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Preface

Stimulated by the pioneering work of Sajeev John and Eli Yablonovitsch in 1987,
German research groups started in the early 1990s with theoretical and experimental
work on 2D and 3D photonics crystals. This initial work was the basis of an
application for a focused project on photonic crystals at the German Science
Foundation (DFG) in 1999. In the last seven years, a consortium consisting of
more than 20 German research groups worked together in the area of photonic
crystals.
We started with linear, non-dispersive properties of purely dielectric 2D and 3D

photonic crystals in the late 90s and developed the field of research step-by-step to
non-linear and dispersive properties of dielectric photonic crystals including gain
and/or losses. These properties where studied on different materials systems
such as silicon, III-V-compound semiconductors, oxides and polymers as well as
hybrid systems consisting of dielectric photonic crystals and liquid crystals.
Applications of these systems were developed in the area of active photonic
crystals fibres, functional optical components as well as sensors. Some of them
have now even entered into industrial applications. During the funding period,
some groups extended the initial focus to non-dielectric, dispersive materials such
as metals and discussed the properties of periodic metallic structures (plasmonic
crystals). After the groundbreaking work of John Pendry at the beginning of this
century, resonances in dispersive structures with periodic permeability and per-
mittivity (metamaterials) were studied as well. This was important in order to
understand the difference of negative refraction in metamaterials and dielectric
photonic crystals.
This special issue summarizes the work of those groups which were part of the

focused German program. Other groups not funded by this project but by other
grants joined the German initiative on photonic crystals. Workshops of all groups
working in the field have been carried out at the German Physical Society meeting
each year. Our work was also stimulated by the numerous Humboldt Awardees who
visited Germany in the last seven years such as Sajeev John, Costas Soukoulis,
Thomas Krauss and many others. We are also pleased that some of our close

XV



collaborators over the last six years have contributed to this issue: Dan Davidov’s
group from the Hebrew University, Israel, and Masanori Ozaki’s group from Osaka
University, Japan.

November 2007 R.B. Wehrspohn
H.-S. Kitzerow
K. Busch
Halle, Paderborn, and Karlsruhe
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1
Solitary Wave Formation in One-dimensional Photonic Crystals
Sabine Essig, Jens Niegemann, Lasha Tkeshelashvili, and Kurt Busch

1.1
Introduction

Periodically modulated dielectric structures exhibit the peculiar property that their
multibranch dispersion relations may be separated by Photonic Band Gaps
(PBGs) [1,2]. In the linear regime, optical waves with frequencies within these
PBGs cannot propagate inside the sample and decay exponentially with distance.
This gives rise to a number of novel physical phenomena that have significant
potential for applications in telecommunication and all-optical information
processing.
In the case of nonlinear periodic structures, the physics exhibits a much richer

behavior [3]. For instance, due to the optical Kerr effect, i.e., an intensity-dependent
refractive index, sufficiently intense electromagnetic pulses can locally tune the PBG.
As a consequence, the systemmay become transparent to optical waves with frequen-
cies in the (linear) band gaps. Moreover, in the presence of optical nonlinearities,
modulational instabilities of thesewavesmay occur. This leads to novel types of solitary
excitations in PBG materials, the so-called gap solitons. Gap solitons have first been
discovered by Chen and Mills [4], and are characterized by a central pulse frequency
within a photonic band gap. Most notably, gap solitons can possess very low and even
vanishing propagation velocities and, thus, lend themselves to various applications for
instance in optical buffers and delay lines as well as in information processing. It
should be noted that PBG materials allow solitary waves with carrier frequencies
outside thebandgaps, too. Suchpulses are generally referred to asBragg solitons [3]. To
date, low group velocity Bragg solitons have been observed infiber Bragg gratings [5,6].
These systems represent a very important class of (quasi) one-dimensional PBG
materials which has already foundmany applications in various areas of photonics. In
the following, we, therefore, concentrate on an analysis of fiber Bragg gratings.
However, we would like to emphasize that owing to the universal nature of nonlinear
wave propagation phenomena our results are of relevance for a number of physical
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systems ranging from two- or three-dimensional photonic crystals all the way to
Bose–Einstein condensates in optical lattices.
The appropriate theoretical model to describe nonlinear wave phenomena in one-

dimensional PBG materials is the so-called coupled mode theory [3]. In this model,
forward and backward propagating waves are described through appropriate carrier
waves that are modulated with corresponding (slowly varying) envelopes E�. The
resulting equations of motions for these envelopes are

i
qEþ
qz

þ i
qEþ
qt

þE� þ jEþj2Eþ þ 2jE�j2Eþ ¼ 0; ð1:1aÞ

�i
qE�
qz

þ i
qE�
qt

þEþ þ jE�j2E� þ 2jEþj2E� ¼ 0: ð1:1bÞ

Equations (1.1a) and (1.2b) are generally known as Nonlinear Coupled Mode
Equations (NLCME). The NLCME are given in dimensionless variables, and the
nonlinearity is assumed to be positive. For a detailed discussion of the NLCME,
including their derivation directly from Maxwell's equations, we refer to Ref. [3].
Below, wewill only give a brief synopsis of those results on theNLCME that pertain to
our work on solitary wave formation described in Sections 1.2 and 1.3.
The coupled mode theory only accounts for one band gap located between two

bands, an upper and a lower band, respectively. For systems such as fiber Bragg
gratings, the NLCME provide a very accurate framework for studying nonlinear wave
dynamics [5]. Although NLCME are nonintegrable, there are known exact solitary
wave solutions to these equations which read as [3]

E�ðz; tÞ ¼ a~E�ðz; tÞeihðqÞ: ð1:2Þ

Here, ~E� represent the one-soliton solutions of the massive Thirring model which
corresponds to the NLCMEs without self-phase modulations terms [3]. Explicitly,
these one-soliton solutions read as

~Eþ ¼
ffiffiffi
1
2

r
1
D
sin d eissec hðq� id=2Þ; ð1:3aÞ

~E� ¼ �
ffiffiffi
1
2

r
D sin d eissec hðqþ id=2Þ; ð1:3bÞ

where we have introduced the abbreviations

q ¼ gðz� vtÞ sin d; s ¼ gðvz� tÞ cos d; ð1:4Þ

as well as

D ¼ 1� v
1þ v

� �1
4
; g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p : ð1:5Þ
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Finally, a and h(q) are given by

1
a2

¼ 1þ 1þ v2

2ð1� v2Þ ; eih ¼ � e2q þ e� id

e2qþ e� id

� � 2v
3�v2

: ð1:6Þ

These solutions (1.2) of the NLCME depend on two independent parameters, the
detuningdandthescaledgroupvelocityv.Thescaledgroupvelocitycantakeonanyvalue
below the speed of light (i.e., �1� v�þ 1) and may even vanish. The latter case
corresponds to stationary solutions which have been found by Chen and Mills [4]
throughnumerical experiments.Thedetuningdof thesolitondescribes thevalueof the
waves� central (carrier) frequency relative to the band edge and varies over a range
0� d�p. If d is close to zero, the spectrumof the solitary wave is concentrated around
the upper band edge (in the case of positive nonlinearity). The Bragg frequency
associated with the center of the band gap corresponds to a detuning d¼ p/2. At this
point,wewould like tonote that in termsof our dimensionlessunits the photonic band
gapislocatedintheinterval[�1,1].Equation(1.3)describesbothgapandBraggsolitons.
A stability analysis of these solitary wave solutions has shown that pulses with d<p/2
remain stable against small perturbations. However, for detuning d>p/2, the solitary
waves become unstable and decay to radiationmodes after a certain transient time [7].
In any realistic experimental situation, the exact soliton-shaped pulses cannot be

launcheddirectly. Instead, a formation of a solitarywavehas to take place startingwith
an initial pulse with �distorted� shape that radiates away the excess energy into low
amplitude linear modes. The influence of the PBG on this reshaping process is
expected to be drastically increased for small values of the detuning. As alluded to
above, for d! 0 the spectrum of the pulse is mostly concentrated at the band edge
where the group velocity of the eigenmodes is very small or even zero. Therefore, the
linear waves (not to be confused with the linear eigenmodes) radiated from the initial
nonlinear pulse will be strongly back-scattered by the PBGmaterial. In turn, this will
cause pronouncedmemory effects (also called non-Markovian effects; see the discus-
sion in Section 1.3) in the soliton formation process quite similar to the atom-photon
interactionprocesses inPBGmaterials [8,9].This is thestartingpointofouranalysis in
thepresentpaper.Owingto thenon-integrabilityof theNLCME,westudythisproblem
bymeansof a variational approach.Wedescribe thedetails of this variational approach
to theNLCMEandhowto includeacouplingof thenonlinear radiationmodes to linear
losses in Sections 1.2 and 1.3, respectively. In Section 1.4, we report about results and
comparison with numerically exact calculations. Finally, we summarize our findings
in Section 1.5, where we also provide a perspective on improved treatments of losses
within the NLCME.

1.2
Variational Approach to the NLCME

The variational approach to the NLCME is based on the Lagrangian density of the
system in non-dimensional form

1.2 Variational Approach to the NLCME j5



L ¼ i
2

E*
þ

q
qt

þ q
qz

� �
Eþ �Eþ

q
qt

þ q
qz

� �
E*
þ

�

þE*
�

q
qt

� q
qz

� �
E� �E�

q
qt

� q
qz

� �
E*
�

�

þ 1
2
jEþj4 þ 1

2
jE�j4 þ 2jEþj2jE�j2 þE*

þE� þEþE*
�:

ð1:7Þ

The action corresponding to this Lagrangian density is invariant under temporal and
spatial translations as well as under phase transformations. According to theNoether
Theorem, every symmetry transformation generates a corresponding conserved
quantity [10]. In our subsequent analysis, the mass and energy conservation laws are
of major importance. The mass conservation law readsð¥

�¥

ðjEþj2 þ jE�j2Þ dz ¼ const; ð1:8Þ

whereas the energy conservation law statesð¥
�¥

i
2

E*
þ
qEþ
qz

�Eþ
qE*

þ
qz

�E*
�
qE�
qz

þE�
qE*

�
qz

� ��

þ 1
2
jEþj4 þ 1

2
jE�j4 þ 2jEþj2jE�j2 þE*

þE� þEþE*
�

�
dz ¼ const: ð1:9Þ

According to the general scheme for variational approach [11], we have to choose the
trial functions for the forward and backward propagating modes of the NLCME that
are tailored towards the problemunder consideration. In the present case, ourAnsatz
must allow the pulse to relax to the exact gap soliton shape. For simplicity, we restrict
ourselves to the evolution of stationary gap solitons, i.e., we choose the scaled group
velocity v to be zero. Other situation can be treated analogously, albeit with consider-
ably more complex notations. In addition, the trial functions must also contain a
radiation part. Based on these considerations, we formulate the following Ansatz

Eþðz; tÞ ¼ þ hþðtÞ sec h sin dþðtÞz� i
2
dþðtÞ

� �
þ igþðtÞ

� �
e�iaþðtÞ ; ð1:10aÞ

E�ðz; tÞ ¼ � h�ðtÞ sec h sin d�ðtÞzþ i
2
d�ðtÞ

� �
þ ig�ðtÞ

� �
e�ia�ðtÞ ð1:10bÞ

together with the initial conditions

Eþðz; t ¼ 0Þ ¼ þh0 sec h sin d0 � i
2
d0

� �
; ð1:11aÞ

E�ðz; t ¼ 0Þ ¼ �h0 sec h sin d0 þ i
2
d0

� �
; ð1:11bÞ

where the initial amplitudes and detunings of the forward and backward propagat-
ing modes are chosen to be the same. The (time-dependent) variational parameters
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are the amplitudes h�, the detunings d�, the so-called shelf functions g�, and the
phases a�. The first part of the trial function describes the initial pulse and the
second part, consisting of the functions g�, describes the nonlinear radiation
modes. In our case, the shelf functions g� are of particular importance, since they
allow the localized pulse to couple to linear radiation modes. Far away from the
nonlinear pulse, the system dynamics is essentially linear so that the nonlinear
extended modes can only contribute in a spatial region of finite extent around the
pulse. As a consequence, the shelf should have a finite length l. Furthermore, in view
of the symmetry between Eþ and E� and inspired by numerically exact solutions of
the NLCME, we assume

hþ ¼ h� ¼ h; ð1:12aÞ

dþ ¼ d� ¼ d; ð1:12bÞ

gþ ¼ g� ¼ g; ð1:12cÞ

aþ ¼ a� ¼ a; ð1:12dÞ

so that there are only four independent variational parameters in our problem.
Now, we insert the trial function given, Eqs. (1.10a) and (1.10b), into the Lagrang-

ian density, Eq. 1.7, and carry out the integration over all space. As a result, we derive
the effective Lagrangian of the system

Leff ¼ 4h2 d
sin2 d

da
dt

� 2ph
1

sin d
dg
dt

� 4h2 1
sin d

ð1� d cot dÞ� 2pgh
cot d
sin d

dd
dt

þ 2pg
1

sin d
dh
dt

þ 2g2l
da
dt

þ 12h4 1

sin3 d
ð1� d cot dÞþ 4h2g2

1
sin d

þ 3g4lþ 8h2g2
d

sin2 d
� 4h2 1

sin d
� 2g2l: ð1:13Þ

Using this expression, we obtain the following equations of motion for the four
independent variational parameters h, d, g, and a

dh
dt

¼ g
p

� ld� 2h2 � ld cos2dþ 9h2ld cot2 d� 4h2 d
sin d

þ 3lh2 d
sin2 d

�
þ l sin d� g2l sin d� 2ld cos dþ g2l cos dþ 3l cos d sin d

� g2l cos d sin dþ 8h2d2
cot d
sin d

þ 4h2d cot d� 12h2l cot d
� ð1:14aÞ

dd
dt

¼ 2g
ph

2h2d� 6lh2 þ 6lh2d cot dþ 4h2 d2

sind
� ld sin dþ lg2d sin d

 

� ld cos d sin dþ 2l sin2 d� g2l sin2 d
�
; ð1:14bÞ
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dg
dt

¼ 2h
p

�2þ g2 þ d2

sin2 d
þ 6h2 1

sin2 d
� 3h2 d2

sin4 d
� d2 cot2 d

 

þ 3h2d2
cot 2 d
sin2 d

þ 2d cot d� g2d cot d� 6h2d
cot d
sin2 d

�
:

ð1:14cÞ

da
dt

¼ � 1
2 sin d

�dþ 6h2dþ d cos 2dþ 4g2 sin d� sin 2dþ g2 sin 2d
� �

:

ð1:14dÞ

In the above equations, the shelf length l is not fixed yet. In order to determine its
value, we note that the differential Eqs. (1.14a)–(1.14d) exhibit a fixed point which
corresponds to the exact stationary soliton solution of the NLCME

h ¼ sin dfpffiffiffi
3

p ; ð1:15aÞ

d ¼ dfp; ð1:15bÞ

g ¼ 0; ð1:15cÞ

a ¼ t cos dfp: ð1:15dÞ

Moreover, the value of dfp can be calculated with the help of the energy conservation
law. According to Eq. (1.9), the energy of the pulse described through Eqs. (1.10a)
and (1.10b) is

E ¼ 4h2 1
sind

ð2� d cot dÞ� 12h4 1

sin3 d
ð1� d cot dÞ

� 4h2g2
1

sind
� 8h2g2

d
sin2 d

þ 2g2l � 3g4l:
ð1:16Þ

Upon equating the energy at the fixed point efp¼ 4 sin dfp/3 with the energy of the
initial pulse, we obtain for dfp:

dfp ¼ arcsin 3h2
0

1
sin d0

ð2�d0 cot d0Þ�9h4
0

1

sin3 d0
ð1�d0 cot d0Þ

� �
: ð1:17Þ

Now, in order to obtain the oscillation frequency w of the variational parameters, we
linearize Eq. (1.14) around dfp, leading to

o¼ 2ffiffiffi
3

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3l�4dfp�3l cos dfp�2 sindfpÞð2dfp cos dfpþðd2fp�2Þ sin dfpÞ

q
:

ð1:18Þ

This allows us to finally deduce the length of the shelf by comparing this frequency
with the actual oscillation frequency w¼ 1� cos dfp of the soliton, which represents
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the nonlinear frequency shift of the pulse [3]. Consequently, we obtain the length l of
the shelf as

l ¼ p2

4

1�cos dfp
2dfp cos dfpþðd2fp�2Þ sindfp

þ 4dfpþ2 sindfp
3ð1� cos dfpÞ : ð1:19Þ

The above expression (1.19) for the shelf lengthdiverges at dfp� 0.66p and it becomes
even negative for larger values of the detuning. The reason of this singular behavior
originates from the instabilities of the gap solitons in the lower half of the band gap.
However, since we consider only the limit of small detunings, this unphysical
behavior is of no relevance to our case.

1.3
Radiation Losses

To include the radiation loss in our calculation, we have to couple the nonlinear
radiation modes to the linear modes of the system as discussed above. The linear
modes represent the solutions of the linearized coupled mode equations (LCME)

i
qEr

þ
qz

þ i
qEr

þ
qt

þEr
� ¼ 0; ð1:20aÞ

�i
qEr

�
qz

þ i
qEr

�
qt

þEr
þ ¼ 0: ð1:20bÞ

Here, Er
� denotes, respectively, the dispersive radiation in forward and backward

propagatingmodes in the regions to the left and the right of the shelf. Then, themass
propagating to the right of the pulse is given by

d
dt

ð¥
l=2

ðjEr
þj2 þ jEr

�j2Þdz ¼ jEr
þðz ¼ l=2; tÞj2 � jEr

�ðz ¼ l=2; tÞj2: ð1:21Þ

This equation describes the non-Markovian radiation dynamics of the solitary wave
formation process alluded to above: Radiation travels away from the pulse further to
the right (Er

þ), but may become back-reflected from the PBGmaterial so that certain
parts of it (Er

�) return to the pulse. Eventually, only the difference of the masses
contained in the modes associated with Er

þ and Er
� can actually leave the pulse. Since

the pulse is symmetric, the radiation propagating to the left exhibits the same
behavior. Therefore, in order to allow the coupling of the nonlinear radiation modes
to the linear radiation modes, we have to modify the mass conservation of our
variational approach to allow for this effect according to

d
dt

4h2 d
sin2 d

þ 2g2l

� �
¼ �2 jEr

þðz ¼ l=2; tÞj2 þ 2 jEr
�ðz ¼ l=2; tÞj2: ð1:22Þ

On the r.h.s. of Eq. (1.22), only the radiation part occurs. The l.h.s. of Eq. (1.22)
represents the mass conservation law within the variational approach which results
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from inserting the trial functions into Eq. (1.8). Alternatively, the same expression can
be derived directly from Eq. (1.14).
Due to the fact that near the upper band edge we can reduce the NLCME to the

Nonlinear Schr€odinger equation (NLSE), we may now write [3]

Er
þðz; tÞ

Er
�ðz; tÞ

� �
¼ 1ffiffiffi

2
p arðz; tÞ 1

�1

� �
� i
2
qarðz; tÞ

qz
1
1

� �� �
e�it; ð1:23Þ

where ar denotes the solution of the linearized NLSE. Upon inserting Eq. (1.23) into
the r.h.s. of Eq. (1.21) we obtain

2 jEr
þðz ¼ l=2; tÞj2�2 jEr

�ðz ¼ l=2; tÞj2 ¼ �2 Im ðar* arzÞjz¼l=2: ð1:24Þ

The corresponding calculation for the r.h.s. of Eq. (1.22) is identical to that presented
in Ref. [12], where radiation losses for the NLSE – as opposed to the present analysis
of the NLCME – have been investigated. As a result, the modifiedmass conservation
equation of the NLCME takes the form (see Ref. [12])

d
dt

4h2 d
sin2 d

þ 2g2l

� �
¼ �2r

d
dt

ðt
0

rffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt�tÞp dt; ð1:25Þ

where the height r of the shelf is defined as

r2 ¼ jarðz ¼ l=2; tÞj2 ¼ jEr
þðz ¼ l=2; tÞj2 þ jEr

�ðz ¼ l=2; tÞj2: ð1:26Þ
Following the argumentation of Ref. [12], the radiation losses may be introduced to
the differential equation for the shelf g by adding to its r.h.s. the loss term –2bg

dg
dt

¼ 2h
p

�2þ g2þ d2

sin2 d
þ6h2 1

sin2 d
�3h2 d2

sin4 d
� d2 cot2d

 

þ3h2d2
cot2d
sin2 d

þ2d cot d� g2d cot d�6h2d
d

sin2 d

�
�2bg:

ð1:27Þ

What remains is to derive an expression for the height r of the shelf and the loss
coefficient b within our variational approach to the NLCME. The mass conservation
can be rewritten as (recall that in our case d� 1)

d
dt

4h2 d
sin2 d

þ2 lg2
� �

� d
dt

4
h2

d
þ2 lg2

� �
: ð1:28Þ

Then, for small derivations of the parameters from the fixed point h1 and d1, we
obtain

d
dt

4
h2

d
þ2 lg2

� �
� 8

3dfp
1þ 32

3p2

� �
d
dt

2h2
1þ2

9p2

64
g2

� �
: ð1:29Þ

Moreover, the linearized Eq. (1.21) for g and Z1 give

h1 ¼ � rffiffiffi
2

p sin f; ð1:30aÞ
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g ¼ � 8
3p

rffiffiffi
2

p cosf; ð1:30bÞ

where theanglefdetermines the (temporal) oscillatory behavior of the functions g and
Z1. Finally, by combining Eqs. (1.25),(1.29) and (1.30) we obtain the decay factor b as

b ¼ 3p
8

� �2 r

2rð0Þ l ffiffiffiffiffi
pt

p ; ð1:31Þ

with

r2 ¼ 3dfp
8

1

1þ 32
3p2

4
3
dfp�2 lg2�4h2 d

sin2 d

� �
: ð1:32Þ

This completes the calculationof the radiation losses andwehave obtained a closed set
of equations of motion, Eqs. (1.14a), (1.14b), (1.14d) and (1.27), together with
Eqs. (1.17), (1.19), (1.31), and (1.32) as well as the initial conditions, Eq. (1.11a) and
(1.11b).

1.4
Results

In order to compare the results of our variational approach with numerically exact
results, we analyze themaximum intensity Imax(t) of the pulse starting with the same
initial conditions. Owing to the symmetry of the problem, this maximum always
occurs at the origin and within the variational approach it is given as

ImaxðtÞ ¼ Iðz ¼ 0; tÞ ¼ 2
h

cos d=2ð Þ þ ig

����
����
2

: ð1:33Þ

In Figure 1.1 we compare the evolution of a pulse (initial conditions d0¼ 0.1p and
h0 ¼ 1:01 sin ð0:1pÞ= ffiffiffi

3
p

) within a numerically exact solution of the NLCME [13]
(dashed blue line) and our variational approach (solid red line).
For relatively short times, the variational equations describe the wave dynamics

rather accurately. However, for longer times the results become successively less
accurate. This is a consequence of the approximations that have reduced the
radiation losses of the NLCME model to those of the NLSE, i.e., Eq. (1.27). In other
words, for long time scales, the NLSE model becomes an inaccurate approxima-
tion to the NLCME model, since the NLSE model does not properly account for the
dispersion relation of the linear modes near the PBG. As a result, the expected
non-Markovian effects are lost in this case. This is in contrast to the situation
without losses, where the NLCME maps exactly to the NLSE for frequencies near
the PBG.
In order to restore the correct quantitative behavior for long times, a more

sophisticated treatment of losses has to be developed. Specifically, the LCME have
to be solved without using the NLSE reduction.
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1.5
Conclusions and Outlook

To summarize, we have presented the variational approach to relaxation of arbitrary
pulses to exact solitary wave solutions in one-dimensional PBGmaterials within the
NLCMEmodel. For frequencies near the band edge, we have treated losses to linear
radiationmodeswithin theNLSEmodel. This approachallows aquantitatively correct
description of the wave dynamics for not too long time scales.However, for long time
scales, the results become less and less accurate, althoughstill remainingqualitatively
correct. This is somewhat surprising since naively one would expect that near band
edges the NLCME results reduce to the NLSE results. In fact, this is the case for
problemswithoutradiationlossessuchasinthenonresonantcollisionofBraggand/or
gap solitons [14,15]. However, if the coupling to linear radiation modes is important,
for long timescales theoversimplifieddispersionrelation inherent in theNLSEmodel
fails to correctly take into account the non-Markovian radiation dynamics associated
with strong Bragg scattering in nonlinear and/or coupled systems. Therefore, future
progress has to be based on a more accurate treatment of these memory effects.
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2
Microscopic Analysis of the Optical and Electronic Properties
of Semiconductor Photonic-Crystal Structures
Bernhard Pasenow, Matthias Reichelt, Tineke Stroucken, Torsten Meier,
and Stephan W. Koch

2.1
Introduction

The concept of using spatially-structured dielectric systems to control properties of
the electromagnetic (EM)field and the light–matter interactionwas proposed in 1987
by Yablonovitch [1] and by John [2]. In the following two decades substantial research
has been performed in this field. For reviews see, e.g., Refs. [3–7]. Besides a wide
range of interesting physical effects, photonic crystal (PhC) systems also offer
promising opportunities for improved devices, see, e.g., Ref. [8]. Concurrent with
the progress inmaterial science and experimental research, also advanced theoretical
tools have been developed and used to simulate and predict the properties of
nanophotonic and nanoelectronic systems [3,5,6,9–11].
Combinations of PhCs and semiconductor nanostructures, called semiconductor

photonic-crystal structures in this paper, offer a wide range of attractive features. On
the one hand, semiconductor nano-structures can be grown with almost atomic
precision and, on the other hand, they exhibit many interesting optical effects. For
example, the excitonic resonances with large oscillator strengths [12–14] make it
possible to reach the regime of strong light–matter coupling, as shown for the
example of quantum dots in high-Q PhC cavities [15,16]. Systems of this kind can be
used to explore fundamental questions in the area of quantum optics and may even
contribute to the field of quantum information processing.
The quantum efficiency of well designed optoelectronic semiconductor devices

approaches the fundamental radiative lifetime limit, and combinations of semicon-
ductor nanostructures and photonic crystals allow for the possibility to optimize
characteristics of light-emitting diodes and lasers [17–25]. In addition to the applica-
tion potential, semiconductor photonic-crystal structures are also of interest in the
context of fundamental physics. For example, it has already been demonstrated that
the obtainable reduction of the spontaneous emission in PhC results in significant
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modifications of the exciton statistics andCoulombmany-particle correlations inside
a semiconductor material [26].
In this paper, we review a recent theoretical approach for the description of the

optical and electronic properties of spatially-inhomogeneous semiconductor pho-
tonic-crystal structures on a microscopic basis [9,10,27–29]. In some of our previous
treatments [30–35], we have concentrated on longitudinal effects, in particular spatial
inhomogeneities induced by dielectric shifts of the exciton resonance, whereas the
transverse EM field has been assumed to be homogeneous. Here, we extend these
studies and analyze the coupled dynamics of the field and the material excitations by
evaluating self-consistently the Maxwell semiconductor Bloch equations (MSBE)
including modifications of both the longitudinal EM field, i.e., modifications of the
Coulomb interaction, and the transverse propagating EM field.
Inournumerical approach,we solveMaxwells� equations in each time stepusing the

finite-difference time-domain (FDTD) method [36]. The semiconductor Bloch equa-
tions (SBE) [12–14,37], which are used here in a real-space basis in order to describe
spatially-inhomogeneous situations, are integrated using either the Runge–Kutta or
the predictor-corrector algorithm [38]. This hybrid approach has successfully been
applied to analyze optical absorption and gain spectra in the presence of quasi-
equilibrium electron and hole populations [9] and the coherent wave-packet dynamics
of photoexcited electron and hole populations in semiconductor photonic-crystal
structures [10]. Appropriate variations of this theory have been used to investigate
quantum dots in nanocavities [11], planar chiral structures [39,40], and nonlinear
optical features of multi-quantum wells [41–43] and vertical-cavity surface-emitting
laser structures (VCSEL) utilizing one-dimensional (1D) PhCs [44–46].
In Section 2.2 of this paper the semiclassical microscopic approach and the self-

consistent analysis of the light–matter interaction in semiconductor photonic-crystal
structures is summarized. Numerical results on the excitonic absorption in spatially-
inhomogeneous situations, the coherent dynamics of excitonic wave packets, the
decay of the coherent oscillations due to dephasing and relaxation processes, and
density-dependent absorption and gain spectra in quasi-equilibrium situations
are presented and discussed in Section 2.3. The most important results are briefly
summarized in Section 2.4.

2.2
Theoretical Approach

In this section, we present a brief derivation of the real-space MSBE that
describe the interactions between a classical light field and semiconductors within
or in the vicinity of a spatially-inhomogeneous photonic-crystal environment. In
general, the MSBE combine the wave equations for the optical field and the SBE
[12–14,37] which are the microscopic equations of motions for the material excita-
tions. Within such a semiclassical approach, the propagating transverse part of the
EMfield is treated via thewave equation, whereas the longitudinal part of the EMfield
is responsible for the Coulomb interaction between charged particles. In the vicinity
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of a spatially-structured dielectric environment, charged particles not only interact
with each other directly but also indirectly via induced surface polarizations. A
consistent approach should therefore treat these indirect particle–particle interaction
on an equal level with the direct Coulomb interaction. As shown in Section 2.2.1, this
can be achieved by separating the dielectric displacement into its transverse and
longitudinal parts. Within this scheme, the transverse components of the dielectric
displacement are determined by Maxwell�s equations in which the optical material
polarization enters as a source term. The static part of the dielectric displacement
modifies the particle–particle interaction and leads to a generalized Coulomb
potential as shown in Section 2.2.1.2. This generalized Coulomb potential enters
in the Hamiltonian that governs the dynamics of photoexcited electrons and holes
in the semiconductor material, which is introduced in Section 2.2.2. Using this
Hamiltonian, we evaluate the Heisenberg equations of motion for the optical
material excitations in real space, see Section 2.2.3, where also the inclusion of
nonradiative dephasing and relaxation is discussed.

2.2.1
Spatially-Inhomogeneous Maxwell Equations in Semiconductor Photonic-Crystal
Structures

The propagation of EM waves in macroscopic material is governed by the following
set of Maxwell equations

aÞr �D ¼ r; bÞ r �H � q
qt
D ¼ j with D ¼ e0eðrÞE;

cÞr �B ¼ 0; dÞ r � Eþ q
qt
B ¼ 0 with B ¼ m0H :

ð2:1Þ

Here, E and H are the macroscopic electric and magnetic fields, D and B are
the dielectric displacement and magnetic induction fields, and r and j are the
free charges and currents, respectively. For the constitutive relations D¼D[E] and
B¼B[H] we have made a linear ansatz and restricted ourselves to nonmagnetic
media, i.e., use m	 1. Within this ansatz, the PhC structure is described via a
periodically-varying scalar dielectric function e(r), which is assumed to be local and
frequency independent. Resonant frequency-dependent contributions are included
in the material charge and current densities which are, as is shown below, computed
explicitly from the corresponding equations of motion of thematerial excitations. As
is well known, the charge and current densities couple to the scalar and vector
potential, respectively. These potentials are introduced with the aid of the homoge-
neous Maxwell equations as B¼r·A and E¼�(qA/qt)�rf. Inserting the poten-
tials into the inhomogeneous Maxwell Eq. (2.1a) and (2.1b), we obtain

r � eðrÞ q
qt
Aþrf

� �
¼ �r=e0 and

r�r� Aþ eðrÞ
c2

q2

qt2
A ¼ � eðrÞ

c2
r q
qt
fþm0 j:

ð2:2Þ
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Equation (2.2) shows that the scalar potential is coupled to the vector potential and the
chargedensity. Inhomogeneousmedia, the scalar potential can be eliminated from the
equations of motion with the aid of the Coulomb gauger�A¼ 0. In the presence of a
spatially-varying dielectric function we can use the generalized Coulomb gaugere(r)�
A¼ 0 [47,48] to divide the dielectric displacement into its transverseDT¼�e(r)q/qt A
and longitudinal DL¼�e(r)rf parts. The propagating part of the EM field is
associated with this transverse part of the dielectric displacement, whereas the
longitudinal part leads to the generalized static Coulomb interaction.

2.2.1.1 Transverse Part: Self-Consistent Solution of the Maxwell Semiconductor
Bloch Equations
Within our semiclassical description, the transverse part of the dielectric displace-
ment and the magnetic field obey the coupled wave equations

r� DT

e0eðrÞ þ
q
qt
B ¼ 0 and r� B�m0

q
qt
DT ¼ m0 jT; ð2:3Þ

where jT is the transverse part of the current, which appears as a source term for the
EM field. As has been shown Refs. [10,28], in semiconductor photonic-crystal
structures the time derivative of the macroscopic polarization is one of its possible
sources, i.e.,

jT ¼ q
qt
P: ð2:4Þ

The dynamics of the polarization is determined by the Heisenberg equations of
motion which include the interaction with the classical light field, see Section 2.2.3.
The Maxwell equations have to be solved self-consistently together with the micro-
scopic equations for the semiconductor excitations. Therefore, we combine the finite
difference time domain (FDTD) method [36] for the transversal fields with an
predictor-corrector algorithm [38] which is used for the time propagation of the
microscopic semiconductor polarizations and electron and hole densities.

2.2.1.2 Longitudinal Part: The Generalized Coulomb Interaction
Within our treatment, the field energy associated with the longitudinal part of the
dielectric displacement results in the Coulomb interaction among charged particles.
Due to the spatial variation of e(r), theCoulombpotentialVC(r, r0) has to be introduced
as the solution of the generalized Poisson equation for a single electron at position r0,
i.e., a charge density of r(r, t)¼ d(r� r0)

�r � ½eðrÞrVCðr; r0Þ
 ¼ dðr�r0Þ=e0; with fðr; tÞ ¼
ð
d3r 0VCðr; r0Þ rðr0; tÞ:

ð2:5Þ
Inserting the definition ofDL andr �DL¼ r into the expression for the field energy,

H
^

C ¼ 1
2

ð
d3r

DL �DL

e0eðrÞ ¼ 1
2

ð
d3rfðrÞrðrÞ ¼ 1

2

ð
d3r
ð
d3r 0rðrÞVCðr; r0Þrðr0Þ

ð2:6Þ
is obtained [30,31].
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Since we consider situations close to a structured dielectric environment the
generalized Coulomb potential VC

12 	 VCðr1; r2Þ depends explicitly on the two
coordinates of the interacting carriers and not just on the relative distance as in
the homogeneous case.
For a piecewise constant dielectric function, i.e., e(r)¼ ei if r2Di, the generalized

Coulomb potential describing the interaction between unit charges can be written
as [30]

VCðr; r0Þ ¼ 1
4pe0

1
eðr0Þ

1
jr�r0j �

X
i< j

1
ei
� 1
ej

0
@

1
A ð

qDij

da00
1

jr00�rj ni �Dlðr00; r0Þ

2
64

3
75

¼ V0ðr; r0ÞþdVðr; r0Þ;
ð2:7Þ

where qDij denotes the interface which separates regions Di and Dj of different
dielectric constants, ni is the unit vector normal to the surface at r00 pointing out of
regionDi intoDj, andDl (r00, r0) is that part of the dielectric displacementfield,which is
connected to the scalar potential via Dl (r, r0)¼�e(r)rVC (r, r0). Equation (2.7) shows
thatVC isgivenby thesumof twocontributions.Thefirst term,V0(r, r0)/ [e(r0) |r� r0|]�1

is the usual Coulomb interaction which is screened with the local value of the
dielectric constant. The second contribution, dV(r, r0) in Eq. (2.7), originates from
induced polarizations at the interfaces between the regions of different dielectric
constants [30,31,34].
The dependence of the generalized Coulomb potential VC on the center-of-mass

coordinate obeys the same symmetry properties as the dielectric function. Except for
some rather simple geometries, like, e.g., two dielectric half spaces separated by a
plane or a single sphere embedded in a material of different dielectric constant [49],
VC cannot be obtained analytically. It is, however, possible to evaluateVC numerically
using an integral equation for the dielectric displacement Dl at the interfaces qDij.
This equation can be obtained by applying ni (r) � r to Eq. (2.7), where ni (r) is the unit
vector normal to the surface at r. Denoting the normal component of the dielectric
displacement by Dniðr; r0Þ ¼ ni ðrÞ �Dl ðr; r0Þ; one obtains

4pDniðr; r0Þ ¼ ni ðrÞ � r�r0

jr�r0j3 � lim
g!0þ

ej � ei
ej

ð
qDij

da00ni ðrÞ � rg�r00

jrg�r00j3 Dniðr00; r0Þ;

ð2:8Þ
with rg¼ r� gni (r) [32,34]. To obtainDn, Eq. (2.8) can be solved bymatrix inversion on
a grid in real space. Inserting this solution into Eq. (2.7) allows one to determine the
generalized Coulomb potential VC in the regions of interest.

2.2.2
Hamiltonian Describing the Material Dynamics

The Hamiltonian Ĥ which governs the optical and electronic properties of semi-
conductors and semiconductor nanostructures consists of three additive terms. The
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first term Ĥ0 contains the single-particle band structure and the Coulomb self-
energies, the second one ĤI denotes the interaction of the semiconductor with the
classical EM field, and the third oneĤC describes the many-body Coulomb interac-
tion among charged particles including the modifications due to the dielectric
structuring discussed above.
The effective single-particle part of the Hamiltonian reads [9,10,30]

H
^

0 ¼
ð
dr1 c

^þ
1 EG � h�2r2

1

2me

� �
c
^
1 þ d

^þ
1 � h�2r2

1

2mh

� �
d
^

1

� �

ð
þ e2

2

ð
dr1dV11ðc^

þ
1 c

^
1 þ d

^þ
1 d

^

1Þ: ð2:9Þ

Here, EG is the band-gap energy,me andmh are the effective masses of the electrons
and holes, respectively, and e2dV11/2	 e2dV(r1,r1)/2 are the electron and hole self-
energies. Even though the self-interaction due to the bulk part of the Coulomb
interaction is unphysical andhas been removed, the presence of a spatially-structured
dielectric environment leads to physically meaningful interactions of the charges
with their self-induced surface polarizations [50–52]. Consequently, besides the
kinetic energies, first term of Eq. (2.9),H0 also contains additionally spatially-varying
electron and hole potentials.
In dipole approximation, the light–matter interaction is given by [9,10,30]

H
^

I ¼ �
ð
dr1E

T
1 ðtÞ �mðd

^

1c
^
1 þ c

^þ
1 d

^þ
1 Þ; ð2:10Þ

whereET is the transversal part of the opticalfield and m is the interband dipolematrix
elementwhich is taken to be real. d̂1ĉ1ðĉþ1 d̂

þ
1 Þdescribes the local interband coherence

which corresponds to destroying (creating) an electron–hole pair at position r1.Using
the microscopic polarizations p̂12 ¼ hd̂1ĉ2i; the total optical polarization of the
material system reads

P ¼ hP
^
i ¼

ð
dr1Pðr1Þ ¼

ð
dr1mðp11 þ p*11Þ: ð2:11Þ

This expression is used as the source term for the wave Eq. (2.3).
The many-body Coulomb part of the Hamiltonian is given by [9,10,30]

H
^

C ¼ e2

2

ð
dr1

ð
dr2V

C
12ðc

^þ
1 c

^þ
2 c

^
2c
^
1 þ d

^þ
1 d

^þ
2 d

^

2d
^

1 � 2 c
^þ
1 d

^þ
2 d

^

2c
^
1Þ: ð2:12Þ

Here, the first two terms represent the repulsive interaction among electrons and
holes, respectively, whereas the third term denotes the attractive interaction between
an electron and a hole. Since we consider situations close to a structured dielectric
environment the matrix element for the Coulombic interactions is the generalized
potential VC

12 	 VCðr1; r2Þ.
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2.2.3
Semiconductor Bloch Equations in Real Space

The dynamics of the semiconductor system is described by the equations of motion
for the relevant quantities that describe the material excitations [12]. The equation of
motion for the expectation value of an arbitrary operatorO ¼ hOi is the Heisenberg
equation, i.e.,

ih� q
qt
OðtÞ ¼ h O

^
;H

^
� �

i: ð2:13Þ

Whereas the commutators withĤ0 andĤI lead to a set of closed equations of motion
on the single-particle level, i.e., the optical Bloch equations, the many-particle part of
the Hamiltonian, Ĥc, introduces a coupling to an infinite hierarchy of correlation
functions [12–14,53]. Due toĤc, two-operator expectation values like hd̂1ĉ2i couple to
four-operator expectation values like hcþ3 d1c2c3i, etc. Since below we are mainly
interested in the space-dependence of excitonic resonances and to keep the numeri-
cal requirements within reasonable numerical limits, we restrict our present analysis
to the level of the time-dependent Hartree–Fock approximation [12], where the four-
operator expectation values are split in products of two-operator expectation values.
Using the Hartree–Fock factorization, we obtain a closed set of coupled equations

of motion that determine the dynamics of the expectation values of all two-operator
quantities. The real-space SBE in time-dependent Hartree–Fock approximation
read [10]

ih� q
qt

p12�p12jcorr
	 
¼ EG�h�2r2

1

2mh
�h�2r2

2

2me
þe2

2
ðdV11þdV22Þ�e2VC

12�e2Deh
12

2
4

3
5p12

þe2
Ð
ddr3ðVC

13�VC
32Þðne32p13�nh31p32Þ�m�ðE1d12�E1ne12�E2nh21Þ;

ð2:14Þ

ih� q
qt

ne12�ne12jcorr
	 
¼ h�2

2me
ðr2

1�r2
2Þ�

e2

2
ðdV11�dV22Þ�e2Deh

12

2
4

3
5ne12

þe2
Ð
ddr3ðVC

13�VC
32Þðne13ne32þp*31p32Þþm�ðE1p12�E2p*21Þ;

ð2:15Þ

with

Deh
12¼

ð
ddr3ðVC

13�VC
32Þðne33�nh33Þ andDhe

12¼�Deh
12; ð2:16Þ

where d is the dimensionality of the system. The equation for the hole density nh12 is
not shown explicitly, since it can be obtained from Eq. (2.15) by replacing e$ h and
pij! pji. In Eqs. (2.14), (2.15), the terms denoted by |corr formally represent all many-
body correlations that are beyond the time-dependentHartree–Fock limit [12–14,53].
In the analysis presented here, these correlation terms are either neglected or treated
at a phenomenological level.
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Within a phenomenological description the nonradiative decay of the interband
polarization, often called dephasing, is assumed to be exponential and is described by
adding �ih�p12=T2 to the right hand side of Eq. (2.14). In the coherent limit, the
decrease of the carrier populations and intraband coherences is induced purely by the
finite lifetime of the photoexcited carriers. Thus, in this limit the carrier populations
and intraband coherences decay with the time constant T2/2 [14]. In reality, however,
the coherent limit is often not well suited to describe the dynamics of electron–hole
excitations in semiconductors. Typically, the populations and intraband coherences
do not vanish on a time scale similar to the dephasing of the optical polarization, but
rather become incoherent and approach quasi-equilibrium distributions in the
respective bands. On a phenomenological level, this thermalization process can be
modeled by adding�ih�ðne12�ne;eq12 Þ=T1 to the right hand side of Eq. (2.15) where n

e;eq
12

denotes the populations and intraband coherences in quasi-thermal equilibrium [10].
The single-particle self-energies dVappear as potentials in the homogeneous parts

of the equations of motion, Eqs. (2.14), (2.15). For the electron–hole interband
coherence p12, the homogeneous part of the equation of motion is furthermore
influenced by the electron–hole Coulomb attraction �e2VC

12, which gives rise to
excitonic effects. Additionally, integrals over the generalized Coulomb potential VC

and products of p�s and n�s appear in Eqs. (2.14), (2.15) and these equations ofmotion
contain sources representing the driving by the electric field.
Equations (2.14), (2.15) together with the FDTD equations for the EM field allow

for a self-consistent description of the dynamical evolution of coupled light and
material systems, where the field is driven by the material polarization that is in turn
driven by the electric field. This set of equations may be solved for arbitrary field
intensities. It contains many-body Coulomb effects and can be used to investigate
high-intensity effects like, e.g., Rabi-flopping. Due to the self consistency of the
solution, radiative decay processes are included automatically, yielding the correct
radiative decay rates for the polarization and the carrier populations even within a
semiclassical description.

2.2.3.1 Low-Intensity Limit
In order to eliminate density-dependent shifts of the single-particle energies and to
prevent rapid dephasing and relaxation due to carrier–carrier scattering, the numeri-
cal results presented below are obtained assuming incident laser beams of weak
intensities. Therefore, one can describe the light–matter coupling perturbatively and
classify the material excitations according to their order in the optical field.
Let us assume that the semiconductor is in its ground state before the optical

excitation, i.e., the electron and hole populations as well as the intraband and
interband coherences vanish initially. In this case, the linear optical properties of
a semiconductor are determined by the equation of motion for the first-order
electron–hole interband coherence pð1Þ12 [10,31]

ih� q
qt
pð1Þ12 ¼ EG� h�2r2

1

2mh
� h�2r2

2

2me
þ e2

2
ðdV11þdV22Þ�e2VC

12

� �
pð1Þ12 �m �E1d12:

ð2:17Þ
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By diagonalizing the homogeneous part of Eq. (2.17), one can obtain the energies of
the excitonic resonances ex and the corresponding eigenfunctions Cx (r1, r2). For
excitation with a homogeneous light field, i.e., E1	E (r1) is constant in space, the
oscillator strength of each excitonic state is proportional to m2j Ð ddrYXðr; rÞj2, i.e., to
the absolute square of the electron–hole overlap, since the field generates electrons
and holes at the same position in space, see Eqs. (2.10) and (2.17). For an inhomo-
geneous excitation the spatial overlap of the polarization eigenfunctions and the light
field redistributes the absorption strengths among the excitonic states.
In second order in the light field, carrier populations and intraband coherences

neð2Þ12 are generated. This process is described by [10]

ih� q
qt
neð2Þ12 ¼ h�2

2me
ðr2

1�r2
2Þ�

e2

2
dV11þ e2

2
dV22

2
4

3
5neð2Þ12

þ Ð ddr3e2ðVC
13�VC

32Þðpð1Þ31 Þ*pð1Þ32 þm � ðE1p
ð1Þ
12 �E2ðpð1Þ21 Þ*Þ:

ð2:18Þ

By diagonalizing the homogeneous part of Eq. (2.18), one can determine the electron
and hole eigenstates. Using the spatial periodicity induced by the PhC, the disper-
sions enk, where v labels the mini bands, and the corresponding Bloch-type
eigenfunctions Fn

kðrÞ can be computed [9,10]. In quasi-equilibrium, the states in
this single-particle basis are populated according to thermal distributions, i.e., nnk is
given by the Fermi–Dirac function F. The total density n at temperature T can be
expressed as

n ¼
X
k;n

nnk ¼
X
k;n

Fðenk;T ;mÞ; ð2:19Þ

where nnk denotes the population of state Fn
k with energy enk. Since the total density n

depends on the chemical potential m, m(n,T) needs to be determined self-consistently.
Having obtained nnk, we transform back to real space since this is numerically
advantageous for performing the dynamic calculations [9,10].
Note, that due to the spatial integrals which appear as a consequence of the

many-body Coulomb interaction it requires a lot more effort to numerically solve
Eq. (2.18) than the equation for the linear polarization, Eq. (2.17), which contains no
spatial integrals. However, if the dynamics is fully coherent and one considers only
terms up to second order in the field, i.e., in the coherent w(2)-limit, it is actually not
necessary to solve the combined set of Eqs. (2.17), (2.18). Using the equations of
motion, one can easily verify that in this limit the carrier populations and intraband
coherences are determined by the interband coherence via the sum rule

neð2Þ12 ¼
ð
ddr3p

ð1Þ
32 ðpð1Þ31 Þ*; ð2:20Þ

i.e., they are given by spatial integrals over products of linear polarizations [10,14].

2.2 Theoretical Approach j23



2.3
Numerical Results

2.3.1
Semiconductor Photonic-Crystal Structure

Numerical solutions of the MSBE for semiconductor photonic-crystal structures
typically require a considerable amount of computer time and memory. On the one
hand, in general situations a three-dimensional (3D) space discretization is necessary
for FDTD solutions of Maxwell�s equations. Since the optical wave length and the
photonic structure have to be resolved with suitable accuracy, such evaluations have
to be performed with a high number of grid points. On the other hand, due to the
generalized Coulomb interaction and the coupling to spatially-inhomogeneous light
fields, the analysis of thematerial excitations has to be performed taking into account
both the relative and the center-of-mass coordinates. Thus, the SBE have to be
evaluated for spatially-inhomogeneous situations where different length scales have
to be resolved since the excitonBohr radius is typically at least one order ofmagnitude
smaller than the optical wave length.
In order to keep the complexity within reasonable limits, we chose for the analysis

presented here a model system which consists of a 1D array of dielectric slabs (e¼ 13)
which extend in z-direction and are separatedby air (e¼ 1), see Figure2.1. The substrate
below this dielectric structure is made of the samematerial as the dielectric slabs. Light

Figure 2.1 Schematical drawingof theconsidered
semiconductor photonic-crystal structure.
A simple PhC is modeled as a periodic 1D array
of dielectric slabs (e¼ 13) which are separated
by air (e¼ 1). The length L of the unit cell in
y-direction is 180nm.The substrate below thePhC
is made of the same material as the dielectric
slabs. It surrounds the array of parallel quantum
wires which lies S¼ 2.6nm underneath the PhC.

Thedistancebetweenadjacentwires,which is also
the length of the unit cell in z-direction, is
D¼ 18nm. For the width W of the slabs we use
90nm. For comparison we introduce also two
homogeneous reference systems. The situations
W¼ 0 and W¼ L¼ 180nm are denoted by
half-space and homogeneous case, respectively,
as is explained in the text. The heightHof the slabs
is always 700nm. Taken from Ref. [10].
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propagating in this structure may create photoexcitations in an array of parallel
semiconductor quantum wires, which extend in y-direction perpendicular to the slabs
and are separated from the PhC structure by the distance S. In y-direction the unit cell
with length L is repeated periodically. In addition, periodic boundary conditions (PBC)
are also used in z-direction with period D, which is the distance between adjacent
quantum wires. The parameters used in the numerical calculations are as follows: The
length of the unit cell in y-direction is L¼ 180nm and the height of the slabs is
H¼ 700nm. A number of different values are used for the widthW of the slabs. The
parallel wires are separated by D¼ 18nm and the distance to the PhC is S¼ 2.6 nm.
Due to the light propagation through the dielectric structure, the optical field is

spatially-varying along the quantum wires. Since the wires are oriented perpendicu-
lar to the dielectric slabs, the generalized Coulomb interaction varies periodically
along the wires. Ourmodel system thus includes both a space-dependence of the EM
field and space-dependent modifications of the semiconductor properties.
For later purposes, we introduce two reference systems. The limit W¼ L, is

referred to as homogeneous case, since the dielectric-air interface is far away
(SþH¼ 702.6 nm) from the quantum wires and thus the modifications of the
Coulomb interaction are negligibly small. The second limit,W¼ 0, is denoted as the
half-space case inwhich the planar air-dielectric interface is very close (S¼ 2.6 nm) to
the wire array and therefore the Coulomb interaction is significantly modified. Due
to the planar interfaces, the generalized Coulomb potential is homogeneous with
respect to the center-of-mass coordinate along the quantumwire for both these cases.
In our calculations, we solve Eq. (2.8) for a single dielectric slab, insert the solution

in Eq. (2.7) to obtain the modified Coulomb interaction, and add the resulting dV for
the two nearest slabs, i.e., perform a superposition of the Coulomb modifications of
three non-interacting slabs. Numerical tests have justified this approximation if the
distance between the slabs is not too small. The edges between the dielectric substrate
and the slabs have been smoothed as shown in Figure 2.1. This avoids numerical
problems when solving Eq. (2.8) using the Nystrom method [38] and takes into
account that realistic PhCs made by etching techniques have no sharp edges.
Figure 2.2 shows the Coulomb modifications dV(r2,r1) in the quantum wires for

three fixed, representative positions r2¼�90 nm (a), r2¼�45 nm (b), and r2¼ 0 nm
(c) as function of position r1. Positions r1 underneath the 90 nm wide dielectric slabs
are indicated by the gray shading. The Coulomb modifications dV are small for
positions r2 directly underneath the slabs, e.g., case (c), since in this situation the
distance to the dielectric-air interfaces of the photonic structure is large. dV is bigger
in the regions between the slabs, as can be seen in case (a), because in this situation
the distance to the dielectric-air interfaces is small. Between these extremal values,
there is a quite sharp transition which takes place within a few nanometers directly
under the edges of the slabs, i.e., at r2��45 nm in Figure 2.2. The single-particle
potential, see dashed line in Figure 2.2, shows this sharp transition and follows the
periodicity of the PhC. For short distances |r1� r2|, the magnitude and space
dependence of the modified Coulomb interaction calculated for r2¼ –90 nm, i.e.,
case (a) in Figure 2.2, differ only marginally from those which arise for the half-space
case (W¼ 0). The curves (a) and (b) show a strong decrease of the Coulomb
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modificationswith increasing distance between r1 and r2. For positions r2 underneath
the slab, i.e., case (c), dVdepends onlyweakly on the distance if it is smaller than about
half the slab width and decreases significantly if the distance exceeds W/2.
The dashed line in Figure 2.2 shows that the spatially-periodically-varying dielec-

tric environment introduces a periodic single-particle potential dV(r1,r1)/2 for the
electron and holes, withminima underneath the dielectric slabs. This single-particle
potential influences the optical and electronic properties of the quantum wire via
electron and hole confinement effects and corresponds to a periodic modulation of
the effective band gap. Furthermore, the excitonic properties are altered as a result of
the modified space-dependent electron–hole attraction.

2.3.2
Linear Excitonic Absorption

In this section, the excitonic resonances in the linear absorption spectra are obtained
by solving the linear polarization equation, Eq. (2.17). We assume the incoming
external light field to be a plane wave (PW) propagating in negative x-direction. The
incident electric field is linearly polarized in y-direction, i.e., parallel to the extension
of the quantumwires. The y- and z-components of the electric andmagnetic field, Ey
and Hz, respectively, have slowly varying Gaussian envelopes and oscillate in time
with central frequencies close to the band gap frequency, i.e., EG=h�. The linear
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Figure 2.2 Modification of the Coulomb
potential dV(r2, r1)¼ dV21 (solid) in the
quantum wires for positions r2¼�90 nm (a),
r2¼�45 nm (b), and r2¼ 0 nm (c) as function
of position r1. The single-particle potential
dV(r1, r1)/2¼ dV11/2 is also displayed (dashed).

The dielectric slabs of the PhC are W¼ 90 nm
wide and H¼ 700 nm high. Positions r1
underneath the slabs are indicated by the gray
areas. The energy unit is the 3D exciton binding
energy of GaAs EB¼ 4.25meV. Taken from
Ref. [10].
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spectra have been computed using the net energy flux through the boundaries of our
FDTD simulation space

D
q
qt
E

� �
¼
ð
dsn �S; ð2:21Þ

where S¼E ·H is the Poynting vector. The net flux contains all information about the
absorbed or gained energy per unit time. In spectrally-resolved experiments, the net
flux is measured over all times and analyzed in frequency space

DE ¼
ð
dt D

q
qt
E

� �
¼
ð
dwaðwÞI0ðwÞ; ð2:22Þ

where

aðwÞ ¼ 1
I0ðwÞ

ð
dsðE*ðr;wÞ �Hðr;wÞþc:c:Þ � n ð2:23Þ

and I0(o) is the intensity of the incoming light field. The absorption spectra shown
below have been obtained by computing a(o) from Eq. (2.23).
The semiconductor parameters used in the following are m¼ 3.5eÅey for the dipole

matrix element,mh/me¼ 4 andme¼ 0.066m0 for the electron and hole masses, and
EG¼ 1.42 eV for the energy gap. Considering a dielectric constant of e¼ 13, these
parameters result in a 3D exciton binding energy of EB¼ 4.25meVand a Bohr radius
of aB� 13 nm Inmost of the calculations, nonradiative homogeneous broadening is
modeled by introducing a decay rate of g ¼ h�=T2 ¼ 1meV in the equation ofmotion
of the interband polarization. The Coulomb potential for the 1D wires has been
regularized using V0¼ 1/(|r|þa0) [54,55]. The regularization parameter is chosen as
a0¼ 0.16aB. Except for changes of the nonradiative decay time T2 in Sections 2.3.3
and 2.3.4, these parameters are kept constant in the following, except for Section 2.3.5
where a different structure is analyzed.
To obtain the results presented in the following, the FDTD calculations are

performed on a grid with a spatial resolution of 5 nm and a temporal resolution
of dt¼ dx/(2c)’ 8.3· 10�18 s [36]. The SBE have to be solved with a resolution
smaller than the exciton Bohr radius aB, therefore, we use 1.3 nm, i.e., �aB/10. The
self-consistent solution of theMSBE is done in the following scheme [9,10]: With the
electric field at time t, the magnetic field at tþ dt/2 and the polarization at tþ dt are
computed. The polarizations at t and tþ dt are used to determine its time derivative at
tþ dt/2 which together with the magnetic field allows us to evaluate the electric field
at tþ dt. Then these steps are repeated.
For the case of a semiconductor quantumwell placed close to a planar dielectric-air

interface, image charge effects cause a shift of the single-particle energies, i.e., the
band gap shifts to higher energies. Since the electron–hole attraction is increased
close to air, the exciton binding energy increases as well [30,52]. In semiconductor
photonic-crystal structures both, the band gap and excitonic binding energy, are space
dependent [31,32]. The band gap variation induces potential valleys underneath
the dielectric slabs which give rise to confined single-particle and exciton states, see
insets in Figure 2.3. This potential affect the linear absorption spectra and cause the
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double-peaked 1s-exciton resonance visible in Figure 2.3(b). To improve the visibility
of the continuum absorption, the spectra are plotted on a logarithmic scale. For
comparison, also the homogeneous and the half-space cases are shown in Figure 2.3
(a) and (c), respectively. Comparing Figure 2.3(b) with (a) and (c) shows that the lower
exciton energy agrees with the position of the exciton in the homogeneous case,
whereas the upper one corresponds to the half-space case.
Additional information on the optically active exciton resonances is shown in the

insets of Figure 2.3.Diagonalizing the linear polarization equation, Eq. (2.17), for one
unit cell with PBC yields the energetic positions of the excitonic states. Since the
optical field at the quantum wire is spatially varying, the oscillator strengths of
the different resonances have been computed by fitting the self-consistently evaluat-
ed linear absorption spectra by a sum of Lorentzian curves

P
i Ai=ððE�eX ;iÞ2þg2Þ,

where g ¼ 1meV is the decay constant used in the equation of motion for the
interband polarization. The insets of Figure 2.3 demonstrates that except for the
homogeneous and the half-space cases, (a) and (c), respectively, which are dominated
by a single excitonic peak, in a general situation as considered in (b) more than one
excitonic resonances contribute to the absorption.
The logarithmic plots of the linear absorption show that the band gap appears at

0EB and �4EB for the homogeneous and the half-space case, respectively, see
Figure 2.3(a) and (c). Thus the exciton binding energy, i.e., the energetic distance
between the lowest exciton resonance and the onset of the continuum, increases from
�4EB in the homogeneous case to�7.2EB in the half-space case. Qualitatively similar
results have been obtained for quantum wells close to two-dimensional (2D)
PhCs [31,32].
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Figure 2.3 Excitonic linear absorption spectra for
dielectric slabs of widths (a) W¼ 180 nm
(homogeneous case), (b) W¼ 90 nm, and (c)
W¼ 0 nm (half-space case), respectively, on a
logarithmic scale. The height of the slabs is
700 nm in all cases. The insets show the
decomposition of the excitonic resonances into

the contributing bound excitonic states and their
oscillator strengths on a linear scale. The
calculations have been performed using a
damping of g¼ 1meV for the interband
polarization and a quantum wire length of five
unit cells with PBC. After Ref. [10].
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For a more detailed understanding of the excitonic resonances, we analyze in
Figure 2.4 also the polarization eigenfunctions, which belong to the excitonic states
of Figure 2.3(b). These real polarization eigenfunctionsCX(r1,r2) have been obtained
by diagonalization Eq. (2.17) for one unit cell with PBC. Shown in Figure 2.4(b) is
the spatial variation of the eigenfunction for equal electron and hole positions, i.e.,
CX(r1,r1). The three lowest states are localized in the potential valley underneath
the dielectric slabs, see Figure 2.4(b) and (c). They look similar to usual quantum
mechanical eigenfunctions of a particle which is confined in a box-shaped potential
and show an increasing number of nodes with increasing energy. Due to its higher
energy, the fourth state has strong contributions for positions in between the
dielectric slabs, which explains its half-space like character.

2.3.3
Coherent Wave Packet Dynamics

So far, we have focused on the linear optical properties of the system, e.g., the
excitonic resonances, their oscillator strengths, resonance energies, and the space-
dependent eigenfunctions. In this section, we investigate the intricate coherent
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Figure 2.4 (a) Linear excitonic absorption
spectrum for the parameters considered in
Figure 3.3(b). The lines indicate the spectral
positions and the oscillator strengths of the
contributing excitonic resonances. (b)
Eigenfunctions of the interband polarization
obtained by diagonalizing Eq. (3.17). Shown is

the spatial variation of the polarization
eigenfunction for equal electron and hole
positions, i.e., CX,i(r1, r1). The dotted lines
indicate the eigenenergies CX,i and correspond
to the zero polarization axes. (c) Corresponding
single-particle potential induced by the spatially-
varying dielectric environment. After Ref. [10].
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wave packet dynamics of the electron density after resonant excitation of the
excitonic resonances. The absorption spectra shown in the previous section have
been computed using five unit cells of the quantum wire array with PBC. This
number of unit cells is required to obtain a converged continuum absorption.
Numerical test have shown that for resonant excitation at the excitonic resonances
it is justified to reduce the system to one unit cell with PBC since continuum
effects do not contribute to the dynamics and the excitonic resonance is already
stable for this system size.
The densities are computed for excitation with laser pulses of weak intensities up

to second order (w(2)) in the light–matter interaction. Here, we focus on the fully
coherent dynamics and therefore neglect nonradiative dephasing and relaxation
processes, i.e., use infinite relaxation and dephasing times T1,T2!1. The coherent
electron density is obtained by solving Eq. (2.17) and using Eq. (2.20). Figure 2.5
shows the spatio-temporal dynamics of the electron density neð2Þ11 after excitation with
a Gaussian pulse of 2 ps full width at half maximum (FWHM) duration of the pulse
envelope and a central frequency which is tuned to the four energetically lowest
excitonic resonances shown in Figure 2.4. For excitation at the three lowest reso-
nances, Figure 2.5(a)–(c), the electron density is basically concentrated at spatial
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Figure 2.5 Contour plots showing the
spatiotemporal dynamics of the coherent
electron density neð2Þ11 , see Eq. (3.20), along
one quantum wire unit cell. The system is
excited by a Gaussian pulse of 2 ps duration
(FWHM). The central frequencies of the
pulses, oL, are tuned to the four lowest
exciton states: (a) h�wL ¼ EG�4:05EB, (b)
h�wL ¼ EG�3:83EB, (c) h�wL ¼ EG�3:46EB,

and (d) h�wL ¼ EG�3:16EB, respectively. The
dielectric slabs are W¼ 90 nm wide and
H¼ 700 nm high. The calculations have been
performed assuming a fully coherent situation,
i.e., nonradiative dephasing and thermalization
have not been considered (T1,T2!1).
White corresponds to the maximal density
and black to zero density in each plot. Taken
from Ref. [10].
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positions underneath the dielectric slabs, i.e., between �45 nm. Since the spectral
width of the incident electricfield of 0.3EB (FWHMoffield intensity) is comparable to
the energetic spacing between the resonances, the density is not constant as function
of time. The pulses generate a coherent superposition of the exciton transitions
which leads to wave packet dynamics. However, comparing Figure 2.5(a)–(c) with the
electron densities corresponding to the three lowest resonances, see Figure 2.6,
shows that for each case the resonantly excited exciton give the strongest contribu-
tions to the density. When exciting at the fourth excitonic resonance, Figure 2.5(d),
the electron density is concentrated underneath the air regions of the PhC. In this
case, the density dynamics corresponds essentially to a coherent superposition of the
fourth and third excitonic resonances, see Figure 2.6.
By using spectrally-narrower, i.e., temporally-longer laser pulses, it is possible to

selectively excite single exciton resonances. In the limiting cases of very narrow
pulses one therefore obtains these static photoexcited densities as shown in
Figure 2.6.

2.3.4
Wave Packet Dynamics with Dephasing and Relaxation

As explained above, exciting semiconductor nanostructures with a short optical laser
pulses generates a coherent optical material polarization. With increasing time, this
polarization decays due to a variety of processes. Depending on the relevant physical
mechanisms and the excitation conditions, typical dephasing times can vary between
many picoseconds or just a few femtoseconds. Radiative decay due to the finite
lifetime of the excited states always contributes to the decay of the optical polarization.
However, in semiconductors the dephasing is typically dominated by the interaction
with phonons, by themany-bodyCoulomb interaction, or sometimesby disorder [56].
Simultaneously with the dephasing of the polarization, the initially coherently-excited
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Figure 2.6 Coherent electron densities calculated using Eq. (2.20)
and the polarization eigenfunctions shown in Figure 2.4(b). On
the left side the energetic positions of the resonances are shown.
The vertically displaced lines indicate zero density. Positions
underneath the dielectric slabs are marked gray. After Ref. [10]
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carrier distributions change their nature and gradually become incoherent. Due to
the interaction with phonons and Coulomb scattering among the electrons and
holes, these incoherent populations approach thermal quasi-equilibriumdistributions
in the course of time.
For spatially-homogeneous systems, it is possible to describe dephasing and

relaxation at a microscopic level [12,56]. For spatially-inhomogeneous systems, such
an analysis is much more complicated. For example, the evaluation of Coulomb
scattering processes in the presence of disorder are computationally very demanding
and can be performed only for very small systems, see, e.g., Ref. [57]. Therefore,
we describe these processes here on a phenomenological level. As discussed in
Section 2.2.3, the nonradiative decay of the polarization is modeled by a dephasing
time T2 and the carrier populations approach a quasi-equilibrium Fermi–Dirac
distribution with the relaxation time T1.
Figure 2.7 shows the electron quasi-equilibrium density, i.e., ne;eq11 , for a small

average density of n0¼ 0.001/aB (dotted line) at a temperature of 50 K. Since the
thermal energy kBT� 1EB is smaller than the depth of the single-particle potential
dV(r1,r1)/2 of �2EB, see Figure 2.4(c), the quasi-equilibrium distribution is strongly
concentrated in the regions of low potential energy, i.e., underneath the dielectric
slabs. The computed spatio-temporal dynamics of the electron density including
dephasing and relaxation is visualized in Figure 2.8. Compared to Figure 2.5 we have
used the same structural parameters and excitation conditions and only included the
incoherent processes by using relaxation and nonradiative dephasing times of
T1¼T2¼ 6 ps. These values are reasonable considering that excitonic transitions
are excited with pulses of weak intensities. Figure 2.8 clearly demonstrates that
immediately after the excitation the densities exhibit signatures of coherent wave
packet dynamics, similar to Figure 2.5. Due to relaxation and dephasing, this wave
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densities, i.e., ne;eq11 , for an average density of n0¼ 0.001/aB
(dotted) at a temperature of 50 K. Positions underneath the
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packet dynamics is damped with increasing time. In the limit of long times, i.e.,
t�T1,T2, the electron population approaches a quasi-equilibrium Fermi–Dirac
distribution, cp. Figure 2.7. Therefore, regardless of the excitation conditions which
determine the position of the initially generated density, the electrons eventually
accumulate in the regions of low potential energy, i.e., underneath the dielectric
slabs. This localization of the carriers makes such structures interesting for possible
applications in laser structures. The fact that, in the regions of high carrier density,
population inversion can be reached at a lower overall densitymay lead to a reduction
of the laser threshold [9,34] as is shown in the next section.

2.3.5
Quasi-Equilibrium Absorption and Gain Spectra

So far, we have focussed our attention on the optical and electronic properties of the
inhomogeneous excitonic resonances. These states appear as a consequence of the
interaction of the semiconductor electrons with the PhC via the self-induced surface
polarizations. In the preceding section, we have shown how the electron densities
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Figure 2.8 Contour plots showing the spatio-
temporal dynamics of the electron density neð2Þ11

along one quantum wire unit cell. The system is
excited by a Gaussian pulse of 2 ps duration
(FWHM). The central frequencies of the
pulses, oL, are tuned to the four lowest
exciton states: (a) h�wL ¼ EG�4:05EB, (b)
h�wL ¼ EG�3:83EB, (c) h�wL ¼ EG�3:46EB,
and (d) h�wL ¼ EG�3:16EB, respectively. The

dielectric slabs are W ¼ 90 nm wide and
H¼ 700 nm high. Nonradiative dephasing and
relaxation processes have been included using
T1¼ T2¼ 6 ps at a temperature of 50 K. Except
for the dephasing and relaxation, the material
parameters and the excitation conditions are the
same as in Figure 2.5. White corresponds to
the maximal density and black to zero density in
each plot. Taken from Ref. [10].
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evolve in the presence of dephasing and relaxation. These quasi-equilibrium static
electron and hole densities are used to compute the corresponding absorption and
gain spectra by solving Eq. (2.14) with the Runge–Kutta method [38] for a weak
incident light field. The computed spectra demonstrate how the linear absorption
changes in the presence of spatially-inhomogeneous quasi-equilibrium electron and
hole distributions [9]. For these calculations the PhC structure is realized as a
rectangular 2D array of air cylinders which is surrounded by a dielectric medium,
see inset of Figure 2.9 and Ref. [9] for further details. Although such a structure is
different from the one shown in Figure 2.1, the general properties of the excitonic
resonances, quasi-equilibrium densities, etc., are very similar for both cases.
Figure 2.9 demonstrates that the two excitonic peaks which appear as a conse-

quence of the structured dielectric environment in the linear absorption spectra have
a very different density-dependent behavior. At small carrier densities, the absorption
of both peaks is smaller than the absorption at vanishing density. This bleaching
occurs due to phase-space-filling effects which are caused by quasi-equilibrium
electron and hole distributions ne,eq and nh,eq. However, the bleaching of the ener-
getically lower resonance is much stronger than that of the higher resonance. This
difference is due to the spatial variation of the carrier populations. The population is
biggest in the regions underneath the dielectric material, see Figure 2.7(b). Since
these positions are associated with the lower resonance, its absorption is strongly
reduced due to the large ne,eq and nh,eq. The energetically higher resonance shows

Figure 2.9 (Density-dependent absorption/gain
spectra for an array of quantum wires that is
separated by D¼ 0.2aB from the PhC with air
cylinders of radius R¼ 2.65aB, see inset. The
presence of negative absorption, i.e., optical gain,

is highlighted by changing the lines from black to
red. In the calculations a decay rate for the
polarization has been used which results in a
homogeneous broadening of 1.7meV FWHM.
After Ref. [9].
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less bleaching since it is associated with positions underneath the air cylinders
where ne,eq and nh,eq are small.
With increasing carrier density, the bleaching of the �low density� peak continues,

see Figure 2.9. The absorption of the �high density� resonance, however, vanishes at
a certain carrier density. At this density, the sum of the electron and hole populations
at the positions underneath the dielectric cylinders is so large that no further
absorption is possible.When thedensity is increased further, the absorption becomes
negative, i.e., optical gain is achieved. In this case, the incoming light field is
amplified via stimulated emission from the highly-excited material system [9].
The modulations of the absorption which are visible in Figure 2.9 energetically

above the exciton resonances and in the gain region are caused by the presence of
confined states due to the single-particle potential. The band gap renormalization [12]
leads to spectral shifts of these resonances as function of the density.
If one computes density-dependent absorption/gain spectra for wires that are

homogeneously surrounded by dielectric material (R¼ 0) only one resonance is
present and the carrier population in the wires is homogeneous in space. To obtain
optical gain in the homogeneous system a total density of about 0.3/aB is required.
However, for the inhomogeneous structure, Figure 2.9, gain is already present for a
density of 0.24/aB.Our results therefore demonstrate that the spatial accumulation of
the population in the regions of low self energy may lead to a significant reduction of
the gain threshold which, for the structure considered here, amounts to 20% [9].

2.4
Summary

We have briefly reviewed a theoretical approach which is well suited to describe
optoelectronic properties of spatially-inhomogeneous semiconductor photonic-crys-
tal structures on a fully microscopic basis. Self-consistent solutions of the Maxwell
semiconductor Bloch equations includingmodifications of both the longitudinal and
the transversal EM field are obtained numerically. As examples we discuss the
excitonic absorption in spatially-inhomogeneous situations, the coherent dynamics
of excitonic wave packets, the decay of the coherent oscillations due to dephasing and
relaxation processes, and density-dependent absorption and gain spectra in quasi-
equilibrium situations. In the future, our versatile microscopic scheme will be
applied to a variety of other systems and excitation configurations.
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3
Functional 3D Photonic Films from Polymer Beads
Birger Lange, Friederike Fleischhaker, and Rudolf Zentel

3.1
Introduction

Artificial opals represent a special sub-class of photonic crystals (PC), which are
formed by self-assembly from inorganic or organicmonodisperse colloids. Thus they
are also called colloidal photonic crystals (CPC). Originally, they were prepared – like
natural opals – from silica, but later on opals from polymer received a lot of attention,
due to their easy accessibility and the possibility for post-processing. For reviews see
the following references [1–3]. This article focuses especially on the chemistry
performed in CPCs from polymers to obtain functionality.
Surfactant free emulsion polymerization is the method of choice for the prepara-

tion ofmonodisperse polymer colloids that can be self-assembled to artificial polymer
opals or colloidal photonic crystals (CPC) [3–5]. For this process water insoluble
monomer is dispersed in water and polymerized with the help of a charged water
soluble radical initiator (mostly peroxodisulfate). The charged sulfate radicals initiate
the polymerization. The oligomers act as detergents and form micelles as soon as
their concentration grows above the critical micelle concentration. Further polymer-
ization proceeds inside these micelles in analogy to the classical form of emulsion
polymerization. Slight modification of the polymerization conditions allows for
the synthesis of monodisperse polymer colloids from various acrylate monomers
(see Figure 3.1). Compared to their inorganic equivalents, polymer colloids offer the
advantage that they allow for facile tailoring of manymaterial properties [3,6,7], such
as glass transition temperature or refractive index by simple use of differently
functionalized monomers as starting material. The use of chemically reactive
monomers allows for chemical modification of the spheres after crystallization,
while crosslinking can be employed to increase the thermal andmechanical stability
as well as resistance towards solvents.
The size of the polymer colloids can be changed by varying the monomer to water

ratio (see Figure 3.2) [5]. This is possible since the number of growing micelles (to
become the colloids later on) is determined by the critical micelle concentration in
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water at a very early stage of the emulsion polymerization. The micelle growth is
limited by the amount of available monomer supply that consequently determines
the final size of the resulting colloids.
Inorganic colloids are generally attractive, because they offer increased thermal

stability and resistance towards organic solvents. Also, they may possess higher
refractive indices, aswell as semiconducting orfluorescent properties and interesting
optical properties in combination with metallo-dielectric structures. For a long time
however, onlymonodisperse silica particles were available. Recently this has changed
and fabrication techniques ofmonodisperse colloids fromTiO2 [8], ZnS [9], selenium
orwismut [10] as well as from variousmetallodielectrics [11,12] have been developed.
It is preferably to crystallize thin films of the colloidal dispersion on flat substrates.

This leads to thin opaline films, which present a 3D PC in its 2D limit and in which

Figure 3.1 Different acrylate monomers, which can be
polymerized successfully resulting in monodisperse polymer
colloids.

Figure 3.2 Dependence of sphere diameter on the initial
monomer to water ratio for three different monomer types;
PMMA: polymethylmethacrylate, PTFEMA: polytrifluorethyl-
methacrylate, PtBMA: poly-t-butylmethacrylate [5].
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the [111]-axis of the fcc packed opal is oriented perpendicular to the substrate. In the
simplest version the crystallization of polymer opals is performed by spreading a
colloidal dispersion on a flat horizontal substrate [1,4]. Thereafter the dispersion is
dried slowly (time varying from over night to one week). In this way large substrates
(several cm2) can be covered by an opaline film (with a thickness of 1–100 mm) of
optically homogenous appearance. Figure 3.3 shows pictures of such films and the
corresponding UV-spectra. Different colors are obtained by crystallizing colloids of
different size.
Opticalmicroscopy shows cracks, which separate the crystallites andwhich appear

due to volume shrinkage during drying. However, large crystals can be obtained
(several 100 mm2), if the film is dried slowly [4,13–15]. Despite crack formation, all
crystallites have a similar orientation of the lattice planes and the [111]-plane is
oriented parallel to the substrate. The problem of crack formation can be reduced by
applying acoustic noise during crystallization [16]. It can be eliminated by crystalliz-
ing on a fluid matrix like liquid gallium [3,17].
The preparation of opaline films of homogeneous and controlled thickness is

possible by vertical crystallization in a meniscus moving with controlled speed.
Experimentally this is either achieved by lowering the liquid level by slow evaporation
of the dispersion agent [18,19] (mostly used for SiO2 colloids suspended in ethanol) or
by slowly lifting the substrate [5,20] with a speed of some 100 nm/s. This latter
process is commonly applied for polymers, which are dispersed in water (slow
evaporation rate). As a result, high quality fcc-packed opaline films of very homoge-
nous thickness can be obtained. They show excellent optical properties, even if the
measurement is integrated over areas of several mm2, with a high virtual absorption
due to reflection [3]. Figure 3.4 shows the SEM picture of a corresponding opal.
In addition, the crystallization in a moving meniscus allows for stacking opals or

inverted opals of different sphere size or material (see Figure 3.5) [3,7,19–21]. Such
architectures are known as heterostructures. The difference in lattice constants and

Figure 3.3 (A) Transmission spectra showing the Bragg-peaks of
polymer CPC films, consisting of different sphere sizes and (B)
corresponding photographs.
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material properties of the single stacked opal types may lead to superposition of
several stop bands along one probing direction. Scanning electron microscopy
investigations show a sharp interface separating both films (see Figure 3.5) [3,21],
even if the lattice constant is incommensurable. Also co-crystallization of differently

Figure 3.4 Schemes of vertical crystallization, showing the
formation of an opaline structure in a moving meniscus and a
SEM image of a polymer opal.

Figure 3.5 Heterostructure of PMMA spheres of 219 nm and
392 nm crystallized in a two step process [7].
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sized spheres is possible when performing crystallization in a moving meniscus.
Here, the intercalation of smaller spheres into the octahedral and tetrahedral voids of
a larger sphere fcc packing can be achieved [22]. In this way bimodal and even
trimodal colloidal crystals are available.
An alternative route to the preparation of opaline films of homogenous and well

controlled thickness is the crystallization in specially designed packing cells [23]. In
cases when the packing quality of the opal is less important and attention is turned
to color impression, opals can also be prepared by spraying the colloidal dispersion
onto a substrate. Suitable substrates are especially porous materials such as
paper [24].
While the packing of monodisperse colloids hardly depends on the material

they consist of, new chemistry is needed to realize functional opals and their
functional replica. The search for functional opals is thereby especially focused on
four topics:

(I) The use of opals and their replica as �simple� coloring agents,

(II) the controlled incorporation of fluorescent materials into opals to study the
influence of the photonic band structure on emission, accompanied with the
intention to realize thresholdless lasing in such systems,

(III) the replication with different materials to extend the chemical and physical
properties of opaline photonic crystals, especially focused on temperature and
chemical resistance and

(IV) most importantly the controlled incorporation of defects.

3.2
Opals as Coloring Agents

The creation of chemicals for coloration has been an important part of industrial
chemistry since its infancy more than 100 years ago. Usually colorants and color
pigments rely on absorption of electromagnetic radiation in the visible spectrum. An
alternative possibility to the creation of colors is selective reflection by nanostructured
materials.Thisphenomenonis realized innature in thewingsof variousbutterflies and
inbeetles, for example, and it is present in �natural� and �artificial� opals.Although it is
easilypossibletocrystallizebrilliantly-coloredopalinefilmsfromcolloidaldispersionon
large-area substrates in the laboratory, it is difficult to employ this method for colored
coatings: The control of drying (crystallization) conditions on substrates with arbitrary
topology is crucial to achieve brilliant reflection colors but unfortunately not straight-
forward.Also, therequirementsforacoatingarenot fulfilledbyanopalinefilmdueto its
porous structure (accessibility of the holes in the fcc structure).
There are different methods do obtain the effect pigments, one is to blend a clear

coating with opaline flakes and handle them like a coating [25]. Another possibility is
to use spraying of concentrated colloidal dispersions to formphotonic crystalfilms on
a given substrate and subsequently cover them with a protective layer [24].
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3.2.1
Opal Flakes as Effect Pigments in Clear Coatings

For the use of opaline flakes in a clear coating, a method to adjust the refractive index
contrast between colloids andfilled interstitials and to prevent swelling of the colloids
in the coating is required. (1) The refractive index of most polymers is rather close to
that of transparent coatings. Hence, the refractive index contrast responsible for the
brilliant diffraction colors is low and the optical effect rather poor. (2) Polymer
colloids swell and sometimes dissolve if dispersed in solvent-based transparent
coatings. (3) The coating application often requires temperatures well above 100 �C.
One possibility to solve these problems is the use of fluorinatedmonomers for the

preparation ofmonodisperse spheres [25]. Due to their low refractive index (1.44 and
lower) the contrast to the transparent coating remains satisfactory. The poor solubility
of the corresponding polymer in organic solvents that can be additionally improved
by cross-linking reduces swelling of the colloids strongly. A high crosslinking density
gives rise to thermal stabilities up to decomposition temperatures above 250 �C. A
photograph of such film flakes dispersed as effect pigments in a clear coating is
shown in Figure 3.6.

3.2.2
Opaline Effect Pigments by Spray Induced Self-Assembly

Effect pigments are usually prepared as flakes before being actually transferred onto
the substrate. During the creation of fine pattern (structures) on substrates, as it is
done in an extreme case by ink-jet printing, the resolution is limited by the size of the
sprayed liquid droplets. Consequently flakes (edge length from 50 mm to 1000mm)
used as effect pigments may easily exceed the desired size of the aerosol droplets.

Figure 3.6 Crystal flakes of fluorinated methacrylates as effect
pigments (A) dispersed in a clear coating; (B) coated on a
substrate after photopolymerization of the transparent
coating [25].
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This is a general problem since the dimension of the effect pigments have to be a
multiple of the wavelength of visible light and cannot be reduced. The flakes� size is
necessary to achieve both the interference of electromagnetic radiation leading to the
desired photonic effects and a flat arrangement of the flakes on the substrate. An
alternative approach to get large effect pigments is to transfer the pigments� building
blocks onto the substrate and to let them self assemble afterwards. Self-assembling of
opaline materials on porous substrates like paper requires a very fast crystallization.
Since crystallization time has a direct impact on the crystal quality, fast drying only
gives satisfactory results (brilliant colors) if the used colloids are highly monodis-
perse. For most applications the use of water as a dispersion agent is a convenient
solution. To achieve crystallization from water in a short time it is in addition
necessary to use high colloid concentrations of about 40 vol%. This opens the
possibility to apply effect pigments to porous substrates not by spraying of the
rather large effect pigments themselves, but by spraying of their building blocks,
which self-assemble later on. The feasibility of this approach is presented in
Figure 3.7 for monodisperse PMMA spheres. This process also tolerates additives
used for ink-jet printing [24].

Figure 3.7 Opaline effect pigment from 300nm PMMA spheres
appliedwith an air brush: (A)Microscope image of large domains;
(B) SEM magnification showing the fcc lattice of the opal; (C)
reflectance spectrum of the same sample, showing a Bragg-peak
at 640 nm (red); (D) photograph of a colloidal dispersion sprayed
on a black standard paper through a mask with a resolution of
1mm [24].
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3.3
Loading of Opals with Highly Fluorescent Dyes

The loading of opals with fluorescent dyes is of interest to be studied for various
reasons. From a general point of view the localization of light emitters in CPC based
architectures allows us to investigate the influence of the photonic band structure on
the photoluminescence properties. In addition the feedback mechanism inside the
opal can give rise to lasing or enhanced stimulated emission [26–33]. Loading of the
opaline structure with light emitters can be achieved – in the easiest approach – by
infiltrating the opal voids with fluorescent materials from solution.
To realize more complex opal structures including defect structures it is necessary

to incorporate the fluorophores directly into the matrix. Fluorescent dyes possessing
sufficient water-solubility can be directly incorporated into the colloidal particles
during the emulsion polymerization process [27]. Others can be incorporated by a
swelling and deswelling process of the already synthesized colloids in water/ethanol
mixtures [34]. However, highly stable fluorescent materials like perrylenes and
especially quantum dots cannot be incorporated employing either of these methods.
They require a two-stage preparation process as depicted in Figure 3.8 [26].
First highly fluorescent CdSe quantum dots, which are resistant to the required

chemical and mechanical treatment, were synthesized (according to the SILAR

Figure 3.8 Schematic illustration of the incorporation of highly
fluorescent CdSe quantum dots into the cores of core-shell
colloids [26].
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method [35]). They are then transferred into a styrene solution, out of which rather
monodisperse core lattices were prepared by a modified miniemulsion process [36].
To increase the size of the core colloids and to increase their homogeneity in size they
are subjected to a core-shell polymerization. As a result monodisperse colloids
(diameter 200 nm to 400 nm) incorporating – in average – oneCdSe quantumdot per
sphere can be obtained. These colloids can be crystallized into opals combining the
size dependent fluorescent properties of the quantum dots and the photonic band
structure of an opal. Themodification of the emission by the opalinematrix is shown
by angular dependent measurements [26].

3.4
New Properties Through Replication

One possibility to extend the physical and chemical properties of opaline photonic
crystals is the change of material, which can be accomplished during a replica
formation. In this process the voids of a self-assembled colloidal photonic crystal
(CPC) are infiltrated with a different material and the host opal is removed after-
wards, leaving an inverse opal consisting of the new material. There are different
infiltrationmethods including sol–gel processes or chemical vapor deposition from a
variety of materials.

3.4.1
Increase of Refractive Index

As described above CPCs can be prepared from monodisperse silica or polymer
(polymethacrylates or polystyrene derivates) spheres. These materials are limited in
their refractive index (at least for high refractive indices) ranging from 1.4 to 1.6. One
goal in optics is a photonic crystal with a complete photonic band gap that exists for
inverse opal systems. Thus, one needs a high refractive index contrast: If the low
indexmaterial is air (n¼ 1), the refractive index of the high index replicationmaterial
has tobe at least 2.8. If a full band gap in the IR region is desired, silicon and
germanium possessing high refractive indices in the IR-region (n� 3.45 or 4.0,
respectively) are thematerials of choice for replication.With silicon the full band gap
has already been realized for the near IR wavelength region [37]. For the visible range
no full band gap has been realized so far, due to the lack of transparent high refractive
index materials in the visible wavelength region. A high refractive index contrast is
still desirable to obtain high reflection along a stop band direction combined with
intense reflection colors. Here, mostly TiO2 (n� 2.8 nm at 600 nm, rutile form) and
SnS2 (n� 3.2 nm at 600 nm) are used (see Figure 3.9) [28,38–42]. An important factor
besides the refractive index of the bulkmaterial is the filling factor, which determines
the effective refractive index. Thus it is essential to find amethod that allows for high-
degree infiltration of the CPC voids without destruction of the CPC template and for
subsequent removal of the host matrix without damaging the replica frame. TiO2

inverted opals are e.g. prepared by sol–gel infiltration techniques; silicon or SnS2
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fillings are usually realized by chemical vapor deposition processes. In bothmethods
the maximum filling fraction is not achieved. The infiltration process is followed by
removal of the CPC template. HF and organic solvents are suitable agents for the
dissolution of silica and polymer CPCs, respectively. Alternatively polymer templates
can be removed by oxygen-plasma.
Figure 3.9 shows SEM images of inverted opals with stop gaps in the visible range.

The air holes at the location of the original PMMAor silica spheres form the expected
fcc-packed structure of the former opal template. If e.g. a sol–gel process is used, as
in the case of TiO2 replica, solvent is present during filling. This solvent – as well as
the reactive groups, which are split-off during the reaction – occupy space. As a result
the inverted opal is highlymicroporous (Figure 3.9A) and possesses a lower effective
refractive index than the bulk material. Advantages of the microporosity and the
resulting high surface area of inverted metaloxide CPCs can be found in other fields
of application than pure optics, such as catalysis (see 4.3).
Inorganic replica can also bemade by infiltration of opalswith nanoparticles [43] or

by filling through the gas phase. The problems remain, i.e. incomplete filling due to
blocking of voids (gas phase filling) or volume loss caused by solvent evaporation
(nanoparticles).

3.4.2
Robust Replica

Another problem of colloidal crystals made from polymers and their replica is often
mechanical (scratch resistance, or adhesion to the substrate) and chemical (swelling
or dissolving in organic solvents) stability. Themechanical stability of inverted CPCs
is strongly related to a high infiltration degree. Complete infiltration of the CPC
template voids can be achieved for example with a neat liquid monomer (applied
without solvent), which can be transformed into a solid material by a polymerization
process. Such a process has been successfully applied to obtain opal replica from
classical polymers [44], theydo,however, not fulfill the requireddemandswith respect
to mechanical and thermal stability. Replica formation from a liquid inorganic–
organic hybrid-material like Ormocer [45] (this material combines acrylate groups
for radical crosslinking with silanol groups to form silica) leads to nanostructured

Figure 3.9 SEM images of replica structures from materials,
which are transparent in the visible wavelength range (A) TiO2 and
(B) SnS2 [38].
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photonic crystals incorporating theoutstandingmechanical and thermalpropertiesof
Ormocer (robustness and temperature stability up to 350 �C) [46].
For this purpose a polymer opal is used as a template and infiltrated with liquid

Ormocer-oligomer. After polymerization of the resin the host opal is dissolved in
THF and a high-quality inverse opal is obtained. It is possible to prepare large scale
replica films (2 cm2 size), which can be handled as free-standing films with a pair of
tweezers (see Figure 3.10).
SEM images of the host opal template as well as the final high-quality Ormocer

inverted opal are shown in Figure 3.11.

3.4.3
Inert Replica for Chemistry and Catalysis at High Temperatures

Inverse opals from inorganic materials such as TiO2 or Al2O3 are also interesting
candidates for enhanced catalysis due to their periodic structure and well defined
large surface area. An example is the combination of the use of the periodic structure
to reduce the velocity of photons due to multiple scattering with the photocatalytic
activity of TiO2. Slow photons in photonic crystals are shown to optically amplify the
photoactivity of anatase TiO2 in an inverse opal structure. An enhancement in TiO2

absorption as a result of slow photons leads to a larger population of electron-hole
pairs and faster degradation of organic molecules. A remarkable twofold enhance-
ment is achievedwhen the energy of the slowphotons is optimizedwith respect to the
absorption edge of anatase [47].
This effect can also be used to increase the conversion efficiency of dye-sensitized

TiO2 photoelectrochemical cells. Higher conversion efficiency in the spectral range
of 600–800 nm where the dye (RuL2(SCN)2) has a low extinction coefficient was
observed at disordered titania structures and inverse opals with properly positioned
stop bands, and at bilayer electrodes of photonic crystals and disordered layers
coupled to nanocrystalline TiO2 films. Multiple scattering events at disordered
regions in the ordered and disordered inverse opals, and to a less extent localization
of slow photons at the edges of a photonic gap, account for the improved light-
harvesting behavior of these structures [48].

Figure 3.10 Ormocer inverse opal (A) free standing film – top
view, (B) free standing film – tilted viewing angle, (C) replica on a
glass substrate (2 cm· 2 cm) [46].
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Other applications just make use of the well defined large surface area of inverted
CPCse.g. inmicro-structured reactors,whichhave shownsignificant advantages over
conventional reactors due to their enhanced mass and heat transport and compact-
ness [49]. However, using this new type of reactor for heterogeneously catalyzed gas
phase reactions such as propane combustion, anymaldistributed coating of catalysts
still results in the formation of hot spots and negates the advantages of uniform
temperature and concentrationprofiles in themicrochannels.Anevendistribution of
catalyst coating in the microchannel enhances the process intensification by micro-
structured reactors. For this application first a PMMA opal was sedimented in the
channel and transformed into an Al2O3 inverse opal afterwards. In a next step, a thin
platinum layer was assembled by wet chemistry. This novel Pt-based catalyst with a
periodic inverse opal in a microchannel reactor (see Figure 3.12) shows excellent
conversion and stable activity for propane combustion at low temperatures [50].

3.5
Defect Incorporation into Opals

The unique ability of PCs to manipulate the transmission of light may lead to
potential applications ranging from simple optical switches to an optical computer.

Figure 3.11 (A) SEM image of the colloidal crystal template
formed by using 367 nm PMMA spheres, (B) SEM image of an
inverse opal at low magnification showing that the cracks of the
opal are filled with Ormocer in the respective inverse opal, (C)
SEM image of the (111) facet of the inverse opal, (D) SEM image
of the cross-section of the inverse opal [46].
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This requires the development of methods to incorporate designed defect structures
into the crystal, though. The flow of photons in PCs is analogous to the flow of
electrons in semiconductors. Analogously to the local doping in semiconductors that
is the precondition for the creation of diodes, the controlled incorporation of defects
is the precondition for the localization and guiding of photons in photonic crystals.
Realizing defects in PCs, that are built in a top-down method fashion, is rather

straight forward and can be accomplished in one step during the fabrication of the
matrix [51–57]. Achieving this objective by bottom-up self-assembly in 3D photonic
crystals is only a recent development. One possibility to realize simple patterns is site
selective crystal formation on structured substrates [58]. The generation of advanced
defects in CPCs is a complex matter, but great progress has been gained in
the development of novel processes for the incorporation of point [59,60], line-
ar [34,61–64], planar [65–69] and 3D defects [70–75] during the last five years. Thus,
large scale organization of monodisperse colloids can be combined with controlled
defect generation. The appearance of two recent review articles [76,77] details the
efforts being taken in this direction.

3.5.1
Patterning of the Opal Itself

Colloidal crystals from inorganic materials such as silica or from polystyrene
are limited in terms of chemical modifications, which can be used for patterning.
Colloids based on various polymethacrylates possess the advantage that the
corresponding CPCs can be structured by electron beam writing [59,61] or UV-
lithography [34,70] for example.
Electron beam lithography is a standard lithography technique widely used to

create two-dimensional patterns if high resolution (<10 nm) and high versatility are

Figure 3.12 Optical micrographs of PMMA opals (A) and
corresponding Al2O3 inverse opals (B) in the microchannels, and
their SEM images: (C) for PMMA opals and (D) for Al2O3 inverse
opals [50].
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required. Since PMMA is an electron beam resist, PMMA opals can be patterned by
this technique as well. Structuring happens in a two-step process. First, the opal film
is locally exposed to an electron beam, which leads to a change in the chemical
structure of the methacrylate and enables development in a solvent. Subsequently,
the exposed material is selectively removed. In conventional electron beam lithogra-
phy, the resist is usually deposited on a substrate as a thin layer (typically below
300 nm). In this nearly two-dimensional geometry, the processedmaterial is basically
defined by the area that has been exposed to the scanning electron beam. Since in the
case of an opal film, the thickness is typically 5mm to 10 mm, this description is no
longer valid. In fact, the volume of processedmaterial depends on the 3Ddistribution
of the electrons within the film. By varying the electron accelerating voltage the
penetration depth of electrons can be manipulated [78] and it becomes possible to
control the depth of the written structure. Optimization of the process allows the
inscription of defect sites down to the size of an individual sphere, being approxi-
mately half a micrometer. Advantages with this method are that it employs standard
processes for electron beam lithography, and that it is scalable to large areas. This
process may be extended to the fabrication of buried single-site defects in self-
assembled photonic crystals (see Figure 3.13B). This opens the possibility to prepare
devices with single intragap defect lines, and is of interest for applications related to
modification and control of directionality of scattered light (see Figure 3.13) [59].
As an alternating route to defects created by chemical modification, special

photoprocessable opals can be processed with UV-lithography. Such UV-processable
monodisperse colloids have been synthesized from the acid labile polymer poly-t-
butylmethacrylate. They can be loaded with photoacid generator and crystallized into
polymer opal photonic crystals. Irradiation with UV-light followed by baking and
developmentwith aqueous base allows for subsequent patterning of the opalinefilms
and the introduction of tailored defects (see Figure 3.14) [34].
Defect structures can also be embedded into an opalinematrix, if a heterostructure

of photosensitive and photostable spheres is used (see Figure 3.15) [70]. To stabilize

Figure 3.13 (A) SEM image presenting a rectangular lattice of
point defects defined on the surface of a PMMA CPC (lattice
parameter is 498 nm); (B) proposed process for embedding
defects: 1. e-beam exposure, 2. growth of second CPC, 3.
development of exposed regions [59].
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the system and to prevent the defects from collapsing, the photostable top-layer has to
be mechanically stabilized. For this purpose the preparation of core-shell colloids
with a reactive outer shell containing epoxy-groups is reported (see Figure 3.16), that
allow for temperature induced chemical crosslinking [70,75].

3.5.2
Patterning of an Infiltrated Material

It is possible to extend e-beam or nanoimprint techniques to define linear and other
2D defects in CPCs [59]. A similar approach to define embedded linear extrinsic
defects is to use conventional photolithography to pattern a photoresist deposited on a
CPC. Following the assembly of another crystal on this structure and removal of the
photoresist, buried linear air defects have been incorporated within CPCs. These
linear defects have been suggested for use as waveguides [63,64]. The methods

Figure 3.14 Scheme illustrating the preparation of
photoprocessable polymer opals and the employed chemical
reaction, which is an acid catalyzed saponification used for the
realization of light-induced patterning. PtBMA: poly-t-
butylmethacrylate, PAG: photoacid generator, PMA:
polymethacrylic acid [34].

Figure 3.15 Scheme for the construction of a 3D defect via
multilayer built-up of photo-labile PtBMA colloids and core-shell-
colloids, which can be thermally crosslinked [70].
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presented so far require a complicated multi-step process in order to create well-
defined 3Ddefects, because themodification is done at the surface of the opal. Thus a
secondopal has to be grown above or around the opal afterwards. The direct (one step)
incorporation of 3D defects into the interior of an artificial opal requires methods to
initiate 3Dresolved chemical reactions inside anopal like confocalmicroscopy [71,72]
or more preferably two-photon lithography [73,75].
Two-photon lithography, is a technique,which uses two-photon absorption to build

complex 3Dstructures. The advantage of this technique is that outside the focal point,
the incident light is not absorbed by the reaction medium. By tightly focusing a
femtosecond laser beam into the resin, the photochemical processes occur only in
close proximity to the focal point, allowing the fabrication of a 3D structure by directly
writing 3D patterns. This unique spatial confinement is due to the fact that the
simultaneous absorption rate of two photons has a quadratic dependence on laser
power intensity [79–81].
By taking advantage of these processes, defect structures can be fabricated directly

inside the opal with control over all three dimensions using a two-photon sensitive
photopolymerizable resin. As a host system both opals [71] and inverse opals [75] can
be used. Replica from Ormocer have the advantage of chemical and mechanical
robustness and hence stays undamaged during the different process steps (see
Figure 3.17) [75].
An important consideration for any photonic band gap application is the ability to

convert the PC to a high-refractive-index structure that exhibits a complete photonic
band gap. Generally, this is accomplished for CPCs through infiltration with a high-
index material such as silicon at an elevated temperature, followed by removal of the
silica, resulting in an inverse opal structure. Two-photon polymerization can be used

Figure 3.16 Synthesis of core-shell-colloids containing epoxy-
functionalized methacrylate shells, which are able to perform a
macroscopic crosslinking upon heat treatment [75].
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to deposit a silica hybrid photoresist within a silica-based opal. After chemical vapor
deposition of silicon andHFetching embeddedhollowwaveguide structureswithin a
high-refractive-index inverse opal were formed [72,82]. For success following this
general procedure it is important that the materials for defect formation are stable at
the requisite high temperatures (250–350 �C for silicon replica).

3.5.3
Chemistry in Defect Layers

Planar defect layers of different materials and with different chemical functionality
have been embeddedwithinCPCs by a number of bottom-up approaches. It has been
shown that a monolayer of spheres sandwiched between two opal films made of
spheres of different diameter can be prepared with the Langmuir-Blodgett technique
and behaves as a two dimensional defect [5,83,84]. Spheres and various nanocrystal-
line aggregates that exceed the size of the CPC entrance windows have been
incorporated as defect layers into CPCs by spincoating [85]. Also, a synthesis method

Figure 3.17 (A) Fabrication schemeof an inverse
opal with 3Ddefectswithtwo-photonlithography;
(B) left: Digital photograph of anOrmocer replica
and a SEM image showing a magnification of the
inverseopal structure; right:SEMimageofdefects
introduced on the surface of the replica with two
photon lithography and corresponding image of a

fluorescence microscope; (C) confocal
microscope images showing the fluorescence of
the embedded defects, when the focus is at the
surface (top) the defect can hardly be seen, when
the focus is inside the replica (bottom) the defect
pattern can clearly be seen [75].
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that enables the integration of dielectric planar defects in inverted CPCs using
chemical vapour deposition (CVD) has been reported [67,86]: A colloidal crystal
template is controlled over-infiltrated by CVD to create a homogeneous surface layer.
A second CPC is grown on top, fully infiltrated as well and the opal matrix removed
afterwards.
Additionally, two bottom-up approaches have been developed that allow for the

introduction of �smart� defect structures into CPC. In contrast to the previously
described systems, these architectures can be actively addressed by various external
stimuli. The defect is based on a functional thin film that is either prepared in a layer-
by-layer self-assembly fashion and microcontact transfer printing or by spin-coating
and sacrificial CPC infiltration. Thus, it can consist of a wide range of charged or non-
charged polymers, biopolymers, dyes, quantum dots and other particles, to name a
few [68,69,87–89]. This active element makes the materials interesting for applica-
tions as sensors, tunable filters or – if light emitters are incorporated – tunable CPC
based laser sources.
In the firstmethod (see Figure 3.18A), the functional thinfilm is layer-by-layer self-

assembled onto a flat piece of polydimethylsiloxane, and the entire multilayer is
microcontact transfer-printed onto the surface of a mechanically stabilized colloidal
crystal. A second layer of CPC is then grown on top of this surface to form the
embedded structural defect. In the secondmethod (see Figure 3.18B), the defect layer
is directly spin-coated on the surface of the bottom-CPC.Toprevent penetration of the
defect material into surrounding CPC voids during the spin-coating process, the
bottom-CPC is melt-infiltrated with a sacrificial ribose filling. The sacrificial sugar
filling is dissolved in water after spin-coating the defect film from all kind of
hydrophobic solvents and the top-CPC is grown to complete the structure.
Optical spectra show a sharp transmission state within the photonic stopband,

induced by the defect (see Figure 3.19). The position of the defect state wavelength
can be actively tuned by varying the thickness and/or refractive index of the defect
layer. The concept is illustrated in Figure 3.20.
CPCs with defect layers consisting of a photochemically active azobenzene based

polymer [68], a redox active polyferrocenylsilane (PFS) metallopolymer [69] or a
mechanically addressable thermoplastic elastomers [89] have been synthesized, for

Figure 3.18 Preparation techniques for embedding �smart�
defect layers into CPCs (schematic illustration). (A) Defect layer
preparation based on layer-by-layer self-assembly and
microcontact transfer printing [88]. (B) Defect preparation by
spin-coating and sacrificial sugar infiltration of the bottom-
CPC [89].
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example. Active tuning of the defect state is induced by photochemical trans-cis
isomerization and thermal backisomerization of the azo group in the azobenzene
containing polymer defect CPC. The defect transmission state of PFS defect CPCs is
dynamically switched by oxidizing and reducing the ferrocene units in the PFS
polymer film. Oxidation leads to intercalation of the reduced oxidation agent as
counterion into the defect layer, reduction to subsequent release, thus changing the
optical thickness of the defect reversibly. CPCs incorporating an elastomeric defect

Figure 3.19 (A) Cross-sectional SEM image of a CPC with
embedded addressable azobenzene-based defect layer [68]. Slight
distortions in the structure result from the cleavage of the sample;
(B) corresponding optical spectrum at normal incidence clearly
showing Bragg-peak and intragap defect transmission state.

Figure 3.20 (A) Schematic illustration of various responsive
defect materials inducing a change in the optical thickness
of the defect layer when addressed by an external stimulus.
(B) Optical spectra exemplifying a shift of the intragap defect
mode resulting from a change in thickness and/or refractive
index of the defect layer.
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can simply be addressed by applying mechanical pressure leading to compression
and decompression of the planar defect. Precise and reversible switching of the
defect position is also possible by thermal cycling of polyelectrolyte multilayer CPC
heterostructures [68].
In addition, the preparation of CPCs with functional biomolecular planar defect is

reported.Biomacromolecules suchasproteins andDNAare embedded asnanometer
thin sheets inaCPC,whilemaintainingboth thebioactivity of thesemolecules and the
optical properties of the CPC. It is shown that defect CPCs also present a new class of
materials to optically monitor various aspects of chemistry or biochemistry taking
place in the functional defect layer, through precise shifts of the defect mode. DNA-
based planar defect CPCs are used by example to demonstrate defect mode based
opticalmonitoringofDNAconformational changes suchasmeltingandannealing, as
well as their enantioselctive interaction with a chiral anti-cancer drug [88]. Optical
characterization requires no sophisticated instrumentation and it is performedwith a
simple fiber optics spectrometer attached to an optical microscope. The setup allows
forreal timemeasurementsandaspotsizeof lessthan2mmindiametercanbeprobed.
The developed bio-defect CPCs are consequently highly suitable for array-based
analysis and biochip applications. Since CPCs can be used for chromatography, the
presentedbio-defectCPCs are alsopotential candidates for combining separation and
biomonitoring in a single microstructured sample.
Figure 3.20 graphically summarizes various responsive defect layer materials

inducing optical shifts of the defect mode when addressed by an external stimulus.
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4
Bloch Modes and Group Velocity Delay in Coupled Resonator
Chains
Bj€orn M. M€oller, Mikhail V. Artemyev, and Ulrike Woggon

4.1
Introduction

Structures built from coherently coupled optical microresonators currently attract
much attention for guiding and bending light on the microscale, the construction of
photonic circuits and slowing down light in the frame of optical computing [1,2]. The
waveguides are here constituted by a sequence of resonators, whose mutual field
overlaps lead to coherent interresonator coupling, thus opening a band for signal
transmission [3]. Coupled-resonator structures canbe realized in variousways, e.g. as
closely arranged defects in photonic crystals (PhCs) [4–10], in which resonators are
formed in the stop band of the PhC. Alternative realizations of coupled-resonator
geometries are given by side-coupled resonators attached to waveguides [11] and by
bottom-up approaches, in which individual dielectric microresonators are arranged
periodically in lines and arrays in free space. Experimentally, coherent-coupling of
individual resonators has been demonstrated first in the photonic molecule pic-
ture [12–16], which later extended to waveguide geometries [17–20].
Of particular interest for bottom-up approaches are microresonators with cylin-

drical [21], ring-like [19] or spherical [17,18,20] shapes. Since these structures
intrinsically exhibit an isotropic mode pattern, interresonator coupling mediated
by the evanescent component of individual resonatorfields can occur for awide range
of possible coupled-resonator geometries and thus allow for the design of complex
structures. Together with experimental progress, more realistic numerical studies
emerged, which go beyond the conceptually intuitive assumption of infinite
structures [22,23].
This report hence aims at the demonstration of coherent effects in one-dimensional

chains of micronsized microspheres, the exploration of the mode structure in finite
CROWs, the demonstration of the potential of coupled-resonator systems to slow
down the group velocity of light and to explore the impact of size tuning in a CROW
system.
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This report is organized as follows: With a spatially and spectrally resolved mode
mapping technique described in Section 4.2 we demonstrate the formation of
coherently coupled multiresonator fields in a one-dimensional coupled resonator
chain (Section 4.3). The mode structure in finite coupled-resonator optical wave-
guides is discussed in Section 4.4 and a concise analytical model is offered. From
experimentally obtained mode structures (Section 4.5) we explore coupled-resonator
chains as optical delay lines for optical signals. Comparing experimental data with a
theoretical analysis,wederive a slowing factor ofS¼ 31. InSection4.6weadditionally
provide a concisemodel for the impact of tuned single resonator sizes on the resulting
CROWmodes; as a result, we explain the resulting coupled-resonatormodes in terms
of Bloch modes combined with mutual anticrossing relations.

4.2
Experiment

AsbuildingblocksforCROWstructuresexactlysize-matchedmicrospheres (R¼ 1.4mm
or R¼ 2.25mm, respectively, obtained from Polysciences, Inc.) have been aligned in
one-dimensional rows. The alignment is achieved by drying amicrosphere suspension
onto a quartz substrate: The presence of a sub-millimeter sized template (e.g. a glass
rod) results in the formation of an one-dimensionally extended meniscus, into which
the individual microspheres are dragged during evaporation of the solvent. After the
drying process, ordered one-dimensional (1D) rows of microresonators are obtained
(see Figure 4.1).
As amethod to explore the CROW fields experimentally, themicroresonators have

been doped before arrangement [24,25] with a subsurface layer of CdSe nanocrystals
prepared according to Refs. [26–28]. Excited by an argon-ion laser, the non-resonant

Figure 4.1 Self-organized arrangements of
one-dimensional coupled-resonator structures.
A suspension containing spherical
microresonators is given onto a quartz
substrate (left image) in the proximity of a
small glass rod. During evaporation of the

solvent (middle image), the microresonators are
dragged into the meniscus of the suspension
between glass rod and substrate. After complete
solvent evaporation, ordered one-dimensional
microresonator chains are obtained.
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nanocrystal emission is confined in the coupled-resonator structures. Thereby, the
nanocrystal is used as an efficient CROW field probe for spectroscopic studies.
In order to explore the formation of coherently coupled lightfields in 1D chains, we

apply spatially and spectrally resolved mode mapping and microphotoluminescence
spectroscopy. The quartz substrate containing the resonator chains is adhesively
mounted onto a glass prism (see experimental scheme in Figure 4.2), thus providing
an efficient way for incoupling light. An argon-ion laser beam is coupled into the
prism throughone of its back facets, thus evanescently exciting thenanocrystal doped
samples. The non-resonant photoluminescence (PL) emission of the nanocrystals is
transferred onto the entrance slit of an imaging spectrometer. The dispersed slit
image is subsequently read out by aCCDchip for further image processing. Via piezo
controlled movement of the microscope objective, the sample can be scanned in the
spatial direction perpendicular to the slit.

4.3
Coherent Cavity Field Coupling in One-Dimensional CROWs

With this setup detailed in Section 4.2, spectra for any spatial position across the
sample can be acquired. We use this technique to explore mode field modifications
due to coherent resonator coupling by displaying the mode intensity of specific
resonances for a whole two-dimensional image: Three exemplary mode maps for a
multiresonator structure (R¼ 2.25 mm) are plotted in Figure 4.3. In diagram a),
the spectrally integrated PL emission is plotted in order to visualize the geometry
of an end-raked coupled-resonator chain. In diagram b), the PL intensity at an
energy window coinciding with a single resonator resonance is displayed for a

Figure 4.2 Experimental setup. The coupled-
resonator samples are mounted onto a glass
prism and excited through one of its back-facets
by an argon-ion laser (488 nm). The PL emission
is collected with a microscope objective and

transferred to a spectrometer. Modemaps of the
multi-resonator structures are achieved by
spatially scanning the sample via a piezo-
controlled movement of the objective.
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predominantly TM-polarized mode at 565 nm. Here, modifications of the mode
intensity profile are apparent:While for a single resonator themappedmode intensity
is confined to a ring along the circumference of the resonator (see Refs. [25,29]), we
find significant differences in a coupled-resonator chain: At the intersection regions,
the mode intensity almost completely vanishes. For predominantly TE-polarized
mode resonances, a similar mode profile can be obtained.
A different mode map results for specific energies far-off the single resonator

mode resonances: As illustrated in diagram c) for specific largely split-off energies
still mode intensity can be oberved. In contrast to the image b), the mode intensity is
here located exactly at those regions, where the modes in diagram b) display no
intensity. The predominant TE-polarized character of this mode is verified with a
linear polarizer inserted into the detection beam path [30].
As discussed in detail in Ref. [17], the modes can be classified into strongly and

weakly coupled modes. In contrast to the strongly coupled modes, which exhibit

Figure 4.3 Mode maps of a six-resonator
structure: (a) Integrated PL. (b) Mode map for
a weakly coupled predominantly TE-polarized
mode at 557 nm. Coherent coupling is evidenced
by vanishingmode intensities at themicrosphere

intersection points. (c) Mode map for a strongly
coupled predominantly TE-polarized mode at
559 nm. Coherent coupling is evidenced by
enhanced mode intensities at the intersection
regions.
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comparatively large frequency splits and significant mode broadening, weakly
coupled modes represent the weak coupling limit, which for slow-light experiments
is of major importance. Thus we will focus both experimentally and theoretically on
the mode structure and coherent effects of weakly coupled modes in what follows.

4.4
Mode Structure in Finite CROWs

For the exploration of CROWphenomena such as the group velocity of light inside a
CROW, and the impact of size detuning, detailed insight into the mode structure in
finite systems is required. Based on the description of infinite CROWs as introduced
in Ref. [1], we first give a short summary of the specific characteristics concerning
degenerate CROWs of finite size:
The fieldmodes of an infinite CROWare described by a Bloch ansatz, in which the

individual electric fields of the n-th resonator EO(r – nRez) are connected by Bloch
waves with the wave number kc

Ekcðr; tÞ ¼ E0 exp
õwkc t

X
n

exp�õnkcREWðr� nRezÞ: ð4:1Þ

In this notation the parameter R labels the interresonator distance. The solution of
Maxwell�s equations for the coupled-resonator chain results in the following disper-
sion relation for the i-th wave number kic

w2
kic
¼ W2½1þ 2k cos ðkic �RÞ
: ð4:2Þ

The coupling constant k is obtained by the overlap integrals of the electromagnetic
field of neighboring resonator in the limit of next-neighbor coupling.
From the dispersion relation, the group velocity in a coupled-resonator optical

waveguide immediately follows as its derivative:

vg ¼
dwkic

dkic
¼ �RWk sin ðkic �RÞ: ð4:3Þ

Thus, the group velocity in a CROW scales directly with the coupling constant k.
For a sufficiently large number of resonators N, for which the structure can

be regarded as infinetely long, the wave number which solution Eq. (4.2) depends
on reads

kic ¼
i � p
NR

with i ¼ 1; . . . ;N: ð4:4Þ

For the calculation of coupled-cavity modes in finite structures, mainly numerical
models [23] and transfer matrix approaches [22] have been applied. It might be
tempting to argue, that finite structures would not show Bloch mode formation
because of the lack of translational symmetry, which prevents the Bloch theorem
from being valid. Nevertheless, we will show, that a Bloch wave interpretation of
coupled-resonator modes is possible in a straight-forward manner.
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In order to explore coupledmodes in finite structures, we first interprete Eqs. (4.1)
and (4.2) as the solution of an eigenvalue equation of infinite dimension (see also
Ref. [31]). This eigenvalue equation can be obtained by writing the resonator field of
the n-th resonator as the n-th vector component of a CROW field vector C. After
multiplying the squared dispersion relation Eq. (4.2) with C, the cosine term in the
dispersion relation can be rewritten into a term involving the (nþ 1)-th and (nþ 1)-th
component ofC. In the relevant limit of weak interresonator coupling, the coupling
constant k is small compared to unity, and terms of higher order in k can be omitted.
Finally, the eigenvalue equation reads

Yn þkYn�1 þ kYnþ1 ¼
w2
kic

W2 Yn: ð4:5Þ

In a finite system, however, surface terms have to be included, so that the first (or last,
respectively) resonator is coupled to one neighbour only. Therby, a finite system is
described by a finite matrix equation

1 k 0 � � �
k 1 k ..

.

..
. ..

. ..
.

� � � 0 k 1

0
BB@

1
CCA�Y ¼

w2
kic

W2 Y; ð4:6Þ

in which the coupling of the first and last resonators to their single neighbours is
represented by the upper left and lower right corner.
This finitematrix equation is not solvedwith the ansatzes Eqs. (4.1), (4.2), (4.4) due

to the surface terms. The solution vector for the electric cavity fields are instead given
by the expression

sin ð1kicRÞ
..
.

sin ðnkicRÞ
..
.

sin ðNkicRÞ

0
BBBBBB@

1
CCCCCCA
�Y ¼

w2
kic

W2 Y; ð4:7Þ

in which the wave number now reads

kic ¼
i � p

ðNþ 1ÞR with i ¼ 1; . . . ;N: ð4:8Þ

With this modified wave number expression, a similar dispersion relation is
obtained:

wkic

W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2k cos ðkicRÞ

q
� 1 þ k cos ðkicRÞ: ð4:9Þ

Thus, the finiteness results in modified coupled-resonator light states which have an
energy dependent succession of bright and dark states. A visualization of the light
fields in finite structures is given in Figure 4.4. Themode structures are illustrated in
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ascending order for increasing wave numbers (or decreasing eigenenergy, respec-
tively). Solid curves indicate the envelope of the electric field strengths in the
respective resonator after Eq. (4.7). The strength of the electric field can be evaluated
through the envelope value at the center of the resonator under consideration. The
sphere colors indicate the brightness of the respective resonator and are deduced by
squaring the numeric value of the electric field.
As can be noted from the illustration, themode pattern for the succession of bright

and dark states displays an energy dependentmirror symmetry, which can be utilized
experimentally for the identification of coherently coupled modes. Additionally,
according to the dispersion relation Eq. (4.9), the coupling constant can be obtained
from the split of these Blochmodes. Thus, we will make use of this set of relations in
Section 4.5 to identify the coupled modes from which the coupling constant and the
slowing factor in a coupled-resonator structure can be derived.
The transition between coupled modes in infinite and finite structures can be

simply deduced from the wave number expression. While the expression scales with

Figure 4.4 Mode structure in finite CROWs. For
a six-resonator chain, the resulting cavity field
pattern is displayed (in ascending order for
increasing wave number) illustrating the
wave-like nature of the collective modes. Solid
lines indicate the strength of the electric field
in the respective resonators. The sphere colors
represent the corresponding intensity. The
coupled-resonator modes evolve in a pattern

of bright and dark resonator states. The mode
structure does not depend on the magnitude of
the coupling constant or the cavity geometry. The
wavenumber after Eq. (4.8) results in common
nodes of the envelope. As depicted in the
scheme, these nodes are located one resonator
diameter apart from the first or last resonator
center, respectively.
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1/N and 1/(Nþ 1), respectively, the difference between themode structures becomes
negligible for sufficiently large number.
This modification of the wave numbers compared to those of infinite systems can

be interpreted as an appropriate scaling of the lattice for finite coupled-resonator
structures. Since thederivation of this result solely relies on the property ofweaknext-
neighbor coupling without further accounting for cavity geometry or the specific
coupling mechanism, it might serve for the description of a variety of related
problems. For example, the validity of Eq. (4.8) has been confirmed recently for
weakly coupled defects in a theoretical approach for a similar problem in phononic
crystals (see Ref. [32]).
Beside finite and strictly periodic systems, coupled systems with locally varying

coupling constants can readily covered by Eq. (4.6) as well. Hence, this formalism
might serve as a tool for a fast evaluation of the effects of superlattices, which have
been explored e.g. in metallodielectric one-dimensional photonic crystals (see
Ref. [33]) or for the characterization of multiple-defect PhCs in chirp-compensating
devices [34].

4.5
Slowing Down Light in CROWs

Possibly the most interesting application for coupled-resonator optical waveguides
is their ability to slow down the group velocity of light. An impressive slowing
down of light by a factor of 22.9 at the Bloch band center has been demonstrated
recently by Poon et al. in a chain of coherently coupled microrings 120 mm in
diameter [19]. In their experiment, a modulated laser is coupled into the microring
chain and compared to a reference waveguide. The group delay has been
determined with a lock-in technique measuring the phase lag between the signal
and the reference.
Nevertheless, due to the chosen parameters, e.g. large cavity radius and small

coupling constant, the spectral response in the transmission window prevents a
direct connection of the slowing factors to theBlochmode picture. Thereby, we follow
a different approach. Making use of a way smaller microresonator size, CROWs can
afford a significantly larger coupling constant while at the same time exhibiting a
large slowing factor. This can be understood by expressing the slowing factor S in
terms of the wavelength of the guided light l, the cavity radius R:

S ¼ c
vmax
g

¼ l
4pk �R : ð4:10Þ

According to Eq. (4.10), the slowing factor remains unchanged if the product of the
coupling constant and the cavity radius is kept constant.

If the coupling constant is chosen large enough to resolve the individual Bloch
modes spectrally (i.e. the splitting due to coherent coupling is larger than the
resonator line-widths) we can deduce the slowing factor directly from the spectral
system response in the Bloch mode regime.
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Hence, many different structures can be easily compared, which naturally stem
from a large parameter space. Basically, coupled-resonator optical waveguides can be
realized in a large parameter space [35–41]. A visualization of the trade-offs between
the CROWparameters is shown in Figure 4.5. The parameters for a constant slowing
factor (S¼ 31) constitute a plane in a triple logarithmic representation.
In order to unambiguously estimate the slowing-factor experimentally, we con-

sider the smallest possible structure with alternating bright and dark resonator states
and use the formalism of Section 4.4.
This system consists of three resonators (R¼ 1.4mm) in a linear row and according

to the discussion of Eq. (4.7), a symmetric spatio-spectral mode pattern indicating
bright and dark states arises. Themode pattern of a linear three-resonator structure is
evaluated experimentally in dependence of both the resonator number and themode
energy in Figure 4.6. For comparison, a theoretical calculation for a linear three-
resonator chain after Eq. (4.7) is added.
For this particular structure, the observed frequency split is related to the coupling

constant via Eq. (4.11). From comparison of experimental and theoretical data
(Figure 4.6), a coupling constant of 1.1 · 10�3 is derived:

k ¼
ffiffiffi
2

p �DE
Ecentral

�
ffiffiffi
2

p �Dl
lcentral

� 1:1� 10�3: ð4:11Þ

From this result, the slowing factor (fraction of vacuum light speed andmaximum
light velocity in a given CROW) can be readily determined. With straight forward
calculus (for details, see Ref. [45]), a slowing factor S¼ 31 can be obtained.

Figure 4.5 Possible parameter choices for a given slowing factor S.
The coupling constant k, cavity radius R and the wavelength l of
the guided light form a plane of constant slowing factor S¼ 31 in
a triple logarithmic representation.
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4.6
Disorder and Detuning in CROWs

In Section 4.4, we kept the single resonator mode frequencies degenerate for a
discussion of the coupled-resonator mode patterns. In the following, we will exploit
the modifications of coupled-resonator modes due to size tuning of individual
resonators in a chain.
In the case of periodic photonic structures, the discussion of disorder effects is

mainly focussed on randomdeviations froma strict periodicity. Typically, a parameter
characterizing the degree of disorder is chosen and a number of configurations are
modelled in accordance with this disorder parameter. Disorder is usually found to
result in significant light localization within characteristic length scales, the so-called
Anderson localization [42–44]. Connected with light localization, the modifications of
the photonic density of states and the photonic band structure are of major
importance.
For the case of size detuning in coupled-resonator optical waveguides which we

discuss in this section, we take a related approach to size tuning. However, instead of
modelling a statistical ensemble of size deviations, we explore the modifications of
coherently coupled photon modes for a single defect, whose eigenfrequency is
continuously tuned through the photonic band. Hence, we make use of the
previously discussed model of finite CROWs.
In a similar way to that presented in Section 4.4, size detuning can be included

into the matrix model. However, the model of a finite CROW with degenerate
individual resonance frequencies O leads to a specific role of the frequency O in the
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Figure 4.6 Mode pattern in a size-matched three-resonator
system. The experimentally obtainedmode splitting is resolved for
each resonator (left) and compared to the theoretical model
developed in Section 4.4. The mode splitting reveals a slowing-
factor S¼ 31 (see text).
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corresponding equations. As discussed in a detailed manner in Ref. [45], CROWs
built from resonators with different resonance frequencies O1, O2, . . ., ON can be
efficiently modelled with a modified eigenvalue equation, in which all appearing
frequencies contribute in a similar way.
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As one example of size tuning of a single resonator in a CROW, we consider a five
resonator structure, in which the first four resonators obey degenerate resonance
frequenciesO0. Thefifth resonator�s frequency is detuned across this frequency from
O0� 3kO0 to O0þ 3kO0. The evolving eigenfrequencies of the coupled system are
displayed in Figure 4.7. For comparison, the Blochmode frequencies of a degenerate
four-resonator system aremarkedwith dashed horizontal lines. The diagonal dashed
line indicates the tuned resonance of the fifth resonator. As apparent fromFigure 4.7,
for detunings as large as several frequency scaled coupling constants kO0, the system
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Figure 4.7 Evolving multiresonator modes for five resonators in
dependence on the fifth�s resonator tuned resonance. Dashed
lines indicate Blochmodes of a four resonator system (horizontal)
and the individual tuned resonance of the fifth resonator
(diagonal), respectively. The tuned frequencies are given in units
of frequency scaled coupling constants.
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can be simply treated as a coherently coupled four-resonator system and an
uncoupled single fifth resonator. For small detunings – when the fifth resonator
crosses the four-resonator Bloch band – mutual anticrossing behavior can be
observed: Whenever the frequency of the fifth resonator and one of the Blochmodes
meet, avoided level crossing takes place and the modes bend over into each other.
This behavior is a direct result from the coupled-oscillator analogy and thus nicely
mimics related effects in solid state physics, e.g. the coupling of electronic reso-
nances in electronic crystals. Specifically, these relationsmight serve as a rapid design
tool for the requiredfine-tuning in crossing and intersectingCROWstructures (see e.
g. Ref. [46]) or for the connection of actively tuned [47] with otherwise insensitive
structures.

4.7
Summary

Chains of coherently coupled microresonators have been studied both experimen-
tally and theoretically. The evolution of individual microresonator modes into
coherent waveguide modes has been demonstrated by means of microphotolumi-
nescence mode mapping. A coupled-oscillator model is developed explaining the
coupled-resonator mode patterns due to coherent photon mode coupling. An
extension of this model has been shown covering structures of finite size. The
potential of slowing-down the group velocity of light is evidenced experimentally. A
slowing-factor of S¼ 31 has been deduced. A model for disorder in coupled-
resonator optical waveguides is presented. Size detuning in CROWs has been
explored in terms of anticrossing relations in close analogy to solid-state systems.
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5
Coupled Nanopillar Waveguides: Optical Properties
and Applications
Dmitry N. Chigrin, Sergei V. Zhukovsky, Andrei V. Lavrinenko, and Johann Kroha

5.1
Introduction

Photonic crystals (PhCs) are known for offering unique opportunities for controling
the flow of light by acting as waveguides, cavities, dispersive elements, etc. [1–4].
Photonic crystal waveguides (PCW) are one of the promising examples of PhCs
applications at micron and sub-micron length-scales. They can be formed by
removing one or several lines of scatterers from the PhC lattice (Figure 5.1a). PCW
based on PhCs with different two-dimensional (2D) lattices of both air holes in a
dielectric background and dielectric rods in air were reported [1–3]. Light confine-
ment in PCW is obtained due to a complete photonic bandgap (PBG), in contrast to
the standard guiding mechanism in a conventional dielectric waveguide
(Figure 5.1b). It was theoretically predicted that a PhC waveguide can possess
loss-free propagation as soon as a guidingmode falls into a complete PBG.However,
progress inPhCresearchhas revealed that losses are inevitable and sometimesmight
be rather high even in spite of broad PBG. Special optimization efforts are now
intensively applied for decreasing optical losses and the results are quite
promising [5,6].
At the same time, PBG guiding is not the only waveguiding mechanism in a PhC.

Unique anisotropy of PhCs can cancel out the natural diffraction of the light, leading
to the self-guiding of a beam in a non-channel PCW [7–9]. The common principle of
index guiding (guiding due to total internal reflection) can be also found in periodic
systems. It is rather straightforward if a waveguide is organized as a defect in a lattice
of holes in a dielectricmaterial. Then, the channel itself has higher index of refraction
than the average index of the drilled or etched medium. Topologically inverted
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systems like periodic arrays of rods or nanopillars placed in air can also provide
waveguiding due to index difference [2]. However, fabrication of rod arrays on the
nanoscale is a relatively difficult technological problem.
The recent progress in the fabrication of nanorod structures has proved

the relevance of their study not only as a useful theoretical model. For example,
two-dimensional (2D) silicon-on-insulator (SOI) pillar PhC have recently
been fabricated and characterized [10]. Sandwich-like structures have also been
successfully realized in GaAs/AlxOymaterial system [11]. Membrane-like structures
have been realized, based on polymer membranes incorporating Si rods [12].
Recently, various combinations of active materials inserted in single nanowires
or arrays of nanopillars have been under attention as well [13]. It is important to
point out that all of the above mentioned studies do not only present a successful
practical realization of the pillar PhC structures, but also report transmission
efficiencies and out-of-plane radiation losses comparable with the 2D PhC based
on hole geometry.
A one-dimensional (1D) chain of rods placed at equal distance from one another

(Figure 5.1c) possesses guiding properties as was shown by Fan et al. [2]. The
fundamental mode of such a periodic nanopillar waveguide lies below the light line
and below the first PBG corresponding to the 2D PhCs with a square lattice of the
same rods. Guiding is due to total internal reflection. A better confinement of light
can be achieved, if several 1D periodic chains are placed in parallel (Figure 5.1d) [14].
Such waveguides are called coupled nanopillar waveguides (CNPWs) and are
designated as Wn, where n is the number of parallel rows comprising the CNPW.
In building a CNPW both the longitudinal and the transverse relative shift between
individual waveguides can be arbitrary, and thus, a high flexibility in dispersion
engineering can be achieved.
In this chapter, we review basic properties of coupled nanopillar waveguides and

discuss their possible applications for integrated optics. In Section 5.2, a CNPW is
introduced and possible ways to tune the CNPW dispersion are discussed. The
transmission efficiency of 2D and 3DCNPWs is reported in Section 5.3. The route to
improve the coupling between a nanopillar waveguide and an external dielectric
waveguide (like an optical fiber) is discussed in Section 5.4 with respect to aperiodic
NPWs. Possible applications of coupled periodic and aperiodic nanopillar wave-
guides are discussed in Section 5.5. Section 5.6 concludes the chapter.

Figure 5.1 Optical waveguides: (a) photonic crystal waveguide,
(b) dielectric waveguide, (c) nanopillar waveguide, and
(d) coupled nanopillar waveguide.

78j 5 Coupled Nanopillar Waveguides: Optical Properties and Applications



5.2
Dispersion Engineering

5.2.1
Dispersion Tuning

In Ref. [2] it was shown that a single row of periodically placed dielectric rods
is effectively a single-mode waveguide within a wide frequency range (Figure 5.2,
left panel). It has a well confined fundamental mode. Attaching one, two or
more identical W1 waveguides in parallel to the original one produces a coupled-
waveguide structure [14]. It is well known in optoelectronics that this leads to the
splitting of the original mode into n modes, where n is the number of coupled
waveguides [15].
In Figure 5.2, dispersion diagrams forW1,W2,W3 andW4CNPWs are shown. All

rods are placed at the vertices of a square lattice. To model a CNPW dispersion we
used the plane-wave expansion method (PWM) [16]. The supercell consists of one
period in the z direction and 20 periods in the x direction, where n periods occupied
by dielectric rodswere placed in the center of the supercell. Thewaveguide is oriented
along the z-axis (Figure 5.2). The calculations were performed for 2D structures and
for TMpolarization. The nmodes of the CNPWare bound between theG–XandX–M
projected bands of the corresponding infinite PhC of a 2D square lattice of rods
(Figure 5.2, dashed lines) [14]. All modes are effectively localized within the
waveguide region. Near the irreducible Brillouin zone (IBZ) boundary the dispersion
is strongly affected by the system periodicity.
It is well known that by varying the filling factor, i.e. the rod radius, and the

dielectric constant of the rods, one can tailor the frequency range and slope of the PhC

Figure 5.2 Dispersion diagrams for CNPWswith
1, 2, 3 and 4 rows. The insets show a sketch of the
waveguides. The coordinate system together
with the first quadrant of the first Brillouin zone
for the square lattice with period a are also
shown. The grey areas depict the continuum

of radiated modes lying above the light line.
Guided modes are shown as black solid lines.
The projected band structure of the infinite 2D
PhC is shown as dashed lines. Here e¼ 13.0 and
r¼ 0.15a.
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bands. Taking into account that the CNPWmodes are bound byG–X and X–Mbands
of the corresponding infinite 2D PhC, a proper frequency adjustment of nanopillar
waveguide modes can be done by changing these two parameters. Decreasing the
dielectric constant of the rods,while keeping their radius constant, pushes the bundle
ofnCNPWmodes to higher frequencies. Themodes shift towards lower frequencies,
if the nanopillar radius increases, with fixed dielectric constant. In general, themode
tuning follows the rule: the larger the average refractive index of the system, the lower
the mode frequencies [14].
Another option for tuning themode dispersion of CNPW is to change the distance

between individual waveguides, the transverse offset. Examples are shown in
Figure 5.3 for two transverse offsets, d¼ 0.5a (left) and d¼ 2.0a (right). In these
cases the rods are situated at the vertices of a rectangular lattice. While the mode
overlap of individual waveguides is larger (smaller) for close (far) positioned
waveguides, the coupling strength is stronger (weaker). For two identicalwaveguides,
this in turn results in stronger (weaker)mode splitting,b�¼b�k, with respect to the
propagation constant b of the un-coupled NPW. Here k is a coupling coefficient [15].
Note, that the CNPW mode frequencies are still bounded by the position of the
projected band structure of the corresponding infinite rectangular PhC (Figure 5.3,
dashed lines).
The last parameter whichmay affect the dispersion of a CNPW is the longitudinal

shift between its individual rows. In Figure 5.4 the dispersion diagrams for CNPW
with rods placed in the vertices of a triangular lattice are shown for W2, W3, W4 and
W5 waveguides. The orientation of the waveguides coincides with the G–X direction
of the triangular lattice. The mode splitting in a �triangular lattice� W2 waveguide
strongly depends on the propagation constant (Figure 5.4, left panel), being large for
small b and vanishing near the IBZ boundary. This is in contrast to a �square lattice�
W2waveguide (Figure 5.2), where themode splitting is approximately constant for all
propagation constants. Themode degeneracy near the IBZ boundary leads to regions

Figure 5.3 Same as in Figure 5.2 for CNPWs with different
transverse offsets, d¼ 0.5a (left) and d¼ 2.0a (right). The insets
show a sketch of waveguides and coordinate system.
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with negative dispersion (backward propagating waves) of the second mode. For
CNPWs with the number of rods larger than two (Figure 5.4, right panels) it results,
furthermore, in the formation of mini-bandgaps and multiple backward waves
regions in the dispersion. Note that in spite of the complex nature of the mode
splitting, CNPWmodes are still bounded by the projected bands of the corresponding
triangular lattice PhC.
The longitudinal shift d can be arbitrarily set to any value between d¼ 0 and

d¼ 0.5a. The concomitant dramatic changes in the CNPWdispersion are illustrated
in Figure 5.5 for the case of W2 waveguide. Starting from the simple mode splitting
for d¼ 0 one can have a very flat second band for d� 0.25a, with negative dispersion
regions in the second band for d> 0.25a and degeneratefirst and second bands at the
IBZ boundary for d¼ 0.5a. By combining such shifted W2 waveguides and appro-

Figure 5.4 Sameas in Figure 5.2 for triangular latticesW2,W3,W4
and W5 waveguides. The insets show a sketch of the waveguides
and the coordinate system. Here e¼ 13.0 and r¼ 0.26a.

Figure 5.5 Dispersion diagrams of the W2 CNPW for different
longitudinal shifts d. The insets show a sketch of two parallel
periodic waveguideswith transverse offset d and longitudinal shift
d. Here e¼ 13.0, r¼ 0.15a and d¼ a.
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priately choosing the rod radius and transverse offset one obtains large flexibility in
designing CNPWs with anomalous dispersion in the frequency range of interest.

5.2.2
Coupled Mode Model

To understand qualitatively the physical mechanism of the anomalous dispersion
presented in the last example (Figure 5.5), the coupled mode theory (CMT) can be
used [17]. Being an approximate theory, CMT nevertheless manages to combine a
simple physical model with accurate qualitative and even quantitative results [18]. In
what follows, two identical coupled periodic waveguides a-W1and b-W1 are arranged
in a W2 CNPW. The second waveguide, b-W1, is shifted by d with respect to the first
one (Figure 5.5, inset). We limit ourselves to the scalar CMT, which in our case
corresponds to the TM polarization.
Themodes of theW2 waveguide are defined as the solutions of the 2D scalar wave

equation

q2

qx2
þ q2

qz2

� �
E x; zð Þþ k20e x; zð Þ E x; zð Þ ¼ 0; ð5:1Þ

where the dielectric function of the composite structure is simply the sum
of dielectric functions of the two W1 waveguides, e(x,z)¼ ea(x,z)þ eb(x,z). Here
k0¼o/c is a wave number in vacuum.We are looking for a solution of Eq. (5.1) in the
form of a linear combination of the propagating modes in two isolated W1
waveguides [19], which allows us to separate spatial variables in the form

Eðx;zÞ¼YaðxÞðf aðzÞe�ibzþbaðzÞeibzÞþYbðxÞe�ibdðf bðzÞe�ibzþbbðzÞeibzÞ:
ð5:2Þ

Here fm(z)¼ Fm(z) exp(i(b�b0)z) and bm(z)¼Bm(z) exp(�i(b�b0)z) are the slowly
varying amplitudes of forward and backward propagating modes near the Bragg
resonance condition of a single periodic W1 waveguide with period a and b0¼p/a.
The functions Ca(x) and Cb(x) represent the transverse field distributions, and
indexes m¼ a,b refer to a-W1 and b-W1 waveguides, respectively. The spatial shift
between the two W1 waveguides is accounted for by the corresponding phase
shift e�ibd of the field of the b-W1 waveguide. Here b is the propagation
constant of a homogenized W1 waveguide of width l¼ 2r and dielectric constant

eeff ðxÞ¼ 1=að Þ Rzþa

z
dzeðx;zÞ. The dependence of the propagation constant b on fre-

quency is given by the standard planar waveguide dispersion relation [15]

tan2 l
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff k

2
0�b2

q� �
¼ðb2�k20Þ n2eff k

2
0�b2

� ��1
; ð5:3Þ

where we have introduced the effective index of refraction of the homogenized
waveguide neff¼ ffiffiffiffiffiffiffi

eeff
p

. The transverse field distributions Ca(x) and Cb(x) obey the
scalar wave equations
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q2

qx2
�b2

� �
Ym xð Þþk20e0m xð ÞYm xð Þ¼0;

with m¼ a,b and the transverse dependent dielectric functions e0m(x) being a z-
average dielectric constant of the m-th waveguide. Substituting the mode expan-
sion (5.2) into the scalar wave Eq. (5.1) and expanding the dielectric constant e(x,z) in
a Fourier series with respect to z,

e x;zð Þ¼ea0 xð Þþeb0 xð Þþ
X
l„0

ðealðxÞþeblðxÞÞe�il 2i=að Þz; ð5:4Þ

with the Fourier coefficients eml(x), one obtains after some lengthy but straight-
forward derivations a system of four ordinary differential equations relating slowly
varying amplitudes of the forward and backward propagating modes in the two W1
waveguides,

d
dz

Fa

Fb

Ba

Bb

0
BB@

1
CCA¼iM

^
Fa

Fb

Ba

Bb

0
BB@

1
CCA: ð5:5Þ

For the propagation constant close to the Bragg point b0¼p/a, the system matrix
M̂ has the form

M
^ ¼

b0�b �e�ibd k0 �ka 0

� eibd k0 b0�b 0 �e2ib0d ka

ka 0 b�b0 e�ibd k0

0 e�2ib0d ka eibd k0 b�b0

0
BBBB@

1
CCCCA : ð5:6Þ

To simplify the following analysis, we have kept only two coupling constants, namely
k0, accounting for the coupling between two homogenized waveguides, and ka,
describing thewaveguide�s intrinsic periodic structure. These coupling constants are
defined in a usual way, as overlap integrals of the transverse field distributions with
the corresponding Fourier coefficients of the dielectric function expansion. The
resulting propagation constants of the supermodes of theW2waveguide are given as
the eigenvalues of the system matrix M̂ (6)

bW2 wð Þ ¼ b0 þDb wð Þ; ð5:7Þ
with

Db wð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb wð Þ�b0Þ2 þk2

0�k2
a � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðb wð Þ� b0Þ2�2k2

a þ 2k2
acos 2pdð Þ

qr
:

ð5:8Þ
The implicit dependence of the propagation constant on frequency is given via the
dispersion relation (5.3) of a planar homogenized waveguide.
In Figure 5.6 the dispersion diagram ofW2 waveguide calculated using Eqs. (5.7),

(5.8) is presented for three values of the longitudinal shift d¼ 0.0 (left), d¼ 0.5
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(center) and d¼ 0.25 (right). See figure caption for further details on the parameters.
The dotted line shows the dispersion of a planar homogenized waveguide calculated
using the dispersion relation (5.3) and folded back into the first Brillouin zone by the
Bragg wave vector corresponding to the periodic W1 waveguide. By setting the self-
action coupling constant, ka, to zero and choosing some finite value for the inter-row
coupling constant, k0, one can reproduce the simple band splitting within the CMT
model. The split modes are shown as dashed lines (Figure 5.6).
To analyze the influence of the periodic structure and the longitudinal shift on the

split band structure, wefirst consider zero longitudinal shift, d¼ 0.0. In this situation
the detuning of the propagation constant from the Bragg wave vector, b0, is given by

Db ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� k0Þ2�k2

a

q
, where D¼ (b�b0) is the detuning of the propagation

constant of the homogenized waveguide from the Bragg point. The propagation

factor of the supermodes is given by the exponential e�ib0ze�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�k0Þ2�k2

a

p� �
z, which

corresponds to propagating modes only if ðD� k0Þ2�k2
a > 1. In the opposite situa-

tion, there are two bandgaps at Bragg wave vector b0 with central frequencies
corresponding to D¼�k0. These bandgaps are due to the destructive interference
of the first forward propagating and the first backward propagating supermodes and
the second forward propagating and the second backward propagating supermodes,
respectively, as can be seen from the left panel of Figure 5.6. In the case of half-period
shifted W1 waveguides, d¼ 0.5, the detuning of the propagation constant and

the supermode propagation factor are given by Db ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�k2

a

q
� k0

� �
and

e�i b0�k0ð Þz e�i
ffiffiffiffiffiffiffiffiffiffi
D2�k2

a

p� �
z. In this case two bandgaps exist at shifted Braggwave vectors

b0�k0 with central frequency at D¼ 0.0. This corresponds to the destructive
interference of the first forward propagating and the second backward propagating
supermodes and vice versa (Figure 5.6, center). It is important tomention here that at
the Bragg condition, b0, (IBZ boundary) the first forward propagating and the first
backward propagating supermodes are in phase, which leads to the degeneracy of the
first and second bands at the IBZ boundary (Figure 5.4). The shift of the Bragg
condition away from the IBZ boundary, b0� k0, is a reason for the appearance of a

Figure 5.6 Dispersion diagrams of two coupled
periodic waveguides (solid lines) within the
framework of coupled mode theory for three
values of the longitudinal shift d¼ 0.0 (left),
d¼ 0.5 (center) and d¼ 0.25 (right). The dotted

line is the dispersion of a homogenized
waveguide folded into the first Brillouin zone.
The dashed lines are the folded dispersions of
two coupled homogenized waveguides. Here
neff¼ 1.5, l¼ 0.3a, k0¼ 0.06 and ka¼ 0.03.
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region with negative dispersion in the second band (Figure 5.4). In the case of
arbitrary shift between the W1 waveguides a destructive interference takes place
between all possible pair combinations of forward and backward propagating super-
modes leading to the formation of four bandgaps and anomalous dispersion
(Figure 5.5). In the right panel of Figure 5.6 an example of a CMT dispersion
diagram is shown for the case of quarter-period shifted waveguides, d¼ 0.25.

5.3
Transmission Efficiency

An important characteristic of the novel waveguides is their transmission efficiency.
To analyze transmission efficiencies of different 2D and 3D CNPW, the finite
difference time domain (FDTD) method [20] with perfectly matched layers as
absorbing boundary conditions at all sides and a resolution of 16 grid points per
lattice constant is used here. The modes are excited by a Gaussian-shaped temporal
impulse, the Fourier transform of which is broad enough to cover the frequency
range of interest. Fields are monitored by input and output detectors. The transmit-
ted wave intensities are normalized by the ones of the incident waves.
The calculated transmission spectrum of a 20 periods long, straight �square-

lattice� W4 CNPW is shown in the top panels of Figure 5.7. There are four modes
under the light line as it is shown in the band diagram. In Figure 5.7 the transmission
of the fundamental mode is shown together with the dispersion diagram. The W4
waveguide displays high transmission efficiency (close to 100%) over a broad spectral
range. The position of the cut-off frequency is clearly seen in the spectrum.
In the bottompanels of Figure 5.7, the band structure and transmission spectra are

shownfor theW3�triangular-lattice�CNPW.A20period long, straightCNPWiscut in
theG–X direction of the triangular lattice. A substantial suppression of the transmis-
sionisseeninthespectrum,coincidingexactlywiththepositionoftheminibandgapin
the band structure. Changing the parity of the signal field distorts the spectrum
reflecting themodesymmetries.Theevenmodedisplayshightransmissionefficiency
(close to 100%) over a broad spectral range. The odd mode has a lower level of
transmission and ismostly transmitted at higher frequencies. Here, by odd and even
modes we understand the corresponding first two fundamental modes of a conven-
tional dielectric waveguide. The surprisingly high transmission of the even mode
above the cutoff frequency,o� 0.34, can be explained by the resonant behavior of the
folded radiation mode with negative group velocity [21]. We found similar behavior
above cutoff for other �triangular-lattice� CNPW structures.
An example of 3D calculations for an SOI W4 �triangular-lattice� CNPW is

presented in Figure 5.8. In the top panel (left) the dispersion diagram of the structure
is presented, while its transmission spectrum for the even mode is plotted in the top
panel (right). The dispersion diagram was calculated using 3D supercell PWM. In
general, the transmission spectrum is very similar to the corresponding spectrum of
2D structure (Figure 5.7). The transmission band is rather broad with 80% trans-
mission efficiency at maximum and a sizable stopband at the mini bandgap
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Figure 5.7 Top: Dispersion diagram and transmission spectra of
a 2D �square-lattice� W4 CNPW. The fundamental mode was
excited. Here e¼ 13.0 and r¼ 0.15a Bottom: Dispersion diagram
and transmission spectra of a 2D W3 �triangular-lattice� CNPW.
Solid line – even excitation, dashed line – odd excitation. Here
e¼ 13.0 and r¼ 0.26a.
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Figure 5.8 Top: Transmission spectra of even
mode and dispersion diagram of 3D W4 SOI
�triangular lattice� CNPW. Bottom: Field
distribution inside W4 SOI CNPW in horizontal
and vertical planes. Grey levelsmark electric field
amplitude. Black contours correspond to

waveguide structure. White dashed lines depict
positions of the corresponding cuts. Here radius
is r¼ 0.2a, the total nanopillar height is h¼ 3a,
the thickness of Si layer equals to a. Dielectric
constants of Si and SiO2 were chosen as e¼ 11.5
and e¼ 2.1025, respectively.
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frequencies. We attribute the moderate level of transmission to the impedance
mismatch at the conventional waveguide-nanopillar waveguide interface. In the
bottom panel of Figure 5.8, the steady-state electric field distribution inside the
CNPW is shown for a monochromatic source with normalized frequency o¼ a/
l¼ 0.3. The field is well confined within the waveguide core in both the horizontal
and vertical planes. There is no evidence for strong energy leakage into the substrate.

5.4
Aperiodic Nanopillar Waveguides

In addition to allowing arbitrary variation of the period and displacement (which is
one of the advantages of the nanopillar waveguides as opposed to the PCWs), CNPWs
allow arbitrary modification of the longitudinal geometry. A localized change of the
properties introduced in one or several nanopillars would create a point defect, which
functions as a resonator [2,24]. The design of suchmicro-resonators on the scale of a
fewwavelengths isessential for integratedopticsapplications. Ideally, suchresonators
should combine the apparently contradictory features of a high Q-factor and of a
sufficientlygoodcoupling toawaveguide terminal to inject orextract light intoor from
the resonator.Due to the absence of a complete bandgap, the breaking of translational
symmetry inevitably results in radiation lossesof the resonatormode,whichraises the
need for optimizing theQ-factor of the resonator in 1Dnanopillar waveguides. There
have been some proposals to decrease the losses based on either mode delocaliza-
tion [23] or on the effect of multipole cancellation [24]. A delocalized mode typically
suffers from a decrease of the Q-factor. On the other hand, the spatial radiation loss
profileof amodedescribed inRef. [24]hasanodal linealong thewaveguideaxis,which
means poor coupling to any components coaxial with the waveguide.
Other than by means of a point defect, a resonant system can also be created by

changing the periodic arrangement of nanopillars into a non-periodic one. We show
that the use of such aperiodically ordered waveguide leads to improved coupling to
the coaxial terminal without considerably sacrificing the Q-factor of the resonant
modes. We use fractal Cantor-like NWPs as an example [25]. To construct aperiodic
NPW, nanopillars of equal radius are arranged in a 1D chain, where the distances
between adjacent pillars are given by the Cantor sequence. If we denote S and L for
short and long distance (dS and dL), respectively, the Cantor sequence is created
by the inflation rule L! LSL, S! SSS and unfolds in the following self-similar
fashion, which represents a series of middle third Cantor prefractals
L!LSL!LSL SSS LSL!LSLSSSLSL SSSSSSSSS LSLSSSLSL! . . .

In order to compare the amount of energy gathered by the coaxial terminal
and dissipated elsewhere, we excite the system by a dipole source emitting a
pulse with a broad spectrum, and use the FDTD method to investigate the process
of energy loss into the surroundings. Figure 5.9 shows the results. For the point-
defect structure, the radiation of the resonant mode primarily escapes sideways
(Figure 5.9(a)), so despite having a highQ-factor (2.1· 104), the coupling between the
resonator and other components cannot be made efficient. The Cantor structure
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shows a considerably improved coupling (Figure 5.9(b)) accompanied by a drop of the
Q-factor down to 2.7· 103. Using a W3 CNPW with Cantor geometry (Figure 5.9(c))
raises it back to Q¼ 1.1‚ 2.4· 104 while still providing just as good coupling to the
coaxial terminal.
One should notice that the Cantor geometry is only one kind of deterministically

aperiodic arrangement. Other kinds, e.g., quasi-periodic Fibonacci-like one, can be
used leading to amodification of themode structure of NPWs as well as the coupling
efficiency of resonant mode into coaxial terminal [25]. Engineering the longitudinal
geometry of CNPWs appears to be a promising and powerful tool for a further degree
of freedom in controlling their dispersion properties.

5.5
Applications

Relatively high transmission efficiency and flexibility in dispersion tuning of CNPWs
may initiate their use as components for efficient and compact nanophotonics
devices. Here we discuss two possible applications of CNPWs in integrated optics:
a coupled nanopillar waveguide directional coupler [22] and a switchable coupled
mode laser [31].

5.5.1
Directional Coupler

A pair of CNPWs can be used as an effective directional coupler [22]. An
example of such a directional coupler based on two W1 waveguides is shown in
Figure 5.10. Analyzing the dispersion diagram of the coupling section, namely W2
CNPW (Figure 5.10, left panel), one can see a pronounced difference in the
propagation constants of the even and odd supermodes in the frequency region
around o¼ 0.25–0.27. It is a result of the strong interaction of coupled waveguides,
which now are much closer to each other than in the case of standard line defect

Figure 5.9 Normalized energy flux of
electromagnetic radiation escaping from the
resonator into the terminal (solid line) and
elsewhere (dashed line) for three nanopillar
structures shown in the insets: a W1 with a
point defect [24] (left); a W1 with Cantor-like
longitudinal geometry (center) and a W3

Cantor-like CNPW (right). Here, ds¼ 0.5a,
dL¼ 0.81a, r¼ 0.15a, D¼ 0.75a and e¼ 13.0.
The point defect is created by doubling the radius
of a central rod in a periodic waveguide with
period dL. Arrows mark the resonances
discussed in the text.
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waveguides in a PhC lattice (see, for example, the similar rod structure in [26]). In this
frequency range the difference between the even and odd supermode propagation
constants is close to 0.1�2p/a, which leads to a crude estimate of minimum coupling
length [27]: L ¼ p=jkeven�koddj ¼ p=0:1ð Þ� a=2pð Þ ¼ 5a: Enhanced interaction leads
to a shorter coupling length. This is illustrated in Figure 5.10, right panel, where the
time averaged squared electric field pattern is shown for the normalized frequency
o¼ 0.26. Guided light hops from the bottomW1 waveguide to the top one and back
on a distance equal to approximately 5a, which representswell the estimated value. In
contrast to a directional coupler proposed in [28], the CNPW structure does not
require a specially adjusted separation layer between coupled waveguides, thus
considerably simplifying a directional coupler design and fabrication.
There are several parameters, which can be used to optimize the directional

coupler, e.g., length of the coupling region or the number of rows in each of the
waveguides. As it has been shown in Section 5.2, longitudinal and transverse offsets
between the individual waveguides, as well as variation of the dielectric constant and
radius of the rods substantially modify the dispersion of the compound system, thus
affecting the coupling efficiency. For example, by shortening the distance between
two waveguides one can dramatically increase the propagation constant difference
and reduce the coupler size. A similar effect cannot be achieved with standard PhC
waveguides without any special design tricks involving intermediate walls, which
increases the complexity of the fabrication procedure. An arbitrary longitudinal offset
breaks the symmetry of the device with respect to the symmetry plane between the
twoW1waveguides, whichmay further improve the coupling strength similar to the
case of an antisymmetric grating coupler [29,30].

5.5.2
Laser Resonators

The periodicity of the coupled nanopillar waveguides ensures the distributed
feedback within a finite waveguide section. This can be seen from the flat tails of

Figure 5.10 Dispersion diagram for the W2 CNPW section of a
directional coupler (left). Directional coupler based on two W1
CNPWs (right). Grey levels mark field intensity. Here e¼ 13.0 and
r¼ 0.15a.
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the nanopillar waveguide modes near the IBZ edge, which correspond to a very low
group velocity ofCNPWmodes. Taking into account that any of theCNPWmodes can
be efficiently excited in the waveguide using an external seeding signal of the
appropriate spatial profile [14], we have proposed the design of a switchable laser
resonator [31] with distributed feedback based on the CNPW. The possibility to tune
the number ofmodes, their frequency and separation (Section 5.2) wouldmake such
a resonator a promising candidate for a chip-integrated laser source.
The concept of switchable lasing was originally proposed in Ref. [14] and has got

further justifications in our recent work [31,32]. In essence, a switchable microlaser
comprises amultimodemicroresonator, where lasing can be switched on demand to
anyof itseigenmodesby injectionseeding [33,34], i.e.by injectinganappropriatepulse
before andduring the onset of lasing, such that the stimulated emissionbuilds up in a
designated mode selected by this seeding field rather than from the random noise
present in the system due to quantum fluctuations and spontaneous emission [32].
To provide a basic physical picture of switchable lasing we first consider briefly a

simple semi-classical laser model in the case of two identical coupled single-mode
cavities [32]. In this case there are two modes, the symmetric and the antisymmetric
one, characterizedbyspatialfielddistributionsu1,2(r) and frequenciesw1;2 ¼ w0 � Dw,
respectively. Here Do is the mode detuning from the frequency of the single-cavity
resonance, o0. For weak mode overlap the spatial intensity profiles of the two modes
nearly coincide, ju1ðrÞj2 � ju2ðrÞj2.Weassumethat thecavities containa lasermedium
with a homogeneously broadened gain line of width Doa>Do, centered at frequency
oa¼o0þ d.Here d is the detuning of the gainprofile from the cavity frequencyo0. For
thissystemthesemiclassicalMaxwell–Blochequations [33,35], in therotating-waveand
the slowly varying envelope approximation read

dE1ðtÞ
dt

¼ gR1 L 1� k1

gR1

0
@

1
AE1ðtÞ

�gR1hL1ða11
11L1jE1j2þ½a11

22L2�a12
21 Re ðc1M12Þ
 jE2j2Þ E1ðtÞþF1ðtÞ;

dE2ðtÞ
dt

¼ gR2 L2� k2

gR2

0
@

1
AE2ðtÞ

�gR2hL2ð½a22
11L1�a21

12 Re ðc2M21Þ
 jE1j2þa22
22L2jE1j2Þ E2ðtÞþF2ðtÞ:

ð5:9Þ

Here all the spatial dependencies of the electric field and atomic polarization
were represented in the basis of the two cavity modes, such that
Eðr; tÞ ¼ E1ðtÞ u1ðrÞ e�iw1tþE2ðtÞ u2ðrÞ e�iw2t, etc., and the atomic polarization was
eliminated adiabatically [36,37].Ej(t) are slowly varying envelopes of twomodes j¼ 1, 2.
In Eq. (9) the terms linear in Ej(t) describe stimulated emission driving, where the

light–matter coupling constant is denoted by g ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pw0 d

2=h�
q

, the pumping rates
projected onto the two resonator modes by Rj ¼

R
G u�j ðrÞ ujðrÞ RðrÞ dr, and the cavity

mode decay rates by kj. Here d is the dipole moment of the atomic transition. The
coefficients Lj ¼ Re b�1

j , with b1,2¼Doa/2þ i(d�Do), account for the different
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mode-to-gain couplings due to asymmetrical detuning of the atomic transition with
respect to the resonator frequencies. The terms cubic in Ej(t) describe field saturation
above the lasing threshold, where h ¼ d2=2gkh�2 and the overlap integrals
aij
kl ¼

R
G u�i ðrÞ ujðrÞ u�kðrÞ ulðrÞ dr are taken over the regions G containing the gain

medium. Here g|| is the non-radiative decay rate. The frequency dependence of the
cross-saturation terms is given by Mij ¼ b�1

i þðb�j Þ�1, i 6¼ j. Since ju1ðrÞj2 � ju2ðrÞj2
we can further assume that aii

jj ¼ aij
ji 	 a, R1¼R2¼R and k1¼k2¼ k.

The inhomogeneous terms Fj(t) originate from the external injection seeding
field and from a noise field accounting for spontaneous emission [36]. For
vanishing functions Fj(t), Eq. (9) would take the form of the standard two-mode
competition equations [33,35], describing bistable lasing [38] and mode hopping in
the presence of stochastic noise in the system [39]. If both an external seeding field
Esðr; tÞ and a stochastic noise field Enðr; tÞ are present in the cavity,
Eðr; tÞ ¼ Esðr; tÞþEnðr; tÞ, the inhomogeneous terms are given by,

FjðtÞ � wjLj

t

Z t

t�t

dt
0
eiwj t

0
Z
G

ujðrÞ Eðr; t0 Þ dr ¼ Fs
j FðtÞþFn

j ðtÞ: ð5:10Þ

The time integration in Eq. (10) is the averaging over a time interval larger than 1/Do.
The function F(t) is determined by the temporal dependence of the seeding signal
Esðr; tÞ. The coefficients Fs

j and Fn
j ðtÞ are determined by the spatial overlap of each

mode with the seeding and noise fields, respectively.
We consider the situation when the seeding prevails over the noise, i.e.,

Fs
jFðtÞ � Fn

j ðtÞ, before and during the onset of lasing. After the onset the Ej become
so large that the terms Fj have no effect anymore. During the onset the evolution of
the resonator will be determined by the ratio of Fs

1 and Fs
2. In Figure 5.11 (left) the

phase trajectories of the temporal resonator state evolution in the (|E1|
2, |E2|

2) space is
presented for different values of Fs

1 and Fs
2. As seen in Figure 5.11 (left), the lasing

Figure 5.11 (Left) Cavity phase diagrams for a
lasing system governed by Eq. (9) for
Fs
j FðtÞ � Fn

j ðtÞ in the case of symmetric
distribution of mode frequencies with respect to
gain. The dots denote the stable cavity states and
the curves represent the phase trajectories for
their temporal evolution for different ratios
Fs
1 : F

s
2 in the direction of the arrows. (Right)

Time evolution of the total laser field (shown in
grey) and the two cavity modes envelops |E1|
(solid line) and |E2| (dashed line) for the ratio
Fs
1 : F

s
2 ¼ 4 : 3. One can see how the first mode

wins the competition. Here numerical values of
the coefficients in Eq. (9) were calculated for W2
CNPW resonator with the following parameters,
period a, d¼ 1.21a, r¼ 0.15a and e¼ 13.0.
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state first reaches overall intensity saturation (jE1j2þjE2j2 ¼ E2
s ) and then drifts

towards one of the stable fixed points corresponding to single-mode lasing (either
jE1j2 ¼ E2

s or jE2j2 ¼ E2
s ). The drift happens on a longer time scale than the initial

overall intensity growth, and the intermode beats decay fast after the lasing onset
(Figure 5.11, right). The drift occurs towards the mode whose spatial and temporal
overlap with the seeding signal is larger, demonstrating a switchable lasing behavior.
It is important to note that even in the case of asymmetric detuning of the cavity
modes with respect to the gain frequency (d 6¼ 0), single-mode lasing is achieved into
the mode whose spatial overlap with the seeding field, Fs

j , is largest, i.e., if one of
the following conditions, Fs

1 � Fs
2 or F

s
1 � Fs

2, is satisfied.
To demonstrate the predictions of this simple theory we have modeled the lasing

action in four-row CNPW structure with a realistic injection seeding (Figure 5.12)
using the FDTD method [31]. The externally pumped laser-active medium is placed
in the central 7 pillars of all four rows. This is done to maximize coupling between
the active medium and the main localization region of the lasing modes. The
population dynamics of an active medium is described at each space point by the
rate equations of a four-level laser with an external pumping rate Wp. To achieve
population inversion we have chosen the following values for the non-radiative
transition times, t32’ t10� t21, with t31¼ t10¼ 1· 10�13 s, t21¼ 3· 10�10 s, and
the total level population is Ntotal¼ 1024 per unit cell [40]. The Maxwell equations
are solved using FDTD scheme supplemented by the usual equation of motion for
the polarization density in the medium and by the laser rate equations [40–43]. All
calculations were done for TM polarization. The seeding signal is excited by four
emitters (linear groups of dipoles) engineered on the regular dielectric waveguide
attached to the CNPW structure (see Figure 5.12). Each of the emitters generates a
single short Gaussian pulse with carrier frequency oa and with half-width duration
st¼ 104 dt. The relative phase of the fields in these pulses is chosen 0 or p.
Technically, the seeding dipoles are realized as point like oscillating current sources
in the Maxwell equations [31]. Similarly, the spontaneous emission [42,44,45] can
be modeled as an ensemble of point current sources, randomly placed in space,
with temporally d-correlated Langevin noise [45]. The computational domain of
size 7a· 22a was discretized with a mesh point spacing of a/16. The time step is
related to the spatial mesh to assure stability and was chosen dt¼ 6 · 10�17 s. To
simulate an open system, perfectly matched layer (PML) boundary conditions [20]
were used.
In Figure 5.12 (top) the lasing spectra in the steady state long after the seeding

signal has decayed is shown. The broad shaded area depicts the laser line of width
Doa centered at oa, which is shifted slightly towards lower frequencies. As a rule the
Q-factor is larger for modes with the higher frequency. The shifted laser line
compensates this Q-factor difference, so that any of the four CNPW modes can be
selected by the appropriate seeding signal with the same symmetry. In Figure 5.12
(bottom) the spatial electricfield distribution in the four-rowCNPW laser resonator is
shown at an instant of time long after the seeding signal has decayed and after the
steady state has been reached. The symmetry of the selected lasing modes corre-
sponds to that of the seeding signal (Figure 5.12).
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The proposed concept of switchable lasing is not limited to the periodic CNPW
structures, but is expected towork in any resonator featuring bi- ormultistability. Any
coupled cavity based system would be a good candidate for the effects predicted. For
example aperiodic CNPW based resonator also show the switchable lasing behavior
for resonant modes discussed in Section 5.4 [31].

5.6
Conclusion

We have shown that a novel type of coupled nanopillar waveguides, comprised of
several periodic or aperiodic rows of dielectric rods, may have potential applications
in compact photonics. The strong coupling regime can be utilized in ultrashort
directional couplers or laser cavities, whichmight possess an additional functionality
and flexibility when different longitudinal and transverse offsets among individual
waveguides are employed. The factors of major influence upon the mode dispersion
have been analyzed. Transmission spectra for 2D and 3D systems prove the possible

Figure 5.12 Amplitude spectra (top) and laser
filed distribution (bottom) for the periodic
injection-seeded four-row CNPWs. The lines
labeled �Mode-1� to �Mode-4� correspond to the
seeding signals (a)–(d) shown in bottom panel.
The shaded areas represent the laser

amplification line, with its central frequency
oa¼ 0.3225. The pumping rate equals
Wp¼ 1.0· 1013 s�1. The panels (a)–(d)
correspond to different seeding signals, shown
schematically as excited in the terminal.
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single mode excitation by imposing specific symmetry conditions onto a field source
and high transmission characteristics of coupled nanopillar waveguides.
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6
Investigations on the Generation of Photonic Crystals using
Two-Photon Polymerization (2PP) of Inorganic–Organic Hybrid
Polymers with Ultra-Short Laser Pulses
R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B.N. Chichkov

6.1
Introduction

The interaction of laser light with polymer surfaces and bulk samples is of high
technological interest. The adaptation of polymers to laser beam and processing
characteristics is very challenging from the scientific as well as from a technological
point of view. A method which has recently attracted considerable attention is two-
photon absorption (TPA) or two-photon polymerization (2PP) using femtosecond
lasers [1–4],where complicatedmicrostructures can be generated in photoresponsive
materials with high speed. Among the demonstrated structures are, e.g. photonic
crystal structures [3] or mechanical devices [5,6].
The materials used to create these structures were mainly commercially available

acrylate- or epoxy-based resins [5,6].However, in terms of integration, thesematerials
lack of some major requirements: they are often chemically not stable against
solvents typically applied in multi-layer processing, their thermal stability is quite
low, and they suffer from a low mechanical stability. A material class which has
attracted considerable attention for integration and packaging [7–9] is the class
of inorganic-organic hybrid polymers such as ORMOCER�s (Trademark of the
Fraunhofer-Gesellschaft zur F€orderung der Angewandten Forschung e.V., Munich,
Germany). Their properties can be tailored towards application and corresponding
processing technologies [10–16]. ORMOCER�s can be employed inmany devices for
a large variety of applications, thus enabling novel properties frommicro- down to the
nanometer scale with an outstanding chemical, thermal, and mechanical
stability. Thus, they overcome the restrictions of purely organic polymers for most
applications.
Integrated optical devices with micro- and nanooptical elements using polymers

and, particularly nano-scaled organic-inorganic hybrid materials such as
ORMOCER�s, will be beyond of the next generation of optical components. For
the realization of photonic elements such as, for example photonic crystals (PhC),
either high or low refractive index materials are required, dependent on the device
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design. For ORMOCER�s, refractive indices range typically between 1.48 and 1.59,
whereas newmaterials can be developed withmuch lower or much higher refractive
indices.
Three dimensional (3D) photonic bandgap materials [17] are expected to be the

basis of many devices, the majority of which rely on the incorporation of aperiodic
defects to provide functionality. In order to create complete 2- or 3D photonic
bandgaps (PBG), materials accounting for high refractive index contrast are needed.
We here report on the development of high refractive inorganic-organic hybrid
polymers as a novel integral part of the already existingORMOCER�s in combination
with TPA as innovative processing technology for the fast and reliable generation of
photonic crystal structures. The materials and the patterning process will be dis-
cussedwith emphasis on the fabrication of 3D photonic crystal structures. In order to
demonstrate the potential of the 2PP method, different classes of materials are
investigated.

6.2
High-Refractive Index Inorganic–Organic Hybrid Polymers

In general, ORMOCER�s are synthesized via sol–gel processing [18], where
inorganic–oxidic units are connected to organic moieties on a molecular level [19].
This synthesis offers a tremendous flexibility by variation of the catalysts,
temperature, and alkoxysilane scaffold. There are several concepts of creating a
high-refractive index hybrid polymer material. The most common method for
increasing the refractive index is the introduction of nanoparticles either by
blending a polymer with particles, or by introducing them upon synthesis into
organic/inorganic matrices (see, e.g., [20–24]). The described materials, however,
often contain bromide or iodine compounds which are known to increase the
refractive index [25,26]. In addition, the syntheses of oxide nanoparticles are
generally performed in water or in alcoholic media, resulting in OH groups
adsorbed at the surface of the nanoparticles [22,27]. This results in a strong light
absorption around 1550 nm. An alternative method is to add metal oxide powders
dispersed in a solvent to a polymer matrix which, however, often results in
agglomeration [20,21,23]. Another strategy is the binding of an organo-siloxane
network to an inorganic matrix by hydrolysis and polycondensation reactions
between the organo-siloxane network and a metal precursor. Schmidt et al. [28,29]
have performed polycondensation reactions between an epoxysilane and Si-, Al-, or
Ti-alkoxide, and have investigated the refractive index in dependence of the metal
oxide content. The refractive index has increased with increasing metal oxide
content up to 1.55, but was found to be surprisingly low with respect to the
corresponding inorganic system. By complete substitution of epoxysilane by
diphenylsilanediol (DPD), the refractive index increases up to 1.68 which is
related to the introduction of phenyl groups. However, this resin did not contain
any UV polymerizable groups. Introducing some epoxysilane into the material has
yielded refractive indices below 1.6.
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In the following, in situ syntheses of class II hybrid polymers will be reported,
where the organic moieties provide organically polymerizable entities, and the
inorganic-oxidic network contributes to an increase of the refractive index of the
final material due to the incorporation of titania into the silica network. Class II
materials have the advantage that organic and inorganic parts are linked together
through chemical bonds (covalent or iono-covalent bonds) on a molecular level [30].
Thus, problems such as phase separation or agglomeration are avoided which result
in inhomogeneities and scattering and, consequently, in a poor optical performance.
A large variety of syntheses was performed. In order to show the influence of the
synthesis conditions on the resulting opticalmaterial properties, wewillmainly focus
on twoTi-containingORMOCER�modificationswith refractive indices of about 1.65
(@1035 nm). It has to be mentioned, however, that refractive indices up to 1.84
between 1800 nm and 1900 nm were achieved for resins containing 90mol% Ti
(OEt)4 [31], whereas the material�s stability was expectedly poor due to the high
content of non-reacted Ti alkoxide.
In class II materials, the molecules used possess at least two distinct functionali-

ties: an alkoxy group (RO-M) which should react in the presence of water upon
hydrolysis and condensation reactions, and organometallic bonds (M�C bonds)
stable against hydrolysis. The stability of theM�Cbonds depend on the nature of the
metal used. Formost sol–gel conditions, the Si�C bond is stable towards hydrolysis.
In contrast, the M�C bond is not stable towards hydrolysis, when M is a transition
metal. Organo-alkoxysilanes such as R0

nSiðORÞ4�n, where �OR is an alkoxy group
and R0 contains organically polymerizable groups such as methacryl, styryl, or epoxy
moieties, are typically used to modify the inorganic network. The introduction of
metal alkoxides by co-condensation reactions of such organo-alkoxysilanes can also
increase the refractive index [30]. Bao-Ling et al. [32] studied the dependence of the
refractive index and the aging time of the sol on theTi content inmaterials containing
titanium butoxide [Ti(OBu)4] and glycidoxypropyltrimethoxysilane. The refractive
index increases with the Ti content, resulting in n¼ 1.5225 and 1.545 for 20mol%
and 60mol%Ti(OBu)4, respectively. By aging (17 days) of the sol containing 60mol%
Ti(OBu)4, the refractive index has increased up to 1.57. Very recently, Luo et al. [33]
synthesized hybrid organic-inorganic titania-silica polymers via an anhydrous sol–-
gel process. For a resin based on 40mol% titanium ethoxide [Ti(OEt)4] and 60mol%
3-methacryloxy-propyltrimethoxysilane (MEMO), the refractive index was deter-
mined to be 1.5685.
In the following, two material examples for novel Ti-modified ORMOCER�s will

be discussed which can be processed with conventional technologies such as UV
lithography or imprint technology, and by TPA processes. Although the molar
composition of the materials is kept equal, their resulting properties are different
due to the fact that different solvents have been used for syntheses (c.f., Table 6.1)
which result in different inorganic networks. These resins were characterized with
multi-nuclei NMR and FT-IR spectroscopy, whereas for the processed layers UV–VIS
and m-Raman spectroscopy as well as ellipsometry were applied [34,35]. The materi-
al�s processing was performed by patterning them either with UV lithography or by
TPA [35].
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The syntheses were carried out with dried tetrahydrofurane (THF) and cyclopen-
tanone. Water and a suitable catalyst were added in order to perform the hydrolysis
and condensation reactions. Volatile components were removed under reduced
pressure. 13C- and 29Si-NMR spectroscopy measurements were carried out at room
temperature with a Bruker Avance DPX 400 NMR spectrometer. The resins were
dissolved in deuterated solvents, such as deuterated-chloroform (CDCl3) and deu-
terated acetone (d6-acetone). As reference for the chemical shifts, tetramethylsilane
(TMS) was used.
A comparison of the FT-IR spectra (Figure 6.1) of both resins reveals that an

additional peak at 1745 cm�1was detected for PD5. This is attributed to the stretching
vibrational mode of C¼O resulting from cyclopentanone. Also by 13C-NMR
(Figure 6.2), peaks of cyclopentanone were detected at 23.70, 38.33, and 220.16 ppm,
respectively. The occurrence of these peaks might be related to the fact that this
solvent was not completely removed under reduced pressure (peak at 220.16 ppmnot
shown). In resin PD5, more peaks are detected than in resin PD92. In addition to the
three peaks of cyclopentanone, seven new peaks with similar intensities were
recorded by 13C-NMR spectroscopy. These new peaks are attributed to a new
compound formed by an aldol condensation reaction between two cyclopentanone

Table 6.1 Composition of the novel Ti-containing ORMOCER® resins PD92 and PD5.

Composition PD92 PD5

MEMO 17mol% 17mol%
DPD 50mol% 50mol%
Ti(OEt)4 33mol% 33mol%
solvent THF cyclopentanone

Figure 6.1 FT-IR spectra of the resins PD92 and PD5.
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molecules under release of water [34]. This compound has a high molecular weight
and cannot be removedunder reduced pressure, thus being also detected in the FT-IR
spectrum.
The refractive indices of the resins and coatings were determined either with

transmission spectroscopy or by ellipsometry for differently treated samples. In
Table 6.2, the optical properties of PD5 and PD92 coatings which were characterized
by transmission spectroscopy using a UV–VIS spectrometer are summarized,
already exhibiting refractive indices to be 1.58 and 1.6 for wavelengths between
950 nm and 1550 nm, respectively [34]. After soft temperature treatment (without
using cross-linking initiators), the refractive indices were found to be 1.6 to 1.62
(960 nm to 1460 nm). This clearly demonstrates the potential for high refractive index
coatings if suitable initiators and processing methods will be employed. Taking the
dispersion relation into account,muchhigher indices are expected in theVIS spectral

Figure 6.2 (a) Zooms of the 13C-NMR spectra of the resins PD92
(in chloroform-d, top spectrum) and PD5 (in acetone-d6,
bottom spectrum). (b) Structural units of MEMO and DPD with
labeled C, corresponding to the peak numbering in (a). The
stars correspond to new peaks (see text).

Table 6.2 Refractive indices and optical loss values at 780 nm
of the resins PD92, PD5, and, PD92 (n20D ), the cured (nc 150�C), and
non-cured (nc) coating. The optical loss values are given for
780 nm.

Resin n20D Attenuation (dB/cm) nc @ l (nm) nc 150�C @ l (nm)

PD92 solid 0.014 1.60 @ 950 1.62 @ 960
1.59 @ 1120 1.60 @ 1170

PD5 1.59 0.35 1.58 @ 1550 1.60 @ 1460
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regime (c.f., Figures 6.4 and 6.5). The optical loss of thematerials at 780 nmwhich is
the typical wavelength of the femtosecond laser used for TPA experiments, were
found to be very low, thus enabling to focus the laser beam through a large volume of
the resin in order to generate first photonic crystal-like structures (c.f., Figure 6.10).
The processing was tested by coating the resins containing a suitable UV initiator

such as Irgacure 369 either on Borofloat� glass or on p-Si(100) wafers, following the
typical procedures of spin-coating, annealing, UV exposure in a mask-aligner, and
development steps (see, e.g., [14]). TheUVexposure was carried out with andwithout
amask. In the standard procedure, a final thermal curing step is typically performed.
However, the samples presented here are not finally cured. Results can be found
in [36]. In Figure 6.3, opticalmicroscopy images of a PD92 and aPD5 layer are shown,
demonstrating the material�s ability of being patterned by UV light. Vias of about
10 mm were achieved which can be further improved by changing the processing
parameters such as, for example the quantity and/or the kind of the UV initiator
introduced into the material, the UV exposure dose, the developing solvent, only to
mention some. The ultimate resolution limits are not yet clear.
Wet layers up to 6.5 mm could be coated on the different substrates, while the layer

thicknesses have decreased significantly after UVexposure and development. This is
related to the fact that upon UV-exposing a photoresponsive polymer under ambient
conditions whose organic cross-linking is radically initiated, an inhibition layer is
formed since the oxygen from the atmosphere acts as a scavenger [37]. In addition,
titania also has a significant influence on the UVabsorption of amaterial [38]. Due to
the tita-nia content in thematerial�s inorganic-oxidic network [39], the exposure time
needs to be much longer compared to titania-free ORMOCER�s in order to achieve
organically highly cross-linked layers. This is attributed to the absorption of titania in
theUV regimewhich takes place in the samewavelength band than the cross-linking
by UV light. Since the exposure time is directly correlated to the degree of organic
polymerization, it is expected that the material�s density is lower. This, however, will

Figure 6.3 Opticalmicroscopy images of a patterned (a) PD5, and
a (b) PD92 layer on p-Si(100) wafers (open vias). A via mask
was used as test mask.
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also result in lower refractive indices. In Table 6.3, the degree of C¼C conversion of
UV-exposed coatings determined by m-Raman spectroscopy is summarized for
different UV exposure times for PD92. By further increasing the exposure dose,
higher refractive indices are expected, thus resulting in higher index steps.
Figure 6.4 shows ellipsometry data of thin PD92 layers (c.f., Table 6.2), whereas it

has to be mentioned, however, that the coatings were not thermally treated. The
refractive index increases significantly upon increasing the UVexposure time which
is in good agreement with the higher degree of C¼C conversion (c.f., Table 6.3). In
the visible (e.g., at 600 nm), the refractive index is about 1.62 (for 120 s exposure), and
approximately 0.02 higher for 900 sUV exposure. Thus, it is expected that the
refractive index will be even higher for completely processed, i.e. developed and
thermally cured ORMOCER� layers.
Figure 6.5 shows a dispersion curve of a PD92 layer which was completely

processed except for the thermal curing step, measured by ellipsometry. In addition,
the refractive indices of the non-processed coating (i.e., without photo-initiator, no
thermal treatment), calculated from the transmission spectra of the coating at 950 nm
and 1120 nm are shown as well. At 950 nm, the refractive index of non-processed
coating is 1.60, whereas 1.65wasmeasured for the patterned coating. This increase is
attributed to the organic cross-linking,which is known to increase the refractive index

Figure 6.4 Refractive index of Ti-containing ORMOCER®PD92
coatings for different UV exposure durations. The samples were
not developed and not thermally cured.

Table 6.3 Degree of organic polymerization of the methacrylate groups of PD92.

UV exposure time (s) degree of C¼¼¼C conversion (%)

120 32
420 37
900 45
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due to the densification of the material [40]. Moreover, the addition of the photo-
chemical initiator (Irgacure 369) can also contribute to the increase of the refractive
index due to the presence of the aromatic groups which are known to improve the
refractive index due to their better electronic polarizability [41]. To our knowledge, it is
the first time that patterned structures are obtained on amaterial containing if such a
high titanium content (33mol%).

6.3
Multi-Photon Fabrication

6.3.1
Experimental Setup

The schematic representation of the experimental setup which was used for the
fabrication of structures is shown in Figure 6.6. A 100· immersion-oil microscope
objective (Zeiss, NA of 1.4) is used to focus laser pulses in all experiments. Two-
photon polymerization (2PP) is initiated by near-IR ultra-short laser pulses from a Ti:
Sapphire oscillator. The central emission wavelength, repetition rate, and duration of
the laser pulses were 780 nm, 94MHz, and 120 fs, unless otherwise stated. A wave
plate (WP) together with a polarizing beam splitter (BS) is used to attenuate the
average power of the transmitted beam. An acousto-optical modulator (AOM) in
combination with an aperture is used as a fast shutter. The beam is expanded by a
telescope and then coupled into x� y galvo scanner. The sample is mounted on a 3D
piezo stage for positioning in all directions. A CCD camera placed behind the
dichroic mirror is used for online monitoring of the 2PP process.
Laser pulses, tightly focused into the volume of the photosensitive material,

interact with thematerial via amulti-photon absorption and induce a highly localized

Figure 6.5 Dispersion relation of the refractive index of PD92
coatings after UV exposure and development, determined with an
ellipsometer. The dots were determined from transmission
spectra on non-processed coatings (without initiator).
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chemical reaction. For negative resist materials such as ORMOCER�s, this results in
an organic cross-linking, i.e. thematerial is transformed from the liquid into the solid
state. Since the process ofmulti-photon absorption depends non-linearly on the light
intensity, the interaction region is strictly limited to the focal volume, while outside of
the focus the material stays unchanged. By moving the focus in x, y, and z-direction,
arbitrary 3D structures beyond the diffraction limit can be created.
There are two different illumination strategies which can be used for fabrication of

structures: continuous scanning and pinpoint illumination. In the latter case, the
positioning system receives a set of coordinates which determines and defines the
positions of separate volume pixels (voxels). The voxels then define the structure,
whereas each point is illuminated separately. The resolution is changed by varying
illumination duration, average laser power, and the overlapping between neighbor-
ing voxels. For continuous scanning, the structure is defined by a set of curves. The
resolution is changed by adjusting the scanning speed and the average laser power.

6.3.2
Fabrication of PhC in Standard ORMOCER®

First experiments were carried out with an ORMOCER� material originally devel-
oped for waveguide applications [14]. The minimal resolution (feature size) of the
2PP technique which could be demonstrated using this material was 100 nm [4].
Figure 6.7 shows SEM images of woodpile structures fabricated in ORMOCER�

using the 2PP process under continuous scanning illumination. A major problem

Figure 6.6 Principle setup for the fabrication of 3D structures by 2PP.
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one always has to cope with when using photosensitive resins in general is that these
shrink upon cross-linking processes, leading to distortions within the structures.
This can be overcome by either producing a thick frame surrounding the structure
(Figure 6.7(a)), or by numerical compensation [42,43]. Photonic crystal structures of
different rod sizes and periodicity were written and optically characterized [44] (c.f.,
Figure 6.8).
Despite the fact that the refractive index of the standard ORMOCER� (n� 1.56) is

too low to expect a complete PBG, a PBG of 8% in the direction corresponding to
perpendicular incidence to the structure is found. Figure 6.8(a) shows the experi-
mentally determined transmission as a function of thewavelength for a crystal having
in-layer rod distances of d¼ 0.9mm to 1.2 mm. The fcc symmetry is preserved for all
prepared PhCs. All stop gaps are blue-shifted relative to the theoretically calculated
values, since in the calculations shrinkage was not taken into account.

Figure 6.7 SEM images of (a) a woodpile PhC fabricated by 2PP in
a standard ORMOCER®, and (b) zoom into the structure.

Figure 6.8 Transmission spectra of woodpile structures with (a)
various in-layer rod distance d, and (b) various distance between
the layers.
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In Figure 6.8(b), transmission spectra of both, shrinkage compensated and non-
compensated woodpile structures are shown. By an increase of the layer-to-layer
distance by a factor of 1.4 compared to the fcc symmetry, the stop-gap is shifted from
l¼ 1.50 mmto1.86 mm.This behavior is also supported by the fact that the acceptance
angle for the band-gap is larger for ideal fcc symmetry than for distorted ones. Since
the transmission measurements have been performed using a 15· microscope
objective with a semi-aperture angle of �15�, the band edge is sharper for fcc
symmetry, leading to a steeper drop in the transmittance. The transmission spectra
indicate that the appearance of band-gaps, especially when using low refractive index
materials, is very sensitive to all kinds of disorder such as roughness of the rods,
aspect ratio, or rod thickness. Any disorder that leads to deviation from the strictly
periodic structure can cause Rayleigh scattering of the incident light. Since Rayleigh
scattering scales with 1/l4, it becomes more dominant for shorter wavelengths.
Hence, scattering occurs particularly at the higher bands leading to a decrease in
measured transmission above the stop-gap. As a consequence, the transmission does
not regain its value after the stop-band.

6.3.3
2PP of High Refractive Index Materials

TiO2 is a very promising material for photonic applications due to its high refractive
index (from 2.5 to 2.9 depending on the crystalline phase) and high transparency in
the visible spectral range. In the following, two different concepts were followed
in order to generate PhC structures. One approachwas the generation of PhCusing a
Ti-containing ORMOCER�material, where the patterning is performed analogously
to the processing described in chapter 3.2 via cross-linking of the organic moieties
upon laser light illumination. The other approach is the breaking of bonds in the TiO2

containing resist, where the irradiated regions are insoluble for organic solvents such
as acetone [45]. Feature sizes down to 400 nm to 500 nm are obtained for both
materials.
ORMOCER�PD92 was used in order to investigate the patterning process by

means of 2PP. Different parameters such as the writing speed, average power, and
also continuous multiple exposure were investigated. The material was spin-coated
on glass, and subsequently patterned with the femtosecond laser followed by
development step in MIBK. Figure 6.9 shows SEM images of continuously written
lines in ORMOCER�PD92. Multiple exposure was incrementally carried out, rang-
ing between 1 to 10 times exposure. The images show that a slowwriting speed, a low
energy, and multiple exposure are needed in order to obtain well-defined lines.
Based on these results, 3D photonic crystal structures were written in PD92 by

means of TPA. In Figure 6.10, the first 3D structures using a Ti-containing high
refractive indexORMOCER�areshown.The typicalstructuraldimensionsarebetween
approx. 0.4mm and 1mm line width with a period of about 2mm (Figure 6.10(b)). It
has to be mentioned, however, that neither the process is optimized so far, nor the
quality of the generated structure is good enough to account for optical char-
acterization. Besides, the photo-initiator used for radical initiation (Irgacure 369)

6.3 Multi-Photon Fabrication j107



has a very low absorption cross-section which limits the possibilities of the 2PP
method [4]. Cumpston et al. [46] could demonstrate that using p-conjugated compo-
nents as photo-initiators, the two-photon absorption cross-section can be increased
significantly, i.e., absorption cross-sections of up to 1.25 · 10�47 (cm4 s per photon)
were achieved.
In further experiments, the processingwill be optimized in order to achieve crystal

structures which enable optical characterization. The structure size and precision,
the adhesion between the crystal and the glass substrate, the development step, and
also the material�s shrinkage have to be optimized. However, the latter will be very
difficult to be reduced since the Ti-containing resins presented in this paper are
significantly densified upon processing. This causes high shrinkage, but will also
result in higher refractive indices for completely processed layers and structures. The
experiments also have revealed that resins based on titanium compounds require
2PP processing parameters completely different that of the standard ORMOCER�

Figure 6.9 SEM images of continuously written lines by TPA
inORMOCER®PD92. (a) Top lines: 40mW, bottom lines: 35mW,
both at a speed of 200mm/s, and (b) 40mW with 20 mm/s.
From the right to the left, the exposure was increased with
increment 1. (c) 20mW, and (d) 15mW, both at a speed of
20 mm/s. From the left to the right, the exposure was increased
with increment 1.
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material as reported in the literature [4]. This is also supported by the low percentage
of organic cross-linking determined from m-Raman spectroscopy (c.f., Table 6.3).
Typically, 3D photonic crystal structures are obtained in about 5min for the entire
process. Slower speed, lower energy, and also continuous multiple exposure have to
be applied with resin PD92 in order to obtain a similar photonic crystal structure.
Comparing the parameters yields that the ORMOCER� material based on Ti
approximately requires 40min processing in order to obtain a photonic crystal
structure. This might be related to the high absorption of titania as a competitive
process to the organic cross-linking. In addition, the structural feature sizes aremuch
broader than for the standard ORMOCER� [4] which is a result of the non-optimized
optics for high refractive index materials within the TPA experiment. Further
investigations will be carried out to achieve a more detailed understanding of the
underlying processes.
Beside the high-refractive index ORMOCER�PD92, another titania-containing

resist which is described elsewhere [47] was used. This spin-coatable TiO2 resist was
prepared by chemical modification of titanium n-butoxide, Ti(OBun)4, (Aldrich,
>97%) with benzoylacetone, BzAc. At 1550 nm, its refractive index was determined
to be 1.68 before polymerization. Figure 6.11 shows SEM images of woodpile
structures fabricated in a 10mm thick layer of this resist. It was found that in order
to producewell-defined homogeneous structures, amultiple scan of each line similar
to thefindings forORMOCER�PD92with a gradually increasing average laser power
is necessary. Each line was scanned with a velocity of 2000mm/s, and average power
increasing from 5mW to 12mW in 2000 steps. Between each layer, the patterning
process was stopped for 10 s, allowing the volatile components formed upon

Figure 6.10 (a) 3D photonic crystal structures, produced in
ORMOCER®PD92. The average laser power was varied between
7mW and 32mW (from the upper left to the lower right), and
multiple exposure (five times) was applied. (b) Zoom into a
structure.
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bondbreaking to be removed from the structure. The structure has a periodicity of
2mm with an interlayer distance of 700 nm.
In comparison to SU-8 photoresist, whose refractive index has been reported to

be close to 1.65 nm at 405 nm [48] after a postbake treatment of the TiO2 resist, it
is possible to produce pure metal–oxidic structures from the TiO2 resist without an
organic component. When heated up to more than 500 �C, the TiO2 resist reaches
a refractive index of over 2.1 in the visible and near infrared region [45]. Whereas
no improvement of the refractive index of SU-8 may be achieved by a thermal
treatment at 500 �C due to its degradation temperature reported to be 380 �C [48].
Thermal treatment of 3D structures is still a challenge, because the TiO2 resist
shrinks about 50% of its original volume. The particles visible around the
structures (Figure 6.11(c), (d)) result from gold that has been sputtered previously
for SEM imaging, and conveniently mark the initial size of the structure. It is
clear that the thermal treatment results in an increased refractive index of the
material, and simultaneously decreased structural size. However, in order to
obtain non-distorted PhC structures, more control over the material shrinkage
is necessary.

Figure 6.11 SEM images of photonic crystal structures fabricated
in a TiO2 resist. (a), (b) show the structure before,
and (c), (d) after thermal treatment at 400 �C for 1 h.
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6.3.4
Patterning and PhC Fabrication in Positive Resist Material S1813

Currently, there are no commercially available negative photoresists with a refractive
index approaching 2. A popular approach is to fabricate replicas of 3D crystals in
higher refractive index materials. Generally, this approach implies the removal
original structure. Therefore, due to a relatively high thermal and chemical stability
of negative photoresist materials, these materials complicate the fabrication process
of replicas. On the other hand, positive resists can be easily chemically or thermally
removed without much mechanical stress.
Investigations on the patterning of positive resists were performed with a

commercially available positive resist S1813 (Shipley Corp.). This resist was devel-
oped for the integrated circuit device fabrication in microelectronic industry. S1813
can be dissolved in propylene glycol monomethyl ether acetate (PGMEA), and is
optimized for the G-line (436 nm) absorption of amercury lamp. This resist is highly
transparent down to wavelengths below 450 nm, and hence is well-suited for multi-
photon processing.
In case of positive tone resists, light exposure leads to a chain scission. The

difference in processing of positive and negative photoresists is illustrated in
Figure 6.12. Two-photon scission of polymer chains in the positive photoresist
allows one to dissolve the irradiated regions, this way producing 3D hollow
structures.
S1813 can be spin-coated in different thicknesses ranging from around 2.5 mm

down to a few hundred nanometers. The refractive index of the S1813 is approxi-
mately 1.63 at around 800 nm. In thick S1813 droplets, it is possible to write hollow
photonic crystal structures [42]. In Figure 6.13 (a) and (b), two examples of woodpile
structures written in S1813 are shown. Deep wide ridges are formed on two sides of

Figure 6.12 Difference in processing of negative photoresists
(top) and positive photoresists (bottom).
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the PhC in order to provide a better developing of the structure and simplify the
infiltration procedure.
For the fabrication of the test replica, aUV-sensitive acrylatemonomer (Microresist

Technology, Germany) is infiltrated into the structure. Subsequently, the entire
sample was exposed to UV light and placed into NaOH for removing the positive
resist. This procedure dissolves the S1813 structure completely, while the acrylate
monomer remains a solid and stable polymer. The result of this procedure is a free-
standing replica as shown in Figure 6.13(c) and (d). Since this is an indirect process,
one can produce replicas from a material that is not directly structurable by 2PP.

6.4
Summary and Outlook

Novel high refractive index inorganic-organic hybrid polymers synthesized and
characterized by different spectroscopic and optical methods were exemplary

Figure 6.13 Scanning electron microscope images of (a), (b)
hollow woodpile structures written in S1813 positive photoresist
and (c), (d) replicas fabricated from acrylate monomer.
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discussed for two Ti-containing ORMOCER�s. Based on a standard ORMOCER�,
the refractive index could be increased about 7% by substitution of an organo-
alkoxysilane with a Ti alkoxide. Refractive indices of 1.67 (at 633 nm) were achieved
even without thermal treatment and for low cross-linked samples. Thus, the refrac-
tive indices are expected to be much higher for an optimized processing. Patterning
was carried out by UV lithography and by TPA using a femtosecond laser. In
comparison to other methods currently used for the fabrication of PhC, 2PP is a
fast andflexible technology allowing rapid fabrication of PhCwith various geometries
and structural parameters. A common issue associated with the low refractive index
of processable materials can be solved by using specially designed high refractive
indexmaterials, or indirect replicationmethods.We have successfully demonstrated
the application of the TPA technology micropatterning. The resolution of this tech-
nique allows the realization of structures with PBG in the near-IR region. In order to
push the PBG central wavelength values further to the visible part of the spectrum,
further improvements in the resolution and the fabrication confidence of this
technology have to bemade. Direct patterning of high refractive index photosensitive
materials will have an impact on the related research areas, such as fabrication of
micro-optical components, and surface plasmon guiding structures.
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7
Ultra-low Refractive Index Mesoporous Substrates
for Waveguide Structures
D. Konjhodzic, S. Schr€oter, and F. Marlow

7.1
Introduction

Mesoporous materials have pore sizes between 2 and 50 nm and have been studied
for potential applications in catalysis, separation, and chemical sensing in many
works since their discovery in 1992. The use of these materials as novel optical or
electrical materials has also attracted a high interest. They could be a component in
one of the next generations of chips [1]. Here, low dielectric constants are required
and mesoporous materials can exploit their high porosity for achieving this. It is
expected that these materials can substantially help to overcome the problems of
cross-talk and propagation delay. The semiconductor industry is currently targeting
new dielectric films with dielectric constants k¼ 2.5 to 3.0, and it is anticipated that,
as the packing density of metal lines on the semiconductors continues to increase,
interlevel dielectric films with ultra-low k (k< 2.2) will soon be required [1].
In the field of integrated optics, a similar materials problem is emerging.

Waveguides with many functions are designed, but they all need a support with a
lower refractive index to operate properly. Many of new interesting waveguides (e.g.
2D PhCs) have unfortunately relatively low effective refractive indices, demanding
even lower support indices. Low-n materials have nearly the same requirements as
low-k materials. They differ in the relevant frequency range leading to the decisive
role ofOHgroups andwater for the low-kmaterials. Both applications require perfect
films of these materials.
In this work we describe an optimized fabrication procedure of mesoporous silica

films and analyze the properties of these mesoporous films. The films are used as
ultra low-n support for the realization of the polymeric or inorganic waveguides.
The use of such low-n supports could be decisive step towards optical integrated

circuits on a highly variable material basis because the index contrast between the
guiding and the support layer is then easy to achieve. The refractive-index contrast is
very important for dielectric multilayer structures, optical resonators, and photonic
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crystals. In integrated optics, low-n materials would be very helpful to enable more
waveguiding structures.
Therehavebeenanumberof recentstudieson theapplicationofporousxerogel [2] or

mesoporous silica films [3] as low-k materials. Optically applicable xerogel films for
waveguide cladding layerswerepreparedusing anethyleneglycol co-solvent procedure
and the core layer was prepared using plasma-enhanced chemical vapor-deposited
silicon dioxide or a siloxane epoxy polymer. These polymer-xerogel waveguides had a
maximum refractive index contrast of 0.34, whereas the PECVD oxide-xerogel planar
waveguideswerefabricatedwithamaximumrefractive indexcontrastofonly0.28.Alow
dielectric constant of 1.8 to 2.5 was measured for the spin-coated mesoporous silica
films [3], but no realization of the waveguides with this system was reported so far.

7.2
Mesoporous Films

7.2.1
Fabrication of Mesoporous Silica Films

7.2.1.1 General Remarks
Ordered mesoporous materials are made with the use of surfactants forming
micelles and acting as structure-directing agent (SDA). This kind of templating
approach was used in the MCM-41 synthesis for the first time [4]. The ordered
mesophase depends on the concentrations of surfactant, the inorganic species, and
the processing conditions. Themechanism for themolecular interaction between an
inorganicmaterial and a surfactant was first discussed by Beck et al. [5] in detail. They
proposed two alternative pathways, in which either the liquid-crystal phase is intact
before the silica species are added, or the addition of the silica results in the ordering
of the silica-encased surfactantmicelles. In this case, silica species coat the surface of
surfactant micelles, which then self-order to form the phase observed in the final
product. The final porous structure is obtained after removal of the organic template
upon thermal treatment called calcination.
Thin films of such mesoporous materials can be realized in a dip-coating

process [6]. The solution deposited on the supports contains metal-alkoxide as a
precursor and surfactant as a SDA.Thefilm thickness is controlled by the evaporation
rate of the solvent, the drawing speed, and by the viscosity of the coating solution. The
increase in surfactant concentration upon solvent evaporation causes the assembly
process of the micelles into a close-packed phase.
A special class of mesoporous materials named SBA-15 has been synthesized by

use of amphiphilic triblock-copolymers [7]. The SBA-15 materials are formed in
acidic media and show mostly two-dimensional hexagonal (space group p6mm)
mesophases consisting of a silica channel frameworkfilledwith the block-copolymer.
Calcination gives porous silica structures with relatively large lattice constants of
7.5 nm. These materials are highly versatile and can also be used in low-k and low-n
applications.
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7.2.1.2 Preparation Details
A solution containing the triblock copolymer poly(ethylene oxide)-block-poly(propyl-
ene oxide)-block-poly(ethylene oxide) (P123, EO20PO70EO20), ethanol, water, HCl,
and Rhodamine 6G was mixed with tetrabutyl orthosilicate (TBOS) as a silica
precursor resulting in the final molar composition: TBOS:P123:H2O:HCl:EtOH:
Rh6G¼1:0.018:2.83:0.015:5.58:0.0009. A pre-reaction of this solution has been
carried out for 2.5 h at 70 �C. The solution was deposited onto carefully cleaned
substrates (BK7 glass slides, Si-wafer, mica slides, or epoxy resin blocks) by dip-
coating. The porosity of the films was obtained by calcination. The thickness of the
resulting transparent films was tuned in the range 300–1100 nm.
According to their visual appearance, two types of films have been observed and

denoted as A-type and B-type [8]. A-type films are perfectly clear, whereas B-type films
appear slightly milky. Observation with an optical microscope revealed homo-
geneously distributed, bubble-like defects between 1 mm and 100 mm in size for
B-type films, whereas the A-type films are fully non-structured. These two types of
films were found in dependence on the processing conditions. A-type films turned
out to be well suited as low-n supports andwere used in Ref. [9], whereas B-type films
revealed some academically interesting features.
The most important processing parameter which determines the film type is

humidity of the surrounding air. In order to obtain perfect A-type films it is crucial
to keep the relative humidity (RH) on a low level during the synthesis. For this, an air
conditioner systemwas used. During the film deposition the relative humidity in the
chamberfluctuatedabout�4%,duetoopeningofthechamberforthesampleexchange.
The realized film thickness and the relative humidity during the film deposition

form a synthesis field depicted in Figure 7.1. Single points in the diagram represent
the samples synthesized with the normal dip-coating. The lines in the diagram

Figure 7.1 (a) Synthesis field. The green region shows mainly
the A-type films and the blue region the B-type films. In the
red region the films start to peel off. Schemes for (b) normal
dip coating and (c) coating with tilted movement.
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represent samples with thickness gradient deposited by a tilting movement with the
substrate. This process results in the whole range of the thicknesses at a certain value
of the relative humidity.
One can distinguish three regions in the diagram. Clear A-type films (black circles)

appear predominantly in the region of relative humidities below about 41% RH and
thicknesses below about 1000 nm. B-type films appear predominantly in the region
above about 44%RHandwith thicknesses below about 970 nm. Filmswith ablations
for bothfilm types (red stars) are to be foundmainly in the region above 1100 nm (red
region). In white regions no one of these regions could be precisely assigned. The
region between A-type and B-type of 4% RH width, where both film types occur, can
be explained with the typical fluctuations of the relative humidity (�4%) during the
film synthesis.

7.2.2
Characterization and Structure Determination of MSFs

To determine the structures, small angle X-ray scattering (SAXS), transmission
electronmicroscopy (TEM), and atomic forcemicroscopy (AFM) investigations were
performed.
As-synthesized A-type films showed a circle-like X-ray diffraction pattern with a

radius of 2Y¼ 1.08� (8.2 nm) and an isotropic intensity distribution (Figure 7.2a). In
brackets we give the deduced lattice constant as a result of application of the Bragg
equation. After calcination an ellipse with the half axes of 1.08� (8.2 nm) and 1.95�

(4.5 nm)was found (Figure 7.2b). This diffraction pattern can be attributed to a partial
ordering of uniform channels with well-defined pore sizes. The structure shrinks in
the direction normal to the surface upon calcination. This effect is visible in the
longer half-axis in the diffraction pattern and amounts to 55% [8].
The TEM analysis was performed on cross sections of the samples. The resulting

micrograph (Figure 7.2c) showsfluctuating pattern typical for the so-calledworm-like

Figure 7.2 Structure determination of A-type
films. (a) The SAXS diffraction pattern of as-
synthesized and (b) calcined films. The right
sides of diffraction patterns are not accessible by
the scattered waves. The sample was positioned

perpendicular to the image plane in vertical
direction. The primary beam position is marked
by a cross. (c) TEM micrograph of the cross-
section of a calcined A-type film. Scale bar:
50 nm, Inset: FFT. [8]
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structure [10]. It can be imagined as nearly dense-packed bundles of longflexible rods
(Figure 7.5a). This structure can be considered as a non-equilibrium state of a dense-
packed channel array. The equilibrium state would be the hexagonal phase. Onemay
speculate if this partially disordered structure is useful for the application as low-n
film. Many authors have reported similar films but there are no reliable facts that the
synthesizedfilms are really thick enough, i.e. thicker than 1 mm, and defect-free. For a
number of syntheses it must be recognized that there are unsolved difficulties if the
films becomes thicker than 400 nm. This is, however, too thin for an optical
application because the evanescent fields penetrate deeper into the film. Much
synthesis work was focused on perfect and, therefore, especially nice structures.
However, these nice and highly ordered structures are not so well suited for surviving
the stress during the film synthesis because the structure has no freedom to change
without destruction. Apartially disordered structure allows amoreflexible reaction to
the stress during drying, condensation, and template removal. A further advantage of
partially disordered films is their isotropy. An advantage of the specific channel-type
porosity is the good mechanical integrity [8].
As-synthesized B-type films exhibited very pronounced equidistant peaks in the

SAXS analysis. The peaks represent X-ray beams diffracted perpendicular to the film
plane (Figure 7.3a). This indicates a layered structure with layers ordered parallel to
the film surface with a d-spacing of 8 nm. In the diffraction pattern of calcined B-type
films (Figure 7.3b), one sharp diffraction spot at 2Y¼ 3.1� was still visible. This
means that the layer structure remained stable during calcination. The layer spacing
decreased to 3 nm, which means shrinkage to 38%.
In the TEM images of the B-type films, the layers can be made visible (Figure 7.3c

and d). Tilting the sample during the investigation did not reveal any additional
structure. A calcination-stable layer structure is a surprise, because one expects a
collapse of the interlayer spacing after template removal. Such a structure can only be
stable if there is a sustaining system among the layers. Although B-type films are not
suitable as low-n substrates, their internal layer structure is very interesting in itself.

Figure 7.3 Structure determination of B-type films. (a) The
SAXS diffraction pattern of as-synthesized and (b) calcined
films. Sharp diffraction spots out of film plane indicate layers
ordered parallel to the substrate, which remain stable upon
calcination. The layers are clearly resolved in the TEM
micrographs of the cross-sections of (c) as-synthesized
and (d) calcined B-type films. Insets: FFT [8].
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Examination of the defects in the B-type films with AFM revealed terraces
(Figure 7.4a). They are visible in about 70% of all investigated defects performing
hard tappingmode. These nano-terraces have a step height of 3 nm,which is in a very
good agreement with the TEM and SAXS results.
In-between the defects and on each terrace step the surface is very flat (RMS

<0.5 nm). However, the AFM phase image reveals some pronounced lateral varia-
tions. Figure 7.4a shows a dark network which can be assigned to higher energy
dissipation. This network might be a picture of the sustainers that support the
separated layers. In [8] we describe amodel resulting in higher dissipation on the top
of the sustainers compared with the dissipation on the bridges between them.
Thereforewe interpret Figure 7.2b as a picture of the sustaining network between the
simple silica layers.
Based on this interpretation a layered structure with novel kind of sustainers is

drafted for the B-type films in Figure 7.5b. Flat voids of a typical size of about
20 · 20 · 2 nm3 occur among the layers. The special structure of the B-type films is
likely responsible for some of their peculiarities. The typical macroscopic defects of
these films could be ascribed to shrinkage problems during film condensation. On a

Figure 7.5 Structure models of mesoporous silica films:
(a) worm-like structure for the A-type films and (b) layer
structure with sustainers for B-type films.

Figure 7.4 (a) AFM height image of a defect of a calcined B-type
film. It reveals nano-terraces with a spacing of 3 nm. The image
size is 20 · 20 mm2. (b) AFM phase image of the surface with
higher lateral resolution. The phase angle variations are in the 20�

range. The distance between the dark regions is approximately
20 nm.
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solid support, a parallel lamella has no possibility to relax when it shrinks, except the
formation of a defect. Furthermore, we observed in the TEMmicrographs also single
lamellas produced by the stress during mi-crotoming. This fact points to a reduced
integrity between the lamellas, which is consistent with the relatively large typical
distance between sustainers of 20 nm.

7.2.3
Optical Properties of MSFs

The refractive index of calcined A-type films was determined from the interferomet-
ric measurements using a two-axes goniometer (Figure 7.6a). An example of the
measured transmission spectra a special different incidence angle is shown in
Figure 7.6b. The interference at the thin layer results in different reflection intensities
for different wavelengths of light (Fabry–P�erot oscillations). The interference curves
have a cos-like shape with intensity variations between 2 and 10%. The positions of
the interference extrema on the wavenumber scale have a linear dependence on the

Figure 7.6 (a) Experimental setup of the
goniometer for the simultaneous measurement
of film thickness and refractive index. The
incidence angle awas varied in the range 0�–60�.
(b) An example of the measured transmission
spectra for the incidence angle a of 15� with
s-polarized light. (c) Position of the extremum
versus the number of the extremum for a¼ 15�

for s-polarized light. This graph allows the
determination of the thickness dependent part
Dd of the optical path difference. As indicated in
the inset, different rays contribute to the
transmitted signal. They have an optical path
difference D. (d) Determination of the refractive
index n and film thickness d from the
dependence Dd on a.[13]
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interference order. Therefore, this dependence was fitted with a straight line for each
incidence angle (Figure 7.6c). Also the maximal and minimal possible values for the
extremawere considered for the error determination. The slope of this linemdelivers
the thickness-dependent part of the optical path difference Dd¼ (2m)�1. It differs
from the total path differenceD by a reflex pronounced on phase jump:D¼Ddþl/2.
Figure 7.6d shows the dependence of Dd on the incidence angle for s-polarized light.
Mathematically, it is described by [11]:

Dd ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�sin2a

p
: ð7:1Þ

Therefore, the axes have been chosen appropriately to allow a linear fit. This fit
enables simultaneous determination of the film thickness d and the refractive
index n. A refractive index of n¼ 1.18� 0.01 was determined in the visible range
of 350–800 nm. This is one of the lowestmeasured n for a transparentmaterial suited
as waveguide support. The air filling fraction, i.e. porosity, of thesemesoporous films
was calculated using effective medium approximation from Bruggemann [12] to
(59� 2)%.
Angle-dependent interferometric measurements enable reliable information on

the accuracy of the n-determination and deliver an n-value averaged over the whole
film thickness. The difference in the refractive index for parallel polarized light and
perpendicular polarized is unfortunately within the experimental error (0.01), which
is, therefore, the upper limit for the birefringence of A-type films.
Stability of the refractive index upon humidity changes and ageing is important for

the application of calcined A-type films as low-n substrates. For this a sample was first
stored in the desiccator at low humidity of about 30% for 107 days and the refractive
index was measured with the previously described method to be n¼ 1.183� 0.003.
Then, the samplewas stored in the desiccator at 57%RH for 17 days, further 6 days at
97% RH and additional 18 days at 97% RH. The resulting refractive indexes were
n¼ 1.181� 0.006, n¼ 1.190� 0.017 and n¼ 1.185� 0.012, respectively. It seems
that exposition of calcinedmesoporousfilms to higher humidity, aswell as the ageing
in the period of few months do not influence the refractive index significantly. The
measured deviations are within the error bars.
In waveguides, a considerable part of the radiation power is guided in the

evanescent field penetrating into low-n support. Therefore, it is very important that
the damping due to scattering in the support is low. One possibility to estimate
these losses is to measure the diffuse reflectance of these films. Diffuse reflectance
spectra were measured using a UV–vis spectrometer with a praying mantis
attachment. By this tool the specular reflection was eliminated and only the
diffuse reflection was collected. B-type films show a high wavelength-dependent
scattering up to S¼ 0.2 (20%) as expected from the visual impression. Contrary to
this result the optical scattering S of the calcined A-type films was very low,
S¼ 0.0026 (0.26%). However, this value was close to the detection limit of our set-
up and may be an overestimation. Having this restriction in mind, we take
the value as the basis for the estimation of the scattering coefficient asc¼
�(1/l) log10 (1�S)¼ 8.4 cm�1 (in analogy to the absorption coefficient [14]).
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Furthermore, one can take this value for the estimation of the waveguide damping
with such substrates. Assuming that 10% of the modes are guided in the substrate
one obtains aWG¼ 0.84 cm�1. This allows for sure mm-long applications but also
guiding over centimeters can be possible which is agreement with our former
waveguide experiments [9]. The possible mistake in this estimation (systematic
overestimation) would enable a wider application range.

7.2.4
Synthesis Mechanism

The fabrication procedure used in this work is a special version of the SBA-15
synthesis class [7] for mesoporous materials. In several works [15,16] the synthesis
mechanismwas discussedwith themain focus on the role of the SDAand the surface
charge matching possibilities. Although the deeper understanding of the chemical
mechanism was not the aim of this work, it gave some new insights in respect to the
mechanism.
Experimentally, two surprising facts have been recognized. First, the structure

types of the products are more variable than expected. Especially the lamellar
structure of the B-type films has not been ob-served before and cannot be considered
as a disturbed variant of a �SBA-15main structure�. Therefore, the abbreviation used
for labelingmesopores (here SBA-15) should better be used for the description of the
main features of the synthesis and not to assign a structure. A similar non-
uniqueness of the structure has been found for the SBA-3 type mesopore synthesis
as well [17]. Second, the obtained structure sensitively depends on processing
conditions. The same chemical composition of the coating solution leads to different
structure types. It seems that the SDA is not able to drive the condensation process
efficiently into a unique energetic minimum state.
These two findings are not in a good agreement with the general concept of the

SDAs. This concept assumes that the structure-directing agents can control the pore
structure of the synthesized material. In our case they form micelles which should
determine the film structure. Normally, this concept gives a good guideline for
finding new synthesis schemes. However in detail, it cannot be completely right. It
can especially not explain strong sensitivities towards processing conditions.
The key for understanding of the synthesis seems to us the fact that the synthesis

process goes through a series of non-equilibrium states. The synthesis tries to reach
an energetic minimum state determined by the SDA, but because of the simulta-
neous silica condensation, it is not able to reach this state. Therefore, the synthesis
results in a productwhich is frozen-in somewhere on an assumed reaction path to the
ideal structure. The known dependence of the silica condensation on the processing
conditions is transferred to the formation of the pore structure. Although our
structure-directing agent drives the structure towards one equilibrium state, slightly
varying processing conditions lead to the formation of different film types.
The exact description of such processes is difficult. A schematic picture can be

given based on the equilibrium phase diagrams. They describe which phase the
micelles (separated spherical micelles, hex-agonal arrangements of rod-like micelles
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etc.) form for certain compositions of the solution. However, they neglect that a
certain time is needed to reach these phases. Nevertheless, a reaction path in such a
diagram can provide a rough explanation for the observed phenomena. The SBA-15-
relevant micelle structures formed by the ternary copolymer-water-oil system were
described in phase diagrams, e.g. in Ref. [18]. The chemical recipe for the dip-coating
solution determines a starting point in this diagram and the chemical composition of
the dried film gives an end point. Inbetween these two points there is the reaction
path determined by the evaporation of the solvents. However, the structural forecast
at the end point is not relevant because of the freezing-in of the structural trans-
formations somewhere on the reac-tion path. We discussed the possible phenomena
of our special system in a former paper [8] and refer to it for the details.
Although the synthesis mechanism is very complex because of the non-equilibri-

um phenomena, the practical synthesis turned out to be reproducible and controlla-
ble. It enables a wider range of products than normal near-equilibrium syntheses, it
allows fine-tuning, but it requires careful control of the processing conditions.

7.3
MSFs as Substrates for Waveguide Structures

7.3.1
Polymer Waveguides

Because of the very low refractive index, low optical scattering, sufficient thickness of
the films, and the very smooth surface, A-type films are very well suited as ultra-low
refractive index substrates, especially for 2Dphotonic crystal waveguides (PhCWGs).
An example of such system is shown in Figure 7.7 representing the result of a
commonproject of the TUHamburg-Harburg, IPHT Jena andMPIM€ulheim.A-type
films with a thickness of 1 mm were deposited onto oxidized silicon wafers for the
fabrication of this waveguide structure. A slab waveguide was produced by spin
coating a polymer poly(methyl methacrylat/disperse red-1) (P(MMA-DR1)) with
n¼ 1.54 onto this substrate. Then 2D PhC structures were fabricated by a combina-
tion of different etching processes (EBL, RIE, dry etching) [9,19]. They formed a
resonator consisting of a line defect (LD) in a 2D PhC. In the shown example only the
core layer was etched and the air holes do not penetrate the substrate. The resonator
consists of two finite square arrays of holes separated by a non-structured region. A
150 nm hole radius was chosen resulting in an optical stop band around the vacuum
wavelength of 1.3mm. The lattice defect is formed by omitting 4 lines of holes
perpendicular to the wave propagation direction. The exact design of the structure
was optimized by simulations using a 3D finite integration technique as described
in [9]. Two examples of the calculated electrical field distributions for finite 2D PhC
are depicted in Figure 7.8a. The light is strongly confined inside the PhCwaveguide
core when the ultra-low index substrate is used.
The transmission spectra (Figure 7.8b) of this resonator were measured for

different polarizations by the prism coupling method. The resonator structure on
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the mesoporous substrate showed a high transmission in the resonance peak
of about 60% for TE and 80% for the TM polarization. These values were expected
from the simulations and exceed values determined on similar structures on
conventional Teflon supports. A further interesting property of this transmission
spectrum are the seemingly absent radiation losses at the air band side of the band
gap. The transmission has the same height at this band edge as at the dielectric edge.
In contrast, the PhCwaveguides on Teflon showed strong losses at the air band edge
since these states are above the light cone [9].

Figure 7.8 Wave propagation in polymer waveguides [9].
(a) Simulations of the electric field distribution inside a finite
2D PhC line defect resonator for two different substrates:
Teflon with n¼ 1.3 and MSF with n¼ 1.14. (b) Experimental
transmission spectra of a P(MMA/DR-1)/MSF line defect
resonator for TE-like and TM-like modes.

Figure 7.7 SEM micrograph of the realized 2D PhC LD
resonator made of P(MMA/DR-1) on an A-type mesoporous
silica film as a support [9]. A schematic drawing shows
the field distribution in a guided mode (arrow). The
evanescent field of the guided mode penetrates into the
support up to some 100 nm.
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Beside the simulations, also simpler considerations can be used to understand the
measured result. The decay of the guided modes into the support is schematically
depicted in the Figure 7.7. The depth of decay depends on the mode type, waveguide
thickness, and significantly on the refractive index of the support. This effect can be
estimated by a lower limit of the field decay. The fields of every guided mode of a
waveguide decay slower into the support then expf�z 4pðn20�n2supÞ1=2=l0g. Here, z is
the distance from the waveguide-support interface, n0 the effective refractive index of
the waveguide, nsup the refractive index of the support, and l0 the wavelength of the
used light [20]. This estimation delivers the result that a 1 mm thick mesoporous film
can be sufficient for the field confinement, but not a Teflon film with n¼ 1.3,
since there is still a remarkable field intensity at 1mm which can be absorbed or
irradiated.

7.3.2
Ta2O5 Waveguides and 2D PhC Structures

Waveguides made of inorganic materials especially of oxides are regarded to have a
wider application range than polymeric ones. They are transparent in larger parts of
the spectrum, can resist higher temperatures, and – most importantly – can have
larger refractive indices. However, their structuring in the nm-range seems to be
generally more difficult. In respect to our low-n supports, it is not clear if such layers
are compatible with the support. The inorganic layers will likely create a large stress
on the support during their deposition as well as during their structuring. Therefore,
we studied some model examples and show the results obtained with Ta2O5 top-
layers here.
Films of Ta2O5 have been sputtered on the MSFs (mso Jena Mikroschichtoptic

GmbH). The structuring of these films was performed in a similar manner as for
polymers, but with changed processing parameters. It required tempering at 180 �C
after the photoresist deposition and heating during structuring (RIE) to 180 �C
together with HF heating from the top. Surface temperatures of 200 �C were likely
reached in this step.
The deposition of the original Ta2O5 layers workedwithout visible problems.Here,

it might have been useful that a surface barrier [21] can protect the porous films
against penetration of Ta2O5 precursors and that the elasticity of theMSF can help to
distribute the stress in the forming Ta2O5 layer. Difficulties occurred in some of the
structuring steps resulting in delamination of the layer system. We ascribe these
difficulties to water with was adsorbed during sample handling. It was possible to
avoid these effects and to demonstrate the fabrication of several structures suitable
for stripe waveguides, PhC waveguides, PhC WG bends, and for PhC WG splitters.
A planar stripe waveguide is shown in Figure 7.9a. Here, the mesoporous support

shows an interesting under-etching effect. Such an effect is not negative for the
desired function aswaveguide and is likely caused by the very low density of theMSF.
Figure 7.9b shows a PhCwaveguide.Here, the etchingwas stopped at theMSF/Ta2O5

interface. Alternatively, the etching can be continued deeply into the support as
shown in Figure 7.9c. The under-etching effect leads then to very thin ribs under the
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Ta2O5. Interestingly, thewhole layer arrangement kept stable. It is, up to now, unclear
if the remaining rib consists of unchangedmesoporousmaterial or if it is subjected to
a densification process during the ion treatment. Such modifications have been
observed in the interaction with other ions [22].
Theopticalcharacterizationof thefabricatedstructures isstill inprogress.However,

they all fulfilled theirprinciple function inasimilarmanner as reference structureson
glass. There was not observed any additional damping for the fabricated structures
originating from the scattering in the mesoporous support. The detailed parameters
(bend damping, waveguide damping, and coupling efficiencies) differ of course from
the reference structures since the MSF has another refractive index.
These results with the Ta2O5 system show that a highly accurate structuring of

inorganic top-layers on MSFs is possible. This means that the MSFs can resist the
larger processing stress in comparison to the requirements for polymer waveguides.
This enables future prospects to use the MSF also in high contrast PhC systems.
Especially the optical up-down symmetry can be useful in such systems.

7.3.3
PZT Films

The incorporation of active materials into waveguides and PhCs is a field of strong
interest. The materials should be switchable, nonlinear-optical, or amplifying. They
can be incorporated as guests or as constituent of the PhC itself. For example, an
electro-optic PhCwould be very interesting. However, no material with high electro-
optic coefficients and sufficient possibilities for structuring in PhCs has been
identified up to now. Films of lead-zirconate-titanate (PZT) could be one promising
candidate for that. Ferroelectric inorganic films, especially Pb(ZrxTi1�x)O3 (PZT) are
known to have large optical nonlinearities and can be prepared by different methods.
The sol–gel approach can be very useful, because it is offering a number of tuning
possibilities. In addition, this approach seems to be compatible with theMSFsupport
fabrication. Therefore, this approach was used and investigated concerning the
fabrication of PZT/MSF layer structures.
The coating solution for the lead zirconate titanate (PZT) films was prepared as

described in Ref. [23]. The PZT precursor solution was deposited onto diverse

Figure 7.9 Examples for WG structures on MSF supports.
(a) Strip waveguide, (b) PhC WG on a homogeneous support,
(c) PhC WG on a structured support.
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substrates in the same manner as mesoporous silica films. The temperature in the
chamber was 21–23 �C and the humidity varied in the range of 37–50% RH without
noticible influence on the optical appearance of the films in normal and microscopi-
cal observation.
The calcined films were transparent and clear (Figure 7.10). However, closer

observation with optical and electron microscopes reveals a more or less dense crack
network on normal supports (Figure 7.11a). The cracks develop as a reaction to the
stress in the film on firing as it has been discussed inmany publications, e.g. [24]. To
avoid this polyvinylpyrrolidone (PVP) was added to the coating solution as a stress-
relaxing agent. Although the crack formationwas reducedby addition ofPVP, it could
not be fully eliminated. We assign this fact to the different thermal expansion
coefficients of PZT and the support. Therefore, the final tuning of the PZT film
properties has to be adjusted to the support system.
PZT films were deposited on the mesoporous silica films in the same manner.

They were also transparent and mostly clear. The interference colors, typical for thin
films, are visible as shown in the insets in Figure 7.10. The unique color indicates

Figure 7.10 Measured and calculated reflection spectra of
a PZT film on Si-wafer (a) and of PZT on a mesoporous
silica film (b) . Insets are photographs of PZT on Si-wafer and
on MSF, respectively. The photographs of the calcined
samples were made using a digital camera with diffuse
sample illumination.

Figure 7.11 Microscope pictures of a PZT film deposited
on (a) silicon wafer and (b) mesoporous silica film. The photos
were made using an eye-piece camera (MA88, CA Scientific Co)
with 640· 480 pixels.
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good homogeneity of the films. Only the borders, especially the outflow edge, show
different colors, due to changes in the film thickness.
Observation with an optical microscope showed that the PZT films deposited on

the MSF have much less cracks, mostly only near to the edges (Figure 7.11b).
However, the films exhibit slightly blear regions, not visible in the photography and
microscope pictures. It is possible that themesoporousfilm changed or even crashed
during thePZT fabrication. Thicknessmeasurements (Figure 7.10) indicated that the
thickness d of the MSF is significantly lower after the deposition of PZT. Such a
compression of the film might be caused by infiltration of the PZT precursor.
Possibilities to avoid such effects could be the change of surface properties of the
MSF or the introduction of surface barriers [21].
The suppression of the regular cracks by deposition onMSF supports is, however,

an encouraging result on the way to high-quality PZT films. The flexibility of the
porous structure lowers obviously the stress induced in the PZT by the temperature
treatment.

7.4
Conclusions

Optically perfectmesoporous films have been synthesized reproducibly. They exhibit
an extremely low refractive index, sufficient mechanical and chemical stability, low
optical scattering and a thickness up to about 1 mm.
The humidity during film fabrication turned out to be a decisive processing

parameter for the fabrication of optically perfect films. In the range between 20 and
40% relative humidity the desired A-type films have been synthesized. The control of
the film thickness which is important for many applications is possible via the
drawing speed.
Partially ordered mesostructures of worm-like type turned out to have most useful

properties (A-typefilms). They arewell suited as low-n supports forwaveguides. Low-n
supports have three important advantages: one can avoid working with leaky modes,
the penetration depth into the substrate is lower, and the system is nearly symmetric
(or fully symmetric with a low-n cover layer). This leads to a decoupling of TE and TM
modes, which is also very useful for an easier design of functional waveguide
structures.
The mesoporous films resist many fabrication procedures for waveguide over-

layers. In some cases they may be even advantageous for obtaining high-quality
homogeneous overlayers.
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8
Linear and Nonlinear Effects of Light Propagation in
Low-index Photonic Crystal Slabs
R. Iliew, C. Etrich, M. Augustin, E.-B. Kley, S. Nolte, A. T€unnermann, and F. Lederer

8.1
Introduction

The last years have seen a rapid development of the field of photonic crystals and
components based thereon. The majority of such components was based on slab
geometries which are much easier to realise due to their ease in fabrication.
Besides semiconductors [1–11], also materials with a significantly lower refractive
index [12–19] were utilised to fabricate such geometries. However, experimental
investigations presented in [12–14] were restricted to reflection and transmission
spectroscopy in 2D fully periodic photonic crystals.
In the following we investigate amorphous materials with a refractive index in the

range of 1.9–2.2 on a silica substrate with an index of 1.43, or free-standing
membranes. A 2D photonic crystal (PhC) slab made of such materials can exhibit
still an in-plane photonic bandgap for TE-polarised light with a gap-to-midgap ratio of
14–19%.However, due to the smaller index contrasts the light confinement is weaker
than in semiconductor PhCs. Therefore, one important goal of our investigationswas
to determine the limits of these low-index devices and to compare with well-known
results from high-index semiconductor PhCs, where different functional elements
with 2D (e.g. waveguides) and 3D (e.g. cavities) light confinement where realised
experimentally.
The advantages of low-index materials are evident. First, the wavelength range of

transparency extends to the visible. Second, the resulting larger structure sizes allow
for easier coupling to conventional guiding structures, as fibres and waveguides.
Also, the lower index reduces Fresnel losses at air interfaces. Compared to semicon-
ductor heterostructures [3–6] the much higher vertical index contrast reduces losses
due to sidewall roughness [20]. The higher vertical index contrast also raises the light
cone, allowing for low-loss operation in the first bands. Hence, regarding the
vertical confinement, this system is between semiconductor membranes [10,11]
and semiconductor-on-insulator (SOI) structures on the one side and semiconductor
heterostructures on the other. Regarding the in-plane index contrast, it is between
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semiconductor systems and polymer systems with an even lower refractive index of
up to 1.6 [21,22]. In these polymer slabs only devices with one-dimensional light
confinement were demonstrated experimentally.
This work highlights results obtained in the course of different projects within the

framework of the �Photonic crystals� programme of the Deutsche Forschungsge-
meinschaft. Themain emphasis of these projects was on two-dimensional low-index
photonic crystals in slab geometries. In the followingwe summarise ourmain results
and discuss them in the context of the current state-of-the-art. Formore details of the
several investigations we refer the interested reader to the original publications cited
in the respective context.
The article is organised as follows. In the next section we review briefly the

fabrication of substrate-based low-index PhCs. Then theoretical and experimental
results of linear effects of light propagation in slab geometries are presented. In
Section 8.4 we discuss theoretical results for nonlinear PhCs, before we summarise
our work in Section 8.5.

8.2
Fabrication of Photonic Crystal Slabs

The experimental investigations presented here were carried out using samples with
a waveguiding layer of niobium pentoxide Nb2O5 with a refractive index n¼ 2.1 at a
wavelength of 1.55mmor of silicon nitride SiNxwith n¼ 1.91 at 1.55mmand n¼ 1.95
at 800 nm. For the first experiments with PhCs of Nb2O5 a technology for etching of
this very resistant material, employing a multilayer resist, was developed [15–19].
Hereby, after electron beam exposure of the upper resist layer, the photonic crystal
pattern is transferred into the chromium layer below. In order to obtain the necessary
etching depth, a second etchingmask needs to be created. However, due to profound
technological benefits (the chemical composition makes it compatible to existing
microelectronic processing methods at high etching ratios, resulting in high-aspect
ratios, steep sidewalls and very regular structures, only one etchingmask is required)
the performance of the characterised components realised later in SiNx turned out to
be significantly better. Hence, although the considerably lower refractive index
reduces slightly the achievable bandwidth of the photonic bandgap, a major part
of PhC structures investigated here is realised in thismaterial. The SiNxwaveguiding
layer and a 2000 nm SiO2 buffer layer are deposited in an ICP-eCVD (inductive
coupledplasma enhanced chemical vapour deposition) process on an oxidised silicon
substrate. When higher vertical symmetry was required, an additional cladding layer
of 300 nm SiO2 was deposited on top.
The PhC structures designed for operation at infraredwavelengthswere fabricated

bymeans of electron beam lithography (Leica ZBA 23H) using a rectangular-shaped
electron beam. Structures for experiments in the visible (see subsection 8.3.3.1) were
defined with an electron beam writer (Leica LION LV1) with a spot exposure system
(Figure 8.1). Due to its higher resolution the fabrication of these much smaller
structures is feasible. For bothmaterials (Nb2O5 andSiNx) the slab systemwas etched
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in multiple ICP-etching processes in order to account for the different materials
(cladding layer, waveguiding layer, substrate) being etched. Finally optical facets were
obtained by cleaving and breaking the samples.
Amajor part of the theoretical investigations is concerned with parametric second

order nonlinear processes in photonic-crystal microcavities. The theoretical inves-
tigations are based on lithiumniobate (LiNbO3),which is available aswafers in optical
quality and has a large nonlinear diagonal coefficient. By means of a focused ion
beam [23] two-dimensional photonic crystal structures could be realised in this
material. A very promising second approach by means of ion beam amorphisation
and HF-etching [24] was proposed recently.

8.3
Linear Properties of Photonic Crystal Slabs

Up until now, the majority of theoretical and experimental investigations of PhCs
deals still with linearmaterials. Historically, the photonic bandgap was the first effect
being explored. For instance for obtaining light localisation [25] or for modifying the
radiation dynamics of emitters [26]. Apart from the bandgap, another aspect of the
investigation of periodically modulated dielectrics were the modified properties of
light propagation in these media [27–29]. In order to obtain effects as negative
refraction or anomalous diffraction amuch smaller indexmodulation than necessary
for a photonic bandgap is sufficient.
We utilise the bandgap to realise defect waveguides of different widths and to

obtain a microcavity with a high quality factor. The strong light confinement in the
waveguides, in conjunction with the periodicity in propagation direction, was shown
to give an unusual dispersion [7,30] or to lead to strong suppression of the
transmissivity in a certain wavelength range [31].
Here we focus on three different aspects of light control provided by linear PhCs

and present the results obtained for low-index PhC slabs. In the first subsection we
investigate line defect waveguides realised in low-index PhC slabs regarding their

Figure 8.1 Photonic crystals in SiNx/SiO2. After optimisation of
the processing parameters very regular structures (a) with deeply
etched holes are achieved (b).
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transmission and dispersion behaviour. In the following subsection we present
detailed numerical investigations of point-like defects in 2D PhCmembranes, where
the 2D photonic bandgap leads to light localisation, and hence, a photonic micro-
cavity is obtained. We discuss the quality factors obtainable in these low-index
materials and compare them to results for high-index membranes. In the third
subsection we discuss effects of anomalous light propagation in the low-index SiNx

PhC slab system. We compare the performance of guidance without defects and of
anomalous refraction with results for high-index PhC systems.
Bandstructures presented in the following are calculated by preconditioned

conjugate-gradient minimisation of the block Rayleigh quotient in a plane wave
basis, using a freely available software package [32].

8.3.1
Transmission and High Dispersion of Line-Defect Waveguides

One way of introducing line defect waveguides in a two-dimensional PhC slab is
the omission of one or more rows of holes. In a hexagonal lattice the resulting
waveguide is referred to as Wn, where n denotes the number of consecutive rows
omitted in GK-direction (see Figure 8.2). The resulting waveguide modes in high-
index (silicon) PhC membranes were shown to exhibit a very large dispersion [7,30].
Signal delays of 1 ns were proposed for a 670 mm long device [33] and a reduction
of the velocity of light by a factor of 1000 was experimentally demonstrated in a
W3 waveguide in a silicon-on-insulator (SOI) PhC slab [34]. The performance of
these devices relies crucially on the waveguide modes lying outside the light cone,
because otherwise the associated radiation losses would be detrimental to the
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Figure 8.2 (a) Schematic drawing and (b) bandstructure of a W1
waveguide in a photonic crystal slab with a hexagonal lattice
(diameter of holes 374 nm, lattice pitch 595 nm). The grey regions
indicate frequencies, where light can propagate as 2D-Bloch
waves inside the photonic crystal without defect and are obtained
by projecting the respective 2D bandstructure in the waveguide
direction.
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transmissivity in the slow-light regime. In high-index membranes and SOI slabs a
relatively large fraction of the mode bands in the photonic bandgap is outside of the
light cone.
In contrast, normally this cannot be achieved in our substrate-based low-index

materials systems, due to an unfavourable location of the light cone. The simplest
waveguide structure is a W1 (see Figure 8.2(a)). First a photonic crystal structure
comprising a hexagonal lattice of air holeswith a diameter of 374 nm, a lattice pitch of
595 nm (Nb2O5-system) and a length of 58 mmalong theGK-direction was realised in
a slab system comprising a 500 nm thickNb2O5 guiding and a 300 nm silica cladding
layer on a silica substrate. From the bandstructure (see Figure 8.2(b)) it is clear, that
the waveguide mode in the photonic bandgap (frequency region without Bloch
modes for any vector k, here 0.6 mm�1 � l�1 � 0.71 mm�1) is always inside the light
cone, i.e. couples to radiation, mainly to the substrate. In the following we will
investigate experimentally and theoretically the performance of this mode and
compare to modes outside the light cone.
Ridge waveguides are used to couple light into the photonic crystal waveguide

(cf. Figure 8.3(a)). The corresponding calculated 2D-bandstructure (using an effective
index) for TE-like polarisation is displayed in Figure 8.2(b). Here only the funda-
mental (odd)modes of the defectwaveguide are considered, because they are easier to
excite and are expected to have lower losses than the evenmodes. For the oddmodes
gap-guiding (flat part of the band inside the bandgap) and index-guiding (steeper part
of the band inside the bandgap andmodes below the light line, aswell asmodes below
all 2DBlochmodes,l–1< 0.5mm�1) is possible. At the edge of thefirst Brillouin zone
the band corresponding to the gap-guidedmodes becomes very flat (cf. Figure 8.2(b),
black solid curve), indicating that the group velocity approaches zero while the group
index,

ng ¼ c
dk
dw

¼ � l2

2p
dk
dl

;
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Figure 8.3 (a) Scanning electron microscope (SEM) image of
photonic crystal waveguide sample and (b) propagation losses
(at l¼ 1493 nm) determined from stray light measurement for
TE-polarisation.

8.3 Linear Properties of Photonic Crystal Slabs j135



diverges. This leads to a large group velocity dispersion, GVD¼ c�1dng/dl, of the
gap-guided modes near the edge of the first Brillouin zone. They establish the upper
part of amini-stopband. The lower part (outside of the 2Dphotonic bandgap) is index-
guided. It vanishes into the continuum of 2D Bloch states and does not play a role for
our considerations. Depending on the actual parameters, these modes can even be
superposed almost completely by the continuum. Note, that the even modes are
entirely gap-guided.
First we concentrate on the odd modes within the bandgap. Characterisation

of the photonic crystal waveguide yields losses of at least (114� 5) dB/mm at a
wavelength of 1493 nm (inside the photonic bandgap) in the index-guided region (see
Figure 8.3(b)), where the slope of the band is large (see Figure 8.2(b)). The losses are
due to the very strong interaction of themode with the 2D photonic crystal, because a
major (although evanescently decaying) part of the modal energy overlaps with the
cladding in such anarrowwaveguide.Consequently, because themodes are above the
light line, efficient out-of-plane scattering induces large propagation losses. This is
confirmed by a 3D finite-difference time-domain (FDTD) [35] simulation. On the
other hand, the gap-guided part of the modes (flat region) is expected to have even
larger losses due to the lower group velocity. Using a wider waveguide the losses in
the steep region can be reduced, but in the region of mini-stopbands still prohibit
the observation of high dispersion [36].
One possibility to avoid the high losses associatedwith the light cone in theW1 is to

utilise the abovementioned (index-guided)waveguidemodes below the light line and
below the lowest order Bloch modes of the underlying crystal (l�1< 0.5 mm�1 in
Figure 8.2(b)). Here the bands corresponding to the waveguidemodes are again very
flat. Furthermore amini-stopband of the waveguidemodes can be identified near the
edge of thefirst Brillouin zone. Thus high dispersion can be expected there aswell. To
access this domain with the available experimental wavelength range (around
l¼ 1550 nm) the structure parameters have to be scaled accordingly. For this
purpose we used the SiNx-slab system (500 nm thick SiNx guiding layer) since it
exhibits a better structuring quality for the required photonic crystal parameters
(diameter of holes 320 nm and period 500 nm). A 2D-band structure (using an
effective index) for these parameters is shown in Figure 8.4(a) which looks very
similar to Figure 8.2(b). Note that the large blue ellipse in Figure 8.4(a) marks the
mini-stopband mentioned above.
SEM-images of the fabricated photonic crystal waveguides with these parameters

reveal somewhat smaller holes of diameter 284 nm with a depth of 700 nm. Again
ridge waveguides were used to couple light into the photonic crystal waveguides with
the new parameters. Detecting the stray light the propagation losses of the 125 mm
long photonic crystal waveguide were determined as (43� 16) dB/mm at 1594 nm
which is considerable lower as in the case of modes within the bandgap which are
located inside the light cone and thus radiate partially into the substrate. For the
index-guidedmodes under consideration this loss does not occur. It should be noted
that the smaller structure sizes result in inferior structure quality and thus higher
scattering losses due to surface roughness. Hence structures qualitatively equivalent
to the larger ones should result in even smaller losses.
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Comparing the transmission spectra with the location of the waveguide bands in
the band structure shows that the region of low transmission corresponds to the
mini-stopband (1450–1530 nm). Since the waveguide bands are relatively flat, an
increase of the group index and GVD can be expected there. The upper band yields
anomalous (GVD> 0) and the lower band normal dispersion (GVD< 0). In contrast,
for the gap-guided modes investigated before only anomalous dispersion (GVD> 0)
is possible.
The reflectivity due to the interface between the ridge and photonic crystal

waveguides increases with the frequency approaching the mini-stop-band. This can
be exploited to determine the group index experimentally using the formula of a
Fabry–P�erot resonator:

ng ¼ l1l2
2dðl2�l1Þ ;

where l1 and l2 are two consecutive oscillations in the transmission spectra and d
is the length of the photonic crystal waveguide. In Figure 8.5(b) the derived group
index based on the spacing of the oscillations is shown. To recheck these values the
measurement was repeated with a tunable laser. Although here different coupling
conditions were used and a different height of the oscillation peaks was observed, the
spacing in the transmission spectra was the same.
The values obtained for the group index were fitted by means of an appropriate

function (see Figure 8.5(a)). Themaximumvalue here is around 6, for the gap-guided
modes in a siliconmembrane system a group index as high as ng¼ 100was found [7].
Calculating the derivative of these functions with respect to the wavelength the group
velocity dispersion is obtained (see also Figure 8.5). The largest dispersions were
found to be þ1,000,000 ps/nm/km and �500,000 ps/nm/km. For comparison, the
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Figure 8.4 (a) 2D bandstructure and (b) experimental
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material dispersion of a silica fibre at a wavelength of 1.55mmamounts to 17 ps/nm/
km. With such a high dispersion only a length of 34 mm would be necessary to
compensate for the dispersion in a 1m long silica fibre.
In summary, the excitation of the index-guided mode (below the light line) of a

photonic crystal waveguide is a possibility to achieve high dispersion with moderate
losseswithout the need of a complete photonic band gap.However, at awavelength of
1.55mm very small structure sizes are needed in order to use these index-guided
modes. On the other side, for using the gap-guided modes of a photonic crystal
waveguide the propagation losses need to be reduced.

8.3.2
High-Quality Factor Microcavities in a Low-Index Photonic Crystal Membrane

Many modern applications in optics or quantum electrodynamics require optical
structures, where light can be confined with a very long lifetime (high quality
factor Q ) to a very small modal volume, e.g., high quality semiconductor la-
sers [37,38]. But also for on-chip optical integration of resonators a small footprint
is essential. Quality factors of up to 1,000,000 have been demonstrated in micro-
cavities realised by placing a carefully designed defect in a 2D PhC in a high-index
semiconductor membrane [39]. However, often not only the linear but also the
nonlinear material properties play an important role for applications. For example,
quadratic nonlinear interactions cannot easily be exploited in all-semiconductor
geometries, but they can in materials such as LiNbO3, with a substantially lower
refractive index. A secondmotivation for the following investigations is to explore the
limits of materials, where still a usable microcavity can be realised.
Again, as in the case of line defect waveguides, the out-of-plane radiation is the

main obstacle which limits Q , because in-plane radiation can be made arbitrarily
small using larger PhC reflectors around the defect, as long as the crystal provides a
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2D photonic bandgap for at least one polarisation. Quantitatively, the radiated power
can be expressed in terms of the energy density of spatial Fourier components k of
the mode which are located inside a circle with radius o0nsubst/c defined by the light
cone of the substrate [40]. Here o0 is the resonance frequency and nsubst is the
refractive index of the substrate.
Following the approach of a modal gap [9], where a �gentle confinement� of the

mode strongly reduces the spectral fraction of wavevectors inside the light cone, we
propose a novel structure with a high quality factor. We are interested in cavities
obtained by omitting a certain number of consecutive holes in GM-direction,
resulting in a shortW1-waveguide [41]. TheQ factor of such cavities was dramatically
increased by means of the concept of gentle confinement [8], which was improved
later using amodal gap ofwaveguidemodes [9]. In thisway a completeW1-waveguide
is created in a hexagonal PhC. To obtain localisation in direction of the waveguide,
this waveguide is locally modified by slightly stretching the lattice constant leading to
a tetragonal lattice. This modification leads to a slight shift of the waveguide
dispersion relation, and hence, for a frequency close to the band edge of one
waveguide the same frequency may already be outside the dispersion relation of
the respective mode in the unmodified waveguide. This mechanism gives rise to a
very gentle reflection of the light at the boundaries and finally leads to very high Q
factors of the resulting defect mode.
Because in our low-index material the influence of the light cone is much more

severe than for semiconductors, a careful design for avoiding spectral components
with small in-plane wavevectors is crucial even to obtain much lower Q values.
Therefore we follow the approach of gentle confinement at a modal gap. However, in
order to keep the translation symmetries of the underlying hexagonal crystal, which
would be required in a photonic chip based on this lattice, we do not stretch the lattice
but rather change the radius of the innermost holes of thewaveguide. In order to raise
the light cone as much as possible also a membrane is used here. A substrate with
n¼ 1.43 is detrimental to the quality factor, as we shall see later. In the following a
membrane with n¼ 2.21, which corresponds to LiNbO3 neglecting the material
anisotropy is used. Accounting for the anisotropy is not a problem and can be done
afterwards by slightly adjusting the parameters.
In a first step the parameters of the 2DPhCmembrane (thickness, lattice constant,

radius) are optimised to obtain a large photonic bandgap for TE polarisation in the
wavelength region of interest (1.55mm) and a light cone as far as possible from the
bandgap. A bandgap with a gap-to-midgap ratio of 18% is obtained (lattice constant
a¼ 600 nm, hole radius r¼ 190 nm, membrane thickness h¼ 500 nm, see
Figure 8.6). Then a W1-waveguide is introduced omitting one row of holes. In order
to obtain amodal gap, we vary the radiusR of the holes of the two rows adjacent to the
waveguide to amaximum value of 220 nm. This leads to an increase of the frequency
of the bands of thismodifiedW1 (see Figure 8.6(b)). Intermediate values of the radius
increase the frequency by an accordingly smaller amount and will be used for fine-
tuning of the mode. One important idea behind our design is the easy coupling to a
regular (unmodified) W1-waveguide. This means, for R¼ 190 nm, the waveguide
should be transmitting at the resonance wavelength l0 of the defect. On the other
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hand, the modified waveguide should not be transmitting in order to obtain a model
gap which confines the light. This can be achieved using values of R larger than
210 nm (see Figure 8.6(b)).
We performed a systematic study of different defects employing the 3D FDTD

method where the radii of the two rows adjacent to theW1-waveguide were changed
near the defect centre. A first result was that the Q factor could only be increased
substantially using a defect mode spanning over three periods. For smaller modes
(stronger confinement) the spatial Fourier components inside the light cone are too
strong and the associated radiation limits Q [40], for our low-index membrane to
values around 6,000. On the other hand, we need to ensure that the waveguidemode
of the defect is outside the light cone, because only then a larger defect increases Q.
Second, a low group velocity improves Q [42]. Hence, the best choice for the
waveguide Bloch vector is k/G¼ 0.5, where the lattice vector G¼ 2p/a was
introduced.
Furthermore, using holes with R¼ 200 nm at the defect centre is advantageous

because it slightly increases the resonance frequency shifting it more into the
bandgap. As a compromise between Q and modal volume we use two such holes
on every side of the waveguide. Second, in order to have a high reflectivity at the
mirrors based on the modal gap (�Bragg� mirrors), the radius of the next-nearest
neighbour holes was gradually changed. This resulted in the following values: on
both sides (left and right) of the defect centre (and on both sides of the W1,
respectively) we first use one hole with R¼ 210 nm, then 4 holes with R¼ 220 nm,
followed by one hole with R¼ 210 nm, one with R¼ 200 nm and a regular W1-
waveguide with R¼ r¼ 190 nm. In the resulting structure we obtained from 3D
FDTD calculations a cavity mode with Q¼ 14,000 shown in Figure 8.7. We also
confirmed the possibility of exciting the mode via the W1 waveguide.
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Figure 8.6 (a) Bandstructure of a 500 nm thick PhC membrane
(n¼ 2.211) with triangular lattice of holes with r¼ 190 nm and
a¼ 600 nm. (b) Dispersion relations of a W1 waveguide in this
PhC membrane (solid lines) and of a modified W1 waveguide
(radius R of innermost holes 220 nm, dashed lines). G¼ 2p/a is
the lattice vector, l0 the resonance wavelength.
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This Q factor is substantially smaller than for a semiconductor membrane, what
can be explained with the different location of the light cone. Assuming a Gaussian
spatial distribution of the fields in direction of the waveguide with a similar normal-
ised width of s ¼ ffiffiffi

2
p

a for both systems, we obtain a Gaussian normalised spatial
spectral distributionA(k/G) of the individualfields, centred at kx/G¼�0.5 andwith a
width 1=

ffiffiffi
2

p
a [40]. From this value we can estimate to which magnitude the energy

density has dropped at the boundary of the light cone, defined by |k/G|¼ nsubsta/l0.
The important difference between low-index and high-indexmembranes is the large
difference in the normalised resonance frequency O0¼ a/l0. In the semiconductor
we have Osemi� 0.25, whereas in our system O0¼ 0.39. This results in an energy
density larger by a factor of 50 for the low-index system, explaining themuch smaller
Q.Hence, to strongly increaseQonewouldhave touse amuch longer cavity or to try to
decrease the frequencyO0of thedefectmode.However, ina low-indexmembrane, it is
virtually impossible to obtain a photonic bandgap at much lower normalised fre-
quencies. Still it can be expected that a slight increase ofQ is possible by introducing
more degrees of freedom, as shifting also holes and stretching the lattice, to further
improve themodal gap reflectivity [42].On the other hand,we also can see that using a
substrate with nsubst¼ 1.43 is detrimental toQ because the light cone region is greatly
enlarged.
To sum up, we presented a cavity mode design with a highQ factor at small modal

volume, which intrinsically includes the waveguides for coupling. This cavity can be
realised in a low-index membrane, and hence, can be used for quadratic nonlinear
effects in LiNbO3, as will be shown later.

8.3.3
Unusual Diffraction and Refraction Phenomena in Photonic Crystal Slabs

Recently a large deal of interest in photonic crystals shifted from the investigation of
light localisation within the photonic bandgap to the utilisation of the unusual
properties of light propagation in PhCs without defects [43–50]. These effects rely on
the well-known fact, that the direction of beam propagation in homogeneous
and periodic media, comprising nonabsorbing and nondispersive dielectrics,
always points normal to the so-called isofrequency curves (IFC) of the dispersion

Figure 8.7 Hz of the defect mode with Q¼ 14,000 (parameters see text).
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relation [51]. In PhCs these IFCs can be tailored to attain various shapes. In the
following two different cases are considered. First, if the IFC is flat over a wide spatial
spectral range, the light can propagate only in the corresponding directions, their
number given by the symmetry of the crystal. Self-guidance occurs in these directions
of low IFC curvature, i.e., there is almost no diffraction of a finite beam. The second
case of interest is a concave IFC, leading to negative refraction.

8.3.3.1 Self-Collimated Light at Infrared and Visible Wavelengths
Depending on the vertical index contrast, the TE- or TM-like bands where self-
guiding occurs can be located inside the light cone, which results in huge scattering
losses compared to defect waveguides operated inside the light cone, because here
the entire field interacts with the lattice. Designs in semiconductor heterostructures
with a low vertical index contrast utilise a square lattice with the first TM-like band
completely inside the light cone [6]. Using a higher vertical index contrast this
problem can be lifted, evenwith a lower in-plane index contrast [52]. Alternatively, the
rectangular shaped IFCs of the second TE-like band below the light cone of a silicon
membrane were used for low-loss guidance [53].
To date the operation domain of PhC films is almost exclusively restricted to the

infrared spectral region. For various applications it might be appealing to extent this
towards visible light. In the following it is demonstrated that almost diffractionless
propagation for both TE- and TM-polarised light with wavelengths in the visible
is feasible in homogeneous 2D PhC slabs. Related results of the performance of
mirrors and splitters in the near infrared are presented elsewhere [54].
To allow for low-loss light propagation at visible wavelengths we use a SiNx slab

waveguide sandwiched between SiO2 cladding and substrate. The thickness of the
waveguiding layer amounts to 250nm. Flat IFCs were obtained for a¼ 320nm and
d¼ 210nm and a wavelength range between 790nm and 860nm (see Figure 8.8(b)).
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Figure 8.8 (a) Bandstructure diagram and iso-frequency curves
for the 2D PhC slab with parameters a¼ 320 nm and d¼ 210 nm
for (b) TE and (c) TM polarisation. The curves of good self-
guidance at l¼ 830 nm for TE and l¼ 845 nm for TM are
highlighted.
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Self-guiding in the same wavelength region can be expected for TM-polarised light
(see Figure 8.8(c)). However, the wavelength for optimal guidance is about 10nm
larger.
Based on these calculations PhCs with a width of 25mm and lengths of 60mm,

120 mmand240 mmwere fabricated (see Section 8.2). The overall hole depth amounts
to 650 nm. In order to couple beams of a defined width into the structure ridge
waveguide tapers down to 1.8mm were used. The self-guiding behaviour was
monitored recording the top view stray light for different fixed wavelengths via a
microscope objective (125·, NA¼ 0.8) and a CCD camera.
The stray light images revealed that forwavelengths around 800 nmself-guiding of

light over a distance of 240 mm occurs (see Figure 8.9), with the best self-guidance at
790 nm for TE-polarisation and at 800 nm for TM-polarisation. Again, based on
Gaussian optics, in an unstructuredmedium a beamwith a spot size of 1.8 mmwould
spread up to a diameter of 75 mm. For a wavelength of 800 nm both TE- and TM-
polarised light is simultaneously self-guided. Since the CCD-camera used for
detecting the stray light did not show the necessary linearity regarding the detected
power no assertion with respect to propagation losses is possible.
To sum up, we theoretically and experimentally demonstrated diffractionless

propagation for both polarisations at visible wavelengths. The experimentally ob-
tained wavelengths for optimal guidance are in excellent agreement with theory.

8.3.3.2 Negative Refraction of Light
For frequencies slightly larger than those required for diffractionless propagation
the isofrequency curve becomes concave, leading to negative refraction (see, e.g., [45]

Figure 8.9 Stray light imagesof self-guidingof visible light in aPhC
(period 320 nm, Ø 210 nm) for TE polarisation at 790 nm (a) and
800 nm (b) and for TM polarisation at 800 nm (c) and 810 nm (d).
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for all-angle negative refraction in the first TE-band of a 2D square lattice or [55],
where the fourth TE band of a 2D hexagonal lattice is used). The concave shape of
the IFC leads also to negative diffraction due to the negative Gaussian curvature.
A negative index of refraction at optical wavelengths was confirmed experimental-
ly [56]. We found negative refraction for our substrate-based slab system in the
first TE-like band for a hexagonal arrangement of air holes, where the IFC at the
wavelengths of interest is a triangle with round corners. This again allows for
operation below the light cone, and hence for a reduced loss. For a beam coming
from an unstructured part and impinging on the interface to this PhC cut along
GM we expect from the IFCs negative refraction for small angles of incidence from
�9� to 9�. This relatively small angular range is mainly attributed to two facts. First,
the (circular) IFC of the unstructured layer is larger than for air (compare with [45]).
Second, the lower index of the dielectric reduces the size of the triangle. The
construction of the refraction of waves is shown for an angle of incidence of 5� in
Figure 8.10(c).
The negative refraction in our system is validated via full 3DFDTDcalculations in a

large computing window of 60 mm · 62 mm· 2.2mm (see Figure 8.10(a) and (c)). In
addition, wefind that the diffractive spreading of the beam increaseswith the angle of
incidence due to the larger curvature of the IFCnear the corner, leading to second and
higher order diffraction. At an angle of 10� no light enters the crystal anymore. From
the IFCs of the first TM-like band we expect a similar behaviour for slightly smaller
wavelengths.

Figure 8.10 (a) TE polarised beam impinging
on the interface from a homogeneous region
at an angle of 5� with l¼ 1.52mm and (b)
construction of the refraction at the interface
(red curve:l¼ 1.52mm,blue curve: unstructured
layer atl¼ 1.52mm,blue and red arrow: pointing

vector of incoming and refracted waves) for the
hexagonal crystal with parameters a¼ 620 nm,
r¼ 210 nm. The refracted and diffracted beams
in the crystal are shown in (c). The frequencies
l�1 are given in mm�1.
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First estimates from the isofrequency diagram give a minimum width of the
incident beam of 12mm in order to increase the diffraction length and to allow for a
propagation of the beam inside the crystal over at least a few tens of lattice constants.

8.4
Light Propagation in Nonlinear Photonic Crystals

The combination of photonic crystals with nonlinearity is a very promising novel
direction of investigation of growing interest, due to advances in microstructuring of
nonlinearmaterials. The strong linear light control providedby photonic crystals can be
used to realise nonlinear or active devices with a very small footprint [38,57]. In the
following two different systems are investigated. First the feedback of a cavity is used to
realise a microsized optical parametric oscillator, second one- and two-dimensional
arrangementsofmicrocavitiesareusedtoobtainstronglylocalisedconservativesolitons.

8.4.1
An Optical Parametric Oscillator in a Photonic Crystal Microcavity

One prominent parametric effect in a medium with quadratic nonlinearity is
difference frequency generation (see, e.g., the textbook by Yariv [58]). Here, a strong
pump at frequency oP interacts with a (usually) weak signal input at oS<oP

generating an idler wave at the difference frequency oI¼oP�oS and amplifying
the signal at the expense of the pump wave. Still, without signal input, the vacuum
fluctuations of the optical field are amplified, an effect termed parametric fluores-
cence. When a resonator is added for providing positive feedback self-sustained
oscillations can be obtained in a so-called optical parametric oscillator (OPO) above a
certain threshold [58]. The frequencies wS and wI adjust themselves according to the
lowest losses in the system. These types of OPOs were studied in the early days of
nonlinear optics in conventional cavities [58–60]. Later the focus shifted to the
investigation of the transverse dynamics in driven wide aperture resonators with
quadratic media, including pattern formation [61–63] and cavity solitons [64,65].
Recently the spectral response of a four-wave mixing OPO realised in a finite
semiconductor Kerr PhC without defect was computed by means of FDTD simula-
tions [66]. Here we investigate theoretically a three-wave mixing OPO realised in a
high-Qmicrocavity in a LiNbO3 photonic crystal. First, we restrict ourselves to a 2D
model.We simulate the transient behaviour of the oscillator for a stationary pump till
we obtain a stationary solution. First results for a 3D extension are presented also.
In order to achieve a TE bandgap in LiNbO3weuse a hexagonal lattice of cylindrical

air holes and introduce a point defect by removing just one hole. In an isotropic
material this kind of defect leads to the formation of two degenerate dipole defect
modes [67] reducing the performance of the nonlinear interaction. However, due to
the anisotropy of LiNbO3 (uniaxial crystal with ne¼ 2.146, no¼ 2.220) the degeneracy
is lifted and we obtain two dipole modes with normalised frequencies a/l¼ 0.36200
(fundamental, oriented along GM) and 0.36588 (higher order mode, oriented in GK,
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with the major component Ey , i.e., polarised in GM-direction) for a normalised hole
radius r/a¼ 0.3 and an orientation of the optical axis of LiNbO3 in GM-direction.
We choose to model the system with a nonlinear version of the FDTD method,

where Maxwell�s equations are discretised in time and space without further
approximation. This treatment ensures that all effects of light propagation, e.g.,
field discontinuity at dielectric interfaces, any radiation losses, and local focusing due
to nonlinear interactions, are properly accounted for. Moreover, the limits of
frequently used approximations, e.g., the modal or mean-field approach, can be
identified. Tomimic radiation losses of a PhCfilm,whichwill be used to implement a
real PhCOPO, and to obtain realisticQ-factors, wemodel a finite system, alternating
15 and 14 air holes in GK-direction (x-direction) and 13 such rows in the perpendic-
ular GM-direction (y-direction). This gives Q¼ 806 for the fundamental mode and
Q¼ 5,150 for the higher ordermode of this finite system.Due to themode symmetry
and the orientation of the largest tensor component (d33) in y, a linearly polarised
pump couples best to the higher ordermodewhen it is polarised in this direction [68].
In the following we use a continuous wave pump with an appropriate Gaussian
spatial distribution, linearly polarised in y-direction and centred in the defect.
Because there is only one resonance we expect degenerate operation (oS¼oI) for

pump frequencies not too far from twice the resonance frequency o0. Hence, we use
pump frequencies around a/l¼ 0.73176. To quantify the detuning from resonance
the normalised detuning d¼Q(oP/o0� 2) is introduced. The temporal evolution of
the system is calculated for three different detunings and for different pump fields.
Above a certain pump threshold and after a certain time of propagation, we see a
sudden onset of parametric oscillations. By inspecting the Fourier transform of the
temporal evolution we confirm operation in the degenerate regime.
In a mean field approach a parametrically driven complex Ginzburg-Landau

equation without transverse terms can be obtained [68], giving a parabolic shape
of the respective bifurcation curves. Therefore we compare the FDTD results with a
parabolic fit. The agreement for small pumps is excellent, as can be seen from
Figure 8.11(a). However, for stronger pumps (Figure 8.11(b)) due to concurrent
nonlinear effects as second harmonic generation, three-wave mixing, or optical
rectification a growing deviation is found.
To check the feasibility of a microcavity OPO in a realistic system we use a defect

based on a modal gap (see subsection 8.3.3.1) in a PhC membrane, where in-plane-
coupling to the defect is intrinsically included. In this way more complex designs, as
used for second harmonic generation in a semiconductor microcavity [69] can be
avoided. However, in a first step we are interested in coupling from the top of the
structure. Hence, a Gaussian beam polarised in GM-direction (y-direction) is excited
above the defect and passes themembrane, part of it being reflected and another part
interacting with the nonlinear membrane. Again, the largest diagonal nonlinear
coefficient is oriented in y-direction. The defectmode is similar to themode shown in
Figure 8.7, but the number of altered hole radii in the reflection layer has been
modified to allow for generated light leaving the structure via the W1 waveguides.
Consequently, Q is reduced to 5,000. In Figure 8.12 the temporal evolution of
the envelope of the pump and signal fields obtained for d¼ 0 from a 3D FDTD
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calculation is shown. One clearly sees the exponential growth of the signal and the
oscillations before the stead-state is reached, where the pump field is weaker than
before the oscillation started.

8.4.2
Discrete Solitons in Coupled Defects in Photonic Crystals

The investigation of discrete optical systems has been a subject of scientific interest
formany years. Particular interest was on the propagation ofmonochromatic light in
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linear and nonlinear coupled waveguides [70–75]. With the advance in experimental
technology also 2D optical lattices could be realised [76–79]. In both 1D and 2D
systems one subject of interest are discrete solitons. Recently, the concept of coupled
optical resonators (microcavities) was introduced [80], where instead of the dynamics
in propagation direction the temporal evolution is of interest.
Solitons are stable intrinsically localised solutions of the governing equations in a

mediumwith a nonlinear response. This can be for instance a quadratic or saturable
nonlinearity. We shall focus on the simplest case of a Kerr nonlinearity, where the
refractive index changes linearly with the light intensity. In a homogenous medium
these solutions depend on one ormore continuous coordinates. In awaveguide array,
within the framework of a modal approach, however, one assigns to every of the
discrete waveguide sites one (or a few) amplitudes with a discrete coordinate
corresponding to a linear mode of the waveguide (so-called tight-binding approxi-
mation). The resulting system of discrete equations can have localised solutions,
termed discrete solitons. These solutions in one- [81,82] and two-dimensional [82]
arrays of coupled nonlinear waveguides were studied in detail in the past. Recently,
the coupled-mode approach (CMA) was also used to describe arrays of coupled
defects (microcavities) in PhCs, and discrete soliton solutions were predicted [83].
A different description of soliton formation in these periodic media is possible

with the nonlinear paraxial wave (Schr€odinger) equation [74]. Here the amplitudes
depend on two continuous spatial coordinates and the dielectric properties are
periodic functions (lattice). Local effects within the waveguide, linear as well as
nonlinear interaction with all neighbours and spatial inhomogeneities of the
nonlinear response, are intrinsically included. Localised solutions of this equation
are called lattice solitons [71,76]. However, the derivation of the Schr€odinger equation
relies on small refractive index changes. Thismodel can be appliedwithout problems
to optically induced waveguide structures [84], because the induced index change is
very small. In PhCs with a high index contrast or for high nonlinearly induced
refractive index changes this continuous approach is inadequate.
In the following we investigate solitons in coupled defects in photonic crystals.

Here the transverse light localisation at the defects is provided by a photonic bandgap.
In order to achieve a 2D in-plane photonic bandgap for TE-polarised light a relatively
large refractive index contrast of the order of Dn� 0.5 is required. In contrast, when
the propagation is mainly perpendicular to the plane of periodicity, as in coupled
waveguides, a transverse bandgap appears already for very weak index modula-
tions [79]. Because we are interested in the temporal evolution of light in defects
without components propagating out-of-plane, we use photonic crystals with a high-
index contrast. In order to take all lattice effects as well as arbitrary large disconti-
nuities into account we discretised Maxwell�s equations directly in space and time
without further approximations. Thus, the arising localised solutionsmay be termed
Maxwell lattice solitons being a generalisation of both discrete and lattice solitons.
With a 2Dnonlinear FDTDmethodwe identified one- and two-dimensionalMaxwell
lattice solitons of different topologies in defect arrays embedded in PhCs. We
scanned the dispersion relation, studied the stability behaviour and compared the
results to those obtained from the CMA-equations.
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For exploring Maxwell solitons we designed a 2D PhC model structure with
nondegenerate single-moded defect cavities where the light localisation is provided
by a photonic bandgap. Degenerate defectmodes introducemore degrees of freedom
and could possibly lead to vector solitons or cause instabilities. The model system
comprises a hexagonal arrangement of high-index (n¼ 3.4) dielectric rods embedded
in a low-index (n¼ 1.45) background (ratio radius/pitch r/a¼ 0.22) and has a
bandgap for TM-polarisation (see Figure 8.13(a)).
We assume a homogeneous focusing Kerr nonlinearity. The microcavities are

formed by introducing defects by removing rods. First we are interested in an
approximate description of the system in tight-binding approximation. Using the
reciprocity theorem in Fourier domainwe obtain the governing discrete equations in
nearest neighbour approximation in time domain

i
qbl
qt

¼ �w0

2
aðbl�1 þ blþ1Þ�w0djblj2bl, ð8:1Þ

where bl(t) are the time dependentmodal amplitudes. For stationary soliton solutions
we get the normalised system of equations

WBl þ sgnðaÞ 1
2
ðBl�1 þBlþ1Þþ sgnðdÞjBlj2Bl ¼ 0 ð8:2Þ

with the normalised amplitudes blðtÞ ¼ Bl

ffiffiffiffiffiffiffiffiffiffiffija=djp
expð�i DwtÞ and frequency O¼

o/|a|o0. Bright solitons with evanescently decaying tails require a certain phase
relation between neighbouring defects. Bright soliton solutions are either staggered,
i.e., the phase difference between adjacent defects isp, fora> 0, d> 0 or unstaggered
(phase difference 0) for a> 0, d> 0 [81]. Hence, Eq. (8.1) can be transformed to a
real one by separating a trivial phase from all amplitudes.
The coefficients a and d are obtained from the first- and third-order overlap

integrals of the defect field. For a first check of the validity of the discrete equations
we compared the obtained linear dispersion relation Do(K)¼�o0acos(KL) of an

Figure 8.13 Bandstructure diagram (a) of the PhC and field (Ez)
distribution of the defect mode (b).
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infinite defect chain (L. . . defect spacing) with the results from rigorous plane wave
supercell calculations. Depending on the defect spacing the coincidence varies
indicating the influence of next-nearest neighbour interactions.
One feature not investigated so far is the possibility of a negative coupling

constant for defect arrays in photonic crystals. Due to the Bragg reflection guidance
mechanism the field components change their sign with the lattice period (see
Figure 8.13(b)) and hence, also the overlap integral a alters its sign [85]. Thus simply
by changing the defect spacing, the sign of the coupling constant can be adjusted. In a
conventional waveguide this is usually not possible due to nonoscillatory tails. From
(18.1) we see that a solutionBl for a given set of parameters (O,a,d) is a solution for the
parameter set (�O,�a,�d) aswell. Thus, for positive sign of the nonlinearity dwe can
also find staggered solitons when a< 0 because we have the same solutions as for
a> 0 and d< 0.
To investigate the Maxwell solitons, corresponding to the solutions obtained

from the discrete equations, we calculated the temporal dynamics of appropriate
pulsed excitations in finite linear defect chains with a nonlinear 2D FDTD
method. To track the dispersion relation of the solitons, relating a typical ampli-
tude B0 to the soliton frequency, one field component was sampled at a given
point. Due to the finite crystal size the soliton slowly loses energy upon propaga-
tion in time, and transforms adiabatically and continuously into a soliton with
lower energy following the dispersion curve. From the sampled time series the
dispersion curve O¼O(|B0|

2) was extracted by means of spectral methods. In
agreement with the discrete approximation we found staggered solitons for a
defect spacing of two lattice constants (L¼ 2a, a¼�0.02) and unstaggered ones
for L¼ 3a (a¼ 0.003).
As expected fromCMA, for negative coupling constant the soliton is staggered, i.e.

the phase difference between adjacent defects is p. From Figure 8.14 two remarkable
differences between discrete and Maxwell lattice solitons can be observed. First, for
small soliton centre power |B0|

2, the dispersion relation departs from the CMA
dispersion relation and the soliton is finally cut off. This is an effect of the finite PhC
size because the soliton gets wider and hits the PhC boundaries. For high soliton
power the excitation will be ultimately located at a single defect. Thus the dispersion
relation of the defect (green line) and the soliton should almost coincide. This is only
true for theMaxwell soliton (red line) but not for the discrete soliton (black line). The
reason is that the CMA does not account for defect mode shape variations, which
come obviously into play for high power.
We have also verified the existence ofMaxwell solitons in a two-dimensional defect

lattice. Here the most stable solution is the fundamental on-site soliton (see
Figure 8.15). Again the expected differences between Maxwell and discrete solitons
appear for very wide and narrow high-power solitons. However, in contrast to the 1D
case, here the soliton disappears before it hits the boundaries. This can be seen
from a stability analysis of the CMA equations which give instability for O>�1.7
(see Figure 8.15(b)). Introducing the total power (energy) as sum over all
defects, W ¼Pi jBij2, we find the minimum at this point, suggesting that the
Vakhitov–Kolokolov criterion [86] applies.
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Figure 8.14 Magnetic field of the fundamental Maxwell soliton in
the defect chainwithL¼ 2a at different stages of the propagation,
i.e., for different soliton parameters (left, with the calculated
normalised frequency O) and corresponding full dispersion
relation (right), both obtained from 2D FDTD calculations.

Figure 8.15 (a) Snapshot of a FDTD propagation of the
fundamental two-dimensional soliton and (b) soliton dispersion
relation.
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8.5
Conclusion

We presented theoretical and experimental results for photonic crystals made of
different low-index materials. Furthermore, we investigated theoretically spatial
solitons in 1D and 2D defect lattices in photonic crystals.
The transmission in the highly dispersive regions of a W1-waveguide is signifi-

cantly increased by utilising a mini-stopband below all 2D Bloch modes of
the underlying photonic crystal, and hence, below the light cone. We proposed a
high-Q (14,000) microcavity in a low-index photonic crystal membrane and investi-
gated the limiting parameters compared to semiconductors. We proposed theoreti-
cally and verified experimentally self-collimation of TE- and TM-polarised visible
light at the same wavelength. The feasibility of negative refraction in the low-index
material was demonstrated theoretically and the minimum width and maximum
inclination of the incident beam was estimated. By means of nonlinear FDTD
calculations we obtained the bifurcation diagrams for a degenerate, doubly resonant
OPO realised in a photonic crystal microcavity in lithium niobate. A first proof
of principles was given for an OPO in a 3D membrane system. We investigated
strongly localised solitons in 1Dand 2D lattices of point defects in nonlinear photonic
crystals with high-index inclusions. Staggered as well as unstaggered solitons for a
focusing Kerr nonlinearity due to the unique Bragg localisation mechanism were
obtained.
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9
Linear and Non-linear Optical Experiments Based on
Macroporous Silicon Photonic Crystals
Ralf B. Wehrspohn, Stefan L. Schweizer, and Vahid Sandoghdar

9.1
Introduction

From the beginning of research on photonic crystals, one of the major areas of
investigation concerned two-dimensional (2D) structures [1]. This wasmainly caused
by experimental reasons as the fabrication of 3D photonic crystals is more difficult
and cumbersome than that of 2D photonic crystals. However an ideal 2D photonic
crystal consists of a periodic array of infinitely long pores or rods so that a structure
which approximates this theoreticalmodel has to exhibit very high aspect ratios (ratio
between pore/rod length to pore/rod diameter). Using conventional dry etching
techniques only structures with aspect ratios up to 10–30 are possible. To avoid
scattering of light out of the plane of periodicity and to reduce the corresponding loss
the so-called slab structures were developed and thoroughly investigated [2,3]. In
such low-aspect structures, one relies on guiding of light by total internal reflection in
the third dimension and, consequently, deals with a full 3D problem. As an
alternative approach, Lehmann and Gruning [4,5], as well as Lau and Parker [6]
proposed macroporous silicon as a model system for 2D photonic crystals. This
system consists of a periodic array of air pores in silicon. The fundamental bandgap
appears in general forwavelengthswhich are approximately twice the lattice constant,
the pores are 50–250 times longer than the wavelengths of the corresponding 2D
fundamental bandgap. Therefore, macroporous silicon represents an excellent
system to study ideal 2D photonic crystal properties. Typically, high-quality photonic
crystals with lattice constant of a¼ 500 nm to 8000 nmand a depth up to 1mmcan be
produced with this process. These structures exhibit photonic bandgaps from the
near infrared to the far infrared. Possible applications include miniaturized sensors
or selective thermal emitter [7]. In the following, we present our improved fabrication
technologies for macroporous silicon and novel optical experiments on beaming,
near-field optical and non-linear optics.
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9.2
Fabrication of 2D Photonic Crystals

9.2.1
Macroporous Silicon Growth Model

The etching method used in this work to produce trenches and ordered arrays of
macropores in Si is based on photo-electrochemical etching (PECE) of silicon. This
process is revisited briefly below following the model for macropore formation by
Lehmann [8,9].
While Si is easily etched in aqueous alkaline solutions it is quite stable in most

aqueous acids. However, hydrofluoric acid (HF) is an exception to this general
observation. Figure 9.1a shows the current density j across the HF/n-Si interface
versus the applied voltage V for different illumination conditions. In the regime of
cathodic currents (I in Figure 9.1a) the Schottky-like HF/n-Si contact is forward
biased. The current is determined by themajority charge carriers, i.e., the electrons –
independent of the illumination state – and leads to the reduction of the Hþ ions in
the acidic solution followed by formation of molecular hydrogen (H2).
The regime of anodic currents (II and III in Figure 9.1a) is the more interesting

one. Figure 9.1b shows the arrangement of the valence and conduction bands,
respectively, within n-Si in contact with HF. When the semiconductor Si is brought
into contact with the electrolyte HF the situation resembles a Schottky contact in
which the rather conductive electrolyte represents the metal. The different chemical
potentials of the aqueous HF and the Si will adapt. This leads to the formation of a
Helmholtz double layer in the electrolyte and a surface charge resulting from the
ionized donor atoms in the Si from which a depletion of majority charge carriers
(electrons in n-Si) at the HF/Si interface follows. Due to the mobile ions in the
electrolyte the width of the Helmholtz double layer is only a few nm while due to the

Figure 9.1 (a) Schematic plot of current density across the
HF/Si interface for n-Si under no (violet), medium (blue)
and strong (red) illumination. (b) Unbiased HF/n-Si
Schottky-like contact.
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stationary nature of the donors in Si the depletion region in n-Si is on the order of a
few mm wide. If no illumination is applied to the n-Si, a small (anodic) dark current
resulting from thermally generated holes is observed (violet line Figure 9.1a). If the Si
is strongly illuminated the HF/n-Si contact behaves like an HF/p-Si contact (red line
in Figure 9.1a). An increase in applied voltageV leads to an increase in current across
the HF/Si interface. For anodic currents below the critical current density jPS and
V<VPS (II in Figure 9.1a) divalent1 dissolution of Si occurs along with the formation
of hydrogen. Here the etching current is limited by charge carrier supply from the Si
electrode and porous Si is formed. A suggested reaction is

Siþ 4HF�2 þ hþ !SiF2�
6 þ 2HFþH2 þ e� ð9:1Þ

with e� and hþ denoting an electron and a hole in the Si. In aqueous HF electrolytes
the critical current density jPS was experimentally found to only depend on electrolyte
concentration cHF (in wt%) and electrolyte temperature THF and can be described by

jPS ¼ Cc3=2HF e�Ea=ðkBTHFÞ ð9:2Þ
with C being a constant of 3300A/cm2, Ea¼ 0.345 eV and kB being Boltzmann�s
constant [9]. For anodic currents and V>VPS (III in Figure 9.1a) tetravalent
dissolution of Si is observed. In a first step, under consumption of 4 holes, an
anodic oxide is formed on the Si electrode:

Siþ 2H2Oþ 4hþ!SiO2 þ 4Hþ : ð9:3Þ
In a second step this oxide is then chemically etched by the fluorine species HF,

(HF)2 or HF�2 in the electrolyte [9]

SiO2 þ 2HF�2 þ 2HF!SiF2�
6 þ 2H2O: ð9:4Þ

Here the current is limited by the chemical reaction rate during the removal of the
SiO2. As a consequence the Si electrode is electropolished, i.e., all Si surface atoms are
removed uniformly. Formedium illumination intensities the IV-curve of theHF/n-Si
is similar to the blue curves in Figure 9.1a. Here the current density j across
the interface is below jPS. j is limited by charge supply from the Si electrode and
therefore porous Si is formed. The electronic holes necessary for the dissolution of
Si at the HF/Si interface are created by illuminating the sample with light energy
En ¼ hn � Eg;Si ¼ 1:1 eV. Due to the high absorption of Si for the IR light used
(l� 880 nm, a� 102 cm�1 [9]) electron hole pairs are produced within the first few
mm from the air/Si interface. For the formation of porous Si it is necessary that the
current density across the HF/Si interface is smaller than jPS. According to the
diameter dpore of the pores three regimes are distinguished: microporous Si with
0 nm� dpore� 2 nm, mesoporous Si with 2 nm< dpore� 50 nm andmacroporous Si
with 50 nm< dpore. For p-Si j< jPS can only be fulfilled for potentialsVOCP<V<VPS.
For the n-Si used in this work j< jPS can be achieved for potentials VOCP<V by
appropriate adjustment of the illumination. Stable macropore growth is possible for

1Divalent (tetravalent)means that in the external electrical circuit 2 (4) electrons are necessary for
the removal of one Si atom from the electrode.
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j< jPS and VPS<V. The ratio j/jPS only controls the average porosity p of the sample.
The x-y-positions as well as the diameters of individual pores show a random
distribution under the constraint of the average porosity being p¼ j/jPS. For ordered
arrays of pores in the hexagonal or square lattice, a periodic pattern on top of the Si
wafer is defined lithographically and subsequently transferred into the Si using a
silicon oxide mask as shown in Figure 9.2. The silicon oxide thickness is adjusted
between 10 nm to 200 nm depending on the interpore spacing. By this procedure,
so-called etch-pits in the form of inverse pyramids are generated which serve as
starting points for the subsequent pore growth. The porosity of such an ordered
macropore array is given by

p ¼ j
jPS

¼ APores

ASample
; ð9:5Þ

with APores being the total pore area and ASample the total HF/Si interface area.
Figure 9.3 schematically shows the principle of photo-electrochemically etching
ordered macropore arrays. Electron–hole pairs are generated by appropriate illumi-
nation of the back of the n-Si wafer. Due to the anodic potential the electrons are
sucked away into the voltage sourcewhile the holes diffuse through thewafer towards
theHF/Si interfacewhere a space charge region (SCR) has formed. To ensure that the
holes can reach the HF/Si interface high quality float-zone Si has to be used in which
the diffusion length of the holes is on the order of the thickness of the Si wafer. The
shape of the SCR follows the physical shape at the interface and is therefore curved.
Because the electric field lines are perpendicular to theHF/Si interface the electronic
holes that come into the vicinity of the pore tips are focused onto the pore tips where
they promote the dissolution of Si. Thewidth xSCR of the SCRdepends on the applied
anodic voltage and can be described by [9]

xSCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0eSiVeff

qND

s
; ð9:6Þ

Figure 9.2 Process steps for lithographical prestructuring of a
Si-wafer for subsequent photo-electrochemical etching.

160j 9 Linear and Non-linear Optical Experiments Based on Macroporous Silicon Photonic Crystals



where e0 is the free space permittivity, eSi is the dielectric constant of Si,ND the doping
density of Si and Veff¼Vbi�V� kBT/e is the effective potential difference between
the electrolyte and the Si anode. Vbi� 0.5 V represents the built-in potential of the
contact, V the applied external potential (kBT� 25meV at room temperature). The
applied anodic bias has to be chosen high enough such that all of the incoming
electronic holes are focused onto the pore tips and none of them penetrate into the Si
wall remaining between two pores. If this condition is fulfilled the pore walls are
passivated against dissolution. The porosity of such an ordered array of macropores
with radius rPore, e.g., arranged in a hexagonal lattice with lattice constant a, can be
expressed as

phex ¼
2pffiffiffi
3

p rPore
a

� �2
: ð9:7Þ

The growth speed of the pores along the [100] direction in the model of Lehmann
only depends on the temperatureTHFand the concentration cHFof the electrolyte and
can be described by [9]

vP100 ¼ jPS
nValqNSi

; ð9:8Þ

withNSi being the particle density of Si (5 · 1022cm�3) and nVal� 2.6 the dissolution
valence for the dissolution process, i.e., the number of electrons supplied by the
external circuit needed for the dissolution of 1 Si atom and q¼ 1.6 · 10�19 C the
elementary charge [9].

Figure 9.3 Schematic diagram explaining the formation
of ordered macropores by photo-electrochemical etching
of n-Si under backside illumination using an anodic
potential.
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9.2.2
Extension of the Pore Formation Model to Trench Formation

For the realization of the trenches during PECE, it was necessary to go a step
further [10]. A trench has to be etched in close proximity to an ordered array of
macropores to prevent the formation of non-lithographically defined pores. Having
in mind the design rule of constant porosity within a unit cell, the thin silicon layer
between the last row of pores and the trench, called in the following ARL, can be
realized by lithographically defining a trench to be etched next to the last row of pores
(Figure 9.4a). The thickness tARL of the remaining ARL is given by the distance of the
edge of the trench and the center of the adjacent pores as shown in Figure 9.4b. By
lithography the x-y-positions of the pores and the trench arefixed. But thewidth of the
etched trench depends on the r/a ratio chosen during PECE according to

ttrench ¼
p r

a

� �2
ð2tARL�0:5Þffiffiffi
3

p �2p r
a

� �2 ; ð9:9Þ

with the symbols used in Figure 9.4a. As a consequence the intended r/a ratio has to be
taken into account when defining the position of the trench on the lithography mask.

9.2.3
Fabrication of Trenches and More Complex Geometries

Figure 9.5 depicts successfully etched, 450 mm deep trenches next to arrays of
hexagonally arranged macropores. Both, the macropores as well as the trenches

Figure 9.4 Realization of the ARL during PECE. (a) Design
principle, (b) SEM micrographs of the etch pits for
the macropores and the trenches in a Si wafer. Left:
overview. Right: zoom revealing ARLs with different
thickness [9].
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grow stable with depth. Due to the observance of the before stated design rules, stable
trench-next-to-macropores-growth could be achieved by using PECE parameters
comparable to the parameter set used for the fabrication of pure macropore arrays.
However, it is clear that constant porosity in the bulkPhCand theARL/trench regions
is a necessary but not sufficient prerequisite to achieve stable macropore/trench
growth. If the system is disturbed too much by, e.g., creating too thick ARLs with
tARL0 1a the PECE process becomes unstable.
Trench etching is expected to work in principle independent of the lattice constant

of the macropore array. Thin stripes are generated during the PECE process without
any post processing (except from cleaving using a pair of tweezers). By standard
procedures, i.e., inscribing the Si with a diamond scribe and mechanical cleaving,
such thin stripes cannot be realized. The thin macropore stripes can, e.g., be used
to determine the transmission through macroporous Si waveguide structures as a
function of the sample length Figure 9.6c. However, effects resulting from the
presence of the ARL have to be accounted for. The importance of the surface termi-
nation not only of bulk PhCs but also of PhCwaveguide structures will be discussed
later in this review. The now available macroporous Si structures with ARL termina-
tions of varying thickness allow verification of the theoretically predicted effects.
Figure 9.6b shows that PECE of trenches allows the realization of well defined hole
structures in macropore arrays. The macropore array in the center of the hole can
easily be removed aftermembrane fabrication by pushing with a small tip or blowing

Figure 9.5 Deep trenches next to macropores
realized by PECE (SEM micrographs). (a)
Lithographically prestructured n-Si wafer (top
view). (b) Trench and adjacent macropore array
after PECE. (c) Side view of the cleaving edge
through themacropore array. (d) Side view of the

cleaving edge perpendicular to the trench.
(trench highlighted by the dotted line). (e) Side
view of the cleaving edge parallel to the trench.
(The broken trench surface at the bottom is a
consequence of cleaving) [9].
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with pressurized air. These holes could either be used to host light sources or for
mechanically mounting macroporous Si structures onto device substrates or as
alignment markers. Later in this article we will discuss modified thermal emission
form 2D macroporous silicon photonic crystals.

9.2.4
Current Limits of Silicon Macropore Etching

Electrochemical etching of macropores in silicon can fabricate ordered pore arrays
with pore diameters between 350 and approx. 8mm. The pores are straight and have
no variations in the pore diameter if the current is adjusted properly during the
etching process. For photonic crystals applications where coherent light propagation
is needed, three structural materials parameter are important. The roughness of the
pore walls, the pore diameter variations and the interpore spacing variations. The
roughness of the pore walls can be reduced significantly by oxidation and chemical
etching steps below the resolution of current scanning electron microscopes, thus
below a few nanometers in this case.More difficult is the pore diameter variation and
the variation of the interpore spacing. These variations are typically in the range of
1–2% due to doping variations (striations) in the silicon starting material. Due to the
local doping density variations, also the space charge region and thus the electro-
chemical etching is influenced [see Eq. (9.6)].

9.3
Defects in 2D Macroporous Silicon Photonic Crystals

Since the beginning of the study of photonic crystals special attention was paid to
intentionally incorporated defects in these crystals. Point defects in photonic crystals
lead to microresonators, line defect result in waveguides. However, both functional

Figure 9.6 PECE trenches: (a) two trenches used
to define a thin stripe of 61 pore rows in GK
direction (a¼ 2mm). (b) Trenches along GK and
GM directions to realize a 100· 100mm2 hole
within a macropore array (a¼ 2mm). (c) W0.7
(top) and W1 (bottom) PhC waveguides,

terminated with an ARL (a¼ 2mm). (d) Two
trenches used to define thin stripes of 35
(bottom) and 39 (top) pore rows in GK direction
(a¼ 4.2mm). (SEM pictures: a, c, d; optical
microscope pictures: b.
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optical elements have a significantly different optical behavior compared to ridge or
strip waveguides and microring or microdisk resonators.

9.3.1
Waveguides

To demonstrate waveguiding through a W1-waveguide, a 27 mm long line defect
was incorporated along theG–K direction into a triangular 2D photonic crystal with a
r/a-ratio of 0.43 (r¼ 0.64mm) [11].
The transmission through the line defect wasmeasured with a pulsed laser source

which was tunable over the whole width of the H-stopband in G–K direction
(3.1< l< 5.5mm). The measured spectrum (Figure 9.7) exhibits pronounced Fab-
ry–Perot-resonances over a large spectral range which are caused by multiple

(a)

(b)

Figure 9.7 (a) Measured and (b) calculated H-
polarized transmission spectrumof a 27mmlong
waveguide directed along G–K covering the
spectral range of the H-bandgap of the
surrounding perfect photonic crystal. The
transmission is in %. Only the even waveguide
modes contribute to the transmission as the
incoming plane wave cannot couple to the odd
waveguide modes. The small stopgap at a
frequency of 0.45 c/a is caused by the

anticrossing of 2 even waveguidemodes [10]. (c)
Computed H-polarized band structure of the
waveguide oriented along G–K. Solid and dotted
curves correspond to even and odd modes,
respectively. The two bands which are labelled
with arrows appear due to the overetched pores
on either side of the waveguide. The shaded
areas correspond to the modes available in the
adjacent perfect crystal regions [10].
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reflections at the waveguide facets. Comparing the spectrum with an 2D-FDTD-
transmission calculation reveals very good agreement and the comparable finesse
of the measured and calculated resonances indicate small losses inside the sample.
A band structure calculation for H-polarization along G–K including waveguide
modes is depicted in Figure 9.7. Here, the 2D band structure has been projected onto
the new 1D Brillouin zone in G–K direction, since the line waveguide reduces the
symmetry. The grey shaded regions represent all possible modes inside the perfect
crystal areas adjacent to the line defect. Defect modes bound to the line defect,
therefore, occur only in the bandgap, i.e., in the range 0.27< f< 0.46. They split into
even and odd modes with respect to the mirror plane which is spanned by the
waveguide direction and the direction of the pore axis. As the incoming wave can be
approximated by a plane wave, the incident radiation can only couple to the even
modes of the waveguide. The odd modes do not contribute to the transmission
through the waveguide and, therefore, in this experiment transmission is solely
connectedwith the evenmodes. The small stop band between the evenmodes around
a frequency of 0.45 is reproduced as a region of vanishing transmission in Figure 9.7
due to anticrossing of the waveguidemodes. Furthermore, from the band structure it
can be concluded that for 0.37< f< 0.41 c/a only a single even mode exists. Its
bandwidth amounts to 10%.

9.3.2
Beaming

Efficient coupling directly into and out of a waveguide that is less than a wavelength
wide is in general considered to be at odds with the diffraction limit. As a result,
several solutions including coupling via out-of-plane gratings, combinations of ridge
waveguides and tapers, or evanescent coupling have been investigated, recently
[12,13]. We have shown that proper structuring and truncating of the output facet of a
PhCwaveguides offers a convenient way to obtain a beam with a very low divergence.
Figure 9.8(b) shows the core of the experimental arrangement. Light from a

continuous wave optical parametric oscillator is coupled into the first waveguide of

Figure 9.8 (a) An electron microscope image of the photonic
crystal structure studied experimentally. (b) The schematics of the
setup. The laser beam is focused on the entrance of the first
waveguide and a fiber tip is used to detect the light locally at the
output side [11].

166j 9 Linear and Non-linear Optical Experiments Based on Macroporous Silicon Photonic Crystals



the photonic crystal. A fluoride glass fiber with a core diameter of 9mm is etched to
form a tip with a radius of curvature around 1mm, serving as a local detector for the
optical intensity. The fiber tip is mounted in a SNOM device with a sample-probe
distance control mechanism. This allows us to regulate the gap between the tip and
the PhC facet to better than a few tens of nanometers, which in this experiment
corresponds to distances smaller than l/100. By using a calibrated piezoelectric
element, we can also retract and place the tip at well-defined distances away from the
PhC exit. At each y location the tip is scanned in the x,z-plane so as to map the lateral
intensity distribution in the output beam. Figure 9.9A (a) displays the intensity
distribution right at the exit of the waveguide while Figure 9.9A(b) to 9A(i) show the
same at successively increasing y distances up to about 24mm away from the PhC�s
exit facet. In Figure 9.9A(j) the blue, black, and red curves display the beam profiles
along the z direction from Figure 9.9A(a), A(b), and A(i), respectively. Comparison of
these plots reveals that the beam does not undergo a notable spread in this direction
upon exiting the PhC waveguide. This is not surprising because the light has not
experienced any confinement in the PhC along this direction. The central issue of
interest in our work concerns the beam divergence along the x direction. Therefore,

Figure 9.9 (A) (a) Experimental lateral intensity
distribution as seen by the tip only a few
nanometers from the crystal exit. (b)–(i) same as
in (a) but for tip–sample separations of 3.5, 6.5,
9.4, 12.4, 15.3, 18.3, 21.2, and 24.2micrometers,
respectively. The scale of the color code is
adapted for each image individually to show the
full contrast. (j) Vertical cross sections of figures
(a) and (i) plotted by the blue and red curves,
respectively. Here, the curves were rescaled to

facilitate the comparison. (k) Horizontal cross
sections of figures (a), (b) and (i) plotted by
the blue, black and red curves, respectively. [11].
(B) (a)–(h) Calculated intensity distribution of
the light at oa/2pc¼ 0.39, exiting a photonic
crystal waveguide for 9 different structure
terminations (shown in the insets). (i) The
intensity distribution for the structure in (b) but
at oa/2pc¼ 0.33 [11].
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in Figure 9.9A(k) we plot the x profiles of images A(a), A(b), and A(i). The blue
curve displays the beam cross section when the tip is nearly in contact with the
PhC surface. One finds that the great majority of the power is contained in a spot
with the full width at half maximum of less than 2 mm, corresponding to the initial
confinement of light in a subwavelength region about the waveguide. The black and
red curves show that as the tip-sample distance is increased, this spot broadens
and becomes weaker. The remarkable fact is, however, that its width does not grow
nearly as fast as one would have expected for a beam that emerges out of a
subwavelength waveguide. At first sight this might appear to violate the laws of
diffraction. However, the side lobes of the blue curve in Figure 9.9A(k) very clearly
indicate that, in fact, light is not confined to a subwavelength region. Interestingly,
Martin-Moreno et al. discuss a similar effect in their theoretical study of light
emission out of a nanoscopic aperture in a corrugated metallic film [14] and also
later confirmed our interpretation for dielectricmaterials numerically [15]. Although
there is no equivalent to plasmon polaritons in photonic crystals, there exist surface
modes that can be excited at the PhC-air interface, therefore mediating the extension
of light to the sides of the waveguide exit.
In order to investigate the angular spread of the emerging beam, we have

performed two-dimensional finite-difference time-domain (FD-TD) calculations.
We consider a PhC that contains a single straight waveguide but has otherwise the
same crystal parameters as the experimentally examined sample in Figure 9.8(a). We
set the wavelength to the experimental value of 3.84 mm corresponding to oa/2pc
0.39. Figure 9.9B(a) to B(i) display the snap shots of the intensity distribution and
wave fronts of the outgoing beam in the xy plane for nine different terminations of the
PC structure (see the insets). These images let us verify that the spread of the beam
depends on the termination in an extremely sensitive manner, therefore supporting
the hypothesis that surface modes might be involved. For example, Figure 9.9B(b)
and B(h) display very large beam divergence while Figure 9.9B(d) and B(e) show
output beams that containmore than 70% of their total radiated power within a small
full angle of 20 degree, representing the lowest numerical aperture in these series. In
order to facilitate the comparison between the results of measurements and
simulations, the symbols in Figure 9.9B(e) mark the locations where the central
spots of images A(a) to A(j) reach their 1/e2 values in the x direction. The very good
agreement between the FDTD outcome and the experimental data is clear. Scanning
electron microscope images as well as topography images taken with our fiber tip
indicate that the termination of the PhC used in this work, indeed, corresponds to
that in Figure 9.9B(e).

9.3.3
Microcavities

Besides line defects also point defects consisting only of 1missing pore are of special
interest. Such a micro-resonator-type defect also causes photonic states whose
spectral positions lie within the bandgap of the surrounding perfect photonic crystal.
The light fields belonging to these defect states are therefore confined to the very
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small volume of the point defect resulting in very high energy densities inside the
defect volume. As the point defect can be considered as a microcavity surrounded
by perfect reflecting walls, resonance peaks with very high Q-values are expected in
the transmission spectra. Since the symmetry is broken in both high-symmetry
direction, a band structure cannot be used anymore to describe point defect. To study
this experimentally, a sample was fabricated including a point defect which was
placed between 2 line defects serving as waveguides for coupling light in and out [16].
Figure 9.10 shows an SEM-image of the described sample with r/a¼ 0.433.
Measuring transmission through this waveguide-microresonator-waveguide

structure demands an optical source with a very narrow linewidth. Therefore, a
continuous wave optical parametric oscillator (OPO) has been used which is tunable
between 3.6 and 4mm and delivers a laser beam of 100 kHz line width. For spatially
resolved detection an uncoated taperedfluoride glassfibremounted to a SNOM-head
was applied and positioned precisely to the exit facet of the outcoupling photonic
crystal waveguide (Figure 9.10). In the transmission spectrum 2 point defect
resonances at 3.616 mmand 3.843mmcould be observed (Figure 9.11). Their spectral
positions are in excellent agreement with the calculated values of 3.625 mm and
3.834 mm predicted by 2D-FDTD calculations taking into account the slightly
widened pores surrounding the point defect. The measured point defect resonances
exhibited Q values of 640 and 190 respectively. The differences to the theoretical
predicted values of 1700, 750 originate from the finite depth not considered in

Figure 9.10 Left: Top view of the photonic crystal region
containing the waveguide-microresonator-waveguide structure.
The r/a-ratio of the pores amounts to 0.433. The waveguides on
the left and on the right serve to couple the light into the point
defect (microresonator) [14]. Right: Setup of the optical
measurement.
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2D-calculations and the exact pore shape near the cavity. Recent 3D-FDTD calcula-
tions show that for high Q-values, the finite depth as well as the shape of the pores
near the cavity play an important role in the determination of the Q-value [17].
Therefore, the 2D-limit breaks for high-Q cavities under realistic conditions.
Intuitively, this can be explained as follows. Any out-of-plane com-ponent of the
incoming light will result in a spreading of themode with depth and to a reduction of
the Q-value. Therefore an improved design needs to take care for a 3D confinement
of the resonator mode. Nevertheless, already the reported high Q-values of this 2D
microresonatormight already be sufficient for studying themodification of radiation
properties of an emitter placed in such a point defect.

9.4
Internal Emitter

9.4.1
Internal Emitter in Bulk 2D Silicon Photonic Crystals

Silicon itself is a poor light emitter. Recent electroluminscent devices based on silicon
interband transitions are in the region of external quantumefficiencies of about a few
percent. Therefore, one route to optically active systems around 1.3 to 1.5mm are the
use hybrid devices such as HgTe quantum dots incorporated into a silicon photonic
crystals. To incorporate the QDs into the macroporous Si, we prepared QD/polymer
composite tubes within the pores. The polymer matrix embeds and fixates the QDs.
If melts or solutions of a homopolymer are brought into contact with a macroporous
material having pore walls with a high surface energy such as macroporous Si, a
mesoscopic wetting film of about 20 nm covering the pore walls will develop. A
complete filling of the pore volume with the liquid, however, does not occur for high

Figure 9.11 (a) Measured monopole (Q¼ 647) and decapole
resonances (Q¼ 191) of the point defect at wavelengths 3.616mm
and 3.843mm, respectively. (b) SNOM signal recorded for the
resonance at 3.843mm [15].
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molecular weight polymers. Quenching at this stage by solidifying the polymer
results in the conservation of tubules [18]. HgTe QDs were synthesized in water as
previously reported [19] and were transferred to toluene by stabilizer exchange.
Quantum confinement increases their electronic band gap, which amounts to
�0.15 eV for bulk HgTe, to the average value of 0.83 eV. The size distribution of
the particles causes a broadening of the luminescence spectrum from 1300 nm to
1700 nm, which is of use to study the emission modification under the influence
of the photonic band gap. The lifetime of the luminescence is about 10 ns,
nearly exponential and varies with the concentration of nanocrystals [20]. The
suspensions weremixedwith 1wt% solutions of poly(methylmethacrylate) (PMMA,
Mw¼ 120,000 g/mol) and polystyrene (PS, Mw¼ 250,000 g/mol) in the same sol-
vent. To wet the templates, the polymeric solutions containing the dispersed QDs
were dropped on the macroporous Si at ambient conditions. Transmission electron
microscopy verified that QDs are along the pore walls (Figure 9.12a). Since the QDs
are even found in the vicinity of the blind ends of the template pores, they had been
moved over a distance of several tens of microns in the course of the wetting
procedure.
The QD/polymer tubes in solution generally exhibit a strong photoluminescence

(PL) signal corresponding to that of colloidal HgTe QDs suspended in toluene
(Figure 9.12a). In order to investigate the modification of the emission spectrum of
theQDs in a photonic crystal, a hexagonal 2Dphotonic crystal ofmacroporous silicon
(lattice constant 700 nm, r/a¼ 0.45) was prepared and infiltrated with HgTe/PS
composite (weight ratio PS:HgTe of 10:1). The polymer film inside the pores had a
thickness of about 20 nm, hardly effecting the photonic crystals bandgap. The QDs
were excited by an argon-laser (488 nm) with incidence parallel to the pores axes. The
partial spectral overlap of the HgTe luminescence and the fundamental bandgap
allows only the investigation of the upper band edge. Comparing the photolumines-
cence (PL) spectra to reflection measurements a coincidence of the decrease in PL
intensity and the high reflectivity for wavelengths above 1300 nm for TE occurs, as

Figure 9.12 (a) Free space PL spectrum of HgTe/PS tubes with
transmission electron high resolution image of a QD cluster
within a polymer tube wall; (b) PL spectra of HgTe QDs in a
hexagonal 2D photonic crystal of macroporous silicon (lattice
constant 700 nm, TE polarization, r/a¼ 0.45), normalized to the
free space emission spectrum, compared to the corresponding
reflection measurement [19].
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shown in Figure 9.12b. Here, the PL spectrum is normalized to the free space
emission of the HgTe/PS tubes. We believe that the photonic bandgap prevents the
existence and propagation of light in the plane of the 2D crystal [21].

9.4.2
Internal Emitter in Microcavities of 2D Silicon Photonic Crystals

To analyze the change of the emission properties of internal emitters in 2D PhC,
we developed a coupled cavity mask sets. These 2D photonic coupled cavity
structures (see Figure 9.13a) possessed a band gap that overlapped with the emission
ofHgTe-colloidal quantum dots (lemit¼ 1300–1600 nm). The infiltration was carried
out by a novel wetting process described above, allowing well defined positioning of
QDs inside the pores of the photonic crystal cavities [21]. This is of particular
importance since theoretical studies predict that the local density of states varies
within the pore [22]. Since only the central pore of the cavity should be infiltrated with
the emitters, a lithographic process to open only the central cavity holewas developed.
We then succeeded in the local infiltration of the emitters just in every central cavity
hole. Optical characterization by FT-IR spectroscopy of the non-infiltrated samples
shows that spectral dips inside the photonic band gap occur (Figure 9.13b) [22]. Since
the cavities are very large, there are about 18modes inside the photonic bandgap.
Group theoretical analysis determined that about 10 modes couple to a plane wave.
After the local infiltration of the emitters, the broad emission of the quantum dots
was modulated strongly by the resonator modes of the cavities (Figure 9.13c). We
expect from LDOS calculations a factor of 10 in the suppression of the 3D-LDOS for
our configuration. This should be in principle detected by time-resolved
spectroscopy.
We have imaged these infiltrated point-defect structures using confocal micros-

copy in reflection mode [23]. The green excitation (l¼ 532 nm) was focused onto
the sample using a NA¼ 0.95 objective that was also used to collect the infrared

Figure 9.13 Left: SEM-picture of the 2D coupled-
cavity photonic crystal (interpore distance
a¼ 700 nm). (centre) Reflectivity of the non-
infiltrated structure. Inside the photonic
bandgap there are more than 10 cavity modes
which result in a coupling of light to the photonic

crystal even inside the photonic bandgap [20].
(Right) Solid line: Emission spectrum of HgTe
quantum dots which are only infiltrated into the
central pore of the cavity. Dashed line: Emission
of HgTe quantum dots outside the photonic
crystals [20].
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luminescence. As the objective was optimized for infrared, the divergence of the
incident beamhad to be carefully tuned in order for the excitation and detection focus
to overlap on the sample surface. Raster scanning the sample not only provides an
image of the infrared luminescence, as the reflected pump beam provides the
topography of the sample. As shown in Figure 9.14(a), the defect cavities as well
as the underlying lattice are clearly resolved in the scattered light image. This is not
unexpected since the lattice spacing far exceeds the diffraction limit at 532 nm. A
remarkable advantage of the set up, however, is that the resolution at infrared wave-
lengths ismuch smaller than the diffraction limit for the detected wavelength, as it is
set by the focus size of the pump beam. In the scattered light image (Figure 9.14(a)),
the cavities show as bright six-lobed rings, with a central dark spot. Here it should be
noted that the collected signal is light reflected off the sample. The bright ring is
hence explained by the stronger Fresnel reflection of unetched silicon, while the dark
spot is due to the lack of reflection off the central air hole. The topography further
shows a few dark patches apparently uncorrelated to the designed lattice. As further
discussed below, we interpret the reduced reflectivity at those positions as due to 16
islands of (nanocrystal) material with surfaces not aligned along the sample surface,
which therefore do not reflect light towards the detector. Figure 9.14(b) shows
the infrared luminescence collected in parallel with the rasterscan shown in
Figure 9.14(a). The infrared luminescence that was collected by the objective was
detected by a fiber-coupled InGaAs avalanche photodiode (Id-Quantique) without
dispersing it in its spectral components. As we do not detect single dots, the images
represent luminescence over a wide spectrum from 1.3mm to 1.7 mm, as set by the
size distribution of the HgTe dots. The luminescence image demonstrates that
quantum dots have indeed been deposited preferentially inside the defect cavities,
which show as bright dots on a background that is at the dark count level. The few
isolated patches that appear dark in the topography also luminesce brightly, which
validates their interpretation as clusters of HgTe nanocrystals on the surface of the
sample. Close inspection of the cavities in the luminescence images shows a
remarkable feature: the bright spots are not simply gaussian in cross sectional

Figure 9.14 (a) A reflection confocal image of
the sample presented in Figure 9.2. (b) A
luminescence confocal image of the sample. The
bright regions indicate luminescence from
quantum dots. Note that in addition to the
hexagonal pattern of the cavities, one sees other

spots from dots that have ended up on the
surface of the sample during infiltration (see
e.g. the region circled white (red in a)).
(c) Luminescence decay of quantum dots from
a single cavity [21].
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profile. Instead it appears that the cavities also luminesce when the excitation spot is
located on the ring of unetched holes enclosing the central defect hole. Preliminary
fluorescence lifetime measurements demonstrate near single exponential decay,
with a lifetime around15 ns (Figure 9.14(c)). This shows that the quantumdots donot
suffer quenching and are hence promising light sources for probing emission
lifetime modifications in silicon photonic crystals. Our first results, which are
integrated over a wide spectrum do not conclusively confirm that the defect cavities
cause a modified spontaneous emission rate [23].

9.4.3
Modified Thermal Emission

We also measured the spectral modification of the thermal emission of 2D macro-
porous silicon photonic crystals by either heating the photonic crystal directly up to
about 1000K or by introducing inside a 2D photonic crystal a heated tungsten
microwire [24]. To avoid direct emission from the crystal side-surface, the in-plane
emission measurements were carried out using an integrated heat source. A 50mm
diameter tungsten wire was used as local heat source. To guide the wire through
the crystal plane, we etched an area of 100 · 100 mm out of the 2D photonic crystal
membrane. The cutted-out region can be fabricated during the same photo-
electrochemical process as the pore structure itself using appropriate mask geome-
tries [10]. Figure 9.15 shows the complete structure and a zoom of the cutout-region.
A reduced emission of about 20% can be observed for the in-plane emission
spectrum (Figure 9.15) for frequencies in the range from 1250 cm�1 to 2000 cm�1

(marked as region B). A more complicated structure for the out-of plane emission is
found. In particular, in the area of low group velocities in-plane, an enhanced out of
plane emission is observed [24]. This technique can lead to selective thermal emitters
for integrated infrared sensors [25].

Figure 9.15 (left) Optical microscope image of the experimental
configuration. A 50mm tungsten microwire is guided though the
cutted-out section as local heat source. (right) Measured relative
in-plane emission intensity of a homogeneously heated silicon
2D-photonic-crystal perpendicular to the crystal pores [21].
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9.5
Tunability of Silicon Photonic Crystals

Small deviations of the fabricated experimental structures from designed ones
have serious influence on their optical properties. In particular, the design of a
microresonator (point defect) with a well defined resonance frequency in the near IR
allows only fabrication tolerances in the sub-nanometer regime, a demand which
currently can not be fulfilled reproducibly. Additionally, for many applications e.g.
optical switches one would like to shift the band gap during operation. Therefore,
tuning the optical properties during operation is a major point of interest. In the
following we present our recent results on liquid crystal, free carrier and Kerr tuning
of silicon photonic crystals.

9.5.1
Liquid Crystals Tuning

One way to achieve this behavior, is to change the refractive index of at least one
material inside the photonic crystal. This can be achieved by controlling the
orientation of the optical anisotropy of one material incorporated in the photonic
crystal [26]. As proof of principle of the latter, a liquid crystal was infiltrated into a 2D
triangular pore array with a pitch of 1.58mm and the shift of a band edge depending
on the temperature was observed [27]. The liquid crystal E7 is in its nematic phase at
room temperature but becomes isotropic at T> 59 �C.
Transmission forH-polarized lightwasmeasured along theG–Kdirection through a

200mmthick barfirst without and thenwith the infiltrated liquid crystal in the isotropic
regime (Figure 9.16). In the case of room temperature the first stop band of the
H-polarization is observable in the range between 4.4–6mm.Although a large bandgap

Figure 9.16 Temperature dependence of the band edge shift
caused by temperature induced phase transition of the infiltrated
liquid crystal. Solid line: Fit to experimental data points, Dashed
line: Calculation assuming a simple axial alignment of the liquid
crystal in the pores [24].
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for theH-polarization still exists, the complete band gap, which is characteristic for the
unfilled structure, is lost due to the lowered refractive index contrast within the
infiltrated crystal. Therefore the investigationswereonly carriedout forH-polarization.
When the structure is heated up, the upper band edge at 4.4mmis red shiftedwhile the
lower band edge exhibits no noticeable shift. At a temperature of 62degree the red shift
saturates and the total shift amounts to Dl¼ 70nm as shown in Figure 9.16. This
corresponds to 3% of the band gap width. The shift is caused by the change in orien-
tation of the liquid crystal molecules inside the pores. In a simplified model one can
assume that all liquid crystal molecule directors line up parallel to the pore axis when
the liquid crystal is in its nematic phase at room temperature. Then the H-polarized
light (E-field in plane) sees the lower refractive index n0 inside the pores. If the
temperature is increased above 59�C a phase transition occurs and the liquid crystal
molecule directors are randomly oriented. The H-polarized light sees now a refractive
index inside the pores which is an average over all these orientations. According to this
model a red shift ofDl¼ 113nm is expectedwhich is slightly larger than themeasured
one. The difference in the observed and calculated shift has been investigated by
Kitzerow et al. (see this volume) for 2D and 3D macroporous silicon photonic crystals
and is also discussed for other semiconductor materials by Ferrini et al. [29].

9.5.2
Free-carrier Tuning

Fast tuning of the band edge of a 2D macroporous silicon photonic crystals can be
obtained by free carrier injection electrically or optically. In contrast to LQ switching,

Figure 9.17 (A) Band edge shift as a function of the pump fluence,
i.e., the plasma density. A maximum shift of 29 nm at 1.9mm has
been observed in good agreementwith numerical calculations. (B)
Transient behavior of differential reflectivity at l¼ 1900nm for a
pump beam at l¼ 800 nm and a fluence of 1.3mJ/cm2. The band
edge shift within 400 fs with a dynamic of 25 dB [25].
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the refractive index of the siliconmatrix was tuned by optical injection of free carriers
by us [30]. The photonic crystal was illuminated by laser pulse at l¼ 800 nm, so well
in the absorbtion region of silicon, with a pulse duration of 300 fs. The rise time of the
change in the refractive index and thus the shift of the band edge was about 400 fs,
slightly slower than the pulse due to the themalization of the excited carrier
(Figure 9.17). The band edge shift observed goes linearly with the pulse intensity
as expected from Drude theory. For example, for a pump fluence of 2m J cm�2, a
band shift of 29 nmwas observable. Adrawback of the free carrier injection is the long
lifetime of the carriers, here in the ns range due to the high surface area.

9.5.3
Nonlinear Optical Tuning

Another way to change the refractive index dynamically in silicon [31] or even III–V
compound semiconductors [32] is the Kerr effect. Figure 9.18A shows the time
dependent change in reflectivity at 1.3 mm for a 2.0 mm pump pulse and the
cross-correlation trace of both pulses. The pump and probe intensities are 17.6 and
0.5GW/cm2, respectively. The decrease in reflectivity is consistent with a redshift
of the band edge due to a positive nondegenerate Kerr index. The FWHM of the
reflectivity trace is 365� 10 fs which is 1.83 times larger than the pump-probe
cross-correlation width as measured by sum frequency generation in a BBO crystal.
This difference can be explained in terms of pump and probe beam transit time
effects in the PhC. From the pump group velocity and probe spot size, one can
deduce that the reflected probe pulse is delayed by 110 fs within the PhC sample. The
intrinsic interaction times are therefore pulse width limited, consistent with the
Kerr effect.

Figure 9.18 (A) Temporal response of the
reflectivity change at the 1.3 mm band edge
generated by a pump wavelength of 2.0mm with
17.6GW/cm2. The cross correlation trace of the
pump and probe pulses is also shown. (B)
Temporal response of the reflectivity change at

the 1.6mm band edge for different pump
intensities at 1.76mm. The inset shows the
dependence of the carrier-induced reflectivity
change on pump intensity for low pump
powers [31].
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One can estimate a value for the nondegenerate Kerr coefficient n2 in the silicon
PhC from

DR ¼ dR
dl

dl
dn

n2
1�Ru

f
I0; ð9:10Þ

with the steepness of the reflectivity at the band edge dR/dl, the differential change in
band edge dl/dn, the measured pump reflectivity (Ru¼ 0.30) and the effectively
pumped fraction of the sample (f¼ 0.13) due to the non-uniformpumpfield. Because
of the relatively large values of dR/dl¼ 0.04 nm�1 and dl/dn¼ 174 nm, induced
reflectivity changes in the vicinity of the 1.3 mm band edge are found to be 70 times
more sensitive than that in bulk materials for the same refractive index change.
Indeed, when the PhC is replaced by bulk crystalline silicon, no change in reflectivity
is observed for our range of pump intensity.
We found good correlation between the change in probe reflectivity and the

steepness of the band-edge reflectivity (measured separately) at differentwavelengths
and for a range of pump intensities. The linear dependence is consistent with the Kerr
effect and the nondegenerate Kerr index is estimated to be n2¼ 5.2· 1015 cm2/W.
This is within an order of magnitude of the degenerate Kerr index reported in
literature at 1.27mm and 1.54 mm and represents reasonable agreement considering
uncertainty in the lateral position of the pump pulse in and its intensity at the probe
location. It should also be noted that linear scattering losses as the pump pulse
propagates through the PhC along the pore axis have not been taken into account.
Results from experiments used to probe the 1.6 mmband edge when the sample is

pumped with 1.76mm pulses are illustrated in Figure 9.18B which shows the
temporal response of the change in probe reflectivity at different pump intensities
for a probe intensity of 0.13GW/cm2. There is an initial increase and decrease in
probe reflectivity on a sub-picosecond time scale followed by a response that decays
on a time scale of 900 ps and partially masks the Kerr effect near zero delay. At this
band edge, the sub-picosecond behavior is consistent with a Kerr effect similar to the
previous experiments. The long time response could possibly be due to thermal or
Drude contributions to the dielectric constant due to the generation of free carriers.
Using a peak pump intensity of 120GW/cm2 and a two photon absorption coefficient
of 0.8 cm/GW, for 1.55mm as an upper limit, one can estimate the surface peak
carrier density to be smaller than 1019 cm�3 and the maximum change in tempera-
ture to be less than 0.15K. From the thermo-optic coefficient qn/qT� 10�4 K�1 at the
probe wavelength, the change in silicon refractive index is in the order of Dn¼ 10�5

and the (positive) induced change in reflectivity is expected to be about the same.
From free carrier (Drude) contributions to the refractive index at our probe wave-
length, changes to the imaginary part of the dielectric constant are about 2 orders of
magnitude smaller than that of the real part which is Dn¼ 10�3. Hence free carrier
absorption of the probe pulse as well as thermally induced changes can be neglected
in what follows and the change in reflectivity is ascribed to changes in the real part of
the dielectric constant due toDrude effects. At low pump powers the change in probe
reflectivity scales quadratically with pump intensity, consistent with free carrier
generation by two photon absorption. However, at higher pump intensities, there is
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an apparent deviation from this quadratic dependence due to pump saturation effects
as the inset in Figure 9.18 shows. With increasing intensity in a two-photon-
absorption process, an increasing fraction of the carriers are created closer to the
surface where the pump pulse enters and the probe region develops a reduced and
increasingly nonuniform carrier density. We estimate that at a depth of 60mm, the
expected saturation pump intensity is about an order of magnitude larger than the
maximum pump intensity used here. The carrier lifetime of 900 ps is most likely
associated with surface recombination within the PhC sample with its large internal
surface area. Details on the effect of the excitedmodes within the photonic crystal are
discussed in more details in [33,34].

9.6
Summary

In summary we have reviewed that macroporous silicon is amodel system to fabricate
almost perfect 2D photonic crystals for the infrared spectral range. Due to the high
refractive index contrast between silicon and air the bandgaps are large and for a
triangular array of pores a complete bandgap for the light propagating in the plane of
periodicity appears.
In the last few years, we have improved the material technology so that the range

for designs has significantly increased. In particular, the fabrication technology has
focused on the surface truncation of photonic crystals. Based on this material, we
have characterized the linear optical properties in waveguides and microresonators.
In particular, we are able to show the beaming of light exiting W1 waveguides based
on excited surface modes. We also analysed 2D microresonators optically. We have
shown in this case the 2D approximation fails and full 3D simulations are necessary
to interpret the experimental data.
We then infiltrated quantumdots inside the silicon PhC,first in 2Dbulk PhC, then

in specially designed cavities that allow the infiltration with QD. We have seen a
strong spectral change of the emission of the quantum dots inside the microreso-
nators and first lifetime measurement show a slight change in the lifetime in
comparison to quantum dots in solution.
Finally, we studied in detail three different kinds of tuning of silicon photonic

crystals: by liquid crystals, free-carriers and by non-linear effects.
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10
Dispersive Properties of Photonic Crystal Waveguide Resonators
T. S€unner, M. Gellner, M. Scholz, A. L€offler, M. Kamp, and A. Forchel

10.1
Introduction

Since the initial proposal of photonic crystals (PhCs) as a way to modify the optical
properties of dielectrics by a (periodic)modulation of the refractive index [1,2], a wide
variety of physical phenomena, structures and devices based on these fascinating
materials has been reported. Most of the devices and functional elements realized in
photonic crystals use two-dimensional geometries, where a periodic array of air holes
is etched into either a membrane or a solid semiconductor slab waveguide which
provides optical confinement in the vertical direction. The photonic bandgap that
arises from the high contrast of the refractive indices allows the fabrication of very
compact planar waveguide devices [3]. A major part of the experimental work on
photonic crystals has focussed on the intensity response of photonic crystals and
photonic crystal devices. This includes e.g. the demonstration of low loss PhC
waveguides [4], bent waveguides [5], waveguide junctions [6] and the optimization of
quality factor of PhC cavities [7]. However, photonic crystals also exhibit unusual
dispersive properties. A prominent example is the superprism, where the propaga-
tion direction of light in the PhC undergoes large changes if the wavelength of the
incident light is changed by only a small amount [8]. Other types of dispersive PhCs
are e.g. waveguides with small group velocities or with a strong dependence of the
group velocity on the wavelength of the incident light.
Waveguides with a small group velocity are interesting for applications as delay

lines, but also for the enhancement of various light–matter interactions, such as
optical amplification or absorption, electro-optic and non-linear effects. Group
velocities two to three orders of magnitude smaller than those of conventional
waveguides have already been observed in PhCwaveguides [3,9,10]. Another type of
structures with interesting dispersion properties are coupled resonator optical
waveguides (CROWs), which allow a wide control over the dispersion properties
by a change of the waveguide geometry [11,12]. Modes with low group velocities have
already been utilized in PhC based laser devices, where the increased gain of these
modes was used to define the laser mode [13].
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In this paper, we report on the dispersive properties of photonic crystal waveguide
resonators. It is organized as follows: Section 10.2 gives a description of the resonator
design and the fabrication technology. Section 10.3 provides an overview of the basic
optical properties of the waveguide resonators. The setup used for the dispersion
measurements and the dispersion characteristic of the resonatorswill be described in
Section 10.4. An analysis of the results following two different approaches (Hilbert
transformation and Fabry–Perot resonator model) will be presented in Section 10.5.
Section 10.6 discusses the possibility of post-fabrication tuning, which allows an
adjustment of the dispersive properties of the resonators after fabrication and an
initial characterization. A conclusion is given in Section 10.7.

10.2
Design and Fabrication

10.2.1
Resonator Design

The last years have seen an increased understanding of the loss mechanisms in
2D membrane based PhC resonators. It was found that the radiative losses can
be considerable reduced if the envelope of the localized field distribution is as
close as possible to a Gaussian. If the resonant mode is decomposed into its
Fourier components, a mode whose envelope closely follows a Gaussian has very
little Fourier components above the light line of the membrane [14,15]. This
leads to an elimination of loss channels and a corresponding increase of the
quality factor. Based on these principles, a number of new cavity designs were
reported, which deviate remarkably from the early �remove holes from a PhC
lattice� type [7,15]. The design used for this work is based on a heterostructure
cavity [15]. The name originates from the fact that it is composed of several
sections of a W1 waveguide (one missing line of holes in a PhC lattice) with
different lattice periods.
A scanning electronmicroscopy (SEM) image of a heterostructure cavity is shown

in Figure 10.1. The sections which act as mirrors for the cavity (highlighted in
Figure 10.1) have a lattice constant of 400 nm along the direction of the waveguide;
the cavity and the access sections have a lattice constant of 410 nm along the
waveguide. The lattice constant perpendicular to the waveguide remains unchanged
in order to maintain matching lattices. The ratio of hole radius and lattice constant
(r/a) was varied between 0.2 and 0.25.
The W1 waveguide has a mode gap below the lower edge of the guided funda-

mentalmode [7]. Any change of the lattice constant of thewaveguide leads to a shift of
this mode gap. In our case, the smaller lattice constant in the mirror sections results
in a shift of the mode gap to higher frequencies. The resulting position of the mode
gap along the waveguide is shown in Figure 10.2. The gray area above the mode gap
corresponds to the guided modes in theW1 waveguide, the gray area below to either
guided modes or extended modes of the PhC lattice. The difference of the spectral
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positions of the mode gap leads to the formation of an �optical well�, which can
localize light in the cavity (solid green line in Figure 10.2). Light with a frequency
above themode gap of themirror section can propagate through the structure (yellow
line in Figure 10.2). The envelope of the confined mode can by tuned to an almost
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X

Figure 10.2 Upper part: Schematic of waveguide
cavity. The areas with smaller lattice constant are
marked. Lower part: Spectral position of the
mode gap versus position. The structure is
transparent for light with a frequency above the

mode edge of the PhC waveguide with the
smaller lattice constant (blue line). Light with a
frequency just above the mode edge of the PhC
waveguide with the larger lattice constant is
localized in the cavity (green line).

Figure 10.1 Scanning electron microscope image of a PhC
heterostructure cavity. The lattice period of the PhC outside the
marked areas is 410 nm. The ratio of hole radius and lattice
constant (r/a) is 0.2.
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perfect Gaussian shape be a careful adjustment of the lattice constants, resulting in
very large quality factors.
Using this design, quality factors of over 2 · 105 have been reported forGaAs based

cavities [16,17], cavities in Si have reached quality factors of up to 106 [18]. There are
several possibilites to couple light in and out of such a cavity, e.g. by coupling from a
neighbouringwaveguide into the cavity anddetecting the light emitted perpendicular
to the surface [7]. We have used the W1 waveguides before and after the mirror
sections as access guides. The coupling to the access guides (and therefore the quality
factor) can be adjusted over awide range by changing the length of themirror regions.
On the samples discussed in this paper, the length was varied between 5 to 15 lattice
periods in order to realize resonators with different quality factors. At some distance
from the cavity, theW1 is tapered to aW3 in order to increase the coupling efficiency
to the lensed fiber which couples the probe light into the sample. Figure 10.3 shows a
schematic of the entire device including the tapers and the access waveguides.

10.2.2
Fabrication

The PhCs used in this work are based on etched air holes in a membrane, which is
fabricated from a GaAs/AlGaAs heterostructure by a combination of dry and wet
etching [19]. The samples consists of a 240 nm thickGaAs layer on top of a 2 mmthick
sacrificial Al0.7Ga0.3As layer grown on a GaAs substrate by molecular beam epitaxy.
The aluminium content of the sacrificial layer was chosen to be around 70%, in order
to ensure a high selectivity during its wet chemical removal. A 100 nm thick SiO2

layer was sputtered onto the sample, followed by spin coating of a 500 nm thick poly-
methymethacrylate (PMMA) resist layer. The PhC patterns were defined by electron

Figure 10.3 Schematic of the complete device.
The lattice period of the photonic crystal is
400 nm in the marked regions and 410 nm
everywhere else. Access guides with a length of
around400mmand awidth of threemissing lines

of holes (W3 guides) guide the light from the
facets to the cavity. The taper to the W1
waveguide is realized by a gradual change of the
hole radius.
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beam lithography in the PMMA and then transferred into the SiO2 hard mask by a
reactive ion etch step. Subsequently, the holes were etched through the GaAs layer by
electron-cyclotron-resonance reactive ion etching (ECR/RIE). This etch step was
optimized with respect to vertical and smooth sidewalls of the holes. The optimized
process uses a flow rate of 3.5 sccm Cl2 and 27 sccm Ar at a pressure of 3.6· 10�3

mbar, the RFpower was 70Wand the ECR power 250W. The etching time was 200 s,
resulting in an etch depth well beyond the thickness of the waveguide layer. Residual
PMMAwas removed by soaking the sample in pyrrolidon and acetone. The sacrificial
Al0.7Ga0.3As layer was then removed by immersing the sample in diluted HF
solution, leading to the formation of freestanding membranes. This step also
removes the residual SiO2 from the surface. Figure 10.4 shows an electron micros-
copy image of a finished PhC waveguide sample.

10.3
Transmission Measurements

The first characterization was performed in a setup for transmissionmeasurements.
This setup is schematically shown in Figure 10.5. The signal light is provided by
a tunable semiconductor laser with a tuning range between 1460 nm and 1580 nm.
The laser can be tuned in steps of 0.001 nm, which allows a precise measurement of
fine spectral features. The polarization of the launched laser light was adjusted to be
parallel to the membrane (TE polarization) by a fiber polarizer and coupled into
the PhC waveguide by a lensed fiber. Behind the PhC, the light was collected by
a microscope objective (NA¼ 0.35). Since the resonator interacts only with TE
light and is non-existent for TM light, residual TM components of the transmitted
light have to be blocked by a linear polarizer. An adjustable aperture was used to

Figure 10.4 SEM image of a PhC waveguide facet. The access
waveguide is realized by leaving out three lines of holes from the
PhC lattice (W3 waveguide) and is tapered down to a W1 just
before the cavity. The AlGaAs layer below themembrane has been
removed by selective wet chemical etching.
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eliminate stray light. An InGaAs photodiode connected to a lock-in amplifier
measured the light intensity.
An example transmission measurement is depicted in Figure 10.6a. The upper

plot shows the transmission of a W1 waveguide without resonator and a constant
lattice period of 410 nm.For this geometry, themode edge is located around 1532 nm.
For light with a larger wavelength (smaller frequency), the transmission of the
waveguide goes to zero. The lower part of Figure 10.6a shows the transmission of an
actual cavity. The W1 mode edge in this spectrum is now determined by the regions
with the smaller lattice constant of 400 nm, resulting in a shift of the mode edge to
1496 nm. The cavity resonance is located between those two spectral positions and
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Figure 10.6 (a) Upper curve: transmission of a
uniform W1 waveguide with 410 nm lattice
period. Light with a wavelength larger than
1532 nm iswithin themodegapof thewaveguide
and not transmitted. Lower curve: transmission
measurement of a cavity. The additional
waveguide segments with 400 nm lattice period

have theirmode edge at 1496 nm. The resonance
appears a few nm above that mode edge (here at
1502 nm). (b) High resolution scan of the cavity
transmission. The quality factor of this cavity is
220 000 and was determined using a Lorentzian
fit to the data.

Figure 10.5 Setup for transmission
measurements. Light froma tunable laser source
is coupled to the PhC waveguides by a lensed
fiber. The polarizer paddle is used to adjust the
polarization of the light parallel themembrane. A
microscope objective collects the transmitted
light and creates an intermediate image of the

waveguide facet at the opening of an adjustable
aperture, thereby filtering out stray light. The
polarizer blocks residual light with TM
polarization. The IR camera is used to align the
lensed fiber to the waveguide, the signal intensity
is measured by the InGaAs photodiode.
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can indeed be seen around 1503 nm. This transmission characteristic allows a
straighforward alignment of the setup, since the lensed fiber and the optics can
first be adjusted at a wavelength below the mode edge (e.g. at l¼ 1480 nm). A low
resolution scan with a stepsize of typically 1 nm is then used to locate the precise
position of the mode edge. Starting at the mode edge, a high resolution scan is now
used to detect the cavity resonance. Figure 10.6b shows a high resolution scan of a
cavity resonance. The quality factor was determined by a Lorentzian fit to the data and
was found to be 220 000.

10.4
Dispersion Measurements

Measurements of the group delay and the dispersion are not as straighforward as
measurements of the transmission or reflection, since they require either a phase
sensitive detection or time resolved measurement of the transmitted signal.
A number of approaches for measuring group delay and dispersion have been
reported in the literature. One possibility is to use interferometric techniques. In
combination with a near-field scanning optical microscopy, this has been used to
observe the local phase and group velocities of modes propagating in a PhC
waveguide [10]. It is also possible to use an �on-chip� interferometer, e.g. a Mach–
Zehnder, where one arm contains the device under test and the other provides a
reference signal [20]. Another interferometric technique relies on measuring the
spacing of Fabry–Perot fringes, which is inversely proportional to the group velocity
[9,21]. Adirectway to determine the groupdelay is ameasurement of the timedelay of
short light pulses propagating through the PhC structure [22,23]. Finally,
the phase shift technique can be used, which is commonly employed to
characterize the dispersion of optoelectronic components and optical fibers [24].
This technique has been used by a number of groups to investigate the dispersive
properties of PhC waveguides [3,25], resonators [26] and coupled resonator optical
waveguides [12].
In this case, the probe light is modulated with a microwave signal, with the

modulation frequency fmod being typically around 1GHz. The modulation creates
sidebands with a frequency spacing of fmod. The dispersion of the device under test
leads to a phase shift of the modulation sidebands with respect to the carrier wave.
The light signal is detected by a high speed photodiode and converted back to a
microwave signal. The group delay can be calculated from the phase shift j(l) of the
microwave signal by the following equation:

tg lð Þ ¼ � j lð Þ
360� � f mod

: ð10:1Þ

The dispersion is given by the derivative of the group delay with respect to the
wavelength: D¼ dtg/dl.
Figure 10.7 shows the setup for the dispersion measurement. A tunable laser

source is again used as the optical source. The laser light ismodulated using a LiNbO3
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Mach–Zehnder modulator, which is driven by a network analyser. The polarization
was aligned parallel to themembrane (TE polarization) by fiber polarizer paddles and
injected into the PhC waveguide by a lensed fiber. Behind the sample, the light was
picked up by a second lensed fiber and residual TM polarized light was removed by a
linear polarizer. An erbium doped fiber amplifier is inserted into the optical path in
order to compensate the coupling losses, the losses of themodulator and the losses of
thePhCdevices. The amplifier is inserted into the optical signal path after the sample,
since probing the resonators with a high input power can lead to nonlinear effects
(predominantly twophoton absorption), whichwill degrade the quality factor [27].We
estimate that the power coupled to the resonators is on the order of 10mW, which is
low enough to avoid nonlinear effects. A high speed optical receiver converts the
optical signal back to a microwave signal, which is then analysed by the electrical
network analyser (NWA). The phase sensitive detection of the microwave signal by
theNWA allows a simultaneousmeasurement of the resonator transmission and the
phase shift.
The choice of the modulation frequency fmod is determined by two competing

factors. On one hand a larger frequency enlarges the phase shift of the signal, thereby
increasing the accuracy of the phase measurements. On the other hand, the spacing
of the sidebands created by the modulation should by smaller than the spectral
features of the device under test. For most of our measurements, a modulation
frequency of 2GHz was chosen. At a signal wavelength of 1.5 mm, this leads to
sidebands with a spacing of 16 pm from the carrier wavelength. Figure 10.8 shows a
measurement of the resonator transmission and the phase shift of the microwave
signal.
This measurement was performed with a modulation frequency of 2GHz. The

transmission curve shows a resonance at 1558.9 nmwith a quality factor of 48000. At
the position of the resonance, the phase measurement shows a dip. The propagation
of light is delayed on resonance, which results in a phase lag of themicrowave signal.

Figure 10.7 Setup for group delay
measurements. The left part of the setup is
similar to the one used for the transmission
measurements, the only extra component is an
optical modulator which is driven by a network
analyzer. The transmitted light is picked up by a

second lensed fiber. Residual TM light is again
filtered out by a linear polarizer. In order to
compensate the coupling losses to the PhC
waveguides, an erbium doped fiber amplifier
(EDFA) amplifies the light before it is fed into the
optical port of the network analyzer.
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Using Eq. (10.1), the phase difference of 51� can be translated into a group delay of
71 ps. The scatter of the phase shift for wavelengths outside the resonance is caused
by the small transmission in these regions. By taking the derivative of the groupdelay,
one obtains the chromatic dispersion, which is shown in Figure 10.9. Theminimum
and maximum values of the dispersion are –1.635 ns/nm and 1.766 ns/nm, respec-
tively. A typical single mode optical fiber has a dispersion of 17 ps/nm/km. With the
measured anomalous dispersion of –1.635 ns/nm in this cavity, it is possible to
compensate for the normal dispersion of around 100 km of optical fiber.
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Figure 10.9 Dispersion corresponding to themeasurement of the
group delay plotted in Figure 10.7. The dispersion has amaximum
of 1.77 ns/nm and a minimum of �1.64 ns/nm.
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Figure 10.8 Tansmission (dotted line) and phase shift (solid line)
measurement of a heterostructure cavity. The quality factor is
Q¼ 48000 and the phase shift on resonance 51�, which translates
into a group delay of 71 ps.
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The highest group delay observed was 132 ps in a cavity with quality factor 81600.
In this case, the mirror regions had a length of 12 lattice periods. This results in an
effective length of the resonator (distance between the two outer edges of themirrors)
of 10.4 mm. The propagation speed of resonant light through the cavitiy is therefore
7.9· 104m/s, which corresponds to c/3800. For this cavity, the dispersion reaches
values of up to �2.9 ns/nm.

10.5
Analysis

10.5.1
Hilbert Transformation

The operation of any linear optical device on an optical signal can by described by its
impulse response function h(t), which satifies the causality relation h(t)¼ 0 for t< 0,
where it is assumed that the impulse is applied at t¼ 0. Alternatively, the filter can by
described by the frequency transfer functionH(o), which is the Fourier transform of
the impulse response. If the impulse response function h(t) is real, satifies the
causality relation and has no singularities at t¼ 0, then the real and imaginay parts of
the corresponding transfer function H(o)¼R(o)þ I(o) are related by a pair of
Hilbert transforms:

IðwÞ ¼ 1
p
P
ð¥
�¥

Rðw0Þ
w�w0 dw

0; ð10:2Þ

RðwÞ ¼ � 1
p
P
ð¥
�¥

Iðw0Þ
w � w0 dw

0; ð10:3Þ

whereP denotes the principal value of the integral. These relations can be established
because the Fourier transform of a real and causal function is analytic in the upper
half of the complex plane. A well known example is the Kramers–Kronig relation,
which connects the real and imaginary part of the dielectric constant. In case of
optical filters however, one does not usually have access to the real and imaginary part
of the transfer function, since a transmission measurement determines only the
magnitude of the transfer function. However, it is still possible to determine the
phase [28]. The transfer function has to be rewritten such that:

HðwÞ ¼ exp ð�bðwÞÞ exp ðifðwÞÞ: ð10:4Þ

Now |H(o)|¼ exp (�b(o)) is the magnitude of the transfer function and f(o) its
phase. Taking the logarithm of Eq. (10.4), we obtain:

log ðHðwÞÞ ¼ � bðwÞ þ ifðwÞ: ð10:5Þ
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The logarithm of H(o) has to be analytic in the upper half of the complex plane.
In particular H(o), must not have any zeros in this region. This is not always the
case for optical filters, a prominent example is the Gires-Tournois interferometer,
which has a reflection of 100% for all wavelengths, but a quite complex phase
response [24]. The condition is however met for Fabry–Perot resonators and
Eqs. (10.2) and (10.3) can be applied. Although we cannot strictly show that the
condition is met for the PhC resonators presented in manuscript, the similarity
to Fabry–Perot resonators gives us resonably confidence that the Hilbert
transform can be applied in this case. b(o) can be calculated from a transmission
experiment and Eq. (10.2) can be used to determine the phase f(o). The group
delay can then be obtained by taking the derivative of the phase with respect to the
wavelength:

tg ¼ qfðwÞ
qw

: ð10:6Þ

Figure 10.10 shows themeasured transmission of a resonator and the group delay
calculated using the Hilbert transform oulined above. The measured and calculated
values agree very well. As already discussed above, the small signal intensity in the
regions outside the resonance leads to an increase of the noise. The ripple on
the calculated curve is a result of the derivative (Eq. (10.6)), which is used to calculate
the group delay from the recovered phase information. The small peaks on the left
and right of the resonance are most likely Fabry–Perot resonances of the entire
sample. The smaller quality factors of these resonances result in a smaller group
delays, visible in both the measures and calculated values.
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Figure 10.10 Tansmission and group delay of a PhC resonator.
The solid line corresponds to the measured group delay, the
dotted line is the group delay calculated from the transmission by
using a Hilbert transformation.
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10.5.2
Fabry–Perot Model

The heterostructure cavity consists of a cavity region sandwiched between a pair of
mirrors, resembling the design of a Fabry–Perot (FP) cavity. For the equivalent FP
resonator, the mirror waveguides can be replaced by effective mirrors with an
effective reflectivity R and spacing L. Adding up the amplitudes of transmitted and
reflected beams leads to the complex transfer function of the FP resonator:

HðwÞ ¼ Te� id=2

1�R e� id : ð10:7Þ

T denotes the (intensity) transmission coefficient and R the (intensity) reflection
coefficient of the mirrors. The phase shift of the light after one round trip in the
resonator is d. For a lossless resonator, we have TþR¼ 1. With this function,
the phase delay of the transmitted light f(o) can be calculated by taking the phase of
the complex transfer function.

fðwÞ ¼ � arctan
1þR
1�R

tan
pw
wFSR

� �
: ð10:8Þ

In the latter equation, we have introduced the free spectral range oFSR of the
Fabry–Perot resonator, which is the spacing of the resonances. Taking the negative
derivative with respect to the frequency gives the group delay as a function of
frequency:

tgðwÞ ¼ p
wFSR

1�R2

1þR2 � 2R cos 2pw
wFSR

� � : ð10:9Þ

For high quality factors, themirror reflectivity is very close to unity. Taking this into
account and including the quality factor of the FP resonator given by:

Q ¼ wres

Dw
¼ wres �R1=2 � p

wFSRð1�RÞ ð10:10Þ

one ends up with a linear relation between the group delay and the quality factor:

tg ¼ 2Q
wres

: ð10:11Þ

Figure 10.11 shows a series of measurements of the group delay for cavities with
different mirror sections, and therefore different quality factors.
As expected, cavities with larger quality factors have also larger group delay. The

scatter of the phase for wavelengths out of resonance leads to an uncertainty of the
group delay (error bars in Figure 10.11), which was calculated from the standard
deviation of the phase out of resonance. The straight line was calculated using
Eq. (10.11) for an average resonance wavelength of 1530 nm.
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10.6
Postfabrication Tuning

The ability to adjust the resonance wavelength of the cavities after fabrication and an
initial characterization is highly desirable. Due to the high index contrast of the PhC,
even small, nm-size deviations from the target geometry result in significant changes
of the resonance wavelength. This leads to a scatter of the resonance wavelength of
several nm for nominally identical structures. In order to tune the resonance to a
given wavelength, a precise postfabrication tuning method is therefore required.
Several techniques for tuning the resonant wavelength have been investigated. The
first one is a chemical etching technique refered to as digital etching [17,29]. In a
traditional etching method, the etching time defines the etching depth. In this
method, the etch depth is defined by the number of etching cycles andnot the etching
time, allowing a precise control of the etch depth. One etching cycle consists of two
steps. In the first step an oxide is grown on the surface of the sample. This is done
either by a wet chemical oxidation or by exposure to an oxidizing gas. In the next step,
the oxide (and only the oxide) is removed by soaking the sample in a selective etchant,
which in our case is HCl. This enlarges the hole radius and thins the membrane,
leading to a blueshift of the resonance. Part a) of Figure 10.12 shows the wavelength
shift of two samples. The oxidation was performed by a simple exposure to ambient
conditions. After 10min (30min) of air exposure, the position of the resonance was
measured and the oxide layer was removed by another soaking in HCl solution.
Tuning steps as small as 1.9 nm (2.6 nm) per etch cycle were achieved.
A different tuning method uses the shift of the resonance towards longer

wavelengths with increasing temperature. This is caused by the temperature depen-
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Figure 10.11 Group delay versus quality factors for different
cavities. The error bars are estimated from the scatter of the phase
for wavelengths out of resonance, which leads to an uncertainty of
the group delay. The solid line depicts the theoretical group delay
for a resonance wavelength of 1530 nm.
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dence of the refractive index, which in case of a semiconductor increases with
temperature. Part b) of Figure 10.12 shows thewavelength shift of the resonancewith
increasing temperature. The linear shift has a slope of 0.1 nm per degree Celsius.
There is no significant change of the quality factor around its average value of 86500
as the temperature is changed.

10.7
Conclusion

We have fabricated PhC waveguide resonators in GaAs membranes with quality
factors of up to 220 000. The group delay of light propagating through the resonators
wasmeasured using a phase shift technique. Amaximum group delay of 132 ps for a
cavity with a quality factor of 82 000 was observed. The group delay was found to be
proportional to the quality factor of the cavity. These results are in line with values
published by other groups. Photon lifetimes of 9 ps (which correspond to a group
delay of 18 ps) were observed for cavities with quality factors of 12 000 [22]. Cavities
with extremely high quality factors of 1.2· 106 have been reported to store photons
for as long as 1 ns [23].
The cavities discussed in this paper have an overall length of 10.4 mm, yielding a

propagation speed of 7.88· 104m/s (c/3800) for the light transmitted through the
structure. This is smaller than the effective propagation speed observed in PhC
waveguides, which is on the order of c/1000 – c/100 [9,10].However, this comes at the
expense of a smaller bandwidth, which is on the order of a few pm. The dispersion of
resonators with group delays of 71 ps is around 1.7 ns/nm, which is equivalent to
100 kmof standard opticalfiber. This ismuch larger than the dispersion realizedwith
PhC cavities on slab waveguides, which had quality factors of only 12 000 and
dispersions of up to �250 ps/nm [26].

Figure 10.12 Wavelength shift for different
tuning methods. (a) Wavelength shift after
several cycles of digital etching. Oxidation was
performed by 10min (circles) and 30min
(triangles) of air exposure, resulting in
wavelength shifts of 1.9 nm and 2.6 nm per

etch cycle. (b) Wavelength (solid circles) and
quality factor (open rectangles) versus sample
temperature. The change of the refractive index
with temperature leads to a wavelength shift of
0.1 nm per K. The quality factor remains
constant.
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Two different models were used to analyse the measurements, one where the
group velocity of the transmitted light was reconstructed from the transmission
amplitude using a Hilbert transform, and a second one based on replacing the PhC
cavity with an equivalent Fabry–Perot resonator. The group delay determined by the
Hilbert transform and themeasured values were found to be in good agreement. The
Fabry–Perot model predicts a linear increase of the group delay with increasing
quality factor, which was also observed in the experiments. Two postfabrication
techniques, which allow an adjustment of the resonance position (and hence the
dispersive properties) after an initial characterization of the resonator, were investi-
gated. Digital etching allows a discrete tuining of the resonance position by a
controlled removal of material, whereas a change of the temperature leads to a
continuous change of the resonace position cause be the temperature dependence of
the refractive index.
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Polymer Based Tuneable Photonic Crystals
J.H. W€ulbern, M. Schmidt, U. H€ubner, R. Boucher, W. Volksen, Y. Lu,
R. Zentel, and M. Eich

11.1
Introduction

A long standing challenge in photonics is the implementation of a nanophotonic
circuit into a non-centrosymmetricmediumwhich exhibits a second-order nonlinear
optical susceptibility based on electronic displacement polarization. The inherent
quasi-instantaneous response of the nonlinear polarization in suchmedia generates
the potential of ultra fast electro-optical sub micrometer photonic devices with
switching bandwidths well beyond 100GHz. Such functionalities will play a vital
role in next-generation computer technologies whichwill employ optical chip-to-chip
and even on-chip optical communications on micron dimensions.
Optically transparent dielectrics which are periodically structured in one, two, or

three dimensions generally are called photonic crystals (PhCs) [1,2]. The structur-
ing typically results in frequency gaps which inhibit propagation of waves at such
frequencies. Discontinuities or defects implanted on purpose into the otherwise
regular lattice lead to localized states which provide the option for micron-sized
waveguides [3,4] and optical resonators of high quality-factors [5–8]. We concen-
trate on photonic crystal slabs from optical slab waveguides into which vertical
holes are drilled and which typically exhibit gaps for transverse electric (TE)
polarization.
The concept proposed here utilizes the ultra fast response times of the Pockels

effect, which is a second-order nonlinear optical effect based on electronic displace-
ment polarization. This effect can only be observed in noncentrosymmetric media,
such as single-crystallineGaAs, poled LiNbO3, and in special poled organic polymers
which carry nonlinear optically active groups. Covalently functionalized organic
nonlinear optical polymers [9] poled using high-field strengths have been shown to
exhibit very high electro-optical susceptibilities from several pm/V to well above
100 pm/V [10,11]. These materials can be structured on submicron scales to form
photonic crystal slabs [12]. Whenever direction independent stop gaps are not
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needed, such as in ultra refractive dispersive photonic crystals and in one dimen-
sional resonators the relatively small air-polymer refractive index contrast does not
impose a particular disadvantage.

11.2
Preparation of Photonic Crystal Structures in Polymer Waveguide Material

11.2.1
Materials

PMMA/DR-1 [12], APC (amorphous polycarbonate) and TOPAS� (a copolymer of
ethylene and a cycloolefin) which can be doped and covalently functionalized with
molecules that possess strong second-order hyperpolarisability, were used as the
waveguide cores. These materials are advantageous for photonic crystal structures
because they show very low optical waveguide losses in the near infrared regime
around 1300 nm (<1.0 dB/cm) due to their amorphous structures and the low
absorption of their constituents. Typically, these polymers have a refractive index
of n¼ 1.54 at a wavelength l¼ 1300 nm.
PMMA/DR-1 is a poly(methyl methacrylate) polymer in which 10mol% of its

monomeric units are covalently functionalized with the nonlinear chromophore
�disperse red� as a side group [12]. PMMA/DR-1 has a glass transition temperature of
Tg¼ 113 �C. It is a second-order nonlinear opticalmedium,which can be used for the
realization of electro-optical photonic crystals. APC (amorphous polycarbonate) and
TOPAS� have much higher glass transition temperatures (Tg¼ 180 �C to 203 �C)
than PMMA/DR-1. Higher Tg-polymers are advantageous because they hinder the
reorientation of the chromophores and prevent the relaxation of their non-linear
optical properties (NLO) at ambient conditions after poling,which is used to break the
centrosymmetry of the polymer and create a bulk second-order nonlinear polarisa-
bility in the material.
The polymers were spin coated and dried using a baking procedure. The whole

waveguide stack, consisting of a 1.5 mm thick waveguide core layer and an optical
waveguide substrate (described below), were deposited on n-doped polished or
oxidized 300-[100]Si-wafers.
The fabrication of the PhC structures involved two different waveguide substrate

materials: amorphous poly (tetrafluoro-ethylene) (a-PTFE, Teflon, DuPont) with a
refractive index of n¼ 1.30 at l¼ 1300 nm (Figure 11.1a) and an ultra low refractive
index �air like� mesoporous silica substrate with n¼ 1.14 at l¼ 1300 nm,
(Figure 11.1b). This �air-like� material has an air-filling fraction of 70%. It provides
a higher vertical index contrast than the Teflon layer, and a nearly symmetric vertical
index profile, which reduces the mode mismatch in the perforated region of the
waveguide between core and substrate. Consequently, the PhC structures made on
low index substrates are easier to fabricate because only a small over etch into the
substrate is needed to achieve total internal reflection at the core/substrate bound-
ary [13] and reduce optical losses.
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11.2.2
Fabrication

The fabrication of the PhC pattern starts with an electron beam lithography step in
which the etch mask is created. On top of the polymer waveguide, an e-beam resist
and a thin NiCr-film are deposited. The patterns of the resist mask are transferred
into theNiCr-film by Ar ion beam etching. TheNiCr-hardmask serves as themask in
the subsequent deep etch into the waveguide and the substrate layer (Figure 11.2).
The fabricated two-dimensional PhCs consist of a slab waveguide perforated by a

periodic array of air holes. The introduction of defects into the PhC structure leads
to states in the band gap, which can be used to form high Q cavities or PhC defect
waveguides. Designed for an optical wavelength of about l¼ 1300 nm the lattice of
the finite two dimensional photonic crystal consists of two sections of square hole

Figure 11.1 SEM-images show cross-sections of �tapered� line
defect resonators (hole widths from 160nm to 300 nm, period
485 nm, a top view is shown in Figure 11.4); (a) PMMA/DR-1 on
Teflon, etch depth: 4mm, aspect ratio (hole width: hole
depth)¼ 1:13, (b) PMMA/DR-1onmesoporous silica, etchdepth:
1.5mm, aspect ratio¼ 1:5.

Figure 11.2 Sketch of the overall fabrication process.
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lattices with hole diameters of around 300 nm and a lattice constant (period) of
485 nm. Typically, both sections were 8000 lattice constants wide and 10 lattice
constants long and were positioned with a separation of 3 or 4 lattice constants,
thereby creating a W3 or a W4 linear defect (10_3_10, see also Figure 11.10b),
respectively. In addition, a sophisticated version of the waveguide slab, the so called
radius tapered line defect resonator, was fabricated in both material combinations
(Figure 11.4b). In the tapered resonator the region between the two sectionswasfilled
by a hole array with variable hole diameters from 160 nm to 300 nm and a period of
485 nm. Simulations show that such structures should enhance the Q-factor of the
mirror by a factor of 10 compared to the PhCs without a taper section [5–8].
Foresi-like resonators [14] are planar ridge waveguides with hole arrangements

in the waveguide (see Figure 11.3). The fabrication of the ridge waveguides
starts with the realisation of the Au-electrodes and the alignment marks. On the
300 wafer the 100 nm thick Au-structures were deposited by using a lift-off process.
Afterwards, the polymer waveguidematerial was spun, baked out, either poled or not
poled and the above mentioned NiCr- and PMMA-film were deposited. The etching
procedure then continued in the same manner as established for the line-defect
resonators. The planar waveguides have a tapered width, beginning at the wafer
edge with a width of about 4mm and reducing to a width of 700 nm near the
electrodes. By using the alignment marks the large scale pattern (waveguide taper)
was exposed bymeans of the shaped e-beammachine and the inner and high quality
part of the structure was exposed using the Gaussian e-beam tool in the same run.
For the e-beam writing step two shaped beam machines (ZBA23H – 40 keV,

SB350OS – 50 keV) and in special cases a Gaussian beam writer LION LV-1 (20 keV)
were used. The ZBA23H is an older shaped beamwriter with a resolution of down to
200 nm, with the capability to handle up to 600 substrates. The SB350OS is a state-of-
the-art shaped beam machine, which can fulfil the 65 nm node requirements of the
semiconductor industry, deal with 300mm substrates and can be used to undertake

Figure 11.3 SEM-images show a planar ridge waveguide with
Foresi-like resonator pattern etched in PMMA/DR-1 on
mesoporous silica (e-beam: LION-LV1). The planar waveguide
has a width of 700 nm and the holes in the waveguide are between
160 nm and 300 nm in diameter.
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very accurately placed and relatively fast e-beam exposures down to sub-100 nm
structures over large areas. Because of the change from the ZBA23H to the SB350OS
strong improvements of the pattern shape quality (i.e. the circularity of the holes)
and the pattern placement (grating arrangement) were achieved (Figure 11.4). The
e-beam system LION-LV1 providesminimal Gaussian beam diameters from 2nm at
20 keV to 6 nm at 2.5 keVand has a high precision 600-x,y-stage. All these e-beam tools
aremade byVistec ElectronBeamGmbH (formerly LeicaMicrosystems Lithography
GmbH). These tools are compatible and allowMix&Match-procedures based on the
use of alignment marks.
For the e-beam lithography resist ARP671 (a PMMA from Allresist GmbH) was

used. The PMMA combines high resolution with high process reproducibility and
lifetime, but it has only low e-beam sensitivity, and also low ion beam etch resistance.
By using a resist thickness of 300 nm the ARP671 allows the reproducible realisation
of micro holes with diameters of down to 160 nm in the 50 nm thick NiCr-hard
mask. The resist film was prepared by the spin-coating technique and baked for 1 h
at 100 �C on a hotplate. This relatively low temperature (normally used: 1 h at 180 �C)
was chosen because of the Tg of the waveguide and substrate polymers. In order to
avoid charging effects during the e-beam exposure the resist is covered with a 10 nm
Au-film. After e-beam exposure the Au-film is removed and the development is
carried out for 60 s at 21 �C in a 1:1 mixture of methylisobutylketone (MIBK) and
isopropanol (IPA). More details about the e-beam exposure of the PhC structures
are described in [15].
In order to achieve highquality submicronholeswith diameters of down to 160 nm

and an etch depth of 4 mm (into the PMMA/DR-1/Teflon-system) a hard mask of
50 nm NiCr was used. The NiCr-layer was deposited by Ar ion beam sputtering.
During the patterning, the e-beam written resist mask is transferred by Ar ion beam
etching (IBE) into the NiCr-layer. The NiCr-mask is needed as the etch mask for the
subsequent electron cyclotron resonance (ECR) etch process. The results of the

Figure 11.4 SEM-images of resist masks written with the
different e-beam tools; (a) ZBA23H, an older e-beam writer (error
of image placement<150 nm over a 600 wafer) and (b) the �65 nm
node� e-beam writer SB350 OS (error of image placement
<18 nm over a 600 wafer).

11.2 Preparation of Photonic Crystal Structures in Polymer Waveguide Material j205



complete mask making process are holes with an average deviation from the design
diameter of about þ10%, i.e. 30 nm for a 300 nm diameter.
For the pattern transfer of the NiCr-mask into the waveguide core and the

waveguide substrate an ECR high-density plasma system with a radio frequency
(RF) biased substrate was used [16]. A big issue for the ECR etching step is the
realisation of cylindrical shaped holes with the designed hole diameter and hole
depth. The etch result depends on several process parameters like the RF- and the
ECR-power, and the choice of and the mixing ratio of the etch gases.
The holes are etched through the core into the substrate in order to reduce the

effective refractive index of the substrate. Consequently, total internal reflection at the
core/substrate boundary is achieved [17]. For PMMA/DR-1 on mesoporous silica
little etching is needed into the underlayer, because the already high index contrast
demands only a small over etch into the waveguide substrate. For PMMA/DR-1 on
Teflon the opposite situation is at play, the low index contrast needs a large over etch
into the waveguide substrate. The PMMA/DR-1, etched with a mixture of O2 and Ar,
has a very high etch rate, 800 nm per minute for 250 nm diameter holes. The Teflon
etches with a large rate of 5.04mm per minute. Large aspect ratios can be achieved,
16 nm for 250 nm diameter holes [18], see also Figure 11.1a. Good mask to hole
diameter integrity and cylindrical holes are achieved when using high biases on the
substrate.
The applied substrate bias, along with the gasmixture have been found to have the

strongest influence on the etch rate and hole shape. A reduction in the amount of O2

in the O2/Ar gas mixture causes the etch rate to reduce. This is especially noticeable
when there is a >2 times higher Ar than O2 flow rate. For pure Ar plasmas the etch
rate drops down to a few tens of nmperminute. Conversely, for pureO2plasmas large
etch rates are achieved, but with the penalty of an increased amount of undercut.
Therefore, a compromise is needed in order to obtain a balance between the hole
shape and etch rate.
The RF power influences the bias on the substrate and as a consequence both the

etch rate and the amount of under cut seen, where this decreases with increasing
bias. Therefore, a higher bias is desirable, especially as it also increases the etch rate.
Both the ECR power and substrate-resonance region separation have an influence on
this bias, in that for both a higher ECR power and for a smaller separation lower
biases are generated across the substrate. Therefore, a low ECR power and large
separation is desirable. Added to this the polymers are often mechanically and
thermally sensitive and the heating power of the plasma can damage them. Conse-
quently, good thermal contact of the sample to the substrate is a pre-requisite.
For some systems such as BCB (Benzocyclobutene), Ta2O5 and SiO2 it is also

possible to find a regime where a small bias on the substrate can be used and still
straight walls can be achieved (Figure 11.5). This occurs because there is some
polymerisation on the surface, in the case of SiO2 and Ta2O5 due to the etch gas
(typically CHF3 and/or CF4).
The polymerisation rate on the sidewalls of the holes then finds a balance with the

wall etch rate at some low bias such that no undercut is caused. However, at the
bottom of the holes the etch rate is still higher than the polymerisation rate and so
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overall etching occurs. BCB contains Si and a surface coating is formed with O2 so
that thismaterial can also be etchedwith a small biaswithout any undercut.However,
this is not the case for most polymers when etched in O2. For these material etch gas
combinations no surface protection layers are formed and so reducing the bias just
has the effect of continually widening the holes. With the addition of some CHF3 on
the other hand a small bias regime can be established where there is little or no
undercut because of its polymerisating nature. Some etching results using the
regime are shown in Figure 11.6 forAPCandTOPAS�. For the high bias regimeAPC
andTOPAS� etchwith a rate of 500–700 nmmin�1.However, for the lowbias regime
this reduces ten fold.

Figure 11.5 Dependence of the hole width on applied substrate
bias. The widening is defined as the difference between the hole
entrance width and the wider region divided by the hole entrance
width.

Figure 11.6 SEM-images showing PhCs etched in (a) TOPAS�

(e-beam: ZBA23H) and (b) APC (e-beam: SB350OS).
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In order to reduce the optical losses of the resonators it is important to etch the
holes completely through the waveguide layer [17]. However, the achieved etch depth
during the etching of very small holes (<1mm) is strongly dependent on the hole
diameters, as shown in Figure 11.7a and demonstrated in the cross-sectional SEM-
image of Figure 11.7b. This behaviour was found for PMMA/DR-1 and TOPAS�.
Etch tests in APC using in addition to O2 and Arþ some CHF3 have shown that also
very small holes can be etched completely through the waveguide layer, i.e. the etch
rate difference between larger and smaller holes has been reduced.

11.3
Realization and Characterization of Electro-Optically Tuneable Photonic Crystals

11.3.1
Characterization

A schematic representation of the employed EO-modulation apparatus, which was
used to characterize the transmission behaviour of the PhC line defect resonators
with applied electricfield, is shown in Figure 11.8. The tuneable laser sources provide
light in thewavelength range from1260–1640 nmwith a linewidth of 0.01 nmwhich
allows spectral transmission measurements with very high resolution. To couple
light into to the slab waveguide the prism coupling technique was used. Prism
coupling allows mode selective coupling to the waveguide [18]. The coupling angle
depends on the selected wavelength and has to be adjusted accordingly. For this
reason, the sample together with the prism is mounted on a rotation stage, which is
driven by a steppermotor. The transmitted light is collected froma cleaved edge of the
wafer with a germanium photo diode. The electric signal of the detector is fed to a
lock-in amplifier, a multimeter and finally into the recording computer.

Figure 11.7 (a) Dependence of the etch depth inside the hole on
the hole diameter for a fixed etch time (TOPAS�, Arþ/O-ECR,
e-beam: ZBA23H), and (b) a visual example of this dependence.
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The EOmodulation is performed by applying amplified AC voltages provided by a
frequency generator to the sample electrodes. The lock-in amplifier, which is locked
to the frequency generator, is capable to detect the very small changes in transmis-
sion. In contrast, the multimeter signal remains unaffected, since the modulated
signal is too small to be detected with the multimeter. It has been verified experi-
mentally, that applying voltages of up to 400V or disconnecting the lock-in do not
induce any changes in the multimeter signal output. Consequently the transmit-
tance, which is recorded by the multimeter, is separated from the modulation
response via the lock-in technique. In addition, higher order modulation harmonics
are also measurable, because the lock-in amplifier performs generally a Fourier
transformation of the injected signal. This also imposes a strong requisite on the
modulation signal quality. Since any deviations of the AC voltage from purely
sinusoidal oscillationswould induce parasitic contributions in the higher harmonics,
the single frequency characteristics of the signal has been checked up to 20 kHz and
400V by performing a Fourier analysis of the electric modulation signal. The phase
correlation between the stimulating voltage and the EO-response is also accessible,
since the lock-in technique provides a phase sensitive measurement method.
The presented setup can be used to investigate the fundamental properties of the

EO-modulated PhC line defect resonators in three different ways. Firstly, it can be
used for basic transmission measurements, without an applied modulation voltage,
to determine the passive transmission spectrum of the PhC structure. Secondly, it
allows varying amplitude measurements to find the relation between modulation
voltage amplitude and the modulated optical signal. The laser is fixed at the desired
wavelength and the detected optical signal strength is recorded by the computer as a
function of applied voltage to the electrodes. Lastly, the setup can be employed for
varying wavelength measurements where the modulation response as a function of

Figure 11.8 Schematic diagram of the EO-modulation setup.
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wavelength is recorded. For this purpose the modulated optical signal is recorded
while changing the emissionwavelength and keeping themodulated signal constant.
Light at vacuumwavelengths between 1260 nm and 1360 nmwas coupled into the

slab waveguides. The photonic crystal resonators were first characterized with
respect to their transmission spectra in the absence of an external modulation
voltage. After that, the wavelength was selected at which the first derivative in the
Lorentzian fit to the resonator transmission spectrum achieved its maximum
(lr¼ 1340 nm). Sinusoidal AC voltages with amplitudes between 0.5 V and 100V
and at frequencies between 200Hz and 104Hz (a high radio frequency setup was not
available, which limited the possible bandwidth for characterization) were then
applied at the gold electrodes formodulation. Transmission signals were guided into
a lock-in amplifier where themagnitude of the relative transmissionmodulation was
recorded both at fundamental and second-harmonic frequencies. In order to
separate electromechanical effects, such as a piezo-electrical response and electro-
striction from the Pockels effect response, a piezo-stabilized symmetrical Mach–
Zehnder interferometer (MZI) was set up into which the samples were placed as one
of the two mirrors. With this MZI operating at a wavelength of 632.8 nm a field-
induced thickness change of our samples could be detected with a resolution
of �0.1 nm.

11.3.2
Experimental Results

In order to create the necessary noncentrosymmetric order of the DR-1 nonlinear
side groups, a subset of the structured samples was corona poled at elevated
temperatures under high electric field (Epol� 1MV/cm). While the poling field was
applied, the samples were cooled down to room temperature. A second 2.5 mm thick
layer of Teflon carrying a top gold electrode was placed on top of the PhC via decal
technique [17].
The structures are excited in the GX direction, from the band diagram it can be

seen, that in this propagation direction frequencies within the stop gap cannot
propagate (Figure 11.9). By leaving out lines transversal to the direction of propaga-
tion a Fabry–P�erot resonator structure is formed. For the in-plane propagation
direction GX, a distinct Lorentzian-shaped transmission maximum was observed
(Figure 11.10). The wavelength of maximum transmission (1333 nm) comes close to
the centre of the stop gap (which extends from 1200 nm to 1410 nm) of our photonic
crystal slab at the X-point [18].
The laser sourcewas tuned to thewavelength of themaximumof thefirst derivative

of the Lorentz curve lr. Applying a modulation field across the slab causes a
refractive index change Dn in its electro-optically active PMMA/DR–1 core of
Dn¼�0.5r33n

3Emod. All optical characterization was carried out on waveguides
using PMMA/DR–1 as core material, even though it has only a moderate electro-
optic response. However, it is available with the required chemical quality and
quantity. An outlook for newer materials with potentially better nonlinear perfor-
mance is given in Section 11.4.
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Themodulation field strength Emod was calculated from the applied voltage taking
into account the thicknesses and dielectric constants of the different layermedia. The
electro-optical coefficient r33 was measured separately on indium-tin-oxide coated
glass substrates by an ellipsometric technique [19] (8 pm/V at 632.8 nm) and proved
to be stable over ten weeks at ambient temperatures. In the photonic crystal slabs, we
observed linear refractive index alterations between 5.4 · 10�7 and 1.1· 10�4 for AC
modulation amplitudes between 0.5 V and 100V corresponding to comparable
transversemagnetic (TM)mode effective index changes. A time periodical transverse
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Figure 11.9 Band diagramof a 2D square lattice (r/a¼ 0.3) PhC in
a low index material (n¼ 1.54) for both TE and TM polarization.
The low index contrast does not allow an omni directional band
gap for both polarizations. A range of forbidden frequencies only
exists in the GX direction (stop gap).

Figure 11.10 (a) Transmission of a 7_4_7 PhC line defect
resonator in TM polarization (linked solid black dots). The
experimental data are fitted by a Lorentzian shape function
(Q¼ 60, solid curve). (b) SEM-image of a 7_3_7 PhC line defect
resonator without cladding layer (the arrow indicates the direction
of light propagation).
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shift of the transmission spectra on the wavelength scale and therefore a transmis-
sion modulation at a fixed wavelength are observed. Figure 11.11 shows the relative
transmission modulation detected at the fundamental and second harmonic fre-
quency as a function of the amplitude of the applied electricmodulationfield both for
a poled and for an unpoled sample. Clearly observable is a linear dependence of the
transmission modulation in the case of the poled noncentrosymmetric waveguide
core at fundamental frequency, whereas the unpoled sample does not show any
response up to modulation amplitudes of 400V (Figure 11.11a).
Using a Fabry–P�erot model, we could determine the electro-optical susceptibility

that effectively caused this shift. The value of r33¼ 5 pm/Vcompares well with the r33
values measured directly and with those from Ref. [16]. We have analyzed the
sensitivity of our setup by stepwise reduction of the modulation amplitude to 0V. A
sub-1 V modulation amplitude (0.5 V) applied over the total polymer layer of
thickness 1.4mm induces a refractive index change of only 5.4 · 10�7 and still leads
to a resolvable change of 3.4 · 10�5 in the relative transmission modulation signal.
We believe this is a remarkable result given the fact that we have neither used a highly
effective electro-optical polymer nor an optimized high-Q photonic crystal resonator
design [5–8], thus leaving room for substantial improvement. The relative transmis-
sion modulation

Tmod

T trans
¼ 3

8
Dn
n

ð2
ffiffiffi
3

p
Q�1Þ � 3

ffiffiffi
3

p

8
r33n

2Emod �Q ; ð11:1Þ

profits from a large refractive index and electro-optical susceptibility of the electro-
optically active core and from a high-quality factor. A gradual shift of positions of
holes adjacent to the cavity in a k-spaced engineered design can suppress Fourier

Figure 11.11 Modulation amplitude as a
function of modulation voltage for PhC line
defect resonators (circles: poled 7_4_7,
lr¼ 1340 nm and squares: unpoled 7_3_7,
lr¼ 1296 nm). Lines represent linear and square
fits.( a)Modulation response at the fundamental
frequency (n¼ 200Hz). The slope corresponds
to an electro-optic coefficient of 5 pm/V. No

response in the unpoled PhC. (b) Modulation
response at second harmonic frequency
(n¼ 400Hz) of the lock-in modulation
frequency. A stronger Kerr response is seen in the
poled sample (KK¼ 1.8· 10�20m2/V2) as
compared to the unpoled resonator sample
(KK¼ 14· 10 22m2/V2).

212j 11 Polymer Based Tuneable Photonic Crystals



components above the light line and thus reduces vertical radiation losses and
enhances Q dramatically [5–8].
The Kerr electro-optical response as observed at the second harmonic of the

modulation frequency scales with the square of the applied modulation field and
occurs in both noncentrosymmetric and centrosymmetric media. Figure 11.11b
shows the relative transmissionmodulation as a function of the external modulation
amplitude for both a poled and an unpoled sample. From the square fit to the
experimental data, we first calculated the Kerr constant [20]

KK ¼ Dn
n

� 1

E2
mod

; ð11:2Þ

for the unpoledPMMA/DR-1 sample.We achieved a value of 14· 10�22m2/V2which
is comparable to the value of 13· 10�22m2/V2 reported for unsubstituted
PMMA [21].
We also had to address the issue of possible other contributions to the electro-

optical response in addition to electronic displacement polarization. At room
temperature, well below the glass transition, pure PMMA shows a b-relaxation at
nb around 5Hz to 10Hz [22]. The d-relaxation in side chain polymers substitutedwith
rod like chromophores, however, occurs at ambient with extremely slow rates
nd� 10�8Hz [23]. At room temperature, therefore, no significant contributions
from orientational polarization to the electro-optical response are expected if electric
modulation frequencies from200Hz to 10 kHz or above are applied. This conclusion
is supported by the fact that indeed no linear electro-optical response is observed for
the unpoled centrosymmetric sample.
Second, a possible contribution of the electro-mechanical piezo-effect was ad-

dressed. Wemeasured the field-induced thickness change by placing a poled sample
into the MZI. The thickness variation linear in the modulation frequency yielded a
piezo-coefficient of d33¼ 3 pm/V. This value compares well with what was found for
other comparable poled electro-optic polymers [24]. Neglecting the transverse
contraction (Poisson ratio), we calculated an upper estimate for the change of the
waveguide mode effective refractive index of 1.3 · 10�8 for 0.5 V and 2.7 · 10�6 for
100VAC modulation voltage. This d33 translates into a �masked,� hence, virtual
contribution to the electro-optical susceptibility r33 of less than 2· 10�13m/V.
Therefore, the piezo-contribution to the linear electro-optic modulation is less
than 2.5%.

11.4
Synthesis of Electro-Optically Active Polymers

As active component for the preparation of �Electro-optically Tuneable Photonic
Crystals� electro-optically active polymers (EO-polymers) with high glass transition
temperatures (Tg) are preferable. Organic EO-materials have, the advantage com-
pared to their inorganic counterparts e.g. LiNbO3, that the non-linear optical
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response is of purely electronic origin and does not include deformations of the
crystal lattice. Thus the response is extremely fast. In addition, thin homogenous
films of low loss are accessible from amorphous polymers (no grain boundaries).
Polymeric materials for nonlinear optical applications like frequency doubling or

the linear electro-optic effect (the Pockels effect) have been the topic of intensive
research since the end of the eighties [25,26].More recent reviews are given in [27,28].
Generally this work was divided into a search for efficient nonlinear optical moieties
(the so called NLO-chromophores) and a search for a matrix to stabilize the polar
order obtained by the poling process. This matrix includes guest-host polymers,
polymers with covalently bound NLO-chromophores [25,26], glasses from lowmolar
mass materials [25–28] and hybrid inorganic–organic materials obtained by sol–gel
processes [29,30].
For some time progress was limited on the mb-values of the individual NLO-

chromophores, and on their thermal stability needed for proper processing in highTg
materials. An additional obstacle is the formation of aggregates with an antiparallel
dipolar orientation in the polymer matrix. Thus the macroscopic w(2)-properties
determined at small concentrations in guest-host systems could not be extrapolated
linearly to the higher NLO-chromophore concentration needed for sufficient mac-
roscopic NLO properties. This problem got solved by a proper combination of newly
designed electron donor and acceptor groups in elongated p-systems [31–36] and the
introduction of sterically hindered NLO-chromophores [34,37–41]. With these NLO-
chromophores it is claimed to be possible to prepare guest-host systems with r33-
values well above 60m/V [37,39,41,42] and a suitable thermal stability.
For an application within tuneable nanophotonic devices an EO-polymer should

fulfil three criteria: (i) it has to form a low loss (low absorption and low scattering)
film, (ii) because of the patterning process, which involves elongated processing
above 100 �C, the Tg-value should be well above 140 �C and (iii) the EO-coefficient
should be as high as possible (r33 above 40 pm/V at l¼ 1.5mm) to allow a strong
variation of the transmission characteristics of the photonic structure. This requires
a high concentration of about 20wt% (good solubility) of optimized NLO-
chromophores.
As matrix for the NLO-chromophores we selected two transparent, amorphous

high Tg-polymers. Amorphous high Tg polycarbonate APC is a copolymer of classical
polycarbonate with a sterically demanding biphenyl-unit (Figure 11.12). It has a
Tg-value of 183 �C and a refractive index of 1.54. TOPAS� is a copolymer of

OO

O

* O O *

APC

O

y

Figure 11.12 Molecular structure of amorphous high Tg polycarbonate APC.
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ethylene and a cycloolefin and posses a Tg-value of 190 �C. It is a pure hydrocarbon
compound and thus very hydrophobic. The preparation of high quality films with a
thickness around 1.5mm is challenging because of limited solubility. With chloro-
benzene at elevated temperatures or cyclohexanone good solvents for TOPAS� or
APC respectively were found. From 14wt% solutions of APC in cyclohexanone,
filtered through a 0.2mm filter and spin-coated at 3.000 rpm high quality APC films
with 1.5mm thickness can be obtained on glass, silicon or mesoporous silica. They
were used for the patterning experiments. Because of the better solubility of APC
and its more polar structure, which makes it the better solvent for the NLO-
chromophores, APC was investigated in more detail.
AsNLO-chromophores the chromophores 1–4presented inFigure 11.13 areunder

investigation. They can be synthesized in analogy to the synthetic routes described
in [39–41]andpossessanaminogroupaselectrondonoranddicyano- (2,4)or tricyano-
moieties (1, 3) as acceptor. Chromophores 1 and 2 employ a short p-conjugation and
are more easily accessible. Chromophore 3 should have a rather high molecular
hyperpolarizibility according to [39]. As donor group a triarylstructure was used to
increase the thermal stability in comparison to the alkylated derivatives of [39]. Its
synthesis was performed according to Figure 11.14. Chromophore 4 possesses a long
p-conjugationandahydroxylgroupforcovalent linkagetoreactivehighTg-polymersas
the ones described in [43].
From these chromophores guest-host systems in APC can be produced; e.g.

homogenous films with 20wt% chromophore 3 can be obtained by spin-coating.
In these films the Tg-value is reduced to 140 �C (183 �C for the pure APC), which is
still just enough for the processing scheme. To test the long term stability of these
films we investigated the solubility of 3 (20wt%) in neat APC inmore detail. Thereby
it turned out that chromophore 3 crystallizes from APC in drop-casted films (thick
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Figure 11.13 Chemical structure of the NLO-chromophores 1–4.
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films cast from cyclohexanone). In these systems the solvent evaporates more slowly
and the systemhasmore time for crystallization before the risingTg-value (due to loss
of solvent) stops crystal growth. Annealing of such films around Tg leads to a further
increase of the crystal size. Thus single phase homogenous films are accessible only
by spin-coating. Such films, however, are not thermodynamically stable and crystal-
lization may start during long periods at elevated temperatures, as they are required
for the complex poling and patterning processes within this project.
In addition, the thermal stability of chromophore 3 against decomposition was

measured for long time spans, as they are necessary for drying, poling and especially
patterning of these high Tg EO-polymers. Thermo-gravimetry shows no weight loss
of chromophore 3 up to 300 �C. This is in agreement with the observations described
in [39] for chromophores of similar structure. UV-measurements performed on
samples annealed at 150 �Cover days are presented in Figure 11.15. After 30minutes
at 150�C (a time span sufficient for poling) only minor changes of the spectrum are
detectable. If poling is performed under inert gas conditions even this effect could
possibly be prevented. It is not clear, if these changes result from starting decompo-
sition or just from aggregation or an orientation of the chromophores. After 2 days at
150 �C the absorbance at 650 nm is, however, strongly reduced and the absorbance at
400 nm has increased. Thus chromophore 3 with the elongated p-system is not
temperature stable at high temperatures for elongated time spans. This had not been
expected based on the claims of [39] for similar structures (only thermo-gravimetric
measurements). Chromophores 1 and 2 are long term temperature stable at 150�C,
but they give only insufficient r33 values below5 pm/Vat 1318 nmdue to their shortp-
conjugation.
Thus new chromophores for guest-host systems have been reported in the

literature. They are, however, not yet generally useful for complex processing
schemes as presented here, because the solubility in high Tg-polymers is obviously
poorer than in PMMA or classical polycarbonate. In addition, comprehensive data of
their long-term stability at high temperatures is not available, while tasks like the use
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of EO-polymers for photonic crystal resonator basedmodulators requires stability for
days at temperatures above 140�C. The problem of demixing can obviously be solved
by integrating the chromophores into the polymer system; the thermal stability
requires more work on the selection of the chromophores.

11.5
Conclusions and Outlook

In the present paper we have shown that sub micrometer structures can be
transferred into polymer thin film waveguides with high quality via state of the art
electron beam lithography and high density plasma reactive etching techniques.
Such films can be made from high glass transition polymers which are either doped
or covalently functionalized with nonlinear optically active chromophore molecules.
The design concepts we investigated consisted of line defect structures in square
lattice photonic crystal slabs, thereby forming Fabry–P�erot-type optical nanophotonic
resonators of which we have investigated the optical transmission spectra. For the
standard EO-polymer DR-1 we could realize an electro-optically tuneable photonic
crystal by shifting the resonance frequency of the resonator via the Pockels effect with
an externally applied electric modulation field. We were able to detect a sub-1-Volt
sensitivity for the modulation effect which was proven to stem from electro-optical
activity rather than from Kerr-effect, electrostriction or piezo-responses. The next
steps to gowill include the optimization of the designs in the direction of lower losses
and higher quality factors as well as the successful application of our concept to novel
polymers with high electro-optical coefficients.

Figure 11.15 Variation of the UV-spectrum chromophore 3
(20wt%) in an APC film during annealing at 140 �C (substrate ITO
covered glass).
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12
Tuneable Photonic Crystals obtained by Liquid Crystal Infiltration
H.-S. Kitzerow, A. Lorenz, and H. Matthias

12.1
Introduction

Liquid crystals [1–4] combine fluidity and anisotropy in a unique way. Anisotropy, i.e.
the dependence of bulk material properties on the direction, indicates non-spherical
symmetry of the respective material. This phenomenon is traditionally attributed to
solid crystals. However, organic compounds that consist of anisometric (for example
rod-like or disk-like) molecules can show an orientational order of these molecules
even in a fluid state. If so, this fluid state is referred to as being liquid crystalline. The
least complicated liquid crystalline structure, the nematic phase, is uniaxial, i.e. one
preferred axis is sufficient to describe its local anisotropy. The director n (a pseudo-
vector) can be used to indicate the local molecular alignment (see Figure 12.1) and a
scalar order parameterS is sufficient to describe the degree of orientational order. The
temperature dependence of the order parameter and the influence of external electric
or magnetic fields on the orientation of the director can lead to a strong dependence
of the effective refractive index of the liquid crystal on temperature and external
fields. Chiral liquid crystals can show a helical superstructure of the local alignment,
thereby leading to a spatially periodic director field n(r). In the chiral nematic
(cholesteric) phase, the director is twisted along a pitch axis. Blue phases [5–9],
which appear in the temperature range between the cholesteric and the isotropic
liquid state, are characterized by double twist and a cubic superstructure. Beautiful
colours of cholesteric and blue phases arise from Bragg scattering in the visible
wavelength range. They led to the discovery of liquid crystals [10] and even to their
first commercial applications (as temperature sensors) [11]. Moreover, distributed
feedback lasing of dye-doped periodic liquid crystals was suggested many years
ago [12] and extensively studied during the last few years [13–15]. Like photonic
crystals [16–24], these liquid crystalline helical structures show a periodicmodulation
of the refractive indices with lattice constants comparable to the wavelength of light
and thus give rise to Bragg scattering. Even more interesting is the selectivity of
certain states of polarization. A right handed helix shows Bragg reflection of right
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circularly polarized light but is transparent for left circularly polarized light at the
same wavelength and vice versa. The variation of the local optical axis in a homoge-
neous material is sufficient to cause these effects. As a consequence, however, the
refractive index contrast cannot exceed the birefringence Dn¼ ne – no of the liquid
crystal. This difference between the extraordinary refractive index ne and the ordinary
refractive index no is not larger than 0.3. The cubic blue phase structures are
fascinating, but their local birefringence is too small for the appearance of a photonic
band gap. However, only a few years after the first pioneering works on photonic
crystals [25,26], Hornreich et al. [27] predicted a photonic band gap in artificial cubic
structures that are composed of dielectric (e� 10) or conducting cylinders and exhibit
the same space group as the blue phasemodificationBP1 (O8, 14132), see Figure 12.2.
Fabrication of such structures is still a challenge.

Figure 12.1 Chemical structure of 4-cyano-40-
pentyl-biphenyl, arrangement of rod-like
molecules in the (non-chiral) nematic phase
(N), and temperature dependence of the
ordinary refractive index no (effective for light
that is linearly polarized with its electric field

perpendicular to the director n), the
extraordinary refractive index ne (effective for
light that is linearly polarized with its electric
field parallel to the director n), and the isotropic
refractive index niso.

Figure 12.2 To the left: Structure of the chiral
nematic (cholesteric) phase (N�) and liquid
crystal cells showing a bright selective reflection
due to Bragg scattering of the N� phase. Centre:
Liquid single crystal and optical diffraction

pattern (Kossel diagram) of blue phases. To the
right: Dispersion relation of an artificial structure
that is composed of dielectric (e� 10) cylinders
and shows the same space group (O8) as BP1
(after Hornreich et al. [27]).
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Overviews about the variety of possibilities to adjust or switch the optical
properties of photonic crystals were given, previously [28–30]. The present article
is focussed on one particular approach, namely the infiltration of solid photonic
crystals with liquid crystals. Busch and John [31–33] suggested to fill the voids of a
colloidal crystal with a (non-chiral) nematic liquid crystal and to make use of the
temperature- and field-dependence of its refractive indices in order to achieve a
tuneable photonic band gap.
Independently, Yoshino et al. [34–36] did the first respective experiments. Kang

et al. [37] demonstrated field-induced switching of a photonic stop band in liquid
crystal-doped colloidal crystals. Leonhard et al. [38] infiltrated macroporous silicon
with a liquid crystal and observed a thermally induced shift of thephotonic band edge.
However, until 2001 therewas little knowledge about the liquid crystal alignment and
the precise explanation of the photonic effects that were observed. Subsequent
investigations at the University of Paderborn and the analysis of director fields by
means of 2H-NMR spectroscopy and fluorescence confocal polarizing microscopy
are reviewed in the following section. The current state and perspectives of liquid
crystal-infiltrated photonic crystals are then summarized in Section 12.3.

12.2
Experimental Results

12.2.1
Colloidal Crystals

Opal and corresponding artificial structures consist of spherical colloidal particles,
which are arranged in a cubic closed packed, i.e. face centred cubic (fcc), lattice.
Unlike the diamond structure, such fcc structures are not expected to show a
photonic band gap [39], but inverted fcc structures have been predicted to show
a photonic band gap [40]. In particular, Busch and John [31,32] calculated that an
inverseopal structurewherean fcc latticeofair spheres isembedded inasiliconmatrix
(eb� 11.5 . . . 11.9) should show a vanishing density of states in a frequency range
around o¼ 1.6 pc/a. The same authors suggested infiltrating such a structure with
liquid crystals.
The results reported in this section correspond to normal and inverted colloidal

crystals that are filled with a nematic liquid crystal. Monodisperse spheres made of
poly-(methyl-methacrylate) [PMMA] were used to form a face centred cubic (fcc)
colloidal crystal, which in turn served as a template to manufacture an inverse
structure. It is well known that suspensions of colloidal spheres can be used to
generate self-organized colloidal crystals, either by dipping a solid substrate into the
suspension and slow removal of this substrate or by spreading the suspension on a
substrate and subsequent gentle drying. If the sample is flat, the spheres form a close
packed hexagonal monolayer at the surface. On this first layer (A), further hexagonal
layers (B, C, . . .) grow which are phase shifted with respect to the first layer, thereby
filling the voids of the existing layer(s) closely. Assembling of the layers in the
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sequence ABCABC . . . results in an fcc lattice that is oriented with its threefold axis
(1, 1, 1) perpendicular to the substrate plane. The resulting colloidal crystals show
Bragg reflection in the visible wavelength range if the sphere diameter and thus the
layer spacings dhkl have the appropriate size (a few 100 nm). The Bragg wavelength is
given by

lhkl ¼ 2neff dhkl and dhkl ¼ aðh2þk2þl2Þ�1=2; ð12:1Þ
where dhkl is the layer spacing of a set of planeswithMiller indices h, k, lwithin a cubic
structure with lattice constant a. If a heterogeneous material is composed of two
components with the dielectric constants e1 and e2, the average dielectric constant eav
can approximately be calculated using the Maxwell-Garnett relation [41]

ðeav�e1Þðeavþ2 e1Þ�1 ¼ f 2 ðe2�e1Þðe2þ2 e1Þ�1; ð12:2Þ
where f2 is the volume fraction of component 2. Thus, the effective refractive index of
the colloidal crystal is approximately given by [37]

neff ¼ ðS f i n
2
i Þ1=2; ð12:3Þ

where fi is the volume fraction of component i of the heterogeneous system. The
close packed structure of opal is characterized by the filling fractions fspheres¼ 0.74
and fair¼ 0.26. Here, colloidal crystals were made of monodisperse poly-(methyl-
methacrylate) (PMMA) spheres with a diameter D of about 200 nm. Spreading of a
suspension on a flat glass plate and subsequent drying results in the expected fcc
arrangement, oriented with the threefold axis (1, 1, 1) perpendicular to the substrate
plane (Figure 12.3, to the left). The colloidal crystal composed of PMMA spheres
(nPMMA� 1.49, fPMMA¼ 0.74) and air (nair� 1, fair¼ 0.26) shows a reflection peak at
l111¼ 448 nm for normal light incidence. According to Eq. (12.2), an average
refractive index of neff� 1.38 is expected. With a¼D

ffiffiffi
2

p
and (h, k, l)¼ (1, 1, 1), the

Figure 12.3 Left: AFM picture of a colloidal
crystal made of PMMA spheres. Centre: Spectral
shift of the stop band as a function of
temperature for (�) a colloidal crystal made of
PMMA spheres with a liquid crystal (E7) in the

tetrahedral and octahedral gaps and (~) an
inverse opal made of SnS2 where the spherical
cavities are filled with the same liquid crystal.
Right: Set-up to fill the voids of the colloidal
crystal with SnS2. For details, see Ref. [43].
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relation l111¼
ffiffiffiffiffiffiffiffi
8=3

p
neffD is obtained from Eqs. (12.1) and (12.3). Thus, the

measured reflection peak indicates an average sphere diameter of 199 nm, which
was confirmed by electron microscopy and light scattering experiments.
In order to achieve tuneable properties, the colloidal crystal was infiltrated with the

nematic liquid crystal mixture E7 (Merck), which consists of 4-n-alkyl-40-cyano-
biphenyls and respective terphenyls. Filling the voids with the liquid crystal results in
a red-shift of the (1, 1, 1) reflection peak. At 23 �C, the reflection peak was observed at
l111¼ 493.4 nm. From the average refractive index of E7, nE7¼ 1.612, an effective
refractive index of neff¼ 1.523 is expected, and thus a slightly larger reflection
wavelength, l111¼ 494.3 nm. In spite of the transition of E7 from the nematic to
the isotropic state (at TNI¼ 60.5 �C), increasing the temperature from 23 �C to 70 �C
results in a very small blue shift of the reflection peak by only 2 nm (Figure 12.3,
centre, circles). The direction and the amount of the shift are in agreement with the
expectation that the average refractive index of the liquid crystal decreases with
temperature.
In the second experiment, the PMMA colloidal crystal was used as a template to

generate an inverted fcc crystal made of tin sulphide (SnS2), following the procedure
by M€uller et al. [42]. The inverted structure was formed by chemical vapour
deposition. The template was exposed to SnCl4 and H2S (Figure 12.3, to the right).
Subsequently, the PMMA template was removed by an organic solvent and the
remaining inverted SnS2 colloidal crystal was filled with the nematic liquid crystal
using capillary forces. For this experiment, larger PMMA spheres were used. The
reflection peak (l111¼ 632 nm) of the template (PMMA spheres and air) and light
scattering data indicated sphere diameters slightly larger than 280 nm. After filling
the voids with SnS2 and removing the template, an inverted colloidal crystal was
obtained with a lattice constant slightly smaller than what would be expected from
the bead diameter. Electron microscopy indicated that the distance of the centres of
neighbouring gaps was only 270 nm. From the reflection peak (l111¼ 536 nm,
indicating neff� 1.22) and from nSnS2

¼ 3.32, it was concluded that the volume
fraction of SnS2 is less than expected. Nevertheless, the infiltration of the inverted
colloidal crystal with the liquid crystal mixture E7 resulted in stable samples. The
filled structure showed a reflection peak at 736 nm at room temperature. This
study [43,44] confirmed the theoretical expectation that the temperature-induced
shift of the reflection peak of the filled inverted colloidal crystal is much larger than
the temperature-induced shift of the normal colloidal crystal filled with a liquid
crystal. This behaviour is mainly due to the different volume fractions. In the
inverted structure (SnS2/E7), a change of the temperature from 23 �C to 70 �C
resulted in the large wavelength shift of 14 nm (Figure 12.3, centre, triangles), where
the transition from the nematic to the isotropic phase (at TNI¼ 60.5 �C) can be
clearly seen.
In further experiments [45,46], monodisperse colloidal spheres with functiona-

lised surfaces were synthesized. Either charged functional groups [45] or chromo-
phores [46] were covalently attached to the surfaces of monodisperse spheres.
Investigations on the colloidal crystals made thereof are still in progress and will
be reported elsewhere.
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12.2.2
Photonic Crystals Made of Macroporous Silicon

The experiments described in this section are focused on three-dimensional (3D)
structures consisting of macroporous silicon that are filled with a liquid crystal.
Two-dimensional hexagonal or rectangular arrays of pores with an extremely
high aspect ratio (diameter �1mm, depth �100 mm) can be fabricated by a light-
assisted electrochemical etching process using HF [47]. The pore diameter varies
periodically, thereby forming a three-dimensional photonic crystal (PhC) [48].
The macroporous structure was evacuated and filled with a liquid crystal. The
photonic properties for light propagation along the pore axis were studied by
Fourier transform infrared (FTIR) spectroscopy [49–51]. Deuterium-nuclear mag-
netic resonance (2H-NMR) [49,50] and fluorescence confocal polarizing microscopy
(FCPM) [52,53] were used in order to analyse the director field of the liquid crystal
inside the pores.
For example, Figure 12.4 shows the infrared transmission of samples that show a

two-dimensional hexagonal array of pores with a lattice constant a¼ 1.5mm.
Along the pore axis, the diameter of each pore varies periodically between Dmin

(0.76� 0.10) mm and Dmax¼ (1.26� 0.10) mm with a lattice constant b¼ 2.6mm.
The poreswere filledwith the nematic liquid crystal 4-cyano-40-pentyl-biphenyl (5CB,
Figure 12.1) which exhibits a clearing temperature of TNI¼ 34 �C. For light propaga-
tion along the pore axes, the FTIR transmission spectrum of the silicon-air structure
showsa stopbandcentred atl¼ (10.5� 0.5)mm.Filling theporeswith5CBdecreases
thedielectric contrast to siliconand results in a shift of the stopband tol� 12mm.The
bandedgewas found tobesensitive to the stateofpolarizationof the incident light. For
linearly polarized light, rotation of the samplewith respect to the plane of polarization
was found to cause a shift of the liquid crystal band edge byDl� 152 nm (1.61meV).
This effect can quantitatively be explained by the square shape of the pore cross
section, which brakes the threefold symmetry of the hexagonal lattice. Due to the
presence of the liquid crystal, the band edge at lower wavelengths (�liquid crystal
band� edge) can be tuned by more than 140 nm (1.23meV) by heating the liquid
crystal from 24 �C (nematic phase) to 40 �C (isotropic liquid phase).
The shift of the photonic band edge towards larger wavelengths indicates an

increase of the effective refractive index with increasing temperature. This effect can
be explained by a predominantly parallel alignment of the optical axis (director) of the
nematic liquid crystal along the pore axis. For a uniform parallel alignment, the
effective refractive index of the nematic component corresponds to the ordinary
refractive index no of 5CB. Increasing the temperature above the clearing point
causes an increase to the isotropic value niso� (1/3ne

2þ 2/3n2o)
1/2, where ne is the

extraordinary refractive index of the liquid crystal (ne> no). From the respective
dielectric constants [eLC(24 �C)¼ no

2 and eLC(40 �C)¼ n2iso], the average dielectric
constant eav of the heterogeneous structure can approximately be calculated using the
Maxwell-Garnett relation (Eq. (12.2)) [41]. The relative shift of the stop band edge
towards larger wavelengths corresponds approximately to the relative increase of the
average refractive index by �0.65%.
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Planarmicrocavities inside a 3Dphotonic crystal appear when the pore diameter is
periodically modulated along the pore axis, stays constant within a defect layer and
is continued to vary periodically. Figure 12.5 shows a structure where a defect layer is
embedded between five periodic modulations of the pore diameter. The pores are
arranged in a 2D square lattice with a lattice constant of a¼ 2mm. The pore width
varies along the pore axis betweenDmin¼ 0.92 mmandDmax¼ 1.55 mm.The length of
a modulation is b¼ 2.58mm. The defect has a length of l¼ 2.65 mm and pore
diameters Ddef¼ 0.82mm. Within the defect layer, the filling fraction of the liquid
crystal is xdef¼ 0.17. For infrared radiation propagating along the pore axes, a
fundamental stop band at around 13 mm and a second stop band at around 7mm
are expected from calculations using the plane wave approximation [54]. The
experiment shows a transmission peak at l¼ 7.184 mm in the centre of the second
stop band, which can be attributed to a localized defect mode. Filling the structure
with the liquid crystal 4-cyano-40-pentyl-biphenyl (5CB, Merck) at 24 � C causes a
spectral red-shift of the stop band. Together with the stop band, the wavelength of the
defect state is shifted by 191 nm tol¼ 7.375mm.An additional shift ofDl¼ 20 nm to

Figure 12.4 (a) SEM top-view and side-view of a
photonic crystal made of macroporous silicon
containing a two-dimensional hexagonal array of
pores with periodically modulated diameter. (b)
Transmission spectra of the same photonic
crystal for light propagation along the pore axes if

the sample is filled with (—) air, (---) 5CB in its
nematic phase, and (. . .) 5CB in its isotropic
liquid state, respectively. (c) Comparison of the
calculated dispersion relation using the plane
wave approximation and the experimental
spectra. For details, see Ref. [49].
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l¼ 7.395 mm is observed when the liquid crystal is heated from 24 �C (nematic
phase) to 40 �C (isotropic liquid phase). Again, the shift toward larger wavelengths
indicates an increase of the effective refractive index neff of the liquid crystal with
increasing temperature and can be attributed to the transition from an initially
parallel aligned nematic phase (nLC,eff¼ no) to the isotropic state (nLC,eff¼ niso).
During continuous variation of the temperature, a distinct step by 20 nm is observed
at the phase transition from the nematic to the isotropic phase. The quality factorQ of
the investigated structure,Q¼l/dl¼ 52, is rather small and thus the shift by 20 nm
appears to be small compared to the spectral width of the defect mode. However, the
same order of magnitude of the temperature-induced wavelength shift can be
expected for structures with a much higher quality factor and might be quite
large compared to the band width of the defect mode.
Analysis of 2H-NMR line shapes is a very sensitive tool to measure the orienta-

tional distribution of liquid crystals in non-transparent samples. Corresponding
measurements were performed using two-dimensional structures of pores
with constant radius (R¼ 0.45mm and R¼ 1.00mm, respectively), filled with 5CB
that is deuterated in the a-position of the alkyl chain. The quadrupolar splitting of the
2H-NMR signal is given by

Dn ¼ 1
2
Dn0 ð3 cos2W�1Þ; ð12:4Þ

where W is the angle between the local director and the magnetic field [3]. Thus,
the intensity distribution of the 2H-NMR signal indicates the orientational distribu-
tion f(W), averaged over the sample volume, see Figure 12.6. Comparison between
experimental NMR results and calculated spectra confirms a parallel (P) alignment of
the director along the pore axis for substrates that were treated like the samples
described above. However, also an anchoring of the director perpendicular to the
silicon surfaces (�homeotropic� anchoring) can be achieved if the silicon wafer is

Figure 12.5 Left: SEM image (bird eye�s view) of a silicon structure
with modulated pores including a planar defect layer without
modulation. Right: Transmission spectra of this structure if the
sample is filled with (—) air, (---) 5CB in its nematic phase, and
(. . .) 5CB in its isotropic liquid state, respectively. For details, see
Ref. [51].
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cleaned with an ultrasonic bath and a plasma-cleaner and subsequently pre-treated
with N,N-dimethyl-n-octadecyl-3-aminopropyl-trimethoxysilyl chloride (DMOAP).
NMR data indicate the appearance of an escaped radial (ER) director field in the
latter case.
For the first time, optical microscopic studies of the director field in pores with a

spatially periodic diameter variation could be achieved by means of a nematic liquid
crystal polymer that shows a glass-like nematic state at room temperature [52,53].
For fluorescence polarizing microscopy, the polymer was doped with N,N0-bis(2,5-
di-tert-butylphenyl)-3,4,9,10-perylene-carboximide (BTBP). After filling the photonic
crystal in vacuum, the sample was annealed in the nematic phase at 120 �C for 24
hours and subsequently cooled to room temperature, thereby freezing the director
in the glassy state. The silicon wafer was dissolved in concentrated aqueous KOH
solution and the remaining isolated polymer rods were washed and investigated by
fluorescence confocal polarizing microscopy (FCPM). The transition dipole mo-
ment of the dichroic dye BTBP is oriented along the local director of the liquid
crystal host.
The incident laser beam (488 nm, Arþ) and the emitted light pass a polarizer,

which implies that the intensity of the detected light scales as I/ cos4a for an
angle a between the local director and the electric field vector of the polarized
light. Thus, the localfluorescence intensity indicates the local orientation of the liquid
crystal director with very high sensitivity. For a template with homeotropic anchoring
and a sine-like variation of the pore diameter between 2.2 mm and 3.3 mm at a
modulation period of 11 mm, the FCPM images of the nematic glass needles
(Figure 12.7) indicate an escaped radial director field with some characteristic
features that differ from non-modulated pores. In the cylindrical cavities studied
previously, point-like hedgehog and hyperbolic defects appear at random positions
and tend to disappear after annealing, due to the attractive forces between defects of
opposite topological charges. In contrast, the modulated pores stabilize a periodic
array of disclinations. Moreover, disclination loops appear instead of point-like
disclinations.

Figure 12.6 Left: Schematic relation between
parallel (P), planar polar (PP) or escaped radial
(ER) director fields and the respective 2H-NMR-
lineshapes. Centre: 2H-NMR spectrum of
a-deuterated 5CB in cylindrical pores with parallel
anchoring [dotted line: spectrum expected for a

parallel (P) structure]. Right: 2H-NMR spectrum
of a-deuterated 5CB in cylindrical pores with
perpendicular anchoring [thin line: spectrum
expected for an escaped radial (ER) structure
with weak anchoring]. For details, see
Refs. [49,50].
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A large variety of additional properties can be achieved by means of cholesteric
liquid crystals [57]. Their ability to form helical structures offers the opportunity to
combine an intrinsic periodicity with the periodicities of the solid substrate. In
addition, the topology of their director fields is of fundamental interest. If the helix
pitch is much smaller than the tube size, FCPM images show regular fingerprint
lines indicating an undistorted helical structure (Figure 12.8, left). These lines are
perpendicular to the pitch axis and their distance corresponds to one half of the pitch.
However, if the pitch is comparable to the pore size or if the anchoring of the director

Figure 12.8 Left: FCPM image of cholesteric liquid crystal tubes.
To the right: FCPM image of two cholesteric cylinders with
different helix pitch and with perpendicular (left) and parallel
anchoring (right), respectively. For further details, see Ref. [57].

Figure 12.7 Left: Nematic escaped radial (ER)
director field, calculated using the algorithm
described in Refs. [55,56]. Centre: Theoretical
and experimental fluorescent confocal polarizing
microscopy (FCPM) images for polarized light

with its electric field parallel to the tube axis.
Right: Theoretical and experimental FCPM
images for polarized light with its electric field
perpendicular to the tube axis. For details, see
Ref. [52].
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is parallel to the interface, distorted director fields can appear that do not show a
uniform pitch axis and may exhibit periodicities deviating from the intrinsic pitch
(Figure 12.8, right).

12.2.3
Photonic Crystal Fibres

Liquid crystals are also useful in order to functionalise photonic crystal (PhC) fibres.
In this study, we used PhC fibres [58–60] that were manufactured at the Institute for
Physical High Technology (IPHT), Jena [61]. The fibres (Figure 12.9, left) exhibit a
hollow core with diameter Dc surrounded by a hexagonal array of pores with a
uniform diameter Dcl, where Dcl<Dc. The surfaces of the pores were coated with
lecithin in order to achieve homeotropic anchoring and subsequently the pores were
filled with the nematic liquid crystal mixture E9 (Merck), making use of capillary
forces. The liquid crystal-filled PhC fibres were sandwiched between two glass plates
coated with transparent indium tin oxide (ITO) electrodes and embedded in a
refractive index-matched polymer. Investigation of equivalently treated single
capillaries in a polarizing microscope indicates an escaped radial director field. Both
the ordinary refractive index (no¼ 1.5225 at 633 nm) and the extraordinary refractive
index (ne¼ 1.7765 at 633 nm) of the liquid crystal are larger than the refractive index
(ng¼ 1.4715) of the glass composing the PhC fibre. Thus, the average refractive index
of the liquid crystal core is larger than the average refractive index of the glass/liquid
crystal cladding of the fibre and conventional index guiding can be expected. The
spatial patterns of monochromatic (633 nm) radiation indicate multimode wave-
guiding. By applying alternating electric fields, the transmission of the fibre can be
switched off (Figure 12.9, centre). The transmission reappears again when the
electric field is switched off. The time constants seem to show that the application of
thefield essentially destroys the uniformdirectorfield so that the low transmission in
the field-on state can be attributed to scattering losses.
In order to extend the versatility of the use of PhC fibres, a new method of

selective filling of single pores has been developed. For this purpose, a dielectric

Figure 12.9 To the left: Photonic crystal fibre
with a hollow core (Dc¼ 26.4mm) and a porous
cladding (Dcl¼ 6.7mm). Centre: Transmission of
this fibre as a function of position after
infiltration with the nematic liquid crystal E9 (&)

without external field and (�) at a field strength of
E¼ 200 V/203mm� 1 V/mm (f¼ 1 kHz). To the
right: Photonic crystal fibre of the same type as
shown to the left after closing the small pores.
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compound is deposited on the face of the fibre by thermal evaporation in high
vacuum. If the dielectric film exhibits the appropriate thickness, the pores with
small diameter are closed (Figure 12.9, to the right) and only the pore(s) with larger
diameter can be filled by dipping the fibre into the liquid crystal. Observations in a
polarizing microscope confirm that the liquid crystal infiltrates indeed the open
pore, selectively. The closed pores, however, remain filled with air. This procedure
opens a large variety of tailoring the photonic properties of PhC fibres. For example,
polarization sensitive fibres or fibres with a true photonic band gap guiding and an
active cladding could be fabricated. In addition, the advantage that glass is (at least
partially) transparent in the ultraviolet spectral range can be used in order to
generate sophisticated anchoring conditions by means of photo-induced align-
ment [62,63]. The investigation of various types of liquid crystal-filled fibres is the
subject of forthcoming studies.

12.3
Discussion

Summarizing, the results described in Section 12.2 have shown that the dependence
of the effective refractive index of liquid crystals on temperature and external fields
can be used to alter the optical properties associated with photonic stop bands or
defect modes in colloidal crystals, solid semiconductor photonic crystals and pho-
tonic crystal fibres, effectively. The investigation of these structures involves not only
potential applications but also interesting fundamental physics. The confinement of
liquid crystals to small cavities influences the threshold fields and switching times,
but anchoring at a closed surface leads also to defects of the director field. These
disclinations dominate the behaviour of the liquid crystal, they may interact accord-
ing to their topological charges, and eventually lead to discontinuous topological
transitions [4]. While studying micro-encapsulated or polymer-dispersed liquid
crystals has motivated investigations on spherical or elliptical droplets long ago, the
work on photonic crystals has additionally led to the consideration of liquid crystals
confined to the tetrahedral or octahedral gaps of an opal [37] and to cylindrical pores
with modulated diameter [52,53,57]. In the latter case, the director fields observed
show similarities to configurations that are known to appear in spherical or perfect
cylindrical cavities, but also some unique features such as an array of stabilized, ring-
like defects [52].
Recent developments of novel materials, fabrication techniques and device con-

cepts are likely to develop the use of liquid crystals in photonic crystals further and to
lead to practical applications. With respect to possible substrates, the manufacturing
of inverse colloidal crystals, has been greatly improved during the last few years,
thereby making inverse opals with higher dielectric constants or higher filling
fractions available that are, for example, made of silicon [64], germanium [65],
gold [66] or titania [67].Weak anchoringmayhelp to increase thefield-induced shift of
the refractive index of liquid crystals filled into such structures [68]. Large changes of
the photonic properties may be achieved in a ternary photonic crystal that is
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composed of two components with different dielectric constants e1, e2 and one
additional component with tuneable dielectric constant e3. If e3 is adjusted to match
either e1 or e2 or none of them, the lattice constant changes discontinuously, thereby
opening and closing stop bands [69]. The electrochemical etching of solid substrates
has also been considerably improved, recently. Extremely thorough control of the
growth parameters makes it possible to fabricate silicon photonic structures where
the pores are interconnected, thereby diminishing the silicon fraction and offering
the possibility of an omni-directional photonic band gap [70].
However, themost importantdevelopment steps towards functionalised integrated

wave-guide structures are those fabrication techniques, which lead to well-controlled
defectdesigns.Etching techniques for solidphotonic crystals [47,48,70],directwriting
of polymer structures by means of two-photon-induced polymerisation [71,72] and
casting of such structures [73] can provide suitable substrates. In addition, selective
filling [74–78] can be used to functionalise the structures by dyes, quantum dots,
dielectric liquids, organic and inorganic glasses, or liquid crystals (Figure 12.9).

12.4
Conclusions

In conclusion, the infiltration of photonic crystals with liquid crystals proved to be a
suitable method to achieve tuneable properties or active switching. In the year 2001
when the investigations described in Section 12.2 were started, there were doubts
whether changes of the effective refractive index of a liquid crystal are sufficient to get
useful alterations of photonic properties. The experiments that are performed until
today, indicate that the spectral shifts can be quite reasonable but are more limited
than one could optimistically guess: A simple reorientation of the optical axis of an
always uniformly aligned liquid crystal is not possible if the liquid crystal is confined
to sub-mm size cavities. Assuming a uniform orientation of the liquid crystal for
different alignment directions is very useful to facilitate theoretical calculations and
to provide visions of possible applications [79], but when put into practice more
complicated director fields need to be considered. For example, the difference
between the ordinary refractive index no and the extraordinary refractive index
ne� typically Dn¼ ne� no� 0.2, and even in special materials Dn� 0.3 – can be
effectively used if the light is linearly polarized, the liquid crystal is always uniformly
aligned and its optical axis is reoriented by 90�. However, the difference between the
effective indices of a uniform nematic state [neff (T1)¼ no] and the thermally induced
isotropic state [neff (T2)� (1/3n2e þ 2/3n2o)

1/2], as observed in Ref. [49], corresponds to
only one third of the birefringence, neff (T2)� neff (T1)� 1/3 (ne� no)¼ 1/3 Dn. In
addition, the relative spectral shift of a photonic stop band or the resonance frequency
of amicro-cavity depends not only on the refractive index of the liquid crystal, but also
on the refractive index of the passive substrate, so that averaging diminishes the
spectral shift even further.
In spite of these limitations, the observed spectral shifts of some 10nm or 20 nm

induced by means of liquid crystals can nevertheless be large compared to the
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bandwidth of the resonance peak of a micro-cavity, provided that the quality factor
Q is sufficiently high. Consequently, liquid crystals have been successfully applied
in optically pumped tuneable III–V semiconductor lasers [80,81]. A thermally
induced wavelength shift by 9 nm was achieved in a quantum dot/PhC waveguide
laser with a line width of 11 nm (Q� 90) [80] and an electrically induced
wavelength shift of the emission peak by 1.2 nm at 20V/15mm was obtained for
point defects in a two-dimensional PhC laser with a line width of 0.6 nm (Q�
2000) [81]. In the latter case, the high quality factor of 2000 was found even when
operated within an ambient refractive index of n� 1.5. For microcavities sur-
rounded by air, quality factors Q of the order 1 million have been observed for
photonic crystals [82,83], Q> 108 for toroid-shaped microresonators on a chip [84]
and Q> 109 for silica microspheres [85], which seems to indicate that further
improvements on the solid substrates may help to use the tuning capability that is
possible with typical liquid crystal material parameters (i.e. shifts up to some
10 nm) very efficiently.
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13
Lasing in Dye-doped Chiral Liquid Crystals: Influence
of Defect Modes
Wolfgang Haase, Fedor Podgornov, Yuko Matsuhisa, and Masanori Ozaki

13.1
Introduction

Photonic crystals (PCs) as a new class of optical materials exhibiting an ordered
structurewith a periodic dielectric constant attracted significant attention due to their
fascinating properties and possible practical applications. For photonic crystals, the
propagation of light in a certain frequency range is prohibited which, in turn, results
in the appearance of photonic band gap (PBG) [1]. Two-dimensional (2D) and three-
dimensional (3D) photonic crystals can show complete PBG which is not so for the
one dimensional (1D) case. Nevertheless, the strong localization of electromagnetic
modes demonstrated in 1DPCswithin the photonic band gap or at the photonic band
edge is especially useful for trapping photons and shaping the density of states. As
result, they are perspective for potential applications as low threshold lasers or optical
amplifiers [2].
The presence of a PBG affects the emission spectrum of dye molecules and as a

result fluorescence is suppressed within the gap. However, near the band edges it is
enhanced due to the high photonic density of states (DOS) [3]. In this case, the group
velocity approaches zero, and the resulting long dwell times of emitted photons
strongly promote stimulated emission. Hence, photonic crystals may be used as
mirrorless resonators for laser emission.
Liquid Crystals (LCs) including chiral molecules have a self organized helical

structure that is a 1D periodic structure and show characteristic optical properties [4].
In Cholesteric Liquid Crystals (CLCs) with helical structure, light propagating along
the helical axis is selectively reflected depending on the polarization states if the
wavelength of the light matches the optical pitch of the helical structure, which is a
so-called selective reflection. The wavelength region in which the light cannot
propagate is the stop band, which is considered as a 1D pseudo-bandgap. Lasing
at the edge of the band has been reported e.g. in CLCs [5].
Chiral smectic LCs with a tilted structure show ferroelectricity and are called

Ferroelectric Liquid Crystals (FLCs). Due to their fast response to the electric field,
they have lot of potential for electro-optical applications [6]. FLCs too have a helical
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structure and show selective reflection due to their 1D periodic structure, similar to
CLCs [7]. The studies on the enhancement of a nonlinear effect using the helical
structure of FLCs have been performed [8] and the control of the stimulated emission
and laser action in the helical structure of FLCs have been demonstrated [9].
Control of the photonic properties has been one of the advantages of fabricating a

photonic device from chiral LCs and particularly from CLCs. This is realized by
utilizing the externalfield sensitivity of the LCmolecules or certain dopants to induce
a change in the refractive indices or the helical pitch. Tuning the PBG and the lasing
wavelength has been demonstrated upon thermally controlling the CLC pitch [10,11]
or by fabricating a spatial modulation of the pitch [12,13]. On the other hand,
stabilization of the helix was demonstrated in CLC standing films with doped
photoreactive monomers which polymerize upon incidence of ultra-violet (UV)
light [14]. An interesting tuning method is the utilization of external optical field.
Photoinduced trans-cis isomerization in the azobenzene dye doped in CLCs was
found to cause either an elongation or shortening of the CLC pitch.
Upon UVexposure, reversible modulation of the PBGwas demonstrated in CLCs

doped with various azobenzene derivatives [15,16]. A defect mode with high wave-
length selectivity was realized in the usually non-transmitting PBG by introducing a
structural defect in the perfect helical lattice.
While there are many possibilities for a medium to act as a defect such as an

isotropic dielectric layer [17] or a phase shift in the LC director [18,19], an easily
tunable defect mode is realized by introducing a different CLCmaterial in the defect.
In such a configuration, the defect-mode wavelength is determined by the contrast of
the pitch lengths at the defect and bulk [20,21], and an optically tunable defectmode is
realized if the CLC at the defect can selectively be pitch modulated by an external
optical field. Such optical tuning of the photonic defect mode have already been
demonstrated [22]. The proposed structure was fabricated by a laser-induced two-
photon polymerization method, so that an unpolymerized CLCwas left between two
polymerized CLC layers, and then substituting the unpolymerized CLC by an
azobenzene dye-doped CLC to act as the photoresponsive defect medium.
In this paper, another method to create structural defects, namely, by distributing

the microbeads in the CLC has been shown. It has been demonstrated that the
utilization of the multilayer structure results in great reduction of the threshold
necessary for lasing of dye doped FLCs.

13.2
Experiment

At the first stage of our work, the influence of the structural defects on the lasing
properties of chiral liquid crystals has been investigated. According to the analogy
between the defects layers in band gap of semiconductors and similar effects in PBG
structures, one can expect that the introduction of the structural defects will result
in tremendous change in the emission spectrum. For the sake of simplicity experi-
ments were carried out with cholesteric liquid crystals. Because light scattering of
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cholesterics is lower in comparison with those of FLCs, which results in significant
reduction of pumping energy required to pass through the generation threshold. On
the second stage of our research the confinement of FLC layer between multilayer
dielectric coatings has been demonstrated, allowing a greater reduction in the
pumping energy. Thus, making this geometry suitable for utilization of FLC as a
lasing media.

13.2.1
Lasing in Cholesterics with Structural Defects

13.2.1.1 Preparation of Cholesterics
The cholesteric liquid crystal for the experiment was prepared using commercially
available nematic MLC 2463 and the chiral dopant ZLI-811. Both of them were
produced by Fa. Merck KGaA.
Because DCM dye was intended to be used as a lasingmaterial, it was necessary to

adjust the band gap in such away that the stop band of themixture should be between
532 nm and 610 nm, i.e., between the pumping beamwavelength and themaximum
of the fluorescence spectrum of DCM. After series of experiments, it was found that
the concentration of the chiral dopant ZLI-811 should be around 35%wt. The
prepared mixture was infiltrated in a cell with gap around 20 mm. The alignment
layers provided homeotropical alignment of CLC. To determine the CLC pitch and
the stop band, a fiber optic spectrometer OceanOptics HR2000 was utilized. The
transmission spectrum at room temperature (25 �C) is demonstrated in Figure 13.1.
As one can clearly see from this figure, the preparedmixture satisfies the imposed

requirements.

13.2.1.2 Cell Fabrication
For the investigations, experimental cells with 1.1mm thick substrates as obtained
from Merck were used. Onto the substrates the polyimide AL 2021 was spin coated
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Figure 13.1 Transmission spectrum of the homeotropically
aligned CLC cell. The cell gap is 20mm.Measurement was done at
room temperature (25 �C).
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(3000 rpm) and baked at 185 �C for 2 hours. To get homeotropic aligned cells, the
polymer layers were rubbed unidirectionally with a special tissue. The thickness of
the cells was predetermined by glass microbeads with an average diameter of 20mm
dissolved in photocurable glue.

13.2.1.3 Preparation of CLC/TiO2 Dispersion
To prepare the CLC dispersions, polydispersed TiO2 particles were dispersed in
acetone and sonificated for about an hour. The agglomeration of the particles was
removed by filtering the solution through a filter having an average pore diameter of
1mm. The amount of the TiO2 particles was estimated as 0.1wt%. Investigation
underAFMshowed that the diameter of the TiO2was distributed in awide rangewith
a maximum around 530nm.
After preparation of dispersions, the texture of pure and doped mixture was

investigated under a polarizing microscope. The texture of both the samples was
practically identical. However, in case of CLC/TiO2 dispersion, particles with a
diameter of more than 800nm could be observed but their amount was small.
At the final stage, the prepared dispersion was doped with DCM with concentra-

tion 1.5wt%. In order to compare further results, the mixture was doped with DCM
but without TiO2 particles.

13.2.1.4 The Experimental Setup
For the experimental setup (Figure 13.2), a reflective configuration at 45� oblique
incidence was used. The pump source was a frequency-doubled Q-switched Nd:YAG
pulsed laser (purchased from Laser 2000) with wavelength l¼ 532 nm, 6 ns pulse
width, and 1 kHz repetition rate. The energy of the pumping beamwasmonitored by
the energy meter (Thorlabs).
The diameter of the light beamwas predetermined by a pinholemounted just after

the laser. The intensity of the pumping light was controlled by the attenuator which
represents itself as a set of filters with different transmission coefficient.
To reduce the CLC Bragg reflection, the pumping light polarization was converted

into a circular one with the help of a polarizer and a quarter wave plate in such a way

Nd:YAG laser

Pinhole

Attenuator

Polarizer

λ /4 plate

Lens

Sample

Spectrometer

Figure 13.2 Experimental setup. The pumping beam is incident
under an angle of 45� with respect to the cell normal.
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that its handedness is counter to that of the CLC helix. The lens after this polarization
controller focuses the light onto the spot with a diameter of around 200 mm. The
emitted laser light was acquired with fiber-optic spectrometer (Ocean Optics,
HR2000, resolution¼ 0.4 nm) along the direction perpendicular to the glass
substrates.

13.2.1.5 Experimental Results
Using the above described setup, the emission spectra of the CLC/DCM and CLC/
DCM/TiO2 cells was investigated at room temperature. To avoid cell heating, the
incident light beam was additionally modulated with a stroboscope operating at a
frequency of 5Hz. The energy of the pumping pulse was changed with neutral filters
in range from 0.2 mJ/pulse to 10 mJ/pulse.
The threshold for lasing for the CLC/DCM cell was around 3mJ/pulse. This

relatively high value could be explained by the presence of texture defects inside
the cell. The emission line, as expected, was located at long wavelength edge of the
stop band.
The emission spectra for both type of cells is shown in Figure 13.3. As one can

clearly see from this plot, the threshold for theCLC/DCM/TiO2 is significantly higher
than for CLC/DCM cell and equals around 4.5 mJ/pulse. Such behaviour could be
explained by stronger light scattering in the CLC/DCM/TiO2 cell which originated
from the presence of the polydispersed TiO2 particles which induced the texture
defects.
The evolution of the emission spectra for the particles doped sample is clearly seen

from plots (b), (d) and (f) (Figure 13.3). At low pumping energy (less than 4 mJ/pulse),
the emitted light is the broad band fluorescence. After exceeding the threshold, the
emission spectrum converts into two sharp lines with average width around 1.5 nm.
This result is different from that of the pure CLC/DCM cell. This remarkable
difference can be explained by the texture defects induced by the TiO2 nanoparticles.
In the polarizing microscope we clearly observed the multidomain structure of the
CLC texture. The characteristic dimension of the domains was around 50–70mm. So,
we think that the second peaks appeared due to the illumination of, at least, two
different domains by the pumping beams.
The other remarkable difference is that the emission spectra are shifted toward the

higher wavelengths. This phenomenon is related to the increase of the average
refraction index of the CLC/DCM/TiO2mixture in comparison with CLC/DCM one.
According to the Maxwell–Garnet approach, the refractive index of the material
should increase if another substance with significantly higher refractive index is
added, which is exactly our case.

13.2.2
Lasing in Ferroelectric Liquid Crystals

The lasing in dye doped FLC cells has experimentally been demonstrated in
works [9,23–25]. However, as it was shown, the threshold pumping energy was
much higher in comparison with that of CLCs. This effect is related with inherent
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properties of FLCs, i.e., high losses related to light scattering and lower depth of the
stop band. In order to decrease the threshold energy, we have investigated laser action
in FLC sandwiched between dielectric multilayers and achieved much lower lasing
threshold compared with simple FLC without dielectric multilayers. The detailed
results of this work are published in articles [26,27].

13.2.2.1 Sample Preparation
A dielectric multilayer, which consisted of five pairs, alternately stacked the SiO2 and
TiO2 layers, deposited on a glass substrate (Figure 13.4). The refractive indices of SiO2

and TiO2 are 1.46 and 2.35, and their thicknesses are 103 nmand 64 nm, respectively.
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Figure 13.3 Lasing in CLC cells. Left hand column are samples
doped with DCM only (concentration 1.5wt%). Right hand
column are samples doped with DCM (concentration 1.5wt%)
andTiO2microsphere (concentration 1wt%). Pumping energy for
(a) and (b) �3mJ/pulse, for (c) and (d) �4.5mJ/pulse, for
(e) and (f) �5mJ/pulse. The diameter of the illuminated area
was around 200mm.
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The center wavelength of the stop band was adjusted to be 600 nm, and an excitation
wavelength for lasing 532 nm was out of the stop band. The top surface of the
dielectric multilayer was coated with polyimide (JSR, JALS-2021-R2) in order to
obtain a homeotropic alignment.
The FLC compound used in this study was a multi component mixture having

chiral smectic C (Sm C�) phase in a wide temperature range including the room
temperature. The chemical content of the mixtures are summarized in Table 13.1.
As a laser dye dopant, DCM (Exciton) was doped in the FLC with concentration

0.76wt%. The FLCwas sandwiched between themultilayers using 16 mm spacers, as
the helical axis was perpendicular to the multilayer surfaces. In order to make
comparison, emission characteristics of simple FLC cell without the multilayer were
also investigated. The transmission and emission spectra of simple FLC without
dielectric multilayers has been investigated, which is shown with dashed lines in
Figure 13.5. In the transmission spectrum, a drop of transmittance was observed at
595 nm, which was due to the stop band of the FLC. Decrease in the transmittance at
shorter wavelength was attributed to absorption of the laser dye.

13.2.2.2 The Experimental Setup
The prepared samples were pumped with a Q-switched Nd:YAG laser. The wave-
length, pulse duration and repetition rate were 532 nm, 8 ns and 10Hz respectively.
The pumping beam was incident perpendicular to the sample. The laser beam was
focused onto the sample in such a way that the illumination area was around
0.2mm2. The emission spectrum of the samples was measured from the opposite
side of the cells with a multichannel spectrometer Hamamatsu having the spectral
resolution around 2 nm. The temperature of the sample was maintained by a
temperature controller and was 28 �C.

13.2.2.3 Experimental Results
The emission spectrum of the simple cell at a pump energy of 54mJ/cm2 pulse is
shownwith the dashed line, whichwas dominated by broad spontaneous emission of

Figure 13.4 Ferroelectric liquid crystal cell operating in DHF
mode. Both confining substrates contain dielectric multilayers.
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Table 13.1 Chemical content of the utilized FLC mixture.

Compound

N

N

H17C8 OC10H21

N

N

C7H15H17C8

N

N

H17C8 OC8H17

F

O

N

N
O CH2 CH

C6H13

F

H19C9

CH3

C4H9

H3C

H9C4

COO CHOOCCH

OOC COOHC CH

COOC2H5

CH3H3C

H13C6

20 100

80

60

T
 (

%
)

40

20

0

15

10

5

0
500 550

x10

600
Wavelength (nm)

E
m

is
si

on
 In

te
ns

ity
(a

.u
. x

10
3 )

650 700

Figure 13.5 Emission and transmission spectra of simple FLC
(dashed lines) and emission spectrum of FLC sandwiched
between dielectric multilayers.
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the laser dye. The emission intensity increased as the pump energy increased;
however, laser action was not observed at any pump energies up to the damage
threshold of 580mJ/cm2 pulse. This result indicates that the lasing threshold is
higher than the damage threshold in this material. The emission characteristics of
FLC sandwiched between dielectric multilayers has been investigated, as shown in
Figure 13.5. The solid line in Figure 13.5 shows the emission spectrum of the FLC
with the dielectric multilayers at the pump energy of 1.4mJ/cm2 pulse.
Although many emission peaks appeared at low pump energy, above the thresh-

old, a sharp emission line was observed, as shown in Figure 13.5, at 614 nm which
corresponds to the longwavelength band edge of the FLC. Figure 13.6 shows the peak
intensity and the full width at halfmaximum (FWHM) of the emission spectrum as a
function of pump energy. Above the pump energy of 600 mJ/cm2 pulse, the emission
intensity increased drastically. Simultaneously, the FWHM of the emission peak
decreased from 5nm to less than the spectral resolution of 2 nm. This result
indicated that single-mode laser action occurred above the threshold of 600 mJ/cm2

pulse. It should be noted that the lasing threshold is 103 times lower than that of the
simple FLC without the multilayer, which must be attributed to the sandwich
structure with the dielectric multilayers. For estimation of this value, we suppose
that, in principle, this threshold should exist, at least, theoretically and it is higher
than the damage threshold. In other words, this is the rough estimation of the lower
limit of this ratio.
This laser action can be explained by the double optical confinement of not only the

band edge effect of the FLC but also the light localization effect of the photonic crystal
composed of the dielectric multilayers. Addition of the optical confinement by the
dielectric multilayer to that by the FLC must lead to lowering the lasing threshold of
the FLC sandwiched between the dielectric multilayers compared with that of the
simple FLC.
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Figure 13.6 Intensity of the emitted light and emission linewidth
(FWHM)vs. pumpenergy. Theblack circles stand for the emission
line width (FWHM), the black triangles indicate the emission
intensity.
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13.2.3
Conclusion

In this article we demonstrated the influence of the defect mode on the emission
spectra of the dye doped chiral liquid crystal. At the first stage we investigated the
lasing in cholesteric liquid crystal with defects introduced by the TiO2microbeads. It
was revealed that due to scattering the threshold of the lasing increased at 30–40%
and, in the same time, multimode laser action appeared.
At the second stage, the single-mode laser action in FLC sandwiched between

dielectric multilayers at the band edge of the FLC was shown. The lasing threshold
was hundred times lower than that of simple FLC because of the double optical
confinement effect of the FLC and the dielectric multilayers.
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14
Photonic Crystals based on Chiral Liquid Crystal
M. Ozaki, Y. Matsuhisa, H. Yoshida, R. Ozaki, and A. Fujii

14.1
Introduction

Photonic crystals (PCs) having a three-dimensional (3D) ordered structure with a
periodicity of optical wavelength have attracted considerable attention from both
fundamental and practical points of view, because in such materials novel physical
concepts such as the photonic band gap (PBG) have been theoretically predicted and
various applications of photonic crystals have been proposed [1,2]. Particularly, the
study of stimulated emission in the PBG is one of the most attractive subjects, since,
in the band gap, a spontaneous emission is inhibited and low-threshold lasers based
on photonic crystals are expected [1,3–6]. So far intensive studies on one- and two-
dimensional band-gap materials have been performed. In order to realize the
photonic crystal, a large number of studies on a micro-fabrication based on a
semiconductor processing technology [7–9] and a self assembly construction of
nano-scale spheres [10,11] have been carried out.
Liquid crystals (LCs) including chiral molecule have a self-organized helical

structure which can be regarded as a one-dimensional (1D) periodic structure
(Figure 14.1). In such systems, there is a so-called stop band in which the light
cannot propagate, which is considered as a 1D pseudo-bandgap. Lasing at the band
edge has been reported in cholesteric liquid crystal (CLC) [12–19], chiral smectic
liquid crystal [20–22], polymerized cholesteric liquid crystal (PCLC) [23–25] and
cholesteric blue phase [26]. These laser actions in the 1Dhelical structure of the chiral
liquid crystals are interpreted to be based onan edge effect of the 1DPBGinwhich the
photon group velocity is suppressed [27].
On the other hand, the localization of the light based on the defect mode caused by

the imperfection in the periodic structure has been expected as potential applications
such as low-threshold lasers and microwaveguides [7–9,28,29]. The introduction of
the defect layer into the periodic helical structure of the CLCs has been theoretically
studied [30,31]. Especially, Kopp et al. have predicted the existence of a localized state
for single circularly polarized light in the twist defect of the CLCs [31]. However, in
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spite of the theoretical demonstration of the twist defect mode (TDM) in the CLC,
evident experimental demonstration on such defect modes had not been carried out.
LCs have a large optical anisotropy and are sensitive to an external stress such as an

electricfield. Based on such optical anisotropy andfield sensitivity, a tunable photonic
crystal has beenproposed in opal or inverse opal infiltratedwith LC [32–36]. Although
opals and inverse opals provide a simple and inexpensive approach to realize 3D PC
using self-organization of colloidal particles [10,11], the introduction of defects into
the 3Dperiodic structure is a problem thatmust be resolved.Not only 3DPCsbut also
1D PCs are an attractive subject. Although, the 1D PCdoes not have a complete PBG,
there are plenty of applications using extraordinary dispersion of the photon and
localized photonic state in a defect layer. So far, intensive studies on 1D PC
applications have been reported: air-bridgemicrocavities [7], the photonic band-edge
laser [27], nonlinear optical diode [37] and the enhancement of optical nonlinearity
[28,38]. Recently we have introduced a LC layer in a dielectricmultilayer structure as a
defect in the 1D PC [29,39,40], in which the wavelength of defect modes was
controlled upon applying electric field in a basis of the change in optical length of
the defect layer caused by the field-induced molecular reorientation of LC.
In this paper, we review our recent work on the photonic crystals based on the self-

organized chiral liquid crystals and defectmodes characteristic to the helical periodic
structure.

14.2
Photonic Band Gap and Band Edge Lasing in Chiral Liquid Crystal

14.2.1
Laser Action in Cholesteric Liquid Crystal

In a periodically structuredmedium, when the Bragg condition is satisfied, reflected
lights at each point interfere with each other. As a result, the light can not propagate
and only the standing waves exist. This means the lights in a certain range of energy

smectic C phase chiral smectic phase

chirality

p

nematic phase chiral nematic phase
(cholesteric phase)

chirality p/2

Figure 14.1 Molecular alignments of nematic and smectic liquid
crystals. Upon adding chirality, helicoidal periodic molecular
alignment is induced, whose periodicity can be tuned from
hundreds nm to over several hundreds mm by changing chirality
strength.
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can not propagate in the medium, and the lights at both edges of this energy range
have zero group velocity. This energy range is so called �photonic band gap�.
In the helical periodic structure of the CLCs, the light propagating along the helical

axis is selectively reflecteddependingon thepolarizationstates if thewavelengthof the
light matches to the optical periodicity of the helical structure, which is a so-called
selective reflection. In this case, there are two types of circularly-polarized standing
waves with zero group velocity at the edges of the stop band as shown in Figure 14.2.
Here, the rods indicate the molecular long axis of the CLC and the arrows show the
polarization direction of the standing waves. For one of standing waves, the polariza-
tion direction of the light is always parallel to the molecular long axis (in-phase
standing wave). This light feels extraordinary refractive index of the LC and has lower
energy with respect to a travelling wave, which corresponds to the longer edge of the
stop band. If we dope laser dye having a transitionmoment parallel to the long axis of
LC, the polarization of the in-phase standingwave is parallel to the transitionmoment
of the dopeddye. This circularly polarized standingwavewith lower energy effectively
interactswith the lasermediumandwe can expect the low threshold laser action at the
longer wavelength edge of the band gap.
Figure 14.3a shows reflection and emission spectra of the dye-doped CLC. The

reflection band corresponds to the 1D PBG. The CLC compound with a left-handed

Figure 14.2 Schematic explanation of the appearance of photonic
band gap in spiral periodic structure.
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helix was prepared by mixing a chiral dopant (S-811, Merck) and a nematic liquid
crystal (E44, Merck). As a laser dye dopant in the CLC, [2-[2-4-(dimethylamino)
pheny1]etheny1]-6-methy1-4H-pyran-4-ylidene propanedinitrile (DCM,Exciton)was
used. The concentration of the dye was 1wt%. The sample was filled into a parallel
sandwich cell, which consists of two glass plates. The CLC in the cell aligns their
directors parallel to the glass plates, that is, the helical axis is perpendicular to the
glass substrates as shown in Figure 14.3(b) and (c). The cell thickness of CLC is 9 mm.
As an excitation source, a second harmonic light of a Q-switched Nd:YAG laser was
used, whose wavelength and pulse width were 532 nm and 8ns, respectively. The
excitation laser beam irradiated the sample at an angle of about 45 degreewith respect
to the cell plate normal. At a low excitation energy, the emission spectrum is
dominated by a broad spontaneous emission and the suppression of the emission
due to the stop band of the CLC is observed. At a high excitation energy (>6mJ/cm2),
the laser action is observed at the longer wavelength edge of the stop band, as shown
in Figure 14.3(a). Emitted laser light is circularly polarizedwith the samehandedness
as the helix sense. With temperature increases, the lasing wavelength shifts toward a
shorter wavelength, which corresponds to the shift of the stop band originating from
the temperature dependence of the helical pitch of CLC.

14.2.2
Low-Threshold Lasing Based on Band-Edge Excitation in CLC

The laser action mentioned above is based on the suppression of photon group
velocity and the enhancement of the photon density of states (DOS) at the lower
energy edge of the PBG. On the other hand, at the higher energy edge of the PBG, an
effective absorption should occur and a low-threshold laser action can be expected
[41]. We have experimentally demonstrated the band-edge excitation effect on CLC
lasing by matching the excitation laser wavelength to the higher energy edge of the
PBGof a dye-doped CLC [42,43]. Figure 14.4(a) shows the lasing threshold of the dye-
doped CLC for the right- and left-handed circularly polarized (RCP and LCP)
pumping beams as a function of the wavelength of the high-energy band edge by
changing the operating temperature. The CLC host was prepared bymixing nematic
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Figure 14.3 (a) Reflection and emission spectra of dye-doped
CLC. A sharp lasing peak appears at the longer wavelength
edge of the PBG at an excitation energy of 13mJ/cm2. (b) and
(c) represent cell configuration for the reflection and emission
spectra measurements, respectively.
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liquid crystal (BL006, Merck) with a right-handed chiral dopant (MLC6248, Merck).
As a laser dye, PM597 (Exciton) was doped into themixture. A second harmonic light
(532 nm) of aQ-switchedNd:YAG laser was used as an excitation source. For the LCP
excitation, the lasing threshold gradually increases with the redshift of the band edge.
This originated from the position of the maximum spontaneous emission of the
doped dye. Namely, PM597 dye exhibits its maximum spontaneous emission at
580 nm. Therefore, the emission efficiency should be highest when the high energy
edge matches 510 nm because the band width of the CLC is about 70 nm. On the
other hand, for the RCP excitation, the lasing threshold exhibits minimumwhen the
shorter band edge of the PBG is located at the pumping wavelength of 532 nm.
Moreover, the lasing threshold for the RCP excitation is about two times lower than
that for the LCPone at 532 nm. This is attributed to the band-edge excitation effect for
the CLC lasing.
The DOS of the CLC used in the above experiment for LCP or RCP incident lights

(532 nm)was evaluated as a function of the wavelength of the high-energy band edge.
The calculation was carried out using the 4 · 4 matrix method by changing the helix
pitch. As is evident from Figure 14.4(b), the DOS for the RCP incident light is
drastically enhanced when the high-energy edge coincides with the excitation
wavelength (532 nm). This indicates that the high DOS caused by band-edge
excitation enhances the lasing efficiency and decreases the lasing threshold as shown
in Figure 14.4(a).

14.2.3
Laser Action in Polymerized Cholesteric Liquid Crystal Film

Liquid crystals are fluid materials and have to be filled in containers such as a
sandwiched cell. This fluidity is unsuitable for a practical application. We have
developed a solid film having CLC helicoidal molecular alignment for the use of
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lasing [25]. For the fabrication of polymerizedCLC (PCLC), photo-polymerizableCLC
mixtures (Merck KGaA) were used. First, the monomer sample was inserted by a
capillary action into the sandwiched cell that is composed of two glass plates. The
CLCs in this cell align their director parallel to the glass plates, that is, the helical axis
is perpendicular to the glass substrates. UV light irradiation was performed using a
Xe lamp to induce the photo-polymerization of the UV-curable CLCmonomer. After
UV light irradiation, two glass substrates were removed and the free-standing PCLC
film was obtained. Figure 14.5 shows the laser action from the PCLC film containing
DCM of 0.4wt%. For the excitation light source, a second harmonic light of a
Q-switched Nd:YAG laser was used. At high excitation energy (>1.5mJ/cm2), laser
action is confirmed at the edge of the stop band. This laser action is achieved without
any substrates and is observed even when PCLC film is bent as shown in Figure 14.5.
This suggests that 1D helical structure required for the laser action is maintained
even in the deformed film. This flexibility may enable us to fabricate optical devices
with new functionalities.

14.2.4
Electrically Tunable Laser Action in Chiral Smectic Liquid Crystal

Chiral smectic liquid crystals with a tilted structure show ferroelectricity, which are
called ferroelectric liquid crystals (FLCs), and have an expected potential for electro-
optic applications because of their fast response to an electric field. FLCs also have a
helical structure and show the selective reflectiondue to their 1Dperiodic structure in
an almost the same manner as the CLC [20]. The helix of the FLC can be easily
deformed upon applying electric field and its response is fast because of the strong
interaction between the spontaneous polarization and electric field. Therefore, a fast

Figure 14.5 Lasing from bent film of polymerized CLC.
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modulation of the lasing wavelength upon applying electric field can be expected in a
dye-doped FLC.
FLC has a spontaneous polarization Ps which points normal to the molecules and

parallel to the smectic layers.When the electric field is applied parallel to the layer, for
lower field Ps intends to point along the field direction and FLC molecules start to
reorient to the direction normal to the field, resulting in the deformation of the helix.
Above the thresholdfield, all FLCmolecules orient to the samedirection and the helix
is unwound. At intermediate field strength, the deformation of the helix might cause
the elongation of the periodicity of the helix.
Figure 14.6 shows the lasing spectra of the dye-doped FLCat high excitation energy

(24 mJ/pulse) as a function of the applied electric field. It should be noted that lasing
wavelength largely shifts toward longer wavelength with increasing the field, which
corresponds to the shift of the selective reflection band. In spite of a low field (3.5 kV/
cm), a wide tuning of the lasing wavelength was achieved [21].
The response of the electrooptical switching based on a slight deformation of the

helix of a short pitch FLC is as fast as several ms, and the application to optical
communications as well as to display devices has been proposed. The relaxation time
t of the helix deformation of FLC is represented by the following equation,

t / p2g
K

;

where p is the helix pitch, g is the rotational viscosity and K is the elastic constant.
According to this relation, the response time is proportional to p2, and high frequency
modulation of the periodicity of the helix can be expected in a short pitch
FLC. In deed, the electrooptic modulation device using a similar compound to the
FLC material used in this study has a response of the order of several ms. Conse-
quently, the fast modulation of the lasing is possible in the dye-doped FLC with a
short pitch.
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Figure 14.6 Lasing spectra of dye-doped FLC as a function of an
applied electric field perpendicular to the helix axis.
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14.3
Twist Defect Mode in Cholesteric Liquid Crystal

Laser actions reportedso far in chiral liquidcrystals (Figure14.7(a)) areobservedat the
edgewavelengthof the stopbandandare associatedwith thegroupvelocity anomaly at
the photonic band edge. On the other hand, low threshold laser action based
on the photon localization at a defect in a periodic structure can also be expected.
The introduction of the defect into the periodic helical structure of the CLCs
has been theoretically studied. Especially, Kopp et al. have predicted the existence of
a single circularly polarized localizedmode in the twist defect of theCLCs (Figure 14.7
(b)) [31].
The PCLC film with the twist defect was prepared as follows [44]. The photo-

polymerizable CLC monomer was spin-coated from a toluene solution on a glass
substrate on which a polyimide (AL-1254) was coated and rubbed in one direction. In
order to obtain a uniform planar alignment, the coated CLC was annealed at the
temperature just below the clearing point. The CLC on the substrate aligns their
director parallel to the glass plate, that is, the helical axis is perpendicular to the glass
substrate. UV light irradiation was performed using a Xe lamp to induce the photo-
polymerization of the UV-curable CLCmonomer. Two PCLC films were put together

Figure 14.7 Helix structures without (a) and with (b) twist defect
interface. (c) Transmission spectrum of the dye-doped double
PCLC composite film with twist defect. (d) Emission spectrum of
the double PCLC composite film with the defect at above the
threshold pump pulse energy (200 nJ/pulse).
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as the directors of liquid crystalmolecules at an interface of thesefilmsmake a certain
angle f. In other words, there is a discontinuous phase jump of the azimuthal angle
of the helical structures between these PCLC films at the interface, which acts as a
twist defect in the helicoidal periodic structure.
Figure 14.7(c) shows the transmission spectrum of the dye-doped double PCLC

composite film containing a discontinuous defect interface. A stop band, 1D PBG, is
confirmed in the spectral range from 580 nm to 640 nm. It should be noted that a
sharp peak appears at 611 nm within the PBG, which might be related to the defect
mode induced by the introduction of the twist defect interface.
We have performed theoretical calculation of the light propagation in PCLC films

with and without twist defect interface, using a method of characteristic matrices.
This method is a numerical analysis based on the Maxwell equation which can be
used to quantitatively calculate the light propagation in the medium with refractive
index varying along one direction. Assuming that the phase jump of the director
angles f at the interface of two PCLC layers is 4p/9rad, the theoretically calculated
results are in good agreement with the experimental ones. This result indicates that
the sharp peak observed in the PBG corresponds to the TDM in the double PCLC
composite film with the twist defect interface.
Figure 14.7(d) shows the emission spectrum of the dye-doped double PCLC

composite film with the defect interface at pump energy of 200 nJ/pulse. For an
excitation source, a second harmonic light of a mode-locked Nd:YAG laser (Ekspla,
PL2201) was used. The pulsewidth, wavelength and pulse repetition frequency of the
pump laser beamwere 100 ps, 532 nm and 1 kHz, respectively. The illumination area
on the sample was about 0.2mm2. At high excitation energy (200 nJ/pulse), laser
action appears at 611 nm which is within the band gap and coincides with the TDM
wavelength. The FWHM of the emission peak is about 2 nm, which is limited by
the spectral resolution of our experimental setup. Above the threshold at a pump
pulse energy of about 100 nJ/pulse, the emission intensity increases. The FWHM of
the emission spectrum also drastically decreases above the threshold. These results
confirm that laser action occurs above the threshold of the pump energy at the
wavelength of the TDM in the PBG [44,45].

14.4
Chiral Defect Mode Induced by Partial Deformation of Helix

TDM based on the composite film of two PCLCs has been achieved. However, its
wavelength can not be tuned by an external field such as the electric field or light. We
have proposed a new type of defectmode in the helix which can be dynamically tuned
by the external field [46]. Figure 14.8 shows schematic explanation of a photonic
defect in CLC. If the periodicity (pitch) of the helix is partially changed as shown in
Figure 14.8(b), that is, the pitch is partially squeezed or expanded, these irregularities
in the periodic structure should act as a defect and cause the light localization. As a
method to induce partial change in helix pitch, we suppose that the localmodification
of helical twisting power (HTP) is induced by a focused Gaussian laser light. Optical
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control ofHTP can be realized using photochemical effects of the doped azobenzene,
nonlinear optical effects, or by simple heating. Photoinduced reversible control of
HTP of CLC has been demonstrated in the CLC containing photochromic azoben-
zene, and applications to a reflection-type display devices, an optical shutter, an
optical memory, and so on have been studied [47,48]. By the trans-cis photoisome-
rization of the doped azobenzene, HTP of the host CLC changes, so that photoin-
duced control of HTP can be realized.
On the other hand, when multiple chiral defects are introduced into the helix as

shown in Figure 14.8(c), coupling between the modes confined in the defect layers
leads to the formation of the defect band in the PBG [49].
We have also proposed a novel approach to introduce chiral defects (local

modulation of the helix pitch) into the helix structure of CLC [50]. A schematic
explanation of the fabrication procedure is shown inFigure 14.9(a). A 100 fs pulse of a
Ti:Sapphire laser at wavelength of 800 nm and repetition rate of 80MHz were
focused on the sample cell by an objective lens with numerical number (N.A.) of 1.4.

Figure 14.8 Pitch distributions and calculated transmission
spectra for helical structures with (a) no defect, (b) single
chiral defect and (c) multiple chiral defects.
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The right-handed PCLC material doped with 1wt% of DCM dye was aligned
homogeneously in a cell with a gap of 6–7mm.The direct laser writingwas performed
with a confocal laser scanning microscope. The laser was scanned over an area of
146.2 mm · 146.2 mm,with a scan-line resolution of 2048 lines per scan-area. First, the
laser light is tightly focused near the substrate surface in the CLC cell. Tow-photon
polymerization occurs at the laser focusssing point and a locally polymerized PCLC
thin film is obtained on the substrate surface. The sample is then flipped over and
laser writing performed again near the opposite surface of the cell. As a result, a
hybrid structure is fabricated in which an unpolymerized CLC region is left between
two PCLC films on the cell surfaces. Moreover, in this system, the defect modes can
be tuned bymodulating the helix pitch in the defect layer upon changing temperature
or irradiating with light [51,52].
Figure 14.9(b) shows the transmission spectra for right-handed circularly polar-

ized light of the fabricated CLC defect structure. A single defect mode is observed
within the selective reflection band of the CLC. The theoretical transmission
spectrum was calculated using Berreman�s 4· 4 matrix [53], which showed a good
agreementwith the experimental result. Figure 14.9(c) shows the emission spectrum
at high pumping energy of the CLC single-defect structure along with the corre-
sponding transmission spectrum. Single mode laser action is observed at 628 nm,
which corresponds to the defect mode wavelength. Lasing threshold for the defect
mode structure is 16.7mJ/cm2, which is less than half of the threshold of CLC
without defect structure. The reduction of the lasing threshold in the defect structure
supports a high-Q cavity formed by the defect.
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Figure 14.9 (a) Schematic explanation of the fabrication
procedure of the PCLC with chiral defect based on local
photo-polymerization using scanning confocal microscope.
Transmission (b) and emission (c) spectra of the CLC with
chiral defect.
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14.5
Tunable Defect Mode Lasing in a Periodic Structure Containing CLC Layer as a Defect

We have introduced a LC layer in a 1D PC as a defect, in which the wavelength of
defect modes were controlled upon applying electric field in a basis of the change in
optical length of the defect layer caused by the field-induced molecular reorientation
of LC [29]. We also proposed a wavelength tunable laser based on an electrically
controllable defect mode in a 1D dielectric periodic structure containing a dye-doped
LC as a defect layer [39,40].
The introduction of periodic structure into a 1D PC as a defect is also interest-

ing [54–57]. We have introduced a CLC layer in a 1D PC as a defect [58–61].
Figure 14.10(a) shows the theoretical transmission spectrum of a 10-pair multilayer
without a CLC defect (solid line), and a simple CLC without a PC structure (dashed
line). The PBGof theCLCwas observed between 605 nmand 680nm,which is inside
that of themultilayer. Figure 14.10(b) shows the calculated transmission spectrum of
a 1D hybrid photonic crystal (HPC) with a CLC defect. Many peaks appeared at
regular intervals in the PBG of the HPC. These peaks are related to the defect modes
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Figure 14.10 (a) Theoretical transmission spectra of 1-D PC
without any defect (solid line) and CLC without PC structure
(dashed line). (b) Theoretical transmission spectra of 1-D PC
containing CLC as a defect. (c) Magnified transmission spectra
corresponding to (b).
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resulting from the introduction of the CLC defect. However, additional peaks were
observed, as indicated by arrows, which disrupted the regular interval between the
defect mode peaks at both band edges of the CLC.
The transmission spectra in Figure 14.10(b), around the longer edge of the PBG of

the CLC, are shownmagnified in Figure 14.10(c). Four main peaks due to the defect
modes appeared at regular intervals (661 nm, 673 nm, 687 nmand 699 nm), although
the peak at 687 nm splits. The splitting of the peak at 687 nm is attributed to the
optical anisotropy of the CLC. Therefore, two kinds of defect mode corresponding to
left- and right-handed circularly polarized lights could exist out of the PBG of the
CLC. On the other hand, one additional peak was observed at 678.6 nm, which
corresponds to the band-edge wavelength of the CLC. From detailed consideration of
the polarization states of transmitted light, the additional peak was clearly distin-
guished from the other defect mode peaks. Such a peak was not observed in a 1D PC
with a uniform defect such as an isotropicmedium or nematic liquid crystals [29,43].
Namely, this peak is a defect mode peculiar to the helix defect in the 1D PC, and is
associated with photon localization originating from the band-edge effect of the CLC
helix. Note that this defect mode peak is very sharp and the full width at half-
maximum (FWHM) of this peak was 0.05 nm, which ismore than four times smaller
than that of the other defectmode peaks (0.23 nm). From the peakwidth, theQ-factor
of the additional mode at the band edge of the CLCwas estimated to be 34000, which
was much higher than that of the other defect modes.
In order to clarify the appearance of the high-Q defect mode in the double periodic

structure, we have performed theoretical estimation of electric field distribution in
three types of one-dimensional periodic structures described above using a finite
difference timedomain (FDTD)method. Thismethod is numerical analysis based on
the Maxwell differential form equations. In this calculation, light absorption is
neglected in simulation space and the first Mur method [62] is applied as the
absorbing boundary condition to absorb the outgoing light in simulation space
edges. Figure 14.11 shows the calculated electric field distributions and refractive
indices in two types of periodic structures.We assumed that the thickness, the helical
pitch and the extraordinary and ordinary refractive indices of the CLC are 9.1 mm,
350 nm, 1.735 and 1.530, respectively. The wavelength of the incident light to the
periodic structures corresponds to the high-Q defect mode wavelength. It should
be noted that light is localized strongly in the double periodic structure and
the maximum electric field intensity is more than 15 times as much as that of a
simple CLC. Light is localized at the center of the CLC layer in the double periodic
structure shown in Figure 14.11(a) and its field pattern is similar to that in the CLC
shown in Figure 14.11(b), which indicates that light in the double periodic structure
is confined by the band edge effect of CLC. Additionally light confinement is
effectively enhanced by the outer periodic structure because the wavelength of light
is within the PBG of the outer periodic structure. Namely, from the contribution of
both band edge effect of CLC and defect mode effect of the outer periodic structure,
light is localized strongly in the double periodic structure.
We have investigated the laser action in a 1DHPCwith a CLCdefect. As a laser dye

dopant, DCMwas compounded in a CLC, whose concentration was 1wt%. The PBG
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of the CLC shifts with a temperature change, which is attributed to the temperature
dependence of the helical pitch of the CLC. The band edge of the CLCwas adjusted to
644 nm by temperature regulation in this experiment because of the emission
wavelength window of the laser dye. The pumping wavelength was 532 nm. The
excitation laser beam irradiated the sample perpendicularly to the glass surface,
whose illumination area on the sample was about 0.2mm2. The emission spectra
from the 1DHPCwere measured using a CCDmultichannel spectrometer. At a low
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Figure 14.11 Calculated electric field strength in the cell of 1D PC
containing CLC defect (a) and a simple CLC (b).
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pumping energy, the emission peaks appear, which were attributed to spontaneously
emitted light passing out through narrow spectral windows owing to the defect
modes. At a high pumping energy of 18 nJ/pulse, as shown in Figure 14.12(a), only
one sharp lasing peak appeared at 643.5 nm. The calculated transmission spectrum
of this system is also shown in Figure 14.12(b). Comparing Figure 14.12(a) and (b),
the lasing peak coincides with the wavelength of the peculiar defect mode. Note that
the laser action was single-mode based on one additional mode, although many
modes exist because of the highQ-factor. The threshold of laser action in the 1DHPC
with a CLCdefect was lower than that in simple CLCwithout a 1DPC [58]. This result
is attributed to strong optical confinement due to the high Q-factor of the additional
mode. Similar results have been confirmed in the 1D PC containing ferroelectric
liquid crystal as a defect [63].

14.6
Summary

Two types of laser actions were demonstrated using the CLC. They originated from
the band edge effect of the one-dimensional photonic band gap and the defect mode
within the band gap.We experimentally demonstrated the TDM in the 1DPBGof the
CLC film having a twist defect which was a discontinuity of the director rotation
around the helix axis at an interface of two PCLC layers. The laser action based on the
TDM was also observed in the dye-doped PCLC composite film with the
twist interface. We also proposed a new type of defect mode based on the chiral
defect in which the partial modulation of the helix pitch was induced. In the new
chiral defect mode, the tuning of the mode frequency could be expected by partial
modulation of the helical twisting power. In order to realize chiral defect in the CLC,
we also proposed a novel approach using a direct laser writing technique with
femtosecond pulse laser. We fabricated a local modification of the CLC helix pitch
based on a two-photon polymerization. Finally, we proposed double periodic struc-
ture in which the defect has also periodicity, and we demon-strated a hybrid photonic
crystal (HPC) structure based on a combination of a 1D PC and CLC defect. In the
HPC, a single-mode laser action with low pumping threshold is observed, which is
based on the defect mode with a high Q-factor peculiar to the CLC defect having
periodic structure.
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15
Tunable Superprism Effect in Photonic Crystals
F. Gl€ockler, S. Peters, U. Lemmer, and M. Gerken

15.1
Introduction

Since the introduction of the photonic crystal (PhC) concept in 1987 most of the
attention was drawn to exploit the photonic bandgap (PBG) of such structures to
confine light, to guide light, or to inhibit or amplify spontaneous emission properties.
Another remarkable effect that occurs in periodic media is the superprism effect
referring to a largely enhanced angular dispersion in comparison to bulk materials.
This effect does not occur inside the bandgap, but in a regionwhere light propagation
is allowed. Due to the effect a small change in the wavelength of an incoming beam
results in a large change of its group propagation angle.
When operating a superprism structure in the region of strong angular dispersion,

small changes in the structure�s optical properties also result in large changes of a
beam�s group propagation angle. By actively controlling the optical properties, a
miniaturized beam steering device can be realized. Following this concept, a number
of different designs has been investigated, both by simulation and experimentally,
during the last 15 years. The ideal device would have a size on the order of the
wavelength of the operating light and would be power efficient. For many applica-
tions, especially in optical communications, additionally fast switching speeds in the
picosecond range are required. These goals have been pursued using two different
approaches. First, larger effects can be obtained by optimizing the design of the PhC.
Second, the effect utilized for changing the optical properties can be improved, which
often corresponds to improving the material.
In the next four sections, we will give an overview over the research on tunable PhC

superprism structures of the last 15 years. Section 15.2 starts with a short review of the
superprism effect itself mentioning important publications and giving some explana-
tions concerning the origin and the limitations of the superprism effect. While
relatively little research has been performed on tunable superprism structures, more
results have been achieved in the two closely related fields of on-off-switching of optical
signals and of optical modulators. These two fields draw much attention due to their
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promises for all-optical circuitry. As many of the concepts proposed and realized for
such devices are also usable for tunable superprism structures they will be reviewed in
Section 15.3. In Section 15.4, we outline important results achieved in the field of
tunable superprismstructures. Finally, in Section 15.5wepresent a detailed theoretical
analysis of our own approach for all-optical superprism switching combining one-
dimensional thin film structures with optically nonlinear organic materials. We first
present the current state in nonlinear organic materials and then evaluate the
performance of a thin film superprism device incorporating nonlinear organic layers.

15.2
The Superprism Effect

As early as 1987 John mentioned the possibility of changed refraction properties in
periodic dielectric structures [1]. In the same year, Zengerle published research he
had performed almost a decade earlier discussing many aspects of the peculiar
properties of light propagating in one-dimensional (1D) and two-dimensional (2D)
periodic dielectric structures including the large angular dispersion [2,3]. Dowling
theoretically examined these properties and proposed to utilize them for �ultra-
refractive� optics [4]. In 1996, Lin realized a 2D structure that exhibited a greatly
enhanced dispersion in the millimeter wavelength range and called it �highly
dispersive photonic bandgap prism� [5]. He used alumina-ceramics rods arranged
in a triangular 2D lattice. Later on, Kosaka showed in a semiconductor-dielectric
three-dimensional (3D) photonic crystal structure an angular beam steering of 50
degrees when detuning the wavelength of an incoming beam by only 1% between
990 nm and 1000 nm, a 500-fold larger angular dispersion than in a regular glass
prism [6–8]. These numbersmotivate the labeling of the strong angular dispersion in
PhC structures as superprism-effect. Kosaka�s results ignited the hope to realize
miniaturized high dispersion devices. These are promising for dispersion compen-
sation or light deflection devices, above all for compact devices to replace waveguide
gratings in dense wavelength-division multiplexing applications. In 2002, Wu et al.
confirmed the superprism effect observing a 10 degree angular steering over a
wavelength range from 1290 nm to 1310 nm, which corresponds to an angular
dispersion of 0.5 degrees/nm in a triangular 2D PhC [9]. Baumberg et al. later
demonstrated the superprism effect in silicon-based 2D structures in the optical
wavelength region [10]. In 2003 Prasad et al. predicted a superprism effect in 3D
macroporous polymer PhCs. They showed that an angular dispersion as high as 14
degrees/nm should be feasible, even for the small refractive indices of polymers [11].

15.2.1
Origin of the Superprism Effect

The reason why superprism phenomena occur in periodic media can most conve-
niently be seen when looking at the first Brillouin zone of such a structure. For
explanation purposes a 2D triangular lattice is chosen (Figure 15.1a). In Figure 15.1b,
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the first Brillouin zone of such a photonic crystal is sketched (this is a schematic
drawing for the sake of explanation, not a calculated curve). The solid black linesmark
two equi-frequency curves. In contrast to a bulk material, where these lines have
ellipsoidal shape, one recognizes immediately the strong distortion to starlike
shapes. The propagation direction of an incoming beam of light can be deduced
from this diagram in the following way. First, the tangential component of the
wavevector of the incident beam has to be conserved to fulfill momentum conserva-
tion. Therefore, we can find for a given frequency of light and incident angle of the
beam the corresponding wavevector inside the PhC at the intersection point of a
parallel to the k?-axis and the equi-frequency curves. As the propagation direction is
parallel to the group velocity vg that is defined by

vg ¼ rkwðkÞ; ð15:1Þ
we find the propagation direction graphically by drawing the normal vector at the
intersection point on the dispersion curve. The strong deviation froma spherical shape
leads to large changes in the normal vector of the dispersion curve with small changes
of thewavevector of the incoming beam. This can be illustrated by introducing an equi-
incident-angle curve, that is a curve containing all points that belong to beams of equal
incidence angle, but differentwavelength.When looking at the intersectionpoint of the
first and seconddispersion curve and comparing the respective propagation directions,
the large effect for the group propagation angle becomes apparent.

15.2.2
Performance Considerations for Superprsim Devices

In the first publications that theoretically or experimentally investigated superprism
structures, high expectations for future devices containing these structures were
stated. These were supported by the large angular dispersion in the region of

Figure 15.1 a) Schematic drawing of a triangular 2D PhC. Light is
incident on the surface of the crystal under an angle yi. b) The first
Brillouin zone with two equi-frequency surfaces is drawn. The
propagation direction inside the PhC is determined graphically.
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1 degree/nm compared to 0.006 degrees/nm for a conventional prism and
0.1 degrees/nm for a diffraction grating. Later work showed that the performance
of superprism structures has to be analyzed not only in terms of angular dispersion,
but also with respect to other parameters such as the bandwidth, the width of the
operating beam, the position of the focus, and the device size. Baba et al. investigated
in a series of papers the performance of superprism structures when using an
incident beam that is focused on the input face of the photonic crystal. He calculated
that for thismode of operation, the size of the beamwaist of the incoming light needs
to be chosen large resulting in a large device size. For a sample structure with a
resolution of 0.4 nmover 56 resolvedwavelength points, Baba determined for a beam
waist of 115mm a device size of more than 10 cm [12]. A further drawback of super-
prism structures is that only the lower order photonic bands can be used. In contrast
to diffraction gratings, for higher order bands a high diffraction efficiency towards a
unique direction is not given. The multiplicity of bands would lead to heavy distor-
tions of the beam. Baba et al. proposed optimized structures later [13]. Gerken et al.
demonstrated experimentally that more compact superprism devices are possible for
wavelength multiplexing and demultiplexing applications by considering an incident
beam focused on the detector or output waveguide array not on the photonic crystal
input surface [14,15]. The number of resolvablewavelength channels is proportional to
the product of angular dispersion and device bandwidth demonstrating that high
angular dispersion alone does not guarantee a high performance device.

15.2.3
Bragg-Stacks and Other 1D Superprisms

Though the term �superprism� effect was coined in connection with 2D and 3D PhC
structures, it should be emphasized that 1D photonic crystals also show superprism
effects. Periodic structures with alternating areas of low and high index of refraction,
i.e. Bragg-stacks, have been used formore than 30 years for numerous purposes from
anti-reflection coatings to filters for optical communications. Gerken et al. investi-
gated the superprism effect in 1D thin film stacks in several publications [16,17].
Additionally, it was pointed out, that nonperiodic structures also show the superprism
effect. This fact opens many new degrees of freedom in designing such structures
tailored for certain applications. An effective angular dispersion of 30 degrees over a
20nm wavelength range around 835nm was demonstrated in a 13.4mm thick
nonperiodic 1D stack allowing for a four channel multiplexing device [14]. By tailoring
the dispersion properties in nonlinear structures to achieve constant dispersion values
beamdistortions are reduced significantly.Also, step-like dispersioncharacteristics can
be achieved which are useful for communication devices [15].

15.2.4
Current State in Superprism Structures

Summarizing the above mentioned developments the superprism effect has
been demonstrated experimentally in 1D, 2D, and 3D structures. While early
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proof-of-principle papers focus on obtaining large angular dispersion [2–11], the
relevance of the bandwidth over which this dispersion is achieved as well as
problems due to beam divergence were addressed in more recent work [20]. For
1D thin film structures, detailed studies of the bandwidth-dispersion product and
beam divergence issues exist [15,18]. In the case of 2D structures for planar
integration similar considerations on bandwidth and coupling can be found
in [12,20], though not in a quantified manner as for 1D thin film stacks. This
work demonstrates that large super-prism structures are necessary to realize a
dense wavelength division multiplexer (DWDM). This result is in agreement with
the theoretical work of Miller on the fundamental limits for optical compo-
nents [21] stating that a minimum device size is necessary for the separation
of a specific number of optical pulses. The current focus lies on realizing
superprism structures for coarse WDM [19] and beam steering in sensors and
communication [18]. For both 1D and 2D superprism systems first steps towards
devices have been made and work is ongoing. In the case of 3D systems, the field
remains in the state of proof-of-principle experiments as fabrication issues
and design problems pose much harder problems than for thin films stacks and
integrated planar PhCs. Thus, predictions of device performances are purely
speculative.

15.3
Tunable Photonic Crystals

The work on tunable PhC structures mainly involves two tasks. First, the geometry
of the device has to be chosen to maximize the effect, and second, an appropriate
tuning mechanism has to be designed. The first point is mainly a question of
the PhC structure�s properties and normally involves the development of appro-
priate fabrication techniques, which is especially demanding on the nanometer
scale required for optical wavelengths. The quest for the best switching mecha-
nism is rather situated in the field of material sciences and chemistry, as it
requires the modification of certain properties of a material. In the following
sections, different approaches for tuning PhC structures will be presented sorted
by the switching effect they utilize. At the end of each subsection, a short
summary of the development in the respective field is given. As considerable
parts of the work consists of proof-of-principle experiments, an extensive analysis
of the effects is often missing. Additionally, the field is not aiming or converging
towards a single application. Therefore, comparison of different concepts with
respect to a single figure of merit is difficult. Nevertheless, there are several
important parameters for evaluation of different concepts. First, required energy
consumption for achieving a certain wavelength shift of bandgap or defect modes
should be considered. Second, the switching speed of the structure is crucial for
the scope of possible applications. Third, complexity of the fabrication and
integration is an issue. The following approaches will be evaluated with respect
to these parameters if possible.
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15.3.1
Liquid Crystals

In a considerable part of the research on tunable PBG structures in the last years
liquid crystals are deployed as active media. Due to their strong birefringence,
refractive index changes of Dn¼ 0.2 andmore are feasible, a value hardly reached by
any other mechanism in the optical domain with reasonably low switching energies.
Additionally, liquid crystals are comparably easy to integrate into PBG structures. A
more detailed survey of the developments in the field of liquid crystal based tunable
PhCs up to 2004 is given in a review paper by Kitzerow [22].
The liquid-crystal approach was proposed by Busch and John in 1999, when they

theoretically predicted a tunable shift of the bandgap of an inverse opal structure
coated with liquid crystals. They suggested to utilize the large temperature depen-
dence of the liquid-crystal�s refractive indexwhen changing from isotropic to nematic
phase [23]. The preferred order of the liquid crystals alters and the large birefringence
causes the refractive index change. This predictionwas soon afterwards confirmed by
experiment. In the following years, numerous modifications of this original concept
were presented. Prominently amongst them is the infiltration of the pores of a PBG
structure with liquid crystals. Following this path, Yoshino et al. [25] and Leonard
et al. [24] tuned the bandgap of an artificial opal structure and amacro-porous silicon
PhC, respectively. Yoshino achieved a 70 nm shift of the stop band edge at 4.3 mm,
Leonard a 60 nm shift at 5.7 mm. Work on thermal tuning is ongoing, Mertens et al.
incorporated a 2D defect layer forming a cavity in a 3D PhC to obtain a tunable defect
mode by 20 nm at 7.375 mm wavelength [26].
Thermal tuning of liquid crystals is experimentally inexpensive, but is not a

method of choice when fast and accurate tuning is required. Fortunately, liquid
crystals offer other nonlinear effects that can be used to overcome these problems. An
operating principle often employed is tuning by an applied voltage, here E. Kosmidou
proposed a 2DPhC structure containing liquid crystal filled defects [27]. A theoretical
tuning of the defect modes covering the whole C- and L-band with 4V operation
voltage and narrow linewidth was calculated. For 1D PBG structures, liquid-crystal
filled defects and even defect waveguides in dielectric layers have been shown [28]. In
thefield of three dimensional PBGs,most of the publishedwork dealswith structures
that were fabricated using �classical� methods (self assembly, direct laser beam
writing and holography) and where the voids have afterwards been filled with liquid
crystals.
Though quite straightforward to realize, the infiltration method has the drawback

of decreasing the refractive index contrast of the PhC by replacing an air filled void by
liquid crystals (refractive index between 1.6 and 2.1). The decrease of the refractive
index contrast reduces the transmission and reflection efficiency of the PhC.
Therefore, a number of approaches has been proposed to overcome this drawback.
One way to avoid the refractive index contrast decrease is to use metallic struc-
tures [29]. Anothermethod to overcome this problemwas presented byMcPhail et al.
who doped liquid crystals into a polymer host and then fabricated a woodpile PhC
structure out of this guest-hostmaterial [30]. They showed an optically induced 65 nm
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stop band shift achieved with low laser powers, though at a timescale of 60 minutes.
Escuti et al. introduced another single step method for fabrication of PBG structures
activated by liquid crystals [31]. They used a mixture of photosensitive monomers, a
photo-initiator, and liquid crystals for holographic lithography. In addition to the
fabrication of a three-dimensional PhC from polymer, the liquid crystals formed
regular droplets due to a mass transport phenomenon driven by the intensity
distribution inside the material during the lithography process. Resulting structures
contain composite areas of polymer and of liquid crystals. Gorkahli et al. used this
approach to create quasi-crystals with different odd-fold symmetries containing
liquid crystals and analyzed their properties when tuned electrically [32,33].
To summarize, liquid crystals have been used successfully to tune the properties of

photonic crystals. Especially the strong tuning by applied voltage in liquid crystals
makes the combination of PBG structures and liquid crystals promising for switch-
ing applications. The inherent drawback of liquid crystals is their speed limitation.
The large mass that has to be moved when using orientation effects sets the limit of
these processes to amaximum of several tens of megahertz. Therefore, liquid crystal
PhCs are good candidates for reconfigurable devices or sensors butwill not play a role
for optical communication. A great deal of the published work on tuning by liquid
crystals especially in the case of 3D PhCs deals with the task of achieving high
bandgap or defect mode shifts by modification of geometry and active material. The
exploitation of liquid crystals in PhCs for devices and their combination with other
elements for more complex functions is still at the beginning.

15.3.2
Tuning by Pockels Effect

Besides the electrical tuning of liquid crystals, some effort has been undertaken to
change a PBG structure�s properties electrically. Especially the Pockels effect, i.e. the
manipulation of the electron distribution by an applied voltage, is of interest, as for
this effect the inherent switching frequencies are in the gigahertz range. As lithium
niobate (LiNbO3) is the standard electro-optic material nowadays and possesses a
relatively high electro-optic coefficient, PhCs made from LiNbO3 have been pro-
posed.Unfortunately, LiNbO3 is difficult to structure, such that an elaborated focused
ion beam process had to be involved [34]. Roussey et al. found that for triangular 2D
PhCs in LiNbO3 promising results can be obtained. They shifted the stop band gap
of this structure by 160 nm at 1550 nm wavelength, though at quite high voltages of
80V [35]. This value of 2.5 nm/V is by a factor 312 bigger than the bulk value of
LiNbO3 (0.008 nm/V).
Another interesting group of electro-optic materials is constituted by the polymers

(see below). Schmidt et al. presented a 2D PhC slab waveguide with dye-functiona-
lized polymethyl methacrylate as the activematerial for realizing amodulator [36]. In
the 1D domain, Gan et al. realized a large resonance shift of 0.75 nm/V over a broad
wavelength range of 50 nm in the C-band [37]. Their structure comprises an electro-
optically active polymer processed by a sol–gel technique into a Fabry–P�erot-type
cavity. Though they achieved large shifts at low driving voltages, fast switching with
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this type of structure is doubtful as slow piezo-electric effects contribute largely to the
overall effect.
Further interesting electro-optic material systems are ferro-electric ceramics, for

example lead lanthanum zirconate titanate [(Pb,La) (Zr,Ti)O3, PLZT]. B. Li et al.
demonstrated the possibility to create an infiltrated inverse opal structure with ferro-
electrics and showed an electro-optic bandgap shift of several nanometers at high
voltages of 700V [38].
Long before the advent of tunable photonic crystals, tunable Fabry–P�erot-type

structures have drawn much attention. Most of these concepts aim at tunable filters
for the C-band range for optical communication, thus supplying a tuning range of
50 nm [39]. Here we find electrically tunable structures in different material systems
such as III–V-semiconductors [40] and liquid crystals [41]. Another class of devices
are micro-mechanical structures. Here, interesting approaches involving air-gap
Fabry–P�erot-filters or membranes from periodic semiconductor layers have been
demonstrated [42]. A good amount of work has also been done on thermally or
thermo-electrically tunable structures. B. Yu et al. showed for example a device with a
thermal resonance shift of 1.63 nm/K [43].
Another promising material system was presented by Zhang et al. They created

PhCs out of CdSe quantum dots by self-assembly in spin-coated films. For an electric
field of 80 kV/cm they obtained a refractive index change of 1.8% [44]. In comparison
with liquid crystal infiltrated structures, tunable PhCs using the Pockels effect exhibit
smaller bandgap shiftswith voltage. Therefore, comparatively high voltages of several
tens of volts to hundreds of volts are required for tuning in the nanometer to tens of
nanometers range. Additionally, traditional electro-optic materials are difficult to
structure, making the fabrication of 2D or 3D structures a hard task. Here, organic
electro-optical materials are an interesting alternative showing large electro-optic
effects and being simple to process (see Section 15.5.1.2).

15.3.3
All-Optical Tuning

The ultimate goal of nonlinear switching in photonic devices is the optical tuning
of the device�s properties. Here, the material�s properties are changed by incoming
light thusmanipulating light by light and aiming at all-optical data-processing. Some
of the optically induced effects have extremely low time constants and allowing
for switching rates between 1015 and 1016Hz in case of the optical Kerr-effect. This
refers to the intensity dependent change of the refractive index of a material. Other
effects utilized are the tuning via carrier injection or thermal tuning via absorption.
The latter methods lead to lower switching rates. Unfortunately, this effect is
extraordinarily weak in most present-day materials. Therefore, all published
devices need high pump powers, large interaction distances, or both. X. Hu et al.
demonstrated all-optical switching in 2D defect-layer PhC [45]. For a 5 nm shift of
the resonance peak, 18.7GW/cm2 of pumping power were required at 1064mm.
Switching times of less than 10 ps were observed. Although Kerr-active materials are
improving constantly, only a combination of structure and material enhancements
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will result in a useful all-optical switching device exploiting the Kerr effect. One
possible way towards tunable elements using Kerr-nonlinearities are the so called
slow-light waveguides [46]. Here, a low group propagation velocity multiplies the
effect of the changes of optical properties inside the structure by enhancing the
interaction time between the pump and the signal beam shortening the operation
length of such devices. Slow light waveguides could, for example, comprise coupled
defects in a 2D PhC [47]. Using carrier injection impressive tuning rates have been
achieved.
Bristow et al. performed pump-probe experiments on 2D PhCs from AlGaAs and

found large changes in reflectivity due to carrier induced effects [48]. They calculated
a refractive index change of Dn¼�0.019, with a lifetime of less than 10 ps. The high
absolute value of Dn stems from the generation of free carriers inside the semicon-
ductor material when pumped at wavelengths located at the tail of the absorption
band. To achieve the essential short carrier lifetimes for fast switching, the large
surface area of the PhC plays a crucial role, as it opens effective non-radiative
recombination channels for free carriers. Following this approach, Fushman et al.
recently showed a 20GHz modulation of a GaAs PhC cavity containing InAs
quantum dots [49]. They additionally achieved this at low pumping powers, using
a 3 ps pulse at 750 nm with only 60 fJ. This is remarkable, as fast all-optical tuning
often suffers from impracticably high pumppower consumption due to small effects.
The key ingredients of Fushman�s approach are a quite high quality cavity (Q¼ 2000)
and a short lifetime of the generated carriers. This combines to a shift of the
structure�s resonance of up to one and a half linewidths. The essential short carrier
lifetime is achieved by the small modal volume and the large surface area of the PhCs
used. The idea of overcoming small effects by enhancing the local field inside a
structure plays an important role for PhC switching devices. Asano et al. fabricated
cavities with quality factors of up to 106, and they predicted a further increase [50]. A
completely different geometry, though also a structure utilizing a high quality factor,
was presented byNoll et al. [51]. They demonstrated awaveguide switch based ona 1D
resonator with a rod defect whose resonance frequency can be shifted by a control
beam. An alternative way for reducing the carrier lifetime is sweeping them out by
an applied voltage. This approach is similarly adopted for the first silicon Raman
lasers [52].
The last above mentioned method, the thermal tuning, suffers from speed

limitations. The refractive index change with temperature works no faster than on
the order of microseconds [49]. In summary, fast all-optical tunable elements
containing PBG structures will need considerable improvement to find their way
to commercial devices. Optical computers are still far away as the necessary high
integration and low switching energies may not be reached due to material limita-
tions. Optical communication devices ranging down to optical interconnects are in
closer reach, as here higher switching rates may be achieved at the expense of higher
power consumption. Additionally, the requirements for integration are not as high as
for optical computing. In terms of the employed tuning effect, the carrier injection
approach is currently favorable to Kerr-nonlinear materials as larger effects can be
obtained. However, when proceeding the several hundreds of gigahertz or terahertz

15.3 Tunable Photonic Crystals j277



range, carrier injection approaches will reach their limit. The most advanced
structures base on 2D PhCs, employing both silicon and III–V-semiconductors. As
material parameters cannot be changed here, geometrical optimization of the
structures is performed. Here, 2D planar PhCs containing high-Q cavities are
momentarily the most widespread approach. First steps towards photonic circuitry
have been achieved with these structures.

15.3.4
Other Tuning Mechanisms

A number of more or less �exotic� tuningmechanisms have been presented and will
be mentioned here for completeness. First, different tuning schemes based on
thermal effects have been proposed. Though not under the label of photonic crystals,
Weissman et al. achieved tunable resonances over a broad spectral range using
polymer particles in an ordered matrix [53]. Park and Lee presented in 2004 a
mechanically tunable PhC [54]. This PhC consists of a periodic high index material
embeddedina low-indexpolymermatrix.Thematrixpolymer(poly-dimethylsiloxane)
isflexibleandcan thereforebestretchedandreleasedbyMEMS-actuatorsupto10%in
the G–M-direction. By stretching the structure, a large change in both the optical
properties and the periodicity of the PhC follows, thus yielding a large change in the
transmission and reflection characteristics. Kim et al. proposed a similar approach
involving a strain-tunable 2D PhC on a piezoelectric substrate [55], for a 1D structure
Wong et al. showed similar results [56].
Other groups experiment with systems employing the magneto-optical effect.

Khartsev et al. presented a tunable PBG structure made from alternating layers of
Bi3Fe5O12 and Gd3Ga5O12 [57]. A completely different approach is followed by
D. Erickson et al., who combine nanophotonics and nanofluidics by integrating
nanofluidic channels in 2D PhCs. By infiltrating different fluids into the PhC, they
achieve refractive index changes of up to 0.1 [58].

15.4
Tunable Superprism Structures

In the previous sections, numerous approaches for tuning the properties of PBG
structures have been presented. Most of them are also applicable for tunable
superprism structures. Despite this fact, to our knowledge, only one actual measure-
ment of the tunable superprism effect in PBG structures has been demonstrated to
date.
Theoretical investigations have been performed by Summers for 2D triangular

PhCs forming a slab waveguide. Here, the concept of infiltrated liquid crystals was
considered. Summers stated that for guidedmodes the beamsteeringwas only on the
order of 10 degrees when tuning the refractive index between 1.6 and 2.1. To enhance
the structure�s performance, he proposed a 1D super-lattice on top of the slab
waveguide. Calculations showed that thismeasure increased the beamsteering of the
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device to 50 degrees by creating new allowed guided modes in the slab. Li et al.
theoretically investigated the superprism effect in a 2D structure formed by cylin-
drical rods from strontiumbariumniobate (SBN) [59]. They also obtained large beam
steering of 30 degrees by simulating the electro-optic effect for an applied field of up
to 1.4 · 107 V/m. For a PhC formed by periodic inclusions in a stretchable polymer,
Park et al. calculated by FDTD-simulation an achievable change in the propagation
direction of light of 75 degrees. For a ferro–electric system forming a 2D PhC,
Okamura et al. predicted a high electro-optic tunability that results in a beam steering
of 40 degrees [60]. The all-optical switching properties of different 2D PhCs were
investigated in several publications by Panoiu et al. Assuming a Kerr medium with a
nonlinear refractive index of n2¼ 3· 10�16m2/W, they predicted beam steering
ranges of several tens of degrees by applying a laser beam with a pump intensity of
100W/mm2 [61]. Scrymgeour et al. simulated the properties of PLZT-photonic crystals
and obtained similar predictions for the beam steering for an applied field of 6V/m
m [62].
This year, we showed thermal tuning of the superprism effect in a 1D thin film

stack [64]. To our knowledge, this is the first experimental demonstration of a tunable
superprism structure.

15.5
1D Hybrid Organic–Anorganic Structures

We propose a tunable superprism structure realized by the combination of non-
periodic thin film stacks and nonlinear organic materials as active media. Though
higher dimensional PhCs may exhibit stronger dispersive effects, there are never-
theless a number of reasons for using 1D stacks. First, superprism phenomena have
been measured experimentally in dielectric thin film stacks in good agreement with
theory. Gerken showed in several publications that dielectric thin film stacks are
versatile structures for realizing highly dispersive devices with tailored properties.
The key step is to go from strictly periodic 1D designs (Bragg-Stacks) to nonperiodic
ones. Here, high angular dispersion still occurs, but the number of degrees of
freedom in design are greatly enhanced.
An important advantage of 1D structures over 2D and 3D ones is the mature thin

film deposition technology providing high material quality and production accuracy
in the nanometer range. Here, especially the production of 3D structures in the
optical range is more challenging. Directly related to this fact are the low cost of thin
film deposition compared for example to electron beam writing or direct laser beam
writing.

15.5.1
Survey of Optically Nonlinear Organic Materials

The use of organicmaterials as activemedia has several reasons. First, inmany cases
organic materials show stronger nonlinear effects than inorganic systems, which is
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especially true for the electro-optic effect and thermal effects aswill be shown in detail
in the next two sections. In the case of all-optical nonlinearities organicmaterials also
show promising developments, though they are not as far developed as the electro-
optic and thermo-optic materials.
Here we consider organic materials in the form of polymers and small molecules.

These classes of organic materials offer relatively easy processing by spin-casting or
evaporation at low temperatures and relatively low vacuum levels, respectively.
Although there exist a number of interesting organic crystals, the latter lack these
advantages in fabrication and are therefore not discussed here.
Another advantage of organic materials is that they are modifiable by chemical

synthesis. This offers more possibilities in changing the material properties than for
example in the case of semiconductor materials.

15.5.1.1 Thermo-Optic Organic Materials
Organic materials, especially polymers, possess large thermal expansion coeffi-
cients. This fact poses a difficulty in fabrication, especially when combining organic
materials with inorganic ones. In terms of tunability, this fact comes useful, as the
large expansion coefficients are also accompanied by large alterations in the
refractive index of the polymer. A decrease rate in the refractive index, i.e., a
thermo-optic coefficient dn/dT, in the range of 10�4/K is observed for most
polymers. In PPV-derivates even values of 10�3/K are obtained [65]. These values
are at least one order of magnitude larger than the coefficients of other optical
materials as, for example, optical glasses. Therefore, polymers are well suited for
tuning with temperature. As the thermal conductance of polymers is low, devices
with low switching energies can be realized. However, the excitation and relaxation
times of thermal effects are not faster thanmicroseconds and are often in the range
of milliseconds to seconds. Therefore, no fast switching devices based on thermal
effects are possible.

15.5.1.2 Electro-optic Organic Materials
The most rapid development for optically nonlinear organics has taken place in the
field of electro-optic materials. The linear electro-optic effect denotes the change in
index of refraction in dependence on an applied electric field. For small changes,
which covers all commercially relevant effects, it can be approximated linearly by

Dni ¼ � n3i riikEk

2
; ð15:2Þ

where n is the unperturbed refractive index,E is the electric field strength, and r is the
electro-optic coefficient. Being proportional to the refractive index change, the
electro-optic coefficient is the characteristic parameter for the electro-optic activity
of a material. The subscripts in 15.2 refer to the Cartesian directions. riik is a tensor
element as the electro-optic coefficient is derived from the electro-optic susceptibility
that connects the first order term of the polarization vector inside the material with
the applied field. For an electro-optic material, a high electro-optic coefficient at the
operating wavelength is required.

280j 15 Tunable Superprism Effect in Photonic Crystals



Low absorption and scattering losses, and a high glass transition temperature are
further important parameters. To assess the electro-optic activity, the standard
material of today�s electro-optic industry, LiNbO3, is the benchmark. At 1300 nm,
for LiNbO3 a r113 of 30.8 pm/V is found. Since the 1970s research on organic electro-
optic systems is ongoing, but only in the early 1990s sufficient theoretical under-
standing of the origin of molecular hyper-polarizabilities and their connection to the
macroscopic nonlinearity in polymers evolved to allow for the synthesis of more
powerful materials [66]. The cornerstones of this theory were the explanation of
the relationship between bond length alternation and bond order alternation in the
carbon chains of the molecules and the nonlinear effects. Now, different groups
pushed the electro-optic coefficients of organic systems to ten times the values of
disperse red, whichwas until recently the standard organic electro-opticmaterial [67].
In 1996, Marder et al. synthesized a conjugate molecule with r333 of 55 pm/V [68].
Some years later, the incorporation of so called CLD-chromo-phores brought the
polymers to values exceeding 130 pm/V leaving LiNbO3 far behind [69]. Recently,
electro-optic coefficients of 500 pm/V were announced and leading scientists in the
field consider 1000 pm/V possible in the near future [70].
A second, important improvement concerns the temperature stability of polymers.

Low glass transition temperatures and related fast performance degradation ren-
dered early electro-optic polymers unsuitable for device fabrication. This problem
was addressed parallel to the improvement of the electro-optic coefficients. Today
stable, high performance electro-optic polymers are available and already used in
commercial devices.

15.5.1.3 All-optical Organic Materials
Kerr-active organicmaterials for all-optical switching have also improved, though not
as rapidly as electrooptic ones. For all-optical devices there has not been a conver-
gence towards a single group of materials yet. Besides the speed of the effect, a
number of other parameters is important for evaluating the performance of a Kerr-
material. Of course, the nonlinear refractive index change due to the Kerr effect
should be large, this is expressed by

n ¼ n0þDn ¼ n0þn2I: ð15:3Þ
Here, n0 denotes the unperturbed refractive index and I the intensity of the incident
light. The nonlinear optical Kerr coefficient n2, normally expressed in cm2/W, is the
macroscopic parameter for Kerr activity. Stegeman introduced two figures of merit
that classify the absorption properties of Kerr media and are widely used in
publications. At the one hand, the linear absorption must be weak in comparison
to the nonlinearity, which is expressed by

X ¼ Dn
al

>1: ð15:4Þ

Here a is the linear absorption, l is the wavelength, and Dn is given in Eq. (15.3).
Typically, an intensity at which the dependence of the refractive index change drops
significantly below a linear behavior is considered. Since two photon absorption
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processes can also appear Kerr-like, concurrent two photon absorption processes
have to be regarded as well. This is quantified by the second figure of merit, which
should be smaller than unity

T ¼ 2b2l
n2

< 1; ð15:5Þ

with b2 being the two photon absorption. If conditions 15.4 and 15.5 are met, a
nonlinear phase shift of 2p can be achieved before the light intensity drops below 1/e
in thematerial. Aphase shift of this size is required formany on-off-switching devices
as well as for tunable superprisms.
Two promising candidates for organic Kerr media are azobenzene molecules [72]

and b-carotenoids [71]. The nonlinear refractive indices range, depending on the
exact shape of the molecule and the spectral region, between 10�14 cm2/W and
10�12 cm2/W in the regions where the Stegeman-conditions are met. Though some
III–V-semiconductors offer the same order of magnitude in the nonlinear effect,
these materials normally have a much higher absorption than organic materials.
Optical glasses range at least one order of magnitude below these values.
Especially the azo-dyes, which can be covalently bonded to host polymers such as

polymethyl methacrylate or polysterene, have drawn much attention. Besides high
nonlinear effects, their absorption peak between 400 nm and 500 nm makes them
interesting, as this opens two spectral regions where fast, non-absorbing nonlinear
action can take place. The first is between 600 nm and 900 nm and the second is
between 1200 nm and 1800 nm, covering optical communication wavelengths. For
the b-carotenoids Marder et al. showed molecular nonlinear coefficients exceeding
the values for fused silica by a factor of 35.
Last year, Hochberg et al. showed terahertz all-optical amplitude modulation in a

hybrid silicon-polymer system [73]. It consists of a silicon ridge waveguide in a
Mach-Zehnder-geometry embedded in a cladding made of the nonlinear active
material. Such examples demonstrate both, the high performance of Kerr-active
polymers and their compatibility in fabrication with optical glasses or semiconduc-
tors. Though first results have been shown, progress in the performance of polymer
materials is still needed to decrease the necessary pumppowers for optical switching.
Power levels of standard laser diodes in optical communications are currently too low,
whereas Erbium-doped fiber amplifiers (EDFAs) already provide power levels nearly
high enough for inducing a sufficient Kerr-effect.

15.5.2
Numerical Simulation of a Doubly Resonant Structures for All-Optical Spatial
Beam Switching

We numerically investigate the properties of devices for actively shifting the exit
position of a beam of light inside a 1D multilayer superprism stack. The device
schematic is depicted in Figure 15.2. The beam shifting is achieved by changing the
optical properties of the stack and exploiting the large group propagation angle
dispersion due to the superprism effect. In the following, we presume the induction
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of a change in the optical properties by a pump beam to tune the output position of a
beam focused into the device.
The design consists of a stack of l/4-layers with two l/2-defects. Here, the layers

are designed for pump light of 870 nm wavelength that enters the stack from the
normal direction with respect to the surface of the thin film stack. The signal beam is
incident under an angle of 45 degrees. The stack is operated in reflection. The defects
are placed in such way that a symmetrical stack is formed with the layer sequence
ðHLÞ5H2LðHLÞ5H2LðHLÞ5H. Here H denotes high index l/4-layers at the wave-
length of 870 nm at normal incidence. Using this value a thickness of H¼ 106 nm
and L¼ 149 nm is obtained. As low index and high index dielectrics, silica and
tantala, are assumed respectively. In thewavelength range of interest, their respective
refractive indices are 1.45 and 2.06. Furthermore, nonlinear organic layers were
placed at different positions inside the stack to evaluate the performance of the device
in terms of the achievable shift with respect to the pumppower. For the simulation an
organic material with an unperturbed refractive index of 1.55 and a nonlinear
coefficient of 10�12 cm2/W were assumed and Eq. (15.3) was used to determine
the refractive index as a function of intensity.
The calculations were performed by a two step transfer-matrix calculation [17].

First, the propagation of the pump light in the device was simulated and the resulting
changes in the optical properties of the stack with intensity were determined
iteratively until a self-consistent solution was found. All calculations were performed
for the plane-wave case. For the studied designs this is justified for a beam radius
larger than 15 mm corresponding to an angular range of 1.9� [74]. For obtaining
the highest possible intensity, the pump beam radius was set to 15mm. Then, the
propagation of the signal beam was simulated in a second simulation run using the
structure with modified optical properties. Here, a sufficiently small signal power

Figure 15.2 Device schematic of an optically pumped thin film
stack for signal beam displacement. The light gray arrows
represent the signal beams, the dark gray arrow the pump beam,
respectively. Dark gray layers symbolize high index material and
light gray layers are low index materials. The active material is
placed either in the defects or replaces one of the low-index layers
between the defects.
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level was assumed such that changes in the optical properties due to the signal beam
can be neglected. The pump beam is assumed to be focussed in the center of the
active layer. Due to the small layer thickness pump beam divergence within the layer
may beneglected. The probe beam is assumed to overlap ideallywith the pumpbeam.
For the experimental realization of the device a refocussing of the probe beam after
exiting the stack is necessary.

15.5.2.1 Beam Shifting for Two Active Cavities
Thefirst case under consideration is that bothl/2-defects comprise the active organic
material. For this case, the dependence of the beam shift with respect to the peak
power of the pump pulse is depicted in Figure 15.3. A significant beam shift is seen
for peak powers greater than 300W and for a pump power of 10000W a beam
displacement of 19 mm is observed at the signal wavelength of 787 nm. Also depicted
is the beam displacement for a detuning from the designed signal wavelength. A
detuning of the signal wavelength by 0.5 nm reduces the beam displacement to half
the value.

15.5.2.2 Beam Shifting for One Active Cavity
Figure 15.4 shows the results for only one active l/2-defect. In Figure 15.4, the left
hand side and right hand side pictures depict the case where the lower and
respectively the upper l/2-defect is the active one. Here, an earlier onset of beam
shift at 90W peak power and a higher achievable beam shift of almost 30 mm for a
pump power of 10 000W can be seen for the lower active cavity.

15.5.2.3 Beam Shifting for Active Coupling Layers
Finally, the influence of the layers between thel/2-defects is considered(Figure 15.5).
For this case, calculations for a structure where one low-index dielectric layer is
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replaced by an active organic layer are carried out. In the following L1denotes the case
where the uppermost layer is active, L2 the casewhere the next lower one is active and
so on. Here, a performance advantage of designs where the lower layers are active is
observed. In terms of total beam shift and pump powers, these designs stay behind
the active defect designs as the best performance of the coupled layer designs only
yields a 15mm beam displacement.
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15.6
Conclusions and Outlook

In conclusion, tunable superprism PhC structures combine high angular dispersion
with optically active media to achieve spatial beam switching. While active tuning of
the band gap position has been demonstrated theoretically and experimentally by
many authors, only little research has been performed on tunable superprism
devices. Theoretical studies of tunable superprism structures demonstrated that
such devices are in reach for proof-of-principle experiments using different geome-
tries and switching mechanisms.
Due to the size of the effect and the comparatively straightforward fabrication

methods the liquid crystal approach is a promising candidate for experimental access.
For demonstration of higher switching rates electro-optic materials are favorable
because of large nonlinear effects and high switching speeds. Here, especially
polymer materials will play an important role. In this class of materials high
nonlinearities are combined with easy processing. Polymers can be evaporated or
spin-cast and afterwards patterned by lithography, hot embossing, or other nano-
imprint techniques. Additionally, they are processable on most substrates. These
properties are due to the fact that polymers do not require a high amount of order
(though for electro-opticmaterials a breaking of the centro-symmetry is necessary) or
even crystal structure to exhibit large effects. This gives them an advantage over other
electro-optic materials such as LiNbO3 or PLZT-ceramics.
We concludedwith a theoretical investigation of a one-dimensional hybrid organic-

inorganic all-optical tunable superprism stack. This structure combines the accurate
thin-film deposition technology with large and fast all-optical nonlinear effects
achieved in organic materials. Simulation results demonstrate that a significant
spatial beam shifting of 30 mm at pump power of 1.5W is possible using a single
active layer. The necessary switching energies can be achieved using a short-pulse
laser system for a proof-of-principle experiment. More research is necessary to
further decrease the switching energies and to obtain commercially viable tunable
superprism devices.
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Preparation and Application of Functionalized Photonic
Crystal Fibres
H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. M€orl, U. R€opke, J. Leppert,
H. Lehmann, S. Smolka, M. Barth, O. Benson, S. Taccheo, and C. D�Andrea

16.1
Introduction

The development of microstructured and photonic crystal fibres (PCFs) during
recent years has considerably extended the potential of functional properties of
optical fibres [1,2]. The introduction of holey structures in and around the core region
of an optical fibre enabled new and even extreme optical transmission properties
compared with conventional optical fibres for applications in signal processing, fibre
lasers and amplifiers, for new broad-band light sources or for remote fibre sensing
techniques. Besides the variations in hole size and hole distance or in the number of
hole layers in pure silica glass systems, additional design and functional flexibility is
achieved by the introduction of doped materials or by using non-silica glasses.
Figure 16.1 shows the general optical guiding principles in photonic crystal fibres
compared with a standard single mode fibre. The light propagation in PCFs can be
achieved by index guidingwith a higher effective index core or band gap guidingwith
a lower effective index core in PCFs. Figure 16.1(c) shows an air core design. Another
possibility to prepare a band gap guiding fibre is to surround a pure silica core with a
higher index profiled doped silica glass rod package.Wedescribe the investigations of
this PCF type in Section 16.4.
In the following sections, we will first describe shortly the typical preparation

technique for such silica-based microstructured and photonic crystal fibres. Specific
propagation properties (index guiding) will be discussed concerning, e.g., attenua-
tion, mode field and dispersion. As examples for specialized PCFs we will then
investigate fibres using the combination of holey structures and highly doped
regions, discuss properties of solid band gap fibres and consider some aspects of
non-silica PCFs. As examples of specific applications for such PCFs in the linear
as well as in the nonlinear regime, results from spectral sensing and for super
continuum generation are presented.
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16.2
General Preparation Techniques for PCFs

The preparation of microstructured or photonic crystal fibres requires amultitude of
processing steps. The direct fibre extrusion technology (as used e.g. for polymer
PCFs) left out of consideration here, typically a preform has to be prepared which is
then drawn to the final fibre. For the preform manufacturing process we used the
stack-and-draw method [3].
Besides theholey structure, also thematerial properties strongly influence thefinal

fibre properties. Whereas the preparation of pure silica PCFs allows commercially
available high silica tubes to be accessed (e.g.Heraeus Suprasil F 300), the fabrication
of the doped PCF preforms requires additional technological steps for material
modification. We used the MCVD technology for the preparation of special PCF
preform components, capillaries and thin rods. The outer diameter of rods and
capillaries was typically 1mm.The inner diameter of capillaries was adapted between
0.5mm and 0.9mm. The stack arrangement for index guiding PCF was made in
hexagonal symmetry with mostly uniform sizes of central rod and capillaries. The
modification of optical properties by material dopance, e.g. for variation of refractive
index profile, for material-induced dispersion behaviour or for nonlinear properties
was accomplished by the utilization of germanium-doped silica layers in silica
substrate tubes.

16.3
Silica-Based PCFs with Index Guiding

Silica is a well developed and investigated basismaterial for the preparation of optical
fibres. It is commercially available in high quality and permits to obtain fibres with

Figure 16.1 Principle of light guiding by optical fibres:
(a) SMF – standard single mode fibre (germanium doped core),
(b) index guided PCF, (c) photonic band gap fibre; geometrical
parameters. d – hole diameter, L – pitch, D – core diameter.
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extremely low attenuation. The material impurities of the silica type F300 used is at
the ppb-level for transition elements and in the sub-ppm range for OH contamina-
tion. This material is also the starting point for the preparation of capillaries with
germanium-doped layers by theMCVD technology.We concentrate in this section on
the properties of index guidingPCFs,where the core regionhas an effective refractive
index higher than the cladding region due either to lower air content or doping. The
spectral loss and themode propagation behaviour are influenced by the holey design
and can be described for index-guided PCFs by models such as in [3].

16.3.1
Specific Properties of Pure Silica PCFs

Typical index guidingPCFstructureswithfive air hole rings are shown inFigure 16.2.
The different fibres were prepared from the same preform by variation of the fibre
drawing conditions. These typical examples of index guiding PCFs consist of a silica
core surrounded by a hexagonally arranged holey cladding. The variation of the
number of cladding hole rings can influence the confinement loss behaviour and
the effective index of the cladding region. Generally, an increasing ring number
depresses the mode leaking and the fibre loss. However, most important are the
geometrical parameters of the holey package: hole diameter d and pitch L (hole-to-
hole centre distance). In such an arrangement the cross section of the core is usually
given by the pitch parameters, i.e. the core can be built up by one, seven, nineteen etc.
rod elements, substituting capillaries. In addition, the pitch relations between core
and cladding can be changed by modifying the drawing conditions.

Figure 16.2 Cross section micrograph of five-ring air hole PCFs,
prepared from an identical preform: PCF 1: 12mm core diameter
and d/L¼ 0.8 (top left), PCF 2: 5.0mm core diameter and
d/L¼ 0.4 (top right), PCF 3: 3.6mm core diameter and d/L¼ 0.3
(bottom left), PCF 4:2.0mm core diameter and d/L¼ 0.5
(bottom right).
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This PCF type with a five-ring air hole design is a useful model system to
investigate basic propagation properties. For our model fibres the core size varies
from 12 mm to 2mm, the fibre diameter lies between 200 mm and 90mm and the d/L
ratio varies between 0.3 and 0.8.
The attenuation of the final fibre is strongly defined by thematerial properties, but

will also depend on the hole structure and the field confinement. Figure 16.3 shows
the different transmission properties of two different PCFs with equal material base.
PCF 1has a pitchL¼ 10mmand d/L¼ 0.8. This corresponds to a numerical aperture
(NA) of 0.16 and to a cut-off wavelength of about 2.5mm. In the investigated spectral
range thefibre operates inmultimodal regime. TheOHabsorption peak corresponds
to 0.75 ppm caused by material impurity limits of Suprasil F300 and technology-
basedOH contaminations. The small core fibre PCF 3with a pitch ofL¼ 2.1mmand
d/L¼ 0.5 shows an infrared edge in the transmission window at a wavelength of
about 800 nm induced by bending loss effects. The short wavelength edge corre-
sponds to the expected cut-off-wavelength of about 500 nm. PCF 2, 3, 4 give also a
considerable variation in the values of thenumerical apertures (0.1, 0.14, 0.25) caused
by the design parameters L and d/L. The corresponding cut-off wavelengths are
1.05mm for PCF 2 and close to 650 nm for PCF 4. In general, a higher air content in
the cladding region increases the numerical aperture and shifts the cut-off wave-
length to smaller values for a constant core cross section.
The parameters d,L play also an important role for the dispersion behaviour. This

is also determined by material effects and geometrical characteristics.
The adjustment of PCF design parameters allows modification of the zero

dispersion point and the dispersion slope on a much larger scale than possible with
conventional fibres. One aspect important for application is a shift of the zero
dispersion wavelength to extremely short wavelengths, e.g. to the VIS or UV region,
which is not possible with conventional solid fibres.
Figure 16.4 shows the change of dispersion behaviour in the case of the different

five-ring fibre designs in comparison to bulk silica material dispersion. The PCF 3

Figure 16.3 Attenuation spectra of material-identical PCFs,
influenced by the structural design parameters.
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enables an undercut of the zero dispersion line at all investigated wavelengths. PCF 4
gives a zero dispersion shift to shorter wavelengths compared to bulk silica. With
appropriate PCF design the zero dispersion point can be shifted further into the
visible wavelength range, which is of special interest for non-linear applications (e.g.
for supercontinuum sources, short wavelength Raman lasers).

16.3.2
PCF with Very Large Mode Field Parameter (VLMA-PCF)

Achieving a very large effective mode area is a key goal in current research on
microstructured as well as on solid fibres for high power fibre amplifiers and lasers.
The interest is driven by the need for scaling up the optical power or pulse energy and
at the same time to limit the light intensity in the fibre core to prevent nonlinear
effects such as Raman and Brillouin impairments and to avoid thermal damages.
The enlargement of core size in conventional fibres degrades the beam quality and
reduces the guiding performance, so that it is difficult to maintain a stable funda-
mental mode [4]. The necessary low index contrast between core and cladding is
difficult to obtain in a conventional fibre. In PCFs it is possible to control the nec-
essary low numerical aperture very precisely by the hole sizes and the hole structure.
Figure 16.5 shows a relatively simple hole-assisted fibre design, which neverthe-

less gives a stable and large single mode field.
The design consists of a core cross section area of about 2800 mm2, the size of

(relatively large) holes is about 47 mm. The overall diameter of the fibre is 594mm.
Figure 16.6 shows the measured fundamental mode in grey scales (left) in com-

parison to the modelled fundamental mode (right). The intensity profiles of the
mode scanned through the holes and through the bridges, respectively, are shown in
Figure 16.7
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Figure 16.4 Calculated dispersion behaviour of the fibre designs
PCF 2, PCF 3, PCF 4, and measured dispersion values of PCF 3
(star) and PCF 4 (filled circle) at 1064 nm compared with the
material dispersion of silica (dotted line).
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Figure 16.7 Measured profiles of the fundamental mode from the fibre shown in Figure 16.5.

Figure 16.5 Cross section micrograph of the VLMA-PCF (core
diameter: 60mm, width of bridges: 9mm, total fibre diameter:
594mm).

Figure 16.6 Mode field of the fundamental mode demonstrated
in grey scales; left: experimental, right: simulation using a finite
element method.
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From these results, one can derive a mode field diameter of about 50 mm and an
effective mode area of close to 2000mm2. This is an improvement in mode field area
by a factor of about 4 compared to conventional solid large mode area fibres.
Simulations by means of a finite element method show good agreement with the
experiments concerning the wave field diameter (Figure 16.6).

16.3.3
Doped Silica PCF with Germanium-Doped Holey Core

Until now, only pure silica material was considered in the design and in the
preparation of PCFs. In this section we want to include the option of doped layers
in a PCF. As an example, we consider a special large mode area PCF as shown in
Figure 16.8. The core of this fibre consists of seven holes, where the refractive index
was changed by doping the core capillaries with germanium. The geometrical
parameters are: total core diameter 8 mm, diameter of the cladding and core holes
3.7mm and 1.6mm, respectively. The holey cladding shows a diameter of 58 mm, the
total fibre diameter is 129mm. The germanium oxide concentration in the MCVD-
deposited core layers of about 0.18 mm thickness corresponds to about 10mol% and
the phosphorus oxide concentration is about 1mol%.
The cladding is arranged in a 3-air-ring design with phosphorus fluorine-doped,

index-matched profiled capillaries (preparation details of this fibre are described
in [5]).
Microstructured optical fibres of such design are advantageous for sensing

applications due to their holey structure in the light guiding core region, where a
sample material can be infiltrated. The overlap between the guided mode wave field
and the holey area of the analyte offers the possibility of an increased sensitivity in
comparison to conventional fibres. In difference to the mostly used evanescent field
absorption sensors (EFAS), based on attenuated total reflection (ATR), with a small
overlapping of the evanescent wave only at the core-cladding interface (correspond-
ing to the glass-analyte interface), the concept with microstructured fibres should
make it possible to overcome analyte concentration limits, poor sensitivity per length
or restrictions in the spectral range.

Figure 16.8 Micrograph and refractive index profile scheme of the
germanium-doped holey core PCF.
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In order to quantify the interaction between the light and the possible sample
material, we havemodelled the guidedmode field and the fraction of the electric field
intensity in the holes. For this purpose we numerically solve Maxwell�s equations
using either a finite element method (FEM) or a plane wave expansion method
(PWEM). For the FEM calculation it is assumed that the electric field of the guided
modes, which propagate in the z direction, is of the form of Eq. (16.1):

EðrÞ ¼ Eðx; yÞ eibz; ð16:1Þ

b ¼ neff 2p=l: ð16:2Þ
InEq. (16.1),b is the propagationconstant,whichdependson the effective refractive

index neff of the guided mode and the vacuum wavelength l.
The simulated structure is shown in Figure 16.9(a). As an approximate value for the

refractive index of silica in this wavelength region we assume nSiO2¼ 1.45, while the
germanium-doped core material has a refractive index of nGe¼ 1.46. The diameter of
the cladding and core holes is 3.7mmand 1.6mm, respectively. For the samplematerial
we have assumed a refractive index of nnonane¼ 1.405 (this corresponds to the sample
material nonane as discussed in Section 16.6). With the FEM, the electric field

Figure 16.9 (a) Simulated electric field intensity
distribution of the fundamental mode in a
germanium-doped PCF filled with nonane at
800 nm. (b) Mode structure: the top white lines
represent the first guided modes, while the
density of modes for the cladding structure is
shown as a grey gradient. (c) The numerical
aperture (circles) and the fraction of the electric

field intensity in the sample volume (triangles)
for the fundamental guided mode of the PCF at
800 nm as a function of the refractive index of the
core. (d) Fraction of the electric field intensity in
the sample volume of the germanium-doped
PCF as a function of the wavelength of the light.
The core has a refractive index of n¼ 1.46.
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intensity distribution for the fundamental guided mode is calculated at 800 nm
(see Figure 16.9(a)), and a confinement of the light in the core of 99.6% is estimated.
For a more detailed characterization of the light confinement in the core, the

energy bands of this structure are calculated by the PWEM [6]. The upper white lines
in Figure 16.9(b) represent the first guided modes of the Ge-doped core. Further-
more, the density of modes for the surrounding cladding structure is plotted. As can
be seen, the effective refractive index of the core (neffcore) is significantly higher than that
of the cladding (neffcladding). This can be attributed to the doping of the silica in the core
with germanium and in addition to a higher fraction of air in the cladding region in
comparison to the core (due to the reduced diameter of the inner holes).
Equation (16.3) gives a correlation between effective indices of core and cladding

and the corresponding numerical aperture (NA):

NA ¼ sin
p
2
�arc sin

neffcladding

neffcore

 !" #
: ð16:3Þ

Results for the numerical aperture are shown in Figure 16.9(c). With growing NA
the tolerance of the light confinement in the core against disturbances (e.g. fibre
bending, inhomogeneous fibre profile) increases, and thus the losses in the micro-
structured optical fibre decreases. This can be attributed to a weaker coupling of the
core modes to the cladding modes. By raising the core refractive index from 1.45 to
1.46 through doping with germanium, the corresponding NA is increased by a factor
of 2.5. On the other hand, the interaction of the light with the sample material
decreases as the field is stronger confined in the higher dielectric.
This can be seen in Figure 16.9(c), where the fraction g of the electric field intensity

in the sample volume (i.e. in theholes) is shown as a function of the refractive index of
the Ge-dopedmaterial. When nGe is raised to 1.46 by doping with germanium, g and
consequently the sensing efficiency is reduced by 40% compared to an undoped core.
Thus, extremely high germanium concentrations are not reasonable for sensing
applications, and a trade-off between robust light guiding and suitable sensitivity has
to be found.
Furthermore, we have investigated the dependence of the sensing efficiency on the

wavelength of the light. As can be seen in Figure 16.9(d), the evanescent field
intensity in the sample volume increases with longer wavelengths.
This has to be taken into account for quantitative absorptionmeasurements, since

the shape of the acquired absorption spectra is distorted due to the wavelength-
dependent detection efficiency of the fibre.
Experimental results of spectral attenuation behaviour of n-nonane filled PCF are

described in Section 16.1.

16.3.4
Highly Germanium-Doped Index Guiding PCF

Highly germanium-doped PCFs (up to 36mol%) with small cores and high numerical
aperture are especially interesting for optical nonlinear applications: supercontinuum
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generation, Raman lasers and amplifiers and Bragg grating writing (for fibre Bragg
sensors). High germanium concentration strongly increases the nonlinearity and
the photosensitivity compared with undoped silica. A five-air-ring PCF with small,
highly germanium-doped core was drawn for such applications. The fibre, shown in
Figures 16.10 and 16.11, was prepared with different diameters: 200 mm, 125mm,
85 mm to vary the core diameter in a wide range: 10.2mm, 6.6mm, 3.3 mm. The
germanium-doped cross sections are 7.4 mm, 3.3mm and 1.8mm, respectively. The
hole-pitch ratios in the cladding cover a range of about 0.87 to 0.9. The maximum
GeO2 concentration of the core was 36mol%, corresponding to a refractive index
difference to silica of about 5 · 10�2. The high germanium concentration increases
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Figure 16.11 Micrograph of a microstructured fibre with
highly germanium doped core (left) and core refractive
index profile (right).

Figure 16.10 Design scheme of the highly germanium doped
index guiding PCF: dark gray: highly germanium doped area, light
gray: total cross section of the doped core, rings surrounding the
core: silica capillary package, overcladded by a silica tube.
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the thermal expansion coefficient by a factor up to 8 compared with the surrounding
silica. The viscosity of the highly germanium-doped region during the stretching and
drawing procedures is about one order of magnitude lower than the isothermal
viscosity of the surrounding silica. This effect has to be considered for the drawing
process.
Figure 16.12 shows that the slope of intensity distributions of highly air-fractioned

PCF (d/L¼ 0.88) and completely collapsed fibre (d/L¼ 0) show differences in the
central core region. However, the shape of the near-field pattern of the collapsed
PCF is very similar to a solid multimodal core glass fibre with a diameter of the
germanium-doped region of 97 mm and a central highly germanium-doped area of
27 mm in their near-field pattern. One main reason for the differences between the
holey PCFand the collapsed PCF is obviously the effect of effective index depression
of the air clad with a high air fraction.
The drawn highly germanium-doped PCF with a high air fraction (d/L¼ 0.88)

shows a relatively high loss (minimum ca. 50 dB/m at 1 mm wavelength, see Fig-
ure 16.13). For comparison, the solid multimode fibre drawn separately from the

Figure 16.12 Near-field distributions of the compact core glass
fibre (left) and the collapsed and holey PCF (right).
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Figure 16.13 Attenuation spectra of the highly Ge-doped PCF and
the compact fibres of the core glass and the collapsed PCF.
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germanium-doped core rod shows a low spectral attenuation (6.8 dB/km at 1.55mm).
The highly air-fractioned PCFand the collapsed PCFare similar in their background
loss behaviour. Therefore we conclude that the capillary package arrangement has a
significant influence on the attenuation increase, e.g. by generation of scattering
defects.
Both PCF based fibres show an increased hydroxide contamination, compared

with the core glass fibre. The collapsed PCF corresponds to an OH concentration of
11wt.ppm, whereas the air-fractioned PCF corresponds to 2.7 wt.ppm. Sources for
OH contamination are silica surface-located hydroxide groups and humidity in
capillary holes and interstitial volumes. The approximated diffusion lengths of
hydroxides during the drawing process are 3mm [7], i.e. the OH distribution over
the holey cladding bridges of 1 mm or smaller is equalized. The local OH contami-
nation distribution of the collapsed PCF is highly concentrated, and the PCF shows a
more expanded distribution of solid OH-containing silica material over the cladding
cross section. In consequence, the evanescent OH absorption interaction of the
collapsed PCF is larger by about a factor of 4 than that of the holey PCF.

16.4
Photonic Band Gap Fibres

In recent years, solid-core photonic band gap fibres (SC-PBG) have attracted great
interest. In comparison to the hollow-core photonic band gap fibre, these fibres
should be easier to fabricate, implement additional functionality (e.g. laser gain,
Bragg reflection) and integrate into all fibre systems by splicing [8]. Here we consider
the specific possibilities to design the spectral and dispersion characteristics of such
SC-PBG fibres.
The cladding of a SC-PBGfibre comprises a periodic array of uniformly high-index

elements in a low-index backgroundmaterial (e.g. silica). A low index core is formed
by substitution of one ormore of the high-index elements in the centre of the array by
the background material (i.e. defect of the photonic crystal structure). It was
theoretically and experimentally proved that the optical properties of such structures
are mainly due to the properties of the high-index elements [9,10]. Especially the
positions of the band gaps in the spectrum are related to the cut-off wavelengths of
each single element. It can be concluded therefore that the spectral and dispersion
properties can be designedby a proper choice of the refractive index profile of the rods
used as high index elements. So far,most investigations of SC-PBGfibres refer to step
index and parabolic index profiles of the single elements [8,11]. It is expected that a
SC-PBG fibre consisting of high-index elements with the index profile shown in
Figure 16.11 (right) will both significantly modify the dispersion properties of these
structure elements and change their mode structure und consequently the band
structure of the photonic crystal fibre.
To understand the influence of the high-refractive-index packaging elements on

the bandgap spectrum,wewill discuss atfirst the cut-offwavelengths of a single high-
index element with the special index profile as shown in Figure 16.11 (right) and
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compare it with the results for a more conventional step-index and parabolic profile.
For the sake of comparison, the effective index difference of the different profiles was
chosen to obtain cut-off wavelengths in the same wavelength region (Figure 16.14
left). The parabolic profile p2 has the benefit of wider gaps in higher gap numbers
because of a (nearly) degeneratedmode index for defined groups ofmodes. From the
cut-off wavelengths of the step index profile p1we obtain approximately the same gap
spectrum. The cut-off spectrum of the new profile p3 differs qualitatively. The high-
index value in the centre of the index profile increases the effective index of themodes
with strong light intensity in the central region and decreases the effective index of
the other modes.
These considerations were confirmed by computer simulations (software MIT-

Photonic-Bands). They allow a deeper insight into the mode fields within the gaps
and at the boundary of the gaps. Figure 16.15(a), (b) show the results concerning the
band gaps of the crystal structure and the defect modes within gap #3 when
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Figure 16.14 LP-mode cut-off of high-index elements: comparison
of the cut-off wavelengths of two conventional elements
(p1: step index with r¼ 4.5mm, p2: parabolic index profil with
r¼ 6.5mm) and the special high-index element (p3: r¼ 13mm),
(left); spectral position of the gaps (cut-off-free regions) as a
function of the pitch, which is proportional to the radius r of the
high-index elements (right).

Figure 16.15 Simulation results for SC-PBG structure using
special profile type p3: (a) gap map of the crystal fibre structure;
(b) defect modes within the gap #3; (c) and (d) field distributions
of the fundamental defect mode within gap #3 at points indicated
in (b) as c and d, respectively.
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high-index elements with profile type p3 are used. Two guided modes, the LP01- and
LP11-defect modes, are found in the gap. The intensity distribution of the funda-
mental mode is shown in Figure 16.15(c), (d) for two locations c and d in the gapmap
Figure 16.15(b). Thefield distributions within the high-index elements correlate with
the LP02 or LP21 modes, in agreement with the cut-off considerations. The computer
simulation shows that mode indices smaller than 1.45 close the gap #4, as expected
fromFigure 16.14 (left). It can be noted, that this is also true for gap #2,which forms a
wide gap region above 1.45. This result supplements the cut-off considerations,
which states necessary but not sufficient conditions of gap formation.
To fabricatefibre samples, the spectrumof the gapsmust be adopted to the spectral

regionused formeasurement and applications. Figure 16.14 (right) gives an overview
of the expected position of the gaps in the spectrum as a function of pitch, which can
be adjusted in the fibre drawing process.
Based on the special index-profiled rods of type p3, we prepared a SC-PBG fibre

with a cladding design of five highly germanium-doped rod rings and a single pure
silica defect core (Figure 16.16(a)). The fibre was drawn to different diameters in
order to shift the estimated band gap edges. For the investigation of the spectral
distribution of the gaps, the pitch was varied between 4.5 mm and 11 mm.
We investigated experimentally the band gap properties of the fabricatedfibres.We

used a sample with a length of 11 cm and launched a spot of light with a diameter of
approx. 4.5mm in the defect at the input facet. A halogen lamp and amonochromator
were used as light source. Figure 16.16(b) shows the transmission spectrum of the
exciteddefectmode.Theoutputfielddistributionsat thewavelengthsof the twopower
peaks are shown in Figure 16.16(c), (d). By analyzing the characteristics of the field
distributions within the high-index elements on both sides of the transmission
windows we were able to identify the number of gaps as indicated in Figure 16.16.
Even though thefibre structure looks uniform, the loss of the defectmode is relatively
high, and the gap spectrum is disturbed. From an experimental analysis of the
coupling between the high-index elements we found out that especially the cut-off
wavelengths of the single high index elements in the preparedfibre differ because of a

Figure 16.16 Experimental results of the SC-PBG-fibre with
special index profile p3: (a) micrograph of a fibre cross section
with pitch 5.6mm; (b) spectral distribution of the gaps by defect
transmission; (c) and (d) measured field distribution of the
fundamental defect mode in the gaps #5 and #3, respectively.
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stochastic elliptic deformation of the originally circular index profiles of the rods
utilised.Afurther improvementof the technologyshouldenableabetter low-lossband
gap guiding and would make possible the investigation of the dispersion properties.

16.5
Non-Silica PCF

The use of non-silica glasses for index guiding microstructured fibres is also of
special interest for nonlinear applications such as supercontinuum generation,
Raman amplifiers and lasers or optical switching. Various glass compositions have
been discussed and tested regarding their applicability for photonic crystal fibres.
Most investigations were concentrated on oxide glasses with highly polarizable glass
components (e.g. lead silicate glasses, tellurite, bismuth borate, antimony oxide
glasses) [12–14]. Also in the focus of research are non-oxide glasses like sulphides and
selenides, since they offer chances for efficient stimulation of nonlinear processes.
However, many aspects of microstructured fibres made of these mostly multicom-
ponent materials are insufficiently investigated until now. Open questions refer to
optical damage thresholds, pump power stability, photodarkening or optically
induced chemical glass change.
A very essential requirement is the necessity to be able to prepare low loss fibres.

Most non-silica-based microstructured fibres presented until now are characterized
by a background loss level in a range of a few up to tens of dB/m [15,16].
Therefore the material optimization demands both a glass composition with low

optical loss (i.e. high purity and crystallization stability) and the possibility to adopt
the developed highly nonlinear glass in a microstructured fibre design with high air
fraction. In a first step we tested different high refractive index glasses with respect to
their applicability to the fibre drawing process. Different silicate-based glasses with
high lanthanum oxide content were melted. Its concentration was increased up to
26mol% to receive a high nonlinearity. Different additive components (alumina and
boron oxide) were tested to improve the glass stability. The refractive index was about
1.66, n2 can be approximated to be about half an order of magnitude higher than
fused silica [17].Highly alumina-codoped glasseswith lowboron content show anon-
sufficient glass stability. However, by an increase in boron concentration above
20mol%, the crystallization tendency can be broken. In consequence, the back-
ground loss can be decreased by orders ofmagnitudes at least in unstructured fibres.
A minimum attenuation was achieved with 1.2 dB/m at a wavelength of 1.2 mm
(see Figure 16.17), which represents a well applicable value and belongs to the best
values reported until now.
The preparation of highly non-silica PCFs causes multiple technological chal-

lenges. Two approaches for preformmanufacturing were tested by different groups:
extrusion [13] and stack and draw methods [18]. Drawbacks of the extrusion method
are impurity effects from the tools and extrusion tool-caused limits in fabrication
designs of the PCFs. The stack and draw method is not limited by these disadvan-
tages, but requires themanufacturing technologies for rods and tubes (capillaries) of
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compatible glasses concerning thermo-chemical properties. The commercial avail-
ability of suitable tubes and rods is limited. Optical glass rods are typically produced
in non-long-distance fibre-optical quality. Besides advantages in preparation (lower
processing temperature compared with silica, better sintering caused by low surface
tension of multicomponent glasses) there are two crucial problems for low-loss fibre
manufacturing: the insufficient purity of the raw materials used in large scale, and
impurity effects caused by tool-based contaminations of the extruded rods.
A first lead silicate-based five-air-ring PCF, prepared by drawing of a pre-sintered

preform, is shown in Figure 16.18, right. As expected it has a relative high
background loss level in the 10 dB/m range. Absorption bands of transition metal
and hydroxide impurities with dB/m intensities can be identified (see Figure 16.18,

Figure 16.18 Loss spectrum and micrograph/geometrical
parameters of the acrylate-coated microstructured lead silicate
fibre.
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Figure 16.17 Loss spectra of unstructured fibres drawn from high
lanthanum oxide containing silica glasses [(0.836� x)
SiO2� 0.164 La2O3� xB2O3] with different boron contents.
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left). Long-distance applications require a background loss reduction by at least two
orders of magnitude. This can be expected from the use of highly purified glass
material components and by an improved technology for rod and tube preparation.

16.6
Selected Linear and Nonlinear Applications

The specific properties of PCFs have opened upmany new fields of applications. We
will now briefly discuss as examples two of such applications making use of either
the specific linear or the specific nonlinear propagation properties in such fibres. The
first application example uses the holey structure of PCFs for an evanescent wave
spectral sensing system. Similar concepts also offer the chance to build tunable
fibremodules, e.g. by using liquid crystals for fillingmicrostructured fibres [19]. The
second example is related to supercontinuum light emission in structured optical
fibres.

16.6.1
Spectral Sensing

The holey structure of PCFs offers the opportunity to introduce specific gases or
liquids near the fibre core structure. In the extreme case of band gap fibres even the
core itself may be filled. For index guiding fibres, the overlapping field in the holey
structures can help to detect thematerial properties in the filled holey regions. Due to
a close distance to the guiding fibre core, the effect of modifying the spectral
transmission property can be increased in comparison to conventional evanescent
wave fibre sensors. We have tested different PCFs concerning their sensitivity to
material absorption for liquid hydrocarbons. As a suitable analytewe specifically used
n-nonane, which may act as a model substance for petrol or gasoline fractions.
The analyte was filled into the capillaries of the microstructured fibres for fibre

lengths of about 1.5m by a pressurizing method. The pressure difference between
the end faces of the fibres was 1 bar, and a filling time of seven hours was estimated
from Hagen-Poiseuille�s law considering a capillary diameter of about 3 mm. White
light from a halogen lamp was launched in both, air and nonane filled PCFs. The
cleaved end faces were butt-coupled with a germanium doped fibre of NA¼ 0.17 and
core diameter 9mm. The bending radius of the PCFwas about 0.3m.Minor bending
variations of about�10 cmhave practically no influence on the attenuation spectrum.
The transmitted light is measured with an Optical Spectrum Analyzer. The fluid
n-nonane with n¼ 1.405 enables a stable index guiding in the filled PCFs.
The analysis of absorption variations in the 1120 nm to 1270 nmwavelength region

allows the systematic sensing of hydrocarbons. The CH3 second overtone band
absorbance at 1194 nm and the CH2 second overtone band absorbance at 1210 nm
correspond to the concentrations of the hydrocarbon groups [20]. An information
about the mean chain length of normal linear hydrocarbons (e.g. in lube base oils) is
available by calibration.
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In Figure 16.19 the attenuation spectra are shown for a pure silica PCF in com-
parison with a PCF using germanium-doped structures. The spectra exhibit the
additional attenuations related to the losses of the air filled PCFs. For a comparison
of loss behaviour of the air filled silica PCF see Section 16.3.1, Figure 16.3. The air
filled Ge-doped PCF has a similar spectral loss behaviour (42 dB/km at wavelength
1.2mm). The doped PCF achieves a sensitivity which is higher by one order of
magnitude because of stronger overlapping field distributions with the analyte
volume. This demonstrates how the design flexibility in PCFs allows the improve-
ment of the specific sensing functionality of optical fibres.

16.6.2
Supercontinuum Generation

A specific property of PCFs is the ability to generate broad spectra using combined
effects of a high nonlinear coefficient and the possibility for tailoring the dispersion
characteristics. One of the greatest challenges using these properties is to generate
light in thevisiblewavelengthregion.Thisspectral range isveryuseful inparticular for
biomedical applications such as fluorescence spectroscopy, optical microscopy, and
optical coherence tomography. In particular, we address here the challenge to extend
theoutputwavelengthofaTi:Sapphire laser, a commontool for researchersbecauseof
its large tuneability (700–1050 nm) and the short temporal pulses, to the visible
wavelength region. A recent method is to use high-order mode propagation in a
microstructured fibre exploiting the dispersion curve shift that occurs as the mode
order increases [21,22]. Here we consider a new approach where the zero dispersion
wavelength is applied for higher-ordermodes instead for the fundamentalmode. The
fibre for this applicationwasdrawn fromthesamepreformas thefibres inFigure16.2,
but under modified conditions. The diameters of the core and the holes of the PCF
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Figure 16.19 Spectra of additional loss of the n-nonane filled
Ge-doped PCF (shown in Figure 16.8) compared with the filled
silica PCF 1 (see Figure 16.2).
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were 3.2mm and 2.4mmwith a bridge width of 0.5 mm (d/L¼ 0.83). The zero disper-
sion wavelength for this fibre was estimated to be 960 nm at the fundamental mode
andshouldbe lower forhigher-ordermodes.Forshortwavelength lightgeneration the
output of a standard 80MHz repetition rate Ti:Sapphire delivering sub 100-fs pulses
was focussed into the PCF with a maximum incident power of 285mW.
We tested several fibre lengths from 35 cm to 30m and several pump configura-

tions, where the lightwas focussed into different ordermodes. Spectrawere recorded
with two optical spectrometers covering the 200 nm to 2400 nm spectral range. We
observed that the generated visible spectrumwas sensitive to the launching condition
and to the fibre length. The best results were obtained at a pump power of 285mW
and with a 15m long fibre. Figure 16.20 shows examples of the obtained output
spectra. It was possible to tune the wavelengths from 600 nm down to 420 nm by
varying the input power. We measured 670 mWat 570 nm, 400 mWat 480 nm and a
few tens of mWat 420 nmbyfiltering the output signal with a 12 nmFWHMgaussian
bandpass filter.
Figure 16.21 presents the observed field pattern for different visible wavelengths.

The output was again tuned covering the entire visible region from 600nm down to
410nmwith an output power sufficient to perform fluorescence lifetime spectroscopy
measurements [22]. This demonstrates that high-ordermode propagation in a suitably
designed PCF may extend the output spectrum of a Ti:Sapphire laser to the visible
region and may replace more standard sliced continuum spectrum techniques.
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Figure 16.20 Spectral power distribution of generated
supercontinua: L¼ 35 cm, P¼ 266mW (left) and L¼ 15m,
P¼ 285mW (right). L and P are the fibre length and the incident
power, respectively. The total output power is about 180mW (left)
and 20mW (right), respectively.

Figure 16.21 Output field pattern for different launching
conditions: (a) L¼ 35 cm, P¼ 205mW; (b) L¼ 35 cm,
P¼ 266mW; (c) L¼ 80 cm, P¼ 296mW; (d) L¼ 15m,
P¼ 285mW. Cases (b) and (d) refer to Figure 16.20.
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16.7
Conclusions

The combined use of the design parameters of a periodically arrangedholey structure
and of dopant material modifications offers a high flexibility for tailoring the optical
properties in photonic crystal fibres and to adapt their properties to different
applications. Basic requirements for suitable applications are a sufficiently low
spectral loss and stable mode guiding in the prepared fibres. We have shown that
such properties are possible not only for pure silica PCF but also for doped and non-
silica PCFs. The achieved minimum loss is in the range of tens of dB/km and allows
applications with hundreds of meters of interaction length. We prepared different
PCFs with specific mode field patterns (PCFs with extremely small and very large
cores). Both types of fibres have been implemented for singlemode propagationwith
proper holey cladding design. Further modifications of the linear (and nonlinear)
material index allow additional variations in the mode field design and enable the
application of optical nonlinear properties. The practical use of non-silica PCFs is, up
to now, limited by their attenuation effects. The usable lengths in the range of a few
meters are smaller compared to silica-based PCFs. All-solid band-gap fibres, pre-
pared with extremely high germanium-doped claddings, represent a recently devel-
oped new PCF type. Simulations show that, besides the typical parameters d/L and
L/l, also the mean refractive index difference in the stacking elements plays an
important role for spectral band gap structuring. As examples of the wide range of
possible applications of PCFs, a spectral method for fibre sensing of hydrocarbons
and the generation of supercontinuum light down to the blue wavelength region has
been presented.
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17
Finite Element Simulation of Radiation Losses in Photonic
Crystal Fibers
Jan Pomplun, Lin Zschiedrich, Roland Klose, Frank Schmidt, and Sven Burger

17.1
Introduction

Photonic crystals consist of a periodic arrangement of materials with different
refractive indices, usually a dielectric material and air with a period on the scale
of the wavelength [1]. This structure allows to control light propagation on veryshort
distances. Due to their small size photonic crystal structures can be used to fabricate
integrated optical components like resonators and waveguides. Photonic crystal
fibers [2,3] are an important application example which utilizes the light guiding
principles of photonic crystals. They are used e.g. in nonlinear applications [4] for
high power transmission of light in optical astronomy.
Radiation losses from PhC fibers are one of the loss mechanism which potentially

restrict their technological application [5]. They have therefore to be controlled by
proper component design. Due to the complex geometry and large number of glass
air interfaces the accurate computation of light propagation in photonic crystal
structures is a challenging task [6]. To achieve a realisticmodel of a real device itsfinite
size and the exterior domain have to be taken into account. The coupling of a photonic
crystal fiber to the exterior will always lead to unwanted losses which with a proper
fiber design are very small. For numerical computation transparent boundary
conditions are used to take into account the surrounding material. Even for simple
geometries the accurate computation of radiation losses can become difficult and
many numerical methods can fail especially for systems where these losses are very
small [7].
In this paper we review an approach to this problem using adaptive finite element

algorithms and we apply this approach to accurate computation of radiation losses in
hexgonal and kagome-structured PhC fibers. Computational results agree well with
experimental transmission spectrameasured in [5]. In the context of topics related to
the DFG priority programme photonic crystals, we have applied adaptive finite
element algorithms to a variety of nano-optical problems [6,8–15].
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17.2
Formulation of Propagation Mode Problem

For the analysis of photonic crystal fibers we start with the derivation of the
mathematical formulation of the propagation mode problem of the electric and
magnetic field. The geometry of a waveguide system like a photonic crystal fiber is
invariant in one spatial dimension along the fiber. Here we choose the z-direction.
Then a propagating mode is a solution to the time harmonic Maxwell�s equations
with frequency o, which exhibits a harmonic dependency in z-direction:

E ¼ Epmðx; yÞ exp ðikzzÞ; H ¼ Hpmðx; yÞ exp ðikzzÞ: ð17:1Þ
Epm(x, y) and Hpm(x, y) are the electric and magnetic propagation modes and the
parameter kz is called propagation constant. If the permittivity e and permeability m
can be written as:

e ¼ e?? 0
0 ezz

� �
and m ¼ m?? 0

0 mzz

� �
; ð17:2Þ

we can split the propagation mode into a transversal and a longitudinal component:

Epmðx; yÞ ¼ E?ðx; yÞ
Ezðx; yÞ
� �

: ð17:3Þ

Inserting (17.1) with (17.2) and (17.3) into Maxwell�s equations yields:

Pr?m�1
zz r? �P�k2zPm�1

??P � ikzPm�1
??Pr?

�ikzr? �Pm�1
??P r? �Pm�1

??Pr?

" #
E?
Ez

" #
¼ w2e?? 0

0 w2ezz

" #
E?
Ez

" #
;

ð17:4Þ
with

P ¼ 0 �1
1 0

� �
; r? ¼ qx

qy

� �
: ð17:5Þ

Now we define ~Ez ¼ kzEz and get:

A
E?
~Ez

� �
¼ k2zB

E?
~Ez

� �
x 2 R2; ð17:6Þ

with

A ¼ Pr?m�1
zz r? �P�w2e?? �iPm�1

??Pr?
0 r? �Pm�1

??Pr?�w2ezz

� �
; ð17:7Þ

B ¼ Pm�1
??P 0

ir? �Pm�1
??P 0

� �
: ð17:8Þ

Equation (17.6) is a generalized eigenvalue problem for the propagation constant kz
and propagation mode Epm(x,y). We get a similar equation for the magnetic field

314j 17 Finite Element Simulation of Radiation Losses in Photonic Crystal Fibers



Hpm(x, y) exchanging e and m. For our numerical analysis we define the effective
refractive index neff which we will also refer to as eigenvalue:

neff ¼ kz
k0

with k0 ¼ 2p
l0

; ð17:9Þ

where l0 is the vacuum wavelength of light.

17.3
Discretization of Maxwell�s Equations with the Finite Element Method

For the numerical solution of the propagationmode problemEq. (17.6) derived in the
previous section we use the finite elementmethod [16] which we sketch briefly in the
following. We start with the curl curl equation for the electric field. Since we want to
solve an eigenvalue problem we are looking for pairs E and kz such that:

rkz �
1
m
rkz � E�w2e

c2
E ¼ 0 in W; ð17:10Þ

1
m
rkz � E

� �
� n ¼ F given on G ðNeumann boundary conditionÞ

ð17:11Þ
holds, withrkz ¼ ½qx; qy; ikz
T . For application of the finite element method we have
to derive a weak formulation of this equation. Therefore we multiply (17.10) with a
vectorial test function F 2 V¼H (curl) [16] and integrate over the domain O:ð

W

F � rkz �
1
m
rkz � E

� �
�w2e

c2
F �E

 �
d3r ¼ 0; 8F 2 V ; ð17:12Þ

where bar denotes complex conjugation. After a partial integration we arrive at the
weak formulation of Maxwell�s equations:
Find E 2 V¼H (curl) such thatð

W

ðrkz �FÞ� 1
m
rkz � E

� �
�w2e

c2
F �E

 �
d3r ¼

ð
G

F �F d2r; 8F 2 V :

ð17:13Þ
We define the following bilinear functionals:

aðw; vÞ ¼
ð
W

ðrkz � wÞ� 1
m
rkz � v

� �
�w2e

c2
w �v d3r; ð17:14Þ

f ðwÞ ¼
ð
G

w �F d2r: ð17:15Þ

Now we discretize this equation by restricting the space V to a finite dimensional
subspaceVh�V, dimVh¼N. This subspace and therewith the approximate solution
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areconstructedasfollows.OnestartswithacomputationaldomainOseeFigure17.1(a).
This domain is subdivided into small patches, e.g. triangles in 2D and tetrahedrons in
3D,Figure17.1(b).Onthesepatchesvectorialansatzfunctionsniaredefined.Usuallyon
eachpatch theansatz funtionsni formabasisofapolynomial functionspaceofa certain
degreep [16].TheapproximatesolutionEh fortheelectricfield isasuperpositionofthese
ansatz functions of all patches:

Eh ¼
XN
i¼1

aini: ð17:16Þ

Together with (17.16), (17.17) the discrete version of Maxwell�s Eq. (17.15) reads:

XN
i¼1

aiaðni; njÞ ¼ f ðnjÞ; 8j ¼ 1; . . . ;N; ð17:17Þ

which is a linear system of equations for the unknown coefficients ai:

A � a ¼ f ;

with

Aij ¼ aðni; njÞ; f j ¼ f ðnjÞ; a ¼
a1
. . .
aN

0
@

1
A: ð17:18Þ

The matrix entries a(ni, nj) arise from computing integrals (17.14). In practice these
integrals are evaluatedona reference (unit) patch. Sucha referencepatch togetherwith
a vectorial ansatz function is shown in Figure 17.1(c).
In the above sketchwe assumed for simplicity that boundary conditions (17.11) are

known for the electric field E. However here we want to take the infinite exterior into
account. Therefore the eigenvalue problem (17.6) has to be solved on an unbounded
domainR2. This leads to the computation of leakymodeswhich enable us to estimate
radiation losses. Since our computational domain still has to be of finite size, we
apply so-called transparent boundary conditions to qO. We realize these boundary
conditions with the perfectly matched layer (PML) method [17]. Details about

Figure 17.1 (a) Computational domain and (b) triangulation of
hollow-core photonic crystal fiber; (c) example of vectorial ansatz
function on a reference patch.
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our numerical implementation are described in [18]. The propagation constant
kz (and the effective refractive index) becomes complex and the corresponding
mode is damped according to exp ð�`ðkzÞ zÞ while propagating along the fiber, see
Eq. (17.1).
Applying the finite element method to propagatingmode computation has several

advantages [19,20]. Theflexibility of triangulations allows the computation of virtually
arbitrary structures without simplifications or approximations, as illustrated in
Figures 17.1(b) and 17.7(b). By choosing appropriate ansatz functions ni(x, y)
for the solution of Maxwell�s equations, physical properties of the electric field
like discontinuities or singularities can be modeled very accurately and do not give
rise to numerical problems. Such discontinuities often appear at glass/air interfaces
of photonic crystal fibers, see Figure 17.2. Adaptive mesh-refinement strategies lead
to very accurate results and small computational times. Furthermore the FEM
approach converges with a fixed convergence rate towards the exact solution
of Maxwell-type problems for decreasing mesh width (i.e. increasing number N of
sub-patches) of the triangulation. Therefore, it is easy to check if numerical results
can be trusted [16].
Especially for complicated geometrical structures the finite element method is

better suited formode computation than othermethods. In contrast to the planewave
expansion (PWE) method, whose ansatz functions are spread over the whole
computational domain (plane waves) the FEM method uses localized ansatz func-
tions, see Figure 17.1(c). In order to expand a solution with discontinuities as shown
in Figure 17.2(a) large number of plane waves would be necessary using the PWE
method. This leads to slow convergence and large computational times [12].
For accurate and fast computation of leaky eigenmodes we have implemented

several features into the FEM package JCMsuite. As we will see later e.g. high-order
edge elements, a-posteriori error control and adaptive and goal-oriented mesh
refinement increase the convergence of numerical results dramatically.

Figure 17.2 First, second and fourth fundamental core
modes of HCPCF illustrated in Figure 17.3(a) – Parameters:
L¼ 1550nm, r¼ 300 nm, w¼ 50 nm, t¼ 170 nm,
l¼ 589 nm, see Figure 17.7(a) for definition of parameters.
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17.4
Computation of Leaky Modes in Hollow Core Photonic Crystal Fibers

The only simplification we make for the computation of leaky modes is to extend
the fiber cladding to infinity and thereby neglect its finite size. This is justified
if the cladding of the fiber is much larger than the microstructured core, and no
light entering the cladding is reflected back into the core, which is usually the case.
We investigate two different types of hollow-core photonic crystal fibers (HCPCF).
The first type has a hollow core which corresponds to 19 omitted hexagonal
cladding cells Figure 17.3(a) the second type is kagome-structured [5], Figure 17.3(b).
The cross sections of the HCPCFs depicted in Figure 17.3 have a C6V invariance.
Therefore it ispossible to takeonlya fractionof the layout ascomputationaldomain.At
the artificial inner boundaries appropriate boundary conditions have to be stated,
setting the tangentialmagnetic andelectricfield to 0 respectively. Table 17.1 shows the
first and second eigenvalue for the full half and quarter fiber used as computational
domain. The geometrical parameters are given in Figure 17.2. The computed values
are identical up to the chosen accuracy. The number of unknowns and computational
time is of course much smaller for half and quarter fiber cross section.
The imaginary and real parts of the eigenvalues given in Table 17.1 differ by up to

11 orders of magnitude. The complex eigenvalue leads to a dampening of the mode
according to

jEj2 / e�2`ðkzÞz ð17:19Þ

see Eq. (17.1). Computing the fiber without transparent boundary conditions but
setting the tangential component of the electric field to 0 at the outer boundary we get
n1eff ¼ 0:99826580015 for the first eigenvalue, i.e. a real eigenvalue. Comparing to
Table 17.1 we see that taking into account the finite size of the fiber and coupling to
the exterior does not change the real part. However when analyzing radiation losses
of a fiber, the imaginary part of the effective refractive index neff is the quantity of
interest. Computation of leakymodeswith only small losses is therefore amulti-scale

Figure 17.3 (a) Geometry of 19-cell HCPCF and
(b) kagome-structured fiber used for mode computation.
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problem which is numerically very difficult to handle. In the next section we will
introduce a goal-oriented error estimator which controls the grid refinement in order
to obtain an accurate imaginary part as fast as possible.

17.5
Goal Oriented Error Estimator

The finite element method enables us to refine patches of the unstructured grid
only locally. We use error estimators to control the refinement process of the grid.
Usually such an error estimator is defined byminimizing a target functional j(E ), i.e.
it is goal-oriented. The target functional depends on the solution of the electric field E.
Since we are interested in radiation losses this will be the imaginary part of the
propagation constant [15]. From Maxwell�s equations applied to a waveguide struc-
ture one can derive the following expression for the imaginary part of the propagation
constant:

`ðkzÞ ¼ PqWðEÞ
2PWðEÞ ; ð17:20Þ

where

PWðEÞ ¼ 1
2RðwÞ`

ð
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E� 1
m
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� �
� ^nz
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1
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PqWðEÞ ¼ 1
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m
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� �
� ^nxy

0
@

1
A ð17:22Þ

is the power flux of the electric field through the cross sectionO of the computational
domain and the in plane power flux across the boundary qO of the computational
domain respectively. Equation (17.20) also shows us that the imaginary part of kz
reflects radiation leakage from the photonic crystal fiber to the exterior. The right
hand side of (17.20) is the target nonlinear functional j(E) which is used for the control
of the error estimator. The finite element mesh should now be adapted such that

Table 17.1 First, second and third eigenvalue computed with full,
half and quarter fiber as computational domain.

Unknowns 1st eigenvalue 2nd eigenvalue

full fiber 3070641 0.99826580337þ 8.9297· 10�12i 0.992141777þ 1.3312· 10�10i
half fiber 1567377 0.99826580252þ 8.9311· 10�12i 0.992141758þ 1.3314· 10�10i
quarter fiber 781936 0.99826580254þ 8.9311· 10�12i 0.992141754þ 1.3315· 10�10i

17.5 Goal Oriented Error Estimator j319



j(Eh)� j(E ) is minimized, where Eh is the finite element solution and E the exact
solution. This task can be embedded into the framework of optimal control
theory [21]. We define the trivial optimization problem:

jðEÞ�jðEhÞ ¼ min
Y2HðcurlÞ

jðYÞ�jðEhÞ : aðF;YÞ ¼ f ðFÞ 8F 2 HðcurlÞf g:

ð17:23Þ

This formulation is trivial because the restriction simply states thatC is a solution of
Maxwell�s equation. The minima of (17.23) correspond to stationary points of the
Lagrangian density

LðE;E �Þ ¼ jðEÞ�jðEhÞþ f ðE �Þ�aðE �;EÞ;

where E� denotes the �dual� variable (Lagrangian multiplier). Hence, we seek the
solution (E,E�) to the Euler–Lagrange system

aðF;EÞ ¼ f ðFÞ 8F 2 HðcurlÞ; ð17:24Þ

aðE �;FÞ ¼ j 0ðE;FÞ 8F 2 HðcurlÞ: ð17:25Þ

Equation (17.24) is the variational form of the original Maxwell�s equations. In
the dual Eq. (17.25) the target functional j(E)¼ kz appears in form of its linearization
j0(E ). A finite element discretization of the Euler–Lagrange system yields a supple-
mental discrete problem

aðE �
h ;FhÞ ¼ j 0ðEh;FhÞ 8Fh 2 Vh:

To quantify the error of the finite element solution Eh we introduce the primal and
dual residuals:

rðEh; �Þ ¼ f ð�Þ� að�;EhÞ; ð17:26Þ

rðE �
h ; �Þ ¼ j0ðEh; �Þ � aðE �

h ; �Þ: ð17:27Þ

The residuals quantify the error inserting the approximate solution into the exact
non-discretized Maxwell�s equations. For the exact solution one finds r(Eh; E )¼ 0
andrðE �

h ;EÞ ¼ 0. These residuals are computed for each patch and only patcheswith
the largest residuals are refined. More details about the mathematical formulation
and implementation canbe found in [15]. Acloser look tor(Eh;�)which is alsoused for
field-energy based adaptive refinement will be given in the next section.
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17.6
Convergence of Eigenvalues Using Different Error Estimators

In this section we will look at the convergence of the computed eigenvalues. As
computational domain we use the HCPCF depicted in Figure 17.3(a). We compare
three different refinement strategies namely uniform refinement and two different
adaptive goal-oriented refinement strategies. In an uniform refinement step each
triangle is subdivided into 4 smaller ones. In an adaptive refinement step a
predefined resdiuum r of the numerical solution is minimized by refining only
triangles with largest values for this residuum. The two different adaptive strategies
we are using differ by the chosen residua. Thefirst one only uses (17.26).Wewill refer
to it as strategy A. The second strategy Bwhich was introduced in the previous section
uses (17.27) in addition to (17.26).
Let us have a closer look at the common residuum (17.26) of both strategies. We

start with the weak formulation of Maxwell�s Eq. (17.13) on a sub patch Oi of our
triangulation and reverse the partial integration:

0 ¼
ð
Wi

F� rkz �
1
m
rkz � E�w2e

c2
E

� �
d3r�

ð
Gi

F � 1
m
rkz � E

� �� �
� n

� �
d2r;

ð17:28Þ
whereGi is the boundary of the subpatchOi and ½ð1=mÞrkz � E
 is the difference of the
electric field E and the permeability m on both sides of this boundary. Since Eq. (17.28)
holds for arbitraryF the terms in brackets in both integrals have to vanish. For an exact
solution to Maxwell�s equations the first term vanishes because this is the Maxwell
equation itself and the second termbecause the tangential componentof ð1=mÞrkz � E

is continuous across a boundary. Since we approximate the exact solution by Eh both
terms will generally not vanish. Therefore we define the residuum ri of sub patch Oi:

r
i
ðEh;EhÞ ¼ h2i

ð
Wi

�����rkz�
1
m
rkz� Eh�w2e

c2
Eh

�����
2

d3r

þ hi

ð
Gi

����� 1
m
rkz� Eh

� �� �
� n

�����
2

d2r;

ð17:29Þ

where hi is the size of the sub patch. For the solution Eh¼E ofMaxwell�s equations we
findri(Eh; E )¼ 0. The residuum is therefore ameasure howwell the approximationEh
fulfills the exact Maxwell�s equations.
Figure 17.4 shows the relative error of the fundamental eigenvalue n1eff in

dependence on the number of unknowns of the FEM computation for different
refinement strategies and finite element degrees p. The real part of the effective
refractive index converges for all finite element degrees and all refinement strategies,
see Figure 17.4(a), (c), (e). For higher finite element degrees we find faster conver-
gence. For the lowestfinite element order and coarsest grid (with�16000 unknowns)
we have a relative error of�10�5. This error decreases down to 10�11 for fourth order
elements with 4· 106 unknowns. Figure 17.4(b), (d), (f) show that the imaginary part
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Figure 17.4 Relative error of fundamental eigenvalue in
dependence on number of unknowns of FEM computation
for different refinement strategies and finite element degrees
p. Parameters: L¼ 1550nm, r¼ 300 nm, w¼ 50 nm, t¼ 170 nm,
6 cladding rings, wavelength l¼ 589 nm. Adaptive refinement
strategy A minimizes residuum (17.26), strategy B minimizes
residua (17.26) and (17.27).
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convergesmuchslower.Foruniformrefinementandfiniteelementdegreesofp¼ 1,2
we do not find convergence at all. The adaptive strategies A and B refinement also
lead to poor convergence for low finite element degrees. For an accurate computation
of small losses therefore highfinite element degrees are necessary. For a relative error
of 10�3¼ 0.1%we already need�106 unknowns for p¼ 3, 4. In Figure 17.5(a) and (b)
the different refinement strategies are compared for fixed finite element order p¼ 3.
For the real part we find fastest convergence for adaptive strategy A. As explained
before the corresponding error estimator refines those triangles where the electric
field has a large deviation from the exact solution. The error estimator of strategy B
also uses this residuum but furthermore the residuum of the dual problem,
Eqs. (17.26) and (17.27). Therefore it also converges faster than uniform refinement
but slower than strategy A. For the imaginary part the adaptive refinement strategy B
shows fastest convergence. Strategy A shows almost no benefit for the first two
refinement steps in comparison to uniform refinement. For the exact result for the
convergence plots we used themost accurate result (p¼ 4) for the real and imaginary
part obtained from strategy A and B respectively.
Figure 17.6 shows the benefit of high order finite elements. Here the adaptive

refinement strategy A was used corresponding to Figure 17.4(c), (d) but with finite
element degree up to order p¼ 7.While the real part of the eigenvalue converges very
fast even with order p¼ 2 the imaginary part can be computed much more accurate
with higher order finite elements. Compared to p¼ 2 using orders greater than p¼ 4
the relative error is 2 orders ofmagnitude smaller for the samenumber of unknowns.
Computational times for an2.6GHzAMDOpteron processor systemare also shown.
A comparison of the convergence and computation efficiency between our finite

element package and the MIT Photonic-Bands (MPB) package (plane wave expansion
method) is presented in [22] where bloch modes of photonic crystal structures were

Figure 17.5 Relative error of fundamental eigenvalue in
dependence on number of unknowns of FEM computation
for different refinement strategies and finite element degree
p¼ 3. Parameters: L¼ 1550 nm, r¼ 300 nm, w¼ 50 nm,
t¼ 170 nm, 6 cladding rings, wavelength l¼ 589 nm. Adaptive
refinement strategy A minimizes residuum (17.26), strategy B
minimizes residua (17.26) and (17.27).

17.6 Convergence of Eigenvalues Using Different Error Estimators j323



computed.TheFEMcomputations showedamuchhigher convergence rate.Results of
the sameaccuracycouldbecomputedover100 times faster thenwith theMPBpackage.
In [12]FEMcomputationsofguidedmodes inHCPCFsarealsocomparedtoplanewave
expansion (PWE) computations. Eigenmodeswhichwere computed in about aminute
with our finite element package took several hours with the PWE method.

17.7
Optimization of HCPCF Design

Sinceweare enabled tocompute radiation lossesvery accuratelywecanuseourmethod
tooptimizethedesignofphotoniccrystalfiberstoreduceradiationlosses.Thebasicfiber
layout is a 19-cell corewith rings of hexagonal cladding cells, Figure 17.3(a). Since these
cladding rings prevent leakage of radiation to the exterior for core guided modes we
expect that an increasing number of cladding rings reduces radiation leakage and
therefore reduces `ðneff Þ. This is confirmed by our numerical simulations shown in
Figure 17.8. The radiation leakagedecreases exponentiallywith thenumber of cladding
rings and thereby the thickness of the photonic crystal structure. This behavior agrees
with the exponential dampening of light propagating through a photonic crystal
structure with frequency in the photonic band gap. For our further analysis we fix the
numberofcladdingringsto6.ThefreegeometricalparametersarethepitchL,holeedge
radius r, strut thickness w, and core surround thickness t depicted in Figure 17.7(a)
togetherwith the triangulation (b). Figure 17.8 shows the imaginary part of the effective
refractive index independenceontheseparameters.Foreachscanallbutoneparameter
were fixed. For the strut thickness w and the hole edge radius r we find well-defined
optimalvalueswhichminimize`ðneff Þ.ForpitchLandcoresurroundthicknesstalarge
number of local minima and maxima can be seen. Now we want to optimize the fiber
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Figure 17.6 Relative error of fundamental eigenvalue in
dependence on number of unknowns of FEM for adaptive
refinement and different finite element degrees p. Parameters:
L¼ 1550nm, r¼ 300 nm, w¼ 50 nm, t¼ 170 nm, 6 cladding
rings, wavelength l¼ 600 nm. Computational times are shown.
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design using multidimensional optimization with the Nelder–Mead simplex meth-
od [12]. To reduce the number of optimization parameterswefix thehole edge radius to
the determined minimum at r¼ 354nm since its variation has the weakest effect on
`ðneff Þ. For optimization we have to choose starting values for L, t and w. Since the
simplexmethodsearchesfor localminimawehavetodecide inwhichlocalminimumof
L and t we want to search. We choose t¼ 152nm since here `ðneff Þ has a global
minimumandL¼ 1550nmsince thebandwidthof thisminimumismuch larger than
for the global minimum at L¼ 1700nm. Optimization yields a minimum value of
`ðneff Þ ¼ 5� 10�15 1=m for the imaginary part of the effective refractive index.
The corresponding geometrical parameters areL¼ 1597nm, w¼ 38nm, t¼ 151nm.

17.8
Kagome-Structured Fibers

In [5] attenuation spectra of large-pitch kagome-structured fibers have been mea-
sured experimentally. Figure 17.9(a), (b) show the first and fourth fundamental core
mode of such a 19-cell kagome-structured fiber. The corresponding layout is given
in Figure 17.9(c). In this section we compute attenuation spectra numerically. Since
we only take into account radiation losses we do not expect quantitative agreement
with experimental measurements. Discussions about other loss mechanism can be
found in [12,5]. We fix the geometrical parameters of the fiber and search for leaky
eigenmodes in a wavelength interval. In the experiment coremodes could be excited
selectively. Here we also use the imaginary part of the fundamental coremode for the
attenuation spectra. A small imaginary part then corresponds to low losses and
therefore high transmission. Furthermore we look at the confinement of the
computed modes. Therefore we compute the energy flux of the mode within Ecore
and outside Estrut the hollow core. A well confined mode then has a confinement
Ecore/Estrut close to 1. We expect that well confined modes have small losses.

Figure 17.7 (a) Geometrical parameters describing HCPCF:
pitch L, hole edge radius r, strut thickness w, core surround
thickness t; (b) detail from a triangulation of HCPCF. Due
to the flexibility of triangulations all geometrical features
of the HCPCF are resolved.
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Figure 17.8 Imaginary part of effective refractive index `ðneff Þ in
dependence on: (a) number of cladding rings, (b) pitchL, (c) core
surround thickness t, (d) strut thickness w, (e) hole edge radius r.
Parameters: L¼ 1550 nm, r¼ 300 nm, w¼ 50 nm, t¼ 170 nm, 6
cladding rings, wavelength l¼ 589 nm.
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For simulation we use layouts corresponding to [5] shown in Figures 17.3(b) and
17.9(c) with parameters given in Table 17.2.
Figure 17.10(a) shows the real part of the effective refractive index of the

fundamental mode in dependence on the wavelength. Since the core is filled with
air it is close to 1 and hardly changes. Figure 17.11 shows the imaginary part of the
eigenvalues which is proportional to the losses according to Eq. (17.19). For the 19-
cell fiber we find a region of low transmission in the wavelength interval
950–1050 nm. In [5] a region of low transmission spans from 850–1050 nm. For
the 1-cell fiber we find a peak of high attenuation at l¼ 700 nm and high attenuation
from 1200–1400 nm. A dip in the transmission spectrum can also be found in the
corresponding experimental measurement at 630 nm. The range of the low trans-
mission band however differs from the simulated. Experimentally it reaches from
800–1250 nm.An important lossmechanism is coupling of the fundamentalmode to
interface modes at the glass air interfaces of the fiber [5,12]. This is not taken into
account in our simulations and could explain the mentioned disagreement. The
regions of very high attenuation correspond to poorly confinement modes shown in
Figure 17.13.
We notice that both attenuation spectra are very noisy. Since our computed results

have convergedwe assume that this is nonumerical artifact. To further investigate the
large number of local extrema we zoom into the 19-cell spectrum from
0.715–0.735 nm where a very large local peak can be seen, see Figure 17.10(b). To
explain the resonance in the attenuation spectrum at 725 nm we look at the field
distribution within the kagome structure.

Figure 17.9 (a) Fundamental and (b) fourth core mode
of 19-cell kagome-structured HCPCF (c). Parameters
according to Table 17.2.

Table 17.2 Layouts of kagome-structured fibers used for mode computation.

Layout Hollow-core Pitch L (mm) Strut width (mm)

A 19-cell 10.9 0.51
B 1-cell 11.8 0.67
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Figure 17.12 shows the fundamental eigenmode for l¼ 719.25 nmwhere we find
very low attenuation and forl¼ 725 nmat the local peak attenuation. The intensity of
the eigenmodes in Figure 17.12(a) and (b) is shown for the same pseudo color range.
The field distribution for l¼ 725 nm is more intense in the glass struts which
connect the core and the cladding of the fiber. Light from the fundamental coremode
is coupled much stronger into the first neighbouring triangles of the kagome
structure for l¼ 725 nm. They could be seen as resonators coupled to the hollow
core and being excited by the core mode. Better coupling then leads to more light
leaving the core and therefore higher attenuation. The coupling into the complicated
kagome structure depends very sensitively on the wavelength and the shape of the
mode.

Figure 17.10 (a) Real part of effective refractive index of
fundamental leaky mode in dependence on wavelength l for
19-cell and 1-cell kagome-structured fiber. Parameters: see
Table 17.2 – (b) zoom into Figure 17.11(a).

Figure 17.11 Imaginary part of effective refractive index of
fundamental leaky mode in dependence on wavelength l for (a)
19-cell and (b) 1-cell kagome-structured fiber. Parameters: see
Table 17.2.
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Finally Figure 17.13(a) shows the confinement of the fundamental mode in
dependence on the wavelength. Regions of low loss correspond to regions of high
`ðneff Þ, compare Figure 17.11.

17.9
Conclusion

We have investigated radiation losses in photonic crystal fibers. We have shown that
with our FEManalysis we can efficiently determine the complex eigenvalues to a very

Figure 17.12 Pseudo color image of intensity of fundamental core
mode for (a) l¼ 725 nm and (b) l¼ 719.25 nm. Parameters:
Layout A, Table 17.2.
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Figure 17.13 (a) Fraction of electric field intensity of fundamental
leaky mode located inside hollow core in dependence on
wavelength l for (a) 19-cell and (b) 1-cell kagome-structured fiber.
Parameters: see Table 17.2.
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high accuracy. The finite size of the photonic crystal fibers was taken into account by
transparent boundary conditions realized with the PML method.
Computing leaky propagation modes in HCPCFs eigenvalues with real and

imaginary part differing by over 10 orders of magnitude were found. The relative
error of the imaginary part was thereby about 7 orders of magnitude larger than the
relative error of the real part. In order to precisely compute the much smaller
imaginary part of the eigenvalues special techniques were implemented and applied
to 2 different types of HCPCFs, namely HCPCFs with hexagonal cladding cells and
kagome-structured fibers. A goal-oriented error estimator was introduced which
focused on the accurate computation of a target functional, in our case the imaginary
part of the eigenvalue. After each computation on a refinement level this error
estimator was used to adaptively refine thegrid. In a convergence analysis it was
shown that the goal-oriented error estimator led to faster convergence of the quantity
of interest compared to uniform refinement or standard field energy based refine-
ment strategies. Also the usage of high order finite elements significantly increased
the accuracy of the imaginary part.
Since the imaginary part of a fiber could be computed in about 10 minutes with a

relative error smaller than 10�3 it was possible to use the finite element method to
automatically optimize a fiber design with respect to pitch, strut thickness, cladding
meniscus radius and core surround thickness in order to minimize radiation losses.
Furthermore attenuation spectra of a 1-cell and a 19-cell kagome-structured fiber
were computed and compared to experimental results. It was shown that high losses
were connected to poorly confined modes within the hollow-core. Furthermore the
appearance of a large number of localminima andmaxima in the attenuation spectra
was explained by analyzing the intensity distribution of the core modes.
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18
Optical Properties of Photonic/Plasmonic Structures
in Nanocomposite Glass
H. Graener, A. Abdolvand, S. Wackerow, O. Kiriyenko, and W. Hergert

18.1
Introduction

Photonic device fabrication in glass was investigated intensively during the last years.
Three-dimensional structures like waveguides [1], couplers [2], photonic crystals [3]
and other structures can be created by use of nonlinear materials processing with
near-IR femtosecond laser pulses. A refractive index change inside of such structures
of Dn 10�3–10�2 can be achieved [1].
Glass containing metallic nanoparticles is a promising material for various

photonic applications due to the unique optical properties mainly resulting from
the strong surface plasmon resonance (SPR) of themetallic nanoparticles. The details
of this resonance can be modified to a large extend by varying the size, shape and
concentration of the inclusions. Furthermore the metal itself and the dielectric
constant of the glass influences the resonance [4]. First estimates show, that in glass
containing metallic nanoparticles refractive index changes Dn 1 are possible.
Recent progress in structuring this type of material by ultrashort laser pulses [5,6]

and electric fields [6] opens promising possibilities due to the large index contrast to
tailor new nanodevices and optical elements with interesting linear and nonlinear
properties [7].

18.2
Experimental Investigations

Under the influence of moderate temperatures and high electric fields, silver
nanoparticles embedded in a glass matrix can be dissolved [8,9]. Under certain
conditions a percolated silver layer in the depth of the glass can be observed [10,11].
By means of a structured electrode (e.g. Si photonic crystals with a metal cover)
a spatial modulated particle dissolution can be achieved resulting in a metal
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nanoparticle distribution with a two-dimensional periodicity which is inverse to the
electrode structure [12].
Besides of the 2D structure of such systems the photonic characteristics strongly

depend on the properties of an individual nanoparticle containing cell. Here the cell
shape especially in the third dimension and the particle shape and distributionwithin
the cell have to be considered. Experiments are performed to consider how the
formation of the structures can be controlled by external parameters like applied
voltage, temperature andduration of the experiment. In afirst series of experiments it
is shown that the cell shape strongly depends on the parameters of the dissolution
process. For all experiments described in the following glass samples of a thickness of
2mm with a particle containing layer of an overall thickness of approximately 6 mm
were used. The filling factor had a gradient starting with 0.7 near the surface [12].
Figure 18.1 shows electron microscope pictures of three samples processed under
different conditions. The pictures show cross-sections nearly perpendicular to the
sample surface. For all experiments a 2D structured Si electrodewith a period of 2mm

Figure 18.1 Electron microscope pictures of three structured
samples. The anode was a 2D-square lattice Si photonic crystal
with 2mm periodicity: (a) voltage of 400 V applied for 30min;
sampletemperature250 �C,(b)voltageof600 Vappliedfor30min;
sample temperature 190 �C, (c) voltage 600 V applied for 30min;
sample temperature 250 �C.
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on top of the glass samples was used. The bright dots represent silver nanoparticles.
The grey areas are due to (ionic) silver. In all pictures the 2mmperiod of the electrode
can be seen. For the experiment shown in Figure 18.1(a) a voltage of 400V at a
temperature of 250�Cwas applied for 30min. The particle dissolution is restricted to
a layer of typically 1mm thickness beneath the Si part of the electrode, which is in
direct contact to the glass surface. The size of the remaining particle cell corresponds
to the hole size of the electrode.
Enhancement of the applied voltage and reduction of the temperature

(Figure 18.1(b)) leads to a decrease of the depth of the dissolution volume and
simultaneously the surface area of the particle containing cell shrinks. This leads to
nearly plan-convex shaped particle free volumes. In Figure 18.1c also a voltage of
600V is applied for 30min, but the temperature is increased to 250�C. The thickness
of the dissolution volume increases and the size of the particle containing cell shrinks
simultaneously. As a result roughly square shaped cells with500 nm diameter and
3mm length are generated. We can conclude from the experimental results, that
various shapes of structural elements can be produced. It should be noted aswell that
the details of the shape do not only depend on the external parameters, but also on the
particle concentration and its gradient in the sample.
The details of the optical properties of such structures will depend on size, shape

and the local concentration of the nanoparticles. Of special interest are systems with
dicroitic optical properties. If the base material used for the experiments would
contain ellipsoidal nanoparticles homogeneously oriented, new properties could be
expected. Such material can be processed by a thermomechanical treatment of
samples with originally spherical particles [13,14]. By this treatment the thickness of
the particle containing layer is reduced to roughly 1 mm. Polarization resolved
absorption spectra are shown in Figure 18.2. Here p-pol means that the polarization
direction of the probe light is parallel to the semi-major axis and s-pol is in the
direction of the semi-minor axis. The color of the material is typically green for
unpolarized and p-polarized illumination. The color changes to yellow for s-polarized
illumination. For sample b) in Figure 18.2 the color of p-polarized illumination is
blue changing to orange for s-polarized light.
The dicroitic samples canbe structured by thedissolutionmethod [8,9]. Figure 18.3

shows twomicroscope pictures (100 · objectivemagnification) as an example. For the
structuring process a 8mm line spacing (4 mm line thickness) grating was used as
electrode. The left picture is obtainedwith p-pol the right onewith s-pol illumination.
The structure can clearly be seen in both pictures, but the color is different indicating
that the optical parameters strongly depend on the polarization of the illumination.
There is no reasonwhy this line like structure cannot be scaled down.Wewill use a

3600mm�1 grating to try to generate a 300 nm line structure.
Such dicroitic samples can also be structured using a Si photonic crystal as an

electrode by applying a voltage of 400V at 190�C for 30min with a structured
electrode as described above.
Figure 18.4 shows microscope images of the sample after the treatment. If the

sample is illuminated with light having a polarization parallel to the semi-major axis
of the particles a blue shining 2 · 2 mmstructure is visible with a rather high contrast.
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If the polarization is rotated by 90� the color changes to yellow and the structure
nearly disappears. Using femto-second laser pulses the structures can further be
modified [5,6]. Addressing a well-defined nanoparticle containing cell the particles
can either be destroyed or changed in shape.

Figure 18.3 Microscope pictures of a line structure generated in a
dicroitic glass. The two pictures only differ in the polarization
direction of the incident light. The basematerial (dark lines) show
spectra like those shown in Figure 18.2a.
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Figure 18.2 Polarization resolved absorption spectra of two
different dicroitic glass samples containing ellipsoidal silver
nanoparticles. The different spectra are due to a different
distribution of sizesQ1 (volumes) and aspect ratios. These examples
show that the basematerial can be producedwith a large variety of
optical properties.
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18.3
Calculation of Effective Permittivity

The photonic/plasmonic structures under investigation are characterized by a layer
of glass containing Ag-nanoparticles on a glass substrate. The system is patterned by
the dissolution technique. The size of the remaining building blocks and the
irregular distribution of the particles prevent the treatment of the particles as single
scatterers. Therefore, we want to describe the building blocks by an effective
frequency dependent permittivity eeff(o). The dielectric properties of such nano-
composite materials are usually described by means of effective medium theories
(EMT). A series of such theories has beendeveloped. Themost successful approaches
are the Maxwell–Garnett theory (MGT) [15] and the Bruggeman effective medium
approximation (BEMA) [16].Whereas theMGTtheory is able to describe qualitatively
the surface-plasmon resonances for metal-dielectric composites, BEMA is not. In
contrast to MGT, BEMA includes the percolation among the inclusions for filling
factors of f � 1/3. The effective permittivity inMGT is given by the permittivity of the
host eh, the permittivity of the inclusions ei and the filling factor f.

eMGT
eff ¼ eh

ðei þ 2ehÞþ 2f ðei � ehÞ
ðei þ 2ehÞ� f ðei � ehÞ : ð18:1Þ

Weassume that themetallic particles are plasma spheres, i.e. the optical properties of
the single sphere are described by a dielectric function

eiðoÞ ¼ eb þ 1� o2
p

o2 þ igo
; ð18:2Þ

Figure 18.4 Polarized microscope pictures of a structured
dicroitic sample; for the left part the polarization of the light was
parallel to the semi-major axis of the nanoparticle; for the right
part the polarization was rotated by 90�.
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where op is the free electron bulk plasma frequency and g describes the damping of
electron oscillations (g¼ 1/t, t – relaxation time) and eb is in principle the contribu-
tion of interband transitions and all other non-conduction electron contributions to
the dielectric constant. Values of eh¼ 2.3, op¼ 9.2 eV, g¼ 0.5 eV and eb¼ 4.2 are
used [18]. The nanocomposite is controlled by the parametersfilling factor and radius
of the nanoparticles. Those parameters are known from experiment. The mean
diameter of the particles is ffi20 nm [12].
Even if onehas complete information about the permittivity of the constituents and

the geometry, the calculation of eeff(o) remains difficult. Therefore the estimation of
upper and lower bounds of the permittivity is of interest. The derivation of such
bounds is given by Milton [19]. A bound implies a restriction of eeff(o) to a certain
region of the complex plane. The region depends on what is known about the
composite. A construction of bounds, illustrated here for values of e1¼ 1� 7i,
e2¼ 10� i is shown in Figure 18.5. Without any information on the microgeometry
eeff(o) is confined to themoon-like shaped pink region.Knowing the volume fraction,
we get a restriction to the green area. If we know also that our ensemble is statistically
isotropic and the dimension d¼ 2 or d¼ 3, respectively, the values of eeff(o) are
restricted to the yellow region. MGTcontains all this kind of information. The result
from MGT for the given e-values of the constituents is indicated by a black dot in
Figure 18.5. We will calculate the effective permittivity by means of a finite element
method (FEM)directly. The resultswill be comparedwithMaxwell–Garnett theory. In
both calculations statistical isotropic ensembles are used. Therefore the results of our
FEMcalculations have to be also inside or on the bounding arcs of the yellow region in
Figure 18.5. The discussion of the bounds is valid in the quasi-static limit, which is

Figure 18.5 Systematic construction of bounds due to the
information about the constituents. (pink – no information on the
microgeometry, green – information on filling fractions, yellow –

statistically isotropic structure, dimension) The black dot at the
crossing of the two blue circles indicates the MGT result.
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approximately fulfilled in our case. A quasi-static situation will be also assumed for
the following considerations.
The finite element method can be used to calculate the permittivity for a given

structure of the nanocomposite [20]. The FEM software package FEMLAB was
used [21]. We consider particles in a matrix in two and three dimensions. For the
estimation of eeff(o) a plate capacitor with area S and the distance h of the plates is
considered (cf. Figure 18.6(a)).
The capacitor is filled with the composite and a voltageV0 is applied. To avoid edge

effects, periodic boundary conditions are applied at the left and righthand side. The
energy stored in a capacitor for a dielectric with real and constant permittivity e is
given by

W ¼ 1
2
e0e

S
h
V2

0 : ð18:3Þ
The energy stored in the capacitor would be the same, if the composite of
constituents having real and constant permittivity is replaced by a homogeneous
effective medium with a suitable eeff. The calculation of the energyW stored in the
capacitor containing the composite allows us therefore to calculate the effective
permittivity. In such a case the energy W follows from the minimization of the
functional F with respect to the potential f(r) calculated for the composite system
(here for two dimensions) from

W ¼ F fðrÞ½ 
 ¼ 1
2
e0

ð
O

eðrÞ½rfðrÞ
2d2r; ð18:4Þ

where e(r) is the local dielectric constant, the integral extends over the surface of the
capacitor O and f(r) is the local electrostatic potential. The local electrostatic
potential is calculated from the following boundary-value problem:

r � ½eðrÞ rfðrÞ
 ¼ 0: ð18:5Þ
In the system under consideration one of the constituents is a lossy, dispersive
material. In this caseW is complex and the imaginary part of this quantity describes
the losses. This part determines at the end the imaginary part of the effective

Figure 18.6 (a) Calculation of the effective permittivity with a plate
capacitor arrangement. (b) FEM mesh for 85 particles in two
dimensions which leads to 8157 elements and 16478 knots.
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permittivity. The Eqs. (18.4) and (18.5) retain there form for this special case if a
complex phasor formulation is used (cf. [17]).
A typical mesh of the FEMmethod is shown in Figure 18.6(b). A direct contact of

the particles is avoided by construction. Because of the finite size of the systems used
in the calculation of eeff(o), we have to perform an ensemble-average over many
realizations of the composite. Typically several hundred realizations of the systems
are performed.
Amethod was constructed to generate random ensembles of particles for arbitrary

filling fractions. If the filling fraction of the particles is low, a random sequential
addition process is used. The particles are randomly placed in the simulation cell one
after the other. If the position of a particle is in conflict with already existing particles
the particle will be discarded. This process has a saturation behavior. In two
dimensions saturation is reached for f satffi 0.55. Another process, mainly used for
higher filling factors is based on the dynamics in a system of hard discs or spheres.
We start with particles on a regular lattice. To each particle a randomly chosen velocity
is assigned. The dynamics of the system is considered by a direct calculation of the
scattering events of the particles. Several hundreds of scattering events are taken into
account to generate a random ensemble. Periodic boundary conditions are applied.
To be sure, that our systems have the appropriate statistical properties, the radial
distribution functions (RDF) are calculated and compared with radial distribution
functions calculated from the Percus–Yevick approximation to theOrnstein–Zernike
equation describing hard disc or hard sphere gases [22]. The radial distribution
function is themost basic statistical descriptorwhich provides structural information
about the equilibrium system. The RDF is the probability of finding one particle
center at a given distance r from the center of a reference particle. Figure 18.7 shows
the radial distribution function for a hard sphere systemwith f¼ 0.25. For a lowfilling
factor only the peak of the nearest neighbor shell appears. For higher filling factors
an oscillatory behavior develops. The periodicity of the peaks is governed by the
diameter of the particles.
The calculated eeff(o) for afilling factor of f¼ 0.25 for two and three dimensions are

given in Figure 18.8. Interesting for applications is the long wavelength side of the
plasmon resonance. The calculation shows, that the real part of eeff(o) is larger than
the result fromMGT. Also the imaginary part is increased compared toMGT leading
to larger absorbtion in this wavelength region.
The difference between MGT and the FEM calculation can be seen clearly in the

representation given in Figure 18.9. The values of eeff(o) are plotted in the complex
plane for wavelengths between l¼ 300 nm and l¼ 1600 nm. The differences in this
representation are caused by the shift in the peak position of the FEMresult for eeff(o)
with respect to the MGT and the increase of the imaginary part.
Finally it can be checked, if the results can be found in the bounds predicted by

Miltons theory and described in Figure 18.5. The Figure 18.10(a) and (b) show for two
different wavelengths how the results of the FEM calculations are related to the
bounds. The blue lines correspond to the bounds of the yellow region in Figure 18.5.
The form of the bounds are of course strongly influenced by the e-values of the
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constituents. (cf. [19]) Even if the calculated values are near the bounds, all calculated
values are inside the allowed region.
The method of calculation allows also other considerations. It can be shown, that

the results of the FEM calculations are very close to the MGT results for low filling
factors. It is also possible to study the influence of order/disorder on eeff. Figure 18.11
shows the difference in eeff betweenmetallic nanoparticles arranged on a cubic lattice
and a disordered structure with the same filling factor. It can be concluded from
Figure 18.11 that disorder leads to higher Reeff and `eeff in the interesting
wavelength region.

Figure 18.8 eeff(o) calculated by FEM method. (a) Real part and
imaginary part of eeff(o) for a 2D system of discs for f¼ 0.25,
compared with results ofMGT. (b) Real part and imaginary part of
eeff(o) for a 3D system of spheres for f¼ 0.25, compared with
results of MGT.

Figure 18.7 Radial distribution function for a 3D ensemble of
spheres with a filling fraction f¼ 0.25.
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18.3.1
Extensions of the Method

The method to calculate the effective permittivity can be extended in several ways.
From experiment it is known, that under intense illumination with a laser beam the
metal particles are deformed to rotational ellipsoids. The semi-major axis of the
ellipsoids is oriented parallel to the polarization of the laser beam. The method of
calculation of eeff can be extended to randomensembles of rotational ellipsoidswith a
preferred direction of the semi-major axis.

Figure 18.9 eeff(o) from l¼ 300 nm to 1600 nm in the
complex plane. (a) 2D system; (b) 3D system.

Figure 18.10 eeff(o) from MGT and FEM calculations for
the 3D system and bounds (blue lines). The results for
100 FEM calculations of eeff(o) are indicated by green
dots. Also the mean value is given. (a) l¼ 400 nm;
(b) l¼ 800 nm.
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It was found experimentally that the concentration of the silver particles decreases
from the surface into the bulk exponentially. If random sequential addition can be
used to create the ensembles, the probability distribution of particle positions can be
transformed accordingly to take this effect into account.
Garcia et al. [23] considered mixing rules in a self-consistent fashion in the

framework of EMT to predict the plasmonic behavior including peak positions,
shifts and and shapes in ternary nanocomposites. The extension tomulti-component
systems in our approach is straightforward. The random ensembles are generated as
described. Instead of assuming that all the particles have the same properties, we
assign to the particles the properties of the constituents we want to consider. The
method is not restricted to a special form of e(o) for the metallic nanoparticles. Also
experimental information could be used here.

18.4
Summary

The above reported results show that glass doped with metal nanoparticles is a very
promising material for photonic applications. The basic optical material parameters
canbe varied to a large extendbyusing optimized size, shape and concentration of the
nanoparticles. The material can easily be structured down to a length scale of visible
light and the shape of the individual structure cell can be adopted to special purposes.
Finite element methods (FEM) allow to model the dielectric properties of the

material. This is the basis to model photonic devices efficiently. Optimal designs for
waveguide structures in such a nanocomposite material can be calculated.

Figure 18.11 Difference in eeff(o) between an ordered structure of
metallic nanoparticles and a disordered arrangement of the same
filling factor of f¼ 0.25.
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Of special interest is the possibility of the generation of uniformly oriented
ellipsoidal metal nanoparticles in the structured material. First estimates show that
the index contrast can be increased using birefringence the in glass containing
ellipsoidal particles.
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Optical Properties of Disordered Metallic Photonic Crystal Slabs
D. Nau, A. Sch€onhardt, A. Christ, T. Zentgraf, Ch. Bauer, J. Kuhl, and H. Giessen

19.1
Introduction

In recent times, a lot of effort has been devoted to examine the optical properties of
dielectric photonic crystals. The idea for these crystals arose several years ago, when
they were discussed as materials to control radiative properties [1] or to localize
light [2]. Especially the proposal to use photonic crystal structures for novel applica-
tions brought about fascinating concepts [3]. The idea behind these crystals is a
perfect periodic variation of the dielectric constant, where the periodicity is on the
order of the wavelength of light [4,5]. Such an arrangement can cause Bragg
scattering of electromagnetic waves, resulting in stop bands in their electromagnetic
transmission characteristics.
One specific problem arises when working with photonic crystals. Theory and

device concepts always deal with perfect periodic structures, where the different
constituents are arranged on perfect lattices. However, such crystals are artificially
fabricated materials. Especially when working in the visible spectral range, the
fabrication requirements often reach the limits of the utilized lithographic methods.
Consequently, real photonic crystals can show strong deviations from the perfect
structure [6]. Of course, such disorder directly influences the optical properties of real
crystals [7]. Not only do possible applications require a detailed knowledge about the
influence of disorder in these artificial structures. A fundamental point of view, the
already interesting optical properties of photonic crystals show further intriguing
effects in the presence of disorder. Typical examples are disorder-induced modifica-
tions of photon states and of the transmission [2,8–10].
The subclass ofmetallic photonic crystals has gained a lot of interest recently [11].

In metal-based structures, one of the dielectric constituents is replaced by a metal.
One possibility to fabricate such structures is the periodic arrangement of metallic
nanostructures on top of a dielectric waveguide slab [12]. This metallic photonic
crystal slab (MPCS) belongs to the class of crystals that provide simultaneously
photonic and electronic resonances in the same spectral range. A strong coupling
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between the resonances (i.e., particle plasmon and quasiguided slabmode) due to the
formation of a polariton-type quasiparticle comes along with a pronounced polari-
tonic bandstructure [13,14].
This paper summarizes our work about the optical properties of disordered

metallic photonic crystal slabs [15–18]. The paper starts with the description of the
samples and the different disorder models, which are characterized in detail
(Section 19.2). Section 19.3 presents experimental and numerical results of the
linear optical properties of disordered MPCS, their bandstructure is described in
Section 19.4.

19.2
Sample Description and Disorder Models

We fabricated the samples by using electron-beam lithography. As thismethod allows
to precisely control shape andposition of the fabricatednanostructureswithin an area
of about 100 · 100 mm2, we were able to artificially introduce disorder with very high
accuracy. This process provides a powerful tool to implement artificial disorderwith a
well defined type and strength into the samples [15–18].Whenmeasuring the optical
properties of such structures, a direct relation between disorder type and amount on
the one hand and optical properties on the other hand can be found.
The MPCS consisted of metallic nanowires that were arranged on top of an

indium-tin oxide (ITO) layer that was deposited on a glass substrate [see Figure 19.1
(a)]. The ITO-layer had a thickness of 140 nm, the nanowires had a height of 20 nm
and a width of 100 nm. The optical properties were determined with a linear white-
light transmission setup. It consisted of a halogen lamp that produced linearly
polarized white-light at an aperture angle of below 0.2�, and the transmitted light was

Figure 19.1 (a) Metallic photonic crystal slab consisting of
a gold grating on top of a dielectric waveguide layer. E indicates
the direction of the electrical field polarization, j denotes
the angle of light incidence. (b) and (c) Schemes of
uncorrelated and correlated disorder, respectively. Dotted
lines indicate the center positions of the perfect grating with
period d0.
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analyzedwith a spectrometer [13].With this setupwewere able to vary the polar angle
j of light incidence. For the transmission measurement (see Section 19.3) we set
j¼ 0, the bandstructure was determined at an oblique anglej 6¼ 0 (see Section 19.4).
In this context, disordermeans a variation of the positions of the nanowires on top

of the waveguide layer (positional disorder), the width and the height of the
nanowires are kept fixed. Two different disordermodels with different next-neighbor
correlations are considered [15]. In the first, the positions of neighboring nanowires
are uncorrelated. Their positions are shifted with respect to their positions in the
perfectly ordered system [see Figure 19.1(b)]. Starting at position x0, the position of
nanowire i is given by

xi ¼ x0þ id0þDxi; ð19:1Þ
where d0 is the period of the perfect grating andDxi is the variation of the i-th position.
This model resembles a �frozen phonon�.
In the second model, the position of a nanowire is related to the position of

the preceding one. Hence, the positions xi and xi�1 of neighbors are correlated
[Figure 19.1(c)], which resembles long-range disorder [19]. Therefore, xi includes all
variations of the preceding nanowires,

xi ¼ xi�1þd0þDxi ¼ x0þ id0þ
Xi
n¼1

Dxn: ð19:2Þ

The variations Dx follow a uniform or a normal distribution with a full-width
at half-maximum w. Giving w as a fraction of d0 quantifies the disorder amount
a[%]¼w/d0 � 100.
To precisely study the influence of different disorder types on the optical properties

of MPCS, we fabricated a series of samples with uniform uncorrelated, uniform
correlated, normal uncorrelated andnormal correlated disorder,where the amount of
disorder was increased in steps of 10%. In a previous analysis we found that only the
disorder type (correlated or uncorrelated) affects the optical properties of the
MPCS [16]. The distribution of the Dx does not alter the principal observations.
However, considered disorder type and distribution are specified throughout the text.
For further details about disorder type and distribution see [16].
Statistical methods allow to point out the differences of the disorder models [16].

According to the definition of the positional variations, the mean value Dx of all
variations of the positions is

Dx ¼ 1
N

XN
i¼1

Dxi ¼ 0: ð19:3Þ

Together with Eqs. (19.1) and (19.2), the averaged position xN of nanowireN is found
to be identical for n different realizations of correlated (C) and uncorrelated (U)
disorder samples:

xUN ¼ xCN ¼ 1
n

Xn
j¼1

xN; j ¼ x0þNd0: ð19:4Þ
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However, their standard deviations are different,

sUN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxNÞ2

r
; sCN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

XN
i¼1

Dxi; j

 !2
vuut :

Therefore sU
N ? sC

N , saying that correlated and uncorrelated disorder cause the same
averaged grating length but with different deviations from this length. Hence, the
long-range order is reduced stronger in a system with correlated disorder than in a
system with uncorrelated disorder. The numerical results in Figure 19.2 underline
these considerations. Here, the averaged grating length xN is plotted together with
the standard deviation sN for different disorder types and amounts.
Another possibility to characterize different models of disorder is to calculate the

two-point correlation function (TPCF) [16]

DðdÞ ¼
XN
i¼0

XN
j¼0

dðd�ðxj�xiÞÞ: ð19:5Þ

D(d) gives the statistics of the distance d between any two nanowires in the
arrangement [20] and is the autocorrelation of the positions x of the nanowires.
The calculation is done as follows: Starting at a certain nanowire, the distances

to all other wires are calculated and plotted in a histogram. The same is then done
for all other structures, resulting in a modified histogram, giving the aforemen-
tioned statistics. For a perfect periodic arrangement, the distance between any
two wires is a multiple integer of the lattice period. Hence, the TPCF consists of
d-peaks atmultiple integers of the lattice period.WithNþ 1 nanowires and d0 being

Figure 19.2 Averaged grating length �xN of samples for different
amounts of uniform uncorrelated and uniform correlated
disorder. The simulations were performed for 251 nanowires
and a period of 400 nm, the statistics was performed for 2000
different arrays.
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the lattice constant,

DðdÞ ¼
XN
i¼0

XN
j¼0

dðd�ðj�iÞd0Þ: ð19:6Þ

Thatmeans that the TPCFof a perfect grating is simply the sumof perfectly ordered
combs of d-peaks, centered at different points and resulting in a perfectly ordered
comb. Since the size of a real array with nanowires is finite, the d-peaks do not have
the same amplitudes: they rather decrease their height for larger distances.
Therefore, the resulting comb appears as a triangular shape. Figure 19.3 shows
the calculated TPCF for a perfect periodic assembly of nanowires. The TPCF is
plotted for different scales of the x-axis. In the top figure that shows all occurring
distances, the peaks form a broad band due to their large density. Clearly, a
reduction of the amplitudes towards the sides can be seen. Zooming into the
TPCF reveals their character of single d-peaks as mentioned above.
If we perform theTPCF-calculation for disordered structures, the characteristics of

uncorrelated and correlated disorder become clearer [16]. In the uncorrelatedmodel,

Figure 19.3 Two-point correlation function of a perfect periodic
structure. From top to bottom the scale of the x-axis is decreased
to reveal details. Calculation for 2000 grating points; the period
was set to d0¼ 400 nm.
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the positions of the nanowires are varied around their original grid positions. Hence,
the distance between two certain nanowires i and j has increased by DxiþDxj when
comparedwith their distance (j� i)d0 in the perfect grid. As a result, the TPCF-peak at
(j� i)d0 shows some broadening that is determined by the positional variation. This
holds for all nanowires, whichmeans that the TPCF-peaks at multiple integers of the
lattice period are simply broadened homogeneously by the sums of the variations of
all nanowires. At the same time, the amplitudes of the peaks reduce. The TPCF is
given by

DðdÞ ¼
XN
i¼0

XN
j¼0

dðd � ðj � iÞd0þDxi � DxjÞ: ð19:7Þ

The result describes the summation of combswhose d-peaks at (j� i)d0 are shifted by
Dxi�Dxj with respect to each other. The TPCF of a structure with uncorrelated
disorder is therefore a comb of broadened d-peaks. Since the FWHM of the
distribution of Dxi and Dxj increases for increasing disorder, the broadening of the
d-peaks increases and the amplitudes decrease. Figure 19.4 shows the calculated
TPCF for a structure with increasing uniform uncorrelated disorder (left panel).
Again we observe broad bands containing peaks, but their amplitudes decrease and
their widths increase for increasing disorder. Visually spoken, the band of d-peaks is
squeezed together when compared to the case of perfect order. Due to the small

Figure 19.4 Two-point correlation function for structures with
different amounts of uniform uncorrelated (left panel) and
uniform correlated disorder (right panel). The calculation was
done for structures with 2000 nanowires, the period d0 of the
perfect crystal was 400 nm.
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period of d0¼ 400 nm, the single d-shaped peaks can not be observed in the broad
distance-range presented in this graph.
The TPCF of a crystal with correlated disorder looks quite different. Due to the

next-neighbor correlation of the nanowires� positions, varying the position of a
certainwire influences the positions of all followingwires.Hence, starting at a certain
nanowire, the distance to following nanowires includes the variations of all nano-
wires in-between. Therefore, the distance between two nanowires i and j deviates
stronger from their distance in the perfect crystal as more nanowires lie in-between
them (i.e., the larger the difference j� i is). Calculating the TPCF for such a system
shows that the TPCF-peaks broaden more strongly if the distances are larger. At the
same time, the amplitudes for larger distances are decreased more strongly than
those for smaller distances. The TPCF is given by

DðdÞ ¼
XN
i¼0

XN
j¼0

d d � ðj � iÞd0þ
Xi
n¼1

Dxn �
Xj
m¼1

Dxm

 !
: ð19:8Þ

Here, the positions of the d-peaks at x0þ (j� i)d0 are shifted by the sums of the
variations Dxn and Dxm, which are not constant but rather changing. Therefore,
the d-peaks are broadened and additionally shifted,which leads to a stronglymodified
TPCF of systems with long-range disorder.
The TPCF for a structure with correlated disorder is plotted in Figure 19.4 (right

panel). It shows a strong decline with large distances, and increasing the disorder
causes this decline to become stronger.
Comparing the TPCF for various disordermodels clarifies the differences of these

models. Peaks at small distances characterize short-range ordering, whereas peaks at
long distances give information about the long-range arrangement of the grating
structure. In the uncorrelated model the peaks reduce their amplitudes homo-
geneously for small and large distances. Therefore, short-range and long-range
characteristics are modified equally. Hence, uncorrelated disorder only reduces the
quality of the grating arrangement. The grating itself is not �destroyed�, whichmeans
that the long-range order of the arrangement is preserved. This does not hold for the
correlated disorder model, where the peaks at larger distances reduce their ampli-
tudes stronger than those at smaller distances. Here, the long-range order is
destroyed faster than the short-range order. The sharp peak at the origin of the
TPCF arises from the distance of each point to itself. This peak therefore appears in
both disorder models for all disorder strengths.
Further information about the physical nature of the considered disorder models

can be deduced from a Fourier analysis of the spatial arrangement of the nano-
wires [16,18], as this analysis is similar to the results obtained from diffraction
experiments [21]. The spatial arrangement of all nanowires in a fabricated sample is
considered and the Fourier transform of this arrangement is calculated. Figure 19.5
shows results for exemplary arrangements with normal uncorrelated and normal
correlated disorder, for simplicity we concentrate around the first reciprocal lattice
vector g0¼ 2p/d0 (d0¼ 400 nm). It is found that correlated and uncorrelated disorder
have a different influence on the amplitudes |A| and the momenta k in the Fourier
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Figure 19.5 Fourier analysis of exemplary structures with
normal uncorrelated and normal correlated disorder. The
disorder was increased in steps of 10%. Each structure
consisted of 1000 nanowires with d0¼ 400 nm. The curves
are shifted for clarity.

spectrum. In the case of no disorder, a sharp d-shaped peak appears at k¼ g0. This
peak is retained for increasing uncorrelated disorder, although its amplitude is
continuously reduced. The peak completely vanishes at an disorder amount of 80%.
Correlated disorder also diminishes the amplitude of this peak, but for smaller
amounts of disorder: It vanishes for an amount of about 50%. Furthermore,
additional peaks arise at k 6¼ g0, causing an inhomogeneous broadening in the
Fourier spectrum. These differences are the key to understand the spectral char-
acteristics of the various disorder models.
To better understand these results, wemake use of the similarity between a Fourier

analysis of a spatial arrangement of nanostructures and the results from diffraction
experiments on these nanoscatterers [21]. We can use these results to explain the
Fourier analysis of the disorder types. The diffraction pattern of perfect crystals with
period d0 shows sharp peaks at multiple integers of the reciprocal lattice vector
g0¼ 2p/d0. This corresponds to the Fourier peak at k¼ g0. In a thermal hot solid, the
positions of the atoms are varied around their original grid positions resulting in
reduced amplitudes of the diffraction peaks. This behaviour can bemodelledwith the
Debye–Waller factor in solid state physics [21] and was already transferred tometallic
photonic crystals [22]. For a variation Dx2 of the nanowires� positions, the scattered
intensity ISca for the reciprocal lattice vector k is given by

ISca ¼ I0 expð�1
3
hDx2ik2Þ: ð19:9Þ
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I0 is the scattered intensity without disorder. The phenomena observed in the
Fourier analysis of correlated disordered samples resemble diffraction experiments
with liquids and amorphous materials. These are systems in which some ordering
takes place on a short-range scale; however, they are disordered on a long-range
scale [23]. Their diffraction patterns showbroadmaxima that are not clearly separated
from each other [24,25]. Similar observations can be made in the Fourier analysis of
systems with correlated disorder (see Figure 19.5). The scattered intensity is given
by [21]

ISca ¼ Nf 2 1þ
X
m „ n

ðsin ðkxmnÞÞ=kxmn

" #
: ð19:10Þ

ISca contains the number N of atoms and the atomic form factor f.
These results indicate that our models describe in fact systems with different

disorder types. Uncorrelated disorder is similar to thermally excited phonons in a
solid lattice, and correlated disorder resembles liquid or amorphous systems.

19.3
Transmission Properties

The linear optical properties of MPCS were determined at normal light incidence
with j¼ 0 (see Section 19.2). The extinction (�ln(T ), T: transmission) of ordered
MPCS is characterized by complex lineshapes in TE and TM polarization. In TE
polarization, the extinction shows a highly asymmetric Fano-form, caused by the
excitation of the TE quasiguided mode inside the dielectric layer [13,14]. In TM
polarization, the additional particle plasmon couples to the TM quasiguided mode.
The extinction of the resulting plasmon-waveguide-polariton is characterized by two
pronounced peaks (lower and upper polariton branch) [12–14,26].
The linear optical properties of disorderedMPCS are found to show a distinctively

different behavior [15,16,18]. Extinction spectra of samples with different types and
amounts of disorder, togetherwith results obtained by theory (see later), are plotted in
Figure 19.6. The typical extinction characteristics of orderedMPCS are found for the
case of no disorder. In TE polarization, a highly asymmetric Fano-shaped resonance
is observed.However, increasing uncorrelated disorder reduces the amplitude of this
resonance and causes a vanishing at about 70% disorder. The width of the resonance
is not affected. This amplitude reduction goes along with a slight shift of the
resonance to lower energies. Correlated disorder reduces the resonance amplitude
more drastically, resulting in a vanishing at about 50%disorder. Additionally, a strong
broadening of the resonance is observablewhich completely destroys the asymmetric
Fano-lineshape of the resonance. In TM polarization, the two peaks of the coupled
system of quasiguided mode and particle plasmon appear in the spectrum for no
disorder.
The differences in energy and the formof the resonances are caused by the fact that

the MPCS were fabricated on different samples in different fabrication processes.

19.3 Transmission Properties j357
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Deviations in the gold evaporation process are responsible for varying heights of the
nanowires on the order of a few nanometers and hence for varying energies of the
particle plasmon.Differences of the periods of theMPCS lead to different energies of
the quasiguided mode.
Uncorrelated disorder reduces the amplitude of the upper polariton branch,

causing a broadened particle plasmon peak for maximum disorder. We also note
a decreased energy separation between the branches for increasing disorder. In the
case of correlated disorder the shape of both polariton branches are influenced, they
both show a broadening. For maximum disorder, again a single broadened plasmon
peak arises.
These results can be modelled and understood by using a theoretical approach

presented in [18]. The simulation of the optical properties of the samples is done
in several steps. First, the spatial arrangement of all nanowires in a fabricated sample
is considered and the Fourier transform of this arrangement is calculated (see
Section 19.2 and Figure 19.5). In the second step, we consider the dispersion relation
of the MPCS. The TE and TM quasiguided modes depend on the lateral wavevector,
and they are given by the solutions of transcendental equations [27]. In TM
polarization, the quasiguided mode at energy Ewg(kj) couples to the plasmon at
constant energy Epl. This results in a typical polariton dispersion with two dispersion
branches in ordered MPCS [13,14]. For normal light incidence, the period, or, more
generally, the Fourier spectrum determines the energies of the excited reso-
nances [22]. Their amplitudes are given by the amplitudes of the Fourier components
and hence the lattice structure [28]. Combining Fourier analysis and dispersion of the
sample yields a transformation of the Fourier peaks from k-space into energy space:
each Fourier component at kj excites resonances with energies Ej¼E(kj) and
amplitudes Ij/ |Aj|

2.
To finally calculate the optical spectra of the samples, we plug the energies Ej and

amplitudes |Aj| of the excited resonances into suitably chosen lineshape functions. In
TE polarization, the extinction aTE

j ðEÞ is characterized by a Fano-type line-
shape [13,29]. In TM polarization, the absorption of the system can be modelled
with two coupled Lorentzian oscillators [26]. For simplicity, we identify the extinction
with this absorption [26]:

aTMðEÞ ¼ aN

4g2plE
2½E2�E2

wg�ðqwg=qplÞE2
c 
2

1=�h2½ðE2�E2
plÞðE2�E2

wgÞ�E4
c 
2þ4g2plE

2ðE2�E2
wgÞ2

; ð19:11Þ

with aN as a scaling factor depending on the density of the excited pairs of plasmon
and quasiguided mode, and El, gl, and ql (l¼ pl, wg) as resonance energies,
homogeneous half-widths, and oscillator strengths of the uncoupled system. The
waveguide-plasmon coupling strength is denoted as E2

c . Thus, each Fourier compo-
nent at kj yields an extinctiona

pol
j ðEÞ, where �pol� denotes the polarization (TE or TM).

The total extinction apol(E) of the disordered samples is the sum over all apol
j ðEÞ:

apolðEÞ ¼
X
j

apol
j ðEÞ: ð19:12Þ
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The necessary TE and TM parameters are determined by fitting the individual
lineshape functions to the measured extinction spectra of the perfect samples. They
are then used as disorder-independent parameters in the calculation of apol

j ðEÞ and
apol(E). Adapting the polariton picture to Eq. (19.11) means that each Fourier
component excites simultaneously a plasmon and a quasiguided mode as a pair of
coupled resonances in TM polarization. Hence, Ij affects directly the density-
dependent factor aN of these pairs in Eq. (19.11). We set aN/a0¼ Ij¼ |Aj|

2, where
a0 is the maximum extinction as determined from the fits of the perfect samples. An
illustration of the model is presented in Figure 19.7 with spatial Fourier analysis, TE
and TM dispersion, and the resulting extinction spectra in energy space.
The comparison in Figure 19.6 shows a good agreement of experimental and

simulated results. Both the peak reduction and the peak broadening are reproduced
well in the simulations. With the model described above we are able to completely
understand and explain the observations. In TE polarization, the extinction is simply
a convolution of the spatial Fourier spectrum (see Figure 19.5 as an example) with the
Fano lineshape. For correlated disorder, the arrangement of the nanowires acts as a
superposition of gratings with different periods. Therefore, multiple quasiguided
modes are excited in a wide energy range [30], causing a broadening of the extinction
peak.
The spatial Fourier analysis also helps to understand the observations in TM

polarization. In the case of uncorrelated disorder, the reducing Fourier peak ampli-
tude gives evidence for a decrease of the polariton contribution to the spectrum. The
increasing background in the Fourier spectrum increases the contribution of

Figure 19.7 Transformation of exemplary Fourier peaks from
k-space into energy space via the dispersion relations. Schematic
lineshape functions are added in energy space to yield aTE(E)
and aTM(E).
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plasmons coupled to waveguides of arbitrary energy. As a result, a simple plasmon
appears at large disorder amounts. For correlated disorder, the broadening of both
polariton branches originates from the excitation of multiple resonances at energies
varying in a certain, finite spectral range.
Comparing measurements and simul ations in TM polarization shows that some

smaller details are not well reproduced. We account the omission of near-field
coupling of the individual nanowires to be responsible for this effect. This coupling
presumably causes the strong broadening of the pure plasmon resonance at large
disorder and the pronounced maxima and minima at moderate disorder.

19.4
Bandstructure

The results in Section 19.3 were obtained at a normal light incidence. Varying the
polar angle of light incidence j allows to determine the bandstructure of the
MPCS [14]: The energies of the polariton resonances are plotted as a function of
j or of the momentum kx with kx¼ k0 sin j.
In contrast to normal light incidence, two quasiguidedmodes are excited forj 6¼ 0

in both polarisations: symmetric and antisymmetric quasiguided mode. They are
both solutions of the transcendental wave equation in dielectric waveguide sys-
tems [27]. Due to symmetry reasons, the antisymmetric mode can not be excited at
normal light incidence; it only appears in systems with broken symmetry at
j 6¼ 0 [31]. As a result, the extinction spectra in TE and TM show an additional
quasiguided mode (not shown here).
In TM polarization, the bandstructure of ordered MPCS is characterized by the

interaction of particle plasmon, symmetric quasiguided mode, and antisymmetric
quasiguided mode [13]. The bandstructure consists of three pronounced bands that
correspond to upper,middle, and lower polariton branch. The bands are separated by
stop gaps being caused by the strong coupling in the MPCS. In TE polarization, the
excitation of only symmetric and antisymmetric quasiguided modes leads to the
dispersion of the quasiguided slab modes with two separated bands [14].
Note that at kx¼ 0 (i.e., normal light incidence) the antisymmetric quasiguided

modes are not excited (see above). The corresponding TE and TM bands therefore
display a missing data point.
In this sectionwediscuss the bandstructure of disorderedMPCS.Different disorder

models show pronounced differences in their effects on the bandstructure [17].
Results for a sample with uniform uncorrelated disorder are shown in Figure 19.8
(left panel) for increasing disorder. For no disorder, the bandstructure of the polariton
can be observed. Increasing uniformuncorrelated disorder reduces the gaps between
the bands. The splitting between the middle and upper polariton branches vanishes
for a disorder amount of about 60%, and the splitting between upper and lower
branch reduces continuously. However, the bandstructure itself is retained and not
destroyed by this type of disorder. Even for large disorder amounts of up to 70% the
bands of the different polariton branches are distinguishable. For still larger amounts

19.4 Bandstructure j361
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(80% and more) the quasiguided modes are not excited any more (see Section 19.3).
Thus, only the plasmonic polariton branch appears (not shown here).
The dispersion of a sample withGaussian correlated disorder is shown in the right

panel of Figure 19.5. For no disorder, the bandstructure is again that of the polariton
in ordered MPCS.
As stated in Section 19.3, bands appear at slightly different energies when

compared to the sample with uniform uncorrelated disorder due to different
detunings of plasmon and quasiguided mode in the samples.
Increasing disorder starts to wash out the bandstructure, and an amount of 30%

and higher completely destroys the polariton branches. No bandstructure is retained,
and further structures appear, causing the original polariton branches to be inho-
mogeneously broadened.
The polariton dispersion of the ordered MPCS can be tailored by determining the

eigenvalues of an effective Hamiltonian Heff (see [13] for details). It includes the
energy E0 of the TM0 quasiguided modes at kx¼ 0, the energy Epl of the individual
wire plasmons, the stop-bandhalf-widthV1 in the 1-dimphotonic crystal slab, and the
coupling energy V2 of quasiguided mode and wire plasmon. Absorption and losses
are taken into account by introducing finite half-widths to the resonances of plasmon
and quasiguidedmode.WithG as half-width of the plasmon, its energyEpl is replaced
by Epl� iG. The same holds for the quasiguidedmodes, whose half-width gmodifies
their energies to E0 � c kx�ig : The radiative losses of the quasiguided modes are
modelledwith a complex photonic band gap.With g1 being the radiative damping,V1

is replaced by V1� ig1. We obtain the following matrix to calculate Heff [13]

E0þV1�iðgþg1Þ ~c kx
ffiffiffi
2

p
V2

~c kx E0�V1�iðg�g1Þ 0ffiffiffi
2

p
V2 0 EPl�iG

0
@

1
A: ð19:13Þ

It was found that the coupling strength of plasmon and quasiguided mode is
modified by disorder and defects [15,22]. This can be understood intuitively asV2 can
be determined from the spatial overlap of the electrical fields of plasmon Epl(r) and
quasiguided mode EWG(r). In a system with positional disorder, this overlap can be
drastically reduced. To quantitatively determine the decrease ofV2, we calculateV2 in
a simple model. Here, the modified coupling strength obeys

Vdis
2 ¼ 1

V2

ð¥
�¥

EWG�EPl dr: ð19:14Þ

We normalize it to the coupling strength V2 of the ordered MPCS. The modifica-
tion of V2 is then taken into account by replacing V2 in Eq. (19.13) by Vmod

2 ¼ V2Vdis
2 .

The electrical field of the plasmon Epl is mainly localized at the positions of the
nanowires. Introducing disorder varies these positions. Hence, the coupling of
plasmon and quasiguided mode is reduced in disordered systems due to a changing
spatial overlap and a therefore modified V2 [see Figure 19.9 (a)]. Approximating EWG

by a cosine-type oscillation with period d0

EWGðx;jÞ ¼ cos ðð2px�jÞ=d0Þ ð19:15Þ
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and assuming Epl to be a non-zero constant inside the nanowires and vanishing
outside

EPlðxÞ ¼ 1 : x 2 nanowire;
0 : x =2 nanowire


ð19:16Þ

we estimate the change ofV2 by using the spatial arrangement of the nanowires. The
results are shown in Figure 19.9(b). V2 decreases with increasing disorder, however,
the models differ in the dependence of V2 on the degree of disorder. Decreasing V2

reduces the coupling of plasmon and quasiguided mode, causing a reduction of the
polariton splitting in the dispersion.
With this Hamiltonian we are able to simulate the polariton dispersion of a MPCS

with uncorrelated disorder. All parameters in Eq. (19.13) are adapted to yield the
correct results for no disorder (see also the parameters in [13]). For larger disorder
amount, onlyVmod

2 was changed according to Eq. (19.14). It should be noted that also
the stop-band half-width V1 of the 1-dim photonic crystal slab is influenced by
disorder (see later). However, we neglect this effect here.

Figure 19.9 (a) Spatial overlap of the electrical
fields of plasmon and quasiguided mode in
ordered and disordered MPCS. (b) Normalized
modified coupling strength Vmod

2 as a function of
disorder and for different disorder types.

(c) Dispersion of the sample with uniform
uncorrelated disorder: experiment and
simulation in TM polarization. The
bandstructure is plotted for increasing amounts
of disorder.
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The polariton bandstructure of a sample with uncorrelated disorder agrees well in
experiment and simulation, as can be seen in Figure 19.9(c). Increasing uncorrelated
disorder retains the dispersion branches of the polariton, and the splittings between
the bands are reproduced nicely by the simulations. Deviations in the simulated
results from the measurements are presumably caused by not considering the
influence of disorder on V1.
Although the complex behavior of the bandstructure in disordered MPCS is not

yet completely understood, a simple picture allows to explain the reduced band
separation for increasing uncorrelated disorder [17]. The band separation results
from the strong coupling in this polaritonic system, which can be described
by the coupling strength V2 [13]. This V2 can be interpreted as being caused by
the spatial overlap of the electrical fields of particle plasmon and quasiguided
mode [17]. In systems with positional disorder, this spatial overlap is reduced due
to the shifted positions of the nanowires with respect to the electrical field of the
quasiguided mode. As a result, the polariton coupling V2 is reduced and hence
the width of the stop-gaps in the bandstructure. This effect also appears for
correlated disorder, however, it is not visible there due to the smearing of the
bands.
The effect of band broadening in the case of correlated disorder can be explained

when taking into account the results for disordered MPCS at normal light incidence
(see Section 19.3). While uncorrelated disorder reduces the amplitude of the
polariton branch that corresponds to the quasiguided mode, correlated disorder
additionally excites multiple quasiguided modes at different energies. We can
attribute these modes to be responsible for the smearing of the bands for correlated
disorder. Eachmode couples to the plasmon andhence forms a polaritonwith slightly
different energy and slightly shifted dispersion.
The resulting dispersion of the sample leads to the complete vanishing of

pronounced polariton branches. This is not the case for uncorrelated disorder with
no additional quasiguided modes.
Similar results were obtained for the bandstructure in TE polarization [17].

Increasing uncorrelated disorder retains the bandstructure and reduces the width
of the stop-gap continuously. Correlated disorder, however, shows a broadening of the
bands which leads to the complete destruction of the bandstructure even atmoderate
disorder.
As pointed out above, the reduction of the bandsplitting in TE polarization

due to uncorrelated disorder indicates a modified V1 in Eq. (19.13). Again, this
can be understood intuitively as in such MPCS symmetric and antisymmetric
quasiguided modes have their nodes and antinodes under the nanowires,
respectively [14]. Hence, both modes experience a different effective dielectric
environment, which leads to different energies according to their disper-
sion [27]. Introducing positional disorder modifies the positions of the nano-
wires with respect to both modes. As a result, the difference in the effective
dielectric environment of symmetric and antisymmetric mode decreases, which
leads to a reduced energy difference and hence a reduced splitting in the
bandstructure.
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19.5
Conclusion

In conclusion, we discussed the optical properties of disordered metallic photonic
crystal slabs. We fabricated samples with artificial disorder and considered disorder
models with different next-neighbor correlations. The linear transmission is strongly
modified, depending on the implemented disorder model. While uncorrelated
disorder only reduces the amplitude of spectral peaks, correlated disorder addition-
ally causes a strong broadening of the resonances. Both effects are explained by
numerical simulations. The peak reduction originates from a reduced excitation
efficiency of the corresponding resonance, the broadening is caused by the excita-
tion of multiple resonances at slightly different energies. We also discussed the
bandstructure of such disordered structures as determined from angle-resolved
transmission measurements. It is found that uncorrelated disorder retains the
bandstructure and reduces the separation of the bands. Correlated disorder, however,
destroys the bandstructure already at small amounts of disorder. Again, this smear-
ing of the bands is a consequence of the excitation ofmultiple resonances.Our results
may have strong consequences for using metallic photonic crystal slabs as photonic
devices (see e.g. [32]).
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20
Superfocusing of Optical Beams below the Diffraction Limit
by Media with Negative Refraction
A. Husakou and J. Herrmann

20.1
Introduction

Focusing of light beams into an extremely small spot with a high energy density
is an important issue in optics. High-numerical-aperture focusing is used for
miniaturization in key technologies, such as lithography (see e.g. [1]), optical data
storage (see e.g. [2]), laser material nanoprocessing, and nano-optics, as well as in
confocal microscopy and numerous other fields. Pushing the spot size below
the diffraction limit is of exceptional importance for many of these applications.
The physical limit for the smallest spot size of focused light for conventional
optical devices is determined by the fact that all evanescent waves of an
electromagnetic wave are lost during propagation. The reason is that all the
components E(kx, ky, z) in the spatial Fourier presentation of the electric field
E(x, y, z, t)¼ exp(�iot)

Ð Ð
Eðkx; ky; zÞ exp ðikxxþ ikyyÞ dkx dky with transverse wave-

number k? ¼ ðk2x þ k2yÞ1=2 which satisfy the relation k?> 2p/l (so-called evanescent
waves) decay exponentially as exp (ikzz) because for these components the longitu-
dinal wavenumber kz ¼ ðk20 � k2?Þ1=2 becomes imaginary. Here l¼ 2pc/o is the
vacuum wavelength, k0¼ 2p/l¼o/c and z the propagation length. Near-field
optical methods can overcome this limitation due to the creation and interaction
of evanescent components with the sample. One of the most common ways is
the use of tapered or etched optical fibers [3] that confine a light spot to a nano-
meter area. Solid immersion lenses [4] can also produce subdiffraction spots by
the application of high-refractive-index solids as lens material in the near-field
range of the sample. However, the main problem for the application of these tech-
niques is the required subwavelength proximity of the moving near-field element
and the medium which is to be studied or modified. Although impressive results
have been achieved in this field [5], the required spatial near-field control, low
scanning speed and reliability, and small throughput remain formidable obstacles
for applications.
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The present paper is devoted to the study of the possibility for superfocusing of
scanning light beams below the diffraction limit, without requirement of spatial
control within a subwavelength distance between a moving near-field element and
the surface. Here we present an overview of our results obtained in this field, part of
these results were already published before [6–8]. The studied method is based on
recently discovered materials with a negative refractive index [9], like a metamaterial
based on split-ring resonators and wires [10,11], strongly modulated photonic
crystals [12,13], or parallel nanowires and nanoplates [14,15] and coupled nano-
cones [16]. Thehigh interest in this topic ismainly connectedwith theobservation [17]
that evanescent components can be enhanced by a thin slab of a material with a
negative refractive index, which thus forms a �superlens� with a resolution below the
diffraction limit. The enhancement of evanescent components can also be achieved
in photonic crystals with negative refraction in parameter regions without a definite
refraction index (so-called all-angle negative refraction) due to coupling to bound
photon modes [18]. Moreover a simple metal slab can also enhance evanescent
components and act like a superlens [19,20]. Based on this work, up to now the
superlensing effect was studied for imaging of subwavelength features [18,21–24].
In the case of imaging, near-field components of the object placed near the
superlens are enhanced by the slab, which leads to a super-resolution of the image
[see Figure 20.1 (a), (b)]. In contrast, in the case of focusing of a beam no evanescent
components are present in the input beam which could be amplified by a superlens,
as illustrated in Figure 20.1(d). Therefore an additional element placed directly
before the superlens has to be introduced, which creates week seed evanescent
components from the beam. This element can be a simple aperture as shown in
Section 20.2 and illustrated in Figure 20.1(c), (d).However, for focusing of a scanning
beam a fixed position of the aperture does not allow to create the spot in an arbitrary
position. To avoid this problem we study in Sections 20.3 and 20.4 the application of

Figure 20.1 General scheme of superimaging by
a negative-refraction media (NRM) (a)–(b), of
superfocusing by a combination of an aperture
and an NRM slab (c), (d), as well as of
superfocusing of a scanning beam using a
nonlinear layer and an NRM slab (e), (f). |Eprop|

and |Eevan| denote the amplitudes of respectively
propagating and evanescent components, A
denotes an aperture, NL denotes a nonlinear
layer which can be a saturable absorber or a
Kerr-type nonlinear material, NRM is a slab of
negative-refraction layer.
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light-controlled nonlinear optical elements, as illustrated in Figure 20.1(e), (f), like a
saturable absorber (SA) (Section 20.3) or an element with a nonlinear refraction
index like a Kerr-type medium (Section 20.4) for the creation of week evanescent
components from a beam.

20.2
Superfocusing of a Non-Moving Beam by the Combined Action of an Aperture
and a Negative-Index Layer

20.2.1
Effective-Medium Approach

To get insight into the phenomenon of superfocusing we first describe the propaga-
tion of a monochromatic beam through a plane slab of a medium with a negative
refraction index in the context of effectivemedium theory whichmodels the artificial
negative-refractionmaterial (NRM) by a homogeneousmaterial with m< 0 and e< 0.
The propagation of a beam through a homogeneous slab of amaterial with a negative
refractive index can be described solving the Maxwell equation for the spatial
Fourier components and using the boundary conditions on both sides of the slab.
Then for arbitrary e and m the output field Es,p (kx, ky, L) is related with the input field
Es,p(kx, ky, 0) by Es,p(kx, ky, L)¼Ts,p(kx, ky) Es,p(kx, ky, 0), where kx,y are the transverse
components of the wavevector and Ts,p(kx, ky) are the transfer functions [17]

T s;p ¼ 4½ð2þ ks;pÞe�iqzL þð2�ks;pÞ expiqzL
�1: ð20:1Þ
Here ks¼ mkz/qzþ qz/(mkz) for S-polarized and kp¼ ekz/qzþ qz/(ekz) for

P-polarized components with qz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emk20� k2?

q
; kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20� k2?

q
; k0 ¼ 2p=l and

k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. We neglect the back-reflection from the aperture. The spatial

structure of the field at the output of the system is then found by the backward
Fourier transformation. The inputfieldEs,p(kx, ky, 0) here is given by thefield after the
circular aperture in a perfectly-conducting infinitely-thin film positioned immedi-
ately before the slab. In the case of a realistic (for example metallic) film of finite
thickness, the diffraction will be more complicated due to various effects such as
excitation of surface plasmons. However, for realistic film parameters and wave-
lengths in near IR or visible, coupling to the plasmons will be efficient only near the
aperture. Thus, they will not significantly influence the field distribution after the
film. The solution of the diffraction problem of a beam through a circular aperture
with a diameter in the range of the wavelength [25], provides the diffracted field after
the aperture E(kx, ky, 0). The crucial point here is that in difference to the incoming
beam before the aperture, E(kx, ky, 0) contains propagating components as well as
evanescent components, the latter of which can be amplified by the slab with the
negative refraction index.
In Figure 20.2 (a) the surface I (red) represents the spatial transverse Fourier

distribution after the aperture for a x-polarized input beamwith parameters as given
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in the caption, where weak evanescent components at the level 10�2 can be seen
for k? 2.0k0. During the transmission through the slab the evanescent components
are strongly amplified. Though the thickness of the slab in this case is only 0.5l,
the amplification of the field for k?¼ 3k0 is around 104, which explains the
appearance of the �ring� of the amplified components around k?¼ 3.5k0. The
corresponding transverse spatial distribution of the energy density including
the longitudinal component with a strongly focused peak (superfocusing) is
illustrated by Figure 20.2(b). The FWHM of this peak is 0.15l/0.12l in the x/y
direction, respectively; the difference arises due to difference in diffraction and
transmission for the different vector components of the field. The dependence
of the output FWHM on the slab thickness is presented in Figure 20.2(c) by solid
(green) and open (magenta) points for e¼m¼�1�0.0001(iþ 1) and e¼ m¼
1�0.01(iþ 1), respectively. The deviations of e and m from the optimum value �1
limit the superfocusing (cf. Ref. [26]). The existence of an optimum slab thickness
[minima of curves in Figure 20.2(c)] is caused by the fact that the increasing
amplification of evanescent components with larger slab thickness is counteracted
by the decrease of the transmission coefficients due to the deviations from the
ideal value of e¼ m¼�1. For a higher level of deviations 10�2, the optimum FWHM
at the output are 0.23l/0.33l, which is still below the diffraction limit.
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Figure 20.2 Superfocusing by an NRM and an
aperture in the effective-medium theory. The
spatial spectrum |E(kx, ky)| is shown in (a) after
the aperture |E(kx, ky, 0)| (red, surface I) and after
the slab |E(kx, ky, L)| (green, surface II). The
spatial distribution of the energy density after the
slab is shown in (b) and the dependence of
the FWHM diameters along x (triangles) and

y (circles) directions in (c). The parameters
for (a), (b) are L¼ 0.4l and e¼m¼�1�0.0001
(iþ 1). In (c), e¼m¼�1�0.0001(iþ 1) and
e¼m¼�1�0.01(iþ 1) for solid (green) and
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20.2.2
Direct Numerical Solution of Maxwell Equations for Photonic Crystals

To explore the phenomenon of beam superfocusing in a real inhomogeneous NRM
system, we now study this effect in one transverse direction for a two-dimensional
(2D) photonic crystal. For certain design parameters and below the bandgap edge
strongly modulated photonic crystals behave as a material having an effective
negative refraction index [12]. Evanescent components are amplified in such
photonic crystals analogous to the effective medium model. Besides it was shown
that in the case of all-angle negative refraction [27] the amplification of evanescent
waves in PCs can also be achieved due to resonant coupling with bound photon
modes [18]. Here we will consider both superfocusing in a PC with an effective
negative refractive index as well as in regions with all-angle negative refraction.
We consider here the two-dimensional case, i.e. the input beam is focused only in
one transverse direction, with larger FWHM in the other transverse direction
(translation direction). The aperture and the structure of the photonic crystal are
invariant in respect to the translation direction, as well as the electromagnetic field.
Superfocusing in the translation direction is not considered in this scheme. Note
that the same 2D geometry is also considered in Sections 20.3.2 and 20.3.4. The 1D
aperture is considered infinitely thin and ideally-absorbing. The propagation of
the TE-polarized beam (electric field perpendicular to the translation direction)
through the 2D PC is described by the numerical solution of Maxwell equations,
found by the decomposition of the field into a large (107) number of plane waves,
including the reflected and transmitted ones outside the slab, as developed in
Ref. [28]. The periodic structure determines the coupling between all of these waves,
resulting in a large-order system of linear equations which is solved numerically
using standard algorithms. First we consider a rods-in-air structure with a periodic
arrangement of silicon rods (with e¼ 12.96þ 0.01i) with diameter 0.7awhere a is the
lattice constant, with interfaces parallel to the G�K direction. This PC possesses a
negative refractive index for frequencies around o¼ 0.56. . .0.6 · 2pc/a [12,29]; we
have chosen o¼ 0.56· 2pc/a with an effective refractive index close to �1. The
transfer function into the forward direction (0th Bragg order) is presented in
Figure 20.3 (a), and the amplitude of the Fourier components after the slab is pres-
ented by the solid (red) curve in Figure 20.3(b). As can be seen, evanescent
components with kx> k0 are strongly amplified, and play a crucial role in the
formation of the focused spot. The phase of the Fourier-transformed field [dashed
(green) curve in Figure 20.3(b)] shows large changes in the whole presented k-range,
however it only weakly varies inside the range with a large Fourier amplitude.
Therefore the superposition of all Fourier components is mainly constructive. The
spatial transverse field structure is presented in Figure 20.3(c) by the distribution of
the |Hz|

2 component of the field (relative to the input field). The field at the output is
weaker than at the input, because of the reflection at the slab interfaces caused by the
refractive index contrast. The FWHM is 0.25l in this case, however there exist a
modulated broader background, and inFigure 20.3(d) it is shown that the range of the
aperture diameters for superfocusing is very narrow.
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Now we study beam focusing by a 2D photonic crystal without definite effective
refractive index but within the range of so-called all-angle negative refraction [18].
We consider a photonic crystal made of �þ�-shaped air holes in a high-index
material. Such a PC made from silicon (e¼ 12) with geometric parameters as
given in Figure 20.5 (b) exhibits all-angle negative refraction near the frequency
0.27 · 2pc/a [18]. As can be seen in Figure 20.4(a), the evanescent components of
the field are also amplified in this system. In difference to the case presented in
Figure 20.3 now sharp peaks in the transfer function appear. These peaks influence
the spatial Fourier distribution of the field at the output as shown in Figure 20.4(b).
The phase presented by the dashed (green) line in Figure 20.4(b), shows a rather
irregular behavior, however the phases are nearly matched in the dominating
regions with large spectral amplitudes. Therefore the spatial distribution as
shown in Figure 20.4(c) shows a sharply focused spot with FWHM of 0.25l, and
only weak background radiation. The peak of |Hz(0)|

2 is approximately 4 times
higher than at the input. The dependence of beamFWHMat the output of the PCon
the aperture width is illustrated by Figure 20.4(d) and shows a well-established
minimum, a notable enhancement of the field, and superfocusing over a large
parameter range. It was shown in the previous studies (see e.g. [12] and [26]), that
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Figure 20.3 Superfocusing by a hexagonal
rods-in-air lattice PC with an effective negative
refraction index and an aperture. Transfer into
the 0th Bragg order is shown in (a), the spatial
spectrum (solid, red) and phase (dashed, green)
of the field Hz are given in (b). The spatial
distribution of the field is shown in (c), and the
dependence of the FWHM of the beam at the
output (solid, red) and the square of the

maximum field |Hz(0)|
2 (dashed, green) on the

aperture width in given in (d). The input beam
has a Gaussian shape with FWHM of 3.2l, the
photonic crystal slab consists of 4 layers of
circular rods with radius 0.35a with lattice
constant a. The frequency of the field is
0.57· 2pc/a, the dielectric permittivity of the
rods e¼ 12.96þ 0.01i. The aperture width in
cases (b) and (c) is 0.55l.
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efficient amplification of the evanescent components is possible only in a narrow
region of frequencies.We have observed a similar effect: even a small change of the
optical frequency by �0.5% results in approximately a twofold increase of the
FWHM and the disappearance of superfocusing. Nevertheless, our calculations
predict that optical beams with spectral width below 0.2% of the cetral frequency
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Figure 20.4 Superfocusing by a square air-holes
lattice PC with an all-angle negative refraction
and an aperture. Transfer into the 0th Bragg
order is shown in (a), the spatial spectrum (solid,
red) and phase (dashed, green) of the field Hz is
given in (b). The spatial distribution of the field is
shown in (c), and the dependence of the FWHM
of the beam at the output (solid, red) and the
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2 (dashed,

green) on the aperture width is given in (d). The
input beamhas aGaussian shapewith FWHMof
3.2l, the photonic crystal slab consists of 4 layers
of �þ�-shaped air holes with parameters as given
in Figure 20.5(b). The frequency of the field is
0.27· 2pc/a, the dielectric permittivity of the bulk
is e¼ 12þ 0.01i. The aperture width in cases (b)
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Figure 20.5 Distribution of the field of the beam (a) and the
structure of the unit cell of the photonic crystal for the same
systemas in Figure 20.4. The value of |Hz| is illustrated by shadows
of blue in (a), and the aperture is represented by green; the
reflected beam is omitted for the sake of clarity.
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can be focused below the diffraction limit using any of the setups considered in this
paper. In the case of pulsed beams, this corresponds to a shortest pulse duration of
about 2 ps.
To illustrate the process of superfocusing in more detail, we have calculated the

spatial structure of the field inside and behind the PC as presented in Figure 20.5 (a).
The input beam after passing the aperture (indicated by green) undergoes complex
redistribution in the photonic crystal, and is strongly focused below the diffraction
limit directly behind the PC. With further propagation, the FWHM of the beam
quickly increases. We see that the considered PCwith all-angle negative refraction is
better suited for superfocusing than the PCwith negative refractive index studied in
Figure 20.3.
To summarize this section, we have shown that it is possible to achieve focusing

of a light beam below the diffraction limit by using a combination of an aperture
and a slab with a medium exhibiting negative refraction caused by the creation
and the amplification of evanescent components of the field. Note that the fairly
restricted region for the parameters m and e in the effective medium model is
eliminated in real photonic crystals in parameter regions where the concept of
effective negative-index is valid and in the region of all-angle negative refraction.
Although the above analysis was done for a 2D photonic crystal, a 3D photonic
crystals with all-angle negative refraction has been already designed and studied in
Ref. [30] which allows superfocusing of light beams in both transverse directions
similar to Figure 20.2.

20.3
Focusing of Scanning Light Beams Below the Diffraction Limit Using a Saturable
Absorber and a Negative-Refraction Material

The aim of the present section is to show that a scanning light beam can be
focused below the diffraction limit without the control of moving near-field
elements using the combination of two main components: A light-controlled
saturable absorber (SA) which creates seed evanescent components from the
beam and a layer of negative-refraction material which amplifies the evanescent
waves. Focusing to spots with a FWHM in the range of 0.2–0.3l is predicted. The
scheme for the studied method is presented in Figure 20.1(e), (f), in which a thin
layer of a SA serves as the nonlinear layer NL and a negative-refraction material
(NRM). The transmission of the SA for intensities in the range of the saturation
intensity depends on the transverse coordinates, with larger transmission in the
center and increasing loss in radial direction. If the input beam spot at the SA is
already in the wavelength range, the action of the SA will lead to the creation
of weak seed evanescent waves as shown in Figure 20.1(f), similar to a circular
aperture since the intense beam creates the aperture-like transparency region by
itself. However, now the aperture action is controlled by the input power of the
scanning light beam and not by an aperture with fixed position [Figure 20.1(c)].
After the SA the evanescent components are significantly amplified by the layer of
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NRM which results to a subdiffraction spot after the layer, indicated by the red
point in Figure 20.1(e). Layers with semiconductors or semiconductor quantum
dots are appropriate examples for a SA.

20.3.1
Effective-Medium Approach

First we describe beam focusing by a plane slab of an NRM in the context of
effective medium theory. The propagation of a beam through a homogeneous slab
of a material with a negative refractive index was already described in Section 20.1
and given by Eq. 20.1. The action of a saturable absorber is due to light absorption
in bulk or confined semiconductors by inter-band transitions between the valence
and the conduction bands. Under intense radiation the increasing population of
the conduction band leads to the saturation of the absorption. In the case of
quantum dots the discrete levels due to confinement allows the description of
light-induced absorption in the frame of a two-level model. In bulk semiconduc-
tors interband levels and many-body aspects play a significant role, but the
experimental results for a fixed frequency can also be described by the simple
two-level model with the intensity-dependent absorption coefficient for the field
a(I)¼a0(1þ ib)/(1þ I/Is), where Is is the saturation intensity, a0 is the low-
intensity absorption coefficient, and b describes the modification of the phase
due to detuning of the light frequency from the transition frequency. Neglecting
diffraction and decay of the evanescent components, we derive the following
implicit expression for the intensity I(z) and the phase shift Df(z) after the slab
with thickness z:

IðzÞ� Ið0Þ
Is

þ ln
IðzÞ
Ið0Þ ¼ �2a0z; DfðzÞ ¼ b a0z� ½IðzÞ� Ið0Þ


2Is

 �
: ð20:2Þ

Typical values near the bandgap for bulk semiconductors or dense quantum dot
layers are in the range of a0 105 cm�1 and Is 105W/cm2. With these parameters
the required input intensities are in the range of106W/cm2, which is satisfactory in
practical applications. The amplitude of the evanescent components grows with
increasing a0z and I(0)/Is. To achieve sufficiently strong evanescent components,
both of these parameters should be of the order of unity, as will be shown further.
With the above parameters, a0z 1 is satisfied for z<l, therefore neglecting the
decay of evanescent waves in the SA is justified.
We consider the input beam as a modified Gaussian beam with a diameter

around l, with all evanescent components eliminated in the spatial spectrum
before the SA. In Figure 20.6 (a) the surface I (red) represents the spatial transverse
Fourier distribution after the SA for a x-polarized input beam with parameters as
given in the caption, where weak evanescent components at the level 10�2 can be
seen for k? 2.0k0. During the transmission through the slab of the NRM the
evanescent components are strongly amplified, by a factor of around 103 for
k?¼ 2k0 which explains the appearance of the amplified components around
k?¼ 2.5k0. The corresponding transverse spatial distribution of the energy density
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(including the longitudinal component of the field) with a strongly focused peak
is illustrated by Figure 20.6(b). The FWHM of this peak is 0.3l/0.2l in the
x/y direction, respectively; the difference is caused by different amplitudes of the
S- and P-polarized components of the field. Note that the obtained spot width is
much less than the width which is achieved due to the action of the SA only.
The latter is 0.9l, thus the introduction of the NRM is crucial in achieving a
subdiffraction spot. The dependence of the output FWHM on the slab thickness
is presented in Figure 20.6(c) by solid (green) and open (magenta) points for
e¼ m¼�1�0.0001(iþ 1) and e¼m¼�1�0.001(iþ 1), respectively. The deviations
of e and m from the optimum value�1 inhibit the amplification of components with
high k? [26] and limit the superfocusing. For the higher level of deviations
e¼ m¼�1�0.001(iþ 1), an output FWHM of 0.39l/0.23l is achieved, which is
still below the diffraction limit.
If the frequency of the beam is shifted from the resonance frequency, an intensity-

dependent phase shift arises, which enhances the evanescent component after the
SA. In Figure 20.6(d) this case is presented with b¼�1.5. The achieved spot size is
0.23l/0.16l, which is smaller than for the resonant case b¼ 0.
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Figure 20.6 Superfocusing described by the
effective-medium theory with an NRM and a
saturable absorber (SA). The spatial spectrum |E
(kx, ky)| is shown in (a) after the slab of the SA |E
(kx, ky, 0)| (red, surface I) and after the slab of
NRM |E(kx, ky, L)| (green, surface II). The
spatial distribution of the energy density after
the slab is shown in (b) and the dependence
of the FWHM diameters along x (triangles)
and y (circles) directions in (c). The SA

parameters are a0z¼ 2, b¼ 0 and I(0)/Is¼ 1.
The parameters for the NRM in (a), (b) are
L¼ 0.9l and e¼ m¼�1�0.0001(iþ 1).
In (c), e¼m¼�1�0.0001(iþ 1) and
e¼m¼�1�0.001(iþ 1) for solid (green) and
open (magenta) points, correspondingly. In (d),
all parameters are the same except b¼�1.5 and
L¼ 0.7l. Curves in (c) are guides for the eyes; the
input beam diameter is l.
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20.3.2
Direct Numerical Solution of Maxwell Equations for Photonic Crystals

Let us now consider a 2D photonic crystals as a real mediumwith negative refraction
in an appropriately chosen parameter range, which enables superfocusing of a beam
in one transverse direction. Since the effective medium theory provides only an
approximate description for this system, we now solve theMaxwell equations for the
2D spatially inhomogenous periodic structure as described in Section 20.2.2. The
field distribution after the layer of the saturable absorber obtained by the solution of
the Eq. (20.2), is decomposed into spatial Fourier components, which are multiplied
by the complex transmission coefficients of the photonic crystal slab.We consider the
parameter region with all-angle negative refraction of a hexagonal lattice of circular
holes in the material like GaAs with parameters as indicated in the caption of
Figure 20.7 for a photonic crystal structure presented in Figure 20.1(e). In Figure 20.7
(a), the transmission into the 0th Bragg order is presented in dependence on the
transverse wavenumber of the incoming wave, which shows amplification of
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Figure 20.7 Superfocusing by a hexagonal air-
hole lattice PC exhibiting all-angle negative
refraction and a SA. Transfer into the 0th Bragg
order is shown in (a), the spatial spectrum (solid,
red) and phase (dashed, green) of the fieldHz are
given in (b). The spatial distribution of the field is
shown in (c), Hin being the peak value of the
input field. The input beam has a FWHMof 1.0l,
the photonic crystal slab consists of 3 layers of
circular holes with radius 0.44a with lattice

constant a, with additional layers of hostmaterial
of thickness 0.42a above and below the layers.
The frequency of the input TE-polarized light is
0.26· 2pc/a, the dielectric permittivity of the
rods e¼ 12.5þ 0.01i. The parameters of the SA
in cases (b) and (c) are a0z¼ 3.0, I(0)/Is¼ 4.5
and b¼ 0. For b¼�1 and I(0)/Is¼ 4.2 and the
same other parameters, the spatial distribution
is shown by dashed green line in (c).
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evanescent waves for k?> 2p/l. The spectrum and phase at the output are shown in
Figure 20.7(b), indicating a significant contribution of the evanescent components as
well as an almost constant phase of the Fourier components with large amplitude.
The broad spatial spectrum and the constructive interference result in a focused spot
with a FWHM of 0.3l remarkably below the diffraction limit, as illustrated by
Figure 20.7(c). Similar as in the case of Figure 20.6, the SA alone does not lead to a
subdiffraction spot. In order to achieve superfocusing, the small-signal lossa0zhas to
be at least in the order of unity,which results in a decrease of the intensity after theSA.
As in the case of the homogeneous NRM presented in Figure 20.6, shifting the
frequency below the resonance introduces an additional intensity-dependent phase
shift and improves the results: as shown in Figure 20.7(c) by the dashed green
curves, for b¼�1 the strength of the evanescent components increases, and the
output spot has a lower FWHM of 0.26l. Due to the relatively strong absorption by
the SA before the photonic crystal, the intensity at the output of the system is
significantly lower than at the input. However, a higher output intensity can be
achieved by the optimization of the parameters such as changing the wavelength of
the input light from3.84a to 4a. The occurrence of strong peaks in the transmission
shown in Figure 20.8(a), compared to Figure 20.7(a) leads to a correspondingly
increasedmaximumof the spatial intensity distribution, as can be seen in 8(b), with
an output spot with FWHM of 0.23l. However, the spatial intensity distribution
shows side maxima in the wings and the spot quality is reduced. Although the
considered 2D photonic crystal allows focusing in only one direction, 3D photonic
crystals with negative refraction [30] should enable focusing below the diffraction
limit in both transverse directions.
In conclusion of this section, we have shown that superfocusing of scanning light

beams below the diffraction limit can be achieved without the necessity of sub-
wavelength spatial control of a near-field element. We propose for this aim a
combination of a saturable absorber and a layer of a negative-refraction medium,
which creates and amplifies evanescent component of the beam. The smallest spot is
in the range of l/4.

 0.001

 0.01

 0.1

1

 10

 100

 1000

0  0.5 1  1.5 2  2.5 3

|T
0 (k

)|

k (2π/λ)

(a)

0

 0.04

 0.08

 0.12

 0.16

 0.2

-2 -1.5 -1 -0.5 0  0.5 1  1.5 2

|H
(x

)|
2 /H

in
2

x/λ

(b)

Figure 20.8 Superfocusing by a SA and a hexagonal air-hole lattice
PC with the same parameters as in Figure 20.7, except for a
different frequency 0.25· 2pc/a and I(0)/Is¼ 6.0. Transfer into
the 0th Bragg order is shown in (a), and the spatial distribution of
the field is shown in (b).
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20.4
Subdiffraction Focusing of Scanning Beams by a Negative-Refraction Layer
Combined with a Nonlinear Kerr-Type Layer

As shown in Section 20.2 a beam with a fixed direction can be focused below the
diffraction limit by using an aperture combined with an NRM. For focusing of
scanning beams a fixed position of an aperture do not allow to focus the beam at an
arbitrary point. Therefore in Section 20.3 a saturable absorber was studied as a light-
controlled nonlinear element creating evanescent components from the beam.
However, to achieve a sufficient magnitude of seed evanescent components, strong
absorption was found to be necessary, leading to a relatively large loss with an
intensity in the focus at the level of 10�2 – 10�1 of the input intensity. In this section,
we theoretically study subdiffraction focusing of scanning light beams by the
combination of a Kerr-like nonlinear layer NL and a layer of NRM, as illustrated
in Figure 20.1(e), (f). A Kerr-like nonlinear layer generates evanescent components
due to a position-dependent nonlinear phase modulation which leads to transverse
spectral broadening, analogous to the time-dependent self-phase modulation induc-
ing the generation of new frequency components. In Figure 20.1(f), the creation of
the evanescent components Eevan by a Kerr medium serving as nonlinear layer NL
and its amplification by an NRM is schematically shown. The phases of both
propagating and evanescent components are almost matched for optimized para-
meters, which allows constructive interference of all components and the formation
of a subwavelength spot. Subdiffraction focusing is described in Section 20.4.1 in the
context of the effective-medium description for quasi-homogeneous NRMs, such as
metamaterials, and in 2.4.2 by direct numerical solution of Maxwell equations in a
periodic medium for an NRM implemented by a photonic crystal.

20.4.1
Effective-Medium Approach

The modification of the refractive index by intense light is one of the fundamental
effects in nonlinear optics. In many cases such modification is achieved due to the
electronic Kerr effect, but there exist a number of other processes which can also lead
to a high nonlinear refractive index. Although those processes with the highest
nonlinear coefficients have typically a large response time, ultrafast operation is not a
critical requirement for the purpose studied here. For the description of beam prop-
agation through a nonlinear layer including the generation of evanescent compo-
nents the paraxial approximation cannot be used.An exact treatment of this process is
based on the general wave equation written for a monochromatic field in the form

q2Eðkx; ky; zÞ
qz2

¼ k2zEðkx; ky; zÞþ k20PNLðkx; ky; zÞ; ð20:3Þ

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20k

2
0 � k2x � k2y

q
, k0¼ o0/c, n0 is the refractive index of the nonlinear

layer, o0 is the frequency of the field, PNL (kx, ky, z) denotes the Fourier transform of
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the nonlinear polarization PNL (x, y, z)¼ e0w3E (x, y, z)
3, c3 ¼ ð4=3Þce0n20n2 is the

nonlinear susceptibility. In the perturbation-theory approach the solution can be
found in the form

Eðkx; ky; zÞ ¼ Eðkx; ky; 0Þ expðikzzÞ� k20PNLðkx; ky; 0Þ
2kz0

� exp ðin0k0zÞ� exp ðikzzÞ
n0k0 � kz

þ exp ðin0k0zÞ� exp ð�ikzzþ ikzLþ in0k0LÞ
n0k0 þ kz

2
4

3
5

ð20:4Þ
for z< Lwhere L is the thickness of the nonlinear layer. The first term in the square
brackets corresponds to the forward-propagating waves, and the second to the
backward-propagating waves which is zero for z> L. It can be shown that the
forward-propagating part satisfies a simpler first-order equation:

qEðkx; ky; zÞ
qz

¼ ikzEðkx; ky; zÞþ i
k20
2kz

PNLðkx; ky; zÞ: ð20:5Þ

Inside the nonlinear layer the nonlinear polarization is also influenced by the
weak backward waves, but this effect is negligible for thin layers with a small
relative modification of the refractive index. Eq. (20.6) is valid also without the
perturbation theory, and can be derived using quite general assumptions as shown in
Ref. [31]. This equation does not rely on the paraxial approximation and, as an
additional feature, correctly describes the evolution of the components
with k2x þ k2y > n20k

2
0. Note that the nonlinear term has a divergence at kz¼ 0 in the

Fourier domain, but after Fourier transform to the space the field E(x, y, z) remains
finite. Besides, Fourier componentswith kz¼ 0 are veryweak anddonot contribute to
the formation of the spot in our calculation. Equation (20.5) was solved by the split-
step Fourier method. Equation (20.5) is written in scalar form. In our case, this is
justified, since the input beam is linearly polarized and relatively wide. The generated
evanescent components are weak for the considered layer thicknesses, and their
vectorial nature does not influence the nonlinear polarization.
For a homogeneous or quasi-homogeneous medium with negative refractive index

theeffectivemediumapproachcanbeused todescribe thepropagationof thebeamand
the amplification of evanescent components in an NRM. Various negative-refraction
metamaterialsbasedonstructureswithascalemuchsmallerthanthewavelengthcanbe
described by this method. In this approach the propagation of a beam through a
homogeneous slab of an NRM with thickness L and effective parameters e and m is
described by the transfer functions Ts,p(kx, ky) given in Eq. (20.1) in Section 20.2.1.
In Figure 20.9 superfocusing of a light beam by the combination of a Kerr-type

nonlinear layer and an NRM is illustrated, with parameters given in the caption. We
describe the profile of the field at the input surface of the nonlinear layer as modified
Gaussian with evanescent components set to zero. In Figure 20.9(a) the spatial
transverse Fourier distribution E(kx, ky) after the nonlinear layer is shown by the red
surface, and weak evanescent components at a level around 10�3 relative to the
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maximum can be seen for k?> 2p/l. The transverse Fourier distribution after the
slab of the NRM is shown in green, with clearly visible large amplification of
evanescent components. The corresponding transverse spatial distribution is pre-
sented in Figure 20.9(b). The minimum beam diameter is 0.22l/0.15l in the x/y
direction, respectively.
Note that for a nonlinear layer with a refractive index n0 around unity, the

evanescent components are lost over the distance l/2p, and therefore the effective
length over which they are generated is of the same order. Thatmeans that to achieve
significant (of about p/2) phase modification necessary to generate seed evanescent
components of sufficient intensity, over such a short distance, the maximum
nonlinear contribution to the refractive index should be aroundunity. Sincematerials
with such high nonlinear modification of the refractive index are not available, we
cannot use a nonlinear film with n0 1 and thickness around l/2p as the nonlinear
layer. Instead, we considered in Figure 20.9 a nonlinear layer with relatively high
linear refractive index n0¼ 3.0 and thickness of about l, which allows to preserve and

accumulate the evanescent components with k0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
< n0k0. In this case the

effective length of the nonlinear layer is limited only by the gradual increase of the
spot size due to diffraction, which occurs after a propagation distance of several l,
and a relative nonlinear modification of the refractive index in the order of 0.03
is sufficient. There exist a large number of natural and artificial materials with
strong optical nonlinearities. To give a few examples, the nonlinear refractive
index of different semiconductors can have n2 values in the order of 10�12W/cm2.
Due to near-resonant processes in the vicinity of the bandgap, values in the
range of 10�8W/cm2 can be achieved, for example in ZnSe in the wavelength
range from 440 to 460 nm [32]. Metal-dielectric multilayer structures can yield a
complex n2 in the order of |n2|¼ 7· 10�8W/cm2 [33]. Extremely high nonlinearities
n2 100–103W/cm2 can be achieved in thin dye-doped liquid-crystal layers [34].
One has to take into account that for slow processes with a large response time

I

II

(a) (b)

-2 0 2
kx (2π/λ)

-2
0

2

ky (2π/λ)

10
102

10-1
1

|E(kx,ky)|

-0.5
0

 0.5
x/λ

-0.5
0

 0.5

y/λ

|E(x,y,L)|2

Figure 20.9 Superfocusing by an NRM and a
Kerr-type medium in the effective-medium
theory. The spatial spectrum |E(kx, ky)| is shown
in (a) after the nonlinear layer (red, surface I) and
after the NRM layer (green, surface II). The
spatial distribution of the energy density after the
slab is shown in (b). Themaximum change of the

refractive index is Dnmax
Kerr=n0 ¼ n2Imax=

n0 ¼ 0:033, the linear refractive index of the Kerr
medium is n0¼ 3.0, the thickness of the
nonlinear layer is Lkerr¼ 2l. The thickness of the
NRM layer is LNRM¼ 0.6l, FWHMin¼ 1.5l and
e¼m¼�1�0.0001(iþ 1).
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Tres the effective nonlinear refractive index is given by n2t/Tres where t is the
pulse duration. Depending on the chosen nonlinear material, the parameter
Dnmax

Kerr=n0 ¼ n2I=n0 ¼ 0:03 which is assumed in Figure 20.9 can be achieved with
intensities in the order of 107–1012W/cm2.
The nonlinear modification of the refractive index which was used in the above

example corresponds to rather high value of Dnmax
Kerr=n0 ¼ 3:3%. It is, fortunately, not

an absolute prerequisite of superfocusing, and significantly lower values can be used,
albeit with tradeoff of the spot size. In Figure 20.10 the superfocusing is illustrated for
a one order of magnitude lower nonlinear modification of the refractive index
Dnmax

Kerr=n0 ¼ 3� 10�3, which can be achieved even by a fast Kerr nonlinearity.
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Figure 20.10 Superfocusing by an NRM and a Kerr-type medium
in effective-medium theory, for a weaker nonlinearity. Denotations
and parameters are the same as in Figure 20.9, except for
Dnmax

Kerr=n0 ¼ n2Imax=n0 ¼ 0:003, LNRM¼ 1.3l, and
FWHMin¼ 1.5l.
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The transverse spectrum is narrower than in Figure 20.9 due to a lower amplitude of
the seed evanescent components, and the output spot is larger with a FWHM of
0.38l/0.25l, but still exhibits focusing below the diffraction limit. The role of
the deviations de¼ eþ 1 and dm¼mþ 1 from the ideal �1 values is described in
Figure 20.11, where the FWHM spot area is plotted against the level of different
deviations, as indicated in the caption.
It can be seen that themost sensitive parameter is the imaginary part of e andm (red

solid curve) corresponding to loss, which thwarts superfocusing even faster than the
simultaneous deviations of all parameters from the ideal case (black dotted curve).
The reason is that although the spectrum is broader in the case when only loss is
present, the phases of the additional spectral components can lead to destructive
interference, yielding a larger spot. The dependence of the superfocusing on the Re
(de) is – somewhat surprisingly – the least sensitive. As can be seen, a very low level of
deviations is required to achieve superfocusing, similar to subdiffraction imag-
ing [26], however, the requirements are much less stringent in the case of photonic
crystals considered in the next section.

20.4.2
Direct Numerical Solution of Maxwell Equations for Photonic Crystals

To quantitatively describe superfocusing by the combination of a nonlinear layer and a
photoniccrystals asan inhomogeneousnegative-refractionmaterial,wenowstudya2D
photoniccrystalwithgeometricparametersappropriate for anexperimental realization.
We consider the parameter region with all-angle negative refraction of a hexagonal

lattice of circular holes in amaterial like Siwith parameters and geometry as indicated
in Figure 20.12 (a). In Figure 20.12(b), the transmission into the 0th Bragg order is
presented in dependence on the transverse wavenumber of the incoming wave,
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Figure 20.12 Photonic crystal structure (a) and transmission into
0th Bragg order as a function of the transversewavevector (b). The
considered design is a silicon substrate having 5 layers of
holes as shown in (a) with interfaces parallel to G�K direction.
Parameters of the structure are e¼ 12.5þ 0.01i at l¼ 1000 nm,
a¼ 260 nm, d¼ 229 nm, b¼ 110 nm; a, b, d andl can be scaled by
a common factor.
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which shows several peaks for evanescent components with k?> 2p/l with a
transmission up to 102.
In Figure 20.13, superfocusing by the combination of a nonlinear layer and a

photonic crystal slab is illustrated by the calculated transverse spectrum (a) and the
spatial distribution (b), with parameters of the photonic crystal as given in Fig-
ure 20.12. The amplification of the evanescent components leads to the formation of a
wide transverse spectrumwith a phase which variesmostly in the range from0 to p/3
over the whole range where the spectrum has significant magnitudes. This implies
the formation of a localized spot in space, and indeed as presented in Figure 20.13(b)
the FWHM of the spot is 0.18l, significantly below the diffraction limit. The seed
evanescent components are createdmostly at the center of the input beam and are in
phase with the input beam for a Kerr-like nonlinear layer. Therefore the phase-
matching at the output dependsmainly on the phase of the transmission coefficient,
which can bemade almost constant by optimizing the parameters of the system. The
peak intensity is approximately two times higher that the input intensity. In
comparison, superfocusing by the combination of a saturable absorber and a
photonic crystal with negative refraction yields a relative intensity of the focused
spot in the range of 10�2–10�1, and somewhat larger spot sizes (see Section 20.3.2).
On the other hand, the required intensities for superfocusing are in that case lower,
and the transmission in Section 20.3.2 is still significantly higher than that obtained
using a tapered fiber as near-field element.

20.5
Conclusion

We have predicted that superfocusing of beams below the diffraction limit is possible
using the combination of an optical element which generates seed evanescent
components from the beam, and a layer with negative refraction which amplifies
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Figure 20.13 Superfocusing by a Kerr-type
mediumand a hexagonal air-holes lattice PCwith
all-angle negative refraction. The transverse
spectrum (solid, red) and the phase (dashed,
green) of the field Hz is given in (a), and the
spatial distribution of the field is shown in (b).

The input beam has a Gaussian shape with a
FWHMof 1.0l. The maximum nonlinear change
of the refractive index is Dnmax

Kerr=n0 ¼ 0:066, the
linear refractive index of the Kerr medium is
n0¼ 3.0, the thickness of the nonlinear layer is
Lkerr¼ 1.9l.
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them. For focusing of a non-moving beam a wavelength-scale aperture can be used for
the creation of seed evanescent components. For superfocusing of scanning beams a
light-controlled saturable absorber or anonlinearmaterialwith aKerr-typenonlinearity
enables focusing of beams to spots below the diffraction limit. This method do not
require spatial near-field control of amoving near-field element and allows an arbitrary
position of the focused spot of scanning beams due to the action of the light-controlled
nonlinear layer. The creation and amplification of evanescent compnents by these two
elements allow the formation of a 0.18l-wide focused spot, withmatched phases of the
transverse spectral components implying constructive interference, and an intensity
up to two times larger than the input intensity. Superfocusing is demonstrated both in
the effective-medium theory for a metamaterial-based NMR and for photonic crystals
with realistic parameters. In comparison with an arrangement using the combination
of a saturable absorber for the creation of seed evanescent components and an NRM,
the focused spot intensity for a Kerr-type nonlinear layer is more than one order of
magnitude higher, but the required input intensity is also higher.
Although the results of our study using the effective medium theory, and the

numerical calculation for an photonic crystal predict similar results concerning the
spot size and the optimum geometrical parameters, there exist an important
difference: the high sensitivity of superfocusing on the deviations of e and m
from �1 in the effective medium theory does not arise for photonic crystals and
superfocusing is even possible in the range of so-called all-angle negative refraction
where an effective index cannot bedefined. Thephysicalmechanismhere is thatwide
transmission peaks for evanescent components due to resonances with bound
photon modes yield a sufficient amplification of the evanescent components which
allow superfocusing. This means that not the negative index is the main physical
requirement for the predicted effect, but the existence of wide transmission peaks
much larger than unity for evanescent components.
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21
Negative Refraction in 2D Photonic Crystal Super-Lattice:
Towards Devices in the IR and Visible Ranges
Y. Neve-Oz, M. Golosovsky, A. Frenkel, and D. Davidov

21.1
Introduction

Negative Refraction (NR) and left-handed metamaterials are of high interest today,
particularly, for their ability to focus electromagnetic waves using flat lenses [1–8].
There is extensive research on negative refraction and focusing in themicrowave and
mm-wave ranges but only relatively few studies onmetamaterial devices in the IR and
in the visible ranges. To our best knowledge, no clear evidence for focusing using flat
lenses in this higher frequency range is available today.
Left-handed metamaterials could be fabricated using two main routes: (i) periodic

arrays of lumped elements or split-ring resonators; (ii) �conventional� photonic band-
gap materials. In the former approach the real part of the permeability, m0, and
the permittivity, e0, for each element in the array are negative leading to negative
refractive index,n. In the latter approach thecomplicateddispersionrelation results in
the negative refractive index and the left-handed properties which become evident by
plotting �equal frequency surfaces and contours� [9–18]. According to the present
knowledge, the second approach is better suited for devices in the IR and the
visible range although losses may be a major difficulty here. Insertion loss presents
a difficulty even in the microwave range. For example, microwave transmission
experiments on �conventional� metallic two-dimensional (2D) photonic crystals and
for frequencies in the close vicinity of the band-gap edge show that negative refraction
is associated with significant losses [9]. There are also very few reports on omni-
directional negative refraction using photonic crystals; an essential requirement for
far-field focusing.
Recently, our group in Jerusalem [13,14] have suggested a third approach to achieve

negative refraction, namely, (iii) 2D-photonic crystals superlattice. The structural
modulation in the superlattice results in a transmission subband at themiddle of the
stopband. This subband is characterized by negligible loss and negative refraction.
Indeed, Saado et al. [14] have used 2D superlattice based on the array of dielectric rods
with two different diameters but with very high dielectric constant (e 90) and in
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their microwave experiments demonstrated negative refraction and high transmit-
tivity. However, materials with high dielectric constant are not feasible in the optical
and the infrared ranges. Furthemore, the transmission band demonstrated by Saado
et al. was rather narrow (2% of the stopband width) and not omnidirectional. The
purpose of the present paper is to extend the ideas presented in Ref. [13] and to
demonstrate (mainly by simulations) photonic crystal superlattice made of the
dielectric rods with low dielectric constant, such that the results will be directly
scalable to the optical range. We demonstrate here that such PC superlattice made of
low-e dielectric rods may exhibit: (a) negative refraction for frequencies in the
transmission subband (b) high transmitivity; and (c) large bandwidth (15% of the
stopband bandwidth).

21.2
Design

We consider two-dimensional arrays based on dielectric rods with two different
diameters. For simplicity, we fix the ratio of diameters, d1/d2¼ 2, and the dielectric
constant, e¼ 4, and consider periodic arrays with different unit cell that can be
constructed from such rods. Figure 21.1 shows two such arrays where the large rods

Figure 21.1 Design of the two-dimensional (2D)
photonic crystal superlattice based on two types
of dielectric rods with the dielectric constant
e¼ 4 and with the diameters: d1¼ 2.5mm
and d2¼ 1.25mm. The large rods form a
hexagonal lattice whereas the distance
between their centers is a¼ 5.4mm. (a) The

small rods form a hexagonal sublattice and the
ratio of the numbers of the large and small rods is
2:1. (b) The small rods form a tetragonal
sublattice and the ratio of the numbers of the
large and small rods is 3 : 1. Configuration (a)
with the high-e rods has been analyzed
previously [13,14].
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form a hexagonal lattice while the small rods form either (a) hexagonal lattice; or
(b) tetragonal lattice.
In our previous studies we analyzed the configuration (b) whereas dielectric

constants of the individual rods were either e 90 [14] or e¼ 12.9 [13]. We found
narrow transmission subband (bandwidth 1.5–2%) inside the stopband and negative
refraction. Our search for wider bandwidth resulted in configuration (a) and other
configurations, to be presented elsewhere.
Using ANSOFT-HFSS software we calculate the transmittivity of this superlattice

with non-primitive unit cell (Figure 21.2a and b) for two directions G–K and G–M.
We compare these results with the transmittivity of the conventional array with a
primitive unit cell consisting only of the large rods with e¼ 4.
Clearly, transmittivity of the conventional PC along the G–K direction demon-

strates a wide stopband between 23.5GHz and 32GHz (Figure 21.2a; dashed blue
line). The stopband edges of the superlattice PC are almost the same (red solid
lines in Figure 21.2a), but there appears a new feature– a transmission
subband between 24GHz and 27.5GHz (blue hatched area). A similar behavior
is observed for the G–M direction, although due to structural modulation the low-
frequency stopband edge is shifted down from 22GHz to 17GHz. The transmis-
sion subband (20–24GHz) inside a photonic stopband is clearly visible here as
well. The insertion loss is very low (few db). Note also that the width of the

Figure 21.2 Computer simulation of the
transmission through the superlattice shown in
Figure 21.1a along the (a) G–K and the (b) G–M
directions. The corresponding structures are
shown in the inset of Figure 21.2a. The
transmission subband inside the stopband is
shown by blue hatched area. For the G–K

direction the transmission band is between
24GHz and 27.5GHz. The dashed blue line
shows transmission through a conventional 2D
photonic crystal where all rods have the same
dielectric constant and the same (large)
diameter.
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transmission band is of the order of 15% of the total stopband, much wider than
that for the 2D structures reported previously [13,14].

21.3
Simulations, Results and Discussion

21.3.1
Wave Transmission Through the Superlattice Slab: Evidence for Negative Phase Velocity

For a �meta-material� to be Left-Handed (LH), the group velocity, ng, and the phase
velocity, np, should be in opposite directions [8,9]. We demonstrate this by computer
simulations of wave transmission through our PC superlattice slab. Figure 21.3
shows the magnitude and the phase of the electric field distribution before, inside
and after the PC superlattice slab for the 25GHz wave propagating along the G–K
direction. Figure 21.3a shows that the electric field is concentrated mainly on the
small rods (see the dashed vertical lines).
To understand phase propagation we consider a hypothetical uniform material

with n¼�0.4 (Figure 21.3c). The phase propagation in this material is marked in a
sequence of colors.Outside this material the phase propagates from left to right and

Figure 21.3 (a) Magnitude and (b) phase of the electric
field distribution for the 25.2GHz wave propagating along the
G–K direction of the superlattice shown in Figure 21.1. (c) Electric
field phase for the wave propagating inside the hypothetical
uniform material with a negative refraction index n¼�0.4.
(See text for details).
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the order of colors is red, yellow, green, blue. This corresponds to the positive phase
velocity. Inside this material the order of colors is reversed, namely, blue, green,
yellow and red, indicating that the phase propagates from right to left, as expected for
the material with the negative refraction index. We observe a very similar reversed
order of colors inside our superlattice (Figure 21.3b). Note that we consider the phase
only in the regions where electric field is maximized, i.e. along the dashed lines
connecting the small rods.
The intense electric field concentration on the small rods and the reverse direction

of phase propagation can be regarded as a propagating coupled-cavity mode [19,20].
The phase reversal inside the superlattice PC slab suggests negative phase velocity.
The phase velocity is defined as np¼o/k and thus it has the same direction as the
wave-vector, k. Note however, that the radiation is propagating from left to right (see
arrows), suggesting that the group velocity points in this direction and is �positive�.
Hence, the group velocity and the phase velocity are in opposite directions, that
makes this superlattice a Left-Handed Material.

21.3.2
Refraction Through a Superlattice Prism

Negative refraction can be also demonstrated by considering wave propagation
through a prism made of our superlattice. Figure 21.4a shows our simulations for
the phase of the 25GHz wave refracted by the prism. The incident plane wave enters

Figure 21.4 (a) Phase of the 25GHz wave
refraction through a superlattice prism. The
phase is color coded. The direction of the
beam propagation is orthogonal to the phase
front. The incoming beam is shown by the
arrows at the top of the prism. The refracted
beam is shown by the arrows at the broad

side of the prism. The dashed line shows the
normal to the prism surface. Note the negatively
refracted wave (outgoing arrows). (b) Negative
refraction by a homogenous prism made of a
uniform material with the negative refraction
index, n¼�0.4.
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from the top of the prism, propagates there and exits through the broad face of the
prism. The direction of the wave is orthogonal to the phase front. Figure 21.4a shows
that the outgoing wave is negatively refracted (it makes a �negative angle� with a
normal to the output face of the prism).
For comparison, Figure 21.4b shows refraction by a hypothetic uniform medium

with the negative refraction index, n¼�0.4. As clearly seen, the outgoing refracted
wave propagates in the same direction as the outgoing wave refracted through the
superlattice prism.
Figure 21.5 shows the far-field radiation pattern upon refraction through the prism

shown inFigure 21.4. The calculationswere performed at frequencies: 24–27GHzall
in the transmission subband. It is seen that lower frequencies are deflected stronger
as compared to higher frequencies. The magnitude of the refracted wave (the length
of the lobe) decreases towards the subband edges and it is the highest at the center of
the transmission subband where it is comparable to the magnitude of the incident

Figure 21.5 Far-field radiation pattern of a plane
wave refracted through a superlattice prism for
the frequencies corresponding to the
transmission subband. The refracted beams
form narrow lobes. The lobes with themaximum
intensity correspond to the frequencies at the
center of the transmission subband. The

refracted beams direction and intensity strongly
depend on the frequency. The intensity of the
refracted beam is rather high (80–90%) as
compared to that of the incident wave. The
dashed line shows the normal to the prism
surface.
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wave (the lobe indicated as �free space�). This demonstrates that for frequencies in
the transmission subband, the refracted wave exhibits minimal losses. We also
simulated the refraction of a planewave at a frequency outside the transmission band
and we found positive refraction (see Ref. [14]).
We consider the angle of the refracted beam in Figure 21.5 and the Snell�s law, and

calculated the refraction index, neff, for several frequencies in the transmission band
(Figure 21.6). It is negative and its magnitude varies from n¼�0.7 at the lower
subband edge to n¼ 0 at the upper subband edge.

21.3.3
Determination of the Refractive Indices Using the Equal Frequency Contours

Equal frequency contours provide a tool for graphical calculation of the direction of
the refracted waves and thus allow independent estimate of the refraction index.
Figure 21.7a shows the equal frequency contours (ky versus kx in k-space) for free
space (concentric circles–left panel) and for the superlattice (contours inside the
hexagon–right panel). Note, that the gradient of the equal frequency surface points
outwards in the former case and points inwards in the latter case. In Figure 21.8 we
combine the equal frequency contours for the free space and for the superlattice, to
show graphically the 25GHz wave refraction through the superlattice prism.
The incident k-vector (black arrow) and the incident group velocity (blue arrow) are

pointing down (Figure 21.8). The k-vector, say for the 25GHz frequency, begins at
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Figure 21.6 Effective refraction index, neff, as a function of
frequency for the frequencies inside the transmission subband.
Blue circles indicate neff derived from the far-field radiation pattern
of the superlattice prism. Red squares indicate neff derived from
the equal frequency contours of the infinite superlattice. At the
lowest frequencies neff is �0.6 and at highest frequencies it
approaches neff¼ 0.
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the axis origin and ends at the equal frequency contour of 25GHz in the free
space. The group velocity vector, ng¼ gradk (o) (blue arrow), begins where the k-
vector ends (because they refer to the same point in k-space). The group velocity is
orthogonal to the equal frequency contour. The free space group velocity, vg, points in

Figure 21.7 (a) Equal frequency contours in the free space
(concentric circles in different colors) corresponding to different
frequencies in the transmission band from 23GHz to 27GHz
(marked on the contours). (b) Equal frequency contours in the
superlattice prism (hexagonally shaped contours) for the same
frequencies, shown in different colors.

Figure 21.8 Refraction of a plane 25GHz wave through a
superlattice prism. The equal frequency contour presentation.
Inset shows the refraction through the prism. See text for details.
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the same direction as the k-vector while the superlattice group velocity at 25GHz
points �up-hill� (the gradient, gradk (o), points in the direction of the steepest slope).
The k-vector in the superlattice begins at the axis origin and ends where the group
velocity vector begins. Note that the group velocity vector and the k-vector are in the
opposite directions, as expected for the left-handed material.
The dashed line is a normal to the output prism surface and it crosses the equal

frequency contour of 25GHz at the point where the k-vector ends. The k-vector
component parallel to the prism surface (shown by a dashed line) is continuous
everywhere. The outgoing k-vector ends at the equal frequency contour of
25GHz in free space. The outgoing group velocity in free space points in the
same direction as the k-vector and its magnitude is the same as for the incident
wave. The refraction angle is the angle between the outgoing group velocity and
the normal to the prism surface. This angle, together with the Snell�s law, yields
refraction index.
In Figure 21.6we plotted the refractive index values for the different frequencies in

the transmission subband as found from the analysis based on the equal frequency
contours. The results agree quite well with the simulations above.

21.4
Conclusions and Future Directions

In this work we report a 2D superlattice made of dielectric rods with two different
diameters but with relatively low dielectric constant e¼ 4. The work is based on
computer simulations. However, our recent experimental studies for the microwave
range using the same concept but using rods with high dielectric constant [13]
indicate that experiment and simulations lead practically to the same results. Here
the appearance of transmission subband inside the stopband; for the G–K direction
the stop-band is similar to that of a PC made of the large diameter rods. In the
transmission-band frequency range we achieve Negative Refraction together with
high to full transmission in the wide frequency range (15% of the total stopband
width) and along different directions in the k-space. The phase of the electric field
reverses its direction inside the superlattice. These two phenomena indicate negative
phase velocity and a demonstration of Left HandedMaterial. We show also refraction
by a 60� prism made of the superlattice. This prism deflects the radiation in the
direction that corresponds to negative refraction index between n¼�0.1 to n¼�0.6
for frequencies in the transmission band. These results are consistent with analysis
using equal frequency contours. Observation of an efficient far-field focusing is
the next step in our studies but this requires omni-directional refraction, which can
be achieved by introducing some disorder (see Ref. [14]) and/or quasicrystalline
structure.
We believe that the 2D superlattice presented heremay have significant advantage

with respect to other structures. Our work, we believe, is a step towards the
observation of negative refraction and focusing at higher frequencies, particularly
in the visible range. However, in the optical and IR ranges it is easier to fabricate
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arrays of holes in a dielectric substrate rather than arrays of rods. Simulations in this
direction are in progress.
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22
Negative Permeability around 630 nm in Nanofabricated
Vertical Meander Metamaterials
Heinz Schweizer, Liwei Fu, Hedwig Gr€abeldinger, Hongcang Guo, Na Liu,
Stefan Kaiser, and Harald Giessen

22.1
Introduction

Dielectric metallic metamaterials [1–4] have been extensively studied to achieve
material parameters of negative permittivity e and permeability m [5,6]. The advan-
tages using materials with negative e and m were first pointed out in detail by
Veselago [7].He found that simultaneous negative e andm in suchmaterials results in
a negative refractive index and in backward wave propagation. This property justifies
the name lefthanded (LH) materials or synonymously negative index materials
(NIM). Some interesting optical imaging properties of NIM were already indicated
by Veselago and later theoretically proven by Pendry [8]. The use ofmetamaterials for
various technical applications is becoming increasingly interesting. For instance, a
compact subwavelength thin cavity resonator can be realized by partial filling of the
cavity with NIMs [9]. Implementation of NIMs in antenna gives the possibility of
forward, broadside, or backward radiation designs [10]. Also there is a possibility for
electronically scanned antenna beams [10]. Controlling the visibility of an object with
respect to the electromagnetic transmission or reflection (cloaking) is one of the
newest ideas [11]. With respect to fundamental physics, NIMs would be interesting
for controlling the optical emission in atoms and molecules by electrical vacuum
forces [12,13].
By using electrical engineering techniques for metamaterials, Smith [14] and

Shelby [15] demonstrated first negative refraction in the GHz-range on the base of
split-ring resonators (SRR) [5]. In their approach, the SRR structure produces the
negative permeability, and a diluted wire grating produces the negative
permittivity [5].
A major problem of resonant-structure based metamaterials is the principally

restricted bandwidth of the negative refractive index effects. The reasons are outlined
below. To overcome such a bandwidth restriction, several authors have proposed
metamaterial structures on the basis of transmission line (TL) theory [10,16]. The
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idea of backward waves in TL theory dates back to the 1950�s [1]. At that time, no
ample application was found for backward waves due to their strong dispersion,
which is normally not desired in a TL. The abovementioned groups [10,16] solved the
problem of the structural transfer from a transmission line architecture with
longitudinal capacitance and shunt inductance to metamaterials. They fabricated
1D [10] and 2D [10,16] structures to obtain a material response with simultaneous
negative e and m.
In this contribution we combine the GHz TL approach for LH materials with the

advantages of equivalent circuit analysis [17] of opticalmetamaterial structures [18] to
obtain negative permittivity and negative permeability in the optical frequency range.
From both the TL approach and Pendry�s proposal [5], one finds that a negative e can
be achievedwith ease. The plasmonic behavior ofmetals gives a dispersion relation of
e which has negative values below the plasma frequency. This frequency can be
moved into the visible spectral range or even further into the GHz-range by small
filling factors of metallic wires in a metamaterial (wire grating), which behave like a
diluted metal [5] or an inductive impedance in the language of TL equivalent
circuits [18].
The realization of a negative m on the other hand is not easy.When trying to realize

structures in the optical frequency range using the TL model for broadband LH
materials, indications from Marcuvitz [17] equivalent circuit analysis of waveguide
obstacles can be helpful. It is found that a narrowed conductive path along the
propagation direction of an electromagnetic wave in a waveguide results in a
longitudinal capacitance, while a lateral conductive path results in a shunt induc-
tance. Based on this principle, we design a novel structure for negative m using the TL
analysis method [19].
We proposemetallicmeander strip and plate structures on pre-patterned dielectric

substrates as 3D sublayers for realizing the longitudinal capacitance. In such
structures, there are two degrees of freedom for the design. One is the conductive
path along k, and the other is perpendicular to k. The path along k contributes to series
impedanceZ, and the other one to shunt admittanceY. The path along k, or the depth
of the pattern can be varied up to 200 nm or even beyond, which is an appreciable
parameter variation for a longitudinal capacitance.
In our theoretical analysis, we combine numerical simulations of a Maxwell

equation solver (CSTMicrowave Studio) with the TL analysis. Numerical simulations
yield scattering parameters Sij, which are used for retrieval [20–22] of the effective
material parameters e and m. However, these parameters do not give specific
information about the relevant equivalent circuit. Therefore it is hard to get a direct
idea for designing or optimizing a structure solely from the scattering parameters.
On the other hand, TL analysis provides the possibility tomap theMaxwell equations
to circuit elements parallel and perpendicular to the light propagation vector k. From
this TL analysis, a direct and helpful relation (see Eq. (22.8) below) between m andYor
between e and Z can be obtained, and insight into the principal properties of the
metamaterial structure can be acquired. An approach based on resonators (paired
wire structures) is presented in [23,24] and appears also as a possible candidate to
realize an optical magnetic response.
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22.2
Theoretical Approach

22.2.1
Transmission Line Analysis

Mapping the longitudinal and transversal E- and H-fields onto their corresponding
voltage and current modes, respectively, yields the transmission line equations of a
metamaterial [10,16,17]. This enables a description of a metamaterial by an imped-
ance matrix A¼A(Z, Y), where Z and Y are the series impedance and shunt
admittance, respectively, when the unit cell of the material under investigation is
much smaller than the operation wavelength. Thematrix of the wholematerial is the
matrix product of the single cells, constructed according to the standard rules of TL
circuit analysis [1,25] (Eq. (22.1)).

A ¼ 1 þ ZY Z
Y 1

� �
¼ A11 A12

A21 A22

� �
: ð22:1Þ

Thepropagation in vacuumormediumcanbe represented by a transfermatrixwhich
is not shown here [25]. From the impedance matrices A we can obtain scattering
parameters Sij (Eq. (22.2)), which can be compared with measured or simulated
results. One obtains [10,25]:

S21 ¼ 2
N

ð22:2Þ

and for homogeneous materials

S21 ¼ jS21jexpðg lpÞ; ð22:3Þ
with g is the propagation constant, lp is physical length, and N is given by Eq. (22.4)
from the elements of the A matrix [25]:

N ¼ A11 þ A12

Zc
þ A21Zc þ A22; and Zc ¼

ffiffiffiffi
Z
Y

r
: ð22:4Þ

The complex propagation constant g obtained from the transmission line equation
depends on the impedance and shunt admittance of the material (Eq. (22.5)):

g ¼ 1
lp

ffiffiffiffiffiffiffi
ZY

p
¼ a þ jb: ð22:5Þ

The propagation constant b and the damping of the wave a can be obtained from
the scattering coefficient of S21 (Eq. (22.2)), using its real and imaginary part (with
fS21 ¼ phase of S21):

b ¼ � fS21
lp

	 1
lp

arctan
ImðNÞ
ReðNÞ

� �
ð22:6Þ

and

a ¼ � 1
lp
ln

2
jNj
� �

: ð22:7Þ
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From known longitudinal impedances and transversal admittances, the material
parameters m and e can be obtained in a homogeneous material (Eq. (22.8)):

m ¼ �j
1

k0lp

Z
Z0

;

e ¼ �j
1

k0lp

Y
Y0

; ð22:8Þ

with k0 ¼ w=c; Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
; Z0 ¼ 1=Y0; c ¼ 1=ð ffiffiffiffiffiffiffiffiffim0e0

p Þ, and the refractive index

n ¼ ffiffiffiffiffiemp ¼ ðj=k0lpÞ
ffiffiffiffiffiffiffi
ZY

p ¼ b=k0.
As one can see from Eq. (22.8), for a negative m a series capacitive impedance Z

is required, and for a negative e, a shunt inductive impedance Y is required. This
is well known for microwave broad bandwidth metamaterials [10,16]. In the case
of resonant structures, however, Z and Y always consist of a mixture of capacitive
and inductive contributions. The application of the relations given in Eq. (22.8) to
resonant Z and Y shows that positive m and e values would result, destroying the
negative index effect.

22.2.1.1 Three Basic TL Circuits
Negative e and m result in a lefthanded vector triad (E,H, and k) [7], which gives rise
to the definition of LH elements. For instance, a longitudinal (series) capacitance
and a shunt inductance are lefthanded elements, while a shunt capacitance and a
series inductance are righthanded elements. The relations between the effective
material parameters and the impedances help us to construct metamaterials with
desired dielectric properties. From Eq. (22.8), the required type of the series
impedance Z and shunt impedance Y can be determined. An additional important
connection to optical experiments is given by Eq. (22.2), which gives us the relation
between the impedance matrix and the optical spectra. For general cases with
multireflections, Eq. (22.3) is likely incomplete. A more detailed evaluation should
consider the multiple-path of the transmission and reflection coefficients [20,21].
This case will be discussed in Section 2.2. To illustrate the principal relations
between impedance matrix and optical spectrumwe discuss here briefly the cases of
purely right-handed, purely left-handed, and composite right-left-handed (CRLH)
metamaterials. In Figure 22.1 we see a comparison of the transmission spectra
|S21|

2 in terms of frequencies.
As one can see, the RH material in Figure 22.1(a) starts with a high value in

transmittance which is expected from an impedance network with a longitudinal RH
inductance (LRH) and a RH shunt capacitance (CRH) (see inset in Figure 22.1(a)) and
shows an optical low pass behavior. The characteristic material parameters are
eCRH, m LRH, and n  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LRHCRH
p

. In the case of LH metamaterials, |S21|
2 is

small at low frequencies and is large at high frequencies. This is the typical behavior
expected from a circuit with a longitudinal (series) capacitance and a shunt induc-
tance (see the inset in Figure 22.1(b)). The material parameters are e�1/LLHo

2,
m�1/CLHo

2, and n  �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LLHCLH

p
w2. In real structures, however, parasitic LH-

impedances in purely RH-materials and vice versa RH-impedances in purely
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LH-materials are unavoidable. Therefore a CRLH-structure in a realistic metama-
terial structure is expected. This is demonstrated in Figure 22.1(c). Here we see that a
CRLH-metamaterial shows an optical bandpass behavior with characteristic fre-
quencies of ose and osh given by w2

se ¼ 1=ðLRHCLHÞ and w2
sh ¼ 1=ðLLHCRHÞ, where

eðe  CRH�1=LLHw2
shÞ, and mðm  LRH�1=CLHw2

seÞ change their sign from negative
to positive values. A further important characteristic parameter is the phase-advance
dispersion curve [f¼f(b)] as function of frequency or simply the dispersion relation
of o¼o(b). From these curves we also obtain the phase velocity (vph¼o/b) and the
group velocity (vgr¼ qo/qb), which gives us a possibility to define LH- or RH-
metamaterials. In particular, for purely RH metamaterials, we have

vph "" vgr ð22:9Þ
and for purely LH metamaterials we have

vph "# vgr: ð22:10Þ

22.2.1.2 Role of the Series Capacitance
Previously, we have shown that a pure series capacitance results in a parabolic
negative m(o) spectrum of a metamaterial. From the analysis of the magnetic
resonances, it turns out that the series capacitance has always a parallel parasitic
inductance as shown in the inset of Figure 22.2 as in SRR-structures [16,26]. A
metamaterial with a unit cell much smaller than the operating wavelength lel<l/4
can be described by a TL equivalent circuit model. The circuit model shown in the
inset of Figure 22.2(b) is calculated using the TL theory described in the former
section. The series L andCwhich formZ are chosen to keep the resonance frequency
at 216THz. The vacuum shuntCvac and series Lvac are not shown in the circuit. From
the scattering parameters Sij of the circuit, effective material parameters can be
retrieved [14] when an electrical length is given.
In Figure 22.2, the retrieved real parts of the permeability and permittivity for

different values of C in the circuit model shown in the inset of Figure 22.2(b) are

Figure 22.1 Comparison of transmission spectra (|S21|
2) of (a)

purely right-handed material, (b) purely left-handed material, and
(c) composite right- and left-handed material. The parameter
values are: LRH¼pH, CRH¼ 10�19F, CLH¼ 10�19F, LLH¼pH.
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compared. In the calculation, an electrical length of 260 nm was used (the length
which influences only the absolute amplitude of the retrieved parameters). It is found
that with smallerC, both the amplitude and the bandwidth of the negative m is larger.
From the simple relation ofZ0 ¼ jom for a homogeneousmedium this effect can also
be understood. At low and high frequencies, taking into account the additional
condition of fixed resonance frequency w0 ¼ 1=

ffiffiffiffiffiffi
LC

p
, m approaches the asymptotic

values m L 1/C for o! 0 and m�1/o2C for o>o0. This shows that structures
with smaller capacitance values are favorable.

22.2.2
Numerical Simulations and Syntheses with TL Analysis

22.2.2.1 Metamaterials with Different Unit Cells
In this section, we analyze metallic structures by the combination of TL analysis and
numerical simulations. The geometry of themetallic structure in ametamaterial unit
cell has important consequences on thematerial parameters of e andm [26] and on the
bandwidth of the negative refractive index. Up until now, different geometrical
structures have been reported for obtaining negative permeability: Split-ring reso-
nators (SRRs) [5,6,14,15,27,28], double-bars [29–31], and cross-bars [32–34], for
instance. According to the TL analysis for metamaterials discussed in the previous
section, we study the evolution of the serial impedance in metamaterials, especially
concentrating on the series capacitance.

Numerical Results for Several Structures with Different Series Capacitances The
numerical results are obtained by commercial software (CST Microwave Studio)
for solving Maxwell�s equations using the finite integration technique (FIT). The
following structures shown in Figure 22.3(A–D) were numerically simulated to
study the variation of the series C in different structures. The structure parameters
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Figure 22.2 (a) Influence of the ratio C/L on the bandwidth and
amplitude of the negative permeability while keeping the
resonance frequency constant. The inset to (b) shows the circuit
model for the magnetic resonance as in SRRs.
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of the SRR and the SRR-like structures are given in Figure 22.3. We assume three
unit cells along the H(y)-direction as shown in Figure 22.3(A–D). Along the
k-direction there is only one unit cell. In the simulation, a Drude model was used
for the material dispersion of Au with plasma frequency op¼ 1.37· 1016Hz and
scattering frequency oc¼ 1.2· 1014 Hz [35]. The effective material parameters are
retrieved within the unit cell along k-direction. The corresponding numerical
results are shown in Figure 22.4. Structure A is the most common light incidence
configuration for obtaining negative permeability. From curve A, in Figure 22.4,
we see that the magnetic resonance is around 90 THz with a small amplitude of
negative m. The U-structure in Figure 22.3(B) with a completely opened gap

Figure 22.3 Schematics of SRRs and SRR-like
metallic structures. In (A–B), the E-field is along
the SRR-arms, and the H-field is coupled into the
ring. In (C–D), the E-field is along the gap-
bearing arm, and the H-field is coupled into the
ring. (A, C) are conventional SRRs for achieving
negative effective permeability. (B) shows

U-structures with a fully opened gap in the ring.
(D) shows the SRR-structures with outwards
opened arms. The arms are extended so that they
are connected with the neighboring rings. The
structure is continuous like a meander and
periodic along the E-field.
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Figure 22.4 Real part of the retrieved effective
permeability spectra with the corresponding
structures and light incidence configurations as
shown in Figure 22.3. The structures have an

outer length L0 of 370 nm · 370 nm in a unit cell
of Px · Py · Pz¼ 600· 600· 100 nm3. The line
widthW of the ring is 70 nm. The thickness along
the H-field is 20 nm.
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implies a decrease in C. From curve B in Figure 22.4 we see that this is not
effective for increasing the negative m, although the resonance frequency is blue-
shifted due to the reduced LC product. In Figure 22.3(C) the SRRs are rotated by
90� so that the E-field is along the gap-bearing arm. Curve C in Figure 22.4 shows
that the negative m disappears in the investigated spectral range, although the
H-field is fully coupled into the rings. This is due to the strong electrical coupling
into the ring [36]. However, when the direction of the open arms are changed
towards the outside of the rings, the metallic structure along the E-field becomes
continuous, as is shown in Figure 22.3(D). We call it �meander structure� as it has
a meander shape in the transverse x-direction. This structure yields a very large
bandwidth of negative m (400 nm), in conjunction with a rather large amplitude as
we can see in curve D in Figure 22.4, although other parameters are kept the same
as in the SRRs shown in (C).

TL-Models to Interpret the Results The excellent result using structure (D) in
Figure 22.3 can be explained by a reduction of the seriesC in themagnetic resonance.
In Figure 22.3, although not shown in the schematics, all the structures are in fact
periodic along both the H-field and the E-field. This implies additional coupling with
the neighboring SRRs along the E-field for structure (A–C). This coupling is
represented by a series capacitance Cs [37], parallel to capacitance C1 of the ring
(see also the inset in Figure 22.5). This is also the case when the ring is arranged as in
(C). On the other hand, when the arms of the ring are connected together and there is
no vacuum gap between the rings along the E-direction, Cs vanishes or is reduced.
The longitudinal C1 is then decreased dramatically. This leads to an increase in the

Figure 22.5 Comparisonof the numerical results
with the calculated results using the TL model,
shown here for structure A. The used parameters
of the lumped elements in the TL calculation are
shown in Table 22.1. The structure parameters
are: outer length 230 nm, line width 30 nm,

thickness 20 nm. The period Px is 400 nm, Pz is
100 nm, and the gap in the SRRs is 80 nm. The
dashed lines represent reflectance and Re (e),
and the solid lines represent transmission and
Re (m), respectively.
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resonance frequency w1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L1C1

p
: Furthermore, the induced AC current in the

upward armand the downward arm in oneunit cell producesmagneticfieldswith the
same direction which further enhance the magnetic resonances.
TL analysis [31] can justify this explanation further. TL models are constructed for

the SRRs and the meander shown in Figure 22.3(A) and (D). Their scattering
parameters and retrieved material parameters are shown in Figures 22.5 and 22.6,
respectively.
The series impedance of L1 and C1 in Figures 22.5 and 22.6 represents the

magnetic resonance (SRR resonance or meander loop resonance). The shunt
impedance of L3 and C3 represents side impedance contributions along the E-field
direction in a plane perpendicular to the k-vector. The shunt impedance L2 (see
circuit depicted in the inset of Figure 22.6) accounts for the continuous wires in
the meander matrix along the E-field direction. Only the elements in the shaded
boxes contribute mainly to the retrieved permeability material parameters because
the resonance frequencies of the shunted elements shown in Figures 22.5 and 22.6
are far away from the magnetic resonance frequencies. The shunt elements L3
and C3 are necessary for obtaining a satisfactory description on the high frequency
side of the R/T-spectra. Here we concentrate only on the magnetic resonances.
Through fitting the numerical reflectance and transmittance spectra with the

equivalent circuit models, the values of L and C in the equivalent circuit are
determined. The values of L and C are listed in Table 22.1. In both figures,
Figures 22.5 and 22.6, parts (a) and (b) show the calculated numerical results and
parts (c) and (d) show the calculated TL results, respectively.
Through comparison of the reflectance/transmittance-spectra calculated by

both methods, we see that the two models describe the two structures very well.

Figure 22.6 Comparisonof the numerical results
with the calculated results using the TL model
shownhere for structureD. The used parameters
of the lumped elements in the TL calculation are
shown in Table 22.1. The structure parameters

are: outer length 230 nm, line width 30 nm, and
thickness 20 nm. The period Px is 400 nm, Pz is
100 nm. The dashed lines represent reflectance
and Re (e), and the solid lines represent
transmission and Re (m), respectively.
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Furthermore, the retrieved material parameters agree also very well with each other.
This confirms that the TL models are reasonably constructed.
From Table 22.1, it is obvious that C1 in the circuit model for meanders is one

magnitude smaller than the one in the circuit model for SRRs. This explains the
broad bandwidth and the large amplitude with negative m in the meander structure.

22.2.2.2 Numerical Simulation of Meander Structures
As we already discussed in Section 22.2.2.1, themeander structure can induce a very
strong magnetic resonance due to its reduced longitudinal capacitance [19]. Further-
more, this structure is more suited for fabrication than the SRRs for the negative m
configuration. Figure 22.7 shows a realistic meander structure with newly defined
structure parameters and a suitable orientation of the electromagnetic field. It can be
fabricated on ridge patterned substrates [19,38]. Through planarization of the ridge
surface and choosing a proper ridge width Wr, the structure can be realized
symmetrically along the k-direction, neglecting the presence of the substrate. Every
parameter shown in the design can be changed freely within some range using E-
beam lithography. However, in this section we show only two variations numerically
to demonstrate the advantages with this novel structure for negative m. The structure
is buried in SiO2 (or a similar medium) with a refractive index near 1.5.
In retrieving the effective material parameters, Tþd was used as the physical

length. A Drude model was used for the material dispersion of Ag with plasma
frequency op¼ 1.37 · 1016Hz and scattering frequency oc¼ 0.85· 1014Hz.

Table 22.1 Values of lumpedC and L used to fit the numerical curves shown in Figures 22.5 and 22.6.
Ohmic resistances (not shown in Figures 22.5 and 22.6) are in series with the corresponding L and
account for loss. The unit for C is 10�19F, for L is 10�13H, and for R is O.

Lumped element C1 L1 R1 L2 R2 C3 L3 R3

TLM for SRR 500 0.38 1.2 30 1.0 50
TLM for meander 53 1.0 6.9 2.7 10 13 0.86 30

Figure 22.7 Schematic of ameander strip structure buried in SiO2

with a refractive index of 1.5 [38].

408j 22 Negative Permeability around 630 nm in Nanofabricated Vertical Meander Metamaterials



Figure 22.8 shows the retrieved permeability from a structure with varying Py and
with constant Px¼ 200 nm, T¼ 100 nm,Wm¼ 100 nm,Wr¼ 80 nm, d¼ 20 nm. We
find that with larger Py above 200 nm, in particular with larger distance along
the H-field direction, the interaction between the meander strips is small and the
resonance frequencies are almost independent of Py . Only the amplitude of the
negative m is changed due to the changed filling factor of the meander. However,
when Py is decreased below 200 nm, the interaction becomes stronger and shifts the
resonance to higher frequencies. Both the bandwidth and the amplitude of the
negative m are increased. This can be explained mainly by the reduced longitudinal
C1. When the distance between the meanders along y-direction is large, each
meander ring has its independent resonance behavior. Along the E-field direction
the charge distribution is also the same, as schematically shown in Figure 22.7(b).
When Py is decreased, the interaction of the charges with the same sign between
neighboring meanders will weaken the E-field strength in every meander and
decrease the longitudinalC1. This shifts the resonance directly to higher frequencies.
At high frequencies above the resonance,m approaches the asymptotic valuem�(1/
lp)1/(C1o

2), while at low frequencies below the resonance we have m L1/lp. For
Py¼ 100 nm, the meander strips become continuous along the H-field direction.
This means the whole surface of the structure is covered with continuous metal
(meander plate), which results in the broadest bandwidth and the largest amplitude
of the negativem. The results shown inFigure 22.8(a) indicate that a continuousmetal
on the ridge patterned surface leads to a broad and strong magnetic resonance. The
structure can be regarded as a corrugated surface covered with a metal film. It is
interesting to know how far the magnetic resonance frequency of the meander plate
can be shifted towards higher frequencies. In further numerical simulations the
structure is kept the same as that for Figure 22.8, butwithPy¼ 100 nmand a variation
of T. We have also analyzed the retrieved real part of the permeability with respect to
frequency. It is amazing to see that the magnetic resonance with 20 nm ridge height
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Figure 22.8 Numerical results of Agmeander structures buried in
SiO2 without any substrate. Py varies from 100 nm to 400 nm. The
other parameters are kept constant. Px¼ 200, T¼ 100 nm,
Wm¼ 100 nm,Wr¼ 80 nm, and d¼ 20 nm. (a) Retrieved effective
permeability spectra with different Py; (b) Selected transmittance
spectra corresponding to the curves in (a) with different Py.
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can reach a frequency of 700 THz, which is around 430 nm with a still rather large
magnitude of negative m (m¼�3 at 700 THz). This is below the absorption edge of Al
or Ag and far beyond the saturated resonances due to kinetic inductance of the
SRRs [37]. From the calculated resonance frequency versus 1/Twe find that with the
downscaling of the structure the magnetic resonance saturates only very slowly. For
large periods of Px¼ 300 nm, a frequency as high as 600 THz can also be achieved.
Similar results of the resonance frequency with downscaling of the unit cell can be
found in Refs. [26,37,39], which demonstrate that the kinetic energy of the electrons
contributes to some degree to the inductance of a metamaterial.

22.3
Experimental Approaches

22.3.1
Fabrication Technologies

For the realization of metamaterial structures, different fabrication processes have
been investigated. For plane metallic matrices, lift-off processes were developed. For
the novel meander strip structures, a grating structure etched on a ridge patterned
dielectric substrate was developed.

22.3.1.1 Plane Metallic Matrices
Pure metallic matrix structures on a dielectric substrate (mostly glass) have been
realized using a high-resolution E-beam lithography process. The fabrication steps
are as follows: After cleaning the SiO2-substrate, a metallic adhesion layer (Cr) and
then a metallic layer (Au or Ag) for the matrix elements was evaporated onto the
substrate. Then apositive tone resist (960KPMMA, 80–100 nm)was spin coated onto
the wafer and the desired metallic matrix structure was written directly by E-beam
lithography. After E-beam writing, an ultrasonic-wave supported lift-off process in
MIBK solution was applied to achieve thematrix of themetallic elements. The single
element as described in Section 22.2.2was varied fromSRRs tomeander geometries.
Themetallic elements in thematrix were arranged periodically in periods of Px from
200 nm to 400 nmandPy from200 nm to 400 nm. The smallest structure size (wire or
gap) obtained was 30 nm for thicknesses of the metallic layer in the range between
20 nm and 30 nm. An example of a 2D array of double split rings is shown in
Figure 22.9. The smallest SRR in Figure 22.9 has a diameter of 100 nm.Writing times
of a few hours result in matrices in the range of 2· 2mm2 [27,28,40].
An alternative route to realize plane metallic matrix structures was based on the

negative tone resist AR–N7500.18. In this route a negative tone resist is spin coated
on themetallic layer (Cr, Au or Ag). After E-beamwriting, developing, and fixingwith
AR-N-developer, the negative tone resist structure serves directly as etching mask in
an ECR-RIE or RIBE Ar-plasma dry etching step.
In the case of meander structures we used the photo polymer (PC403). The

lithography steps in this variant were nearly identical to that previously discussed,
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and pattern transfer was carried out with a reactive (RIBE or ECR-RIE) dry etching
step in an Ar/O2 plasma. 2D chess board mesas were also fabricated.

22.3.1.2 Novel Meander Structure
As discussed in Section 22.2.1 a metamaterial should have reduced RH-circuit
element contributions to improve LH-properties and to reduce damping. For that
purpose, a new geometrical arrangement is necessary to overcome the restrictions of
plane matrices. In plane matrices of metallic elements, especially in the case of
resonant elements, in addition to the desired LH-circuit elements, always RH-circuit
elements appear, reducing the bandwidth and increasing the damping of a meta-
material. The new approach here is the realization of a vertical metallic meander
matrix [41,42] on a pre-patterned dielectric substrate which is patterned in ridges or
chessboard-like mesas. The pattern depth (z-direction in this paper) serves as an
additional degree of freedom in addition to the two other design degrees in x/y-
direction. This extra degree of freedomgives the possibility for realization of one type
of impedance – in our case the desired longitudinal capacitance – as LH-circuit
element with suppressed contributions of parasitic RH-circuit elements (series
inductance). The configuration is shown in Figure 22.7 and shows perfect coupling
of the H-field into the meander loop. Furthermore, for tilted directions of the
propagation vector k with respect to the average meander matrix plane, theH-vector
remains always fully coupled. In comparison to GHz-meander approaches [43] this
approach allows for an additional degree of freedom: The height of the meander line
(y-direction inFigure 22.7) can be freely chosenwithout a limitation by themetal layer
thickness.Moreover, the depth and thewidth of the ridge ormesa in conjunctionwith
the height (y-direction) of the meander gives a certain degree of independent
parameter variation to designZ- and Y-contributions of ametamaterial. The stacking
of each 3D-patterned sublayer completes the process for the metamaterial structure.
The fabrication steps are as follows: We start with a profound cleaning of the SiO2-
substrate and deposit a layer sequence of 30 nmMgF2 and up to 40 nm of Au or Ag.
After a negative tone resist E-beam step, the negative resist is used as etching mask
in an IBE (Ar plasma) etching step to pattern this first metallic layer. We continue

Figure 22.9 Section of a fabricateddouble SRRmatrix structure on
planar SiO2 substrates. The whole array spans 2 · 2mm2. The
smallest SRR sizes (inner SRR) are 100 nm [40].
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with a MgF2-spacer layer (50 nm to 150 nm) and a PC403 dielectric substrate layer
(different thicknesses 80 nm to 150 nm). The PC403 is patterned with a RIBE: Ar/O2

dry etching step using a negative tone resist etching mask. After pattern transfer, a
metallic Au or Ag layer is deposited by E-beam evaporation on the ridge-/mesa-
patterned substrate and is subsequently patterned in a linear or a 2Dgrating, forming
the 1D or 2Dmeander line matrix. The AFM picture shown in Figure 22.10 depicts a
meander array of this process step. The picture shows Au meander lines on PC403
ridges. The horizontal direction in Figure 22.10 corresponds to the x-direction in
Figure 22.7. After planarization with PC403, a top wire grating is formed identical to
the metallic grating on the bottom. Finally one obtains a sequence of planar grating,
meander line grating, and planar grating which serve as building blocks for the
metamaterial structure. The stacking of metamaterial structures using planarization
techniques will be forthcoming [44].

22.3.2
Characterization of Fabricated Structures

In this section we discuss a selection of experimental realizations of sublayer
structures which can serve as unit cells of a metamaterial. We primarily analyze
two types ofmeander structures: gratingmeander structures as shown inFigure 22.7,
and a meander structure with closed metallic surface (closed gaps in y-direction of
Figure 22.7). The optical measurements of the reflection and transmission spectra
were carried out using a Fourier spectrometer (Bruker IFS 66v/S) equipped with an
IR microscope. The transmitted and reflected light was detected by a N2-cooled
Mercury Cadmium Telluride detector. The system (detector, spectrometer, and
polarizer) has a detection range between 30THz and 500 THz, corresponding to
a wavelength of 10 mm and 600 nm, respectively. A silver/gold mirror was used as
reference for reflectance. The bare glass substrate served as reference for the
transmission.

Figure 22.10 Section of a fabricated meander matrix structure on
patterned dielectric substrate with a period of 200 nm, a ridge
width of 100 nm, and a ridge depth of 80 nm [19]
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22.3.2.1 Experimental Results of Meander Strips
Themeander matrix structure simulated in chap. 22.2.2.2 (Figure 22.6) was realized
on a dielectric photopolymer (PC403) on glass substrate in different variations of the
period Px and Py to vary the serial capacitanceC1 (inset in Figure 22.6). Experimental
reflection spectra of meander gratings on PC403 are shown in Figure 22.11(a) for
meander periods Px¼ 200 nm and 350 nm. The reflection spectra show an overall
low-pass characteristics (high-pass in transmittance) with magnetic resonances at
710 nm and at 860 nm for Px¼ 200 nm and 350nm, respectively. As expected from
the simulation (Figure 22.11(b)), the magnetic resonance shifts to shorter wave-
lengths if the period Px is decreased. The deviations of the resonance amplitude
between experiment and simulation are explained by some fabrication imperfections
when forming the geometrical meander loop shape. An additional fitting of the
permeability as carried out in [23,24] was not performed because percolation
threshold of the metal layers on polymer mesa ridges starts on larger metal
thicknesses than on flat surfaces. Therefore the calculated spectra appear sharper
despite the use of the experimentally determined scattering rate [35] for evaporated
goldmetal layers. Due to E-beamwriting the structural periodicity is kept precisely as
calculated, and the calculated frequencies agree without fitting parameters satisfac-
torily [compare Figure 22.11(a) and (b)] with themeasured ones. After application of a
retrieval process [20–22] we obtain the optical constants shown in Figure 22.11(c).
The retrieved m shows a negative value around 700 nm for the meander wires. The
asymptotic parabolic behavior for smaller wavelengths (higher frequencies) can also
be recognized, however, an additional approximately constant contribution of a
RH-element appears. The asymptotic value of m for large wavelength values ismostly
given by the inductance L1(m L1/lp), bridging the series capacitorC1 of thematerial.
C1 is depicted in the circuit shown in the inset of Figure 22.6. The crossover from
negative to positive values of e is related to the shunt inductance Ymainly depending
on L3 and C3, where the inductance L3, arising from interactions between elements
perpendicular to the light propagation constant, determines together with L2 the
amplitude of e, [e (1/lp) (const. �(1/L2þ 1/L3)o

�2)]. From these results we infer
that the meander grating structure has promising capacitive properties but needs

Figure 22.11 Reflection spectra of fabricated gold meander wire
structures with a linewidth of 30 nm and a period of 200 nm on a
SiO2 substrate. In part (a) and (b) solid and dashed lines represent
periods of 200 nm and 350 nm, respectively.
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additional inductive degrees of freedom to exhibit negative n. This can be realized by
an additional plane grating layer which adds an additional shunt inductance [17–19]
to the meander material TL-circuit.

22.3.2.2 Experimental Results of Meander Plates
A closed metallic layer on a ridge patterned substrate forming a metallic meander
surface would reduce strongly the capacitance in the metamaterial when the
contribution of a serial inductance is kept low. According to the discussion in Section
22.2.2.2 (Figure 22.8), the highest operation frequencies and largestm amplitudes can
be expected. For the smallest periods (200 nm) of the meander plate structure a
minimum of the transmission (around 800 nm) was found which marks the
beginning of a high pass region which is also the region of negative m. With the
variation of period Px from 350 nm to 200 nm, the beginning of the negative m region
shifts from 790 nm (380THz) to 600 nm (500THz). The retrieval process shows for
the smallest period Px (200 nm), a resonance at 675 nm for the permeability where m
changes sign from positive to negative values. The negative m ranges from 550 nm to
665 nmwith the largest amplitude ofm¼�4.5 at 650 nm. Them value of�1 is present
within a bandwidth of 50 nm centered at 630 nm. For shorter wavelengths (higher
frequencies), m remains negative and shows the parabolic behavior m�(1/lpC1)l

2

as expected from the equivalent circuit. In the limit of long wavelengths, m becomes
positive due to the parasitic inductance L1 (m L1/lel). These results show that
metallic meander surfaces are very promising candidates to obtain negative perme-
ability at very broad bandwidths in the visible wavelength range. We also calculated
the ratio of the real and imaginary part of the permeability to determine a figure of
merit for the permeability (FOMm:¼�R{m}/`{m}) (Figure 22.12). One obtains a
maximum value of 2.2 formeander structures, whereas for SRR-structures a value of
0.22 is obtained. These results also show that a resonant characteristic due to L1 limits
the wavelength range of negative m, as an oscillator always consists indispensably of a
left-handed and a right-handed element leading to composite right-left-handed

Figure 22.12 Comparison of the calculated figure of merit for the
permeability (FOMm) for different unit cell elements A, B, D. The
element structures A, B, D are shown above in Figure 22.3.
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materials. A non-resonantmaterial, however, can consist of purely left-handed circuit
elements, leading in principal to a broadband negative index material.

22.4
Conclusion

We have shown that the combination of the transmission line analysis together with
the numerical solution of theMaxwell equations yields an efficient way to determine
the electrical nature of a metamaterial structure. A key element in realizing the
negativem is the longitudinal capacitance in ametamaterial. This requirement leadus
to a new structural design of vertical meander metamaterial structures to control the
longitudinal capacitance in a large parameter range. Different types of meander
metamaterial structures were fabricated. Broadband negative permeability at near
infrared and visible frequencies were obtained in meander plate structures. This
makes the metallic meander structures very promising candidates for broadband
optical NIMs.
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