequency belonging to the convex photonic band, that is, the band in

2 Liao boundary conditions are based on extrapolation of the fields in space and time by use of a
Newton backward-difference polynomial. They are introduced in [67]. Liao boundary conditions
are also described in detail in [66].
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(b)

(a)

Figure 8.6 (a) FDTD picture showing magnetic field of transverse electric (TE) Gaus-
sian (in-space) beam which undergoes reflection and refraction at interface between air
and PC (hexagonal lattice of dielectric rods with ε = 12.96 and radius over lattice con-
stant 0.35) for t = 31t0. The frequency of the beam belongs to a “negative” (convex)
band of the PC (a/λ = 0.58, a being the lattice constant, λ the free-space wavelength),
close to the � inverse-lattice point. Here 2t0 is the time difference between the outer
and the inner rays to reach the interface; t0 ≈ 1.5T , where T is the period 2π/ω of the
wave. Figure from [80] copyright  2003 by the American Physical Society. (b) Elec-
tric field of TE wave which is guided through PC waveguide. The PC waveguide is
formed by removing one row of holes along the �K direction from a hexagonal 2D PC
(made of cylindrical holes, with radius over lattice constant 0.2463, patterned in a host of
ε = 10.56). The a/λ dimensionless frequency of the guided wave is 0.24. The units in the
axes are grid cells of the FDTD discretization scheme.
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which the group velocity in the PC is opposite to the k vector [80]. In such a
frequency band the PC should behave as a LH system; indeed the refracted beam
in Figure 8.6(a), which undergoes negative refraction, unambiguously proves the
validity of this consideration. Figure 8.6(b) demonstrates the guiding of an EM
wave through a straight PC waveguide formed by removing one row of holes
from a hexagonal 2D photonic crystal.

8.3 COMPARISON OF DIFFERENT NUMERICAL
TECHNIQUES

As we mentioned in the previous section, the PW method is usually used to treat
infinite periodic systems, giving their dispersion properties. Although it can be
applied only in systems with nondispersive components (frequency-independent
ε and µ), the PW method is the fastest and the easiest to apply. It can give
within a single calculation all the spectrum ω for a given wave vector. Its main
disadvantages are its inability to treat systems with dispersive components and
finite media and its relative difficulty to treat systems with defects. In the last
case a supercell scheme has to be employed, which, in many cases, leads to
calculations that are very computer time and memory consuming.

The TMM, on the other hand, is able to calculate the band structure of sys-
tems with dispersive components but it is less easy to apply than the PW method.
It is usually used for the calculation and analysis of the stationary scattering prop-
erties of finite-in-length samples. Among the most important advantages of the
TMM is its ability to treat samples with almost arbitrary internal structure and
arbitrary material combinations (e.g., metallic, lossy), giving the complex trans-
mission and reflection amplitudes, that is, magnitude, phase, and polarization
information. The simultaneous amplitude and the phase knowledge can be used
in the inversion of the transmission and reflection data to obtain the effective
material parameters (ε and µ) for the systems under study (provided that the
effective medium approach is valid).

Among the drawbacks of the TMM is the necessity of the discretization of
the unit cell, which introduces some numerical artifacts and some constraints into
the shape and size of the components inside the unit cell. For example, to simulate
“tiny” components, as is usually required in the study of LHMs, one needs very
fine discretization, practically possible only within a nonuniform discretization
scheme. Otherwise large calculation times and large memory requirements are
unavoidable.

The FDTD method, like the TMM, can also model finite slabs with almost
arbitrary internal structure and material combinations. Its main advantages com-
pared to the TMM is that it can give the transmission properties over a wide
spectral range with just a single calculation. It also can give time-domain pictures
of the fields and the currents over the entire computational domain. Moreover, it
can treat defects with no additional computational complications.

Concerning the disadvantages of the FDTD method, part of them stem from
the inherent discretizations required, and they were discussed above in connection
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with the TMM. In the case of dispersive materials, though, one encounters addi-
tional problems, coming from the time scale that the dispersion model introduces,
as the time step of the method (�t) cannot be much larger than the character-
istic time scale of the dispersion model. This constraint imposes restrictions in
the frequency regimes that can be studied and, through them, in the size of the
structures involved.

Concerning the application of the FDTD method in band structure calcu-
lations, the level of difficulty is similar to that of the TMM. The advantages
and disadvantages compared to the TMM are essentially those mentioned in the
two previous paragraphs in connection with the calculations of the scattering
parameters.

Apart from the three methods that we have described and analyzed in
this chapter, additional methods have been applied to the study of PCs and
LHMs, although less extensively. Some of those are variations of the PW, TMM,
and FDTD methods. Among the existing methods, one worth mentioning is the
multiple-scattering (MS) or photonic-KKR method [61, 81], which is a vectorial
extension of the well-known electronic band structure calculation method KKR,
and its modification known as the layered-MS method [82]. They can both give
band structure and transmission properties of PCs and LHMs, treating accurately
the dispersive components, defects, as well as high-index contrast systems. Their
main disadvantages are the heavy formalism, the difficulties in the computational
procedure, and the large calculation times.

8.4 CONCLUSIONS

We presented a brief historical review of the theoretical and experimental efforts
in designing and fabricating PCs and LHMs, starting from the first successful
designs and arriving at the latest developments. The latter included PBGs in the
infrared or optical regime and materials with negative magnetic permeability at
around 100 THz. We also presented the theoretical and experimental challenges
and the problems of the field as well as its current status and several current
research directions.

We also reviewed the three most successful and widely used numerical
techniques employed in the studies of PCs and LHMs. These are the PW method,
the TMM, and the FDTD method. We presented the key ideas and equations
of each method and discussed their capabilities and disadvantages. Finally we
presented a few representative results from each method. We are excited about
the future applications of PCs and LHMs and the prospects for using these
computational techniques to help design, fabricate, and test these PCs and LHMs.
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CHAPTER9
FABRICATION,
EXPERIMENTATION, AND
APPLICATIONS OF EBG
STRUCTURES

Peter de Maagt and Peter Huggard

9.1 INTRODUCTION

Much of the fundamental understanding of electromagnetic bandgap (EBG) mate-
rials can be derived from Brillouin’s work in the 1940s. His pivotal book [1]
demonstrated that a periodic lattice imposes restrictions on the k vectors of
waves than may propagate within it. Although Brillouin focused on mechani-
cal waves, some of his concepts can be directly transferred to the EBG domain.
From a simplistic viewpoint, media with periodically changing dielectric proper-
ties impose periodic boundary conditions on propagating electromagnetic modes.
Electromagnetic waves which do not satisfy these boundary conditions cannot
propagate. Brillouin’s legacy was that the concept of an energy bandgap became
an integral part of solid-state physics. A parallel development took place within
the field of microwave engineering, where the interaction of electromagnetic
waves with periodic structures has been studied and applied for many years.
One- and two-dimensional periodic structures in both closed metallic and open
waveguides have been used as filters and traveling-wave tubes. Furthermore, pla-
nar periodic structures have found widespread application as frequency-selective
surfaces (FSSs) and phased array antennas.

The recent revival of scientific interest in the electromagnetic proper-
ties of periodically structured materials was initiated by the pioneering work
of Yablonovitch [2] and John [3] in 1987. The fully 3D periodic structure
“Yablonovite” [4] was manufactured by mechanically drilling holes into a block
of dielectric material. This processing prevented the propagation of microwave
radiation in any 3D direction provided the frequency lay within a certain range,
that is, within the bandgap. In contrast, the undrilled dielectric was transparent in
the same frequency range. Since Yablonovitch first explored taking “photonic”
bandgap technology from the optical spectrum into the microwave region, the
pace of research has increased rapidly. One can even argue that the widespread
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familiarity with the concepts underlying EBG design has accelerated progress in
the field by allowing a synergy to develop between people from very different
backgrounds. Researchers from such disparate areas as solid-state physics, com-
putational electromagnetics, material science, and microwave engineering have
come to collaborate in EBG engineering. The products of their research are the
artificially engineered materials which are generically known as photonic bandgap
(PBG) materials or photonic crystals.1

The rapid advances in both theory and experiment, together with a substan-
tial technological potential, have driven the development of EBG technology.
Most of the initial results in this field have been achieved in academic and
basic research environments. In contrast, industrial involvement has been lagging
because successful near-term commercialization of EBG approaches has not been
obvious. Currently, the industrialization and standardization of this technology are
being considered and new startup companies have been founded solely to exploit
the commercial potential of EBG materials. It now appears that EBG concepts
can, in many cases, act as improved replacements for conventional solutions to
electromagnetic problems.

This chapter concentrates upon techniques for the realization, characteriza-
tion, and application of 3D EBG structures for the RF, microwave, and submilli-
meter regions. Emphasis is given to EBG manufacturing methods, for although
computational techniques are delivering increasingly accurate predictions, from
a historical perspective the development of EBG technology has grown from
experimentation. The first EBG structures were scaled to sizes appropriate to
microwave wavelengths because the submicrometer dimensions of optical struc-
tures are difficult and costly to fabricate. Photolithography and micromachining
are the most common ways of building optical devices, but the two or three
orders of magnitude larger microwave devices can be manufactured using less
specialized and perhaps cheaper techniques. These range from the previously
mentioned drilling of holes in dielectric blocks to the stacking of printed circuit
boards. This review of manufacturing is followed by a brief discussion on some
of the experimental apparatus used to measure performance. One advantage of
working at lower frequencies is that measurements of both amplitude and phase
can be made. This feedback of the complex dielectric response provides valu-
able information to the theorists and modelers, validating their predictions and
facilitating development of computational tools.

The chapter subsequently describes some applications in the microwave
and (sub)millimeter-wave frequency range. Already a large part of the research
at microwave frequencies is application driven, while the development of
submillimeter-wave systems remains technologically more challenging. The
simultaneous progress in these two frequency ranges provides verification of

1 Although “photonic” conventionally refers to visible and near-infrared light, the principle of
establishing a bandgap applies to electromagnetic waves of all wavelengths. Consequently, there is
some discussion within the microwave, millimeter-wave, and submillimeter-wave community about
the use of the term “photonic” [5]. The more general alternative title of “electromagnetic bandgap”
material or electromagnetic crystal has been proposed and for simplicity the EBG name is adopted
here.
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scalability of designs and essential insight into possible optical applications of
such devices.

Due to the large number of groups that have started working in this field,
it is impossible to incorporate a complete list of original and pertinent research
in a chapter of this length. The relevant literature includes many books [e.g., 6],
special journal issues [e.g., 7–9], and journal articles, and the interested reader
should consult them for more details on the many novel configurations that exist.
It is noted that the section on applications is an expansion of the contribution
made by one of the authors to a previously published review article [10].

9.2 MANUFACTURING

This section concentrates upon the techniques that have been used for the man-
ufacture of 3D EBG structures for frequencies from a few gigahertz up to
several terahertz. Expressed in terms of wavelength, this extends from centimeters
through the submillimeter region into the mid-infrared. Due to the wide range
of frequencies over which the EBG phenomenon has already been observed,
the fabrication approaches range from simple mechanical shaping methods at
lower frequencies to the sophisticated photolithographic schemes used to form
structures for use at near-infrared wavelengths. The EBG crystals themselves
have been formed by processing bulk material, either by directly machining a
3D solid or, more usually, by forming 2D layers which are then stacked or by
growth of the structure from liquid or powder precursors. The applicability of
a particular technique depends upon (a) the scale of the EBG structure, which
is inversely proportional to the operational frequency; (b) the material for the
finished crystal; and (c) the crystal pattern. As a rule of thumb, the period of
the EBG structure is a fraction of the free-space wavelength at the center of the
bandgap, and so building structures for operation at frequencies above 300 GHz,
that is, for submillimeter and shorter wavelengths, can still be a demanding task.
One additional factor which must be considered is the tolerances achievable by
the selected process and their relationship to the scale of the structure. The three
approaches to manufacture, along with the consideration of acceptable fabrication
tolerances, form the basis of this section.

9.2.1 Manufacture of 3D EBGs by Machining from the Solid

The first 3D EBG crystal was machined by drilling sets of parallel holes with
angles of 120◦ between each set in a block of Stycast [4] dielectric using a drill
press. The resulting Yablonovite structure exhibited a bandgap at a frequency
of 14 GHz. This approach is clearly useful for lower frequencies but is limited
to circular holes and, perhaps most importantly, is only suitable for processing
certain dielectrics (e.g., plastics and composite materials). One more sophisticated
extension of this approach used the LIGA (deep X-ray lithography) technique [11]
to form a 3D mold in polymethylmethacrylate (PMMA). Collimated high-energy
X rays from a synchrotron pass through a shadow mask and alter the solubility
of the PMMA. A 3D pattern can thus be achieved by repeated exposures at
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different angles of incidence. The irradiated polymer is removed using a suitable
solvent and a liquid ceramic precursor introduced into the network of holes. This
is transformed into a 3D crystal, and the PMMA is removed by pyrolysis. In
this way an anti-Yablonovite structure, where holes are replaced by dielectric
rods, exhibiting a transmission bandgap centered on 2.4 THz was realized [12].
Like mechanical drilling, the LIGA approach is restricted to parallel-sided holes,
which are possibly of limited depth, and the technique is only suitable for use
with certain dielectrics.

9.2.2 Manufacture of 3D EBGs by Stacking
The layer-upon-layer stacking method has been used to form structures exhibit-
ing bandgaps from a few gigahertz to near-visible frequencies. One of the first
implementations was by Ozbay et al. [13], who stacked alumina rods to form
the “woodpile” structure which exhibited a bandgap between 12 and 14 GHz.
Woodpiles and their variations are a commonly fabricated EBG structure and are
formed from layers of parallel bars with rectangular or, less often, circular cross
sections. Bars in adjacent layers are rotated by 90◦, and bars in every second
layer are displaced, perpendicular to their long axis, by half a period.

To form woodpiles for higher frequencies, more sophisticated methods of
producing entire layers of bars, often surrounded by a supporting frame, have
been utilized. One of the first approaches was to utilize the directional etching
properties of silicon. Grooves parallel to the {111} planes were etched through
a (110)-oriented wafer of high-resistivity silicon using the anisotropic aqueous
KOH etchant. This yielded bars 340 µm across with a 1275-µm period, the
resulting structure exhibiting an EBG centered on 95 GHz. In an extension of
this wet-etching approach, a woodpile with nonorthogonal bars was also produced
in silicon with a bandgap frequency around 350 GHz [14]. The possibility of
reducing the bandgap width by varying the dimensions of the bars away from
the optimum was also investigated in this study.

Mechanical methods have also been used to form the layers for woodpiles.
In particular, precision, narrow-kerf, computer-controlled saws designed for the
dicing of processed semiconductor wafers have been applied. The usual approach
when fabricating EBG layers is to make repeated passes with the narrow diamond
saw blade on one side of a silicon wafer to produce a series of bars and grooves.
The wafer is then inverted, rotated by 90◦, and a second set of grooves are diced.
In this way mechanically robust structures corresponding to one-half of a vertical
period of the woodpile structure are produced. This method has been applied
to produce woodpiles for center frequencies of 250 GHz [15], 260 GHz, [16],
and 500 GHz (see Fig. 9.1 [17]). For still higher frequencies, wet etching and
wafer bonding have been used to produce GaAs woodpiles at frequencies above
30 THz, corresponding to a bandgap centered on a wavelength of 7 µm [18].
One noteworthy alignment method adopted in the latter work was the use of
laser diffraction to achieve the correct relative position between successive layers
of bars. A flexible approach to dicing has also allowed the fabrication of free-
standing arrays of pillars [19] and indeed the technique, with appropriate blades,
is also suited to the processing of other “hard” dielectrics (e.g., ceramics).
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(a) (b)

Figure 9.1 Manufactured woodpile EBG structures for 500 GHz using layer-by-layer
approach: (a) layers prepared by single-side deep reactive ion etching; (b) a closeup of
results of mechanical dicing. Bar dimensions are approximately 90 µm × 90 µm in both
cases.

An alternative method used to produce silicon EBGs for application at
frequencies around 500 GHz involves using deep reactive ion etching (DRIE)
(see Fig. 9.1 [20]). Here successive plasma etch and passivation cycles are used
to produce nearly parallel sided holes in silicon wafers. The technique is flexible,
produces high-aspect-ratio holes to a photolithographically defined pattern, and
can be used for double-sided processing of wafers. It is most often applied to
silicon, although some other crystalline dielectrics can also be processed [21].

Other EBG structures are also amenable to assembly on a layer-by-layer
basis (see Fig. 9.2). Turning first to metallic EBG crystals, a high-pass structure
was fabricated by stacking thin stainless steel sheets through which square arrays
of circular holes had been cut with near-infrared Nd–YAG laser radiation. Cutoff
frequencies of order 10 GHz were observed from holes with diameters of about
1 cm [22]. One novel aspect of the work was the observation that below cutoff
resonances were observed if one of the layers in the stack was replaced by a
defect layer with larger holes. Metallodielectric EBGs have also been fabricated
by drilling triangular arrays of cylindrical holes in Stycast and Teflon sheets
and then inserting a metal sphere into each sheet. The 3D structure was then
assembled by stacking the layers containing the isolated metal balls to form a
face-centered-cubic (FCC) structure [23]. Electromagnetic bandgaps at frequen-
cies up to approximately 30 GHz were realized by using balls with a diameter
of about 5 mm.

The use of lasers in creating EBGs by stacking is not restricted to the
centimeter wavelength region, for the technique has also been investigated for
forming structures operating at submillimeter wavelengths. Rather than using con-
ventional silicon, with εr ≈ 11, a significantly increased fractional bandgap can
be obtained if a higher dielectric constant material is selected. High-permittivity
zirconium tin titanate (ZTT) based ceramics, with εr ≈ 36, are one such pos-
sibility [24]. Ceramics are generally very difficult to process by conventional
mechanical machining techniques. However, laser ablation, where the absorption
of high-intensity light converts the ceramic to plasma, is a particularly valuable
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(a) (b)

(c) (d )

Figure 9.2 Aspects of Fan EBG structure [26] at 500 GHz. (a, b) Electron micro-
graphs showing edge and oblique views of tiles for Fan structure The horizontal period is
220 µm. (c) Same tile after laser drilling with holes of mean diameter 96 µm. (d) Artist
impression of EBG crystal.

approach for these brittle materials. Care needs to be taken to set up the process
parameters, such as wavelength, energy density, and repetition rate; nonetheless,
these optimized features can be defined with micrometer-scale precision. The
process is best suited to the production of penetrating holes in thin sheets of
ceramic, and recent results have shown that closely space hole arrays can been
produced for layers of 500-GHz EBG crystals (see Fig. 9.2 [19]).

9.2.3 Manufacture of 3D EBGs by Growth

This section deals with the use of techniques to form a solid 3D EBG struc-
ture from either liquid or powder precursors. Application of focused laser
light to a thin layer causes either (a) localized heating and hence fusion or
(b) photopolymerization. A second layer of precursor is then added on top and
the solidification repeated, thereby building the structure on a layer-by-layer
basis. This technique has been successfully applied to form a 12-GHz EBG
by ultraviolet photopolymerization of a proprietary monomer in a commercial
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stereolithography machine [25]. The procedure also involved the introduction of
an initially fluid, higher dielectric composite material into the voids of the struc-
ture by a vacuum casting method. The necessary high-dielectric component of
the fluid was provided by powdered calcium titanate. As an alternative approach,
focused infrared laser radiation has been used to fuse powdered nylon to make
3D scale models of some EBG structures. This approach also offers the possi-
bility of incorporating high-dielectric fillers in the precursor powder, though it is
not known if this has yet been investigated.

9.2.4 Effect of Tolerances in Manufacture of EBGs

The selection of a fabrication process for the realization of a desired EBG struc-
ture is determined by both the material to be processed and, equally importantly,
the scale of the structure. Every manufacturing approach has associated dimen-
sional limitations, and the successful fabrication of an EBG depends upon how
the process tolerances affect the electromagnetic performance of the finished
crystal. Thus knowledge of both the tolerances and their effect on the location
and width of the bandgap is desirable. It is important to distinguish between
random and systematic effects: A surface roughness of 5 µm is unlikely to affect
the performance of a submillimeter-wave EBG, but a systematic difference in
the structural period by the same amount from the desired value might shift the
center frequency by an unacceptable amount.

Some effort has already been expended in trying to understand the effects of
fluctuations from the desired value. Initial work focused on the effects of structure
sizes, interlayer misalignments, and surface roughness in a 3D structure suggested
by Fan et al. [26]. Subsequently the effects of regular displacements of the bars
of a woodpile on the bandgap have been investigated [27]. In general, it is found
that the bandgap center frequency is reasonably robust to small perturbations, but
unsurprisingly the width and depth of the gap are reduced as the perturbations
increase. As an example of the tolerance to small fluctuations, systematic changes
in any one of the dimensions of a silicon woodpile by up to ±5% are predicted
to shift the center frequency by below 3% and the gap width by less than 2%
[28]. The sensitivity of the bandgap parameters of other structures to systematic
dimensional variations has also been calculated for a range of dielectrics [29].

9.3 EXPERIMENTAL CHARACTERIZATION OF EBG
CRYSTALS

The approaches adopted to characterize EBG crystals depend upon the dimension-
ality of the crystals, their operational frequencies, and their intended applications.
Key frequency-dependent EBG performance characteristics include the surface
wave attenuation, reflectivity, and transmission, the latter two being complex
quantities. Typical dedicated experimental apparatus and methods to determine
each of these parameters are described in turn below. For the RF and millimeter-
wave frequency range, the apparatus is generally based on commercial vector
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network equipment which delivers accurate measurements of amplitude and phase
at up to several hundred gigahertz. At still higher frequencies, the technique of
terahertz time-domain spectroscopy provides the same information.

9.3.1 Surface Wave Characterization

Applications of EBG technology to provide isolation between surface-mounted
components (e.g., antennas) demand that the EBG crystal exhibit a high degree
of surface wave attenuation. It is thus important to have a precise knowledge
of the propagation properties of electromagnetic waves on planar EBG crystals.
One method of obtaining this information used two wide-band end-fire antipo-
dal Vivaldi antennas in conjunction with a vector network analyzer [30]. The
antennas, which operated from 4 to 20 GHz, were printed on the same dielectric
as was used for the planar EBG substrate. Figure 9.3 shows a photograph of
the setup using the Vivaldi antenna. The antennas were formed from a symmet-
rically flared-out slot line, which was fed in turn by a parallel stripline and a
microstripline. This setup is very well suited to perform measurements for one
specific polarization of the field. Due to the small dielectric thickness, the polar-
ization of the radiated field is predominantly parallel to the plane of the antenna
and dielectric, that is, in the transverse electric (TE) mode. There is a very low
level of cross-polarization [the transverse magnetic (TM) mode], especially at
the low-frequency end of the range.

Figure 9.3 Photo of planar EBG dipole array showing one-half of both transmitting and
measuring Vivaldi antennas. The other halves of the antennas are situated on the reverse
of the dielectric sheet.
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A typical measurement of the surface wave propagation along the EBG
array is shown in Figure 9.4. In these measurements the forward surface wave
transmission response was normalized with respect to the signal from the Vivaldi
antennas alone.

Although the above system exhibited very good performance, the general
measurement of surface wave propagation is often difficult due to finite sample
sizes. As an alternative to planar antennas, small probes have also been used
to excite and detect surface waves. For example, horizontally and vertically ori-
ented linear and circular probes were used by Sievenpiper to launch and detect
radiation in his characterization of a high-impedance surface [31]. Some edge
effects remained in this setup, which led to unwanted scattering and/or standing
waves. The effects were strongly reduced by using Saville’s dog house arrange-
ment [32]. Here an appropriately curved sample was used to eliminate scattering
in one dimension and reduce it in the second. In addition, the curved sample
prevented the direct illumination of the receiving probe.
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Figure 9.4 Measurement results from dipole array shown in Figure 9.3. The arrows
show the direction of incidence with respect to the dipoles: (a) 0◦, (b) 75◦, and (c) 90◦.
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9.3.2 Complex Reflectivity Measurements

A double benefit can be derived from the use of metallodielectric EBGs for
antenna substrates. Not only are surface waves suppressed, as discussed in the
previous section, but also in-phase image currents are induced. The reflection
phase–frequency diagram gives information about how the structure reacts to a
wave impinging on it. Frequency ranges can be observed over which the config-
uration behaves similar to a metal plate (or perfect electric conductor). However,
a further characteristic feature of metallodielectric EBGs is the existence of a fre-
quency range over which an incident electromagnetic wave does not experience
any phase reversal upon reflection. In this range the structure behaves as a per-
fect magnetic conductor (PMC). The frequency range where the phase reversal is
within ±90◦ from the PMC point is conventionally used to define the bandwidth

Figure 9.5 Photo of setup for measuring EBG reflection phase as function of frequency
for different angles of incidence using feedhorns to launch and receive radiation in
anechoic chamber.
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of the PMC behavior. Despite the significance of the reflection phase diagram, it
is generally only shown in the published literature for waves at normal incidence.

One method to make reflection phase measurements of EBGs as a func-
tion of frequency for different angles of incidence used feedhorns to launch and
receive the radiation in an anechoic chamber (see Fig. 9.5 [33]). For boresight
measurements (normal incidence) the reflected signal was received by the trans-
mit horn and was then directed via a circulator to the receiver. For all other angles
(bistatic measurements), the illuminating antenna was fixed in position. The EBG
sample was rotated through an angle θ degrees while the receiving antenna simul-
taneously rotated by 2θ . A typical measurement of the reflection phase of the two
EBG structures is presented for both TE and TM polarizations in Figures 9.6 and
9.7, respectively. The reflection phase is determined with respect to a reference

Figure 9.6 Measured
phase reflection versus
frequency for different
angles of incidence for
grounded spiral EBG
structure [33]: (a) E-
plane and (b) H -plane
measurements.
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Figure 9.7 Measured
phase reflection versus fre-
quency for different angles
of incidence for printed
square ring EBG struc-
ture [33]: (a) E-plane and
(b) H -plane measurements.

aluminum plate; zero degrees means that there is no phase difference between a
reflection from the reference metal plate and the EBG sample.

9.3.3 Terahertz Reflection and Transmission Measurements
A full characterization of an EBG structure involves the measurement of its
complex reflection and transmission properties over a wide frequency range. For
millimeter-wave frequencies and below this can be done by use of vector net-
work equipment as described above. For frequencies between a few hundred
gigahertz and several terahertz, the technique of choice is time-domain spec-
troscopy [34]. In this approach a high-repetition-rate femtosecond laser generates
100-fs pulses of near-infrared radiation. The laser pulses are unequally divided,
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and the stronger portion excites broadband terahertz radiation from an InGaAs
surface field emitter. Parabolic mirrors collimate the terahertz beam, refocus it
at the sample position, and then image it onto the detector. This is a dipole
antenna with an ultrafast photoconductive sampling switch which is gated by the
weaker of the two optical pulses (see Fig. 9.8). Varying the relative delay time
of the two optical pulses coherently measures the time-dependent electric field of
the propagated pulse and yields both amplitude and phase information following
Fourier transformation. The complex transmission of the sample is determined by
measuring the terahertz signal with and without sample. The apparatus provides
a signal-to-noise level of up to 40 dB, with a usable bandwidth from 150 GHz
to above 3 THz. Figure 9.9 indicates the transmission of a silicon woodpile with
a bandgap centered on 500 GHz which was measured by this approach [16].

Figure 9.8 The terahertz time-domain
spectroscopy setup as used for the trans-
mission experiments: BS, beam splitter;
D, optical delay stage; E, InGaAs surface
field terahertz emitter; A, photoconductive
terahertz detector; S, sample.

Figure 9.9 Normal-incidence transmission of layer-by-layer silicon woodpile EBG struc-
ture measured by terahertz time-domain spectroscopy. The two lines correspond to the
incident E field polarized parallel and perpendicular to the top bars of the woodpile.
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Alternatively the reflectivity of a sample can be measured. In this case care must
be taken to substitute accurately a planar high-reflectivity metal mirror for the
sample to obtain a reference spectrum.

9.4 CURRENT AND FUTURE APPLICATIONS OF EBG
SYSTEMS

A multitude of basic EBG applications now exist, especially within the microwave
and low-millimeter-wave region. Examples include reflector systems, electron-
ically scanned phased arrays, high-precision Global Positioning System (GPS),
Bluetooth, mobile telephony, and wearable antennas. It would be impossible to
treat properly all such uses in the space available, so instead some examples of
applications in widely different areas are discussed. It is hoped that the reader
can thus gain an appreciation of the scope of the EBG approach.

Current satellite communication systems must provide high-gain links
whose coverage is limited to geographical areas with irregular boundaries. Max-
imum use of the available bandwidth is obtained through frequency reuse and
dual-polarization techniques. What must be optimized are not only the functional
parameters of the transmitting antenna but also its physical and structural param-
eters, such as volume, mass, and dimensional stability. One suitable antenna
for satellite communication applications is the shaped dual-grid reflector (DGR)
antenna. It is composed of two concave shells arranged one behind the other [35].
Typically, a solid graphite back shell, to provide the required stiffness, is used in
conjunction with a polarization-sensitive gridded Kevlar front shell. To maintain
the structural integrity of the DGR, dielectric stiffener posts are often used as
structural reinforcements between the two shells. Although in theory the posts
should be RF transparent, in reality they induce significant field disturbances
that degrade the side-lobe levels. This can even lead to unacceptable co-channel
interference and seriously impair the system performance. An example is shown
in Figure 9.10, where 11 dB degradation was observed. Using the simplest form
of an EBG stiffener post led to an improvement of 5 dB.

In a typical symmetric reflector antenna configuration, struts will generally
be needed to support the feed in the case of a single reflector or the subreflector
in a double-reflector system. These struts block the aperture and consequently
have an impact on the antenna performance, which is manifested as a reduction
of the antenna gain and an increase in the side-lobe level. Conventionally the
impact is minimized by optimizing the shape of the struts, but with the advent of
EBG materials a new method has been introduced [36]. This method is based on
guiding and launching the electromagnetic radiation in preferred directions and
reducing the blocking effect to nearly zero in the operational directions.

Electronically scanned phased arrays find their use in many applications.
For example, constellations of low Earth orbit satellites can be used for high-data-
rate transmission at the Ka band to meet the growing demand for multimedia ser-
vices. These applications in the Ka band require scanned, dual-polarized, multi-
beam antennas with relatively wide bandwidth. Although at lower frequencies
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Figure 9.10 Measured field distribution (amplitude and phase) in plane at antenna aper-
ture (from near-field back transformation) in nominal configuration (top) and configuration
using EBG stiffeners. The perturbation introduced by the stiffener posts (bottom) is signif-
icantly reduced by using EBG stiffeners. Pictures kindly made available by Eric Amyotte,
EMS Technologies Canada, Ltd.

mechanically scanned systems are mainly used, the use of active microstrip
phased arrays is an attractive Ka band solution. However, the need for band-
width and scanning increases the undesirable effects of surface waves, effects
which may cause scan blindness at specific angles. The suppression of surface
waves by incorporating EBG structures has led to improved performance [37,38].
Another area where EBG structures could play a role is in the reduction of the
complexity of arrays, for the system gain requirement dictates the number of ele-
ments required. If the embedded element gain can be improved, the total element
count can be reduced. The EBG “gain enhancement” is nothing special and is
based on the same fundamental principles as in any standard reflector system.
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The increase in gain is obtained in both cases by enlarging the effective radiating
aperture, but EBG technology offers the antenna designer some extra flexibility.
An example application of this can be found in overlapped feed clusters [39].

Another microwave application is the provision of high-precision GPS,
which can deliver subcentimeter accuracy levels in surveying applications. While
software can greatly reduce multipath errors, extra precautions to shield the
antenna from unwanted multipath signals and to optimize the antenna’s axial ratio
and phase center stability are needed to obtain these accuracies. Choke rings pro-
vide excellent electrical performance for GPS antennas, but they are usually very
large, heavy, and costly. The market demand is clearly for cheaper GPSs with
better performance. Making use of the fact that metallodielectric EBG antennas
can behave as artificial magnetic conductors, one can design EBG solutions in
printed-circuit technology [40], which is much less costly that its conventional
counterpart (see Fig. 9.11).

Figure 9.11 Example of GPS antenna made with EBG technology (bottom) in compari-
son to conventional choke ring approach (top) Pictures kindly made available by William
McKinzie, Etenna.
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As telecommunications become increasingly wireless, data and voice trans-
mission are bound to become even more common. Attention is now focused on
Bluetooth [41], the first implementation of such systems in everyday life. More-
over, for other applications like mobile phones (see Fig. 9.12), more attention is

Figure 9.12 Mobile phone antennas fabricated in conventional (top) and EBG technolo-
gies (middle and bottom). Pictures kindly made available by Yang Hao, Queen Mary Uni-
versity of London.
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being paid to the shielding offered by the antenna and the potential health haz-
ard. Electromagnetic bandgap technology may prove useful in mobile antenna
handset designs [42], reducing the radiation level applied to the user’s hand and
head. Shielding is not only important to reduce possible health concerns. It is
also important in multipoint communications. For example, devices placed on
the side of a laptop interact with the screen and the case, adversely affecting
the maximum bit rate achievable between two computers. Again, EBG materials
may play an important role in this area.

Future clothing may have a variety of consumer electronics built into the
garments. Wearable antennas have received much interest recently due to the
introduction of personal communication technology. Several applications of wear-
able antennas can be found; for example, radio tagging and miniature remote
cameras and eventually the technology may even help parents to pin point their
child’s position. Antennas play a paramount role in the optimal design of wearable
or hand-held units used in these services. Clearly, in designing these antennas, the
electromagnetic interaction among the antenna, wearable unit, and human opera-
tor is an important factor to be considered. Electromagnetic bandgap technology
has been proposed as a design solution [43].

Microwave filtering has also turned out to be an important area where
EBG materials may play a significant role [44]. Their broad stop band can be
exploited to suppress the spurious passbands that are always present in con-
ventional microstrip filters. The sharp cutoff achievable with EBGs can also be
used to improve the roll-off of a low-pass filter. Furthermore, combinations of
conventional and EBG materials could lead to very compact structures.

The area of conventional waveguides is another field were hybrid solutions
could play an important role. Rectangular waveguides with uniform field distri-
butions are of great interest for applications in quasi-optical power combining. A
standard waveguide can be modified by replacing the sidewalls with EBG crys-
tals [45], potentially creating a very efficient waveguiding structure. Additionally,
coupled cavity waveguides have recently attracted considerable attention. This
concept is predicted to enable very low reflection loss bends to be made in
waveguide [46].

9.5 CONCLUSIONS

This chapter has reviewed details of the manufacture, characterization, and appli-
cation of EBG structures at frequencies ranging from a few gigahertz to over
2 THz. The various approaches to fabrication have been outlined and some of the
associated specialized manufacturing approaches have been introduced. Manufac-
ture in itself is not sufficient to advance the EBG area, for careful electromagnetic
characterization is required to provide input for the design efforts of modelers
and theoreticians. Several approaches to characterization have been presented and
explained: These have the common factor of yielding amplitude and phase mea-
surements of the EBG structure under study. Several applications at microwave
frequencies have been discussed, and areas where EBG techniques offer sig-
nificant potential have been indicated. These applications range from improved
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antennas with reduced side lobes through compact filters to the possibility of an
exciting new waveguiding technology.

The space available is not sufficient to treat all approaches to this fas-
cinating and increasing technologically relevant field, but it is hoped that the
examples discussed will serve to illustrate the range of approaches and the areas
of the spectrum to which EBGs can valuably contribute. The interested reader is
encouraged to consult the extensive and continually expanding literature in the
area to learn more about the potential and current status of the achievements of
EBG technology.
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CHAPTER10
SUPERPRISM EFFECTS
AND EBG ANTENNA
APPLICATIONS

Boris Gralak, Stefan Enoch, and Gérard Tayeb

10.1 INTRODUCTION

In this chapter, we will consider some problems using the ability of periodic
structures to control the propagation of electromagnetic waves. In this case, we
will often consider that the electromagnetic bandgap (EBG) material behaves
as a metamaterial. It means that, for our purpose, we will not make use of the
ability of the photonic crystal to exhibit an EBG. With this goal, we will not study
problems where the photonic crystal acts as a reflector (including substrates [1,2],
resonant cavities [3,4], etc.). In this context, the analysis of the phenomena goes
through the study of the dispersion curves of the Bloch modes and their related
group and phase velocities.

We would first like to point out the pioneering work of R. Zengerle [5]
applied to the propagation in periodic planar waveguides. Indeed, many phenom-
ena studied later in the context of photonic crystals were already theoretically
investigated and experimentally observed in this reference. The superprism effect
using the properties of two-dimensional (2D) and three-dimensional (3D) pho-
tonic crystals was studied later experimentally [6–8] and then theoretically [9,10].

Using the same concepts, several other phenomena and applications can
be considered, such as the control of emission and its application to directive
antennas [11, 12], which will be the subject of Section 10.4, and self-guiding
[13, 14].

In Section 10.2, we present a theoretical review of the concepts leading
to the understanding of all the refractive phenomena at the boundary between
a photonic crystal and a homogeneous medium (including negative refraction,
ultrarefraction, etc.). Then we study the superprism effect (Section 10.3). The
same “superprism” terminology is used to describe experiments that we have
classified in three types, depending on the physical effect involved to obtain
highly dispersive components. Finally, in Section 10.4 we focus on directive
antennas applications.

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.
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10.2 REFRACTIVE PROPERTIES OF A PIECE
OF PHOTONIC CRYSTAL

Throughout this chapter we use the (not necessarily orthonormal) basis (d1, d2,
d3): every vector x in R

3 (or z in C
3) is represented by its three components x1,

x2, and x3 (or z1, z2, and z3). Also, for all complex vector z in C
3, we use the

notation |z| = √
z · z, where z is the complex conjugate of z.

10.2.1 General Hypotheses
10.2.1.1 Hypotheses on Electromagnetic Field The electromagnetic field
we consider has a time dependence in exp(jωt) and is represented by the coupled
solution (Eω, Hω) of the set of harmonic Maxwell equations

∇ × Eω = −jωµ0Hω ∇ × Hω = jωεEω (10.1)

where ω is the frequency (real number), µ0 is the vacuum permeability, and ε is
the permittivity depending on the space variable x in R

3. To describe an electro-
magnetic field provided by an usual light source, as represented in Figure 10.1,
we assume that the electromagnetic energy density

E (x) = 1
2 [ε(x)|Eω(x)|2 + µ0|Hω(x)|2] (10.2)

satisfies for all x3 in R ∫
R2

dx1 dx2|E (x)| < ∞ (10.3)

This very “weak” hypothesis enables us to consider a large class of electro-
magnetic fields, including an incident laser beam. If absorption takes place, the
quantity E does not coincide with the electromagnetic energy density [15, 16].
Then, the criterion (10.3) has to be considered as a pure mathematical restriction.
Note that we adopted such an “unusual” criterion (10.3) since a pure harmonic
field cannot have finite total electromagnetic energy

∫
R3 dxE (x). Finally, the

wavelength associated with this harmonic field is

λ = 2πc

ω
c = (ε0µ0)

−1/2 (10.4)

where ε0 is the vacuum permittivity.

beam
field

x1

x2

x3

Figure 10.1 Representation of electro-
magnetic field under consideration. In
every horizontal plane (defined by “x3 is
constant”), the electromagnetic energy is
finite: It is a beam.
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10.2.1.2 Hypotheses on Geometry In this chapter, we assume the usual
physical arguments of optics:

(i) The size of the piece of photonic crystal is large when compared to the
wavelength λ of the harmonic electromagnetic field.

(ii) The energy density (10.2) vanishes at the edges of the piece of photonic
crystal.

(iii) The radius of curvature of the boundaries delimiting the piece of photonic
crystal is large when compared to the wavelength λ.

From (i) we conclude that the evanescent waves play a minor role. Note
that here only propagating (or Bloch) waves will be considered, but in the next
sections the evanescent waves that can be neglected for the description of the
phenomena are fully taken into account in the rigorous numerical calculations.
From (ii) we conclude that the photonic crystal can be extended without restric-
tion where the energy density (10.2) is “small enough”. Finally, from (iii) we
conclude that all the boundaries delimiting the piece of photonic crystal can be
considered as plane interfaces.

Then, with these three hypotheses, we can reduce the initial problem to
the study of the simple structure represented on the right of Figure 10.2: a plane
interface separating a homogeneous medium (with permittivity ε0 without loss
of generality) in the upper half space and a 3D photonic crystal in the lower half
space. The plane interface is chosen such that the resulting structure is periodic
in two directions; in other words, it is a 2D grating. In practice, this hypothesis
is not a restriction since any plane inside a photonic crystal can be approached in
this way. From now on, the basis (d1, d2, d3) is chosen such that (d1, d2) forms
a basis of the lattice associated with the 2D grating and such that (d1, d2, d3)
corresponds to a basis of the lattice associated with the photonic crystal. Also,
its origin can be chosen such that the plane interface is defined by the equation
x3 = 0 (see Fig. 10.2). Then the function ε satisfies

x3 ≥ 0 ⇒ ε(x) = ε0

x3 ≤ 0 ⇒ ε(x + nidi ) = ε(x) ni ∈ Z(n3 < 0) i = 1, 2, 3 (10.5)

beam
field

crystal

beam
field

semi-infinite
crystal

d1
d3

d2
t3

Figure 10.2 Left: initial geometry. Right: simplified geometry.



264 CHAPTER 10 SUPERPRISM EFFECTS AND EBG ANTENNA APPLICATIONS

10.2.2 Rigorous Theory

10.2.2.1 Floquet–Bloch Transform and Decomposition of Initial Problem
After the previous modeling, the resulting structure is periodic with respect to
the two variables x1 and x2. The basis of the reciprocal lattice associated with
this grating is

d�
1 = 2π

d2 × τ 3

|d1 × d2| d�
2 = 2π

d1 × τ 3

|d1 × d2| τ 3 = d1 × d2

|d1 × d2| (10.6)

τ 3 being the vector normal to the plane interface with length |τ 3| = 1. From the
finite energy density criterion (10.3) and in order to take advantage of the double
periodicity of the structure, it is possible to perform a Floquet–Bloch transform
defined by

F̃ω(k||, x) = |d1 × d2|
(2π)2

∑
n1,n2∈Z

exp[jk|| · (n1d1 + n2d2)]Fω(x + n1d1 + n2d2)

(10.7)
where Fω = Eω, Hω and k|| is the tangential component of the wave vector (i.e.,
the projection of the wave vector k in the plane interface). After this transform,
the set of Maxwell equations (10.1) becomes

∇ × Ẽω = −jωµ0H̃ω ∇ × H̃ω = jωεẼω (10.8)

and the field satisfies the “partial” Bloch boundary conditions: For all k|| in R
2,

F̃ω(k||, x + n1d1 + n2d2) = exp[−jk|| · (n1d1 + n2d2)]F̃ω(k||, x) (10.9)

where F̃ω = Ẽω, H̃ω, x is in R
3, and n1, n2 are in Z. Note that we denoted these

Bloch boundary conditions as partial because they involve two directions while
the photonic crystal is a priori 3D.

At this stage, we took advantage of all of the symmetries of the considered
structure. This approach leads to the decomposition of the initial problem (10.1) in
a collection of independent problems (10.8), indexed by the tangential component
k|| of the wave vector. In other words, the initial electromagnetic field (Eω, Hω)
has been decomposed in a collection of independent Bloch components (Ẽω, H̃ω)
indexed by k||. From the definition (10.7), we can remark that

F̃ω(k|| + n�
1d�

1 + n�
2d�

2, x) = F̃ω(k||, x) (10.10)

where, F̃ω = Ẽω, H̃ω, x is in R
3, and n�

1, n
�
2 are in Z. Then, concerning the cou-

pling at the plane interface, it appears that a wave associated with k|| is coupled
to all the other ones associated with k|| + n�

1d�
1 + n�

2d�
2 since they form a single

component. Obviously, they cannot be separated since the problem is already
decomposed as much as possible. Also, from the last identity, it is possible to
reduce the reciprocal space to B||, the unit cell of the reciprocal lattice associated
with the grating, defined by

B|| = {
k|| = k�

1d�
1 + k�

2d�
2|k�

1, k
�
2 ∈ [− 1

2 , 1
2

]}
(10.11)
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A very important property of the decomposition (10.7) [17, 18] is that the
finite-energy-density criterion (10.3) becomes∫

R2
dx1 dx2|E (x)| =

∫
B||

dk||
∫

[0,1]2
dx1 dx2|Ẽ (k||, x)| < ∞ (10.12)

with

Ẽ (k||, x) = 1
2 [ε(x)|Ẽω(k||, x)|2 + µ0|H̃ω(k||, x)|2] (10.13)

This property is a consequence of the unitarity of the Floquet–Bloch trans-
form, which corresponds to the “Parseval” identity for square integrable functions
and the Fourier transform:∫

R2
dx1 dx2Fω(x) · Gω(x) =

∫
B||

dk||
∫

[0,1]2
dx1 dx2F̃ω(k||, x) · G̃ω(k||, x)

(10.14)
for all admissible Fω, Gω. Also, as the Fourier transform, the Floquet–Bloch
transform is invertible. The initial electromagnetic field can be reconstructed
from its initial Floquet–Bloch components:

Fω(x) =
∫

B||
dk||F̃ω(k||, x) Fω = Eω, Hω (10.15)

This second property is also very important. It tells us that the initial
problem (10.1) is equivalent to the decomposed problem (10.8).

10.2.2.2 Field Coupling at Plane Interface In this section we introduce an
example of field coupling. We only consider the electric field since the magnetic
field can be determined from it. In the upper half space, we have ε(x) = ε0.
From the finite-energy-density criterion (10.3), we can use the Fourier transform
to obtain the general solution for an incident field as

Ei
ω(x) =

∫
R2

dk||Êi
ω(k||) exp(−jki · x) (10.16)

where the wave vector ki = k|| − γ3(k||)τ 3 is deduced from the dispersion rela-
tion in a homogeneous medium,

ω = c

√
(|k|||2 + γ 2

3 ) ⇒
{

γ3(k||) = √
ω2/c2 − |k|||2 if ω/c ≥ |k|||

γ3(k||) = −j
√|k|||2 − ω2/c2 if ω/c ≤ |k|||

(10.17)
and whose Fourier transform in x3 = 0 forms a square integrable function [to
fulfill property (10.3)]: ∫

R2
dk|||Êi

ω(k||)|2 < ∞ (10.18)

Here, if we apply the Floquet–Bloch transform (10.7) to this incident field,
then we obtain after some reasonable calculations

Ẽi
ω(k||, x) =

∑
n�

1,n�
2∈Z

Êi
ω(k|| + n�

1d�
1 + n�

2d�
2) exp[−jki

n�
1,n�

2
· x] (10.19)
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where ki
n�

1,n�
2

= k|| + n�
1d�

1 + n�
2d�

2 − γ3(k|| + n�
1d�

1 + n�
2d�

2)τ 3. Now, at this stage,
the problem is fully decomposed. As a particular case of the general property
(10.10), the right part of Eq. 10.19 shows that the plane wave associated with
k|| is coupled to all the other ones associated with k|| + n�

1d�
1 + n�

2d�
2. Note that,

in general, the incident field given by (10.16) is chosen such that all the support
of its Fourier transform is included in B|| (in order to obtain a Floquet transform
reduced to a single plane wave), and such that the component γ3 given by (10.17)
is always real (there is no evanescent component in the incident field). In the
same way, the general solution for a reflected field is

Er
ω(x) =

∫
R2

dk||Êr
ω(k||) exp(−jkr · x) (10.20)

where the wave vector is now kr = k|| + γ3(k||)τ 3 and whose Fourier transform
Êr

ω is a square integrable function as well as for the incident field (10.18). Again,
we can apply the Floquet–Bloch transform; we then obtain an expression similar
to (10.19):

Ẽr
ω(k||, x) =

∑
n�

1,n�
2∈Z

Êr
ω(k|| + n�

1d�
2) exp[−jkr

n�
1,n�

2
· x] (10.21)

where kr
n�

1,n�
2

= k|| + n�
1d�

1 + n�
2d�

2 + γ3(k|| + n�
1d�

1 + n�
2d�

2)τ 3. Finally, in the
lower half space, ε is a periodic function of the three space variables. We cannot
solve directly the general problem (10.1) as in the upper homogeneous half space.
Nonetheless, it is possible to determine solutions Ẽb,p

ω of (10.8), which are now
Bloch waves; that is in addition to the partial condition (10.9), they satisfy for
n3 in Z

Ẽb,p
ω (k||, k

p

3 , x + n3d3) = exp[−j2πn3k
p

3 ]Ẽb,p
ω (k||, k

p

3 , x) k
p

3 ∈ [− 1
2 , 1

2

]
(10.22)

where p is in {1, . . . , α} (α being the number of modes) and the third Bloch
components k

p

3 are given by the dispersion relation in the 3D photonic crystal,

ω = f (k||, k
p

3 ) (10.23)

which has to be determined numerically. From (10.15), the general solution in
the lower half space can be written as the packet

Eb
ω(x) =

∫
B||

dk||
α∑

p=1

Ẽb,p
ω (k||, k

p

3 , x) (10.24)

Now, we are ready to explain how the coupling is working at the plane inter-
face with the example under consideration. The general solution in the upper half
space is the superposition of the incident (10.16) and reflected (10.20) fields while
it is just the Bloch wave packet (10.24) in the lower half plane. After the Flo-
quet–Bloch decomposition, the field is the superposition of (10.19) and (10.21)
above and (10.22) below. Thus, for a fixed k|| in B|| the total electromagnetic
field satisfies (10.10). Then it is clear that all of the incident plane waves in
(10.19) are coupled to all of the reflected plane waves in (10.21) and to all of



10.2 REFRACTIVE PROPERTIES OF A PIECE OF PHOTONIC CRYSTAL 267

the Bloch waves in (10.22) (see Fig. 10.3) with the same tangential component
k|| + n�

1d�
1 + n�

2d�
2 of the wave vector. This is the reason why, from now on, we

will associate the field coupling at the plane interface with the “conservation
of the tangential component of the wave vector”. Note that this conservation is
represented by a single vertical red dashed line in Figure 10.3 because, in this

e0

e/e0 = 9

a w

a

w

w/a = 0.663

·E

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tangential Bloch wavevector

w
a/

c

0.0 1.0

bandgap

wa/c = 2.95

Bloch solutions
no solution

2k1

Figure 10.3 Analysis of coupling of field at plane interface separating homogeneous
medium and photonic crystal. The considered photonic crystal has a 2D square lat-
tice (edge a = |d1| = |d3|) of square rods (edge w = 0.663a) with dielectric constant
ε/ε0 = 9. The electromagnetic field is s polarized (the electric field is parallel to the rods)
and has a normalized frequency ωa/c = 2.95. The bottom left graph shows the dispersion
relation in the crystal for all the frequencies. The bottom-right graph shows the equifre-
quency dispersion relation in the crystal at ωa/c = 2.95 (solid black line) and at a slightly
upper one (dashed black line). The top-right graph shows the equifrequency dispersion
relation in vacuum at ωa/c = 2.95 (solid black line) and at a slightly upper one (dashed
black line). The incident plane wave is coupled with the reflected plane wave and Bloch
waves which possess the same tangential component; this conservation is represented by
the vertical red dashed line. The group velocity vg is perpendicular to the equifrequency
dispersion relation and oriented toward the increasing frequencies (this is the reason why
we give the curves for two slightly different frequencies).
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Figure 10.3 (continued )

particular case, the period of the crystal a is equal to the period of the grating
|d1|: The unit cell of the reciprocal lattice associated with the grating is then
equal to the projection in the interface plane of the Brillouin zone associated
with the crystal. In the general case (e.g., |d1| > a), this conservation has to be
represented by a collection of parallel vertical lines separated by n�

1d�
1 + n�

2d�
2

(e.g., 2π/|d1|) inside the Brillouin zone (e.g., [−π/a, π/a]) associated with the
crystal; or, equivalently, this conservation can be represented by a single vertical
line if the equifrequency dispersion relations are repeated with respect to all of
the translations associated with the vectors n�

1d�
1 + n�

2d�
2.

10.2.2.3 Propagation of Electromagnetic Energy In this section, to show
that the direction of propagation of the electromagnetic energy in a photonic
crystal is linked to the group velocity, we do not give the usual proof generally
used in the literature. This usual proof is based on the result of Yeh [19]: For a
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given Bloch wave, the average of the Poynting vector over the unit cell of the
Poynting vector is parallel to the group velocity. However, in the case of a wave
packet, it is necessary to consider an electromagnetic field with finite total energy
(and then a time-dependent field) in order to use this property via an identity
similar to (10.12). Since our field is purely harmonic and cannot have finite total
energy, we cannot use these usual arguments. This is the reason why we prefer to
give a proof similar to the one generally used for the Goos–Hänchen effect [20].

Let x|| = x1d1 + x2d2 be the projection in the plane interface of the vector
x in R

3. Then, we can define a center of the electromagnetic energy for all x3 in
R as

X||(x3) =

∫
R2

dx1 dx2x|||E (x)|∫
R2

dx1 dx2|E (x)|
(10.25)

Of course, a proper definition of the numerator in this expression requires a
(pure mathematical) restriction

∫
R2 dx1 dx2|x||‖E (x)| < ∞ which is, in practice,

always satisfied. Now we aim to show that the quantity X||(x3 + 1) − X||(x3) is
linked to the group velocity in order to find a result similar to the one based
on [19].

Using the definition (10.7), it is possible to show that the Floquet–Bloch
transform of xiFω is

x̃iFω = xi F̃ω + 1

2jπ

∂F̃ω

∂k�
i

k�
i = k|| · di

2π
i = 1, 2 (10.26)

Using this relationship together with the property of unitarity of the Flo-
quet–Bloch transform (10.14), we obtain for the center of the electromag-
netic energy

X||(x3) =

∫
B||

dk||
∫

[0,1]2
dx1 dx2

[
x|||Ẽ (k||, x)| + 1

2jπ

∑
i=1,2

	i(k||, x)di

]
∫

B||
dk||

∫
[0,1]2

dx1 dx2|Ẽ (k||, x)|
(10.27)

where, for i = 1, 2,

	i(k||, x) = |ε(x)|Ẽω(k||, x) · ∂Ẽω(k||, x)

∂k�
i

+ |µ(x)|H̃ω(k||, x) · ∂H̃ω(k||, x)

∂k�
i

(10.28)
For the sake of simplicity, we assume that there is a single Bloch mode inside
the structure: α = 1 in Eq. 10.22 and we denote by k�

3 the single third component
of the Bloch wave vector k1

3. Clearly, from its definition (10.13) and the Bloch
boundary condition (10.22), the quantity Ẽ (k||, x) is periodic with respect to the
variable x3: Ẽ (k||, x) = Ẽ (k||, x + d3). Then, only the part containing (10.28) will
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contribute to X||(x3 + 1) − X||(x3). Again, using the Bloch boundary condition
(10.22), it is possible to show that

	i(k||, x + d3) − 	i(k||, x) = −2jπ |Ẽ (k||, x)|∂k�
3

∂k�
i

i = 1, 2 (10.29)

Consequently, we obtain

X||(x3 + 1) − X||(x3) = −

∫
B||

dk||
∫

[0,1]2
dx1 dx2|Ẽ (x)|

∑
i=1,2

(∂k�
3/∂k�

i )di∫
B||

dk||
∫

[0,1]2
dx1 dx2|Ẽ (x)|

(10.30)
Finally, since we have a harmonic field,

ω = f (k�
1, k

�
2, k

�
3) ⇒ dω = 0 = df = ∂f

∂k�
1

dk�
1 + ∂f

∂k�
2

dk�
2 + ∂f

∂k�
3

dk�
3 (10.31)

we have ∂k�
3/∂k�

i = −(∂f/∂k�
i )(∂f/∂k�

3)
−1 for i = 1, 2, and then

X||(x3 + 1) − X||(x3)

=

∫
B||

dk||
∫

[0,1]2
dx1 dx2|Ẽ (x)|(∂f/∂k�

3)
−1

∑
i=1,2

(∂f/∂k�
i )di∫

B||
dk||

∫
[0,1]2

dx1 dx2|Ẽ (x)|
(10.32)

If the vector d3 is added to each side of this equation, we then obtain an expression
containing the group velocity vb

g = ∑
i=1,3(∂f/∂k�

i )di associated with the Bloch
waves under consideration:

X||(x3 + 1) + d3 − X||(x3)

=

∫
B||

dk||
∫

[0,1]2
dx1 dx2|Ẽ (x)|(∂f/∂k�

3)
−1

∑
i=1,3

(∂f/∂k�
i )di∫

B||
dk||

∫
[0,1]2

dx1 dx2|Ẽ (x)|
(10.33)

From this expression, we conclude that the center of the electromagnetic
energy is following a line whose direction is given by the average of the group
velocity. Then, if we consider the example shown in Figure 10.3, it is expected
that the electromagnetic energy will propagate with respect to the directions given
by vectors vb

g . Consequently, for this example, negative refraction is expected.
In Figure 10.4, we have represented a slab of the photonic crystal described
in Figure 10.3, illuminated by an incident Gaussian beam with average incident
wave vector ki (represented in Fig. 10.3) and corresponding to an incidence angle
of 45◦. The direction of propagation of the electromagnetic energy inside the
crystal slab shown in Figure 10.4 is exactly the one expected by the theory (45◦).
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Figure 10.4 Example of negative refraction at two plane interfaces separating vacuum
and 2D crystal slice. The parameters are given in the caption of Figure 10.3. The thick-
ness of the crystal slice is 1000a and the width of the incident Gaussian beam is 100a.
The maximum value of the incident field intensity is equal to unity.

10.3 SUPERPRISM EFFECT

The purpose of this section is to show how the preceding theoretical tools permit
one to design interesting dispersive devices. Indeed, we will see that playing with
the conservation of the tangential component of the wave vector at the interface
between a homogeneous medium and a photonic crystal enables one to get rapid
variations of the light propagation direction when either the angle of incidence or
the wavelength varies. These properties are obviously linked to the fact that the
dispersion relation can be very sensitive to these parameters under appropriate
conditions. Basically, the various studies related in the literature can be classified
in three categories, depending on the way the dispersion relation is exploited.
Note that, unless otherwise specified, we will consider 2D problems for the sake
of simplicity. This assumption means that the structure, as well as the fields, will
be independent of the x2 coordinate. In particular, it means that the k2 component
of the wave vectors vanishes.

10.3.1 Group Velocity Effect

In this first case, the basic idea is to take advantage of a large variation of the
group velocity direction in the photonic crystal that appears at some points on
the dispersion curves. Such effects have been experimentally studied by Kosaka
et al. [7, 8]. We consider a plane interface between a homogeneous medium
(usually vacuum) and a photonic crystal, with a harmonic beam impinging on
this interface, being incident from the homogeneous medium. Let us now assume
that the equifrequency dispersion diagram of the Bloch modes in the photonic
crystal is depicted in Figure 10.5. In this 2D problem, the k|| vector is reduced to
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Figure 10.5 Schematic example
of equifrequency dispersion dia-
gram (left) and enlargement of
interesting part (right). The blue
and green curves correspond to
two different wavelengths.

its k1 component. We recall that, from the previous section, each k1 component
of the incident field couples with the Bloch mode with the same value of k1.
Let us consider two different values, k1 and k1 + 	k1. Since k1 is linked to
both the wavelength and the incidence angle on the photonic crystal boundary,
the effect is sensitive to these two parameters. First, let us assume that only
the incidence angle changes. On the right part of Figure 10.5, we consider only
the blue curve associated with the constant wavelength of interest. The blue
arrows represent the direction of the energy flow inside the photonic crystal. It
is clear that a small variation 	k1 can lead to a large variation of the direction.
Using the same idea, let us consider now the more practical problem in which the
incidence angle is constant but 	k1 is due to two different wavelengths. The only
change is that we have to consider the two equifrequency dispersion diagrams
that correspond to each wavelength (in blue and green in Fig. 10.5). Note that
since the wavelength variation is small, these two diagrams are generally very
close (except in particular situations that will be discussed later). Obviously, from
Figure 10.5, the two wavelengths will propagate in different directions and will
be spatially split inside the photonic crystal.

The reader interested in a theoretical discussion of the performances of this
kind of device will find a detailed study of wavelength sensitivity and resolution
in [21].

10.3.2 Phase Velocity Effect

Let us now consider the superprism effect based on phase velocity [22, 23]. The
situation is depicted in Figure 10.6. An incident monochromatic beam coming
from a homogeneous dielectric impinges on the interface x3 = 0 of the photonic
crystal. We consider two close incidences of this beam (blue and green arrows).
Here, we take advantage of a flat region inside the equifrequency dispersion
diagram. Again, the two incidences correspond to k1 and k1 + 	k1. Due to the
flat shape of the dispersion curve, the corresponding variation 	k3 of the other
component of the Bloch wave vector inside the crystal is considerably larger.
Let us now consider the interface x1 = const where the wave emerges from the
crystal. Here, the tangential component that remains constant is k3. Therefore,
the device amplifies the angular variation between the two waves.
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Figure 10.6 Left: schematic description of experiment. Right: equifrequency dispersion
diagram of photonic crystal (blue curve) and external medium (pink dashed circle).

Note that for the sake of simplicity we have considered a monochromatic
situation with two different incidences. In the same manner, one can consider
a given incidence and two different wavelengths. The explanations are slightly
more intricate. Indeed, one should consider slightly different dispersion curves
for the two wavelengths, as in the previous section. Nonetheless, the final result
remains that, as in the situation depicted in Figure 10.6, the two wavelengths
will emerge from the crystal with noticeably different deviations.

Here, and in contrast with the group velocity effect, the separation is not
due to the propagation inside the crystal itself. In the present case, two interfaces
between the photonic crystal and the external medium are involved. Conse-
quently, the group velocity effect gives additional freedom for the design of the
structure. More compact structures could be investigated, since the distance of
propagation inside the photonic crystal does not directly influence the separation.

10.3.3 Chromatic Dispersion Effect

Here, the basic idea is to take advantage of the fact that the photonic crystals can
be highly dispersive [6, 9]. Once more, the graphic construction that gives the
energy flow direction is based on the conservation of the tangential component of
the wave vector and involves the dispersion curve of the Bloch waves in the pho-
tonic crystal. Thus, any rapid variation of the dispersion curve with respect to the
wavelength leads to a rapid variation in the direction of propagation. Figure 10.7
shows a schematic representation of the dispersion relation ω = f (k1, k3) for a
given Bloch mode. Thus it is represented by a surface. Obviously, in the vicinity
of a horizontal tangent to this surface, the equifrequency dispersion curves vary
very quickly with respect to the frequency. This case occurs in particular at each
band edge.

To illustrate this phenomenon, we will consider a prism such as the one
represented in Figure 10.8. The interesting refraction occurs at the slanted inter-
face. Inside the crystal, the incident energy propagates horizontally, that is, with
an incidence angle of 45◦ with respect to the slanted interface. This direction
is represented by the black arrow in Figure 10.7. For each frequency, the con-
struction expressing the conservation of the tangential wave vector relies on the
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Figure 10.7 Left: schematic representation of dispersion relation ω = f (k1, k3) for
given Bloch mode. Right: graphical construction illustrating dispersive refraction.
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Figure 10.8 Field map
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equifrequency dispersion curve (blue and green curves, each being related to one
frequency) and that of the vacuum (pink circle). Finally, the refraction directions
in the vacuum are given by the blue and green arrows. Of course, we obtain
nothing but the same construction as for a classical prism. But here the disper-
sion can be much greater. Note that the exact shape of the blue and green curves
plays a minor role in the final result.

The photonic crystal in Figure 10.8 is constructed from a set of 465 dielec-
tric rods with optical index equal to 3, lying in vacuum, and with a square lattice
of period a. The radius of the rods is ρ = 0.374a. It is illuminated by a Gaussian



10.3 SUPERPRISM EFFECT 275

beam whose electric field is parallel to the rods (x2 axis). The x2 component of
the incident field is given by

ui(x′
1, x

′
3) =

∫ +∞

−∞
A(k′

1) exp(−jk′
1x

′
1 + jk′

3x
′
3) dk′

1 (10.34)

with k′
1 = k0 sin θ inc, k′

3
2 = k0

2 − k′
1

2
, k0 = 2π/λ, and with a Gaussian ampli-

tude:

A(k′
1) = W

2
√

π
exp

(
− (k′

1 − k0 sin θ0)
2W 2

4

)
(10.35)

where θ0 is the mean incidence of the beam on the left-hand side of the prism.
It can be noticed that the parameter W appearing in (10.35) is directly linked to
the incident beam width. In the case of Figure 10.8, we have taken θ0 = 0 and
W = 7.87a.

Figure 10.8 shows that the beam is going through the hypotenuse with a
quasi-normal direction. To precisely define this direction, we plot in Figure 10.9
the scattered intensity at infinity versus the diffraction angle θ (defined in
Fig. 10.8). This property is also a consequence of the geometric construction
of Figure 10.7, assuming that the equifrequency dispersion curves are small (i.e.,
close to the origin), which is obviously the case when the wavelengths are chosen
near the band edge.

We can remark that the high-index contrast implies that the reflection is
important at each interface. It could probably be attenuated by the use of some
antireflection structure [24].

In a second step, let us evaluate the dispersion. Changing the wavelength
from λ = 1.953a to λ = 1.984a shifts the maximum diffraction angle (Fig. 10.9)
by about 5◦. By the way, since the wavelength is closer from the gap, the trans-
mitted intensity is lower.

It is easy to verify that the dispersion dθ/dλ is much greater with this
microprism than with any other classical dispersive device (grating, silica prism).
Such microprisms could find interesting applications in the domain of fiber-optic
communications and in particular in wavelength multiplexing/demultiplexing.

Figure 10.9 Scattered inten-
sity at infinity for different
wavelengths.
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10.4 ANTENNA APPLICATIONS

From the preceding section, it has been shown that a photonic crystal enables one
to couple any propagative wave inside the crystal with a plane wave outside the
crystal whose propagation direction can remain close to the normal to the interface
provided that the equifrequency dispersion curve remains close to the origin in
the reciprocal space. (This is not a necessary condition, as will be illustrated at
the end of this section.) Consequently, we can imagine using this property to
design directive emitters. We would like to stress that here the antenna properties
are not based on a resonant defect inside a photonic crystal, as proposed by
several authors [3, 4].

The basic ideas that govern the radiation phenomena involved in this
section can again be understood using a graphical construction that expresses
the conservation of the tangential component of the wave vector at the cross-
ing of the interface between the photonic crystal and the outside homogeneous
medium (Fig. 10.10). Let us consider a source embedded in a photonic crystal
slab (Fig. 10.10, left). Assuming that the evanescent waves in the crystal play
a negligible role, we only consider propagating Bloch modes inside the crystal.
Any of these modes is represented by a point on the equifrequency dispersion
curve of the crystal, that is, by the red arrow in Figure 10.10. Due to the con-
servation of the tangential component of the wave vector, this Bloch mode is
coupled with the plane wave represented by the blue arrow. Thus, the whole
dispersion curve is coupled with the set of directions in the green angular sector.

Let us give an illustration of the design of a directive antenna in the
microwave frequencies [12]. The photonic crystal can be considered as a metama-
terial that is a composite stack of metallic grids and foam layers. It is backed by
a ground plane and excited by a monopole to complete the antenna (Fig. 10.11).

It is well known that such metallic grids behave as a low-frequency filter.
It means that there is no propagating solution in the structure for frequencies
below the cutoff ωp (low-frequency bandgap). For our purpose, we are mainly

source
Photonic crystal

k1

k3

Allowed propagation 
directions

outside the crystal

dispersion curve of

vacuum, radius k0

dispersion curve
of the crystal

Figure 10.10 Schematic construction representing conservation of tangential component
of Bloch wave vectors.
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Figure 10.11 Schematic representation of antenna. The six copper grids are separated
by foam. The rod in the middle represents the coaxial cable ended with the monopole (in
red). The bottom plane is the ground plane.

interested in the small frequency range associated with the transition between
the low-frequency bandgap and the allowed propagating solutions. Several stud-
ies [25–27] have shown that in this frequency range, where the wavelength is
much greater than the period of the periodic media, the metamaterial can be
homogenized as a material whose relative permittivity has a behavior governed
by a plasma frequency in the microwave domain: εeff = 1 − ω2

p/ω2. Of course,
using this expression, one can check that the low frequencies see the metama-
terial as a medium with a negative permittivity and, hence, a pure imaginary
optical index. Consequently, the only solutions are evanescent waves. But this
expression also tells us that for frequencies just a little bit larger than the plasma
frequency the relative permittivity stays between 0 and 1, and the same is valid
for the optical index. In this case, the metamaterial behaves as a homogeneous
material with an effective optical index close to zero. This remarkable property
is called ultrarefraction [28].

Another interesting feature of this device is its ability to generate a linearly
polarized beam when the current in the exciting source flows parallel to a given
direction. This is one of the reasons for our decision to use a monopole to feed
the overall EBG antenna. It means that all the currents in the metallic grids also
flow parallel to this direction. The consequence is that the electric field inside
the metamaterial is also nearly parallel to this direction. Since the grids are
made with thin metallic crossed wires, it can be shown that the wires orthogonal
to this direction have very little influence on the properties of this antenna.
This feature is fundamental for the numerical study, since it proves that a 2D
model will allow us to predict the properties of the antenna with good accuracy.
After optimization of the parameters in order to match realization constraints
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Figure 10.12 Field modulus (top) and lines of equal phase (bottom) of field radiated by
2D antenna.

and to achieve interesting properties around 14 GHz, it appears that convenient
parameters for the EBG antenna system are the following: the cross section of
the metallic wires is 0.14 mm thick (along the x3 axis) and 0.71 mm large (along
the x1 axis), d1 = 5.8 mm, and d3 = 6.3 mm. Figure 10.12 shows the modulus
and the lines of equal phase of the total field radiated by the structure made with
40 × 6 of these wires above a ground plane located at x3 = 0. The source is a
wire antenna parallel to the x2 axis and placed in the middle of the metamaterial,
with a wavelength λ = 20.7 mm. The most striking fact is the very slow variation
of the phase inside the metamaterial, which is a proof that the effective index in
this material is quite low. One can also notice that the phase of the emitted field
is nearly constant on planes parallel to the emitting surface. The radiation pattern
exhibits a narrow lobe (Fig. 10.13), with a half-power beam width of 2 × 3.8◦.

The experimental device is made of six crossed grids etched from copper
plates. The dimensions are those given above for the 2D case. Figure 10.14 gives
the measured radiation pattern at 14.65 GHz. It shows the high directivity of the
antenna. The measured half-power beam width is about 2 × 5◦. The dissymmetry
of the radiation pattern in the E plane is probably due to the coaxial cable that
feeds the monopole. The cross-polar radiation is not shown on this figure, but
it stays low: −23 dB compared to the copolar level in the normal direction
(maximum radiation) and about −10 dB for directions far from the normal.

Our approach also allows us to design an emitting device radiating a narrow
beam in any direction (and not necessarily toward the normal). To this end, we
still need to keep the k1 values associated with the equifrequency dispersion
diagram lying in a small region, but now not centered on the origin. To this aim,
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Figure 10.13 Radiation pattern for 2D device of Figure 10.12 (decibel scale). The
half-power beam width is 2 × 3.8◦.
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Figure 10.14 Experimental radiation pattern for 3D antenna (decibel scale).

let us consider a dielectric hexagonal crystal made of rods with optical index
equal to 2.9, radius ρ = 0.15a, where a is the period of the crystal (distance
between the centers of two neighbor rods). In the following example, we have
taken a = 4 using arbitrary units. The dispersion relation has a sixfold symmetry
which does not satisfy our requirements. One way to overcome this problem is
to break this symmetry. For this purpose, we have chosen to expand the lattice of
the crystal in the vertical direction of Figure 10.15: The vertical spacing between
two grids is enlarged from

√
3a/2 ≈ 3.46 to 3.9. The wavelength λ = 8.01 is in

the gap of the original crystal; it is able to propagate in the expanded direction
of the transformed crystal. Then we rotate the expanded crystal clockwise with
an angle ψ = arctan(3.9/6) ≈ 33◦. This choice allows us to obtain a lower row
of rods parallel to the ground plane (see Fig. 10.16).

Figure 10.16 shows the field map and the lines of equal phase when this
crystal is backed by a ground plane put at the origin of the vertical axis and excited
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Figure 10.15 Rotation of expanded EBG
crystal.
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Figure 10.16 Field map (top) and lines of equal phase (bottom) of expanded and rotated
EBG crystal backed by ground plane put at origin of vertical axis and excited by wire
source.

by a wire source with λ = 8.01 and located at coordinates (0,4). Note that for this
wavelength it can be seen from the dispersion relation (Fig. 10.17) that the energy
propagates inside the crystal in all directions (the normal to the equifrequency
dispersion diagram). Thus the field fills the entire crystal (Fig. 10.16). In that
case the transverse variations of the field are smooth in a direction orthogonal
to the desired emitting direction. The Bloch mode propagating inside the crystal
enforces an appropriate field phase on the upper boundary of the crystal. This
phase is appropriate since it is close to that of a plane wave propagating with
an angle ψ ≈ 33◦ with respect to the normal. This example also shows that the
location of the wire source is not critical. We see that the field is not particularly
large near the source, and the largest values are located in the middle of the
crystal. This property is useful, since it could give some freedom to choose the
position of the source in order to obtain a convenient input impedance.

Figure 10.18 shows the polar emission diagram for the same structure with
the same parameters. As expected, the principal lobe is tilted by an angle of 33◦
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Figure 10.18 Polar emission diagram for EBG antenna structure of Figure 10.16,
linear scale.

from the normal. A small part of the energy radiates in the symmetric direction.
Assuming again that the outgoing wave has a constant amplitude on the crystal,
the half-power beam width should be given by the formula obtained for the field
radiated by a screen pierced by an aperture having a width D cos 33◦, where
D = 130 is the lateral size of the crystal, that is, ±0.443λ/(D cos 33◦

) = ±1.9◦.
The actual half-power beam width obtained on the emission diagram is ±2.1◦

and thus agrees very well with the model.

10.5 CONCLUSION

We have reviewed several aspects of the propagation of electromagnetic waves
in EBG materials. Besides the well-known bandgaps that can arise in period-
ically structured materials, we have shown how the richness of the dispersion
relation of Bloch modes enables one to control the propagation of electromag-
netic waves.
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The behavior of finite-size EBG structures relies upon theoretical founda-
tions that have been given in the first part of this chapter. Indeed, the study of the
propagation of electromagnetic energy is linked to the study of coupling at the
interfaces and can be fully understood due to the Floquet–Bloch transform. We
have stressed a simple consequence of these theoretical aspects, which can be
interpreted graphically using the equifrequency dispersion diagrams. In this way,
three different types of superprism effects have been pointed out. The same tools
can be used for antenna applications. We have shown that an EBG material can
simulate a homogeneous material with a permittivity close to zero (ultrarefractive
metamaterial), allowing us to design an innovative directive antenna.

Electromagnetic bandgap materials have paved many new ways for the
design of devices, but nowadays only few of them have led to actual applica-
tions. No doubt in the near future EBG materials will initiate new technological
products, especially in the telecommunication sphere.
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11.1 INTRODUCTION

Engineered electromagnetic surface textures can be used to alter the properties of
metal surfaces to perform a variety of functions. For example, specific textures
can be designed to change the surface impedance for one or both polarizations, to
manipulate the propagation of surface waves, or to control the reflection phase.
These surfaces provide a way to design new boundary conditions for building
electromagnetic structures, such as for varying the radiation patterns of small
antennas. They can also be tuned, enabling electronic control of their electro-
magnetic properties. Tunable impedance surfaces can be used as simple steerable
reflectors or as steerable leaky-wave antennas.

The simplest example of a textured electromagnetic surface is a metal slab
with quarter-wavelength deep corrugations [1–4], as shown in Figure 11.1a. This
is often described as a soft or hard surface [5] depending on the polarization and
direction of propagation. It can be understood by considering the corrugations as
quarter-wavelength transmission lines, in which the short circuit at the bottom of
each groove is transformed into an open circuit at the top surface. This provides a
high-impedance boundary condition for electric fields polarized perpendicular to
the grooves and low impedance for parallel electric fields. Soft and hard surfaces
are used in various applications, such as manipulating the radiation patterns of
horn antennas or controlling the edge diffraction of reflectors. Two-dimensional
structures have also been built, such as shorted rectangular waveguide arrays
[6] or the inverse structures, often known as pin-bed arrays [7]. These textured
surfaces are typically one-quarter-wavelength thick in order to achieve a high-
impedance boundary condition.

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
Copyright  2006 the Institute of Electrical and Electronics Engineers, Inc.
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(a) (b)

Figure 11.1 (a) A traditional corrugated surface consists of a metal slab with narrow
quarter-wavelength long slots. The boundary condition at the top surface depends on the
polarization of the incoming wave. (b) A high-impedance surface is built as a thin two-
dimensional lattice of plates attached to a ground plane by metal-plated vias. The plates
provide capacitance and inductance, and it has high electromagnetic impedance near its
LC resonance frequency.

Recently, compact structures have been developed that can also alter the
electromagnetic boundary condition of a metal surface but which are much
less than one-quarter-wavelength thick [8, 9]. They are typically built as sub-
wavelength mushroom-shaped metal protrusions, as shown in Figure 11.1b, or
overlapping thumbtack-like structures. They can be analyzed as resonant LC cir-
cuits, and the reduction in thickness is achieved by capacitive loading. These
materials provide a high-impedance boundary condition for both polarizations
and for all propagation directions. They also reflect with a phase shift of zero,
rather than π , as with an electric conductor. They are sometimes known as arti-
ficial magnetic conductors because the tangential magnetic field is zero at the
surface, rather than the electric field, as with an electric conductor. In addi-
tion to their unusual reflection-phase properties, these materials have a surface
wave bandgap, within which they do not support bound surface waves of either
transverse magnetic (TM) or transverse electric (TE) polarization. They may be
considered as a kind of electromagnetic bandgap (EBG) structure or photonic
crystal [10, 11] for surface waves [12]. Although bound surface waves are not
supported, leaky TE waves can propagate within the bandgap, which can be
useful for certain applications.

By incorporating tunable materials or devices into textured surfaces, their
capabilities are expanded to include active control of electromagnetic waves.
This can be accomplished using mechanical structures such as movable plates or
electrical components such as varactor diodes. With a tunable textured surface,
one can build devices such as programmable reflectors that can steer or focus
a reflected microwave beam [13]. These can provide a low-cost alternative to
traditional electrically scanned antennas (ESAs) where phase shifters and com-
plicated feed structures are replaced by a planar array of varactor diodes and
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a free-space, quasi-optic feed. Despite being low cost, these steerable reflector
antennas are ruled out for some applications because they are not entirely planar.

Steerable leaky waves provide an alternative approach to electronic beam
steering, without requiring a space feed [14]. The surface is programmed with a
periodic impedance function that scatters the surface wave into free space. This
steering method allows the scattered radiation to be steered over a wide scan
range in both the forward and backward directions. Backward leaky waves can
also be understood as resulting from bands of negative dispersion, similar to
those in other negative-index materials.

11.2 SURFACE WAVES

By applying a texture to a metal surface, we can alter its surface impedance and
thereby change its surface wave properties. The behavior of surface waves on
an impedance surface is derived in several electromagnetics textbooks [15]. The
derivation proceeds by assuming a surface having an impedance Zs and a wave
that decays exponentially away from a surface with decay constant α, as shown
in Figure 11.2. For TM waves, we apply Maxwell’s equations to determine the
relationship between the surface impedance and the surface wave properties. It
can be shown that TM waves occur on an inductive surface, in which the surface
impedance is given by the expression

Zs = jα

ωε
(11.1)

Conversely, TE waves can occur on a capacitive surface, with the following
impedance:

Zs = −jωµ

α
(11.2)

In the above expressions, ε and µ are the permittivity and permeability of the
space surrounding the surface, which may be vacuum, and ω is the angular
frequency of the wave. We see that TM waves require a positive imaginary
impedance, or an inductive surface, while TE waves require a negative imaginary
impedance, or a capacitive surface.

Ordinary metals are slightly inductive, due to the skin effect, so they support
TM waves. At optical frequencies these are often called surface plasmons [16]. At
microwave frequencies, they are simply the ordinary surface currents, and they are
only very weakly bound to the surface. A diagram of a TM surface wave is shown
in Figure 11.3a. While bare metals do not support TE surface waves, dielectric-
coated metals can support TE waves above a cutoff frequency that depends on the

Figure 11.2 A surface wave is a wave that is
bound to a surface and decays into the surrounding
space.
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(a) (b)

Figure 11.3 (a) In a TM surface wave, shown here on a flat metal surface, the electric
field arcs out of the surface, and the magnetic field is transverse to the surface. (b) The
fields take the opposite form in a TE surface wave, shown here on a high-impedance
surface.

thickness and dielectric constant of the layer. Electromagnetic bandgap structures
such as photonic crystals, frequency-selective surfaces, textured surfaces, and
other interfaces can also support TE waves if the effective surface impedance is
capacitive. The surface impedance of the textured metal surface described in this
chapter is characterized by a parallel resonant LC circuit. At low frequencies
it is inductive and supports TM waves. At high frequencies it is capacitive and
supports TE waves, as depicted in Figure 11.3b. Near the LC resonant frequency,
the surface impedance is very high. In this region, waves are not bound to the
surface; instead, they radiate readily into the surrounding space as leaky waves.

11.3 HIGH-IMPEDANCE SURFACES

High-impedance surfaces consist of an array of metal protrusions on a flat metal
sheet. The protrusions are arranged in a two-dimensional lattice and can be visu-
alized as mushrooms or thumbtacks protruding from the surface. High-impedance
surfaces are typically constructed as printed circuit boards, where the bottom side
is a solid metal ground plane and the top contains an array of small (� λ) metal
patches, as shown in Figure 11.1b. The plates are connected to the ground plane
by metal-plated vias to form a continuous conductive metal texture. It can be con-
sidered as a two-dimensional version of the corrugated ground plane, where the
quarter-wavelength resonant corrugations have been folded up into small reso-
nant circuits and distributed on a two-dimensional lattice. For greater capacitance,
multilayer circuit boards with overlapping plates can be used.

When the period is small compared to the wavelength of interest, we may
analyze the material as an effective medium, with its surface impedance defined
by effective lumped-element circuit parameters that are determined by the geome-
try of the surface texture. A wave impinging on the material causes electric fields
to span the narrow gaps between the neighboring metal patches, and this can be
described as an effective sheet capacitance C. As currents oscillate between the
neighboring patches, the conducting paths through the vias and the ground plane
provide a sheet inductance L. These form a parallel resonant circuit that dictates
the electromagnetic behavior of the material, as shown in Figure 11.4. Its surface
impedance is given by the expression

Zs = jωL

1 − ω2LC
(11.3)
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(a) (b)

Figure 11.4 (a) The capacitance in a high-impedance surface is due to the proximity
of the neighboring plates. The inductance comes from the current loops that are formed
between the plates and the ground plane through the vias. (b) The impedance of the
surface can be modeled as a parallel resonant LC circuit.

The resonance frequency of the circuit is given by

ω0 = 1√
LC

(11.4)

Below resonance, the surface is inductive and supports TM waves. Above res-
onance, the surface is capacitive and supports TE waves. Near ω0, the surface
impedance is much higher than the impedance of free space, and the material
does not support bound surface waves.

In addition to its unusual surface wave properties, the high-impedance sur-
face also has unusual reflection-phase properties. In the frequency range where the
surface impedance is very high, the tangential magnetic field is small, even with
a large electric field along the surface. Such a structure is sometimes described
as an artificial magnetic conductor. Because of this unusual boundary condi-
tion, the high-impedance surface can function as a new type of ground plane for
low-profile antennas. The image currents in the ground plane are in-phase with
the antenna current, rather than out of phase, allowing radiating elements to lie
directly adjacent to the surface while still radiating efficiently. For example, a
dipole lying flat against a high-impedance ground plane is not shorted as it would
be on an ordinary metal sheet.

11.4 SURFACE WAVE BANDS

Many of the important properties of the high-impedance surface can be explained
using an effective surface impedance model. The surface is assigned an impedance
equal to that of a parallel resonant LC circuit, as described above. The use of
lumped circuit parameters to describe electromagnetic structures is valid as long
as the wavelength is much longer than the size of the individual features. The
effective surface impedance model can predict the reflection properties and some
features of the surface wave band structure, but not the bandgap itself, which by
definition must extend to large wave vectors.
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The wave vector k is related to the spatial decay constant α and the fre-
quency ω by the dispersion relation

k2 = µ0ε0ω
2 + α2 (11.5)

For TM waves we can combine Eq. (11.5) with Eq. (11.1) to find the following
expression for k as a function of ω, in which η is the impedance of free space
and c is the speed of light in vacuum:

k = ω

c

√
1 − Z2

s

η2
(11.6)

We can find a similar expression for TE waves by combining Eq. (11.5) with
Eq. (11.2):

k = ω

c

√
1 − η2

Z2
s

(11.7)

Inserting Eq. (11.3) into Eqs. (11.6) and (11.7) we can plot the dispersion dia-
gram for surface waves in the context of the effective surface impedance model.
An example of the complete dispersion diagram, calculated using the effective
medium model, is shown in Figure 11.5.

Below resonance, TM surface waves are supported. At low frequencies,
they lie very near the light line, indicated in Figure 11.5 by the dotted line with a
slope equal to the speed of light c. The fields extend many wavelengths beyond
the surface, as they do on a flat metal sheet. Near the resonant frequency, the
surface waves are tightly bound to the surface and have a very low group velocity.
The dispersion curve is bent over away from the light line. In the effective
surface impedance limit, there is no Brillouin zone [17] boundary, and the TM
dispersion curve approaches the resonance frequency asymptotically. Thus, this
approximation does not predict the bandgap.

Above the resonance frequency, the surface is capacitive and TE waves are
supported. The lower end of the dispersion curve is close to the light line, and the
waves are weakly bound to the surface, extending far into the surrounding space.
As the frequency is increased, the curve bends away from the light line and the
waves are more tightly bound to the surface. The slope of the dispersion curve

Figure 11.5 The effective surface impedance
model can determine many of the properties
of the high-impedance surface, including the
shape and polarization of the surface wave
bands. This is the predicted surface wave
dispersion diagram for a surface with sheet
capacitance of 0.05 pF and sheet inductance
of 2 nH. The surface supports TM waves (red
curve) below the resonance frequency and TE
waves (blue curve) at higher frequencies. This
model does not predict the bandgap, but it
does predict a region of radiative loss.
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indicates that the waves feel an effective index of refraction that is greater than
unity. This is because a significant portion of the electric field is concentrated in
the capacitors.

The TE waves that lie to the left of the light line exist as leaky waves that
are damped by radiation, which can be modeled as a resistor in parallel with the
high-impedance surface. The damping resistance is the impedance of free space,
projected onto the surface at the angle of radiation. This blurs the resonance
frequency, so the leaky waves actually radiate within a finite bandwidth. Small
wave vectors represent radiation perpendicular to the surface, while wave vectors
near the light line represent radiation at grazing angles. In place of a bandgap,
the effective surface impedance model predicts a frequency band characterized
by radiation damping.

In the effective impedance surface model described above, the properties
of the textured surface are summarized into a single parameter—the surface
impedance. This model correctly predicts the shape and polarization of the surface
wave bands and also the reflection phase, to be described later. However, it
does not predict the bandgap itself. For a more accurate picture of the surface
wave properties, we can use a finite-element numerical model. The metal and
dielectric regions are discretized on a grid, and the electric field at all points on
the grid is described in terms of an eigenvalue equation, which may be solved
numerically. A single unit cell is simulated, and Bloch boundary conditions [18]
are used. The calculation yields the allowed frequencies for each wave vector.
An example high-impedance surface is shown in Figure 11.6, along with the
calculated dispersion diagram. The lowest band is TM, the second band is TE,
and both have a similar shape to that predicted by the effective surface impedance
model. A bandgap within which the surface does not support bound surface

(a) (b)

Figure 11.6 (a) The complete dispersion diagram can be obtained accurately using
numerical methods, and square lattices are often easier to simulate. The substrate (not
shown) has a relative dielectric constant of 2.2. (b) The lowest bands are qualitatively
similar to that of the effective surface impedance model. The finite-element model also
predicts a bandgap where bound surface waves of neither polarization are supported,
between the first two bands. It also predicts several higher bands.
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(a) (b)

Figure 11.7 (a) Measurements were performed on a triangular lattice of hexagons built
on a substrate with a relative dielectric constant of 2.2. (b) The high-impedance surface
supports TM surface waves (red curve) at low frequencies and TE waves (blue curve)
at high frequencies. Between these two bands is a gap within which waves of neither
polarization are supported.

waves of either polarization extends from the top of the TM band to the point
where the TE band crosses the light line. The finite-element model also predicts
additional higher order bands that are not predicted by the simple effective surface
impedance model.

Surface wave modes can be measured by recording the transmission
between a pair of small coaxial probes placed near the surface. Depending on
their orientation, the probes will excite surface waves with TM, TE, or both
polarizations. An example of a high-impedance surface and the measured sur-
face wave transmission across a 12-cm sample is shown in Figure 11.7 for both
TM and TE polarizations. As predicted by both models described above, TM
waves are supported at low frequencies and TE waves are supported at high
frequencies. The TM and TE bands are separated by a bandgap within which
bound surface waves of either polarization are not supported. For comparison,
an electric conductor of the same size exhibits nearly flat transmission for TM
waves at microwave frequencies, at around −30 dB, and very low transmission
for TE waves, at around −60 dB.

11.5 REFLECTION PHASE

The surface impedance defines the boundary condition at the surface for the
standing wave formed by incident and reflected waves. For a low-impedance
surface, such as an electric conductor, the ratio of electric field to magnetic field
is small. The electric field has a node at the surface, and the magnetic field has
an antinode. Conversely, for a high-impedance surface, the electric field has an
antinode at the surface while the magnetic field has a node. Another term for such
a surface is again an artificial magnetic conductor. Using the effective surface
impedance model described previously, we can determine the reflection phase
for the resonant textured surface described above. For a normally incident wave,
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Figure 11.8 The reflection phase was
measured for the same surface as shown in
Figure 11.7. The phase is zero at the resonance
frequency, but it approaches π for frequencies
far from the resonance. The phase crosses
through π /2 and −π /2 near the edges of the
surface wave bandgap.

the reflection phase of the surface is given as

� = Im

[
ln

(
Zs − η

Zs + η

)]
(11.8)

In the above expression, Zs is given by Eq. (11.3) and η is the impedance of
free space. At very low frequencies, the reflection phase is π , and the structure
behaves like a smooth metal surface. At higher frequencies, the reflection phase
slopes downward and eventually crosses through zero at the resonance frequency,
where it behaves as a magnetic conductor. Above the resonance frequency, the
phase returns to −π . The phase falls within π /2 and −π /2 when the magnitude
of the surface impedance exceeds the impedance of free space. The behavior of
the reflection phase predicted by Eq. (11.8) is identical to the measured result
shown in Figure 11.8. This reflection-phase curve was measured using the surface
shown in Figure 11.7a. It is worth noting that for a wide range of geometries
the edges of the surface wave bandgap occur at the same frequencies where the
reflection phase crosses through π /2 and −π /2.

11.6 BANDWIDTH

An antenna lying parallel to the textured surface will see the impedance of free
space on one side and the impedance of the surface on the other side. Where
the textured surface has low impedance, far from the resonance frequency, the
antenna current is mirrored by an opposing current in the surface. Since the
antenna is shorted out by the nearby conductor, the radiation efficiency is very
low. Within the bandgap near resonance, the textured surface has much higher
impedance than free space, so the antenna is not shorted out. In this range of
frequencies, the radiation efficiency is high.

The textured surface is modeled as an LC circuit in parallel with the
antenna, and the radiation into free space is modeled as a resistor with a value
of the impedance of free space. The amount of power dissipated in the resistor
is a measure of the radiation efficiency of the antenna. The maximum radiation
efficiency occurs at the LC resonance frequency of the ground plane, where the
surface reactance is infinite. At very low frequencies or at very high frequen-
cies, currents in the surface cancel the antenna current and the radiated power is
reduced. It can be shown that the frequencies where the radiation drops to half of
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its maximum value occur when the magnitude of the surface impedance is equal
to the impedance of free space, as described by the equation

|Zs | = η (11.9)

In the above expression, η is the impedance of free space and is given by

η =
√

µ0

ε0
(11.10)

Substituting Zs from Eq. (11.3) into Eq. (11.9), we can solve for ω:

ω2 = 1

LC
+ 1

2η2C2
± 1

ηC

√
1

LC
+ 1

4η2C2
(11.11)

The terms in 1/(ηC)2 are typically small compared to the terms in 1/LC, so we
will neglect them. This approximation yields the following equation for the edges
of the operating band:

ω = ω0

√
1 ± Z0

η
≈ ω0

(
1 ± 1

2

Z0

η

)
(11.12)

In the above expression, Z0 can be considered as a kind of characteristic
impedance of the surface:

Z0 =
√

L

C
(11.13)

The two frequencies designated by the plus and minus signs in Eq. (11.12) delimit
the range over which an antenna would radiate efficiently on such a surface.
The total bandwidth BW is roughly equal to the characteristic impedance of the
surface divided by the impedance of free space:

BW = �ω

ω0
≈ Z0

η
=

√
L/C√
µ0/ε0

(11.14)

This is the bandwidth over which the phase of the reflection coefficient falls
between π /2 and −π /2, and image currents are more in phase than out of phase.
As noted in the previous section, this range often coincides with the surface wave
bandgap. It also represents the maximum usable bandwidth of a flush-mounted
antenna on a resonant surface of this type.

It can be shown that the inductance of the surface L is equal to the product
of the permeability µ and the thickness t . Using Eq. (11.4) and substituting for
L in Eq. (11.12), we can obtain a more useful expression for the bandwidth of a
thin (t � λ0), nonmagnetic (µ = µ0), resonant textured ground plane:

BW = 2π

λ0
t (11.15)

In the above expression, λ0 is the free-space wavelength at the resonance fre-
quency. This result is significant because it proves that the bandwidth is deter-
mined entirely by the thickness of the surface with respect to the operating
wavelength. Note that the dielectric constant of the substrate has no direct effect
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on the bandwidth, and dielectric loading cannot be used to reduce the thickness,
except at the expense of bandwidth. A similar limitation exists for all small anten-
nas, and their bandwidth is determined by a relation analogous to Eq. (11.15) for
three-dimensional problems [19–21].

11.7 DESIGN PROCEDURE

The following is a general procedure for designing high-impedance surfaces for
a required frequency and bandwidth. For an accurate design, numerical elec-
tromagnetic software should be used. A single unit cell can be simulated with
minimal computing resources. Electric and magnetic conducting boundaries are
used on opposing walls of the unit cell. Simulations of the reflection phase, the
geometry, and the materials can be adjusted to provide the desired resonance
frequency and bandwidth. However, it is useful to have an intuitive solution, to
more rapidly converge on the correct design.

In the two-layer geometry shown in Figure 11.4, the capacitors are formed
by the fringing electric fields between adjacent metal patches. For fringing capac-
itors, the capacitance can be approximated as

Cfringe ≈ w(ε1 + ε2)

π
cosh−1

(
a

g

)
(11.16)

In the above expression, a is the lattice constant, g is the gap between the plates,
w is the width of the plates, and ε1 and ε2 are the dielectric constants of the
substrate and the material surrounding the surface, which may be free space. More
accurate expressions for the fringing field capacitance exist [22], but Eq. (11.16)
is adequate for first-order designs.

A three-layer design shown in Figure 11.9 achieves a lower resonance
frequency for a given thickness by using capacitive loading. In this geome-
try, parallel-plate capacitors are formed by the top two overlapping layers. The
capacitance can be calculated with the well-known equation

Cparallel ≈ εA

d
(11.17)

In this case, ε is the dielectric constant of the material between the plates, A is
the area of the plates, and d is their separation.

In either case, the sheet capacitance is determined by the value of the indi-
vidual capacitors and a geometric factor F that depends on the choice of lattice:

C = CindividualF (11.18)

Figure 11.9 Thin high-impedance surface with a low resonance frequency can be built
by using greater capacitive loading, such as overlapping plates, as shown in this three-
layer structure. For a given resonance frequency, thinner structures have smaller fractional
bandwidth.
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The geometric factor takes into account the number of capacitors in series or
parallel to convert the value of the individual capacitors to the sheet capacitance
per square. For a square lattice F = 1, for a triangular lattice F = √

3, and for
a hexagonal grid of capacitors F = 1/

√
3. Examples of various lattices for a

three-layer design with overlapping capacitors are shown in Figure 11.10.
The inductance of a high-impedance surface is determined entirely by its

thickness. This can be understood by considering a solenoid of current that
includes two rows of plates and their associated vias. Current flows up one row

(a)

(c) (d )

(b)

Figure 11.10 The electromagnetic properties of the high-impedance surface depend
primarily on the surface capacitance and inductance and do not significantly depend on
the geometry. Shown here are several three-layer structures, including (a) a square lattice
with a completely overlapping layer, (b) a square lattice with two similar layers, (c) a tri-
angular lattice, and (d) a hexagonal lattice, which is another form of the triangular lattice
but with two vias per unit cell. In all cases, the shaded regions represent the lower metal
layer and the outlined regions represent the upper metal layer. The solid dots represent
conductive vias.
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of vias, across the capacitors, and down the next set of vias to return through the
ground plane. The length and width of the solenoid are canceled to obtain the
sheet inductance

L = µt (11.19)

To design a surface for a desired frequency ω0 and bandwidth BW, we
combine Eqs. (11.4), (11.15), and (11.19). This procedure yields an equation for
the required thickness:

t = cBW

ω0
(11.20)

It also provides an equation for the required sheet capacitance:

C = 1

ω0ηBW
(11.21)

Finally, using either Eq. (11.16) or (11.17) together with Eq. (11.18), an appropri-
ate geometry for the capacitors can be found. For the effective surface impedance
approximation to be valid, the lattice constant should be small compared to the
wavelength, and this often dictates whether a two- or three-layer structure should
be used. Note that aside from the effects of the geometric factor F , the choice of
lattice and shape and material composition of the capacitors has no effect on the
electromagnetic properties of the surface as long as their value and arrangement
follow the guidelines given above.

11.8 ANTENNA APPLICATIONS

The high-impedance surface can be used to provide several advantages for
antenna applications using either the suppression or enhancement of surface
waves or using its unusual reflection phase. Manipulation of surface wave effects
can be demonstrated with a simple vertical monopole, shown in Figure 11.11a.
It is fabricated by feeding a coaxial cable through a hole in the ground plane.
The center conductor is extended through the other side to form a radiating wire,
and the outer conductor is shorted to the ground plane.

On a finite metal ground plane, currents generated by the monopole are
scattered at the edges of the ground plane. This can be seen as radiation in the
backward direction and also as ripples in the forward portion of the radiation
pattern because the scattered radiation interferes with the direct radiation from
the monopole. Figure 11.11b shows the radiation pattern of a 3-mm monopole
on a 5-cm2 metal ground plane measured at 35 GHz.

If the metal ground plane is replaced with a high-impedance surface
designed to resonate near 35 GHz, surface waves are suppressed, and the radia-
tion pattern is changed. While driven currents can exist on any reflective surface,
they do not propagate on the high-impedance ground plane. Any induced currents
are restricted to a localized region around the antenna and never reach the
edges of the ground plane. The absence of radiation from the edges results
in a smoother radiation pattern, with less power in the backward direction, as
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(a) (b)

(d )(c)

Figure 11.11 (a) A monopole antenna can be built by feeding a coaxial cable through a
ground plane. The outer conductor is attached to the ground plane, and the inner conduc-
tor is extended to the other side to form the antenna. (b) On a flat metal ground plane, the
monopole produces the expected radiation pattern. (c) On a high-impedance ground plane,
at a frequency within the bandgap, the antenna produces a smooth pattern with reduced
radiation in the backward direction. (d) Outside the bandgap, the antenna produces a
complex pattern with significant power in the backward direction.

shown in Figure 11.11c. This could be used to reduce effects of nearby objects
or discontinuities in the ground plane.

Two additional features are apparent in Figure 11.11c. First, the center null
is diminished because of asymmetry in the local geometry of the antenna wire
and the surrounding metal patches. With more symmetrical construction, the null
could be recovered. Second, the received power is lower with the high-impedance
ground plane, especially at the horizon. This is because the image currents on
the high-impedance ground plane are reversed with respect to their direction on
a metal ground plane. For a vertical monopole, this tends to cancel the radiation
from the antenna current, particularly along the horizontal directions.

If the antenna is operated outside the bandgap of the high-impedance sur-
face, where surface waves are supported, the radiation pattern is significantly
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different. Figure 11.11d shows the radiation pattern of the same antenna at
26 GHz within the TM surface wave band. The vertical monopole couples
strongly into the surface wave modes, and a high density of states at the upper
TM band edge also increases the amount of energy in the surface wave modes.
Because of the presence of surface waves, the pattern contains many lobes and
nulls and a significant amount of power in the backward direction. Such a pat-
tern could be useful for applications requiring nearly omnidirectional radiation
in environments where significant shadowing would otherwise occur.

While the vertical monopole illustrates the application of high-impedance
surfaces for the suppression or enhancement of surface currents, it does not
explain the advantage of the unusual reflection-phase properties. The benefits of
an artificial magnetic conductor can be seen by using a horizontal wire antenna,
as shown in Figure 11.12a. A simple wire antenna is fed through the back of the

(a) (b)

(c)

Figure 11.12 (a) Low-profile antennas can be built on high-impedance surfaces, such as
a horizontal bent-wire antenna that is a small fraction of a wavelength above the surface.
(b) The measured return loss of the horizontal wire antenna on the high-impedance sur-
face (blue curve) is low within the bandgap. On a smooth metal ground plane (red curve),
the antenna is shorted and does not radiate. (c) The radiation pattern of the horizontal
wire antenna on the high-impedance ground plane is symmetrical, and the E-plane pattern
(blue curve) is very similar to the H -plane pattern (green curve).
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surface by a coaxial cable, in a manner similar to the monopole, and it is bent
over across the surface. The wire is typically about one-half wavelength long at
the resonance frequency of the surface. On a flat metal ground plane, a horizontal
wire is shorted out, and most of the power transmitted to the feed is reflected
back. However, on the high-impedance surface, a horizontal wire antenna is
well matched if operated within the bandgap, as shown by the return loss in
Figure 11.12b. The radiation pattern in Figure 11.12c indicates that the antenna
produces significant gain, despite being roughly 1 mm above the ground plane.
This is because the reflection phase of the surface is zero, rather than π , as with
an ordinary conductor. Thus, currents in the high-impedance surface reinforce the
currents in the wire, instead of canceling them as a smooth metal surface does.
This effect can be used to build a variety of low-profile antennas that can lie
directly adjacent to the artificial magnetic ground plane, such as antennas with
various polarizations, including circular, as well as various directive radiation
patterns.

11.9 TUNABLE IMPEDANCE SURFACES

The resonance frequency and the reflection phase of a high-impedance surface
can be tuned by changing the effective capacitance, inductance, or both. However,
without magnetically active materials, the inductance is determined entirely by
the thickness of the surface and is difficult to tune. On the other hand, the
capacitance can be controlled by changing the geometry and arrangement of
the metal plates or by adding tunable lumped capacitors. Because the reflection
phase is determined by the frequency of the incoming wave with respect to the
resonance frequency, such a surface can perform as a distributed phase shifter.
As the resonance frequency is swept from low to high values, the curve in
Figure 11.8 is shifted from left to right, so the reflection phase at any fixed
frequency varies from −π to π .

An electrically tunable impedance surface can be built by connecting neigh-
boring cells with varactor diodes. Changing the bias voltage on the diodes adjusts
the capacitance and tunes the resonance frequency. To supply the required volt-
age to all of the varactors, we alternately bias half of the cells and ground the
other half in a checkerboard pattern, as shown in Figure 11.13. At the center
of each biased cell, a metal via passes through a hole in the ground plane and
connects to a control line located on a separate circuit layer on the back of the
surface. The varactors are oriented in opposite directions in each alternate row,
so that when a positive voltage is applied to the control lines, all the diodes are
reverse biased. By individually addressing each cell, the reflection phase can be
programmed as a function of position across the surface.

The reflection phase for various bias conditions is shown in Figure 11.14.
As the voltage across the varactors is increased, the capacitance decreases, and
the resonance frequency increases. For a fixed frequency, the reflection phase
increases with bias voltage. For frequencies within the tuning range, nearly any



11.10 REFLECTIVE-BEAM STEERING 303

Figure 11.13 A tunable impedance sur-
face consists of a high-impedance surface in
which adjacent cells have been connected by
varactor diodes, which have voltage-tunable
capacitance. Half of the vias are grounded,
but the other half are attached to a voltage
control network on the back of the surface.
The grounded and biased plates are arranged
in a checkerboard pattern.

Figure 11.14 The reflection
phase of the surface can be tuned
electronically by varying the bias
voltage on the varactors. Numbers
by each curve represent voltages.
The two red curves are for alternat-
ing voltages on every other row. For
frequencies within the tuning range,
nearly any reflection phase can be
created by the appropriate choice of
bias voltage.

reflection phase can be obtained by choosing the correct bias voltage. A series
of measured data relating the reflection phase to frequency and voltage forms
the basis of a calibration table that can be used to steer a reflected beam at any
frequency within the tuning range.

11.10 REFLECTIVE-BEAM STEERING

If the reflection phase is programmed as a function of position across the surface,
it can be used for beam steering. A linear phase gradient ∂φ(x, y)/∂x will reflect
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a normally incident microwave beam to an angle θ that depends on the magnitude
of the gradient:

θ = 2 tan−1
(

λ

2π

∂φ(x, y)

∂x

)
(11.22)

Other phase functions can be used for other tasks, such as a parabolic phase
function for focusing. These concepts have been demonstrated previously using
arrays of various resonant elements ranging from dipoles to patches, and beam-
forming structures employing this technique are commonly known as reflectarrays
[23–28]. Tunable reflectarrays using varactor diodes, and related devices known
as grid arrays [29, 30] have also been built. The tunable impedance surface has
the advantage, when compared to other kinds of tunable reflectarrays, that the
bias lines do not interfere with the microwave fields on the front side and two-
dimensional steering is possible.

To create an electronically steerable reflector, the tunable impedance surface
is illuminated with a microwave beam and a phase gradient is created elec-
tronically, as shown in Figure 11.15. To steer the beam into a particular angle,
we calculate the required reflection phase gradient, as described by Eq. (11.18);
select a frequency; and then calculate the corresponding voltages for each bias
line based on a previously measured calibration table. The radiation patterns for
several sets of control voltages corresponding to several beam-steering angles
are shown in Figure 11.16. Since each of the cells is individually addressable
through the bias lines in the back, the surface can steer in two dimensions. For
this example, the surface is about 3.75 wavelengths square and operates at about
4.5 GHz. The surface can steer a reflected beam over ±40◦ for both polarizations.
Wider steering angles would be possible with a larger surface.

Limitations on the varactor tuning range lead to limitations on the achiev-
able phase range. Using a surface with a steeper phase curve can mitigate this

Figure 11.15 The tunable surface can be used
as an electronic beam-steering reflector by pro-
gramming the surface to have a reflection-phase
gradient. A reflected microwave beam will be
steered to an angle that depends on the phase
gradient. This can serve as a simple electronically
scanned antenna.
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Figure 11.16 The beam can be steered over a range of ±40◦, and greater steering would
be possible with a larger structure. Each colored curve represents the radiation pattern for
different beam-steering angles. The side lobes, which overlap at the center of the plot, are
roughly 10 to 15 dB below the main beams.

problem, but at the expense of bandwidth. There is ultimately a trade-off between
intrinsic surface bandwidth, varactor tuning range, and allowable phase error.
These three parameters affect the side-lobe levels and usable bandwidth of the
antenna.

11.11 LEAKY-WAVE BEAM STEERING

Despite being simple and low cost, steerable reflectors based on tunable
impedance surfaces are ruled out for some applications because they require
a free-space feed and thus are not entirely planar. An alternative is to use a
leaky-wave design [31–34], where a surface wave is excited directly in the sur-
face and then radiates energy into the surrounding space as it propagates. This
method involves programming the surface with a periodic impedance function
that scatters the surface wave into free space. The period of the surface impedance
can be varied to change the phase-matching condition between the surface wave
and the space wave and thus steer the radiated wave. The beam can be electron-
ically steered over a wide range in both the forward and backward directions.
The decay rate of the surface waves can also be controlled independently of the
beam angle to allow adjustment of the aperture profile.

To build a steerable leaky-wave antenna, a feed structure is integrated into
the tunable surface, such as the flared notch antenna shown in Figure 11.17. It
can be as close as a small fraction of a wavelength from the surface, but it should
not be close enough to detune the capacitance between the plates below it. A
flared notch antenna will generate TE waves or a wire antenna can be used for
TM waves.

A periodic pattern of voltages is applied to the tunable surface to create a
periodic surface impedance function. When waves propagate across the surface,
they are scattered by the nonuniform surface impedance. The scattered energy
radiates at an angle determined by the wave vector of the surface wave and the
periodicity of the surface impedance. The radiation angle may be determined by
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Figure 11.17 The tunable impedance surface
(shown in blue) can be used as an electronically
steerable leaky-wave antenna by incorporating a
conformal feed, such as a flared notch antenna
(orange). The surface wave (yellow) propagates
away from the antenna, but the radiation (green)
can propagate in either the forward or backward
direction, depending on the phase-matching
condition at the surface.

(a) (b)

Figure 11.18 The direction of radiation is determined by phase matching at the sur-
face. The tangential component of the wave vector of the space wave must match the
difference between that of the surface wave and that of the periodic surface impedance.
(a) Forward leaky waves are generated when the surface impedance has a period that is
greater than the wavelength of the surface waves, corresponding to a shorter wave vector.
(b) Backward leaky waves are generated when the period of the surface impedance is
shorter than the wavelength of the surface wave.

assuming that a wave launched into the surface feels an effective refractive index
of neff. Its wave vector is k0neff, where k0 = 2π/λ is the free-space wave vector.
The surface impedance has period p, corresponding to a wave vector kp = 2π/p.
The scattered radiation in free space must have a total wave vector of k0, and
phase matching requires that it have a component parallel to the surface that
is equal to the sum of the wave vectors of the surface wave and the surface
impedance function. As illustrated in Figure 11.18, the radiation is scattered into
the forward direction if kp < k0neff and it is scattered backward if kp > k0neff.
In general, the radiation angle is given by the expression

θ = sin−1
[
k0neff − kp

k0

]
(11.23)

For backward leaky waves, the energy still travels outward from the feed,
so its group velocity is in the forward direction but its phase velocity, which
determines the radiation angle, is in the backward direction. Leaky-wave struc-
tures capable of backward or broadside radiation have been studied extensively
[35–37], but tunable impedance surfaces are novel because they can be elec-
tronically reconfigured to steer continuously from the forward to the backward
direction at a single frequency. Figure 11.19 shows examples of radiation in both
the forward and backward directions.
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Figure 11.19 The surface
can be configured for either
forward or backward leaky-
wave radiation. This shows
examples of the leaky-wave
radiation patterns when the
surface is programmed for
(a) forward radiation and
(b) backward radiation.

(a)

(b)

11.12 BACKWARD BANDS

The existence of backward leaky waves can be analyzed in terms of backward
bands, similar to those produced in other kinds of metamaterials [38–41]. In
this section, we explore the properties of backward bands on textured surfaces
and study their behavior through reflection measurements. Consider a tunable
impedance surface in which alternate rows of plates are biased at two different
voltages, thus creating rows of alternating capacitance values. For a TE wave, the
electric field is transverse to the direction of propagation, so it sees alternating
capacitance as it propagates from row to row. The effective lattice period is
doubled, and the Brillouin zone is halved, as shown in Figure 11.20. The upper
half of the TE band is folded into a reduced Brillouin zone, labeled BZ′. In the
upper part of the TE band, the sign of the phase velocity ω/k is opposite to
that of the group velocity dω/dk, so we may describe this as a backward band.
The group velocity corresponds to the direction of energy propagation along
the surface, which is always outward from the feed. The phase velocity, which
determines the direction of radiation, progresses backward toward the feed.

Using mode analysis, the direction and relative strength of the electric field
in the capacitors can be determined for various points on the band diagram.
Groups of small arrows in Figure 11.14 illustrate the electric field in four adja-
cent rows. At the bottom of the TE band, the electric field is parallel throughout
the entire surface. In the mode at the top of the backward band, the fields are
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Figure 11.20 Backward leaky-wave
radiation can be understood in terms of
backward bands. If the surface is tuned so
that every other row has alternate voltages,
the TE waves will see a surface with a
period that is twice as large. The Brillouin
zone will be reduced by half, and the upper
portion of the TE band will be folded into
the reduced zone, labeled BZ′. The phase
velocity and group velocity in this band
will have opposite signs, corresponding
to a backward wave. The fields in each
row can be deduced by mode analysis for
points at the edges of the bands.

(a) (b)

Figure 11.21 The presence of a backward band, as depicted in Figure 11.20, can be
measured from the normal-incidence reflection properties of the surface. Modes at zero
wave vector are visible as (a) dips in the magnitude and (b) corresponding curves in the
phase. The second mode corresponds to the top of the backward band. It disappears if a
uniform voltage is applied to the entire surface.

antiparallel in each adjacent row of capacitors. Because the capacitors have alter-
nating values on every other row, the period of this mode matches that of the
surface, with alternating capacitance values, and it lies at k = 0. For modes that
occur at the edge of the folded zone, one-half wavelength fits in each period
of two capacitors. Thus, the field is zero in alternate rows of capacitors and
antiparallel in every other alternate row.

It is possible to detect the presence of the backward band using reflection
measurements. Modes at k = 0 are standing waves that support a finite tangential
electric field at the surface, and they can be identified by frequencies where the
reflection phase is zero and by decreased reflectivity due to losses in the varactor
diodes. Figure 11.21 shows the reflection magnitude and phase when adjacent
rows were biased at 10 and 20 V. When two different voltages are applied to
alternate rows, two modes are visible, corresponding to the lower edge of the
forward TE band and the upper edge of the backward TE band. The presence of
the second mode is experimental evidence of the backward band. It is not present
when a uniform voltage is applied to all of the varactors.
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11.13 SUMMARY

Subwavelength textures can be applied to metal surfaces to change their electro-
magnetic properties. These include corrugated structures to produce hard or soft
boundary conditions and a variety of two-dimensional structures. Thin coatings
containing lattices of grounded metal plates can behave as a high-impedance sur-
face and can be analyzed using a simple lumped-circuit-parameter model. These
surfaces have two important properties: (1) they suppress the propagation of sur-
face waves within a bandgap and (2) they provide a reflection phase of zero
at the resonance frequency. The bandwidth of these properties is related to the
thickness of the surface. High-impedance surfaces can be used for a variety of
antenna applications, such as to suppress scattering of surface waves by nearby
structures or to build various kinds of low-profile antennas.

Electronically tunable impedance surfaces can be built by incorporating
varactor diodes into the lattice. These can be used as electronically steerable
reflectors for low-cost beam-steering applications. They can also be used as steer-
able leaky-wave antennas by incorporating a conformal feed. Leaky waves can
be steered over a wide range of angles in both the forward and backward direc-
tions. Backward leaky waves can be understood in terms of backward bands, the
presence of which can be measured directly. These backward bands are similar
to those produced by other means in various other kinds of metamaterials.
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CHAPTER12
DEVELOPMENT OF COMPLEX
ARTIFICIAL GROUND PLANES
IN ANTENNA ENGINEERING

Yahya Rahmat-Samii and Fan Yang

12.1 INTRODUCTION

Novel artificial electromagnetic materials, such as photonic crystals [1], electro-
magnetic bandgap (EBG) structures [2, 3], and double-negative (DNG) materi-
als [4–6], have attracted increasing attention in the electromagnetics community.
These structures are broadly classified as metamaterials [7] and are typically
realized by periodic dielectric substrates and metallization patterns [8]. Metama-
terials exhibit novel electromagnetic features that may not occur in nature, and
they have led to a wide range of applications in the electromagnetics area.

The periodic metamaterials can be classified into two groups: (1) three-
dimensional volumetric structures and (2) two-dimensional surface designs. This
chapter focuses on the latter, which possesses the advantages of low profile, light
weight, and low fabrication cost and hence is desirable in wireless communication
systems.

The artificial surfaces have been investigated over many years, and repre-
sentative examples include the frequency-selective surfaces (FSSs) [9], artificial
soft and hard surfaces [10], and micromachined substrates [11, 12]. Recently,
planar EBG surfaces [13,14] have been proposed which exhibit distinctive elec-
tromagnetic properties with respect to incident electromagnetic waves:

1. When the incident wave is a surface wave (k2
x + k2

y ≥ k2
0), the analyzed

structures show a frequency bandgap through which the surface wave can-
not propagate for any incident angles and polarization states.

2. When the incident wave is a plane wave (k2
x + k2

y < k2
0), the reflection

coefficient of the analyzed structures is +1 at a certain frequency, which
resembles a perfect magnetic conductor (PMC) that does not exist in nature.

In the above equations, kx and ky are the wavenumbers in the horizontal directions
while k0 is the free-space wavenumber. Various applications have been presented
based on the above properties. For example, the surface wave bandgap has been
utilized to enhance antenna gain, decrease back radiation, and reduce mutual
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TABLE 12.1 Comparison of Conventional PEC and Artificial Ground Planes in Antenna
Designs

Options Efficiency Low Profile

PEC

J

J

PEC

J

Artificial
ground plane 

coupling of microstrip antennas and arrays [15–17]. The in-phase reflection coef-
ficient has been used to design transverse electromagnetic (TEM) waveguide [18]
and low-profile wire and slot antennas [19, 20].

To illustrate the favorable features of the novel artificial ground plane in
antenna engineering, Table 12.1 compares it with the traditional perfect electric
conductor (PEC) ground plane in wire antenna designs. When an electric current
is perpendicular to a PEC ground plane, its image current has the same direction
and reinforces the radiation from the original current. Thus, this antenna has good
radiation efficiency. However, the antenna height is relatively large because of
the vertical placement of the current. To realize a low-profile design that is
always desired in modern wireless communication systems, one may put a wire
antenna horizontally close to the ground plane. However, the problem with this
structure is the poor radiation efficiency because the image current from the PEC
ground plane, which has an opposite flowing direction, cancels the radiation
from the original current. The novel artificial ground plane, as will be discussed
in this chapter, is capable of providing a constructive image current even with
a low-profile configuration, resulting in good radiation efficiency. It overcomes
the difficulty of the PEC ground plane to realize both low-profile and high-
efficiency design goals. Therefore, the artificial ground plane has a great potential
for antenna applications.

This chapter covers the analysis, design, and applications of complex arti-
ficial ground planes. Although we concentrate on a mushroomlike EBG struc-
ture [14], the approaches developed here are widely applicable for other types
of artificial surfaces. The chapter starts with the finite-difference time-domain
(FDTD) analysis of artificial ground planes. The bandgap properties of the sur-
face are illustrated, and both the dispersion diagram and scattering features
are presented. After the establishment of analysis methods, various artificial
ground-plane designs will be presented, including EBG parametric study and
polarization-dependent EBG designs. The important role of the conducting vias
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in the mushroomlike structure will also be discussed. Special emphasis will be
given to the applications of the artificial ground planes in antenna engineering.
A wealth of antenna examples will be introduced, ranging from wire antennas
to microstrip antennas, from linearly polarized antennas to circularly polarized
antennas, and from the conventional antenna structures to novel surface wave
antenna concepts and reconfigurable antenna designs.

This chapter summarizes in a comprehensive and unified fashion the
authors’ latest work on the development of complex artificial ground planes
in antenna engineering. We strongly believe that it will stimulate discussion and
new avenues of research in this area.

12.2 FDTD ANALYSIS OF COMPLEX ARTIFICIAL
GROUND PLANES

12.2.1 Bandgap Characterizations of an EBG Structure

A mushroomlike EBG structure was proposed in [14]. It consists of four parts:
a ground plane, a dielectric substrate, periodic patches, and connecting vias, as
shown in Figure 12.1. This structure exhibits a distinct stop band for surface wave
propagation. The operation mechanism of this EBG structure can be explained
by an LC filter array: the inductance L results from the current flowing through
the vias, and the capacitance C is due to the gap effect between the adjacent
patches. Some empirical formulas for the inductance L and the capacitance C

are presented in [21, 22].

Figure 12.1 Geometry of mushroom-
like EBG structure. From: F. Yang,
A. Aminian, and Y. Rahmat-Samii, “A
novel surface wave antenna design using
a thin periodically loaded ground plane,”
Microwave and Optical Technology
Letters, vol. 47, pp. 240–245, Nov.
2005, copyright  2005 by John Wiley
& Sons, Inc.

y

x Top View

x

z
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To comprehensively understand the bandgap properties, the FDTD method
[23, 24] is used to analyze the EBG structures. An EBG structure with the fol-
lowing parameters is analyzed:

W = 0.12λ12 GHz g = 0.02λ12 GHz h = 0.04λ12 GHz εr = 2.20
(12.1)

where W is the patch width, g is the gap width, h is the substrate thickness, and εr

is the dielectric constant of the substrate. The free-space wavelength at 12 GHz,
λ12 GHz, is used as a reference length for the EBG structure. The vias’ radius
is 0.005λ12 GHz. The FDTD method is used to simulate the field distributions
of a vertical infinitesimal dipole source surrounded by the EBG structure. For
comparison purposes, a conventional case is also analyzed. This conventional
(CONV) case consists of a PEC ground plane and a dielectric substrate with
the same thickness and permittivity as the EBG case. The electromagnetic fields
of these two cases are calculated and compared. Since the EBG structure can
suppress the surface waves in a certain bandgap, the electromagnetic fields outside
the EBG structure should be weaker than that of the CONV case.

To visualize the bandgap effect, the near field distributions of the EBG
case and the CONV case are graphically presented. Figure 12.2 plots the near
fields of both cases at 12 GHz, which is inside the bandgap. The field level is
normalized to 1 W delivered power and is shown on a decibel scale. The field
level outside the EBG structure is around 10 dB. In contrast, the field level of
the CONV case is around 20 dB. The difference of field levels is due to the
existence of the EBG structure, which suppresses the propagation of surface
waves so that the field level in the EBG case is much lower than in the CONV
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Figure 12.2 Near-field distributions at 12 GHz, which is inside the bandgap: (a) EBG
case; (b) CONV case. The outside field of the EBG case is about 10 dB lower than
that of the CONV case. From [17], copyright  2003 by the Institute of Electrical and
Electronics Engineers, Inc.
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Figure 12.3 Near-field distributions at 10 GHz, which is outside the bandgap: (a) EBG
case; (b) CONV case. The outside field of the EBG case has a similar level as that of the
CONV case. From [17], copyright  2003 by the Institute of Electrical and Electronics
Engineers, Inc.

case. In contrast, Figure 12.3 plots the near fields of both cases at 10 GHz, which
is outside the bandgap. The field distribution of the CONV case remains similar
to its distribution at 12 GHz. However, the field value outside the EBG structure
is increased to around 20 dB, which is similar to that of the CONV case. This
means that although there are some interactions between the dipole source and
the EBG structure, the field can still propagate through the EBG structure. From
this comparison it is clear that surface waves can be suppressed by the EBG
structure in a certain frequency band.

12.2.2 Modal Diagram and Scattering Analysis of EBG Structure

In the previous section, the FDTD method was used to analyze a finite EBG
structure to illustrate its surface wave suppression behavior. With the utilization
of periodic boundary conditions (PBCs), the FDTD method can also be used to
analyze an infinite EBG structure. In this implementation, a single unit of the
EBG structure with PBCs on four sides is simulated to model an infinite periodic
structure. Both the modal diagram and scattering coefficient are calculated, and
the bandgap frequency can be identified.

The dimensions of the analyzed EBG structure are

W = 0.10λ g = 0.02λ h = 0.04λ εr = 2.94 (12.2)

The vias’ radius in the EBG structure is 0.005λ. The free-space wavelength at
4 GHz, λ = 75 mm, is used as a reference length to define the physical dimen-
sions of the EBG structure. These parameters are selected for antenna applications
that will be discussed in the following sections, and they are readily scaled to
other frequencies of interests.
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Figure 12.4 Analysis of EBG structure using FDTD method with PBCs: (a) ω–β dia-
gram. From: F. Yang, A. Aminian, and Y. Rahmat-Samii, “A novel surface wave antenna
design using a thin periodically loaded ground plane,” Microwave and Optical Technology
Letters, vol. 47, pp. 240–245, Nov. 2005, copyright  2005 by John Wiley & Sons, Inc.
(b) reflection phase. The EBG structure exhibits a surface wave bandgap in (a) and an
in-phase reflection coefficient for plane-wave incidence in (b).
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Figure 12.4a shows the ω–β modal diagram of the EBG structure charac-
terized using a spectral FDTD method [25]. The vertical axis shows the frequency
and the horizontal axis represents the values of the transverse wavenumbers
(kx, ky). In the spectral FDTD method, each simulation outputs the frequencies
of the surface wave modes for a given combination of wavenumbers (kx, ky).
The simulation is repeated for 30 combinations of kx and ky in the Brillion zone,
and the corresponding frequencies of surface waves are extracted and plotted in
Figure 12.4a. Thus, each point in the modal diagram represents a certain surface
wave mode. It is observed that no surface waves exist in the frequency range
from 3.5 to 5.9 GHz. Thus, this frequency region is defined as a surface wave
bandgap.

Besides the surface wave bandgap feature, the EBG structure also exhibits
interesting plane-wave scattering behavior corresponding to the angle of inci-
dence. Figure 12.4b shows the reflection phase curve for a normally incident
plane wave. The reflection phase is defined as the phase of the reflected electric
field normalized to the phase of the incident electric field at the reflecting sur-
face. It is known that a PEC has an 180◦ reflection phase and a PMC has a 0◦

reflection phase. In contrast, the reflection phase of the EBG surface decreases
continuously from 180◦ to −180◦ as frequency increases. For example, the EBG
surface exhibits a 90◦ reflection phase around 4.6 GHz and a 0◦ reflection phase
around 5.8 GHz. It is worthwhile to point out that the reflection phase varies
with incident angles and polarization states. By adjusting the setup of the inci-
dent waves [26], one can obtain the reflection phase for arbitrary incident angles
and polarizations [27].

12.3 VARIOUS COMPLEX ARTIFICIAL GROUND-PLANE
DESIGNS

12.3.1 Parametric Study of EBG Ground Plane

The mushroomlike EBG structure shows interesting behaviors with respect to sur-
face waves and plane waves. These behaviors are frequency dependent, which is
mainly determined by EBG parameters, namely, patch width W , gap width g, sub-
strate permittivity εr , and substrate thickness h. In this section, some parametric
studies are carried out to establish some engineering design guidelines.

The patch width plays an important role in determining the frequency
behavior of the EBG structure. To study the effect of the EBG patch width,
the gap width, substrate permittivity, and substrate thickness are kept constant
while the patch width varies. Initial EBG parameters are

W = 0.12λ12 GHz g = 0.02λ12 GHz h = 0.04λ12 GHz εr = 2.20
(12.3)

The vias’ radius is 0.005λ12 GHz. The patch width then varies from 0.04λ12 GHz

to 0.20λ12 GHz. It is worthwhile to point out that these parameters can be easily
scaled for operations at other frequencies. The reflection phases of the EBG
surfaces with different patch widths are plotted in Figure 12.5a to characterize
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Figure 12.5 EBG para-
metric studies: effects of
variations in (a) patch
width W and (b) substrate
relative permittivity εr .
From [20], copyright 
2003 by the Institute of
Electrical and Electronics
Engineers, Inc.

the patch width effect. It is observed that when the patch width is increased, the
frequency at which the in-phase reflection occurs decreases. At the same time,
the slope of the reflection-phase curve becomes steep, which implies a narrow
frequency band.

The relative permittivity εr , also called the dielectric constant of a substrate,
is another effective parameter that determines the frequency behavior of the
EBG structure. Some commonly used commercial materials such as RT/Duroid
substrates and transfer matrix method (TMM) substrates have been investigated
as well as air. The EBG structure analyzed here has the same parameters as given
in (12.3) except that the permittivity is varied. The reflection phases of the EBG
surfaces with various permittivities are plotted in Figure 12.5b. It is observed
that when air is used as the substrate, the in-phase reflection frequency of the
EBG surface has its highest value and the corresponding largest bandwidth. When
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the relative permittivity is increased, the frequency band decreases, as does the
bandwidth. Therefore, when the RT/Duroid 6010 substrate (εr = 10.2) is used,
the in-phase reflection frequency has its lowest value and the corresponding
bandwidth also becomes very narrow. Therefore, the relative permittivity of the
substrate of the EBG structure has an effect on its in-phase reflection behavior
similar to that of the patch width but provides an additional degree of freedom
to tune the EBG design. In practical applications, if one would like to design
a compact EBG structure at a given frequency, increasing the permittivity is a
feasible approach.

The gap width and substrate thickness also affect the operational frequency
band of an EBG structure. For example, when the gap width is increased, the
operational frequency will increase. In contrast, when the substrate thickness is
increased, the operational frequency will decrease. Detailed data can be found
in [20].

12.3.2 Polarization-Dependent EBG (PDEBG) Surface Designs

The mushroomlike EBG structure discussed in the previous sections uses square
units so that its reflection phase for normal incidence is independent of the
polarization of the incident plane wave. When the unit geometry is modified, EBG
structures with polarization-dependent reflection phases can be obtained [28].

Figure 12.6a shows a PDEBG design using rectangular patch units. The
reflection phase of the EBG surface becomes dependent on the X or Y polariza-
tion state of the incident plane wave. Figure 12.6b depicts reflection phases of
the rectangular-patch EBG surface compared to a square-patch EBG surface. The
dimensions of the EBG surfaces are given in the caption of Figure 12.6. When
the incident plane wave is Y polarized, the rectangular-patch EBG surface has the
same reflection phase as the square-patch EBG surface because the patch widths
are the same. For the X-polarized incident plane wave, it is the patch length that
determines the reflection phase. Since X-directed patch length is longer than the
width, the reflection-phase curve shifts down to lower frequencies. It is noticed
that near 3 GHz, the EBG surface shows a −90◦ reflection phase for the X-
polarized wave and a +90◦ reflection phase for the Y-polarized wave. Thus, the
phase difference between orthogonal polarizations is 180◦. This feature will be
used in a circularly polarized dipole antenna design in the following section.

Another approach to realizing the polarization-dependent feature is to adjust
the vias’ location. When the vias are offset from the center of the patch, different
reflection phases are obtained with respect to the polarizations of the incident
plane wave. As shown in Figure 12.7a, consider the EBG structure in which
the vias are offset along the X direction while they are still centered along the
Y direction. Therefore, the reflection phase for the Y -polarized wave remains
unchanged and the reflection phase for the X-polarized wave changes with the
vias’ position, as shown in Figure 12.7b. When the vias are located in the center
of the patch, only one in-phase reflection frequency is observed. Once the vias
are offset, in-phase reflection frequencies appear with one higher than the origi-
nal frequency and the other lower. The different in-phase reflection frequencies
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Figure 12.6 (a) Rectangular patch EBG surface (0.24λ3 GHz × 0.16λ3 GHz).
(b) Reflection phases resulting from different polarizations of incident wave. A square-
patch EBG surface (0.16λ3 GHz × 0.16λ3 GHz) is used as a reference. The gap width is
0.02λ3 GHz and the via radius is 0.0025λ3 GHz. The substrate thickness is 0.04λ3 GHz and
the dielectric constant is 2.20. From [28], copyright  2004 by John Wiley & Sons, Inc.
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Figure 12.7 (a) EBG
surface with offset vias.
(b) Reflection phases with
different via positions.
From [28], copyright 
2004 by John Wiley &
Sons, Inc.
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correspond to the different widths of the left and right sides of the patch with
respect to the via. The left part is narrower and thus is responsible for the higher
frequency value. The right part is wider and thus is responsible for the lower
frequency value. When the vias are closer to the patch edges, the separation of
the two in-phase reflection frequencies increases because the width difference
between the two sides of the patch becomes larger.
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12.3.3 Characterizations of Grounded Slab Loaded
with Periodic Patches
In the previous section it was shown that the vias’ position has a significant
effect on the in-phase reflection feature of the mushroomlike EBG structure.
This section discusses the vias’ effect from another viewpoint: existence of the
vias. In particular, the properties of another complex artificial ground plane will
be discussed: a grounded slab loaded with periodic patches, which is similar to
the mushroomlike EBG structure except that the vertical vias are removed.

Figure 12.8 presents the dispersion diagram and reflection phase of the
patch-loaded grounded slab. The dimensions of this artificial ground plane are
the same as those given in Eq. (12.2). It is clear from Figure 12.8a that when
the vertical vias are removed, the surface wave bandgap disappears. Therefore,
the surface waves can exist over the entire frequency band.

However, removing the vias has little effect on the in-phase reflection fea-
tures when the plane wave is normally incident. According to Figure 12.8b both
the EBG surface (with vias) and the patch-loaded grounded slab (no vias) have
very similar reflection-phase characteristics. The distinct surface wave and plane-
wave features of the patch-loaded grounded slab have led to a novel surface wave
antenna design, which will be discussed in the antenna application section.

Another point observed from Figure 12.8 is that the surface wave bandgap
and in-phase reflection feature are not necessarily associated with each other.
Therefore, one needs to be cautious when analyzing a complex artificial surface.
The in-phase reflection coefficient does not guarantee the existence of the surface
wave bandgap.

12.4 APPLICATIONS OF ARTIFICIAL GROUND PLANES
IN ANTENNA ENGINEERING

12.4.1 Enhanced Performance of Microstrip Antennas and Arrays
Microstrip antennas are widely used in wireless communication due to their
advantages, including a low-profile configuration, light weight, low fabrication
cost, and conformability with radio frequency (RF) circuitry. In typical microstrip
antenna designs, unwanted surface waves are excited in the substrate. These sur-
face waves in turn degrade the antenna performance by decreasing the antenna
gain, increasing the back lobe and the mutual coupling. This problem becomes
more severe when high-dielectric-constant materials are used to design com-
pact microstrip antennas. Several methods have been proposed recently to solve
this problem. One approach suggested is to manipulate the antenna substrate
using micromachining techniques [11, 12, 29]. A reduced surface wave (RSW)
microstrip antenna structure is presented in [30] that does not excite surface
waves. The EBG metamaterials [15–17] have also been utilized in microstrip
antenna designs to reduce the surface wave effect. In this section, the mush-
roomlike EBG structure is integrated into several microstrip antenna designs.
The antenna performance is compared to normal microstrip antenna designs to
appreciate the benefits of using such EBG structures.



12.4 APPLICATIONS OF ARTIFICIAL GROUND PLANES IN ANTENNA ENGINEERING 325

0 2 4 6 8 10 12
−200

−150

−100

−50

0

50

100

150

200

Freq. (GHz)

R
ef

le
ct

io
n 

ph
as

e 
(D

eg
re

e)

With vias

No vias 

(b)

M
0

1

2

3

4

5

6

7

8

9

10
F

re
qu

en
cy

 (
G

H
z)

Γ Γ

Γ X

M

No Band Gap 

Light line Light line

First mode

Second mode

Wavenumber
X

(a)

Figure 12.8 (a) The ω–β diagram and (b) reflection-phase behavior of patch-loaded
dielectric slab that is similar to mushroomlike EBG structure except that vias are
removed. As a result, the bandgap disappears while the reflection phase for a normally
incident wave remains the same. From: F. Yang, A. Aminian, and Y. Rahmat-Samii,
“A novel surface wave antenna design using a thin periodically loaded ground plane,”
Microwave and Optical Technology Letters, vol. 47, pp. 240–245, Nov. 2005, copyright
 2005 by John Wiley & Sons, Inc.
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(a) (b)

Figure 12.9 Photos of two microstrip patch antenna with enhanced radiation perfor-
mance: (a) antenna surrounded by mushroomlike EBG structure; (b) antenna on steplike
substrate.

First, the application of the mushroomlike EBG structure in a single
microstrip antenna element [31] is analyzed. Figure 12.9a shows a patch antenna
surrounded by such an EBG structure. The basic idea is to properly design the
EBG structure so that the resonant frequency of the patch antenna falls inside
the bandgap of the EBG structure; hence the surface waves that could propa-
gate along the substrate will be inhibited. It should be emphasized that the EBG
structure is very compact because a high dielectric constant and a thick substrate
are employed. For comparison purposes, a microstrip patch antenna on an inho-
mogeneous substrate is also designed and examined, as plotted in Figure 12.9b.
The idea is to use a thick substrate immediately under the patch, which helps to
maintain its compact size and broad bandwidth, but then to use a thin substrate
around the patch, which reduces the generation of surface waves. The substrate
thus has a stepped shape.

To validate the above design concepts, four antennas were fabricated
on a RT/Duroid 6010 (εr = 10.2) substrate with a finite ground plane that
was 52 mm × 52 mm (1λ × 1λ at 5.8 GHz) in size. To establish references,
two normal patch antennas were built on 1.27- and 2.54-mm-thick substrates,
respectively. The steplike structure stacked two 1.27-mm-thick substrates under
the patch and the distance from the patch edge to the step was 10 mm. The
EBG structure was built on the 2.54-mm-thick substrate and its patch size was
2.5 mm × 2.5 mm with a 0.5-mm gap width. Four rows of EBG patches were
used to suppress the surface waves.

Figure 12.10a depicts the measured S11 results of these four antennas. All
the four patches were tuned to resonate at the frequency 5.8 GHz. It is noticed
that the patch on the thin substrate has the narrowest impedance bandwidth, only
1 percent, while the other three have similar bandwidths, about 3 to 4 percent,
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Figure 12.10 Experimental
results of four microstrip
antenna designs: (a) return
loss results; (b) E-plane
radiation patterns.
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because of the thicker substrates. Figure 12.10b presents the E-plane radiation
patterns of these antennas. The antenna on the thick substrate has the lowest
front radiation while its back radiation is the largest. The steplike structure has
a radiation performance that is similar to the antenna on the thin substrate. The
radiation performance of the EBG structure is the best: Its front radiation is
the highest, 3.24 dB higher than the thick case, and its back radiation is the
lowest, more than 15 dB lower than the other cases. In summary, the EBG
structure increases the gain and reduces the back lobe of a microstrip antenna
while maintaining a similar impedance bandwidth.

After the successful implementation of the EBG structure in a single
microstrip antenna element environment, the integration of the EBG structure
with microstrip antenna arrays was explored with the objective of reducing the
mutual coupling between elements in the array [17]. Two pairs of microstrip
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Figure 12.11 Experiments
of microstrip antenna arrays
with and without EBG struc-
tures. (a) Photographs of
normal microstrip antenna
array (above) and design
that integrates EBG struc-
ture and antennas (below).
(b) Measured scattering
coefficients of microstrip
antenna arrays. An 8-dB-
mutual-coupling reduction
is observed at the resonant
frequency when the EBG
structure is used. From [17],
copyright  2003 by the
Institute of Electrical and
Electronics Engineers, Inc.

antennas were fabricated on Roger RT/Duroid 6010 substrates. The relative
permittivity of the substrate was 10.2, and the substrate thickness is 1.92 mm
(75 mils). Figure 12.11a shows a photograph of the fabricated antennas with and
without the EBG structure. The antenna’s size was 6.8 mm × 5 mm, and they
were fabricated on a finite ground plane whose size was 100 mm × 50 mm. The
patch distance was 38.5 mm (0.75λ5.8 GHz). The EBG patch width was 3 mm
and the gap width was 0.5 mm.

The measured results are shown in Figure 12.11b. It is observed that both
antennas resonate at 5.86 GHz with a return loss better than −10 dB. For the
antenna array without the EBG structure, the mutual coupling at 5.86 GHz was
−16.8 dB. In comparison, the mutual coupling of the antennas with the EBG
structure was only −24.6 dB. An 8-dB reduction of mutual coupling was achieved
at the resonant frequency. This mutual coupling design is potentially useful for
a variety of array applications, such as eliminating the blind angles in radar
systems.
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12.4.2 Dipole Antenna on EBG Ground Plane:
Low-Profile Design

In the previous section, the surface wave bandgap feature of the EBG structure
was utilized to improve the performance of microstrip antennas and arrays. As is
known, the EBG structure has another important feature: the in-phase reflection
coefficient for plane waves. This section will discuss how the in-phase reflection
feature is used to design low-profile wire antennas [20]. The low-profile design
usually refers to the antenna structures whose overall height is less than one-tenth
of the operating wavelength, which is desirable in many wireless communication
systems.

12.4.2.1 Comparison of PEC, PMC, and EBG Ground Planes Let us begin
with a comparison of different ground planes in low-profile wire antenna design,
for example, a PEC, a PMC, and an EBG surface. As shown in Figure 12.12, a
dipole antenna is horizontally positioned near a ground plane to obtain a low-
profile configuration. The PEC, PMC, and EBG surfaces are each used as the
ground plane to compare their capabilities for low-profile designs [19].

The dipole length is 0.40λ12 GHz and its radius is 0.005λ12 GHz, while
λ12 GHz, the free-space wavelength at 12 GHz, is used as a reference length
to define the physical dimensions of various EBG and antenna structures studied
in this section. A finite ground plane, having a 1λ12 GHz × 1λ12 GHz size, is used
in the analysis. The EBG structure has the following parameters:

W = 0.12λ12 GHz g = 0.02λ12 GHz h = 0.04λ12 GHz

r = 0.005λ12 GHz εr = 2.20 (12.4)

The height of the dipole over the top surface of the EBG ground plane is
0.02λ12 GHz. Thus, the overall height of the dipole antenna from the bottom
conductor of the EBG structure is 0.06λ12 GHz. The dipole height on the PEC
and PMC ground plane is then set to 0.06λ12 GHz so that all three cases have the
same overall height.

Figure 12.13 compares the FDTD simulated return loss of dipole antennas
over the PEC, PMC, and EBG ground planes. The input impedance in each case
is matched to a 50-� transmission line. With the PEC surface as the ground plane,
the return loss of the dipole is only −3.5 dB. This large value is obtained because

(a) (b)

Figure 12.12 Dipole antennas over (a) PEC or PMC ground plane and (b) EBG
ground plane. From [20], copyright  2003 by the Institute of Electrical and Electronics
Engineers, Inc.
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ulated return loss results of
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TABLE 12.2 Comparison of PEC, PMC, and EBG Ground Planes for Low-Profile Dipole
Antenna Designs

Ground Plane Reflection Phase Return Loss (dB) Comments

PEC 180◦ −3.5 Reverse image
PMC 0◦ −7.2 Mutual coupling
EBG Varies from 180◦

to −180◦ with
frequency

−27 Where is the suitable
frequency band?

the PEC surface has a 180◦ reflection phase, so that the direction of the image
current is opposite to that of the original dipole (see Table 12.1). The radiations
from the image current and the original dipole cancel each other, resulting in a
very poor return loss.

When the PMC surface, which has a reflection phase of 0◦, is used as the
ground plane, the dipole has a return loss of −7.2 dB. Despite the image being in
phase with the actual source, this value is large because a strong mutual coupling
occurs between the image current and the dipole due to their close proximity.
This changes the input impedance of the dipole. Therefore, the antenna cannot be
directly matched well to a 50-� transmission line. In addition, the PMC surface
is an ideal surface that does not exist in nature.

The best return loss of −27 dB is achieved by the dipole antenna over
the EBG ground plane. The reflection phase of the EBG surface varies with
frequency from 180◦ to −180◦. In a certain frequency band, the EBG surface
successfully serves as the ground plane to achieve a low-profile dipole antenna,
so that the dipole can radiate efficiently. From this comparison it is found that
the EBG surface is a good ground-plane candidate for low-profile wire antenna
designs.

Table 12.2 summarizes the comparisons of the PEC, PMC, and EBG ground
planes for low-profile dipole antenna designs. An important question arises from
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the comparison: What is the suitable frequency band of the EBG structure that
is used as a ground plane for a low-profile wire antenna?

12.4.2.2 Operational Frequency Band of EBG Structure For an EBG struc-
ture, various frequency band definitions have been proposed. For example, a
frequency bandgap was defined in [14] using the dispersion diagram. However,
this definition only refers to the surface waves that propagate in the horizontal
plane. In low-profile wire antenna applications, such a bandgap definition is not
applicable because complicated interactions occur between the antenna and the
EBG surface, and electromagnetic waves are not restricted to propagate in the
horizontal plane. Thus, to ensure that resulting designs will meet the criteria for
low-profile antenna applications, an operational frequency band of an EBG sur-
face is defined as the frequency region inside which a low-profile wire antenna
radiates efficiently with a good return loss and acceptable radiation patterns.

To search for this operational frequency band, the parameters of the EBG
surface are fixed and the length of the horizontal dipole is varied to resonate at
different frequencies. Since properties of the EBG surface such as the reflection
phase change with frequency, the return loss and the radiation pattern of the
dipole will change as well. By observing the return loss and radiation patterns of
the dipole at different frequencies, one can find a useful operational frequency
band of the EBG surface for low-profile wire antenna designs.

From a computational efficiency viewpoint, it would be interesting to know
if one could directly use the reflection-phase feature of the EBG structure to
identify the operational frequency band. To this end, a plane-wave model is
established in the FDTD method and the reflection phase of the EBG surface is
evaluated, as discussed in Section 12.2.2. The simulation results obtained from
the low-profile dipole model and plane-wave model are compared to each other
to establish a methodology as how to use the reflection-phase curve to identify
the useful frequency band of the EBG/antenna structure.

The EBG surface analyzed here has the same parameters as given in (12.4).
Figure 12.14a shows the return loss results of a dipole with its length varying
from 0.26λ12 GHz to 0.60λ12 GHz. The radius of the dipole remains 0.005λ12 GHz.
It is observed that the dipole shows a return loss better than −10 dB from 11.5
to 16.6 GHz. Figure 12.14b shows the reflection-phase results obtained from the
plane-wave model. In contrast to the 180◦ reflection phase of a PEC surface and
0◦ reflection phase of a PMC surface, if one chooses the 90◦ ± 45◦ reflection
phases as the criterion for the EBG surface, one obtains a frequency region from
11.3 to 16 GHz, which is nearly the same frequency region as obtained in the
dipole model.

From this comparison, it is revealed that the reflection-phase feature of
an EBG surface may be used to identify the operational frequency band for
low-profile wire antenna applications. The operational frequency band where a
low-profile wire antenna obtains a good return loss is the frequency region inside
which the EBG surface shows a reflection phase in the range 90◦ ± 45◦.

The radiation patterns of dipole antennas on the EBG surface are also
calculated to verify the radiation efficiency. Figure 12.15 displays both the E-
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Figure 12.14 Comparison
of frequency band results
from two FDTD models:
(a) return loss results when
dipole length is varied from
0.26λ12 GHz to 0.60λ12 GHz;
(b) reflection phase of EBG
surface. From [20], copy-
right  2003 by the Institute
of Electrical and Electronics
Engineers, Inc.

and H -plane patterns of three dipole antennas at their resonant frequencies:
(1) 0.48λ12 GHz dipole, which resonates at 12 GHz; (2) 0.36λ12 GHz dipole, which
resonates at 13.6 GHz; and (3) 0.32λ12 GHz dipole, which resonates at 15.3 GHz.
It is observed that all three dipoles radiate efficiently and have directivities around
8 dB.

The quadratic reflection-phase criterion (90◦ ± 45◦) has been further ver-
ified by several EBG cases with different parameters, as analyzed in [20]. In
addition, this criterion has been demonstrated by experimental results of a low-
profile curl antenna over the EBG ground plane [32]. In conclusion, the quadratic
reflection phase (90◦ ± 45◦) of the EBG structure, different from the PEC and
PMC surfaces, answers the question raised by the results in Table 12.2. It appears
to provide a useful guideline to design EBG ground planes for low-profile wire
antenna designs.
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Figure 12.15 Radiation pat-
terns of three dipoles at their
resonant frequencies: (a) E-
plane pattern; (b) H -plane
pattern. The radiation patterns
show that dipoles radiate
efficiently throughout the fre-
quency band in Figure 12.14.
From [20], copyright  2003
by the Institute of Electrical
and Electronics Engineers,
Inc.
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12.4.3 Novel Surface Wave Antenna Design for Wireless
Communications

In the previous section, it was revealed that the quadratic reflection phase of an
EBG ground plane enables one to obtain a good return loss for a half-wavelength
dipole with a low-profile configuration. Recall that a patch-loaded grounded slab
was investigated in Section 12.3.3 that had the same reflection phase as the
corresponding mushroomlike EBG surface but had no surface wave bandgap due
to the removal of the vertical vias. Therefore, it is interesting to examine the
performance of a horizontal dipole near this type of artificial ground plane.

12.4.3.1 Antenna Performance Figure 12.16a shows the geometry of a
dipole antenna near a patch-loaded grounded slab. The dipole is fed by a 50-�
coaxial cable. One arm of the dipole is connected to the center conductor of the
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Figure 12.16 Horizontal
dipole near patch-loaded
grounded slab: (a) antenna
geometry; (b) FDTD
simulated return loss
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plane,” Microwave and
Optical Technology Letters,
vol. 47, pp. 240–245, Nov.
2005, copyright  2005 by
John Wiley & Sons, Inc.

cable, and the other arm is connected to the outside conductor of the cable, which
is soldered to the lower PEC of the complex surface. It is important to point out
that no balun is used in the feed structure.

The FDTD method is used to simulate the behavior of this radiating struc-
ture. The dimensions of the artificial ground plane are the same as given in
Eq. (12.2) in Section 12.2.2, and the electromagnetic properties of this surface,
that is, dispersion diagram and reflection-phase curve, are depicted in Figure 12.8.
The dipole with a radius of 0.005λ4 GHz is positioned 0.02λ4 GHz above the top
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surface of the artificial ground plane in order to get a low-profile configura-
tion. The return loss results of the dipoles with different lengths are presented
in Figure 12.16b. The dipole length varies from 0.06λ4 GHz to 0.38λ4 GHz. The
reader is reminded that when the length of the dipole is increased, its resonant
frequency decreases. The frequency range inside which the antenna can obtain a
good return loss (S11 < −10 dB) is close to the frequency region (3.7 to 5.3 GHz)
where the artificial surface exhibits a reflection phase in the range 90◦ ± 45◦ (see
Figure 12.8). This observation agrees with the conclusion drawn in the previous
section.

When the dipole length is 0.26λ4 GHz, the antenna achieves a good return
loss of −30 dB at 4.05 GHz with a 7.1 percent impedance bandwidth. It is worth-
while to point out that the length of the dipole is much smaller than the half
wavelength of the operating frequency. As a comparison, when a dipole is located
near an EBG ground plane and resonates at the same frequency, the length of
the dipole is close to a half wavelength.

Figure 12.17a shows the radiation patterns of the dipole antenna illustrated
in Figure 12.18 at its resonant frequency of 4.05 GHz. Several interesting obser-
vations can be made from this figure. First, the antenna shows a small radiation
power in the broadside direction (θ = 0◦). This is different from the dipole
antenna on an EBG ground plane whose main beam points to the broadside
direction, as shown in Figure 12.15. The main beam of this antenna points to
the θ = 50◦ direction with a directivity of 5 dB. Second, Eθ is the copolarized
field in both the xz (ϕ = 0◦) and yz planes (ϕ = 90◦). Thus, both the xz and yz
planes are E planes. In contrast, if the dipole is near an EBG ground plane, the
xz plane is the E plane but the yz plane is the H plane. Therefore, this antenna
has an entirely different radiation pattern, in contrast to a horizontal dipole on
an EBG ground plane.

12.4.3.2 Radiation Mechanism To understand the different behaviors of a
dipole antenna over the EBG ground plane and over the patch-loaded grounded
slab, the radiation mechanisms of these two antennas are examined. When a
dipole is positioned near an EBG ground plane, no surface wave can be excited
because the EBG structure has a bandgap for surface waves. The radiation is
contributed by the dipole; thus the dipole length is close to its half wavelength
for resonance. The radiation of the dipole dictates the antenna beam direction
and polarizations.

In contrast, for the patch-loaded grounded slab, since the vertical vias are
removed, the bandgap disappears and the surface wave can propagate along the
ground plane. When a dipole is positioned near such a patch-loaded grounded
slab, it excites strong surface waves. The dipole works more like a transducer
rather than a radiator. Therefore, the optimal length of the dipole is not neces-
sarily equal to a half wavelength. It is also noticed that the surface waves are
dominated by the transverse magnetic TMz mode (z axis being normal to the
ground plane), and the electric field is vertically polarized. When the TM sur-
face waves diffract at the boundary of the ground plane, the radiation pattern is
determined. For example, since the diffractions at the edge are hard boundary
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diffractions, two diffracted rays from opposite edges will cancel in the broadside
direction, resulting in a radiation null. The vertically polarized surface waves also
cause the radiation field to be polarized in the θ direction. Thus, a monopole-type
radiation pattern is generated. Therefore, this antenna can be identified as a SWA
due to its radiation mechanism.

The attractive feature of the SWA design is the low-profile configuration.
As shown in Figure 12.17b, the SWA has a similar radiation pattern as a ver-
tical monopole antenna. However, the height of the horizontal dipole over the
artificial ground plane is only 0.02λ4 GHz, whereas the height of the vertical
monopole antenna is 0.22λ4 GHz. Thus, the dipole height is less than 10 percent
of the monopole antenna. Therefore, this low-profile SWA design has a promising
potential in wireless communication systems such as vehicle radio systems.
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12.4.4 Low-Profile Circularly Polarized Antennas:
Curl and Dipole Designs

In the previous sections, complex artificial ground planes were utilized in linearly
polarized antenna designs. This section focuses on their applications in circularly
polarized (CP) antenna designs that are desired in many communication systems
such as Global Positioning System (GPS) and satellite links.

12.4.4.1 Curl Antenna on EBG Ground Plane The first approach to design a
low-profile CP antenna begins with a curl antenna. The curl antenna was proposed
as a simple radiator to generate a circular polarization pattern [33]. However, it
does not function well when it is placed close to a conventional PEC ground
plane because of the reversed image current. To improve the radiation efficiency,
an EBG ground plane was used to replace the PEC ground plane [34], as shown
in Figure 12.18.

The EBG surface was built on a 2-mm-thick RT/Duroid 5880 (εr = 2.20)
substrate. The EBG patch size was 6 mm × 6 mm and the gap between patches
was 1 mm wide. The patches were connected to the ground plane by vias in
the center of the patches. The EBG structure was truncated at 52 mm × 52 mm
(about 1.20λ × 1.20λ at 7 GHz). The parameters of the curl antenna were

R = 5.5 mm L = 5 mm h = 3 mm (12.5)

Figure 12.18 Photograph of CP curl antenna over EBG ground plane. The antenna
height is only 0.07λ. From [32], copyright  2001 by John Wiley & Sons, Inc.
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where R is the distance between the center to the first edge of the square curl, L

is the excessive length over one round of the curl, and h is the curl height above
the EBG ground plane. The distance from the center to the edge of the square
curl increases 0.5 mm with every turn.

Figure 12.19a compares the return loss of the curl antenna over the EBG
and PEC ground planes. Since the height, 3 mm, above the ground plane was only
0.07λ, the curl antenna over the PEC ground plane was not matched well. In con-
trast, the curl over the EBG ground plane showed a good match in the frequency
range from 6 to 8.5 GHz due to its in-phase reflection feature. Figure 12.19b

shows the measured antenna AR at broad side versus frequency. The curl antenna
over the EBG surface achieved a good AR of 0.9 dB at 7.18 GHz. It should be
pointed out that according to [20] the reflection phase of this EBG structure
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Figure 12.19 Measured
results of low-profile CP
curl antenna: (a) return
loss results; (b) axial ratio
(AR) at broadside direction.
From [32], copyright 
2001 by John Wiley &
Sons, Inc.
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at 7.18 GHz is around 90◦. An 8.4 percent CP bandwidth (AR < 3 dB) was
obtained for this design.

12.4.4.2 Single-Dipole Antenna Radiating CP Waves The second approach
that was studied to realize a low-profile CP design utilized linearly polarized
antenna elements, such as dipole antennas, instead of the CP elements. Reference
[35] uses two perpendicular dipole antennas with quadrature feeding phases to
realize the desired CP pattern. Here, a novel antenna design is presented that
radiates CP waves with only a single dipole element. The unique idea in this
design is to use an artificial surface with polarization-dependent reflection phases
[36] as the ground plane for a horizontal dipole. The artificial ground plane
operates like a meander line polarizer [37] to convert the linear polarization to
circular polarization while achieving a low-profile configuration of the overall
antenna structure.

Figure 12.20a shows the geometry of a horizontal dipole near a typical
ground plane. The height of the dipole over the ground plane is very small
compared to the operating wavelength, such as 0.02λ. The dipole is oriented
along the φ = 45◦ direction. The total radiation field in the broadside direction
can be approximated by the summation of the field directly radiated from the
dipole and the field reflected from the ground plane:

E = Ed + Er = 1
2E0(x̂ · e−jkz + ŷ · e−jkz) + 1

2E0(x̂ · e−jkz−2jkd+jθx

+ ŷ · e−jkz−2jkd+jθy ) (12.6)

where E0 denotes the magnitude of electrical fields, d is the height of the dipole
over the ground plane, θx is the reflection phase of the ground plane for an x-
polarized incident wave, and θy is its value for a y-polarized incident wave. The
time-harmonic variation is represented byejωt . When the dipole is located very
close to the ground plane, the phase value 2kd is very close to zero.

If the ground plane is a PEC, then the reflection phases θx = θy = 180◦.
Thus, the total radiating field becomes zero in (12.6) because the reflected field
cancels the directly radiating field. When a PMC is used as the ground plane,
the reflection phases θx = θy = 0. Then, E = E0e

−jkz(x̂ + ŷ). The dipole still
radiates linearly polarized waves. In contrast, when an artificial surface with
polarization-dependent reflection phases, namely θx = 90◦ and θy = −90◦, is
used as the ground plane, the radiation field becomes

E = 1
2E0e

−jkz[(x̂ + ŷ) + j (x̂ − ŷ)] (12.7)

The reflected field becomes perpendicular to the directly radiating field with a
90◦ phase difference. Therefore, a right-hand circularly polarized (RHCP) wave
is obtained.

To verify the antenna concept, an artificial ground plane with polarization-
dependent reflection phases was designed and fabricated, and a dipole antenna
was then mounted on this surface, as shown in Figure 12.20b. The periodic
artificial ground plane consisted of rectangular patch units, as discussed in
Section 12.3.2. A RT/Duroid 6002 high-frequency laminate (εr = 2.94 ± 0.04)
with 6.10 mm thickness was used as the substrate. The width of the patch was
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8 mm and its length was 13 mm. The gap width between adjacent patches was
2 mm along the x direction and 1 mm along the y direction. A finite ground
plane with a 100 × 100 mm size was used, which included 9 × 6 rectangular
patches. A 45◦ oriented dipole was positioned in the center of the ground plane.
The length of the dipole was 34 mm, the height was 3 mm, and the radius was
0.34 mm. The antenna was fed by a 50-� coaxial cable.

The measured return loss result is shown in Figure 12.21a. It was better
than −10 dB in the frequency range of 3.25 to 4.14 GHz. The AR of the antenna
at the broadside direction was measured, as plotted in Figure 12.21b. An AR of
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Figure 12.21 Measured
results of low-profile CP
dipole antenna: (a) return
loss result; (b) axial ratio
at broadside direction.
From: F. Yang and Y.
Rahmat-Samii, “A low
profile single dipole
antenna radiating circularly
polarized waves,” IEEE
Trans. Antennas Propagat.,
vol. 53, pp. 3083–3086,
Sept. 2005, copyright 
2005 by the Institute of
Electrical and Electronics
Engineers, Inc.
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2 dB was obtained at 3.56 GHz. The 3-dB AR bandwidth was 200 MHz (3.45
to 3.65 GHz, 5.6 percent).

12.4.5 Reconfigurable Wire Antenna with Radiation
Pattern Diversity

Reconfigurable antennas are desirable for modern wireless communication sys-
tems because they can provide more functionalities than classic antenna designs
[38–40]. They are capable of fulfilling various requirements of wireless communi-
cation systems by reconfiguring their radiation performance such as their operat-
ing frequencies [41,42], polarizations [43,44], radiation patterns [45–47], or com-
binations [48–50]. The reconfigurability is realized through different approaches,
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including mechanical tuning [51], semiconductor devices such as diodes or varac-
tors [52], and microelectromechanical system (MEMS) actuators [53, 54]. Com-
pared to traditional designs, reconfigurable antennas have several advantages,
including compact antenna volumes and low cosite interference.

It is worthwhile to point out here that the CP dipole antenna structure in the
previous section can be used to realize reconfigurable polarization by adjusting
the orientation of the dipole. For example, when the dipole is oriented along
the x or y direction, a linear polarization (LP) is obtained. A left-hand circular
polarization (LHCP) can also be achieved if the dipole is oriented along the
φ = 135◦ direction.

This section focuses on the radiation pattern reconfigurability, which has
been used to realize beam scanning in radar systems, to avoid noise sources,
and to direct signals toward intended users in wireless communication networks.
Although pattern reconfigurability has been well developed in large antenna
systems such as phased arrays and reflector antennas, it is still a challenging
area for small antenna elements that are widely used in personal communication
devices. The goal of this section is to present a reconfigurable wire antenna on
the EBG ground plane that can provide radiation pattern diversity.

We begin by investigating a bent monopole antenna near an EBG ground
plane [55–58], as shown in Figure 12.22a. The parameters of the EBG ground
plane are as follows:

W = 7.5 mm g = 1.5 mm h = 3 mm

εr = 2.94 r = 0.375 mm (12.8)

These parameters guarantee that the EBG ground plane provides a suitable oper-
ation frequency at around 4 to 5 GHz for wire antennas. The size of the ground
plane is 75 mm ×75 mm, including 8 × 8 EBG cells. To maintain the low-
profile advantage, the height of the bent monopole over the ground plane is set
to 1.5 mm. The bent monopole, which is made of a 1.5-mm-width strip, is located
in the center of the ground plane and the feeding probe is connected to one end of
the strip. When the strip length is 39 mm, the antenna resonates at 4.40 GHz with
a good return loss of −15 dB and a 13.7 percent bandwidth [59]. An interesting
feature of this antenna structure is observed in its radiation patterns, shown in
Figure 12.22b. A tilted beam pointing to θ = −36◦ is obtained in the xz plane.
This is different from the performance of a dipole antenna whose beam points
into the broadside direction (θ = 0◦).

The tilted beam of the bent monopole structure has led to a novel antenna
design with reconfigurable radiation patterns: One can switch the direction of the
antenna beam by controlling the orientation of the bent monopole. A reconfig-
urable wire antenna was designed, as shown in Figure 12.23a. The same EBG
ground plane was used in this structure and a feeding probe was located at the
center of the ground plane. The probe was connected to two metal strips through
two switches. When the left switch was on and the right switch was off, the
probe had an electrical connection to the left strip and the bent monopole was
oriented along the −x direction. When the left switch was off and the right
switch was on, the probe had an electrical connection to the right strip and the
bent monopole was oriented along the +x direction. As a result, the direction
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Figure 12.22 Bent
monopole antenna on
EBG ground plane:
(a) antenna geometry;
(b) radiation patterns.
A tilted beam in the
xz plane (ϕ = 0◦) is
observed at the −36◦

direction with a directiv-
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of the antenna beam can be switched and, hence, the diversity in the radiation
pattern can be obtained.

A reconfigurable antenna prototype was built to demonstrate the switchable
beam operation, and Figure 12.23b shows a photograph of the fabricated antenna.
A RT/Duroid 6002 high-frequency laminate (εr = 2.94 ± 0.04) with 120 mils
(3.048 mm) thickness was used as the substrate and the ground-plane dimensions
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Figure 12.23 Reconfigurable bent monopole design over EBG ground plane: (a) antenna
geometry; (b) photograph of fabricated antenna.

were the same as those given in Eq. (12.8). The length of the strip was tuned
to 30 mm to obtain the similar resonant frequency as the single bent monopole
antenna. The adjustment of the dipole length was due to the coupling effect from
the parasitic strip. The feeding probe was alternatively soldered to the left and
right metal strips to represent the operational mode of the −x and +x oriented
bent monopoles. The validity of this on/off representation of the switch status
has been verified in [42].

The measured return loss result of the antenna is shown in Figure 12.24a

and compared to the FDTD simulation result. The antenna resonated at 4.40 GHz
with a good return loss of −20 dB. The bandwidth of the antenna (S11 < −10 dB)
was 8.2 percent. It is worthwhile to point out that regardless of the +x or −x

orientation of the bent monopole the return loss of the antenna remained the same.
The radiation patterns of the antenna were measured at the resonant frequency
4.40 GHz, as shown in Figure 12.24b. As expected from the FDTD simulation,
a switchable antenna beam was observed in the xz plane (E plane). When the
bent monopole was −x oriented, the antenna beam pointed to θ = 26◦ with a
gain of 6.5 dB. When the bent monopole was +x oriented, the antenna beam
was switched to θ = 26◦ with the same gain. The measured results demonstrate
the concept of this radiation pattern reconfigurable antenna.

The reconfigurable concept has also been extended to realize two-
dimensional beam switching, as shown in Figure 12.25. Four strips are connected
to the center probe through four switches. By controlling the switches, the bent
monopole can orient along the −x, +x, −y, +y directions, respectively, resulting
in four different antenna beams. Therefore, the antenna beam can be switched
not only in the xz plane but also in the yz plane.
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Figure 12.24 Measured results of reconfigurable bent monopole antenna: (a) return loss
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Figure 12.25 Reconfigurable antenna scheme with two-dimensional radiation pattern
diversity.

12.5 SUMMARY

The complex artificial ground planes exhibit interesting electromagnetic proper-
ties such as a surface wave bandgap and an in-phase reflection coefficient. The
analysis methods and various artificial ground-plane designs were discussed in
this chapter. Furthermore, extensive examples were provided to demonstrate the
potential usefulness of artificial ground planes in antenna applications. It was
demonstrated that artificial ground planes not only improve the performance of
conventional antenna designs, including wire and microstrip antennas, but also
lead to novel radiator concepts such as the surface wave and reconfigurable
antennas described here. Given the evident and tangible progress in the artificial
ground-plane research, it is clear that the complex artificial ground planes can be
considered as a new paradigm in antenna engineering and may provide antenna
engineers with many future opportunities.
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CHAPTER13
FSS-BASED EBG SURFACES

Stefano Maci and Alessio Cucini

13.1 INTRODUCTION

Among the variety of electromagnetic bandgap (EBG) structures which have been
developed in recent years, an interesting role is played by frequency-selective sur-
faces (FSSs) printed on grounded stratified dielectric media. This type of structure
creates a particular class of so-called artificial or metamaterial surfaces, whose
applications are intended to create artificial magnetic conductors (AMCs) [1,2] or
surfaces which exhibit “soft” and/or “hard” equivalent boundary conditions [3].
Further applications are concerned with obtaining a stop band for surface wave
(SW) propagation along the interface. Consequent benefits are the suppression of
SW coupling [4], the reduction of diffraction lobes, the improvement of planar
antenna efficiency, the development of compact antennas [5] and resonators [6],
and the suppression of parallel-plate waveguide modes [7].

A simple and intuitive way to design an FSS-based metamaterial resorts
to a model based on equivalent LC circuits based on quasi-static concepts. The
LC model describes the dominant physics at low frequencies. For increasing
frequencies, the LC parameters are increasingly dependent on the phasing and
on the wave polarization, and the simple, quasi-static concepts are increasingly
insufficient. This introduces the need for a more rigorous network derivation
which extracts from the full-wave analysis the minimum number of wavenumber-
dependent parameters for an analytical synthesis of the surface impedance. Along
this line, this chapter illustrates first an integral equation method for the analy-
sis of FSS-based metamaterials and then a general process to rigorously derive
equivalent networks for designing reflection and dispersion properties.

When the emphasis is on the reflection properties of the metamaterial sur-
face, the structure response is conventionally presented in terms of the phase
of the reflection coefficient versus frequency for various plane-wave incidence
angles and for both transverse electric (TE) and transverse magnetic (TM) inci-
dent polarizations. The goal is to obtain a phase–frequency curve which is as
flat as possible around the zero-degree phase frequency value and invariant with
respect to the incidence angle. However, when the emphasis is on the EBG prop-
erties, the analysis leads to the dispersion diagram, and the aim is to enlarge
the SW frequency stop band or reduce the dependence on the SW direction of
propagation along the surface. All these design purposes are pursued by acting
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on the shape and stratification of the printed elements [8] as well as on via
groundings [1, 9]. The lowering of the resonance frequencies is indeed obtained
by increasing the capacitance with a coupled-FSS approach [10].

The two above-mentioned methods used to investigate the properties of the
artificial surface (i.e., the phases of the reflection coefficient and the dispersion
diagram of the SW modes) actually focus on two different physical aspects of the
problem, which also implies the use of different analysis schemes. The analysis of
the reflection coefficient is based on the expansion of the field in terms of Floquet
waves (FWs) centered around a wavenumber imposed by the excitation, that is,
known a priori. This allows us to approach the problem in a very efficient way by
resorting to integral equations and to a relevant method-of-moments (MoM) solu-
tion. However, when analyzing the dispersion properties, the modal wavenumber
is the unknown of the problem and may be found through the numerical solution of
a resonance equation. This implies the annulment of the MoM matrix determinant
and hence at least of one of the eigenvalues. As a consequence, there are theoretical
and numerical problems associated with this latter approach. First, the size of the
MoM matrix depends on the actual wavenumber, which dictates to a large extent
the scale of variation of the current. Second, the search for zeros is extremely sen-
sitive to the initial guess. For these reasons, emphasis will be given here to the
full-wave-based dispersion analysis by suggesting alternative ways to proceed.

13.1.1 Quasi-Static Admittance Models

As is well known, an intuitive model for the problem of plane-wave scattering
from an FSS is given in terms of a quasi-static reactive LC impedance network
placed in a TE or TM vertical transmission line (Fig. 13.1). Several authors have
treated the periodic surface problem via equivalent LC circuits to characterize
either the reflection or the dispersion properties of metamaterial surfaces [11,12].

In the absence of losses, the descriptive impedance is purely reactive. For
printed dipoles, at a frequency lower than their resonant frequency, the FSS is
capacitive. This capacitance may resonate in parallel with the inductance provided

Figure 13.1 Low-frequency equivalent transmission lines for FSS-based surface:
(a) series LC circuit for patch-type FSS; (b) parallel LC circuit for aperture-type FSS.
The transmission line parameters are those derived by the dominant Floquet mode for the
TE and TM polarization.
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Figure 13.2 An FSS-based EBG sur-
face and relevant plane-wave excitation:
(a) propagating incident and reflected plane
wave (k2

x + k2
y < ω2/c2); (b) evanescent

plane wave (k2
x + k2

y > ω2/c2) with attenua-
tion along z.

by the piece of short-circuited transmission line, thus leading to the equivalent
magnetic properties. Nearby in frequency, an EBG, that is, a frequency band
in which no surface wave propagation will occur, can be present. Analogous
considerations apply to the aperture-type FSS (Fig. 13.2b); the latter exhibits
an inductive behavior at a lower frequency and can be described by a parallel
LC circuit.

The equivalent transmission line for planar periodic surfaces can be oriented
in a horizontal instead of a vertical direction. This leads to a cascade of periodic
LC cells (see, e.g., [13, 14], relevant to the case of negative-refractive-index
structures). This horizontal transmission line model can substantially be derived
from a vertical transmission line by changing the wavenumber via a standard
analytical transformation.

The simple circuits described in Figure 13.1 contain the essential physics
to give a qualitative justification to the basic aspects of the magnetic conducting
properties. Actually, they are rigorous in the quasi-static limit. However, the lack
of important aspects, such as the quantification of the wavenumber dependence
and the coupling between the TE and TM polarizations, requires a more accurate
generalization of the model. This generalization will be substantiated next on the
basis of a full-wave MoM analysis.

13.1.2 Chapter Outline

This chapter is organized as follows. Section 13.2 provides a brief overview of
the spectral domain FW-based MoM for both patch-type and aperture-type FSSs.
Although the content of this section is rather standard [15, 16], it is essential
to emphasize the basic concepts which prepare the subsequent innovative parts.
Section 13.3 starts with the definition of an FW-based network and the relevant
admittance matrix at the accessible modal ports and proceeds with the defini-
tion of a dispersion equation based on the accessible modes, with emphasis on
numerical advantages and disadvantages compared to a more standard approach.
Section 13.4 presents the “pole–zero matching” method for the characterization
of the FSS equivalent circuit. The basic ideas of this method have been discussed
in a recent paper by the authors [17]. Here, the method is generalized by defin-
ing the poles and zeros of the equivalent FSS admittance from the visible to the
nonvisible region, avoiding nonrigorous extrapolation processes. The pole–zero
matching method invokes the LC properties of the admittance associated to the
FSS. However, it does not specify the inductance and capacitance of the network,
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but rather identifies the essential parameters, which synthesize all the necessary
physical information of the artificial surface and exhibit a weak variation against
the wavenumber. These parameters are the resonant frequencies (i.e., poles and
zeros) of the FSS equivalent admittance. Their appropriate use, based on Foster’s
theorem, leads to an accurate analytical approximation of the surface response
on a large-frequency region of the dispersion diagram. Explicit representations of
inductances and capacitances of the admittance network can be easily obtained
by a conventional network synthesis that will not be explicitly treated here. The
conclusions of this chapter are given in Section 13.5.

13.2 MOM SOLUTION

Let us consider an infinite planar FSS consisting of patches printed on a grounded
slab or of apertures etched on the upper wall of a parallel-plate dielectric-filled
waveguide. The entire structure is assumed to be without losses. A rectangular
(x,y,z) reference system is assumed with the z axis orthogonal to the FSS and
the origin at the FSS level. The periodicities of the FSS are dx and dy along
x and y, respectively. An incident, either TE or TM, plane wave is assumed to
illuminate the structure, with zero phase at the origin of the reference system. The
plane wave imposes a phasing kx and ky in the principal directions (we will refer
here to a rectangular lattice for reasons of simplicity, but the present formulation
is valid for a nonorthogonal lattice as well). The impressed plane wave could
be either propagating (Fig. 13.1a, k2

x + k2
y < ω2/c2) or evanescent (Fig. 13.1b,

k2
x + k2

y > ω2/c2) along z. In the latter case, the incident field is considered as
a planar impressed phased distribution of the TE or TM field placed at the FSS
level with attenuation in the z direction.

13.2.1 Patch-Type FSS (Electric Current Approach)

Let us first consider a patch-type FSS. The numerical computation of the equiv-
alent currents at the interface of the planar periodic structure is performed via
a numerical solution of the electric field integral equation (EFIE) by using a
spectral periodic MoM approach. More than discussing the numerical implica-
tion of the MoM scheme, our objective is to construct an appropriate and simple
admittance matrix through the MoM matrix to characterize the FSS surface.

Due to the periodicity of the problem, the analysis can be reduced to that
of a single periodic cell, with phase shift boundary conditions applied to the
ideal vertical walls. By applying the equivalence theorem (Fig. 13.1), an electric
current distribution is assumed on the region of the metallic patches, radiating
with the Green’s function (GF) of the grounded slab. By imposing the boundary
conditions on the surface of the metallic patches, the EFIE is derived as follows:

ES(J) + Eimp = 0 (13.1)

where ES is the field radiated by the currents J induced on the patches, and
Eimp = Einc + Eref is the impressed field at the interface (in the absence of printed
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elements), which is given by the sum of the incident (Einc) and reflected (Eref)
fields. From here on, the bold characters indicate vectors and the carets indicate
unit vectors. As suggested by Tascone and Orta [16, pp. 221–238], the equivalent
currents J are expressed in terms of basis functions fn(rt ),

J(rt) =
N∑

n=1

Infn(rt) (13.2)

where rt = xx̂ + yŷ denotes the two-dimensional space vector. Figure 13.3
shows subdomain triangular basis functions, but entire domain basis functions can
be used as well. Due to the periodicity of the problem, the analysis is reduced to
that of a single periodic cell by resorting to the Floquet theorem. Let us indicate
by k = kxx̂ + kyŷ the impressed vector wavenumber; by kxξ = kx + 2πξ/dx ,
kyη = ky + 2πη/dy (ξ, η = ±1,±2, . . .) the FW wavenumbers in x and y,
respectively; and by kq = kxξ x̂ + kyηŷ the relevant vector form, where q denotes
the two FW indices (ξ, η). By indicating with βq the nodes of the reciprocal
lattice, that is,

βq = 2πξ

dx

x̂ + 2πη

dy

ŷ,

we obtain kq = k + βq , with q = 0, 1, 2 . . . and k0 = k by definition. It is also
useful to introduce the normalized spectral vectors

σ̂q = kq√
kq·kq

α̂q = ẑ × σ̂q (13.3)

Figure 13.3 Application of equivalence principle to basic cell of (a) patch-type and
(b) aperture-type FSS. Phase shift conditions are imposed on the vertical walls. A triangu-
lar mesh is shown, with subdomain basis functions used for expansion of (a) electric and
(b) magnetic current distribution.
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as a spectral basis to describe the TM and TE field components, respectively.
By using a Galerkin spectral MoM approach, (13.1) is reduced to the matrix
equation

=
ZMoM I = V (13.4)

where V = {Vm}T
m=1,N is the known column vector of the complex amplitude of

the impressed field on the fn basis, and its components are given by

Vm = −F̃∗
m(k)·Eimp(k) (13.5)

In (13.5), the asterisk denotes the complex conjugate and Eimp(k) is the spectrum
of the impressed field. The latter is given by two space harmonics representing
the incident field and the field reflected by the grounded dielectric slab without
patches. In (13.4), I = {In}T

n=1,N is the column vector of the current expansion
and

=
ZMoM = {ZMoM

nm }n,m=1,N is the MoM impedance matrix, with entries given
in an appropriate TE/TM form via

ZMoM
mn =

M−1∑
q=0

F̃∗
m(kq)·

[
ZTM

GF (kq)σ̂q σ̂q + ZTE
GF(kq)α̂q α̂q

] ·F̃n(kq) (13.6)

In (13.6), F̃n(k)[F̃m(k)] is the Fourier transform of the basis (test) function
fn(rt)[fm(rt)] sampled at the FW wavenumbers kq ; Z

TM/TE
GF (k) are the TM–TE

components of the individual element spectral electric field GF, sampled in
(13.6) at the vector FW wavenumber. In (13.6), the modal FW expansion is
truncated at the integer M − 1 with M in general larger than N . This is an obvi-
ous consequence of the continuity of the FWs on the periodic cell, which implies
the use of more FW modes than basis functions to describe the patch current. The
GF impedances can be found by solving the pertinent transmission line problem
representing the stratification for the TE and TM case; in the present case (single
grounded substrate), one obtains

Z
TM/TE
GF (k) =

[
Y

TM/TE
0 (k) − jY

TM/TE
1 (k) cot(kz1h)

]−1
(13.7)

where

Y TM
0 (k) = ωε0

kz

Y TE
0 (k) = kz

ωµ0
Y TM

1 (k) = ωεrε0

kz1
Y TE

1 (k) = kz1

ωµ0

are the modal z transmission line TM/TE characteristic admittances relevant to the
free-space (subscript 0) and the dielectric (subscript 1) regions, respectively, kz =√

k2 − k2
x − k2

y , kz1 =
√

εrk2 − k2
x − k2

y , and k is the free-space wavenumber. The

MoM matrix can be expressed in the compact form

=
ZMoM = =

QH =
ZGF

=
Q (13.8)

where
=
ZGF = diag{ZTM

GF (kq), ZTE
GF(kq)}q=0,M−1 is a diagonal 2M × 2M matrix,

the superscript H denotes transpose conjugate,
=
QH = {QTM∗

m,q , QTE∗
m,q }Tm=1,N

q=0,M−1
is an

N × 2M matrix, and
=
Q = {QTM

q,n , QTE
q,n} q=0,M−1

n=1,N

is a 2M × N matrix. The entries

of the Q matrices are given by QTM
i,q = F̃i(kq)·σ̂q , QTE

i,q = F̃i (kq)·α̂q (i = n, m).
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13.2.2 Aperture-Type FSS (Magnetic Current Approach)

For an inductive-type FSS (i.e., perforated screens), the FSS is substituted by a
continuous, infinitely thin perfect electric conductor (PEC) screen with magnetic
current distribution on both sides (Fig. 13.3); these currents have equal ampli-
tude and opposite signs on the two different sides to ensure the continuity of the
electric field through the aperture. The integral equation which imposes the conti-
nuity of the magnetic field follows from the relation H+

s (M) + Himp = H−
s (−M),

where the superscript plus and minus refer to the GF of the upper and lower
regions, respectively. The magnetic current is expanded in terms of basis func-
tions gn(rt ) associated with the electric field

M(rt) =
N∑

n=1

Vngn(rt) × ẑ (13.9)

Imposing the continuity of the magnetic field through the aperture leads to the
expression

=
YMoM V = I (13.10)

where V = {Vn}T
n=1,N is the unknown column vector, I = {Im}T

m=1,N , Im =
−G̃∗

m(k)·Himp(k) is the known column vector of the impressed magnetic field on
the MoM basis, and G̃i (k) is the Fourier transform of gi (rt). The MoM matrix
may be expressed in the compact form

=
YMoM = =

P H =
YGF

=
P (13.11)

where
=
YGF = diag{Y TM

GF (kq), Y TE
GF (kq)}q=1,M [with Y

TM/TE
GF (k) = Y

TM/TE
0 (k) −

jY
TM/TE
1 (k) cot(kz1h)] is a diagonal 2M × 2M matrix,

=
P H = {P TM∗

m,q , P TE∗
m,q }T

m=1,N
q=0,M−1

is an N × 2M matrix, and
=
P = {P TM

q,n , P TE
q,n} q=0,M−1

n=1,N

is a 2M × N matrix whose

components are given by P TM
i,q = G̃i (kq)·σ̂q , QTE

i,q = G̃i (kq)·α̂q (i = n,m)

13.2.3 Dispersion Equation

The dispersion equation of the artificial surface can be obtained by assuming the
existence of nontrivial solutions for zero impressed field, which implies

det[
=
ZMoM(kx, ky, ω)] = 0 for patch-type FSS (13.12)

det[
=
YMoM(kx, ky, ω)] = 0 for aperture-type FSS (13.13)

where we have explicitly added the dependence of the MoM matrix on the angu-
lar frequency. The solution of the dispersion equation in the range k2

x + k2
y >

ω2/c2 leads to the wavenumbers of the SW supported by the artificial surface.
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Equivalent expressions of the dispersion equations can be obtained by diagonal-
izing the MoM matrix and annulling the product of the eigenvalues,

ξ1(kx, ky, ω)ξ2(kx, ky, ω) · · · ξN(kx, ky, ω) = 0 for patch-type FSS (13.14)

η1(kx, ky, ω)η2(kx, ky, ω) · · · ηN(kx, ky, ω) = 0 for aperture-type FSS (13.15)

where ξ1, ξ2, . . . , ξN and η1, η2, . . . , ηN are the eigenvalues of
=
ZMoM and

=
YMoM,

respectively. Equations (13.14) and (13.15) can be numerically convenient in
comparison to (13.12) and (13.13) if a fast method to track the zeros of each
eigenvalue is applied. To this regard, the covariance matrix approach in [18]
can be used. The EBG of the artificial surface is defined as a frequency range
where no solution of (13.14) or (13.15) exists for (kx , ky) real and below the
light cone (k2

x + k2
y > ω2/c2). This means that no SW can propagate along the

artificial surface for any frequency within the EBG. An alternative way to define
the dispersion equation is to resort to the concept of accessible modes presented
in the next section.

13.3 ACCESSIBLE MODE ADMITTANCE NETWORK

Let us assume that we are observing the field at a certain distance z from the
artificial surface. In this case, the FW modes that are completely attenuated do not
contribute to the field at z. In a multimode network description, this implies that
the relevant modal ports can be considered as not “accessible” to the observer and
therefore are neglected. This concept was introduced by Rozzi [19] for waveguide
problems and is commonly used to calculate the coupling between FSSs located
at different levels [16]. Denote by 2MA the number of accessible TM/TE ports
and consider the 2MA -port network in Figure 13.4, where each port is associated
to an FW mode of TM or TE type. This network consists of a multiport “FSS
network” loaded in parallel at each port by a modal TM or TE transmission
line representing the unprinted grounded slab. The FSS network is conveniently
characterized by 2MA × 2MA admittance (impedance) matrices,

I
FSS
FW = =

YFSS V FW for patch-type FSS (13.16a)

V FW = =
ZFSS I

FSS
FW for aperture-type FSS (13.16b)

FSSY

FW, q
TMIITM

I

FW, 0
TEI

(k)Y0

(k)

TM

TMY1

(k)TEY0

(k)TEY1

(kq)TMY0

(kq)TMY1

(kq)TEY0

(kq)TEY1

FW, q
TEIFW, 0

Figure 13.4 Multiport accessible FW-mode network and relevant transmission line
parameters.
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where I
FSS
FW = [ITM

FW,q , I
TE
FW,q]T

q=0,MA−1(V FW = [V TM
FW,q , V

TE
FW,q]T

q=0,MA−1), is the
vector of the FW amplitudes of the magnetic (electric) field expansion at the
FSS level and denotes the electric current flowing into the FSS network (the
FW mode voltage at the ports). In the following sections we will show how to
construct the FSS admittance/impedance matrix for different FSSs.

13.3.1 Patch-Type FSS

For patch-type FSSs, I
FSS
FW is obtained by projecting the MoM vector cur-

rents I into MA FW accessible modal currents I
FSS
FW = =

q I , where =
q = {QTM

q,n,

QTE
q,n} q=0,MA−1

n=1,N

is the 2MA × N matrix obtained by the first 2MA rows of

=
Q. Analogously, the forcing term associated with the incident field can be
projected onto the FW modal vector via TM/TE decomposition, thus lead-

ing to V = =
qH V

imp
FW, where

=
qH = {QTM∗

m,q , QTE∗
m,q } m=1,N

q=0,MA−1
is the N × 2MA

matrix consisting of the first 2MA TE–TM columns of
=
QH and V

imp
FW =

{−σ̂0·Eimp(k), −α̂0·Eimp(k), 0, . . . , 0}T is a 2MA element column vector. Using

the above projections onto the MoM system
=
ZMoM I = V and assuming that this

latter is invertible, one obtains

I
FSS
FW = =

YFW V
imp
FW

=
YFW = =

q
=
Z

−1
MoM

=
qH (13.17)

where
=
ZMoM = =

QH =
ZGF

=
Q. Equation (13.17) establishes the relationship between

the impressed modal voltages at z = 0 and the total modal FSS currents asso-
ciated to 2MA accessible FW modes. The total modal voltage V FW is obtained

by adding the modal voltage V
rad
FW = − =

ZGF I
FSS
FW induced by the radiation of the

FSS current in the stratified medium to the impressed modal voltage field, thus
obtaining

V FW = V
imp
FW − =

ZGF I
FSS
FW = V

imp
FW − =

ZGF
=
YFW V

imp
FW = [

=
I −=

ZGF
=
YFW]V

imp
FW
(13.18)

From (13.18) we obtain V
imp
FW = [

=
I −=

ZGF
=
YFW]−1V FW, which, when inserted into

(13.17), leads to

I
FSS
FW = Y FSSV FW

=
YFSS = =

YFW[
=
YGF −=

YFW]−1 =
YGF (13.19)

13.3.2 Aperture-Type FSS

For aperture-type FSSs, the MoM vector V is written in terms of the FW

modal voltage vector V FW, that is, V FW = =
pH V , where

=
pH is the N × 2MA

matrix consisting of the first 2MA TM/TE columns of
=
P H . The forcing term

vector associated with the incident magnetic field is also projected onto the
FW modal vector via TM/TE decomposition, which leads to I = =

p I
imp
FW, where
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I
imp
FW = {−2σ̂0 · Hinc(k), −2α̂0 · Hinc(k), 0, . . . .0}T and =

p is the 2MA × N matrix

obtained by the first 2MA rows of
=
P . By using the above projections in the MoM

system
=
YMoM V = I and assuming that the latter is invertible, we obtain

V FW = =
ZFW I

imp
FW

=
ZFW = =

p
=
Y

−1
MoM

=
pH (13.20)

where
=
YMoM = =

P H =
YGF

=
P . Equation (13.20) establishes the relationship between

the impressed modal current on the upper side of the continuous PEC screen and
the total modal electric field. The total modal current IFW is obtained as the sum
of the current induced by the magnetic current radiation on the upper (I

+
FW) and

lower (I
−
FW) sides of the continuous screen; that is,

IFW = (I
+
FW) + I

−
FW = (I

imp
FW − =

Y
+
FW V FW) − =

Y
−
FW V FW

= I
imp
FW − =

YGF V FW = [
=
I −=

YGF
=
ZFW]I

imp
FW (13.21)

where we used the identity
=
Y

+
FW +=

Y
−
FW = =

YGF = diag[Y TM
GF (kq),

Y TE
GF (kq)]q=0,MA−1. Using (13.21) in (13.20) we obtain ZFSSI

FSS
FW = V FSS, where

=
ZFSS = =

ZFW[
=
I −=

YGF
=
ZFW]−1. The latter can be given in terms of the impedance

matrices as

V FW = =
ZFSS I

FSS
FW

=
ZFSS = =

ZFW

(=
ZGF −=

ZFW

)−1 =
ZGF (13.22)

13.3.3 Dispersion Equation in Terms of Accessible Modes

The dispersion equation of the structure can be obtained directly through the
accessible mode description by looking for a nontrivial solution for vanish-
ing impressed fields. Let us refer to Eq. (13.17) for the capacitive FSS and
to Eq. (13.20) for the inductive FSS. To find a nontrivial solution for the

zero impressed field, one must have det [
=
Y

−1
FW] = 0 for the patch-type FSS and

det [
=
Z

−1
FW] = 0 for the aperture-type FSS; alternatively,

{δ0(kx, ky, ω)δ1(kx, ky, ω) · · · δMA−1(kx, ky, ω)}−1 = 0 for patch-type FSS

(13.23)

{γ0(kx, ky, ω)γ1(kx, ky, ω) · · · γMA−1(kx, ky, ω)}−1 = 0 for aperture-type FSS
(13.24)

where δ0, δ1, . . . are the eigenvalues of
=
YFW = =

q

(=
QH =

ZGF
=
Q

)−1 =
qH and

γ0, γ1, . . . are the eigenvalues of
=
ZFW = =

p

(=
P H =

YGF
=
P

)−1 =
pH , respectively. We

note that the convenience in using (13.23) and (13.24) in place of the standard
form (13.14) and (13.15) is implied by the fact that MA can be much smaller than
N . However, it is clear that the process of reconstructing the dispersion equation
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through (13.23) and (13.24) is hindered by numerical difficulties. Indeed, around

the solution of the dispersion equation, the MoM matrix
=
ZMoM = =

QH =
ZGF

=
Q( =

YMoM = =
P H =

YGF
=
P

)
is nearly singular, and the inversion required to obtain

=
YFW (

=
ZFW) is inaccurate. This results in an inaccuracy in detecting the posi-

tion of the poles of the relevant eigenvalues. To overcome this difficulty, one
may resort to an alternative process, based on an analytical approximation of

the matrix
=
YFSS and followed by an analytical determination of the dispersion

equation. This process is illustrated next, with reference to a single accessible
mode (MA = 1).

13.4 POLE–ZERO MATCHING METHOD
FOR DISPERSION ANALYSIS

13.4.1 Dominant-Mode Two-Port Admittance Network

Let us assume that only one pair of TM/TE propagating FW modes are accessible
for a given z level (MA = 1). As a special case of (13.19) (capacitive FSS) and
(13.20) (inductive FSS), the FSS is modeled by the two-port network shown in
Figure 13.5a, which is characterized by the admittance matrices

=
YFSS(kx, ky;ω) = =

q

(=
QH =

ZGF
=
Q

)−1 =
qH

×
[
=
YGF −=

q

(=
QH =

ZGF
=
Q

)−1 =
qH

]−1 =
YGF (13.25)

for the patch-type FSS and

=
ZFSS(kx, ky;ω) = =

p

(=
P H =

YGF
=
P

)−1 =
pH

×
[
=
ZGF −=

p

(=
P H =

YGF
=
P

)−1 =
pH

]−1 =
ZGF (13.26)

for the aperture-type FSS. In (13.25) and (13.26), the dependence on the fre-
quency and on the impressed wave vector has been emphasized, and

=
YGF = diag[Y TM

GF , Y TE
GF ] = diag[Y TM

0 (k) − jY TM
1 (k) cot(kz1h), Y TE

0 (k)

− jY TE
1 (k) cot(kz1h)] (13.27)

=
ZGF = =

Y
−1
GF ,

=
q ,

=
p are matrices of size 2 × N , and

=
qH ,

=
pH of size N × 2.

Let us anticipate that the SW dispersion equation associated with the meta-

material surface is given by det [
=
YGF +=

YFSS] = 0 for the patch-type FSS and

det [
=
ZGF +=

ZFSS] = 0 for the aperture-type FSS, that is, by the resonance of the
circuit in the lower part of Figure 13.5a. We will solve the dispersion equation
after approximating the FSS matrices (13.25) and (13.26).
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Figure 13.5 (a) Above: two-port modal network relevant to propagating TE and TM
FW mode. Below: reduction at modal ports of transmission lines in absence of any exci-
tation. (b) Brillouin diagram (kx, ky) − ω (the figures refer to a case dx > dy). Below the
two portions of the upper conical surfaces, the higher order FW modes are cut off. This
region identifies the validity of the FSS network in (a) with purely reactive entries of its

admittance matrix
=
YFSS. The free-space speed of light is denoted by c. The “light cone” is

also depicted, and its surface identifies the cutoff of the dominant propagating mode.

The utilization of a two-port network is subject to the existence of an
observation level z where the dominant TE and TM FW modes are the only
accessible modes. This implies that all the higher order FW modes must be cut
off. The cutoff condition of the higher order FW modes implies a limitation to
the observable dispersion diagram. Figure 13.5b shows a dispersion diagram with
angular frequency ω on the vertical axis and the wavenumbers kx and ky on the
horizontal axes. Due to the periodicity of the FW spectrum, the observation may
be restricted to the Brillouin region (−π/dx < kx < π/dx, −π/dy < ky < π/dy),
with a further (due to the symmetry of the structure) restriction to positive values
of kx and ky . The cutoff region for higher order modes is imposed by the condition
k2
xξ + k2

yη > ω2/c2 for (ξ, η) �= (0, 0). As a consequence, within the observed
wavenumber plane, the cutoff region is delimited by portions of two cones whose
vertices are at the FW wavenumbers closest to the origin (details are shown in
Fig. 13.5b. A third cone is depicted in the same figure; its surface k2

x + k2
y =

ω2/c2 defines the cutoff of the dominant mode. Although this cone is not essential
for the validity of the two-port model, it bounds the slow-wave region and is
therefore important for representing the SW dispersion curves. Intersections of
this cone with the vertical planes ω–kx and ω–ky identify the well-known “light
lines” in these two planes. Figure 13.5b also shows the horizontal plane ω =
ωM = cπ/ max(dx, dy), which is the minimum frequency at which the higher
order FW modes are attenuated for any wavenumber. In all cases of practical
interest, the EBG of the artificial surface is located within the range (0, ωM).
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As far as the FSS admittance network is concerned, we would like to
emphasize the following points:

(i) The
=
YFSS entries are associated with the ratio at the FSS level between

the transverse discontinuity of the H field and the transverse E field
pertaining to the dominant FW mode. These quantities may be considered
as relevant to an average field concept [12]. Consequently, the derivation
of the FSS admittance matrix from the MoM matrix, expressed by (13.25)
and (13.26), can be seen as a homogenization process of the periodic
impedance.

(ii) The homogenization process does not require the hypothesis of small
periodicity compared with the wavelength; it has only been assumed
that all the higher order FW modes are cut off in the Brillouin region.
The two-port network in Figure 13.5a is able to recover the transverse
total field only above the level at which the only accessible mode is the
dominant one.

(iii) Through the inverse of the MoM matrix,
=
YFSS incorporates the informa-

tion from all the higher order TE and TM FWs associated with the FSS
discontinuity. This implies that the information on the overall dispersion
equation in the cutoff region of higher order modes (Fig. 13.5b) can be

obtained directly from
=
YFSS. Outside of this region, a model with more

ports is needed to recover the dispersion properties.

13.4.2 Diagonalization of FSS Admittance Matrix

From here on, we will deal with the case of patches by treating the
=
YFSS matrix,

but analogous steps may be performed for aperture-type FSSs by using the
=
ZFSS

matrix. The FSS admittance matrix in (13.25) can be diagonalized by a rotation

matrix
=
R(α),

=
YFSS(kx, ky;ω) = =

R(α(kx, ky;ω)) diag [Y (1)
FSS(kx, ky;ω), Y

(2)
FSS(kx, ky;ω)]

× =
R(−α(kx, ky;ω)) (13.28)

where
=
R(α) =

[
cos α − sin α

sin α cos α

]
(13.29)

and
=
R

−1
(α) = =

R(−α). The rotation angle α and the eigenvalues Y
(1)
FSS, Y

(2)
FSS are

dependent on kx, ky , and ω, as stressed in the notation. The angle α can be cal-

culated from the entries Y
(i,j)

FSS of
=
YFSS as α = 1

2 tan−1(2Y
(1,2)
FSS /(Y

(2,2)
FSS − Y

(1,1)
FSS )),

where the tangent function is inverted in the range (−π/2, π/2). The eigenvalues

of
=
YFSS can be found by inversion of (13.27) as

diag [Y (1)
FSS, Y

(2)
FSS] = =

R(−α)
=
YFSS

=
R(α) (13.30)
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The following properties can be easily demonstrated:

(i) Since, in the absence of losses, the Y
(i,j)

FSS are purely reactive in the cutoff
region of the higher order modes (Fig. 13.5b), this implies a real value
of α for any wavenumber. This also occurs when ω2/c2 < k2

x + k2
y .

(ii) The limit ω → 0 and kx, ky → 0 implies that α → 0 and
=
R → =

I . Thus,
the TE and TM transmission line networks are decoupled in such a
limit.

(iii) Decoupling between the TE and TM ports also occurs when the direction
of wave propagation is along any plane of geometric symmetry of the
FSS. The planes of symmetry define the contour of the “irreducible” Bril-
louin region (IBR). As a consequence, the dominant TE and TM modes
are decoupled along the segments of the IBR contour which converge at
the origin.

To approximate and store the values of α, it is convenient to define the
unwrapped angle αu = n(π/4) + α, with n = 1, 2, . . . chosen so as to have a con-
tinuous value of αu. As an illustration of this, we show the case of printed crossed
dipoles in Figure 13.6 (see the geometry in the inset). The unwrapped angle
α(π/dx, ky;ω) is presented there as a function of the frequency and wavenum-
ber along the segment X → M of the IBR triangular boundary 
 → X → M →

 ≡ (0, 0) → (π/dx, 0) → (π/dx, π/dx) → (0, 0). We note that, along 
 → X

dx

π
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Figure 13.6 Unwrapped angle αu versus frequency and wavenumber along path X–M

of Brillouin zone for crossed-dipole FSSs (see inset, dimensions in millimeters). The
constant-frequency lines are shown.
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and M → 
, α approaches 0 and αu approaches a stairlike variation with steps of
π/2. As apparent from the constant-frequency line of the surface α(π/dx, ky;ω),
αu exhibits a smooth variation against the wavenumber. This regular behavior
allows us to approximate αu(π/dx, ky;ω(j)) for a dense sampling at ω(j) starting
from αu(π/dx, k

(i)
y ;ω(j)) for a few values of k

(i)
y .

13.4.3 Foster’s Reactance Theorem and Rational Approximation
of Eigenvalues

In the absence of losses, the equivalent FSS admittance is purely reactive for
every (kx , ky). It can be demonstrated that the imaginary parts of the eigenvalues
Y

(i)
FSS(kx, ky;ω), seen as a function of frequency, respect the Foster’s reactance

theorem for every real value of (kx , ky). The demonstration can be performed
as in [20] by referring to an equivalent waveguide with periodic boundary con-
ditions. Note that this is valid within the cutoff region of the higher order FW
modes described in Figure 13.5b; indeed, for frequencies where another pair of
TM/TE modes is propagating, the two-port FSS matrix loses its purely reactive
property. The main implication of Foster’s reactance theorem is that the function
Y

(i)
FSS(kx, ky;ω) possesses the same pole–zero analytical properties as a passive

“driving point” LC function of the frequency. These properties are as follows:

(i) The poles and zeros lie on the real ω axis and are simple and alternate.

(ii) A pole or a zero must be at ω = 0.

(iii) Poles and zeros are symmetrically displaced with respect to the origin.

An important consequence of these properties is that the admittance fre-
quency function can be well approximated by a rational function after the posi-
tions of the poles and zeros along the real ω axis have been determined. Since,
in the quasi-static limit, the patch-FSS behaves like a shunt capacitance (see
Fig. 13.1), the FSS admittance has a simple zero at the origin. On the basis of
(i) to (iii), the eigenvalues for the patch-type FSS can be approximated as

Y
(i)
FSS(kx, ky, ω)

= jωC
(i)
0 (kx, ky)(1 − [ω/ω

(i)
z1 (kx, ky)]2)(1 − [ω/ω

(i)
z2 (kx, ky)]2) · · ·

(1 − [ω/ω
(i)
p1 (kx, ky)]2)(1 − [ω/ω

(i)
p2(kx, ky)]2) · · ·

(13.31)

where ω
(i)
p1 < ω

(i)
z1 < ω

(i)
p2 < ω

(i)
z2 . For the aperture-type FSS, we have the follow-

ing eigenvalues for the impedance matrix, which exhibit a simple zero at the
origin:

Z
(i)
FSS(kx, ky, ω)

= jωL
(i)
0 (kx, ky)(1 − [ω/ω

(i)
z1 (kx, ky)]2)(1 − [ω/ω

(i)
z2 (kx, ky)]2) · · ·

(1 − [ω/ω
(i)
p1 (kx, ky)]2)(1 − [ω/ω

(i)
p2(kx, ky)]2) · · ·

(13.32)

where ω
(i)
p1 < ω

(i)
z1 < ω

(i)
p2 < ω

(i)
z2 . As mentioned in Section 4.2 [point (ii)], in the

limit for ω → 0, the angle α tends to zero, and the TE and TM networks are
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decoupled. Consequently the FSS is capacitive (inductive) for the patch-type
(aperture-type) FSS, thus recovering the expected network shown in Figure 13.1.
It is important to anticipate the following points, which will be further investi-
gated in the next sections:

(a) The quantities C
(i)
0 (kx, ky)[L

(i)
0 (kx, ky)] are independent on ω and repre-

sent the quasi-static capacitance (inductance) of the FSS. Their dependence
on (kx , ky) is found to be very weak and thus very easy to approximate.

(b) Equations (13.30) and (13.31) allow an analytical definition of the admit-
tance, over a broad frequency range, on the basis of the determination of
the wavenumber-dependent poles and zeros. As will be discussed below,
ω

(i)
zj

(kx, ky) and ω
(i)
pj

(kx, ky) can be calculated directly for a few values of
the wavenumber and can then be approximated straightforwardly.

(c) The numerical calculation of
=
YFSS in (13.25) and [or

=
ZFSS in (13.26)] is

accurate at those wavenumbers where Y
(i)
FSS exhibits poles or zeros because

the MoM matrix is well conditioned. Indeed, the solution of the dis-
persion equation (which implies a noninvertible MoM matrix) given by

det [
=
YFW +=

YGF] = 0 is incompatible with the conditions obtained at the
zeros and poles of Y

(i)
FSS.

(d) The sequence of poles and zeros in a certain frequency range is sometimes
not sufficient to describe the eigenvalues in the same range. As discussed
in [17], to investigate the range � = (0, ωmax), the pole–zero pairs internal
to � and one more pole–zero pair, the closest to ωmax, should be included.
This practical rule is subject to the limitation that the last zero–pole pair
should be included inside the cutoff region of the higher order FW modes
(see Fig. 13.5b). To extend the frequency range of approximation, the
process can be applied to a four-port accessible-mode matrix. However,
it should be noted that the present approach applied to a two-port matrix
model is sufficient to describe the first bandgap of the artificial surface,
which is typically the most important one.

13.4.4 Poles and Zeros of FSS and Metamaterial Admittance

From the approximation (13.30) and (13.31), the analytical representation of
the FSS in a broad frequency range can be derived from the following func-
tions:

ω(i)
zj

(kx, ky), ω
(i)
pj

(kx, ky), α(ω, kx, ky), C0(kx, ky), (L0(kx, ky)) (13.33)

All these functions show a very weak variation with respect to the wavenumber
and are easy to approximate from the data related to only a few wavenumbers. In
particular, the functions ω = ω

(i)
zj

(kx, ky) and ω = ω
(i)
pj

(kx, ky), respectively, are

denoted as the dispersion curves of the poles and zeros of Y
(i)
FSS. These curves are

very regular and can be approximated by a simple second-order polynomial form.



13.4 POLE–ZERO MATCHING METHOD FOR DISPERSION ANALYSIS 367

For a triangular IBR, the dispersion curves of poles and zeros are approximated
along the segments 
 → X → M → 
 by

ω
(i)
pj

(kx, 0) = A
(i)
pj

+ B
(i)
pj

kx + C
(i)
pj

k2
x

ω
(i)
zj

(kx, 0) = A
(i)
zj

+ B
(i)
zj

kx + C
(i)
zj

k2
x

}
(
–X)

ω
(i)
pj

(
π

dx

, ky

)
= D

(i)
pj

+ E
(i)
pj

ky + F
(i)
pj

k2
y

ω
(i)
zj

(
π

dx

, ky

)
= D

(i)
zj

+ E
(i)
zj

ky + F
(i)
zj

k2
y


 (X–M) (13.34)

ω
(i)
pj

(κ, κ) = G
(i)
pj

+ H
(i)
pj

κ + L
(i)
pj

κ2

ω
(i)
zj

(κ, κ) = G
(i)
pj

+ H
(i)
pj

κ + L
(i)
pj

κ2

}
(M –
)

The coefficients A, . . . , H,L in (13.34) are independent of the frequency and
wavenumber and are calculated by matching the values obtained from (13.25),
(13.26), and (13.30). Figure 13.7a shows the dispersion curves of poles and zeros
for a crossed-dipole FSS on the triangular contour of the IBR. The arms of the
crosses have length 7 mm and width 1 mm. The periodicity is 8 mm along both
directions. The dielectric substrate has relative permittivity εr = 4.5 and thickness
h = 0.762 mm. We stress that the TE and TM ports are uncoupled along the two
segments 
 → X and M → 
, whereas they are coupled (hybrid-mode region)
along X → M . However, at the first pair of TM or TE poles, the decoupling
also persists approximately in the segment X → M , thus justifying the notation
of “quasi TM” and “quasi TE” poles.

Assume now that the FSS admittance network is placed in parallel with the
admittance from the short-circuited transmission line, that is,

=
Ycc = diag

[
−j

ωεrε0

kz1
cot(kz1h), −j

kz1

ωµ0
cot(kz1h)

]
so that =

YMM(kx, ky;ω) = =
YFSS +=

Ycc (13.35)

where
=
YMM can be defined as the equivalent admittance matrix of the metama-

terial, to intend that this admittance incorporates the effects of both the FSS

and the dielectric material slab. The metamaterial matrix
=
YMM has the same Fos-

ter reactance theorem properties as the matrix
=
YFSS, since it is the sum of two

reactance-type functions. However, the poles and zeros of
=
YMM are more numer-

ous than those of
=
YFSS. This general fact motivates the choice to synthesize, via

pole–zero matching, the FSS admittance instead of the metamaterial admittance.

The poles and zeros of
=
YMM are shown in Figure 13.7b with reference to the same

case as that in Figure 13.7a. The poles of
=
YMM denote the locus of the Brillouin

space where the surface behaves like an equivalent PEC. Thus, the poles of
=
YFSS

are a subset of the poles of
=
YMM. The zeros of

=
YMM mark a perfect magnetic

conductor surface in the Brillouin space. Note that this way of introducing the



368 CHAPTER 13 FSS-BASED EBG SURFACES

0

2

4

6

8

10

12

14

16

18

pTE

pTE pTE

pTE

pTE

p1

p1

p1

p2

p2

pTM

pTM

pTM

pTM

pTMzTM

zTM

z1

z1zTE
z2

zTM

zTE

zTE

zTM zTMz2

0

2

4

6

8

10

12

14

16

18

MX

zTM

pTM pTM

pTE

p1

Z1

p1

p2

pTM
zTM

zTE

zTMzTE zTE

f [
G

H
z]

f [
G

H
z]

M

X kx

dx

dy

ky

1

εr = 4.5

x
0.762

8

x

y

7

8

pTE pTE

z1 z2

(a)

MX

(b)

π

πΓ

ΓΓ

Γ Γ

M

X
kx

dx

dy

ky

πΓ

π

Figure 13.7 Pole and zero dispersion diagrams for crossed-dipole FSS surface along

IBR. Curves relevant to (a) FSS admittance matrix
=
YFSS (b) metamaterial admittance

matrix
=
YMM for structure shown in the inset of (a) (dimensions in millimeters). The

continuous and dashed lines denote the TM (quasi-TM) and TE (quasi-TE) curves, respec-
tively, using the abbreviation p for poles and z for zeros. Dot–dashed lines denote the
“hybrid” poles and zeros, where the TE and TM modes are coupled. Pole (zero) curves
relevant to the eigenvalues numbered by i = 1, 2 use the abbreviations pi , zi , respec-

tively. Note that the pole and zero curves of
=
YFSS are fewer and never intersect with each

other.

magnetic conductor is independent of whether or not the wavenumber is below
the light cone. As is apparent from Figure 13.7b, the dispersion curves of poles

and zeros of
=
YMM can intersect while preserving, for each wavenumber, the alter-

nating values of the frequencies of the poles and zeros. Instead, no intersection
occurs for the FSS poles and zeros (Fig. 13.7a).
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We would like to remark that analogous considerations hold for the aperture-
type FSS, except that the metamaterial impedance matrix is given by

=
ZMM(kx, ky;ω) = =

ZFSS

[=
ZFSS +=

Zcc

]−1 =
Zcc (13.36)

where
=
Zcc = =

Y
−1
cc .

13.4.5 Analytical Form of Dispersion Equation

The construction of the FSS admittance
=
YFSS proceeds through the following

steps: (a) diagonalization of
=
YFSS through (13.30) and interpolation of the angle

α; (b) identification of the pole and zero frequencies of the eigenvalues of
=
YFSS; (c) second-order polynomial approximation of the pole and zero disper-
sion diagrams; and (d) approximation of the eigenvalues via a rational function
of frequency on the segments of the contour of the IBR.

The final output is an analytical form for
=
YFSS for any frequency and

wavenumber. This allows us to deal with an analytical form of the SW disper-

sion equations det

[=
YFSS +=

YGF

]
= 0 (det

[=
ZFSS + =

ZGF

]
= 0 for the aperture-type

FSS), as derived from the equivalent networks in Figure 13.5a. After some
straightforward algebraic manipulations, the dispersion equation can be explicitly
rewritten in terms of α and of Y

(i)
FSS as

(Y
(1)
FSS + Y TM

GF )(Y
(2)
FSS + Y TE

GF ) + sin2 α(Y
(1)
FSS − Y

(2)
FSS)(Y

TM
GF − Y TE

GF ) = 0 (13.37)

(or analogous relation for the aperture-type FSS, with impedance quantities).
Within the slow-wave region k2

x + k2
y > ω2/c2, this equation identifies the

wavenumbers of the SWs supported by the artificial surface. The solutions to
this equation can be easily found by using conventional numerical procedures.
Analysis of the signs of the various terms in (13.37) reveals that for those frequen-
cies at which we found poles and zeros of Y

(i)
FSS, Eq. (13.37) cannot be satisfied,

as stated in Section 13.4.3, point (c).

13.4.6 Examples

We illustrate in this section the dispersion diagrams obtained for different types
of artificial surfaces consisting of thin dipole and crossed-dipole FSSs and of
crossed-aperture FSSs. The numerical results relevant to the dispersion diagrams
have been successfully validated through a comparison with those obtained with
both the full-wave MoM procedure presented in Section 13.2.3 and the commer-
cial software CST Microwave Studio. Except for the case of Figure 13.10 below,
these comparative results are not explicitly shown to avoid an overcrowding of
the diagrams.

The SW dispersion diagram for crossed dipoles of Figure 13.7 is plot-
ted in Figure 13.8a, along the triangular path 
–X–M –
 relevant to the IBR
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boundary (see the inset). The artificial surface is the one shown in the inset of

Figure 13.7. In the zoom image in Figure 13.8a, the poles and zeros of
=
YMM

are drawn for convenience. It is found that TM SWs change from improper to
proper at the frequencies where the curves of the poles of the artificial surface
admittance intersect the light line, that is, where the surface acts as a PEC for
grazing propagation. Conversely, TE SWs experience the same phenomenon at
the frequencies where the surface behaves as a perfect magnetic conductor for
grazing propagation. Improper SWs are not shown in the figure. We would like
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to stress that the paths 
–X and M –
 are associated with the pure TM or TE
SW modes, while X–M is related to hybrid SW modes with a TM or TE pre-
dominance. It is found that the dominant SW mode in the x direction has a TM
nature and possesses a zero cutoff frequency; for propagation in oblique direc-
tions, the SW mode becomes hybrid (quasi-TM) and again becomes a pure TM
SW mode in the symmetry plane M –
. We found a second mode which is TE for
propagation in the symmetry planes and quasi-TE elsewhere. This mode exhibits
a very flat dispersion diagram for any wavenumber (similar to the response of
a notch filter); it almost degenerates with the quasi-TM modes in the segment
X–M . We found an EBG between 11 and 11.7 GHz. As the dependence on
substrate thickness is concerned, we found that varying the thickness from 0.762
to 0.128 mm reduces the bandgap and moves it at lower frequencies (from 10.6
to 11 GHz).

The complementary aperture-type FSS results are shown in Figure 13.9.
The crossed-aperture FSS, with arm length 7 mm, arm width 1 mm, periodicity
8 mm, dielectric substrate with εr = 4.5, and thickness 0.127 mm, is shown in
the inset. The dominant mode is a TM wave that is a slow wave also in the
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Figure 13.9 Brillouin dispersion diagram of crossed-aperture FSS-based artificial
surface. Dimensions are given in the inset. Continuous and dashed lines denote TM
(or quasi-TM) and TE (or quasi-TE) modes, respectively, whereas the dash–dotted
line denotes a hybrid mode. Thin solid line denotes the light line in the dielectric,
corresponding to the nondispersive curve of the TEM mode in the dielectric-filled
parallel-plate waveguide.
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dielectric region. The higher frequency of this mode (at point M) individuates
the lower limit of the EBG. The upper limit of the EBG is obtained at the
frequency where the TM mode becomes propagating along x (point X). A very
large EBG for SWs is obtained for this structure in the frequency range 7.2
to 8.84 GHz. Note that only proper SWs are shown in the dispersion diagram.
When the substrate thickness increases, the bandgap tends to decrease until it
disappears, due to a shift of the dispersion curve of the dominant mode at the M

point toward higher frequencies. A similar behavior is found for the Jerusalem-
cross aperture-type structure in [21]. It is worth noting that in comparison with
the complementary dipole structure with the same thickness (EBG from 10.6 to
11 GHz), the aperture-type structure exhibits a bandgap four times larger and
located at much lower frequencies. It is apparent (cf. Figs. 13.8 and 13.9) that a
very different situation occurs for complementary capacitive-type and inductive-
type FSS structure as concerned with the bandgap location. This behavior can be
explained as follows. For the aperture-type structure, the first dominant TM mode
is an FSS-tied SW bilaterally attenuated at opposite sides of the FSS; indeed, its
phase velocity is less than the speed of light in both the dielectric and the free
space medium. This wave can exist also for the FSS floating in free space. The
grounded dielectric slab behaves as a capacitive reactance loading at the FSS
level. The upper medium wave admittance is also capacitive being the quasi-TM
(qTM) mode. The resonance condition is implied by the balance of the total
capacitive admittance with the FSS inductance.

The behavior is indeed very different for the patch-type FSS. For such a
structure, the dominant mode is still qTM; however, the exponential attenuation
is only on the free-space side, while a propagation regime occurs within the
slab, at least in the major part of the Brillouin region. This implies an inductive
loading of the grounded slab at the FSS level which resonates with the sum of the
capacitive admittances of the FSS and free space. A qTE mode can also exist,
with a similar configuration of attenuation toward free space and propagation
within the slab. The wave impedance is inductive on both sides of the FSS, and
the resonance is ensured by the intrinsic dipole capacitance. Since the resonance
condition is always found with a propagating wave regime inside the slab, the
lower bound of the bandgap is always higher with respect to the one of the
complementary aperture-type structure.

Obtaining a full bandgap for every azimuth direction of SW propaga-
tion requires elements as symmetric as possible. It is interesting for some
applications (e.g., qTEM waveguides, soft wall horns) to use asymmetrical ele-
ments to stop or to pass particular directions of propagation while enhancing
or eliminating the EBG for some directions. Printed dipoles, printed slots, or
“gangbuster” FSSs [15] may be used for this purpose. The obtained anisotropy
also creates different responses to the two polarizations, which leads to “soft”
(high impedance for TM polarization, low impedance for TE polarization) or
“hard” (high impedance for TE polarization, low impedance for TM polarization)



13.4 POLE–ZERO MATCHING METHOD FOR DISPERSION ANALYSIS 373

Figure 13.10 Brillouin dispersion diagram along boundary of IBR (path 
–X–M –Y –


shown in inset). The dispersion curves of the SWs are calculated by the pole–zero match-
ing method (dotted line) and by a conventional dispersion full-wave analysis (continuous
line). The regions beyond the light line show the phase of the reflection coefficient. Width
and length of dipoles, 1 and 6 mm, respectively; dielectric substrate relative permittivity
εr = 10.2 and thickness 0.762 mm; periodicity in both directions 8 mm.

properties [22]. Figure 13.10 shows the SW dispersion diagram associated with
printed x-oriented dipoles. The dipoles have length 6 mm, width 1 mm, and
periodicity 8 mm, while the dielectric substrate has relative permittivity 10.2
and thickness 0.762 mm. In this figure, results obtained with the equivalent net-
work (solid line) are compared with those from the full-wave approach presented
in section 13.2.3 (dotted line). In this case, the IBR is bounded by the square

–X–M –Y –
. Consider first the path 
–X. There, only a TM wave can pro-
vide an interaction with the FSS, since the E field is aligned with the electric
dipoles. Since the dipoles are thin, the TE SW coincides with those of a bare
(unprinted) grounded slab. Along the Y –M direction, the TE wave interacts with
the dipoles, while the TM wave is that of the bare slab. When the direction of
propagation is oblique, the mode is hybrid. We note that the EBG is not extended
to any wavenumber, because the bare slab TM SW (with zero cutoff frequency)
exists for propagation along y. As shown in Figure 13.11a, the partial bandgap
decreases to the point of disappearing as the dipole width increases. Square
patches do not have any EBG, not even a partial EBG. It is interesting to com-
pare the previous results with those obtained with the insertion of shorting pins
(Fig. 13.11b), which leads to a mushroom structure [1]. It is worth noting that
the introduction of the shorting pins brings in additional dominant TM modes
at a lower frequency and modifies the cutoff of the preexisting TM mode. This
leads to a low-frequency bandgap which is maximized for square patches.
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a

b

Figure 13.11 Compar-
ison between dispersion
diagrams of (a) dipole-
type artificial surfaces
and (b) mushroomlike
artificial surfaces for
different sizes of width
dipoles (dimensions in
millimeters).

13.5 CONCLUSIONS

In this chapter, we have presented a method for the dispersion analysis of the
class of artificial EBG surfaces realized by FSSs printed on a grounded slab. This
method has been illustrated here with reference to a patch FSS or aperture FSS on
a single layer but has general applicability to a multilayer structure. On the basis
of the MoM solution, a two-port admittance matrix is defined with the ports cor-
responding to the dominant TE and TM FW of the exact Floquet expansion. The
admittance matrix is then characterized by the poles and zeros of its eigenvalues
for a few values of the wavenumber. The identification of a set of dispersion
curves associated with the poles and zeros of the FSS and their regularity allows
the interpolations of these curves by low-order polynomials. Furthermore, the
eigenvalues of the FSS admittance matrix respect Foster’s reactance theorem and
thus the properties of the lumped-element LC driving-point functions of the fre-
quency. These properties allow the approximation of the eigenvalues in terms of
rational functions. The consequent closed-form expression is applied to formulate
the dispersion equation for SWs. Dispersion of leaky-wave modes, not treated
here, is addressed in [17] and is still under investigation.

We would like to remark that the full-wave analysis for each kx and ky is
very efficient, since it implies the inversion of a moderate-size MoM matrix; how-
ever, obtaining accurate information on the continuous spectrum (kx , ky) requires



REFERENCES 375

a large amount of computational time. The main peculiarity of the method pre-
sented in this chapter is the possibility of reconstructing the dispersion diagram
in the continuous (kx , ky) wavenumber domain over a large frequency range,
starting from the response of the structure in a few points of the (kx , ky) spec-
tral domain. This procedure also opens very interesting possibilities for Green’s
function analysis, which requires an integration of the continuous spectrum.
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CHAPTER14
SPACE-FILLING CURVE
HIGH-IMPEDANCE GROUND
PLANES

John McVay, Nader Engheta, and Ahmad Hoorfar

Ever-increasing demands for high-performance, low-profile, conformal and flush-
mounted antennas with improved radiation characteristics for various commu-
nications and radar applications have resulted in considerable interest by the
electromagnetic research community in high-impedance surfaces, also known as
artificial magnetic conductors [1–5]. These surfaces have a reflection coefficient
� ∼= +1 when illuminated with a plane wave, instead of the typical � ∼= −1 for
a conventional perfectly electric conducting (PEC) surface. These structures can
obviously offer interesting applications for antenna designs [1–10] and for thin
absorbing screens [11]. For example, a horizontal dipole antenna placed above
such a metamaterial surface will have an image current with the same phase as
the current on the dipole, resulting in enhanced radiation performance [6–10].
Several different types of high-impedance ground planes have been studied by
various research groups (see, e.g., [1–5]).

Since magnetic conducting surfaces do not exist naturally, it is necessary
to artificially create a surface with magnetic conduction properties in a certain
band of frequencies. This can be achieved by utilizing resonant inclusions on a
nonconducting host substrate layer in parallel with a conducting ground plane.
Near the resonance of the inclusion, strong currents are induced on the surface,
and together with the conducting ground plane, this structure may provide an
equivalent magnetic conductor for a frequency range corresponding to the fre-
quency range in the vicinity of a resonance of the surface. One possibility to
form inclusions that are resonant but have an electrically small footprint at their
resonant frequency is the use of the space-filling curves.

Space-filling curves are, in general, a continuous mapping of the normal-
ized interval [0, 1] onto the normalized square [0, 1] × [0, 1]. In 1890, Giuseppe
Peano suggested the first space-filling curve, now called the Peano curve [12]. In
1891, David Hilbert introduced his version of a space-filling curve [12]. These
curves are both expressed in terms of iteration numbers, and in both cases, as this
iteration number (also called the order number) approaches infinity, the repre-
sentative curve occupies the entire square; that is, the curve itself passes through

Metamaterials: Physics and Engineering Explorations, Edited by N. Engheta and R. W. Ziolkowski
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every point within the square. While both curves pass through every point in
the square for infinite iteration orders, they have a different means to this same
end, as can be seen in the comparison of the first three orders of the Peano and
Hilbert curves shown in Figure 14.1.

These curves offer certain attractive properties; that is, a structure of this
shape can be made from an electrically long metallic wire compacted within a
very small area footprint. Moreover, these space-filling geometries can be planar
structures, thus allowing for ease of fabrication. The total length of these Peano
and Hilbert curves as a function of the iteration order number N is shown in
Table 14.1. As can be seen, the Peano curve has a higher compression rate (e.g.,
a longer total length) than the Hilbert curve for a fixed order of N .

As the iteration order of the curve increases, a space-filling curve may
maintain its footprint size while its length increases. This property is what allows
the antennas represented by these curves to possess a relatively low resonant
frequency, that is, a long resonant wavelength with respect to the linear dimension
of its footprint. The Hilbert and Peano curves have been used for the design of
small antennas [13–18] and frequency-selective surfaces (e.g., [19]).

In this chapter, we review some of our work on exploring the role of space-
filling curves in constructing metamaterial surfaces in which many inclusions in
the shape of the Hilbert curve or Peano curve are placed, in a two-dimensional
(2D) periodic arrangement, on a host surface whose distance above a conducting
ground plane is small [20, 21]. We also briefly review some of our numerical

Figure 14.1 Peano (red) and Hilbert (blue) curves of orders 1 through 3.

TABLE 14.1 Total Length S for Peano and Hilbert
Curves with Respect to Iteration Order Number N

Peano S = (32N − 1)d d = L/(3N − 1)

Hilbert S = (22N − 1)d d = L/(2N − 1)

Note: L is the linear side dimension of the curve.
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results on the radiation performances of short dipoles placed above such a space-
filling curve high-impedance surface (HIS) [6–10]. In addition, we briefly discuss
some of the results of our ongoing research on the use of space-filling curve
inclusions in forming thin absorbing layers [22] and double-negative (DNG)
bulk media [23–25].

14.1 RESONANCES OF SPACE-FILLING CURVE ELEMENTS

Plane-wave scattering from single Peano and Hilbert curve elements of vary-
ing iteration orders were simulated in free space using a method-of-moments
(MoM) code [26]. These simulations were used to determine the resonant fre-
quencies of each of the orders of the space-filling curve structures shown in
Figure 14.1 when they were contained within a 30-mm × 30-mm footprint. A
normally incident plane wave with two separate polarizations, that is, Ex and
Ey , illuminated the space-filling curve elements. A frequency sweep was applied
and the maximum current induced within the structure was obtained as a function
of the frequency. Linear interpolation was then utilized to find the frequencies
for which this maximum current falls to the −3-dB point with respect to its
maximum. The difference between these two frequencies is the frequency width,
which we denote by �f . The fractional bandwidth of each element was then
defined as BW = �f/fmax.

The current distributions on the Hilbert elements, orders 1 through 3,
are shown in Figures 14.2 and 14.3 for the x- and y-polarized excitations,
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Figure 14.3 Same as Figure 14.2, but for y-polarized incident wave.

respectively. As can be seen, the currents on each element go to zero at the
ends, as expected; they also go to zero at the symmetric center of the curve for
the x-polarized case. This is due to the symmetry of the Hilbert elements with
respect to the x axis. For the case of the y-directed polarization, the induced
current goes to zero only at the wire ends and its maximum value occurs at the
symmetric center. Due to this polarization-dependent nature of the Hilbert curve,
the resonant frequency for the y-directed polarization is found to be about half of
that for the x-directed polarization. This is due to the fact that the wire appears
to the current to be electrically twice as long for the x-directed polarization as
compared to the y-directed case.

The maximum induced currents on each space-filling curve as a function
of the frequency are also shown in these figures. As can be seen, the resonant
frequency is reduced as the length of the curve increases, that is, as the itera-
tion order is increased. A comparison between the maximum induced currents
in Figures 14.2 and 14.3 show the effects of the polarization on the resonant
frequency.

The corresponding results for the single Peano curve elements under the
influence of the normal incidence plane wave are shown in Figures 14.4 and
14.5. In Figure 14.6, the 30-mm side dimension of each Peano curve when it is
normalized with respect to the resonant wavelength λRES and the corresponding
bandwidth are plotted as a function of the iteration order of the curve. The
bandwidths are defined as was mentioned at the beginning of this section. [It
should be noted that for the x-polarized cases, only the “dominant” resonance,
which is the second resonance shown in Figure 14.4, is utilized to evaluate the
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From [21]. Reproduced/modified by permission of American Geophysical Union.

data in Figure 14.6. This resonance is considered as dominant since it will be
shown (see Fig. 14.9 below) that it corresponds to the Peano high-impedance
surface resonance for the x-polarized cases.] It can be seen that as the order
of the curve is increased, the electrical footprint of the curve decreases since
the resonant frequency decreases, as expected and is evident from Figures 14.4
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and 14.5. As in the case of the Hilbert inclusion, the dependence of the resonant
frequency on the polarization of the incident wave for the Peano curve can also
be seen from these figures. For the cases where the incident electric field is
polarized in the y direction, the resonant frequency is approximately a third of
that of the x-polarized case. Further insight into this polarization dependence
can be obtained from the current distributions along the Peano curve, shown in
Figures 14.4 and 14.5.

From the results reviewed above, it can be seen that the space-filling curve
elements can resonate at frequencies where the footprint of the curve can be
considered electrically very small. The higher the order of the curve, the lower the
resonant frequency and, thus, the smaller the footprint of the curve with respect to
the resonant wavelength. The cost of achieving such a compact resonant structure
is clearly seen in the effect on the bandwidth. This effect on the bandwidth is
in general expected, as a resonant structure becomes effectively smaller with
respect to the resonant wavelength. Such an effect has also been observed in
the design of electrically small antennas patterned after Peano or Hilbert curve
elements [13–15]. As compared to a Hilbert curve element, however, a Peano
curve element of identical footprint and iteration order resonates at a much lower
frequency, albeit at the expense of a much smaller bandwidth, due to the higher
compression rate of the Peano curve algorithm. The interested reader is referred
to [13–21] for further details.
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14.2 HIGH-IMPEDANCE SURFACES MADE
OF SPACE-FILLING CURVE INCLUSIONS

14.2.1 Peano Surface

To construct a surface of Peano curve inclusions, the Peano curve elements can be
placed in a planar, 2D array as shown in Figure 14.7. To evaluate the scattering
properties of this array, which has an infinite extent in its plane, a periodic MoM
code was utilized [27]. In this case, each element was modeled as a thin metallic
strip with a strip width of 0.5 mm. The footprint dimensions remain identical
to the previous cases (30 × 30 mm). The Peano array was placed a distance
(15 mm) above a conducting ground plane of infinite extent. The supporting
dielectric substrate is considered air here, although any other dielectric can be
considered in our analysis. Again, a time-harmonic, normally incident plane wave
was utilized to excite this structure, and the reflection coefficient from the surface
was numerically evaluated as a function of the frequency. Both polarizations were
again studied.

Figure 14.8 shows the magnitude and phase of the reflection coefficient �

versus frequency for the Peano surface comprised of an array of Peano curves of
order 2 located at a height of 15 mm above the conducting ground plane and for
a separation distance of 3.75 mm between each Peano curve inclusion within the
array. This distance was chosen to be equal to the length of a single section of the
curve itself (parameter d from Table 14.1). The structure was illuminated with a
normally incident plane wave polarized in the x and y directions separately. Since
a ground plane of infinite extent is present under the Peano surface, the magnitude

Figure 14.7 A 3D view of Peano surface of order 2 above a conducting ground plane.
From [21]. Reproduced/modified by permission of American Geophysical Union.



384 CHAPTER 14 SPACE-FILLING CURVE HIGH-IMPEDANCE GROUND PLANES

0.5 1 1.5 2 2.5

1

2

M
ag

 | 
Γ 

|

−180

−90

0

90

180

A
N

G
L

E
 (

 Γ
°° 

)

Frequency (GHz)

 Reflection Coeffcient vrs Frequency 
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and y (green) directions. From [21]. Reproduced/modified by permission of American
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of the reflection coefficient is always unity since all of the incident energy is
always reflected. It should be noted here that all metals present in our numerical
simulations are considered lossless; therefore conductor losses are not taken into
account. Also, since the substrate between the Peano surface and the conducting
ground plane is assumed to be air, no dielectric losses are present in this structure.

In Figure 14.8, the phase of the reflection coefficient at 0.5 GHz is shown
to be approximately 180◦. As the frequency increases, this phase passes through
0◦ degrees and goes toward −180◦. At the frequency where the phase is 0◦

(1.53 GHz for the case of the x-polarized incident wave) the Peano surface
above the ground plane achieves an overall reflection coefficient of +1 and,
therefore, acts as a HIS (i.e., an artificial magnetic conductor). Far from this
resonance denoted by FHIS, this surface has an overall reflection coefficient of
−1 and therefore behaves effectively as a traditional electric-conducting ground
plane. It can be noted here that the footprints of the inclusions are approximately
0.063λHIS and 0.153λHIS at the corresponding frequency FHIS in Figure 14.8.
Moreover, the heights above the ground plane are approximately 0.031λHIS and
0.076λHIS, respectively. Thus, both the inclusions and the heights above the
substrate are considered to be electrically small at the resonant frequency for
both polarizations [21].

We have also performed similar analyses for the surfaces made from the
Peano curve inclusions of orders 1, 2, and 3 [21]. The corresponding resonant
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Figure 14.9 FHIS and bandwidths of Peano surface above conducting ground plane for
Peano curve inclusions of orders 1 to 3. From [21]. Reproduced/modified by permission
of American Geophysical Union.

frequencies and relevant bandwidths are shown in Figure 14.9. The bandwidths
here are defined by the frequency values where the reflection coefficient phase
falls between ±90◦.

14.2.1.1 Effects of Substrate Height and Interelement Spacing In our
recent work, we have numerically analyzed the roles of the substrate heights and
the interelement spacings for the Peano high-impedance surface [21]. Here we
briefly review these results. To investigate these effects, the height of the Peano
surface composed of an array of Peano curves of order 2 with an interelement
separation distance of 3.75 mm was varied from 5 to 15 mm in steps of 1 mm.
The heights were chosen to ensure that the surface could still be considered
to be electrically close to the ground plane for the smallest operating wave-
length. Figure 14.10 shows the predicted resonant frequency FHIS as well as the
±90◦ bandwidth as a function of the height of the surface above the conducting
ground plane. It can be seen that for the x-polarized cases the resonant frequency
decreases and the bandwidth increases as the height above the ground plane
increases. Very little change is found for the y-polarized resonances. This result is
due to the fact that since these resonances occur at lower frequencies, the relative
change in the height with respect to the resonant wavelength is less pronounced.

A parametric study was also performed with respect to the interelement
spacing between the Peano curve inclusions within the infinite 2D array. The
separation distances were varied from 1 to 15 mm in steps of 2 mm [21]. The
results of this study are shown in Figure 14.11, which shows the FHIS and the
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Figure 14.10 FHIS and bandwidth versus height for Peano surface of order 2. From [21].
Reproduced/modified by permission of American Geophysical Union.
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Figure 14.11 FHIS and bandwidths versus interelement spacing for Peano surface of
order 2. From [21]. Reproduced/modified by permission of American Geophysical Union.

±90◦ bandwidth as functions of this interelement distance. We can see that for
the x-polarized cases the resonant frequency increases whereas the bandwidth
decreases as the separation distance increases. This trend is also present for
the y-polarized resonances, albeit less pronounced, due to the fact that these
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resonances occur at lower frequencies, and again the relative change in the sep-
aration distance with respect to the corresponding resonant wavelengths is less
noticeable.

14.2.2 Hilbert Surface

We have also studied the case of Hilbert curve–based high-impedance surfaces
[20], as shown in Figure 14.12, and have obtained analogous results. In this case,
however, we have also studied the effect of the angle of incidence of the incoming
wave on the frequency at which the surface behaves as a high-impedance surface,
that is, as an artificial magnetic conductor. Figure 14.13 shows the phase of the
reflection coefficient of a surface composed of an array of Hilbert curve elements
of order 3 on a substrate over a conducting ground plane versus frequency for
different angles of incidence. As in the Peano case, each curve is contained within
a 30-mm × 30-mm footprint, and for this case the separation distance between
adjacent elements within the array is 4.285 mm. The surface is again 15 mm
above an infinitely conducting ground plane. The vertically polarized plane wave
is arriving from the φ = 0◦ direction and θ is varied from 0◦ to 60◦ in 20◦

increments. Figure 14.13 clearly shows that as the angle of incidence becomes
more oblique, the resonance frequency FHIS increases while the ±90◦ bandwidth
decreases.

For comparison purposes, plots are provided for the resonant frequency
FHIS and the order number, height variation, and separation distance parametric
studies for the surfaces comprised of Hilbert curve inclusions. These respective
plots are shown in Figures 14.14 to 14.16.

Figure 14.12 A 3D view of the Hilbert surface of order 3 above a conducting
ground plane.
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Figure 14.15 FHIS and bandwidth versus height for Hilbert surface of order 3.
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Figure 14.16 FHIS and bandwidth versus interelement spacing for Hilbert surface of
order 3.

14.2.2.1 Hilbert Surface of Order 3: Experimental Results To experimen-
tally measure and verify the high-impedance performance of the Hilbert surface
of order 3, the geometry needed to be scaled such that the resonant frequency
would fall within the frequency range of the rectangular waveguide which would
be utilized for the measurement process. Also, substrate effects would additionally
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need to be taken into account since the fabricated surface would require a nonair
substrate. Based on the fabrication options available, the Hilbert surface was fab-
ricated on a 1.575-mm FR-4 substrate with dielectric constant and loss tangent
equal to 4.4 and 0.02, respectively. The Hilbert elements were scaled such that, in
the presence of the substrate, the resonant frequency would fall within the range
of a WR-430 waveguide (1.7 to 2.6 GHz). The final dimensions for the Hilbert
curve elements was 12 mm × 12 mm and the surface, shown in Figure 14.17, was
formed by 19 × 23 elements. The measurement setup, shown in Figure 14.18,
consisted of the WR-430 waveguide placed directly above and in direct contact
with a ground plane (shorted at the aperture). The Hilbert surface was cut to a
7 × 3 element array to fit within the waveguide and was placed inside the waveg-
uide on a 5-mm-thick foam spacer above the ground plane. The distance of the
Hilbert surface above the ground plane was therefore equal to 6.575 mm, that
is, the thickness of the FR-4 substrate, plus the foam spacer thickness. We then
collected the S11 values as a function of the frequency. The Agilent ENA5071B
vector network analyzer was first calibrated up to the waveguide transition using
a standard cable calibration package. A measurement was then performed with
the waveguide “shorted” to the ground plane in order to provide a calibration
to the waveguide aperture. Figure 14.19 shows the measured S11 (i.e., reflection
coefficient) values as a function of the frequency. The losses of the substrate are
evident in the decrease in the magnitude of S11 near the resonance of the surface.
Figure 14.19 also shows the calculated S11 values as predicted by a finite-element
method (FEM) simulation [28], which includes the finite waveguide, the finite
Hilbert element array, and the substrate and conductivity effects. The slight shift
in the frequency at which the phase goes through zero in the simulated results

Figure 14.17 Constructed Hilbert surface of order 3, 19 × 23 elements on FR-4 sub-
strate.
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Figure 14.18 Vector network analyzer and waveguide setup for measurement of reflec-
tion coefficient from Hilbert surface of order 3.

may be due to the uncertainty in the value of the dielectric constant of the FR-4
substrate in the FEM modeling.

14.2.2.2 Use of Space-Filling Curve High-Impedance Surfaces for Thin
Absorbing Screens In the measurement process presented above, an interest-
ing effect is noted involving the magnitude of the reflection coefficient. For a
substrate with losses, the magnitude of the reflection coefficient is reduced around
the surface resonance. To exploit this property and to explore the possibility of
using space-filling curve surfaces in the design of thin absorbers [22], we ana-
lyzed, using the MoM-based IE3D simulation code [27], both the Peano surface
of order 2 and the Hilbert surface of order 3 on a substrate with a thickness
of 1.575 mm and various loss tangents ranging from 0.02 to 0.10. The surface
was excited with a normally incident, x-polarized plane wave and the magnitude
of the reflection coefficient was obtained versus frequency for each loss tangent
considered. The results of this study are shown in Figure 14.20.

As can be seen, the reflection coefficient magnitude drops to a low value
for a loss tangent of 0.08, approximately 4 times the loss tangent of the FR-4
substrate. This could offer some interesting applications in the area of absorbing
materials and low observables [11]. In a conventional Salisbury screen [29], it
is known that the resistive sheet is placed at a distance of λ/4 above the ground
plane, where the electric field is maximum, thus maximizing losses. For the
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Figure 14.19 (a) Simulated and (b) measured reflection coefficient versus frequency for
Hilbert surface of order 3, shown in Figure 14.17.
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Figure 14.20 MoM-simulated magnitudes of reflection coefficients for Peano of order
2 (left) and Hilbert of order 3 (right) surfaces above substrate with various loss tangents.
The design parameters are given in the text.

high-impedance ground plane, the electric field may be maximum at the surface
and thus when this surface is close to the conductive ground and in the presence
of a loss mechanism (i.e., a substrate with losses); this surface can offer high
losses with a much smaller total thickness than that of the conventional Salisbury
screen.

14.3 USE OF SPACE-FILLING CURVE HIGH-IMPEDANCE
SURFACES IN ANTENNA APPLICATIONS

One important application of high-impedance surfaces is in the enhancement of
the performance of low-profile antennas. To demonstrate the potential usefulness
of the space-filling curve high-impedance surfaces, we studied the performance of
an electrically small dipole antenna above the Hilbert surface of order 3 [6–9]. As
considered in the previous section, a height of 15 mm was chosen as the height
of the Hilbert surface from the ground plane. A center-fed small dipole of λ/20
length was then placed at an additional 15 mm above the Hilbert surface. The
surface was modeled by a finite array of 11 × 11 Hilbert curves of order 3. The
dipole, the Hilbert inclusions, and the ground plane were assumed to be made of
copper with a conductivity of 5.813 × 107 S/m.

Figure 14.21 shows a comparison between the input impedance (real and
imaginary) of the short dipole antenna above the ground plane both with and
without the Hilbert surface. The results in the top row of Figure 14.21 were
obtained using the MoM software package IE3D [27]. The multiresonant behavior
of the radiation resistance near the resonance of the surface (i.e., in the region
1.4 to 1.7 GHz) was also independently confirmed using the NEC-4 based code,
GNEC [26]. Those results are shown in the bottom row of Figure 14.21. By
using four times the number of frequency points in the GNEC simulations than
in the IE3D runs, other peaks, in addition to (and in between) those obtained by
IE3D, were observed. Figure 14.22 shows the zoomed-in section of the GNEC
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Figure 14.22 Zoomed-in section of NEC-4 simulation of input impedance of x-directed
short dipole above Hilbert surface with ground plane.

simulated results in the region 1.4 to 1.8 GHz. The differences in the numerical
values obtained using these two separate simulation codes can be attributed to
the fact that the two codes, although both MoM, use different approaches in their
implementations and also to the fact that, unlike the flat-strip assumption for the
inclusions in the IE3D simulation, in the GNEC modeling of the Hilbert surface
an equivalent wire radius a = 0.25w, where w is the strip width of the inclusions,
was used. The nature of these resonances, which are mostly due to the various
length scales of the Hilbert elements and finite-sized Hilbert surface, will be stud-
ied in more detail in the future. Similar behaviors have also been noted for the
short dipole element above different orders of Hilbert curves for different polar-
izations with respect to the short dipole element and for short dipoles above Peano
surfaces [10]. Figure 14.23 shows the corresponding results for the radiation
efficiency and the directivity of the dipole obtained from the IE3D simulations.
As expected, the radiation efficiency improves near the resonant frequency of
the Hilbert surface. This can be a useful result when one attempts to improve
the efficiency of electrically small radiating elements. Figure 14.23 also shows
the maximum directivity. It becomes clear that the surface itself, consisting of
many small resonant inclusions, is radiating and thus affecting the pattern of
the nearby dipole antenna. The relatively drastic changes in the efficiency and
directivity as a function of the frequency illustrate the potential challenges in the
design and application of these high-impedance surfaces in an antenna design.
When a dipole is oriented along the y axis, similar characteristics are shown at
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Figure 14.23 Comparison of directivity and efficiency of x-directed short dipole using
IE3D numerical simulations: (a) antenna alone, above a ground plane; (b) antenna above
Hilbert surface with ground plane.
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lower frequencies which correspond to the Ey resonance of the surface [7]. We
have also studied the performance of other antennas in the presence of Hilbert
surfaces [6–9].

14.4 SPACE-FILLING CURVE ELEMENTS AS INCLUSIONS
IN DNG BULK MEDIA

With recent interest in metamaterials with negative permittivity and permeability
[30–40], we have explored, using numerical tools, the electromagnetic wave
interactions with metallic inclusions formed using space-filling curve algorithms.
When they are embedded in a host medium, these space-filling curves may lead
to composite media with negative material parameters [23–25]. We have analyzed
the electric and magnetic polarizability tensors for these inclusions, and we have
then applied the mixing formulation (e.g., Maxwell–Garnett formula) to obtain
approximate values for the effective permittivity and permeability of the bulk
media. In this section, we give a quick review of this topic.

The electric and magnetic dipole moments of the space-filling curve inclu-
sions were numerically calculated using the current distributions given by a
MoM-based code. The space-filling curve geometry was modeled as a thin-
wire structure of radius 0.125 mm. Figure 14.24 shows the electric and magnetic
dipole moments versus frequency for the Hilbert curve of order 3 for the y-
polarized electric field (Ey). It can be seen that in the presence of a y-directed
electric field an electric dipole moment is present and at that same frequency a
magnetic dipole moment is also present due to the looping nature of the curve. It
is interesting to note that for the Peano curve these resonances occur at different
frequencies due to the particular symmetries of the Peano curve.

A bulk medium can be conceptually constructed by embedding many iden-
tical space-filling curve inclusions within a host medium. The Maxwell–Garnett
mixing formula, as one of the commonly used mixing rules, evaluates the effec-
tive relative permittivity and permeability. Figure 14.25 shows the effective per-
mittivity and permeability for the Hilbert curve of order 3 and air as the host
medium as evaluated using the Maxwell–Garnett mixing formula on the polariz-
ability tensors of the elements. Figure 14.25 reveals that for a specific frequency
range the bulk media formed with the Hilbert curve inclusions may have simul-
taneously both negative effective permittivity and permeability, and thus it can
be a DNG medium. From Figure 14.25, it also appears that the bandwidth for
the negative effective permittivity is different from that for the negative effec-
tive permeability. It is interesting to note that a bulk medium made of Peano
curve inclusions may also display the negative permittivity and negative perme-
ability properties. However, as we have found recently, these effective negative
properties occurred at different frequencies and thus do not exhibit DNG proper-
ties. Rather, they exhibit single-negative characteristics, which can offer potential
applications as multifunction media [41]. These properties are currently under
study.
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curve inclusions of order 3.

14.5 CONCLUSIONS

Peano and Hilbert space-filling curve inclusions can offer many salient charac-
teristics for electromagnetic applications. One of the most interesting of these
characteristics is the ability for these curves to resonate at frequencies where the
electrical footprint, that is, the area the curve fills, is electrically very small. This
allows space-filling curves to be excellent candidates in the formation of surfaces
and bulk media where electrically small inclusions, which can be engineered for
specific electromagnetic properties, are desired. Since the footprint of these inclu-
sions can be considered electrically small while its total wire length with respect
to the operational wavelength is not small, these metamaterials can be studied
with respect to their equivalent bulk properties (effective medium), thus simpli-
fying otherwise very complicated interactions. This effect was highlighted in the
presented study of an electrically small dipole antenna above such surfaces. Since
it is desirable to have small, low-profile radiating systems, it becomes apparent
that any surface near the radiating element, which contains such inclusions, must
also exhibit electrically small characteristics. Moreover, as presented above, it is
the relatively small size of these curves which allows one to use the standard
mixing formulas to evaluate the effective parameters of bulk media comprised of
them. The cost paid for this “electrical compression” is evident in the relatively
narrow bandwidths associated with these inclusions. We are currently looking for
and studying potential techniques to address this particular bandwidth issue as
well as the issues involving the dependence of the response of these curves on
the polarization [42].
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transmission line metamaterials, 192–197,
193f

Continuous-wave (CW) excitation, 10
Continuous-wave (CW) Gaussian beam, 19–20,

20f
Coplanar waveguide (CPW), 147
Core–shell systems, subwavelength cylindrical

and spherical, 54–59
Corrugation(s), in metal slab, 285, 286f
Coupler(s). See also Impedance coupler(s); Phase

coupler(s)
complete backward coupling, 201
even/odd modes, 198, 201, 201f
geometry for, 198, 199f
metamaterial, 198–204
phase coupling condition, 202–204, 203f, 204f
port designation of, 198, 199f

Coupling coefficient (χL), 8
impedance coupler, 200–201

Cross-polarization, in ring antenna HFSS
E-plane, 157

Cutoff frequency, 195
Cylindrical core–shell systems, subwavelength,

54–59

Damping coefficient (�L), 8, 10
Debye model, 8
Deep X-ray lithography (LIGA), 217–218, 239
Diamond lattice, 216

photonic crystal, 216, 224–225, 225f
band structure of, 224–225, 225f
density of states (DOS), 224–225, 225f

Dielectric media, with losses, FDTD study of,
230

Dielectric structure, periodic, 216, 237–238
Diffraction limits, 52, 162
Dipolar scattering, 56
Dipole–AMC block, 76–79, 77f, 78f, 79f, 80f
Dipole antenna. See Antenna(s), dipole
Dipole–DNG shell system, 62

resonant electric, magnetic field distribution,
magnitude of real part of, 65, 65f

Dipole–ENG shell system, 70–72, 70f–72f
HFSS simulations of, 73–75, 73f–75f

Directional etching, 240
Discontinuity

mode-matching analysis of, 47–48, 47f
V-shaped, 44

Dispersion, 94, 117–118, 119t, 120t
in double-negative media, 11–13, 12f
in effective surface impedance model, 290
for odd surface modes supported by DPS and

DNG materials, 52, 52f
of planar NRI transmission line media,

164–167
for transverse electric polarization, 45, 46f

Dispersion compensation, in transmission line,
using double-negative medium, 21–23

Dispersion diagram
of artificial surface, 349–350
of patch-loaded grounded slab, 322, 323f
for surface waves, 290–292, 290f, 291f

Dispersion equation, of frequency-selective
surfaces (FSSs), 355

analytical form of, 367
in terms of accessible modes, 358–359

Dispersion relation, calculation of, plane-wave
method, 222–225

Dog house arrangement, 245
Double-negative (DNG) metamaterials, 5, 6, 7f

based on thin wires and SRRs, 91, 91f, 220,
220f

2D isotropic, rectangular waveguide filled
with, 105–106, 105f

dispersive, 11–13, 12f
experimental characterization of, 87–110
nondispersive, 11–13
paired with double-positive media, 43, 44
waveguide and antenna applications, 43

Double-positive (DPS) metamaterials, 7, 7f
isotropic, rectangular waveguide filled with,

92–93, 93f
paired with double-negative metamaterials, 43,

44
waveguide and antenna applications, 43

Double-ring inclusion, 99, 99f
uniaxial MNG metamaterial based on,

100–105
Drude model, 8, 10–11, 76, 115f, 116–118,

230
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Dual-band ring antenna(s), 208, 209f
Dual-grid reflector (DGR), 250

Effective circuit model, 288
Effective medium, 114, 116, 144

with negative constitutive parameters,
116–122

Effective surface impedance model, 289–292,
290f

Electric damping factor, 116
Electric excitation of magnetic resonance

(EEMR), 221
Electric field, distribution, HFSS-predicted, for

dipole–ENG shell system, 74–75, 74f, 75f
Electric plasma frequency, 116
Electric susceptibility, 7
Electromagnetic bandgap, zero-index, 33
Electromagnetic bandgap (EBG) materials,

215–219, 311
applications of, 238, 250–254

in antennas, 274–279
bandgap characterization of, 313–315
Brillouin’s work on, 237
characterization of, 238, 243–250
commercial development of, 238
development of, 238
electromagnetic properties of, 311
fabrication, tolerances in, 239, 243
frequency range, 238–239, 246–247
gain enhancement with, 251–252
ground planes, 327–329, 327f, 328f, 328t

parametric study of, 317–319, 318f
historical perspective on, 216, 237–238
and light propagation, 215
as metamaterial, 259
in microstrip antennas, 322–326, 324f, 325f
microwave systems, 238
(sub)millimeter-wave systems, 238
miniaturization of, 217–218
mushroomlike structure, 312, 313, 313f

with offset vias, 319, 321f
patch width, 317
periodic boundary conditions, 315–317, 316f
polarization-dependent, 319–321, 320f, 321f
realization of, 238
reflectivity, 243

measurement of, 246–248, 246f–248f
structure

modal diagram and, 315–317, 316f
operational frequency band of, 329–330,

330f, 331f
scattering analysis of, 315–317

structure of, 215
surface

frequency-selective surface-based, 349–373

with offset vias, 319, 321f
surface wave attenuation, 243, 244–245, 244f,

245f
terahertz reflection measurements, 239,

248–250, 249f
three-cylinder structure, 217–218, 218f
three-dimensional (3D)

Fan structure, 241–242, 242f
manufacturing of, 239–243

by growth, 242–243
by machining from solid, 217–218,

239–240
by stacking, 240–242, 242f. See also

Woodpile structure
transmission, 243

measurements of, 248–250
Electromagnetic energy, propagation of, 266–268
Electromagnetic field, 260, 260f

force-free, 37
Electronically scanned phased arrays, 250–252
Electron-negative (ENG) medium, paired with

double-negative media, 43
Engheta, N., 65, 67
Epsilon-negative (ENG) metamaterials, 7, 7f

isotropic two-dimensional, 89
rectangular waveguide filled with, 96–98,

97f
nested shells, source and scattering

resonances, analysis, 70–72, 70f–72f
thin-wire, 88–89, 88f

Evanescent wave(s), and plane-wave scattering
from double-negative material slab, 14–16

Fabry–Perot components, 45
Face-centered-cubic (fcc) structure, 224, 241
Feed networks, antenna, 150–151

metamaterial-based, 150–152
transmission line-based, 150–152

Field coupling at plane interface, 263–266,
265f–266f

Filling ratio, 55–56
Finite-difference time-domain (FDTD)

simulation, 222, 228–232, 231f, 232–233
of artificial ground planes, 312–317, 314f,

315f
of dipole antennas over PEC, PMC, and EBG

ground planes, 327–329, 328f, 328t
of double-negative media, 10–11

electric field intensity distribution for phase
compensation confirmed with, 20, 20f

electric field intensity distribution for
subwavelength focusing in
double-negative medium, 24–27, 25f,
26f, 28f

Gaussian beam focusing, 27–29, 29f, 30f



INDEX 407

line source driven at center of zero-index
cylinder, 34–37, 36f

NIR behavior confirmed with, 17–18,
17f

one-dimensional, 11, 11f
time-domain electric fields predicted by,

11, 12f
of infinite EBG structure, 315–317, 316f
spectral method, 316f, 317
of zero-index slab terminated in PMC sheet,

81–82, 82f
Floquet–Bloch transform, 262–264
Floquet waves, 350, 351
Focusing, 118, 121–122
Forward waves, in rectangular waveguide filled

with general metamaterial, 92
Foster’s theorem, 101, 352, 363–364
Four-region (three-nested-sphere) geometry, 70
Free-space method, for testing bulk

metamaterials, 87
Frequency-selective surfaces (FSSs), 24, 237,

311
accessible mode admittance network,

355–359
admittance, 364–367
admittance matrix, diagonalization of,

361–363, 362f
aperture-type

accessible modes, 357–358
method-of-moments (MoM), 354–355

capacitive, 351–352, 364
dispersion analysis, pole–zero matching

method, 351–352, 359–371
dispersion diagrams for, 367–371, 368f, 369f,

371f
dispersion equation of, 355

analytical form of, 367
in terms of accessible modes, 358–359

dominant-mode two-port admittance network,
359–361, 360f

EBG surfaces based on, 349–373
inductive, 351–352, 364
multiport network, 356
patch-type

accessible modes, 357
method-of-moments (MoM), 352–354

poles and zeros, 351–352, 364–367
quasi-static admittance models, 350–351,

350f, 351f
Fresnel coefficients, 118
Fringing capacitance, 295
Front-to-back ratio, with resonant interaction

between dipole antenna and
two-CLL-deep-based AMC block, 77–79,
78f

Fundamental spatial harmonic, 160–162

Gaussian beam, 118
continuous-wave (CW), 19–20, 20f
focusing, FDTD simulation of, 27–29, 29f,

30f
Global Positioning System (GPS),

high-precision, 250, 252, 252f
Grating lobes, 150
Grounded slab, loaded with periodic patches,

322, 323f
Ground plane(s)

artificial, 344
in antenna engineering, 311–344

comparison to perfect electric
conductors, 312, 312f

electromagnetic bandgap (EBG), 327–329,
327f, 328f, 328t

dipole antenna on, 327–330
parametric study of, 317–319, 318f

high-impedance, 375, 391
and low-profile antennas, 299–300, 299f
and monopole antenna, 297, 298f
perfect electric conductors (PEC), 327–329,

327f, 328f, 328t
perfect magnetic conductor (PMC), 327–329,

327f, 328f, 328t
Group velocity (vg), 192, 266–268

and superprism effect, 269–270, 270f
Gyrotropic materials, 7

Heyman, E., 9
High Frequency Structure Simulator (HFSS)

ring antenna patterns, E− and H -plane,
157–159, 158f

simulations of dipole–ENG shell system,
73–75, 73f–75f

High-pass behavior, of waveguide filled with
isotropic double-positive material, 92–93,
93f

Hilbert curve, 376, 376f
bandwidth of, 377, 377f
current distribution, 377–378, 377f, 378f
length of, 376, 376t
polarization dependence, 378
resonant frequency, 378

Hilbert high-impedance surface, 385–389, 385f
angle of incidence, 385–386
bandwidth of, 385
parametric study of, 385, 386f–387f
reflection coefficient of, 385
short dipole antenna above, 375, 377,

391–395, 392f, 393f, 394f
as thin absorber, 389
waveguide measurement of, 387–390, 390f
zero-degree phase transition of, 386f, 388
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Impedance coupler(s), symmetric, 198–202,
199f–202f

Inclusions, 5–6, 6f
Incremental circuit model

of composite right/left-handed (CRLH)
transmission line, 193–194, 193f

of uniform left-handed (LH) transmission line,
192, 192f

Index of refraction, 18
of double-negative materials, 9–10
effective, 304

surface waves and, 291–292
for medium characterized by Drude model,

115f, 116
for medium characterized by Lorentz model,

114, 115f
zero, metamaterials with, 32–37

Inductance, distributed, in transmission line (TL)
model of rectangular waveguide, 94, 94f

Inductive element, of ENG shell combined with
dipole antenna, 70–71, 70f

Infinite rods, 125
Infinite wavelength, 194
Interface, 43
Interface resonance, 44–45, 54, 55

KKR electronic band structure of calculation, 233
Kock, W. E., 5
Kramers-Krönig relation, 9

Lasers, in EBG fabrication by stacking,
241–242, 242f

Layer-by-layer structure, 216, 217f, 241, 242f
Leaky-wave antenna(s) (LWA), 303–304, 304f

backward, 304
radiating in its fundamental spatial

harmonic, 160–162
TL-based, 160–161, 160f

electrically small transverse dimension, 160
forward, 161–162, 304
method-of-moments simulations of, 161
steerable, 303–304, 304f
unidirectional

forward, 161–162
simulation results for, 160, 160f, 161f

Leaky-wave beam steering, 303–304, 304f, 305f
Left-handed (LH) materials, 6, 119, 143, 191,

219–221
Lens

flat, with anisotropic metamaterial, 121, 122f
microwave, 5
perfect, 15, 23, 122
planoconcave double-negative medium,

30–32, 31f

superresolving NRI transmission line,
162–164

Veselago, 162–163
planar version, 163, 163f

Liao boundary conditions, 230
Light line, in dispersion diagram for surface

waves, 290, 290f
Lindman, K. F., 5
Lorentz model, 7–8, 11, 114–118, 115f, 116
Loss tangents (LT), 64

Macrocells, in resonance cone antennas, 182,
183, 185f, 186f

Magnetic conductor, artificial, 289, 292–293,
299–300

Magnetic damping factor, 114
Magnetic field

distribution
HFSS-predicted, for dipole–ENG shell

system, 74–75, 74f, 75f
with resonant DPS–DNG system behaving

as TM resonator, 68–69
force-free, 37

Magnetic resonant frequency, 114
Magnetic susceptibility (χm), 7–8
Magnetization, 8, 10
Matched condition, 14
Matched pair(s)

DNG–DPS, 61
DPS–DNG, 61
ENG–MNG, 61

Maxwell-Garnett mixing formula, 395
Maxwell’s equations, 34, 43, 48, 194

in isotropic materials, 222
time-dependent, 228

Meander line approach, 150–151, 151f
Measurement

of rings, 125–137
techniques, 123–137

Metamaterials
admittance, 364–367
anisotropic, 90, 117, 121, 122f
electromagnetic response functions of, 5–6
isotropic, 117
macroscopic view of, 116–122
microscopic view of, 114–116
modeling, 116–118
properties of, 118–122
synthesis of, historical perspective on, 5

Metamaterial slabs, high-impedance, as artificial
magnetic conductors, 76–79, 77f–80f

Method-of-moments (MoM), 350, 352–355
Microcells, in resonance cone antennas, 182,

183, 185f
Micromachining, 238, 311
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Microstrip antenna(s), 322–326, 324f, 325f
arrays, 325–326, 326f

Microstrip dispersion, 21–23, 23f
Microstrip technology, implementation, 197,

197f, 198f
Microwave filtering, 254
Microwave lenses, 5
Microwave network, 195–197
Mobile phone antenna(s), 250, 253–254, 253f
Mode-matching analysis, of discontinuity,

47–48, 47f
Monomodality, 47
Monopole antenna. See Antenna(s), monopole
Multiconductor transmission line (MTL) theory,

165–167, 166f
Multiple-scattering (MS) method, 233
Multipoles, scattering, 56–57
Mu-negative (MNG) metamaterials, 7

paired with double-negative media, 43
split-ring resonator (SRR) array, 89–91, 90f,

91f
two-dimensional isotropic, rectangular

waveguide filled with, 99–100, 99f
two-dimensional uniaxial, rectangular

waveguide filled with, 100–105
uniaxial, 93–94, 100–105

Mutual coupling, in microstrip antenna arrays,
325–326, 326f

Negative group velocity, 149
Negative index of refraction (NIR), 10, 11–13,

12f, 17–18, 17f, 113, 191, 219–221
Negative-refractive-index (NRI) media, 143–144

planar transmission line, 144–145
two-dimensional, 144, 144f, 145

Nested metamaterial shells, 65–66
Nihility, metamaterials exhibiting, 37
Noble metals, 7
Nonpropagating mode, evanescent, 48

Omega media, 5
Optics, physical arguments of, 261

Parallel plate capacitance, 295
Parameter extraction procedure, 197
Paraxial focusing, 24
Passband, 195

of low-profile antenna, 187
Pass region, of low-profile antenna, 187
Patch width, of electromagnetic bandgap (EBG)

materials, 317
Peano curve, 375, 376, 376f

bandwidth of, 378

current distribution, 379f, 380
electrical footprint, 380
length of, 376, 376t
polarization dependence, 380
resonant frequency, 378

Peano high-impedance surface, 381–383, 389
bandwidth of, 383–384, 383f, 384f
interelement spacing, 383–384, 383f, 384f
parametric study of, 383–384, 384f
polarization dependence of, 383–384
reflection coefficient of, 381–382, 381f
short dipole antenna above, 375, 377, 393
substrate height, 383–384, 383f, 384f
as thin absorber, 389

Pendry, J., 162, 220–221
Perfect electric conductors (PEC), 44, 60–61,

60f, 81, 312, 312f
ground planes, 327–329, 327f, 328f, 328t

Perfect magnetic conductor (PMC), 81,
246–247, 311

ground planes, 327–329, 327f, 328f, 328t
Periodic boundary conditions (PBCs), for

electromagnetic bandgap (EBG) materials,
315–317, 316f

Permeability (µ), 6–7, 10
and dispersion relation, 118, 119t, 120t
of DNG metamaterial based on thin wires and

SRRs, 91
effective, 87, 221

of isotropic MNG metamaterial, 100
of space-filling curve double-negative

(DNG) media, 395, 397f
of split-ring resonator (SRR) array, 89, 90f

extracted effective relative, for uniaxial MNG
metamaterial based on double-ring
inclusions, 104–105, 104f

longitudinal, of isotropic SRR-based MNG
metamaterial, 90–91

for medium characterized by Drude model,
115f, 116

for medium characterized by Lorentz model,
114, 115f

negative, 113, 143
scalar, 116
transversal, 93

of isotropic SRR-based MNG metamaterial,
90–91

uniaxial anisotropic, 91
Permittivity (ε), 6–7, 10

and dispersion relation, 118, 119t, 120t
of DNG metamaterial based on thin wires and

SRRs, 91
effective, 87, 221

negative, 143
of space-filling curve double-negative

(DNG) media, 395, 397f
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Permittivity (ε), (continued )
of wire array, 88–89, 88f

of ENG wire-based metamaterial, 98
extracted relative, 97f, 98
isotropic scalar, 91
for medium characterized by Drude model,

115f, 116
for medium characterized by Lorentz model,

114, 115f
negative, 113, 143
relative, of wire array, 88–89, 88f
scalar, 116

Phase compensation
with conventional TL and BW lines, 145,

145f, 146f
with double-negative media, 14, 19–21

Phase conjugation, 19
Phase coupler(s), asymmetric, 198, 202–204,

203f, 204f
Phase distribution, of subwavelength resonator,

109–110
Phase-shifting lines

and broadband response, 149
metamaterial, 145–146, 146f

advantages of, 147
applications of, 147–149
nonradiating, 149–150, 149f, 150f

zero-degree, 145–149
Phase velocity (vp), 192

and superprism effect, 270–271, 271f
Phone antenna(s), 250, 253–254, 253f
Photolithography, 217–218, 238, 239
Photonic bandgap (PBG) materials, 215, 238. See

also Electromagnetic bandgap (EBG)
materials; Photonic crystals (PC)

Photonic crystals (PC), 215–219, 238, 259. See
also Electromagnetic bandgap (EBG)
materials

A7 class, 216
advantages of, 216
band structure of, calculation, transfer matrix

method, 225–228
colloidal suspensions, 219
diamond lattice, 216, 224–225, 225f
EM wave propagation in, studies of

numerical methods, comparisons of,
232–233

theoretical and numerical methods,
221–232

fabrication of, 216–217
geometry, hypotheses on, 261, 261f
plane interface, field coupling at, 263–266,

265f–266f
refractive properties of, 260–268, 269f

general hypotheses on, 260–261
rigorous theory of, 262–268

regular waveguide, 219
self-supported membrane, 219
submicrometer, 217–219
testing of, 216–217

Photonic integrated circuits (PIC), 219
Photonic-KKR method, 233
Photopolymerization, 242–243
Pin-bed arrays, 285
Plane wave(s), 311

reflection phase, 316f, 317
Plane-wave excitation, 87–88
Plane-wave incidence, obtaining, 123–125, 124f
Plane-wave (PW) method, 222–225, 232–233
Plane-wave scattering, from double-negative

material slab, 13, 13f
Plasma, electromagnetic wave propagation in, 88

wire array and, 88
Plasma frequency (χD), 8, 10, 89, 98, 114, 221
Plasmons, surface, 287
Polaritons, 56
Polarization, 116–118
Polarization-dependent electromagnetic bandgap

(EBG) materials (PDEBG), 319–321, 320f,
321f

Pole–zero matching, 351–352, 359–371
Poynting power, 113
Poynting theorem, 145
Poynting vector, 43

angles of transmission, in metamaterials, 118,
119t

with backward waves, 16–17, 16f
in mode-matching analysis of discontinuity,

47–48, 47f
with oblique scattering, 17–18
planar metamaterial, corner-fed, anisotropic

grid resonance cone antenna, 180, 181f
resonance cone refraction effects and, in

low-profile antenna, 185, 187f
in transmission line (TL) model of rectangular

waveguide, 94, 94f
Prism, 118

refraction experiment using, 121
S-based solid-state, transmission through, 137,

138f
solid-state, transmission through, 135, 136f

Propagating mode, 45–48, 47f
Propagation passband, in rectangular waveguide

filled with 2D uniaxial MNG metamaterial,
101, 102f

Radiated power gain
for dipole–ENG shell system, 71, 71f
for electrically small electric dipole antenna,

64–65, 64f
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HFSS-predicted, for dipole–ENG shell
system, 73–74, 73f

Radiation, surface waves and, 291
Reactance

capacitive, electrically small antenna and, 62
inductive, electrically small antenna and, 62

Reciprocal scattering problem, 63f, 66–69,
66f–68f

Reconfigurable antenna(s), wire, with radiation
pattern diversity, 339–343, 341f–344f

Reflection (r) amplitude, of finite slabs of
photonic crystals and left-handed materials,
225–228

Reflection coefficient, 116, 118
of finite slabs of photonic crystals and

left-handed materials, calculation,
226–228

of Hilbert high-impedance surface, 385
of Peano high-impedance surface, 381–382,

381f
of photonic crystals and left-handed materials,

calculation, 229
for plane-wave scattering from

double-negative material slab, 13, 13f
Reflection phase

of artificial surface, 349–350
and beam steering, 301–303, 302f, 303f
of EBG surface, 328t, 329–330
of high-impedance surface, 299–300, 299f
of patch-loaded grounded slab, 322, 323f
of perfect electric conductors (PEC), 328t
of perfect magnetic conductors (PMC), 328t
of plane waves, 316f, 317
for textured surface, 292–293, 293f
of tunable impedance surface, 300–301, 301f

Reflector(s)
dual-grid, 250
electromagnetic bandgap (EBG) materials for,

250, 251f
Refraction, 118, 119–121. See also Index of

refraction; Refraction, negative
anomalous, 6
at boundary between photonic crystal and

homogeneous medium, 259
negative, 17–19, 17f, 143, 220–221, 259,

268, 269f
in waveguide environments, 113–138

Refractive boundary, in resonance cone antennas,
182

Refractive index, negative, 6
Resonance cone(s), 171–172, 172f

containment, 181, 183f
directions at frequencies higher or lower than

diagonal cone frequency, 182, 184f
double-square pattern, 182, 184f
vortices, 183–187

Resonance cone antenna(s), 171–189
CMA diagram, 172, 173f
image currents, 171
planar anisotropic grid of, 171, 180, 181f
planar metamaterial, corner-fed, anisotropic

grid, 172–180
absorbed power distribution, 176, 177f
double-sloped, 180, 182f
flat, 173–174, 174f, 175f
grid-over-ground configuration, 173, 174f
horizontal-plane vertically polarized

radiation pattern, 174, 175f
phase reversals, 173, 175f
sloped, 176–180, 178f–180f, 181f
vertical-plane radiation pattern, 174, 176f

vertical currents, 171
Resonance cone refraction, and low-profile

antenna, 181–188
Resonant scatterer, 54

subwavelength conjugate pair of shells and,
56

Resonators. See also Dual-band ring antenna(s);
Zero-order antenna(s)

composite right/left handed (CRLH)
negative resonance in, 205–207
positive resonance in, 205–207
zero-order resonance in, 205–207

excitations, open- and short-ended, 206
metamaterial, 205–208

Retrieval algorithms, 114
Ring antenna(s)

dual-band, 208, 209f
low-profile, 157–159, 158f
metamaterial, 157–159, 158f
small, 157–159, 158f

Rings, 114–116
measurement of, 125–137

Rods, 114–116
infinite, 125

RT/Duroid substrates, 318–319, 324

Salisbury screen, 389–391
Scan angle, of series-fed linear array, 152, 152f,

153f
Scattering

dipolar, 56
from double-negative material slab, 13–16
higher-order, resonances of, 56
multipoles, 56–57
total, cross-section, normalized by unity, in

DPS–DNG shell system, 69, 69f
Scattering chamber, 87, 89
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Scattering coefficient
for DPS–DPS spherical scatterer, 57, 58f
for ENG–DPS spherical scatterer, 57, 58f

Schultz, S., 6
Shell(s)

coaxial cylindrical, 54–59
concentric spherical, 54–59

Shorted stubs, 160
Sievenpiper mushroom surfaces, 76, 166
Silicon, woodpile structure, terahertz

time-domain spectroscopy of, 249–250,
249f

Single-negative (SNG) materials, experimental
characterization of, 87–110

Slab, 118
anisotropic, focusing by, 122
isotropic, focusing by, 122
refraction experiment using, 119–121
transmission through, 118–119

Smith, D. R., 6
Snell’s law, 17, 81, 118
Solid-state metamaterials, 131–135, 133f, 134f,

135f, 136f
Space-filling curve double-negative (DNG)

media, 377, 395
effective parameters, 395, 397f
Hilbert curve dipole moments, 395, 396f
Hilbert curve inclusions, 395
Peano curve multifunction media, 395
polarizability tensors, 395

Space-filling curves, 375, 389, 395
iteration order number N , 376, 376t
resonances of, 377–380

Spherical core–shell systems, subwavelength,
54–59

Split-ring resonator (SRR), 99, 114–116, 191,
220, 220f

as anisotropic particle, 90
axially symmetric, 116, 117t, 125–127,

126f–129f
broadside, 116, 117t, 125, 136
closed, transmission coefficient versus

frequency of, calculation, 228, 228f
edge-coupled, 116, 117t, 125
omega, 116, 117t, 128–130, 130f–132f
rectangular, transmission coefficient versus

frequency of, calculation, 228, 228f
Split-ring resonator (SRR) array, 89–91, 90f, 91f
S ring, 116, 117t, 135–137, 136f, 137f, 138f
Stop band, 127, 128f
Stop-band, of low-profile antenna, 187
Stop region, of low-profile antenna, 187
Struts, in symmetric reflector antenna array, 250
Subwavelength cavities, 43
Subwavelength cylindrical core–shell systems,

54–59

Subwavelength focusing, 15, 163, 163f
with double-negative medium, 23–32

Subwavelength resonator, 106–110
experimental, 108–110, 108f
transmission line model of, 106–107, 106f

Subwavelength unit cell, for 2D TL-based NRI
metamaterial, 144f, 145

Superprism effect, 259, 269–273
chromatic dispersion and, 271–273, 272f, 273f
group velocity and, 269–270, 270f
phase velocity and, 270–271, 271f

Surface(s)
artificial, 311
corrugated, 285, 286f
hard, 285, 311, 349
high-impedance, 286f, 288–289, 375, 377,

381. See also Hilbert high-impedance
surface; Peano high-impedance surface

antenna applications, 297–300
in antenna design, 393, 395
bandwidth, 293–295, 297, 303
capacitance, 295–297
design procedure for, 295–297, 295f, 296f
electromagnetic properties of, factors

affecting, 295–297, 296f
inductance of, 296–297

mushroom, 286
polarization-dependent EBG designs

(PDEBG), 319–321, 320f, 321f
soft, 285, 311, 349
textured, 285–286, 292
thumbtacklike, 286
tunable impedance, 300–301, 301f, 305

Surface capacitance, 288–289, 289f
Surface impedance, 288–289, 289f. See also

Surface(s), high-impedance; Surface(s),
tunable impedance

Surface plasmons, 287
Surface wave(s), 287–288, 287f, 288f, 311,

333–334, 349
backward, 304, 305
bandgap, 317
bands, 289–292
dispersion diagram for, 290–292, 290f, 291f
forward, 304
transverse electric (TE), 87, 286, 287–288,

288f, 290–292, 290f, 291f, 292f
transverse magnetic (TM), 286, 287–288,

288f, 290–292, 290f, 291f, 292f
Surface wave antenna(s), for wireless

communications, 331–334

Telegrapher equations, 192, 194
Textured surface, reflection phase for, 292–293,

293f



INDEX 413

Textured surface(s), 285–286, 292
Thin wire

double-negative (DNG) metamaterials based
on, 91, 91f

epsilon-negative (ENG) metamaterials based
on, 88–89, 88f

split-ring resonator (SRR) structures, 91, 91f,
191, 220, 220f

Three-region (two-nested-sphere) geometry, 63,
63f

Time-domain spectroscopy, terahertz, 248–250,
249f

Total impedance (ZTotal), 60–61
Transfer matrix method (TMM), 222, 225–228,

232–233, 318
Transition frequency (�0), 194
Transition regions, in resonance cone antennas,

182
Transmission (t) amplitude, of finite slabs of

photonic crystals and left-handed materials,
225–228

Transmission coefficient, 116, 118
of finite slabs of photonic crystals and

left-handed materials, calculation,
226–228, 228f

of photonic crystals and left-handed materials,
calculation, 229

for plane-wave scattering from
double-negative material slab, 13, 13f

of waveguides filled with uniaxial MNG
materials, 102f, 103–104, 103f

Transmission line (TL)/Transmission line (TL)
model(s), 48–50, 49t, 51f, 94, 191. See
also Multiconductor transmission line
(MTL) theory

backward wave, 101, 102f, 106–107, 106f,
107f, 109, 109f, 192

C–C, 96
C–L, 96, 147
composite right/left-handed (CRLH)

metamaterials, 192–197
equivalent circuit, 94–95, 94f

for waveguides filled with different types of
metamaterials, 95, 95t

forward wave, 106–107, 106f, 107f, 109, 109f
L–C, 95, 147
left-handed (LH), 192

effectively homogeneous, 192
loss mechanism in, 192
uniform, incremental circuit model of, 192,

192f
L–L, 95
negative-refractive-index (NRI), 144–145

planar media, dispersion of, 164–167
superresolving lens, 162–164

phase distribution in, 101, 102f

planar
media, with negative refractive index,

144–145
with negative refraction index, 143–145,

144f
positive-refractive-index (PRI), 145
of rectangular waveguide, 94, 94f
right-handed (RH), 192
of subwavelength resonator, 106–107, 106f
TEM, 94
zero-degree phase-shifting, 145–149

Transmission (ABCD) matrix formalism, 195
Transmission properties, of finite photonic crystal

or left-handed slabs, 221
Transparency, 57–59, 59f
Transverse electric (TE) polarized wave, 87, 286,

287–288, 288f, 290–292, 290f, 291f, 292f,
349

Transverse electromagnetic (TEM) wave, 88, 312
Transverse magnetic (TM) surface waves, 286,

287–288, 288f, 290–292, 290f, 291f, 292f,
349

Transverse magnetic with respect to r-direction
(TMr ), for dipole–metamaterial shell
systems, 66–68, 66f, 67f, 68f, 71–72,
74–75

Two-time-derivative Lorentz metamaterial
(2TDLM) model, 9, 76

UCLA UC-PBG surface, 76
Ultrarefraction, 259, 275
Uniaxial medium, 171

Veselago, V. G., 6, 143–144, 162
Vivaldi antennas, 244, 244f

Wave(s). See also Surface wave(s)
Bloch, 263–266, 265f–266f
evanescent, 261

amplification of, 122
in superresolving NRI transmission line

lens, 162–164, 164f
transmission line models, 48–50, 49t

Floquet, 350, 351
leaky, steerable, 287
transverse electric (TE) propagating,

transmission line models, 48–50, 49t
transverse magnetic (TM) propagating,

transmission line models, 48–50, 49t
Wave equation, for rectangular waveguide filled

with general metamaterial, 91–92
Waveguide(s)

coplanar, 147
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Waveguide(s) (continued )
cutoff frequency, 93, 99, 101, 102f, 103
DNG slab

comparison to DPS slab, 52, 53f
power flow properties of, 53, 54f

DPS–DNG, 45, 46f
discontinuity between, mode-matching

analysis of, 47–48, 47f
DPS–DPS, 45, 46f, 50, 51f
DPS–ENG, 50
DPS–MNG, 50
DPS slab, comparison to DNG slab, 52, 53f
ENG–MNG, 45–47, 50
metamaterial, anomalous behavior of, 50–52,

51f
miniaturization of, 103
parallel-plate, 44–45, 44f, 46f, 50, 51f, 113,

116
rectangular, 285

filled with 2D isotropic DNG material,
105–106, 105f

filled with 2D isotropic ENG material,
96–98, 97f

filled with 2D isotropic MNG material,
99–100, 99f

filled with 2D uniaxial MNG material,
100–105

filled with isotropic double-negative (DNG)
material, 93, 93f

filled with isotropic double-positive
material, 92–93, 93f

filled with isotropic ENG material, 93
capacitance, 95–96

filled with isotropic MNG material, 93
filled with metamaterial, 91, 92f

theoretical analysis of, 91–96
filled with uniaxial MNG material, 93–94
in quasi-optical power combining, 254

and refraction experiments, 113–138
transverse electromagnetic (TEM), 194
walls, contacting issue with, 125

Waveguide experiments, 87–110
Wave impedance (Zw), of waveguide filled with

lossless metamaterial, 95
Wave vector(s)

angles of transmission, in metamaterials, 118,
119t

with backward waves, 16–17, 16f
with oblique scattering, 17–18

Wilkinson balun
broadband, using microstrip metamaterial

lines, 153–157
transmission line (TL), distributed, 156–157

Wire media, 5, 88–89, 88f, 91
Woodpile structure, 216, 217f, 218

bandgap parameters, sensitivity to systematic
dimensional variations, 243

manufacturing of, 240–241, 241f
silicon, terahertz time-domain spectroscopy of,

249–250, 249f

Yablonovite, 237

Zengerle, R., 259
Zero-degree phase-shifting lines, 145–149
Zero-index infinite cylinder, matched, 33–37,

35f, 36f
Zero-index media, 32–37, 33f
Zero-index metamaterials, for antenna

applications, 80–82, 82f
Zero-order antenna(s), 207–208, 208f
Ziolkowski, R. W., 9, 21, 33, 62
Zirconium tin titanate (ZTT) based ceramics,
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