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Preface

Metamaterials can be generally defined as a class of “artificial” media, possessing
extraordinary electromagnetic properties that cannot be found in natural ones. The
subject of metamaterials has drawn considerable attention from both the physics
and engineering communities worldwide and has received generous support from
the funding agencies during recent years. The popularity of this topic has been
adequately demonstrated by a rapid surge in the number of publications, special
sessions at international conferences, research networks, and launching of new
journals on the subject. Metamaterials are periodic electromagnetic structures that
are not altogether dissimilar from frequency selective surfaces (FSSs), bianisotropic
materials, and optical gratings, all of which have been around in the electromag-
netic and optical communities for quite some time. Although there has been much
hype recently about the extraordinary performance of devices containing metama-
terials, recent studies have indicated that there are a number of fundamental issues,
such as high losses and narrow bandwidth characteristics, that must be addressed
before these materials can find widespread use in practical applications. Never-
theless, the study of metamaterials has engendered, perhaps for the first time, a
widespread interest on the part of physicists, electronic engineers and material sci-
entists, in pursuing collaborative and multidisciplinary efforts, with the common
goal of developing an understanding of the fundamental physics of metamaterials,
which, in turn, has the potential of achieving new breakthroughs in science and
engineering. Research into metamaterials at Queen Mary College, London, was ini-
tiated in 2000 and has been supported by several grants from the United Kingdom’s
Engineering and Physical Science Research Council (EPSRC). A range of compu-
tational techniques, including the finite-difference time-domain (FDTD) method,
detailed in this book, have been developed for the modeling of metamaterials in-
cluding electromagnetic bandgap (EBG) structures; left-handed materials (LHMs);
artificial dielectrics; plasmonic waveguides; electromagnetic cloaking structures;
and, a number of other devices designed for related applications of metamaterials.
These computer codes have then been utilized for designing metamaterials and for
gaining a physical insight into their electromagnetic characteristics. The FDTD has
been widely accepted as one of the most efficient numerical techniques in com-
putational electromagnetics and has been applied to periodic structures including
the frequency selective surfaces (FSSs), which have previously found applications
mainly as high-performance radomes and spatial filters, but are now finding new
applications in metamaterial devices. The Electromagnetic Communication Labo-
ratory of Pennsylvania State University has been engaged in the development of
very high-performance computational electromagnetics (CEM) solvers capable of
handling upward of 10E+9 unknowns. The GEMS code developed in this lab has

Xi
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played a pivotal role in rigorously analyzing complex electromagnetic structures
with multiscale features that often characterize metamaterials.

This book introduces the basics of the FDTD method, especially when it is
used to model metamaterials. It shows how to compute the dispersion diagrams,
deal with the material dispersion properties, and verify the left-handedness, among
other things. Some metamaterials possess unique properties that require special
treatments in the numerical code when we analyze them. This book explains how
to properly define their material parameters and to characterize the interface of
metamaterial slabs and quantify their spatial as well as frequency dispersion char-
acteristics. There has been much recent interest in novel applications of metama-
terials to antennas and microwaves and to various devices that have applications
in optical engineering. In view of this, the book dedicates an entire chapter solely
to this topic. It is shown how these structures can be modeled by using either the
effective medium representation or the FDTD code. Though the latter is highly
computer-intensive, we have argued that modeling the physical structure numeri-
cally and rigorously is the only way to obtain reliable results when attempting
to predict the performance of metamaterial devices, because the rigorous results
often disagree with those derived by using simplified models based on the effective
medium approach. For this reason, we have devoted a substantial amount of space
in this book to modeling the problem of the physical structures of metamaterials,
instead of using their effective medium representations. In addition, we have ana-
lyzed the fundamental limits of metamaterials made from resonant particles, with
the hope that the readers will get a true picture of the real-world metamaterials
after going through these analyses. We view this book as a complement to a wide
array of publications on the FDTD method that have preceded it, and we hope
that colleagues in computational electromagnetics will benefit from recent advances
in numerical techniques, especially the FDTD, when dealing with the problem of
designing metamaterials.
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Introduction

1.1 What Are Electromagnetic Metamaterials?

There have been various definitions of electromagnetic metamaterials [1-114],
where “meta” is a prefix in English meaning “beyond; transcending; more com-
prehensive.” In 2001, Walser [1] from the University of Texas at Austin, coined
the term “metamaterial” to refer to artificial composites that .. .achieve material
performance beyond the limitations of conventional composites.” The definition
was subsequently expanded by Browning and Wolf of Defense Advanced Research
Projects Agency (DARPA) in the context of the DARPA Metamaterials program
started also in 2001:

Metamaterials are a new class of ordered composites that exhibit exceptional
properties not readily observed in nature. These properties arise from qualitatively
new response functions that are: (1) not observed in the constituent materials and
(2) result from the inclusion of artificially fabricated, extrinsic, low dimensional
inhomogeneities.

Metamorphose, the European Network of Excellence [2], terms the metama-
terials as:

Artificial electromagnetic (multi-)functional materials engineered to satisfy the pre-
scribed requirements. Superior properties as compared to what can be found in
nature are often underlying in the spelling of metamaterial. These new properties
emerge due to specific interactions with electromagnetic fields or due to external
electrical control. The metamaterials provide a conceptually new range of radio,
microwave, and optical technologies.

Sometimes, metamaterials are specifically referred to as a class of artificial ma-
terials that have simultaneous negative permittivity and permeability and are also
known as left-handed materials (LHMs). Present researchers have a tendency to
expand the concept of metamaterials so as to make it as broad as possible. The
editorial board of IEICE Transactions [3] even questions whether or not artificial
materials such as CdS, GaAs, or InGaAs should have been classified as metamate-
rials. One popular classification of metamaterials is:

As an ordinary material is made of natural molecules, an artificial material is
made of artificial molecules. Due to Maxwell equations’ macroscopic property,
small particles made of typically metal and dielectric can be considered molecules
when put together. The variation of each shape and total alignment makes macro-
scopically single negative, double negative, or double positive materials.



2 Introduction

However, there exists a number of artificial electromagnetic structures, espe-
cially at microwave frequencies [e.g., electromagnetic crystals, high-impedance sur-
faces (HISs), and frequency selective surfaces (FSSs)]|. Although these are made of
small ordered metallic/dielectric inclusions, they cannot be homogenized by using
conventional approaches and described in terms of constitutive parameters such as
permittivity and permeability. Smith [4] at Duke University prefers to use the term
metamaterials as artificial structures that display properties beyond those avail-
able in naturally occurring materials. This definition is a general one, and it may
also include artificial dielectrics, artificial magnetics, and bianisotropic materials,
which were the subject of extensive research back in the 1960s, 1970s, and 1990s.
Most of the concepts in metamaterials originate from solid state physics that deal
with the lattice structure of crystals, which is inherently periodic. Indeed periodic
structures in nature have fascinating characteristics, which have frequently inspired
scientists and engineers alike to think of novel applications of them. Periodic struc-
tures have had a long history in electromagnetics dating back to the 1900s, and
they can be found as integral parts of microwave filters, traveling wave tubes
(TWTs), antenna arrays, leaky wave antennas (LWAs), and FSSs, to name just a
few. The role of the periodic structure has been the manipulation of the spectral
and spatial spectrum, the selection of spatial harmonics to control the radiation of
forward and backward waves, and the control of the phase and group velocities
in slow wave structures. Periodic structures are also very popular among optical
engineers and are widely used in the design of lasers. For example, a distributed
Bragg reflector (DBR) is a structure composed of alternating layers of materials
with varying refractive indices, or with periodically varying characteristics, such as
height of a dielectric waveguide, which induces a periodic variation in the effective
refractive index of the guide. Each layer interface induces a partial reflection of
optical waves, at a wavelength for which many reflections undergo a constructive
interference, thereby forming a high-quality reflector. The idea has been further
extended to two and three dimensions by Yablonovitch [5] and John [6], who have
described structures that are now broadly classified as photonic bandgaps (PBGs).

Earlier work of Yablonovitch on PBGs was carried out at microwave fre-
quencies, by using a small dipole in a Fabry-Perot cavity formed by PBGs. They
conjectured that such configurations will give a rise to increased directivity of small
antennas by focusing their beam [5]. This has engendered new interests in the com-
munity of antenna and microwave engineering, and now the so-called electromag-
netic bandgap (EBG) structures (in contrast to the PBGs that are their counterparts
at optical frequencies) are finding usages in enhancing the performance of antennas
and microwave devices.

1.2 A Historical Overview of Electromagntic Metamaterials

Permittivity (&) and permeability (u) are two parameters used to characterize the
electric and magnetic properties of materials interacting with electromagnetic fields.
The permittivity is a measure of how much a medium changes to absorb electrical
energy when subjected to an electric field [7, 8]. It is defined as a ratio of D and
E, where D is the electric displacement by the medium and E is the electric field
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strength. The common term dielectric constant is the ratio of permittivity of the
material to that of free space (¢9 = 8.85 * 107 '2F/m). It is also termed as the rela-
tive permittivity. Permeability is a constant of proportionality that exists between
magnetic induction and magnetic field intensity. Free-space permeability (po) is
approximately 1.257 x 107® H/m. Recently, Ziolkowski [9,10] has categorized
metamaterials by their constitutive parameters as follows (Figure 1.1). Most of the
materials in nature have positive permittivity and permeability, and hence, they are
referred to as “double-positive (DPS)” media. In contrast, if both of these quan-
tities are negative, they are called “double-negative (DNG)” and are also referred
to as LHMs by others. Finally, materials with one negative parameter are named
“single-negative (SNG)” and are further classified into two subcategories, namely,
“epsilon-negative (ENG)” and “mu-negative (MNG).” Interestingly, natural ma-
terials such as cold plasma and silver exhibit negative permittivities at microwave
and optical frequencies, respectively, and ferromagnetic materials exhibit a nega-
tive permeability behavior in the VHF and UHF regimes. However, to date, no
materials that exhibit simultaneous negative permittivity and permeability have
been found in nature, and hence, they must be created artificially.

The first comprehensive review of the history of negative refraction and meta-
materials was given by Moroz [11]. He indicated that some of metamaterial re-
search started long before Veselago’s work and went back to as far as 1905, when
Lamb [12] suggested the existence of backward waves, which are associated with

. A Conventional
Plasma and fine e .
. materials
wire structures /
Air- =Y - - - - -eea ot - Air- -7 - o oo a - -
e<0, u>0 £>0, u>0
No transmission n=+\(eu)
u
Microstructured
LHMs magnets and
split rings
Air- pge = - = === - - .. - Air--Y - - -acoo-.
>0, u<0
m Noetrarwls/:nission
n=—\(ue)

Figure 1.1 A diagram showing the possible domains of electromagnetic materials and wave re-
fraction or reflection directions based on the signs of permittivity and permeability. The arrows
represent wave vector directions in each medium. There is wave transmission only when both pa-
rameters have the same sign. Waves are refracted positively in conventional materials and negatively
in LHMs. (From: [10]. (© 2001 IEEE. Reprinted with permission.)
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waves in which the phase propagates in a direction opposite to that of the energy
flow. Moroz’s on-line article first appeared in 2003, tracing the roots of research
on backward waves, negative refraction, and LHMs. Only recently, Veselago and
Narimanov [13], Shivola [14], and Shamonina [15] have linked LHMs, and more
generally metamaterials, to the earlier works.

Below we provide a brief historical overview of the metamaterials cate-
gory as artificial dielectrics, artificial magetics, left-handed metamaterials, high-
impedance surfaces, and electromagnetic crystals. Some of those topics will be
further discussed in later chapters in the context of numerical modeling and their
applications.

1.2.1 Artificial Dielectrics

Artificial dielectrics, the first known metamaterials, usually consist of artificially
created “molecules”: dielectric or metallic inclusions of a certain shape (see Fig-
ure 1.2). These “molecules” can be distributed and oriented in space, either in a
regular lattice or in a random manner.

The dimensions of the “molecules” and characteristic distances between neigh-
boring ones are assumed to be very small, as compared to the wavelength. Although
the size of a single inclusion is usually much larger than those of real molecules
and lattice periods of natural crystals, this allows us to describe the inclusions in
terms of material parameters as well as characterize the artificial dielectrics formed
with these inclusions macroscopically using the classic Maxwell’s equations.

The concept of artificial dielectrics was perhaps first introduced by Kock [16],
who used it to design low-weight dielectric lenses at microwave frequencies. The
artificial dielectrics also find applications where we need to use a high-permittivity
material, such as a titanate with ¢, ~ 90. Since these materials are usually expen-
sive, an alternative is to use metallic inclusions of various shapes with sizes that
are small compared to the wavelength to artificially produce a high-permittivity
material, which is both low-cost and lightweight [17]. A very interesting example
of artificial dielectrics is the wire medium [18-24] (also called “rodded medium”),
which has been known since 1950s. It is formed by a regular lattice of conducting

Figure 1.2 The geometry of a generic artificial dielectric.
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wires with radii that are small compared to the lattice period (see Figure 1.3). The
permittivity of a wire medium has a plasma type frequency dependence: negative
below the plasma frequency and positive but smaller than unity above it. This
medium is often called an ““artificial plasma” since its permittivity has the same

[4)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
ka/(2m)
(b)
Figure 1.3 (a) The geometry of wire medium: a lattice of parallel conducting thin wires. (b) Permit-

tivity of wire medium demonstrating plasma-like frequency dependent permittivity: negative below
the plasma frequency and positive but smaller than the unity above.
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(b)

Figure 1.4 (a) A photo of TV rock, Ulexite (NaCaBsOg-8H,0, hydrated sodium calcium borate
hydroxide), a mineral occurring in silky-white rounded crystalline masses or in parallel fibers. (b)
The TV rock is placed on a printed surface, and the tiny fibers transmit the image to the top of the
rock. This unusual effect is the result of ulexites amazing fiber-optic properties [31, 32].

V/mm V/mm
56
40 14
28 10
20 2
13 4.5
8 3
4 1.5
0.5
0 0
V/mm
18
13
9
6
4
3
1.7
0.8
0.3
0

(d)

Figure 1.5 Distribution of an electric field and its absolute value: (a) and (c) at a 2.5-mm distance
from the front interface and (b) and (d) at a 2.5-mm distance from the back interface [30].
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form as that of an ideal (collisionless) electron plasma. Recently, the wire medium
has been rediscovered by Pendry [25] and has attracted a great deal of attention
from other researchers [26, 27]. This medium possesses unique nonresonant ma-
terial properties, and its permittivity is negative over a very wide frequency range.
This type of wire medium has been used as one of essential components to create
LHMs [28] and high-impedance surfaces [29].

In addition, it has been demonstrated that an array of parallel conducting wires
[30] can be used as a subwavelength imaging system that effectively acts as a TV
Rock-Ulexite, (NaCaBs;0Oq-8H,0, hydrated sodium calcium borate hydroxide),
shown in Figure 1.4, a mineral occurring in silky-white rounded crystalline masses
and in parallel fibers. It was named after the nineteenth-century German chemist
G. L. Ulex who first discovered it.

Figure 1.5 shows the simulation results using the CST microwave studio. A sub-
wavelength distribution of electrical fields at the front interface of the wire medium
slab (an analogy to the TV rock at microwave frequencies) [see Figure 1.5(a)] is
canalized from the front interface to the back interface and forms an image [see
Figure 1.5(b)]. The quality of the image can be clearly seen in Figures 1.5(c, d),
where the absolute values of an electrical field in the vicinity of the front and back
interfaces are plotted. However, these devices are not true lenses since they do not
image the fields in a manner similar to the optical lenses when dealing with objects
located at arbitrary distances from the surface of the medium.

(b)

@)

Figure 1.6 Components of artificial magnetic materials: (a) split-ring resonator, (b) Swiss roll, and
(c) frequency response of effective permeability.
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1.2.2 Artificial Magnetic Materials

Artificial magnetic materials are typically synthesized by using resonant elements,
as for example split-ring resonators [see Figure 1.6(a)] or Swiss rolls [see Fig-
ure 1.6(b)]. The split-ring resonators are more widely used than the Swiss rolls
since they can be manufactured using printed circuit technology. Artificial magnetic
materials were known as far back as early the 1950s, and a book by Schelkunoff
and Friis [33] provides expressions that can be used to calculate the magnetic
flux of a split metallic wire loaded with a small capacitor, formed by a pair of
parallel metallic plates. In [34], Schneider used a split metallic tube to produce
an NMR probe, and, in [35], Hardy proposed a Swiss roll resonator to achieve
magnetic resonance at 200-2,000 MHz. In [36], an artificial magnetic material
with frequency-dependent positive permeability has also been synthesized by using
double circular ring resonators.

An artificial magnetic material, which is formed by split-ring resonators, pos-
sesses negative permeability within a frequency band (bandwidth is typically nar-
row) near the resonant frequency of the single split-ring resonator; it is widely
used to create LHMs [4]. Metallic waveguides filled with such artificial mag-
netic materials support guided waves at frequencies below the cutoff frequency
of hollow waveguides; hence such guides are also referred to as the subwavelength
waveguides [38]. This effect can be used for miniaturization of guided wave struc-
tures [39], though they do introduce additional losses owing to the presence of
high circulating currents in the inclusions when they are resonant.

1.2.3 Bianisotropic Composites

Even when the host medium and the dielectric inclusions in this medium are
isotropic on their own—that is, in isolation—the effective medium of the mix-
ture can be anisotropic, and its macroscopic response can vary depending on the
polarization of the incident field. A further generalization of this phenomenon is
bianisotropy, which is associated with simultaneous presence of both anisotropic
and magnetoelectric behavior [14]. For example, lattices of inclusions with of com-
plex shapes (e.g., chiral and omega particles, shown in Figure 1.7), cannot be de-
scribed in terms of permittivity and permeability corresponding to their behaviour
in isolation, because of the electromagnetic coupling between the two sets of in-
clusions which affects their performance. As a result, the electric field not only

2/

XX

(a) (b) ©

Figure 1.7 Bianisotropic particles: (a) chiral, (b) omega, and (c) double chiral [45].
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induces electric but also magnetic polarization in such media (vice versa for the
magnetic field), and such materials are referred to as bi-anisotropic media [40-42].
Marques [43] showed that even split-ring resonators possess strong bianisotropic
properties, since the dimensions of the two split rings are different. This, in turn,
has undesirable effects when we attempt to create a uniaxial artificial magnetic
material mentioned in the previous section. However, this problem was mitigated
by introducing double split-ring resonators formed by rings with identical sizes
[43, 44].

The bianisotropic medium is the most general type of material that can be
described in terms of local material parameters. They have been used in many
applications, such as the design of radar absorbing materials for stealth technol-
ogy and polarization transformers. It has been reported that conventional chiral
materials can exhibit negative refraction [46-48], and this has opened up novel
means of producing artificial materials with negative refraction characterization.
In this book, chiral materials will not be covered at any length, since they have
been intensively investigated for the past 20 years or so, and there already exists
an extensive body of literature covering this topic.

1.2.4 Double-Negative and Indefinite Media

In the existing literature, the DNG media, materials with both negative permittiv-
ity ¢ and permeability p, have become almost synonymous with metamaterials,
though, in reality, the EBGs should share the spotlight just as much with them un-
der the general umbrella of the term metamaterials. In the literature, such materials
are also referred to as LHM following the original term proposed by Veselago [49],
and sometimes, they are also called backward-wave media [50,51] and negative
index materials [53, 57]. It is worth noting that backward-wave media were first
discovered in 1904 by Lamb [54] in mechanical systems, and were revisited by
many researchers including Clarricoats in the 1960s [55]. In [55], it was showed
that radiation from a slotted circular waveguide partially filled with a dielectric
rod (whose material characteristics are not DNG) radiates backward waves that
have opposite signs for the group and phase velocities. In addition, negative refrac-
tion phenomenon associated with DNG materials can also be observed in photonic
crystals and EBG structures (see Section 1.2.5 for details) at the frequencies close
to the edges of the bandgaps. This fact was theoretically revealed by Notomi [56],
confirmed by others [57], and experimentally verified by Parimi [58] and Sud-
hakaran [59].

Growing interest in DNG media was incited recently by a seminal paper by
Pendry [60], in which he, following Veselago, argued that the resolution of com-
mon imaging systems restricted by the so-called diffraction limit can be overcome
by the use of a slab of double-negative medium, with ¢ = u = —1. The focusing
phenomenon in a perfect lens proposed by Pendry has been attributed to two ef-
fects. The propagating modes of a source are focused due to the negative refraction
and the evanescent modes experience growing inside the DNG slab, which allows
subwavelength details to be restored in the focal plane. Without a doubt, if lossless,
wideband and DNG materials become available in practice, they would be a major
breakthrough in modern science and engineering and would find a wide variety
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Figure 1.8 Realization of DNG material at microwave frequencies [4].

of potential applications such as a subwavelength cavity resonator proposed by
Engheta [61] and transparent radomes constructed from conjugate dielectric and
DNG slabs [62].

Shelby and Smith [5] recently suggested that a way to realize a uniaxial DNG
medium is to use a lattice of metallic wires and resonant magnetic particles, as
shown in Figure 1.8. In their design, an array of metallic wires (wire medium as
mentioned before) is used to realize negative permittivity, and a lattice of split-
ring resonators allows one to create a negative permeability medium. Negative
refraction in the Shelby-Smith structure was purportedly proven at microwave
frequencies [3, 63, 64], though an alternative explanation of the observed behavior
of the scattering characteristics of the slab has recently been offered by Mittra. To
date, DNG media based on the Shelby-Smith design have been created for operation
in the thetahertz range [61, 62]. Even an isotropic geometry has been proposed
[4], though it remains to be proven in practice. The Shelby-Smith structure is not
a unique design of DNG media. There are also other possible realizations, such as
those presented in [5, 38, 53, 64].

Indefinite media are referred to as artificial materials in which the principle
components of the permittivity and permeability tensors have different signs. Such
materials were studied in [65,66], where a variety of effects including negative re-
fraction, backward-wave effect, and near-field focusing were purportedly demon-
strated. Anisotropy of the media introduces additional freedom in manipulation
of their dispersion and reflection properties, though it is a two-edged sword, since
there exist no systematic ways to characterize these media from their reflection
and transmission characteristics in terms of permittivity and permeability tensors.
Furthermore, it is not at all so straightforward to analyze an antenna metamaterial
composite when the latter is anisotropic.

In a 2003 article [67], Holloway speculated that complex structures comprised
of split-ring resonators and wires are not necessary for the design of a negative-
refraction material, which, in principle, can be realized by using purely dielectric
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inclusions in a background dielectric medium. This, in turn, has opened up the
possibility of synthesizing negative refractive index metamaterials much more sim-
ply than has been proposed up to date. Manoz [11] recently expanded on the
ideas of Holloway [67] and showed that even a composite of inherently nonmag-
netic homogeneous spheres can provide a negative refractive index metamaterial.
The absence of inherently magnetic materials is a key difference, which makes it
possible to achieve a negative refractive index band even in the deep infrared re-
gion [11]. However, it also raises an important and rather fundamental question.
Are these effective parameters of a slab of metamaterials containing resonant in-
clusions simply fictious quantities that are numerically fitted to match reflection
and transmission characterization of a planar slab of metamaterial (external char-
acteristics) at a specific incident angle and polarization of the incident waves? In
the real-world scenarios, such metamaterials may not bear any resemblance to real
homogeneous materials, whose characteristics do not vary with a change in the
thickness, incident angle, or polarization. Additionally, real materials are not so
highly dispersive as are the resonant structures.

1.2.5 Photonic and Electromagnetic Crystals

Artificial dielectrics are generally designed to operate at wavelengths that are long
compared to periods of the lattice. In this regime, the inclusions interact primarily
quasistatically, and homogenization approaches are applicable. A totally different
situation arises in the case of so-called electromagnetic crystals [68, 69] (or pho-
tonic crystals at optics [70-74]) when operating at higher frequencies where the
interactions between the inclusions play a very significant role. Typically, electro-
magnetic crystals are periodic structures, operating at wavelengths that are compa-
rable to their period, and one of their inherent features is that they have passbands
and stopbands. These stopbands are also referred to as bandgaps, and therefore,
these crystals are sometimes referred to as electromagnetic or photonic bandgap
structures. The bandgaps are caused by spatial resonances that occur in the crys-
tal, which strongly depend on the direction of propagation of the incident wave
(i.e., they are spatially dispersive) [75-77]. Electromagnetic crystals cannot be ho-
mogenized in the same manner as ones without resonant inclusions. Nonetheless,
one can curve-fit their reflection and transmission characteristics as functions of
frequency to define their permittivity and permeability. Whether or not the effec-
tive parameter descriptions can be subsequently used to design practical structures
remains an open question, which is not yet unequivocally settled.

Incidentally, such photonic or electromagnetic crystal structures do occur
in natural biological systems, in which nanometer-scale architectures are used
to produce striking optical effects: Morpho butterflies use multiple layers of
cuticle and air to produce their striking blue color, and some insects use ar-
rays of elements, known as nipple arrays, to reduce reflectivity in their com-
pound eyes as shown in Figure 1.10 [79]. Nireus is found in eastern and
central Africa and has dark wings with patches of bright blue-green mark-
ings. These markings are unusual in the way they produce their light and
color. Optical physicists have studied the scales that make up the brightly
colored regions of the creature’s wings. These scales contain a pigment that
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Figure 1.9 The first photonic crystal with a complete bandgap (Yablonovite) [78].

absorbs light at wavelengths around 420 nanometers (roughly sky-blue) and
radiates it at 505 nm in the blue-green region where butterfly eyes are particu-
larly sensitive. Indeed, natural photonic structures are providing inspiration for
technological applications and might provide us with useful clues for designing
them artificially.

Figure 1.10 The blue-green color on several species of African butterflies is caused by the nanoscale
structure of the insects’ wings [79].
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The interest in photonic crystals arose about 20 years ago, inspired by the
investigations described in the pioneering works of Yablonovitch [80] and John
[81] in 1987, in which they reported strong localization of photons and inhibited
spontaneous emissions due to electromagnetic bandgaps. Ever prior to that, about
15 years earlier, the effect of a photonic bandgap on the spontaneous emission
of embedded atoms and molecules had been investigated by Bykov [82, 83]. The
first studies and demonstration of a photonic crystal with a complete bandgap
(see Figure 1.9) were carried out by Yablonovitch et al. in the early 1990s [78,
84-87]. Since then, photonic and electromagnetic crystals have found numerous
applications in FSSs and as components for waveguide and resonators, both in
optical and microwave regimes [68, 69-74].

Electromagnetic crystals are also classified as electromagnetic bandgap (EBG)
structures and high-impedance surfaces (HISs) at microwave frequencies. A typ-
ical transmission coefficient chart of an EBG structure with incidence of plane
wave is shown in Figure 1.11(a). The passbands and stopbands correspond to
those in Figure 1.11(b) [88]. Some practical applications of EBGs include antenna
beam narrowing and shaping using Fabry-Perot like EBG cavity [89-91]; isolation
enhancement in diplexer antennas using anisotroptic EBGs [92]; mobile antenna
efficiency improvement using Mushroom-like EBGs [93, 94]; EBG horn antennas
and arrays at millimeter-wave frequencies [95], and mutual coupling reduction
between antenna array elements [96].

Typical HISs are thin composite layers whose reflection coefficient is +1, and
hence, the HIS behaves as though it were a magnetic conductor. For this reason,
HISs are also referred to as artificial magnetic conductors (AMCs). A well-known
example of HIS is the simple mushroom structure [93], as shown in Figure 1.12.
The structure is a composite layer that contains a periodic array of metallic patches
with metal pins connected to the ground. Its response to the incident electromag-
netic wave can be modeled approximately, as that of a resonant parallel LC-circuit.
The most important attribute of a HIS is that it interacts with horizontal antennas
located close to it in a manner that is constructive in contrast to the interaction
with metallic screens that are destructive. Also, in addition to serving as a mag-
netic wall, the HIS can be designed to suppress surface waves in a certain frequency
band. Thus, HISs are prospective candidates for screening of near field and reduc-
ing specific absorption rate (SAR), which, in turn, serve to increase the antenna
efficiency [94].

An important use of electromagnetic crystals at optics is to control flow of
light [71]. The basic idea is to design periodic dielectric structures that have a
bandgap in a particular frequency range. By deliberately introducing defects in pe-
riodic dielectric rods, it is possible to create waveguiding devices operating at the
bandgap frequencies of the periodic structure. Incidentally, such devices, operating
at the bandgap frequencies, are not the only option to guide the flow of light.
Recently, a new method for guiding electromagnetic waves in structures whose
dimensions are below the diffraction limit has been proposed. The structures have
been named ‘“plasmonic waveguides,” and they operate by virtue of near-field
interaction between noble metallic nanoparticles that are closely spaced and can
be efficiently excited at their surface plasmon frequency. The underlying princi-
ple of their operation relies upon a setup of coupled plasmon modes via dipole
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Figure 1.11 (a) Typical EBG structure transmission chart and (b) propagation modes chart.

interactions in the near field that leads to coherent propagation of energy along
the array. Analogous structures as waveguides in the microwave regime include
periodically arranged metallic cylinders that are useful arrays of fat dipoles and
Yagi-Uda antennas, to name just a few.
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Figure 1.12 TM surface wave measurement using monopole probe antennas.

1.3 Numerical Modeling of Electromagnetic Metamaterials

Metamaterials have the potential to control and manipulate the wave propagation
in a manner that eludes the conventional materials, because of their periodic na-
ture that can either be small-scale or resonant. Their use may enable us to create
highly directional antennas, enhance the performance of small antennas by mak-
ing them appear as though the electrical lengths were much larger, and design
highly integrated transceiver systems that can be packaged in a limited space. Al-
though the practical applications of metamaterials are currently limited by their
loss characteristics and operational bandwidths, it is very important to develop
efficient modeling tools to quantify and represent the characteristics of metama-
terials and their behavior, especially when they form an integral part of complex
electromagnetic systems.

For more than four decades, the FDTD method has been regarded as a useful
electromagnetic modeling tool because of its versatility, and the development of
this tool is still ongoing. Researchers all around the world are working on ways to
embellish the performance of the FDTD algorithm by developing: new absorbing
boundary conditions (ABCs) for novel materials; advanced alternating direction
implicit (ADI) algorithms for the unconditionally stable FDTD method; conformal
FDTD algorithms based on contour path or effective permittivity for modeling of
curved structures; accurate techniques for modeling of thin material layers; par-
allel implementation of the FDTD algorithm for electrically large problems; and
so on. Generally speaking, the FDTD method can be used to solve a wide variety
of EM problems pertaining to antennas, electromagnetic compatibility, microwave
systems, dosimetry, radar cross section predictions, and others. However, the con-
ventional FDTD algorithm usually cannot handle all possible scenarios. Further-
more, existing commercial software often does not offer the flexibility to modify
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the algorithms used in their codes. Hence this prevents us from using them for
many problems of interest that fall beyond the realm of capabilities of the existing
codes. Given this background, this book will focus on improving the conventional
FDTD algorithm and enlarging it to handle applications in the area of metamaterial
modeling.

There has also been a “divide” between the thought processes of physicists and
engineers in the area of metamaterial modeling. Physicists often regarded metama-
terials as though they are homogeneous materials, and they frequently assume that
these materials satisfy the effective medium theory (EMT). For engineers, losses,
operational bandwidth, and the finiteness of metamaterial are all very important.
They recognize that “unit-cell” analysis may not be valid for truncated periodic
structures. Furthermore, when devices such as antennas are placed close to metama-
terials, it becomes highly necessary to account for the interaction between antennas
and metamaterials in a numerically rigorous manner. This is particularly impor-
tant since analytical models exist only for a very small class of electromagnetic
metamaterials, consequently, there is often a tendency to attempt to simplify the
original problems by making gross approximations to reduce their complexities.
However, this often involves sacrificing the accuracy to a point that may make
the results totally erroneous and the predictions regarding the performance of the
metamaterial devices misleading.

Among metamaterials, electromagnetic crystals are usually numerically studied
with the help of methods such as the FDTD; the method of moments (MoM) [68,
69, 72, 74]; Pendry’s approach described in [97]; and the Bloch-Floquet method
[70, 71], which is based on an expansion of the field into spatial harmonics. There
have been a number of attempts to model LHMs mainly based on their EMT
models using the FDTD method [98-103]. It appears that the conventional dis-
persive FDTD method is sufficient to model negative refractions at the interface
of LHM and the free space and that it can be used to model the behavior of a
planar superlens [98-100]. However, we will demonstrate later in this book that
the conventional dispersive FDTD approach suffers from numerical inaccuracies
when evanescent waves must be included in the modeling of the structure of in-
terest. In the case of LHM, the evanescent waves may play an important role in
subwavelength imaging using a slab of such a material. Earlier FDTD simulations
failed to demonstrate the subwavelength imaging property of LHM lenses [98, 99],
because they did not accurately model the role of the evanescent waves.

Besides the FDTD method, the pseudospectral time-domain (PSTD) method has
been used for the modeling of backward-wave metamaterials [104]. It is claimed
[104] that the FDTD method cannot be used to accurately model LHMs due to
the numerical artifacts originating from the staggered grid nature of the FDTD
meshes. However, it will be demonstrated in this book by comparing transmission
coefficients calculated from the FDTD simulation and exact analytical solutions
that the FDTD method indeed can be used to accurately characterize the behavior
of both the propagating and evanescent waves in LHM slabs with proper field
averaging techniques [103, 105].

The FDTD method has also been used to study waveguides formed by several
rows of silver nanorods arranged in a hexagonal lattice [106]. Even though the
FDTD method has been applied to numerous examples involving the plasmonic
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structures, its accuracy has not been established as yet, especially when handling
complex geometries and metamaterial media. For instance, since the conventional
FDTD uses a Cartesian and staggered grid, we often find that it needs to be refined
[107-111] when dealing with the curved surfaces, interfaces between different ma-
terials, and dispersive media to get accurate results. In fact, modeling dispersive
materials with curved surfaces still remains a challenging topic, not only because
the algorithm dealing with it is complex, but also because it can become numer-
ically unstable. One approach to addressing this problem is based on the use of
effective permittivities (EPs) [112-114] in the Cartesian coordinate system, and to
modify the dispersive FDTD scheme in a way such that its stability is not com-
prised. In this book, we propose a novel conformal dispersive FDTD algorithm
that combines the EPs with an auxiliary differential equation (ADE) method [17],
then applies the developed method to the problem of modeling plasmonic wave-
guides formed by an array of circular or elliptically shaped cylinders in the optical
frequency regime. The material for the cylinders is silver, which has a negative
permittivity, since it behaves like a plasma at these frequencies.

1.4 Layout of the Book

The chapters in this book have been written to illustrate applications of the FDTD
to the problem of modeling electromagnetic metamaterials. Chapters 2-5 present
the fundamentals of metamaterials and discuss some basic numerical modeling
techniques, primarily the FDTD for modeling these materials. Next in Chapters
6-10, we deal with the application of FDTD modeling metamaterials comprised
of physical structures and using effective medium models.

Chapter 2 presents the fundamentals of EBG structures, beginning with
Maxwell’s equations in periodic electromagnetic structures, bandgap theory, dis-
persion diagrams, spatial harmonics, and phase and group velocities.

Chapter 2 also presents an overview of various computational techniques that
are useful for metamaterial modeling, including the plane wave expansion method
and the transfer matrix approach. Also, applications of EBGs in both microwave
and optical engineering are reviewed.

Chapter 3 deals with the basics of FDTD in the context of metamaterial model-
ing. It covers the formulation of Yee’s FDTD formulations, applications of FDTD
to periodic electromagnetic structures, boundary conditions, and excitations in
FDTD associated with electromagnetic metamaterials.

Chapter 4 introduces FDTD modeling of EBG structures and their applications
to antenna engineering. Calculations of the dispersion diagram of an infinite EBG
and the transmission coefficient a (semi-)infinite bandgap structure will be detailed.
We shall conduct a case study of designing a millimeter-wave EBG antenna based
on the FDTD simulation.

Chapter 5 includes an overview of LHMs and their applications to microwave
and antenna engineering. Reviews are focused on LHMs as the context of “mate-
rials,” although the composite right/left-handed transmission lines (CRLH-TL) are
also mentioned.
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Chapter 6 presents metamaterial FDTD modeling based on the effective medi-
um theory (EMT). Negative refraction and perfect lenses, two of the characteristics
associated with such media, are demonstrated, assuming that the media are ideal
in nature, and a discussion of the performance of practical metamaterial slabs is
presented in a later chapter. Application of LHMs to the problem of radome is
discussed.

Chapter 7 contains an extensive study of FDTD modeling on “real-world”
LHMs, and several parameter extraction techniques will be studied for evaluating
both electrical and magnetic properties of LHMs. A figure of merit (FoM) study
is conducted to relate the bandwidth and loss issues of LHMs to the electrical
dimensions of resonant particles.

Chapter 8 addresses a spatial averaging scheme at the boundaries of LHM
slabs when modeling the perfect lens.

Chapter 9 presents a novel spatially dispersive FDTD method to illustrate the
unique property of uniaxial wire mediums that are capable of mapping the near
field akin to an LHM lens, provided that the source and image planes are butted
right up against its interface.

Chapter 10 deals with metamaterial FDTD modeling at optics. Specifically the
topics such as nanoparticle plasmonic waveguide, subwavelength imaging based
on layered silver slabs, and electromagnetic cloaking will be discussed.

Chapter 11 presents an overview of the book and discusses relating to the
state of the art in metamaterial modeling and closes with some remarks on future
challenges.
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Fundamentals and Applications of
Electromagnetic Bandgap Structures

2.1 Introduction

As stated in Chapter 1, periodic structures have been used in both closed metallic
and open waveguides long, for instance, in filters and traveling-wave tubes. In the
late 1980s, a fully three-dimensional periodic structure, operating at microwave
frequencies, was realized by Yablonovitch [1] and his coworkers by mechanically
drilling holes into a block of dielectric material. This material prevents the prop-
agation of EM radiation in all three spatial directions; it is transparent at these
wavelengths in its solid form. Such artificially engineered structures are generically
known as electromagnetic bandgap (EBG) materials [1-96].

The main feature of these materials is the existence of a gap (stopband) in
the frequency spectrum of propagating EM waves [2-6]. This bandgap frequency
depends on the permittivities of the dielectric inclusions and the background mate-
rials, the dimensions of the inclusions/defects, their periodicities and the incidence
angle of the electromagnetic waves [7]. This feature leads to a variety of phenom-
ena of both fundamental space [8, 9] and practical way [1,10] to scientists alike.
The use of these artificial materials ranges far and wide and includes antenna sub-
strates, planar filters, and optical waveguides. The EBG technology continues to
witness a rapid development, and it is expected that new structures will evolve.

This chapter reviews the basic theory, numerical methods, and applications of
the EBG material.

2.2 Bloch’s Theorem and the Dispersion Diagram

The role of symmetry is important in an electromagnetic structure when analyzing
its behavior. EBG studies are typically based on exploiting interesting symmetry
properties, including periodicity in dielectrics of the material, that are amenable
to analysis using Bloch’s theory. This theory can be used to derive the dispersion
diagrams of the EBGs, as will be shown in this section, which will introduce the
basic topics pertaining to the study of EBGs, including:

1. Translational symmetry;

2. Bloch’s theorem and periodic boundary condition (PBC);
3. Brillouin zones;

4. Dispersion diagram and EBG.
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2.2.1 Translational Symmetry

Definition: A system with translational symmetry [2] is invariant to a translation
through a displacement d.

Let £(7) be a function defined in a translationally invariant system. Then, when
we carry out a translation with an operator T:i’ we have:

—

T. [30)} —e(F+d) = e(7) (2.1)

A system that has continuous translational symmetry is invariant under the
T-’s of any displacement. An example system that has continuous translational
symmetry in all three directions is free space &(7) = 1.

Few EBGs have continuous translational symmetry. However, all of them have
discrete translational symmetry. In other words, they are not translationally invari-
ant under any distance, but only under certain distances—which are multiples of
some fixed step length or period. The basic step length is termed as the lattice con-
stant a, while the basic step vector is called the primitive lattice vector a, or the fun-
damental translation vector a. So, we have &(7) = &(7 4+ a) and &(7) = &(r + ﬁ),
where R = s1dq + s2da + s3d3, and si(i = 1,2,3) is an integer. Consequently, these
structures can be considered as one basic configuration unit being replicated over
and over. This basic unit is referred to as the unit cell.

Figures 2.1-2.3 show examples of EBG structures that are periodic in one,
two, and all three dimensions, respectively. In Figure 2.1, the dielectric property
of the material is repeated in one direction with a period of a. In Figure 2.2, the
infinitely long cylindrical rods are periodically loaded in both x- and y-directions,
both with a distance of a. The material in Figure 2.3 is termed as the woodpile
EBG structure and is also referred to as a layer-by-layer photonic crystal in the
physics publications [11]. A unit cell of this material is shown in Figure 2.3(b).

Figure 2.1 A part of a one-dimensional EBG structure. This EBG is made up of infinite planes
with two kinds of materials with different dielectric properties, (a is the lattice constance): (a) the
three-dimensional view of the EBG and (b) the one-dimensional view of the EBG.

e
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(b)

Figure 2.2 (a) A part of the infinitely long two-dimensional EBG structure and (b) unit cell marked
on the x-y cut plane of the EBG structure.

2.2.2 Bloch’s Theorem and Periodic Boundary Condition (PBC)

Bloch investigated the theory of wave propagation in three-dimensionally periodic
media back in 1928, and the same underlying mathematics, however, was also
discovered as Floquet’s theorem [4] in one dimension in 1883. In his study, Bloch
proved that waves in such a medium can propagate without scattering; their be-
havior is governed by a periodic envelope function multiplied by a plane wave.
That is, in an EBG with periodic dielectric function:

8(7) = 8(74— s1a1 + s2ax + Sgﬁg),si =0,£1,£2,... (2.2)
where a;(i = 1,2,3) are three primitive lattice vectors, for a crystal periodic in all

three dimensions, the fields can be expressed as plane wave with an envelope (2.3)
as follows:
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Figure 2.3 (a) Two angles of view of the woodpile EBG structure and (b) unit cell for the woodpile
EBG material.

H(7) = &5 7a(7) (2.3)

where H is a electric or magnetic field vector and # is a periodic envelope function.
The result above is commonly known as Bloch’s theorem. In solid-state physics,
the form is known as a Bloch state [12], and in mechanics it is referred to as a
Floquet mode [13].
Let us consider a simple example as shown in Figure 2.4, which is repetitive
in the y-direction, and invariant and infinite in the x-direction. Thus the geom-
etry has continuous translational symmetry in the x-direction, while it possesses
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Figure 2.4 A dielectric configuration with discrete translational symmetry. (a is the lattice constant.)

discrete translational symmetry in the y-direction. The unit cell of this geometry
is highlighted in Figure 2.4. The primitive lattice vector for this case is given by
a=ay.

The fields in this structures are in the Bloch state and can be written as:

H(F) = "y, (v.2) (2.4)
where #(y,z) is a periodic function in y satisfying:
u(y +s-a,z) = i(y,z) (2.5)

Equation (2.4) can be interpreted to imply that this state is a plane wave,
modulated by a periodic function that arises because of the periodicity of the
lattice.

The fields in Bloch’s state can be studied using the so-called unit cell approach,
in which only elements in one unit cell are investigated, while the elements of the
outside cell are related to the one in the unit cell using the following relationship:

H(F + la9) = et .eh0rtla) g, (y + la,z)
_ eikyla' (eikxx'eikyy';tky <y7 Z))

= PR (7) (2.6)

Equation (2.6) is used as the PBC when studying the infinite EBG structures.

2.2.3 Brillouin Zone

A key attribute of the Bloch states is that a Bloch state with a wave vector k, is
identical to the Bloch state whose wave vector is ky + mb, where b = 2x/a and
m is an integer. That implies that the mode frequencies are also periodic in k,,
ie. o(ky) = o(k,+ mb), and hence, we only need to consider k, in the range
—n/a < ky, < m/a. This region that is associated with nonredundant values of k,
is called the Brillouin zone.

Another example shown in Figure 2.5 is made up of cylindrical elements pe-
riodically laid out in a square lattice. Figure 2.5(a) shows the physical lattice,
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M

(@ (b)

Figure 2.5 (a) The physical lattice of an EBG made using a square lattice. An arbitrary vector ris
shown. (b) The Brillouin zone of the reciprocal lattice, centered at the origin (I'). An arbitrary wave
vector k is shown. The irreducible Brillouin zone is the triangular wedge. The special points at the
center, corner, and face are conventionally known as I', M and X [2].

while the Brillouine zone of the reciprocal lattice is plotted in Figure 2.5(b). This
structure shows not only a discrete translational symmetries along the x- and y-
directions, but also rotation, mirror-reflection, and inversion symmetry. It is stated
in [2] that when these symmetries exist in the physical space, the reciprocal space
(k-space) shows the same types of symmetry. One consequence of this is that we
need only consider the smallest region within the Brillouin zone [see Figure 2.5(b)]
for which the k vectors are not related by symmetry and not each and every k-
point in the zone. That smallest region is termed as the irreducible Brillouin zone,
shown in Figure 2.5(b); the rest of the Brillouin zone contains redundant copies of
the irreducible zone.

2.2.4 Dispersion Diagram and EBG
With the knowledge of the irreducible Brillouin zone, we can plot the wave num-

bers of the possible modes against the wave vector k. Such plots provide the
knowledge of the dispersion relationship and the energy flow behaviors in an
intuitive way. Figure 2.6 shows two examples of one-dimensional diagrams of
one-dimensional EBG structures.

a
!, b ‘m
i \
' A
Jol N w
4 A
4 A}

gap

-/a w/a -m/a z/a

(@ (b)

Figure 2.6 (a) Dispersion relation (band diagram), frequency o versus wave number k of a uniform
one-dimensional medium. (b) Schematic effect on the bands of a physical periodic dielectric variation
(inset), where a gap has been opened by splitting the degeneracy at the k = £x/a. The upper right-
hand corner shows the physical lattice and the wave vector. a is the lattice constant [4].
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Figure 2.7 (a) A two-dimensional dispersion diagram for a two-dimensional EBG (illustrated in
Figure 2.5). (b) A two-dimensional dispersion diagram where an incomplete bandgap can be found.
For example, the bandgap from normalized frequency 0.404—0.552 is only valid with k vector from
I' to X, and a subset from Mto I.
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Figure 2.6(a) is the dispersion diagram for a uniform dielectric medium, to
which a periodicity of a has been artificially assigned. As we know that the speed
of light is reduced by the index of refraction in a uniform medium, the plot is just
the light-line given by

- ck

ok) =

Because the & repeats itself outside the Brillouin zone, the lines fold back into
the zone when they reach the edges. The dashed lines show the folding effect of
applying Bloch’s theorem with an artificial periodicity a.

In Figure 2.6(b), we note that there is a gap in the frequency between the upper
and lower branches of the lines. In this frequency region, no mode, regardless of
K, can propagate through the structure. This gap is called an EBG, which can be
further classified as:

(2.7)

o Complete EBG: A complete electromagnetic bandgap is a range of ® in
which there are no propagating (real k) solutions of Maxwell’s equations
for any k, surrounded by propagating states above and below the gap.

"3

1/A=w/(27c)

Figure 2.8 A three-dimensional dispersion diagram for a two-dimensional EBG. The EBG is made
of circular rods of radius p = 0.6, with optical index of 2.9, lying in vacuum on a hexagonal lattice
with period of 4. The horizontal plane gives the Bloch wave vector k. The vertical axis gives 1/A.
The triangle corresponding to the irreducible Brillouin zone has been drawn in the (kx, ky) plane.
The parameters about the EBGs can be found in [14].
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o Incomplete EBG: This bandgap only exists over a subset of all possible
wavevectors, polarizations, and/or symmetries.

Figures 2.7 and 2.8 show two- and three-dimensional dispersion diagrams,
respectively, of two two-dimensional EBGs. In this work, only the two-dimensional
dispersion diagrams are used as examples for numerical validation.

2.3 An Overview of Numerical Methods for Modeling EBG Structures

Numerical methods are often used to predict the performance of EBGs, either for
the purpose of understanding their behavior or for developing new designs. These
numerical methods include, the generalized Rayleigh identity method [17-20],
the Korringa-Kohn-Rostoker (KKR) approach [21-23], the plane wave expan-
sion (PWE) method [24-26], the transfer matrix method (TMM) [27, 28], and
the FDTD method [29]. Among them, the PWE method and the FDTD method
are the two that are used most widely. In this section, these numerical methods
will be discussed briefly; the details of the FDTD method will be presented in the
following chapters.

2.3.1 The Generalized Rayleigh’s Identity Method and the
Korringa-Kohn-Rostoker (KKR) Method

Nicorovici and McPhedran et al. extended Rayleigh’s technique from electrostatic
to full electromagnetic problems, for singly-, doubly-, and triply-periodic systems
in [18-20], respectively.

Let us now consider EBGs consisting of an array of cylinders or spheres in an
isotropic homogeneous dielectric host medium. Denote the fundamental translation
vectors of the lattice as ¢;(i = 1, 2) for a cylinder array or (i = 1,2, 3) for a spherical
array. The wave equations for the electric and magnetic field components decouple
from each other and they satisfy the Helmholtz equation:

(V2+R)f(F)=0 (2.8)

where k is the wave vector.
The solution f(7) must satisfy the quasiperiodicity condition given by

fiF + Rp) = 4 Rof(7)  vp 2.9)

where Z,- = (k;, 0;,¢;) is the wave vector of the incident radiation, and l_ép denotes
the vector from the origin of the coordinates to the center of the pth cylinder, or
sphere, (2.10) and (2.11), respectively, as follows:

Rp =pié1+prer = (p1.py), D€L (2.10)

Rp = p121 + pr22 +p3e3 = (p1,02,03), D€L (2.11)
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The Green’s function G, which obeys the inhomogeneous Helmholtz equation
in the periodic systems, can be expressed as:

(V2 4+ k%G =Y 6(F— Rp — p)eikoRe (2.12)
p

and it satisfies the quasiperiodicity conditions given by

G(7 + Rp,p) = X Re G (7, p) (2.13)

G(7,p + Rp) = e 0 Rr G(7 ) (2.14)

where ¢ = 27 or 1 for the cylinder and the sphere arrays, respectively.

By introducing the lattice sums, Nicorovici et al. have obtained a represen-
tation of the Green’s function in terms of a rapidly convergent Neumann series
[17-20]. The main advantage of using the lattice sums method is that, for a given
problem of electromagnetic scattering by a grating, the coefficients of the series in
calculating the Green’s function have to be evaluated only once. This appreciably
increases the speed of the numerical evaluation of the Green’s function at any
point in the xy-plane.

If the solution for the periodic lattice is derived via a variation-iteration
technique instead of through a direct calculation, the generalized Rayleigh’s
Identity method becomes the generalization of the KKR method to photonics
[20, 30], which was derived by Korringa, Kohn, and Rostoker [21] using different
approaches.

The generalized Rayleigh’s identity method and the KKR method share some
common features. The most attractive feature of these two methods is that the
greater part of the work involved in the calculation of the energy bands entails
the computation of certain geometrical “structure constants,” which need only be
calculated once for each type of lattice. This approach leads to a very compact and
very rapidly convergent scheme, in comparison to the PWE method, for the case
where the potential V(7) is spherically or cylindrically symmetric, within the in-
scribed spheres of the atomic polyhedra or the cylinders and constant in the space
between them. However, the application of the generalized Rayleigh’s identity
method and the KKR method are limited to modeling structures with spherical or
cylindrical symmetries and when () is piecewise constant. When the actual poten-
tial violates these conditions significantly, the procedure is not suitable (see [23]).

Compared to the generalized Rayleigh’s identity method, the KKR method has
even limited range of applications. The variational KKR method cannot be used
for complex &(7). On the other hand, the generalized Rayleigh’s identity method is
capable of handling problems in which the dielectric constant taking on either finite
or infinite values, or imaginary ones. The generalized Rayleigh’s identity method
can also be applied when the cylinders are comprised of an arbitrary number
of circular coaxial shells, filled with materials with different complex dielectric
constants. However, because of its variational nature, the KKR method is expected
to converge more rapidly within its range of application [30].
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2.3.2 Plane-Wave Expansion Method

Comparitively speaking the PWE is much simpler than the generalized Rayleigh’s
identity and KKR methods, easier to program, and runs substantially faster. In
general, the PWE converge more slowly than the two aforementioned methods.
However, there are also situations in which the PWE achieves a fairly rapid con-
vergence [23]. Moreover, the PWE method is not limited to spherically or cylindri-
cally symmetric modulation of the potential. Instead, it can readily handle almost
all different types of modulations [23, 31].
The PWE method works in the Fourier space. Let us denote

Z =x1k1 + X2k (2.15)
as the two-dimensional wave vector and
é(b) = h1[;1 + /72[;2 (2.16)

as a reciprocal-lattice vector in the Fourier space. Next we expand the component
of the electric field (or the magnetic field) in plane waves as in (2.17). Once the
electric field (or the magnetic field) is known, the other EM field vectors can be
determined by using:
. i(kG)-7
E(F) = zsée’< ) ' (2.17)

—

G
where B-’s are the Fourier coefficients.
We also expand the inverse dielectric constance as:
1 -
= zKéelG" (2.18)
e(r =
@ <

in which ¢ is periodic function in physical space satisfying: &(7) = &(r + ﬁ) and
ﬁé’s are the Fourier coefficients.

Substituting (2.17) and (2.18) into Maxwell’s equations we obtain an eigen-
value equation that reads:

S k. i|k+GPB.s
/! G7G G
G

2
= C—zBé (2.19)
which can be solved by using a standard eigenvalue solver.

The PWE method is also undergoing a continuous development that will release
the method from the restrictions of the complex frequency-dependent dielectric
function and enhance the convergence of the PWE approach.

In the original PWE method, the calculation of EBGs comprising components
characterized by frequency-dependent, complex dielectric functions presents a more
challenging problem than the modeling of purely dielectric materials, since the for-
mer requires the solution of a generalized nonlinear eigenvalue problem. This eigen-
value problem can be solved by using a linearization scheme, which requires the
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diagonalization of an equivalent, enlarged matrix, and hence an increased compu-
tational burden. Kuzmiak et al. have reported an alternative PWE approach that in-
corporates the frequency-dependent dielectric function and reduces the generalized
eigenvalue problem to that of diagonalizing of a set of matrices whose size equals
the number of plane waves retained in the expansions for the components of the
EM field in the system [25]. The PWE method has been further generalized by the
above authors to handle complex, frequency-dependent dielectric functions [32].

The PWE method solves the wave equation in the entire region including the
inclusion element (region-II) and the embedding background (region-I). However,
the dielectric constant has a step discontinuity at the boundary. So the expansion
for the dielectric constant in (2.18) becomes poorly convergent, as large basis sets
may be required in this case to accurately describe an EBG structure [25]. To avoid
this problem, an embedding method is introduced into the PWE method [33] in
which the wave equation is only solved in region-I (between the elements), and the
region-1I (inside the elements) is replaced by an embedding potential defined on
the boundary. The convergency of the procedure improves considerably when the
embedding method is employed.

Although the PWE method is quite general and can treat inclusion elements
of arbitrary shape in EBGs, it exhibits a greater efficiency when the shape of the
element has either a spherical or a cylindrical symmetry. Otherwise, it requires a
large number of basis sets in the expansion and the method becomes computa-
tionally expansive, since the computational time is proportional to the cube of the
number of plane waves. Furthermore, when the EBG has a finite size, it is more
difficult to expand the parameters in the PWE method.

An interest topic in the context of the EBG study is the behavior of impurity
modes associated with the introduction of defects into the EBG structure. While this
problem can be tackled by the PWE approach using the supercell method, in which
a single defect is placed within each supercell of an artificially periodic system, the
calculations require extensive computer time and memory. The numerical method
presented below is useful for efficiently calculating the transmission/reflection co-
efficients of an EBG slab with a finite thickness.

2.3.3 The Transfer-Matrix Method

Pendry and MacKinnon [27] introduced a complementary technique, namely, the
transfer-matrix method (TMM), of studying EBG structures in 1992. In the TMM,
the total volume of the system is subdivided into small cells and the fields in each
cell are coupled to those in the neighboring cells. Then the transfer matrix can
be defined by relating the incident fields on one side of the EBG structure to the
outgoing fields on the other side.

Writing Maxwell’s equations

- 0B
VxE-_2 2.20

X Er ( )
v P (2.21)
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—

in (k,®) space yields:
kxE=oB (2.22)
kx H=—oD (2.23)
Expressing D and B in the usual manner, we have

D = ¢E = gy5,E B = uH = o, H (2.24)

Inserting these into (2.22) and (2.23), we can rewrite them as:

X y z H.x
ke ky k| =op|Hyy (2.25)
E. E, E, H,z
X y z E.x
ke ky k;| =—we|Eyy (2.26)
H, H, H, E.2
From (2.25) and (2.26), we can have:
1
kyH, — k,Hy, = —w&E, (2.28)

respectively. Substituting H, in (2.28), using the expression in (2.27), we get:

1
by | (ke = kyEx) | — keHy = — 05k (2.29)
Substituting:
H=-—"H (2.30)
ame)
we can obtain (2.31).
) iakyc?ut )

(iaky)H,, = %[(:@,C)Ey — (iaky)Ey] — &FEx (2.31)

If we use a the simple cubic mesh, we can define the fields by the vectors a,b,c of
length a in the X-, y-, and z-directions, respectively. Transforming (2.31) back into
real space yields (2.32) below from which the z components of the vectors have
been eliminated:
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Hy'(r+c) = — &(r+ ¢)Ex(r + ¢) + Hy(r)

Autr—b+o)
B a’w?
— Ex(r+¢)+ Ex(r—b+0)]

[Ey(r+a—b+c)—Ey(r—b+c¢)

czu,_l (r+c¢)
* a2 w?
— Ex(r+b+c)+ Ex(r+¢)] (2.32)

[Ey(r+a+c) — Ey(r+c¢)

Similarly, we can derive the other three equations (2.33)-(2.35):

Hyr+c)=— g+ ¢)Ey(r+¢)+ H..()

2,1
ccu(r—a+c)
— r P [Ey(r+¢) —Ey(r—a+c¢)

— Ex(r—a+b+c)+ Ex(r—a+¢)]

i+ o)

2 [Ey(r+a+c)—Ey(r+!lc) — Ex(r+b+c) + Ex(r + ¢)]

(2.33)

a’w?

Ex(r+¢)=+ C—zu,(r)H’y(r) + Ex(7)
+ & ' (r)[H}(r — a) — H},(r) — Hy(r — b) + H},(r)]
— & ' (n)[H}(r) — Hy(r + a) — Hy(r +a — b) + Hy(r + a)] (2.34)

a*w?
Ey(r+c¢)=— C—Zu,(r)H;(r) + Ey(r)
+ & (r)[Hy (r — a) — Hy(r) — Hy(r — b) + H(7)]

— & '(r+ b)[H}(r — a+ b) — Hy(r+ b) — Hy(r) + Hy(r + b)] (2.35)

7

Equations (2.32) and (2.33) express the H-fields on the next plane in terms
of the E residing on the same plane, and the H-fields computed on the previous
plane. Equations (2.34) and (2.35) express the E-fields on the next plane of cells
in terms of the E- and H-fields on the previous plane. Thus, given the x and y
components of the E- and H-fields on one side of a dielectric structure, the x and
y components of the E- and H-fields on the other side can be found by integrating
through the structure. For a dielectric structure containing L x L x L cells, the
dimensions of the transfer matrix are 4L2.

The TMM has the advantage that the frequency variations of the transmission
and attenuation coefficients can be obtained directly from the calculations. This
method can also be used for the situations in which the PWE method fails or
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becomes too time-consuming. In particular, when the permittivity € is frequency
dependent, or when e has large imaginary values, Fourier expansion methods are
not useful [28]. However, periodic systems with imperfections (defects) can be
easily studied by using the TMM method.

The band structure of an infinite periodic system can be calculated using the
TMM, but the main advantage of this method is that it enables us to calculate
the transmission and reflection coefficients for EM waves incident on a finite-
thickness slab of an EBG material as functions of frequencies, provided the material
is assumed to be periodic along the directions parallel to the interfaces.

On the other hand, the FDTD method offers greater flexibility when modeling
arbitrarily shaped configurations and complex dielectric properties in finite or
infinite structures. The computational effort in the FDTD method is proportional
to the number of the nodes in the spatial mesh. In the following section, the
applications of the FDTD method to the problem of modeling the EBG structures
is briefly reviewed. The details of the method and its extensions will be deferred
to Chapter 3.

2.3.4 The Finite-Difference Time-Domain (FDTD) Method

The FDTD method is one of the most widely used numerical methods for the so-
lution of electromagnetic problems. It provides us with a simple way to discretize
the Maxwell’s equations without requiring a complex mathematical formulation,
and it does not require any symmetry in the structure being modeled. Furthermore,
it computes the solution in the time domain, from which the frequency behavior
of the EBGs can be extracted over a wide frequency range. The first FDTD al-
gorithm was introduced by Yee [34] in 1966. Since then, it has witnessed many
modifications. Refinements and extensions [35-37] are still evolving even today.

With the computation costs declining steadily, this versatile method is gaining
more popularity, and we are witnessing a tremendous amout of FDTD-related
research activity. FDTD is finding a wide range of applications in electromagnetics,
including photonic structures.

The FDTD approach offers several advantages when used to model EBG struc-
tures. It can handle complex geometries associated with EBG structures themselves
and their integration with other devices. The FDTD method can deal with a va-
riety of complex materials as well. It can generate the frequency response of an
EBG structure over a wide frequency range with a single simulation. By the end of
2007, more than 3,600 papers had been published on the subject of EBG-related
research via the FDTD simulation, and three quarters of them were published after
2000. Here we review a small fraction of this research:

» Kesler et al. have reported the antenna design with the use of EBG structures
as planar reflectors in 1996 [38]. Field patterns calculated by using the
FDTD method were found to be in good agreement with the measurements.

e In 1997, Qian, Radisic, and Itoh reported the investigation of four types
of EBG structures as synthesized dielectric materials that possess distinctive
stopbands for microstrip lines. Experimental results have been found to
agree with the FDTD simulation results [39].
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e In 1998, Boroditsky, Coccioli, and Yablonovitch analyzed the dispersion
diagrams of a electromagnetic crystal comprised of a perforated dielectric
slab and the properties of a microcavity formed by introducing a defect into
such a crystal using the FDTD method [40].

e Chutinan and Noda studied a waveguide created by either removing one
stripe from a three-dimensional woodpile EBG or filling up or decreasing
the sizes of air holes from a two-dimensional EBG slab using the FDTD
method in 1999 [41] and 2000 [42].

* Yang and Rahmat-Samii have used the FDTD to analyze the mushroom-like
EBGs that find applications as ground planes for low-profile antenna design
[43] (2001) [44] (2003) and for lowering the mutual coupling between the
elements in an antenna array [45] (2003).

e In 2002 Ozbay et al. presented a study of the localized coupled-cavity modes
in two-dimensional dielectric EBG, with the field patterns and the transmis-
sion spectra [47].

e Weily and Bird et al. reported the study of a planar resonator antenna based
on a woodpile EBG material in 2005 [48] and a linear array of EBG Horn
sectoral antennas in 2006 [49].

e In 2007 Kantartzis et al. presented an analysis of DNG metamaterial-based
waveguide and antenna devices utilizing the three-dimensional ADI-FDTD
method [50].

e Pinto and Obayya reported the study of an EBG cavity using an improved
complex-enveloped ADI-FDTD method in 2007 [51].

e There have been a number of attempts to verify the perfect lens concept
realized by EBG material [52] using the FDTD method [53-56]. Zhao et al.
studied EBGs with material frequency dispersion by means of an auxiliary
differential equation (ADE)-based dispersive FDTD methods with averaged
permittivity along the material boundaries implemented [57, 58] and with
spatial dispersion effects considered [59].

It is worth noting that among the vast applications of FDTD in modeling the
EBG-related structures, there are two approaches that are based on the use of
nonorthogonal coordinate system:

e The finite difference method developed by Chan et al. [60] (1995) and
Pendry et al. [61] (1998) [62] (1999) is often described as an order-N
method by its authors. This method has been applied to EBGs with either
pure dielectric inclusions [61] or pure metallic inclusions [62]. However, in
their present form, they cannot be applied to complex EBGs whose inclu-
sions contain both dielectric and metallic components.

e In 2000, Qiu and He developed an FDTD based on a nonorthogonal coor-
dinate system to study EBGs consisting of a skewed lattice [63, 64]. This
method does not rely on any assumptions regarding the dielectric properties
of the material to be modeled, and it can tackle complex structures such
as those containing a combination of dielectric and metallic components in
the EBG cell. However, utilizing a globally uniformed skew grid imposes
the staircase approximation when the curved surface is modeled.
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2.4 An Overview of EBG Applications

The first attempts of EBG applications in the literature aimed to realize EBG sub-
strates by drilling a periodic pattern of holes in the substrate, or by etching a
periodic pattern of circles in the ground plane. However, nowadays, the regularly
generated novel ideas expand this rapidly developing scientific area with extremely
high rate. An enormous number of designs and a wide range of applications can
be found in microwave and radio engineering, optical circuit designs, and optics
spectroscopy. The promising effects of EBGs attract researchers from communities
other than electromagnetics like acoustics, hydrodynamics, and mechanics [65].

When EBGs are applied to antennas as substrates or high-impedance ground
planes [45, 66, 67] or reflector [38, 68-70], their bandgap features are revealed
mainly in two ways: the in-phase reflection and the suppression of surface-wave
propagation. The in-phase reflection feature leads to low-profile antenna designs
[43, 66, 67]. Meanwhile, the feature of surface-wave suppression helps to improve
the antenna’s performance in ways such as increasing the antenna gain and reduc-
ing back radiation [72-75].

There is another well-known characteristic of the EBGs: their ability to support
localized electromagnetic modes inside the frequency gap by introducing defects
in the periodic lattice; this leads to the development of two important group of
applications: the highly-directive antennas [7] and the EBG waveguide. The former
group has high directivity due to the limited angular propagation allowed within
the EBG material, including EBG resonator/superstrate antenna [14, 48, 76, 77]
and EBG cavities [78]. The devices in the second group can efficiently transmit
electromagnetic waves, even for 90° bands with a zero radius of curvature [41,
64], including EBG waveguide [79-82], power splitters, directional couplers [83,
84], switches [47], and the EBG filters [85, 86].

There are also applications utilizing the passband of the EBGs, for example,
the subwavelength imaging canalization, which is studied extensively by Belov et
al. [52, 65, 67, 87, 88] and the references therein.

2.4.1 In-Phase Reflection

A ground plane is used in many antennas, redirecting one-half of the radiation
into the opposite direction, improving the antenna gain, and partially shielding
objects on the other side. The reflection phase is of special interest when designing
the ground plane of the antennas. The reflection phase is defined as the phase
of the reflected electric field at the reflecting surface. It is normalized to the phase
of the incident electric field at the reflecting surface.

A perfect electric conductor (PEC) has a 180° reflection phase for a normally
incident plane wave. That means, in a conventional antenna having a flat metal
sheet as a ground plane, if the radiating element is too close to the conductive
surface, the 180° out-of-phase reflected waves will tend to cancel the radiation
waves, resulting in poor radiation efficiency. This radiation efficiency reduction can
also be explained as the image currents generated by a smooth conducting surface
tend to cancel the currents in the antenna if the radiating element is too close to the
ground plane. This problem is often addressed by including a quarter-wavelength
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space between the radiating element and the ground plane, so that the reflected
wave is in-phase with the radiation wave at the radiating element. However, such
a structure then requires a minimum thickness of 1 /4 [3].

The ideal perfect magnetic conductor (PMC) ground plane will have a 0°
reflection phase for a normally incident plane wave. However, no natural material
has ever been found to realize the magnetic conducting surface [67].

On the other hand, the EBG can be designed to realize a PMC-like surface
in a certain frequency band [3]. Ma et al. demonstrated a magnetic surface real-
ized using a two-dimension uniplanar compact electromagnetic bandgap (UC-EBG)
structure experimentally and numerically [89]. The UC-EBG has the advantage of
ease of fabrication, and most UC-EBGs have been designed by etching a periodic
pattern on the ground plane [90]. Except for a stopband over a wide range of
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Figure 2.9 (a) Geometry of a mushroom-like EBG structure, which consists of a lattice of metal
plates, connected to a solid metal sheet by vertical conducting vias. The EBG has the following
parameters: W = 0.124126Hz, 9 = 0.024126Hz, h = 0.04L12¢H;, r= 0.005X12¢H;, €r = 2.20, where
W is the patch width, g is the gap width, h is the substrate thickness, r is the radius of the vias,
and ¢, is the substrate permittivity. (b) The antenna with the PEC or PMC ground plane. (c) The
antenna with the EBG ground plane [44].
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frequency observed, the slow-wave effect is verified when investigating the propa-
gation characteristics of a UC-EBG structure in the passband.

However, EBG surfaces differ from PMC surfaces. The reflection phase of an
EBG surface varies continuously from 180° to —180° versus frequency, not only
180° for a PEC surface or 0° for a PMC surface. Fang et al. found through their
reflection phase study of a mushroom-type EBG structure that the EBG ground
plane requires a reflection phase in the range of 90°+ 45° for a low-profile wire
antenna to obtain a good return loss.

A finite EBG ground plane with 141561, X 1412GH, size is used in their analy-
sis. This configuration as shown in Figure 2.9(a) is termed as metallo-dielectric
electromagnetic bandgap (MD-EBG) structure and is often referred to as the
mushroom-like EBG structure. The height of the dipole over the top surface of
the EBG ground plane is 0.02412Gp, so the overall height of the dipole antenna
from the bottom ground plane of the EBG structure is 0.06A12Gr,. The input
impedance is matched to a 50-Q transmission line.

The return loss of the dipole antenna over the EBG ground plane is compared
with those of a dipole antenna over a PEC and PMC ground plane of the same
dimension [see Figure 2.9(b, c)]. It is seen from Figure 2.10 that the best return
loss of —27 dB is achieved by the dipole antenna over the EBG ground plane. By
varying the length of the dipole from 0.26412Gp, to 0.60412GH,, the return loss

S11(dB)

10 12 14 - 16 18
Freq (GHz)

Figure 2.10 FDTD simulated return loss results of the dipole antenna over the EBG, PEC, and PMC
ground planes of the same dimension. The dipole length is 0.041,¢H, with the PEC and PMC
ground plane and the overall antenna height 0.0641,¢H, [44].
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Figure 2.11 The FDTD result of (a) return loss of the dipole with its length varying from 0.26 11264,
to 0.601126Hz; (b) the reflection phases of the mushroom-like EBG surface versus frequency. The
frequency band of the dipole model is 11.5—16.6 GHz according to — 10 dB return criteria. The
frequency band of the plane wave model is 11.3—16 GHz for 90° + 45° reflection phase region.
[44].

changes; this is plotted in Figure 2.11(a). The frequency band of the dipole model
is 11.5—16.6 GHz according to the —10-dB return criteria. It is nearly the same
frequency region (11.3—16 GHz) as the reflection phase of the EBG surface varies
from 90° + 45° to 90° — 45° [shown in Figure 2.11(b)].

A dipole antenna over thin grounded high dielectric constant slab can also
provide a similar reflection phase curve against frequency and a similar return loss
performance. However, with the same dimensions with the EBG ground plane,
the dielectric constant of the thin slab needs to be increased to ¢, = 20. More to
the point, the EBG antenna also demonstrates a higher gain and lower back lobe
in terms of return loss due to the suppression of surface waves, which will be
discussed in the next section. More detailed discussion of this EBG antenna can be
found in [44].

As demonstrated in the above example, with the in-phase reflection, the radi-
ation element of the antennas can be put very close to the EBG structure. In this
way many low-profile antenna designs can be realized. A low-profile cavity backed

Microstrip offset-fed slot
antenna (31 mil)

’ Spacer (10 m/l|2// /
UC-PBG Substrate (25 mil)

Figure 2.12 Schematic cross-section of the proposed slot antenna loaded with UC-PBG reflector,

and the top view of the UC-PBG [66].
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Figure 2.13 Configuration of a square curl antenna over an EBG surface. The size of the ground
plane is 1A x 1A where 1 is the free-space wavelength at working frequency 1.57 GHz. The low-
profile curl antenna is with height of 0.061 [43].

slot antenna on a uniplanar UC-PBG structure was proposed in [66] (Figure 2.12).
The cavity depth of the proposed antenna (35 mil) is 16 times thinner than that
of a conventional A /4 wavelength cavity slot antenna (559 mil). Similarly, a low-
profile circularly polarized patch antenna was proposed in [43] (Figure 2.13). The
EBG ground plane size can be as small as 0.824 x 0.821. The overall height of
the EBG structure in conjunction with the antenna proposed can be 0.14 (4 cor-
responds to the working frequency in free space).

2.4.2 Suppression of Surface Waves

Another property of metals is that they support surface waves. These are prop-
agating electromagnetic waves that are bound to the interface of two dissimilar
materials (e.g., metal and free space). At microwave frequencies, they are nothing
more than the normal currents that occur on any electric conductor [3]. The sur-
face waves decay exponentially into the surrounding materials and will not couple
to external plane waves if the metal surface is smooth and flat [91]. However,
the presence of bends, discontinuities, or surface textures will result in the surface
waves radiating vertically [3].

On a finite ground plane, surface waves propagate until they reach an edge
or corner, where they can radiate into free space. More to the point, if multiple
antennas share the same ground plane, surface currents can cause unwanted mutual
coupling.

By incorporating a special texture on a conducting surface, it is possible to
alter its EM properties [71]. In the circumstance where the period of the surface
texture is much smaller than the wavelength, the structure can be described using
an effective medium model, and its qualities can be summarized and expressed by
the surface impedance [91]. A smooth conducting sheet has low surface impedance,
but with a specially designed geometry, a textured surface can have high surface
impedance.

The surface impedance of the textured metal surface can be characterized by
an equivalent parallel resonant LC circuit. At low frequencies, it is inductive and
supports transverse magnetic (TM) waves. At high frequencies it is capacitive, and
supports transverse electric (TE) waves. Near the LC resonance frequency, the
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surface impedance is very high. In this region, waves are not bound to the surface;
instead, they radiate readily into the surrounding space.

With the suppression of surface wave, the radiation pattern of the antenna can
be improved by the EBG ground plane. Figure 2.14 shows a higher gain and lower
back lobe than the dipole antenna over thin grounded high dielectric constant

(e, =20) slab with the same dimension. Its application has also been found in the
design of mobile antennas [46].

2.4.3 EBGs Operating in Defect Modes

Although the EBGs are structures based on periodicity, by introducing defects in the
periodic lattice, enormous interesting applications have been generated because of
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Figure 2.14 Radiation pattern comparison of dipoles near the thin grounded high dielectric con-
stant slab and the EBG surface: (a) E-plane pattern and (b) H-plane pattern. The patterns are calcu-
lated at the resonant frequency of 13.6 GHz. Since the high dielectric constant substrate is used in

the grounded slab and strong surface waves are excited, the dipole on the slab shows a lower gain
and higher back lobe [44].
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the ability of the defect EBG to support localized electromagnetic modes inside the
frequency gap. Defects can be realized in many ways, including removing segments
of elements from an EBG, changing the shape or EM properties of segments of
elements, or replacing a segment of EBG with other materials. In this section,
examples of EBG superstrates, EBG waveguides, EBG splitters and couplers, and
EBG tunable filters will be presented.

2.4.3.1 EBG Superstrates

As EBGs can be placed under an antenna as a substrate to miniaturize antennas and
reduce backward radiation, they can also be applied above the antenna to enhance
antenna performance on the directivity of the antenna [14-16, 76, 94-96].

Figure 2.15 shows an example of a high directive EBG resonator antenna
utilizing a frequency-selective surface (FSS) superstrate designed by Lee et al. [95].
FSSs are chosen in Lee’s design because they are easier to fabricate using the
etching processes and they help to achieve a more compact EBG antenna design,
especially in terms of the antenna thickness. Figure 2.16 shows the field distribution
of the EBG antenna, Figure 2.17 demonstrates a substantial enhancement on the
directivity of the antenna by utilizing the EBG superstrate.

Enoch et al. reported in [14] a device that radiates energy in a very narrow
angular range, based on a two-dimensional EBG that is made of circular rods
of radius » = 0.6 mm, with optical index 7, = 2.9, lying in vacuum. The rods are
arranged on a triangular/hexagonal lattice with period @ = 4 mm (distance between
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7X28 Dipole strip FSS screen
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Figure 2.15 Geometry of a patch antenna with a strip dipole FSS superstrate [95].
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Composite

Figure 2.16 Field distribution of the EBG antenna [95].

the centers of the rods). The dispersion diagram of this EBG is presented in Figure
2.18.

When the cell of this original EBG is expanded in the y direction (i.e., the ver-
tical spacing between two grids is enlarged from v/34/2 ~ 3.46 mm to 3.9 mm),
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Figure 2.17 Comparison of the radiation patterns of the FSS antenna composite and the patch
antenna only. The directivity of the antenna is substantially enhanced [95].
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1/ =0/(2rc)

Figure 2.18 Three-dimensional dispersion diagram of the two-dimensional EBG with circular rods
lying in vacuum in a triangular lattice [14].

a new EBG is formed with dispersion diagram shown in Figure 2.19. At the wave-
length 2 = 7.93 mm corresponding to the horizontal plane at the bottom of Figure
2.19, the constant-frequency dispersion diagram of the expanded EBG reduces to
a small curve (see Figure 2.20). As a consequence, any source embedded in a slice
of this expanded EBG will radiate only with a small range of wavevector k.

By placing the original (unexpanded) EBG, which exhibits bandgap at the
same wavelength, backwards radiation is eliminated. In this way, a device with
field radiated in a narrow angular range using almost any excitation is achieved,
as seen in Figure 2.21. The half-power beamwidth is equal to +4.0° (see Figure
2.22), in comparison to the +4.5° achievable by an aperture having the same width
illuminated by a field with constant amplitude and phase. By increasing the lateral
size of the structure and sacrificing the range of possible working wavelengths, an
even narrower radiation pattern can be obtained.

2.4.3.2 EBG Waveguides, Splitters, and Couplers

The efficient guiding and bending of light by integrated photonic devices are im-
portant to designing optical circuits for technological and optical computing appli-
cations. Conventional dielectric or metallic waveguides have large scattering losses
when sharp bends are introduced. However, EBG studies enable an efficient way
of guiding waves even for sharp bends [41, 80-82].
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®/(21c)

1/\

Figure 2.19 The dispersion diagram of the expanded EBG [14].

Ozbay et al. demonstrated a zigzag coupled cavity waveguide (CCW) formed
by removing consecutive rods from a two-dimensional EBG with rods loaded in
free space in triangular lattice [shown in Figure 2.23(a)]. A defect band is observed

Allowed propagation
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the crystal
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gives the allowed propagationt,
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0.0 0.2 0.4 0.6 0.8 Kk«

Figure 2.20 Constant-frequency dispersion diagram of the expanded EBG for 1 = 7.93 mm [14].
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Figure 2.21 Total field modulus radiated by the structure excited by the wire source at A =
7.93 mm [14].

between 0.857wg to 0.949wy. Complete transmission is seen for certain frequencies
within the defect band. Since the defect band shows sharp band edges compared
to the EBG edges, it is suggested in [47] that this property can be used to construct
photonic switches by changing the position of the defect band.

A Y-shaped splitter (shown in Figure 2.24) is also presented in [47] in order
to demonstrate the splitting of EM power. The splitter consists of one-input CCW
and two-output CCWs. The input and output waveguide ports contain five and
six coupled cavities, respectively. As can be seen in Figure 2.24(a), the propagating
mode inside the input CCW splits equally into two output CCW ports for all
frequencies within the defect band. The electric field distribution inside the splitter
is computed for frequency o = 0.916wp and is shown in Figure 2.24(b).

300 -
200 - 150

100 —

0 -'180 0

Figure 2.22 Polar emission diagram for the structure excited by the wire source at A = 7.93 mm
[14].
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Figure 2.23  (a) Measured (solid line) and calculated (dotted line) transmission spectra of a zig-
zag CCW waveguide that contains 16 cavities. (b) Calculated field distribution of the zigzag CCW
waveguide. (From: [47]. (© 2002 IEEE. Reprinted with permission.)
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Figure 2.24 (a) Measured (solid line) and calculated (dotted line) transmission spectra of a Y-
shaped coupled-cavity based splitter. (b) Calculated power distribution inside the input and output

waveguide channels of the splitter for frequency @ = 0.916wg. (From: [47]. (© 2002 IEEE. Reprinted
with permission.)
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If a single rod is placed to the left side of the junction of the Y-splitter, as
is shown in Figure 2.25(b), the splitter structure becomes a photonic switch. Be-
cause the symmetry of the Y-shaped structure is broken, the power at each output
waveguide port is drastically changed. In this way, the amount of power flow into
the output ports can be regulated.

EBG waveguides can also be realized based on the three-dimensional layer-
by-layer dielectric EBG structures [41, 82]. Figure 2.26(a) shows Bayindir et
al.’s experimental setup. The woodpile EBG constructing the CCWs consists
of square-shaped alumina rods having a refractive index 3.1 at the microwave
frequencies. The dimension of each rod is 0.32 ¢cm x 0.32 ¢m x 15.25 cm. The
offset between the rods is 1.12 cm. The bandgap of the EBG extends from 10.6
to 12.8 GHz. The defect is formed by removing a single rod from a unit cell of
the EBG crystal. The electric-field vector of the incident EM field was parallel
to the rods of the defect lines. When the defect exists in adjacent unit cells, a
very high transmission of the EM wave was observed within a frequency range
inside the bandgap of the otherwise perfect EBG, which is hereinafter referred to
as the waveguide band. Nearly a complete transmission was observed within the
waveguide band for a straight EBG waveguide [Figure 2.26(b)] and greater than
90% transmission for an EBG waveguide with a 40° bend [Figure 2.26(c)].

2.4.3.3 EBG Tunable Filters

A variety of filtering devices, based on the two-dimensional dielectric and metallic
EBGs containing nematic liquid crystal materials as defect elements or layers, has
been explored by Kosmidou et al. [86]. The defects states originating from the
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Figure 2.25 (a) Measured (solid line) and calculated (dotted line) transmission spectra of a coupled-
cavity switching structure. (b) Calculated field pattern clearly indicates that most of the power is
coupled to the right port. (From: [47]. (© 2002 IEEE. Reprinted with permission.)
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Transmitter

Receiver

Photonic crystal
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Figure 2.26 (a) Experimental setup for measuring the transmission-amplitude and transmission-
phase spectra of the coupled cavity waveguides (CCWs) in 3-D electromagnetic crystals. (b) A
mechanism to guide light through localized defect modes in a woodpile EBGs. (c) Bending of the
EM waves around sharp corners [82].

liquid crystal impurities are reviewed by FDTD simulation to be tunable by the
application of a local static electric field. Narrow mode linewidths, almost 0.2 nm,
and tuning ranges in the order of tens of nanometers, covering in some cases both
the C- and L-bands, can be achieved with low operating voltages (0—4V). So the
proposed devices are rendered suitable to operate as a spectral filter in modern
optical communication systems.

Depicted in Figure 2.27 is the defect EBG filter with air voids filled with liquid
crystal as defect elements. It is based on a electromagnetic crystal consisting of
a triangular lattice of infinitely long air cylinders embedded in silicon. The radius
of the circular cross-section of the air rods is set to 0.3a, where a is the lattice
constant. The relative permittivity of Si is considered to be €, = 11.4. The defect
air voids at the center of the device are filled with E7, a typical nematic liquid
crystal material characterized by ordinary and extraordinary refractive indexes
equal to 1.49 and 1.66, respectively. The defect area is surrounded by five periods
of the EBG cells, whereas the lateral width (in the y-direction) of the device is
presumed to be infinite. The optical axis direction inside the liquid crystal, lying
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Figure 2.27 Dielectric EBG structure having air voids filled with liquid crystal as defect elements
[86].

in the x-y plane, is defined by the tilt angle y, which can be altered by means of
applying a local static electric field.

Figures 2.28 and 2.29 show how defect modes can be tuned by changing the
number of defect void rows and by tuning the tilt angle y in the defect cylinder
rows.

In Figure 2.30, it can be seen that the discrete defect cylinders are replaced by
an E7 layer interposed between two blocks of the EBGs. Between the EBG and the
E7 layer are two thin films of indium tin oxide (ITO) with the related refractive
index equal to 1.9 and thickness 0.2a, on which electrods are attached to provide
a local static voltage across the liquid crystal slab. Figure 2.31 shows how the tilt
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Figure 2.28 Transmission coefficient for various numbers of defect cylinder rows when y = 45°
[86].
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Figure 2.29 Transmission coefficient for various values of the tilt angle y in the case of two defect
cylinder rows [86].

angle y in the E7 slab varies according to the spatial position and to the different
static voltage applied. By altering the optical axis orientation inside of the defect
slab, the thickness of E7 layer L, or the distance L, the effective permittivity will
change, which in turn causes the change of the position of the defect modes. Figure
2.32 demonstrates how the position of the defect modes can be tuned by tuning
the applied voltage, assuming L, = 3a and Ly = 0.567a.

Another two-dimensional EBG tunable filter is based on EBGs with infinitely
long metallic rods loaded in a background material with low refractive index
(n, = 1.32) in a square lattice. The radius of each cylinder cross-section is set
to 0.2a as illustrated in Figure 2.33(a), each with four periods of the EBG cells in

L L, L

sV

Figure 2.30 Dielectric EBG structure with a liquid crystal defect layer [86].
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Figure 2.31 Director orientation profile across the liquid crystal defect layer for different values of
the applied voltage [86].
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the x-direction, and with infinite length assumed in the y-direction. Figure 2.33(b)
shows the tuning effect of the defect modes by changing the applied voltage, as-
suming L, = 4a and L = a [86].

2.4.4 Subwavelength Imaging from the Passband of the EBGs

Resolution of common imaging systems is restricted by the so-called diffraction
limit. This effect limits the minimum diameter d of spot of light formed at the
focus of a lens, given as:

d= 1.22A£ (2.36)
L L, L
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Figure 2.33 (a) Metallic EBG structure with a liquid crystal defect layer. (b) Transmission coefficient
versus normalized frequency for various values of the applied voltage when Lc = 4a, L; = a [86].
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where 1 is the wavelength of the light, fis the focal length of the lens, and a is the
diameter of the beam of light, or (if the beam is filling the lens) the diameter of the
lens. As a result, even if one could fabricate an imperfection-free optical system,
there is still a limit to the resolution of an image created by the conventional
optical lens. In order to overcome the diffraction limit, an artificial material (EBG)
with electromagnetic properties that is dramatically different from the materials
occurring in nature was proposed as a candidate for perfect lens and theoretical
possibility of subwavelength imaging was demonstrated by Pendry in his seminal
work [52]. Belov et al. experimentally demonstrated a possibility to channel the
near-field distribution of a line source with subwavelength details through an EBG
crystal. A channeled intensity maximum having a radius of A /10 has been achieved
by the use of an electrically dense lattice of capacitively loaded wires [65, 88].
Figure 2.34 shows the experimental implementations of the EBGs composed
of capacitively loaded wire medium (CLWM) and the EBG lens. Figure 2.35 shows
isofrequency contours for the frequency region ka = 0.43 ~ 0.47. The isofrequency
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Figure 2.34 (a) A schematic illustration of the EBG structure composed of CLWM. (b) A schematic
illustration of the lens formed by the EBG (CLWM). (c) The implemented CLWM EBG sample and
the probe used in the measurements. (d) A schematic illustration of the loaded wires (a piece of it)
[88].
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Figure 2.35 Isofrequency contours for the CLWM. The numbers correspond to values of normalized
frequency ka [88].

contour of the host material for ka = 0.46 is shown as the small circle around T’
point. The part of the isofrequency contour for the EBG corresponding to ka =
0.46, and located within the first Brillouin Zone, is practically flat. This part is
perpendicular to the diagonal of the first Brillouin Zone. Thus, in order to achieve
channeling regime, the interfaces of the slab are oriented orthogonally to the (11)-
direction as shown in Figure 2.34(b).

Figure 2.36 depicts the simulated amplitude and intensity distribution of a line
source working on ka = 0.46 excited near the interface of the CLWM slab. A clear
channel through the slab can be observed together with a bright spot having a ra-
dius of 1/6 (determined from the intensity distribution at level max(intensity)/2)

@ ()

Figure 2.36 Simulated distribution of electric field (a) amplitude and (b) intensity for the sub-
wavelength lens formed by the CLWM operating in the canalization regime. It shows that when a
point source is presented near one interface of the CLWM slab, an image near the back interface is
observed with the radius of the focal spot approximately /6 [88].
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behind the slab. An experimental verification of subwavelength imaging using
CLWM slabs [shown in Figure 2.34(c)] demonstrated an impressive resolution
of 2/10. This lens can be designed thick, since the required tunnel thickness is not
related with the distance to the source. The application of this CLWM lens being
used in the near-field microscopy in the optical range is suggested in [65], when
the needle of a microscope used as a probe can be located physically far from the
tested source.

2.5 Summary

The periodic structures are presently one of the most rapidly advancing sectors in
the electromagnetic arena. This chapter reviews the basic theory of EBG structures,
the numerical methods that are popular in modeling EBGs, and examples from the
vase applications of the EBGs.
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A Brief Introduction to the FDTD
Method for Modeling Metamaterials

3.1 Introduction

The FDTD method [1] has been proven to be one of the most effective numerical
methods in the study of metamaterials. As a direct solution to the Maxwell’s equa-
tions, FDTD offers a simple yet straightforward way to model complex periodic
structures. Since it is a time domain solver, it is convenient for dealing with the
characteristics of metamaterials over a wide frequency band.

The foundation of FDTD was laid down by Yee in 1966 [2]. Yee chose a
geometric relationship for the spatial sampling of the vector components of the
electric and magnetic fields that enables representing both the differential and
integral forms of Maxwell’s equations in a robust manner. The FDTD algorithm
as proposed by Yee in his original paper is second-order accurate in both time and
space. Furthermore, in this algorithm, the numerical dispersion effects can be kept
small by using a cell size that is sufficiently small in comparison to the wavelength,
say on the order of /20 or A2/30. This chapter begins with a brief review of the
FDTD fundamentals, and then Chapter 4 discusses its application to the problem
of modeling the EBG structure.

3.2 Formulations of the Yee’s FDTD Algorithm

The Yee algorithm simultaneously deals with both electric and magnetic fields in
time and space using the coupled form of Maxwell’s curl equations, rather than by
solving the wave equation for either the electric field (or the magnetic field) alone.

3.2.1 Maxwell’s Equations

Consider a region of space that has no electric or magnetic current sources, but may
have materials that absorb electric or magnetic field energy. The time-dependent
Maxwell’s equations are given in differential and integral forms by:
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where

*

: Equivalent magnetic loss (ohms/meter);

: Electric conductivity (siemens/meter);

: Electric field, also called the electric flux density (volt/meter);

: Magnetic field strength (ampere/meter);

: Electric displacement field (coulomb/meter?);

: Magnetic field, also called the magnetic flux density (tesla, or volt-
seconds/meter? );

: Surface area (meter?).
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In linear, isotropic, nondispersive materials, D and B are simply related to E
and H as follows:

—

D =¢E = gog,E and B = uﬁ = uouﬁ (3.9)

where & and p are the medium permittivity and permeability, gy and g are the per-
mittivity and permeability of free space, and ¢, and p, are the relative permittivity
and permeability.

Substituting (3.9) into (3.1) and (3.2), we obtain the Maxwell’s curl equations
in linear, isotropic, nondispersive materials that read:
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Expansion of the vector components of the curl operators of (3.10) and
(3.11) yields the following system of six coupled scalar equations under Cartesian
coordinate:
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o, 110k by —H, (3.12)
ot u | dy 0z | u
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The system of six coupled partial differential equations (3.12)-(3.17) forms
the basis of the FDTD numerical algorithm for modeling electromagnetic wave
interactions with arbitrary three-dimensional objects.

Yee’s FDTD scheme discretizes Maxwell’s curl equations by approximating
the time and space first-order partial derivatives with central differences, and then
solving the resulting equations by using a leapfrog scheme.

3.2.2 Yee's Orthogonal Mesh

The Yee’s algorithm positions its E and H components at the centers of the
grid lines and surfaces such that each E component is surrounded by four H com-
ponents, and vice versa. This provides an elegant yet simple picture of three-
dimensional space being filled by interlinked arrays of Faraday’s law and Ampere’s
law contours. Thus, it is possible to identify the E components associated with the
displacement current flux linking with the H loops and, correspondingly, the H
components associated with the magnetic flux are linked with the E loops, as
shown in Figure 3.1.

Utilizing Yee’s spatial gridding scheme, the partial spatial derivatives in
(3.12)=(3.17) can be approximated by a central difference in space such as a sample
equation here:
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Figure 3.1 Yee's spatial grid.
Consequently (3.12) becomes:
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3.2.3 Time Domain Discretization: The Leapfrog Scheme and the Courant
Stability Condition (CFL Condition)

Yee’s algorithm also utilizes central differencing in time for the Eand H compo-
nents and then solves them by using a leapfrog scheme as shown in Figure 3.2. All
of the E components in the modeled space are computed and stored in memory by
using the previously computed values of E and the newly updated H field data. At
the next step, H is recomputed based on the previously obtained H and the newly
obtained E. This process continues until the time-stepping is terminated.

A central difference approximation is applied to (3.19) as follows:
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Figure 3.2 Leapfrog scheme—the temporal scheme of the FDTD method.

Equation (3.19) thus becomes a discretized equation, (3.22), which can be
solved conveniently on the computer.
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Numerical stability of the Yee algorithm requires that we set an upper bound
on the time step (At) that is determined by the spatial increments Ax, Ay, and Az
in accordance with the Courant-Friedrich-Levy (CFL) stability condition. In three
dimensions this condition is given by

1

j 1 1, 1
€\ Az + Ay? + AZ2

In a cubic grid ( where Ax = Ay = Az = A), (3.23) can be expressed as

At < Aty = (3.23)

At < Atyge = (Ax = Ay =Az=A) (3.24)

A
C\/§
Enforcement of this upper bound on At guarantees the stability of the algo-
rithm, which is essential to guarantee its robustness when applied to a wide variety
of electromagnetic wave modeling problems. However, there are applications of
FDTD modeling that find the CFL stability bound too restrictive. For example,
when simulating structures with fine-scale geometries, the cell size A needs to be
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much less than the shortest wavelength 4,,,,. So for a fixed total time of simu-
lation T, which is determined by the nature of the configuration being modeled,
choosing a time step At limited by CFL can cause the total number of time steps
Niim required to become very large, given by:

Tsim

Niim =
Smm At

(3.25)

Since relaxing the CFL condition in the conventional FDTD is not a viable
option, the simulation of structures with fine details can become highly computer-
intensive, and even prohibitive in terms of simulation time.

Many attempts have been made to relax or even remove the CFL stability
constraint. Some early works involved an application of the alternating-direction-
implicit (ADI) technique [3], which is unconditionally stable. In the first attempt
of the implementation of ADI in the FDTD, which dates back to 1984 [3], the
finite-difference operator was factored into three implicit operators in the three
coordinate directions, namely x, y, and z. However, it was difficult to prove the
numerical stability of this scheme at that time [1]. In 1999, a 2-D FDTD algorithm
that was not restricted by the Courant stability condition was proposed for a 2D-
TE wave [4], and the ADI method was again implimented in this algorithm. The
resulting FDTD formulation was found to be unconditionally stable [4,5]. As a
consequence, it was possible to remove the CFL constraint on the FDTD algorithm
and the selection of the time step was only governed by the accuracy desired [5].

3.3 Other Spatial Domain Discretization Schemes

Since the FDTD method is a grid-based algorithm, mesh generation plays a very
important role in its implementation. A properly defined mesh helps reduce nu-
merical errors and increases computational efficiency.

An orthogonal, uniform, and Cartesian meshing scheme is the most simple and
straightforward one to implement and is most commonly used in FDTD model-
ing. An orthogonal FDTD grid generally introduces minimal numerical errors [6],
and hence, a boundary-orthogonal mesh is preferred even in a conformal mesh
generation scheme. However, a staircase approximation of curved structures often
introduces numerical inaccuracy (for instance, numerical dispersion) [7].

A variety of mesh generation schemes have been developed in the context
of FDTD, and they have led to several modifications of the original Yee FDTD
scheme. Additionally, subgridding, nonorthogonal meshing, and the use of hybrid
meshes have been employed in a wide range of applications, such as investigation
of large structures with fine details and the modeling of objects comprised of curved
or oblique surfaces.

3.3.1 Subgridding Mesh

To ensure numerical accuracy it is necessary to choose the cell size (the spatial
increment Ax) in FDTD discretization to be much smaller (typically less than 4 /10)
in the frequency range of interest. Consequently, the simulation of an electrically
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large object with locally fine structures using overall an fine mesh (small Ax) and
a small Az owning to the small cell size is computationally costly in the FDTD
modeling.

One approach to alleviating this problem is to introduce a subgridding mesh
scheme. The basic idea followed in this scheme entails dividing the computational
volume into subregions and simulating them with variable step sizes. A coarse grid
is used in a large volume, and fine meshes are applied only for regions containing
objects with fine features or in the vicinity of discontinuities. To minimize numeri-
cal reflections from an abrupt transition between very coarse and very fine meshes
regions, a slow taper in the cell size by a factor of 2 or 3 and a sequence of subgrids
can be employed when necessary [8].

To explain the field updating procedure we refer to Figure 3.3. The fields
inside the coarse and fine mesh subregions, shown in Figure 3.3, are calculated by
using the conventional FDTD equations, (3.26) and (3.27), respectively. The time
increments in each subregion can either be chosen in accordance with the smallest
spatial increment, or can be related to the spatial increments in each subregion. On
the coarse-fine grid boundary, an interpolation is utilized to calculate the tangential
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x Electric field points
o Magnetic field points
® Electric field values obtained

by spatial and time interpolations
o Initial values for the magnetic field obtained

by spatial and time average of the four neighbors

Figure 3.3 A cross-section of a computational domain meshed according to the subgridding algo-
rithm. Positions where the field quantities are calculated are shown. Since the spatial increment in
the fine mesh is only half that of the coarse grid, the time increment for the fine mesh domain is
equal to half of that in the coarse domain [12].
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electric fields and the boundary layer magnetic fields in the fine mesh region. For
the subgridding FDTD, various mesh and interpolation schemes can be found
in [8-11].

The subgridding mesh scheme requires less computer memory and therefore,
expands the problem-solving capability of the FDTD method. When properly im-
plemented, the subgridding algorithm has been found to exhibit good numerical
stability [12].

1 |
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HY 2 (i,j, k) = HY 2 (i j, k)

At {E;’O,/,k) —EJ(i—1j.k)  Eij.k) — EX(ij — 1,k)}
u Ax Ay

(3.26)
EZt(ij k) = EL(i,j,k)

1 1 1 1
A [HR G - e HY Gk +1)—Hy"+2<z',/,/e>]

&

Ay Az

Ejt'(i k) = Ej(i,j,k)

At
+ —
&

Az Ax

1 1 1 1
HY 2 (ijk+1) — HY P (ij k) H! P (i+1,jk) — H <i,/,k>]

EZ (i j, k) = EZ(i.j, k)
1 1 1 1
R R AN R LR <i,/,k>]
&

Ax Ay

(3.27)

Equations (3.28) and (3.29) show examples of how the fields at the coarse-fine
grid boundary are updated using the neighboring averaging scheme and employing
a time interval calculated based on the smallest sell size in the fine mesh region
(see Figure 3.4).

1 3
Ef2,1,1) = ZE(1.1) + ZE(2.1) (3.28)
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H.(1,7)
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Figure 3.4 Enlarged view of the top-left corner of Figure 3.3. In the coarse-fine grid boundary, the
electric field in fine mesh [E«(2,1,1)] is updated by electric field in coarse mesh region () using the
neighboring averaging equation (3.28); and the magnetic field in coarse mesh [H(2,2)] is updated
by magnetic field in the fine mesh region (Hy) using the neighboring averaging equation (3.29).

1 1 1 1
He(2,2) = 7H{(2,1.2) + 7H/(2.2.2) + 7H/2.3.2) + 7H/2.42)  (3.29)

In (3.28) and (3.29), (Ef and Hy) and (E. and H.) denote the fields in the fine and

coarse mesh subregions, respectively.

3.3.2 Nonorthogonal Mesh

Many real-world electromagnetic problems are characterized by geometries with
curved boundaries, or surfaces that are tilted relative to a Cartesian grid. Approx-
imating such an oblique or a curved surface by using a staircased mesh usually
requires a very fine mesh, which in turn, dictates the use of very small time step
in the FDTD algorithm, with the resulting increase in the computation time.
Since Maxwell’s equations are vector equations that can be implemented in
any coordinate system, they can be expressed in the nonorthogonal coordinate
system as shown in [13]. In 1983, Holland incorporated Maxwell’s equations
in nonorthogonal coordinate systems into the FDTD method and developed a
nonorthogonal FDTD (NFDTD) algorithm, based on general nonorthogonal grids
[3]. In this scheme, oblique surfaces or curved structures are meshed conformally
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Figure 3.5 A part of a three-dimensional nonorthogonal mesh showing the covariant and con-
travariant vectors.

and more accurately yet with a coarser mesh. Since then, the NFDTD method
has been refined by many researchers, including Yee [14], Lee [15], Mittra [16],
Jurgens [17,18], Railton [19], Hao [20] and Douvalis [21].

In nonorthogonal coordinate systems, an arbitrary vector can be expressed as
a linear combination of two types of components according to two bases, namely
the covariant and contravariant components of this vector. In the FDTD modeling
of an EM problem, the covariant component relates physically to the flow of the
vector along the contour of an arbitrary surface, while the contraviant component
represents the flux density of this vector passing through this surface (Figure 3.5).

However, compared with the conventional Cartesian FDTD method, the global
curvilinear FDTD must store many additional metric tensors, which are essential
parameters in the NFDTD scheme and are calculated from the spatial increment
of each grid. While the contravariant components are updated in a way similar
to that in Yee’s scheme, the covariant components must be computed from the
contravariant ones by using two additional projection equations containing the
metric tensors.

As a result, the global curvilinear FDTD method is computationally more in-
tensive than the conventional Cartesian FDTD method. However, to alleviate this
problem, it is possible to use a hybrid meshing scheme [i.e., the local distorted
NEDTD (LD-NEDTD) [19,20] algorithm].

3.3.3 Hybrid FDTD Meshes

Any mesh generation scheme has its own advantages and disadvantages. However,
it is possible to combine different schemes to devise an efficient and accurate FDTD
grid. Brief descriptions of several hybrid mesh generation schemes are presented as
follows:

o Hybrid conformal and orthogonal grid: This type of mesh can be devised by
employing conformal cells only at and near the curved boundaries within
an underlying Cartesian coordinate system [22]. In other words, the curvi-
linear meshes are used in the immediate vicinity of the curved boundary,
while the vast majority of the mesh away from the curved boundary can be
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rectangular/square. The so-called LNFDTD scheme, implemented on such
a grid, achieves improved accuracy as well as versatility compared to the
conventional Yee’s Cartesian FDTD method, but without compromising the
computational efficiency [20].

o Conformal grid employing a subgridded meshes: The subgridding in the
space domain can be applied to combine with the conformal grid leading to
a subgridding NFDTD method. The computational efficiency is expected to
be improved in comparison with a subgridding scheme based on orthogonal
meshes, or a pure NFDTD scheme. Besides the subgridding in space, a time
subgridding scheme can also be employed in the NFDTD method and is
reported to be helpful in reducing the late time instability in the NFDTD
method [22].

o Conformal grids with triangular meshes: In [23], Schuhmann et al. observed
that degenerate cells in a NFDTD mesh are responsible for introducing local
field errors. They not only lead to irregular convergence behavior but also
contribute to the late time instability. To overcome this problem, it has been
suggested that the NFDTD be combined with a triangular meshing scheme.
Figure 3.6 demonstrates the staircase approximation, the nonorthogonal
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Figure 3.6 Meshes of the cross-section of a cylindrical cavity: (a) the staircase approximation; (b)
the nonorthogonal mesh; (c) details of the degenerated cell in the nonorthogonal mesh, which
is most responsible for the numerical error and late time instability; and (d) the triangular fillings
NFDTD [23].
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mesh, the degenerated cell in the nonorthogonal mesh, and the proposed
triangular fillings NFDTD, respectively, when meshing a 2-D cylindrical
cavity. This scheme is regarded as a more flexible scheme and may consid-
erably improve the efficiency and accuracy of the NFDTD [23].

3.4 Boundary Conditions

In numerical modeling, many geometries of interest are defined in “open” regions
where the spatial domain of the computed field is unbounded in one or more co-
ordinate directions. Since the data storage in a computer is limited by the size of
memory, it is not possible to handle an open region problem directly. To mitigate
this problem, an absorbing boundary condition (ABC) is used to truncate the com-
putational domain that is designed to suppress spurious reflections of the outgoing
waves to an acceptable level.

The ABCs can be divided into two different categories: those derived from
differential equations and others based on the use of absorbing materials. The most
widely used ABC in the first group is the one derived by Engquist and Majda [24]
with the discretization given by Mur [25]. It is based on an approximation of the
outgoing wave equation being expressed using a Taylor approximation. In contrast
to this, material-based ABCs are realized by surrounding the computational domain
with a lossy material that dampens the outgoing fields. In this group, the perfectly
matched layer (PML) technique [26-31], which was put forward by Berenger in
1994, exhibits an accuracy level that is significantly better than most other ABCs.
Consequently, it is widely used in the FDTD simulations.

An ideal metamaterial structure, which has an infinite periodicity, does not ex-
ist in the real world, because it is necessarily truncated and hence finite. However,
it is always interesting and useful to study the characteristics of an infinite meta-
material, which provides considerable insight into its applicability for the problem
at hand, even when it deals with a truncated metamaterial. The implementation of
the periodic boundary condition (PBC) is a tool that enables the modeling of an
infinite metamaterial.

3.4.1 Mur'’s Absorbing Boundary Conditions (ABCs)

Engquist and Majda derived a theory for one-way wave equations that describes
wave propagation only in specified directions. For example, consider the two-
dimensional wave equation in Cartesian coordinates:

o'U U 15U
oxr  oyr ¢t or?

=0 (3.30)

where U is a scalar field component and c¢ is the phase velocity of the wave. We
define the partial differential operator as:

0? 0? 1 62

] = — 4+ — —__
Ere oyr  ctor?

1
:D§+D§—ED$ (3.31)
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and use it to write the wave equation as:
LU=L"LTU=0 (3.32)

where L™ and L* are the factors of the wave operator L, defined as:

D, N D,
L~ =D, — —4/1-38§ d LT =D, —ﬂu—f 3.33
; an + ( )

with
Dy
= 3.34
Di/c (3.34)
Waves that satisfy the left operator equation, namely
L U=0 (3.35)

only propagate towards the —x-direction and ideally, will not bounce back into
the computational domain.

Usually, S given in (3.34) is very small, and hence, a Taylor series can be
used to approximate the square-root function in (3.33) by two-term expansion as

follows:
1
1—921—59 (3.36)
Substituting (3.36) into (3.33) we obtain:
_ D, 1 (cDy\? D, D}
L =D,— “t{1->(=22) | =D, - = .
x cl 2<Dt> x c+2Dt (3.37)

Then substituting (3.37) into (3.35), multiplying by D; we get a second-order
accurate ABC at the boundary x = 0, given by:
o*U  10*°U  co*U

D,L"U= . - =0 3.38
g Ox0t cm2+2aﬁ (3.38)

Mur used a simple central-difference scheme to interpret (3.38) in the Yee’s
space (with spatial increments Ax and Ay) and the time (with time step A¢) domain.
For example, in the second-order ABC, the mixed x and ¢ derivative is written as:

n+l n+1 n—1 n—1
uly; — Ulg; B Uli;" — Ulp; (3.39)
Ax Ax ’

The discretized version of the tangential field under discretization at the boundary
(e.g., U|"Jrl ) is calculated as follows:

Oxot  2At

82U|§’/27i 1

cAt —
n+l n+1 n+1 n—1 _an n "
Ulos™ = ~Ulis cAt+ A (U| + Ulo, ) * cAt+ A (U|1=I T U|0J>
(cAt) ., . }
m (U|°=f+1 —2Ulp, + U|0,i—1>
(cAt)®

m (U|1=i+1 —2Uf3,; + U|1,;’-1> (3.40)
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where we have assumed, for the sake of simplicity, Ax = Ay = A. Remove the
y-directive term, and the first-order Mur’s ABC at x = 0 boundary is obtained:

2A

n+1 cAt — A
cAt+ A

n+l n+1 n—1 n n
Ul = U+ S (U|L,. + U )+ (U|1,,-+U|07,-> (3.41)

3.4.2 Perfect Matched Layers (PMLs)

In the perfect matched layer (PML) [26, 27], each component of the electromagnetic
field is split into two parts. In the Cartesian coordinates, the six field components
yield 12 subcomponents, denoted by E.y, Ex;, Eyx, Eyz, Eox, Ezyy Hyyy Hypy Hyy,
H,., H., and H,. Using the above components, Maxwell’s equations are replaced
by the following 12 equations,

gagfy 4 0yExy = BHZ’CT;FH” (3.42)
g% + 6.y, — —mﬂail'ny (3.43)
gagtyz + 0Ey; = 75119%: M (3.44)
gagjx I —% (3.45)
gégtzx + 6,E e = W (3.46)
gagtzy t oyEyy = _anyai;er (3.47)
uélaitxy o Hyy = —BEZ’CT;FE” (3.48)
u 81;’“ + 6 Hy, = LW; Eye (3.49)
um;tyz 4 oiHy, = —BE’WT:E’“ (3.50)
uagtyx + o) Hyy = % (3.51)
u% b oiHy = —W (3.52)
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oH OE4y + E
atzy + 0, Hy = % (3.53)

u

where the parameters (ox, 0y, 0z, 05, 05, 0;") are homogeneous electric and magnetic
conductivities. Applying the central difference approximation to the temporal and
spatial partial differential operator, it yields the relevant FDTD equations incor-

porating the PML absorbing boundary conditions. For example, (3.42) becomes

n Gk = G .
E ia/a = E ia/a +
v é—i—;—z xy (é—l—g—;)-gAy
(BG4 1K) — HZ (G ) + HE G+ 1) — H (i )

(3.54)

It has been shown that for any propagating plane wave normally incident at
the interface a (a,b,¢c = x,9,2) lying between PML media that have the same ¢
and p, the wave will be transmitted into and in between the PML layers with no
reflection if the transverse conductivities oy,,0;,0,0; are equal and all the pairs of
conductivities (oy,0y),(0y, 0y ),(0z, ;) satisfy the matching impedance condition
(o/e=0c"/p).

This approach is based on the splitting of the field components into two sub-
components. Sacks et al. [28] and Gedney [29], among others, were able to for-
mulate the PML types of ABC based on a Maxwellian formulation that removed
the need to split the field. Veihl and Mittra [30] have presented a slightly differ-
ent formualtion that also utilized the unsplit form of the PMLs. Understandably,
implementation of the unsplit field PML to the FDTD method is computationally
more efficient than its split counterpart. Furthermore, though not discussed here,
it can be extended to nonorthogonal and unstructured grids.

3.4.3 Periodic Boundary Condition (PBC)

As is mentioned earlier, the waves or the fields are in Bloch’s state in an infinite
periodic structure and can be studied by using the unit cell approach, in which
only elements in one unit cell are modeled and the fields in the adjacent unit cells
are expressed explicitly using the PBC [31, 32]:

F(F + hai + bhas + l3a3) = ¢*h aith ;2+l3&%ﬁ<?) (3.33)

3
where a@;(i=1,2,3) is the component of the lattice constant vector a = Y_ a;

i=1
along the three direction of periodicity, /;(i = 1,2,3) is any integer and k is the
wave vector. F can be either the EM field components or the contravariant EM
fluxes.

Equation (3.55) is an important boundary condition in metamaterial model-
ing because it provides an efficient numerical approach for analyzing an infinite
periodic structure. When the electromagnetic field components of the cells on the
boundary of the FDTD computational domain are updated, we can utilize the PBCs
to express the field components in the cell outside the computational domain, in
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terms of the field components in the cells inside the computational domain. In
addition, we introduce a phase shift calculated from the dimension of the unit cell
in the updating procedure. For example, (3.56) shows how H, at the boundary
z = 1is updated by using the PBCs when E,(i,7,0) is not available in the FDTD do-
main. Equation (3.57) shows the updating equation for E, at boundary z = max,,
where max, denotes the maximum number in the Z direction in the FDTD domain.
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Figure 3.7 PBCs when calculating the infinite EBGs. The inclusion of the EBGs (marked by the solid
black line) can be of any shape. The FDTD computational domain is limited to one unit cell/super
cell. To calculate the field of the boundary layer of the computational domain (layer 1 or layer
maxy in the graph), fields at the adjacent unit cell/super cells are needed but they are outside the
computational domain. However, they can be expressed using the field value within the domain
(layer max, or layer 1) applying (3.55). (a) PBCs in EBGs with rectangular lattice. (b) PBCs in EBGs
with triangular lattice.
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1 _
EZ+2(i,/,maxZ) S O (i,j,max,)
At [ + 1 maxy) —HE G jomaxy)  HyGj 1) - @470 — Hy(i j, masx,)
€ Ay Az

(3.57)

The other equations for the field components at all the boundaries can be
updated in a similar manner. Figure 3.7(a, b) illustrate the interpolations of PBCs
in the EBGs with square and triangular lattices, respectively.

3.5 Bandgap Calculation

Some of the EBG characteristics can be obtained in an intuitive way from the
results of the FDTD modeling of bandgap structures. For example, the passband
and stopband behaviors and the transmission/reflection coefficients can be obtained
readily from the time-domain field response. However, it becomes necessary to
carry out some postprocessing (see Figure 3.8) to derive the dispersion relationship
(bandgap characteristics) of an EBG structure. These will be further discussed later.

Define the geometry
and the materials
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Boundary conditions
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Figure 3.8 The FDTD procedure in modeling EBG structures.
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3.5.1 Source Excitation

A modulated Gaussian pulse (also termed as the Gabor pulse) with the following
form is typically used in the simulation of EBG structures:

2

S(t) = ¢ 307 cos(2mE + ¢) (3.58)

where o controls the (effective) time width of the pulse and, hence the bandwidth
of the source [33]. Also, & and ¢ are the frequency and phase, respectively, of
the single frequency wave that modulates the Gaussian pulse. Figure 3.9 shows a
typical modulated Gaussian waveform with o = 8 x 107% s, & = 100 kHz, and
¢ = 0 rad.

A modulated Gaussian pulse is chosen for the excitation because it offers good
time and frequency resolutions. In contrast to a truncated sine pulse, the pulse
energy of the modulated Gaussian pulse is more concentrated near the center of the
pulse in the time as well as the frequency spectrum. We can define a desired form
of a modulated Gaussian pulse tailored for the desired application by controlling
the time width o.

3.5.2 Dispersion Diagram Calculation

The dispersion diagram is very useful for studying the bandgap characteristics of
an infinite EBGs. As discussed in Chapter 2, the dispersion diagram is a plot of the
possible modes as functions of the wave vector in the irreducible Brillouin zone. As
mentioned earlier, by using the PBCs, the infinite EBGs can be modeled by using
only one cell, or only a group of cells if there are defects in the EBGs. The cell and
the group of cells will be referred to in the following sections as the unit cell and
the super cell, respectively [34]. The k vector from the irreducible Brillouin zone
is used to set up the PBCs.
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Figure 3.9 The modulated Gaussian pulse: (a) the shape of the modulated Gaussian pulse in the

time domain and (b) the magnitude of its Fourier transform [33].
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3.5.2.1 The Unit Cell Approach

After a mesh is set up for the unit cell, one can randomly choose a few points
in the mesh as the source points [32] and several points as the probing field (or
monitoring) points. The latter should be evenly spaced and be sufficiently dense
to capture the nuances of the possible modal distributions of the fields that would
be generated.

A modulated Gaussian pulse is applied at the source points to excite the elec-
tromagnetic (EM) modes of the EBG over a wide range of frequencies. As the field
evolves during the FDTD simulation, only the true transmission modes would sur-
vive, while the pseudotransmission modes would decay [35]. As we proceed with
the FDTD simulation, we record the temporal responses at the probing points at
each time step until the time-domain signature stabilized sufficiently. The temporal
signature should be long enough to achieve the desired frequency resolution after
the Fourier transformation, but not so long as to run into instabilities (especially
the late time instabilities in the NFDTD algorithm), or to prolong the computation
effort unnecessarily.

The next step is to Fourier-transform the temporal signatures to obtain the
frequency spectra that typically exhibit peaks at certain frequency values, indicating
the existence of the transmission modes, or the eigenmodes supported by the EBGs,
corresponding to the wave vector k. Plotting these frequency values against the
wave vector k yields the dispersion diagram of the EBGs.

3.5.2.2 The Super-Cell Approach

The super-cell approach is very similar to the unit cell approach we described
above, although the modeling domain now consists of defect cell(s) normally em-
bedded within regular unit cells. PBCs are used to terminate the modeling domain
under the assumption that the structure is infinite. In the direction in which the
defects appear periodically, the PBCs are imposed one period (of the defects) away
from each other. If the defects spoil the periodicity of the structure, we need to
create it by including a sufficient number of regular cells that nest it, thus creating
a supercell. Since the PBCs artificially introduce the periodicity, the number of
EBG unit cells should be sufficiently large to isolate the EM modes from the spu-
rious defects in the neighboring super cells. On the other hand this unit cell layer
should be as small as possible in order to maximize the computational efficiency.
This number is often determined experientially [35] and is normally more than
10. Figure 3.10 shows the super cell used by Chutinan et al. when they model the
waveguide created by filling in one column of the air holes in the EBGs [34].

3.5.3 Transmission and Reflection Coefficient Calculation

If the bandgap structure is not infinite in the direction of its periodicity, then
the transmission coefficient is helpful when we wish to find the bandgap of the
structure of interest.

Let us consider a two-dimensional EBG with four arrays of cylindrical rods
in the X-direction and infinitely loaded rods in the y-direction in free space. Since
the rods are infinite in the y-direction, the PBC can still be used to terminate the
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Figure 3.10 The super cell of the waveguide created by filling up one column of the air holes in
the EBGs [34]. In the y-direction, the defects are periodic with period of one unit cell, so one unit
cell is used in between the PBCs. In the x-direction, five unit cells are used between the PBCs to
isolate the modes from the neighboring spurious defects.

computational domain in this direction. In the x-direction, in which there exist
four arrays of rods, an ABC is used to terminate the computational domain at
a suitable distance away from the scattering structure. By combining PBCs with
ABCs in this way, the computational efficiency of modeling the finite EBGs can
be enhanced. The boundary condition set-up used for this purpose is shown in
Figure 3.11.

Let a plane wave traveling in the X-direction with the time signature of a
modulated Gaussian pulse be excited from a line source at one end of the structure.
Temporal signatures of two lines of probes located at the two ends of the structures
(see Figure 3.11) are recorded and analyzed to calculate the transmission and
reflection coefficients, respectively. For probe set 1, the Fourier transformation can
be applied directly to the time domain signal. The averaged frequency spectrum
along the probe line shows the transmission coefficient as a function of frequency
from which the bandgap can be readily found. The procedure for computing the
reflection coefficient is similar, but the signal is recorded for this calculation after
the first pulse has passed.

If the structure is finite in size, then the entire computational domain should be
terminated with ABCs in all directions. A modulated Gaussian pulse is launched at
one side of the EBGs (either a point or a line source) and the probes are located at

=S Probe Probe _—
y O || Source sets 1 sets 2 [ |pmML|  |PBC
r—»x
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Figure 3.11 Numerical model for a two-dimensional EBG structure of semi-finite size. There are
four arrays of cylindrical rods in the x-direction and infinitely loaded rods in the y-direction. So the
computation domain is terminated by the PBCs in the y-direction and by ABCs in the x-direction.
A plane wave source in form of modulated Gaussian pulse is defined at one side of the EBGs. The
responses at the other side of the EBGs are collected as probe set 1 for calculating the transmis-
sion coefficient (S21). The responses at the same side of the EBGs are collected as probe set 2 for
calculating the reflection coefficient (S11).
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Figure 3.12 Numerical model for an EBG structure of finite size. The computational domain is
terminated by the ABCs in all the directions. A modulated Gaussian pulse is excited at one side of
the EBGs. The responses at probe set 1 and probe set 2 with the existence of the EBG are calibrated
by those without EBG in the calculation of the transmission coefficient (521) and the reflection
coefficient (511).

the other side. An additional simulation is needed in this case with the EBG struc-
ture replaced by free space. Then the bandgap can be found with the transmission
coefficient from the EBGs by using the free space case as a reference (Figure 3.12).

3.6 Summary

The FDTD method is widely used because it is simple to implement numerically.
It provides a flexible means for directly solving Maxwell’s time-dependent curl
equations by using finite differences to discretize them. It can be used to solve
various types of electromagnetic problems, including the anisotropic or nonlinear
problems. This chapter briefly reviewed the fundamentals of the FDTD method,
including Yee’s spatial and temporal grid, the updating formulation, and two im-
portant boundary conditions—the ABCs and the PBCs. The techniques specifically
tailored for calculating the EBG-related parameters are also presented, including
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the dispersion diagram calculation and the transmission and reflection coefficient
calculation.

Developments of FDTD schemes that are more accurate and computationally
efficient are continuing, and the method is still evolving.

It is worth noting that FDTD algorithm has recently been parallelized by a
number of workers, including Yu and Mittra [36], and this has open up new vistas
by enabling us to solve problems with very large degrees of freedom (DOF), upward
of billions of unknowns, such as those encountered frequently in metamaterial
modelings.
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FDTD Modeling of EBGs and
Their Applications

4.1 Introduction

In this chapter, some examples of FDTD modeling of electromagnetic bandgap
(EBG) structures and their applications will be presented. In addition, the proce-
dure for computing the dispersion diagram of an infinite EBG structure, as well
as deriving the transmission coefficient of a (semi-)infinite bandgap structure will
be detailed. Since most of existing EBGs either have curved unit cells, or rhom-
bic lattices, modeling such structures often requires a special treatment because the
conventional Yee’s FDTD is not only inefficient; it may also introduce numerical ar-
tifacts when dealing with curved boundaries by using staircase approximations. To
address this issue, a conformal FDTD algorithm, namely NFDTD, will be applied
to model the aforementioned structures. A comparison of the numerical efficiency
and accuracy of Yee and the conformal FDTD algorithms will be carried out.

Finally, a design of a millimeter-wave EBG antenna based on the FDTD simu-
lation will be presented, and the results will be compared with the measured data
for the same antenna at 95 GHz.

4.2 FDTD Modeling of Infinite Electromagnetic Bandgap Structures

In this section, we will carry out a study of 2-D infinite EBG structures with curved
inclusions by using both the conformal and Yee’s FDTD schemes. We will discuss
the requirements of spatial resolution, computer memory, processing time, effi-
ciency, and accuracy of the conformal method by using the unit cell approach
discussed in Chapter 3.

4.2.1 Physical Model of EBG Structures

An array of metallic rods in free space periodically arranged in square and triangu-
lar/rhombic lattices will now be modeled by using both the NFDTD and the Yee’s
schemes. The structures are assumed to be infinite in the X- and the y-directions
both, with a lattice constant (period) equal to a, and they are infinitely long in the
z-direction. Each rod is made from copper, whose conductivity is approximately
o = 5.8 x 107 S/m at microwave frequencies. The ratio of the radius r to the lattice
constant a is chosen to be r/a = 0.2. Numerical simulations will be performed to
determine the dispersion diagrams for both the transverse electric (TE) and trans-
verse magnetic (TM) polarizations, for EBGs with square (Figure 4.1), as well as
triangular/rhombic lattices (Figure 4.2).

91
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Figure 4.1 (a) A three-dimensional view of EBG with square lattices (radius r, spacing a, and
r/a = 0.2). (b) The x-y plane cut out of the EBGs.

------ q ----- -------------

Figure 4.2 (a) A three-dimensional view with triangular/rhombic (radius r, spacing a, and r/a =
0.2). (b) The x-y plane cut out of the EBGs.
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Figure 4.3 Examples of the mesh schemes for a unit cell from the square lattice in the NFDTD
and Yee’s FDTD modeling: (a) (18 x 18) NFDTD cells, (b) (30 x 30) FDTD cells, (c) (50 x 50) FDTD
cells, and (d) (80 x 80) FDTD cells.

4.2.2 Mesh Generation and Simulation Parameters in FDTD Modeling

We discretize the unit cells in square and triangular/rhombic lattices [see Figures
4.1(b) and 4.2(b)] using both Cartesian and structured conformal grids, with var-
ious cell sizes; examples are shown in Figures 4.3 and 4.4.

Since the metallic rods in the EBGs are periodically arranged, and because
the structure is infinite in both the X- and y-directions, we can model it simply
by using their unit cells to which we impose the PBCs. Other parameters used in
the FDTD simulation include the excitation source, probe settings, definition of
computational domain and the boundary conditions, all of which are illustrated
in Figure 4.5.

A modulated Gaussian pulse is used to provide a wide-band excitation at
different positions inside the computation domain comprising a unit element of
the EBGs. The location of the excitation source, as well as of the field probes, is
often chosen randomly, though they are required to excite and detect all possible
resonant modes inside the structure. We can apply the fast Fourier transformation
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Figure 4.4 Examples of the mesh schemes for an unit cell from the triangular lattice in the NFDTD
and Yee’s FDTD modeling: (a) (18 x 15) NFDTD cells, (b) (30 x 26) FDTD cells, (c) (50 x 42) FDTD
cells, and (d) (80 x 69) FDTD cells.

(FFT) to the temporal signatures collected from different probes, to derive the
frequency spectra response, from which we can extract the dispersion diagram of
the EBG for various angles of excitation.

4.2.3 Simulation Results of Infinite EBGs Using the Conformal and Yee’s FDTD

In 1983, Holland developed a NFDTD algorithm and opened up the possibility for
a more general, efficient and accurate numerical time domain method for modeling
curved boundaries [1]. In this method, the FDTD technique is no longer restricted
to an orthogonal Cartesian grid, and a generalized curvilinear coordinate system
is used instead. As a consequence, an arbitrary structure with a curved boundary,
or a canted surface, can be meshed conformally, without employing the staircase
approximation as is the case in the Yee’s algorithm. Since the NFDTD method
was proposed, it has been successfully used to analyze the optical dielectric wave-
guide, the dielectric-loaded resonant cavity, microstrip discontinuities, and periodic
structures at oblique incidence.
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Figure 4.5 Modeling schemes of the unit cell approach for EBG structures: (a) for a square lattice
of Figure 4.1 and (b) for a triangular/rhombic lattice of Figure 4.2.

In a nonorthogonal coordinate system, the Maxwell’s curl equations in a
source-free and loss-free medium, can be written as [1-3]:

_uﬁ_hl_i<%_@>
ot &\ou, oiis

Lo _ 1 (e des
Hor — A\ oo o
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By following procedure similar to the one in the Cartesian FDTD scheme, we
can discretize (4.1) using the a central-difference approximation, as follows:
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To derive an explicit time-marching nonorthogonal FDTD scheme, we need to
compute the covariant field components (e;/h;) that must be calculated using their
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Figure 4.6 The dispersion diagram of the first few TE modes, for the copper rods in free space
in square lattice. The Yee’s FDTD and the NFDTD result with the low spatial resolution is plotted
to compare with the high spatial resolution result. It can be seen that the maximum disagreement
appears at M point. (NFF is the normalized central feeding frequency parameter of the modulated
Gaussian pulse. It is a frequency parameter in the modulated Gaussian pulse.)
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Figure 4.7 The dispersion diagram of the first few TM modes, from the copper rods in free space in
square lattice. The Yee’s FDTD simulation result with high spatial resolution is plotted as a reference
result. The Yee’s FDTD and the NFDTD result with the low spatial resolution is plotted to compare
with the high spatial resolution result. It can be seen that the maximum disagreement appears at

M point.
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dual, namely the contravariant field components (¢/h'); and thus, in turn, we
require additional projection equations (4.3). Since the points where the covari-
ant field values are sampled should be physically collocated with the contravari-
ant ones, we need an interpolation scheme (i.e., a neighbor averaging projection
scheme) of the type given here:

V(0. k) = g1 (i, k)" (irf. k)
b B (261, k) + 02— 1,4 1,
+ 251, k) + V2 + 1,8))

4 8RR (36 1y o3 1k )

k) ok ) (43)

where v stands for either e or h. The above implies that the contravariant compo-
nents ', v%, and v® can be obtained from (4.2).

We have computed the dispersion diagrams of the EBG (shown in Figures 4.3
and 4.4) by using the conformal FDTD scheme described earlier, and compare
them with those obtained by using the conventional Yee’s algorithm. The results
are shown in Figures 4.6-4.9. The simulated results for calculating the dispersion
diagrams are convergent provided that the spatial resolution of the FDTD scheme

Dispersion diagram of the copper rods in triangular lattice
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Figure 4.8 The dispersion diagram of the first few TE modes, from the copper rods in free space
in triangular/rhombic lattice.
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Copper rods (r/a=0.2) in triangular lattice
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Figure 4.9 The dispersion diagram of the first few TM modes, from the copper rods in free space
in triangular/rhombic lattice. The Yee’s FDTD and the NFDTD result with the low spatial resolution
is plotted to compare with the high spatial resolution result.

Frequency spectra of wave vector k at G point
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Figure 4.10 The TE mode frequency spectra of the wave vector k at r point, for the modeling of
the cylindrical copper rods in triangular lattice. The positions of peaks in the two lines agree well,
indicating that all the modes founded by the low spatial resolution (dxnrpTp = %) are all genuine.
The comparison of these three lines indicates that dxnrptp = % is the minimum spatial resolution
required by NFDTD for this modeling.
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is adequate. We observe that the maximum errors in the results obtained by using
Yee’s FDTD with a low spatial resolution occur near MandT points in the disper-
sion diagram. We also note that the NFDTD scheme offers a significant advantage
over the conventional scheme in that it allows us to use larger cell sizes in the
simulation and, hence, improves the efficiency of numerical modeling scheme, as
is evident from Figure 4.10). In the following figures, we denote “cfs” as the center
frequency of excitation source.

Figure 4.11 shows that spurious modes arise at low frequencies When Yee’s
algorithm is employed to model the EBG using the discretization da)f = zis Nu-
merical studies show that for this structure, a maximum cell size of 285 is needed
to accurately predict the dispersion diagram when Yee’s scheme is used.

Although the choice of cell size largely depends on the physical configuration
of the EBGs being modeled, for the same structure, it is seen from Figure 4.12
that the conformal FDTD algorithm always requires fewer cells than Yee’s FDTD.
Furthermore, Yee’s FDTD requires us to use considerably smaller cells, especially
when computing the high-order modes. Consequently, substantial computer re-
sources (memory and CPU time) are required, and these facts make it impossible
to simulate electrically large finite EBG structures using Yee’s algorithm.

Frequency spectra of wave vector k at T point
Copper rods (r/a=0.2) in triangular lattice TE mode
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Figure 4.11 The TE mode frequency spectra of the wave vector katT point of the cylindrical copper rods

in triangular lattice. Yee’s FDTD results in a spatial resolution of dx = % that provides a result with spurious
energy in the low-frequency band, which is strong enough to compete with a genuine mode. The NFDTD

results in a spatial resolution of dx = 1‘{35, which provides all the genuine modes used as a reference.
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Figure 4.12 (a) The minimum spatial resolution and (b) mesh size required for Yee’s FDTD and
NFDTD algorithms for the triangular lattice TE mode unit cell simulation.

4.3 Conformal FDTD Modeling of (Semi-)Finite EBG Structures

In this section, we will study a semifinite two-dimension EBG structure by using
the conformal FDTD and the conventional Yee algorithms. The bandgaps for the
EBG structure are computed by evaluating the transmission coefficients and the
FDTD simulation results are compared with those from the transfer-matrix method
(TMM) [4].

The EBG structure considered herein is shown in Figure 4.13. It consists of an
array of cylindrical dielectric scatterers, with a radius » = 0.48 cm and a dielectric
constant & = 9. They form a square lattice with a lattice constant (period) a = 1.27
cm. These rods are infinitely arranged in the x-direction. There are eight layers of
scatterers in the y-direction. The rods are infinitely long in the z-direction. The ratio
of the radius 7 to the lattice constant a is set to be r/a = 0.378, and numerical
simulations are performed for both the TE and TM polarization.

4.3.1 FDTD Model and Simulation Results

The computational domain for modeling the EBG, shown in Figure 4.13, can be
set up as follows: only one row of dielectric rods need be considered, since the
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Figure 4.13 The dielectric cylinders with radius r =0.48 cm, and dielectric constant & =9, sur-
rounded by air, forming a square lattice with a lattice constant a=1.27 cm, infinite in the z-direction;
infinite in the x-direction; finite (8 elements) in the y-direction.

EBG can be truncated by applying the PBCs and a perfect matched layer (PML).
We use a wideband Gaussian plane wave source, which covers the frequency range
of 0~ 20 GHz to simulate the structure, and the probes are located at each side
of the EBGs in order to calculate the transmission coefficient and investigate the
existence of bandgaps. The FDTD model is illustrated in Figure 4.14.

The FDTD grid of one unit cell is displayed in Figures 4.15 and 4.16, which
show a nonuniform distribution of the cell sizes used to simulate the EBG.

The temporal responses at the positions of two probes are plotted in Figures
4.17-4.19.

The transmission coefficients versus frequency for the TE polarization, derived
from the NFDTD simulation, are plotted in Figure 4.20. It can be seen that the
simulation results converge provided that at least 12 x 12 cells per unit cell are
employed. Two bandgaps, in the vicinity of 11 GHz and 15.5 GHz, are clearly seen
in Figure 4.20. The first stopband is not visible because of small EBG dimensions

OMetaIIic rods Source [ ]Probes [ |PML IPBC
a=1.27 cm r=0.48 cm

[ 000000 Q(x}

=—d

Figure 4.14 The cut plane of the EBG structure consists of eight infinite dielectric cylindrical rods
array in square lattice, modeled by the NFDTD method. The rods are assumed to be infinitely long,
so a two-dimension model is applied. In the direction in which the eight elements are aligned,
PML is used to terminate the computational domain. In the direction in which the array is infinitely
arranged, the unit cell approach is applied with PBCs used to terminate the computational domain.
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Figure 4.15 The conformal mesh of the unit cell of the structure described in Figure 4.13 in the
x-y cut plane with spatial resolution of 48 x 48 per unit cell.

(@ (b)

© | )

Figure 4.16 The conformal mesh of the unit cell of structure (Figure 4.13) in the x-y cut plane with
different spatial resolutions: (a) 26 x 26; (b) 16 x 16; (c) 12 x 12; and (d) 10 x 10 per unit cell.
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Figure 4.17 The NFDTD temporal results (using mesh Figure 4.15) after a Gaussian pulse plane
wave excitation at one side of the EBG slab.

compared to the wavelength of operation. Results from the conformal FDTD sim-
ulation show very good agreement with those from the TMM (Figure 4.21), as
well as with Yee’s FDTD results, provided the cell sizes are sufficiently small
(see Figure 4.22). Good agreement is also seen for the TM mode (see Figures 4.23
and 4.24).

4.4 Design and Modeling of Millimeter-Wave EBG Antennas

4.4.1 Introduction

Millimeter-wave systems are becoming increasingly important in many scientific,
civil, and military applications because they have potentially wider bandwidths
useful for transmitting large amounts of data and achieving an enhanced resolu-
tion in radar imaging. Recently, it has been demonstrated by various groups that
novel metamaterials and devices for microwave and millimeter-wave frequencies
can be realized by using EBG structures. EBG structures, also known as photonic
bandgap structures (PBGs) [5,6] in optics, are now finding numerous applications
in microwave and millimeter-wave devices [7, 8]. In general, EBG structures are
comprised of dielectric or metallic elements, arranged in a periodic grating that ex-
hibits forbidden frequency bands (bandgaps). The full potential of EBG structures
can be realized by using the full three-dimensional (3-D) bandgap. Thus fabrication
of 3-D EBG structures is of significant importance. The woodpile structure shown
in Figure 4.25, also called a layer-by-layer structure, consists of stacked diffrac-
tion gratings, in which the dielectric rods in adjacent layers are arranged such that
they are orthogonal to each other. This structure possesses face-centered-tetragonal
symmetries and provides a full 3-D bandgap in which wave propagations are
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Figure 4.18 The NFDTD temporal results with different spatial resolutions after a modulated Gaus-
sian pulse plane wave excitation at one side of the EBG slab: (a) mesh Figure 4.16(a) is used and
(b) mesh Figure 4.16(b) is used.

prohibited in any spacial direction. Such a periodic structure can be easily fab-
ricated for microwave applications by using columns of individually machined di-
electric materials with preferred dimensions. However, conventional machining is
difficult at best at millimeter-wave frequencies, because of small dimensions of the
structures ranging from 50 to 500 pum. Various sophisticated micro-fabrication
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Figure 4.19 The NFDTD temporal results with different spatial resolutions after a modulated Gaus-

sian pulse plane wave excitation at one side of the EBG slab: (a) mesh Figure 4.16(c) is used and
(b) mesh Figure 4.16(d) is used.

techniques, such as silicon lithography and wafer fusion are available for mi-
crostructures, but those are more appropriate for terahertz frequency and photonic
wavelengths, and it would be costly to fabricate 3-D structures with large number
of layers for applications in the W-band (75—111 GHz) range. In this chapter, we
present a design and FDTD modeling of 3-D EBG materials for millimeter-wave
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Figure 4.20 The transmission coefficients (TE mode) of the dielectric rods (Figure 4.13) calculated
using the NFDTD method. ris the radius of the cylinder.

applications based on extrusion freeforming of ceramic material [9]. The proposed
fabrication method can also be extended to submillimeter waves and proven useful
for the construction of cylindrical and spherical EBGs.

4.4.2 Design and Modeling of Woodpile EBG

In order to design the woodpile structure for millimeter-wave frequencies (93—
97 GHz), we first determine the EBG dimension, namely the width w of dielectric

log(transmitted power)
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Figure 4.21 The theoretical transmission coefficients (TE mode) of the dielectric rods (Figure 4.13)
predicted by the transfer-matrix method [4].
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Figure 4.22 The transmission coefficients (TE mode) of the EBGs consisting of dielectric rods (Figure
4.13) (a) Yee's FDTD simulation results and (b) the comparison of NFDTD and Yee’s FDTD results
with similar spatial resolutions.

rods and their period a based on the calculation of dispersion diagram. There
are several different methods available to compute the dispersion diagram of the
periodic structures. These include the plane wave expansion method [10,11], mul-
tiple scattering theory [12], transfer matrix method [13], and finite difference
method [14]. In this work, we use the FDTD method [15] for computing the
dispersion diagrams of periodic structures. One of the important advantages of
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Figure 4.23 The transmission coefficients (TM mode) of the dielectric rods (Figure 4.13) calculated
using the NFDTD method with different spatial resolutions. r is the radius of the cylinder.

the FDTD method is that it is capable of handling inhomogeneous materials in
3-D forms. It is also possible to simulate periodic structures in which the materi-
als are dispersive. We use the standard 3-D FDTD algorithm and apply a PBC to
compute the dispersion diagrams, as described in Section 3.5.

Since the structure is periodic, we choose the unit cell of the lattice as the
computation domain. The unit cell of the woodpile lattice is shown in Figure 4.26
and the Brillouin zone of the woodpile is shown in Figure 4.27.

Since the field distribution in the computation domain should satisfy the Bloch
condition, the field can be written in the following form:

E(F) = e Tu,(7) (4.4)
_" | R | 7 NER-T 5] BE RN BO R B TR AE T TR R
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Figure 4.24 The theoretical transmission coefficients (TM mode) of the dielectric rods (Figure 4.13)
predicted by the transfer-matrix method [4].
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Figure 4.25 (a) Geometry of the woodpile structure, (b) Brillouin zone defined for the unit cell, (c)
side view of the woodpile, and (d) top view of each layer of the woodpile.

Figure 4.26 Unit cell geometry of the woodpile.

Figure 4.27 Brillouin zone of the woodpile EBG.
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H(F) = e*7uy (7) (4.5)

where u,(r) and u,(r) are periodic functions on the lattice [i.e., #.(r) = u.(r + ﬁ)
and uy,(r) = u;,(r + R) for all lattice vectors]. Therefore, the boundary conditions
for the computational domain are:

E(7+R) = *RE(F) (4.6)
H(7 + R) = *RH(7) (4.7)

where R is the lattice vector, as is introduced in Section 3.4.3. Equations (4.6)
and (4.7) suggest that the fields on the boundaries of the computation domain
are related to the fields at the corresponding locations on the other side of the
boundary.

Once we have set the boundary conditions, we vary the magnitude of the
k-vector component (|k;|) defined along each lattice vector with magnitude (a;)
from 0 to 7 /a;, with finite intervals, and excite the computational domain with a
wide-band source.

The location of the source can be anywhere in the background medium (the
host medium that contains the woodpile rods and air is assumed in this work)
in the computational domain. After a certain number of time steps, we record
the temporal field values inside the unit cell and search for the maxima in the
spectrum, corresponding to the propagating modes in the EBGs for each k, via
the use of the FFT. Since we are only interested in the spectral distribution of the
eigen-frequencies, we take the FFT of the time domain output from ¢ = 0 to the end
of the time step. In our simulation, the computational domain was discretized by
using 20 x 20 x 20 cells along the x-, y-, and z-directions, respectively. The time
domain fields have been measured at 20 different locations inside the domain.

The spectral distribution of the each time domain data is then summed up to
obtain the results shown in Figure 4.28(a). The peaks indicate the eigen-frequencies
that satisfy the boundary condition.

In order to obtain the dispersion diagram, we vary the k-values according to
the direction defined in the Brillouin zone and carry out the FDTD simulations for
each value of k. From the spectral distribution obtained for each k, we extract the
location of the peaks. Finally, we plot the peak locations versus the normalized
frequency versus k values for different directions, as shown in Figure 4.28.

Figure 4.28(b) shows the computed dispersion diagram of the woodpile struc-
ture with w/a = 0.25, where w is the width of the dielectric rod, and a is the
period of the square lattice. The dielectric constant of the rod is 9.6. The above
figure clearly shows that a complete bandgap exists between the normalized fre-
quencies of 0.44 and 0.5. We also note that the widest bandgap exists along the
I'-Z direction.

The design parameters for 95 GHz have been found as w = 0.41 mm and
a = 1.7 mm with &, = 9.6 for the permittivity of the dielectric material. The trans-
mission property was then characterized along the horizontal direction using the

FDTD simulation, for the case of a vertically polarized electric field (E = Eoa,).
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Figure 4.28 (a) Spectral distribution of the field observed inside the unit cell and (b) dispersion
diagram of the designed woodpile.

The electric field distribution along the horizontal direction is shown in Figure
4.29. The attenuation of the electric field at 95 GHz is quite obvious, while the
wave propagates with very little attenuation at frequencies outside the bandgap.
The transmission characteristic of the woodpile has been simulated using FDTD
and Ansoft HFSS; both results agree very well, as shown in Figure 4.30.

The designed woodpile structure has been fabricated using the freeforming
technique as is shown in Figure 4.31. The fabricated woodpile structures were
characterized by performing transmission measurements using a millimeter-wave
transmitter and receiver. The millimeter-wave source used for the measurement is
capable of sweeping from 75 GHz to 110 GHz. The fabricated woodpile structure
was placed between two identical circular horn antennas and a frequency sweeping
was performed to measure the transmission characteristic of the sample. In order
to avoid diffractions, microwave absorbing materials were placed along the edges
of the sample. The woodpile samples of 30 x 30 mm? were measured with 1 and
2 vertical periods, and the results are shown in Figure 4.32.

The simulated results are also plotted in the same figure for comparison. The
simulated woodpile structure is assumed to be infinite. The actual physical param-
eters of the measured samples were w = 0.41 mm, a = 1.67 mm. The measured
and simulated results show a good agreement with each other, except for the slight
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Figure 4.29 Electric field distribution inside the woodpile at different frequencies.
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Figure 4.30 Transmission characteristic of woodpile structure: results comparison between FDTD
and HFSS.

offset in the bandgap frequency and transmittance level. The frequency offset is
caused mainly by the difference between the dielectric constant of the actual ma-
terial and the simulated values, and a slight nonuniformity in the geometry (i.e.,
diameter and spacing) throughout the fabricated samples. The discrepancies in the
transmittance level is attributed to the assumption (infinitely wide structure) made
during the simulation, which shows a higher attenuation along the direction of the
propagation.

In this section, we have analyzed a woodpile EBG structure for millimeter-wave
applications fabricated by using a rapid prototyping technique based on extrusion
freeforming. Numerical simulations have been performed for the design of this
structure and the fabricated woodpile structures have been measured. Experimental
results have shown a good agreement with the simulated results.

Figure 4.31 Photo of the fabricated woodpile: (a) fabricated sample and (b) details of filaments.
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Figure 4.32 Simulated and measured transmittance of the woodpile structure.

4.4.3 A Millimeter-Wave EBG Antenna Based on a Woodpile Structure

In this section, we describe the design of an EBG resonator antenna at millimeter-
wave frequencies (93-97 GHz). The overall geometry is shown in Figure 4.33.

In order to determine the separation distance (d) between the EBG and the
antenna, we perform a parametric study. The separation distance (d) is normally
chosen to be approximately A/2, where A is the free-space wavelength at the
operating frequency. The size of the ground plane is 10 mm x 10 mm, and the
rectangular aperture size is 1 mm x 3 mm with the longer side is aligned with
x-axis.

Figure 4.34 shows the defect frequency and directivity as a function of the
separation distance between the EBG and the antenna. The defect frequency, which
is the operating frequency of the EBG antenna, decreases with an increasing d.
However, the directivity shows the maximum value for a particular range of d,
and it drops rapidly when d is too small.

It is also interesting to note that the actual separation distance in terms of the
wavelength at the operating frequency increases an increasing d (see Figure 4.35).

Directive beam
Woodpile

i il
z I
L) . y \Ground plane

Waveguide (WR-10)

Figure 4.33 Geometry of the woodpile EBG resonator antenna.
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Figure 4.34 Antenna operating frequency (defect frequency) and directivity versus the separation
distance between the EBG and the antenna.

This result implies that the wave is not exactly reflected at the surface of the EBG
structure, but the location of the actual reflector is somewhere inside the EBG
structure.

Also when the EBG is placed closely to the antenna, the energy penetrates
deeper inside the EBG structure, which may reduce the directivity of the antenna.
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of the operating frequency

Figure 4.35 Separation distance between the EBG and the ground plane in terms of the operating
wavelength.
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Figure 4.36 Simulated electric field distribution within the antenna structure at 93 GHz (d =
1.32 mm): (a) vertical cut, (b) horizontal cut for z= 0.88 mm (between the woodpile and ground
plane), and (c) horizontal cut for z= 2.48 mm (top layer of the woodpile).

Figure 4.36 shows the simulated electric field distribution inside and outside
the cavity created by the woodpile structure and the ground plane. It is shown that
the entire area of the cavity is excited and the whole area of the woodpile surface
is illuminated, which creates a high directive antenna pattern.

The simulated directivity pattern of the composite antenna is shown in Figure
4.37. The directivity achieved at 93 GHz is approximately 18 dBi. It is clearly seen
that the EBG superstrate provides significant improvement in the directivity of the
low directive antenna.

4.4.4 Experimental Results

The designed antenna has been fabricated by using the brass ground plane attached
to a waveguide at the center and the woodpile EBG material fitted into the alu-
minium frame, as shown in Figure 4.38. It was found that the aluminium frame
causes a distortion of the pattern, and it was later replaced with a nonmetallic
frame. The separation distance between the ground plane and the frame was ad-
justed by using the screws at three points. The dimension of the woodpile structure
used was 30 mm x 30 mm and the ground plane was 120 mm x 120 mm.

Directivity (dB)
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-25 ! - - ---Feed with woodpile EBG| 1 1 -20
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Figure 4.37 Simulated antenna pattern of the EBG resonator antenna at 93 GHz: (a) phi=0 and
(b) phi=90.
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Figure 4.39 Received power level versus frequency.
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Figure 4.40 Received power level and maximum gain frequency versus separation distance.

The fabricated antenna has been mounted on a microwave test bench and the
received power level has been measured as a function of the separation distance
d over the millimeter-wave frequency band (75-110 GHz). Figure 4.39 shows
the received power level with and without the woodpile EBG superstrate. The
improvement of the broadside gain around 93 GHz is clearly seen from the figure.
We have also investigated the antenna operating frequency (the frequency for which
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Figure 4.41 Measured E-plane pattern of woodpile EBG resonator antenna.
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Figure 4.42 Measured H-plane pattern of woodpile EBG resonator antenna.

the highest gain is achieved) as well as the received power level as a function of
the separation distance. The results are shown in Figure 4.40. We note that the
experimental results confirm the simulated ones presented in the previous section.
The operating frequency of the antenna decreases with an increase in the separation
distance and the highest gain is achieved for a specific separation distance. The
relative improvement of the gain over that of the waveguide with a ground plane
was found to be approximately 6 dB.

The measured antenna patterns are shown in Figures 4.41 and 4.42. A clear
improvement of the antenna directivity in both the E- and H-plane patterns is
observed. The HPBW of the antenna and the received power level at the broadside
are compared in Table 4.1.

The far-field pattern of the woodpile antenna has been simulated by using
the FDTD method. The simulated and measured results are compared and a very
good agreement has been observed between the simulated and the measured data,
as may be seen from the results plotted in Figure 4.43.

Table 4.1 Comparison of HPBW and the Received Power Level at the Broadside With and Without
the Woodpile EBG Superstrate

E-plane H-plane
HPBW (degrees) Received Power HPBW (degrees) Received Power
at Broadside (dB) at Broadside (dB)
EBG antenna 14 0.095 10 0.08

WG only 110 —5.672 68 —6.16
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Figure 4.43 Comparison between the simulation and the measurement: (a) electric field distri-

bution, (b) broadside gain versus frequency, and (c) comparison of normalized directivity pattern
for the E-plane.

4.5 Conclusions

We have demonstrated some examples of EBG modeling based on Yee’s and con-
formal algorithms. It has been shown that the “unit” cell approach can be ap-
plied to characterize the EBG, provided that the cell dimensions are small and the
EBG structure is large in comparison to the wavelength of operation. The confor-
mal FDTD provides a better numerical accuracy and efficiency over the conven-
tional Yee’s approach when modeling EBGs with curved elements. The design and
modeling of a millimeter-wave EBG antenna based on woodpile structures have
been presented. The designed antenna showed improved performances in terms
of directivity and beamwidth. The composite antenna shows a 13-dBi gain and a
14- and 10-degree beamwidth in the E and H planes, respectively. The primary
factor responsible for the operating frequency and the directivity is the separation
distance between the EBG superstrate and the antenna. The results suggest that
the separation distance must be chosen properly in order to achieve the maximum
directivity at the intended operating frequency.
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Left-Handed Metamaterials (LHMs)
and Their Applications

5.1 Introduction

Metamaterials are often characterized in terms of their effective material param-
eters, such as electric permittivity and magnetic permeability. These constituent
parameters can either be both negative, or only one of them may be negative,
while the other is positive. The former is often referred to as LHM, DNG, or neg-
ative refractive index material (NRIM) [1-20]. The latter is called single negative
material (SNG).

The concept of LHMs was first theorized by the Russian physicist Veselago in
1968 [1]. In this paper, Veselago speculated on the possible existence of LHMs and
anticipated their unique electromagnetic properties such as the reversal of Snell’s
law, the Doppler effect, and the Vavilov Cherenkov effect. Veselago showed that
the electric field, magnetic field, and wave vector of an electromagnetic wave in
an LHM form an LH triad. As a result, LHMs support electromagnetic waves
with group velocity and phase velocities that are antiparallel, known as backward
waves. Consequently, while the energy still travels away from the source, so as
to satisfy causality, wavefronts travel backward toward the source in an LHM, a
phenomenon that is associated with negative refractive index of refraction.

5.2 Effective Medium Theory and Left-Handed Metamaterials

Every material is a composite in some sense, even if the individual ingredients con-
sist of atoms and molecules. Typically, the motivation for introducing the concept
of effective permittivity and permeability is to present a homogeneous view of the
electromagnetic properties of a medium. For periodic structures, defined by a unit
cell whose characteristic dimension is a, the following criterion must be satisfied
in order for the structure to be viewed as a homogeneous medium:

2nc
a<< A= 0

(5.1)
0]

Should the above condition be violated, the possibility would exist that the
internal structure of the medium would diffract as well as refract radiation, and
thus invalidate the homogeneous medium assumption. It has been shown [3] that a
structure consisting of very thin infinitely long metallic wires, arranged in a three-
dimensional cubic lattice, could model the response of a diluted plasma, giving a
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negative g, below a plasma frequency somewhere in the gigahertz range. Theoret-
ical analysis of this structure has been confirmed by the experiment reported in [5].
Sievenpiper et al. have also investigated plasma-like effects in metallic structures
(6, 7].

5.2.1 A Composite Medium of Metallic Wires and Split Ring Resonators

In a paper published in 1968 [1], Veselago predicted that electromagnetic plane
waves in a medium having simultaneously negative permittivity and permeability
would propagate in a direction opposite to that of the flow of energy. The direction
of energy flow, given by E x H, forms a right-handed system when the permittivity
and permeability is both positive. Where the permittivity and permeability are
negative, the direction of propagation is reversed with respect to the direction of
energy flow, the vectors E, H, and k forming a left-handed system; thus, Veselago
referred to such materials as “left-handed.”

However, the research in this area was largely discontinued due to the absence
of naturally occurring materials with negative pu. New discoveries of LH media was
not made until recently, when a composite medium was demonstrated in which,
both the effective &€ and u were purportedly shown to be simultaneously less than
zero [2], over a finite frequency band. This physical medium was composed of
distinct conducting elements, the size and spacing of which were on a scale much
smaller than the wavelength in the frequency range of interest. Consequently, the
composite medium was considered to be homogeneous at wavelengths of interest.

The composite medium (as shown in Figure 5.1) used in [2] made use of an
array of metallic posts to create a frequency region with g, < 0, interspersed
with an array of split-ring resonators (SRR) for which p.s < 0 was supposed in
the frequency range of interest. The SRR and wire medium, both revisited by
Pendry [3], have been extensively studied by a number of researchers.

The effective dielectric permittivity function of the thin wire medium and the
effective magnetic permeability function of the SRR medium can be expressed as:

wZ
e(w) = & (1 - ¢> (5.2)

w? — jOYe

2
1(0) = o (1 — —2m (5.3)
w? —]OYm

where @, and ®,,, are electric and magnetic plasma frequencies and y, and y,, are
electric and magnetic collision frequencies, respectively.

If we assume that the wire and SRR arrays do not interact directly, the ef-
fective index of refraction of the composite medium can be expressed as n(w) =

&of(@) (@), with the material constants given by the expressions in (5.2) and

(5.3). Thus, in a certain region both &, and p.; can be simultaneously negative;
the refractive index would then be real, and the fields would propagate in such a
medium.
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Figure 5.1 Left-handed medium and a transmission characteristic [2].

Figure 5.1 shows the results of transmission experiments on split rings alone
(solid curve), and split rings with wires placed uniformly between (dashed curve).
The square array of metal wires alone has a plasma frequency of 12 GHz; the
region of negative permittivity this frequency attenuated the transmitted power to
below the noise floor of the microwave detector (—52 dBm). When split rings are
added to the wire array, a passband occurs, provided that the wave propagates
along a direction such that its magnetic field is perpendicular to the plane of the
rings.

5.2.2 Isotropic Three-Dimensional Left-Handed Metamaterials

A three-dimensional, nearly isotropic LHM design using the symmetric construc-
tion of unit cells that allows left-handed behavior for any direction of propagation
and any polarization of the electromagnetic wave has been proposed by Koschny et
al. [9], who have emphasized the importance of the symmetry issues in the design
of isotropic metamaterials, as seen in Figure 5.2.

It has been shown that despite the square shape of the SRR, the scattering
amplitude is independent of the orientation of the incident plane for both TE and
TM modes. A reasonable isotropy has been observed. However, the geometry of
the unit cell is very complicated for designing practical 3-D metamaterials.

(a) (b)

Figure 5.2 The design of a fully symmetric unit cell for a one-unit-cell thick slab of (a) an isotropic
SRR and (b) an LHM [9].
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5.2.3 Left-Handed Metamaterials Using Simple Short Wire Pairs

In the past few years, there has been ample demonstration of the existence of LHMs
in the gigahertz frequency range, provided the propagation is strictly restricted to
certain directions. Many groups have been able to fabricate such LHMs with an
index of refraction # = —1 with losses of less than 1 dB/cm. However, to date, no
materials with a negative 7 that is accompanied by a relatively small imaginary part
have been found yet at the THz region. Currently, there is much interest in pushing
the frequency range for LHM behavior into the infrared and optical regions of the
spectrum. A recent theoretical work [10] has claimed that using pairs of finite
length wires would not only allow replacing the SRRs as magnetic resonators but
would also yield simultaneously, a negative ¢ and u, and therefore, a negative
n, without the need for additional continuous wires. However, the condition to
obtain simultaneously negative u and ¢ by pairs of finite metallic wires is very
restrictive. Recent experiments [11] have not confirmed the existence of negative
n in such short-wire pairs that have been investigated, refuting the claim [12] that
one can realize negative 7 medium at tetrahertz frequencies.

The basic structure of the unit cell forming the wire-pair medium is shown
in Figure 5.3. In it, the conventional SRR is replaced by a pair of short parallel
wires while the continuous wire is preserved. The short wire pair consists of a
pair of metal patches separated by a dielectric spacer of thickness z;. In essence,
the short wire pair is a “two-gap” SRR that has been flattened to yield the wire
pair arrangement. For an electromagnetic wave incident with wave vector and
field polarization as shown in Figure 5.3(a), the short wire pair will exhibit both
inductive (along the wires) and capacitive (between the upper and lower adjacent
ends of the short wires) behavior. It will thus have a magnetic resonance, which,
in turn, would lead to a negative permeability.

Using the transmission and reflection results from a single layer, we can extract
the effective refractive index for a periodic multilayer sample that utilizes the single-
layer structure as a building block, as shown in Figure 5.4. The details of the

(b)

Figure 5.3 A wire pair structure: (a) schematic representation of one unit cell and (b) photograph
of one side of a fabricated microwave-scale wire-pair sample.
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Figure 5.4 (a-f) Extracted electromagnetic properties of a periodic array of wire-pair unit cells,
using the simulated and measured data [11].

numerical retrieval procedure have been described in [13-15]. We reiterate the fact
that the retrieved parameters are only valid for a certain direction of propagation.

5.3 Applications of Left-Handed Metamaterials

5.3.1 Imaging by a Perfect LHM Lens

Conventional optical lenses have limitations. No lens can focus light onto an area
smaller than a square wavelength. The reasons for the limitation in performance
is that for larger values of transverse wave vectors, the evanescent waves decay
exponentially with the axis of the lens and no phase correction will restore them
to their original levels. They are effectively removed from the image, which is
generally comprised of the propagating waves alone. The maximum resolution in
the image can never be greater than

2 2
An 2 0y (5.4)
(0]

kmax

However, a material with negative refractive index is in principle capable of
focusing light even when in the form of a parallel-sided slab of material. Figure 5.5
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Figure 5.5 A negative refractive index lens.

shows such a lens with 7 = —1. A true negative refractive index lens would amplify
evanescent waves, and both propagating and evanescent waves contribute to the
resolution of the image (see Figure 5.6). Therefore, in principle, there is no physical
obstacle to achieving a perfect reconstruction of the image beyond the practical
limitations of apertures and the perfection of the lens surface. Details of imaging
by a perfect LHM lens and its FDTD modeling can be found in Chapter 8.

5.3.2 Transmission Line Structures of Left-Handed Metamaterials

Several researchers have further studied the characteristics and applications of
SRR-based LHMs. However, since the resonant structures such as SRRs are lossy,
narrow-banded, and most importantly, anisotropic, they have not performed as
expected, even at microwave frequency, let alone at higher frequencies. They have
prompted several researchers to investigate a transmission line (TL) approach to
realizing LHMs [16]. This approach has, in turn, led to nonresonant structures that
have lower losses and wider bandwidths. In particular, metamaterials with right-
handed (RH) and left-handed (LH) properties known as composite right/left hand
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- 2.0f o 7
N LLIN ~
o Y= \
v S 1.5k ..
210 o =M@= 1st surface
é 'g = @ 2nd surface
= =
g —0_1 (13 1
< £

0.5} T

0.5 " L A
1961 2001 2041 2081 2121
XA

Figure 5.6 (a, b) Amplification of evanescent waves [21].
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Figure 5.7 LC-based CRLH transmission line: (a) unit cell and (b) LC periodic network equivalent
to a homogeneous CRLH TL of length d for p = Az — 0 [17].

(CRLH) metamaterials have led to the development of several novel microwave
devices that we will discuss in this chapter. However, the realization of superlenses
has still remained elusive.

The following configurations are most extensively studied:

1. CRLH TL using interdigital capacitors and shorted stub inductors, as shown
in Figure 5.7;
2. Open 2-D CRLH mushroom structures.

12

10

=== Balanced
— — — Unbalanced

Frequency (GHz)

0 n/(2p) n/p
B (rad/m)

Figure 5.8 Dispersion diagram for the balanced and unbalanced LC-based CRLH TL. Balanced:
Lg=L;=1 nH, Cg=C;=1 pF; unbalanced: Cg=1 pF, C;=2 pF [18].
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Ground plane

Figure 5.9 CRLH TL: (a) unit-cell 1-D CRLH TL and (b) open 2-D CRLH mushroom structure.

We can apply the PBCs related to the Bloch-Floquet theorem to the LC unit
cell [17], as shown in Figure 5.7, to obtain the LC dispersion relation as follows:

Blo) = %cos—1 <1 + ZZ—Y> , where Z(w) =7 <(gLR _ L) :

1

Sp—ti—iE .
S

— S11
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S

20k
4 _25 1 L 1 1 L T
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Figure 5.10 Dual band branch line coupler: (a) photograph and (b) measured S-parameter [18].
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Figure 5.11 Asymmetric backward-wave directional coupler: (a) photograph and (b) measured
S-parameter [17].

A computed dispersion diagram of an LC-based CRLHL-TL is shown in Figure
5.8. By selecting the LC values (balanced condition) appropriately, the bandgap
between the LH and RH regions can be eliminated and a continuous change of
phase velocity from negative to positive can be realized.

W] D l 1D Wstub
— |
stub
9

Lp=10.2 mm, w;,=1.0 mm, g=0.2 mm
Lwp=9.9 mm, w,,,=2.0 mm

Via diameter: 0.4 mm

# of fingers: 5 pairs each side of stub
Width of fingers: 0.3 mm

Gap between fingers: 0.2 mm

(a) (b)

Figure 5.12 One-cell ZOR: (a) photograph and (b) layout with parameters [17].
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(b)

Figure 5.13 Antenna comparison: (a) ZORA and (b) conventional microstrip patch antenna [17].

Thy physical implementation of CRLH-TL can be accomplished by employing
the surface-mount technology (SMT), chip components, or distributed components,
to realize the LC network. Distributed components can be implemented via mi-
crostrip, stripline, coplanar waveguide, or another technology. 1-D and 2-D CRLH
structures realized by using microstrip technology are shown in Figure 5.9.

5.3.2.1 Guided Wave Applications of CRLH-TL Metamaterials

The CRLH TL has led to several novel microwave applications and devices. Ap-
plications of TL-line-based LHM can be classified into three categories, namely
guided, radiated, and refracted wave applications.

Conventional branch line couplers (BLCs) can only operate at their design
frequency and odd harmonics. The conventional BLCs can be modified by replacing

Meander-line
Interdigital capacitor inductor

Unit cell

Virtual ground
capacitor

Figure 5.14 Four-cell ZORA [17].
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Figure 5.15 Measured and simulated S-parameters [17].

their RH TLs with CRLH TLs to yield a novel BLC with an arbitrary second
operating frequency, as shown in Figure 5.10.

Asymmetric Backward-Wave Directional Coupler

Although conventional microstrip directional couplers are typically capable of op-
erating over a broad bandwidth (> 25%), they typically have relatively low cou-
pling levels, usually —10 dB or less. Noncoupled-line couplers, such as BLCs and
ring couplers, offer tight coupling levels (—3 dB) but at the expense of a lower
bandwidth (< 10%). The Lange coupler is able to achieve both a broad bandwidth
and a tight coupling, though it requires the use of wire bonds that are cumbersome
as well as expensive. The novel coupler of Figure 5.11 offers an alternative to these

w —
w=Pc 1 w=Bc Source

Bwd *Broadside

N

N
0 Fwd

B X (b) Y

Figure 5.16 CRLH LW antenna: (a) typical dispersion diagram and (b) scanning operation [17].
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Figure 5.17 Measured results: (a) scanning angle versus frequency and (b) radiation patterns [17].

conventional couplers and is capable of achieving an arbitrary coupling level and
a 50% bandwidth without the use of any wire bonds.

The coherent length (the length required for maximum coupling) of a con-
ventional asymmetric coupler is given by dp.x = “35—’;371', while that of the CRLH

coupler is diax , where B. and B, are the ¢ and = mode propaga-

_ T
" |BcrLHI+Beus
tion constants.

5.3.2.2 A Zeroth-Order (ZOR) Resonator and Its Applications to Small Antennas

A unique feature of CRLH metamaterials is that of 8, which we can use to achieve
a wave number of zero at a nonzero frequency. This property can be used to
create a novel zeroth-order resonator (ZOR), which is depicted in Figure 5.12.
The resonance of ZOR is independent of the length of the structure but depends
only on the reactive loadings. The unloaded quality factor Q, of the ZOR is

Qp =~ CéLL , where G is the shunt conductance of a lossy CRLH TL.
Since the resonance of the ZOR is independent of physical dimensions, the
size of the antenna based on the ZOR can be smaller than a half wavelength.

GND/ Vb(_)

3.02cm
Inductor (dc feed)

TR Via Via
/.u.;_\. v, dc bias, V,(+)
bl N Port 1 Port 2
s 0 s V1-ﬁ —
=0 5, >0 P<0 % Fa g 7,
A A 38.34 cm ¥

Figure 5.18 Principle of voltage-controlled CRLH unit cell and photograph of the actual antenna
[17].
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Figure 5.19 (a, b) Principles of beamwidth control [17].

Instead, the antenna’s size is determined by the reactive loadings in its unit cells.
Figure 5.13 shows the photographs of the two antennas with the same design
frequency, 4.88 GHz. A detailed layout of the ZORA is shown in Figure 5.14.
The LC components are implemented using interdigital capacitors and meander
line inductors. Both simulated and measured S-parameters of ZORA are shown
in Figure 5.15. It should be pointed out that the size reduction comes at a price,
namely a reduction in the gain of the antenna.

5.3.2.3 A Backfire to Endfire Leaky-Wave (LW) Antenna

The balanced CRLH-TL can be used as an efficient, frequency-scanned leaky-wave
(LW) antenna when optimally matched to the air impedance. A CRLH LW antenna
has two distinct advantages over conventional LW antennas:

1. A CRLH LW antenna can operate at its fundamental mode, because this
mode contains a radiation (or fast wave) region (|| < ko, where kg is the
free-space propagation constant) in addition to a guided (or slow wave)
region as shown in Figure 5.16. In contrast, since the fundamental mode

-90° TL +90° MM line
P2
\/ZZQ T ZO B] Lo1 Co1 -
P1
[« = Z R
P3
V27, Z | B, L2 | Co2 =0
-90° TL -90° MM line

Figure 5.20 Block diagram of metamaterial balun [17].
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of RH structures are always guided, they must be operated using higher-
order modes in order to achieve radiation and, consequently, require a more
complex and less-efficient feeding structure.

2. Unlike conventional LW antennas, the CRLH LW antenna is capable of
continuous scanning from backward (backfire) to forward (endfire) angles.

The LW antenna scanning angle is given by 6 = sin™

1 (ﬁo+2ﬂﬂ/l))
ko

, where

Bo is the propagation constant of the fundamental mode, and 7 is the in-
dex of spatial harmonics. Measured antenna radiation patterns for different
scanning angles can be found in Figure 5.17.

The scanning angle of a LW antenna is frequency-dependent, which is not prac-
tical for most wireless systems. It has been reported that a frequency-independent

RH line

Power
splitter

Figure 5.22 Block diagram of broadband arbitrary phase shifter and actual layout [17].
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LW antenna capable of continuous scanning and beamwidth control can be real-
ized with a TL composed of voltage-controlled CRLH unit cells. By controlling
the bias voltage of varactor diodes included in the CRLH unit cell, the capacitance
of the cell can be changed, as shown in Figures 5.18 and 5.19. When using this
approach, the propagation constant of the CRLH unit cell becomes a function of
voltage. Since the voltage applied to each cell can be different, the voltage dis-
tribution on the antenna can be nonuniform, in general. Depending on the type
of voltage distribution, the antenna can be used either as a scanning type or a
beamwidth-controlled LW antenna.

5.3.2.4 A Broadband Balun and Phase Shifters Using CRLH-TL Metamaterials

Most balun designs are inherently narrowband, due to the frequency dependency
of the components used in their construction. Broadband baluns usually require
very long transmission lines or bulky ferrite cores and are not very compact. A
broadband balun can be constructed by using a Wilkinson power divider con-
nected to two +90° phase-shifting lines that utilize CRLH-TL (see Figure 5.20).
By adjusting the values of the loading elements, positive, negative, or zero inser-
tion phase is realized. The fact that the frequency dependency of the positive and
negative phase-shifting lines is very similar leads to the broadband characteristic
of the balun, as shown in Figure 5.21.

A power splitter that exhibits a constant phase difference with arbitrary value
over a wide bandwidth and provides advanced and retarded phase angles can be
realized by using LH and RH transmission lines, as shown schematically in Figure
5.22. The RH transmission line is implemented by using conventional coplanar
waveguide (CPW), and the LH transmission line is realized using the CRLH CPW
comprising of interdigital capacitors (IDCs) and short-circuited stub inductors
(SSIs). Typical delay line phase-shifters occupy large areas when operating at low
frequencies; however this CRLH CPW is operated in the balanced condition by
adjusting its equivalent inductances and capacitances, thus enabling the proposed
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Figure 5.23 (a, b) Single-stage, two-stage, three-stage, and eight-stage 0° phase shifter compared
to a conventional 360° TL at 0.9 GHz (right), phase and magnitude response (right) [22].
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phase shifter to achieve the compact size and the arbitrary phase differences with
broad bandwidth.

A compact one-dimensional phase shifter can be realized by using altering sec-
tions of LH transmission lines, as shown in Figure 5.23. The LH transmission line
sections consist of lumped element capacitors and inductors. The amount of phase
shift can be tailored to a given specification. Small variations in the LH transmis-
sion line element values can produce positive, negative, or zero phase shifts while
maintaining the same short overall length. LHM phase shifters offer advantages
over conventional delay lines: They are more compact in size and exhibit a linear
phase response around the design frequency, enabling the realization of broadband
components, as shown in Figure 5.24.
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Figure 5.24 Magnitude and phase response of broadband LHM phase shifters [17].
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Figure 5.27 Comparison of radiation pattern between microstrip antenna arrays with (a) a tradi-

tional series-fed and (b) a CRLH TL-fed configuration at 94 GHz.
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5.3.2.5 Applications of CRLH-TL in Antenna Array Design

Traditional feed configurations of microstrip array include parallel and series feeds.
A parallel feed has the disadvantage that it requires a long transmission line be-
tween the radiators and input port. As a result, the insertion loss of the feed
network becomes prohibitively large, and the overall efficiency of the array is re-
duced. On the other hand, the conventional series feed suffers from inherent beam
shift with frequency due to the insertion phase shift of the patch in the series con-
figuration. Based on the advance phase shift characteristics of LH transmission
line, a CRLH-TL has been proposed, in which the insertion phase can be removed
because of antiphase shift of LH and RH transmission lines. Figure 5.25 shows the

RH RH .y
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Figure 5.28 Reflection and refraction for (a) RH/RH, (b) RH/LH, and (c) proposed interface [22].
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configuration of the millimeter-wave patch array using H-slots, and the CRLH-
TL design is shown in Figure 5.26. A comparison of the radiation pattern with
and without using the CRLH feed line shows improvement in the antenna gain.
Reduced X-polar component and better beam shape is obtained with the array
using CRLH Zero-phase delay line section (see Figure 5.27).

An artificial meta-interface has been implemented by using a phase-conjugating
array. If a simple thin interface can produce effects similar to those of a complex
interface between a conventional RH and a LH material, propagation will occur in
real media and will thus circumvent the shortcomings of artificial structures. Figure
5.28 shows the possible reflection and refraction between RH/RH and RH/LH
interfaces, and meta-interface. The normalized RCS of the meta-interface is shown
in Figure 5.29. The actual structure is constructed by using two subcircuits, namely
the antenna array (slot) and the mixer array as shown in Figure 5.30. Measured
results have demonstrated the negative refraction and reflection in the farfield of
the array and the displacement of refracted signal in the same direction as that of

Figure 5.29 Measured normalized RCS of a meta-interface for a source located at (a) 0°, (b) 30°,
and (c) —30° [22].
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Figure 5.30 The principle underlying the implementation of a negative reflective/refractive inter-
face and actual prototype [23].

the source parallel to the interface in the nearfield. These unusual effects may be
exploited in quasi-optic beam-forming applications.

5.3.3 Directive Electromagnetic Scattering by an Infinite Conducting Cylinder
Coated with LHMs

Electromagnetic scattering from metallic cylindrical structures coated with left-
handed materials has been investigated by several groups [19, 20]. It has been
observed that resonant peaks occur in the scattering width as a function of the
frequency of the incident wave due to the surface polaritrons. The scattering char-
acteristics of a conducting cylinder coated with a conventional dielectric material
has been compared to those of a LHM-coated cylinder, assuming ideal LHM prop-

Figure 5.31 Geometry of the problem [19].
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Figure 5.32 Far-field radiation pattern of a line source placed outside a conducting cylinder coated
with (a) normal dielectric layer and (b) LHM [19].

erties. Improved directive scattering has been realized for the case of the idealized
LHM-coated cylinder, and this has been attributed to the negative refraction of
the LHM. The directivity depends on the size and the constitutive parameters of
the LHM layer and the performance of the directive scattering, and it has been
claimed that its performance could be further improved by moving the line source
inside the coating dielectric layer.

i
b LT IS

L

Figure 5.33 Far-field radiation pattern with the line source placed inside a conducting cylinder
coated with (a) normal dielectric layer and (b) LHM [19].
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Figure 5.34 Unit cell of NIM.

Directive electromagnetic scattering by an LHM-coated conducting cylinder
could be useful in potential applications of directive antennas (as shown in Figures
5.31-5.33), though this is again dependent upon the practical realization of such
a coating.

5.3.4 Negative Index Materials (NIM) for Selective Angular Separation of
Microwave by Polarization

It has been demonstrated that an anisotropic prism exhibits both positive and neg-
ative refractive indices and can split an incident beam into two components. The
positive and negative indices are accessible by the choice of polarization of the
electric field. The prism is constructed using the NIM unit-cell composed of metal-
lic strip and split-ring resonators shown in Figure 5.34. For incident microwaves
polarized so the electric field is parallel to the vertical metallic strip and the mag-
netic field is perpendicular to the boards, what appears to be negative refraction

= 2-posts
== Split rings

'f, Normal

+6

-

Figure 5.35 Top view of the prism measurement.
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can be observed in a narrow frequency range. If the incident radiation is rotated
by 90°, such a prism would have a positive index of refraction nearly unity at the
same frequency for which the original polarization had a negative index. The use
of intermediate polarizations can split the incident signals into two simultaneous
output signals, one refracted negatively and one positively. The angular separation
of the two output signals is determined by the prism angle and the negative index
of refraction at the particular frequency.

It should be mentioned, however, that measurements of such prisms (see Figure
5.35) have shown that the level of the refracted signal is considerably lower, and
this cannot be explained simply by taking the losses into account. Recently, an
alternative explanation of this phenomenon has been advanced by Mittra et al. in
terms of the Floquet harmonics of the periodic structure that makes up the prism,
and the above explanation is consistent with the measured data for the prism.
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Numerical Modeling of Left-Handed
Material (LHM) Using a Dispersive
FDTD Method

6.1 Introduction

Numerical techniques are designed to solve the relevant field equations in the
computational domain, subject to the boundary constraints posed by the geome-
try. Without making a priori assumptions about which field interactions are most
significant, numerical techniques analyze the entire geometry provided as input.
They calculate the solution to a problem based on a full-wave analysis. The FDTD
method [1-46], which is a powerful numerical modeling technique, has been widely
used for modeling electromagnetic wave interaction with complex materials.

One of the most significant developments in the FDTD method is its capability
of modeling frequency dispersive materials [1]. The existing frequency dispersive
FDTD methods can be categorized as three types: the recursive convolution (RC)
method, the auxiliary differential equation (ADE) method, and the Z-transform
method.

In 1990 Luebbers et al. published the first frequency-dependent FDTD formu-
lation for the modeling of Debye media [2] using a RC scheme by relating the
electric flux density to the electric field through a convolution integral, and then
discretizing the integral as a running sum. Soon the RC approach was extended
for the study of wave propagation in a Drude material [3], Mth order dispersive
media [4], an anisotropic magneto-active plasma [5], and ferrite material [6]. In
2004, the bi-isotropic/chiral media was modeled using the RC approach [7-9].

The ADE method was first used by Kashiwa and coworkers [10-12] in 1990
for Debye media, Lorentz media, and media obeying the Cole-Cole circular arc
law, respectively. Joseph et al. [13] independently developed a similar ADE model
for Debye media. Goorjian and Taflove [14] soon extended this model to include
effects for nonlinear dispersive media. Independently, Gandhi et al. proposed the
ADE method for treating M-th order dispersive media [15,16]. Later in 2004, the
optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media was
modeled using high-order FDTD and the ADE approach [17].

In 1992, Sullivan [18] proposed a dispersive FDTD formulation based on
Z-transforms. Then the Z-transform approach was extended to treat nonlinear op-
tical phenomena [19]. Recently, the chiral media was modeled using Z-transform
method [20].

In [21], Feise et al. compared the ADE and Z-transform methods and applied
the pseudo-spectral time-domain technique for the modeling of backward-wave
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metamaterials to avoid the numerical artifact due to the staggered grid in FDTD.
Recently, Lee et al. used the piecewise linear RC (PLRC) method through an ef-
fective medium approach to model split-ring resonator LHM due to the similar-
ity of its effective permittivity and permeability function to the Lorentz material
model [22].

In addition to the frequency dispersion effect in all the above dispersive FDTD
models, the inherent spatial dispersion effect also needs to be taken into account
in order to accurately model the artificial media. Due to the similarity of the
frequency and spatial dispersion effects, the ADE method can be directly applied
in the dispersive FDTD model.

In this chapter, the ADE dispersive FDTD method will be reviewed in detail
and applied to model LHMs for the demonstration of negative refraction, and
the construction of flat-lens, zero-phase-delay wave transmission in layered LHM
structures, conjugated LHM structures, and their applications in the design of
transparent radomes.

6.2 The Effective Medium of Left-Handed Materials (LHMs)

It is worth mentioning here that frequency-independent negative material parame-
ters are not physically realizable [23]. This can be verified by examining the relation
between the energy density W, the electric field E and the magnetic field H [23]:

1
W= (,g|1~:|2 + y|H|2) (6.1)
which indicates that when the permittivity and permeability are negative, the total

energy would have a negative value and the causality would be violated. If the
medium is frequency-dependent, (6.1) would be replaced by [23]

1 (de(w)o] -, dlu(w)o] z)
_ E H .
w3 (FEelgp y Sy (62
and the permittivity and permeability would be required to satisfy:
olelwlo] _, oluwlo] _ s
Jw Jw

It has been suggested in [24] that realistic LHMs can be characterized by using
either a Lorentz or Drude dispersion model. It can be easily verified that both of
these models do satisfy the criterion given in (6.3). For the simulations carried
out in this chapter, we will use a Drude model for both the permittivity ¢(®w) and
permeability p(w) with identical dispersion forms as follows:

wZ
e(w) = & (1 - ¢> (6.4)

w? — jOYe

2
u(o) = Ho (1 - %> (6.5)
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Figure 6.1 The electric field intensity over the FDTD simulation space for the lossless LHM slab.
The LHM slab is outlined and the source is located at the intersection of the horizontal and vertical
lines [24].

where . and @, are the electric and magnetic plasma frequencies and y, and
v are the corresponding collision frequencies, respectively.

There have been several attempts to verify the subwavelength imaging property
of a LHM slab using the FDTD method. Ziolkowski and Heyman [24] have shown
in Figure 6.1 that EM waves from a line source could be focused paraxially by
a LHM slab, but no stable image could be formed. It was found that the image
moved back and forth over time and sometimes vanished altogether.

A causal two-dimensional FDTD simulation is performed for the modeling
of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model
LHM slab. These FDTD results conclusively demonstrate that the monochromatic
electromagnetic power flow through the LHM slab is channeled into beams rather
then being focused, as seen in Figure 6.2.

Mittra et al. conclude that the lens effect does not exist for any realistic disper-
sive, lossy LHM medium. No focal points either within the slab or in its exterior
were found in any of the FDTD simulations. These simulations did, however, show
a channeling or paraxial focusing of the wave energy due to the presence of a LHM
slab, particularly when the index of refraction had large negative values.

Figure 6.2 The electric field intensity over the FDTD simulation space for the LHM slab with a more
negative refractive index. The LHM slab is outlined and the source is located at the intersection of
the horizontal and vertical lines [24].
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Figure 6.3 Snapshots of the electric field amplitude (absolute magnitude) produced by an infinite line
source (y axis) excited by a cw impulse at 10 GHz. A LHM occupies the rectangular region denoted in the
x-z plane and extends to infinite in the y-direction. At 10 GHz the index of the LHM is —1.001 + 0.013.
(a) The snapshot at 5 ns after generation. (b) The same scene at 21 ns. Distinct focal areas are present at
the center of the slab and equidistant to the right of the slab. Separate simulations for taller slabs indicate
that edge diffraction plays a minimal role in the results [25].
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Figure 6.4 (a) Image of the sinusoidal steady state || reached by the simulation. The solid lines show the
material boundaries, and the dashed lines are the theoretical perfect focus planes. (b) Top panel: Optics-
limited and simulated field intensity in the second focal plane, showing subwavelength focusing from the
negative index slab. Bottom panel: Optics-limited and simulated transverse wave number spectrum in the
same plane, showing that the amplitude of the evanescent transverse wave numbers (k/ks >1) is restored
by the negative index slab up to a limit of a 2.5k [26].
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Figure 6.5 Snapshots of the electric field in the source plane (solid), the image plane inside the
slab (dotted), and beyond the slab (dashed) with a single source.

Loschialpo et al. [25] performed numerical simulations using the FDTD meth-
od, by incorporating a causal Lorentzian form for the frequency-dependent ma-
terial properties and observed a stable image of a line source formed by a LHM
slab. They found that the image is of the order of the wavelength, showing no
superlensing effect (Figure 6.3).

They demonstrated that a divergent line source spaced a distance H in front of
a planar LHM slab and excited by either an impulse cw or a Gaussian frequency
pulse is imaged at a distance H away, inside the LHM, and at H to the other side
of the slab. The image size is A consistent with limitations dictated by wave optics.
They found no evidence of evanescent mode amplification.

However, a recent FDTD simulation by Cummer [26] reached a totally differ-
ent result: subwavelength resolution of the image could be achieved by an LHM
slab (Figure 6.4). He concluded that subwavelength focusing by negative refrac-
tive index slabs, as predicted by Pendry [27], is a real effect. Despite the limita-
tions highlighted by this simulation and that have been demonstrated analytically
elsewhere, subwavelength focusing should be observable in experiment. He also
suggested that the difficulties of constructing a NIM with precisely 7 = —1 at the
source frequency are similar to the difficulties of constructing a finite-difference
approximation with precisely # = —1, and that simulations like this are thus a use-
ful approximation of the degree of subwavelength focusing that may be observed
in experiments.

In [28], Feise et al. used the pseudospectral time-domain method to study
the unique features of imaging by a flat lens made of a LHM that possesses the
property of negative refraction.

They confirmed the earlier finding that a left-handed flat lens can provide
near-perfect imaging of a point source (see Figure 6.5) and a pair of point sources
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Figure 6.6 Snapshot of the y component of the Poynting vector in the image plane beyond the
slab for a slab thickness of 1g/3 (solid) and 1¢/2 (dashed).

with clear evidence of subwavelength resolution, as shown in Figure 6.6. They also
illustrated the limitation of the resolution in the time-integrated image due to the

presence of surface waves.
Rao et al. demonstrated in [29], by using the FDTD method, that subwave-

length resolution can be achieved by LHM slabs with certain parameters (see
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Figure 6.7 Time evolution of the E, amplitude at the image plane for a LHM slab (L=80
Ax=0.141¢) with different values of y = y. = ym, ranging from 0.005 to 0.5. The evanescent wave

has k, = 3.0. The time evolution of the source field is also present for [29].
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Figure 6.8 Transfer function of a LHM slab (L =80Ax = 0.144¢) for different values of y = ye = ym,
ranging from 0.005 to 0.5, as a function of normalized transverse wave number ky/ko [29].

Figure 6.7). They presented the dynamic feature of the imaging process and the
dependence of physical parameters on the performance of the superlens.

They also showed that the achievable resolution is limited by the absorption
and thickness of the LHM slabs, which introduces difficulties in practical applica-
tions of the superlens, as shown in Figures 6.8 and 6.9.
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Figure 6.9 Transfer function for LHM slab (y = ye = ym = 0.01 for all) of different thicknesses as a
function of the normalized transverse wave number ky/ko [29].
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Figure 6.10 Comparison of E, spectra at the image plane from the FDTD simulations and the
analytical calculations for two slab configurations: one with a thickness of 0.24 and the other with
a thickness of 0.11. Both slabs are simulated with a same grid size of 1/100.

In [43], Chen et al. showed that because of the dispersive nature of the LHM
medium, and the time discretization in FDTD modeling, an inherent mismatch in
the constitutive parameters exists between the slab and its surrounding medium.
This mismatch in the real part of the permittivity and permeability is found to have
the same order of magnitude as the losses typically used in numerical simulations,
as shown in Figures 6.10 and 6.11. Hence, when the LHM slab is lossless, this
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Figure 6.11 Comparison of time averaged Poynting power densities < S, > at the image plane
from the FDTD simulation and the analytical calculation for the two line source imaging. The LHM
slab is the same with Figure 6.10. The line sources are separated by 0.24 [43].
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Figure 6.12 (a) Normalized distribution of field intensity (thin line) and the energy stream S, (thick
line) along the image plane for L = 84 and d= 0.24; here the normalized field intensity of the object
is plotted (dotted line) for comparison. The corresponding 2-D distribution of (b) |E|2 and () S;.
Here the LHM slab and the image plane are marked with a rectangle and a dashed line, respectively
[44].

mismatch is shown to be the main factor contributing to the image resolution loss
of the slab.

The characteristics of an imaging system formed by a LHM slab of finite
length were studied in [44], and the influence of the finite length of the slab on the
image quality was analyzed. Unusual phenomena such as surface bright spots and
a negative energy stream at the image side are observed and explained as the cavity
effects of surface plasmons excited by the evanescent components of the incident
field, as shown in Figure 6.12.

For a thin LHM slab, the cavity effects are found to be rather sensitive to the
variation in the length of the slab; the bright spots on the bottom surface of the
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Figure 6.13 Field intensity profiles along the (a) bottom surface of the LHM slab, and (b) the image
plane, when the incident field is generated by a point source. Here d = 0.24 [44].
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slab may stretch to the image plane and degrade the image quality. It has been
shown that both the length and the thickness of the LHM slab greatly influence the
cavity effects of surface plasmons and, consequently, the image quality, as shown
in Figure 6.13.

However, we shall demonstrate in late chapters that modeling LHMs based
on the effective medium theory has its limitations: First, physical structures of
isotropic, homogeneous and three-dimensional metamaterials are often not realiz-
able, and second, modifications such as spatial averaging are frequently used at the
material interfaces to improve the numerical accuracy due to the staggered grid in
the FDTD domain.

6.3 Modeling of Left-Handed Metamaterials Using a Dispersive

FDTD Method

Several techniques have been proposed to incorporate frequency dispersion into the
FDTD methods. They can be roughly categorized into three types: the recursive
convolution (RC) method [18,30-32], the auxiliary differential equations (ADE)
method [11,13,16,33,34], and the z-transform (ZT) method [18,35, 36].

6.3.1 Two-Dimensional Dispersive FDTD with Auxiliary Differential Equations
(ADEs)

In order to investigate electromagnetic wave interaction with the LH media, we
start with the 2-D structures such as single or multilayer slabs and cylindrical
shells. Consider a TE wave with field components E;, H, and Hy; the 2-D FDTD
formulation involves the solution of a set of equations as follows:

oD, @H, &H,

- _ 6.6
ot ot oy (6.6)
2
w
D.=¢1- 55— E, (6.7)
w* — weO — JYe®@
OB OE
fo T2 (6.8)
ot oy
w2,
By=m|1-—5———|H (6.9)
w* — (J)mo — JYm @
OB, OE,
9Oy _ 6.10
ot ox ( )

2
B, = 1-— Omp H 6.11
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Table 6.1 List of Symbols

Symbols Representation

E; z component of electric field intensity (V/m)

H, x component of magnetic field intensity (A/m)

H, y component of magnetic field intensity (A/m)

D, z component of electric flux density (coulombs/square meter)
By x component of magnetic flux density (webers/square meter)
By y component of magnetic flux density (webers/square meter)
o) angular frequency (rad/s)

Oep electric plasma frequency (rad/s)

0,0 low frequency edge of electric forbidden band (rad/s)

Ye electric collision frequency (rad/s)

Omp magnetic plasma frequency (rad/s)

@0 low frequency edge of magnetic forbidden band (rad/s)

Y magnetic collision frequency (rad/s)

€0 free space permittivity (8.854 X 10712 F/m)

Ho free space permeability (47x 10~/ H/m)

Since multiplication of jo in the frequency domain is equivalent to time deriva-
tives in the time domain, (6.7), (6.9), and (6.11) are equivalent to

o*D, oD, O’E, OE, 2 9
G g D=t e e (bt 0p) B (612
0*B, OB, 0*H, OH, 2
2 + Ymﬁ + @50Bx = po—5- o2 + HOYm = o + Ho ( ®p0 + wmp) H, (6.13)
o*B, OB, aZH 0 2
S5 s+ 0By = o= + Hotm 2 + Ho (020 + 02 ) Hy  (6.14)

Relevant symbols are defined in Table 6.1.
Applying the second-order FDTD discretization both in time and space to (6.6),
(6.8), and (6.10), respectively, yield
D = (i 4+1/2,j+1/2) = DMi + 172, + 1/2)
n+1/2 : V2, -
Hy 2+ 1,7+ 172) — Hy T2 (6, + 172)

A
+ Al Ax
HE 2+ 172,j+ 1) — HEF 2 (i 4172, + 1
_Atl 2G4 1/2, 7+ 1) = HER (4 12,4 1) (6.15)
Ay
B2 — (14 1/2,j4+ 1) = B" V2 (i 172,/ + 1)
EMtY(i4+1/2,j+32) — EM Y i+ 12,7+ 172
o[BG 12,1 >A 12,4 172) (6.16)
y
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e be(ﬁ{nr:)

Figure 6.14 A Yee's cell used in modeling LHMs based on a dispersive FDTD algorithm.

Byt = (i+1,j+1/2) =By 2(i+ 1,/ + 12)

EMN 4302, +1/2) — EX N i+ 122, + 172)
Ax

+ At (6.17)

As shown in Figure 6.14, the electric field E, and electric flux density D, are
taken at the cell center with integer time steps, while the magnetic components
H,(By) and Hy(B,) are taken at the edge of the cell with a half-step offset in time
and space.

Applying a second-order accurate central-difference scheme centered at time-

step 7, arithmetic operators g% and % in (6.15)-(6.17) can be represented as

BZF Fn+l —2F" ¢ Fn—l
or (Ar)2

(6.18)

OF Fn+l _ Fn—l

- = 6.19
ot 2At ( )

For simplicity, F is introduced here to represent any one of the field components
(D, E;, By, Hy, By and H,). Those fields F” located at time point t = nAt are
approximated by a semi-implicit scheme as

B Fn+l +2Fn+Fn—l
B 4

F

(6.20)

Applying (6.18)-(6.20) to (6.12), the explicit update equation for E, is derived
as follows:

M
P 412,74 12) = 3 bpD? i+ 172,/ + 112)
m=0
M
— > @ ErT i 102,54 1/2) (6.21)

m=1
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where M = 2 and the coefficients a,, and b,, in (6.21) are

B ZgoAtz(a)ezo + (uezp) —8gp B 4e9 — 2Ategy. + goAtz(a)ezo + (uezp)

(6.22)
bo - 4+ 2Aty, + At 0f) b — 2At2 0% — 8. by — A2 02 + 4 — 2Aty,
A ’ A ’ A
(6.23)
with
A = 4dey + 2Atepye + goAtz(a)ezo + wép) (6.24)

The same approach can be applied to (6.13) and (6.14) to yield H, and H,
respectively.

M
Hz+3/2<1~ +12,j+1) = Z deZ—m+3/2<i + 12,7+ 1)

m=0

CnHE T2 (14172, 4+ 1) (6.25)

|
Mz

m=1

M
HIP2(i41,j4+12) = Y dpBy P24+ 1,j 4+ 112)

m=0

CnHE T2 (1401, 4 1/2) (6.26)

|
Mz

m=1

where M = 2 in both (6.25) and (6.26), wherein the coefficients ¢,, and d,,, are

B ZHOAtZ((u,ZnO + (u,z,,p) —8uo B 4up — 2AtpoYm + qutz((u,zno + (u,z,,p)

1 C G C
(6.27)
4+ 2Aty, + At 0l 20202, — 8 At @l + 4 — 2Aty,
do - ) dl - 7’ CZ -
C C C
(6.28)
with

C = 4410 + 2At0 Y + HoAE (g + ) (6.29)
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We will apply the above FDTD iteration equations in the following sections
to model two structures with alternating layered LHMs and dielectric slabs. Both
structures demonstrate zero phase delay in wave transmission and with a proper
selection of dimensions and electrical permittivity of slabs, material “transparency”
can be achieved to waves propagating at any incidence angle.

6.3.2 Phase Compensation Through Layered LHM Structures

Although the thin LHM slab structure presented in [4] can produce a “perfect”
near-field image, the “perfection” can easily be spoiled by the losses in the LHM
that reduce the near-field resolution. In [41, 42], a multilayer stack consisting
of thin alternating layers of conventional materials and LHMs is proposed to
eliminate such dissipation. Currently, only equally spaced layered LHM structures
have been investigated in the invisible light region. In this section, the effects of
the spacing of layered LHM on evanescent wave amplification will be investigated
in the microwave frequency region.

To verify the validity of our FDTD program, a stack with alternating positive
and negative dielectric layers was designed to enhance evanescent wave transporta-
tion at microwave frequencies. Such a layered structure (see Figure 6.15) is con-
sidered with alternating “positive dielectrics” with &, = y,. = 1 and “negative
dielectrics” with &, (wp) = t,—(wog) = —1 at the target frequency (10 GHz). For
the negative dielectrics, wp, = @py, = V200, Ye = 7m = 0 was used in the FDTD
simulation. Currently, a fully stable algorithm of absorbing boundary conditions
(ABCs) for LHM is not yet available, and hence only conventional ABCs are used
in this chapter. The proposed multiple-layer structure is located in FDTD space
with Ax = Ay = 1/220 and surrounded by an eight-cell-layer uniaxial perfectly

Source Image
plane plane

. O,

T o

e e+ O 8/4
0 X

Figure 6.15 Schematic of the layered structure: the RHM (positive dielectric) and LHM (negative
dielectric) layers have an equal thickness of §/2; the total length of the multiple layered slabs is
d = [(2N — 1)8]/2 where N is the number of LHM layers. The source plane is at a distance 5/4 left
to the structure while the image plane is at a distance §/4 right of the structure [46].
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matched layer (UPML) [45] absorbing boundary. Here, a polynomial grading [9]
is chosen as the UPML loss profile and the predicted reflection error from the
boundary is of order 0.0001. Both the positive and negative dielectric layers are
assumed to be of equal thickness (6/2), equivalent to 22Ax. An evanescent source
was used as the excitation and was located at a distance of 6/4 (11Ax) from the
multilayer slab. The number (N) of LHM layers is four, so the total thickness
of the layered slabs is d = [(2N — 1)8]/2 = 154Ax. As can be seen in Figure 6.16,
unlike conventional evanescent waves that decay exponentially with distance away
from the object, the evanescent waves will be enhanced in the LHM slabs due to
the changed sign of the wave vector at the vacuum-LHM slab boundary [46].

6.3.3 Conjugate Dielectric and Metamaterial Slab as Radomes

Let a metamaterial slab of width d,, permittivity &, = — |k|&y and permeability
U2 = —Ho, be embedded between two semi-infinite dielectric media (&7, pp) and
(&3, o) as shown in Figure 6.17. Let an electromagnetic wave of angular frequency
o impinge on this slab at an angle 03 with the normal, in the TM mode. The
incident, the reflected, and the transmitted waves are also shown in Figure 6.17.
An exp(jot) time variation is assumed throughout. Using the relationship between
the tangential components of E and H fields on the slab interfaces, the reflection
and transmission coefficients can be derived as follows:

s s 20
73, + 1348

N
== 6.30
271+ 75,153,622 ( )
0.8 - LHMs slab: 3 wavelength long
0.7 4 1/10 wavelength wide
m cell=wavelength/220
LL]N
450 500 550 600 650
Cell
Figure 6.16 Near-field intensity through a multilayer LHM structure with refractive index n = —1

[46].
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E1lho

e=-| &, Eor o

83//" 0

Figure 6.17 A metamaterial slab embedded between two semi-infinite dielectric media [47].

s s 29
30 T 1@

T = 2t =
1+ r5,15,6%92

(6.31)
where ¢; = kyd;, k;i = kicosb;, ki = w/ein; = wn;/c. The variables ¢;, 0;, ki, ki,
and n; are positive real quantities while the interface reflection and transmission
coefficients are given as follows:

kzi - kzi
s 4 32
T h (6.32)
Zkzi
ps . Rd 6.33
v kzi + kzi ( )

The interface reflection and transmission coefficients are identical for dielectric
and for metamaterials while the phase ¢ is preceded by a + sign for a metamaterial
slab and by a - sign for a dielectric slab. Adequate expressions can be found for
a TE mode [37]. Similar expressions have been given in [38, 39].

Let us suppose that two slabs (one metamaterial and one dielectric) of widths
ds; and d,, permittivities &3 = — |k3| &9 and & = |k2| &y, permeabilities pu3 = —po,
are embedded between two semi-infinite dielectric media (&4, 10) and (1, o) as
shown in Figure 6.18. Let an electromagnetic wave of angular frequency o impinge
on this pair of slabs at an angle 04 with the normal. The incident, the reflected, and
the transmitted waves are also shown in Figure 6.18. The ratio of the reflection to
the transmission coefficients for this pair of slabs is given as follows [37]:

T 143321216/ (P3792)

(6.34)

Let us study a structure shown in Figure 6.17, consisting of a pair of meta-
material and dielectric slabs having the same width d, opposite permittivities
&3 = —|k|& and opposite permeabilities p3 = —pp and py = pp. In this case,
03 =2, 03 =0, 73, =0, 733 = —r%l and 5, = 1. We will call it a pair of con-
jugate slabs. If &1 = &, for any frequency and for any angle of incidence, RS = 0,
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Figure 6.18 A metamaterial slab and a dielectric slab embedded between two semi-infinite dielec-
tric media [47].

and the wave is wholly transmitted. If & # &4, for any frequency and for nor-
.. RS 75 . . . .. e e -
mal incidence, 7 = ;L this case being akin to the case of the initial semi-infinite

medium being adjacent to the final one. The same is true for TE polarization [37].
It is evident that any number of additional pairs of conjugate slabs, even if they
are all different one from the other, would not change these results. The physical
reason of this feature is that at the interface separating the two slabs of each pair,
the reflection coefficient vanishes and the transmission coefficient is unity, while
the phase of the wave after propagating through the first slab of each pair is com-
pletely canceled after propagating through the second slab of the pair, thus making
the conjugate slabs a transparent structure. The advantage of these structures is
that since the phase disappears, the reflection and transmission processes are in-
dependent of the phase, while they are independent of the angles of incidence as
well, only if the initial and final semi-infinite media are identical. Therefore, these
structures could be advantageously used as antenna radomes.

6.3.4 Numerical Results

For the simulation of the LHM slabs, in which the permittivity and permeability
are negative, we use the FDTD method for dispersive material described in the
previous section. We assume that the complex permittivity and permeability of
LHM are described by the Drude dispersion relations.

- wge
8((1)) = & 1-— m‘| (635)

2
u(o) = po [1— %] (6.36)
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where @y, and ®,,, correspond to the electric and magnetic plasma frequencies,
respectively. y, and 7, are the electric and magnetic collision frequencies, which
represent the losses in the medium. By choosing proper plasma frequencies for
LHM, we set the constitutive parameters of LHM to be negative and hence obtain
the corresponding negative refractive index.

In order to illustrate the ideas described in the previous section, a pair of con-
jugate slabs of identical width d = 0.1, permittivities & = —3,& and &, = 3¢,
permittivities pu3 = —po and pup = uo has been studied first. Let a plane wave,
simulated by an array of line sources, impinge on this structure. The cell size of
the FDTD simulation was chosen to be A = 4/50.

The four sides of the FDTD domain are terminated with a PML, and the
code has been run until the steady state is reached. Figure 6.19 shows the wave
propagation through the conjugate slab. Removing the pair of conjugate slabs and
joining the region at the left of the structure to the region at its right, we obtain
the same results with free space. This is more clearly illustrated in axis plot shown
in Figure 6.20. It has been demonstrated that regardless of the slab thickness, the
phase of the right side is always restored the same as the left side. The magnitudes
of the electric field with and without the conjugate slabs show a good agreement
except for minor errors caused by diffractions from the edges of the slab. Giving
to d a value of one wavelength ensures that, at the same distances from the source,
on either side of the structure, we obtain the same field values as for free space.
This is illustrated in Figure 6.20. Therefore, if we wish the same wave to behave
at the right of the structure, when it is present, as though it was absent (i.e., as
though the propagation was in free space only), each slab should be 7 times (n=1,
2, 3,...) half a wavelength wide. The common reason for these various effects is
that the transmission coefficient T = 1. Repeating the simulation with different
conjugate slab characteristics leads to the same behavior.

Now we place the pair of conjugate slabs at an inclination of 45 degrees
with respect to the wave normal of the incoming wave. The results are shown

|

PM'Lboundary
i » .: —-pe

3
=}
]
D
2
(s

T

'An array of |
line sources

2 ¢ =}
. 4 Computational boundary S

S

; 5 2

100 200 300 400 500 600 > 100 200 300 400 500 600

X grid (number of FDTD cells) X grid (number of FDTD cells)

(a) (b)

Figure 6.19 FDTD simulation of conjugate slab: (a) a pair of conjugate slabs if identical widths d =
1.0, permittivity e3 = —3¢p and &, = 3¢, permeabilities u3 = —pp and py = pp and (b) removing
the slabs from the simulation [47].
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Figure 6.20 Comparison of axis plot of pairs of conjugate slabs of width d = 1.04, d = 0.6\ each,
immersed in vacuum and free space [47].

in Figure 6.21. In order to demonstrate the transmission and reflection charac-
teristics of the conjugate slab, we compare the results for the simple dielectric,
conjugate slab, and free-space cases with the same configuration for the incident
wave. Figure 6.22 shows the electric field distribution in free space and the same
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Figure 6.21 FDTD simulation of electric field incident (a) in free space, (b) on a dielectric slab, and
(c) on conjugate slab and (d) comparison of far-field radiation patterns.
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Electric field plot of line source (a) with two concentric conjugate shells and (b) in free

for the dielectric and conjugate slabs. Figure 6.22(d) shows the far-field pattern
for the above cases. It shows a good transmission through the conjugate slabs at
oblique incidence. As shown in the plot, the conjugate slab demonstrates a better
transmission compared with the simple dielectric slab, reducing the reflection. We
observe that the transmitted beamwidth for both dielectric and conjugate slabs are
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Comparison of the electric fields at the source and the observation point with and

without the conjugate shell [47].
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Figure 6.24 (a) Electric field plot for a line source at a distance outside the two concentric conjugate
shells and (b) ray diagram [47].

narrower than one that without the slab. This is because a total reflection occurs
for incident angles greater than the critical angle, which decreases the transmission
in those directions.

We now turn to the cylindrical structure composed of two concentric conju-
gate cylinders of the same width instead of two straight conjugate slabs. We have
placed a line source at the centre of the cylindrical shell and repeated the preceding
simulations accordingly (Figure 6.22). The thickness of each slab is one wavelength.
The electric field is recorded outside the cylindrical shell and compared with the
results for free space. Figure 6.22(a) shows the electric field distribution for the
cylindrical conjugate shell with a line source inside, and it is observed that the cylin-
drical wave front is well preserved. The transmission characteristic of the cylindri-
cal conjugate shell shows slightly lower magnitude (Figure 6.23), and we believe
that this is caused by the internal reflections due to the staircasing of FDTD cells.
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Figure 6.25 (a) Electric field plot for a plane wave impinging on two concentric conjugate shells
and (b) ray diagram [47].
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Figure 6.26 Ray diagram for a plane wave impinging (a) on a dielectric cylinder and (b) on two
concentric conjugate cylinders with different thickness (outer shell=0.52, inner shell=0.71) [47].

Next, we investigate the scattering characteristics of the cylindrical conjugate
shell. We fist examine the scattering due to the cylindrical wave front as shown
in Figure 6.24(a). The thickness of the cylindrical shell is 0.6 wavelength and the
negative material parameters ¢ = —3gy and pu = —pp are assigned for the outer
shell and the conjugate parameters for the inner shell. We note that the strong
reflection occurs in the edge region and the shape of the wave front inside the shell
is cylindrical. A ray-tracing diagram is also shown in Figure 6.24(b).

We also perform simulations for plane wave incidence, and the results are
plotted in Figure 6.25. Not like the cylindrical wave incidence, the wave front
inside the shell no longer restores the plane wave, but slightly diverges. It should
also be noted that the interesting internal reflections occur for regions off the center
of the shell, which are different from the scattering from the conventional dielectric
shell [Figure 6.26(a)]. It is also very interesting that the curvature of the wave front

Scattering Pattern - - Scattering Pattern
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40 ~——Conjuqgate shell

90 Dielectric shell
40 -—-Conjugate shell

120
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180} -4

210\ el XA /330

Figure 6.27 Comparison of scattering patterns of dielectric and two concentric conjugate cylinders
with a width (@) d=0.64 and (b) d=0.24 each.
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inside the shell can be controlled by using shells with different thicknesses. Figure
6.26(b) shows the ray diagram for the structure with different shell thickness (0.5
wavelength for outer shell and 0.7 wavelength for inner shell), and a fairly flat
wave front has been achieved.

Finally, we compare the scattering pattern of the cylindrical conjugate shell
with that of the conventional dielectric. Two different thicknesses (0.6 and 0.2
wavelengths) have been simulated, as shown in Figure 6.27. We observe that the
thicker shell shows less front scattering and introduces higher scattering to the side.
This is due to the internal reflections as shown in the above cases. Thinner shell
shows higher front and back scattering, but lower magnitudes for the side. The
overall results show that the cylindrical conjugate shell produces similar scattering
sections compared with the dielectric shell of the same dimension.

6.4 Conclusions

We have studied the structures composed of two materials having opposite char-
acteristics. The LHM coating on a conventional dielectric could increase the trans-
mittance by reducing the reflections at the interface, which could be useful for
antenna radome applications. In the conjugate slab, the LHM compensates the
phase change due to the dielectric material, and makes the overall effect disap-
pear. The cylindrical conjugate shell shows several interesting characteristics such
as the multiple internal reflections and wave front changes. These behaviors could
vary significantly depending on the diameter, thickness, and material parameters of
each shell. The cylindrical dielectric-LHM conjugate structure shows comparable
forward scattering sections. It is noted that the effect of staircasing is more adverse
than when it only involves conventional materials. The dispersive FDTD method
could be combined with a conformal scheme [40] in order to improve the accuracy
of the results for curved structures.

The LHMs investigated in this section are idealized, as well as nonphysical,
since no real materials with the characteristics we have attributed to the LHM
slabs or cylinders is known to exist in the real world. Although extensive attempts
have been made by researchers to synthesize the LHM artificially, success has been
elusive to date, except perhaps under ideal conditions and in a narrow frequency
range, as may be seen in Chapter 7.

It is recommended, therefore, that the real physical structure be analyzed de-
cently to determine its characteristics, rather than predicting its performance as the
basis of their equivalent medium, especially before drawing defective conclusions
regarding the focusing characteristics of the metamaterial slabs, or their ability to
magnify evanescent waves. Numerical investigations of some realistic structures
may be found in Chapter 7.
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FDTD Modeling and Figure-of-Merit
(FOM) Analysis of Practical
Metamaterials

7.1 Introduction

It is very common to make use of the effective medium representation to char-
acterize the metamaterials. This representation is often based on the premise that
the inclusions in the medium have sizes and periodicities that are sufficiently small
in comparison to the wavelength of the impinging radiation. Under this condi-
tion, the fine structures of the charge and current distributions are considered to
be indiscernible; therefore, the metamaterial structure is simply represented by a
homogeneous one that can be represented by its effective material parameters,
namely &, and p.s , which are determined from the macroscopic EM response of
the metamaterials structure, typically the reflection and transmission coefficients
of a normally incident plane wave.

While the concept of effective material parameters of a slab of material is quite
straightforward, and while it is relatively simple to use to characterize complex
structures, there is a danger that the use of these parameters may oversimplify the
EM properties of the metamaterials, so much so that the above parameters may fail
to accurately predict the true performance of the antenna/metamaterials composite
in real-world applications. For example, as mentioned earlier, the retrieval of these
effective material parameters is usually based on the data obtained by illuminating
an infinite, doubly periodic metamaterials slab of finite thickness with a normally
incident plane wave, which is typically linearly polarized. As a consequence, these
parameters often fail to predict the true response of the structure when the incident
angle or the polarization of the impinging wave is varied, since the EM response
at oblique incident angles, and/or for different polarizations, can be very different
from that of the normal incidence case, because of the anisotropic nature of the
inclusions. Since a practical antenna/metamaterials composite is typically excited
by a localized source, whose spectrum comprises a set of plane waves, with dif-
ferent incident angles and polarizations, it is important to carry out a rigorous
simulation of the original physical structure—instead of using one that is based on
the effective medium representation—for an accurate analysis of the performance
of the composite system.

In this chapter [1-29], we first analyze the EM response of an infinite, doubly
periodic DNG slab comprised of arrays of a combination of split rings and wires,
by using the PBC/FDTD technique. Next, we examine the concept of effective ma-
terial parameters, by going through the retrieval process of these parameters using
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one of the most widely used techniques, namely, the inversion approach. We will
also summarize the difficulties encountered in the retrieval process, and identify
some issues and problem areas that may be encountered when using effective mate-
rial parameters in real-world applications. We will simulate a finite, moderate-size
DNG slab excited by a Gaussian beam, as well as by a small dipole, to search
for the existence of two interesting phenomena, namely the negative refraction
inside the slab and the superlensing effect, that has yet to be demonstrated by us-
ing rigorous numerical simulations of slabs containing real inclusions. Finally, we
will present a critical study on the figure-of-merit (FoM) associated with loss and
bandwidth of the metamaterials based on resonant particles such as the SRRs. The
FoMs are calculated analytically and verified numerically for the metamaterials
with various electrical sizes and volumetric densities for the constituent particles.
High volumetric density and electrically large particles demonstrate superior FoMs
for the construction of practical metamaterials. A loss tangent of 0.01 and frac-
tional bandwidth of 1.2% can be achieved by using resonant particles with sizes
close to 0.06 wavelength.

7.2 EM Response of the Infinite, Doubly Periodic

DNG Slab with Plane Wave lllumination

7.2.1 Model Description of the Array Comprising
of Split-Ring Resonators and Wires

The metamaterial slab considered in this investigation is an infinite, doubly periodic
array comprised of a combination of SSRs and thin wires, beginning with one and
going up to six layers in the longitudinal direction, that stand alone in free space.
The configuration of this unit cell is similar to the one used in the first DNG
structure realized by Smith et al., except that a somewhat simpler configuration of
a “single” split ring is employed in the present study, as opposed to a double ring.
It should be pointed out that the configuration of the unit cell and the separation
distance between the layers are kept the same throughout this chapter, since we
do not intend to perform a parametric study of the microscopic configuration of
metamaterial structures.

The array has periodicities of 2.25 mm and 5 mm along the x- and y-directions,
respectively, and a separation distance of 4 mm between layers for a multilayer
configuration. A uniform FDTD cell-size A of 0.125 mm is employed throughout
the computational domain, which requires a total of 18A x 40A x 84A and 18A x
40A x 225A to represent the one- and six-layer cases, respectively. The modeling
has been carried out by using the GEMS code [26, 27], which is a fully 3-D
FDTD code for analyzing arbitrary, complex, and multiscale geometries on parallel
platform. Also, the periodic structures have been modeled with the PBC/FDTD
code developed by Wu et al. [28, 29].

7.2.2 Scattering Parameters Measurements Obtained from
the PBC/FDTD Code

The S-parameters for the slab of three different types of inclusions, specifically a
combination of SRRs and wires, wires only, or SRRs only, are obtained by using
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the parallel PBC/FDTD technique, for both the one- and six-layer configurations,
which are illuminated by a normally incident plane wave. Figures 7.1 and 7.2
plot the transmission magnitude and phase, while Figures 7.3 and 7.4 display the
reflection magnitude and phase for all configurations, respectively.

As discussed in the previous section, one clear piece of evidence of the DNG
behavior is the existence of a passband for the combined structure, over those
frequency bands in which no transmission occurs for the individual structures,
though this evidence alone is not conclusive. We can see from Figure 7.3(b) that
the array of wires is nearly totally reflecting over the entire observed frequency
band ranging from 10 to 20 GHz for both the one- and six-layer cases. This
is expected, since the resonant frequency has been found to be around 30 GHz
(not shown in the figure). For the SRR arrays, Figure 7.3(c) shows that the 3-
dB stopbands are located between 14.8 to 20.0 GHz for the one-layer case, and
between 13.8 to 19.9 GHz for the six-layer case, except for the two narrow gaps
near 18.0 and 18.6 GHz for the six-layer case. For the combined structure, a
3-dB passband is observed, starting at 14.8 and going up to 20 GHz for the one-
layer case, while two passbands are observed for the six-layer case, one ranging
from 14.7 to 16.4 GHz and the other from 18.8 to 20 GHz. Since all of the
passbands of the combined structure fall within the stopbands of the individual
structures, it is possible to realize a DNG behavior of the combined structure in
these passbands. However, as mentioned before, the transmission characteristic
alone is not sufficient to conclude that the material is exhibiting a DNG behavior,
since the interaction between the SRRs and wires may lead to a positive effective
permittivity and permeability of the medium, which would then be the transmitting
type in this frequency regime.

7.2.3 Phase Data Inside the DNG Slab

A more rigorous test to demonstrate the DNG nature of the slab is to directly
measure the phase of a propagating wave inside the slab—which can be readily
obtained from the FDTD simulations—and for the predicted negative phase velocity
of a negative index medium.

In the FDTD simulation of a six-layer array, comprised of a combination of
SRRs and wires, the time-domain fields are recorded along two lines along the
z-direction (propagation direction) inside the slab, at different positions on the
transverse plane. The DFT technique is then employed to extract the magnitude
and phase at the desired frequency from the time-domain data. The normalized
magnitude and phase of Ey (note: the incident field is Ey-polarized) on these two
lines along the direction of propagation are plotted in Figures 7.5(a, b) at 15.2
and 19.6 GHz, respectively, where the circles are used to denote the boundaries
between the adjacent layers. It is evident from the slope of the above phase plots
that the phase propagates backward at 15.2 GHz, while it is forward-propagating
at 19.6 GHz. Therefore, the DNG behavior is only observed at 15.2 GHz, within
the first passband, but not at 19.6 GHz, which falls within the second passband.

Next, we compute the real part of the refractive index from the phase shift
data for frequencies within the two passbands. The slope of the phase is computed
as a function of the propagation distance by fitting a straight line to the phase
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Figure 7.1 Magnitude of the transmission coefficient for the one-layer and six-layer slabs with

different types of inclusions: (a) split ring and wires, (b) wires alone, and (c) split ring alone.
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Figure 7.2 Phase of the transmission coefficient for the one-layer and six-layer slabs with different

types of inclusions: (a) split ring and wires, (b) wires alone, and (c) split ring alone.
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Figure 7.3 Magnitude of the reflection coefficient for the one-layer and six-layer slabs with different
types of inclusions: (a) split ring and wires, (b) wires alone, and (c) split ring alone.
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Figure 7.4 Phase of the reflection coefficient for the one-layer and six-layer slabs with different
types of inclusions: (a) split ring and wires, (b) wires alone, and (c) split ring alone.
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in the propagation direction at (a) 15.2 GHz and (b) 19.6 GHz. The circles represent the boundaries

between the adjacent layers.

data at the boundaries between the adjacent layers (denoted by circles in Figure
7.5), and the results are plotted in Figure 7.6(a). Since we know that, if the re-
flection from the slab is negligible, and if we implicitly assume that the slab is
homogeneous, then the phase change is equal to a product of #’ (real part of re-
fractive index), the free-space wave number (ko), and the propagation distance
(d), the computed values of #n are plotted in Figure 7.6(b). It can be seen from
this figure that, for the six-layer case, a negative refraction is observed in the first
transmission band, while the refraction is positive in the second. In other words,
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for the case of the six-layer slab, the phase data inside the slab confirms the DNG
behavior in the first passband, which ranges from 14.7 to 16.4 GHz, while the
permittivity and permeability are positive in the second passband that goes from
18.8 to 20 GHz.

7.3 Retrieval of Effective Material Constitutive

Parameters Using the Inversion Approach

Availability of a robust method for characterizing an antenna system or its com-
ponents is essential in engineering applications, since we always seek to achieve
a design that meets the specifications for the applications we have in mind, in
terms of the operating frequency, bandwidth, loss, and so on. The design process
invariably relies upon characterization methods that must be both robust as well
as reliable. Following the first experimental realization of DNG metamaterials, re-
searchers began to search for ways to characterize their properties in a systematic
way. A great deal of ongoing research has been directed towards determining the
effective permittivity and permeability values of a composite that are both self-
consistent and unambiguous. Some approaches reported in the literature to obtain
the effective parameters from numerical data include inversion techniques [1-3];
averaging methods [4, 5] based on effective medium theory; and the use of results
of phase velocity calculation [6] obtained from time-domain simulations. The in-
version approach is one of the popular methodologies employed for this purpose.
Unlike some of the other approaches, which make use of the knowledge of the
field distribution inside the composite, the inversion method relies entirely upon
the knowledge of the S-parameters of the slab illuminated by a normally incident
wave. Note that the above parameters can be obtained either from experimental
measurements, or from numerical simulations.

In the following sections, we will first discuss the basic premises upon which
effective material parameters concepts are based. Next, we will review the inversion
procedure for the retrieval of these parameters, and propose a modified one that
helps us to choose the correct branch of the solution when certain approximations
are found to be valid. Following this, we apply the modified approach to process
the scattering parameters generated from the FDTD simulations, obtained by using
the PBC/FDTD technique. The simulations are carried out for a number of different
array settings, namely arrays of wires alone, SSR alone, and combinations thereof,
beginning with one and going up to six layers. Finally, we will summarize the
difficulties encountered in applying the inversion approach, and follow this up with
a discussion on the use of effective material parameters for real-world applications.

7.3.1 Review of the Inversion Approach

The inversion approach [1-3] is the most widely used method for retrieving the
effective material parameters. An important attribute of this approach is that it
requires no additional assumption except, of course, that the effective medium
concept be valid. However, this method does suffer from an inherent multiple-
branch ambiguity problem arising from the multivalued nature of the logarithmic
and square root functions appearing in the expressions for the refractive index 7
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and the impedance Z. To sort out this situation, the strategy is to eliminate the non-
physical solutions by following a set of rules, and assuming that the only solution
that survives is the correct one. The procedure for extracting the effective medium
parameter from the S-parameters, as well as the selection rules for choosing the
correct branches will be discussed in detail in the following paragraphs.

We assume that the electromagnetic fields have the ¢® time dependence. It
should be noted that in most of the references on this topic, a time dependence
of e7/®? is assumed though this is not explicitly stated. However, we adopt a time
dependence of ¢/®? in this book, which is followed in the convention used in the
FDTD as well as in most engineering disciplines. The scattering parameters of a
homogeneous slab of thickness d in free space at normal incidence are given by:

1—*(1 _ e—janod)

1 — [2¢—i2nkod (7.1)

S11 =

(1 o FZ)e—jnkOd

1 — [2¢—2nkod (7.2)

S21 =
where I’ = %—;} is the reflection coefficient at the boundary between the two media
under study, as shown in Figure 7.7; Z (Z = Z' +jZ" is assumed) is the wave
impedance; 7 (n = n’ + jn’ is assumed) is the refractive index of the slab; and kg
is the free-space wave number. Once the reflection and transmission coefficients

have been obtained, the refractive index as well as the wave impedance can be
calculated by inverting (7.1) and (7.2) to get:

Z - i\/(1+511)2 ~ iy (7.3)
(1—811)2 -3,

Y = ¢ Mkod = X 41 /1 — X2 (7.4)

1
X=4-(1 — ST +831) (7.5)
21

At the interface

l D
ol e
(Free space)

(5040)

Figure 7.7 Wave reflection and transmission at normal incidence by a planar interface.
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The refractive index # can be calculated from (7.4) and (7.5) by using the
expression:

"= ki—d [[In(e 7 04" + 2mn] + j[In(e 7" 04)]"}
1 " H /
= fod [[In(Y)]” + 2mxn] + j[ln(Y)])'} (7.6)

where m is an integer related to the branch index of #/(real part) and is related to
the thickness of the slab, expressed in terms of the wavelength. Once the refractive
index and the wave impedance have been found, the permittivity and permeability
can be obtained from:

Eff =n/Z (7.7)

“eff =n/ (78)

The expressions appearing in (7.3), (7.4), and (7.6) contain complex and multi-
valued functions. We must, therefore, impose additional constraints to obtain
consistent and unambiguous results for the permittivity and permeability. The
impedance is a square-root function, whose sign ambiguity can be resolved by
imposing the condition Z'(real part)> 0, which must be satisfied by all passive
materials. However, when the values of Z' are close to zero, even a slight pertur-
bation in the values of the S-parameters can cause the signs of Z' to switch, and
this in turn, causes the retrieval procedure to fail. To overcome this difficulty, it
has been recommended that the expression that relates 7 and Z be employed to
determine the sign of the impedance [3]. This relationship is given by:

S$21

Z—1

e—jnkod _
1-— SHZ—-H

(7.9)

The sign of Z is chosen by using (7.9) such that the corresponding refractive in-

—jnkqd

dex has a nonnegative imaginary part, or equivalently‘ e < 1. The impedance

Z can be determined explicitly by following these two rules.

To satisfy the passivity condition, the imaginary part of the effective refractive
index (i.e., n’) should either be zero or negative. Here we point out that the
two roots in (7.4) result in two values of In(e~*04), and that only their signs
are different. Thus, when #»” is not close to zero, only one root in (7.4) yields
a nonpositive value for #”, and the other should be discarded. However, when
n" is close to zero, both the roots should be examined as possible choices when
determining the real part of 7. Nevertheless, #” can be determined explicitly and
unambiguously in both of these cases.

Up to this point, the impedance Z and the imaginary part of the refractive
index 7 have been determined in an explicit manner. However, when 7" is close to
zero, the real part of the refractive index still suffers from ambiguities introduced
by the branches of the logarithmic function given in (7.6), and there exists the
possibility of two acceptable roots in (7.4). The first ambiguity becomes even
more problematic when the retrieval method is used for a thicker slab. This is
because d, the thickness of the slab, appears in the denominator of the right-hand
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side of (7.6), and the term Z”Tm becomes small for a large d, making it difficult to
choose the correct solution as all the branches now become very closely spaced. To
circumvent this problem, it has been suggested that we use a slab whose thickness
is relatively small and require that the &(f)and u(f)be continuous functions of
frequency [2]. An iterative approach has been suggested in [3] to implement this
continuity condition. Assuming that we have obtained the value of the refractive
index 7(f,) at a frequency f,, we still need to choose 7, the branch index, from
all the correct roots in (7.4) (note: more than one correct root exist only when
n" is close to zero) such that n(f;) for the chosen m is closest to #(f,), where f;
is the next frequency adjacent to f,. Additionally, the requirements p” < 0 and
&” < 0 must be imposed since the material is passive, and this helps to discard the
nonphysical solutions of 7.

The initial solution of 7’ still needs to be determined at the starting frequency
for this iterative approach to work. We can simplify this task by starting at a
low frequency, as we will now explain. First, at low frequencies where kod is
very small, the branch index m and the root in (7.4) should be chosen such that

[ln(e_i"kg)]” +2mn] is close to zero, since this term represents the total phase
change across the slab at this frequency. Second, at frequencies well below the
first resonance, we would not expect to see DNG-type behavior, which implies
that the correct solution should be one for which #’ > 0. The real part of n (i.e.,
n') can then be determined at the frequency of interest by imposing these two
conditions.

As discussed above, the process for choosing the correct solution in the in-
version approach is complex. In Ziolkowski’s work [23], this difficult process was
avoided by making the approximation of e 7*0d ~ 1 — jukd, which simplifies the
expression for the refractive index to yield:

k1 (1-V)I+D)
"T ko jked (1-TVy) (7.10)

where Vi =811 + S21, and T’ = %—j are the reflection coefficients at the two me-
dia interfaces, and Z is the wave impedance that can be computed by using the
inversion approach in an unambiguous manner. However, we note that, according

to [3], the above approximation is valid when

[n'kod| < 1 (7.11)

while others have pointed out that the correct condition for this approximation to
hold is:

|nkod| << 1 (7.12)

For the sake of the following discussion, we will refer the solution in (7.10) as
the small-phase-small-loss (SPSL) solution.
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Even though (7.12) holds for a very limited range, we will employ the SPSL
solution to assist the selection of the correct root in the inversion method, when all
the solutions remaining after the elimination of the nonphysical ones satisfy (7.12).

We will now summarize the steps in our modified inversion procedure in the
following:

1. Compute Z by using (7.3). The sign can be determined by using the follow-
ing rules:
 If Z' is not close to zero, choose the root with the positive real part.
o If Z' is close to zero, choose the root, by using (7.9), such that
‘e—jnkod‘ <1.

2. Compute all possible solutions of n by using (7.4) to (7.6) for the two roots
in (7.4) and a set of chosen branch indices {m}. Compute the effective ¢
and p for all solutions of # and the Z extracted by using (7.7) and (7.8).

3. At this point, we have multiple sets of solutions, but only one of these sets is
physical. Choose the correct solution by eliminating the nonphysical ones.
These physical rules are:

o At frequency well below the first resonance, choose the solution that
yields 7/ <=0 and ' is closest to 0 from the positive side.

e When 7" is not close to zero, discard the solutions computed from the
root that yields a positive 7”.

« Examine ¢” and p” associated with the remaining solutions. Discard
the solutions that give rise to positive &” or pu”.

 Enforce the continuity of 7'

4. If more than one solution still satisfies the requirements set forth above in
this stage, we check the values of |nkod| for all of the remaining solutions.
If |nkod| << 1 still holds for all of the remaining solutions, apply the SPSL
criterion, given in (7.10), to choose the correct branch.

7.3.2 Retrieval of the Effective Material Parameters from the Numerical
S-Parameters Obtained from FDTD Simulations of Metamaterials

The first step taken in the inversion approach is to define the location of the two
effective boundaries of a metamaterial slab, which does not have a well-defined
surface as does a homogeneous slab. Since we know that the impedance of a
homogeneous slab does not depend on thickness of the slab, we can define the
surfaces of the slab such that the results for the impedances extracted for the slabs
show a consistent behavior as the number of layers is progressively increased. The
S-parameters measurement uses these effective surfaces as the input and output
ports, and the effective thickness (d) of slab is defined to be the separation distance
between these surfaces.

We will now study the DNG array, described in Section 7.2, starting with
one layer and going up to three, by using the PBC/FDTD code. Three pairs of
measurement planes, positioned at one, two, and three FDTD cells, respectively,
beyond the outermost edge of the metallic inclusions on each side of the slab, are
tested for the optimal effective surfaces, as shown in Figure 7.7. For each pair of test
planes (at the transmission and reflection sides, respectively), the wave impedance
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was computed by using the inversion approach, with the effective slab thickness
defined as the separation distance between these planes. The optimal locations of
the interfaces are found by minimizing the mismatch of the impedance for different
number of layers. Figures 7.8(a-f) show the real and imaginary parts of the wave
impedance for one- to three-layer cases, which are retrieved from the S-parameters
computed for the three pairs of test planes described above, respectively. It can be
seen that the mismatch of the wave impedance for different layers is the smallest
when the test planes are located at three FDTD cells beyond the outermost edge of
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Figure 7.8 Comparison of the extracted impedance Z (left: real part, right: imaginary part) for
slabs of one-, two-, and three-layers with imports and outports placed at different locations: (a)
and (b) one FDTD cell; (c) and (d) two FDTD cells; and (e) and (f) three FDTD cells beyond the
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Figure 7.9 The wave impedance retrieved from the one-layer slab.

metallic inclusions [see Figures 7.8(c, d)]. For this reason, we define these planes
to be the effective surfaces for the slab.

We now begin to demonstrate the retrieval process for the single-layer DNG
array case. Figure 7.9 shows the wave impedance, which has been determined by
using (7.3) and (7.9), without ambiguity. Figure 7.10 shows the solution of 7"
derived from the two roots in (7.4), by using (7.6). As can be seen from the above
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Figure 7.10 The solutions for n” derived from the two roots in (7.4) for the one-layer slab.
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figure, it is convenient to divide the span of the frequency spectrum, ranging from
10 to 20 GHz, into five regions, and then determine the correct solution in these
regions separately. These regions are: (1) below 12.80 GHz; (2) 12.8-14.4 GHz;
(3) 14.4-17.0 GHz; (4) 17.0-18.5 GHz; and (5) above 18.5 GHz. Since »n” < 0,
the solutions with the negative roots in the frequency regions (1) and (2), as well as
the solutions with positive roots in the frequency region (4) should be discarded.

Figure 7.11(a-c) shows the solutions for 7/, &, u”, computed by using the pos-
itive root for the branch indices m = 0,—1, and +1, respectively. Figure 7.12(a-c)
shows the corresponding solutions computed by using the negative root. In region
(i), only three possible solutions of different branch indices with positive root sur-
vive. As can be seen from Figure 7.11(b, c), the solution with branch index +1 and
—1 should be discarded, because either ¢’ or u” are found to be positive. Thus,
the only solution that survives is the one with positive root and m = 0, which
is assumed to be the correct one. Similarly, in region (iv), only one solution—the
negative root with 7 = 0—survives, when we examine the sign of &” or u” in
Figure 7.12(b, c).

In regions (iii) and (v), all six solutions are still acceptable, insofar as the
physical constraints are satisfied by #”, ¢”, u”. However, we can make use of the
known solution in region (iii), together with the requirement on the continuity
of #/, to eliminate the four solutions that have a nonzero m. Then, only two
solutions survive, both with 7 = 0, one from the positive root and the other from
the negative one.

Next, we compute the value of |7kod| for all possible solutions surviving in the
frequency band (iii) through (v), and plot them in Figure 7.13(a). Let us use the
condition |nkod| < 0.2 to define the frequencies at which the SPSL approximation
is valid. Two narrow frequency bands, one ranging from 16.8 to 17.2 GHz and
the other from 18.2 to 18.6 GHz, can be found to satisfy the above condition.
Figure 7.13(b, ¢) plots the real and imaginary parts of n for all the acceptable
solutions computed by using the inversion approach, along with the valid SPSL
solution in these frequency bands. We can see that the two valid frequency bands
happen to cover the upper end of region (iii) and the lower end of region (v),
respectively; therefore, the branches can be correctly chosen in these regions by
matching the above two solutions. In region (iii), the positive root with m = 0 is
selected, whereas in region (v), the negative root with 7 = 0 is chosen. The SPSL
solutions are also plotted in Figure 7.14 over the entire observed frequency band.

It should be pointed out that none of the solutions in region (ii) appear to be
physical, since the condition that both &”, u” < 0 is violated by all solutions. It
has been argued [22, 23] that such solutions are still physical, even when one of
the &”, u” is positive while the other is negative, as long as the electromagnetic
losses, expressed in terms of the integral, O = 5- [dwo[—&"|E[> — p”[H[?, is still
positive. Some have also suggested [24] that there are higher-order modes inside
this resonance band, whose levels may be comparable to that of the first order
one. The effective medium theory fails under these circumstances and, hence, the
effective material constitutive parameters can no longer be defined. This issue is
still controversial, and we will not dwell on it much longer. We just add the remark
here that we still choose the positive root with 72 = 0 as our solution in this region,
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Figure 7.11 The solutions for (a) ', (b) £/, and (c) u”/, computed by using the positive root in
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Figure 7.13 (a) The value of |nkyd| for all remaining solutions obtained from the inversion ap-
proach; comparison of the (b) real and (c) imaginary parts of n for all remaining solutions obtained
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band (iii) through (v) as shown in Figure 7.10(b).
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so as to render 7' continuous at the interface between regions (ii) and (iii), while
keeping n” < 0.

The refractive index 7, and the effective material parameters & and u of the
medium all are extracted by using the inversion approach described above, and
are plotted in Figure 7.15(a-c), with the gray area representing the nonphysical
region, in which the criterion &”, u” <0 is violated. The medium exhibits a DNG
behavior in the frequency range of 14.4-17.0 GHz, which is consistent with the
result presented earlier in Section 7.2.

We have also studied the S-parameters for the arrays of slabs comprising of
either wires or SSR, by using the inversion approach for the single-layer case. Their
wave impedances, refractive indices, and effective ¢ and p parameters are plotted in
Figures 7.16-7.19, respectively. Again, the frequency bands marked in grey repre-
sent the nonphysical regions, because the signs of ¢” and/or u” are positive in these
regions. Not unexpectedly, the array of wires, or the SSRs, do not independently
exhibit a DNG behavior, as shown Figure 7.17(b, c). A negative ' region is found
in the frequency band ranging from 15.8 to 17.0 GHz for the SSR array, while
&’ is negative over the entire observed frequency band investigated, which ranges
from 10.0 to 20.0 GHz for the array of wires. We also notice that the medium
parameters of the SRR array exhibit a nonphysical behavior in the frequency band
ranging from 14.4 to 15.8 GHz [see Figures 7.18(c) and 7.19(c)], but such regions
are not present in the effective medium characteristics of the array of wires.

Next, we investigate the effective material parameters for a multilayer array
comprised of a combination of SRRs and wires, by using the modified inversion
approach discussed above. The effective surfaces are defined in the same way as
before, and the effective thickness of the array is allowed to vary from two to six
layers as follows: 7.75 mm, 11.75 mm, 13.75 mm, 17.75 mm, and 21.75 mm.
Figures 7.20(a-c) through 7.23(a-c) show all the possible solutions of the refrac-
tive indices for the two-layer, four-layer, and six-layer cases. We see from Figure
7.20(a—c) that when we increase the number of layers, the entire frequency band of
interest must be divided into an increasing number of subregions, since the spacing
between the 7' plots for different branch indices, that is proportional to 1/(kod),
becomes increasingly smaller. For the same reason, a larger range of branch index
needs to be applied such that the set of all solutions can cover the correct solution.
As a result, the selection process for the correct solution become very complex for
structures with multiple layers as the number of layers is increased. Besides, as men-
tioned earlier, the higher-order Floquet harmonics are totally ignored when the slab
thickness is increased by stacking multiple layers, and this can have serious conse-
quences when we attempt to predict the performance of a thick metamaterial slab.

In view of the complexity of the selection process, we have attempted to apply
the inversion approach only up to four-layer cases. Figures 7.24-7.27 plot the
extracted wave impedance Z, effective refractive index #, &, and u, respectively,
starting from a single layer and going up to four-layer cases in the frequency
band ranging from 10 to 14.0 GHz. For the wave impedance, plotted in Fig-
ure 7.22(a, b), we observe more spikes in the frequency range between 14.4 to
17.0 GHz as the number of layers is increased. One might think that the occurrence
of spikes is caused by the mutual coupling between the elements in different layers.
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Figure 7.15 The extracted material parameters for the one-layer case: (a) n; (b) ¢; and (c) u. The
gray area represents the nonphysical region where no solutions can be found to satisfy both &”
and u” <0. The black circles in (a) represent the refractive index computed by using the phase data
computed in Section 7.2.3.
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Figure 7.16 The wave impedance retrieved for the one-layer slab comprised of different types of
inclusions: (a) SSRs and wires, (b) wires alone, and (c) SSRs alone. The gray area represents the
nonphysical region where no solutions can be found to satisfy both ¢” and p’ <0.
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Figure 7.17 Refractive index retrieved for the one-layer slab, comprised of different types of in-
clusions: (a) SSRs and wires, (b) wires alone, and (c) SSRs alone. The gray area represents the
nonphysical region where no solutions can be found to satisfy both ¢” and p"’ <0.
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Figure 7.18 Effective electric permittivity retrieved for the one-layer slab, comprised of different
types of inclusions: (a) SSRs and wires, (b) wires alone, and (c) SSRs alone. The gray area represents
the nonphysical region where no solutions can be found to satisfy both ¢” and "' <O0.
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Figure 7.19 Effective magnetic permeability retrieved for the one-layer slab comprised of different
types of inclusions: (a) SSRs and wires, (b) wires alone, and (c) SSRs alone. The gray area represents
the nonphysical region where no solutions can be found to satisfy both ¢” and p’ <0.
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Figure 7.20 The set of all possible solutions of n’ for the DNG slabs with multilayer inclusion: (a)
two-layer, (b) three-layer, and (c) six-layer.
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Figure 7.21 The set of all possible solutions of n” for the DNG slabs with multilayer inclusion: (a)
two-layer, (b) three-layer, and (c) six-layer.
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Figure 7.22 Comparison of the wave impedance extracted for the DNG slab, starting from one

and going up to four layers: (a) real and (b) imaginary parts.

However, we also note that the locations of these spikes coincide with the dips
of Sq1; therefore, they might simply be caused by the numerical noise present in

the computed S-parameters, since the wave impedance is inherently very sensitive

to the variations in the S-parameters, whenever Sy is small. Even though the
refractive index is more or less continuous in this frequency range, spikes in the
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wave impedance would, in turn, generate spikes in the effective & and u. No
conclusion can be drawn at this point, as to whether the mutual coupling between
the layers has a significant effect. Apart from the spikes, the effective material
parameters match quite well as the number of layers is changed. For the refractive
index 7, the matching is good above 14.4 GHz for different number of layers [see

7.3 Retrieval of Effective Material Constitutive Parameters Using the Inversion Approach
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Figure 7.23 Comparison of the refractive index extracted for the DNG slab, starting from one and

going up to four layers: (a) real and (b) imaginary parts.
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Figure 7.24 Comparison of the effective electric permittivity extracted for the DNG slab, starting
from one and going up to four layers: (a) real and (b) imaginary parts.

Figure 7.23(a, b)]. It should be noticed that the DNG property, which is exhibited
between 14.4 and 17.0 GHz, is consistent in all cases. However, some discrepancies
of refractive index do occur between 12.8 to 14.4 GHz, which belongs to the
nonphysical region.
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Figure 7.25 Comparison of the effective magnetic permeability extracted for the DNG slab, starting
from one and going up to four layers: (a) real and (b) imaginary parts.

Finally, let us justify the condition |r'kod| < 1 proposed by Ziolkowski in [23],
to approximate ¢ 704 ~ 1 — jnkyd. We argue on the basis of the results presented
below, that the condition should really be |nkod| << 1, by testing Ziolkowski’s
condition on the results for the single-layer DNG array. We first evaluate the values
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|nkod| and |n'kod|, where n is the effective refractive index extracted by using the
modified inversion approach, as plotted in Figure 7.26(a). From these values, we
locate the frequencies at which |nkod| or |r'kod| is small compared to 1, say less
than 0.2. Next, we compute the SPSL solutions for the refractive indices, that are
subsequently used to recover the S-parameters by using (7.1) and (7.2). Figure
7.26(b, ¢) plots the comparison of the recovered and original S-parameters for
small values of |rkod| and |#'kod|, respectively. It is clearly seen that the matching
is excellent for small |7kod|, but not necessarily good for small |'kod|. Therefore,
we conclude that the correct condition for this solution to be valid should be
|nkod| << 1. It should also be pointed out that the valid frequency range can be
very limited, and even nonexistent sometimes, for the metamaterials slab we have
investigated. Also, it is very important to guarantee that the condition |nkod| << 1
be satisfied when using this solution, in the alternative approach, for example, for
the inversion method as stated before.
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Figure 7.26 (a) The values of |nkod| and |n'kod| where n is computed by using the inversion ap-
proach; and the comparison of the S-parameters obtained by using FDTD (lines) and those recovered
by using the SPSL solutions (dots) in the region where (b) |nkod| < 0.2 and (c) |n'kod| < 0.2.
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Figure 7.27 Comparison of the magnitude of the S-parameters, recovered from the retrieved n
and Z of the one-layer slab (solid) and obtained from the direct FDTD simulations (circle dash) for

one-layer up to six-layer slabs in (a) through (f).

7.3.3 Summary of the Difficulties Encountered Using the Inversion Approach
for Effective Medium Characterization

In summary, the main difficulty encountered in the retrieval procedure arises dur-
ing the process of selecting the correct branch from the multiple set of possible
solutions. Although some guidelines are available for eliminating the nonphysical
solutions, the unavoidable numerical artifacts present in the S-parameters, obtained
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either from experiments or from numerical simulations, often make it very difficult
to apply these selection rules.

For example, enforcing the passivity condition on the extracted parameters,
namely that #”, ¢, and u” <0, for all the admissible solutions, is not as easy
as one would think. When values of #”, &, or p” are near zero, attempting to
strictly enforce the condition that #”, ¢”, and u” < 0, simply leads to a rejection
of all the solutions, because the parameters we desire may be so corrupted by the
presence of numerical artifacts in the near-zero region, as to render them nonphys-
ical. Consequently, from a practical point of view it may be better to work with a
tolerance level and discard the solutions only when n” > &1, ¢’ > &, or u”’ > 63,
where 81, 82, and 83 are small positive numbers. We point out, however, that the
choice of the values of these small parameters must be made with some care. For
instance, if these parameters are chosen to be too large, an enforcement of the
rules given above will not help eliminate the nonphysical solutions; on the other
hand, if these parameters are too small, all solutions, including the correct ones,
would be discarded. What is even worse, the optimal values for these parameters
are problem-dependent, and they are strongly affected by the level of the noise
present in the S-parameters, be they computed or measured.

Additionally, a frequency band can be found such that no solutions can satisfy
the condition that either both &” and u” < 0, or are smaller than some small pos-
itive numbers, in order to accommodate the numerical errors that are inevitably
present in the S-parameters. This seemingly nonphysical region often appears adja-
cent to the DNG region, or near the frequency at which spikes and notches appear
in the retrieved impedance, when Sqq is small. Since none of the branches can be
chosen to yield a physical solution in this region, the iterative process [3] that
makes use of the continuity of the refractive index as a function of frequency fails
as we move from one region to the next.

In addition, we have encountered some metamaterials structures for which
multiple solutions still survive, even after applying all the selection rules alluded
to above. In this situation, we cannot determine the correct solution by using the
inversion approach we have described earlier.

The sensitivity analysis performed in [3] showed that the effective material
parameters extracted for a given problem are very sensitive to the noise in the S-
parameters, whenever either [S11| or |S21| is small. When |S;1] is small, the extracted
values of the refractive index turn out to be very sensitive to small perturbations
of Sp1. On the other hand, a small S;; generates spikes in the extracted impedance
values, as may be clearly seen by referring to Figure 7.22 for the multilayer cases.
As a result, the retrieved effective parameters turn out to be unreliable when either
of the S-parameters is small.

7.4 EM Response of a Finite Artificial- DNG Slab

with Localized Beam lllumination

In the following, we use the term “‘artificialDNG” instead of simply “DNG” to
describe the array we used in the simulations with localized beam or dipole illumi-
nation, in order to distinguish ours from the ideal DNG materials. In general, many
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physicists and engineers associate the usage of the latter term with a hypothetical
material that has negative permittivity and permeability in nature. However, for
most engineered structures, or metamaterials, such as the one studied in this work,
their DNG nature is usually characterized by a set of effective material parame-
ters, which are extracted from either the experimental data or simulation results
for the normal incidence case. Therefore, these structures may not possess the
DNG properties for oblique incidence angles and/or other polarizations, and the
effective medium representation, derived for normal incidence, may not be valid
in the general case.

7.4.1 Slab with Localized Beam Illlumination

In this section, we study the EM response of a moderate-size, finite DNG array
comprised of inclusions that are identical to those we studied previously, when the
array is illuminated by a localized Gaussian beam incident either normally or from
an oblique angle. We wish to investigate two interesting and unusual phenomena,
namely the negative refraction and super-focusing effect of an artificial- DNG slab.

For the purpose of comparison, in terms of both the homogeneity of material
and the sign of electric permittivity and magnetic permeability, we also study the
EM response of a homogeneous dielectric slab (&, = 4), with the same dimensions
as that of the artificial DNG array, when it is illuminated by the same Gaussian
beam.

7.4.2 FDTD Model

The artificial DNG slab in our study is comprised of six layers, as shown in Figure
7.28, and consists of identical inclusions with the same periodicities as that studied
previously. It contains a total of 38 x 17 x 6 = 3,876 pairs of SSR and wire, and
has the dimensions of 85.5 mm x 85 mm x 23.75 mm, corresponding to 4.3 x
4.31 x 1.21 at the center frequency of interest (15 GHz). The slab, residing on
the x-y plane, is illuminated by a Gaussian beam excitation located at one FDTD
cell (A =0.125 mm) away from the bottom surface of the slab. The incident beam,
whose beam maximum points toward the center of the slab, has a beam waist
of 11 mm at the excitation plane, and covers a total of 34 pairs of inclusions
(up to 10 and 5 inclusions along the x- and y-directions, respectively) in the first
layer, within its spot size. Considering the anisotropic nature of the inclusions, we
simulate the beam with three different settings of incident angles and polarizations,
so as to trigger the DNG behavior of the slab at normal and oblique incidences.
These three settings are described as follows:

1. Normal incidence: Wave is incident from 6 = 180°, with Ey polarization.

2. Oblique TM;, incidence: Wave is incident from (6 = 150°, ¢ = 90°) with
Hx polarization.

3. Oblique TE, incidence: Wave is incident from (6 = 150°, ¢ = 0°) with Ey
polarization.

The computational domain has the dimensions of 85.5 mm x 85 mm x 72.75
mm, and it contains a total of 684A x 680A x 582A with a uniform discretization
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beam illumination with
beam waist of 11 mm at the

Three settings of incident beam: center on this plane)
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with Ey incidence with Hx incidence with Ey
polarization polarization polarization

Figure 7.28 Geometry of a six-layer artificial DNG slab and three incident settings.

of 0.125 mm. At 15 GHz, the cell size is small, only A /160, and this is necessary
to accurately model the fine features of the inclusions. The computational domain
is terminated by PMLs in all directions to absorb the outgoing waves. In this
problem, the total number of FDTD cells, excluding the PMLs, is around 270
million, and the total number of unknown fields to be solved exceeds 1.6 billion.
This, obviously, places a heavy burden on the computational resources that are not
available in a single processor. Therefore, it is necessary to carry out the simulation
by using a parallel FDTD code, running on multiple processors.

7.4.3 Total Transmission and Reflection Power Under
Gaussian Beam Illlumination

Before examining the detailed EM response of the artificial DNG array, it is nec-
essary to first determine if the chosen spot size of the incident beam is suitable
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for the study of the macroscopic response of the metamaterial slab. For instance,
if the spot size is too small, say smaller than or comparable to the periodicities of
the inclusions, we can only observe the scattering characteristics contributed by a
few inclusions or perhaps just by a single one. Various concepts commonly used
to study the metamaterials, such as the effective medium theory, cannot be applied
under these circumstances.

A convenient indicator of the macroscopic response of the array under cer-
tain illumination is the total transmitted or reflected power along different direc-
tions. The total transmitted and reflected powers along the specular angles can
be computed by applying the near-to-far-transformation to the aperture fields on
surfaces located at the transmission side of the slab and the scattered-field region
behind the excitation plane, respectively. Similarly, the incident power along the
propagation direction can be computed by using the aperture fields on the exci-
tation plane when the array is removed. The ratios of the total transmission or
reflection power and the incident power for the finite array case are then com-
pared to the magnitude of transmission and reflection coefficients for the infinite
array case, illuminated by a plane wave incident from the same angle. Figure 7.29
shows an excellent agreement between the transmission/reflection coefficients for
the finite and infinite arrays for the normal incidence case. Figures 7.30(a, b) com-
pare the results for the oblique incidence case of 30° off-normal, for TM, and
TE, polarizations, respectively. As may be seen from the above figures, the match
between these results is still good for an oblique incidence, though not as close as
it was for the normal incidence case. It should also be noted that the scattering
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Figure 7.29 Comparison of the magnitude of transmission and coefficient coefficients for the
infinite array under plane wave illumination (solid lines) and finite array under Gaussian beam
illumination (dots) at normal incidence for Ey polarization.
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Figure 7.30 Comparison of the magnitude of transmission and coefficient coefficients for the in-
finite array under plane wave illumination (solid lines) and the finite array under Gaussian beam

illumination (dots) at oblique incidence (30° off-normal), for (a) TM, polarization and (b) TE,
polarization.

characteristics at oblique incidence with TE, polarization is quite different from
that of the normal incidence case; therefore, the DNG behavior might not be ob-
served in the former case, for angles that are not close to normal.

Since a good agreement is observed between the magnitude of the transmission
and reflection coefficients for the finite array case with a Gaussian beam illumi-
nation, and for the infinite array case with plane wave illumination for both the
normal and oblique incidence cases, we conclude that the Gaussian beam with
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the chosen spot size is suitable for the study of the macroscopic response of the
artificial-DNG array.

7.4.4 EM Response of the Artificial-DNG Slab at Normal
Incidence with Ey Polarization

We begin by examining the field distribution at 15.3 GHz, where the array is totally
transmitting and has the refractive index closest to —1(nz = —1.01 — 00004;,Z =
1.30 — 00004/, &,,r = —0.776 — 0.0006/ and p,;r = —1.32 — 0.00015). The effec-
tive material parameters are computed by applying the inversion approach, de-
scribed earlier in Section 7.3, to the S-parameters of the infinite, periodic array of
single layer at normal incidence.

The magnitudes and phases of E, at 15.3 GHz on the y-z (E-plane) and x-
z planes (H-plane) are shown in Figures 7.31 and 7.32, respectively, for three
different configurations: (a) and (b) with artificial-DNG slab; (c¢) and (d) for the
artificial-DNG slab replaced by a dielectric slab of ¢ = 4 of the same size; and
(e) with all structures removed (i.e., only for free space). The observation planes,
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Figure 7.31 The magnitude (left) and phase (right) of Ey at 15.3 GHz on the YZ plane (E-plane),
for three different configurations at normal incidence: (a) and (b) with DNG slab; (c) and (d) for the
DNG slab replaced by a dielectric slab of & = 4 of the same size; and (e) and (f) only for free space.
The DNG or dielectric slab occupies the region between z = —23.75 and 0 mm; the excitation
plane is on z =0 mm; and the region above 0 mm is free space.
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Figure 7.32 The magnitude (left) and phase (right) of Ey at 15.3 GHz on the XZ plane (H-plane),
for three different configurations at normal incidence: (a) and (b) with DNG slab; (c) and (d) for the
DNG slab replaced by a dielectric slab of er = 4 of the same size; and (e) and (f) only for free space.
The DNG or dielectric slab occupies the region between z= —23.75 and 0 mm; the excitation
plane is on z =0 mm; and the region above 0 mm is free space.

with the axis of the Gaussian beam lying within, are located at the center of
the computational domain, and their z-coordinates range from —24 mm to 22
mm, with the slab occupying the region between z = —23.75 mm to 0 mm. The
region above z = 0 mm is free space, at the transmission side of the slab. From the
plots for the magnitudes in both of these figures, it is evident that the magnitude
decays smoothly in the free-space region. Inside the dielectric slab, we clearly see an
interference pattern, formed by the standing waves that are caused by the reflection
at the two dielectric/air interfaces. On the other hand, the distribution inside the
artificial DNG array is dominated by strong fields arising from the discontinuities
presented by the inclusions, and no clear interference patterns could be seen in
these field plots.

However, the phase distribution clearly demonstrates the backward wave na-
ture of the phase velocity, which is one of the unusual characteristics of the DNG
materials as well as of backward leaky wave structures. A positive phase velocity
is indicated by the decreasing trend of phase along the propagating direction (i.e.,
the positive z-direction) and vice versa for the negative phase velocity. From the
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phase plots of the above figures, a positive phase velocity can be clearly observed
in the free-space region. Inside the dielectric slab, the phase velocity is found to
be smaller than that in the free space, which is indicated by the smaller spacing
between the phase fronts, though it is still positive. Inside the artificial DNG slab,
we can clearly see that the phase velocity is negative. Also, the shape of the phase
front inside the artificial DNG slab curves inward towards the source, which is

0.25
0.3
0.25 0.2
E 0.2 015
540 0.15
> 0.1
0.1
10 0.05 005
10 20 30 40 50 60 70 80 % 10 20 30 40 50 60 70 80
X (mm) X (mm)
@) (b)
08 0.5
0.7 0.45
0.6 0.4
0.35
-3 0.3
| € :
|04 3 0.25
10.3 > 0.2
02 0.15
0.1
01 0.05
% 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
X (mm) X (mm)
© (d)

Y (mm)

3.55 80|
3.5 70 0.35
3.45
3.4 60| 0.3
3.35 50 0.25
3.3
40
3.25 0.2
3.2 30 0.15
3.15 20
0.1
31 10
3.05 0.05
o5

0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
X (mm) X (mm)

(e ®

Figure 7.33 Magnitude of Ey at 15.3 GHz on the XY plane at 2 mm (left) and 19 mm (right) from
the top surface of the slab, for three different configurations at normal incidence: (a) and (b) with
DNG slab; (c) and (d) for the DNG slab replaced by a dielectric slab of ¢ = 4 of the same size; and
(e) and (f) only for free space.
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located at z = —24 mm [indicated by the planar wavefront near the bottom center
of Figures 7.31(f) and 7.32(f) for incident field], while the shapes of the phase front
inside the free space and the dielectric slab always curve away from the source.

The magnitudes of Ey at 15.3 GHz in the transverse plane at 2 mm and 19.5
mm away from the top surface of the slab are also plotted in Figures 7.33(a-f) for
three different configurations. We see from Figure 7.33(a) that when the observa-
tion plane is only 0.11 away from the slab, we can still observe the granularity of
the field due to the inclusions inside the array, thought these variations appear to
die out as we move the observation plane to about 11 away [see Figure 7.33(b)].
For the other two configurations, no similar field variations can be observed be-
cause of the truly homogeneous nature of the materials themselves. It should be
noted that the transverse field distribution for the artificial DNG array case is
highly astigmatic, and the distribution is always found to suffer an elongation in
the y-direction for this structure.

Next, we investigate the focusing effect by the artificial DNG slab under the
illumination of Gaussian beam at normal incidence. It is known that when the
refractive index of an isotropic, homogeneous slab is equal to —1 for a matched
medium (g = p, = —1), an image can be formed at a distance b, from the slab,
where b, = d — by, and by is the distance of the source from the slab of thickness
d. Its image properties would be quite different from those of the image formed by
a conventional lens. For instance, it has been predicted that the phase at the image
would be restored to its value at the source; and the image size can be smaller than a
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Figure 7.34 Phase of £, at 15.3 GHz along the beam axis from z = —24 to 27.75 mm, with the
DNG slab occupying the region between z = —23.75 and 0 mm. Notice that the measured phase
restores to its value at the source at z= 23.5 mm, indicated by the vertical black dashed lines,
which is the expected image location when the refractive index of the slab is equal to —1.
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wavelength, because the evanescent waves are amplified by a real DNG slab to form
the image. These two properties have encouraged many research groups throughout
the world to attempt to realize this type of super lens that could possibly breach
the diffraction limit associated with a conventional lens. Nevertheless, we point
out that the slab we study is not a matched medium (g.; = —0.776 — 0.0006;
and ¢ = —1.32 —0.0001) at 15.3 GHz where the refractive index equals —1;
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Figure 7.35 (a) Magnitude of Ey at the beam axis and (b) the 3-dB beam width on the E- and
H-planes along the longitudinal direction at 15.3 GHz, inside the transmission region of the DNG
slab. The corresponding magnitude and beam width with all structures removed are also plotted
in dotted lines. The vertical dash line at z= 23.5 mm indicates the expected image location when

the refractive index of the slab is equal to —1.
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however, we still expect that the slab would form an image, though the amplitude
may be weaker.

Figure 7.34 shows the phase of E, at 15.3 GHz along the beam axis, starting
from the source, which is at 0.25 mm (z = —24 mm) below the artificial DNG
slab. As can be seen from the above figure, the phase propagates backward within
the slab spanning the space between z = —23.75 and 0 mm, and then it becomes
forward in free space, and restores to the same value as that of the source at
z = 23.5 mm, which is the expected location of the image for this source location,
if the slab had a refractive index of —1.

Next, we examine the change of the magnitude of E, near the image position
along both the longitudinal and transverse directions, by inspecting the magnitude
of E, along the beam axis [see Figure 7.35(a)], and the 3-dB beamwidths in the E-
and H-planes [see Figure 7.35(b)], respectively, for the emerging beam. Neither of
these plots indicates any localization of fields near the expected image position, at
which all rays emanating from the source should pass. In addition, we observe a
larger 3-dB beamwidth in the E-plane as compared to that on the H-plane, which
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Figure 7.36 The magnitude (left) and phase (right) of E, at 15.3 GHz on the YZ plane (E-plane),
for three different configurations at oblique TM; incidence (30° off-normal): (a) and (b) with DNG
slab; (c) and (d) for the DNG slab replaced by a dielectric slab of & = 4 of the same size; and (e)
and (f) only for free space. The DNG or dielectric slab occupies the region between z = —23.75
and 0 mm, the excitation plane is on z =0 mm, and the region above 0 mm is free space.
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is consistent with the field distribution on the transverse plane, shown previously
in Figure 7.33.

To summarize the results of our investigation on the focusing effect, we do
observe a restoration of phase at the expected image position; however, we do not
find any localization of field in its neighborhood. Therefore, we conclude that the
focusing effect is not fully exhibited for this artificial DNG slab at the frequency
where the effective refractive index has been found to be —1, under the illumination
of the Gaussian beam at normal incidence.

7.4.5 EM Response of the Artificial-DNG Slab at Oblique TM; Incidence
Coming from (6 = 150° ¢ = 90°) with Hx Polarization

Another unusual phenomenon associated with the negative refraction is the bend-
ing of rays towards the same side of the normal at the interface, when the rays
enter a DNG slab from free space, or vice versa, at an oblique incidence, as shown
in Figure 7.36. The Snell’s law can still be applied by having negative values of
refractive index, found inside a DNG medium. Since the transmission and reflec-
tion characteristics of the artificial DNG array at 30° off-normal incidence for the
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Figure 7.37 Magnitude of E, at 15.3 GHz on the XY plane at 19 mm above the slab at oblique
TM; incidence (30° off-normal) for three different configurations: (a) with DNG slab; (b) for the
DNG slab replaced by a dielectric slab of ¢ = 4 of the same size; and (c) only for free space.
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TMz polarization are similar to those of the same array at normal incidence, the
DNG behavior is expected to be retained for the oblique incidence case for TM,
polarization.

Figure 7.36(a-f) plot the magnitudes and phases of E, at 15.3 GHz on the
y-z plane (E-plane), which is also the plane of incidence, for three different con-
figurations that are identical to those appearing in Figure 7.31. As shown in Fig-
ure 7.36(e, f), the incident beam, excited at z = —24 mm with its maximum at
y =42.5 mm (center of the computational domain), propagates along the posi-
tive z-direction, with decreasing y. A rough estimate of the beam direction can be
made by tracking the beam maxima. For the dielectric slab, the beam first bends
slightly towards the normal when it enters the slab, and then bends away from the
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Figure 7.38 The normalized magnitude of S, at 15.3 GHz on the YZ plane (E-plane) between
z= —24 mm and 0 mm at oblique TM; incidence (30° off-normal) for two different configurations:

(a) dielectric slab and (b) DNG slab. (c) is the figure extracted from (b) over the free-space region
above the DNG slab.
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normal when it exits the slab, which is an indication of positive refraction of the
medium. For the artificial DNG slab [see Figure 7.36(a)], it is unable to define a
continuous beam path inside the slab because of the strong irregularity of fields in
the inhomogeneously filled slab. Nonetheless we can still assert the fact that the
beam does not bend towards the same side of the normal when it enters the slab,
as we would expect when we have negative refraction, since the beam lies on the
left half of the figure, all through the slab and, of course, when it exits the slab in
the free-space region.

The magnitudes of Ey, on the x-y plane at 19.5 mm above the slab are shown in
Figure 7.37(a-c) for the same three configurations. From Figure 7.37(a), we observe
the presence of more than one beam along the y-direction, which is different from
those observed for the cases of homogeneous dielectric slab and with free space,
or even for the artificial DNG slab illuminated by a normally incident beam. Since
we do not observe any significant shift of the beam in the positive y-direction as
compared to the incident beam in Figure 7.37(c), once again negative refraction is
not seen to be present in this test example.

The distribution of the z-component of the Poynting vector, which is a more
accurate representation of the energy flow, is also shown in Figure 7.38(a, b) for
the dielectric and artificial DNG slabs, respectively. The bending of the beam at
the entrance and exit the dielectric slab is seen much clearly because of the absence
of an interference pattern; however, the path of the energy flow is still not defined
precisely inside the artificial DNG slab. Figure 7.38(c) shows the z-component
of the Poynting vector in the free-space region above the artificial DNG slab.
We observe that there are multiple beams emerging from different positions at
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Figure 7.39 The transmitted beam maxima locations versus the longitudinal direction at 15.4 GHz
for TM; incidence of DNG slab. These data are separated into two groups according to the distances
from the slab and utilized to track the exit location of the beam at the slab surface at z=0 mm.
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the surface of the slab and traveling in different directions. Nevertheless, all the
emerging beams appear to exit from the left side of the slab, and negate, once
again, the presence of negative refraction of the beam at the interface between the
DNG medium and free space.

We further determine the exit locations of the transmitting beam at the artificial
DNG slab by tracing the path at which the Poynting vector is at its maximum along
the transverse direction, and then projecting the path backward to the top surface
at the slab by using a linearly curve-fitting. Figure 7.39 plots the y-coordinates of
the beam maximum along the longitudinal direction on the y-z plane at 15.3 GHz.
Large jumps in the locations of the maxima occur near z = 13 mm, which can be
explained by the existence of two emerging beams, as shown in Figure 7.38(c).
Each beam decays at a different rate, causing one beam to dominate in the region
near the slab and the other to be strong in the region further away from the slab.
By employing the above steps on the fields in these two regions separately, we find
that the two beams exit at y = 11.5 mm and 22.5 mm, respectively, which are
both on the opposite side of the normal where the incident beam first enters the
slab at y = 42.5 mm.

The exit locations of the beams for the artificial DNG slab, along with those
for the dielectric slab as well as free space at z = 0 mm, are plotted in Figure 7.40
at frequencies within the first transmission band of the artificial DNG slab, ranging
from 14.6 to 16.2 GHz. The refractive indices increase monotonically from —1.89
to —0.45 within this frequency band. We see that only a single beam is present for
the dielectric slab as well as for the free-space case, and a single exit location can
be determined by following the same steps as described earlier. From the above
figure, we deduce that the refracted beam always bends towards the normal at
the dielectric/free-space interface, which is expected for a positive-index medium.
Except at 14.6 GHz, the refracted beam for the artificial DNG slab always bends
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Figure 7.40 The exit location of the beam at the top surface of the slab on z = 0 at TM; incidence,
for three different configurations: the beam that dominates in the region near to and far away from
the DNG slab; with dielectric slab; and only for free space. The incident beam enters the slab at
x =42.75 mm (black line).
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away from the normal at the interface between the DNG medium and free space,
which is contradictory to what is expected for a negative index medium.

In contrast to the magnitude distribution of the field, or the energy flow, the
phase distribution inside the artificial DNG slab clearly exhibits negative refraction.
As can be seen in Figure 7.36(b), the normal of the phase front bends towards the
same side of the normal of the slab at both interfaces between the DNG medium
and free space. In addition, we observe that the backward wave propagates within
the artificial DNG slab, which was also true for the normal incidence case.

7.4.6 EM Response of the Artificial-DNG Slab at Oblique TE, Incidence Coming
from 6 = 150°, ¢ = 0° with E, Polarization

Since the transmission and reflection characteristics for the incident angle of 0 =
150° and ¢ = 0° and TE, polarization are quite different from those for the normal
incidence case, the DNG behavior may not be observed in this case.

We begin by examining the field distribution at 15.3 GHz, where the array is
partially transmitting and partially reflecting for the present illumination. Figures
7.41(a-f) show the magnitudes and phases of E, at 15.3 GHz on the x-z plane
(H-plane), which is the plane of incidence, for the same configurations as studied

E

0 03 E
10 02 N
200

0 10 20 30 40 50 60 70 80
X (mm)

...........

LT

60 70 80
(b)

0.6
0.5
0.4
0.3
0.2
0.1

'Z (mm)
.Z (mm)

0 10 20 30 40 50 60 70 80
X (mm)

0 10 20 30 40 50 60 70 80
X (mm) (d)

©

0.8
0.6
0.4
0.2

Z (mm)
.Z (mm)

: 0 10 20 30 40 50 60 70 80
0 10 20 30 40 50 60 70 80
X (mm) X (mm)
(e ®

Figure 7.41 The magnitude (left) and phase (right) of E, at 15.3 GHz on the x-z plane (H-plane)
at oblique TE; incidence (30° off-normal) for three different configurations: (a) and (b) with DNG
slab; (c) and (d) for the DNG slab replaced by a dielectric slab of & = 4 of the same size; and (e)
and (f) only for free space. The DNG or dielectric slab occupies the region between z = —23.75
and 0 mm; the excitation plane is on z =0 mm; and the region above 0 mm is free space.
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previously. From the plots of Figure 7.41(a, b), we can see that the beam energy
propagates in the direction close to the normal within the artificial DNG slab,
while the phase propagates backwards within the slab, and the normal to the
phase bends towards the same side of the normal of the slab at the interface
between the DNG medium and free space. In contrast to the oblique incidence
case when the polarization was Hy, only a single beam emerges from the artificial
DNG slab. It is further confirmed by the E, distribution on the transverse plane
which is at 19.5 mm above the slab [see Figure 7.42(a)]. In addition, we can deduce
from Figure 7.42(a, c) that the beam bends towards the normal when it enters the
slab.

Figure 7.43 plots the exit locations of the transmitting beam at the artificial
DNG slab, along with those for the dielectric slab, as well as free space, at z =0
mm, for frequencies ranging from 14.6 to 16.2 GHz. From the results, we deduce
that the refracted beam bends towards the normal at the DNG medium/free-space
interface, indicating a positive refraction where the slab has a refractive index of
greater than unity. Below 15.4 GHz, the beam travels close to the normal within
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Figure 7.42 The exit location of the beam at the top surface of the slab on z = 0 for three different
configurations: (a) the beam that dominates in the region near to and far away from the DNG slab;
(b) with dielectric slab; and (c) only for free space. The incident beam enters the slab at x = 42.75
mm (black line).
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the artificial-DNG slab. So far, none of the above results has demonstrated the
bending of beam towards the same side of the normal at the interface between the
DNG medium and free space.
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Figure 7.44 The magnitude (left) and phase (right) of £, at 15.3 GHz on the YZ plane (E-plane),
for two different configurations with dipole excitation at z= —32.35 mm: (a) and (b) with DNG
slab; (c) and (d) only for free space. The DNG slab occupies the region between z = —23.75 and 0
mm, and the region above 0 mm is free space.
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7.4.7 EM Response of a Finite Artificial-DNG Slab Excited by Small Dipole

In the previous sections, we have extensively studied the EM response of the
artificial-DNG array illuminated by a Gaussian beam, with a spot size on the order
of the wavelength. It is also worthwhile to study the focusing effect of the artificial
DNG slab when a small source is used for excitation.

The artificial DNG array and all the FDTD settings remain the same as those
employed previously in this section except that the Gaussian beam excitation is
now replaced with a y-oriented dipole. The excitation is applied at the edge of the
FDTD cell at the center of the x-y plane and located at 11.5 mm below the slab
(z = —32.25 mm). At this source location, an image is expected to form at 12.25
mm above the slab with a refractive index of —1.

Figures 7.44(a, b) and 7.45(a, b) show the magnitudes and phases of E, at
15.3 GHz on the y-z (E-plane) and x-z (H-plane) planes, respectively. The field
distributions, with the artificial DNG array removed, are also shown in Figures
7.44(c, d) and 7.45(c, d) for comparison. Note that the magnitude is only shown
for the transmission region 1.5 mm above the slab, in order to have a clear view
of the transmitted field. From the above figures, we notice a highly astigmatic
amplitude distribution in the transmission region of the artificial DNG slab. In the
H-plane, the field distribution is much narrower than that when the artificial DNG
slab is removed, while on the E-plane, the field distribution is much broader than
that without the artificial DNG array. In addition, we note that there are multiple
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Figure 7.45 The magnitude (left) and phase (right) of £, at 15.3 GHz on the XZ plane (H-plane),
for two different configurations with dipole excitation at z= —32.35 mm: (a) and (b) with DNG
slab; (c) and (d) only for free space. The DNG slab occupies the region between z = —23.75 and 0
mm, and the region above 0 mm is free space.
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nodes on this plane. This broadening and narrowing of the field distribution along
different directions are also observed when the array is illuminated by a Gaussian
beam at normal and oblique incidence, while the existence of multiple nodes along
the y-direction is only observed at oblique TM, incidence of Gaussian beam. On
the other hand, in common with the case of a Gaussian beam illumination, the
phase distribution inside the artificial DNG slab clearly demonstrates the presence
of negative refraction accompanied by a backward phase velocity.

Figure 7.46(a-c) shows the magnitude of E, on the x-y plane at 12.25 mm
above the slab at 14.8, 15.3, and 16.0 GHz, respectively. The corresponding re-
fractive indices of the slab at these frequencies are —1.54, —1.01, and —0.554;
therefore, an image is expected to form on the observation plane only at the sec-
ond frequency. From the magnitude plots, we notice that multiple nodes, with a
difference in the relative strength, are formed at nearly the same locations for all
three frequencies, despite the large differences in the refractive indices. No clear
image can be observed at 15.3 GHz. We also plot the magnitude of E, at the centre
axis, and the 3-dB beamwidth on the H-plane at 15.3 GHz in Figure 7.47(a, b),
respectively. We find that none of these plots shows any localization of the field

near the expected image location.
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Figure 7.46 Magnitude of £, on the XY plane at 12.25 mm above the DNG slab at frequencies of
(a) 14.8 GHz, (b) 15.4 GHz, and (c) 16.0 GHz with dipole excitation at 11.5 mm below the bottom
surface of the slab.
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Figure 7.47 (a) Magnitude of £, at the center axis and (b) the 3-dB beam width on the E- and H-
planes along the longitudinal direction at 15.3 GHz, inside the transmission region of the DNG slab
excited by small dipole. The corresponding magnitude and beamwidth with all structures removed
are also plotted in dotted lines. The vertical dash line at z = 12.25 mm indicates the expected image
location when the refractive index of the slab is equal to —1.

7.5 Figure-of-Merit (FOM) Analysis

Since the first experimental demonstration of LHM by Smith and Schultz et al. [21],
the problem of the realization of SNG and DNG metamaterials using resonant
particles such as SRRs and wire segments has been extensively studied by several
groups [22,23]. Due to the resonant behavior of electric or/and magnetic par-
ticles, the characteristics of the SNG or DNG metamaterials composed of those
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particles are highly frequency-dispersive. The nature of the negative property in
such a medium stems from the singularity in the electromagnetic behavior of the
constituent particle around the resonance where the real parts of the “effective”
permittivity and permeability exhibit different signs at the frequencies below and
above the resonance, and the loss term (imaginary part) shows the maximum value
at the resonant frequency. Therefore, it is difficult to obtain large negative values
of the permittivity and permeability from the SNG and DNG particles with a
very small loss, but we need to compromise the value of negative property such
that the other performance parameters are within a practical range of realization.
These parameters include loss, bandwidth, and isotropy (angular dependency in
2-D or 3-D space). Until now, there have been no guidelines available for the de-
sign of constituent particles in order to construct metamaterials producing higher
figure-of-merits. This work presents a comparison of the loss and bandwidth of
magnetically negative (MNG) metamaterial consisting of split-ring type resonant
particles in a two-dimensional lattice shown in Figure 7.48, with different volu-
metric densities and electrical sizes of the particle.

7.5.1 Loss and Bandwidth of Metamaterials with Different Electrical Sizes and
Particle Densities

We start the investigation with the analytic model of SRRs. The effective magnetic
permeability of the square array of the resonant particles is given by [7]

F
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Figure 7.48 Geometry of the periodic split-ring resonator.
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where F is the fractional volume of the cell occupied by the interior of the ring
F = ’Z—’;, p is the resistance of the conducting ring per unit area, and C is the
capacitance per unit area between the two rings with separation distance (d),

ivenby C= 2 = 1
& y d ™ dcjug

It can be intuitively conceived that the volumetric density and the electrical size
of the resonant particles, which comprise the metamaterial, directly affects the Q of
the material as well as the loss behavior. Figure 7.49 shows the calculated effective
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Figure 7.49 Relative permeability of SRR: (a) for different volumetric densities (a: spacing between
SRRs) and (b) for different capacitance.
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Figure 7.50 Loss and bandwidth of metamaterial consisting of resonant particle with different
volumetric density and particle size for u = —4: (a) loss tangent and (b) bandwidth.

permeability of the SRR by (7.6) for different volumetric density and capacitance
for the particle. The capacitance parameter in the SRR changes the resonant fre-
quency of the particle, and it can be translated into different electrical sizes. We
note that the high volumetric density results in greater magnetic properties, and
smaller particles show increased Q. In order to carry out a realistic comparison,
we consider the loss and bandwidth of the MNG material for a fixed negative
real part, for example, u, = —4, which are practically achievable. The bandwidth
of the metamaterial in this work is defined by the change of frequency needed
to make the unit variation of the material properties (i.e., df/du). First, we start
with calculating the theoretical permeability of the metamaterial composed of an
SRR array using (7.13). After we find frequencies at which the material exhibits
negative properties of the given value; then loss and bandwidth parameters of the
material at those frequencies are calculated. Figure 7.50 shows the calculated loss
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Figure 7.51 Effective permeability of SRR for different electrical sizes (full-wave simulation).
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and bandwidth of the MNG material composed of SRRs. We observe that a higher
density provides lower loss and larger bandwidth for a fixed electrical size of the
particle. This is because the net magnetic property increases as the density of the
particle increases; thus, the frequencies at which the property of the material ex-
hibits the given value are further apart from the resonant frequency of the particle.
In this case, the material achieves the intended negative permeability by using par-
ticles with smaller negative values of the permeability, which shows lower losses
and larger bandwidths.

7.5.2 Figure-of-Merit Analysis by Numerical Experiments
7.5.21

In order to address the actual performance of the metamaterial, numerical experi-
ments have been carried out by using Ansoft HFSS [25]. The simulated geometry
is shown in Figure 7.48, where the SRRs are periodically arranged in a 2-D lattice.
The array is assumed to be infinite, and the transmission and reflection charac-
teristics of the unit cell have been simulated using the PBCs. The ring has finite
conductivity (copper), and the dielectric involved between the rings is lossless. The
physical parameters of the split ring are: strip width = 0.3 mm, thickness = 5 pum,
size = 2.8 mm, and gap = 0.6 mm. In order to vary the resonant frequency of the
SRR, a square dielectric substrate was employed in between the open rings with
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Figure 7.52 Characteristics of MNG material versus electrical size of the particle for different per-
meability value (ur = —2,—4,—8) - particles have the same physical size, but resonant frequency
varies: (a) loss tangent, (b) bandwidth, (c) figure of merit, and (d) volumetric density.
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a 50-um thickness and a 3-mm length in side. The dielectric constant of the sub-
strate material has been varied from unity to 50. The polarization of the electric
field is parallel with the plane containing the ring, and the propagation vector is
perpendicular to the axis of the ring. The effective permeability of the material has
been extracted from the S-parameter using the standard technique [8].

7.5.2.2 Results and Discussion

In many cases, the artificial material is synthesized by using small resonant
particles, and the resonant frequency of the particle can be controlled by the
amount of loading involved in the particle—for example, the dielectric material or
the number of turns in the solenoidal geometry. Figure 7.51 shows the numerically
calculated effective permeability of the SRR array for such a case. The frequency
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Figure 7.53 Characteristics of MNG material with different particle densities (particles have the
same physical size): (a) effective permeability versus volumetric density of particle and (b) loss and
bandwidth versus volumetric density of particle.
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has been normalized to the resonant frequency of the particle, and we observe
characteristics that are similar to the ones for the analytical model discussed in
Section 7.2. Next, we investigate the loss and bandwidth of the SRR array for the
practical design values of the effective permeability (i.e., yu, = —2,—4, and —8).
For this experiment, the physical size and the spacing between the particles are
fixed, but the resonant frequency is varied by increasing the capacitance between
the split rings. The results are summarized in Figure 7.52. It is observed that both
the loss and the bandwidth improve as the electrical size of the particle increases
(less loading involved in the particle) and overall FOM (FOM=bandwidth/loss)
increases for the arrays with fixed physical parameters. However, in this case, the
electrical size of the particle is varied by changing the resonant frequency of the
particle, causing the volumetric density of the particle in terms of the wavelength
to decrease as the resonant frequency of the particle decreases, as shown in Figure
7.52(d). An interesting fact is that the bandwidth of the particle becomes less
sensitive to the size of the particle when the particle is operating at the frequency
band where the permeability value is relatively low [e.g., (4, = —2)] or in other
words, the operating frequency is further away from the resonance frequency of
the particle. As indicated by the investigation in the previous section, the results
of the numerical experiments shown in Figure 7.53 confirm that metamaterials
with higher density of particles exhibit higher FOM. This implies that the FOM
obtained for fixed physical parameters may not be as high as shown in Figure
7.52(c), but rather compromised because of the reduced volumetric density of
the particle for larger electrical sizes. In order to take the density parameters for
different electrical sizes into account, another set of experiments has been carried
out, where the density of the particles within the metamaterial remains similar
by adjusting the spacing between the particles, but only their electrical sizes are
changed. The results are interesting in that the FOM still increases as the electrical
size of the particle is increased, although this improvement becomes insignificant
when the electrical size of the particle is very small. It is noted that the FOM
remains rather unchanged when the electrical size of the particle is less than 0.03
wavelengths for the parameters chosen in this chapter (see Figure 7.54).

7.6 Conclusions

In this chapter, we have carried out an extensive study of the EM response of an
artificial DNG slab, comprised of a combination of split rings and wires, by using
the parallel FDTD code GEMS [26]. A preliminary analysis of the scattering char-
acteristics of the infinite array, illuminated by a plane wave, has been performed
by using the PBC/FDTD version of GEMS. The effective material parameters for
the DNG slab have been extracted by using the modified inversion approach. We
have also discussed the difficulties encountered in the retrieval process, identified
some problem areas that may be encountered when using the effective material pa-
rameters in real-world applications, and pointed out the importance of performing
a rigorous simulation of the physical structure, in which the inclusions inside the
metamaterial structure are also modeled accurately, in order to evaluate the per-
formance of such system in a reliable manner.
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In addition, we have demonstrated the power of GEMS, which is a highly
efficient, parallel FDTD code when rigorously simulating the EM response of the
finite artificial DNG array when illuminated by a Gaussian beam, or a small dipole,
where the total number of unknown fields to be solved typically exceeds 1.6 billion.
Two unique phenomena of the DNG medium, namely the negative refraction and
the focusing effect, have been investigated. At the frequency where the slab has a
refractive index of —1, the phase clearly demonstrates a backward phase velocity
inside the slab, and restores the value of the source at the expected image position.
However, none of the results has demonstrated the bending of beam towards the
same side of normal when the beam enters the artificial DNG slab comprised
of SRRs and dipoles from free space, or any localization of fields near the image
location. Also, the emerging beam has been found to be highly astigmatic in nature.
In fact, multiple beams have been observed in the transmission region when the
array is illuminated by a TM, Gaussian beam at an oblique angle, or excited by
a small dipole. None of these behaviors can be explained by using the effective
medium concept, or deduced from the result of the simulation for the infinite,
periodic array illuminated by the plane wave.

The main reason for the failure of our artificial DNG array to fully demon-
strate the negative refraction and focusing effect is the anisotropic nature of the
unit cell element we have chosen—the propagation in this type of medium is very
dependent on the angle relative to the orientation of the SRR. However, according
to the published literature, the SRR and wire combination is the distinct front-
runner among the candidates for the metamaterial elements that exhibit a DNG
behavior, as we have also conformed by evaluating its effective medium properties
of the chosen element. We point out, once again, that the effective parameters are
extracted by interrogating the slab.

We have verified that electrically small particles exhibit higher losses to produce
the same negative permittivity or permeability values. Similarly, the bandwidth of
the particle, defined by the inverse of the frequency derivative of the permittivity
and permeability, decreases as the size of the particle is reduced. It has been ob-
served that the bandwidth of the particle becomes less sensitive to the size of the
particle when the particle is operating at the frequency band where the permeabil-
ity value is relatively low. Finally, we have performed the FOM analysis for the
square SRR based on the loss and bandwidth. The results indicated that larger
particles have better FOMs in terms of loss and bandwidth. However, the benefit
of using a larger particle becomes less significant when we require a higher value of
permeability. For the electrically very small particles (less than 0.03 wavelength),
the FOM becomes somewhat irrelevant to the electrical size.
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Accurate FDTD Modeling of a
Perfect Lens

8.1 Introduction

Recently a great deal of attention has been paid to the research of a new class
of artificial electromagnetic material: LHMs. Introduced by Veselago in 1968 [1],
LHMs possess simultaneously negative permittivity and permeability. LHMs are
also often referred to as DNG material, backward-wave media, and NIMs. Because
LHMSs were not physically available in their early years, they did not attract much
attention until in 1999 when Pendry et al. [2] demonstrated that materials with an
array of SRRs behave as media with negative permeability over a limited frequency
range. Furthermore, the combination of a 2-D array of SRRs with a 2-D array
of metallic wires [3,4] enables one to realize media that simultaneously display
negative permittivity and permeability, and hence fall into the category of LHMs.
In 2000, Smith et al. [5] demonstrated for the first time the experimental existence
of LHMs, by using the structure shown in Figure 8.1 [6].

For an electromagnetic plane wave in LHMs, the electric field and magnetic
field and the wave vector form a left-handed system of vectors, as illustrated in
Figure 8.2(b).

The LHMs introduce unusual and interesting wave propagation properties,
such as negative refraction, reversed Doppler effect and Cerenkov radiation. One of
the most important applications of LHMs suggested by Pendry, is the “perfect lens”
[7]. Unlike conventional curved lenses fabricated by using optically transparent
materials, Pendry’s planar perfect lenses (see Figure 8.3) have no optical axis.
Furthermore, under ideal conditions, they reconstitute the near as well as the far
fields of the source with subwavelength resolution. Apparently, this is accomplished
by exciting the resonant surface waves (plasmons) at the interface between free
space and the LHM slab.

Conventional imaging systems that utilize positive permittivity and permeabil-
ity suffer from the so-called diffraction limit, and their minimum angular resolution
(the space between two point sources) that an imaging system can resolve corre-
sponds to approximately half of the incident wavelength of light that is used to
produce the image. The reason for this is that the conventional systems are only ca-
pable of transmitting the propagating components emanating from the source [7],
and the evanescent waves that carry subwavelength information about the object
decay exponentially in such double positive media that they suffer significant decay
before reaching the image plane. On the other hand, under ideal conditions, LHM
lenses provide the unique properties of negative refraction for propagating waves,
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Figure 8.1 (a) First experimental demonstration of LHM [5] and (b) a 2-D isotropic LHM [6].

as shown in Figure 8.3(a), and amplify evanescent waves [see Figure 8.3(b)] [7].
This, in turn, enables them to overcome the diffraction limit and reconstruct the
entire source field at the image plane.

There have been a number of attempts to model LHMs using the FDTD
method [8-13]. The conventional FDTD has been generalized to apply to disper-
sive media in the literature, and the negative refraction effect that characterizes the
boundary between free space and the LHM has been observed, and the planar su-
perlens behavior has been successfully demonstrated under ideal conditions [8-10].
This implies that although the LHM has been modeled correctly only for propagat-
ing waves, the conventional implementation of the dispersive FDTD method may
lead to inaccurate results when evanescent waves are involved. Since the evanes-
cent waves typically suffer an exponential decay as functions of the distance, they
are concentrated only in the close vicinity of sources, and the conventional FDTDs
suffer little from a loss of inaccuracy when modeling a nondispersive media. How-
ever, in the case of LHM, the evanescent waves play a key role that has to be
modeled accurately, because of reasons mentioned above [7]. This explains why
early FDTD simulations failed to demonstrate the subwavelength imaging proper-
ties of LHM lenses [8, 9], namely, the amplification of evanescent waves, which
normally decay in usual materials. Hence, the LHMs facilitate the transmission of
subwavelength details of sources to significant distances.

The FDTD method has also been used to study the effect of losses on the trans-
mission characteristics of LHM slabs [11] and how the material parameters and
the thickness of the slab influence their imaging properties [13]. Besides the FDTD
method, the pseudospectral time-domain (PSTD) method has been used to model

E E
S S
H S H D
k k
(@ (b)

Figure 8.2 lllustration of electric, magnetic, Poynting, and wave vectors in conventional (a) RHMs
and (b) LHMs where the wave vector and Poynting vector are in opposite directions.
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Figure 8.3 lllustration of Pendry’s perfect lens formed by LHM with ¢ = p = n= —1 [7]: (a) neg-
ative refraction for the far field and (b) amplification of evanescent waves for the near field.

backward-wave metamaterials [14]. It is claimed in [14] that the FDTD method
cannot be used to accurately model LHMs because of the numerical artifacts in-
troduced by the staggered grid employed in the FDTD domain. However, as we
will demonstrate later, with proper field averaging techniques [13,15], the FDTD
method can indeed be used to accurately characterize the behavior of both prop-
agating and evanescent waves in LHM slabs. Furthermore, it has been reported
in [16,17] that with special treatments (i.e., averaging techniques) along material
boundaries, accurate modeling of curved surfaces of conventional dielectrics as well
as surface plasmon polaritons between metal-dielectric interfaces can be achieved
without using a finely discretized FDTD grid.

In principle, an ideal and lossless LHM slab with infinite transverse dimen-
sions can provide subwavelength resolution without limit. However, in realistic
situations, the subwavelength resolution of LHM lenses is limited by losses [18],
the thickness of the slab, and the mismatch of the slab with its surrounding
medium [19]. It is important to understand these theoretical limitations and to
compare the results of numerical simulations with analytical solutions for canoni-
cal problems, to validate the numerical algorithms, before applying them to more
complex configurations for which analytical solutions are unavailable.

In this chapter, the infinite LHM slabs and their transmission characteristics
have been modeled using the PBC and a material parameter averaging technique
along the boundaries of the LHM slabs. In contrast to the FDTD modeling of
conventional dielectric slabs, where the averaging is done by introducing a second-
order correction that improves the accuracy of simulations, the averaging of per-
mittivity is crucial to modeling the LHM slabs. Averaging the material parameters
implemented in the proposed FDTD model is equivalent to that of averaging the
current density, as originally introduced in [13], and the algorithm is detailed in
this chapter. It is demonstrated that other aspects such as the material parameters
and the switching time of the sources also have a considerable influence on the
FDTD simulations.

8.2 Dispersive FDTD Modeling of LHMs with Spatial Averaging at the
Boundaries

This section will model isotropic LHMs using the effective medium theory. Chapter
6 demonstrates that realistic LHMSs can be characterized by using either a Lorentz
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or Drude dispersion model. Although there are various dispersive FDTD methods
available for the modeling of LHMs, we have chosen to implement the auxiliary
differential equations (ADEs) method, owing to its simplicity and efficiency. There
are also different schemes involving ADEs in addition to the conventional FDTD
updating equations. In this chapter, we introduce two general algorithms, namely
the (E, J, H, M) [20] and (E, D, H, B) schemes [21], for this purpose.

8.2.1 The (E, D, H, B) Scheme
The (E, D, H, B) scheme is based on Faraday’s and Ampere’s laws:

0B

E=—— 1

V x ER (8.1)
oD

H= """ 2

V x Ey (8.2)

as well as the constitutive relationship D = ¢E and B = yH where ¢ and u are
given by (6.4) and (6.5), respectively. Equations (8.1) and (8.2) can be discretized
in the usual way [20] leading to the conventional FDTD updating equations:

Bl — B" — AtV x E"3 (8.3)

D" = D" 4 At-V x H*12 (8.4)

where V is the discrete curl operator, At is the FDTD time step, and 7 is the
number of time steps at which the updating is performed.

In addition to the above updated equations, we need to enforce ADEs, which
are discretized through the following steps. The constitutive relation between D
and E reads

(wz — /(uye> D =g (wz —joy, — w§e> E (8.5)

If we use the inverse Fourier transform, which leads to the following equivalence
relations:
2
) 0

: 0

We can write (8.5) in the time domain as

o 0 o2 0 5
(ﬁ + E%) D= &0 (ﬁ + E)/e + O, E (87)
Next, we discretize the FDTD computational domain using an equally spaced
3-D grid with cell sizes of Ax, Ay, and Az along the x-, y-, and z-directions, respec-

tively. To discretize (8.7), we use the central finite difference operators in time to
update &; and 87 and the central averaging operators y; and p? in time as follows:

2 2
L S WS
otr (A2 ot AT be bet
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where the operators &;, 87, u;, and p? are defined in the same manner as in [22]:

5,F — B2 Flp,. 2
t |mx My, My |mx,my,mz - |mx:my=mz

1
8 F|mx My, My F|:lnt,my,mz - 2F|mx My, My + F|mx My, My

41
F|:lﬂx,2my:mz + F|mx,%ny,mz
wEl;

My 1y iy 2

F| F|:’nt,lmy,mz +2F|mx My, My +F|mx My My (8 8)
My iy My 4 .

Here the quantities in bold represent the field components and m,,m,,m, are the

indices corresponding to a certain discretization point in the FDTD domain. The

use of the averaging operator p; enables a semi-implicit scheme and guarantees

the FDTD simulations to be numerically stable and accurate [20, 22].
Discretizing (8.7), we get

3 6 57 6 2 2
(a1 + 3 Hutre | D= 2o e + e T Opelty | E (8.9)

Note that, in (8.9), the discretization of the term (uge of (8.7) has been performed

by using the central averaging operator u? in order to guarantee the improved
stability. The above operator p; is used for the term containing y, to preserve the
second-order feature of this equation. Equation (8.9) can thus be written as

1 1
D|:’nt,my,mz - 2D|mx My, My + D|mx My 1y i D|:’nt,my,mz - D|mx My, My
(At)2 e 2At
1 —1 1 -1
— & E|7n—§,my,mz - 2E|m iy 1y + th,my,mz +y, E|:’nt,my,mz —E th,my,mz
(At)? ¢ 2At

+ (upe

E|:lnt,lmy,rnz +2E|mx 1y Mz +E|’”x my, mZ] (8.10)

4

Using the above, the updating equation for E can be written in terms of E and D
at previous time steps as follows:

En+l _ { [ 1 + Ye :| Dn+l _ 2 Dn

i 2 2
+ i_%]En_lL_ﬁ+%‘|En_l

(Af)2 2At 4

L e Jpe L, %, O (8.11)
Leo(AD)2 2gAt (At)2  2At 4 '
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The updating equation for H is in the same form as (8.11) by replacing E, D,
(uge, and 7, by H, B, ©?,,, and ¥,,, respectively, such that

pm>

1 Y, 2
Hn+l _ + m :| Bn+l _ Bn
{ LHo(A)2  2ugAt Ho(At)?

i 2 (J)l%m 1 Ym w[%m —1
YL I & N O £/ S U 5
a2 1 l(At)z a4
[ 1 Ym -1 1 Ym (ng
— B” — 4+ - 8.12
* | to(A2)? ZMOAJ }/ [(At)2 * 2At T ( )

The set (8.3), (8.4), (8.11), and (8.12) form the relevant FDTD updating equations
for the LHMs employing the (E, D, H, B) scheme. Not unexpectedly, if both the
plasma and collision frequencies are equal to zero (i.e., Wy, = @y, = 0 and y, =
¥m = 0), then the above updating equations reduce to the corresponding FDTD
equations in free space.

8.2.2 The (E, J, H, M) Scheme

An alternative ADE FDTD scheme starts with different forms of Faraday’s and
Ampere’s laws for LHMs:

JH
VXE= —nuyp—-M 8.13
X Ho— ( )
JE
VxH= g7 +] (8.14)

where the electric and magnetic current densities, J] and M, are defined as

. O

J(0) = /wsomE((o), (8.15)
. Dprn

M(o) = /(UHOWH((D)- (8.16)

Following the same procedure as for the (E, D, H, B) scheme discussed in the
previous section, (8.13)-(8.16) can be discretized as:

NS

= g 2 LR Yas] (8.17)
Lo

n+1 n AT n+ 4 n+ &

E :E+—[V><H 3] z} (8.18)
&0
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|n+l J| )/eAt —2 J n—1
mx My, mz - yAt+2 My My, mz yAt+2 My 1My 171z

gowpeAt gl o
* YeAt + 2 ( ety — E th:mwz> (8.19)
4 n YAt — 2 et
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NO(U
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m

Once again, (8.17)-(8.20) reduce to the free-space updating equations if both the
plasma and the collision frequencies are set equal to zero (i.e., Wy, = @y, = 0 and

Yo = Ym = 0).

8.2.3 The Spatial Averaging Methods

In addition to the aforementioned ADE/FDTD schemes, a modification is fre-
quently used at the material interfaces to improve the accuracy of FDTD simu-
lations due to the staggered grid in the FDTD domain. It has been shown [23] that
at material interfaces, the use of effective material parameters, namely permittivity
and permeability, provides a second-order accuracy. The effective permittivity and
permeability along the interface can be derived by analyzing the integral form of
Ampere’s and Faraday’s laws [16, 23], such that

%/D.nds:fH.dz (8.21)

—%/B-nds:]{E-dl (8.22)

For the case of 2-D TE polarization in the FDTD domain, the arrangement
of electric and magnetic fields employed at a dielectric interface is illustrated in
Figure 8.4. Using the above, the Ampere’s law in (8.21) can be written as

< / " Dy dy = Hlmem, — Helmeom 1 (8.23)
Ot J(my—1)Ay ’ o

a My AX

51 oy Dol = Hebt, = el (8.24)

Similarly, the Faraday’s laws are written as

(mxt3)Ax p(my+1)Ay
-4 [ Belaydudy

ot 1 1

(mx—5)Ax J(my—75)Ay
(mx+1)Ax
- (mx—3)Ax (Ex|x'”y__ E |xmy+%> dx

(my+75)Ay
* AMy—%)Ay (Ey|m3‘+%7y N Ey|mx—— y) dy (8.25)
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Figure 8.4 Arrangement of electric and magnetic fields near a dielectric interface for the case of
2-D TE polarization in the FDTD domain [23].

We can analyze (8.23) to calculate the effective permittivity of the electric field
component EY, which is tangential to the material interface. Since the material
interface crosses the line of integration, we cannot assume that the electric field
is constant along the line; though the magnetic field is not affected the tangential
electric field component is continuous across the interface. We can rewrite the

left-hand side of (8.23) as

myAy (1my— % JAy+aAy myAy
/ Dy |myydy = / Dy |my ydy +/ 1 Dy |myydy
(my—1)Ay (my—1)Ay (my—3)Ay+ady
1 1
=1z +aleg+ ;- %)e AyEx|mX7my_% (8.26)

where a is defined as the distance from the interface to the location of the nearest
tangential electric field component normalized by the grid size Ay (i.e., 0 < a <
0.5) (see Figure 8.4). Therefore, (8.26) leads us to the original Yee’s algorithm,
provided that we replace the permittivity of the cell (72,,m,) for the tangential
field component with the effective permittivity as follows

1 1
P <§ + a) e+ <§ — a) & (8.27)

The effective permittivity for the electric field component EJ, which is perpen-
dicular to the material interface, can be calculated in a similar way, and only the
right side of Faraday’s law (8.25) needs special treatment. We can apply the con-
tinuity of the electric flux density across the material interface; therefore the term
containing E, component on the right side of (8.25) can be evaluated by using
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(my-&-%)Ay
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Defining Ely|mxi%,y =[a+(1- a)g1/gz]Ey|mXi%,y, (8.28) leads to the original Yee

algorithm. The same is true if Ej| 1 is used in place of E,[ 1 , and the
x—75Y Mx—75.Y

permittivity of the corresponding cell is replaced by the effective permittivity

~1
& = <3+ 1_“> (8.29)

&1 &

For materials with magnetic properties such as LHMs, it is also necessary to
find the effective permeability at the material interfaces. Similar to the procedure
for the tangential electric field component E,, the left side of (8.25) can be written
as

O mx+i)Ax p(my+1)ay
__/( 2 /(y 27 Bl ydxdy

Ot Jmy—5)Ax J(my—3)Ay
5 (mx+%)Ax (le—%-'r(l)Ay (my-&-%)Ay
— _E/ 1 / " Bz|x,yd)’+/ . Bz|x,yd)’ dx
(mx—3)Ax (my—7)Ay (my—3+a)Ay
O [m+d)Ax
- _E/( 1 [aps + (1 — &) o] AyH, [y dx (8.30)
Mmx— 5 )AX

which leads to the original Yee’s algorithm if the permeability of the cell is
replaced by the effective permeability

py = o+ (1—a)w (8.31)

In the above derivations, it has been assumed that the material interface is
located on the right side of its nearest tangential field component as shown in
Figure 8.4. If instead, the interface lies on the left side of E}, a is still defined as
the distance between the interface and the location of E} normalized to the cell
size Ay, but the effective permittivity and permeability are changed to

* 1 1
x = E—a &+ E—i—a &
. <1—a a>_1
g = + —
& &

py =1 —o)u+aw (8.32)
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and the location where the effective permittivity for Ej and effective permeability
for H} are applied, is shifted to (m2,,m, — 1).

Generally, the material interfaces can be located anywhere within the cell, and
o is defined accordingly, as are the material parameters, effective permittivity, and
permeability. However, in practice, a simpler way to implement the above param-
eters is to align the material interfaces the location of tangential field component
E, in the FDTD grid [i.e., let a = 0, then &} = & in (8.29), u; = w, in (8.31)] and
calculate €} in (8.27) by a simple arithmetic mean of the permittivity of both the
materials. In fact, for the case of a = 0, the effective permittivity & can also be
calculated using either the harmonic or geometric means as follows [24-26]:

&g +e¢ . .
Sare (arithmetic mean)

W )
& = el , (harmonic mean) (8.33)
&+ &

V1€, (geometric mean)

where it has been found that the arithmetic mean exhibits the best perfor-
mance among above three schemes. Previous analyses of averaging techniques
have only been performed for conventional dielectrics with positive permittiv-
ity and permeability. For materials with negative permittivity/permeability [e.g.,
(¢ = —=1)/(u = —1)], one of the simplest ways to implement the averaging scheme
is to use the arithmetic mean, since the harmonic and geometric mean cannot be
clearly defined.

Since the averaging is only applied when dealing with the field components
tangential to the material interfaces [assuming a = 0 in (8.27) and (8.29)]. Hence
depending upon the configuration of the domain of the FDTD simulation, for
instance, 2-D TE, 2-D TM, or 3-D, the averaging needs to be performed in
different ways. In this study, we only consider a 2-D simulation domain as shown
in Figure 8.4. For the interfaces between the LHM slab and free space along the
x-direction, the averaged permittivity for the tangential electric field component
E, is given by

2

&0 + & Dpe
< g >= = 1—-————— 8.34
o 2 “0 l 2 (w? - /.(UYe)‘| (8.34)

which is equivalent to replacing the plasma frequency w,. by (ui’)e = wpe/V/2 in
(6.4). Therefore along the boundaries, the updating equation for E, reads
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The updating equation in (8.35) is used at the locations marked by the arrows in
Figure 8.5.

The averaging of permittivity can be implemented for the (E, D, H, B) scheme
by the procedure mentioned earlier. However, for the (E, J, H, M) scheme, it is
proposed in [13] that an averaging of the tangential current density along the
boundaries of the LHM slab be used. Since the free-space current density J, = 0,
the averaged current density can be calculated from:

]0+]x_]_x
22

Then the updating equation for E, along the boundaries of LHM slab becomes an
expanded version of (8.18) as follows:

<J, >= (8.36)
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Theoretically, the above two averaging methods can be used interchangeably,
since the relations

(8.37)

1 1
D=¢E=gE+—], B=puH=pH+_—M (8.38)
jo jo

are linear; therefore, averaging of the current density is identical to the averaging of
the permeability. In this chapter, the (E, D, H, B) scheme is used in all simulations
because of its simplicity in implementation. To demonstrate the advantage of the
averaging technique, we compare the results from the simulations with and without
averaged permittivity along the material boundaries. When we do not carry out an

X LHM
m+1| +®1®4%®
eeeees R B S
m, tel1ete TX o
s e S £
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Figure 8.5 Layout of FDTD grid illustrating the arrangement of material boundaries along the
x-direction. The FDTD unit cell is shown on the right side.
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averaging of the material properties, we update the tangential electric fields using
the update equations in free space.

The above averaging procedure applies only to the field components tangential
to the material interfaces and for the case of TE polarization considered in the
simulations. If we need to apply the averaging scheme to materials with planar
boundaries for the TM and 3-D cases, or even for structures with curved surfaces,
we can follow the procedures introduced in [16,17].

8.3 Numerical Implementation

For the sake of simplicity, the plasma frequencies are assumed to be @y, = @y, =
o, and the operating frequency is chosen as o = o,/ V2. This ensures, in turn,
that the LHM slab is almost matched to the free space at this frequency in simu-
lations. We introduce a loss (i.e., 7. = 7, = y = 0.0005w) that results in a relative
permittivity and permeability &, = u, = —1 — 0.001j and helps to speed up the con-
vergence of the simulations. It is worth mentioning that there is a small amount of
mismatch between the numerical (in the FDTD domain) and analytical permittivi-
ties (6.4), which is caused by the temporal discretization in FDTD [13]. However,
this mismatch, although slight, still causes an amplification of the transmission co-
efficient though only for the lossless LHM slabs, or when the losses are very small.
In the simulations below, we use sufficient losses so as to damp out amplifications
of the transmission coefficient (the effect of FDTD cell size on this mismatch will
be analyzed in the next section).

As shown in Figure 8.6, an infinite LHM slab is modeled by applying the
Bloch type PBCs. For a periodic structure, the field satisfies the PBCs, also called
the Bloch condition, given by

E(x + L) = E(x)e/*"  H(x + L) = H(x)e /& (8.39)
A X Periodic boundary condition
N
- w/2 w o]
s 2 503
2 %\ o £
= O
g 5 = 2 3
E 3 L £ E
> — =
& - y
% >

Periodic boundary condition

Figure 8.6 Schematic diagram of 2-D FDTD simulation domain for calculation of numerical trans-
mission coefficient.
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where k is the wave number in the x-direction and L is the lattice period along the
direction of periodicity (see Figure 8.6). When updating the fields at the boundaries
of the computational domain by using the FDTD method, it is possible to relate
the required fields from outside the computational domain by using the known
field value inside the domain by invoking (8.39). Since infinite structures have no
periodicity, we truncate them arbitrarily, and save computation time by using only
four FDTD cells in the x-direction (L = 4Ax). We employ the Berenger’s original
PML given in [27] in the y-direction, to absorb propagating waves (with k, < ko),
and a modified PML [28] is used to calculate the transmission coefficient for
evanescent waves (ky > ko). We use a soft, plane-wave, sinusoidal current-sheet
source, which allows the scattered waves to pass through, and we insert phase
delays corresponding to different wave numbers. The excitation is given by:

H, (i,j,) = H, (i,j,) + s(t)e k=it (8.40)

where j, is the location of the source along the y-direction, s(t) is a sinusoidal wave
function; 7 € [1,1] is the index of cell location and I is the total number of cells in
the x-direction (I = 4 in this case). Note that we can excite either pure propagating
waves (k, < ko) or pure evanescent waves (k; > kg) by changing the values of the
wave number k,. The sinusoidal wave function s(¢) has to be ramped up slowly and
smoothly to its maximum amplitude to minimize the excitation of other frequency
components. The sinusoidal function used in the FDTD simulations is given by

(8.41)

" Zon(t)e/® for 0 <t < mT,
s(t) = .
el®t for t > mT

where the switching function g, is the turn-on part of the m-n-m pulse (a si-
nusoidal signal that has a smooth windowed turn-on for m cycles, a constant
amplitude for 7 cycles, and then a smooth windowed turn-off for m cycles [8]).
The switching function is given by

Zon(t) = 10.0x3 —15.0xF + 6.0x), (8.42)

where xon = 1.0 — (mTo —t)/mTy and Ty is the period of the sinusoidal wave
function. An example case with 72 = 10 is shown in Figure 8.7.

The spatial discretization in the FDTD simulation is chosen to be Ax = Ay =
A/100, where A is free-space wavelength at the operating frequency. According
to the stability criterion [20], the discretized time step is At = Ax/+v/2c where ¢ is
the velocity of light in free space. As illustrated in Figure 8.6, the source plane
is located at a distance of w/2 from the front interface of the LHM slab where
w is its thickness. Therefore, the first image plane is located at the center of the
LHM slab, whereas the second image plane is formed at the same distance of w/2
beyond the slab. The spatial transmission coefficient is calculated as a ratio of the
field intensity at the second image plane to the source plane for different transverse
wave numbers k. after the simulations have reached steady state.

Figure 8.8 shows the transmission coefficient for an infinite planar
LHM slab whose thickness is w = 0.24, which has been simulated by using
the FDTD method, with and without using an averaging of the permittivity along
the boundaries and its comparison with a rigorous analytical solution. It is clearly
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Figure 8.7 A time domain excitation function with a smooth switching time of 10T, where Ty is
the period of the sinusoidal wave function.

evident that numerical results obtained by using the conventional dispersive
FDTD, without an averaging of the permittivity, are correct only for k, < 2kg.
This range of k, not only covers the propagating waves (k, < kg) and but also a
small part of weakly decaying evanescent waves (kg < k, < 2k). Note, however,
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Figure 8.8 Comparison of transmission coefficient as a function of transverse wave vector kx for
infinite planar LHM slabs with &r = yr = —1 — 0.001j and thickness w = 0.2, calculated from exact
analytical solution and dispersive FDTD method with and without averaging of permittivity along
the boundaries of LHM slabs.
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that for evanescent waves with k, > 2k(, the numerical results are significantly
different from the analytical ones and, that the former shows a resonant behavior
with a strong peak at k, = 2.4ko. This effect can be explained as a numerical
artifact (which is caused by the incorrect modeling of material boundaries and
only exists in inaccurate numerical simulations) at the back interface of the
LHM slab. However, a similar behavior can also be observed when the slabs are
metallic [7] or for unmatched LHMs [19], but in this particular case it is a purely
a numerical artifact. This incorrect behavior of the numerical solutions continuous
to prevail even when the FDTD cell size is reduced to /200 and 1 /400, but the
resonance shifts to k, = 2.8k and k, = 3.2k (as may be seen from Figure 8.8
where these two results are indicated by triangles and squares), respectively.

The above comparison provides evidence that the boundaries between the
LHM and the free space have not been modeled accurately. If at the boundaries
the mean value of the permittivity of LHM and the free space is used for updating
the tangential component of the electric field (which is equivalent to the spatial
averaging suggested in [13]) then the spurious resonant behavior no longer exists
and the modeling results becomes very accurate. The transmission coefficient cal-
culated by using the proposed spatial averaging at the boundaries is depicted in
Figure 8.8 by using crosses. It is evident that the results agree well with estimated
analytical values with a very good accuracy for the entire range of spatial spectra of
the waves. The calculation has been carried out by using Ax = Ay = 1/100, and it
remains accurate even for larger cell sizes (e.g., Ax = Ay = 1/80). The above sim-
ple test leads us to conclude that the conventional dispersive FDTD method fails
to describe the propagation of high-order evanescent waves along the boundaries
of LHM slabs if we do not apply the interface condition correctly at the bound-
aries of the LHM slab. Consequently, a number of results previously obtained by
using the conventional dispersive FDTD approaches have to be examined. This is
particularly relevant when we model the phenomenon of subwavelength imaging
by LHM slabs [7] that involves the contribution of evanescent waves. Note that
the simulations that are concerned only with propagating waves, as for instance,
when attempting to demonstrate negative refraction for an obliquely incident plane
wave, are not affected by this difficulty encountered during the process of dealing
with the evanescent waves.

The results shown in Figure 8.8 may help to explain why some of results ob-
tained previously for the LHM slab problem were incorrect. For instance, we can
argue that the amplification in the transmission coefficient is solely due to the mis-
match of the real part of permittivity/permeability across the interface [19]. This is
confirmed by the plot in Figure 8.9, which is in good agreement with the theoreti-
cal result given in [19]. The above figure also shows that the mismatch causes the
cutoff of transmission to move to a lower value, in other words, regardless of the
amount of losses, if the LHM slab is matched to free space [i.e., (Re[¢] = —&)],
there is no amplification in the transmission coefficient [18]. Furthermore, increas-
ing the amount of losses lowers the cutoff of the transmission coefficient [18],
which is also observed in the FDTD simulations with averaged permittivity, as
shown in Figure 8.10. Therefore it is conjectured that the inaccuracy in the nu-
merical transmission coefficient, derived by using the FDTD method in [11,12] is
attributed to an incorrect modeling of the boundaries of LHM slabs in FDTD.
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To calculate the transmission coefficient, we use PBCs in the x-direction to
simulate an infinite structures and average the permittivity along both the bound-
aries in the y-direction. Also we show in a later part of this chapter that we use
an averaging of the permittivity for the corresponding tangential field components
along the boundaries in both the x- and y-directions, when modeling finite-sized
structures.

Besides the averaging technique mentioned above and used along the bound-
aries of LHM slabs, there are other numerical aspects of the FDTD simulations,
identified below, that influence the correctness of the results pertaining to the
LHM slabs. In the rest of this chapter, unless otherwise specified, the field aver-
aging scheme developed below is always applied at the material interfaces for the
accurate FDTD modeling of LHM slabs with other media.

8.4 Effects of Material Parameters on the Accuracy of Numerical
Simulation

Typically, when modeling conventional dielectrics, it is assumed that the results
are sufficiently accurate and that the effect of numerical material parameters is
negligible, provided that we use an FDTD cell size that is less than Ax = 1/10.
However, when we are dealing with evanescent waves, the true value of permittivity
and permeability and their counterparts that are strongly affected by the spatial
resolution of the FDTD grid, have a significant impact on the accuracy of the
simulation results. The above effect was originally identified in [13] for lossless
LHMs using the (E, J, H, M) scheme. We can follow a similar procedure to obtain
the numerical permittivity/permeability for lossy LHMs, and below we derive for
the (E, D, H, B) scheme. Note that since we have assumed that ¢, = pu,, we limit
the derivation of the numerical material parameter to the permittivity alone.
If we revert to updating (8.11), substitute the expressions,

Enﬂ:l _ Ene:t]'(DAt’ Dn:tl _ Dne:tja)At (8.43)
and utilize the trigonometric relations,

/oM + e ON = 2cos (0AL), e/ — e TTON = 2jsin (wAt) (8.44)

We can rewrite (8.11) as

2 2

E 5 + (202 cos(wAt) + E" | — — B2 +E ¥ jsin(wA?)

=D" 2 cos(wAt) — D" 2 + DL jsin(@A?) (8.45)
g0 (At)? g0 (At)? oAt '
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Figure 8.11 Comparison of the real part of analytical permittivity (6.4) and numerical permittivity
(8.46) for different FDTD spatial resolutions. The parameters (i.e., op, yp, and ©) are chosen so that
the real part of analytical permittivity is equal to —1.

Using straightforward manipulations, we can derive the numerical permittivity

(¢ = D"/E") from the above equation to get
wg(At)zcosza’TAt

2 sin@ 02 (2 sin®M — jyAt cos24?)

(2‘: = go (8.46)

If we let the collision frequency y = 0, then (8.46) reduces to the numerical per-
mittivity for lossless LHMs given in [13]. If At — 0, then (8.46) reduces to the
permittivity for the analytical study given in (6.4).

To study how different spatial FDTD spatial resolutions affect the numerical
permittivity, we first choose the parameters in (6.4) that yield a permittivity equal
to —1 and then compute the numerical permittivities from (8.46). The comparison
between the two results is shown in Figure 8.11. It can be evident that while the
analytical permittivity is always equal to —1, the same is not true for its numerical
counterpart. For instance, when the FDTD spatial resolutions of Ax > A /60, the
numerical permittivity shows significant deviations from the true value, and this,
in turn, leads to an amplification of the transmission coefficient as we show in
the following section. This leads us to conclude that the spatial resolution typi-
cally employed in the conventional FDTD simulations of frequency-independent
dielectrics, namely Ax < 4/20, is inadequate when analyzing the LHMs because
a coarse discretization fails to deal with evanescent waves accurately. The plot
in Figure 8.11 also suggests that the spatial resolution of less than Ax < 1/80 is
necessary for the accurate modeling of the LHMs.

Previously an FDTD cell size of Ax = 1/100 was used in the simulations.
By substituting the corresponding time step Az = Ax/v/2¢, and the operating fre-
quency, we obtain the numerical value for the relative permittivity from (8.46) to
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get & = —0.9993 — 0.0010;. Although there is a very slight mismatch between the
real part of the numerical relative permittivity and its true value of —1, the losses in
the LHMs damp out the spurious results of the fields introduced by the mismatch
and the simulation results are shown be very accurate. However, if we increase
the FDTD cell size to Ax = A/40, we observe a much more severe effect on the
numerical permittivity and considerable discrepancy between the FDTD simulation
result and the exact solution. The mismatch between the material parameters serves
to introduce an amplification in the transmission coefficient in the simulation as
shown in Figure 8.12. We can again estimate this mismatch by using (8.46) which
yields the numerical relative permittivity of & = —0.9959 — 0.0010/, and the cor-
responding transmission coefficient is plotted in Figure 8.12 and compared with
the analytical result. Good agreement between the two is seen for high-wave-vector
ky regime, which corresponds to the evanescent wave region.

Another advantage of estimating the numerical permittivity while modeling
LHMs is that the effects of mismatch in the FDTD simulations can be corrected.
After simple derivations using (8.46), the corrected plasma and collision frequencies
can be obtained as follows:

52 2 sin2 [—2(g) — 1)sin 2 — &yAt cos %% ] (8.47)
b (At)2cos? 2 '

23”sin“’TAt
y = r 8.48
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Figure 8.12 Transmission coefficient of infinite planar LHM slabs using proposed FDTD method
with averaged permittivity and without the correction of material parameters. The amplification
of transmission coefficient is caused by the mismatch introduced by time discretization in FDTD
(&r = —0.9959 — 0.0010j) with Ax = 1/40. The same permittivity is used to obtain an analytical
solution for comparison.
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Figure 8.13 Transmission coefficient of infinite planar LHM slabs using proposed FDTD method
with averaged permittivity and with the correction of material parameters for different FDTD spatial
resolutions: Ax = 1/40 and Ax = 1/100. The numerical permittivity in FDTD is & = —1 — 0.001}.
The same permittivity is used to obtain analytical solution for comparison.

where ¢ and ¢ are the real and imaginary parts of the relative permittivity &,
respectively. For & = —1 — 0.001/, we substitute &/ = —1 and ¢’ = —0.001 into
(8.47) and (8.48) to get @y = 1.4157w and y = 5.0051 x 10~*®. The FDTD sim-
ulation results based on these corrected material parameters and its comparison
with the analytical solution are shown in Figure 8.13. It can be seen that the mis-
match is no longer noticeable in the FDTD simulations, and consequently, there
is no amplification in the transmission coefficient. We reiterate that the discrep-
ancy between the exact and numerical solutions in the high-wave-vector region
is caused by an inadequate level of discretization in the FDTD where a spatial
resolution of Ax = 1 /40 was chosen. However, if we use a finer spatial resolution
of Ax = 2/100, the FDTD simulation results show good agreement with the ana-
lytical solution. Therefore, it is recommended that an FDTD cell size smaller than
Ax = 2/80 be used for modeling LHMs especially when evanescent waves must
be accounted accurately.

8.5 Effects of Switching Time

When the FDTD is used for single frequency simulations, the time domain source
should be turned on and ramped up smoothly to its maximum value to avoid
the excitation of other frequency components [8]. The switching time has an even
more significant effect, when modeling the LHMs, on single frequency results.
It is well known that the switching time influences the oscillation of images in
the simulation of a perfect lens, and often 30 time periods are used to switch
on the source [10, 11]. Recently, it was reported in [29] that using a switching
time of at least 100 is needed to obtain a stabilized image for lossless LHMs, and
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Figure 8.14 The amplitude of source for different switching times in FDTD simulation of infinite
LHM slabs for a fixed wave number kx = 3ko. To is the period of sinusoidal wave function at the
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we conjecture that the reason why no stable images were obtained was that the
switching time did not include a sufficient number of cycles.

On the basis of the FDTD simulations performed in this study, we have also
found that the switching time has a significant influence on the nature of oscillation
of the field intensity at the image plane and, hence, affects the convergence of the
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Figure 8.15 The influence of different switching times on convergence time in FDTD simulation of
infinite LHM slabs for a fixed wave number kyx = 3ko. Tp is the period of sinusoidal wave function at

the operating frequency. The field amplitude is taken at the second image plane of LHM slab.
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time domain simulations. We choose the switching times in the FDTD simulation
to be 50Ty, 100Ty, 150Ty, 200Ty, and 250T) where Ty is the period of the
sinusoidal wave function. The FDTD cell size is Ax = A /100 and corrected material
parameters derived from (8.47) and (8.48) are used. In order to ensure faster
convergence, larger amounts of losses and & = —1 — 0.01; are used in simulations.
It should be noted that because high-wave-vector components travel very slowly
in LHM slabs, it takes a very long time for evanescent waves to grow fully and to
reach the steady-state. For this reason, the simulations should be continued into
the late times until the field values have fully converged. For &, = —1 — 0.01j, we
use a convergence criterion of 0.001% to terminate the simulations. The temporal
signatures of the sources for different switching times for a fixed wave number
ky = 3ko are displayed in Figure 8.14 and the corresponding amplitudes of the
field at the second image plane of the LHM slab are presented in Figure 8.15. It is
evident from Figure 8.15 that for a fixed wave number of k, = 3k, the oscillation
in the field intensity can be significantly suppressed by using protracted switching
time. A large amount of losses (¢, = —1 — 0.01/) has been used to demonstrate the
effect of switching time. The switching time has even more significant impact on
the convergence time in FDTD simulations if we reduce the losses to lower levels.

It is understandable that when the oscillation can be neglected, the convergence
time increases with the switching time. For the demonstration of the impact of the
switching time on the convergence time, FDTD simulations with various switching
times are performed and the collected data is plotted in Figure 8.16. It can be seen
that there exists an optimum switching time when the minimum convergence time
can be achieved for the case of k, = 3ky. However, for different wave vectors and
material parameters, the behavior of oscillation varies considerably and in certain
cases the oscillation may last for a very long time. For simulations pertaining
to subwavelength imaging by a line source, it is necessary to switch the source
sufficiently slow to ensure the convergence of the time-domain simulation, since
the source is comprised of a wide spectrum of wave vectors.

8.6 Effects of Transverse Dimensions on Image Quality

As we mentioned earlier, a number of results reported in previous works need to
be evaluated carefully and checked for validity. Recently, a rather puzzling result
related to the quality of imaging provided by LHM slabs has been reported in the
literature [30]. It is claimed that the performance of a finite-sized LHM structure is
significantly affected by its transverse dimensions. We reexamine this statement by
using an FDTD code that utilizes spatial averaging at the boundaries of the LHM
slabs, and has been proven to be accurate. The finite-sized slabs of LHM excited
by soft magnetic current line sources are modeled for three different transverse
dimensions, . = 4, 24, and 44, as illustrated in Figure 8.17. The parameters of
the LHM slab (¢ = u = —1—0.001j, w = 0.21), and the distance between the
source and front interface equals /2 for all these simulations. The computational
domain is truncated by PMLs located at a distance of A /2 away from the LHM
slab, and in both source and image planes. The FDTD cell size Ax = Ay = /100,
and time step Af = Ax/+/2c are the same as those used for the previous plane-wave
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Figure8.16 The dependence of convergence time on switching time in FDTD simulations of infinite
LHM slabs for a fixed wave number kyx = 3kq. A criterion of 0.001% is used to detect iteration errors
and terminate simulations.

simulations. The source is switched slowly and smoothly to avoid the contributions
from undesired frequency components, as in [8], and the time stepping is continued
until the steady state is reached. The intensity distributions obtained in the image
plane are plotted in Figure 8.18 for all three cases of different transverse dimensions
mentioned above. It is evident from this figure that the image quality is almost
unaffected by the transverse size of the LHM slab. The fields in the image plane
are seen to replicate the source distribution, which is also plotted in the same figure.
The subwavelength resolution is seen to be good and the finiteness of LHM slab
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Figure 8.17 Schematic diagram of 2-D FDTD simulation domain for modeling the imaging of
magnetic line sources by finite-sized LHM slabs.
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Figure 8.18 Comparison of field intensities of magnetic field |Hz|2 at image planes of planar LHM
lenses (er = ur = —1 — 0.001j, w = 0.21) with various transverse dimensions: L = 1, 224, and 4A.

does not distort the image, which is contrary to the conclusions reported in [30].
The slight disagreement between the image and source distribution is attributable
to losses in the LHM. The resonant effects and image distortions reported in [30]
may have been caused by spurious excitations of “numerical surface plasmon”
at the interfaces between the LHM slab and free space, since these artifacts also
arise when the FDTD simulations are used without spatial averaging of material
properties at the boundaries introducing undesirable inaccuracies in the process.
Incidentally, the fact that the imaging performance of finite-sized LHM slabs is
unaffected by their transverse dimensions has been confirmed independently by
full-wave electromagnetic simulation using the Ansoft HFSS package.

8.7 Modeling of Subwavelength Imaging

To further validate the assertion that the subwavelength imaging property of the
LHM lenses is insensitive to their transverse dimensions, FDTD simulations with
the spatial averaging at the boundaries have been performed for an LHM slab
whose transverse size is L = A, and that is excited by two magnetic line sources A /8
between each other. The rest of the parameters for this study are the same as those
used in the previous investigation of the single-source case. The distance between
the two sources exceeds the resolution of the LHM lens, which is estimated to be
better than A /12 based on the fact that the transfer function plotted in Figure 8.8
is close to unity for k,/k < 6; hence, for the present case, we expect two well-
resolved maxima in the image plane. The distribution of magnetic field intensity in
a subdomain near the LHM slab (the actual FDTD domain is larger) in the steady
state is presented in Figure 8.19(a). The field distribution in the image plane is
shown in Figure 8.19(c) together with the source. Two maxima at the distance
of A2/8 are clearly visible in the image plane. This confirms the subwavelength
imaging capability of the LHM lens whose width is only one wavelength. This
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Figure 8.19 The magnetic field intensity distributions around a LHM slab with transverse size L = 1
excited by two magnetic line sources placed at 1/8 distance between each other obtained using
the FDTD method (a) with and (b) without spatial averaging; and (c) comparison of magnetic field
intensities at the source and image planes of the LHM slab.

leads us to conclude that the truncation of the transverse dimensions of an LHM
slab does not appear to have an overt effect on its functionality as a subwavelength
imaging device. However, when the same system is incorrectly modeled via the
FDTD method without using boundary corrections, the field distribution around
the slab can be significantly different, as shown in Figure 8.19(b). For instance,
the field distribution along the slab interface is found to be smooth, which once
again confirms that higher-order evanescent waves are not correctly modeled in
the simulation without boundary corrections. As a consequence, the subwavelength
details of the source are not resolved in the image plane, which only shows a single
and relatively wide maximum [see Figure 8.19(c)], as opposed to two closely-spaced
maxima.
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8.8 Conclusions

In this chapter, numerical simulations of LHMs have been performed using the dis-
persive FDTD method. Two ADE methods for simulation, namely the (E, D, H, B)
and the (E, J, H, M) schemes, which yield identical results, have been introduced.
It is demonstrated that the conventional FDTD method for the modeling of LHM
introduces inaccuracies when dealing with higher-order evanescent waves and is
unable to simulate the subwavelength imaging phenomena correctly. The simula-
tions introduce spurious artifacts of “numerical surface plasmons,” which appear
at the interfaces between the LHM slab and the free space. To solve this problem,
and to ensure the accuracy of the FDTD modeling, a spatial averaging scheme at the
boundaries of LHM slabs has been applied to a test problem, which is analytically
tractable. The results of the simulation have been found to have good accuracy for
all angles of incidence even when higher-order evanescent waves are involved.

The numerical permittivity in FDTD has been derived to handle the simulation
where a mismatch between the numerical and analytical permittivities is introduced
by the discretization in FDTD, and a way to correct such a mismatch has been
described. The oscillatory behavior of field intensity has been studied as a function
of the switching time, and it is shown that there exists an optimum switching time
that serves to reduce the convergence time in the FDTD simulations to a minimum.

Finite-sized LHM slabs excited by a single line source have been investigated
by using the proposed technique for various transverse dimensions of the slab, and
their subwavelength imaging capability has been confirmed. It is shown that the
finite transverse dimensions of the structure does not introduce distortion in the
image and is thus contrary to the results reported in [30]. It is suspected that
the resonant effects due to the finite transverse dimensions of LHM slabs reported
in [30] are caused by the incorrect modeling of the material boundaries and are
numerical artifacts. These effects are not seen to be present in real structures, and
there appear to be almost no restrictions on the functionality of the LHM subwave-
length lenses that are tied to their transverse dimensions. In fact, it is demonstrated
that the FDTD simulations with spatial averaging at material boundaries can
successfully image two line sources separated by a subwavelength distance between
each other, even when the transverse dimension is only one wavelength.
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Spatially Dispersive FDTD Modeling
of Wire Medium

9.1 Introduction

In the previous chapter, we have investigated, through numerical simulation whe-
ther or not the finite transverse dimensions of LHM slabs influence the quality of
their subwavelength imaging. However, in practice, the fabrication of LH media
remains problematic, since it requires the creation of negative permeability, which
does not exist in nature. Furthermore, currently available designs of the LH media
are very lossy at both microwave and optical frequencies, which restricts and even
prevents their use in subwavelength imaging applications. There is an alternative
approach to subwavelength imaging in the sense of mapping the source distribution
in one plane onto another (the imaging plane). This approach involves neither the
use of LH media nor does it capitalize on negative refraction or amplification of
evanescent waves, which has been referred to as canalization in [1-42]. It is based
on transporting both the propagating and evanescent spectra of a source by trans-
forming them into propagating waves inside a slab of specially designed materials.
Then, these propagating modes are capable of transporting subwavelength images
from one interface of the slab to the other. The source must be placed very close to
the front interface of the slab in order to minimize the degradation of its spectrum
that occurs when the fields propagate in the free space. It is also necessary to min-
imize the reflection from the slab via an appropriate choice of its thickness. This
is done by tuning the slab thickness for Fabry-Perot resonance to reduce reflec-
tions from its interface for a wide range of angles of incidence and minimize the
interfering interactions between the source and the slab that can distort the image.
The material operating in the canalization regime should have a flat isofrequency
contour, implying that it should support waves traveling in a certain direction with
fixed phase velocity for any transverse wave vectors. The materials that fulfill this
requirement are available at both microwave [1, 2, 6] and optical [4] frequency
ranges. One such artificial material, suggested in [6] is the wire medium comprised
of a regular array of parallel metallic wires [5] (see Figure 9.1 for its geometry).

Originally, it was thought that the transmission devices formed by wire media
would function only at microwave frequencies, where most of the metals behave
as ideal conductors. However, recently, the use of similar structures for subwave-
length imaging at terahertz and infrared frequency bands, where metals display a
plasma-type behavior [6] have been recently proposed.

In this chapter, the performance of subwavelength imaging by the transmis-
sion devices formed by a wire medium at microwave frequencies is investigated.
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Figure 9.1 The wire medium: a rectangular lattice of parallel ideally conducting thin wires.

The finite-sized planar slabs of the wire media excited by subwavelength sources
are modeled by using a new spatially dispersive FDTD scheme. The simulation
of the wire medium can be performed either by modeling its physical structure,
namely, an array of parallel conducting wires [6] or via the use of the effective
medium approach, provided that the dimensions of the inclusions is sufficiently
small compared with the wavelength of operation. To model the physical struc-
tures, we can either use an extremely fine FDTD grid in the conventional Yee algo-
rithm (which requires an excessive amount of computer resources); spectral domain
methods that utilize modified telegraph equations; use the subcell method [7-12];
the method based on the contour-path integral formulations of FDTD [11,13,14];
the method by discretizing a second-order wave equation for the current [15]; or
the method based on the weighted residual (WR) interpretation of the FDTD algo-
rithm [16-18]. Among all of these available techniques, we explore its use below
for the imaging problem at hand.

Numerical simulations of the structure consisting of an array of 21 by 21
aluminium wires excited by a source in the form of a “P” letter were performed
using the CST Microwave Studio utilizing the finite integral technique [6]. The
dimensions of the wire medium simulated in [6] were chosen as a = b = 10 mm,
r =1 mm and the thickness of the wire medium is d = 150 mm (half-wavelength
at the operating frequency, f = 1.0 GHz). If such a structure is simulated in FDTD
by modeling its physical details, excessive computational resources are required.
On the other hand, the effective medium approach is seen as a simple and effi-
cient alternative when exploring the abundant applications of the wire medium in
antenna and microwave engineering.

One of the applications of the wire medium as a transmission device is to
increase the capacity of digital versatile discs (DVDs), where closer located bright
spots can be distinguished compared to the conventional case. Using the wire
medium also avoids the touching and destroying of data surface when performing
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the scanning. Other potential applications of the wire medium include the con-
struction of directive antennas [1] and antenna substrates/superstrates [2].

9.2 Spatial Dispersion in the Wire Medium

As mentioned earlier, the wire medium is an artificial material formed by using par-
allel, perfectly conducting wires, arranged in a rectangular lattice (see Figure 9.1).
This medium has been well known as an artificial dielectric with plasma-like prop-
erties at microwave frequencies [20, 21, 41], but only recently it has been demon-
strated that the wire medium has a strong spatial dispersion [5], and hence, it is
a nonlocal material and in the spectral domain, it cannot be described by using
only a frequency-dependent permittivity tensor. The permittivity tensor of the wire
medium depends on the wave vector as well. In this study, we employ the follow-
ing expression given in [5] to represent the permittivity tensor of the medium, as
follows:
&

R (9.1)

2(0,q) = &(0,q,)xx + 9y + 23, &(o,q,)=1-

where the x-axis is oriented along the wires, g, is the x-component of the wave
vector q; k = /c is the wave number of free space; c is the speed of light; and &,
is the wave number corresponding to the plasma frequency of the wire medium.
The wave number k, depends upon the lattice periods 4 and b, and on the radius
of the wires r [22]:

27/ (ab) 1 +00 <coth(7mc§) — 1) 1
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For the case of the square grid (a = b), F(1) = 0.5275 and the expression (9.2)
reduces to

kz 27'[/612

I L L — 9.3
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The expression (9.1) for the permittivity tensor of the wire medium is valid if
the wires are relatively thin compared to the lattice periods and if the lattice periods
are much smaller than the wavelength, and hence the medium can be homogenized.

In contrast to the usual uniaxial dielectrics that only support two types of
modes, namely ordinary and extraordinary. The wire medium supports three dif-
ferent types of modes:

e TE modes (ordinary modes, relative to the orientation of the wires): Waves
that polarize in a direction across the wires and do not induce any currents
along the wires. In the thin wire approximation, one can regard these as
modes as though they are traveling in the free space, without interacting
with the wires.

e TM modes (extraordinary modes, relative to the orientation of the wires):
Waves that correspond to nonzero currents in the wires and nonzero electric
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field along the wires. At the frequencies below the plasma frequency, these
waves are evanescent.

e TEM modes (transmission-line modes that are transverse to the orientation
of the wires): Waves with nonzero currents in the wires, but with zero elec-
tric field along the wires. These modes travel with the speed of light along
the wires (g, = +k), with their wave vector oriented along the transverse di-
rection. They correspond to the modes of a multiconductor transmission line
formed by the wires, and allow one to use the wire medium for canalization.

The wire medium has a strong spatial dispersion. Typically spatial dispersion
effects exist in a periodic structures when the wavelength is comparable to the
period of the structure [23]. The wire medium is a unique material, in which can
be spatially dispersive at any frequency.

9.3 Spatially Dispersive FDTD Formulations

Although a wide variety of complex electromagnetic media have been modeled by
using the FDTD method, the list is certainly not all-inclusive. In the past, the focus
has been primarily on the frequency dispersion effects; the spatial dispersion effects
have been generally ignored. Perhaps the lack of attention to the spatial dispersion
effects can be attributed to the following two reasons. First, it is widely assumed
that the spatial dispersion effects are usually quite weak, and hence they can be
neglected when studying certain electromagnetic crystal structures. However, there
is a number of complex materials in which the spatial dispersion effects are strong
and play a dominant role in determining their electromagnetic properties. One
example such a material is the wire medium. The second possible reason why the
spatial dispersion effects have not attracted the attention of many researchers is the
complexity in describing the effects. In contrast to the numerous analytical models
that deal with the frequency dispersion effects, analytical expressions that describe
the spatial dispersion for particular materials are generally unavailable. The wire
medium is an exception such that the spatial dispersion effects in this material can
be characterized by simple analytical expressions given in (9.1).

Using (9.1) the wire medium can be modeled in the FDTD as a frequency
and spatially dispersive dielectric. To account for the dispersive properties of the
materials in the FDTD modeling, we introduce the electric flux density in the con-
ventional FDTD updating equations. The x-component of the electric flux density
D.(w,q,) is related to the corresponding component of the electric field intensity
Ey(®,q,) in the spectral (frequency-wave vector) domain as follows:

D.(0) =¢(®,q9,)Ex(®) (9.4)

Hence one can obtain the dispersion relationship:

(& = @) Da+ (22— 12+ k3 ) &0 Ex = 0 (9.5)



9.3 Spatially Dispersive FDTD Formulations 271

from which we can obtain the constitutive relations in the space-time domain in
the following form:

or 1 o2
— -~ |D,
ox? 2o

where we have taken an inverse Fourier transformation and employed the
relationships:

1 6% o2
+ (C_Zﬁ ox =3 + kp> gEr =0 (9.6)
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The above equation only relates the x-components of the electric flux density
to the field intensity. The permittivity in both the y- and z-directions is the same
as that in the free space since the wires are assumed to be thin and the structure
is symmetrical.

The FDTD domain is discretized by using an equally spaced 3-D grid with
periods Ax, Ay and Az along the x-, y-, and z-directions, respectively, and the time
step is At. For the discretization of (9.6), the central finite difference operators in
time 87 and space 82 as well as the central averaging operator with respect to time
u? are used as shown here:

o? 5?7 o? 52
32 (A2 2 ky — kouy

ot (At) ox (Ax)

The same central difference and average operators in time 57 and u? were used
in Chapter 8 and their definitions are repeated here for convenience. The central
difference operator in space 82 is defined in a similar way as the central difference
operator in time, as shown here:
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Here F represents the field components; #2,,m,,m, are indices corresponding to
a specific discretization point in the FDTD domain; and 7 is the number of time
steps. In the discretized (9.6) we get

52 1 &2 1 67 52
S~ S | Pt | e e Tk | 0Ex =0 (9:8)
(Ax) c* (At) c (Ar) (Ax)?

Note that in (9.8), the discretization of the term klz, of (9.6) is performed using
the central averaging operator u? to guarantee stability. In the next section, we
analyze the stability of such a discretization scheme as well as that of others that
employ a central averaging operator y; over a time interval 2A¢, with or without
the use of the central averaging operators [24].
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Equation (9.8) can be written as:

Dx|:lnx+l,my,mz - 2Dx|:lnx,my,mz + Dx|:lnx—l,my,mz
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Therefore, the updating equation for E, in terms of E, and D, at previous time
steps is as follows:

n+1 o n+1 n n
Ex|mx,my,mz - a1 blxDx|mx,my,mz + beDx|mx+l,my,mz + b3xDx|mx,my,mz
n n—1 n
+ b4xDx|mx—1:my:mz + beDx My 1y Mz (aszx|mx+l,my,mz

+ a3 Ex |mx my,my + a4xEx|:lnx—l,my,mz + asxEx |mx my, mz>:| (9.10)

with the coefficients given by
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During the process of modeling the wire medium by using the spatially dis-
persive FDTD, we compute D from magnetic field intensity H, and H from E are
performed by using Yee’s conventional FDTD equations [25], while E, is calcu-
lated from D, using (9.10) and E, = ¢, 1Dy, E,=¢g, ID,. Note that in (9.10), the
central difference approximations in time (for the frequency dispersion) are used
for both D, and Ey, at the position (#,,m,,m;). Central difference approxima-
tions are also used in space (for the spatial dispersion) at the time step # in order
to update E, at the time step 7 + 1. As a consequence, the storage of D, and E,
at two previous time steps are required for this procedure.

As discussed in Chapter 8, a field-averaging technique needs to be used for
the accurate modeling of the interface between LHM slab and free space. Since
the wire medium is uniaxial in nature, the averaging procedure in (9.1) needs to



9.3 Spatially Dispersive FDTD Formulations 273

be applied for the electric field component E,. Furthermore, as pointed out in
Chapter 8, the field averaging can be avoided by setting the boundary of the wire
medium slab along the y-direction so that it is aligned with the tangential electric
field component, as shown in Figure 9.2. Likewise, if the boundary of the wire
medium slab along the x-direction is set to be at the same as that of the magnetic
field H,, no additional averaging would be required.

At the boundaries of the wire medium slab along the y-direction, the updating
equation in (9.10) includes D, and E, at previous time steps in both free space
and the wire medium. In the region outside the wire medium, (9.10) reduces to
one that relates D, and E, in the free space, and the fields E, are updated locally.

Equation (9.10) incorporates the terms corresponding to both the frequency
and spatial dispersion effects. If the terms corresponding to the spatial dispersion
that contain Ax are omitted from (9.10), then the rest of the expression reduces
to that of a classical updating equation for the Drude material with the collision
frequency equal to zero [i.e., &(w) =1 — /elz,/kz] [26]:

1 2 212 -1
Ex|:lnt,my,mz = {2 —C <At) kp:| Ex|:lnx,my,mz — Ey :lnx,my,mz
-1 1 —1
+80 |:Dx|:lnt,my:mz o 2Dx|:lnx:my:mz + Dx|:lnx:my:mz:| (911)

The updating equation (9.11) is used for modeling uniaxial Drude materials (the
frequency-dispersive materials without the spatial dispersion), which can be treated
as a conventional but incorrect description of the wire medium [20, 21, 41], in
order to demonstrate the significance of taking into account the spatial dispersion
effects in modeling the wire medium.

We limit ourselves only to a 1-D wire medium in this study and assume that
the lattices of parallel ideally conducting wires are oriented along a single direction
as shown in Figure 9.1. The medium can be described [5] in terms of a permittivity

Wire medium
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Figure 9.2 Layout of FDTD grid for spatially dispersive FDTD modeling of the wire medium. 2-D
FDTD simulation domain for the modeling of the wire medium as a dielectric slab for subwavelength
imaging.
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tensor given in (9.1), which has one spatially dispersive component. We note, how-
ever, there are also 2-D and 3-D wire media [27-29] that consist of two or three
orthogonal nonconnected lattices of parallel perfectly conducting wires, which can
be described by the permittivity tensors with two or three spatially dispersive com-
ponents of the same form as in (9.1), respectively. These 2-D and 3-D wire media
can also be easily modeled by using the spatially dispersive FDTD method as dis-
cussed above. The updating equation (9.10) has to be applied in two or three
directions, respectively. The results obtained from both the 2-D and 3-D FDTD
simulations of the 1-D wire medium slabs are presented in later sections, while
the stability and numerical dispersion analysis of the above developed spatially
dispersive FDTD method is presented in Section 9.4.

9.4 Stability and Numerical Dispersion Analysis

Previously, in [30], a stability analysis of the dispersive FDTD algorithm was per-
formed using the von Neumann method and numerical root searching. In this
section, we analyze the stability of the proposed spatially dispersive FDTD method
by using a technique that combines the von Neumann mand Routh-Hurwitz cri-
terion, shown in [31]. The von Neumann method establishes that, for a finite-
difference scheme to be stable, all the roots Z; of the stability polynomial $(Z)
must be located within the unit circle in the Z-plane (i.e., |Z;| < 1V i), where the
complex variable Z corresponds to the growth factor of errors and is often called
the amplification factor [31].

The wire medium is a uniaxial material where the divergence of the electric
field inside the wire medium is nonzero (V -E # 0). Therefore, to analyze the
numerical stability of the proposed spatially dispersive FDTD method, one must
start directly with Maxwell’s equations, rather than with the wave equation as
in [31] and others for homogeneous materials.

Consider the relation between D and E directly expressed from Faraday’s and
Ampere’s laws:

2

o0°D
ﬁ'ﬁ‘VX(VXE):O, (9.12)

where L is the permeability of the free space. Expanding (9.12) in a matrix form,
we get
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Using the central difference operators, (9.13) can be discretized as

& S Oy 8¢ O
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; 5. O 5 Sy 5 _
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and 6, and &, are defined in the same manner as in [32]. In addition to (9.14), the
constitutive relations in the wire medium (9.8) must also be considered and can be
written in the matrix form:

52 1 & 1 & 52 2
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For stability analysis in accordance to [31], the following solution is substituted
into the discrete equations (9.14) and (9.15),
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where F is a complex amplitude, Z is a complex variable that is a measure of the

T
growth of error in a time iteration, and q = (Z[x,ZIy,ZIZ> is the numerical wave

vector of the discrete mode. After some simple manipulations, we get
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respectively. The stability criteria is based on the behavior of the determinant of
the system of (9.17) and (9.18):

1 N sin® 0,
Z(A)2 T (Ax)?
6 ky  8sin6, g l | 22 (Ansin’6,
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(At 2 (Ax)? (Ax)?
422 (At)?sin? O 5 1 sinZ 0
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For simplicity, the terms that lead to the stability condition in the free space (i.e., the
conventional stability condition) have been omitted from this stability polynomial.

In order to avoid numerical root searching [30] as a way to derive stability
conditions, the above stability polynomial can be transformed into the 7-plane by
using the bilinear transformation

1
z=11 (9.20)
The stability polynomial in the 7-plane becomes as follows:
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P (ax)? (Ax)? (Ax)?
N 4 4sin’ Oy a1 ¢ (At)?sin® 6, o /elz,cz(At)zsinZQx 21)
c2(Ar)2 (Ax)? (Ax)? (Ax)? '

Building up the Routh table [31] for the above polynomial, we obtain the
following stability conditions:

4sin” 0, 22 ¢ (At)%sin” 6,
1— A(A0) | +4 |1 - L2 0 Px
(Ax)? - F@ne) + (A%)?
2% (At)*sin? 0
+ k2|1 %] >0 (9.22)

1 sinZ 0, oy /eltz,cz(At)zsin2 Ox
4 sz)z - (Ax)zl 1= Aanto] + T 20 (9.23)
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To fulfill these conditions, it is sufficient to fulfill the conventional Courant stability
condition [25] given by:

L1
R

Hence the conventional Courant stability condition [25] continues to apply for the
modeling of the wire medium and no additional conditions are required.
Note that in the above analysis, the central averaging operator u? was used
for the discretization of (9.6). The above operator py; is defined as
F|n+l + F|n—l

My, My My My 1My Wy

12eF ey, = 3 (9.25)

whose use leaves the stability condition (9.22) unchanged; however, now (9.23)
becomes

l 1 sin20,

2 20in2
- ] [1- 2] + kg 14 SETS0

1+ (Ax)?

(A2 (Ax)?

1 >0 (9.26)

which indicates that this stability condition is even less restrictive that it is for the
conventional FDTD method. However, if no central averaging operator is used
when discretizing (9.6), then (9.22) also remains unchanged, but (9.23) is modified
to

l 1 sin? 0,

v Ax)zl {4[1-2@an?0] - kg 0?} >0 (9.27)

Therefore, this leads to a more restrictive stability condition than the conventional
Courant condition, namely:

[N

1 1k
A< - l > Tk - (9.28)

a=x,y,2

A comparison of different stability conditions for different averaging schemes is
presented in Table 9.1. Figure 9.3 shows a comparison of the magnetic field distri-
butions using different discretization schemes. Using the central averaging operator
u? and without using the central average operator, it is evident that after 500 time
steps, the instability errors begin to appear from inside of the wire medium slab
using the latter scheme.

Table 9.1 Comparison of Different Stability Conditions for
Different Averaging Schemes

Schemes At Stability
e Courant limit Vv
s Courant limit Vv
No averaging Courant limit ) X
No averaging <c! ((D + k§/4> o Vv
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Figure 9.3 Comparison of the internal magnetic field distributions (unit: A/m) for a 0.54 x A wire
medium slab (kp/k = 4) excited by a magnetic line source calculated using different discretization
schemes. The field is plotted at the time step n = 570At, where At is chosen as the Courant limit

(i.e., At = Ax/+/2¢, Ax = 1/200).

The numerical dispersion relationship for the wire medium can be found by
evaluating the stability polynomial S,,(Z) given by (9.19) on the unit circle of the
Z-plane (i.e., when Z = ¢/®*) and equating the results to zero. Substituting the
expression

7 = oM (9.29)

into the stability polynomial (9.19), equating the result to zero, and dividing ¢/>©*!
on both sides of the equation, one can obtain

L & on ygq| L sin’ 0, +@| PN
CZ(At)Z 4 CZ<At)2 (Ax)z
6 g B 8sin® 0y gl 262 (At)?sin® 0, . 4/612,62(At)zsin29x
c2(At)? 2 (Ax)? (Ax)? (Ax)?
1 sin’ Oy - 1 k2 .
4| — 0} —jwAt - -r e—;Za)At -0 930
et T T e T (9.30)

Combining similar terms and according to the fact that
&M = cos (wAt) + jsin (wAL), e = cos (oAt) — jsin (wAt)

(9.30) can be rewritten as

6 K,  gsin’er [ 262 (At)2sin® 0, . 4y c?(At)*sin? 0,
(A2 2 (Ax)? (Ax)? (Ax)?
1k 1 sin2 6,
2 | 2c0s(2mAt) +4| — ®|2 At) =0 (9.31
T2 s cos(20At) + 2 T e cos(wAt) =0 (9.31)
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Applying transforms

At At At
cos (0At) = 1 — 2sin? <a)7> ., sin(wAt) = 2sin <a)7> cos <a)7>

Equation (9.31) is reduced to

_c2<1t)zsmz<wzm>° <wAt> ks < )Osz<w7At>

N 4 N ACLY; 4sm 9 > kz c*(At)%sin 20,
2an \ 72 (Ax)?
_4sin? <“’2At> o4 e : A)x)sm O g — (9.32)

Using cos® (28%) =1 — sin? (2) and solving for @, the numerical dispersion re-
lation for the spatially dispersive FDTD modeling of the wire medium is obtained

as:
2 oAt 4sin~ 0y 2 2 At kﬁCz(At)zsinzex
{Z(Aterk}SIH 2 _[(SAx) +k} Nt g
2 oAt c2(At)%sin” 6. = (9.33)
4[sm 2 W}

If AB — 0, where B = x,y,z,t, then (9.33) reduces to the continuous dispersion
relationship for the wire medium [5]:

(22-#)(F+a2+a2 - K +k) =0 (9.34)

The first and second terms of (9.34) correspond to the transmission-line modes
(TEM waves with respect to the orientation of wires) and the extraordinary modes
(TM waves), respectively. The ordinary modes (TE waves) did not appear in (9.34)
since their contribution was omitted in (9.19) for the sake of simplifying the
calculation.

9.5 Perfectly Matched Layer for Wire Medium Slabs

In [33], Berenger’s original PML was extended to absorb the electromagnetic waves
propagating in anisotropic dielectrics and magnetic media, by introducing the
material-independent quantities (electric flux density D and magnetic flux density
B).

PMLs are typically placed at a distance of half-wavelength away from any
objects located inside the simulation domain. In order to reduce the time and com-
puter memory requirements for simulations as well as to improve the convergence
performance, it is necessary to place PMLs in the close vicinity of the wire medium.
Towards this end, we use a similar approach followed in [33] by modifying the
Berenger’s original PML formulations. In the modified PML (MPML) for the wire
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medium slab, the quantities D and H are split, and the updating equation for D,
for instance, D,, now becomes:

n+1 _ —olAt n
sz|mx,my,mz =e sz|mx,my,mz
(1 _ e—cr,@At)
n+1/2 n+1/2
+ —G;Ax |:Hy|mx+l/2,my,mz Hy|mx—l/2,my,mz (935)

However, the updating equations for H remain the same as in the Berenger’s orig-
inal PML [34]. The matching conditions are:

ol = %, where a = x,y,z (9.36)
0

where o/, and o denote the electric conductivity and the magnetic loss inside the
MPML, respectively. Comparing the matching conditions for the MPML and with
those for Berenger’s original PML (o, /g0 = o /10), we can readily see that the
difference between o], and o, is a factor of g. This explains why this factor us
missing in the expression for the theoretical reflection coefficient R(0) for o, [33],

R(6) = e~2(0s0/9) I3 o4(p)dp (9.37)

where 6 is the thickness of the MPML. In common with the losses in the Berenger’s
PML, the losses in MPML should increase gradually with depth p, as follows:

0%(p) = Olmas (5" (9.38)

The optimum values of o}, .. and 7z depend on the thickness §. The thicker
the absorber, the larger the optimum values of o/, ... and 7 should be. Some
numerical experiments pertaining to the selection of o/, .. and #, for various
absorber thicknesses have been reported in [35-38]. Enforcing (9.38) in (9.37)
yields the reflection coefficient for the MPML

R(Q) — e—ZG&AmaXSCOSQ/(fl-‘rl)C (9.39)

Typically, 7 is chosen equal 2 and oy, ., is calculated to obtain a normal

theoretical reflection coefficient R(0) = 107>. In addition to (9.35), the updating
relation between D and E in (9.10) must be extended into the PML in order to
realize a match between the wire medium and the MPML.

To evaluate the performance of the MPML for the wire medium, we choose
a 2-D computational domain similar to that in Figure 9.10, except that the wire
medium slab is now terminated by a 10-cell MPML as shown in Figure 9.4(a). As
for the other side, the Berenger’s original PML is used to truncate the free space.
The source is located close to the edge of the wire medium slab terminated by the
MPML and is placed sufficiently far away from the other side of the slab in order
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Figure 9.4 (a) Simulation domain and (b) reflection error (in decibels) from the MPML-wire medium
and PML-free space interfaces calculated at the observation plane (two cells away from the PMLs)
for a wire medium slab excited by a magnetic line source (d = 0.54, h = 0.14 and ko/k = 4) plotted
as functions of the time step.

to ensure that the waves reflected back from that side do not reach the reference
plane during the simulation period. The observation plane is chosen to be two cells
away from the MPML. The reference plane is located at the same distance from
the source as the observation plane, but from the opposite side [see Figure 9.4(a)].
The magnetic fields at the observation and reference planes are recorded as Hpyip
and H,, respectively. The reflection error is defined as

(9.40)

Hpmr — H
reflection error (dB) = 20 x log;, <M>

| Himax|

where |Hpax| is the maximum value of the magnetic field at the reference plane. The
reflection error, calculated for H, with this termination is plotted in Figure 9.4.
For comparison, the reflection error at the interface of PML-free space is also
shown in the same figure. It is found that the level of reflections from the PML
is below —70 dB, leading us to conclude that the wire medium is “perfectly”
matched.

Figure 9.5 shows the comparison of magnetic field distributions obtained by
using: (1) the Berenger’s original PML at a A /2 distance from the slab and (2) an
MPML that truncates the wire medium slab directly. We note that, in comparison
with Figure 9.5(a), the simulation domain for the one in Figure 9.5(b) is reduced by
50%, while the convergence is greatly improved, since diffraction from the corners
and edges are mitigated when the MPML is used for the termination. For the first
case, the iteration error falls below —30 dB only after 1,000 periods (400,000 time
steps), while for the latter, the convergence is reached in just 100 periods.
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Figure 9.5 (a) Distribution of magnetic field for a finite wire medium slab with dimensions 0.54 x 14
excited by a magnetic line source (kp/k = 4). (b) The same slab, but terminated by a 10-cell MPML
at each side along y-direction. (unit: A/m)

9.6 Numerical Thickness of Wire Medium Slabs

Because of the spatial discretization in the FDTD algorithm, as well as because of
the spatial dispersion effect introduced by the wire medium, the numerical thickness
of the wire medium slab in the FDTD domain may be different from their actual
one. It is important to model the thickness correctly for accurate subwavelength
imaging by the wire medium slabs, because the transmission characteristics are af-
fected significantly by their thickness. Figure 9.6 shows the simulation domain for
calculating the numerical transmission coefficients. The source and image planes
are located at the opposite sides of the wire medium slab and are aligned with the
locations of the magnetic fields, because the transmission coefficient is calculated
using the H, component. As discussed in the previous sections, the boundaries
along the y-direction are aligned with the tangential electric field component E,
to avoid field averaging at material interfaces. The computational domain in the
y-direction is truncated by Bloch’s PBCs in order to render the wire medium slab
effectively infinite along that direction. When updating the field components at the
boundaries of the simulation domain in the y-direction, the required field compo-
nents outside the domain can be calculated by using the PBC and the fields inside
the domain. In the x-direction, the computational domain is terminated either by
using Berenger’s original PML [34] for absorbing propagation waves or the PML
proposed in [39], which has been modified for evanescent waves. In common with
the procedure used to calculate the transmission coefficient of LHM slabs, we place
a soft plane wave source given by Chapter 8 at a distance of 1/10 away, on the
left side of the source plane to avoid the introduction of the singularities in the
FDTD simulation. The orientation of the wires in the modeled wire medium is
along the x-axis. The polarization of waves is TM with respect to the orientation
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Figure 9.6 Schematic diagram of 2-D TE FDTD simulation domain for the calculation of the nu-
merical transmission coefficient of a wire medium slab with thickness d (normalized by Ax). The
arrows and circles indicate the electric and magnetic field components outside the computational
domain, to which the PBCs are applied.

of the wires. The electric field is in the x-y plane and the magnetic field is along
the z-axis. The thickness of the wire medium slab in the FDTD domain is drptp
(depTD = dAx where d is the normalized thickness as indicated in Figure 9.6). The
FDTD cell size is Ax = Ay = 1/200, and the time step is At = Ax/v/2c, chosen in
accordance with the Courant stability condition [25]. The plasma frequency w,
is inversely proportional to the resolution of the wire medium as a transmission
device [40], and this frequency can be chosen as arbitrarily in the numerical sim-
ulations. For the present case, we choose the wave number corresponding to the
plasma frequency of the wire medium to be four times the wave number of free
space (i.e., k, = 4k).

The numerical transmission coefficient is calculated by evaluating the ratio of
the transmitted magnetic field at the image plane to that of the incident field at
the source plane. The incident field is obtained from simulations carried out in
the absence of the wire medium slab (i.e., in free space). The calculated numerical
transmission coefficient, and its comparison with the exact analytical solution [40]
for the case of a half-wavelength-thick infinite-long wire medium slab, are shown
in Figure 9.7. We even see that when the analytical and the numerical thicknesses
of the wire medium slab are the same, namely A /2, the two results do not agree
with each other, because the numerical thickness of the wire medium slab has not
been properly chosen in the FDTD domain. However we can vary the thickness
parameter so that in the analytical solution, the analytical transmission coefficient
agrees with the numerical ones, we then find that the actual analytical thickness
of the modeled wire medium slab is /2 + Ax. Additionally, we can say that for a
slab whose thickness is A /2, the correct numerical thickness to use in the FDTD is
drpTD = A /2 — Ax, as we also see from Figure 9.7. In fact, according to Figure 9.6,
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Figure 9.7 Comparison of transmission coefficient for an infinite-long slab of wire medium calcu-
lated from FDTD simulations and analytical solution. The thickness of the modeled wire medium
slabis 1/2, and 1 is the wavelength at the operating frequency. The numerical thickness of the slab
in the FDTD domain is denoted as drprp. The FDTD spatial resolution is Ax = 2/200. The analytical
solution is given in [40].

the distance between the source and image planes is dppTp + Ax, which is exactly
A /2, and this serves to explain why the numerical thickness of the wire medium
slab is different from the analytical one by Ax.

Next, to investigate the effect of different spatial resolutions used in the FDTD
on the numerical transmission coefficient that we calculate, we carry out FDTD
simulations with the same configuration as in Figure 9.6, but with different values
of Ax. Figure 9.8 shows the calculated numerical transmission coefficient for the
two cases, namely Ax = 1/100 and A /40, without correcting for the numerical
thickness dppTp. We observe that although the numerical transmission coefficient
can always be made to agree with the analytical one the FDTD results do not
converge as we vary the spatial resolution in the FDTD, indicating that the thick-
ness of the wire medium slab is not properly modeled. On the other hand, if we
properly correct the numerical thickness applied, the FDTD results progressively
approach the analytical result as we reduce the FDTD cell size, as evident from the
plot in Figure 9.9. Therefore, we conclude, that we must always use the corrected
numerical thickness dpptp = A/2 — Ax in FDTD simulations.

In the following 2-D and 3-D FDTD simulations of the wire medium slabs,
the corrected numerical thickness is always used. Note that for modeling finite-
sized wire medium slabs, the PBCs in Figure 9.6 are replaced by the PMLs with
white space at the slab boundaries along the x-direction. The material interfaces
are aligned with the locations of the magnetic field (see Figure 9.2); hence, no
additional field averaging is required.
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Figure 9.8 Comparison of transmission coefficient for an infinite-long slab of wire medium cal-
culated using analytical solution and from FDTD simulations with different spatial resolutions:
Ax = 2/100 and Ax = 1/40 without the correction of numerical thickness. The thickness of the
modeled wire medium slab is 1 /2. The numerical thickness of the slab in the FDTD domain in
denoted as drprp. The analytical solution is given in [40].

Analytical (thickness A/2)

1
0.9 | ; X FDTD (dyprp =M/2 -Ax, Ax =1/100)

08 | O FDTD (dgprp =A/2 -Ax, Ax =A/40)

n

0.7
0.6
05 | 00665604
0.4

0.3
0.2
0.1

Transmission coefficient,

k,-/!,\'g

Figure 9.9 Comparison of the transmission coefficient for an infinite-long slab of wire medium
calculated using an analytical solution and from FDTD simulations with different spatial resolutions:
Ax = 2/100 and Ax = 4 /40 with the correction of numerical thickness. The thickness of the modeled
wire medium slab is 1 /2. The numerical thickness of the slab in the FDTD domain is denoted as
drptp- The analytical solution is given in [40].
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9.7 Two-Dimensional FDTD Simulations

We begin by implementing the spatially dispersive FDTD method in 2-D simu-
lations with a view to studying wave propagations through a wire medium. The
computation domain is infinite in the z-direction and has a rectangular shape in
the x-y plane, as shown in Figure 9.10.

The FDTD cell size and the time step are the same as used previously when
calculating the transmission coefficient (Ax = Ay = A /200 and At = Ax/v/2c). The
wire medium has a rectangular shape with dimensions d x w in the x — y plane (see
Figure 9.10), and the orientation of the wires is along the x-direction. The wave
number corresponding to the plasma frequency of the wire medium is four times
that of the wave number of free space (k, = 4k). The thickness of the slab d should
be an integer number of half-wavelengths in order to realize the canalization [1,
6]. A magnetic line source radiating sinusoidal signals is placed at a distance of
b from the front interface of the wire medium slab. As illustrated in Figure 9.10,
the front and back interfaces of the imaging device are treated as the source and
image planes, respectively.

For the first simulation, the line source is placed in the close proximity of
the front interface of the wire medium slab (b = 1/200). This setup enables us to
illustrate the fact that the waves in the wire medium travel along the wires at the
speed of light, in contrast to the free-space case where the waves can travel with
the speed of light in any direction. The line source creates a cylindrical wavefront
in the free space (see Figure 9.11) since the waves can travel in all directions
with the same speed. As soon as the cylindrical wave enters the wire medium, the
form of the wavefront changes dramatically and becomes conical (see Figure 9.11).

0 ySource plane Perfectly matched layer

\ ¥
()
5
d ro
Source [~ > %
Wire medium E

w
(e, 1)
h
<
X

Figure 9.10 The layout of the computational domain for 2-D FDTD simulations. The orientation
of wires in the modeled wire medium is along the x-direction.
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Figure 9.11 Transient propagation of the wave excited by a magnetic sinusoidal line source located
at the 1 /200 distance from the front interface of 11 x 21 slab of the wire medium at different time
steps: (a) t = 175At, (b) t = 400At, and (c) t = 530At.

The wave travels with the speed of light along the surface of the wire medium in
free space, and excites transmission line modes of the wire medium that travel
in the orthogonal direction (along the wires) with the same speed; consequently
the wavefront becomes conical. Note that the front part of the cone contains the
subwavelength information of the source, and the subwavelength image is formed
as soon as the cone reaches the back interface of the slab. Therefore, the image is
formed with the speed of light and all of the spatial harmonics from the spectrum
of the source reach the image plane simultaneously.

In the second simulation, a magnetic line source is placed at /10 away from
a wire medium slab with its dimensions of 0.54 x 1A. The power flow diagram
in the steady state for this case is presented in Figure 9.12. One can see that the
power flow changes direction in the vicinity of the interfaces because of the evanes-
cent extraordinary modes of the wire medium and that inside the wire medium,
the energy is only transferred along the direction of wires with the help of the
transmission line modes. Also, it is noteworthy that no undesirable diffractions
from the corners of the slab are observed. This can be explained by the fact that
waves inside the wire medium travel and transfer energy only along the x-axis and
that no waves travel along the y-axis. That is why the interfaces in the y-direction
do not reflect any waves; furthermore, there is no diffraction from the corners.
In view of this, it is not necessary to choose the transverse size w of the slab to
be significantly larger than the wavelength for the transmission device to function
satisfactorily, which is not the case in conventional lenses. In fact, the transverse
dimensions of the transmission device can be arbitrary; for example, one or two
wavelengths provide good subwavelength imaging performance as our numerical
experiments have shown.

In the next simulation, the thickness of the slab is fixed at A /2, and the distance
between the source and the wire medium slab at A/10, though the transverse
dimension of the slab is increased to 2A. Figure 9.13 shows the distributions of
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Figure 9.12 Power flow diagram in the steady state for the 0.54 x 11 slab of the wire medium
excited by a magnetic line source located at the 2/10 distance from the front interface.

electric and magnetic fields after the steady state is reached. The absolute values of
these fields are presented in Figure 9.14. One can see from Figure 9.13(a) that the
nonzero x-component of the electric field is present inside the wire medium slab
only in the proximity of the interfaces. This can be easily explained since only the
extraordinary modes of the wire medium have a nonzero electric field along the
wires, but these modes in the present case are evanescent and decay with distances,
and consequently, the x-component of the electric field vanishes at the center of the
slab. Only the transmission line modes are present inside the wire medium slab, and
hence, the electric and magnetic fields have only y- and z-components, respectively,
as may be seen from Figure 9.13(b, ¢). In accordance to the canalization principle,
the transmission line modes transport the information on the fields from the front
interface to the back one. This is why the absolute values of the fields are the same
at the front and back interfaces, as seen from Figure 9.14. However, the fields in
the image plane appear out of phase with respect to those in the source plane since
the thickness of the slab is 1 /2.

The images produced by the transmission devices operating in the canalization
regime exactly repeat the source distributions if the thickness of the structure is
equal to an even number of half-wavelengths and appear out of phase if the thick-
ness is equal to an odd number of half-wavelengths [1]. An example of a case where
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Figure 9.13 (a-c) Distributions of electric and magnetic fields for a 0.54 x 21 slab of the wire
medium excited by a magnetic line source located at /10 from the front interface.

the image appears in phase with the source is a wire medium slab with dimensions
of 24 x 4, while the other parameters remain unchanged from the previous case.
Figures 9.15(a-c) show the distributions of the electric and magnetic fields in the
simulation domain for this case, and it is evident that the fields at the back inter-
face of the slab are very close to the one in the front. Additionally, the distribution
of the magnetic field in the plane y = 4 is plotted in Figure 9.15(d) in order to
demonstrate that the field inside the wire medium has harmonic dependence with
the period A along the direction of wires. Using this example, and the fact that
the magnetic field is continuous at the interface between free space and the wire
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Figure 9.14 (a-c) Absolute values of the fields plotted in Figure 9.13.
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Figure9.15 (a-d) Distributions of electric and magnetic fields for a 24 x 1 slab of the wire medium
excited by a line source located at /10 from the front interface.

medium, it is possible to explain the canalization principle for the subwavelength
imaging: The field at the back interface of the slab reproduces the distribution at
the front interface because the total thickness of the slab is equal to an integral
multiple of half-wavelength.

The wire medium is a unique artificial material that possesses strong spatial
dispersion effects. It is not straightforward to compare its properties with media
without the spatial dispersion; however, it is possible to reveal certain similarities
and differences. For example, if the spatial dispersion effects are neglected in (9.1)
then one deals with a uniaxial Drude material with the permittivity tensor given

by

g =g(0)X%+59+22,  glo)=1--L (9.41)

Such a model can be treated as an old and incorrect description of the wire medium
[20, 21, 41]. The wire medium in simulations corresponding to Figure 9.13 has
been replaced by a local uniaxial Drude material with permittivity tensor (9.41).
All other parameters of the structure (k, =4k, h = 1/10, w =21, d = A /2—see
Figure 9.10) are kept unchanged. The FDTD simulations are performed by using
the updating equation given by (9.11). The distributions of the fields in the steady



9.7 Two-Dimensional FDTD Simulations 291

3 Re(Ey) [V/m] 5 Re(Ey) [V/m] 5 Re(H-) [A/m]
‘- ! 60 I 60 . 0.2
40 25 40 25 013
5 | 25| 50 € 3 | 5
20 | 20 == -:»_::5
0 2.1 b o 2t bl o
20 ‘ 20 = 0.0:
20 15 w0 T 15} ‘ il
= | - 0,18
-60 | | 60 T - o
1| 1 :*
I |
| 0.5 0.5 -
| |
0 0! 0
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
X/ X/ x/A
(a) (b) (c)

Figure 9.16 (a-c) Distributions of electric and magnetic fields in the steady state for a 0.51 x 21
slab of the uniaxial Drude material (9.41) with k,/k = 4 excited by a line source located at 1/10
distance from the front interface.

state are presented in Figure 9.16. One can readily observe the strong difference
between the field plots in Figures 9.16 and 9.13, which correspond to the uniaxial
effective medium model of the wire medium, and the wire medium itself. The
waves inside the uniaxial Drude material do not travel precisely along the axis
of anisotropy (see Figure 9.17), and hence, they suffer multiple reflections from
the edges and corners of the slab. The interference pattern caused by the multiply
reflected waves distorts the field distributions in both the source and image planes,
as may be seen from Figure 9.18(b). This example shows that it is extremely
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Figure 9.17 (a-c) Distributions of electric and magnetic fields in the steady state for a slab of

the uniaxial material with infinite permittivity along anisotropy axis (9.42) excited by a line source
located at /10 distance from the front interface.
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Figure 9.18 Absolute values of magnetic field in the source and image planes of the transmission
devices formed by three different materials: (a) wire medium (Figure 9.14), uniaxial material with
infinite permittivity along anisotropy axis (Figure 9.17), and (b) uniaxial Drude material (Figure 9.16).

important to take into account of the spatial dispersion while modeling the wire
medium.
As a matter of fact, the wire medium behaves similar to a uniaxial material
with a permittivity tensor
g, = 00XX + 9y + 22 (9.42)
This can be explained by the fact that the component ¢,(®,q,) of the permittivity
tensor of the wire medium (9.1) happens to be infinite for the transmission line
modes with g, = £k. The FDTD simulations have been performed for the struc-
ture, in a manner similar to that depicted in Figure 9.10, but instead of the wire
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Figure 9.19 (a-c) Distributions of electric and magnetic fields in the steady state for a 0.51 x 21
slab of the wire medium excited by three equally spaced magnetic sources with phase differences
equal to 180° located at /20 from the front interface.
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Figure 9.20 (a-c) Absolute values of the fields plotted in Figure 9.19.

medium, the uniaxial material with an infinite permittivity along the anisotropy
axis as described in (9.42) has been used. The updating equation for the E, compo-
nent inside such a material is relatively simple: Ex|:’,,t71my7,nz = 0. The results of the
simulation are presented in Figure 9.17. It appears at first sight that Figures 9.13
and 9.17 are identical. However, a more careful comparison immediately reveals
the significant differences between the two. Specifically, in the case of the uniaxial

material with infinite permittivity along the axis of anisotropy, the x-component

0.25
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- - - Image plane
0.2
~
e
0.15
0.1

1.1 12 13 14 15 16 1.7 18 19
yIA
Figure 9.21 Absolute values of magnetic field at the source and image planes for a 0.54 x 21 slab

of the wire medium excited by three equally spaced magnetic sources with the phase differences
equal to 180° located at A/20 distance from the front interface.
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of the electric field is zero everywhere inside this material; however, for the wire
medium there are regions near the front and back interfaces of the slab where this
component is nonzero. In other words, the anisotropic model represented in (9.42)
allows one to describe the transmission line modes of the wire medium but does
not account for the extraordinary modes. The presence of the extraordinary modes
in the wire medium renders the distributions of the fields in the source and image
planes slightly different from those in the case of the uniaxial material with infinite
permittivity along the anisotropy axis, as may be seen from Figure 9.18(a). We see
from the plots in Figure 9.18, that both the wire medium slab and the uniaxial ma-
terial with infinite permittivity along the axis of anisotropy demonstrate a nearly
perfect reproduction of the source fields in the image plane as they are almost
identical to each other. The difference between the distributions can be explained
by the fact that higher-order spatial harmonics experience nonzero reflections from
the wire medium slab as shown in [40]. However, as we note from Figure 9.18(b),
these reflections are significantly higher for the case of the local uniaxial Drude
material, and strong ripples caused by the interference of waves reflected from
the edges and corners of the slab adversely affect the imaging operation of the
device.

In previous studies, good imaging performance of the wire medium slabs
has been demonstrated. However, the subwavelength imaging capabilities of such
devices have yet to be confirmed since only single-line source excitations have been
used in previous simulations. We will investigate this property of the wire medium
by performing additional FDTD simulations using more complex (subwavelength)
sources. Three equally spaced magnetic line sources are placed A /20 away from
the front interface of a 0.54 x 24 wire medium slab. The distance between the
sources is A /20, and the central source is excited out of phase with respect to the
neighboring ones that flank it. The proposed three-source configuration creates a
distribution with two strong maxima at the front interface of the wire medium
slab, and the distance between these maxima is approximately A/10. The results
of the spatially dispersive FDTD simulation of the wire medium slab excited by
complex sources are presented in Figures 9.19 and 9.20. The size of the compu-
tational domain, the operating and plasma frequencies, the FDTD cell size, and
the time step remain unchanged from those employed previously. The distribution
of the magnetic field in the image plane is presented in Figure 9.21. We see that
the two maxima, separated by a distance of 1 /10, are clearly resolved by the de-
vice. We conclude, therefore, that the wire medium slab is capable of achieving
subwavelength resolution while reproducing the source distribution in the image
plane.

9.8 Three-Dimensional FDTD Simulations

The FDTD simulations can be extended directly from the above 2-D case of H
polarization to the 3-D case. Here a 1-D wire medium is considered where the
orientation of the wires is only along the x-direction. As in the previous 2-D case,
the wire medium is also modeled using the effective medium method. The FDTD
cell size is increased to A /100 because of the limitations imposed by computation
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resources when carrying out the 3-D simulations. The time step is At = Ax/v/3c¢
to satisfy the Courant stability condition [25], and the operating frequency is 1
GHz. The plasma frequency is chosen to be six times the operating frequency (i.e.,
k, = 6k). The simulation domain is shown in Figure 9.22. The MPMLs for the
wire medium developed previously, are used in the y- and z-directions to guaran-
tee a fast convergence in simulations of the simulations. The Berenger’s original
PMLs [34] are used in the x-direction to truncate the free-space region. In order
to demonstrate the subwavelength imaging of complex sources, a meander-line
antenna is chosen as the source excitation. The meander-line antenna is placed
at a distance of 1/20 to the front interface of the wire medium. The source and
image planes are then located at one FDTD cell away from the front and back
interfaces of the wire medium slab, respectively. The wire medium slab provides
the transportation for the TM-polarized waves [6, 40]; therefore, the electric field
components parallel to the orientation of wires at the source plane can be “im-
aged” with a good resolution. The distributions of the electric field component E,
near the meander-line antenna and at both the source and image planes are com-
pared to demonstrate the subwavelength imaging property of the wire medium
slab. Figure 9.23 shows the distribution of the radiated electric field E, taken at
one FDTD cell away from the antenna. It can be seen that the meander-line an-
tenna source creates a field distribution with details at a scale of much less than
the wavelength. The comparison of the distributions of E, at the source and image
planes of the wire medium slab is shown in Figures 9.24 and 9.25, respectively.

A/20  wire medium

L

antenna source image plane

1.2

_ 1.2
_ 1
_ 0.8
_ 0.6
_ 0.4 y/2
0.2

0.2
source plane

Figure 9.22 3-D FDTD simulation domain for modeling of subwavelength imaging by a 1-D wire
medium slab.
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Figure 9.23 Radiated electric field distribution Ex by the meander-line source taken at one FDTD
cell away from the source location: (a) real value and (b) absolute value.

The evanescent waves created by the antenna source carry subwavelength details.
However, they decay rapidly in the free space and at the source plane of the wire
medium slab. We observe from Figures 9.24(a) and 9.25(a) that at a distance of
A/20 from the meander-line antenna, the field distribution has much lower res-
olution than that near the source. However through the wire medium slab, the
field is transported to the other side and the distribution is repeated with a very
good resolution (< A/10). The image appears out of phase because the thickness
of the wire medium slab is equal to a half-wavelength [see Figure 9.24(b)]. The
results in Figures 9.24 and 9.25 confirm that the wire medium slabs possess a good
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Figure 9.24 Comparison of electric field distributions of Ex at the (a) source plane and (b) image
plane of the wire medium slab.
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Figure 9.25 The absolute values of the field distributions plotted in Figure 9.24: (a) source plane
and (b) image plane.

subwavelength imaging property for practical sources radiated from antennas. The
above FDTD simulation results have also been verified through the experimental
ones provided in the following section.

9.9 Experimental Verifications

The initial experimental investigation of the subwavelength imaging capability of
the wire medium slabs has been performed recently in [6]. The antenna in the
form of a letter “P” has been used as a subwavelength source. The clear images
of the source are detected at the back interface of the transmission device, and a
resolution of 1 /15 is demonstrated for a 18% operation bandwidth. The extensive
theoretical studies [40] based on the analysis of transmission and reflection coef-
ficient predicts that the subwavelength imaging should be observed for at least a
4.5% bandwidth for any type of sources. However in practice, for certain sources
the imaging bandwidth may be larger. The complexity of the near field produced
by the source and the interaction between the source and the transmission de-
vice play a crucial role in determining the imaging performance of the system. At
the frequencies outside the theoretical minimum band of operation, strong reflec-
tions from the wire medium slab are expected in accordance with the theory given
in [40], and consequently, the sensitivity of the source with respect to the external
fields becomes an issue. If the source is very complex, and contains a substan-
tial amount of subwavelength details then its near-field distribution can be easily
distorted by the presence of reflections from two interfaces of the medium, and
subwavelength imaging cannot be observed at frequencies outside the theoretical
minimum band of operation. However, as observed in [6], if the source is simple
and does not contain many subwavelength details then the source is relatively im-
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mune from reflections and the image can be successfully transported to the back
interface even at some frequencies outside the minimum band of operation.

To investigate the imaging capability of the wire medium slabs in further de-
tail, an experimental study has been carried out using a meander-line antenna
printed on a 2-mm-thick slab of duroid whose relative permittivity ¢, is 2.33 [see
Figure 9.26(b) for other dimensions]. This source was deliberatively chosen be-
cause its near-field distribution is considerably more complex than that of the “P”
antenna used in [6]. The return loss (S11 parameter) within the frequency band
from 840 to 1,060 MHz for the meander-line antenna in the free space is com-
pared with the return loss of the same antenna, but when it is placed close to
the front interface of the wire medium slab, see Figure 9.26(a). The results of the
comparison are presented in Figure 9.27 and clearly demonstrate that the wire
medium slab does not affect the meander-line antenna at the frequency band from
915 to 955 MHz (see the shaded area in Figure 9.27). This implies that within
the above frequency range, the meander-line antenna is relatively immune to the
presence of the wire medium slab. The slab is “transparent” to the source at these
frequencies.

To verify general behavior of the imaging system, a near-field scan has been
performed for frequencies in the 840-1,060 MHz frequency band that is signifi-
cantly wider than the band of 915-955 MHz, where perfect imaging is expected.
An mechanical automated near-field scanning device and a 2-mm-long monopole
probe made from the central core of a coaxial cable with a 2-mm diameter have
been used. The scan area is 24 x 24 cm? with 75 steps in both directions. The
probe is oriented normal to the interfaces of both the meander-line antenna and
the transmission device and consequently only detects the normal component of

190
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=
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9/0
et S5 i varaan coaxial feed
@ ®

Figure 9.26 (a) The geometries of the transmission device: an 21 x 21 array of wires with T mm
radii and (b) the near-field source. All dimensions are in millimeters.



9.10

Internal Imaging by Wire Medium Slabs 299

9.10

Return Loss §; (dB)
S

- R
0w o B P
T T T T

—  Without WM lens
3 """ WithWM lens

.84 85 .86 .87 .88 .89 .90 91

1 1 1 1 1 1 1
92 .93 .94 .95 .96 .97 .98 .99 1.00 1.011.02 1.03 1.04 1.05 1.06
Frequency (GHz)

Figure 9.27 Thereturn loss (511 parameter) as a function of frequency for the meander-line antenna
in free space and at the interface of the wire medium slab [42].

the electric field. The wire medium slab is capable of imaging only the electro-
magnetic waves with the TM polarization [6], and only the normal component of
electric field is restored at the back interface. The other two components contain
the contributions of electromagnetic waves with the TE polarization and are not
transported by the wire medium slab. Selected results from the near-field scans
at 23 frequencies from 840 to 1,060 MHz with a 10-MHz step are presented in
Figures 9.28 and 9.29. At 910-960 MHz the fields at the source plane with and
without the presence of the wire medium are nearly identical (see Figure 9.29 for
results at 940 MHz). This confirms that the wire medium slab does not intro-
duce significant reflections at these frequencies. At the same time the field in the
image plane reproduces the source field with an accuracy of about 2 cm. This
confirms that the resolution of the imaging device at this frequency range is about
A/15.

Internal Imaging by Wire Medium Slabs

The above 2-D, 3-D FDTD simulation and experimental results demonstrate the
potential of the wire medium slabs as transmission devices in which the canalization
effect allows the subwavelength information of a source to be transferred to the
image plane. In this section, the amplification of evanescent waves because of
the resonant excitation of standing waves inside the slab is demonstrated through
FDTD simulations; in contrast to the case of LHM slabs, the amplification of
evanescent waves is due to the resonant excitation of surface plasmons at the
interfaces of the slab.
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Figure 9.28 Results of the near-field scan at 850 MHz, 860 MHz, 880 MHz, 900 MHz, and 910 MHz
(in arbitrary units): the component of electric field normal to the interface at a 2-mm distance from
the meander antenna in free space (source plane without wire medium), the same but when the
antenna is placed at the front interface of the transmission device (source plane with wire medium)
and at a 2-mm distance from the back interface of the wire medium slab (image plane) [42].

Three-dimensional FDTD simulations have been performed to demonstrate
internal imaging using the wire medium slab. The simulation domain is the same
as the configuration shown in Figure 9.22. The internal image plane is located in
the middle of the wire medium slab. Figure 9.30 shows the distributions of the
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Figure 9.29 Results of the near-field scan at 920 MHz, 940 MHz, 970 MHz, 1,010 MHz, and 1,040
MHz (in arbitrary units): the component of electric field normal to the interface at a 2-mm distance
from the meander antenna in the free space (source plane without wire medium), the same but
when the antenna is placed at the front interface of the transmission device (source plane with
wire medium), and at a 2-mm distance from the back interface of the wire medium slab (image

plane) [42].
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absolute and real values of the electric displacement components at the source
plane, the front interface, and the internal image plane. It can be seen that the
source creates a near-field distribution shown in Figure 9.30(a, d) that contains
fine subwavelength details at an order of 1 /20 or even smaller. However because
evanescent waves carrying subwavelength information decay in free space, the
electric field at the front interface of the wire medium slab [Figure 9.30(b, €)] does
not contain such fine details, and the amplitude of the field is much lower than
that at the source plane. The wire medium operates in the canalization regime,
and the same distribution of the electric field as that at the front interface appears
at the back one, but this distribution does not provide detailed information about
the original source. However, the distribution of electric displacement inside the
wire medium [Figure 9.30(c, f)] repeats the original near-field distribution. The
intensity of the internal image is even larger than the intensity of the source, which
may be due to the overamplification of the certain spectrum of spatial harmonics.
The resolution of the internal imaging is about 2 /20.

The internal image that is formed is out of phase with respect to the source,
as is evident from Figure 9.30(d, f). Figure 9.19(c) shows that the same effect is
present in the 2-D case. This is because the first internal image formed by standing
waves inside of the slab is present in the wire medium slab whose thickness is
A /2. Figure 9.15 shows that for a thicker slab, for example, d = 24, there are four
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Figure 9.30 Distributions of absolute and real values of electric displacement component along
the wires for the slab of wire medium with 1/2 thickness and 0.74 x 0.7 transverse dimensions
excited by a meander-line source located at a 1/20 distance from the front interface: (a, d) in the
source plane; (b, e) at the front interface; and (c, f) inside of the wire medium (middle), respectively.
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internal image planes: The first and third ones are out of phase with respect to the
source, and the second and fourth ones are in phase.

The preliminary study shows that an image appears near the middle of the A /2
thick wire medium slab and does not change significantly beyond the 5-10% of
the slab thickness around the internal image plane location. The plane of the image
formation cannot be determined exactly from simulations since the distribution of
the electric displacement inside the wire medium varies slowly along the direction
of the wires.

The field distribution is TEM with respect to the orientation of wires and is
formed by the so-called transmission-line modes [5]. The electric field component
of such modes along the wires is equal to zero, and the electric displacement inside
the wire medium is proportional to the currents flowing along the wires. Therefore
in order to detect the internal image, we need to measure the currents along the
wires instead of either the electric or the magnetic field; in contrast to this, the
canalization regime can be detected using the near-field scanning, where the image
is formed at the back interface of the wire medium. Probably the easiest way to
capture the internal image is to embed detectors into the metallic wires at the
internal image plane and directly measure the current flowing along the wires.

The simulations of different distances between the meander-line source and
the wire medium slab have been performed. The internal images with a resolution
of approximately A/20 have been observed for the distances of d = 1/20 and
d = A /15.1f the source is placed at a distance of d = A /10 from the front interface,
the internal image is not as good as in the previous cases and the resolution is
less than A /20. This leads us to conclude that the internal imaging with a good
subwavelength resolution is available only for a limited range of distances between
the source and the device. Probably this limitation is attributed to the fact that the
dependence of the transfer function for the evanescent spatial harmonics on the
transverse wave vector is not exponential as for the case of the LHM slabs.

Conclusions

A spatially dispersive FDTD method has been developed for the modeling of wave
propagation in the wire medium using the effective medium method. The ADE
method has been used in order to take into account both the spatial and fre-
quency dispersion effects of the wire medium. The stability analysis shows that the
conventional Courant stability limit is preserved when the standard central finite
difference approximations and the central average operator are used to discretize
the differential equations. Through the use of the MPML, the wire medium can be
“perfectly” matched to the absorbing boundaries therefore the convergence perfor-
mance in simulations is greatly improved since the diffractions from corners and
edges of the finite sized wire medium slab are avoided.

The subwavelength transmission devices formed by the wire medium are cho-
sen for the validation of the developed spatially dispersive FDTD formulations.
Numerical simulations verify the subwavelength imaging capability of these struc-
tures. The results confirm that the wire medium slabs operate in the canalization
regime as transmission devices and demonstrate that this regime is not sensitive to
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the transverse dimensions of these structures. The minimum bandwidth of oper-
ation of the wire medium slab as the subwavelength imaging device is confirmed
experimentally. The actual bandwidth of operation significantly depends on the
complexity and sensitivity of the source to the reflections from the wire medium
slab.

The amplification of the evanescent spatial harmonics inside a wire medium
slab is reported. It allows to image the sources located at significant distances from
the device with a subwavelength resolution. This regime of subwavelength imaging
is based on the resonant excitation of standing waves inside the wire medium but
is not due to the excitation of surface plasmons as for the case of LHM slabs. The
capability of the wire medium slabs operating as internal subwavelength imaging
devices is confirmed through 3-D FDTD simulations using the proposed spatially
dispersive FDTD method.
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FDTD Modeling of Metamaterials
for Optics

10.1

10.2

Introduction

So far, we have applied the FDTD method to model metamaterials at microwave
frequencies. At optics, there exist some noble metals exhibiting inherent plasmonic
resonance similar to those artificial materials at microwaves. Such extraordinary
characteristics enable us to obtain negative permittivity directly from materials such
as silver or gold without creating resonant particles. Indeed, there has been increas-
ing interest in developing metamaterials at optics based on “surface plasmons”
for potential applications in subwavelength imaging and subwavelength optical
waveguides. In this chapter, we apply the proposed dispersive FDTD method and
its variations to model silver-dielectric layered structures and plasmonic wave-
guide [1-126]. It is still and perhaps even more problematic to obtain negative
permeability at optics, and hence it remains a challenge to design and implement
LHMs at optical frequencies. In this chapter, based on effective medium theory,
we propose to simulate several structures utilizing optical metamaterials, namely
a scanning near-field optical microscopy (SNOM) [12, 14] and electromagnetic
cloaking. The latter may even have applications at microwaves in military if such
materials can be practically implemented and fabricated with sufficient bandwidth
and low loss.

Dispersive FDTD Modeling of Silver-Dielectric Layered Structures
for Subwavelength Imaging

10.2.1 Introduction

The possibility of subwavelength imaging was first proposed by Pendry in 2000 [1].
It was demonstrated in the above work that a slab of LHM [2, 3] (medium with
both negative permittivity and permeability) can create images with a nearly un-
limited resolution. This idea overcomes the classical restriction on the resolution
of imaging systems, the diffraction limit, and became the starting point for the
creation of new research area of metamaterials [4], namely development of arti-
ficial media possessing extraordinary electromagnetic properties that are usually
not available in natural materials. The idea of Pendry’s perfect lens is based on
such exotic effects observable in LHM as backward waves, negative refraction,
and amplification of evanescent waves. The backward waves and negative refrac-
tion enable the focusing of the far field of a source. The near field of the source,
which contains subwavelength details, is recovered in the image plane by using the
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amplification of the evanescent modes in the slab. Currently, samples of LHMs
have been only created in the microwave region [5]. The creation of LHMs at tera-
hertz frequencies and in the optical range encounters the problems related to getting
the required magnetic properties [6, 7], which should be artificially created. In the
absence of magnetic properties, the lenses formed by materials with only negative
permittivity (for example, silver at optical frequencies) are still capable of creating
images with subwavelength resolution, but the operation is restricted to only the
p-polarization, and only when the lens is thin compared to the wavelength [1].
This idea was confirmed by recent experimental results [8], which demonstrated
the phenomenon of subwavelength imaging obtained by using silver slabs in the
optical frequency range. The resolution achieved by such lenses is limited by the
losses in silver, but this problem can be resolved by cutting the slab into separate
slabs with smaller thicknesses [9,10], and introducing active materials [15]. Un-
fortunately, at present there exists no recipe for increasing the thickness of such
lenses, except by introducing artificial magnetism at optical frequencies.

Competitive alternatives of LH media at optical frequencies are photonic crys-
tals [16,17]. The negative refraction effect was reported by Notomi in [18,19] in
photonic crystals at frequencies close to the bandgap edges, and the subwavelength
imaging using planar lenses formed by photonic crystals was demonstrated both
theoretically [20-24] and experimentally [25, 26]. Unfortunately, the resolution
of such lenses is strictly limited by the period of the crystal, as has been proven
in [27]. It implies that it is impossible to realize good subwavelength resolution
using lenses formed by photonic crystals, not only because they operate in the fre-
quency regime where the wavelength in the crystal is comparable with the period
of the lattice, but also because this wavelength can not be shortened too much due
to the lack of availability of natural high-contrast materials.

During the studies of negative refraction and imaging in photonic crystals, it
was noted that in certain cases subwavelength imaging is realized on the basis of
a mechanism other than propagation in LHMs. Actually, the negative refraction
in photonic crystals is observed either in the forward wave regime, at frequen-
cies belonging to the first propagation band [20, 24, 27], or in the backward
wave regime, which corresponds to the second propagation band [21, 22]. The
evidence of nonnegative refraction has been reported by numerous authors [28-
32], for crystals operating in the first frequency band. The lenses formed by such
crystals indeed operate in the frequency regime that involves neither negative re-
fraction nor an amplification of evanescent waves. This phenomenon was referred
to in [32] as canalization (as introduced in Chapter 9), wherein the slab of pho-
tonic crystals does not operate like a usual lens that focuses radiation into a focal
point, but effectively works as a transmission device that delivers subwavelength
images from the front interface of the lens to its back. The realization of such
phenomenon is possible if the crystal has a flat isofrequency contour [32], and
if the thickness of the slab fulfils the Fabry-Perot condition (integer number of
half-wavelengths) [32]. The flat isofrequency contour allows the transformation
of all spatial harmonics produced by the source, including evanescent modes, into
propagating eigenmodes of the crystal. This preserves subwavelength details of the
source that usually disappear with distance due to the rapid spatial decay of the eva-
nescent harmonics. These propagating eigenmodes transfer the image across the
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slab from the front to the back interface. Possible reflections from the interfaces
are minimized by utilizing the Fabry-Perot resonance phenomenon, which exists for
all incidence angles in this case, owing to the flatness of the isofrequency contours.

The lenses operating in the canalization regime have the same restrictions on
the resolution provided by the periodicity, as do the lenses working in the LH
regime. Specifically, in order to realize subwavelength resolution, it is necessary
for the period of the structure to be much smaller than the wavelength. In the
microwave region, canalization with A /6 resolution [32] has been implemented by
using an electromagnetic crystal formed by a lattice of wires periodically loaded by
capacitances, a configuration that is also called a capacitively loaded wire medium
[33]. Such a crystal has a resonant band-gap at very low frequencies (with wave-
length/period ratio A /a = 14) and does not contain high-contrast materials. The
theoretical and numerical predictions [32] have been confirmed by experimentally
[34], and a /5 resolution was demonstrated. A higher resolution can be achieved
by using loadings with larger capacitances, but actual devices based on the imple-
mentations of these suffer from high losses and exhibit very narrow bandwidths.

It is possibility to realize canalization by utilizing a wire medium, comprised of
a lattice of parallel conducting wires [35-38]. Such a device supports a very special
type of eigenmodes, the so-called transmission line modes [38], which transport
energy strictly along wires with the speed of light and can have arbitrary transverse
wave vector components. This implies that such modes correspond to completely
flat isofrequency contours, which is the principal requirement for implementing
canalization. Detailed analytical, numerical, and experimental studies [39] have
shown that flat lenses formed by the wire medium are capable of transmitting
subwavelength images with resolution equal to double the period of the structure,
which can be made as small as necessary. The lens formed by the wire medium is
a unique subwavelength imaging device for microwave frequencies, where metals
are ideally conducting. However, such lenses do not function very efficiently at
higher frequencies, including those in the visible range, since metals have plasma-
like behavior at these frequencies. In the optical range, to achieve properties similar
to the wire medium operating at microwave frequencies, it would require the use
of a uniaxial optical material, whose permittivity has the form:

E=XX+yy+ 007z (10.1)

Typically, it is assumed that it would be very difficult, if not impossible, to
realize very high values of permittivity. Though this is true for natural materials,
the same cannot be said about metamaterials, especially uniaxial ones. The high
permittivity can be achieved by employing a layered metal-dielectric structure [40]
as shown in Figure 10.1.

Such a metamaterial can be described in terms of a permittivity tensor that has
the form:

e =¢(XX+VY) +e17Z (10.2)

where

o — g1di + eads _ 81_1d1+82_1d2 -
I di+d> oL di +d>
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Figure 10.1 Geometry of layered metal-dielectric metamaterial.

In order to realize g =1 and &, = oo, and synthesize a material whose
permittivity tensor is given by the form (10.1)—required for the implementation
of the canalization regime—it is necessary to choose parameters of the layered
material such that /ey = —d1/dy and &1 + & = 1. From the first equation, it is
evident that the permittivity of one of the layers should be negative and, hence
the structure must be formed by using a combination of dielectric and metallic
layers. For example, one can choose ¢ =2, & = —1 and dy/dy = 2, or g1 = 15,
& = —14 and dy/d, = 15/14.

The numerical modeling of subwavelength imaging using the above metal-
dielectric structure has been performed in [41] using the commercial simulation
package CST Microwave Studio. Here we present the results obtained from the
modeling of such a structure by using the FDTD method. Previous studies [44]
have shown that the material boundaries have to be carefully treated in FDTD
simulations, especially for the case of negative permittivity/permeability materials,
because of the evanescent waves involved in the operation of subwavelength
imaging. To significantly improve the accuracy of FDTD simulations of LHM
for subwavelength imaging, we have proposed an material parameter averaging
method along material interfaces [44]. In the following, we first demonstrate that
although the averaging of material parameters for the metal-dielectric layered
structure is not as crucial as for the case of LHMs, the incorrect modeling
of the layered structure leads to a shift in the resonances of the transmission
coefficient. With the averaging of material parameters along the interfaces of
different materials, we have also examined the subwavelength imaging capability
of the metal-dielectric layered structure.

10.2.2 FDTD Modeling of the Silver-Dielectric Layered Structure

We consider here that the layered structure is composed of dielectric material with

&1 = 2 and lossy isotropic silver slabs with &, = —1. The Drude dispersion model
is used for the permittivity of silver:
)
0= —joy

where @, and y are plasma and collision frequencies, respectively.
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The dielectric material can be directly modeled using the conventional FDTD
method, while materials with negative permittivity or permeability can be only
modeled using the dispersive FDTD method. Although there are various dispersive
FDTD methods available for the modeling of LHMs, due to its simplicity and effi-
ciency, we have implemented the ADE method [70], which is discussed in Chapters
6, 8, and 9.

10.2.3 Numerical Results and Discussions
10.2.3.1 Calculation of Numerical Transmission Coefficient

For simplicity, we assume that in these simulations the plasma frequency is
o) = V2w where o is the operating frequency, at which the silver slabs are mod-
eled as materials with & = —1. A small amount of loss is introduced in the sim-
ulations by letting y = 0.005w, which yields a relative permittivity & given by
& = —1—0.01j, to ensure convergence of the simulations. The thickness of the
silver layer is assumed to be A/120. The permittivity of the dielectric layers is
chosen to be ¢ = 2, and their thickness equals A/60. The total number of the
modeled silver-dielectric layers is 20, which makes the total thickness of the slab
equal one-half wavelength at the operating frequency.

To compute the transmission coefficient, we apply Bloch’s PBCs along the
y-direction, as shown in Figure 10.2. For periodic structures, the field satisfies the
Bloch condition, such that

E(y + L) = E(y)¢®",  H(y+L) =H(y)e" (10.4)

where y can be an arbitrary location in the computational domain; k, is the
wave number in the y-direction; and L is the lattice period along the direction
of periodicity. When updating the fields at the boundary of the computational
domain using the FDTD method, the required fields outside the computational
domain can be calculated by using known field values inside the domain via the
use of (10.4). Since the period of an infinite structure can be chosen arbitrarily,
we use only four FDTD cells in the y-direction (L = 4Ay) to save computation
time. The Berenger’s original PML [124] is used along the x-direction, to absorb
propagating waves (k, < ko), and the modified PML [46] is employed to calculate
the transmission coefficient for evanescent waves (k, > ko). We use a soft plane-
wave sinusoidal source, which allows scattered waves to pass through. Phase delays
corresponding to different wave numbers is used for the excitations as follows:

H, (i,j,) = H, (i,],) + s(t)e & (10.5)

where j; is the location of source along the x-direction; s(z) is a time domain
sinusoidal wave function; i € [1,]] is the index of cell location; and I is the total
number of cells in the y-direction (I =4 in our case). Either purely propagating
(ky < ko) or purely evanescent (ky, > ko) waves can be excited by changing the
values of the wave number k,.

The spatial resolution in the FDTD simulations is Ax = Ay = 1/360, where A
is the free-space wavelength at the operating frequency. The discretized time step is
At = Ax/+/2c in accordance with the stability criterion [118], where ¢ is the speed
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Figure 10.2 Schematic diagram of a 2-D FDTD simulation domain for the calculation of the nu-
merical transmission coefficient.

of light in free space. The source plane is located at a distance of A /20 at the front
of the interface of the silver-dielectric slab, whose thickness, d, is 2 /2. The front
interface of the slab, where the magnetic fields are located, is treated as the source
plane, as shown in Figure 10.2. The image plane is located at the back interface
of the slab, which is also aligned with the magnetic field. The spatial transmission
coefficient is computed as the ratio of the field intensity at the image plane to the
source plane for different transverse wave numbers k,, after the simulations have
watched the steady state.

Figure 10.3 shows the transmission coefficient calculated from the FDTD
simulations for the silver-dielectric slab using the spatial averaging of permittivity
at material interfaces, and its comparison with the result with the spatial averag-
ing is omitted. We note by comparing these results with those for the LHM slabs,
previously investigated in [44], that the effect of averaging the layered slab is less
significant in the present case. However, the error introduced by omitting spatial
averaging causes the resonances in the transmission coefficient to shift, as shown
in Figure 10.3. Consequently, to model such a silver-dielectric layered structure
correctly and accurately, it is still necessary to apply spatial averaging at the mate-
rial interfaces. In the following, we will first compare the results, for the simulated
finite-sized silver-dielectric layered structures with and without spatial averaging,
and then analyze their imaging as well as subwavelength imaging properties.

10.2.3.2 Imaging Property of the Silver-Dielectric Layered Structure

Let us first consider a layered silver-dielectric slab medium that is finite along the
y-direction. The number of layers is 20, and the total thickness of each slab is 1 /2.
A magnetic point source is excited at a distance of /40 from the front interface
of the slab. The simulation is run until a steady state is reached. The distributions
of the magnetic field with and without spatial averaging at the material interfaces
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Figure 10.3 Comparison of transmission coefficient of infinite (along the y-direction) silver-dielectric
layered slabs calculated from dispersive FDTD simulations with and without averaging of permittivity
along the boundaries of different materials.

are plotted in Figure 10.4. From the first sight it appears that Figure 10.4(a, b) are
very similar except for the amplitude of the field. They both have ripples near the
boundaries along the y-direction of the slab. These ripples are caused by surface
waves traveling near the boundary of the slab. These ripples correspond to the
resonances in the transmission coefficient shown in Figure 10.3 and are primarily
associated with the first resonance. This can be gleaned by examining the period
of the ripples in Figure 10.4(a, b), which appear to agree well with each other, if
we realize that the first resonance shifts to a higher location, without the spatial
averaging, and, hence, the period of the ripples in Figure 10.4(b) is seen to be
smaller than that in Figure 10.4(a). The comparison also demonstrates that spatial
averaging does affect the FDTD simulations of layered structures, although it is less
pronounced than in the case of LHM slabs [44], where a numerical (nonphysical)
amplification in transmission coefficient occurs because of an incorrect modeling
of the material interfaces.

We also plot the field distribution along the y-direction at both the source
and image planes of the layered silver-dielectric slab, computed by using a spatial
averaging in the FDTD simulations, as shown in Figure 10.5. We observe that the
central part of the source distribution is not transferred accurately to the image
plane. This part of source contains deep subwavelength information but cannot
be delivered to the image plane because the transmission coefficient is small in the
higher-order wave vector region (see Figure 10.3). However, we can argue that the
image still contains some subwavelength information, since the half-power width
of the distribution is less than 0.1A. Also, we note that the image shows good
correspondence with the source distribution outside the central region.

Since the layered silver-dielectric medium operates in the canalization regime,
which is insensitive to the transverse dimension of the device, it is also interesting
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Figure 10.4 Distributions of magnetic field for the silver-dielectric layered structure for the case of
(a) with and (b) without spatial averaging at material interfaces from FDTD simulations.

to investigate such an effect in the numerical simulations. Therefore we reduce the
transverse dimension of the layered structure from A to A/3 while keeping the
rest of the dimensions of the slab and the simulations parameters unchanged. The
steady-state distribution of the magnetic field for such a reduce-sized structure is
shown in Figure 10.6(a), and a comparison of the magnetic field distributions in

x10

Source plane

[ o Image plane

Amplitude (a.u.)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Y/

Figure 10.5 Comparison of magnetic field distributions at the source and image planes of the
silver-dielectric layered structure with transverse dimension of 1. A point magnetic source is used
for the excitation.
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Figure 10.6 (a, b) Comparison of magnetic field distributions at the source and image planes of
the layered silver-dielectric medium with a transverse dimension of 4 /3. A point magnetic source is
used for the excitation.

the source and image planes is plotted in Figure 10.6(b). It can be seen that the
ripples are still present inside the slab, and they have a pattern similar to the one
depicted in Figure 10.4(a). The field distribution outside the slab shows a smooth
distribution, as evident from Figure 10.6(b). The difference between the source and
image distributions is attributable to the fact that the deviation of transmission co-
efficient deviates from unity for such a structure, limiting its imaging capability.
We note, by comparing the plots in Figures 10.6(a) and 10.4(a), that the imaging
property of the layered silver-dielectric medium is indeed insensitive to its trans-
verse dimension.

10.2.3.3 Subwavelength Imaging Property of the Layered Silver-Dielectric
Medium

To demonstrate the subwavelength imaging capability of the layered silver-
dielectric medium, we replace the single magnetic point source by three magnetic
point sources that are separated by a distance of A /20 and have an initial phase
difference between them that equals 180°. The sources are placed at a distance of
A/40 from the slab. The field distribution in this configuration has two distinct
maxima at the front interface of the slab (the source plane). Next, we increase the
transverse dimension of the slab to 0.6A. The steady-state distribution of the mag-
netic field is shown in Figure 10.7(a). Note that the ripples are still present inside
the slab and that their patterns are similar. It is also evident that the field propa-
gates across the slab to deliver the image to the other side. We plot the distribution
of the magnetic field at both the source and image planes in Figure 10.7(b). It can
be seen that the distance between the two maxima created by the three-source
configuration is /10 and that they are resolved in the image plane. This, in turn,
demonstrates the subwavelength imaging capability of the layered silver-dielectric
medium.
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Figure 10.7 (a, b) Comparison of magnetic field distributions at the source and image planes of the
layered silver-dielectric medium with a transverse dimension of 0.64. Three point magnetic sources
are used for the excitation with the phase difference between adjacent sources equal to 180°.

In summary, we have modeled the layered silver-dielectric medium by using
the ADEs in the dispersive FDTD method. In addition to the dispersive FDTD
method, we have also applied our previously proposed spatial averaging scheme at
the interfaces between different materials. An incorrect modeling of the material
interfaces, omitting the spatial averaging, leads to a shift of the resonances in
the computed transmission coefficient. We argue that it is necessary to apply the
field averaging for accurate modeling of layered structures. In addition we have
demonstrated the subwavelength imaging capability of the above structure via
numerical simulations and showed that this property does not depend strongly on
its transverse dimension.

A Metamaterial Scanning Near-Field Optical Microscope

10.3.1 Introduction

Generally, when a metamaterial slab is used as a “perfect lens” to produce
subwavelength images, it is by assuming that there exist two virtual planes, on
the object and the image sides, respectively. Pendry [1] has shown that a metama-
terial slab could be used as a superlens that focuses evanescent modes and resolves
objects only a few nanometers wide in the optical domain. Fang et al. [8] have
reported the results of an experimental, subdiffraction-limited, optical imaging
system comprising of a silver superlens. They have pointed out that two stringent
criteria must be met when using this device [3], namely that the surface of the
film must be extremely smooth and that its thickness must be optimized. It would
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be interesting to find an alternate approach retrieving the image that imposes less
stringent conditions: Alu et al. [111] have shown how metamaterial layers placed
at the entrance and on the exit face of a subwavelength aperture in an flat and
opaque screen could be used to enhance wave transmission through this aperture.
In this chapter, we propose an alternative implementation of the perfect lens by
using the standard methods of SNOM [12], which entails the insertion of a meta-
material slab between the object and the probe, rather than an air pocket or a
dielectric slab.

10.3.2 Theory

The diffracted spectrum of an object, whose dimensions are much smaller than
the wavelengths, is comprised of fields that have either an exponential (growing
or decaying), or a trigonometric (propagating) behaviors. Information on the ge-
ometry of this object is transported via the exponential components of the field.
For the dielectric slab case, the probe dimensions should be much smaller than
the wavelength, and it should be placed as close as possible to the object. Thus,
the slab width should be much smaller than the wavelength, so that the exponen-
tial field should decay as little as possible as it recedes from the object. On the
other hand, this is less relevant in a hypothetical metamaterial slab, in which the
exponential fields grow as they recede from the object, although this behavior is
obviously affected by unavoidable losses. According to [13], a small object lit by
a propagating field generates a diffracted field, which is partly exponential. Con-
versely, it can be argued by applying the reciprocity theorem that a small probe
placed in an exponential field converts part of this field into a propagating field,
which could be detected in the far region.

Let us suppose that the source is a plane wave of wavelength A, approximately
obtained through an array of 10 linear sources situated close to an object consisting
of two infinitely long slits in the x-direction, each with a very small width w <<
Ao. Their separation distance s is very small (i.e., s << Ag). The width of the
metamaterial slab is denoted by d. The probe is an infinitely long slit in the x-
direction, whose width W << 1, and which may be displaced up and down along
the slab in the y-direction to achieve a point-by-point scanning of the object (see
Figure 10.8). This type of probe is advantageous to use when we wish to scan only
part of the object. Moreover, we could select the probe that is best suited to our
needs from a number of different available probes. For instance, we found that
if the level of intensity detected with a given probe is too weak, we could use a
vibrating metallic conical probe [13] instead to enhance the intensity.

10.3.3 Simulation

Let us assume that the center of the probe is located on the axis of symmetry
of the imaging device and let us choose it in the middle of the metamaterial
slab. We will use a dispersive FDTD type of simulation, but other numerical
simulations [14] can also be used. We have assumed, for this simulation, that
Ao = 0.5 um, s =0.0775 pm, w = 0.115 pum, d = 0.08 pm, 0y = Op, = \/Zwo,
and v, = v,,, = 0. Also, the metallic plates are 0.01-m-thick and are assumed to be
perfectly conducting. The FDTD cell size is 19/200, and the computational region
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Figure 10.8 The geometry of the metamaterial SNOM.

is 2000 x 600 cells. An 8-layer uniaxial perfectly matched layer (UPML) is used as
an absorbing boundary, and only the TM polarization is considered in the simula-
tion. The computed field intensity contours in the y-z plane outside the device are
shown in Figure 10.9. The field intensities are plotted in Figure 10.10 as functions
of y at fixed distances z where they attain highest values, namely, at z =2.752
and z = 3.81y. The resolution (1.46) defined as the ratio of maximum to mini-
mum intensities is good at z = 3.84g. The simulation has been repeated without
the probe, and the results are plotted in Figure 10.11. It can be seen from this plot
that the intensity level is lower in this case than it was in the previous case by about
a factor of two. The resolution is also lower (1.26), and it occurs only at z = 4.
There is no resolution at z = 2.951, showing that the focal region is narrower.
Using a thin slab (d = 0.04m) instead of the previous thick one (d = 0.08m), it can
be shown that the intensity is higher (about eightfold) in the absence of the probe,
that the resolution is lower (1.3 as opposed to 1.9), and that the focal region is
narrower. If we remove the metamaterial slab, leaving air between the object and
the probe, we observe that the image is around 200 times weaker, showing the de-
cisive role of the metamaterial slab in realizing high-intensity images provided, of
course, that we can obtain a slab of real material that possesses the characteristics
we have assumed for the metamaterial slab.

In summary, a metamaterial scanning near-field optical microscope has been
proposed. The object, consisting of a pair of long subwavelength slits, is separated
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Figure 10.10 The resolution for an object consisting of two slits, probe present (400 cells corre-
sponding to 1 um).

from the probe, which is a single long subwavelength slit, by a metamaterial slab,
and the probe slides along this slab. It has been found that by comparing the results
for the cases with and without probe cases, the resolution is better when the probe
is present. Also, it is advantageous to use a probe when we wish to scan only a
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Figure 10.11 The resolution for an object consisting of two slits, probe missing (400 cells corre-
sponding to 1 um).



10.4 FDTD Study of Guided Modes in Nanoplasmonic Waveguides 321

10.4

part of the object. Moreover, since a number of different probes is available, we
could select the probe best suited to our needs. The various parameters and the
components involved in the microscope can be optimized to obtain the strongest
intensity with the highest resolution.

FDTD Study of Guided Modes in Nanoplasmonic Waveguides

It is well known that photonic crystals (PCs) offer unique opportunities to control
the flow of light [47] and that we can design periodic dielectric structures that have
a bandgap in a particular frequency range. Periodic dielectric rods, from which we
have removed one or more rows of elements, can be used as waveguiding devices
when operating at bandgap frequencies. Researchers have invested a considerable
effort to obtain a bandgap that is complete and wide. It has been shown that a
triangular lattice of air holes in a dielectric background has a complete bandgap
for the TE mode, while a square lattice of dielectric rods in air has a bandgap for
the TM mode [48]. The devices operating in the bandgap frequencies are not the
only options available to us for guiding the flow of light. Another waveguiding
mechanism is the total internal reflection (TIR) in 1-D periodic dielectric rods [49].
It is shown in [49] that a single row of either dielectric rods, or air holes, supports
waveguiding modes and therefore can also be used as waveguide. In [50], the
design of such waveguides consisting of several rows of dielectric rods with various
spacings is proposed.

Recently, a new method for guiding electromagnetic waves in structures whose
dimensions are below the diffraction limit has been proposed. The structures are
termed “plasmonic waveguides,” and their operating principle is based on near-
field interactions between closely spaced noble metal nanoparticles (spacing < 1),
which can be efficiently excited at their surface plasmon frequency. The guid-
ing principle relies on coupled plasmon modes set up by the near-field dipole
interactions that lead to coherent propagation of energy along the array. Analo-
gous structures, which serve as waveguides in the microwave regime, include peri-
odic metallic cylinders that support propagating waves [51], arrays of flat dipoles
that support guided waves [52], and Yagi-Uda antennas [53, 54]. Although these
structures can be scaled to optical frequencies with appropriate material prop-
erties, their dimensions are limited by the so-called diffraction limit A/(27). On
the other hand, plasmonic waveguides employ the localization of electromagnetic
fields near metal surfaces to confine and guide light in regions much smaller than
the free-space wavelength, and then can effectively overcome the diffraction limit.
Previous analysis of plasmonic structures include the plasmon propagation along
metal stripes, wires, or grooves in metal [55-60], and the coupling between plas-
mons on metal particles in order to guide energy [61, 62]. Such subwavelength
structures can also find their applications as efficient absorbers and as electrically
small receiving antennas at microwave frequencies. Recently, composite materials
containing randomly distributed electrically conductive material and nonelectri-
cally conductive material have been designed [63]. They are noted to exhibit a
plasma-type response at frequencies well below the plasma frequencies of the bulk
material.
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As mentioned earlier, the FDTD method [118] is one of the most widely used
numerical techniques because of its flexibility in handling material dispersive me-
dia, as well as arbitrary shaped inclusions. In [65], the optical pulse propagation
below the diffraction limit is studied by using the FDTD method. The method
has also been used to investigate waveguides formed by several rows of silver
nanorods arranged in a hexagonal lattice [66]. Even though the FDTD method
has been employed for plasmonic structures, the accuracy of such modeling has
yet to be proven. When modeling curved structures, one must either use extremely
fine mesh to mitigate the staircasing errors in the conventional FDTD or modify
the algorithm to improve the numerical accuracy, by using special treatments at
the interfaces between dissimilar materials [67], or by working with the improved
conformal algorithms [68] for curved surfaces.

In addition to the modifications at material interfaces, the material frequency
dispersion must also be accounted for in the FDTD modeling [69-71]. However,
modeling dispersive materials with curved surfaces still remains a challenging topic,
because the algorithm is complex and suffers from numerical instabilities. An
alternative way to solve this problem is to utilize the concept of effective per-
mittivities (EPs) [72, 74, 123] in the Cartesian coordinate system, and modify the
dispersive FDTD scheme accordingly, without compromising the stability of the
algorithm. In this section, we first propose a novel conformal dispersive FDTD al-
gorithm combining the EPs with an ADE method [118], then apply the developed
method to the modeling of plasmonic waveguides formed by an array of circular or
elliptical silver cylinders at optical frequencies. We also verify the numerical FDTD
simulation results by comparing them with those obtained by using a frequency
domain embedding method [75].

10.4.1 Conformal Dispersive FDTD Method Using Effective Permittivities (EPs)

A staircasing approximation is used to model curved electromagnetic structures
in the conventional FDTD algorithm on a Cartesian grid. Figure 10.12(a) shows
an example layout of an infinite-long cylinder in free space represented in a 2-D
Cartesian FDTD domain. The staircasing approximation of the shape introduces
spurious numerical resonant modes that do not exist in the actual structure. On
the other hand, using the concept of the filling factor, which is defined as the ratio
of the area of material &) to the area of the partially filled FDTD cell, the curva-
ture can be properly accounted in the FDTD as shown in Figure 10.12(b), where
different levels of darkness indicate different filling factors of material &. The
accuracy of modeling can be significantly improved above than in the staircased
approximation, as will be shown in a later section.

According to [74], in general the EP is given by

Eotr = € (1 — %) + &1 (10.6)

where 7 is the projection of the unit normal vector n along the field component as
shown in Figure 10.13 and ¢ and ¢, are parallel and perpendicular permittivities
to the material interface, respectively. They are defined as:
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Figure 10.12 Comparison of the filling ratio for £, component in FDTD modeling of a circular
cylinder using (a) staircase approximations and (b) a conformal scheme. The radius of circular
cylinder is 10 cells.

g = fao+1—-1fea (10.7)
el =flea+ (1 —f)/e] (10.8)

where [ is the filling factor of the material & in a given FDTD cell.
In this book, we consider the inclusions as silver cylinders that can be modeled
at optical frequencies by using the Drude dispersion model

wz
&(w) =g (1 - 7”> (10.9)

where , and y are the plasma and the collision frequencies, respectively. At
frequencies below the plasma frequency, the real part of the permittivity is nega-
tive. In this book, we assume that the silver cylinders are embedded in free space
(e1 = &)
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Figure 10.13 Layout of a quarter circular inclusion in orthogonal FDTD grid for E, component.
The radius of circular cylinder is three cells.
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In order to account for the frequency dispersion of the material, we introduce
the electric flux density D into the conventional FDTD updating equations. D is
updated directly at each time step from H and E, which can in turn, be calculated
from D by using the following steps. Substitute (10.7) and (10.8) into (10.6) and
using the expressions for g1 and & (10.9), we obtain the constitutive relation in
the frequency domain, which reads

{o* —27j0° — [y + (1 = Hoglo’ +1(1 - fHojjo}D
= [0* = 2yj0’ — (¥ + 0))0” + yogjo + f(1 — f)(1 — n*) o ]eE  (10.10)

Using the inverse Fourier transformation (i.e., replacing jo with 0/Jt), we obtain
the following constitutive relation in the time domain

ot o3 o* o
T 2ras T+ (= eyl oz +y(1 - f>w55}D
ot o3 o* , 0
- {ﬁ +2r o5+ (7 + “’P)atz + y(up— +1 -1 - nz)(ug} gE  (10.11)

The FDTD simulation domain is represented by an equally spaced 3-D grid,
with periods Ax, Ay and Az along the x-, y-, and z-directions, respectively. For
discretization of (10.11), we use the central finite difference operators in time (5),
and the central average operator with respect to time (u;):

ot 5t o’ 5} o? 8 5, 0 & 4

—_— —— —_— > —— —_— — ——— _— — —

ot (a0t B (a3t e Tttt o oAt

1—pt (10.12)

where the time step is At and the operators §; and p; are defined as in [122]:

L1 1
A A (10.13)
1 1
Flome2nyme + F
iy, = rane t Elmeinn (10.14)

Here F represents the field components and #1,,m,,m, are indices corresponding
to a certain discretization point in the FDTD domain. The discretized version of
(10.11) reads

5/ 5 2 2] & 26 3
oyt H 2kt [+ (U= g | st + (1= Poj i (D
[ 2yt 2 + (o)t 52 S X

- pa- n2>w;,‘u;‘} 0F (10.15)
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Note that we have retained all the fourth-order terms in the above equations to
be to guarantee the numerical stability. Equation (10.15) can be written as

Dn+l — 4D" + 6Dn—l _ 4Dn—2 + Dn—3

Dn+l _ 2Dn + 2Dn—2 _ Dn—3

(ar)? o (a1)?
Dn+l_2Dn—l +Dn—3 Dn+l+2Dn_2Dn—2_Dn—3
2 2 2
1— 1—
+ [ +(1-fep | T +y(1-f)of e
En+l _ 4En + 6En—l _ 4En—2 + En—3 En+l _ 2En + 2En—2 _ En—3
- (a1)? e (ar)?
N ( 5 N 2) En+l _ 2En—l + En—3 N 2En-‘rl 4+ 2F" — 2En—2 _ En—3
0V O
AU 4(A1)? 070 SAL
eof(1—H(1 — o}
+ of( =1 e (E"™ 4 4E" 4 6E"'4E"% 4 E" ) (10.16)

16

The indices #1,, m, and m, are omitted from (10.16) since E and D are colocated.
We solve for E"1, and obtain the following updating equation for E in the FDTD:

| [boDn+l +b:D" + szn_l + bgDn_z + 1?4Dn_3

— (a1E" + ;"1 + a3E" 2+ a4E" %)) /ay (10.17)
with the coefficients given by
1 v rtel yop f(1-f)(1-n)o,
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The computations of H and D are performed by using Yee’s standard updating
equations in free space. Note that if the plasma frequency is equal to zero (@, = 0),
then (10.17) reduces to the update equation in the free space (i.e., E = D/g).

FDTD Calculation of Dispersion Diagrams

Bloch’s PBCs [77-82] can be used with the FDTD method to model periodic struc-
tures and compute their dispersion diagrams [83, 84]. For all periodic structures,
the fields must satisfy the Bloch condition, such that

E(d +a) = E(d)e™, H(d+a) = H(d)e (10.19)

where d is an arbitrary point the computational domain, k is the wave vector, and
a is the lattice vector along the direction of periodicity. When updating the fields at
the boundary of the computation domain using FDTD, the required fields outside
the computation domain can be calculated by using known field values inside the
domain via the use of (10.19).

First, we apply the conformal dispersive FDTD method we have developed
to calculate the dispersion diagram for 1-D plasmonic waveguides formed by an
array of periodic, infinite-long (along the z-direction), circular silver cylinders. Let
us consider the TE modes in the 2-D simulation domain (x-y) for which the only
nonzero fields are Ey, E,, and H,. The domain, as shown in Figure 10.14, is
truncated by using Bloch’s PBCs in the x-direction and Berenger’s PMLs [124]
in the y-direction. Berenger’s PML performs well when absorbing propagating
waves [124]. However, the same is not true for evanescent waves, for which the
field grows inside the PML. Since the waves radiated by a point or line sources
consist of both the propagating and evanescent components, we add some extra
space—typically a quarter of a wavelength at the frequency of interest—between
the PMLs and the circular inclusion to allow for the evanescent waves to decay
before reaching the PMLs.

X
Bloch periodic boundary condition

Free space

Perfectly matched layer
Q
Perfectly matched layer

Silver cylinder

Bloch periodic boundary condition

Figure 10.14 The layout of the 2-D FDTD computation domain for calculating the dispersion
diagram for 1-D periodic structures. The inclusion has a circular cross-section with radius r, and the
period of the 1-D infinite structure is a.
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The radius of the silver cylinders is 7 = 2.5 x 108 m, and the period is a =
7.5 x 1078 m. The plasma and collision frequencies are o, = 9.39 x 103 rad/s
and y = 3.14 x 1013 Hz, respectively, chosen to closely match the bulk dielectric
function of silver [86] (see Figure 10.14). The FDTD cell size is Ax = Ay = 2.5 x
10~? m, and the time step, chosen in accordance with the Courant stability criterion
[118], is At = Ax/(V/2¢) s, where ¢ is the speed of light in the free space. The
stability condition for a higher-order FDTD method is typically more stringent
than the conventional one. However, we have found no evidence of any instability
once we have applied the average operator p; even after 40,000 time steps, in all
of the simulations.

A wideband magnetic line source is placed at an arbitrary location in the
free-space region of the 2-D simulation domain in order to excite all resonant
modes of the structure within the frequency range of interest (normalized frequency
f= wa/(2nc) € [0 ~ 0.5]):

g<t)=e_( ) gor (10.20)

where #( is the initial time delay, t defines the pulse width and ® is the center
frequency of the pulse (f = 0.25). The magnetic fields at 100 random locations in
the free-space region are recorded during simulations, transformed into the fre-
quency domain, and combined to extract individual resonant mode corresponding
to each local maximum. For each wave vector, 40,000 time steps are used in our
simulations to obtain enough accurate frequency domain results.

In order to demonstrate the advantage of EPs and validate the proposed
conformal dispersive FDTD method, we have also performed simulations using
staircase approximations for the circular cylinder, as shown in Figure 10.12(a).
Figure 10.15 compares the first resonant frequency (transverse mode) correspond-
ing to the wave vector k, = m/a of the plasmonic waveguide, calculated by using
the FDTD method with staircase approximations, with the FDTD method with
EPs, and the frequency-domain embedding method [87]. With the same FDTD
spatial resolutions, the model using EP shows excellent agreement with the results
from the frequency domain embedding method. However, in contrast to this, the
staircase approximation not only leads to a shift in the main resonant frequency,
but also introduces a spurious numerical resonant mode that does not exist in
actual structures. The same effect has also been found for nondispersive dielectric
cylinders [88]. It is also shown in Figure 10.15 that although one may correct
the main resonant frequency using finer meshes, the spurious resonant mode still
remains.

The problem of frequency shift and spurious modes becomes even more severe
when calculating the higher guided modes near the “flat-band” region (i.e., the
region where waves travel at a very low phase velocity). Even with a refined spatial
resolution, the staircase approximation fails to provide correct results (not shown).
On the other hand, using the proposed conformal dispersive FDTD scheme, all
resonant modes are correctly captured in the FDTD simulations, as demonstrated
by the comparison with the embedding method, shown in Figure 10.16.
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Figure 10.15 Comparison of the first resonant frequency (transverse mode) at wave vector kx = 7/a
calculated using the FDTD method with staircase approximations, the FDTD method with EPs, and
the frequency domain embedding method.

According to previous analysis using the frequency-embedding method, the
fundamental mode in the modelled plasmonic waveguide is the transverse mode,
and the second guided mode is longitudinal [87], which is also shown by the distri-
bution of the electric field intensities in Figure 10.17 from our FDTD simulations.
The higher guided modes are referred to as the “plasmon modes.” To demonstrate
the field symmetries of the TE mode considered in our simulations, we have plotted
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Figure 10.16 Comparison of dispersion diagrams for an array of infinite-long (along the z-direction)
circular silver cylinders calculated using the FDTD method with EPs and the frequency domain
embedding method.
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Figure 10.17 Normalized total electric field intensities corresponding to (a) transverse and (b)
longitudinal modes [87] at wave number kx = n/a as marked in Figure 10.16. The structure is
infinite along the x-direction.

the distributions of the magnetic field corresponding to different resonant modes
at wave number k, = n/a as marked in Figure 10.16 and shown in Figure 10.18.

Sinusoidal sources are used for the excitation of various single modes, and
the sources are placed at different locations corresponding to different symmetries
of the field patterns. All field patterns are plotted after the steady state has been
reached in simulations. The modes depicted in Figure 10.18(a, ¢, €) are even modes
[relative to the direction of periodicity of the waveguide (i.e., x-axis)], while those
displayed in Figure 10.18(b, e) are considered as odd modes.

The above comparison of the simulation results calculated by using the
conformal dispersive FDTD method and the embedding method clearly demon-
strates the effectiveness of applying the EPs in FDTD modeling. Furthermore, in
contrast to the embedding method, the main advantage of the FDTD method is
that arbitrary shaped geometries can be easily modeled. We have applied the con-
formal dispersive FDTD method to study the effect of different inclusions on the

(@ © (d) (©)

y
[ * J
Figure 10.18 Normalized distributions of magnetic fields corresponding to different resonant

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
modes at wave number kyx = 7/a as marked in Figure 10.16 (a, ¢, d): even modes, and (b, e):
odd modes. The structure is infinite along the x-direction. (Note that the coordinate has been
rotated 90° anticlockwise from Figure 10.14 for better presentation of the figure.)
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dispersion diagrams of 1-D plasmonic waveguides. The geometries considered are
two rows of periodic infinite-long (along the z-direction) circular silver cylinders
arranged in square lattice and a single row of periodic infinite-long (along the
z-direction) elliptically shaped silver cylinders. The elliptical cylinder has a ratio
of semimajor-to-semiminor axis 2:1, where the semiminor axis is equal to the ra-
dius of the circular element (25.0 nm). For the two rows of circular nanorods, the
spacing between the two rows (center-to-center distance) is 75 nm. The dispersion
diagrams for these structures are plotted in Figures 10.19 and 10.21.

Comparing the dispersion diagrams for a single circular element in Figure 10.16
with that for the two circular elements shown in Figure 10.19, we can see that the
dispersion diagram has been modified due to the change of inclusions. The strong
coupling between the two elements introduces additional guided modes to appear
in the dispersion diagram. Such a phenomenon has also been studied previously
for dielectric (nondispersive) nanorods [50]. The distributions of the magnetic field
for selected guided modes, as marked in Figure 10.19, are plotted in Figure 10.20.
The modes in Figure 10.20(a, ¢, d) are even modes while Figure 10.20(b, e) are
odd modes.

The dispersion diagram for a periodic structure comprised of single elliptical
elements as inclusions is shown in Figure 10.21. We observe that an increased
number of guided modes appears in this case than appeared earlier for circularly
shaped inclusions. This is attributable to the fact that the geometrical shape of
the inclusions has been changed from circular to elliptical. For instance, the fre-
quency corresponding to the lowest mode is now lower because of an increase
in the volume of the inclusion. The distributions of magnetic fields are plotted in
Figure 10.22 for selected guided modes. The modes plotted in Figure 10.22(a, d)
are even, while the plots for the odd modes appear in Figure 10.22(b, ¢, e).
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Figure 10.19 (a-e) Dispersion diagram for two rows of periodic infinite-long (along the z-
direction) circular silver cylinders arranged in square lattice calculated from conformal dispersive
FDTD simulations.
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Figure 10.20 Normalized distributions of magnetic fields corresponding to different guided modes
as marked in Figure 10.19: (a, c, d) are even modes, and (b, e) are odd modes. The structure is
infinite along the x-direction. (Note that the coordinate has been rotated 90° anticlockwise from
Figure 10.14 for better presentation of the figure.)

10.5.1 Wave Propagation in Plasmonic Waveguides Formed by Finite Number
of Elements

In order to study wave propagations in plasmonic waveguides formed by a fi-
nite number of silver nanorods, we have replaced the PBCs in the x-direction
with PMLs and have increased the number of cells in the free-space region of the
simulation domain. The number of nanorods in this study is seven. The spacing
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Figure 10.21 (a-e) Dispersion diagram for a single row of periodic infinite-long (along the z-
direction) elliptical silver cylinders calculated from conformal dispersive FDTD simulations.
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Figure 10.22 Normalized distributions of magnetic fields corresponding to different guided modes
as marked in Figure 10.21: (a, d) are even modes, and (b, c, e) are odd modes. The structure is
infinite along the x-direction. (Note that the coordinate has been rotated 90° anticlockwise from
Figure 10.14 for better presentation of the figure.)
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(pseudoperiod) between adjacent elements remains the same as that for infinite
structures considered in the previous section. For a single-mode excitation, we
choose the frequency of the corresponding mode from the dispersion diagram and
excite with sinusoidal sources at one end of the waveguides at different locations,
depending on the symmetry of different guided modes.

For the plasmonic waveguides formed by different types of inclusions, we have
chosen certain types of eigenmodes for: (1) a single row of circular cylinders, shown
in Figure 10.18(a); (2) two rows of circular cylinders, as shown in Figure 10.20(d);
and (3) a single row of elliptical cylinders, appearing in Figure 10.22(e). The distri-
butions of the magnetic field intensities for different waveguides operating in these
guided modes are plotted in Figure 10.23. The field plots are taken after the steady
state is reached in the simulations. It is evident that single guided modes are cou-
pled into these waveguides, though the excitation of certain modes depends highly
on the symmetry of the field patterns. The energy that can be coupled into the
waveguides also depends on the matching between the source and the plasmonic
waveguide.

In summary, we have developed a conformal dispersive FDTD method for
the modeling of plasmonic waveguides formed by an array of periodic, infinite-
long, silver cylinders at optical frequencies. The conformal scheme is based on
effective permittivities, and its main advantage is that it introduces no numerical
instabilities because only a conventional orthogonal FDTD grid is used for the
simulations. The material frequency dispersion is accounted for by using an aux-
iliary differential equation method. A comparison of dispersion diagrams for 1-D
periodic silver cylinders, computed by using these different ways—the conformal
dispersive FDTD method, the conventional dispersive FDTD method with staircase
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Figure 10.23 Normalized distributions of magnetic field intensity corresponding to different guided
modes for seven-element plasmonic waveguides formed by (a) a single row of circular nanorods [the
corresponding eigenmode is shown in Figure 10.18(a)]; (b) two rows of circular nanorods arranged
in square lattice [the corresponding eigenmode is shown in Figure 10.20(c)]; and (c) a single row
of elliptical nanorods [the corresponding eigenmode is shown in Figure 10.22(e)]. (Note that the
coordinate has been rotated 90° anticlockwise from Figure 10.14 for better presentation of the
figure.)

approximations, and the frequency domain embedding method—demonstrates the
accuracy of the proposed approach. It is shown that by adding additional elements,
or changing the geometry of inclusions, the corresponding dispersion diagram can
be modified. Numerical simulations of plasmonic waveguides formed by seven el-
ements show that while the eigenmodes in infinite structures can be excited, they
depend highly on the symmetry of field patterns of certain modes. Further work
includes the investigation of the effects of different numbers of elements in the
plasmonic waveguides on the guided modes and the calculation of group velocity
of different modes propagating in these waveguides. Although the results presented
in this book focus on optical frequencies, it is anticipated that novel applications
can be found in the designs of small antenna and efficient absorbers with future
advances in microwave plasmonic materials.

FDTD Modeling of Electromagnetic Cloaking Structures

The widespread interest in the invisibility of objects has led to the recent devel-
opment in electromagnetic cloaking structures. Pendry et al. have proposed an
electromagnetic material through which electromagnetic fields can be controlled
and manipulated to propagate around its interior region like the flow of water [89];
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hence, objects placed inside would become “invisible” to external electromagnetic
fields. The proposed cloaking structure in [89] requires the use of inhomoge-
neous and anisotropic media, with both the permittivity and the permeability being
independently controlled and radially dependent. The magnitudes of the relative
permittivity and permeability of the perfect cloak are less than one; therefore,
such a cloak cannot be constructed by using naturally existing materials, How-
ever, recent development of metamaterials [90] (artificially engineered structures
with unussal electromagnetic properties that cannot be obtained naturally) makes
it possible for us to construct such cloaking structures. However, in common with
the negative-index metamaterials [90], the cloaking materials are inevitably dis-
persive and, therefore, band-limited. Furthermore, the complete set of material
parameters proposed in [89] requires the control of all the components of per-
mittivity and permeability of the material, which makes its practical realization
difficult. This has led to the use of reduced sets of material parameters for both
TE [91] and TM [92] cases. Such reduced parameters for the TM case eliminates
the dependence on the magnetic properties of the material, and this is especially
important for the realization of cloaking in the optical frequency range, because of
the absence of optical magnetism in nature. However, considerable reflections oc-
cur because of the impedance mismatch at the outer boundary of such a simplified
cloak. Under the assumption of the geometric optics, a higher-order transformation
has been proposed in [93] to improve the performance and minimize the scattering
introduced by the cloak.

The development of Pendry’s cloak is based on the coordinate transformation
technique [89, 94|, which has also evoked other research topics such as the design
of magnifying perfect and super lenses [95]; the transformation media that rotate
electromagnetic fields [96]; the design of reflectionless complex media for shifting
and splitting optical beams [97]; and the design of conformal antennas [98]. The
spatial transformation technique has also been applied to analyze eccentric ellipti-
cal cloaks in [99] and for acoustic cloaking in [100, 101]. Other theoretical studies
of the cloaking structure include the assessment of the sensitivity of an ideal cloak
to small perturbations [102]; performance of the cylindrical cloaks comprised of
simplified material parameters [103-105]; realization of cloaking using a concen-
tric layered structure of homogeneous isotropic materials [106]; improvement of
the cloaking performance using soft-and-hard surface lining [107]; and broadband
cloaking using sensors and active sources near the surface of a region [108]. The
experimental demonstration of a simplified cloak consisting of SRRs has been re-
ported at microwave frequencies [109]. For the optical frequency range, the cloak
can be constructed either by embedding silver wires in a dielectric medium [92] or
by using a gold-dielectric concentric layered structure [110].

It is worth mentioning that there exist different approaches to rendering objects
invisible, for example, by canceling the dipolar scattering using plasmonic coatings
[111, 112] and by using a LHM coating [113]. Among these two, the plasmonic
coating approach is limited to objects with the subwavelength scale, and the coating
depends on the geometry and material parameters of the object to be cloaked. The
performance realized by using LHM coating is also affected by the objects placed
inside, whose dimensions are on the order of the wavelength. In contrast to these
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two approaches, Pendry’s cloaking technique is more general and can be applied
to objects with arbitrary dimensions and for arbitrary wavelengths.

Pendry’s invisible cloak has been modeled by using both the analytical and
numerical methods. Besides the widely used coordinate transformation technique
[89, 94, 95-101, 104, 114], a cylindrical wave expansion technique [102] and a
method based on the full-wave Mie scattering model [115] have also been applied.
In addition, the full-wave finite element method (FEM)-based commercial simula-
tion package COMSOL Multiphysics has been extensively used to model different
cloaks and has validated theoretical predictions [91-93, 99, 104], because the code
can deal with anisotropic as well as radially dependent material parameters. While
most of the numerical simulations have been performed in the frequency domain,
little attention has been paid to the time-domain analysis of the cloaks. Frequency-
domain techniques such as the FEM can be inefficient when we design wideband
solutions. To date the only time-domain analysis of the cloak has been presented
in [116] by using a time-dependent scattering theory. In this section, we propose
a dispersive FDTD method to deal with both the frequency and radial dependent
permittivity and permeability for the analysis, design, and optimization of cloaking
structures.

10.6.1 Dispersive FDTD Modeling of the Cloaking Structure
A complete set of material parameters of the ideal cloak is given by [89]:
=Ry 7

& = Hr = ;0 8¢=H¢=m,

R, \’7r—Ry
— L = 10.21
& = Hg <R2 — Rl) ; ( )

where Ry and R; are the inner and outer radii of the cloak, respectively. It can
be easily verified from (10.21) that the ranges of the permittivity and the perme-
ability within the cloak are &, 11, € [0,(R2 — R1) /R2], €4, 1ty € [R2/(R2 — Ry),00]
and &, 1, € [0,R2/(R2 — Ry)]. Since the values of ¢, u,, & and p, are less than
unity, the cloak cannot be modeled directly using the conventional FDTD method,
which deals with material parameters that are constant at any particular location 7.
However, one can map the material parameters of the cloak by using a dispersive
material models, for example, a Drude model for the &,

w2

glow)=1——5"L— (10.22)
0= —joy

where , and y are the plasma and collision frequencies of the material, re-
spectively. The radial dependent material parameters (10.21) can be achieved by
varying the plasma frequency. Note that in practice, the plasma frequency of the
material depends on the periodicity of the SRRs [109], as well as of the wires [92]
and varies along the radial direction. Furthermore, different dispersion models
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(e.g., Debye and Lorentz) can be also considered for the modeling of the cloak,
which will lead to slightly different FDTD formulas from the following ones.

Since the conventional FDTD method [117,118] is able to deal with frequency-
independent materials, the frequency-dependent FDTD method will be referred to
as the dispersive FDTD method [119-121]. For simplicity, we will implement the
dispersive FDTD method for a 2-D TE case, for which only three field components
are nonzero: E,, Ey, and H,. Hence the cloak we model is cylindric and infinitely
long in the z-direction [y, = pg = & = 0in (10.21)], though an extension to a 3-D
FDTD method that models a 3-D cloak [89] is relatively straightforward. There
exist dispersive FDTD methods based on different approaches that can deal with
frequency-dependent material parameters. These include: the recursive convolution
(RC) method [119], the ADE method [120], and the Z-transform method [121].
In view of its simplicity, we have chosen the ADE method for modeling the cloak.

The ADE dispersive FDTD method is based on Faraday’s and Ampere’s laws,
which are written as:

OB
E=—— 10.23
V x BD@t ( )
H=— 10.24
V x Er ( )

It also utilizes the constitutive relations D = ¢E and B = uH, where ¢ and u are
expressed by (10.21). Equations (10.23) and (10.24) can be discretized by following
a normal procedure [117,118] that leads to the conventional FDTD updating
equations:

B! —B" — At-V x "1 (10.25)
~ 1
D"t = D" + At-V x H'2 (10.26)

where V is the discretized curl operator, At is the FDTD time step, and 7 is the
number of time steps.

In addition, we need to include ADEs that can be discredited through the
following steps. Note that the FDTD formulas are only given for the electric fields,
and the update equation for the magnetic field can be obtained in the same way.
Since the material parameters given in (10.21) are in cylindrical coordinates, the
coordinate transformation

{gxx gxy} - { £c0s’ ¢ + g4sin’ (& —&p)sin ¢ COS‘q (10.27)
= ( *

Eyx Eyy & — g¢) sin ¢ cos ¢ gsin’ + £ cos® ¢

for the conventional Cartesian FDTD mesh is used. The tensor form of the
constitutive relation is given by

-1
Exx Exy Ex:| _ |:Dx:| o= |:Ex:| _ |:3xx gxy:| |:Dx:| 10.28
0 Lyx gyy} {Ey D, 0 E, Eyx Eyy D, 110.28)
where

|:gxx gxy:| -1 _ L {g, sinZ([) + & cos?¢ (8¢ — 87) sin ¢cos ‘q (10.29)

Eyx Eyy &€ (g¢ — g,) sin ¢cos ¢ & cos’p + £ sin® ¢
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Note that the inverse of the permittivity tensor matrix exists only when ¢, # 0 and
g4 # 0, which is not the case for the inner boundary of the cloak. In our FDTD
simulations, we place a perfect electric conductor (PEC) cylinder, with a radius
equal to Ry inside the cloak to guarantee the validity of (10.29).

Substituting (10.29) into (10.28) yields

grepeoEyx = (87 sinZ([) + & cos2¢> D, + (8¢ — gr) sing cos ¢ D,

5 5 _ (10.30)
grepeEy = (87 Cos“¢ + &y sin ([)) Dy + (8¢ — 8,) sin ¢cos ¢Dy

Expressing ¢, in the Drude form of (10.21), (10.30) can be written as

£0&y (wz —joy— wﬁ) E,= [(wz —joy — wﬁ) sin®¢ +& (a)2 —/'(uy) cosz¢} D,
+ [8¢ (a)2 —/'(uy)—((uz —/a)y—wl%)} sin ¢ cos ¢ Dy,

£0&y (wz —joy— wl%) E,= [(wz —joy— wﬁ) cos?¢ +& (a)2 —/'(uy) sin2¢} D,

+ [8¢ (a)2 —/'(uy) — (wz —/a)y—wg)} sin ¢ cos ¢ Dy
(10.31)

Notice that g4 is retained in (10.31), because its value is always greater than one
(except at the inner surface of the cloak) and can be directly used in conventional
FDTD update equations [117,118]. Using an inverse Fourier transform and the
following rules:

. 0 ) o?

the first equation of (10.31) can be rewritten in the time domain as

? o, 20 5\, o* 9\
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The FDTD simulation domain is represented by an equally spaced 3-D grid,
whose periods are Ax, Ay, and Az along the x-, y-, and z-directions, respectively.
To discretize (10.33), we use central finite difference operators in time (8, and 57)
and central averaging operators with respect to time (y; and p?), that is, we let:

+ sin ¢ cos ¢ D, (10.33)

2 2
orr (A2 ot AtV p P
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where the operators &, 87, 1;, and u? are defined as in [122]:

5,F — 2 F
t |mx My My |mx,my,mz - |mx:my=mz

6( F|mxm my — F|:lntlm my 2F|mxm Mz + F|mxm Mz
Vo y Y Y

n—',—l
F|mx,2my:mz + F|mx,my:mz
Hy |mx 1y, my — 2
Fntl . + 2F|" +F|2-1
F|mx - — Mx 1y My mz‘-my R Mx 1y My (1034)

n (10.34), F represents the field components, and #,,m,,m, are the indices
corresponding to a certain discretization point in the FDTD domain. The dis-
cretized (10.33) reads:

€€ 5/ +y6u + w2p? | Ey = 5/ +y§u + w?p?| sin?¢
Planz T T TR (Ar)2 T TATt T TP

5?7 5 5?7 5
a2 +yAut]cos ¢} {q&l( At)? +7/Allt‘|

+&p

52 S :
_ @ + )/A—ttyt + wﬁyf] }sm ¢ cos ¢ D, (10.35)

Note that, in (10.35), the discretization of the term (ug of (10.33) is performed by
using the central averaging operator u?, to ensure improved stability; the central
averaging operator L is used for the term containing y to preserve the second-order
feature of the equation. Equation (10.35) can be written as

N i N S N B 2B 4 B
0% (At)? VY b +
_ sins Dyt —2D3+ D! yDjj“ —Di7' | 2Dy +2D5 + DY
(At)? 2At p 4
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+ gycos”¢ l (A2 y A7
Dn+l _ 2Dn + Dn—l Dn+l _ Dn—l
- y y y y y
+ sin ¢ cos ¢ {8¢ l ()2 +v A7
pytt —2pp+pp~t prtt—pret o prtt4 2Dt D
a (At)2 ARy o 4
(10.36)

Therefore the update equation for E, can be obtained as
Exl = [aDi! 46D} + D} +dDy" ! + oDy + D)~ (gEr+ bEZTT) | /1

(10.37)
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where the coefficients a to [ are given by

a:sin2¢ _(Alt) +2LAt+T§ + & cosz(p{(Alt)2 +2LAJ
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Note that the field quantities Dy in (10.37) are locally averaged values of D, since
the x- and y-components of the field reside at different locations in the FDTD
domain. The averaged value can be calculated by using [123]

Dy(%/) + Dy(’ + 17/) + Dy<1>/ - 1) + Dy(’ + 17/ - 1)

D_ P
y(z?/) 4

(10.38)

where (7,7) are the coordinates of the location of the field component. Following
the same procedure, we can obtain the update equations for the second equation of
(10.30) and for the magnetic field component H,. Equations (10.25)-(10.37) and
the equations for E, and H, form the FDTD updating equation set in the context
of the well-known leap-frog scheme [117].

Since the FDTD method is inherently a numerical technique, the spatial and
time discretizations have important effects on the accuracy of simulation results.
Also, since the permittivity is frequency-dependent, one can expect a slight dif-
ference between the analytical and numerical material parameters because of the
discrete time step employed in the FDTD algorithm. In general, a spatial reso-
lution (FDTD cell size) of Ax < A2/10 is required [118] to model conventional
dielectrics with the relative permittivity/permeability greater than unity. However,
we know from our previous analysis [125] that for metamaterials, especially for
the case of LHMs, the numerical errors introduce an nonphysical resonance in the
transmission coefficient because of time discretization. To mitigate this problem,
a requirement of Ax < A /80 is proposed. For the case of the cloak, we follow the
same approach as in [125], and substitute the plane-wave solution

E" = Ee/"®M, D" = De/"M (10.39)
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into (10.36). We then compare the resulting equation with the first equation of
(10.30) and find that &, has the exact analytical value, while &, takes the following
form:

a)g(At)zcos2 op

2 sin 22 (2 sin 2 — jyAt cos 25%)

& =g |1— (10.40)

Note that (10.40) simplifies to the Drude dispersion model (10.22) when Az — 0.
In Figure 10.24 we compare the analytical (10.22) and numerical relative permittiv-
ities (10.40) for the case of g = 0.1 (lossless). It is apparent that the conventional
criteria for the FDTD spatial resolution does not guarantee accuracy for the mod-
eling of the cloaks. We note that the numerical error is still around 2% even when
we choose Ax = 4 /40.

By using the expression of the numerical permittivity (10.40), we can correct
the errors introduced by the discrepancy between the numerical and analytical
material parameters. For example, if the required permittivity is & = &, + je,’, we
can calculate the corrected plasma and collision frequencies as

5 2sin OM [—2(g) — 1) sin 2 — g/'yAt cos 2] 2¢]’ sin %
/ WAt
(g/ — 1)At cos “5+

(J)p = y V=
(10.41)

2 cogl @A
(At)* cos> ¢

after simple derivations. Our FDTD simulations show that the simulation becomes
unstable before reaching the steady state if we use Ax = A /35 without correcting
the numerical material parameters. The cause of such an instability remains an open
question at present, though the correction of material parameters guarantees stable
FDTD simulations. Consequently we will use the corrected material parameters
(10.41) in the examples presented next.

0.11

0.108 | Analytical

—¢— Numerical

0.106

0.104

0.102 +

Relative permittivity

0.1

0.098

02 04 06 08 0 100 120 140 160
MAx

Figure 10.24 The comparison between the analytical (10.22) and numerical material parameters
(10.40) for different FDTD spatial resolutions for the case of - = 0.1 (lossless).
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10.6.2 Numerical Results and Discussion

The dispersive FDTD method technique described above has been implemented for
a 2-D TE case. The computation domain is shown in Figure 10.25. The following
parameters are used in the simulations: FDTD cell size Ax = Ay = 1 /150, where
A is the wavelength at the operating frequency f = 2.0 GHz, and the time step
At = Ax/+/2¢, chosen according to the Courant stability criterion [118]. We assume
an ideal lossless case [i.e., that the collision frequency in (10.22) is equal to zero
(y = 0)]. The radial dependent plasma frequency can be computed from (10.41)
with a given value of &, obtained from (10.21). The radii of the cloak are: Ry =
0.2m and R, = 0.4m. The computational domain is truncated by using Berenger’s
PML [124] in the y-direction to absorb the waves outgoing from the computation
domain without introducing reflections. We also use the PBCs in the x-direction to
model a plane-wave source. The source is implemented by specifying a complete
column of FDTD cells using a certain wave function (sinusoidal source in our case),
as shown in Figure 10.25.

First, we consider the ideal cloak, whose material parameters are given by
(10.21), where p, = ug = &, = 0. Figure 10.26 shows the distributions of the elec-
tric and magnetic field components calculated from the dispersive FDTD simulation
of the ideal cloak. Note that only the central part of the simulation domain is shown
and that the actual computation domain is larger. We see from Figure 10.26(b, c,
d) that the distribution is almost identical to the published results [91] calculated
by using the analytical and frequency domain methods, except that there are small
ripples in the magnetic field. In fact, the field distribution presented in [91] shows
even stronger ripples, which may be due to the inadequate spatial resolution used
in the calculation. These ripples are purely numerical and disappear when a fine
mesh is used. In our case, the slight ripples are also caused by the staircasing ap-
proximation of the circular surface of the cloak, since a Cartesian mesh is used.
There are also nonzero scattered fields in the x-component of the electric field
outside the cloak [see Figure 10.26(b)], which is also a sign of numerical errors
because an ideal cloak does not introduce any scattering outside the cloak. The
staircasing approximation only causes a very small amount of numerical errors due
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Figure 10.25 A 2-D FDTD simulation domain for the case of plane-wave incidence on the cloak.
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Figure 10.26 (a) Material parameters for an infinite ideal cylindrical cloak [91] where all &, ¢, and
1 are radial dependent. (b, c, d) Field distributions from dispersive FDTD simulations of the cloak:
(b) x-component of the electric field, (c) y-component of the electric field, and (d) the magnetic
field.

to the fine mesh used in our simulations. However, this problem can be further
reduced and the accuracy of simulations can be improved by using a conformal
scheme in conjunction with the dispersive FDTD method. This entails using an ef-
fective permittivity at material boundaries, as it was done for the case of isotropic
dispersive materials at planar [125] and curved boundaries [126]. However, the
complexity stems from the anisotropy of the cloaking material, which leads to an
eighth-order differential equation to be discretized. Recall that the order of the
differential equation for the case of isotropic dispersive materials is four [126].
As mentioned previously, it is difficult to realize the ideal cloak that requires
all the components of the permittivity and permeability to be radial-dependent.
Therefore, it has been proposed in [92] that a reduced set of material parameters
be used, while keeping the same wave trajectory, to construct a simplified cloak.
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In [92], the reduced set of material parameters is given by:

Ry, \?/r—Ri\* R, \?
- = (= =1 10.42
37 <R2—Rl> < r > ’ & <R2—R1> ’ He (O )

Following the same procedure, we have also modified the dispersive FDTD method
proposed above to model the reduced set of material parameters and analyzed its
cloaking performance. The dimensions of the simplified cloak remain the same
as those of the ideal one. Figure 10.27 shows the steady-state field distributions
computed by using the procedure described above. Such a cloak significantly
reduces the complexity of practical realization since only &, is radially dependent,
as shown in Figure 10.27(a). However, considerable reflections occur because of
the impedance mismatch at the outer boundary of the simplified cloak, as may be
seen from Figure 10.27(b, d). Interestingly, the y-component of the electric field is
only affected slightly by the scattered field. Note that here we only consider the
simplified nonmagnetic cloak [92]; however, the simplified cloak proposed in [91]
can be modeled in a similar way.

Scattering from the simplified cloak (10.42), introduced by the impedance
mismatch can be reduced by using an improved cloak based on a higher-order
transformation [93]. The material parameters are given by [93]

7', 2 8g<rl) -2
& = <7> , g¢:{ o } , =1 (10.43)

where r = g(+') = [(R1/R2)(¥/R2 — 2) + 1]# 4+ R1. We have also modeled such a
cloak and plotted the field distributions in Figure 10.28. Its dimensions are kept
the same as in the previous two cases. In fact the dimensions of this cloak are
at its limit, since it is required to satisfy R1/R, < 0.5, to guarantee a monotonic
transformation [93]. The improved cloak imposes an additional dependency of the
permittivity on the radius, as shown in Figure 10.28(a). It is evident that indeed
a cloak designed by using a higher-order transformation exhibits an improved
impedance at its outer boundary, and hence, reduces the scattered field consider-
ably. Notice that the wavefront only starts to bend near the inner surface of the
cloak, which is different from the case of the ideal cloak shown in Figure 10.26.
This is due to the slow variation of the impedance as we traverse inward from the
outer boundary of the cloak.

For the sake of demonstration, we have plotted in Figure 10.29 the power
flow diagrams as well as the scattering patterns for the above ideal cloak; the sim-
plified cloak based on a linear transformation; and the simplified cloak based on
the higher-order transformation. The power flow diagrams show that for the ideal
case [Figure 10.29(a)], the wavefront enters the cloak smoothly, bends around the
central region, and returns to its original pattern after leaving the cloak. The cloak
based on the higher-order transformation [Figure 10.29(c)] shows a similar pattern
with a smooth bending of the wavefront near the central region of the cloak. How-
ever, the power flow is disturbed before entering the cloak, because of reflections,
while the wavefront leaving the cloak has a relatively smooth distribution. For the
case of the cloak based on the linear transformation, as shown in Figure 10.29(b),
the waves do not strictly follow the trend of the bending inside the cloak and
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Figure 10.27 (a) Material parameters for an infinite simplified cylindrical cloak using a linear trans-
formation [92] where only & is radial dependent. (b, ¢, d) Field distributions from dispersive FDTD
simulations of the cloak: (b) x-component of the electric field, (c) y-component of the electric field,
and (d) the magnetic field.

propagate in arbitrary directions, and the external field is significantly disturbed
as a consequence. This can be clearly identified from the scattering patterns that
are referred to the free-space case with absence of the cloak, and then normalized
to the scattering pattern of a PEC cylinder without the cloak, as shown in Fig-
ure 10.29(d). For all the cloaks, the scattering at the back of the cloak (relative
to the direction of wave incidence) is dramatically reduced. However, the level of
the scattered field for the linear cloak is almost the same as that of a PEC cylin-
der, leading to the conclusion that the object placed inside this simplified cloak
can be detected from its front side, similar to the conclusion drawn in [103]. For
the cloaks based on higher-order transformation, scattering is reduced by around
four times as compared to that in the case of linear transformation. Theoretically
the ideal cloak has a zero-scattered field, though the nonzero but small values,
as appeared in the plot in Figure 10.29(d) are caused mainly by the staircasing
approximation in the FDTD simulations, and they will tend to zero when either
an extremely fine mesh is used or a conformal scheme is employed, as mentioned
earlier.
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Figure 10.28 (a) Material parameters for an infinite simplified cylindrical cloak using a high-order
transformation [93] where only ¢ and g, are radial dependent. (b, c, d) Field distributions from
dispersive FDTD simulations of the cloak: (b) x-component of the electric field, (c) y-component of
the electric field, and (d) the magnetic field.

In summary, we have proposed a dispersive FDTD scheme for modeling cloak-
ing structures. The unusual material parameters (the relative magnitudes of the
permittivity and permeability are less than one) are mapped to the Drude disper-
sion model, which is then taken into account in the FDTD simulations by using
a method based on ADEs. The proposed method has been implemented in a two-
dimensional case, and three different cylindrical cloaks have been considered in our
simulations: the ideal cloak, the linear transformation-based cloak, and the higher-
order transformation-based cloak. It is found from the simulations that cloaks
based on the linear transformations introduce a level of back-scattering similar to
the one of a PEC cylinder without the cloak, causing the possibility of the object
being detected. Such scattering can be significantly reduced by using a cloaking
based on the higher-order transformation. In this book, we have only considered
lossless cloaks. The “ideal” cloak with a material loss of tan 6 = 0.1 has been
modeled in [91] using the finite element method, and the case for tan 6 = 0.01,



346 FDTD Modeling of Metamaterials for Optics

Ideal Simplified (linear)
35 3.5 — -
3f-— ;
331
< 3| e
W Iy
] - -
05—
0
0 05 1 15 2 25 3 35 4
X/h
()

Simplified (high-order)

150 /

180

210\

0 05 I 15 2 285 3 35 #
X/ 270

(© (d)

Figure 10.29 Power flow diagrams for (a) the ideal cloak [91], (b) the simplified cloak based on the
linear transformation [92], and (c) the simplified cloak based on a high-order transformation [93].
(d) Comparison of the scattering patterns for different cloaks and for the case of the PEC cylinder
without cloak.

0.1 and 1 have been modeled in [115] by using a full-wave Mie scattering theory.
Lossy cloaks can also be directly modeled using the above proposed dispersive
FDTD method by specifying a certain value for the collision frequency for g, in
the Drude model, and by defining a dielectric loss for &.
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11.1

11.2

Introduction

One of the principal objectives of research and development in metamaterials is
to explore new opportunities in science and technology. To ensure that the newly
gained knowledge and findings of metamaterial research in academia is trans-
ferred to the industry, it is highly desirable to perform an efficient and accurate
characterization of the material properties of the medium via numerical modeling.
Recent advances in computer techniques for numerical simulations have revolu-
tionized the way in which electromagnetic problems are now analyzed and how
new materials are designed for novel applications. Recent years have witnessed a
steady growth of new computational techniques, enhancements to existing tech-
niques, new implementations of existing techniques, and new applications of nu-
merical modeling. Sorting through this wealth of information, and then choosing
the numerical technique that is best suited for a particular application, can be a
daunting task. It is our hope that the reader will benefit from this book, espe-
cially through the detailed discussion of the FDTD method, when dealing with the
problem of designing metamaterials.

In this chapter, we will try to summarize the contents of the book and discuss
future challenges both in the area of FDTD and metamaterials research [1-11].

Overview of Advantages and Disadvantages of the FDTD
Method in Modeling Metamaterials

Since the FDTD method was first introduced by Yee in 1966 [1], it has been
growing steadily, aided by the fact that the computing costs continue to drop with
advances in digital devices and computing architectures alike. It has found success-
full applications in a number of disciplines such as electromagnetics, acoustics [2],
optics [3], and biology [4]. The fundamental concepts of the FDTD method are
described in Chapters 2 and 3, particularly from the point of view of modeling
metamaterials, to set the stage for the rest of the book.

One of the major reasons for the rapid growth of the FDTD method is that it
has many strengths, some of which are summarized as follows:

o Itis a very versatile modeling technique. It is also very intuitive, so it does not
require an extensive amount of advanced preparation on the part of users.
e It is a time-domain technique, which yields wideband results via the use of
FFT applied to the time-domain response, generated by a single simulation.
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11.3

e It is a grid-based numerical technique, which enables us to model objects
with arbitrary material fillings.

e It provides transient electromagnetic fields directly with a flexible
choice of excitations, and the field solutions can be visualized by using
computer-graphic tools.

e It can be easily parallelized for ultra-high-performance computing, because
it works well on distributed processors.

In common with other numerical techniques, the FDTD method also has a
few shortcomings. First of all, it requires the entire computational domain to be
discretized and gridded, and the cell must be a small fraction of the smallest wave-
length, as well as small enough to capture the smallest feature of the object being
modeled. The former imposes a heavy computational burden, and the latter makes
it difficult to model extra long and thin structures (e.g., the imaging lenses de-
scribed in [6]). The exception is the case of a periodic structure, which can still be
manageable, despite its fine features, when thin wire metamaterials are modeled by
using the unit cell approach, which was discussed in Chapter 4. When modeling
metamaterials consisting of thin wires and layers, one can either use the effective
medium representation (presented in Chapters 6, 8, and 9) or the parallel FDTD
code to model the physical structures as detailed in Chapter 7. Although the lat-
ter approach is computationally intensive, it provides rigorous solutions that the
simplified models may fail to generate.

In addition, since conventional FDTD cells are cubical in nature, objects with
curved surfaces must be staircased. For configurations with sharp edges, it may be
necessary to use a sufficiently fine grid to adequately represent these edges using
a staircased approximation and, consequently, to use a small time step [5]. In this
respect, the finite-difference method is not as flexible as the FEM method when
dealing with arbitrarily shaped object with curved surfaces and edges. In Chapter 4,
we used the nonorthogonal FDTD algorithm to model EBGs consisting of an array
of cylindrical metallic rods. An alternative way to solve this problem is to utilize
the concept of effective permittivities (EPs) in the Cartesian coordinate system. We
have combined the EP concept with the dispersive FDTD scheme, presented in
Chapter 10, and we have applied it to the modeling of plasmonic waveguides.

Overview of Metamaterial Applications and Final Remarks

In the last few chapters, we have presented extensive discussions of various
FDTD-based techniques for modeling metamaterials in general, and periodic struc-
tures in particular, that are typical ingredients of artificial dielectrics exhibiting
metamaterial characteristics. Some of the important attributes of metamaterials,
which have made them attractive for several novel applications, are described as
follows:

o Performance enhancement of small antennas using ENG. It has been sug-
gested that one way we can utilize an ¢ negative (ENG) medium, for in-
stance, is to take a wire antenna, whose dimensions are very small compared
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to the wavelength, and enclose it with a shroud of an ENG medium. It has
been argued that this will enable us to compensate for the positive reactive
energy of the small-wire antenna, which is known to be a high-Q structure
with a large capacitive reactance, with the reactive energy proportional to
—¢|E|?, where the minus sign is associated with the ENG medium. Then we
can mitigate the problem of inefficiency of a small antenna, as well as the
narrow bandwidth (high Q) problems associated with the same, if we can
strike a good balance between the positive reactive energy of the antenna
with the negative one of the ENG shroud to match it. We will discuss below
the feasibility of achieving this cancelation.

o Achieving superlensing by using DNG media that magnify evanescent
waves. Perhaps no topic has drawn more attention of metamaterial
researchers as that of fabricating a superlens by using a DNG slab. The
figure that has appeared more than any other in the metamaterial literature
is the picture of refracting rays that originate from a point source, undergo
negative refraction through the DNG slab, and then focus on the other
side to form the image in a manner predicted by Vesalago back in 1968.
The important question we raise is: Does the effective medium approach to
characterizing a DNG-type slab, which is physically realized by employing
periodic inclusions such as split rings and dipoles (see Figure 8.1) in a back-
ground medium, accurately describe the refraction of wave in the medium,
or are the real-life behaviors of the propagating fields substantially different
from those predicted by using the &, and g parameters to describe the
DNG medium?

o Performance enhancement of microstrip patch antennas using a metamate-
rial superstrate. A large number of recent publications have proposed per-
formance enhancement of conformal antennas [e.g., microstrip patch
antennas (MPAs)], by covering them with a DNG superstrate, whose func-
tion is to take the energy emanating from the MPA and focus it at infinity
(see Figure 11.1).

The question we ask is: Should we restrict ourselves solely to the DNG-
type superstrates, so that we can utilize their lensing properties, or should

Air with n,=1

H Snell’s Law, n;sing; = n,sing,
= By using of meta-materials  the effective
refractive index could be less than unity

Figure 11.1 Concept of the high-gain patch antenna achieved by the use of a metamaterial
superstrate.
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we also explore some other types of media, such as an ENG or a DPS? Since
we know from effective medium theory that a medium with a negative g,
and positive pz, or vice versa, would have an imaginary n(= /2 Hef), We
may intuitively argue that we should not be using a medium with an imag-
inary “n” because the field radiated by the antenna will not penetrate the
superstrate. Nor should we consider planar and homogeneous DPS super-
strates, which have no focusing properties. So the question we may ask is:
Is our best approach to designing the superstrates to go directly to a DNG
medium and summarily discard other types such as ENG and DPS media
right from the start?

o Electromagnetic cloaks. Another topic that is currently drawing consider-
able attention from the metamaterial community is “cloaking.” The objec-
tive of cloaking is to coat a target with metamaterials such that it becomes
invisible to the interrogating wave. The issue here is the realizability of the
desired profile for the effective & and p that would provide the designed
shielding characteristics. This is especially true when we wish the cloak to
be effective for arbitrary polarizations and angles of incidence and to be
effective over a wide bandwidth.

In the following four sections we will discuss the questions raised above in
connection with the four applications we have listed. A common thread that runs
through the discussion presented below is that we will seek the answers to the
questions, posed above, by examining the field solutions of the problems at hand
that we generate via rigorous numerical simulations. We follow this strategy to
examine the validity of the effective medium theories, and of the plethora of in-
teresting characteristics of the metamaterials predicted by the above theories that
form the underlying foundations for the design of a variety of devices, such as
lenses and highly directive antennas. Of course, our ultimate goal is to make a
strong case to the reader that rigorous numerical analysis is the only reliable way
to predict the performance of metamaterial-based devices and that all designs based
on effective medium theories must be carefully examined using rigorous simula-
tions before devices incorporating these designs are fabricated. Before proceeding
with the proposed examination of the effective medium theories, we would like to
refresh the memory of the reader and recall how the effective medium parameters
are typically determined. Towards this end, we refer the reader to Chapters 6, 8,
and 9, where this topic has been discussed in great detail.

Recall that the first step is to interrogate the metamaterial slab with a nor-
mally incident plane wave and compute or measure the reflection and transmission
coefficients, or, equivalently, the S-parameters. We then back out the refractive in-
dex “n” and follow this by extracting the effective material parameters utilizing
(7.1)-(7.8). From then on, the typical procedure followed by most researchers in
the field is to use the effective medium descriptions of the homogenized version of
the original periodic structure and to predict the performance of the devices that
utilize the metamaterials. We add, parenthetically, that we have done the same in
this book on numerous occasions, namely made use of the effective medium ap-
proach, as is undoubtedly evident to the reader who has gone through the previous
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chapters. Whether or not this approach yields reliable results that we can trust is
the key question we wish to address in the following.

11.3.1 Small Antennas Enclosed by an ENG Shell

It is in [7] that by using an ¢, negative (ENG) shell, the matching of a small dipole
antenna can be significantly improved. For instance, the improvement in gain
compared with that of the original unmatched antenna can be over 50 dB. Figure
11.2 shows the antenna configuration simulated using Ansoft HFSS.

The radius of the dipole is 2.5 mm, and the total height is 10 mm. The in-
ner and outer radii of the ENG shell are 10 mm and 19.51 mm, respectively. The
dipole antenna enclosed by the ENG shell is designed to have a resonant frequency
around 350 MHz. The material properties of the shell are assumed to be ¢, = —3
and p, = 1. A small loss is also assumed, for the convergence of the simulations, by
setting tand = 0.001. Since an ENG shell would have negative stored energy (elec-
tric), such a shell would significantly improve the matching of the dipole antenna.
The simulated return loss plotted in Figure 11.2(b) comfirms this. We see that the
gain of the dipole encased in an ENG shell has a dramatic improvement, by about
50 dB compared with the dipole antenna without the shell. In the above simula-
tions we have used a small amount of losses tané = 0.001. However for practical
applications, such small losses may not be achievable, and therefore it is important
to investigate the effect of large losses on antenna performance. Chapter 7 models
the real physical structure of resonant particles based on the unit cell approach and
followed (7.1)-(7.8) to extract the material properties. If we neglect both dielectric
and conductive losses, a loss tangent of 0.01 and fractional bandwidth of 1.2% can
be achieved for a metamaterial made of particles with their electrical sizes close to
0.06 wavelengths. Therefore, we have resimulated the dipole enclosed in an ENG
shell, using more realistic material parameters, for instance, tané = 0.01 and 0.1.
The calculated return losses for these two cases are plotted in Figure 11.3. It can be
seen that the matching of the antenna becomes worse due to the change of material
properties of the ENG shell. A comparison of antenna Q with the Chu-Harrington
limit is shown in Figure 11.3(b) which demonstrates the significance of losses in
metamaterials and their impact in antenna performance.

In order to compare with the ENG shell enclosed dipole antenna, we have also
simulated a small biconical antenna with similar effective dimensions of the ENG
dipole; the length of one arm is 20 mm. The geometry of antenna is shown in Figure
11.4(a). Such a small antenna has very high impedance and the resonance of the
antenna is supposed to be at a very high frequency. We obtain the antenna input
impedance at 350 MHz from simulations (i.e., Z = 0.26 — j242.84) and normalize
the impedance in order to compare with the dipole antenna enclosed in the ENG
shell. The return loss of the antenna using normalized impedance (equivalent to
impedance matching) is plotted in Figure 11.4(b) and the gain in Figure 11.4(c).

Despite the difficulties in matching the antenna in practice, the gain of the
small biconical antenna is only —30 dB, which is 25 dB lower than the ENG
dipole antenna with tané = 0.001. However, with a loss tangent of tand = 0.1, the
metamaterial-loaded antenna demonstrates no better performance (gain —28.9 dB
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Figure 11.2 (a) Geometry of a dipole enclosed by an ENG shell with & = —3 and u, = 1. The
dimensions are h =10 mm, ® =5 mm, ®; =10 mm, ®, = 19.51 mm, and A = 845.1 mm. (b) The
return loss of the ENG dipole.

with tané = 0.1) than the conventional biconical antenna. This indicates that the
advantage of using metamaterial loading for small antennas will only be realized if
the metamaterial possesses extremely low losses and sufficient bandwidth. It should
be evident, therefore, that accurate parameter extraction is needed by modeling
physical structures before the effective medium approach is adopted.

We might think, at this point, that we can solve the problem at hand simply
by synthesizing an ENG medium with low losses, but this would both be mislead-
ing and incorrect for two reasons. First, if we use a slab of wire medium, such as
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Figure 11.3 (a) Comparison of return loss (511, in dB) of a dipole antenna with the ENG shell with
different amount of losses tan 6 = 0.01 and tan 6 = 0.1. (b) Comparison of antenna Q for dipole
enclosed within ENG shell with different losses with the theoretical Chu-Harrington limit.

the one shown in Chapter 8, to realize an & negative medium, on the basis of the
reflection and transmission characteristics of the slab when illuminated by a nor-
mally incident plane wave, we would not necessarily have the same behavior when
we use a spherical shell configuration, which is obviously nonplanar and whose
radius is small, and therefore, which can only accommodate small wire segments.
The effective medium approach would not be valid unless we could demonstrate
that such an ENG shell responds equally well for all angles of incidence, since
the dipole generates a spectrum of waves, encompassing both visible and invisible
ranges.
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Figure 11.4 (a) The geometry of a biconical antenna. (b) The return loss for the biconical antenna.
(c) The gain pattern for the biconical antenna.

The second issue is even more serious. Let us say we rigorously analyze the
shell structure with embedded wires and find that on the basis of its S-parameter
characteristics its effective ¢ is negative. This, in turn, would imply that the electric
energy stored in this medium would be negative. We could then go on to argue that
we could cancel the positive reactive energy of the dipole by covering it with the
ENG shell, and thereby realize an impedance match for the antenna. However, if
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we rigorously analyze the shell configuration by computing the electric field inside
the shell region, and then use it to evaluate the energy, we will find that the stored
electric energy is, in fact, positive in contradiction to what was predicted by the
effective medium approach. The reason we maintain that the stored energy must
be positive is that the true & of the medium inside the shell, in which the wires are
embedded, is obviously positive and, hence, ¢|E|*> must be positive everywhere in
the shell region. (Note that the E-field is identically zero inside the wires, and the
part of the volume within the shell that is occupied by the wires does not contri-
bute to the stored energy.)

For this reason, a dipole enclosed by a shell with embedded wires with small
lengths would neither achieve the desired matching, nor the directivity enhance-
ment, that we expected the ENG metamaterial shell to deliver.

11.3.2 Focusing and Superlensing Effects

The cornerstone of the focusing phenomenon associated with DNG slab is the
negative refraction, in the absence of which we would never be able to achieve
focusing with a planar homogeneous slab. So before proceeding very far, we should
first take a close and scrutinizing look at the negative refraction phenomenon itself.

The negative refraction phenomenon is based on the application of Snell’s law
to the medium under consideration. The basis for this law is relatively straight-
forward because it just requires us to match the projection of the k vectors in
the half-space problem, shown in the figure above, along the interface of the two
media. Obviously, this would immediately lead us to insist that the ray incident
from the left upon the interface from the medium above (free space in the picture)
at an oblique angle must bend toward the left, in order to satisfy the well-known
Snell’s Law, assuming, of course that the half space below is “homogeneous.” Fig-
ure 11.5(b) also implies that the Poynting vector associated with the ray follows
its direction (i.e., is directed toward the left of the normal to the surface) for this
incident angle.

At this point it is rather important to recognize that, to date, no homogeneous
medium with DNG characteristics has been discovered and that the only media

Air Air
DPS DNG
medium medium

(@ (b)

Figure 11.5 (a) Positive and (b) negative refraction phenomena.
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that have been claimed to be DNG are periodic structures—artificially synthesized
at microwaves or naturally occurring in crystalline structures at optics.

Thus it behooves us to ask the question whether the propagation characteristics
within a periodic structure (doubly periodic along the transverse directions and
truncated-periodic in the longitudinal direction) display the same behavior as that
depicted by the ray picture in Figure 11.5(b).

Perhaps the most widely used DNG material at microwaves is the SRR and
wire combination, which we have discussed previously on numerous occasions (see
Chapter 6, for instance). In order to mimic a ray, let us excite a slab of the above
DNG structure with a Gaussian beam incident from above.

We begin by establishing the DNG behavior of the slab by interrogating it with
a plane wave (at normal incidence) and computing the S-parameters. We then back
out the refractive index 7 as well as the effective parameters ¢ and u, and plot
them in Figures 11.6 and 11.7 as functions of frequency. It is evident that the
medium indeed displays DNG characteristics for this normal incidence case, albeit
in a narrow frequency range around 15.3 GHz.

We now illuminate the slab with a Gaussian beam and follow it as it propagates
through the slab and eventually exits to free space on the other side of the slab in the
region below. A careful examination of the field distribution, both within the slab
as well as in the air region outside, reveals that the behavior of the field is highly
granular, and not as “clean” as the ray picture would suggest. More importantly,
we find that a dominant “backward” wave is excited within the slab, though
there are other harmonics besides the _; (backward Floquet mode), namely fy
and B; whose presence can also be detected in the field distribution. In light of
this, it is important to recognize that the ray picture, which implies refraction
in a “single” direction does not adequately describe the wave propagation in the
periodic structure. What is even more important is the fact that the propagation
inside the artificial dielectric slab, which is comprised of periodic inclusions, can
be highly dependent upon the direction of propagation. For instance, referring
to the SRR-type DNG structure in Figure 8.1, we notice immediately that the
propagation characteristics in this medium are bound to be very different in the
x-direction (transverse) when compared to that in the z-direction (longitudinal).
This is because the H-field component of the incident wave interacts with the
loops when the wave is normally incident, since it is orthogonal to the plane
of the loop, but the interaction would be minimal when the incident angles is
close to 90°. Since the propagation inside the periodic structure must satisfy the
phase-matching condition at the interface, the behavior of the wave number in
the transverse direction plays a key role, since it must exactly match the projected
wave number of the incoming wave in the transverse direction in order to satisfy
the continuity of the fields at the interface. Thus, if and only if the slab supports
a backward wave in the “transverse” direction, then, and only then, the energy
can be propagating in the negative-x-direction while the phase propagates in the
opposite (positive-x) direction, to be in synchronization with the incident wave.
Since the SRRs in the example geometry we are discussing do not interact with the
H-field of the incident wave when the propagation is in the x-direction, we do not
expect a backward wave to be excited that has a component in that direction.
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Figure 11.6 The effective electric permittivity extracted for the (SRR+wire) metamaterial slab, start-
ing from one and up to four layers: (a) real and (b) imaginary parts.
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And vyet, in the homogeneous and isotropic type of effective medium model, the
excitation of a backward wave in the longitudinal direction also implies a similar
type of propagation characteristic in the transverse direction. This serves to explain
the difference between the effective medium and physical models, insofar as the
field propagation inside the slab is concerned, especially because there is a funda-
mental and phenomenological difference between the refraction in a homogeneous
medium and Floquet-mode diffraction in a periodic structure. It is also important
to reiterate the fact that almost always the extraction of the effective parameters is
based on the reflection and transmission properties at a “normal” incidence, and
that it is a common practice to predict the behavior of the slab on the basis of these
parameters for “arbitrary” angles of incidence. This is the case, as for instance,
when the illuminating field is a spectrum of plane waves radiated by a small dipole
(source in a focusing problem), or emanates from a patch antenna (metamaterial
enhancement of antenna problem).

We now turn to the prism problem, shown in Figure 5.42 (also discussed
in Chapter 5). The “refraction” in these structures, which again comprise SRRs
and wire segments, has been touted as evidence of negative refraction in a DNG
material. However, a study of the wave propagation inside the prism reveals, once
again, the presence of Floquet harmonics that determine the field propagation in
the interior of the prism, and it again confirms that there is no “clean” refracted
field as suggested by the ray propagation picture in the context of a homogenized
and isotropic effective medium that replace the quasiperiodic structure. Thus,
what is typically interpreted as the negative refractive phenomenon is nothing
but the propagation of one of the several Floquet harmonics excited in the prism,
which contains a periodic array of inclusions (truncated, of course). This serves to
explain the results of a recent experimental study of such a prism [8] in which it
was reported that the level of the so-called negatively refracted wave was down by
about 10 dB below what was expected, and this low level could not be accounted
for by adding up all the conduction losses. Consequently, the gap of about 30% of
the power in the loss budget could not be explained by using the effective medium
approach. Of course, we would have no difficulty in clearing up this discrepancy
if we were to add up the powers of all the Floquet harmonics, rather than look
at just the “refracted” field alone, which is really associated with just one of the
harmonics.

Next, let us turn to the focusing problem in which we study the behavior of
the fields propagating through a DNG slab, whose geometry the same as in Figure
8.1. The simulation result of the physical structure are presented in Figures 11.8
and 11.9.

By examining these results, we can come up with the following observations:

1. The field propagation within the slab is governed, once again, by the Floquet
harmonics corresponding to the longitudinal direction. (Note that this in-
formation is completely lost when we homogenize the problem and replace
it by an effective medium, and that the same is also true for the anisotropic
property of the medium, as we have pointed out before.)

2. There is no “focusing” in the longitudinal distinction, but only a monotonic
decay of the amplitude as we move away from the exit plane into the image
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Figure 11.8 The magnitude of Ey at 15.3 GHz on the YZ plane (E-plane) in the free-space region
when the (SRR + wire) metamaterial slab is excited by a small dipole on the other side. The expected
image position predicted by effective medium theory is marked as .

region. There is some focusing type of behavior in the transverse direction
in the expected “image” plane, but by no means it is a “clean” image.
Diffractions of other Floquet harmonics also contribute and introduce a
multitude of sidelobes.

3. There is no crossing of rays inside the slab as predicted by the ray picture
(see Figure 11.10) for the DNG slab. However, the presence of backward
waves excited within the slab can be used to explain the phase behavior in
the exit aperture and the focusing type of characteristics they engender in
the output region.

These observations lead us to conclude that the behavior of the field propaga-
tion is far different in this DNG slab than that predicted by the effective medium
theory, and the same is true for its focusing characteristics. Once again, we have
run into this conundrum because of the oversimplification introduced in the use
of the effective medium approach, which ignores the physics associated with the
periodic nature of the medium, and, consequently, the behaviors of the Floquet
harmonics associated with such a medium. At this point it is worthwhile for us
to take a look at some of the geometries of DNG materials that are purported
to exhibit negative refraction. These include the crystalline structures investigated

: .
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Figure 11.9 The phase of Ey at 15.3 GHz on the YZ plane (E-plane) when the (SRR + wire)
metamaterial slab, located between z = —23.75 mm and 0 mm, is excited by a small dipole.
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Figure 11.10 Superlensing effect by a DNG slab.

by [9], and the so-called mushroom configuration studied by a number of work-
ers. We notice right away that, unlike the (SRR + dipole) medium, the mushroom
structure does have the same type of propagation characteristics in the transverse
and longitudinal distinctions by virtue of its geometry, and, hence, it is able to
support backward waves both in the transverse and longitudinal directions. Thus
this structure should be able to support negative-refraction-like behavior, although
once again, it is really the propagation of the Floquet harmonics associated with the
structure that accurately describes the nature of the field propagation. This can be
verified by referring to the field propagation inside the mushroom region which is
flanked by parallel plates at both ends (see Figure 11.11). The field plots, presented
in Figures 11.12 and 11.13 show, once again, the presence of Floquet harmonics,
in one of which a backward wave field is dominant in a certain frequency range. It
shows backward propagation, both in the longitudinal and transverse directions,
and hence a “negative-refraction-type” of behavior. However, a closer examina-
tion reveals that the Floquet harmonic behavior is not identical to that of negative
refraction and that there are several subtle but important differences between the
two.
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Figure 11.11 A 2D superlens based on mushroom structures.
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Figure 11.12 (a) Magnitude and (b) phase of Ez measured just above the ground plane at 3.75
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The “focusing” behavior can again be attributed to the backward wave
launched inside the slab which, in turn, creates a phase lead as we move away from
the center in the exit aperture, as opposed to a phase lag in a diverging wave. How-
ever, the amplitude distribution is considerably different from that of a converging
spherical wave. Furthermore, the phase behavior shows the presence of other Flo-
quet harmonics, which contribute substantially in the output region and manifest
themselves in the way of sidelobes in that region that flanks the main beam.

11.3.3 Performance Enhancement of Planar Antennas

Let us now move to the next topic in our list, namely the performance enhance-
ment of planar antennas by using a metamaterial superstrate. As mentioned earlier,
most workers in the field just go directly to designing a DNG superstrate for the
microstrip patch, arguing that this would provide the focusing of the rays emanat-
ing from the antenna, and they stay clear of either the DPS or the ENG superstrate,
because the former would not have any focusing properties, and the latter would
block the transmission through it. However, it has been adequately demonstrated
that, in general, superstrate designs utilizing the DPS and/or ENG superstrates
perform considerably better, insofar as the directivity enhancement of a microstrip
patch antenna is concerned. This is because the directivity enhancement is achieved
not by focusing, as pictured in Figure 11.1, but by utilizing the characteristics of
the Fabry-Perot resonator that is formed by the ground plane underneath and the
superstrate above, which acts like a partially reflecting surface (PRS), with the an-
tenna playing the role of an exciter of the Fabry-Perot cavity. Since the superstrate
is a PRS, and not a Vesalago lens type of slab, it works fine when DPS or ENG
slabs are used for the cover. In any case, the effective medium approach, though
it simplifies the analysis, leads to less-than-optimal designs. Thus the DNG-based
designs cannot compete with the DPS and ENG type of designs that are elimi-
nated from consideration at the outset, when one follows, exclusively, the simpli-
fied effective medium type of approach to design the patch antenna/metamaterial
composites.

11.3.4 Electromagnetic Cloaks

The prospect of designing a shroud or a cloak using metamaterials is intriguing,
and the physics of cloaking is usually based on bending of the rays through the
cloak in a way such that they do not “see” the obstacle being shrouded. However,
the task of synthesizing a radially varying dielectric is not at all straightforward,
and once again we might resort to the artificial medium approach to describing
the shroud. As long as we do not have anisotropic inclusions that preclude the
possibility of describing the medium with a homogenized and isotropic medium,
we may be able to describe the cloak by using such a representation.

However, the main sticking point in this type of cloak is not only the frequency
dependence of the performance of the cloak (reduction of RCS), but also similar
dependence on the angle of incidence and polarization of the incident wave. This,
in turn, can limit the performance severely in a practical situation in which the
enemy radar cannot be expected to cooperate to provide us the best-case scenario
that suits us.
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The point of this discussion, however, is that whatever physical structure is
chosen for the shroud, we must simulate that configuration before we can trust
the results. To be sure this is not an easy task, particularly in the context of
ray techniques, because no robust asymptotic methods exist for simulating PEC
structures covered by inhomogeneous dielectrics. Thus we must resort to rigorous
numerical simulations, using, say, the FDTD, to design the cloak and to see if we
can develop a “magic” shroud that is insensitive to the variations in the frequency
over a wide band, as well as the angle of incidence and polarization, over a wide
frequency range, using real structures but not their effective media representations.

Before closing, we mention that the rigorous simulations, mentioned herein,
have been reported in [10], and that they have been generated by using the con-
formal and parallelized FDTD solver GEMS [11], which is capable of handling
problems with upward of 10E + 9 unknowns, often required to simulate the prob-
lems discussed in this chapter. Interested readers are referred to [10, 11] for further
details.
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