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The cross-disciplinary field of metamaterials is emerging into the mainstream of 
electromagnetics and materials science research. The spark ignited by the theoretical 
speculations of double-negative media in the famous article by Victor Veselago 
stayed unnoticed for over 30 years before it expanded into flames of active research 
during the present century. Metamaterials are presently the topic of scientific 
discussions, seminars, sessions, conferences, at least one dedicated journal, research 
programs, networks, and increasingly growing amount of proposals for research 
funding. 

Networking is one of the characteristic features in the new wave of metamate-
rials research. Due to its interdisciplinary character, it transcends boundaries 
between research fields. Investigators come from different traditions. They approach 
metamaterials problems, succeed in solving some, fail with others, create new, and 
change the way we see the field. The backgrounds are in electrical engineering, 
electromagnetics, solid state physics, microwave and antenna engineering, opto-
electronics, classical optics, materials science, semiconductor engineering, and 
nanotechnology. The research orientations vary from theoretical analysis, comput-
ational and analytical modeling, and experimentalist approach to application-
interested engineering. 

META’08, the NATO Advanced Research Workshop with the subtitle Meta-
materials for Secure Information and Communication Technologies, was organized 
in the city of Marrakech in Morocco in early May, 2008. Over 200 participants 
from 34 countries had the possibility to hear about the latest advances in the 
theory and applications of metamaterials from 13 plenary talks, and in 26 oral 
sessions and two poster sessions. META’08 was part of “The Science for Peace 
and Security Program” which is open to scientists from NATO, Partner, and 
Mediterranean Dialogue countries. In particular, the meeting enjoyed the high 
patronage of His Majesty Mohammed VI, King of Morocco. 

vii 



Preface 

This book attempts to chart the state-of-the-art of metamaterials research. The 
chapters to follow have been invited from selected speakers in META’08. The 

The chairman of META’08 was Professor Saïd Zouhdi from the University 
Paris Sud, France. The local organizing committee was chaired by Professor 

(Institute of Theoretical and Applied Electromagnetism in Moscow, Russia) 
served as co-director of the NATO ARW. The meeting was also sponsored by the 
METAMORPHOSE Network of Excellence (EU), the Office of Naval Research 
Global (UK), GDR Ondes (France), US Army International Technology Center 
(UK), SUPELEC (France), CNRS (France), DGA (France), CST (Germany),  
IEEE-APS (USA), URSI (Belgium), University Abdelmalek Essaadi (Morocco), 
and Laboratoire de Génie Electrique de Paris (France). 

A meeting devoted to metamaterials has also its history. META’08 can be 
connected to the series of chiral and bi-anisotropics workshops and conferences 
that took place in 1990s, and focused on emergent electromagnetic properties in 
complex materials and their applications. Two times before, such conferences 

1996 (in Russia [1]) and in 2002 (also in Marrakech [2]). 
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Abstract In this article, the concepts of handedness and negative material parameters 
are analyzed at a general and qualitative level. Three different usages of handedness 
in metamaterials and electromagnetics are distinguished: left-handedness as 
characterization of double-negative materials, handedness of the polarization of a 
plane wave, and chirality in the structure of matter. The symmetry of the treatment 
between left and right is discussed from the point of view of the three uses of the 
handedness. It is essential to distinguish the helicity of the spatial shape of the 
field vector as opposed to the temporal behavior of the field at a given position in 
space. Negative refraction and backward-wave characteristics are discussed in  
the case when structural chirality of the medium splits the wave numbers of  
the eigenwaves. Finally, negative refraction is connected with anisotropic and  
bi-anisotropic materials. 

1  Introduction 

Metamaterials form such a wide and uncharted range of materials that a coherent 
presentation of the possible examples of media that fall in this class is beyond 
reach [1]. With powerful new technologies that allow processing of materials at 
nanoscales, many types of artificial materials can be fabricated which are endowed 
with engineered properties that could only be dreamed of in the past [2]. In addition 

emergent properties [3]. This fact contributes further to the fact that it is difficult 
to draw lines that would separate metamaterials from other, evenly interesting 
substances. 

Typical to an emergent research field like metamaterials is also its interdisciplinary 
character that transcends previously respected boundaries between research fields. 
We see people from different traditions and backgrounds approaching and attacking 

© Springer Science + Business Media B.V. 2009 
S. Zouhdi et al. (eds.), Metamaterials and Plasmonics: Fundamentals,                         
Modelling, Applications, 

to man-made materials, also many naturally existing media display strange and 
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metamaterials problems, solving those, and creating new ideas. These researchers 
come from electrical engineering, electromagnetics, solid state physics, microwave 
and antenna engineering, optoelectronics, classical optics, materials science, semi-
conductor engineering, nanoscience, etc. 

The diversity of backgrounds and paradigms is a source of fruitful cross-
fertilization of ideas, and potential for joint research networks where different 
strengths and capacities can be successfully combined. But the challenge is to find 
the internal cohesion for such joint efforts. Within different domains of science 
and engineering, the traditions of doing research and analyzing problems may differ. 

menon may vary when researchers from different backgrounds approach the 
problem. For example in discussions about magnetism and reciprocity, or plasmonics 
and surface waves, concepts may cause initial difficulties in understanding the 
language of a colleague. 

studies where misunderstandings and ambiguous concepts are being used. What 
does it mean to say that something is “left-handed” or “right-handed”? How does 
the important phenomenon of negative refraction or backward wave propagation 
connect with handedness? How symmetric is the distinction between left and 
right? Various ways of looking at handedness, helicity, chirality, order, and 
symmetry are discussed. The metamaterials under study are also analyzed from 
the point of view of bi-anisotropic classification where the number of degrees of 
freedom in characterizing the medium becomes many times larger. 

2  Close-Reading of the Term “Handedness” 

Handedness is a term that is very much used in the metamaterials literature. Let 
us start by discussing the various meanings of handedness within the electro-
magnetics discipline. It is essential to define and analyze these meanings because 
very often in even scientific discussions they are used parallel and grave mis-
understandings may result from a wrong association of this term. 

2.1  The three meanings of handedness in electromagnetics 

Let us separate three different meanings of handedness in electromagnetics and 
materials [4]: 

1. Metamaterials as “left-handed” media 
2. Handedness of the circularly (or elliptically) polarized wave 
3. Chirality as geometrical structure of matter 

Even the formalism and terminology of quantities of the same physical pheno-

The present article attempts to cast some light into one area of metamaterials 
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2.1.1 Metamaterials as left-handed media 

The use of the label “left-handed” materials for a certain class of metamaterials 
has its rationale from the handedness of the vector triplet (E, H, k) of a linearly 
polarized wave propagating in such media; these vectors here refer to the electric 
field, magnetic field, and wave vector. Such left-handedness is the situation if both 
the dielectric permittivity and magnetic permeability are both negative. 

With time-harmonic convention exp(jωt), Maxwell curl equations read for 
plane-wave functional dependence exp(−jk · r) as 

          k × E = ω B = ωµH,                 H × k = ω D = ωεE (1) 

in homogeneous, isotropic, source-free background with permittivity ε and 
permeability µ. For ordinary media (which have positive permittivity and positive 
permeability), the (E, H, k) triplet is right-handed; however in case of both ε < 0 
and µ < 0, Eq. (1) makes it left-handed.1 Likewise, the time-dependent Poynting 
vector S = E × H is parallel to k in the first case and antiparallel in the latter one, 
as shown in Fig. 1.2 

 

 

 

Fig. 1 For “ordinary” isotropic media (left), the triplet (E, H, k) is right-handed and the 
wavevector k points parallel to the Poynting vector S, whereas for negative parameters (right), 
the wavevector changes direction and the triplet becomes left-handed (and k and S become 
antiparallel).  

___________ 
1 Note, however, that even if the handedness of (E, H, k) depends on the sign of ε and µ, the 

triplets (E, B, k) and (D, H, k) are both right-handed, irrespective of the signs of the material 
parameters. 

2 Faraday’s law k × E = ω B = ωµH seems to lead to the conclusion that it is only the sign of 
µ that determines the right/left-handedness of the triplet (E, H, k). However, it is important to 
keep in mind that in order for the waves to propagate, a negative µ has to be complemented with 
a negative ε, due to the wave number dependence on the material parameters k = ω(µε)1/2. 
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Such type of metamaterials obey many other names in addition to “left-handed 
media” [5]: double-negative materials, negative-index materials, negative-phase-
velocity materials, backward-wave media, and – due to the theoretical prediction 
of their existence in the 1960s [6] – Veselago media. 

In the language of electrical engineers, especially antenna engineers, the term 
handedness appears in connection with polarization of the electromagnetic wave 
or a radio wave. Polarization then refers to the direction and behavior of the 
electric field vector which for a circular or elliptical polarization has a character of 
helicity, or handedness. The wave is propagating in a certain direction and (in 
isotropic media) the electric field is transversal (k · E = 0). In the transversal 
plane, the temporal oscillations of the field vector follow an ellipse or circle (in 
the case of linear polarization, the ellipse shrinks to a line).  

When looking along the wave propagation direction, the wave may rotate in 
two directions. According to the Federal Standard 1037C, the polarization is 
defined right-handed if the temporal rotation is clockwise when looking from the 
transmitter (in the propagation direction), and left-handed if the rotation is 
counterclockwise. Hence, the wave depicted in Fig. 2 would be right-handed 
circularly polarized. 

It is important to bear in mind that this handedness definition is not universal. 
For example, astronomers [7] are always looking towards the source (transmitter), 
and hence into the opposite direction of the wave propagation. Then also clockwise 
and counterclockwise senses swap as compared to the engineering point of view, 
and likewise the definition of right- and left-handedness is just the opposite. 
Figure 2, however, shows also that if we focus on the spatial behavior of the 
electric field instead of the time dependence, the field vector in space at a certain 
moment draws a left-handed spiral. The handedness of a fixed object remains  
the same even if it is turned or rotated. Both the antenna engineer behind the 
transmitter and the astronomer observing the emitted signal in front of the source 
agree that the spatial spiral is left-handed. (This fact would favor the astronomy 
definition of handedness by removing some arbitrariness in the handedness of the 
polarization.)3 

___________ 
3 The talk about handedness is very human-centered. One may ask whether there might be 

more “objective” ways to define this difficult concept; for example, by defining in cold 
mathematical terms a positive or negative attribute to a structure with a given helicity. It has been 
pointed out that the emphasis on right-hand rules and memorizations in engineering education 
(which is very common) does not take into account the natural capabilities of all students, 
especially handicapped: how does an invalid who has lost both hands benefit from such rules of 
thumb? 

2.1.2 Handedness of a circularly polarized wave 
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Fig. 2 A circularly polarized wave has a sense of rotation and hence can be identified with a 

vector in the plane of the two axes and the phase propagation direction is into the paper, shown 
with slightly oblique perspective. According to the Federal Standard [8] definition, this wave is 
right-handed circularly polarized. Note, however, that the curved spatial structure is a left-handed 
spiral. For an interactive applet showing the real temporal behavior of this polarization, see [9]. 

Handedness is also an everyday concept affiliated with material objects, like 
corkscrews, ice hockey clubs, scissors, and construction tools. The mirror image 
of a right-handed object is otherwise the same as the original but it is left-handed. 
A non-handed object remains the same within this mirror-image operation, because 
such an object, after imaging, can be brought into congruence with the original by 
simple translations and rotations.  

A handed object is called “chiral”,4 and if molecules or other small elements 
with a particular handedness form a macroscopically homogeneous medium with 
net handedness, such a composite can be called chiral medium. Chiral media 
possess so-called optical activity, meaning that the polarization is affected. The 

polarized electromagnetic wave is rotated along the propagation path. The 
connection of chiral microstructure to macroscopic optical rotatory power was 
discovered by Louis Pasteur in 1840s. Although analogous to the Faraday rotation 
___________ 

4 From the word in Greek language for “hand.” 

2.1.3 Chirality as geometrical structure of matter 

definition of handedness. In this figure the curved arrow shows the temporal rotation of the field 

effect of the handed microstructure is that the polarization plane of a linearly 
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in magnetoplasma, the chirality-induced optical activity is a reciprocal effect, 
whereas the classical Faraday effect is non-reciprocal and anisotropic due to the 
biasing magnetic field [10]. 

The mirror image operation is also called parity transformation (all spatial axes 
are reversed when parity is changed), and it is a fundamental property of physics 
that parity symmetry is broken in subatomic interactions [11]. And also on several 
different scales and levels of nature, parity is not balanced. From amino acids 
through bacteria, winding plants, right-handed human beings to spiral galaxies, 
one of the handednesses dominates over the other [12]. 

Obviously chirality in structural objects and continuous media is a very basic 
manifestation of handedness. Since it also causes observable and particular electro-
magnetic effects (optical activity), one has to pay particular attention in analyzing 
phenomena where other meanings of handedness are relevant. 

2.2  Equal or discriminative treatment between left and right 

call for equality between the corresponding right- and left-handed objects; at least 
it is very compatible with the idea of equal status of two entities that are the same 
in all other respects except that they are each other’s mirror images. 

How do the three ways of looking at handedness, introduced in the previous 
section, differ as far as this aspect of left–right classification is concerned? 

We can immediately note that very obviously the circular-polarization-based 
handedness property is fully symmetric. In other words, both senses of polarization 
are as easy to generate, and certainly one is as useful as the other. Even if the 
conventions differ and definitions regarding which wave is right-handed were not 
the same over scientific disciplines, at least it is only a question of phase shift in 
dipole antennas with which handedness the radiated wave is polarized. 

On the other hand, the use of handedness with the reference to Veselago-type 
metamaterials is the totally opposite in this respect. There the “natural” state of 
affairs is the ordinary world of “right-handed” materials, as in Fig. 1: permittivity 
and permeability are positive as in ordinary materials. Only metamaterials, which 
by certain definitions are such media that do not exist naturally [3, 5], can display 
material parameters which both are simultaneously negative. As “left-handed” 
materials they belong certainly to another class of media which cannot by any 
means be treated as parallel status as “right-handed” ones. 

What can we say about the third possibility of looking at handedness: the 
structural chirality? Very tempting would be to observe that the parity operation 
(mirror-imaging the object) does not change chemical or physical properties, 

Symmetry is an essential concept in analyzing handedness. Symmetry would also 
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On the other hand, it is clear that when parity is broken at a certain scale and 
entities of a given handedness dominate, such balance is self-preserving and 
positive feedback mechanisms perpetuate such a state. When all DNA molecules 
twist with the right-handed sense,5 there is no chance of the opposite handedness 
to survive. However, the parity balance is turned around on the level of amino 
acids: only left-handed ones exist in natural proteins [12].  

So, even if by coincidence of evolution and chance parity is broken on various 
scales in the natural world, it is nevertheless broken to both directions, left and 
right, and one might expect equal treatment with respect to this left–right variation 
on the global level. However, the human preference of right over left can be seen 
in the taxonomy of animal species. As Fig. 3 illustrates, the sea snail of genus 
Busycon, displaying left-handed chirality in its structure, has been given as its 
species identification the label perversum. The origin of such a derogatory name is 
most probably due the abnormality of left-handedness: such whelk molluscs are 
predominantly dextral, right-handed. 
 

  

Fig. 3 The marine mollusk Busycon perversum (lightning whelk) is left-handed in the sense of a 
three-dimensional screw (on the right-hand side of the figure). The strangeness of the 
handedness (most seashells show rotation along the right-handed sense) is most probably the 
reason behind the discriminative label (perverse!) for this species. (Image of the whelk taken 

___________ 
5 The left-handed version of such nucleotides can be prepared in the laboratory; but in nature, 

only right-handed isomers exist. 

from Wikipedia Commons.) 

capacity to be of use for something, or value of the original. The whole world and 
universe would probably not notice any difference if it were suddenly mirror-
imaged at all levels. 
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3  Chirality and Negative Material Parameters 

Isotropic Veselago materials with simultaneously negative permittivity and 
permeability cause waves to behave in interesting ways. However, if structural 
handedness is added to such materials, the parameters that account for the chirality 
also affect the wave propagation problem. Chirality brings in magnetoelectric 
coupling and birefringence. But it also leads to the imperative that the pheno-
menon of negative refraction needs to be generalized. 

3.1  Bi-isotropy and eigenwaves 

As is well known [10], net chirality in the continuum matter brings forth magneto-
electric coupling. In other words, electric field excitation causes magnetic polari-
zation in the medium and vice versa. Hence the material response relations have to 
be rewritten from their dielectric–magnetic form. 

3.1.1 Bi-isotropic constitutive relations 

On the level on constitutive relations, the magnetoelectric cross-coupling means 
that in addition to the permittivity ε and permeability µ, a parameter measuring the 
strength of chirality κ has to appear: 

HEBHED µκχκχε ++=−+= )j(,)j(  (2) 

with the electric (E) and magnetic (H) field strengths, and electric (D) and 
magnetic (B) flux densities. 

In isotropic media, the material parameters are equivalent to scalars. Here now, 
to emphasize the magnetoelectric coupling, the relations are termed bi-isotropic, 
and due to the fact that there are two exciting fields and two response flux densities, 
in the most general case four material parameters are needed. 

The missing fourth parameter is already included in Eq. (2): it is the so-called 
Tellegen parameter χ, which is a measure of non-reciprocal magnetoelectric 
coupling. This mechanism is another type of coupling that can be achieved by 
artificial (or natural) coupling of permanent electric and magnetic moments [13, 
14]. Note the appearance of the imaginary unit j in the relations (2). It shows the 
90° phase shift of the response due to chirality effect (charge separation in a spiral 
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Media with nonzero non-reciprocity parameter χ are sometimes called Tellegen 
media, whereas in case of chiral materials (nonzero κ) one often speaks about 
Pasteur media. 

3.1.2 Effect of magnetoelectric coupling on wave propagation 

Unlike to the ordinary isotropic materials and double-negative Veselago media, 
bi-isotropic materials are birefringent: the two eigenwaves propagating in  
bi-isotropic media have different propagation factors: 

( )κχµεω ±−=±
2k  (3) 

Both magnetoelectric parameters χ and κ affect the phase of the wave.6 
The effect of the chirality parameter is to split the refractive index. This leads 

to a need to take a closer look at the backward-wave properties of media with 
negative permittivity and permeability. Figure 4 shows on the left panel the division 
of isotropic media into four classes depending on whether ε and/or µ are positive 
or negative [16], and a propagating wave requires the parameters be of the same 
sign. Double-negative media support backward waves. 

However, when the chirality parameter is allowed to be nonzero, the situation 
is characterized by the right panel in Fig. 4 (there, for simplicity, the Tellegen 
parameter χ is assumed to be zero). The permittivity and permeability are assumed 
to be of the same sign, and the square root of their product is assumed to have the 
same sign as ε and µ. Depending on the magnitude of the chirality parameter, both 
eigenwaves can be forward (the wave vector amplitudes both positive), both 
backward (both wave vector amplitude negative), or one of the waves forward, 
one backward. A corollary is that in order to create negative-index materials 
(backward-wave media), it is not a necessary condition to have double-negative 
material. It suffices that the chirality parameter exceeds the magnitude of square 
root of µε.  
 

___________ 
6 It turns out that the losslessness condition [15] leads to the requirement that all the four 

material parameters in Eq. (2) be real-valued. (Of course, when dispersion is taken into 
consideration, losses and the imaginary parts for these parameters need be accounted for, and we 

creates a circulating current which is proportional to the time derivative of charge 
density), as compared to the in-phase response of the non-reciprocal magneto-
electric (Tellegen) effect. 

need to deal with four complex medium parameters.) It is therefore wrong to interpret in the 
constitutive relations (2) the magnetoelectric coefficients χ + jκ and χ − jκ as complex conjugates 
of each other in the sense that κ would be the imaginary part of the whole coefficient. (The 
complex conjugate of χ + jκ is χ* − jκ*.) 
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Fig. 4 The effect of chirality on the backward-wave characteristics of bi-isotropic media. Left 
side: in isotropic media, waves propagate only if the permittivity and permeability are of the 
same sign, and positive parameters lead to forward waves, negative to backward ones. Right side: 
when ε and µ have the same sign, a sufficiently large chirality parameter κ creates a situation 
where one of the eigenwaves is backward, while the other is forward. (The sign of the square 

Hence sufficiently small (absolute) values of ε and µ lead to interesting possi-
bilities in connection with chiral properties. The extreme case in this respect is the 
so-called chiral nihility [17] where µε = 0 but the medium still possesses a 
nonzero chirality parameter. The nonzero value of κ splits the eigenwaves such 
that they have equal but opposite wave numbers.  

Also even without the chirality effect, in the plain isotropic domain, the regime 
of very small values for the permittivity and permeability are of interest in meta-
materials research. Such media, also called as zero-index media (ZIM),7 would be 
extremely useful in very-high frequency applications of novel materials, such as 
for example optical circuits. To transfer the machinery electronics into optical 
wavelengths and to make use of the theories and powerful results of circuit theory 
in the nanoworld would create a new paradigm, metactronics, as has been visioned 
by Nader Engheta [19]. 

 
 

___________ 
7 It is worth noting that although media with “very small” permittivity and permeability lead 

to a material with very small index of refraction and eventually ZIM, the reverse is not 
necessarily true. Even using non-magnetic materials (for which the permeability is the same as 
that in free space), one can approximate ZIM if only the permittivity is sufficiently small. Such 
media have been called epsilon-near-zero materials (ENZ). Such materials are being studied due 
to their potential applications, for example, in directive emission [18] and squeezing light in 
optical nanocircuits. 

root of εµ is assumed the same as that of ε and µ in this figure). 
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3.1.3 Non-reciprocity and wave propagation 

The effect of the Tellegen parameter χ on the forward–backward characteristics is 
different from that of the chirality parameter κ. When the magnitude of χ exceeds 
that of the square root of εµ, the waves change character: they attain an imaginary 
part and become attenuating. (However, in such case there may still be phase 
variation: the real part of the wave vector is given by κ, as Eq. (3) shows). 
Nevertheless, also in the case when the Tellegen parameter of the medium is 
nonzero, backward waves are possible.  

The interrelation of the domains of backward-wave media and the four 
subclasses of bi-isotropic materials is illustrated in Fig. 5. 

 

 

Fig. 5 Negative-index media (NIM, here referring to media in which a plane eigenwave is 
allowed to display backward propagation, in other words negative phase velocity) are allowed in 
all subfields of bi-isotropic materials: chiral (handed) and non-chiral, reciprocal and non-
reciprocal.  

Pasteur’s discovery (connection of microstructural chirality with macroscopically 
observable polarization rotation) was qualitative. To present a formula for calculating 
the angle of rotation as function of the chiral activity requires solution of Maxwell’s 
equations with the constitutive relations (2). In light of the theme of the present 
article, handedness, it is especially interesting to find out which is the sense of 
helicity (right- or left-handed) for a given chirality parameter (positive or negative).  

3.2 Optical activity and polarization rotation 
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into the direction of the positive z axis. Then their dependence upon the propag-
ation distance is exp(−jk±z), with k± being the propagation constant of the right-
handed (+) and left-handed (−) eigenwave. 

The electric field vectors rotate in the xy plane (unit vectors ux and uy), and as 
complex vectors they can be written as 
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If the wave is linearly x polarized at z = 0, it is the sum of RCP and LCP, both 
of equal amplitudes. For positive κ, the wave number of RCP is larger than that of 
LCP. Hence its phase changes faster. The result is that at a distance into positive z, 
the vector direction of the electric field is 
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from which it can be seen that at position z = 0, the field vector is x-polarized as 
assumed. 

In particular, Eq. (5) shows that at any fixed position z, the electric field is 
linearly polarized (the vector multiplying the phase exponential is real). The plane 
of polarization of the wave in the transversal xy-plane, however, depends on the 
position z. As the field penetrates into the chiral medium and z increases, the field 
polarization starts to attain a negative y component. This means that the polari-
zation rotation is counterclockwise (for positive κ) when one is looking along the 
propagation direction. 

This analysis can be illustrated by the situation in Fig. 6. There the sign of κ is 
assumed positive in the chiral material, and the plane of polarization of the 
propagating wave rotates counterclockwise.8 

 

___________ 
8 One has to bear in mind that over a larger spectral range, the chirality parameter is dispersive: 

its magnitude varies as function of frequency. For resonating particles, the rotatory dispersion can 
be so strong that it even changes sign [20]. This leads to a paradoxical situation: a sample of 
material which is, say, dextral (i.e., it has right-handed microstructure), can have the power of 
rotating the wave polarization in either right- or left-handed sense, depending on the frequency of 
the radiation. 

The eigenwaves in homogeneous chiral media are the two circularly polarized 
(right- and left-handed) waves [10]. Let us assume that the waves are propagating 
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Fig. 6 The rotation of the polarization plane of a linearly polarized wave as it enters a chiral 
medium and propagates through it. Here the chirality parameter κ is assumed to be positive (for 
negative κ, the rotation would run in the opposite sense). The important conclusion of the figure 
is that the rotation is counterclockwise as one looks into the propagation direction. (Of course 
there also is a reflection, caused by the possible impedance mismatch at the boundary; it is 
omitted here because the chirality parameter does not affect the reflection coefficient for normal 
incidence.) Note that here the constitutive relations defined in (2) are used (the non-reciprocity 
parameter χ does not affect the rotation). Also, the time-harmonic convention is exp(jωt); 
evidently the convention exp(−iωt) would chance the sense of rotation.9 

There are two “wavelengths” that can be distinguished in wave propagation in 
chiral medium, evident from the field dependence in Eq. (5). As Fig. 6 shows, the 
polarization rotates, and after a certain distance λpol, the field polarization aligns 
with its original direction. This could be termed the “polarization wavelength.” 
According to Eq. (5) this happens when ωκλpol = 2π. 

The other wavelength is the ordinary wavelength λph separating spatial places 
where the phase of the wave has increased by 2π. Equation (5) gives the condition 
for this: ω(µε)1/2 λph = 2π. 

The ratio between these two wavelengths is 

___________ 
9 A comparison of the field rotations of Figs. 6 and 2 needs a word of caution because a 

fixed-in-time image may lead to wrong associations. Here (Fig. 6) the fields shown are linearly 
polarized; hence, in time they always keep the same vector direction shown in the picture but 
oscillate sinusoidally. The situation of the circularly polarized wave of Fig. 2 the situation is 
different: there the picture shows a snapshot (at a certain time instant) of the field vector 
direction simultaneously at different places. With time, the helical spiral representing the field 
moves forward so that at any fixed point in space, the field vector draws a clockwise circle like 
RCP. 
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µε
κ

λ
λ

=
pol

ph  (6) 

which relation reveals an interesting connection to the backward-wave charac-
teristics in chiral media. As shown in Fig. 4, if the chirality parameter κ exceeds 
the value of the square root of the product εµ, one of the eigenwaves is backward. 
According to Eq. (6), this very same limiting condition corresponds to the case of 
the two wavelengths (polarization, λpol, and phase, λph) being equal. 

3.3  Rotation of reflection from Tellegen medium 

The other magnetoelectric effect, the non-reciprocal Tellegen coupling, has a 
complementary effect on wave propagation. Instead of affecting, in a rotatory 
manner, the plane of the transmitted wave, it has an effect on the reflection. As is 
known, reflection coefficient is determined by the wave impedance. A Tellegen 
medium is bi-impedant whereas the chiral medium is bi-refringent. 

reflection coefficients, one for the parallel and one for the perpendicular polariz-
ation. Since a magnetoelectric medium is more complex than an isotropic medium, 
the eigenpolarizations are no longer these simple linear solutions. The reflection 
problem needs to be described by a reflection matrix. 

Let us study the reflection problem from a half space of Tellegen material with 
material parameters ε, µ, and non-reciprocity parameter χ. For simplicity, let the 
incident wave fall from free space (wave impedance η0) with normal incidence on 
the planar boundary, according to Fig. 7. Then [10] the co-polarized and cross-
polarized reflection coefficients can be written as functions of the parameters of 
the Tellegen half space: 

ε
µη

µε
χθ

µε
χθ

θηηηη
θηη

θηηηη
ηη

=−==

++
−

=
++
−

=

,1cos,sin

cos2
sin2

,
cos2

2

0
2
0

2
0

cross
0

2
0

2

2
0

2

co RR
 (7) 

Here the Tellegen character of the medium is measured by a slightly more 
convenient parameter θ which has a straightforward connection with χ. The 
special case of reflection problem from an isotropic, reciprocal half space (for 
which the Tellegen parameter χ vanishes: sinθ = 0, cosθ = 1) is easily seen to 

with

For an ordinary isotropic dielectric–magnetic medium, there are two Fresnel 
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Very interesting in the result (7) is the direction of the cross-polarization. When 
a linearly polarized wave is reflected from Tellegen medium, the reflected field is 
also linearly polarized but it is pointing to a different direction. The rotation angle 
is affected by both the impedance contrast of the medium and vacuum, and 
particularly the Tellegen parameter. For a “high-impedance” surface (η > η0), the 
reflected wave is rotated counterclockwise for positive values of χ, and clockwise 
for negative values.10 Due to the fact that the co-polarized reflection coefficient 
keeps the sign of η − η0, the rotation is inverted for “low-impedance” surfaces  
(η < η0). In that case there is also a 180° phase shift in the co-polarized reflection 
but nevertheless the polarization plane of the reflected field is rotated clockwise 
(for positive χ). 

 

Fig. 7 The rotation of the polarization plane of the reflected field when a linearly polarized wave 
hits a planar boundary between free space and Tellegen medium. The Tellegen parameter χ is 
assumed positive and its impedance η is assumed higher than that of free space. In this case the 
reflection is counterclockwise as shown. Changing either of the conditions causes the rotation be 
clockwise. (In the general case, there also exists a transmitted wave that penetrates the Tellegen 

___________ 
10 From the rotatory power in reflection it can be inferred that Tellegen medium is non-

reciprocal: one cannot change the incident and reflected fields in Fig. 7 because a field 
approaching the surface with the orientation of the reflected field would suffer a further rotation 
into the same direction as the rotation in the figure, and the rotation would not be unwound. 

medium; it is, however, omitted here because the most interesting effect of χ is on reflection). 

follow from Eq. (7): no cross-polarized reflection, and the co-polarized reflection 
coefficient becomes the well known relation (η − η0)/(η + η0). 
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3.4  Generalization to bi-anisotropy 

When the assumption of isotropy (or bi-isotropy) is relaxed, very many more 
dimensions are needed to characterize media. Anisotropy means that the direction 
of the field force of excitation affects the amplitude of the response and such  
a situation may appear when the microstructure of the medium does not possess a 
spherical or cubic symmetry, it is, for instance, composed of oriented needle-like 
elements. For anisotropic media, in the constitutive relations, permittivity and 
permeability have to be described by dyadics or second-rank tensors, instead of 
scalars like in Eq. (2). In three-dimensional space, a dyadic can be expanded as a  
3 × 3 matrix, and hence the most general anisotropic permittivity has 9 degrees of 
freedom, likewise the anisotropic permeability. 

When anisotropy and magnetoelectric coupling are both allowed, all four 
parameters ε, µ, χ, and κ become dyadics (in the following denoted by a bar under 
the symbol), and one can say that to span the full material space requires 36 
dimensions [21], cf. Fig. 8. 

 

 
Fig. 8 Bi-anisotropic media are very general linear media, and the four material dyadics 
comprise together 36 parameters responsible for the magnetoelectric behavior. Anisotropic, bi-
isotropic, and isotropic media can be considered as subclasses of bi-anisotropic materials with 
18, 4, and 2 degrees of freedom, respectively. 

On the level of equations, the constitutive relations can be collected into a six-
vector presentation where electric and magnetic vector quantities (field strengths 
E and H on one hand, and the flux densities D and B on the other) are joined 
together in the following manner: 
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and here the four dyadics are generalizations of the scalar bi-isotropic material 
parameters. The equation also defines the material matrix C. Note the transpose 
operation of the magnetoelectric dyadics in the upper right position of the material 
matrix. It is with this definition that the reciprocal (κ) and non-reciprocal (χ) parts 
of the magnetoelectric effects are kept separate. 

How, then, does the discussion in the previous subsection concerning the back-
ward-wave characteristics of media apply to the bi-anisotropic environment? An 
effective tool for answering this question turns out [22] to be the material matrix C 
in Eq. (4). For lossless media, the matrix C is Hermitian (it is equal to its conjugate 
transpose) [15]. For ordinary double-positive isotropic medium, the eigenvalues of 
the C matrix are all positive, for double-negative media they are all negative. 

C determines the forward–backward character of its eigenwaves. If C is positive 
definite (all of its six eigenvalues are positive; note that the eigenvalues of a 
Hermitian matrix are real), all waves that propagate in it are forward waves. In the 
case of negative definite matrix C, the waves are all backward. However, if the 
matrix is non-definite, there are several possibilities: some of the waves may  
be forward, some backward, or it may even happen that some or all waves are 
evanescent, they do not propagate. 

4  Conclusion 

Within a multidisciplinary research field such as metamaterials, the terminology 
and labeling of phenomena and quantities under discussion need be carefully 
analyzed. Many aspects on parity, symmetry, and handedness were discussed in 
the present article. The division of semantics of handedness – with respect to 

left-handed materials, polarization of circularly/elliptically polarized wave, and 
geometrical parity-breaking structure of matter) helps in understanding and 
categorizing complex effects involving metamaterials. Especially the question of 
treatment between left and right (whether on equal basis or as the left-handed 
phenomenon as anomaly) was shown to be essential. In a general frame of electro-
magnetics of bi-anisotropic media, the three aspects of handedness can be clearly 
seen to occupy distinct places in the characterization of macroscopic effects of 
metamaterials. 

Acknowledgments The Academy of Finland has supported this research. 

electromagnetics – into three categories (negative-index and plasmonic media as 

Indeed, for general bi-anisotropic materials, the character of definiteness of matrix 
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Abstract A dispersion relation for the combined effect of scattering and absorption
of electromagnetic waves is employed. By invoking the optical theorem, the result
states that the extinction cross section integrated over all frequencies is related to
the static polarizability dyadics. In particular, it is established that the integrated ex-
tinction is the same for all materials having identical static properties, irrespectively
whether the permittivity or the permeability have negative real parts at non-zero fre-
quencies or not. The theory is illustrated numerically, and, moreover, it is verified
experimentally on a sample consisting of a single-layer planar array of capacitive
resonators claimed to form a negative permittivity metamaterial. It is concluded that
the theory is in good agreement with measurements in the microwave region.

1 Background

In a series of papers [15–17], the holomorphic properties of the forward scattering
amplitude have been exploited and experimentally verified. As a result, a sum rule
for the extinction cross section is established. This outcome hinges on the physical
principles of causality and energy conservation – both well established and tested
– and relates the (weighted) integrated extinction to the static material properties
of the obstacle. A rather intriguing consequence of this sum rule is that the static
properties – quantified by the polarizability dyadics – measure the broadband scat-
tering and absorption strengths of the obstacle. Fortunately, a large literature exists
on how to compute the polarizability dyadics, and for several canonical geometries
analytic expressions exist, see e.g., [3, 18, 19]. The sum rule has also been exploited
in antenna applications to give new bounds on the product of gain and bandwidth of
antennas of arbitrary shape [2, 14].
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The direct measurement of the forward radar cross section (RCS) in free space
is experimentally difficult since the largest part of the detected field at the receiving
antenna consists of a direct illumination by the transmitting antenna. The direct il-
lumination contributes with a dominating background that has to be removed from
the detected field, either using coherent background subtraction or other signal pro-
cessing methods. Monostatic RCS measurements are therefore to be preferred, com-
pared to forward RCS measurements, if they can be used for the purpose at hand.
This paper describes a method to determine the extinction cross section for a thin
and non-magnetic planar object over a large bandwidth in the microwave region.
The method is based on a conventional measurement of the monostatic RCS and
the fact that the RCS amplitude in the forward and backward directions are equal if
the illuminated object is planar and non-magnetic [12, 17]. The monostatic method
is compared to and validated with a more general measurement technique based on
the RCS in the forward direction.

2 A Sum Rule for the Extinction Cross Section

This section sets the notation of the problem and states the main theoretical results
used in this paper, but no proofs are given. For proofs we refer to the pertinent
published papers [15, 16].

Consider the scattering problem of a plane electromagnetic wave Eexp{ikk̂ · x}
(time dependence exp{−iωt}) impinging in the k̂-direction on a target embedded in
free space. The wave number in free space is denoted by k = ω/c0. The target can
be a single scatterer or it may consist of several non-connected parts. The material
of the scatterer is modeled by a set of linear and passive constitutive relations which
are assumed to be invariant under time translations (i.e., stationary constitutive rela-
tions). The scattering dyadic S is independent of E, and it is defined in terms of the
scattered electric field Es as [1, 7]

S(k; k̂ � x̂) ·E = lim
x→∞

xe−ikxEs(k;x)

where x = |x| denotes the magnitude of the position vector, and x̂ = x/x. A target’s
overall scattering properties are commonly quantified by the scattering cross section
σs, defined as the total power scattered in all directions divided by the incident
power flux. The extinction cross section σext = σs + σa is defined as the sum of
the scattering and absorption cross sections, where the latter is a measure of the
absorbed power in the target [1]. The extinction cross section is also determined
from the knowledge of the scattering dyadic in the forward direction, x̂ = k̂, viz.,

σext(k; k̂, ê) =
4π
k

Im
{

ê∗ ·S(k; k̂ � k̂) · ê
}

(1)
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An asterisk denotes the complex conjugate, and the electric polarization ê = E/|E|.
Relation (1) is known as the optical theorem or forward scattering theorem [1, 7].

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is derived in [15] from the holomorphic properties of the
forward scattering dyadic. One of the underlying assumptions of the result is that
the forward scattering is causal, i.e., the scattered field must not precede the incident
field in the forward direction. The result is a sum rule for the extinction cross section
valid for a large class of linear and passive targets:1

∫ ∞

0

σext(k; k̂, ê)
k2 dk =

π
2

(
ê∗ · γe · ê+(k̂× ê∗) · γm · (k̂× ê)

)
(2)

where γe and γm denote the electric and magnetic polarizability dyadics, respec-
tively [3, 18]. This identity holds for all scatterers satisfying the assumption above,
and it constitutes the main theoretical result used in this paper. This rather intriguing
result has far-reaching consequences on how much an obstacle scatters and absorbs,
and it also quantifies the interaction between parts with different materials.

The electric (or magnetic) polarizability dyadic is accessible as an analytic ex-
pression for a limited set of canonical bodies, e.g., a homogenous, isotropic dielec-
tric sphere of radius a with static permittivity ε(0) has the polarizability dyadic
γe [3, 18]

γe = 3
ε(0)−1
ε(0)+2

4πa3

3
I

where I denotes the unit dyadic. Fortunately, for other more complex geometries, the
polarizability dyadic is easy to compute using e.g., a finite element (FEM) solver.

The integrand on the left-hand side of (2) is non-negative. Therefore, for any
finite frequency interval K = k0[1−B/2,1+B/2] with center frequency k0 and rel-
ative bandwidth B, the identity implies for some κ ∈ K

Bσ(κ)
k0(1−B2/4)

=
∫

K

σ(k)
k2 dk ≤ π

2
(
ê∗ · γe · ê+(k̂× ê∗) · γm · (k̂× ê)

)
(3)

where σ denotes any of the cross sections σext,σs, and σa. For all scatterers with
the same static polarizability dyadics, this inequality shows that large scattering in
a frequency interval is traded for smaller bandwidth, since the left-hand side of the
inequality is bounded from above by the right-hand side.

The extinction cross section σext measures the total interaction of the incident
plane wave with the obstacle, and the integral on the left-hand side of (2) provides
a measure of the overall scattering and the absorption properties of the obstacle.
As a consequence of (2), large scattering or absorption effects, i.e., a large left-
hand side of (2), call for large electric and/or magnetic polarizability dyadics. In

1 A similar, but less developed, sum rule has been reported in the literature, see e.g., [9, p. 423]. The
first employment of the sum rule in electromagnetics seems to go back to Purcell, who presented
the sum rule for dielectric spheroidal scatterers [11].
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other applications, like cloaking, the extinction effects must be small (at least in a
finite frequency interval) and the electric and magnetic polarizability dyadics have
to be as small as possible for a given volume. In both cases, the static properties
act as a measure of the dynamic effects. We also immediately conclude that all
scatterers having the same right-hand side, i.e., polarizability properties, have the
same integrated extinction.

The effects of (2) are exploited in this paper, and in a few numerical examples,
see Section 4, we illustrate that two materials with the same static properties have
identical integrated extinctions. Several of these examples show metamaterial char-
acteristics, i.e., the material has temporally dispersive material parameters where
both the real parts of the permittivity and the permeability are negative in the same
frequency interval. In all cases it is the static properties of the obstacle that deter-
mine the integrated scattering properties. The experimental verification of the sum
rule is presented in Section 5.

3 Material Modeling

At a single frequency, when causality has no meaning, the material modeling of the
scatterer is less critical. However, dealing with the broadband properties of a scat-
terer, it becomes important to use physically suitable dispersion models. In partic-
ular, the models have to be consistent with the passivity and causality assumptions
made above. As a consequence, the material models have to satisfy the Kramers-
Kronig relations [1, 5]. This is a consequence of the fact that f (ω) = ωε(ω) is a
Herglotz function [8] in the variable ω . Basically, a Herglotz function is analytic in
the upper half complex plane, and it maps the upper complex plane into itself.

In this paper we use the Lorentz model, which models the resonance behavior of
many solid materials. The relative permittivity of the Lorentz model is:

ε(ω) = ε∞ −
ω2

p

ω2 −ω2
0 + iων

= ε∞ − (ωpa/c0)2

(ka)2 − (ω0a/c0)2 + ika(νa/c0)
(4)

The positive constant ε∞ is the optical response of the permittivity, and the constant
ωp is the plasma frequency that models the strength of the dispersion. The resonance
frequency of the model is determined by the angular frequency, ω0, and the collision
frequency ν > 0. With appropriate choice of the material parameters, the real part
of the permittivity becomes negative. The explicit value of the permittivity in the
static limit (ω = 0) is ε(0) = ε∞ +ω2

p /ω2
0 . A similar model is also used for the rel-

ative permeability μ . The Lorentz model employed in this paper has the parameters
ε∞ = 1, ωpa/c0 = 3, ω0a/c0 = 2, and νa/c0 = 0.6.

The Drude model is a special case of the Lorentz model for which ω0 = 0, i.e.,

ε(ω) =
((ka)2 +(νa/c0)2)ε∞ − (ωpa/c0)2

(ka)2 +(νa/c0)2 + i
(ωpa/c0)2(νa/c0)

ka((ka)2 +(νa/c0)2)
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This choice implies that the real part of the permittivity is negative over a large fre-
quency interval, i.e., ω2 ≤ω2

p /ε∞−ν2. This model is used to describe the dispersive
behavior of metamaterials, and at low frequencies it shows strong affinity with the
conductivity model ε(ω) = ε∞ + iς/(ε0ω). In fact, the conductivity ς = ε0ω2

p /ν
can be identified from Drude’s model.

4 Numerical Illustrations – Spheres-Doublets

In this section, we illustrate the theoretical results presented in Section 2 in two
numerical examples using the material models described in Section 3. The scatter-
ing geometry consists of two spheres, radii a and b, respectively, as illustrated in
Fig. 1. In all examples, the plane wave impinges along the symmetry axis of the
scatterer with an electric polarization ê in the xy-plane, which can be either a real-
or a complex-valued unit vector. All frequencies are measured in the dimensionless
parameter κ = ka, and all cross sections are scaled with 2πa2. The identity in (2),
then reads

∫ ∞

0

σext(κ; k̂, ê)
κ2 dκ =

π
3

1
4πa3/3

(
ê∗ · γe · ê+(k̂× ê∗) · γm · (k̂× ê)

)
(5)

The numerical computations in this paper utilize the null-field approach, which is
an efficient method to evaluate scattering by non-connected objects [10].

In the first example the extinction cross section of two identical touching Drude
spheres (radii a = b and d = 2a) is computed for two material settings. In the first
setting ε = μ at all frequencies, i.e., a material that shows metamaterial character-
istics at low frequencies, and in the second setting both spheres are non-magnetic,
μ = 1. The result is shown to the left in Fig. 2. Explicit values of the permittivities
are given in Section 3.

The contribution to both the electric and the magnetic polarizability dyadics in
the case ε = μ is [19]

Incident plane wave

k̂

d

z

b
a

Fig. 1 The geometry of the two spheres. The sphere with radius a is located at dẑ/2 and the sphere
with radius b is located at −dẑ/2. The direction of the incident wave in all examples is k̂ = ẑ.
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Fig. 2 (Left figure) The extinction cross section of two equal, touching (d = 2a) Drude spheres
(radii a = b) as a function of ka. The solid curve shows the extinction cross section for ε = μ , and
the broken curve when both spheres are non-magnetic, μ = 1. All cross sections are normalized
with 2πa2. (Right figure) The electric (or magnetic) polarizability, normalized with 4πa3/3, for
the same geometry as a function of the separation distance d. The circles illustrate the numerical
values.

ê∗ · γe · ê = (k̂× ê∗) · γm · (k̂× ê) =
9
2

ζ (3)
4πa3

3

where ζ (z) is the Riemann zeta-function. The non-magnetic spheres have no mag-
netic contribution, but only an electric contribution. The right-hand side of (5)
for the two curves in Fig. 2 therefore assumes the values 3πζ (3) = 11.33 and
3πζ (3)/2 = 5.66, respectively. These figures are retrieved using numerical in-
tegration over the frequency interval in Fig. 2 with three digits (11.3 and 5.66,
respectively). It is intriguing to conclude that these numbers are independent of all
the material parameters of the Drude spheres, i.e., independent of ε∞, ωp, and ν .

A further verification of the integrated extinction in (5) is presented to the right in
Fig. 2. This figure shows the analytically computed polarizability, γ , of two identical
Drude spheres [19] as a function of the separating distance d. The values obtained
by numerical integration according to (5) are shown with circles.

The second example illustrates the computation of the extinction cross sections
for two different sets of material parameters with identical static values. Two touch-
ing, d = 3a, non-magnetic Lorentz spheres, radii a and b = 2a, respectively, are
used. The result is displayed in Fig. 3. The solid curve shows the extinction cross
section when the two spheres have materials as given in Section 3. The broken curve
shows the extinction cross section for two Lorentz spheres both having parameters
ε∞ = 1, ωpa/c0 = 4.5, ω0a/c0 = 3, and νa/c0 = 0.6. These two sets of materi-
als have a static permittivity ε(0) = 13/4, and therefore the same right-hand side
of (5). The boxes shown in Fig. 3 also have the same integrated extinction, and they
indicate the bandwidth of the scattering at the first resonance frequency.
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σext

Fig. 3 The extinction cross section of two touching Lorentz spheres as a function of ka. Both
spheres have identical material parameters and they are non-magnetic, μ = 1, with radii a and b =
2a. The data of the scatterers are given in the text. The boxes have the same integrated extinction
as both curves. All cross sections are normalized with 2πa2.

The polarizability dyadic contributions from the two Lorentz spheres are the
same, i.e.,

ê∗ · γe · ê = 11.29
4πa3

3
The right-hand side of (5) then becomes 11.82 in both cases. The integrated extinc-
tion is computed using numerical integration over the frequency interval in Fig. 3.
The results are 11.8 and 11.7, respectively, for the two curves.

5 Experimental Verification

The bistatic RCS, σRCS, is defined as

σRCS(k; x̂, ês) = |A(k; x̂, ês)|2 (6)

where A(k; x̂, ês) = 2
√

π ê∗s ·S(k; k̂ � x̂) · ê, and where ês denotes the polarization of
the scattered field in the x̂ direction. Evaluated in the backward direction, x̂ = −k̂,
produces the familiar expression for the monostatic RCS [4, 12]. Using this notation,
the sum rule for the extinction cross section in (2) then reads

1
π3/2

∫ ∞

0

σext(k; k̂, ê)
k2 dk = lim

k→0

A(k; k̂, ê)
k2 (7)

From the integral representations of the scattered field or the discussion in [12],
it follows that for a planar and infinitely thin scatterer subject to a wave impinging
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4.1 mm

1.8 mm

0.1 mm

4.8 mm

1.5 mm

Fig. 4 A section of the array of capacitive resonators (left figure) and one unit cell of the array
(right figure).

at normal incidence, the RCS amplitudes in the forward and backward directions,
x̂ = k̂ and x̂ = −k̂, respectively, are identical, i.e.,

A(k; k̂, ê) = A(k;−k̂, ê)

Combining this relation with the optical theorem makes it possible to determine σext
and verify (7) from a conventional measurement of the monostatic RCS amplitude.

The sample design shown in Fig. 4 was used for the experiments. The fabricated
single-layer planar array of capacitive resonators is referred to in the literature as
a negative permittivity metamaterial [13]. The sample was tuned to be resonant at
8.5GHz. It consists of 29×29 unit cells supported by a 0.3mm thick 140×140mm2

FR4 substrate, see Fig. 4. The relative dielectric constant of the substrate varies be-
tween 4.4 and 4.2 in the frequency range [2,20]GHz with an overall loss tangent
less than 5 ·10−3.

5.1 Quasi-monostatic and forward RCS measurements

Monostatic RCS measurements were performed in an anechoic chamber with two
dual-polarized ridged circular waveguide horns positioned at a distance of 3.5m
from the sample, see the left hand side of Fig. 5. The polarizations of the transmit-
ted and received waves were vertical with respect to the pattern in Fig. 4 – only
the co-polarized contribution enters in the optical theorem. The frequency interval
[3.2,19.5]GHz was sampled with 7,246 equidistant points corresponding to an un-
ambiguous range of 66.7m (445ns). This was sufficient to avoid influence of room
reverberations.

Calibration including both amplitude and phase was performed using a metal
plate with the same outer dimensions as the sample. The measured data were
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Fig. 5 The experimental setups for quasi monostatic (left figure) and forward RCS (right figure)
measurements.

processed by a coherent subtraction of the background. The frequency domain data
were then transformed to the range domain, where the response from the sample
was selected from the range profile using a 1.1m spatial gate. Finally, the selected
data were transformed back to the frequency domain.

The background subtraction combined with the time gating gave a background
level of better than −50dBsm (decibel square meters) for the frequency range above
5GHz and −40 to −30dBsm for the lowest part of the frequency range. The high
background level at the lower frequencies is a consequence of the wideband horn
illumination of the walls at these frequencies. This background level can be main-
tained for hours by using a single background measurement.

Forward RCS measurements were performed using a different setup with ridged
waveguide horns in an ordinary laboratory area. The antennas were positioned fac-
ing each other at a distance of 6.0m with the sample at the midpoint between the
antennas, see the right-hand side of Fig. 5. The frequency interval [2.5,16]GHz was
sampled with 5,086 equidistant points corresponding to an unambiguous time range
of 378ns. The unambiguous time range was sufficient to avoid influence of room re-
verberations such as delayed scattering from the floor and the walls in the laboratory
area.

Calibration including both amplitude and phase was performed using a high pre-
cision sphere with radius 6.00cm. The raw data from the calibration were then pro-
cessed by a coherent subtraction of the background. The fabricated sample was then
measured. A new measurement of the background was coherently subtracted from
the sample measurement. The repeated background measurements were important
in order to increase the efficiency of the background subtraction and to obtain the
background levels. We performed the background measurements within less than 2
min after each sample (calibration) measurement.

The calibrated frequency domain data were transformed to the time domain,
where the response from the sample was selected from the time profile using a 1.7ns
time gate. The size of the gate was chosen to minimize the influence from the back-
ground. Finally, the selected data were transformed back to the frequency domain.
The background subtraction combined with the time gating gave a background level
of less than −40dBsm.
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5.2 Validation of the monostatic method and experimental
verification of the sum rule

The left graph in Fig. 6 shows a comparison between measurements of the mono-
static RCS and the forward RCS. The agreement is better than 0.5dB except for the
minimum at 10.7GHz where the discrepancy is 2.5dB. The measured differences
are well within experimental error limits. It is therefore validated that the monostatic
RCS and the forward RCS are equal within good accuracy for this thin and non-
magnetic sample.

However, the phase of the RCS amplitude is also important since the extinc-
tion cross section is determined from the imaginary part of the RCS amplitude, cf.,
the optical theorem (1). The right part2 of Fig. 6 shows the extinction cross section
determined from the optical theorem using both the monostatic and forward RCS
amplitudes. The phase of the forward RCS amplitude is shifted according to the
procedure described below in order to compare the two curves. The maximum dis-
crepancy between the curves is 35cm2 at 15GHz after an adjustment of the phase.

The real and imaginary parts of A( f ; k̂, ê)/ f 2 are shown in Fig. 7. The phase of
A( f ; k̂, ê)/ f 2 obtained from the forward scattering experiment is adjusted using a
time delay of 3.1ps. We believe that the largest contribution to this phase shift is
the time delay of the wave as it passes the 0.3mm FR4 substrate and the 48mm
expanded polystyrene (EPS) sample support. Small alignment differences between
the calibration plate and the sample in the monostatic case can also account for the
observed phase difference. The difference between the two measurement methods is
small which means that it is validated that conventional monostatic RCS measure-
ments can be used to determine the extinction cross section for this class of thin and
non-magnetic samples.

Different methods are used to experimentally verify (7). First the extinction cross
section is integrated to obtain a lower bound of lim f→0 A( f ; k̂, ê)/ f 2. By integrating

σext/cm2

f/GHz
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400
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Fig. 6 The forward and monostatic RCS (left figure) and the extinction cross section (right figure)
determined from the RCS amplitude in the forward and backward directions.

2 For convenience, we use the frequency f instead of the wavenumber k = 2π f /c0 in the discussion
of the experimental verification.
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Fig. 7 The imaginary part (left figure) and the real part (right figure) of A/ f 2 determined from
the RCS amplitude in the forward and backward directions. The dot for zero frequency indicates
a lower bound of lim f→0 A( f ; k̂, ê)/ f 2 obtained by integrating the extinction cross section. The
dotted lines are given by the approximation (8).

the measured data in the graph on the right-hand side of Fig. 6a lower bound of
1.1cm/GHz2 is obtained using either the forward or the monostatic data.

A method to approximate A(k; k̂, ê)/k2 is to use a meromorphic function with
roots and zeros in the lower half of the complex k-plane. Numerical tests using
the algorithm in [6] indicate that it is sufficient to consider a rational function with a
numerator and a denominator of second and fourth degree polynomials, respectively.
This function can be represented by a sum of two Lorentz resonance models, viz.,

A(appr)(k, k̂, ê)
k2 =

2

∑
n=1

an
k2

n − ikνn

k2
n −2ikkn/Qn − k2 (8)

The optical theorem, (1), can be used to determine an approximation to the extinc-
tion cross section, σ (appr)

ext (k), from A(appr)(k, k̂, ê),

σ (appr)
ext (k) =

2
√

π
k

Im A(appr)(k, k̂, ê) (9)

The approximations (8) and (9) are depicted by the dotted lines in Fig. 7. It is con-
cluded that the approximations are in good agreement with the experimental results.

A more accurate value for the quantity limk→0 A(k; k̂, ê)/k2 on the right-hand
side of (7) is determined from (8). In fact, the lower bound 1.1cm/GHz2 should
be compared with the corresponding value 1.5cm/GHz2 obtained by integrating
σ (appr)

ext (k) over the range [0,22]GHz. The lower bound 1.5cm/GHz2 is quite close
to the static limit 1.8cm/GHz2, which is predicted by the parameters in the Lorentz
resonance model (8).

6 Conclusions

This paper exploits a sum rule for the extinction cross section to find bounds on scat-
tering of electromagnetic waves by an object. The theory is both numerically and
experimentally verified. The integrated extinction, which exclusively is determined
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by the static properties of the object, limits the total scattering properties of the
object. Specifically, it is found that large scattering effects always have to be com-
pensated by a loss of bandwidth. This loss of bandwidth can be quantified.

Moreover, we show that monostatic RCS amplitude measurements can be used to
determine the extinction cross section for thin and non-magnetic samples by validat-
ing the experimental method with a forward RCS measurement. The experimental
results show that the sum rule (7) is in good agreement with the measurements.
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Abstract The use of metamaterials and artificial media for cloaking applications 
has been shown to potentially lead to exciting developments in the fields of 
electromagnetics, microwaves, and optics. Plasmonic covers, in particular, have 
been shown to provide a local negative polarizability capable of canceling or 
reducing the dominant scattering from an isolated object and/or a cluster of objects. 
Here we provide an overview of the recent theoretical and numerical results 
related to our plasmonic cloaking technique, based on scattering cancellation, that 
may provide an overall invisibility effect by using plasmonic metamaterial covers. 

1  Introduction 

In recent years, the interest in applications of special materials has steadily increased 
worldwide. One such application deals with the possible use of metamaterials and 
plasmonic media for cloaking and “invisibility”. In particular, since our proposal 
for employing such materials to significantly reduce the total scattering from a 
given object [1], other different techniques [2–19] have shown, theoretically and 

novel cloaks. Here we review our recent findings in this plasmonic cloaking, 
discussing and highlighting the total scattering reduction provided by a suitably 
designed plasmonic material or metamaterial that constitutes a “plasmonic cloak” 
surrounding a given object. 

Our studies have revealed that the dominant multipolar contribution to the 
scattering from a given object of moderate size may be potentially suppressed by a 
suitably designed plasmonic metamaterial with low or negative permittivity. We 
have also underlined the intrinsic robustness of this phenomenon, which is 
inherently non-resonant, and therefore robust to variations in shape, design para-
meters, losses, wave polarization and source and observer position [20–21]. In 
[22], we have observed how this cloaking effect may not be limited to an isolated 

for some even experimentally, how metamaterials may be designed to operate as 
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particle of moderate size, but it may be applied to combination and clusters of 
dielectric or conducting objects on a larger scale. In [23], moreover, we have 
proposed a realistic metamaterial design for the plasmonic cloak at microwave 
frequencies, applied to a cylindrical geometry. We have extended these concepts 
in [24–25] to optical frequencies and multi-frequency operation. The interested 
reader may find reviews of our recent findings in [26–28], where we have 
compared this cloaking technique to several other techniques that are currently 
available. In particular, in [26] we have reported an updated list of references on 
metamaterial cloaking. In the following, we will briefly highlight the main 
concepts related to this plasmonic cloaking technique, underlining the physical 
insights, benefits and possible limitations. 

2  Isolated Objects 

As we have shown in [1], the use of a plasmonic material surrounding a dielectric 
or conducting particle may dramatically suppress the total scattering from the 
object, by cancelling the dominant scattering contribution due to the local negative 
polarizability of plasmonic materials with low permittivity.  

Figure 1, as a first numerical example compares the near-field distribution on the 
two planes for the conducting object, whose geometry has been first considered in 
[20], with radius 0 / 5a λ= , with 0λ  being the free-space wavelength. The figure 
compares the cases of presence and absence of a suitably designed plasmonic 
cloak, having permittivity 00.1ε ε= , permeability 05.1µ µ=  and outer radius 

1.09ca a= . The spheres are excited by a plane wave impinging from the left on the 
sphere. It is evident how the presence of the cloak may significantly reduce the 
unwanted scattering from the sphere, despite its total size may support resonant 
scattering. The cloaking effect, which is even more striking in the Poynting vector 
plots of Fig. 1, works on both planes of polarization, independent on the 
polarization of the impinging plane wave or the position of the source and of the 
observer. These results are consistent with our findings in [1, 20]. It should  
be underlined that the sketches of Fig. 1 and following figures related to the 
uncloaked cases present a mathematical line representing the outer boundary of 
the cloak. This mathematical line has been added for consistency in the numerical 
simulations of the uncloaked cases, but it is understood that it represents just a 
mathematical line (or a cover made of the same material as the background region 
in these uncloaked cases). 

Figure 2 reports the far-field scattering patterns for the two geometries, 
highlighting the drastic scattering reduction over all the visible angles at the 
design frequency 0f . The drastic scale difference between the two plots should be 
noted, which results in a tiny shadow on the back of the cloaked object. The total 
scattering reduction is over 99% for this geometry, as noticed in [20]. 



Plasmonic Cloaks  39 

 
Fig. 1 Comparison between the near-field electric field distribution in the H-plane (left column), 
magnetic field in the E-plane (central column) and the real part of the Poynting vector (i.e., the 
time-averaged energy flow) in the H-plane (right column) of a bare conducting sphere (top row) 
and of a cloaked conducting sphere of the same size (bottom row). The field distributions are 

 
Fig. 2 Comparison between the far-field scattering pattern between the bare conducting sphere 
(left) and the cloaked conducting sphere (right) of Fig. 1. Notice the different scale in the two 

Figure 3 shows the response of the two spheres of Figs. 1–2 for a different 
excitation, in the form of a short electric dipole antenna placed very close to the 
surface of the object, consistent with [20]. It is evident how, despite the drastic 
change in the excitation and position of the source, and despite the possible near-
field coupling, the performance of the cloak in terms of total scattering reduction 
is effectively unchanged. This is particularly relevant due to the fact that the cloak 
does not require to be optimized or modified for the presence of nearby active 
source or drastic change in the position or form of the illumination. 

 

plots. (Adapted from [20], Copyright (2007) by the Optical Society of America.) 

snapshots in time. (Adapted from [20], Copyright (2007) by the Optical Society of America.) 
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Fig. 3 Comparison between the total near-field in the two planes of polarization between the bare 
conducting sphere (top) and the cloaked conducting sphere (bottom) of Figs. 1–2. The excitation 
now is given by a closely spaced short electric dipole. (Adapted from [20], Copyright (2007) by 

3  Multilayered Cloak 

As we have widely discussed in [1, 20], this plasmonic cloaking technique 
operates over a relatively less narrow range of frequencies, due to its inherent non-
resonant features. Being an integrative effect, its dispersion is mainly associated 
with the material dispersion of the cloak, required of being plasmonic, and not as 
much with the dispersion of the geometry and the phenomenon, particularly for 
objects that are comparable in size with a fraction of the operating wavelength. It 
is interesting to verify that this inherent material dispersion, required by causality, 
may be used to our advantage to realize multi-frequency cloaks [24]. 

with a two-layered plasmonic cover that may operate as a cloak at two distinct 
0 and radius 100a n= ,

 whereas the two-layered cloak has radii 1 107.5a nm=  and 2 131.5a n=
 Figures 4 and 5 show the electric near-field distributions on the H-
 sphere,

0 625nmλ =  and 0λ

wavelengths. In this case, the dielectric particle has ε = 3ε
m.

As with the geometry we analyzed in [24], for instance, a dielectric 

distinct design fre-
quencies of 

 

 comparing the cases with and without cloak at the two 
= 500 nm . Each one of the two layers of the cloak

[ ] 0Re cε ε= / 5 at one

plane for such a

 is supposed to have a permittivity dispersion that ensures

nanoparticle may be cloaked at two distinct optical frequencies by surrounding it 

the Optical Society of America.) 

=
m
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Fig. 4 Comparison among the electric near-field distributions in the H-plane in the case of a 
cloaked dielectric sphere (left) the same bare sphere (center) and the same sphere covered by a 
dielectric cover with the same thickness as the cloak. The excitation now is given by a plane 

0 625nm=

 
Fig. 5 Similar to Fig. 4, but for the free-space wavelength 0 500nmλ = .  (Adapted from [24], 

It can be seen that the cloak is capable of suppressing the scattering from the 
particle simultaneously at the two design frequencies, restoring the impinging 
planar phase fronts right outside the cloak surface. In this example, the field 
distributions are snapshots in time. 

4  Cloaking Near an Obstacle 

We have discussed in the previous sections how the plasmonic cloaking technique 
is robust to variations of the excitation and frequency variations near the design 
frequency. Here we report our numerical results on the case in which the 

 at one of the two distinct frequencies of operation, both following a classic Drude 
dispersion model. 

.  wave impinging from the bottom. These plots refer to the free-space wavelength λ
(Adapted from [24], Copyright (2008) by the American Physical Society.) 

Copyright (2008) by the American Physical Society.) 
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impenetrable sphere considered in the previous section is tightly coupled with an 
impenetrable small cube with side 02 / 3 2 /15l a λ= = . We have considered this 
geometry in [21]. Consider, for instance, Fig. 6, i.e., an impenetrable sphere with 
the same geometry as the one of Fig. 1 placed in close proximity to a conducting 
small cube. The system is illuminated from the left with a plane wave.  
 

 
Fig. 6 Near-zone magnetic field distribution (snapshot in time) for a system composed of the 
impenetrable sphere of Fig. 1 and a small closely spaced cube. Comparison between the cases of 
no cloak, absence of the sphere and cloaked sphere. (Adapted from [21], Copyright (2008) by the 

Figure 6 reports the near-zone magnetic field distribution on the E-plane for 
three cases: (left) when the sphere is bare, showing strong coupling in the 
scattered fields from the two objects; (top right) absence of the sphere; (bottom 
right) the sphere is cloaked. It is evident how in the last two scenarios the scattered 
field is very similar to each other, i.e., not only does the cloak effectively cancel 
the scattering from the sphere, but it also reduces significantly the coupling 
between the two elements. For an observer placed anywhere in the near-field of 
the system, the presence of the sphere is undetectable when cloaked. In other 
words, an observer placed behind the sphere may be able to perceive the presence 
of the small cube placed in the sphere’s shadow as if the sphere were not present. 

American Geophysical Union.) 

Figure 7 reports similar results for an excitation with orthogonal polarization. It 
can be clearly seen how the cloak performs very well on both planes of 
polarization. It should be underlined that the case of a conducting or impenetrable 



Plasmonic Cloaks  43 

considered in the previous section, may perform even better than this scenario, in 
terms of reduced scattering and wider bandwidth of operation.  

 

 
Fig. 7 Similar to Fig. 6, but for excitation on the orthogonal plane of polarization. (Adapted from 

Figure 8 considers the case of a different type of excitation. In this case, we 
have simulated the case of a short electric dipole placed behind the conducting 
sphere. It is evident that this is an even more extreme case, due to the mutual 
coupling among the sphere, the cube and the nearby source. Still, the cloak 
performs very well in drastically reducing the unwanted scattering and coupling 
from the sphere. 

sphere is the most challenging in terms of plasmonic cloaking, since it does not 
allow the wave to penetrate through the object. Dielectric particles, as those 

[21], Copyright (2008) by the American Geophysical Union.) 

5  Cloaking Clusters of Objects 

As we have extensively studied in [22], and consistent with the findings in the 
previous section, collections and clusters of particles may be cloaked following 
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Fig. 8 Similar to Figs. 6–7, but for a different type of excitation, consisting of a nearby short 

the same guidelines and design adopted for a single isolated object, due to absence 
(or significant reduction) of coupling among the cloaked elements. 

Consider, for instance, the geometry of Figs. 9–11, i.e., an array of closely spaced 
impenetrable spheres, each of which with the same geometry and parameters of 
the sphere of Fig. 1. The figures compare the near-field magnetic distribution on the 
E-plane (which is the plane more challenging for cloaking, due to the orientation 
of the electric field parallel to the array axis) for three different orientation of the 
impinging plane wave. It is evident that, despite the complexity of the problem 
and the large electrical size of the overall cluster (over two wavelengths), the cloaks 
drastically suppress the unwanted scattering and coupling among the spheres, 
restoring the impinging planar wave fronts almost independent from the orientation 
of the impinging plane wave. 

 

electric dipole. (Adapted from [21], Copyright (2008) by the American Geophysical Union.) 

The results are consistent, and complement, those reported in [22], where it was 
also shown how the same cloaking design may be adopted for touching objects, or 
to some degree even to elements that merge together into a single larger obstacle. 
This is associated with the inherent non-resonant features and robustness of this 
cloaking mechanism. 
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Fig. 9 Cloaking an array of four closely spaced impenetrable spheres. Near-field magnetic field 
distribution on the E-plane for the cases of cloaked (left) and uncloaked (right) spheres for plane 
wave incidence impinging from the top of the figure. (Adapted from [22], Copyright (2007) by 

 
Fig. 10 Similar to Fig. 9, but for 45° plane wave incidence. (Adapted from [22], Copyright 

the Optical Society of America.) 

(2007) by the Optical Society of America.) 
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Fig. 11 Similar to Figs. 9–10, but for 90° plane wave incidence. (Adapted from [22], Copyright 

6  Conclusions 

To conclude, we have reported here an overview of our recent theoretical and 
numerical results for plasmonic cloaking, reporting our recent findings and numerical 

refer to the list of references for additional information and insights. 
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Abstract This paper is a review of various techniques used in computational elec-
tromagnetism such as the treatment of leaky modes in waveguides, helicoidal
geometries for microstructured optical fibres and the design of arbitrarily shaped
invisibility cloaks. This seemingly heterogeneous list is unified by the concept of
geometrical transformation that leads to equivalent materials, i.e., the change of co-
ordinates is completely encapsulated in the material properties. The practical set up
is conveniently made via the finite element method (FEM).

1 Geometrical Transformations and Equivalent Materials

Beside Cartesian coordinates, cylindrical and spherical coordinates, and even the
other orthogonal systems [1], have been commonly used to set up electromagnetic
problems. In this paper, much more general coordinate systems are discussed since
they do not need to be orthogonal (and not even real valued). A modern approach
is to write the equations of electromagnetism in the language of exterior calculus
that is covariant, i.e. independent of the choice of the coordinate system (see e.g.
[2]). In this way, the Maxwell equations involve only the exterior derivative and are
purely topological and differential while all the metric information is contained in
the material properties via a Hodge star operator. This looks rather abstract but can
nevertheless be encapsulated in a very simple and practical equivalence rule [3–5]:

When you change your coordinate system, all you have to do is to replace your
initial material (electric permittivity tensor ε and magnetic permeability tensor μ)
properties by equivalent material properties given by the following rule:

ε ′ = J−1εJ−T det(J) and μ ′ = J−1μJ−T det(J), (1)

S. Zouhdi et al. (eds.), Metamaterials and Plasmonics: Fundamentals, 49
Modelling, Applications,
c© Springer Science + Business Media B.V. 2009
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where J is the Jacobian matrix of the coordinate transformation consisting of the
partial derivatives of the new coordinates with respect to the original ones (J−T is
the transposed of its inverse).

In Eq. (1), the right hand sides involve matrix products where the matrix associ-
ated with a second rank tensor involves the coefficients of its representation in the
initial Cartesian coordinate system. The obtained matrix provides the new coeffi-
cients of the tensor corresponding to the equivalent material.

Explicitly, a map from a coordinate system {u,v,w} to the coordinate system
{x,y,z} is given by the transformation characterized by x(u,v,w), y(u,v,w) and
z(u,v,w). As we start with a given set of equations in a given coordinate system,
it seems at first sight that we have to map these coordinates on the new ones. Never-
theless it is the opposite that has to be done: the new coordinate system is mapped
on the initial one (i.e. the new coordinates are defined as explicit functions of the
initial coordinates) and the equations are then pulled back, according to differential
geometry [2], on the new coordinates. This provides directly the functions whose
derivatives are involved in the computation of the Jacobian matrix. The Jacobian is
directly given by:

Jxu ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂ z
∂u

∂ z
∂v

∂ z
∂w

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

The equivalence rule (1) can be extended to more general material properties
such as local Ohm’s law and bianisotropic materials [3]. Moreover, the rule given
by Eq. (1) may be easily applied to a composition of transformations. Let us con-
sider three coordinate systems {u,v,w}, {X ,Y,Z}, and {x,y,z}. The two succes-
sive changes of coordinates are given by the sets of functions {X(u,v,w),Y (u,v,w),
Z(u,v,w)} and {x(X ,Y,Z),y(X ,Y,Z),z(X ,Y,Z)}. They lead to the Jacobians JXu
and JxX so that the global Jacobian Jxu = JxX JXu. The compound transformation
can therefore be considered either as involving this global Jacobian or as successive
applications of Eq. (1). This rule naturally applies for an arbitrary number of coor-
dinate systems. Note that the maps are defined from the final u,v,w to the original
x,y,z coordinate system and that the product of the Jacobians, corresponding to the
composition of the pull back maps, is in the opposite order.

When the initial material properties ε and μ are isotropic and described by a
scalar, they generally lead to anisotropic properties and are given via a transforma-
tion matrix T=JT J/det(J) related to the metric expressed in the new coordinates
so that the equivalence rule (1) becomes

ε ′ = εT−1 , and μ ′ = μT−1 . (3)
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We note that there is no change in the impedance of the media since the permit-
tivity and permeability suffer the same transformation.

As for the vector analysis operators and products, everything works as if we were
in Cartesian coordinates. It means that once the material properties have been set to
their equivalent values, all the computations are performed as if the coordinates were
Cartesian. Once the solution has been obtained in the new coordinate system, e.g.
the electric field E′, its components in the original Cartesian coordinate system, E,
are given by (in the rest of this section, the vectors are represented by 3×1 column
matrices):

E =

⎛

⎜
⎝

Ex

Ey

Ez

⎞

⎟
⎠ = J−T

⎛

⎜
⎝

E ′
u

E ′
v

E ′
w

⎞

⎟
⎠ = J−T E′. (4)

It must be emphasized here that E and E′ are the same field expressed in two
different coordinate systems. The direct interpretation of E′ is difficult since it is
expressed in a possibly non orthogonal and not normed basis. Other vector fields
corresponding to 1-forms such as H or A are transformed in the same way while
the vector fields corresponding to 2-forms (flux densities) such as D, B, and J are
transformed according to

D = J D′/det(J). (5)

It may be checked that these transformations are compatible with the equiva-
lence rule (1) telling that D = εE is replaced by D′ = ε ′E′ in the equivalent
formulation. They also preserve the form of energy densities since, for instance,∫

Ω ET Ddxdydz =
∫

Ω ′ E′T D′dudvdw where Ω ′ is the image of the domain Ω by the
coordinate transformation and ET D is the matrix notation for the dot product.

As inhomogeneous and anisotropic equivalent materials are obtained and as the
theoretical framework is the exterior calculus, the (Whitney) finite element method
(FEM) is perfectly adapted to the numerical algorithm implementation [6–9].

In fact, this goes beyond simple change of coordinates as we will also consider
active transformations, i.e. changes of space (i.e. of manifold) where the equations
are written.

It is very often useful to use radial transformations. In this case, the most sim-
ple way is to first perform a transformation to cylindrical or spherical coordinates
and to perform the inverse transformation once the radial transformation has been
made. First, the classical transformation from Cartesian coordinates {x,y,z} to polar
coordinates {ρ,θ ,z} is introduced via a map from ρ,θ to x,y:

{
x(ρ,θ) = ρ cosθ
y(ρ,θ) = ρ sinθ .

(6)

The associated Jacobian is
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Jxρ(ρ,θ) =
∂ (x,y,z)
∂ (ρ,θ ,z)

=

⎛

⎝
cosθ −ρ sinθ 0
sinθ ρ cosθ 0

0 0 1

⎞

⎠ = R(θ) diag(1,ρ,1), (7)

with

R(θ) =

⎛

⎝
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎞

⎠ and diag(1,ρ,1) =

⎛

⎝
1 0 0
0 ρ 0
0 0 1

⎞

⎠ .

R(θ) has the well known properties: R(θ)−1 = R(θ)T = R(−θ).
Furthermore, the inverse transformation is given by the map:

⎧
⎪⎨

⎪⎩

ρ(x,y) =
√

x2 + y2

θ(x,y) = 2arctan
(

y
x+
√

x2+y2

)
,

(8)

and is associated with the Jacobian:

Jρx(x,y) = J−1
xρ (ρ(x,y),θ(x,y)) = diag(1,

1
ρ(x,y)

,1) R(−θ(x,y)). (9)

Similarly, the spherical coordinates are described via a map from ρ,θ ,ϕ to x,y,z:

⎧
⎪⎨

⎪⎩

x = ρ cosθ sinϕ
y = ρ sinθ sinϕ
z = ρ cosϕ.

(10)

The spherical Jacobian:

Jxρ(ρ,θ ,ϕ) =

⎛

⎜
⎝

cosθ sinϕ −ρ sinθ sinϕ ρ cosθ cosϕ
sinθ sinϕ ρ cosθ sinϕ ρ sinθ cosϕ

cosϕ 0 −ρ sinϕ

⎞

⎟
⎠ , (11)

can be written as Jxρ = R(θ)M2(ϕ)diag(1,ρ sinϕ,ρ) still involving the R(θ) ma-
trix together with:

M2(ϕ) =

⎛

⎜
⎝

sinϕ 0 cosϕ
0 1 0

cosϕ 0 −sinϕ

⎞

⎟
⎠ , (12)

with the properties: M−1
2 (ϕ) = MT

2 (ϕ) = M2(ϕ).
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Fig. 1 A twisted structure that may be described by the helicoidal coordinates.

2 Helicoidal Geometries and Leaky Modes
in Twisted Optical Fibres

The purpose of this section is to show how the equivalence rule (1) can be used to
study the propagation of modes in twisted waveguides via a two-dimensional model

Let us introduce an helicoidal coordinate system [14–16] {ξ1,ξ2,ξ3} deduced
from rectangular Cartesian coordinates {x,y,z} in the following way

x = ξ1 cos(αξ3)+ξ2 sin(αξ3), y = −ξ1 sin(αξ3)+ξ2 cos(αξ3), z = ξ3 , (13)

where α is a parameter which characterizes the torsion of the structure. A twisted
structure is a structure for which both geometrical and physical characteristics (here
the permittivity ε and the permeability μ) together with the boundary conditions
only depend on ξ1 and ξ2. Note that such a structure is invariant along ξ3 but 2π

α -
periodic along z (the period may be shorter depending on the symmetry of the cross
section).

This general coordinate system is characterized by the Jacobian of the transfor-
mation (13):

Jhel(ξ1,ξ2,ξ3) = (14)
⎛

⎜
⎝

cos(αξ3) sin(αξ3) αξ2 cos(αξ3)−αξ1 sin(αξ3)
−sin(αξ3) cos(αξ3) −αξ1 cos(αξ3)−αξ2 sin(αξ3)

0 0 1

⎞

⎟
⎠, (15)

which does depend on the three variables ξ1, ξ2 and ξ3. On the contrary, the trans-
formation matrix Thel :

Thel(ξ1,ξ2) =
JT

helJhel

det(Jhel)
=

⎛

⎜
⎝

1 0 αξ2

0 1 −αξ1

αξ2 −αξ1 1+α2(ξ 2
1 +ξ 2

2 )

⎞

⎟
⎠, (16)

though the translational invariance of the geometry is lost (see Fig. 1).
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which describes the change in the material properties, only depends on the first
two variables ξ1 and ξ2 [17–19]. This matrix may also conveniently be expressed in
terms of twisted cylindrical coordinates:

R(ϕ)

⎛

⎜
⎝

1 0 0
0 1 −ρα
0 −ρα 1+ρ2α2

⎞

⎟
⎠R(−ϕ) =

⎛

⎜
⎝

1 0 αρ sin(ϕ)
0 1 −αρ cos(ϕ)

αρ sin(ϕ) −αρ cos(ϕ) 1+ρ2α2

⎞

⎟
⎠,

with ϕ = 2arctan
(

ξ2

ξ1+
√

ξ 2
1 +ξ 2

2

)
, ρ =

√
ξ 2

1 +ξ 2
2 .

It may be also interesting to consider leaky modes corresponding to complex
propagation constants β [5, 10]. A very efficient approach to compute the leaky
modes is to introduce Perfectly Matched Layers (PML). Such regions have been
introduced by Berenger [11] in the FDTD method. Nowadays, in the time harmonic
case, the most natural way to introduce PML is to consider them as maps on a
complex space [12] so that the corresponding change of (complex) coordinates leads
to equivalent ε and μ (that are complex (lossy), anisotropic, and inhomogeneous
even if the original ones were real, isotropic, and homogeneous).

A remarkable property of the PML is that they provide the correct extension to
non-Hermitian operators (since the associated T matrix is complex and symmetric)
that allows the computation of the leaky modes in waveguides [13] and this may be
obtained via a correct choice of the PML parameters, namely R∗, Rtrunc such that
R∗ < ρ < Rtrunc, and the complex valued function of a real variable sρ(ρ) (see Fig. 2
and Eq. 17) [10].

Helicoidal coordinates have thus been combined with PML to compute the leaky
modes in twisted microstructured optical fibres [13]:

ThPML = R(ϕ)

⎛

⎜
⎜
⎝

ρsρ
ρ̃ 0 0

0 ρ̃
ρsρ

−α ρ̃
sρ

0 −α ρ̃
sρ

ρ(1+α2ρ̃2)
ρ̃sρ

⎞

⎟
⎟
⎠R(−ϕ). (17)

This is the expression of the “twisted cylindrical PML tensor” in “helicoidal
Cartesian modelling coordinates” ξ1,ξ2 and all the quantities involved in the pre-
vious expression can be given as explicit functions of these two variables, joining

sρ(ρ) = sρ(
√

ξ 2
1 +ξ 2

2 ) and ρ̃ =
∫
√

ξ 2
1 +ξ 2

2
0 sρ(ρ ′)dρ ′ to the expressions for ρ and ϕ

given here above. This is in fact the description of the “radial complex stretch”.
The fact that the equivalent materials are independent from the longitudinal coor-

dinate ξ3 allows a two-dimensional model for the determination of the propagation
modes and of the leaky modes via a classical model provided it allows completely
anisotropic and inhomogeneous media. Luckily, the finite element method (FEM)
allows such a numerical computation.
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Fig. 2 Cross section of a twisted six hole MOF structure together with the surrounding annulus
used to set up the PML (R∗ = 30μm,Rtrunc = 40μm). On the right, a magnification of the hole
structure with Λ = 6.75μm, rs = 2.5μm, and nSi = 1.444024.

As an illustrating example, we consider the hexagonal structure depicted in
Fig. 2: this structure is a six hole microstructured optical fibre or MOF [5, 20–23]
made up of a bulk of silica drilled by six air holes distant each other from
Λ = 6.75μm. Each hole is circular with a radius equal to rs = 2.5μm. A given
wavelength λ0 = 1.55μm is considered for which the index of silica is about√

εSi = nSi = 1.444024. Note that for this structure no propagating mode can be
found and the fundamental mode is a leaky mode. In order to check the validity of
the FEM+PML combination for the leaky mode computation, the value of the com-
plex propagating constant in the not twisted case is compared with the one obtained
by using the multipole method. The philosophy of this latest method is completely
different from the FEM+PML approach and the reader can refer to [5] for a compre-
hensive review of this method. The corresponding complex effective index, namely
neff = β/k0 for the two different methods is 1.4387741 + 4.325745710−8i for the
multipole method and 1.43877448+4.32588510−8i for the finite element method.
The practical implementation of the finite element model has been performed with
COMSOL Multiphysics� software using a mesh of about 16,800 second order tri-
angular elements and the computation takes about 150 s on a Pentium M 1.86 GHz
with 1Go memory laptop computer. Note that regarding its smallness with respect
to the real part, the imaginary part is computed with an amazing accuracy: it is ob-
tained with four figures though its value is smaller than the absolute error on the
real part. The twisted problem is now considered to see how the fundamental leaky
mode varies with respect to the torsion of the fibre. Still for the fundamental leaky
mode and for a fixed k0 corresponding to λ0 = 1.55μm, two curves are plotted rep-
resenting ℜe{β/k0} and ℑm{β/k0} (Fig. 3) versus α , the parameter of torsion. It
can be noticed that the relative influence of the torsion on the imaginary part is
stronger than on the real part. The maximum torsion corresponds to α = 3,000 m−1

so that the torsion length is 2π/α = 2,090 μm and taking into account the symme-
try of the cross section, the period of the torsion is in fact π/3α = 349 μm. This
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Fig. 3 On the left, imaginary part of the effective index neff = β/k0 for the fundamental mode
versus the parameter of torsion α (m−1) for various meshes. The results are good even for the
coarser meshes (� = 4,032 elements and the dotted line = 9,102 elements) and the discrepancy
is unnoticeable between the curves for the finer meshes (the continuous line = 11,504 elements
and × = 14,192 elements) indicating the mesh refinement is numerically convergent. On the right,
real part of the effective index neff = β/k0 for the fundamental mode versus the parameter of
torsion α (m−1).

maximum torsion is weak with respect to the wavelength and the size of the cross
section pattern but strong with respect to the length of a real fibre.

This technique has been recently extended to alternative helicoidal coordinate
systems with similar properties [24].

3 Cylindrical Cloaks of Arbitrary Cross Section

The geometrical transformations can also be used in the reverse sense to design new
materials. In this case, a geometrical transformation is applied to free space to guess
interesting material properties given by the equivalence rule. A new device can be
built if the new material properties may be approximated, e.g. using electromag-
netical metamaterials [25]. For instance, as proposed by Pendry [26, 28] a convex
domain is mapped on a holey domain with the same exterior boundary. The structure
made of the transformed equivalent material is an invisibility cloak and any object
can be perfectly hidden in the central hole.

A quite more general situation is now considered here, where the shape of the
cloak is no more circular and even possibly non convex but described by two arbi-
trary functions R1(θ) and R2(θ) giving an angle dependent distance from the origin
corresponding respectively to the interior and exterior boundary of the cloak [29].

The geometric transformation which maps the field within the full domain ρ ≤
R2(θ) onto the hollow domain R1(θ) ≤ ρ ≤ R2(θ) can be expressed as:

ρ ′(ρ,θ) = R1(θ)+ρ(R2(θ)−R1(θ))/R2(θ) , 0 ≤ ρ ≤ R2(θ) (18)

with also θ ′ = θ , 0 < θ ≤ 2π and z′ = z , z ∈R. Note that the transformation maps
the field for ρ ≥ R2(θ) onto itself through the identity transformation. This leads to
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Jρρ ′(ρ ′,θ ′) =
∂ (ρ(ρ ′,θ ′),θ ,z)

∂ (ρ ′,θ ′,z′)
=

⎛

⎝
c11(θ ′) c12(ρ ′,θ ′) 0

0 1 0
0 0 1

⎞

⎠ , (19)

where
c11(θ ′) = R2(θ ′)/(R2(θ ′)−R1(θ ′)) (20)

for 0 ≤ ρ ′ ≤ R2(θ ′) and c11 = 1 for ρ ′ > R2(θ ′) and

c12(ρ ′,θ ′) = (ρ ′ −R2(θ ′))R2(θ ′)
dR1(θ ′)

dθ ′ −
(ρ ′ −R1(θ ′))R1(θ ′) dR2(θ ′)

dθ ′

(R2(θ ′)−R1(θ ′))2 (21)

for 0 ≤ r′ ≤ R2(θ ′), and c12 = 0 for ρ ′ > R2(θ ′).
Finally, the properties of the cloak are given by:

T−1 = R(θ ′)

⎛

⎜
⎜
⎝

c2
12+ f 2

ρ
c11 fρ ρ ′ − c12

fρ
0

− c12
fρ

c11ρ ′

fρ
0

0 0 c11 fρ
ρ ′

⎞

⎟
⎟
⎠ R(θ ′)T , (22)

with

fρ =
(ρ ′ −R1)R2

(R2 −R1)
.

The parametric representation of the ellipse ρ(θ) = ab√
a2 cos(θ)2+b2 sin(θ)2

corre-

sponds to cloaks of elliptical cross section and it has been checked that it provides
exactly the same result as in [29] where similar results have been obtained by a
space dilatation.

To obtain general shapes, Fourier series

ρ(θ) = a0 +
n

∑
k=1

(ak cos(kθ)+bk sin(kθ))

may be used. An example of such a general cloak is shown on Fig. 4: a source made
of a wire of circular cross section (radius = 0.25) centered at point rs = (2.5,2)
with a constant Ez imposed on its boundary, radiating in a vacuum with wavelength
λ = 1 (Note that all lengths are given in arbitrary units, micrometer for instance for
near infrared). The electric field Ez is therefore a cylindrical wave (Note that the
electric field is given in arbitrary units, V/m for instance, and Ez = J0(2π0.25)−
iY0(2π0.25) = 0.472001− i0.410004 on the boundary of the source wire) and is
not perturbed at all by a F-shaped scattering (lossy) obstacle of relative permittivity
1 + 4i placed near the origin (0,0) and surrounded by the cloak. Note also that the
unbounded space is simulated via a circular PML. Figure 5 shows the corresponding
analytical model.
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Fig. 4 Cloak with a general shape given by Fourier series: R1(θ) is with a0 = 1,b1 = 0.1,a2 =
−0.15,b3 = 0.2,a4 = 0.1, R2(θ) is with a0 = 2,a2 = −0.1,a3 = −0.15,b3 = 0.3,a4 = 0.2, all the
other coefficients = 0. The real part of the electric field Ez scattered by the cloak is represented
here. Some residual interferences are due to numerical deviation mainly caused by the singular
behavior of the equivalent material properties on the inner boundary of the cloak. Computation has
been performed with GetDP [27].

Fig. 5 Analytical computation (with Mathematica�) of the field (and of associated rays) by di-
rectly applying the coordinate transformation to the source field: E ′

z(ρ ′,θ ′) = Ez(ρ(ρ ′,θ ′),θ =
θ ′)) with ρ(ρ ′,θ ′) obtained by inversion of the map defined by Eq. (18).

3.1 Three dimensional cloaks

The three-dimensional cloaks may be determined following the same guidelines but
using the spherical coordinates. For a spherical cloak, the Jacobian of the radial
contraction is Jρρ ′ = diag(c11,1,1) (ρ is now the radius of a sphere). The total
Jacobian is

R(θ)M2(ϕ)diag(c11,ρ/ρ ′,ρ/ρ ′)M2(ϕ)RT (θ).
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The matrix for the equivalent media is finally:

T−1 = R(θ)M2(ϕ)diag(
ρ2

c11ρ ′2 ,c11,c11)M2(ϕ)RT (θ). (23)

Three-dimensional arbitrary cloaks can be found by varying their interior and
exterior radii with respect to the angular coordinates: R1(θ ,ϕ),R2(θ ,ϕ).

4 Conclusion

The geometrical transformations may be viewed as a unifying point of view bridg-
ing several techniques in electromagnetism: treatment of unbounded domains and
of twisted structures, design of invisibility cloaks... The cornerstone of the method
is to remark that the Maxwell equations can be written in a covariant form such that
all the metric properties are only involved in the material properties. The change
of coordinates may therefore be encapsulated in exotic equivalent material prop-
erties, via the equivalence rule (1), and the rest of the computation is dealt with
just as if rectangular Cartesian coordinates were used. Though this technique is
completely general, the fact that the obtained material are usually anisotropic and
inhomogeneous makes it of particular interest in the context of the finite element
method where it provides very interesting models that do not require a modifica-
tion of the existing code (if this one is general enough). It also provides a tool to
design new electromagnetic devices such as the invisibility cloaks. It gives also an
interpretation of negative refractive index materials together with a pictural view of
the perfect lens that corresponds to a “folding” of the space [31–33]. Nevertheless, it
should be emphasized that the space transformations that do not correspond to a dif-
feomorphism lead to material properties that are, if not impossible to obtain, at least
challenging for the optical metamaterial science (even in a small frequency range).
Thus far, experimental verification of invisibility cloaks was chiefly achieved for
microwaves [34].

This work has been performed in the framework of the POEM project – ANR-
06-NANO-008.
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Abstract Composites with plasmonic inclusions or holes in a plasmonic host
medium can exhibit very interesting, or even extreme, properties. We compare the
predicted effective permittivities of plasmonic composites using the classical mixing
rules of Maxwell Garnett, Lord Rayleigh and Bruggeman with quasistatic numeri-
cal simulations and a series solution in two dimensions. The Maxwell Garnett and
Rayleigh rules are reasonably accurate for small or modest volume-fractions of in-
clusions in a regular or almost regular lattice, while the Bruggeman rule is clearly
less useful in this case. Finally, we also consider transparency, near-field superlens-
ing and extreme anisotropy as possible applications using silver–air composites,
using the Drude model for the complex permittivity of silver.

1 Introduction

The effective permittivity of ordinary dielectric composites can be successfully es-
timated using a large variety of different mixing rules [15]. Each rule provides one
estimate, and depending on the microstructure of the composite, different rules can
give the best approximation for the effective permittivity. For a two-phase mixture
with lossless positive-permittivity constituents, the effective permittivity must be
between the permittivities of the constituents. However, if one of the constituents
has negative permittivity, the situation is radically different, since surface plasmon
resonances can be excited at the interfaces between the positive- and negative-
permittivity components.

Classical mixing formulas have, to some extent, been used also for plasmonic
mixtures [7, 12, 14, 16, 17], but their predictions may deviate strongly and qualita-
tively from each other. It has been critically pointed out [8] that the Maxwell Garnett
formula predicts infinities and Bruggeman complex results for real-valued compo-
nent permittivities. Recently, some purely numerical results [11] and finally also
comparisons between numerical results and mixing rules [4] have been presented,
but the topic is by no means exhaustively documented.

S. Zouhdi et al. (eds.), Metamaterials and Plasmonics: Fundamentals, 91
Modelling, Applications,
c© Springer Science + Business Media B.V. 2009
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In this paper, we consider the classical Maxwell Garnett, Lord Rayleigh and
Bruggeman mixing rules in two dimensions and discuss their limitations and appli-
cability for plasmonic composites. To evaluate the accuracy of the mixing rules, we
also compute the effective (quasistatic) permittivity using the finite element method
(FEM) and a series solution for a square lattice of circular cylinders [10]. In addition
to the regular lattice, we also consider one slightly disordered composite, and finally
present three silver–air mixtures with interesting properties. A preliminary version
of this paper appeared in the META’08 proceedings [18].

2 Mixing Formulas and Their Limitations

Consider a plasmonic two-phase mixture where the plasmonic constituent (or in-
clusion) with relative permittivity εr occupies the volume fraction p. For simplicity,
we assume that the other constituent has relative permittivity 1. The task is to es-
timate the effective permittivity εeff = εeff(εr, p). The classical mixing formulas by
Maxwell Garnett, Bruggeman and Lord Rayleigh are available for both two- and
three-dimensional mixtures, but we only consider the 2D case in this paper.

For mixtures with cylindrical inclusions, the Maxwell Garnett formula [9] pre-
dicts the effective relative permittivity

εeff = 1+
2p(εr −1)

εr +1− p(εr −1)
, (1)

while the Bruggeman (symmetric) formula [1] gives

εeff =
1
2

(
B±

√
B2 +4εr

)
, B = 1− εr +2p(εr −1) , (2)

where the branch of the (complex) square root yielding the physically more reason-
able result should be chosen; see also the more thorough analysis in [17].

The 2D Rayleigh formula [6] gives the estimate

εeff = 1+
2p

εr +1
εr −1

− p− εr −1
εr +1

(
0.3058 p4 +0.0134 p8)

, (3)

which can be understood as a refinement of the Maxwell Garnett formula, taking
some higher order interactions between the cylindrical inclusions in a square lattice
into account.

For each mixing rule εeff(εr, p) we can define a complementary rule

εc
eff(εr, p) = εr εeff(1/εr,1− p) , (4)

by exchanging the roles of the inclusion and environment. In principle, the Maxwell
Garnett and Rayleigh formulas are valid for separated cylindrical inclusions (small p),
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while the corresponding complementary rules are valid for cylindrical holes in a
plasmonic material (large p). The Bruggeman formula (2) is symmetric with respect
to the inclusion and environment, i.e., it is its own complement.

For a square lattice of cylindrical inclusions, the volume fraction must be smaller
than pmax = π/4 = 78.5%, if the cylinders are not allowed to overlap. This can be
seen as one upper bound for the Maxwell Garnett and Rayleigh formulas. To get
good estimates for the effective permittivity, the volume fraction should be some-
what smaller for the Rayleigh formula, and significantly smaller for the Maxwell
Garnett formula.

A 2D-cylinder can support plasmonic resonances when εr = −1. Therefore, the
effective permittivity εeff of a mixture with cylindrical inclusions should be singu-
lar near εr = −1 if the volume fraction p is small. This is correctly predicted by
the Maxwell Garnett and Rayleigh formulas (1) and (3). As shown in Fig. 1, the
Maxwell Garnett formula predicts one singularity and the Rayleigh formula pre-
dicts two singularities with good accuracy, compared with the series solution for a
square lattice from [10], as long as the volume fraction is not too large. The effective
permittivity εeff as a function of εr has an infinite number of discrete singularities,
with an accumulation point at εr = −1, as shown in [10]. However, it appears that
one or two singularities are enough to capture the overall behavior of εeff(εr) every-
where except near the essential singularity at εr = −1, when the volume fraction p
is not too large: say p < 25% or p < 50%.

The Bruggeman formula (2) does not predict any singularities, but instead a re-
gion where the effective permittivity is complex, shown in Fig. 2. This is certainly
incorrect for a square lattice of cylinders with real permittivity, and the symmetric

0 20 40 60 80
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−100

−101

ε
r

 p [%]

Fig. 1 Singularity locations for the Maxwell Garnett formula (black line) and Rayleigh formula
(gray lines), compared with the five most significant singularities for a square lattice [10] (dashed
black lines).
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Fig. 2 Singularity locations for the Maxwell Garnett formula (black line) and Rayleigh for-
mula (gray lines), and their complementary formulas (dashed lines). In the shaded region, the
Bruggeman formula gives complex results.

treatment of the inclusion and environment has been argued as one reason why the
Bruggeman formula is inappropriate [4]. However, if we interpret the complex re-
gion as a region where the Bruggeman formula fails to predict a numerical value
– due to one or several singularities – then the formula might be appropriate for
plasmonic composites that are geometrically more symmetric with respect to the
inclusion and environment.

In this paper, we have only considered composites with non-overlapping inclu-
sions, i.e., without percolation. This can also be one explanation why the Bruggeman
formula (2) is less accurate, since it has a percolation threshold pc = 50%, which is
clearly not consistent with the geometrical structure of the composites we consider
here.

3 Quasistatic Verification

The electrostatic effective permittivity of a periodic mixture can easily be computed
using the finite element method (FEM). In particular, we use COMSOL MULTI-
PHYSICS 3.4 and the geometry shown in Fig. 3 to compute the effective permittivity
of a regular lattice (a×a) with cylindrical inclusions (radius R). The volume fraction
is then p = πR2/a2, with R < a/2. The unknown is the potential φ(r) that satisfies
the (generalized) Laplace equation,

∇ ·
[
εr(r)∇φ(r)

]
= 0 , (5)
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Fig. 3 Geometry and
boundary conditions for the
computational setup for the
regular lattice.
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Fig. 4 Effective permittivity for a regular lattice with p = 5% negative-permittivity rods in air
using the Maxwell Garnett (MG), Bruggeman (Br) and Rayleigh (Ra) formulas and FEM.

and the boundary conditions shown in Fig. 3. Using a plate-capacitor model, the
effective permittivity can be expressed as

εeff =
1

V 2
0

∫

S
εr(r)∇φ(r) ·∇φ(r)dS , (6)

where V0 is the applied voltage and the integral is over the whole computational
domain in Fig. 3. The relative permittivity εr(r) is εr in the cylinder and one outside.

A representative selection of numerical results for the effective permittivity εeff of
regular lattices is shown in Figs. 4–7. The series solution in Fig. 6 is computed using
the formulas in [10]. In general, the Maxwell Garnett formula gives accurate results
for low volume fractions, and the Rayleigh formula gives accurate results also for
larger volume fractions. The Bruggeman formula, where applicable, is clearly less
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Fig. 5 Effective permittivity, as in Fig. 4, but with the higher volume fraction p = 1/3. (The
Bruggeman prediction is omitted, since it gives a reasonable estimate only for εr ≈ 0 in this case.)
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Fig. 6 Effective permittivity for a dense composite with p = 2/3 negative permittivity rods in a
square lattice using the Maxwell Garnett (MG) and Rayleigh (Ra) mixing formulas compared with
the FEM-result and the series solution (Ser). The accuracy of the mixing formulas are clearly not
very useful for this high volume fraction, but the series solution and FEM agree very well.

accurate in this case. None of the mixing formulas are accurate when the cylinders
are almost touching, since many singularities or higher order interactions should
be taken into account, but the FEM and series solutions agree almost perfectly as
shown in Fig. 6.
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Fig. 7 Effective permittivity for a mixture of air and a plasmonic material with εr = −30. The
curves starting at p = 0% is for a mixture with plasmonic rods in air, while the curves ending at
p = 100% is for a mixture with holes in a plasmonic material. The complementary version of the
Maxwell Garnett and Rayleigh formulas are used in the latter case, and p is always the volume
fraction of the plasmonic material.
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Fig. 8 Effective permittivity for one slightly disordered sample with p = 1/3. The material is
anisotropic, with different εeff-components in the x- and y-directions, and several additional singu-
larities appear. The Rayleigh formula is not as accurate as for the regular lattice in Fig. 5, but it still
gives a very useful estimate, especially for εr < −2.5 and εr > −0.5.

Even a small deviation from a regular lattice can have a large impact near the
plasmonic resonances, as shown in Fig. 8. However, as long as the cylinders are not
allowed to be too close to each other, the Maxwell Garnett and Rayleigh formulas
seem to give useful estimates for large ranges of εr < 0.
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4 Possible Applications Using Silver–Air Mixtures

Above, we have ignored losses and silently assumed that the mixtures can be ho-
mogenized using a static effective permittivity. In the following, we consider more
realistic silver–air mixtures, either cylindrical silver-nanorods in air (small p) or sil-
ver with cylindrical nanoholes (large p). We still assume that the geometrical details
are small enough compared with the wavelength, so that a quasistatic approxima-
tion is reasonable. For the complex relative permittivity of silver, we use the Drude
model

εr(λ ) = ε ′r − jε ′′r = ε∞ −
(
λ/λp

)2

1− jλ/λd
,

⎧
⎨

⎩

ε∞ = 5.5
λp = 130nm
λd = 30μm

, (7)

where the parameters are optimized to match the measured values in [5] for ultravi-
olet A and visible wavelengths. For these wavelengths, 320nm < λ < 700nm, the
real part of the permittivity is negative, −24 < ε ′r < 0, while the imaginary part is
relatively small, ε ′′r � ε ′r .

The considered mixtures are anisotropic, with dyadic effective permittivity

εeff = εeff,t(uxux +uyuy)+ εeff,zuzuz , (8)

if we assume that the cylinders or holes are parallel with the z-axis. The axial per-
mittivity is obviously the weighted average of the components

εeff,z = pεr +(1− p) , (9)

while the transversal permittivity εeff,t can be estimated using the above mixing
rules.

4.1 Transparency

To get perfect transparency, the effective permittivity should be εeff = +1, which
seems to be impossible unless p = 0, but we can at least try to obtain εeff,t ≈ +1.
Considering the above mixing rules, the most promising possibility seems to be to
use a mixture with large enough holes in silver, and εr near −1. The complementary
Maxwell Garnett formula predicts εeff,t = +1 for any p > 0 if εr = −1, which is
clearly wrong. However, using the Rayleigh formula we see that, at both sides of
the singularity near εr = −1, we could get εeff,t ≈ +1, as shown in Fig. 9.

4.2 Near-field superlens

A perfect lens [13] needs εeff = μeff = −1, but for a near-field superlens (NFSL)
it is sufficient to obtain εeff = −1. Pure silver has εr = −1− j0.07 at λ = 331nm
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Fig. 9 Effective permittivity, as a function of free-space wavelength, for a mixture with p = 60%
silver and 40% air-holes. The Rayleigh estimate (Ra) and quasistatic FEM-result for a periodic
lattice are shown, compared with the permittivity of pure silver (Ag). The real parts are shown in
black and the imaginary part in gray. Near 326 nm and 338 nm, the effective permittivity εeff,t is
close to +1.

according to the Drude model (7). It would be highly useful to tune the wavelength
of the superlens, as suggested in [2], using a suitable mixture of silver and an ordi-
nary dielectric.

According to the complementary Maxwell Garnett rule, the effective relative per-
mittivity εeff,t = −1 when

p = 1− (1+ εr)2

(1− εr)2 , (10)

which is also plotted in Fig. 10 along with the (numerically solved) corresponding
value using the complementary Rayleigh rule.

For instance, using a mixture with p = 50% silver and 50% air-holes and oper-
ating at the free-space wavelength λ = 444nm, which is in the visible violet/blue-
region, we get

εr = −6.16− j0.17 and εeff,t = −1.00− j0.058 , (11)

using the Drude model and the complementary Rayleigh formula. For a regular
lattice, the quasistatic FEM-solution as well as the series solution gives the same
εeff,t with three digits accuracy. The axial effective permittivity is not −1 but instead
εeff,z = −2.58− j0.086, but this is not necessarily a problem for a NFSL that works
for only one polarization (TM). If we choose the orientation so that the TM-fields are

H ‖ uz and E ⊥ uz , (12)
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Fig. 10 Mixture with holes with εeff,t = −1 according to the Maxwell Garnett (MG) and Rayleigh
(Ra) formulas.

then εeff,z can have any value and only εeff,t is significant for the superlensing effect.
However, the composite is then a silver slab with cylindrical holes inside the slab –
instead of holes through the slab, which would certainly be easier to manufacture.

4.3 Extreme Anisotropy

The final example is a mixture with very large transversal permittivity and near-
zero axial permittivity. The Maxwell Garnett formula (1) predicts infinite transversal
permittivity εeff,t when

p =
εr +1
εr −1

, (13)

while the axial permittivity εeff,z is zero when

p =
1

1− εr
. (14)

These two coincide when p = 1/3 and εr = −2. Similarly, the Rayleigh formula
gives the numerical values p = 33.0% and εr = −2.03.

Using a mixture with p = 33.0% silver rods in air and operating at the free-space
wavelength λ = 357nm, we get

εr = −2.03− j0.09, εeff,t = −j33, and εeff,z = −j0.03, (15)

where the anisotropy is finite, but still very large: εeff,t/εeff,z = 1100.
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5 Conclusion

In this paper, we have considered the quasistatic effective permittivity of plasmonic
mixtures with cylindrical inclusions (or holes) in a regular or almost regular lattice.
For these composites, the mixing formulas by Maxwell Garnett and Lord Rayleigh
give surprisingly accurate results. The Maxwell Garnett formula predicts the loca-
tion and effect of one plasmonic resonance, while the more accurate Rayleigh for-
mula predicts two plasmonic resonances, which seems to be sufficient to predict the
effective permittivity when the volume fraction is p < 25% and p < 50%, respec-
tively, and εr �= −1. The Bruggeman formula is clearly not useful for this particular
kind of mixture.

Among the considered possible applications, the extremely anisotropic compos-
ite seems to be the most promising one. Ideally, the effective permittivity would be
given by (8) with εeff,t → ∞ and εeff,z = 0. The effective permittivity becomes fi-
nite and nonzero for a silver–air composite, but the anisotropy-contrast εeff,t/εeff,z
can still very large. This could perhaps be useful for optical nanocircuits [3], where
materials with εeff ≈ 0 and |εeff| 	 1 are needed. Also the composite near-field su-
perlens could be useful, since the tunability range (in terms of εr or λ ) is quite large,
unless the structure is too difficult to manufacture in practice.
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Application of Wire Media in Antenna 
Technology 

Silvio Hrabar 

Faculty of Electrical Engineering and Computing, University of Zagreb,  

Abstract This paper reviews the results of experimental investigation of radiating 
structures based on plasma-like wire media, undertaken at University of Zagreb. It 
is shown that all three regions of the dispersion curve of wire media, namely the 
Epsilon-NeGative (ENG) region, the Epsilon-Near-Zero (ENZ) region and the  
Epsilon-PoSitive (EPS) region, can be successfully utilized in antenna applica-
tions. The phenomenon of gain increase of an antenna embedded in wire medium, 
based on ultra-refraction in ENZ region, was investigated in 10 GHz band. The  
results revealed that the use of ultra-refraction may be a practical approach in the 
case of low-directivity radiators such as simple monopole antennas. Another  
example of the utilization of the ENZ region deals with the shortened horn antenna 
with embedded wire-medium-based ENZ slab operating in 10 GHz band. Two 
prototyped shortened horn antennas (labeled as horn I and horn II) had lengths of 
52% and 33% of the length of the optimal horn, respectively. Measured gain was 
found to be very similar to the gain of the full length optimal horn (within 0.1 dB), 
but in a narrow band (12% for horn I and 8% for horn II). The last example deals 
with a scanning leaky-wave antenna operating at 10 GHz, based on a waveguide 
filled with double-wire medium operating in all three regions of the dispersion 
curve. These three regions correspond to three different modes of propagation in 
the waveguide: the backward-wave mode, the forward-wave mode and the mode 
with infinite wavelength. Experimental results revealed the possibility of main 
beam scanning within an angle of ±60° from broadside direction.  

1 Introduction 

It is well known [1, 2] that an array of parallel wires (Fig. 1a), the lattice constant 
(d) of which is much smaller than the wavelength (d << λ), can be thought of as a 
plasma-like material (ENG metamaterial) described by its relative permittivity [1, 2]:  
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Here, f and fp represent the frequency of the signal and the cut-off frequency of the 
array (‘plasma frequency’), respectively, while factor γ represents the losses (see 
the graph in Fig. 1b).  The plasma frequency is dependent on the geometrical  
parameters of the array (lattice constant a and wire radius) and several different 
equations for its prediction are available in the literature [2, 14]. Although the con-
cept of an array of thin wires was introduced a long time ago [1], the interest in 
this structure has been revitalized after the first experimental DNG metamaterial 
was reported [3].  

The operation of wire medium illuminated with a plane wave can be under-
stood in an intuitive and simple way with the help of the transmission line theory 
(Fig. 1c.) The free space can be thought of a transmission line with a series dis-
tributed inductance and a shunt distributed capacitance representing the free-space 
permeability (µ0) and permittivity (ε0), respectively. Since the wires are parallel to 
the electric field vector, they can be thought of the distributed inductance ‘con-
nected’ in parallel with free-space permittivity (ε0). These two elements form a 
parallel LC tank circuit that behaves as a shunt inductance below the resonant fre-
quency (fp). Thus, the whole structure behaves as a LL transmission line that can 
be interpreted as an Epsilon-NeGative metamaterial (ENG). It is important to  
notice that the losses of wire media operating in the ENG region are significantly 
lower than the losses of widely used Mu-NeGative (MNG) media based on Split-
Ring Resonators (SRRs). Low losses are associated with the fact that very low 
current flows through the parallel tank circuit in the vicinity of the resonant  
frequency (fp) (On the contrary, a SRR inclusion behaves as a series tank circuit 
associated with the high current density and therefore high losses in the vicinity of 
the resonant frequency). Slightly above the fp, equivalent relative permittivity of 
the tank circuit is a small positive number very close to zero (the tank circuit  
behaves as a shunt capacitance smaller than free-space permittivity). Wire-medium 
operating in this frequency region is usually referred to as Epsilon-Near-Zero 
metamaterial (ENZ) [10]. If the frequency is increased further, the equivalent 
permittivity approaches unity and the wire medium operates like an ordinary Epsi-
lon-PoSitive (EPS) material. 

It was shown [14] that (1) applies only if no component of the wave vector is 
parallel to the wires. If this constraint is not met, the wire-medium exhibits spatial 
dispersion. In the case of lossless wires, the effective permittivity of wire medium 
with spatial dispersion is given by [14]: 

                                                .
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π
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                                         (2) 



Here, c stands for the speed of light and q is the component of a wave vector  
parallel to the wires. In a general case q may also be dependent on the frequency 
and εreff becomes a rather complicated function of both geometrical parameters of 
the array and frequency. However, even in this case it is possible to identify  
several different characteristic regions of the dispersion curve with the ENG  
behavior, the ENZ behavior and the EPS behavior. 

characteristic regions of the dispersion curve of wire media in antenna technology, 
undertaken at University of Zagreb.   

 
 
 
 
 
 
 

 
 
 
 
 
 

2  An Antenna Embedded in Wire Medium  

One very interesting application of wire medium that operates just above the 
plasma frequency (in the ENZ region of the dispersion curve) was proposed  
recently in [4]. The authors embedded a simple omnidirectional radiator (a mono-
pole antenna) into the wire medium and observed a significant increase in directi-
vity. A very simple intuitive explanation, based on ultra-refraction, was given in 
[4] and is briefly reviewed here in Fig. 2a. If one represents the spherical waves 
emanating from the source by rays, the incident angle (θ1) and the refracted angle 
(θ2) are related by Snell's law (see ray 1 in Fig. 2a): 

                                                  ( )( ).sinsin 1
1

2 θεθ r
−=                                       (3) 

If the relative permittivity of the ENG slab (εr) is a very small positive number, the 
angle θ2 will be close to 0°, i.e. all outgoing rays will be nearly perpendicular to 
the surface of the ENZ slab. This will cause a directive broadside radiation pattern 
similar to the radiation pattern of an aperture with uniform current distribution. It 
is important to notice that the basic principle of ultra-refraction is actually not 

imaginary part (c) Transmission line equivalent circuit.  
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Fig. 1 (a)  A thin-wire-based  metamaterial, (b) Effective permittivity; solid – real part, dashed –

This paper reviews some of the experimental results of utilization of all three 
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novel at all. Similar experiments that mimic the behavior of radiators embedded in 
plasma were performed back in the sixties of the previous century [1]. However, 
the intuitive picture of rays is just a first approximation, while several different 
rigorous studies of wave propagation in the slab with vanishing permittivity have 
been presented in the last few years [8–10]. These studies revealed that the back-
ground physics of directivity increase is actually more complicated and it includes 
phenomena of tunneling, spatial filtering and even excitation of leaky-waves in the 
case of a realistic finite wire-medium slab. 

We investigated the feasibility of the application of ultra-refraction with several 
simple experimental antennas in 10 GHz frequency band [5, 6]. The wire medium 
consisted of parallel copper wires (radius r = 0.7 mm) glued onto Styrofoam plates 

r
varied from 2 to 14 layers of wires. Obviously, the fabricated wire-based metama-
terial is anisotropic and it will show plasma-like behavior only for the wave whose 
electric field vector is parallel to the wires (this is a case different from those  
reported in [4, 7] where two mutually perpendicular sets of wires were used). Two 
samples were used in the experiments; the large sample (0.31 × 0.31 m, variable 
thickness) and the small sample (0.155 × 0.155 m, variable thickness). In the first 
series of experiments, a quarter-wavelength monopole (the length of 7.5 mm) over 
the ground plane was used as the radiating element (Fig. 2c). The monopole was 
placed in the center of the wire medium slab. Both the far-field radiation pattern 
(in H plane) and gain of these antennas have been measured at several frequencies 
and for different number of wire-layers. Samples of the obtained results are given 
in Figs. 3 and 4. It can be seen (Fig. 3a) that at the frequency slightly higher than 
the plasma frequency (10.25 GHz) the directive pattern is formed. Two main lobes 
in the direction of 0° and 180° and two major secondary lobes in the directions of 
+90° and −90° can be observed. These secondary lobes appear due to rays  
refracted at the slab sides (see ray 2 in Fig. 2a). By further increasing the fre-
quency (Fig. 3b), the main lobe splits and two maxima in directions different from 

εr  

θ1 θ2
 

 

 

air

ENZ slab

air

line source
current sheet

1

2

 

experiments with ultra-refraction (c)  Experimental monopole antenna (ENZ slab removed). 

b)a) c)

Fig. 2 (a) A finite ENZ slab with embedded line source, (b) Wire-media ENZ slab used in the 

with ε  ≈ 1 (Fig. 2b). The lattice constant was a = 9 mm and the sample thickness 
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it shows that the background physics is indeed associated with the excitation of 
leaky waves. The measured gain, in comparison to the isotropic radiator at 10.50 
GHz, as a function of the number of wire layers for both samples is shown in Fig 
4. In the case of the large sample, the highest gain of 23.41 dB was obtained for 
eight wire-layers. Assuming a uniform current distribution on a 0.155 × 0.155 m 
physical aperture, and assuming that the gain is equal to the directivity, a gain of 
25.7 dBi is calculated. Therefore the gain of the whole antenna system (monopole 
antenna embedded in the wire-based slab) approaches maximal theoretical gain for 
the given physical aperture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The small sample had the physical aperture equal to one quarter of the aperture 

of the large sample. Thus, a 6 dB reduction in the gain could be expected. However, 
this was not the case (see Fig. 4). Both curves in Fig. 4 show the same behavior, 
but they reach their maxima at a different number of wire-layers. When the wire 
slab is thin, the obtained gain is almost the same in both cases, showing that only a 
small portion of the physical size is actually used to focus the radiated wave. In 
the case of the small sample some rays ‘hit’ the top plane of the metamaterial par-
allelepiped and do not contribute to the broadside radiation. This is the reason why 
the larger sample gives higher gain. On the other hand, when the metamaterial 
sample becomes thicker, there is a significant influence of the energy reflected 
from the interfaces between metamaterial and air, which builds up a complicated 

dimensions, there are two different thicknesses at which the energy radiated through 

thickness of 14 layers).  
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Fig. 3 Measured radiation pattern of a monopole embedded into wire media (large sample,

standing wave pattern inside the sample. Since the two samples have different 

broadside (0°) appear. This effect was predicted by theoretical analysis in [8] and 
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The considered smaller sample (0.155 × 0.155 m) of the metamaterial was also 

realized as an open-ended standard X-band rectangular waveguide (cross section 

 
 
 
 
 

the relative improvement was not so pronounced as in the case of the quarter wave 

metamaterial consisting of six wire layers, while at 11 GHz the measured gain was 
11.2 dBi for the sample with 2 and 14 layers (Fig. 5). The last antenna that was 
embedded in the metamaterial was the optimal pyramidal horn (gain of 12 dB)  
operating in 10 GHz band [5, 6]. The horn antenna aperture was embedded in the 
metamaterial with 0.155 × 0.155 m cross section, while the number of wire layers 
was changed between 2 and 14. In this experiment no gain improvement was  
observed. This is actually the expected result. A wire-based slab cannot improve 
the gain if the antenna aperture already has a (nearly) uniform distribution of 

to be a convenient method of gain increase only in the case of low-directivity  
radiators.  

between 3 and 4 dB in the considered frequency band (Fig. 5).  
with dimensions 22.86 × 10.16 mm). The measured gain of this antenna was 

used to increase the directivity of an aperture antenna. The aperture antenna was 

slab. 

in 0° direction. 
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the top of the metamaterial parallelepiped becomes minimal, yielding optimal gain 
in broadside direction. Thus, the thickness of the wire-based ENZ layer is a critical 
design parameter. 

 

 Fig. 4 Comparison of the measured gain at
10.25 GHz and in 0° direction for the 

equivalent currents. Thus, embedding an antenna into wire-based ENZ slab appears 

monopole antenna embedded in large (0.31 
× 0.31 m) and small (0.155 × 0.155 m) wire 

monopole. The maximum gain of 10.2 dBi at 10.5 GHz was obtained with the 

Again, the wire-based metamaterial overlay produced increased directivity, but 

Fig. 5 Measured gain of the open waveguide 
embedded in thin-wire based metamaterial 
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3  Shortened Horn Antenna with Embedded Wire-Based Slab  

It is very well known that the gain of the horn antenna depends both on aperture 
size and horn length. Maximal gain is associated with the optimal horn length that 
does not cause excessive phase variations of the wave front across the aperture 
(see the optimal horn sketched in the upper part of Fig. 6a). If one manufactures a 
shorter horn with the same aperture (lower part of Fig. 6a), it will have inherently 
lower gain due to pronounced phase variation caused by the spherical wave front. 
A very recent theoretical study [11] proposed a method of gain increase of such a 
horn by employing double-wire medium, operating in the ENZ region. The obtained 
simulation results showed gain equal to the gain of the full-length optimal horn 
within a finite bandwidth. One could say that the wire-medium straightens the 
wave front similarly to well-known metallic lenses [12]. However, the wire-medium 
slab is flat, so strictly speaking it is not a conventional lens. A more correct expla-
nation of the physics of gain increase is angular filtering with the ENZ slab [10]. 
We performed experimental investigation [15, 16] that verified the theoretical 
predictions of the phenomenon of gain increase, published in [11]. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

At first, the optimal horn was designed for operation in 10 GHz band. It had an 
aperture of 125 × 112 mm and the length of 190 mm (flare angle of 15°), and it 
was fed with an X-band waveguide (22.5 × 10 mm). The gain of this reference 
horn, obtained by full-wave simulations using CST Microwave StudioTM [13] is 
plotted in Fig. 7 (curve a). The gain varies from 20 to 22 dBi in the band from 9 to 
12 GHz. The curve (b) in the same figure shows simulated gain of the horn with 
equal aperture but with the shorter length of 99 mm (52% of the length of the opti-
mal horn as suggested in [11]) and flare angle of 27°. As expected, this antenna 
showed significantly lower gain, varying between 16 to 17 dBi in the band from 9 
to 12 GHz. In [11], a design with two perpendicular sets of wires (double-wire 

optimal full length
horn

shortened  horn

aperture A

aperture A

ENZ slab

Fig. 6 (a) Principle of shortening of the horn antenna  (b) Example of realized experimental 
shortened horn antenna with embedded ENZ metamaterial lens.  

a) b)
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media) was suggested. However, it is clear that the vertical component of the elec-
tric field, associated with waveguide TE01 mode, will be predominant inside the 
antenna. Thus, it appears that another (horizontal) set of wires has very little impact 
on the antenna parameters, and it is almost redundant. After verification of this 
hypothesis by full-wave simulations, it was decided to use only one set of wires 
aligned in vertical direction. 

Experimental shortened horn was manufactured out of 1 mm thick brass plates 
and equipped with single-wire-based metamaterial with three layers of wires. The 
wire medium was based on bare copper wires (diameter of 0.7 mm) [15, 16]. The 
lattice constants were 14 and 8.5 mm in longitudinal and transversal directions, 
respectively. The slab comprised three layers with 16, 14 and 12 wires, respec-
tively. The first and last wire in each layer were located at the distance of half of the 
unit cell from the horn inner wall. A number of holes that fit the described pattern 
of wires were drilled in the horn walls. The wires were stretched across the horn 
inner space and soldered onto the horn body (Fig. 4b). Gain, return loss, radiation 
pattern and cross-polarization level were measured using a standard horn and a HP 
8720B network analyzer. Some of the measurement results are shown in Figs. 7 
and 8. 

It can be seen (curve denoted as c in Fig. 7) that the phenomenon of gain  
increase of more than 2 dB, predicted for double-wire medium filling in [11], was 
also observed here, for the case of the single-wire medium. The measured band-
width was 12%, which is narrower than the bandwidth predicted by simulations in 

Fig. 7 (a) Simulated gain of full length optimal 
horn  (b) Simulated gain of shortened horn (c)
Measured gain of shortened horn (52% of the 
length of an optimal horn) with embedded sin-
gle-wire-based slab (wires aligned along verti-
cal transversal direction). 

Fig. 8 (a) Simulated gain of full length opti-
mal horn  (b) Simulated gain of shortened 
horn (c) Measured gain of shortened horn 
(33% of the length of an optimal horn) with 
embedded double-wire-based slab (wires 
aligned along vertical transversal direction 
and along  horizontal longitudinal direction). 
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[11], but consistent with the first experimental results presented in [15]. The 
measured radiation patterns at the frequency of 9.7 GHz (not shown in figures, 
due to lack of space) revealed a 3 dB beam width of 16° with a side lobe level of 
−20 dB. The return loss and cross-polarization levels within the operating band 
were found to be better than −10 and −27 dB, respectively. 

Finally, it was attempted to further decrease the length of the shortened horn. If 
the horn is very short, the wave front will be almost spherical with a pronounced 
longitudinal component of the electric field vector. Thus, it appears that the inclu-
sion of wires in the longitudinal direction should improve the wave front straight-
ening and eventually yield an even shorter antenna. A new experimental horn with 
two sets of wires and a length of only 66 mm (33% of the length of optimal horn) 
was prototyped. It had 10  6 wires with a lattice constant of 14 mm in transversal 
direction and 13 × 10 wires with a lattice constant of 8.5 mm in longitudinal direc-
tion. The measurement results (Fig. 8) revealed the gain increase of almost 7 dB 
comparing to the bare shortened horn, within 8% fractional bandwidth. 

One concludes that with the help of a wire medium slab it is possible to con-
struct a rather short horn antenna (down to 33% of the length of the optimal horn) 
that yields almost the same gain as the optimal horn, but in a narrow band.  

4  Scanning Leaky-Wave Antenna  

A leaky-wave antenna is a fast-wave guiding structure, in which the traveling 
wave continuously loses its energy owing to radiation [17] (see the waveguide  
example shown in Fig. 9a). The angle of maximum radiation θm (azimuth angle in 
Fig. 9a) is determined using the simple fact that free-space propagation vector k0 is 
a sum of the transversal component of propagation vector in the space above the 
guiding structure kt and vector kl that describes propagation along the structure: 

                                ( )0
12

0
22 sin kkkkk lmlt

−=Θ⇒=+ (4) 

Recent introduction of a metamaterial-based leaky-wave antenna with back-fire 
to end-fire scanning capabilities has attracted considerable interest [19]. This  
antenna is based on a planar artificial transmission line that supports backward-
wave propagation, propagation with infinite wavelength and forward-wave propa-
gation. In our group, a similar idea was used for the construction of scanning 
leaky-wave antennas in wire-medium-based waveguide technology [24, 25].  

A waveguide loaded with the wire medium was experimentally investigated for 
the first time in [18]. The authors used a waveguide with square cross-section and 
it contained an array of two perpendicular sets of wires (similar to the sketch in 
Fig. 9a). The double-wire medium was thought of as a simple waveguide filling 
with a uniaxial permittivity tensor: 

 ×
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Here ε0 stands for the free-space permittivity while εp stands for two tensor com-
ponents associated with relative permittivity in transversal directions. Relative 
transverse permittivity is considered to be described by the simple Drude model 
(1) (dielectric function εp(f) with plasma frequency fp in (5)). If one fills a 
waveguide with such a material, the waveguide will support backward-wave 
propagation for frequencies either below fp (if fp < fc ) or below fc (if fc < fp), fc  
being the cut-off frequency of TM11 mode [18]. For frequencies located between fp 
and fc, there will be no propagation (stop-band). For frequencies either above fc (if 
fp < fc ) or above fp (if fc < fp), the propagation will take place in the form of for-
ward waves. Experimental results presented in [18] appeared to be consistent with 
this simplified explanation. A similar approach was used in the experimental study 
conducted in our group [20, 21]. Additionally, it was shown possible to close that 
gap between the backward-wave mode (kl < 0 mode that corresponds to ENG part 
of the dispersion curve) and the forward-wave mode (kl > 0 mode that corresponds 
to EPS part of the dispersion curve). It could be achieved by a simple choice of the 
plasma frequency of wire medium that would be equal to the cut-off frequency of 
the TM11 mode (fc = fp). At that frequency (fp) the propagation should take place 
with infinite wavelength (kl = 0 mode). At first sight, the results in [20, 21] again 
seemed to be consistent with the simple Drude model (1) of wire-medium.  

However, in [20, 21] it was also noted that the measured plasma frequency of 
the wire medium in the waveguide was different from the value predicted by the 
simple Drude model by more than 30%. This difference was attributed to manu-
facturing errors. On the other side, the wave vector in TM operated waveguide has 
components parallel to the wires and according to the theory presented in [14, 22] 
the spatial dispersion should take place. Thus, it seems that one should use the cor-
rected Drude model (2). The inconsistency between approaches [18, 20, 21] and 
[22] was resolved in the experimental investigation in [23]. It was found that the 
spatial dispersion indeed occurred in the TM-operated waveguide and that the  
dispersion curve had both a pole and a zero (similarly to the Lorentz dispersion 
model). Above the frequency of the pole, the qualitative behavior is indeed similar 
to that predicted by the simple Drude model, but with an apparently shifted plasma 
frequency. Although the background physics of spatial dispersion is fundamentally 
different from the dispersionless case, it is again possible to identify the ENG, the 
ENZ and the EPS regions. Thus, it is possible to construct a waveguide with a 
smooth transition from the backward-wave propagation band, through the point 
with infinite wavelength, to the forward-wave propagation band. If one manufac-
tures a longitudinal slot along such a waveguide, there will be leaky wave radia-
tion from the structure. This new structure [24] is a waveguide analogous to the 
planar leaky-wave antenna introduced in [19].  
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The wire-based waveguide was manufactured from brass and it had dimensions 
of 22 × 22 × 80 mm (Figs. 9a and b). Twenty four copper wires (diameter of 0.5 
mm) were used for the construction of filling. The wires were stretched between 
waveguide walls and soldered onto the waveguide body. Each ‘layer’ comprised 
four wires with a distance between two neighboring wires of 11 mm and a  
distance between the wire and neighboring waveguide wall of 5.5 mm. The dis-
tance between neighboring layers was also 11 mm. A slot with dimensions 56 × 
2.5 mm, lying along the line of symmetry, was machined on the top waveguide 
wall. The waveguide ends were closed with two metallic hatches with N coaxial 
connectors. The connectors’ pins lied along the waveguide line of symmetry. They 
actually acted as small monopole antennas, providing excitation of TM11 mode. 
One waveguide end was used as the antenna feed, while the other end was simply 
terminated with a coaxial matched load. The far-field radiation pattern was meas-
ured at three different frequencies (7.9, 9.7 and 10.7 GHz). These three frequen-
cies correspond to the backward-wave mode, k = 0 mode and the forward-wave 
mode of operation, respectively. The measured radiation patterns (Fig. 10)  
revealed scanning from −60° (back-fire) to +60° (end-fire). Also, the radiation in k 
= 0 mode in the broadside direction is clearly visible. One also notices the exis-
tence of one unexpected side lobe at the frequency of 7.9 GHz. This occurred due 
to poor matching of coaxial termination to the waveguide wave impedance, which 
in turn caused the standing wave. These matching problems have been overcome 
in the new design presented in [25].  

Thus, the wire-based waveguide that operates in all three regions of the disper-
sion curve of the wire medium with spatial dispersion may be used for construct-
ing a scanning leaky-wave antenna. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

coaxial feed the thin-wire inclusions
lattice constant of 11 mm

to matched 
load

radiating slot
azimuthal 
angle

b) 

a) 

Fig. 9 (a) A sketch of the experimental wire-
based leaky-wave antenna; (b) A photo of the 
experimental wire-based leaky-wave antenna. 

Fig. 10 Measured radiation patterns of the
experimental wire-based waveguide leaky-
wave antenna. 
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5  Conclusions 

It was shown experimentally that all three regions of the dispersion curve of wire 
media (the ENG region, the ENZ region and EPS region) can be successfully used 
in antenna technology. Possible applications include gain increase of simple low-
directivity radiators, shortened horn antennas, and back-fire to end-fire scanning 
leaky wave antennas.  
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Optimization of Radar Absorber Structures 
Using Genetic Algorithms  
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University Paris X, Nanterre, Pôle Scientifique et Technique de Ville d’Avray, Groupe 

Abstract In this paper, a real-valued genetic algorithm (GA) is implemented to 
construct Radar Absorbing Materials RAM by searching the characteristics 
(thickness T, permittivityε , permeabilityµ  and conductivity σ) which ensure the 
minimization of the reflectivity on a frequency band. The genetic algorithms used 
the reflectivity in fitness function to direct the research to the best configuration. 
Here in, we dealt with the narrowband absorbers (Salisbury screen and circuit 
“Analog” RAM) and the broadband absorbers (Jaumann screen). Numerical 
results are presented and showed the efficiency of the methods. 

1  Introduction 

In electromagnetic applications, the problems are complex since there is no prior 
knowledge of the topology of the multidimensional research space, it is deter-
mined by the complex interdependence of Maxwell’ equations. Several works 
exploit various theories and techniques to solve electromagnetic problems. The 
use of evolutionary techniques to automate the design of antennas is now 
intensively used; indeed, considerable research has been focused on the use of 
evolutionary techniques in electromagnetic [1–5].  

Genetic algorithms GAs [6] are search procedures based on the mechanics of 
natural selection and genetics; they are increasingly being applied to difficult 
problems. In [2], the NASA Ames Research Center (Evolvable Systems Group) 
conducts research on antenna designs. Their approach is to encode antenna 
structure into a genome and to use GA to evolve the desired antenna performance 
as defined in a fitness function. In [3], the genetic optimization allows finding the 
electric properties of a number of layers positioned at either the center of an 
infinitely long rectangular waveguide, or adjacent to the perfectly conducting back 
plate of a semi-infinite shorted-out rectangular waveguide. The GA was used to 
minimize the reflectivity of the waveguides. In [4], the authors adopted the binary 
GAs with the finite element boundary integral method to optimize the geometry 
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parameters of the periodical absorber structures. In [7], the GAs are used to find 
the geometrical and physical properties of a multilayer absorbing structure that 
can minimize the reflection coefficient on a X-band and for a wide incidence 
angle. The compute of the reflectivity is doing with the concept of impedance 
transformation [8, 9]. 

In [10], the GAs are associated with the differential theory [11] to analyze the 
scattering wave by rough surfaces, a stack constituted by a homogeneous layer, 
lamellar periodic structure and layer of Teflon on the upper is studied. A 
frequency selective surface (FSS) (A stack of metallic grating with homogeneous 
dielectric layer) is optimized [12], where the analysis of periodic metallic layer is 
doing with the curvilinear coordinate based method [13]. 

Here in, we explore the GAs for designing various types of absorbers: The 
narrowband absorbers (Salisbury screen and circuit “Analog” RAM) and the 
broadband absorbers (Jaumann absorbers). 

In following section, we present briefly the GAs, after, we present the various 
studied structures and application results. Finally, we give our conclusion and 
perspectives. 

2  Genetic Algorithm Optimizers  

Genetic Algorithms GAs are stochastic search procedures modelled on the 
Darwinian concepts of natural selection and evolution. As an optimizer, the 
powerful heuristic of GAs is effective at solving complex, combinatorial and 
related problems. GA optimizers are particularly effective when the goal is to find 
an approximate global maximum in a high-dimension, multimodal function 
domain in a near-optimal manner.  

In GAs, a set or population of potential solutions is caused to evolve toward a 
global optimal solution. This evolution (Fig. 1a) occurs as a result of pressure 
exerted by a fitness-weighted selection process and exploration of the solution 
space is accomplished by crossover and mutation of existing characteristics 
present in the current population.  

Crossover involves the random selection of a crossover site(s) and the 
combining of the two parent’s genetic information (Fig. 1b). The mutation [6] 
serves as a means for introducing new, unexplored points into the GA optimizer’s 
search domain. It introduces the genetic material that is not present in the current 
population. 

The GAs evolve according a fitness function which measures the ability of the 
solution candidate to adapt to the problem. The best solution will have the highest 
or lowest fitness function. Indeed, the fitness function is the link between the
physical problem and the GA optimization process. 

The GAs are stopped when either a design goal is reached, or no progress is 
observed in the population for several generations. 

N. Lassouaoui et al. 
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Fig. 1 Various steps of genetic algorithms. 

3  Studied Absorber Structures  

The literature presents a great number of absorbers [8, 9, 14–17]. Here in, we 
present the applications of GAs in designing absorber structures. Firstly, we study 
the Radar Absorbing Materials which operate optimally only in narrow band about 
a resonant frequency (Salisbury screen and circuit analog RAM). Then, we present 
an absorber (Jaumann absorber) which operates on a broad band. We give the 
application results, and we analyze the absorbers according the electric and 
dimension characteristics of the layers.  

3.1  Salisbury screen 

If a thin sheet is located as an intervening medium between the free space and a 
flat metallic surface, the input impedance Zin may be obtained by combining the 
effects of the sheet resistance Rsh and the transformed impedance of the metallic 
surface, which act in parallel. The sheet material Rsh is expressed by its 
conductivity shσ and its thickness tsh: 
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A Salisbury screen (Fig. 2) is defined by adjusting the spacing between the thin 
sheet and the metallic surface to 4λ ; and for incidence normal to the sheet, the 
input impedance is identical to Rsh, hence the condition for zero reflection for such 
a thin screen shielding metallic surfaces is:   

    Rsh=Z0                                                       (2) 

With Z0 is the characteristic impedance of the free space (377Ω /square).  

Fig. 2 Salisbury screen. 

With Eqs. (1) and (2), the exact thickness tsh of the resistive sheet is obtained: 

         )(1 0 shsh Zt σ=                                 (3) 

We use the GAs to search the characteristics of Salisbury screen which ensures 
the minimization of the reflectivity for a given frequency f. At each generation, the 
reflectivity (in dB) of the best solution in the population is taken as the fitness. We 
note that for the spacer, we take these characteristics:  

The thickness 4/λ=spd , the permeability 1=spµ , the imaginary part of the 

permittivity is equal to zero. 
By Fig. 3, we give the obtained results of optimization with normal incidence at 

frequency 5 GHz. The Fig. 3a gives the evolution of the fitness in genetic process. 

the reflectivity. We note that each level corresponds to a configuration;  at final 
generation, the frequency response of the Salisbury screen is showed by Fig. 3b, 
we achieve −28 dB at 5 GHz and we note the periodicity of the frequency 

The obtained characteristics are:  
– The permittivity, permeability, conductivity and thickness of the resistance 

sheet are respectively: 

39.2=shε   1=shµ   mssh /43=σ  tsh=61,1µm 

– The permittivity of the spacer is:   1.1=spε  

Figure 4 gives the reflectivity according to the incidence angles at 4.25 GHz, 
the performances decrease in away from the normal, which is physically correct. 
   

response, where the peaks appear at discrete frequencies of (2n + 1)  4.25 GHz. 

We check that it is doing in decreasing way, since the hope is the minimization of 

× 
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                 (a)     (b) 

Fig. 3 Optimization of the Salisbury screen for normal incidence at 5 GHz (a) Fitness according 
the generations, (b) frequency response of the obtained configuration at final generation. 

 

Fig. 4 Reflectivity according incidence angles at frequency 4.25 GHz. 

It is possible to replace the Salisbury screen by a Dallenbach absorber [8]. This 
latter is constituted by a finite layer of dielectric material backed on the 
conducting surface. It is analyzed as a function of both permittivity and 
permeability of the material. The results [8] in Fig. 5 are essentially that of a 
power reflection on the permittivity plane corresponding to each thickness. Unlike 
the Salisbury screen, the zero reflection condition can be satisfied also with a 
thickness smaller than λ/4 for more than one set of complex permittivity values. 

  

   
  (a)     (b) 

Fig. 5 Real and imaginary parts of the relative permittivity versus thickness of the Dallenbach 
layer, with the relative permeability values: 1.05 (A), 1.5 (B), 2 (C) and 5 (D). 
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3.2  Circuit analog RAM  

When a layer of patterns of finite conductivity is deposed over the spacer, it 
modifies the effective input impedance [8]. In practice the layer is in the form of 
an array of two-dimensional patterns which have characteristics reactance 
associated with them. This constitutes yet another powerful method of designing a 
resonant absorber. The class of such absorbers is known as circuit “analog” 
absorber or CA radar absorbing materials. Some of the well-known CA-RAM are 
constructed with wires, strips, intersecting wires, crossed dipoles, etc. 

CA-RAM patterns have the property of resonating at a characteristic frequency, 
which is function of geometry, orientation and patterns density. By adjusting these 
physical attributes, it is possible to obtain the resonance, and the reflection minima 
at any desired frequency. An example is an array of wire elements placed on a 
spacer (Fig. 6). 

Fig. 6 CA-RAM with wire grids of radius r and pitch p. 

The metallic wires are assumed to be of radius r and placed parallel to each 
other at a pitch p. The effective impedance for such wires may be expressed for 
oblique incidence θ  by [8]: 
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Where the internal impedance of the metallic wires in the microwave region is 
given as [8]: 
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The input impedance for a metal backed configuration with a spacer of 
thickness dsp is obtained by taking the parallel combination [8]: 

   ( )
( )θβ

θβ
cos

costan

spspwires

spspwires
in danjZZ

dZjZ
Z

+
=                 (6) 

P

Grids
Dielectric Spacermsp,esp,dsp

r

N. Lassouaoui et al. 



Optimization of Radar Absorber Structures Using Genetic Algorithms 159 

The reflection coefficient for CA-RAM may be determined by: 
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Z0 is the characteristic impedance of the free space. 
By the following Fig. 7, we give the obtained results for normal incidence at 

the frequency 5 GHz. The evolution of the fitness in genetic process and the 
frequency response of the obtained solution at the generation 500 are respectively 
given by Fig. 7a and b. A minimum is found at 5 GHz where we reach almost   
−33 dB, and some local minima around −10 dB appear at frequencies up to 5 
GHz. The obtained characteristics are: 

– The permittivity, permeability and thickness of the spacer: 
  99.3=spε       1=spµ         dsp

– The conductivity, pitch and radius of the grids: 
  73.1=σ s/m        p=2 mm        r=0.5  

The frequency response and the characteristics of the solution at generation 100 

where the optimization is doing.  
With the obtained configuration at generation 500, we analyze the dependence 

of the reflectivity according the incidence angles and the characteristics of  
the grids. With Fig. 9a, we note that more we approach the grazing incidence 
angle (90°), the performance decreases, what is physically correct since more we 
move away from the incidence normal, more the reflection decreases.  

The electromagnetic absorption deteriorates rapidly on other side of the 
characteristics of the grids. Indeed, the reflectivity approaches zero (Fig. 9b–d) 
after some thresholds of the conductivity, the pitch and the radius of grids. 

 

     
  (a)             (b) 
Fig. 7 Obtained results at generation 500 for normal incidence and optimization at 5 GHz. 

=9.845 mm 

µm

are given by the Fig. 8, we obtain a pick about −19 dB at the frequency 5 GHz 
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Fig. 8 Results at the generation 100 for normal incidence and optimization at 5 GHz. 

         
 (a)                 (b) 

          
  (c)     (d) 

Now, we present absorbers with broadband characteristics, which are achieved 

3.3  Jaumann absorber screen  

A commonly used technique to obtain RAM with broadband radar cross section 
(RCS) reduction characteristics is to use multiple layers of narrowband absorbers 
[8]. A multilayer Salisbury screen uses several layers of suitably spaced resistive 

755.3=spε  

           1=spµ  
dsp=10 mm 

            1=σ s/m 
            p=2 mm 
            r=0.5 mµ  

by exploiting the multiple layers of narrowband absorbers. 

(c) pitch,
 (d) radius of grids. 
Fig. 9 Reflectivity at f = 5 GHz according to the: (a) incidence angles, (b) conductivity,  
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sheets defines the Jaumann screen. The net effect of this configuration is 
resonance at discrete sets of frequencies resulting in multiband absorber. The 
expression for the reflection coefficient [8, 9] of a multilayered Jaumann absorber 
is essentially simple but recursive in nature (Fig. 10).  

Fig. 10 Jaumann absorber with two resistive sheets. 

By Fig. 11, we present the obtained results for optimization at frequency 5 GHz 
for normal incidence. With Fig. 11a, we check that the GAs allow the research 
towards the configurations which decrease the reflectivity. The frequency 
response of the solution at generation 100 presents various modes where the 
resonance is doing at various frequencies (Fig. 11b). The obtained configuration:   
1st sheet:   1.11 =shε         11 =shµ                  mssh /501 =σ  

    Rsh1=379.8 square/Ω                                tsh1=52.7 µm 
2nd sheet:  06.22 =shε         12 =shµ                  mssh /502 =σ  

          Rsh2=250 square/Ω                                    tsh2=80 µm  
Dielectric spacers:     91.1=spε                                 dsp= 24.9/λ                        

    
              (a)        (b) 

Fig. 11 Obtained results for the two layer Jaumann absorber for normal incidence. 

In the case of a three layer Jaumann absorber, we give the results for normal 
incidence and at 5 GHz. By Fig. 12b, we see various modes where the reflectivity 
is minimal. The obtained characteristics are: 
1st sheet:   04.31 =shε                 11 =shµ                   mssh /561 =σ  

          Rsh1=561 square/Ω                                   tsh1=31,7 µm 
2nd sheet:   58.12 =shε               12 =shµ                   mssh /572 =σ  

           Rsh2=371 square/Ω                                  tsh2=47.3 µm 

Resistive sheet I
dielectric spacer
Resistive sheet 2
dielectric spacer
 pec

d
sp

d
sp
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3rd sheet:  44.13 =shε                 13 =shµ                  mssh /573 =σ  
          Rsh3=250 square/Ω                                   tsh3=70.3µm 

Dielectric spacers:  70.1=spε                                   dsp= 10/λ   

      

  
  (a)                     (b) 

Fig. 12 Three layer Jaumann absorber. 

We propose to analyse the Jaumann absorber according to the number of 
layers. Then, we compare between (Fig. 13): 

– The Jaumann absorber with three layers by using the obtained configuration 
from the optimization for normal incidence at 5 GHz. 

 
Fig. 13 The reflectivity by Jaumann absorbers with three and two layers for normal incidence. 

minimal, where at some frequencies; we have a difference of more −5 dB. 

– The Jaumann absorber with two layers by using the same configuration of 
the two up layers of Jaumann absorber with three layers. 

   We can see that with three layers (Fig. 13), the reflectivity is better, since it is 

N. Lassouaoui et al. 
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4  Conclusions 

In this paper, we have studied the electromagnetic absorbers and used the genetic 
algorithms to search the characteristics which ensure the desired performances. 

The main characteristic of the genetic algorithms is the ability to search in 
multidimensional space the combination of the material characteristics (ε, µ, σ, 
thickness) of absorbers which ensure a better reflectivity on a frequency band.  

In the genetic interface, the parameters (crossover and mutation rates, the 
replacement percentage) are computed in automatic ways by the program to allow 
an automatic research. We also supervise the diversity of the population to avoid 
the stagnation of the research and allow the best exploration of the research space. 

In future works, we hope to study and use the statistical approaches for 
comparing the optimized materials with existing and well identified materials, and 
we explore the designed genetic interface to optimize various high-impedance 
surfaces and antennas. 
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Abstract We report a type of planar metamaterials that can support a high-quality
factor resonance mode, namely trapped-mode, excitation of which is polarization
insensitive. The strong energy density of electromagnetic field between metallic pat-
terns of the metamaterial structures shows the potential for development of spaser
(surface plasmon amplification by stimulated emission of radiation) and related
novel photonics.

1 Introduction

Controlling the reflection and/or the transmission frequency properties of surfaces
is an important problem of applied electromagnetics. For various microwave appli-
cations, there is a need to use controlling material layers with thicknesses extremely
small in comparison to the wavelength. These frequency selective surfaces (FSS)
are boundary surfaces consisting of some metal or dielectric bodies.

There are well known periodic arrays of different shapes metal patches and the
self-resonant grids such as grids of Jerusalem conducting crosses which are used
as FSS. Practically, the first low frequency resonance of such structures appears for
a wavelength a bit greater than the array period. The quality factor of such struc-
tures resonances is not high. However, achieving resonances with high-Q factors is
essential for various applications of planar metamaterials.

Generally speaking, the high quality factor and the layer small thickness are con-
tradictory requirements. Actually, a thin open structure cannot have inner resonating
volumes and on the other hand, resonating inclusions usually are strongly coupled
with free space. Consequently, their resonance quality factor is low. Nevertheless,
there are ways to produce very thin structures showing high quality factor frequency
resonances (see [1]). This has been achieved by a resonance regime of so-called
trapped modes.

S. Zouhdi et al. (eds.), Metamaterials and Plasmonics: Fundamentals, 201
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If we want to design very thin structures having resonant band characteristics of
reflection or transmission with a high quality factor, the consistent step is to focus
on the way of structure complexity. Certain of the multi-element arrays have this
desired property.

Due to radiation losses, resonance frequencies of open systems composed of
nondissipative elements are generally complex valued. The quality factor of the

modes correspond to real eigenvalues of the relevant boundary value problem that

Few years ago extremely high-quality factor double-periodic two-element arrays
of split C-shaped particles (double-split rings with certain small asymmetries) were
proposed and theoretically studied in [1]. The evidence of high-Q trapped mode
resonances of arrays of asymmetrically split C-shaped elements was argued by our

cations. They were studied theoretically as high-Q metafilms for improved spectral
and spatial filtering in WLAN bands in [3, 4]. Numerical simulation of the struc-
tures was performed as frequency selective surfaces for high sensitivity terahertz
sensing in [5]. Recently we showed [6] by simulation that combining of this type
of planar metamaterials and surface plasmon amplification by stimulated emission
of radiation (spaser) ideas [7] one can create a narrow-diversion coherent source of
electromagnetic radiation that is fueled by plasmonic oscillations.

Characteristic feature of all designs involved the using of excitation of the cur-
rent trapped modes and considered before was that they led to polarization sensitive
planar metamaterials. The main purpose of this work is an introducing of four-fold
symmetry polarization insensitive planar periodic two-element structures and the
study of resonance properties of these arrays which can possess frequency charac-

2 Results and Discussions

In this paper, we identify a new class of four-fold symmetry planar metamateri-
als that can support a trapped mode. The sharp high quality-factors resonances
are demonstrated theoretically and experimentally. Remarkably, achieving the sharp
high quality-factors resonances in such metamaterial requires no symmetry break-
ing, and therefore excitation of the trapped modes is polarization insensitive.

We study two fashions of our metamaterial. They both are double-element planar
arrays of a metal strip pattern, which are arranged in a regular square periodic grid
and placed on a thin dielectric substrate. The first one consists of pairs of concentric
metal rings, as shown in Fig. 1a. Computation of transmission of this kind array

experimental study [2]. These designs were shown to be promise for various appli-

is real resonance frequency of an open system.

materials build upon multi-element arrays via engaging trapped modes. The trapped

system depends from ratio of power of stored energy to power of radiation losses.

teristics with high quality factors due to excitation of trapped mode kind of field.

Consequently, the trapped modes are of considerable importance in applications
because the system can be excited more efficiently due to low radiation losses.

However, exceptionally strong and narrow resonances are possible in planar meta-
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Fig. 1 Translational cell of the planar array of concentric metal rings (a) and metal complex el-
ements consisted of the cross placed inside of the ring (b). The sizes are pointed in millimeters.
The arc radii are pointed to middle lines of curvilinear strip elements of the arrays. All metal strip
elements of both arrays are 0.4 mm width. The metal elements of arrays are placed on a dielectric
1.6 mm thickness substrate.

was fulfilled in [8]. The second fashion of our metamaterial is composed from more
complex double elements consisted of crosses placed inside of rings, see Fig. 1b.
Diameter of the ring is the same as a diameter of the outer ring of the array of
concentric rings. The shape and sizes of the cross were chosen so that its perimeter
along middle line of strip would be exactly the same as the length of the ring.

The double-element pattern of each sample was etched from 35 μm copper
cladding covering FR4 PCB substrate of 1.6 mm thickness. Relative permittivity
of substrate is approximately ε = 4.5− i0.1. The unit translational cell of the pat-
terns is a square with the size of 15 × 15 mm (see Fig. 1). Such arrays do not diffract
for any angle of plane wave incidence at frequencies below 10 GHz and they do not

The overall size of the samples used in our experiments was approximately
220× 220 mm. All our measurements were performed in a microwave anechoic

tennas (Schwarzbeck BBHA 9120D) equipped with dielectric lens concentrators
and a vector network analyzer (Agilent E8364B).

Reflected and transmitted electromagnetic fields and surface currents induced
on the arrays strip elements were calculated with the well established method de-

integral equation for the surface current induced by the electromagnetic field on
the thin narrow metal elements of array followed by calculation of scattered fields.
The equation is derived with boundary conditions that assume a zero value for the
tangential component of the electric field on the metal strips.

Figure 2 shows the results of transmission and reflection measurements and nu-
merical simulations conducted at normal incidence on the array of double concentric

chamber in 2–12 GHz frequency range using linearly polarized broadband horn an-

rings (DR-metamaterial). Here and below, we present the values 20 lg |R| (dB) and

scribed in [9]. The method is based on the method of moments to solve a vectorial

20  lg |T | (dB) to characterize the reflection and the transmission of arrays where

diffract normally incident electromagnetic wave for frequencies lower than 20 GHz.
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Current

Absorption

a

b

Fig. 2 Normal incidence reflection (a) and transmission (b) spectra of the planar DR-metamaterial
and the reference one-element periodic structure composed of the larger rings. Solid lines represent
experimental data, dashed lines correspond to the theory (the method of moments). Calculated
current values (b) are shown by dotted line for the outer ring and dash-doted line for the inner ring
at the point of corresponded ring with maximal amplitude of the current.

R and T are the classical reflection and transmission coefficients determined via
electric field strength. For both transmission and reflection, the theoretical calcula-
tions showed exceptionally good agreement with the experimental results assuming
ε = 4.5− i0.1. It should be noted that the spectral response of the planar metamate-
rial showed no polarization dependence, which is consistent with the high degree of
symmetry of its unit cell.

The measured spectra reveals a very broad stop-band split by a sharp resonant
feature at around 6.2 GHz . In reflection it is seen as a narrow dip, where the reflec-
tivity level drops below 5%, that separates two broad reflection resonances centered
at correspondingly 5.8 and 8.3 GHz. In transmission it corresponds to a narrow
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pass-band with the maximum transmission level exceeding 65% and the spectral
width of about 0.7 GHz measured as a full width at half maximum (the quality
factor is approximately Q ≈ 9).

Importantly, the response of a reference metamaterial composed of the single
rings of the larger radius revealed a very broad stop-band (reflection resonance with
Q ≈ 1) (see Fig. 2).

The origin of the narrow resonant band of transparency can be traced to the ex-
citation of so-called trapped mode, which are anti-symmetric current mode that is
weakly coupled to free space. These modes are normally inaccessible, but can be
excited if, for example, the metamaterials particles have certain structural asymme-
try [1, 2]. The trapped-mode nature of the metamaterial’s response was confirmed
by our numerical simulations of current distributions.

We have calculated the current distribution along the inner and outer rings of ar-
ray. The currents have maximal amplitudes at the points with tangent to the ring par-
allel to the polarization direction of a normally incident wave. In Fig. 2b we present
the modeled frequency dependencies of the current amplitudes at these neighbor-
ing points of the inner and outer rings. It can be seen that both rings appear to be
equally strong excited in the frequency of the narrow pass-band. The analysis of
currents phases reveals that the induced currents in the inner and outer rings oscil-
late in opposite directions. An electromagnetic field of two close strips of the rings
is similar to the nonradiating field of a double-wire line of resonance length. Thus,
the opposite directed but being equal currents of the inner and outer rings of array
yield an electromagnetically trapped mode. Indeed, the scattered fields produced by
such current configuration is very weak since the electrical dipole moment is al-
most compensated, while higher multipole moments such as, for example, magnetic
dipole and electric quadrupole are absent due to symmetry of the DR-structure. As
a consequence, the coupling of the metamaterial array to free space and therefore
its radiation losses are reduced dramatically, which ensures much stronger induced
currents and higher Q-factors of the response than in the case of the dipole excitation
of the one-directional currents in the frequencies of the stop-bands.

It is important to note that in the DR-structure excitation and control of the
trapped mode requires no symmetry breaking, which makes it markedly different
from the trapped modes demonstrated recently in asymmetrically-split ring meta-
materials [1, 2]. In the present case the free-space coupling of DR-structure (and
consequently the width of the pass-band exhibited by the metamaterial) is exclu-
sively controlled by the difference in circumferences of the inner and outer rings.
Indeed, the pass-band is squeezed between two stop-bands related to the resonance
frequencies of inner and outer rings.

Since the resonance frequency of narrow metal strip element is controlled mainly
its stretched length, we designed a four-fold structure with equal circumferences of
inner and outer elements of double-element array composed from crosses and rings
(CR-array) (see Fig. 1b).

The measured and simulated frequency dependencies of reflection and transmis-
sion of CR-array are presented in Fig. 3. One can see a typical trapped mode res-
onance confirmed by frequency dependencies of the calculated current amplitudes
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Current

Absorption

a

b

Fig. 3 Normal incidence reflection (a) and transmission (b) spectra of the planar cross-ring pattern
metamaterial. Solid lines represent experimental data, dashed lines correspond to the theory (the
method of moments). Calculated current values (b) are shown by dotted line for the ring and dash-
doted line for the cross at the points of ring and cross with maximal amplitude of the current.

for crosses and rings of the array. The resonance frequency of pass-band is lower
than has been mentioned for the DR-array design. However, we do not observe an
enlarged quality factor. This CR-array of being equal-circumferential but complex-
shaped elements reveals approximately the same radiation losses as the DR-array.
Nevertheless, we suppose that double complex-shaped elements may be optimized
to high-Q resonance of four-fold symmetry array by using any algorithm of multi-
variate optimization.

The great feature of trapped mode resonances is a high density of electromag-
netic field energy concentrated inside and close to array. The electric field strength
reaches great values in the resonance frequency. Indeed, we observe an enlarged
absorption (1−|T |2 −|R|2) because of the power dissipation inside the substrate of
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both arrays (see Fig. 2a and Fig. 3a). Thus, the reflection and transmission of trapped
mode arrays are extensively dependent from dissipation. Therefore, these arrays
may serve to indicate a weak absorption of media located close to their surface. On
the other hand, the remarkably strong energy density of high-Q trapped mode res-
onance clears the way to achieve orders of magnitude enhancement of single-pass
amplification [6] of thin active medium layer with trapped mode array.

3 Conclusions

We demonstrate both numerically and experimentally that a trapped mode may be
excited in planar four-fold symmetry structures. Thus, high-Q very thin layers may
be designed with polarization insensitive features.

The type of polarization insensitive planar metamaterials is proposed that re-
veal high quality-factor resonance transmission in a wide stop-band range. The
trapped mode nature of this transmission resulting from excitation of anti-symmetric
weak radiative resonance currents is clearly recognized both theoretically and
experimentally.

The results also indicate that strong electric field strength concentrated by this
type of periodic structures is potential for development of metamaterial combining
with spaser (surface plasmon amplification by stimulated emission of radiation) and
related novel photonics.
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Abstract A rigorous semi-analytical solution for electromagnetic scattering from 
an array of parallel circular cylinders of arbitrary radii and positions due to a line 
source excitation is developed. The cylinders can be any of three materials: 
metamaterial, dielectric, perfect electric conductor or a combination. Two different 
applications are presented here; the use of the characteristics of metamaterial to 
enhance the performance of corner reflector antennas, and the creation of a plane 

 

1  Introduction 

The analyses of plane wave scattering from an array of parallel circular cross-
section cylinders can be used to study the radar cross-section of two-dimensional 
scattering object that can be constructed from an array of parallel circular 
cylinders [1–4]. The scattering of an obliquely incident plane wave on an array of 
parallel-coated circular cylinders is considered for TMz polarization in [5]. The 
scattering from an array of cylinders due to an electric line source excitation is 
important to study the radiation characteristics of an antenna. This paper will 
present a brief summary of this technique first, followed by a set of numerical 
validations of the results based on results reported in [6, 7]. 

Two practical applications are to be presented using the developed formulation. 
The first is the enhancement of a two dimensional reflector antenna. Metamaterial 
cylinders are placed in strategic positions adjacent to the reflector surface to 
increase the strength of the field at the feed/receiver element in the receiving 
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antenna mode, and to enhance the scattered far field in the transmitting antenna mode.

wave in the near field from an array of conducting cylinders excited by a line source.
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The second application is related to the creation of a plane wave region over a 
prescribed area for antenna measurement applications using an array of conducting 
cylinders. The size and position of the cylinders are to be optimized for controlling 
the amplitude and phase variation across the antennae under test [8]. The genetic 
algorithm (GA) [9–12] is used here to optimize the array configuration. 

2  Formulation 

The formulation is based on the scattering from an array of M cylinders parallel to 
each other and to the z-axis of a global coordinate system (ρ , φ , z) due to electric 
line source excitation. The incident electric and magnetic fields from an electric 
line source are expressed in the global cylindrical coordinate system (ρ , φ , z), for 

j te ω time dependence as 
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In terms of the cylindrical coordinates of the ith cylinder, whose center is 

located at (ρi′ ,φi′ ) as shown in Fig. 1, the incident electric field can be expressed 
as:  
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Where the parameter k is the free space wave number, (ρ0i , φ0i) is the position of 
the line source relative to the coordinate system of cylinder “i”, Jn(ξ) is the Bessel 
function of order n and argument ξ, and the H n

(2) (ξ) is the Hankel function of the 
second type of order n and argument ξ. 

The resulting z component of the scattered electric field from the ith cylinder 
and the transmitted z component of the field inside the cylinder material can be 
expressed, respectively, as 
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Fig. 1 The problem configuration. 

The φ components of incident, scattered, and inside the cylinder magnetic field 
can be expressed based on Maxwell’s equations as: 
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The expressions in Eqs. (4) and (7) indicate that both the electric and magnetic 

field components are based on the local coordinates (ρi , φi , z) of cylinder “i”.  
However, the interaction between the M cylinders in terms of multiple scattered 
fields requires a representation of the scattered field from one cylinder in terms of 
the local coordinates of another as shown in [13]. Therefore, the additional 
theorem of Bessel and Hankel functions are used to transfer the scattered field 
components from one set of coordinates to another. As an example the scattered 
fields from the gth cylinder in terms of the ith cylinder coordinates are 
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The solution of the unknown coefficients Ain and Bin can be obtained by 

applying the appropriate boundary conditions on the surface of all cylinders. For 
example the boundary conditions on the surface of the ith cylinder are given by: 
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After some mathematical manipulations and the application of the boundary 
conditions on the surfaces of all M cylinders one obtains 
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while the integers n, l = 0, ±1, ±2,… …, ±Ni and i, g = 0, 1, 2, ……, M. 
Theoretically, Ni is an integer which is equal to infinity; however, it is related to 
the radius “ai” of cylinder “i”, and type of the ith cylinder by the relation Ni ≈ (1 + 
2kiai). Equation (12) then can be represented in a matrix form such that: 
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                        [ ] [ ][ ].V S A=  (15) 
 
The solution of the above truncated matrix equation yields the unknown scattering 
coefficients Ain. 

For the case of normal incident TMz plane wave, one can easily express the 
field components be applying the same procedure used to derive the fields from a 
line source illumination, where the z component of the scattered field and the 
transmitted z component of the field inside the cylinder material have the same 
form as in Eqs. (4) and (5). The difference is in Eq. (13), such that 
 

  
where φ0 is the plane wave incident angle with respect to the negative x axis. 
Therefore the numerical simulation of normal incident TMz plane wave can be 
easily obtained from the line source simulation.   

The scattering of an obliquely incident plane wave on an array of parallel 
circular cylinders is considered for both TMz and TEz polarization in [4]. The case 
of coated cylinders was discussed in [5]. In this work, we consider only double 
negative (DNG) metamaterial with negative permittivity and permeability [14]. To 
show the effect of metamaterial, the wave number and the intrinsic impedance for 
the cylinder “i” can be expressed as 

3  Validation of the Numerical Results 

In order to prove the validity of the presented formulation, the total far electric 
field of a conducting cylinder is calculated at 300 MHz using a single and multiple 
cylinders simulations. The radius of the cylinder is a = 5λ and the position of the 
line source is ρ0 = 5.25λ and φ0 = 0. The results generated using the developed 
formulation as shown in Fig. 2, show a complete agreement with those given in 
Figs. 11–18 of [6]. In the multiple cylinders simulations, the scattered field from 
one conducting cylinder is expected to be the same as that of an array of cylinders 
having the same outer shape. In Fig. 3, 28 non-intersected conducting cylinders of 
radius 0.02λ are used to simulate a conducting cylinder of radius 0.2λ.  

In order to prove the accuracy of the technique in the case of metamaterial 
cylinders, Fig. 4 shows the near field distribution of a cylinder of radius 2λ excited 
by an electric line source located at ρ0 = 3λ and φ0 = 0. Figure 4a shows the case 
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of a dielectric cylinder with εr = 2, and Fig. 4b shows the case of a metamaterial 
cylinder with εr = −2, and µr = −1. The results show a complete agreement with the 
corresponding results presented in [7].   

4  Enhancement of Corner Reflector Performance 

In this section a 90° corner reflector antenna of arm length 1.2λ is simulated by 11 
conducting cylinders each having radius 0.1λ. To show the effect of metamaterial 
loading in capturing the incident electric field by the antenna receiving element, 
two metamaterial cylinders of εr = −5 and µr = −1 are added in front of the 
reflector at the middle of each arm as shown in Fig. 5. Figures 6–7 show the 
enhancement in the magnitude of the Ez component in front of the reflector due to 
the presence of the metamaterial cylinders in comparison with the unloaded corner 
reflector. For normal incidence, Fig. 6 represents the case of φI = 0, while Fig. 7 
represents the case of φI = 30. 

To further illustrate the radiation characteristics enhancement of corner 
reflectors, an electric line source is used to excite the antenna. The electric line 
source is added in front of the reflector at a distance S (the focal point) as shown 
in Fig. 8. The value of S was chosen to match the position of the focal point 
predicted from the results shown in Fig. 6. Figure 9a shows the near field 
distribution for a corner reflector excited by a line source at a distance S = 0.6λ, 
while Fig. 9b shows the case of corner reflector loaded with metamaterial 
cylinders excited by a line source at a distance S = 0.4λ. Figure 10 shows the 
scattered far field for both cases where a large enhancement of about 10 dB in the 
forward direction is observed.  
 

 
Fig. 2 Total Ez far field of a conducting cylinder of a radius a = 5λ excited by a line source at ρ0 
= 5.25λ and φ0 = 0. 
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Fig. 3 Total Ez far field of a conducting cylinder of a radius a = 0.2λ simulated by 28 conducting 
cylinders each of a radius a = 0.02λ excited by a line source at ρ0 = 0.3λ and φ0 = 0.  

 
                                 (a)                                                                          (b) 
 

Fig. 4 Total Ez far field of a cylinder of a radius a = 2λ excited by a line source at ρ0 = 3λ and φ0 
= 0. (a) Dielectric cylinder of εr = 2, (b) Metamaterial cylinder of εr = −2 and µr = −1. 

 

Fig. 5 The configuration of a 90o corner reflector antenna excited by a plane wave. 
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(a)                                                                                (b) 

Fig. 6 The Ez near field distribution of a corner reflector excited by a plane wave incident at θI = 
90 and φI = 0. (a) Conducting reflector, (b) Conducting reflector loaded with two metamaterial 
cylinders. 

     
(a)                                                                                (b) 

Fig. 7 The Ez near field distribution of a corner reflector excited by a plane wave incident at θI = 
90 and φI = 30. (a) Conducting reflector, (b) Conducting reflector loaded with two metamaterial 
cylinders.  

 

Fig. 8 The configuration of a 90o corner reflector antenna excited by a line source. 
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(a)                                                                                (b) 

Fig. 9 The Ez near field distribution of a corner reflector excited by an electric line source (a) 
Conducting reflector with S = 0.6λ, (b) Conducting reflector loaded with two metamaterial 
cylinders with S = 0.4λ. 

 

Fig. 10 The scattered far field of a corner reflector excited by an electric line source. 

5  Generation of a Plane Wave in the Near Field of a Line 
Source 

Creating a plane wave around an antenna is very important for accurate antenna 
measurements. The phase and amplitude variations through the antenna under test 
(AUT) must be within specified tolerances. The IEEE standard for non-low 
sidelobe antennas requires the separation distance R between the transmitting 
antenna and the AUT to be [8] 

22
ff

DR
λ

=  (18) 
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for a maximum phase error of π/8, where λ is the wavelength and D is the 
maximum dimension of the antenna. An antenna of maximum dimension of 10λ 
requires the separation of the transmit antenna to be Rff = 200λ. Since it is 
impractical to go far away from the transmit antenna to satisfy that, therefore other 
methods are needed to approximate a plane wave in the near field of the AUT. 
One possibility is to build an array of radiating elements that can project a plane 
wave at a prescribed distance [11–12]. Another method is to design an array of 
line sources that creates an approximate plane wave over a prescribed area. A new 
method to generate a plane wave in the near field using only one line source is to 
place an array of cylinders in front of the line source. The positions, spacing, and 
diameters of these cylinders are to be optimized to minimize the amplitude and 
phase variation at a certain prescribed plane wave area. 

 

 

Fig. 11 The size and position of the optimized array of seven conducting cylinders. 
 

 
(a)                                                                 (b) 

Fig. 12 (a) Field amplitude, (b) Field phase of an optimized seven element array of conducting 
cylinders at a distance of 20λ. 
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Fig. 13 The size and position of the optimized array of ten conducting cylinders. 

 

 
(a)                                                                          (b) 

Fig. 14 (a) Field amplitude, (b) Field phase of an optimized ten element array of conducting 
cylinders at a distance of 20λ. 

 
Figure 11 shows an array of seven conducting cylinders. The cylinders are 

parallel to the z axis, and the centers of all the cylinders are on the y axis. The line 
source is placed on the negative x axis at a distance λ from the cylinders. Genetic 
algorithm optimization is used to find the optimum diameter and position of  
the cylinders to construct a plane wave of width 10λ at a distance 20λ from the 
cylinders. The goal of the optimization is to get minimum variation in the 
amplitude and phase of the electric field in the specified positions. The optimized 
diameter and position for each cylinder relative to the line source position are 
shown in Fig. 11. Figure 12 shows the optimized amplitude and phase of the 
electric field relative to the amplitude and phase of a single line source. It is clear 
that the single line source field has less amplitude variation at the AUT than that 
of the array of cylinders, while the uniform array has less phase variation than the 
single line source. 
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To get a better plane wave representation, more degrees of freedom are needed 
for the optimization. Figure 13 shows an array of ten conducting cylinders. The 
cylinders are parallel to the z axis, and the centers of the cylinders are on the y axis 
and another line parallel to the y axis. The line source is placed on the negative x 
axis at a distance λ from the y axis. The optimized diameter and position of the 
cylinders relative to line source are shown also in Fig. 13. Figure 14 shows the 
optimized amplitude and phase of the electric field. The amplitude variation in this 
case is less than 1 dB, and the phase variation is smaller than π/8. 

6  Conclusions 

The analysis of the scattering from an array of parallel circular cross-section 
cylinders due to an electric line source is summarized. This solution is verified for 
metamaterial cylinders, and can be used to study electromagnetic interaction with 
two-dimensional scattering object that can be constructed from an array of parallel 
dielectric, conducting or metamaterial circular cylinders. The effect of metamaterial in 
enhancing the performance of a corner reflector antenna was studied. Significant 
enhancement of focused field in front of corner reflector antennas, and 
enchantment in the scattered far field are achieved. An array of conducting 
cylinders was used to generate a plane wave in the near field of a line source. A 
good approximation of a plane wave was achieved with less than 1 dB magnitude 
variation and less than π/8 phase variation.  
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Abstract The eigenmodes in the planar layered structures containing magnetically 
biased semiconductor films exhibit the unusual features of migrating between the 
frequency bands and layer interfaces. It is shown that at certain combinations  
of the structure parameters, the magnetoplasmons localised at opposite interfaces 
of the guiding layer can interchange their locations while preserving the parity of 
their field distributions. The intriguing properties of the nonreciprocal magneto-
plasmons are illustrated by their field and power flow distributions. 

1  Introduction 

Magnetically biased semiconductor-dielectric layered structures have been studied 
as an alternative to ferrite devices for mm-wave applications, see e.g. [1–4]. 
Magnetoplasmons guided by the semiconductor layers in Voigt configuration 
(magnetic bias in the layer plane perpendicular to the direction of wave propagation) 
are of particular interest owing to nonreciprocity of their propagation [4, 5]. 
Various approximations and direct numerical methods have been usually used for 
analysis of magnetoplasmons at the semiconductor-dielectric interfaces but the 
obtained results frequently suffered from uncertainty in identification of the physical 
solutions and interpretation of the numerical data [4, p. 260]. The difficulties were 
further compounded by the multiscale nature of the investigated structures and 
strong effect of the layer parameters on the characteristics of propagating waves. 

In order to address these problems, the spectra of magnetoplasmon modes and 
dynamic waves (leaky and ordinary surface waves) in a parallel-plate waveguide 
loaded with a tangentially magnetised semiconductor film are analysed in this 
paper using the rigorous dispersion equation (DE) for TM waves. The asymptotic 
solutions for the magnetoplasmonic resonances are obtained and applied to 
numerical evaluation of dispersion characteristics, and field and power flux 
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distributions of eigenmodes. The results of the analytical and numerical analyses 
presented in the paper demonstrate the novel properties of magnetoplasmons in 
thin semiconductor films surrounded by dissimilar dielectric layers. The features 
of nonreciprocal magnetoplasmon migration between the frequency bands are 
discussed in detail, and the effect of dielectric layers adjacent to the semiconductor 
film on the properties of magnetoplasmons is illustrated by the examples of the 
dispersion characteristics and field and Poynting vector distributions of eigenmodes in 
the canonical structure of the layered waveguide.  

2  Dispersion Equation of Tangentially Magnetised 
Semiconductor Film 

To investigate the properties of magnetoplasmons guided by the tangentially 
magnetised semiconductor film, let us consider a canonical layered structure 
shown in Fig. 1. It is composed of a semiconductor film of thickness a0, 
magnetised by external biasing field H0 and sandwiched between two dielectric 
layers with permittivities ε1,2 and thicknesses a1,2, all enclosed into a parallel-plate 
waveguide with perfectly conducting walls 1 . For time harmonic fields of 
frequency ω with the time dependence exp{iωt}, the semiconductor film is 
described by the permittivity tensor εs of the following form [4] 

 

 

Fig. 1 Cross-section of the parallel plate waveguide with a semiconductor film sandwiched 
between two dissimilar dielectric layers and magnetised by external biasing field H0. 

 

___________ 
1 The waveguide enclosure is used here with a sole purpose of formulating the boundary 

value problem for the bounded structure. In this case, the dispersion equation is expressed by an 
analytical function without branch cuts, cf. (5). The latter property is essential for the rigorous 
analysis of the complete spectrum of eigenwaves including complex modes [6].    
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ωp, ωc and ν are the plasma, cyclotron and collision frequencies, respectively, and 
εL is the background relative permittivity. An effective transverse permittivity εT is 
additionally introduced to characterise the magnetically biased semiconductor 
medium in the plane perpendicular to the direction of magnetisation H0. It is 
defined as follows 
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where all frequencies are normalised to ωc and are labelled by subscript n, i.e. 
ωn = ω/ωc, νn = ν /ωc, ωpn = ωp/ωc.   

The function εT (ωn) has two nulls ωnL and ωnH, and two poles ωnT and ωn0 = 0 
in the half-plane Re (ωn) ≥ 0 of complex plane ωn. 
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(4) 

The frequencies ωnLr  = ReωnL, ωnHr = ReωnH and ωnTr = ReωnT play a pivotal 
role in formation of the eigenwave spectrum because they determine transverse 
resonances of the medium and separate the frequency bands corresponding to the 
negative ReεT (bands I and III) and positive ReεT (bands II and IV) as illustrated in 
Fig. 2. 
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Fig. 2 Frequency dependence of εT for magnetised semiconductor. 

TM (extraordinary) waves propagating towards z-axis without field variations 
along the magnetisation direction (x-axis) in the structure of Fig. 1 represent an 
important special case often referred to as Voigt configuration [4, 5]. TM waves 
including magnetoplasmons with the field components Hx, Ey, Ez constitute the 
complete set of eigenmodes, which strongly interact with the gyrotropic 
semiconductor film and exhibit nonreciprocal behaviour. The latter feature of 
magnetoplasmons is of particular interest for the applications in nonreciprocal 
devices and will be discussed in detail in Section 3. 

The dispersion equation (DE) for TM waves with the time t and coordinate z 
dependences in the form exp{i(ωt-k0γnz)} can be expressed in the form [6] 
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where k0 is the free space wavenumber and γn is the normalised longitudinal 
wavenumber;  
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Examination of the DE (5) shows that the fundamental properties of the 
magnetoplasmons can be directly inferred from (5). Namely, nonreciprocity of 
eigenwave propagation is determined by the last term in (5), i.e. in asymmetric 
structures with A1 ≠ A2, the waves travelling in opposite directions of z-axis have 
different wave numbers γn. However, it is necessary to note that even at A1 = A2, 
the cross-sectional field distributions of TM modes are asymmetric due to the 
effect of nonreciprocal field displacement to one of the semiconductor film 
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interfaces (see Section 3). On the other hand, symmetry of the structure is not a 
prerequisite for fulfilling the condition A1 = A2, which can also be satisfied in the 
asymmetric structures with the special combinations of the dielectric layer 
parameters. 

The resonance frequencies of the magnetoplasmons at the semiconductor-

Reγn → +∞ and have the following form 
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 (6) 

where the 1st superscript denotes the magnetoplasmon type and the 2nd 

It is necessary to stress that the magnetoplasmonic resonance frequencies have 
been obtained in (6) without any constraints on εT (ωn), assuming only that |γn|→∞. 
Therefore it is essential to examine the locations of nasω±±  in the frequency bands I-
IV separated by the poles and zeros of εT (ωn). The results of such an analysis for 

n nasω+±  are always confined to the 
frequency band I where Reε   < 0, whereas nasω−±  can be located in any frequency 
band I, II or III with .nas nHrω ω−± <  Hence, in contrast to the case of demagnetised 
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Reγ > 0 are summarised in Table 1 and show that 

Table 1.  Frequency bands of magnetoplasmon resonances at Reγ > 0. 

dielectric interfaces are obtained from the asymptotic solutions of (5) at 

superscript represents the direction of wave propagation, corresponding to the sign 
of Reγn. For Reγn <0, nasω±−  has the same form of (6) with ε1 and ε2 interchanged. It 
immediately follows from (6) that at ε1 >ε2, nas nasω ω−+ −−<  and nas nasω ω++ +−> , i.e. both 
the magnetoplasmonic resonance frequencies for Reγn > 0 are contained between 

n 

1 2

semiconductor films, the requirement of ReεT < 0 (which is held in bands I and III)  
 

of the magnetoplasmonic resonances is inverted at ε <ε . 
the respective resonances for Reγ < 0. The latter relationship between the pairs
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is no more mandatory for existence of the plasmonic resonances at nasω−± . These 
resonances are also permitted in the frequency band II where ReεT > 0, cf. Fig. 2. 
Furthermore, the pairs of plasmonic resonances, nasω+±  and nasω−± , can occur either in 
the same or different frequency bands depending on the characteristic frequencies 
ωnLr, ωnTr, ωnHr and the dielectric layer permittivities ε1,2. This implies that the 
resonance frequencies nasω−±  may migrate between the bands I–III. The conditions 
for nasω−±  location in a particular frequency band have been obtained from (4) and 
(6), and are provided in Table 1. 

Inspection of Table 1 shows that whenever nasω−+  is located in bands II or III, it 
always satisfies the inequality nas nasω ω−+ ++> . However this may not be the case in 
band I, where the frequency nasω−+  can be either above or below nasω++ . Analysis of 
(6) demonstrates that the latter case is possible indeed, i.e. nas nasω ω−+ ++< , if the 
following conditions are satisfied simultaneously:  

2
1

1 2
2 2

and 2 6.pn LL

L L

ω εε εε ε
ε ε ε ε

⎛ ⎞+
> − >⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (7) 

It is necessary to emphasise that the interchange of nasω−+  and nasω++  positions has 
been obtained asymptotically and, therefore, it is applicable to the magneto-
plasmonic resonances only. The respective dispersion curves may “collide” but do 
not intersect each other. It is also evident from (7) that the interchange of the 
resonance frequencies is essentially nonreciprocal phenomenon which can occur 
for the modes of one propagation direction only due to the first condition in (7) 
which cannot be fulfilled simultaneously for the magnetoplasmons propagating in 
both directions. These features and other properties of nonreciprocal magneto-
plasmons are further elaborated in the next Section with the aid of the results of 
the numerical solution of the rigorous DE (5).  

3  Migrating Magnetoplasmon Modes: Numerical Results  
and Discussion 

As demonstrated in the preceding sections, gyrotropy of the magnetised semi-
conductor film enables the unique features of the nonreciprocal magnetoplasmons 
propagating in asymmetric layered structures. So far the discussion has been 
limited to the qualitative analysis of the DE and its asymptotic solutions, which 
indicated that variations of the layers’ parameters may cause qualitative changes 
of the magnetoplasmon properties. To gain insight into the exact effect of the 
structure parameters on the characteristics of the magnetoplasmons guided by the 
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magnetised semiconductor films, the DE (5) has been analysed numerically in the 
cases of dissimilar thicknesses and permittivities of dielectric layers. The 
characteristics of the magnetoplasmons presented in this Section have been 
obtained for the lossless2 (νn=0) n-GaAs films with the following parameters: 
εL = 13.1, ωpn = 2.17, fc = 62.21 GHz, ωc = 2πfc. 

Fig. 3 displays the dispersion characteristics of the fundamental 
magnetoplasmon modes C', O++ and O−+ (labels of the modes O±+ correspond to 
the convention for the respective resonance frequencies nasω±+  defined in (6)) in the 
symmetric structure at several values of the dielectric layer permittivities. Since 
the DE (5) for the symmetric structure is an even function of γn, the dispersion 
characteristics are presented for Reγn > 0 only. It is noteworthy that the higher 
order forward and backward type complex modes of magnetoplasmons with 
nearly the same values of Re(γn) also exist in the film, cf. [6]. 

 

Fig. 3 Dispersion characteristics of the magnetoplasmon modes in the symmetric structure with 
different permittivities of dielectric layers: ε1 =ε2 = 3.9 (solid line), 9 (dash line with crosses), 
15 (dotted line), 30 (dash line) and 90 (dash-dot line). The structure parameters: εL = 13.1, 
fc = 62.21 GHz, ωc = 2πfc, ωp = 2.17ωc, a0 = 20 µm, and a1 = a2 = 40 µm; γn1 = 13 and γn2 = 35 

At low permittivity of dielectric layers, ε1 = ε2 = 3.9, the magnetoplasmon 
mode O−+ exists only in the frequency band III (ωn >ωnTr), whilst the mode C' is 
confined to the bands I and II (0 < ωn < ωnTr). In the frequency band I (ωn < ωnLr) 
where ReεT < 0, the mode C' is a surface wave, and it also remains a surface wave 
with ( ) 1Re Ren T nγ ε ω ε> >  in the frequency band II (ωn > ωnLr) despite 

T nTr where 
___________ 

2 Effect of loss in the semiconductor films on the properties of magnetoplasmon modes has 
been discussed in [6, 7]. 
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Reε  > 0 here. At frequencies approaching the transverse resonance ω

are the sampling points for the field and Poynting vector distributions displayed in Fig. 4.  
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ReεT → +∞, the mode C' turns into a bound dynamic (bulk) wave guided by the 
semiconductor film with ( )Re Ren T nγ ε ω< . 

When permittivities ε1 = ε2 of both dielectric layers increase, the 
magnetoplasmon mode O−+ migrates (Fig. 3) from the frequency band III (ωnTr < 
ωn < ωnHr) into the band II (ωnLr < ωn < ωnTr) where it exhibits a negative slope of 
the dispersion curve at ReεT > 0. It can be directly verified that the respective 
permittivity values obey the conditions specified in Table 1 (ωnTL = 0.363) for the 
magnetoplasmonic resonance nasω−+  to occur in the corresponding bands. The mode 
C' experiences a high frequency cut-off at ωnc (ωnc < ωnTr) simultaneously with the 
mode O−+ as shown in Fig. 3. It is necessary to note that both modes O−+ and C' 
remain the surface waves in the frequency band II (ωnLr < ωn < ωnTr) despite 
ReεT > 0, and this effect is solely related to gyrotropy of the magnetised 
semiconductor film. 

The qualitative changes of the magnetoplasmon modes O−+ and C', migrating 
between the frequency bands, are associated with the competing mechanisms of 
nonreciprocal field displacement due to the semiconductor film gyrotropy and 
reciprocal effect of the surrounding dielectric layers. These features are illustrated 
in Fig. 4 by the field and Poynting vector distributions of the magnetoplasmon 
O−+. Indeed, at low permittivities ε1 = ε2 = 3.9, when the mode O−+ is confined to 
the frequency band III (ωn > ωnTr), the fields and power flow (Poynting vector Pz) 
are localised at the interface y = a0/2 at both values of γn1 and γn2 as shown in Fig. 4.  

When permittivity of the dielectric layers increases to ε1 = ε2 = 9, the mode 
O−+ migrates into the frequency band II (ωnLr < ωn < ωnTr) with ReεT > 0, and its 
field and power distributions are barely affected especially at larger values of 
γn = γn2. Moreover the mode O−+ still remains a forward type wave as long as 
ε1 = ε2 < εL. This implies that gyrotropy of the semiconductor film primarily 
determines the magnetoplasmon properties. This conclusion is consistent with the 

z y

magnitudes of both electric field components. Further increase of ε1 = ε2 causes 
migration of the mode O−+ towards lower frequencies and into the band I (ωn < 
ωnL). At higher permittivities ε1 = ε2 = 15, 30 and 90, the field and power flow 
localisation at a single interface decreases because the nonreciprocal field 
displacement is counteracted by the reciprocal effect of the dielectric layers. This 
effect is readily observable in Fig. 4, which illustrates that permittivity of 
dielectric layers has much stronger impact on the field distributions at γn1 than at 
γn2 (γn2 > γn1), while the film gyrotropy remains the dominant mechanism of the 
magnetoplasmon propagation in the band II with ReεT > 0. At ε1 = ε2 = 90 the 
mode O−+ migrates into the frequency band I where ReεT < 0 and the negative 
diagonal components of the tensor εs become dominant. Then the magnetoplasmons 
O−+ and O++ resemble the perturbed plasmonic modes of the demagnetised 
semiconductor film.  

distribution of E-field polarisation (E /E ) in Fig. 4, which shows nearly equal 
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Fig. 4 Normalized cross-sectional distributions of fields Hx, Ey, Ez, Poynting vector (Pz) and ratio 
(Ez/Ey) of the mode O−+ in the cross-section of the symmetric structure sampled at γn1 = 13 and 
γn2 = 35 (see Fig. 3) and different permittivities of dielectric layers: ε1 = ε2 = 3.9 (solid line), 15 
(dotted line), 30 (dash line) and 90 (dash-dot line). Shaded areas at |y/a0| < 1/2 correspond to the 
semiconductor film of thickness a0 = 20 µm sandwiched between dielectric layers of thicknesses 
a1 = a2 = 40 µm. The structure parameters: εL = 13.1, fc = 62.21 GHz, ωc = 2πfc, ωp = 2.17ωc. 

In the case of asymmetric structure with ε1 ≠ ε2, the combined effect of 
reciprocal and nonreciprocal field displacements to the layer interfaces leads to the 
intricate behaviour of magnetoplasmonic modes as they migrate between the 
frequency bands. The dispersion characteristics of magnetoplasmons in Fig. 5 
show that only the mode O−+ moves across the frequency bands when ε1 increases 
from 3.9 to 90. Moreover at ε1 = 90, the conditions (7) are satisfied so that 

nas nasω ω−+ ++< , i.e. the modes O−+ and O++ should “collide” and interchange their 
field patterns at a certain finite value of γn. Indeed, the surface mode O++ exists 
only in the frequency band I (ωn < ωnLr), and due to nonreciprocal field 
displacement, its fields should be primarily localised at the interface with 
dielectric layer of permittivity ε2 at y = −a0/2. However, when ε1 increases, the 
nonreciprocal field displacement of the mode O++ is distorted, and a considerable 
part of the power flow is transported inside the film and at the opposite interface, 
y = +a0/2, as illustrated in Fig. 6. 

Conversely, the mode O−+ experiences both nonreciprocal and reciprocal field 
1

at y = +a0/2. Therefore as ε1 increases, the mode O−+ migrates from the frequency 
band III to the band II (ωnL < ωn < ωnTp), where εT  > 0.  Then  it  becomes  

displacements to the same interface with the dielectric layer of higher permittivity ε  



A.G. Schuchinsky and X. Yan 264 

connected with the mode C'+. Further increase of ε1 causes conversion of the mode 
O−+ from the forward type to backward wave with negative dispersion 
(dωn /dγn < 0) at ε1 > 9. At higher ε1 (ε1 = 90 in Fig. 5), the mode O−+  expands to 
the lower frequency band I (ωn < ωnL). When the corresponding 
magnetoplasmonic resonance occurs at nas nasω ω−+ ++< , the modes O−+ and O++ 
“collide” at a finite value of Reγn and are influenced by both resonances nasω++  and 

nasω−+  simultaneously. This causes the qualitative changes of the field and power 
distributions of both modes in the layers. At the “collision” frequency, the modes 
O−+ and O++ interchange their patterns of the power flow distribution and the 
asymptotic limits of the magnetoplasmonic resonance frequencies nasω++  and nasω−+  
but preserve the parity of their field distributions, i.e. the type 3  of the field 
symmetry in the film, which is inherited from the respective original modes O−+ 
and O++ before the collision. 

 
Fig. 5 Dispersion characteristics of magnetoplasmons in the asymmetric structure at different 
permittivities of the dielectric layer 1: ε1 = 3.9 (solid line), 9 (dash line with crosses), 15 (dot 
line), 30 (dash line) and 90 (dash-dot line). The structure parameters: ε2 = 3.9, εL = 13.1, 
fc = 62.21 GHz, ωc = 2πfc, ωp = 2.17ωc, a0 = 20 µm, and a1 = a2 = 40 µm; nasω±+  correspond to the 
magnetoplasmonic resonance frequencies at ε1 = 90.  

___________ 
3 The type of field distribution identifies, for example, the Hx symmetry in the semiconductor 

film, viz. the modes O−+ and O++ are distinguished by the in-phase and anti-phase Hx, 
respectively, at the opposite interfaces of the semiconductor film, cf. Fig. 6.   
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Fig. 6 Normalized cross-sectional distribution of fields Hx, Ey, Ez, Poynting vector (Pz) and ratio 
(Ez/Ey) of the surface modes O−+ (solid line) and O++ (dotted line) in Fig. 5 sampled at γn = 40 
and variable ε1. Shaded areas at |y/a0| < 1/2 correspond to the semiconductor film of thickness 
a0 = 20 µm sandwiched between dielectric layers of thicknesses a1 = a2 = 40 µm. The structure 
parameters: ε2 = 3.9, εL = 13.1, fc = 62.21 GHz, ωc = 2πfc, ωp = 2.17ωc. 

3  Conclusions 

The properties of nonreciprocal magnetoplasmons in the canonical structure of 
parallel-plate waveguide with a thin magnetised semiconductor film in Voigt 
configuration have been analysed using the rigorous dispersion equation for TM 
waves. The asymptotic solutions have been obtained for the magnetoplasmonic 
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resonances, and the dispersion characteristics and field and power flux distributions 
of the corresponding magnetoplasmon modes have been evaluated numerically. 
The results of the analytical and numerical studies have revealed the novel 
properties of the guided nonreciprocal magnetoplasmonic waves:  

– Migration of the magnetoplasmonic modes between the frequency bands, 
separated by the characteristic frequencies (poles and zeros) of the effective 
transverse permittivity εT of the magnetised semiconductor film 

– “Collision” of the magnetoplasmons in the low frequency band where the 
modes O−+ and O++ interchange their locations but preserve the parity of 

The presented comprehensive analysis of the dispersion characteristics and the 
field and power flow distributions of magnetoplasmons provide the self-consistent 
interpretation of the complex phenomena of nonreciprocal wave propagation and 
mode transformations in the asymmetric layered structures containing tangentially 
magnetised semiconductor films. 
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Abstract  This article addresses the influence of the metamaterial losses and  
dispersion on the performance of double negative H-guides. The lossy dispersive 
Lorentz model is adopted for both the electric permittivity and the magnetic 
permeability. The dispersion properties of the longitudinal section magnetic 
modes and their root dynamics in the complex plane of the longitudinal 
wavenumber are analyzed. To emphasize that the modal characteristics must be 
analyzed taking losses into consideration, results for the lossless approximation 
are also presented. Finally, it is shown that the effect of metamaterial losses may 
suggest some potential applications. 

1  Introduction 

The propagation characteristics of waveguiding structures containing metamaterials 
have been subject to intense investigation in the last years, having always in mind 
their potential application in microwave and millimeter-wave guiding and 
radiating devices [1–11]. This article presents a systematic analysis of the effects 
of losses on the dispersion characteristics of the modes supported by a double 
negative (DNG) H-guide [1]. 

In a DNG H-guide, a metamaterial slab with simultaneously negative permittivity 
and negative permeability is sandwiched between two metal plates. H-guides 
involving metamaterials have been already addressed in the literature [1, 5], but 
the analysis has been mostly limited to single frequency operation. 

The electromagnetic coupling between two parallel double-positive (DPS) and 
DNG H-guides [1], their field distribution, mode bifurcation and super-slow 
modes [5], have been already reported. Single-negative (SNG) metamaterials have 
also been considered, either to reduce the radiation at bends and discontinuities 
[10], or to achieve unimodal propagation [11]. Although a frequency dispersive 
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Dispersion and Losses in Metamaterial DNG 

António L. Topa, Carlos R. Paiva, and Afonso M. Barbosa 

                   

© Springer Science + Business Media B.V. 2009 
S. Zouhdi et al. (eds.), Metamaterials and Plasmonics: Fundamentals,                         
Modelling, Applications, 



290 

DNG metamaterial was considered in [9], the metamaterial losses have been  
disregarded. 

The main goal of this article is to show that unphysical results arise when 
simple dispersion models, disregarding losses, are adopted, therefore violating 
causality. In fact, according to the Kramers-Kronig relations, a causal dispersive 
metamaterial model must necessarily include the losses. In this article, a lossy 
dispersive DNG metamaterial is considered, exhibiting a permeability and 
permittivity modeled according to the Lorentz model. The propagation of lossy 
surface and leaky modes in this type of waveguide is analyzed and its performance 
is investigated. 

This article is organized as follows. In Section 2, the electromagnetic problem 
is formulated and the modal equations for the modes of the DNG H-guide are 
presented. Moreover, the dispersion Lorentz homogenization model, accounting 
for both dispersion and losses, is described. In Section 3, the numerical results of 
the simulation are presented, namely the dispersion characteristics of the LSM 
modes are analyzed and the effects of the metamaterial losses are discussed. 
Finally, in Section 4, some concluding remarks are outlined. 

2  Modal Analysis and Dispersive Model 

In this section, the electromagnetic problem under analysis is defined, namely the 
waveguiding structure and respective modal equations are presented and the 
constitutive parameters of the metamaterial medium are characterized. 

The DNG H-guide [1] consists of a metamaterial slab of width 2l , with 
simultaneously negative relative electric permittivity ε  and negative relative 
magnetic permeability µ , sandwiched between two metal plates spaced a distance 
b  apart (Fig. 1). 

When the spacing b  is less than half a free-space wavelength, undesired 
radiation from the structure is prevented, since higher-order parallel-plate wave-
guide modes are below cutoff, and the TEM parallel-plate waveguide mode is not 
excited provided that symmetry with respect to the y  axis is maintained. In this 
case, the H-guide is working in the closed waveguide regime and is usually termed 
DNG NRD waveguide [11]. In the frequency range and for the numerical 
dimensions considered in this article the H-guide is always working in this regime, 
therefore behaving as a closed waveguide. 

The full discrete spectrum of a NRD waveguide filled with isotropic DNG 
metamaterials comprises both longitudinal section magnetic (LSM) and 
longitudinal section electric (LSE) modes whilst, due to spatial symmetry of the 
structure, these modes can be divided into even and odd modes. 

The modal equations for the even and odd LSMmn  modes can be written, 
respectively, as [1] 

A.L. Topa et al.
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Fig. 1 The DNG H-guide. 

             tan( ) 0h hlε ρ + =  (1) 

and 

             cot( ) 0h hlε ρ − =  (2) 

where 2 2 2 2
0yk k kρ = + −  and 2 2 2 2

0 yh k k kεµ= − −  are the transverse wavenumbers 
inside and outside the metamaterial slab, respectively, and where 0 0 0k ω ε µ=  
and /yk n bπ= , with n  being an integer. 

The modal equations for the LSE modes can be easily derived by duality 
directly from (1) and (2). However, the most interesting mode in this waveguide is 
the 01LSM  mode which, when the slab is made of a conventional dielectric 
( 0ε > , 1µ = ) exhibits a low attenuation loss which decreases with frequency. 
Therefore, without loss of generality, this article is restricted to the modal analysis 
of the LSM modes. 

To avoid unphysical effects and results, the analysis of electromagnetic waves 
in waveguides containing DNG metamaterials cannot be based on a simple 
parameter model that disregards dispersion effects and losses. To ensure causality, 
the model for the constitutive parameters of a DNG metamaterial must take both 
dispersion and losses into account. In fact, losses and dispersion are just two 
aspects of the same physical phenomenon: material interaction and microscopic 
resonance. 

x

2l  

b  

y  

0ε <  

0µ <  
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 (a) (b) 

Fig. 2 Relative permeability and relative permittivity of the DNG metamaterial as a function of 
the frequency, as given by the Lorentz dispersion model in the presence of losses: (a) Real part; 
(b) Imaginary part. 

A lossy dispersive DNG metamaterial is considered for analysis throughout this 
article. The idea of realizing a metamaterial using split ring resonators and thin 
wires [12], which is the most popular among the physics community, is known to 
be a particular case of the generalized Lorentz medium [13, 14]. Therefore, the 
medium used in the present DNG H-guide is assumed to exhibit an electric 
permittivity and a magnetic permeability modeled according to the following 
Lorentz model: 

2

2 2
0

( ) 1 e

e

p

ej
ω

ε ω
ω ω ω

= +
− + Γ

 (3) 

and 

2

2 2
0

( ) 1 m

m

p

mj
ω

µ ω
ω ω ω

= +
− + Γ

 (4) 

where 0ω  are the resonance frequencies, pω  the plasma frequencies and Γ  the 
collision losses. 

The following values for the model parameters have been used in the numerical 
simulations of the next section: 8 1

0 2 10 rad s
e

ω π −= × , 9 1
0 2 4 10 rad s

m
ω π −= × × , 
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10 12 10 rad s
epω π −= ×  and 9 12 3.52 10 rad s

mpω π −= × × . These values are of the 
order of magnitude as the ones used in [15]. 

With this material parameters, the frequency band where the real part of ε  and 
µ  are simultaneously negative (DNG), ranges from 4.0 GHzf =  to 

5.32 GHzf = . Immediately below and above this range, the magnetic 
permeability becomes positive and, therefore, the medium turns into an epsilon 
negative (ENG) metamaterial. These cases will not be addressed herein. In 
particular, this study is focused on the frequency range immediately above to the 
permittivity resonance. 

To analyze the effect of losses on the performance of the metamaterial DNG H-
guide, two cases are considered: (i) 0e mΓ = Γ =  (lossless medium); (ii) 

6 14 10 rad se m π −Γ = Γ = × , 7 110 rad se m π −Γ = Γ = × , 7 12 10 rad se m π −Γ = Γ = × , 
7 14 10 rad se m π −Γ = Γ = ×  (lossy media). 

In Fig. 2 the relative permeability and relative permittivity of a lossy DNG 
metamaterial are shown as a function of frequency, in the 3 GHz 7 GHzf< <  
band, when 7 12 10 rad se m π −Γ = Γ = × . The almost vertical line that appears in the 
real part of the relative magnetic permeability is due to the magnetic resonance at 

9 1
0 2 4 10 rad s

m
ω π −= × × , which also corresponds to the point where its imaginary 

part exhibits a peak. 

In this section we analyze the dispersion behavior of the LSM modes propagating 
in the DNG H-guide and their root dynamics in the complex plane of the 
longitudinal wavenumber. Although some dispersion curves of this waveguide 
have already been presented in [11] in the absence of losses, the results presented 
here are helpful to understand the modal behavior in the presence of losses and 
envisage potential applications. To better realize the modal behavior in the 
presence of losses a systematic comparison between the lossless and the lossy case 
is always presented. 

and in Fig. 3b for the lossy case. In both these figures, the thick solid lines stand 
for the proper surface modes, the thin lines for the proper leaky modes and the 
dashed lines for the improper leaky modes. 

In the lossless case, a resonant behavior for β  is observed in the dispersion 
diagrams of the surface modes, leading to an infinite value of the phase constant, 
even in the case of finite values for the constitutive parameters. When accounting 

The dispersion diagrams for the first LSM modes propagating in a DNG 
H-guide, with l =1 cm  and b = 3 cm , are depicted in Fig. 3a for the lossless case, 

3  Numerical Results 
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for losses, these unphysical solutions disappear while turning into improper leaky 
modes, whilst the dispersion branches with physical meaning turn into proper 
leaky modes. 
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 (a) (b) 

Fig. 3 Dispersion diagram for the first LSM modes propagating in the DNG H-guide, with 
constitutive parameters as in Fig. 2, 1 cml =  and 3 cmb = : (a) lossless case; (b) lossy case. 
The thick solid lines stand for the surface proper modes, the thin lines for the proper leaky modes 
and the dashed lines for the improper leaky modes. 
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 (a) (b) 

Fig. 4 Root loci in the complex plane of the longitudinal wavenumber for the leaky modes in 
Fig. 3: (a) Lossless case; (b) Lossy case. The solid lines stand for the proper leaky modes, while 
the dashed lines are for the improper leaky modes. 

In Fig. 4, the modal equation root loci in the complex plane of the longitudinal 
wavenumber are presented for the first leaky modes propagating in the DNG 

A.L. Topa et al.



Dispersion and Losses in Metamaterial DNG H-Guides  295 

modes. 
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Fig. 5 Leakage constant in dB/λ as a function of frequency for the proper leaky modes in Fig. 4: 

One should stress that, the first and second quadrants of the complex plane of 
the longitudinal wavenumber k  correspond to the improper Riemann sheet in the 
complex plane of the transverse wavenumber h , while the third and fourth 
quadrants correspond to the proper Riemann sheet of the same plane. 

Furthermore, one should note that, when considering a lossy dispersive 
metamaterial, all propagating modes become complex solutions of the modal 
equations and there is no distinction between surface and leaky modes propagating 
in the waveguide, although some of these modes may exhibit a larger leakage 
constant than the others. 

The evolution of the leakage constant as a function of frequency is depicted in 
Fig. 5, again for both lossless and lossy cases. When losses are taken into account 
it is possible to see that there are very well defined narrow frequency bands where 
the attenuation constant can be considerably negligible, while it dramatically 
increases outside those bands. 

This effect, reported here for the first time, opens the possibility of using these 
sharp frequency bands in the design of waveguiding filters having a very narrow 
passband with a high rejection band. This topic will be addressed in detail in a 
forthcoming publication. 

The influence of introducing metamaterial losses in the modal dispersion and 
attenuation of the modes in the DNG H-guide is illustrated with more detail in 
Figs. 6 and 7. As an example, the dispersion diagram and the root loci of the 

11LSM  mode are depicted in Fig. 6, for different values of the loss parameter Γ . 
As a general conclusion, one may say that the smaller are the losses the stronger is 

(a) Lossless case; (b) Lossy case. 

150

H-guide, for both the lossless and the lossy cases. As before, the solid lines stand  
for the proper leaky modes, while the dashed lines stand for the improper leaky 
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the modal interaction between the proper and improper leaky modes, which causes 
a sharper frequency passband. 
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Fig. 6 Dispersion diagram (a) and root loci (b) for 11LSM  mode: 6 14 10 rad se m π −Γ = Γ = × , 
7 110 rad se m π −Γ = Γ = × , 7 12 10 rad se m π −Γ = Γ = ×  and 7 14 10 rad se m π −Γ = Γ = × . 
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Fig. 7 Leakage constant as a function of frequency for 01LSM  and 11LSM  modes, when 
6 14 10 rad se m π −Γ = Γ = × , 7 110 rad se m π −Γ = Γ = × , 7 12 10 rad se m π −Γ = Γ = ×  and 

7 14 10 rad s
e m

π −

Γ = Γ =

× . 

On the other hand, the variation of the leakage constant α , in dB /λ , as a 
function of the frequency is shown in Fig. 7 for the 01LSM  and 11LSM  modes, 
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using the same set of values of Γ  as in Fig. 6. Again, it is shown that the smaller 
are the losses the sharper is the passband, therefore proving that losses play an 
important role in the dispersion characteristics of the waveguide. 

4  Conclusion 

Modal dispersion on DNG H-guides taking both metamaterial losses and 
dispersion into account has been studied here for the first time. In the absence of 
losses and for finite values of the constitutive parameters, unphysical resonances 
in the longitudinal wavenumber have been put in evidence. This unphysical modal 
behavior, disappears when losses are taken into account. It was shown that, when 
losses are introduced, these resonances turn into improper leaky modes not 

presence of small losses, this waveguide exhibits sharp narrow passbands, hence 
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