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This book is dedicated to true science.

The constant support of the ElectroScience Laboratory and my
family—in particular my wife, Aase—is deeply appreciated.



A NOTE ON METAMATERIALS

Metamaterials are artificially made materials that do not exist in nature.
The term derives from the Greek word meta, meaning beyond. More
specifically, metamaterials are composites that have a desired combina-
tion of properties that cannot be obtained by combining the properties of
their constituents. The term was coined in 1999 by a colleague and good
friend, Rodger Walser, of the University of Texas–Austin, now at Meta-
material, Inc. At my request he graciously provided me with the following
definition:

Metamaterials are macroscopic composites having man-made,
three-dimensional, periodic cellular architecture designed to
produce an optimized combination, not available in nature, of
two or more responses to specific excitation.

I want everybody to understand that I wholeheartedly support a devel-
opment of metamaterials in general. Only when unrealistic features, in
particular a negative index of refraction, are pursued, must I strongly
object. Academia, industry, and most urgently, students deserve an honest
and frank discussion on this subject. This book has as its focus such a
contribution.

B.A.M.
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FOREWORD

Science has always been plagued by occasional hype or misdirected work,
witness the N-ray of a previous century that purported to image soft tis-
sues. Unsupported science has appeared in force in recent years in the area
of negative parameter materials: for example, “perfect lenses” that cannot
produce a usable modulation transfer function and may not even satisfy
the standard lens equations. And electrically small antennas enclosed in
an NIM (negative index material) shell, “produce a larger voltage”—not
a word is said about efficiency, directivity, or bandwidth. These shells
have not been constructed or simulated (except in infinite arrays, using a
waveguide simulator), and probably never will be, due to mutual inter-
actions inside the shell. Another example is negative refraction through
an NIM wedge, where the output beam amplitude shown is normalized
to equal that of an equivalent dielectric wedge, even though the very
large attenuation (due to the reflection coefficient) might yield new physi-
cal understanding. Good science would make measurements of beam shift
through a slab, where reflection losses are minimized—but no microwave
slab measurements have been made. Much government money is support-
ing these NIM projects, but the contract monitors are not exercising the
careful and skeptical overview that good science requires. Unfortunately,
the NIM authors have tried to make NIM synonymous with metamateri-
als , the latter term being much broader.

It is important to get a scientific dialogue going; to date the dialogue
has been largely one-sided, due to biased journal editorial boards. Pro-
fessor Munk is initiating a dialogue, with an emphasis on a periodic
structure approach, for which he has been a major contributor over many
years. Some of the NIM phenomena observed are probably due to surface
waves and leaky waves. In his book Wave Propagation and Group Veloc-
ity , Brillouin shows that signal velocity and group velocity are different
for a dispersive medium. Munk reports that the signal velocity always
refracts positively, even in an NIM. Almost all of the NIM papers talk
about group velocity, but it is really signal velocity that is critical for any
practical system. Munk has also been a major contributor to various stealth

xiii



xiv FOREWORD

projects, including absorbers and frequency-selective surfaces. Much of
this is explained via Smith charts; he shows that use of these can provide
a physical understanding of many complex phenomena.

It is hoped that those responsible for allocating U.S. government
research money will find this book useful.

R. C. Hansen



PREFACE

Why did I write this book? Primarily for two reasons:

1. To show that a lot of statements about certain types of metamaterials,
particularly those involving a negative index of refraction, are simply
not true

2. To give alternative and, frankly speaking, more realistic solutions
to many problems that are widely claimed to be solvable only by
using metamaterials (which most often cannot be realized)

The first objective is treated in Chapter 1. Since most attempts to real-
ize Veselago’s medium have been made by use of periodic structures,
we investigate this subject first. Using relatively simple physical argu-
ments we find that the special features usually associated with Veselago’s
medium, such as a negative index of refraction and left-handed fields, can-
not be realized by a periodic structure. Nor do we find any evidence of
waves with phase advance or evanescent waves with increasing amplitude
as they move away from their source.

We finally go one step further and take a closer look at Veselago’s
original paper. It is determined that although his conclusion concerning a
negative index of refraction was mathematically correct, it suffered from
physical deficiencies, such as negative time. This is demonstrated by an
examination of his flat lens.

However, few people like to read a story with a negative ending (no pun
intended). I have therefore gone out of my way to provide examples that
supposedly rely on the existence of negative µ and ε but can actually be
solved just as well, or better, without them. More specifically, in Chapter
2 we examine a cloak design that is explained through the use of negative
permittivity. We show that its performance looked alright but could easily
be explained by a simple equivalent circuit based on classical electromo-
tive theory. Further, we suggest an alternative, much simpler design. In
this chapter we also look at a case where a short dipole had been tuned to
deliver a “higher signal” by surrounding it with a spherical shell made of
material with µ, ε < 0. We show that it can be done fundamentally with
ordinary materials with µ, ε > 0.

xv



xvi PREFACE

In Chapter 3 we look at structures that absorb at some frequencies
whereas they are transparent at others: that is, absorbers with windows,
also called rasorbers. Nobody has yet suggested solving this problem
by using metamaterials, but I thought it would be nice to beat them
to it!

The Russian professor Lagarkov recently considered a structure that
could conceptually absorb at almost all angles of incidence. To that end,
he considered an absorber placed on top of a slab with µ= ε = − 1. In
Chapter 4 we look quite extensively at various absorber designs that actu-
ally do quite well what Lagarkov attempts to do, but we use a dielectric
slab on top with ε ∼1.6 and µ= 1. Obviously, our design is more realistic
and we show real results up to a ±45◦ angle of incidence.

In Chapter 5 we consider a collinear antenna array that is quite unique
in several ways. It has sleeve dipoles placed very close to a heavy mast;
in fact, the spacing from the center of the dipoles to the surface of the
mast is only ∼0.015λ at the lowest frequency). Such a close spacing has
a very strong effect on the terminal impedance of the dipoles, making
matching extremely difficult. In this day and age it is often suggested
that such a problem be solved by use of magnetic ground planes. Such
devices are actually conceptually very simple, but have been elevated to
“respectability” by being classified as metamaterials—thus our need to
consider such a case in this book. However, magnetic ground planes are
inherently very narrowbanded, depending on their thickness; in this case
the bandwidth would amount to no more than 1 to 2%. The alternative
approach shown here has a bandwidth of 8% not only in one band but
in two separate bands an octave apart. More remarkable is the fact that
the same matching networks and the same dipole elements were used for
both bands. It was, in fact, the most difficult matching problem that I
have ever encountered. Thus, it contains so many “neat tricks” that it is
unusually suitable as an illustration of classical antenna technology for
both students and instructors. But you must know your Smith chart very
well to follow this design.

It has been my experience as well as that of several of my colleagues
that papers critical of metamaterials are difficult to get published. In fact,
when I submitted a paper to the IEEE Transactions on Antennas and
Propagation in 2003 with the title: “On Negative µ1 and ε1: Fact and
Fiction,” it was turned down vehemently. In it I simply explain how the
typical concoction of wires and split-ring resonators acts when treated as a
periodic structure without relying on negative µ1 and ε1. The intervening
years have proven the paper to be correct, and it is given in Appendix A
without editing.
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Further, in Appendix B we present an interesting IFF antenna mounted
in a cavity. It has a steerable cardioid pattern with a front-to-back ratio
15 to 25 dB over a 25% bandwidth. Much antenna design today is done
on computers using some sort of metamaterial. This antenna shows an
alternative approach: classical antenna design leading to results.

Quite often, transmission lines are needed with a characteristic
impedance not readily available (e.g., for matching purposes). Designing
a cable of any type is textbook material and consequently, is not
discussed here. However, quite often the question is asked: What is a
good way to actually measure the characteristic impedance of a cable?
Most people think they have the answer, but there are practical pitfalls.
Thus, in Appendix C we give a good practical approach that will “alarm”
you when there is something suspicious about your measurements.

Quite recently, Hansen wrote a paper that reported on negative refrac-
tion apparently observed for a very lossy wedge without negative µ and ε.
In Appendix D we consider this problem and show that part of the wave
transmitted can, under certain circumstances, be found in the “negative”
sector, but it has nothing to do with negative µ and ε.

In closing this preface, I should like to emphasize that I am actually
quite tolerant of what I consider a major misconception. I can even tolerate
the fact that a great deal of money has been spent on this subject even if it
could have been better spent otherwise. However, my deepest concern is
that young, talented students are being led into this area without being told
that this subject is controversial. In fact, as shown in this book, negative
indexes of refraction may not exist. And that implies no time advance and
no amplification of evanescent waves.
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1 Why Periodic Structures Cannot
Synthesize Negative Indices
of Refraction

1.1 INTRODUCTION

1.1.1 Overview

In this chapter we first list some of the features that are widely accepted
as being facts regarding metamaterials with simultaneously negative µ

and ε:

1. The index of refraction is negative.
2. The phase of a signal advances as it moves away from the source.
3. The evanescent waves increase as they get farther away from the

source.
4. Whereas the E - and H -fields in an ordinary material form a right-

handed triplet with the direction of phase propagation, in a material
with negative µ and ε, they form a left-handed triplet.

Such materials have never been found in nature. However, numerous
researchers have suggested ways to produce them artificially. Periodic
structures of elements varying from simple straight wires to very elaborate
concoctions have been claimed to produce a negative index of refraction.
Nevertheless, we show here that according to a well-known theory based
on expansion into inhomogeneous plane waves, it does not seem possible
to obtain the characteristic features that are listed above for materials
with negative µ and ε. Thus, it seems logical to reexamine Veselago’s
original paper. We find that it is mathematically correct. However, when
used in certain practical applications such as the well-known flat lens, it
may lead to negative time. Although such a solution might be acceptable
mathematically, it would violate the causality principle from a physical

Metamaterials: Critique and Alternatives, By Ben A. Munk
Copyright  2009 John Wiley & Sons, Inc.
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2 WHY PERIODIC STRUCTURES CANNOT SYNTHESIZE NEGATIVE INDICES

point of view. So it should not surprise us that, so far, we have encountered
difficulties when trying to create materials with negative µ and ε: in
particular, a negative index of refraction.

1.1.2 Background

When in 1968 Veselago published his now-famous paper [1], he posed the
question: What would happen if a material had both negative permittivity
ε and negative permeability µ? Perhaps his most striking conclusion was
that a negative sign must be chosen for the index of refraction:

n1 = −√
µε (1.1)

This observation led to significant new concepts. We list the most impor-
tant in Section 1.2. We emphasize that at this point we neither endorse nor
condone these new concepts. However, subsequently, in Sections 1.4 to
1.6, we investigate whether it is feasible to synthesize Veselago’s material
by the use of periodic structures made with special elements. We will find
this to be highly unlikely. In view of this, in Section 1.10 we investigate
whether Veselago’s conclusion violates fundamental physical principles.

Further, in Section 1.9 we examine the dispersion of a cable termi-
nated in a complex load. We show that in that case it is indeed possible to
partially eliminate dispersion over a limited frequency band. This is equiv-
alent to the mixture of forward- and backward-traveling waves deemed
essential to achieve the special features of Veselago’s medium. However,
it is erroneous to conclude that a new exotic material has been created.
It will simply lose its features if the load impedance is, for example,
purely imaginary. More specifically, we have merely used old tricks from
broadband matching techniques.

1.2 CURRENT ASSUMPTIONS REGARDING
VESELAGO’S MEDIUM

1.2.1 Negative Index of Refraction

In his original paper, Veselago [1] concluded that the index of refraction
n1 between an ordinary medium and one with negative ε and µ would be
negative. Thus, as illustrated in Figure 1.1, the refraction angle θ r would,
according to Snell’s law, have the same sign as the angle of incidence θ i

when n1 > 0, whereas it would be negative for n1 < 0. Veselago’s original
proof is discussed in Section 1.10.
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Veselago’s 
Medium

Ordinary 
Medium 

Refracted for n1 > 0

Incident

Refracted for n1 < 0

θr

s

θi

θr

Figure 1.1 Snell’s law for an ordinary medium adjacent to Veselago’s medium for index
of refraction n1 > 0 and n1 < 0, respectively.

1.2.2 Phase Advance when n1 < 0

If a lossless dielectric slab is placed in front of a ground plane, the input
impedance Z i for an ordinary material with n1 > 0 will be obtained by a
rotation 2βd = 2β0n1d in the clockwise direction, as shown in the Smith
chart in Figure 1.2. Similarly, if n1 < 0, Z i is obtained by rotation in a
counterclockwise direction. In other words, we experience a phase delay
when n1 > 0 and a phase advance when n1 < 0. These statements are based
on refs. 2 to 4. Note that loss is not necessary to obtain these features.

1.2.3 Evanescent Waves Grow with Distance for n1 < 0

When propagating waves change into evanescent waves, it is usually
because n1 goes imaginary [5]. Thus, in view of the phase advance pos-
tulated above, it should not surprise us that Pendry [6] suggested that
evanescent waves in a medium with n1 < 0 would grow and not be atten-
uated as usual for n1 > 0, as illustrated in Figure 1.3.

1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet
for n1 < 0

Also shown by Veselago in his original paper [1] was that the field vectors
Ē andH̄ and the direction of phase propagation ŝ form a left-handed triplet
when n1 < 0 (see Figure 1.4b). This feature is probably the least observed
when performing experiments. However, as we shall see later, it is a
theoretical point very powerful in determining whether or not we have a
true Veselago medium.
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Zi

d
Ground 
Plane

n1 > 0

Ground 
Plane

Zi

d

n1 < 0

Ordinary 
Medium

Veselago’s 
Medium

Zi for n1 > 0

2b
d 

= 
2n

1b
0d

0

Z0

Zi for n1 < 0

∞2b
d 

= 
2n

1
b 0

d

Figure 1.2 Perception of the input impedance Z i as seen in a Smith chart of a dielectric
slab in front of a ground plane for index of refraction n1 > 0 (top) and for n1 < 0 (bottom).
For a discussion about causality for n1 < 0, see equations (1.15) to and (1.17).

Air Veselago’s 
Medium

y

e−n1b0y

for n1 < 0

Air

E

s

Figure 1.3 Normally, an evanescent wave is attenuated as it moves away from its source.
In Veselago’s medium it is believed to grow.
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Ordinary Medium 
for n1 > 0

Poynting’s 
Vector

(a) (b)

Poynting’s 
Vector 

Veselago’s Medium 
for n1 < 0

s

H

E E

H

s

Figure 1.4 (a) In an ordinary medium, Ē, H̄, and the direction of propagation ŝ form a
right-handed triplet; (b) in Veselago’s medium, Ē, H̄, and the direction of propagation ŝ

form a left-handed triplet. However, Poynting’s vector always points in the same direction.

1.3 FANTASTIC DESIGNS COULD BE REALIZED
IF VESELAGO’S MATERIAL EXISTED

When this author started to design high-precision antennas more than 50
years ago, he quickly realized that if the input impedance of a transmission
line could go backward in the Smith chart with increasing frequency,
matching antennas would, in general, be trivial. He also quickly observed
that such components were just not available. However, that was the
essence of what the Veselago material promised (if realized). Thus, it is
no wonder that an avalanche of papers appeared (mostly simulated), all
based on the assumption that Veselago’s material was indeed possible to
realize.

The most prominent concept was probably the flat lens, discussed in
Section 1.10.3. Further, when Pendry later suggested that the evanes-
cent waves at the source would arrive more strongly at the image (see
Figure 1.3), the enthusiasm almost boiled over. The possibility of obtain-
ing an optical system that could exceed the traditional diffraction limits
was undoubtedly one of the greatest factors that kept funding going for
years.

Similarly, Engheta gave a paper in 2001 in Torino [3] in which he con-
sidered the resonance frequency of a cavity between two ground planes.
He suggested that the space was filled partly with ordinary dielectric with
n1 > 0 and the remainder with material with n1 < 0. It was also stated
that consultation of Figure 1.2 would readily show that the resonance
frequency could potentially remain constant from dc to broad daylight!
(The two ground-plane impedances could essentially cancel each other,
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regardless of frequency.) When the present author pointed out from the
floor at the meeting that the rotation in the Smith chart for n1 < 0 vio-
lated Foster’s reactance theorem, it by no means settled the issue. In fact, it
resulted in another showing that for n1 < 0, a modified Foster’s reactance
theorem would indeed indicate counterclockwise rotation in accordance
with Figure 1.2 [4]. The question was, and is, of course: Is there a mate-
rial with n1 < 0? Veselago himself was quick to point out that his material
had never been found in nature. And he added, prudently, that there were
perhaps profound reasons for its absence.

1.4 HOW VESELAGO’S MEDIUM IS ENVISIONED
TO BE SYNTHESIZED USING PERIODIC STRUCTURES

For almost 30 years after Veselago published his original paper, there
was little evidence of any particular interest in his material. However, in
the mid-1990s, Pendry postulated that a negative ε could be produced by
a periodic structure of strips, as shown in Figure 1.5a. Actually, such a
surface is usually found to be inductive [5, Chap. 1]. However, an inductor

I

E E
III

A spit-ring resonator can be excited in two ways
(a)

No circulating current 
(Normal incidence)

(b) (c)

Circulating current 
(Any incidence)

E

Figure 1.5 (a) Pendry suggested that a negative ε could be produced by an array of
parallel wires; (b) and (c) similarly, a negative µ is expected from an array of loops with
circulating currents.
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can also be considered to be a negative capacitance, which again indicates
the presence of a negative ε. Later, Pendry suggested that a negative µ

could be obtained from a periodic structure of open split-ring resonators,
as shown in Figure 1.5b and c. The idea here was that a circulating current
was able to produce a negative µ [6–9]. However, we should note that
the current induced is highly dependent on the orientation of the incident
E -field. In the case shown in Figure 1.5b, the incident E -field is vertical,
which for normal incidence will produce only push–push currents, as
indicated in the figure, whereas for oblique incidence in the horizontal
plane a weak circulating current will be present in addition to strong
push–push currents. However, when the incident E -field is horizontal, as
shown in Figure 1.5c, we will observe a circulating current for any angle
of incidence unless Ē is perpendicular to the plane of the loop.

It was not long after Pendry’s postulates that a group of physicists
at the University of San Diego made a combination of flat wires and
split-ring resonators, as shown in Figure 1.6 [10–13]. They then per-
formed measurements on a wedge-shaped body as shown in Figure 1.7b.
The idea was, as illustrated, that the refracted field would depend strongly
on the sign of the refractive index, n1. In fact, they measured the refracted

Figure 1.6 Original periodic structure used by the San Diego group to demonstrate the
presence of negative refraction.
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n1 > 0

n1 < 0

n

NIM: 
Negative 
Index 
Material

Note: Curves
to the left are
~14-20 dB
below curves
to the right

(b) Veselago’s Medium (c) Periodic Structure

n1 < 0

(a)

Ei

Horseshoe
elements

Figure 1.7 (a) Curves to the right represent the field refracted through a Teflon wedge
as shown in part (b). Curves to the left are perceived as being the field refracted through
a wedge made of wires and a split-ring resonator, as shown in part (c). Note that they
are actually about 20 dB below (ca. 1% power) the curves to the right even if they are
all shown normalized to 100%. (After ref. 14, with permission.)

field for a Teflon wedge (ε ∼ 2.1) and obtained the refraction curve to
the right in Figure 1.7a. They also measured the refracted field from a
wedge-shaped assembly of wires and split-ring resonators, as shown in
Figure 1.7c. Actually, the (measured) curves to the left in Figure 1.7a
were not measured by the San Diego group but were obtained later
by a group working at Boeing’s “Phantom Works” [14]. They went to
great lengths to obtain the exact refraction in both the far field [NIM
(negative index material) 66 cm] and the near field (NIM 33 cm).
Note how the sidelobes in the far-field pattern are almost gone for the
near-field case, as is typically seen in antenna experiments. However,
the most interesting feature is probably the fact that the refracted field
for the synthesized material is about 14 to 20 dB or more below the
refracted field for the Teflon case. Such a large loss cannot be attributed
to either ohmic or dielectric loss for frequencies below 100 GHz. This
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fact and the presence of sidelobes in the far field suggested to this author
that the refracted field for the synthesized material was actually not a
refracted field but merely the radiation pattern for a surface wave that
can exist only on a finite periodic structure. Such surface waves have
not been demonstrated for split-ring resonators per se. However, they are
well documented for simple straight wires (dipoles) [15–21]. In fact, a
typical surface wave is shown in Figure 1.8b, where 50 dipoles, each
of total length about 0.35λ, are exposed to an incident plane wave at
45◦, as shown in the insert [20,21]. First, we note that the level of the
surface-wave radiation is about the same as that of the blue refracted
curve in Figure 1.8a (ca. 20 dB down). Next we note that the decay rate
for the sidelobes is about the same for the two patterns. It should be
emphasized further that the orientation of the E -field is as indicated in
Figure 1.5b (see Figure 1.6). Thus, there were only very weak circulating
currents such that µ would be weak according to Pendry. Nevertheless,
negative refraction, although very weak (<14 to 20 dB below a Teflon
wedge), was still claimed.

Finally, there are numerous papers in which negative refraction has
been claimed for basically straight loaded or unloaded elements with no
circulating currents, typical examples being shown in Figure 1.9 [22,23].
Note, in particular, Figure 1.9c, where the elements have been printed
on each side of a thin substrate and the elements flipped to avoid any
possible chiral or loop effect. All of these elements claim to have measured
negative index of refraction, although with more than 20 dB loss.

The discussion above does not constitute a proof of whether we actu-
ally observe negative refraction or witness another phenomenon. We have
suggested here that it is quite likely the radiation from a surface wave that
typically exists over about 10% bandwidth. However, it could also sim-
ply be part of the sidelobes from the main beam of the field transmitted.
Anyone with experience in measuring the fields scattered from a periodic
structure will know how difficult such measurements are: in particular,
if we are down 20 dB or more. In the next section we show that this
phenomenon is almost certainly not due to refraction.

1.5 HOW DOES A PERIODIC STRUCTURE REFRACT?

1.5.1 Infinite Arrays

In this section some simple and well-known facts about periodic structures
are pointed out. Unfortunately, they are too often overlooked, forgot-
ten, or simply ignored! Consider an infinite × infinite array, as shown in
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Figure 1.8 (a) Same curves as shown in Figure 1.7. However, note how the sidelobes
of the curves to the left are similar to the sidelobes of surface-wave radiation shown in
part (b). Further, the radiation intensity is about the same (ca. 20 dB below maximum).
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Chiral effect?
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To avoid 
possible 

chiral effect

(c) (d) (e)

(f)

~

~ ~ ~

Ei

Figure 1.9 Some of many elements with and without circulating current where a negative
index of refraction has been claimed, always 20 dB or more below reference.

Figure 1.10. It is being exposed to an incident plane wave with direction
of propagation ŝ. For the sake of simplicity we will for the time being
assume ŝ to be contained in the yz -plane. For ŝ pointing upward to the
right as shown in the figure, it is clear by implication of Floquet’s theorem
that the voltages induced in row 1 will be delayed by βDz sz compared
to row 0. However, the fields re-radiated from row 1 will be ahead by
the same amount, βDz sz , for waves propagating in the forward direction
ŝ as well as in the specular direction ŝs = x̂sx − ŷsy + ẑsz, as illustrated
in Figure 1.10a and b, respectively. In other words, propagation in these
two directions is always possible unless the element pattern has a null in
any of these directions.

We now ask: Is it possible to reradiate a plane wave in an arbitrary
direction ŝa? If so, the elements in row 1 will have a phase advance of
βDz saz . Only if the sum of the delay and advance adds up to a multiple
of 2π can a plane wave propagate in the direction ŝa . (Remember: Our
array is infinite × infinite, not finite; see later.) Thus, the condition for
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delayed

advanced

(a)

(b)

I0
0

I−1
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Ei
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0

I−1
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Dz
Ei

s

s

Specular
(always)

Fundamental Array Theory 
For an infinite array, Floquet’s Theorem states

that In = I0e−jbnDzsz

ss

i

Figure 1.10 An incident plane wave with direction of propagation ŝ will induce a voltage
in element 1 that is delayed by βDz sz compared to element 0. Conversely, the re-radiated
field from element 1 will be advanced by βDz sz compared to element 0 in the forward
direction ŝ (top) as well as in the specular direction ŝs (bottom). Thus, propagation in the
forward and specular directions is always possible. (Note the infinite arrays.)

reradiation in the arbitrary direction ŝa is (see Figure 1.11)

βDx(sz − saz) = 2πn1 n1 = 0, ±1, ±2, . . .

or recalling that β = 2π /λ,

Dz

λ
= n1

sz − saz

n1 = 0, ±1, ±2, . . .
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delayed

Dz

Ei

s

s

delayed

Grating lobe for
total delay = 2pn

Note: Floquet’s theorem is valid for ALL 
element types (they merely change the 

element pattern). This is at variance with the 
theory for an artificial dielectric.

sa

Grating lobes possible only for Dz > l/2. 
Thus, NO negative refraction for “continuous”

medium (i.e., Dz < 0.4l)

Figure 1.11 In contrast to the case in Figure 1.10, propagation in an arbitrary direction
ŝa is possible only if the total phase delay is 2πn . These are simple grating lobe directions.
(Note the infinite arrays.)

which shows that it can always be satisfied provided that we make Dz /λ
sufficiently large. However, the smallest value of Dz /λ is obtained for
n1 = +1 and sz = 1 (grazing incidence upward) and saz = − 1 (grazing
re-radiation downward). In that case,

Dz

λ
= 1

2

In other words, for Dz/λ < 1
2 , re-radiation is possible only in the

forward direction ŝ and the specular direction ss (infinite array only). For
Dz/λ > 1

2 , propagation in other directions is possible (see Figure 1.11).
In fact, these are simply the well-known grating lobe directions.

Note that the phase velocity along the z -direction is opposite
for the incident and the lowest grating lobe direction. For that rea-
son this grating lobe has sometimes mistakenly been denoted as a
“backward”-traveling wave. These grating lobes are encountered in
numerous microwave devices, such as the backward-traveling oscillator
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and the backward-traveling antenna, as well as in photonic bandgap
materials. They have been known for a long time and are well understood.
Again, we emphasize that these backward-traveling waves can exist only
when the interelement spacings Dx and Dz exceed λ/2, and not for Dx ,
Dz < ∼0.4λ.

The term backward-traveling wave was later suggested to mean a wave
where the phase and group velocity were opposite each other [28–31].
It was thought that Veselago associated such waves with his findings for
media with negative µ and ε when he concluded that the phase velocity
and the Poynting vector were opposite each other. However, this writer is
not aware that he ever used the term backward-traveling wave. Note: The
grating lobes have identical phase and group velocity in a dispersionless
medium. There is nothing “backward” about them.

We should note further that in the world of metamaterials, the interest
seems to concentrate on two types of materials:

1. The interelement spacings Dx and Dz are somewhat smaller than
λ/2, typically λ/4 or smaller. These cases are often denoted as “con-
tinuous,” and the phase difference between adjacent elements is
typically ignored (an approximation not allowed in the rigorous the-
ory of periodic structures).

2. The interelement spacings are somewhat larger than λ/2, typically
0.7 to 1.5λ. These materials fall into a category usually called pho-
tonic bandgaps or crystals . They are often perceived as being able to
propagate “backward”-traveling waves. Actually, these are nothing
but grating lobes, as discussed above.

In other words, the direction of refraction in air is determined solely
by the interelement spacings Dx and Dz as well as the direction ŝ of the
incident field, never by the element type.

These will determine where the structure resonates, the bandwidth, and
to some extent, variation with angle of incidence as well as the amplitude
in general of the scattered fields. Which leaves us with the following
conclusion: The extensive discussion of whether surfaces with elements
such as the split-ring resonator are blessed with negative refraction and
others are not is somewhat misguided. In fact, a periodic structure (of
infinite extent) of the continuous type Dx , Dz < λ/2 and no dielectric can
only produce a refracted field with refraction at n = + 1! You may forget
entirely about negative refraction!
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1.5.2 What About Finite Arrays?

The categorical denial above that any refraction other than the forward is
specular if Dx , Dz < λ/2 is, rigorously speaking, true only for an infinite
structure. In reality, all structures are, of course, finite. This fact will have
certain consequences. Foremost, the signals in the forward and specular
directions will occur in the form of main beams in each of these directions.
They will be flanked by numerous sidelobes. Exact calculated examples
of finite × infinite arrays is given in refs. 15–21.

Further, a finite periodic structure is able to sustain certain types of
surface waves not possible when the same structure is of infinite extent.
Note: It is of utmost importance that the interelement spacing be less than
λ/2 (i.e., the structure is of the “continuous” type). In that event we find
that currents associated with the surface wave can be much stronger than
currents associated with the mainbeams described above, typically over
about 10% bandwidth and when the total element length is about 0.35λ for
a simple dipole element [20; Figure 10 in Appendix A]. The surface wave
current will, of course, re-radiate like any other element current. The good
news is that the surface wave has a low radiation efficiency such that the
reradiated field is typically about 14 to 20 dB or more below the amplitude
of the mainbeam despite the higher current amplitudes. In addition to
the pure surface waves, some currents will usually be associated with
reflections from the edges. However, these radiations are usually small
compared to those of pure surface waves (for details, see ref. 20).

The sum of the surface wave and the end currents are often referred to
as residual currents . The re-radiation from these is shown by the radiation
pattern in the middle of Figure 1.8b. Note that it has both the same level
as the blue curves (about 20 dB below the Teflon wedge) and similar
sidelobes: in short, a strong indication that we are seeing radiation from
a surface wave and not a simple refraction. (In that case there would be
no sidelobes!)

The discussion above emphasized the physical aspect of refraction.
However, for those who prefer a more mathematical approach, in the
next section we present the highlight of the plane-wave expansion [5].
This will demonstrate essentially two features:

1. The re-radiated field from a periodic structure is always right-
handed, regardless of element shape or type.

2. The field both inside and outside a multilayered periodic medium is
always right-handed.
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1.6 ON THE FIELD SURROUNDING AN INFINITE PERIODIC
STRUCTURE OF ARBITRARY WIRE ELEMENTS LOCATED
IN ONE OR MORE ARRAYS

1.6.1 Single Array of Elements with One Segment

Consider a single planar array as shown in Figure 1.12. The elements are
oriented along p̂1,1, where p̂1,1 is arbitrary except that it is contained in the
plane of the array.∗ Further, we denote the infinitesimal element length by
dl1,1, the current by I1,1, and the reference point of the reference element
by R̄1,1. This array, with interelement spacings Dx and Dz , is exposed to
an incident plane wave with direction of propagation

ŝ = x̂sx + ŷsy + ẑ sz (1.2)

Z
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d 1,1 Dz

I1,1

s

p1,1
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Figure 1.12 Plane wave with direction of propagation ŝ incident upon an infinite array
of single-segment elements with orientation p̂1,1, length dl1, 1, current I 1, 1, and reference
point R̄1, 1. A plane wave will be scattered in the forward direction, r̂+(0, 0) = ŝ, as well
as the specular direction, r̂− (0,0). Note: The total field in the forward direction is the sum
of the incident and scattered fields. Further, there will be an infinite sum of evanescent
(exponentially decreasing) waves. They make up the near field associated with the array.

∗In the following, the first superscript refers to the array number, the second to the element
section.
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Denoting the element current in column q and row m by I 1,1
q,m, it follows

from Floquet’s theorem [5] that the element currents are given by

I 1,1
q,m = I

1,1
0,0 e−jβqDxsx e−jβmDzsz (1.3)

(i.e., they all have the same amplitude, and a phase which matches that
of the incident plane wave with direction of propagation ŝ).

It has been shown rigorously that the electromagnetic fields from an
infinite array are given by a spectrum r̂± of inhomogeneous plane waves
[5,24–27]:

dH̄ 1,1 = I
1,1
0,0 dl1,1 1

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβ(R̄−R̄1,1)·r̂±

ry

[p̂1,1 × r̂±]

for y ≷ 0 (1.4)

dĒ1,1 = I
1,1
0,0 dl1,1 Z

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβ(R̄−R̄1,1)·r̂±

ry

[p̂1,1 × r̂±] × r̂±

for y ≷ 0 (1.5)

The spectrum r̂± denotes the directions of the inhomogeneous plane waves
emanating from the array. They are found to be [5]

r̂± = x̂rx + ŷry + ẑ rz

= x̂

(
sx + k

λ

Dx

)
± ŷry + ẑ

(
sz + n

λ

Dz

)
for y ≷ 0 (1.6)

where

ry =
√

1 − (sx + k
λ

Dx

)2 − (sz + n
λ

Dz

)2 (1.7)

The fields expressed by equations (1.4) and (1.5) depend on ry as
follows: For the principal direction k , n = 0,0, we see from (1.7) that ry

is always real since |sx |,|sz |≤1 [see (1.2)]. This corresponds to a plane
wave r̂+(0, 0), transmitted in the forward direction ŝ and another reflected
in the specular direction ŝs = r̂−(0, 0) = x̂sx − ŷsy + ẑsz, as illustrated
in Figure 1.10. For |k |,|n| > 0, 0, ry may still be real provided that the
interelement spacings Dx and Dz are large enough. These directions are
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termed grating lobe directions . They are discussed in Section 1.6.4 (see
also Section 1.5).

However, for higher values of k and n, ry will always be imaginary; that
is, the exponent in the plane waves e−jβ(R̄−R̄1,1)·r̂± will be real, depicting
evanescent waves that go to zero as the point of observation R̄ moves
away from the array, as illustrated in Figure 1.12. (Formally, it is, of
course, possible to choose the sign for ry such that the evanescent field
components would increase exponentially to infinity as we move away
from the array. However, such a solution is obviously invalid since it
violates fundamental physical laws.) The sum of these evanescent waves
constitutes the near field surrounding the elements.

Note: Our array is located in an ordinary dispersionless media and not
in Veselago’s medium. Also, the field vectors dĒ1,1 and dH̄1,1are oriented
along [p̂1,1 × r̂±] × r̂± and [p̂1,1 × r̂±], respectively (i.e., dĒ1,1 and dH̄1,1

and the propagation r̂± form a right-handed triplet). It is relatively simple
to show that it holds as well when ry becomes imaginary (i.e., for the
evanescent waves).

Also, if the array is located in a dispersionless medium, Poynting’s
vector will coincide with the directions of propagation r̂± as given by
equations (1.6) and (1.7). Thus, the spectrum of plane waves radiated
from this simple periodic structure will definitely be right-handed and
never left-handed as is the case for “Veselago’s medium.”

1.6.2 Single Array of Elements with Two Segments

Next, we again consider a single array, but this time with elements made
of two segments with arbitrary orientation p̂1,1 and p̂1,2, elements length
dl1,1 and dl1,2, currents I 1,1 and I 1,2, and reference points R̄1,1 and R̄1,2,
respectively. Obviously, the array with element orientation p̂1,2 has the
same interelement spacings Dx and Dz as the first [i.e., the two arrays
have the same spectrum r̂±; see equations (1.6) and (1.7)]. Thus, the fields
from the array with orientation p̂1,2 are

dH̄ 1,2 = I
1,2
0,0 dl1,2 1

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβ(R̄−R̄1,2)·r̂±

ry

(p̂1,2 × r̂±)

for y ≷ 0 (1.8)

dĒ1,2 = I
1,2
0,0 dl1,2 Z

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβ(R̄−R̄1,2)·r̂±

ry

(p̂1,2 × r̂±) × r̂±

for y ≷ 0 (1.9)
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The total H -field from the combined array is obtained by addition of
equations (1.4) and (1.8):

dH̄ = dH̄ 1,1 + dH̄ 1,2

= 1

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβR̄·r̂±

ry

(p̂1,1dl1,1I 1,1ejβR̄1,1·r̂±

+ p̂1,2dl1,2I 1,2ejβR̄1,2·r̂±) × r̂± for y ≷ 0 (1.10)

Similarly, the total E -field from the combined array is obtained by addition
of equations (1.5) and (1.9):

dĒ = dĒ1,1 + dĒ1,2

= Z

2DxDz

∞∑
k=−∞

∞∑
n=−∞

e−jβR̄·r̂±

ry

[(p̂1,1dl1,1I 1,1ejβR̄1,1·r̂±

+ p̂1,2dl1,2I 1,2ejβR̄1,2·r̂±) × r̂±] × r̂± for y ≷ 0 (1.11)

Inspection of equations (1.10) and (1.11) shows readily that a single array
with elements comprised of two segments will have a field where dĒ, dH̄,
and r̂± form a right-handed system.

Note: There will, in general, be strong coupling between the two seg-
mented arrays such that I 1,1 and I 1,2 may differ significantly from the
single-segment cases. This coupling is incorporated in our theory and
the PMM program∗ such that the array currents are always calculated
correctly.

1.6.3 Single Array of Elements with an Arbitrary Number
of Segments

Extension from two to an arbitrary number of element segments is done
simply by induction. Again, we conclude that only right-handed waves
will emanate from a single array, regardless of the shape of the elements.

∗PMM stands for periodic method of moments . It is available from the U.S. Air Force. It
was written by Lee Henderson as part of his dissertation at the Ohio State University. It
is considered one of the fastest and most reliable programs available.
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1.6.4 On Grating Lobes and Backward-Traveling Waves

When ry is real, we experience propagating plane waves. We saw earlier
that we always have two propagating waves for k , n = 0,0, corresponding
to the forward and reflected waves shown in Figure 1.12 (these are also
called the principal waves). However, as seen by inspection of equation
(1.7), we may also obtain propagating waves for a limited number of
values of k , n, depending on the interelement spacings Dx and Dz as well
as sx and sz . The lowest-order grating lobe is obtained for either sz = 0
with k , n = − 1, 0 or sx = 0 with k , n = 0, − 1. The latter case is illustrated
in Figure 1.13. Note that the component of the phase velocity along the
z -direction is opposite for the incident and lowest grating lobe directions.
For that reason this grating lobe has sometimes mistakenly been denoted
as a backward-traveling wave. These grating lobes are encountered in
numerous microwaves devices, such as the backward-traveling oscillator,
the backward-traveling antenna, and photonic bandgap materials. They
have long been known and are well understood. Again, we emphasize
that these backward-traveling waves can exist only when the interelement
spacings Dx and Dz exceed λ/2.

The term backward-traveling wave was later suggested to mean a wave
where the phase and group velocities were opposite each other [28–31].
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Figure 1.13 Plane wave incident upon an infinite array may also, in addition to the
forward and specular reflected waves, produce plane waves in the grating lobe direction
r̂+(0,−1) and r̂+(0, −1) if the interelement spacings Dz >λ/2 and sx = 0. Note: All
waves are right-handed.
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It was thought that Veselago associated such waves with his findings for
media with negative µ and ε when he concluded that the phase velocity
and the Poynting vector were opposite each other. However, this writer is
not aware that he ever used the term backward-traveling wave. It should
be emphasized that Veselago and his followers, in general, consider media
with interelement spacings of less than λ/4 (denoted continuous); that is,
we are definitely not talking about grating lobes here. Furthermore, these
newer backward-traveling waves can only exist in a highly dispersive
medium. It is claimed that it is possible to construct these artificially by
periodic loading of a transmission line [28–31] (see also Section 1.9).
This writer is not aware that the equivalent was ever done in free space.
At any rate, group velocity and phase velocity are the same for free space
and a dispersionless medium. In other words, there is absolutely nothing
“backward” about any of the plane waves emanating from a periodic
structure in Figure 1.13 as long as it is placed in a medium without
dispersion. The Poynting vector for all these plane waves points in the
direction of propagation r̂± regardless of the number of element segments
or element shapes.

1.6.5 Two Arrays of Elements with an Arbitrary Number
of Segments

So far we have considered only a single array with an arbitrary number
of element segments. We found that the field emanating from such an
infinite array consisted of a spectrum r̂± of inhomogeneous plane waves,
as given by equations (1.6) and (1.7):

1. A propagating wave in the forward and specular directions corre-
sponding to k , n = 0,0 (also called the principal directions)

2. A finite number of grating lobes if the interelement spacings Dx and
Dz are large enough, corresponding to a finite number of k , n �= 0,0

3. An infinite number of evanescent waves that go to zero as we move
away from the array

As shown earlier, all of these waves are right-handed. We now place
another array a certain distance d1 to the right of the first array, as illus-
trated in Figure 1.14. The interelement spacings Dx and Dz are the same
as for array 1, but the number of element segments is arbitrary. Thus, the
spectrum r̂± is the same for the two arrays.

We now calculate the currents in all the element segments. Just as
the coupling between the segments in one array can be significant, as
noted above, it will also be significant between the segments in the two
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Figure 1.14 Plane wave with direction of propagation ŝ incident upon two arrays with
interelement spacings Dx and Dz . Each array emanates plane propagating waves in the
forward as well as the specular directions; they are all right-handed and so are their sums,
regardless of region. Further, there will be an infinite sum of evanescent (exponentially
decreasing) waves that represent the near field associated with both arrays. Note: The
arrays are located in a medium without dispersion.

arrays. We emphasize that this coupling is always taken rigorously into
account both in the theory treated in refs. 5,24, and 25 and in the PMM
program [26,27]. Once we find all the segment currents in both arrays
in each other’s presence, the determination of the fields emanating from
each array is done precisely as was done for the single-array case treated
earlier and as shown in Figure 1.14. We define three regions:

• Region 1 is the semi-infinite space to the left of array 1.
• Region 2 is the space between arrays 1 and 2.
• Region 3 is the semi-infinite space to the right of array 2.

In region 1 we observe left-going propagating waves radiating from the
two arrays; similarly, we have right-going waves in region 3; and we have
both left- and right-going waves in region 2, as shown. All of these waves
are right-handed. The total field is obtained simply by superposition of
the fields from the two arrays. There can be no doubt that in regions 1
and 3 the total field will be right-handed. Further, in region 2 we simply
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obtain a total field of two right-handed waves crossing each other. Neither
one of these waves can ever turn into left-handed waves, since that would
require the presence of Veselago’s magic material, which everyone agrees
does not exist in nature. Remember that our support medium is assumed
to have no dispersion (i.e., linear).

1.6.6 Can Arrays of Wires Ever Change the Direction
of the Incident Field?

Even for a multilayer, infinite array with identical interelement spacings
of less than λ/2, the element currents in each array will always follow
Floquet’s theorem [see (1.3)]. As shown earlier, this can only lead to a
plane-wave spectrum with directions r̂± (i.e., never “bend” the incident
field unless the waves are somehow slowed down). Molecular “dipoles”
are a different matter (see also Sections 1.12.1 and 1.12.2 regarding arti-
ficial dielectrics.

1.7 ON INCREASING EVANESCENT WAVES: A FATAL
MISCONCEPTION

The total evanescent field in Figure 1.14 is obtained by superposition of
the evanescent waves from each array. However, these will, in general,
not be in phase, and thus the total field cannot be obtained by simple
addition of the magnitudes from the individual arrays. In fact, they could
be out of phase and actually produce a null somewhere between the two
arrays. Whatever the case, it is obvious from inspection of Figure 1.14
that the total field can increase only when the point of observation moves
close to the elements, not all of a sudden because we are in a “Veselago
medium.” We are still in a medium without dispersion, and straightforward
rules prevail. This writer is not aware of any demonstration of increasing
evanescent waves except on capacitively loaded transmission-line models
terminated in a resistive load [28,29].

It is, of course, quite possible to have a multiarray configuration as
shown in Figure 1.15 or a transmission line where the last array has a
much stronger current than that of the other arrays. (This situation could
easily be obtained by loading the arrays in front of the last array either
resistively or reactively.) Obviously, the total field will be dominated by
the field from the last array, and this situation could be misinterpreted as
an “evanescent” wave that “grows” as it moves through some “magic”
material. Remember, you are in ordinary air between the elements where
the classical laws of electromagnetics prevail.
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Array 1 Array 2 Array 3

s

Ei

Figure 1.15 Several arrays where the one to the right is designed to have a much
stronger element current than the others. This will produce a dominating evanescent field
that often is misinterpreted as “proof” that the evanescent wave(s) can increase as you
move from left to right.

1.8 PRELIMINARY CONCLUSION: SYNTHESIZING
VESELAGO’S MEDIUM BY A PERIODIC STRUCTURE
IS NOT FEASIBLE

In Section 1.2 we presented what is widely believed about Veselago’s
medium. We emphasize that the negative refraction was conceived by
Veselago, but some of the other features were suggested by others.
Although such materials have never been found in nature, it was
suggested by Pendry that such materials could be synthesized by periodic
structures with special elements. However, we found some troubling
deviation between Veselago’s theoretical material and what can de facto
be obtained by using periodic structures. Regardless of element shape,
the most prevalent factors were:

1. A negative index of refraction is observed between Veselago’s
medium and a medium with ε, µ> 0. The phase match between
the incident and refracted fields was explained by the concept of
backward-traveling waves, as discussed in refs. 28–31. However, no
trace of such waves was found in a lossless periodic structure, although
they can exist on cables terminated in a proper load, as explained in
Section 1.9. Experimental evidence of negative refracted fields in a finite
periodic structure is plagued by persistent unexplained loss in excess of
about −14 to 20 dB [10,14]. This writer has suggested that the field



PRELIMINARY CONCLUSION 25

observed is not a refracted field but radiation from a surface wave
characteristic of finite periodic surfaces [20,21]. Further, we found no
evidence that periodic structures with interelement spacings of less than
λ/2 could change the direction of the incident field, as one would expect
for an index of refraction n �= 1 (however, see also Section 1.12.2).

2. It is widely believed that the input impedance of Veselago’s medium
mounted in front of a ground plane can rotate the “wrong” way (coun-
terclockwise) in the Smith chart (see Figure 1.2 and refs. 2–4). We
found absolutely no indication of such a phenomenon in lossless peri-
odic structures suspended in a dispersionless medium (however, see also
the discussion in Section 1.9).

3. Just as propagating waves in Veselago’s medium can rotate the
“wrong” way in a Smith chart, it is quite logical that evanescent waves
might increase. In fact, it is generally believed that Veselago’s material
will support an evanescent wave that increases as you move away from
the source (see, e.g., ref. 28, Fig. 3.27 and Sec. 3.7). We found that a
periodic structure could only produce truly evanescent waves that would
decrease as you move away from the individual arrays. Surely, a multi-
array configuration could be designed such that a superficial look could
give the impression that an evanescent wave increases as you go through
the periodic structure (see Figure 1.15).

4. Veselago claims that a plane wave propagating through his material
is left-handed; that is, Ē, H̄, and the direction of propagation (phase) form
a left-handed triplet, while Ē, H̄, and Poynting’s vector (energy direction)
form a right-handed triplet as usual, regardless of the handedness of the
medium. This implies that we will observe a time advance as we move
away from the source (see Figure 1.2 as well as ref. 2). This concept is
explained alternatively by backward-traveling waves [30,31]. (Note that
very few of the classical textbooks treat this subject at all.)

However, we found from rigorous calculations that the field from
an infinite periodic structure regardless of the element shape is always
right-handed, both inside and outside the periodic structure. Further, there
was never any trace of backward waves whatsoever. And as all experi-
enced antenna engineers know, nothing ever moves backward in a Smith
chart as long as our load impedance is purely imaginary (Foster’s reac-
tance theorem).

It should finally be emphasized that all impedance components in the
discussion so far have been completely lossless, including the termination
of the space behind the periodic structure. When resistive or dielectric loss
is present, the situation changes radically, even if only the termination is



26 WHY PERIODIC STRUCTURES CANNOT SYNTHESIZE NEGATIVE INDICES

lossy. Basically we will, in that case, move inside the rim of the Smith
chart such that Foster’s reactance theorem no longer holds. This case is
discussed in the next section, where we illustrate a typical case in the form
of a transmission line terminated in a complex load. This is a little easier
than a periodic structure to comprehend, and it has already been discussed
in several places [28,29]. Subsequent extension to periodic structures will
be facilitated (see Section 1.9.2).

1.9 ON TRANSMISSION-LINE DISPERSION:
BACKWARD-TRAVELING WAVES

1.9.1 Transmission Lines

One of the most remarkable conclusions above was that the input
impedance of a lossless transmission line terminated in a pure reactance
is always located on the rim of the Smith chart and always runs clockwise
with frequency (see Figure 1.2), never the other way around unless you
really have a negative index of refraction. But what if the transmission
line is terminated in a complex load rather than a pure reactance?

In fact, this problem has been investigated in numerous papers and
at least four books [28–31]. The approach taken there is to start with
the equivalent circuit for an ordinary transmission line (i.e., comprised of
series inductors and parallel capacitors). The next step is to use duality to
obtain an equivalent circuit with series capacitors and parallel inductors.
By using simple first-order approximations, it is shown next that the dual
circuit has a phase velocity equal to the negative of its group velocity. We
shall not repeat the derivation here, since it suffers from several flaws, one
being that the result is incorrect, and another that we end up with a dual
circuit without a transmission line. This “essential” part could certainly
be added later, but that approach leads to unnecessary complications and
is still not satisfactory [28].

It is, in fact, usually much better to ask a direct question: What can
be done to eliminate or at least reduce the dispersion of a transmission
line? Actually, it has very little to do with duality. In fact, this problem
is solved in the most direct way by use of the Smith chart, as illustrated
by the following example.∗

∗The Smith chart is often frowned upon as being an approximate graphical approach.
However, we should hasten to emphasize that the Smith chart represents a graphical
illustration of an exact solution, not just some first-order approximate formulas. Most
important, it depicts exactly what goes on in the complex plane and helps us in our
thought process.
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Figure 1.16 (a) Smith chart showing the input impedance Z as a function of frequency
of a transmission line terminated in a load impedance Z L (real). (b) The same as in part
(a) above but with an LC series circuit to Z L. It is seen to reduce the dispersion of Z i ; in
fact, it does run backward over a limited frequency range. This does not violate Foster’s
reactance theorem because Z L is lossy, so we are not on the rim of the Smith chart.

In the insert of Figure 1.16a we show a transmission line with charac-
teristic impedance Z 0, length ∼λ/8, and terminated with a load impedance
Z L ∼ 2Z 0. The input impedance Z i as a function of frequency will typi-
cally look as shown in the Smith chart in the same figure, where the gap
between the low frequency f L and the high frequency fH is an indication
of the dispersion of the transmission line.
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We ask a simple question: Is there any way in which this dispersion
gap can be reduced or perhaps even reversed? As we shall see, there is
indeed, but only if Z L is located inside the Smith chart (i.e., has a resistive
component), never when it is located on the rim of the Smith chart (i.e.,
is purely reactive). We illustrate this statement by the example shown in
Figure 1.16b. As seen in the insert, we have added a series LC circuit
to Z L ∼ 2Z 0 that resonates at the center frequency, f0 ∼ 1

2(fL + fH). In
other words, the effective load impedance for the transmission line will
be located on part of a circle going through Z L and the infinity point,
as shown (see Appendix B of ref. 32). Note that this impedance, when
seen from the center of the Smith chart, will rotate counterclockwise (the
“wrong” way) as the frequency increases from the low frequency f L to
the high frequency fH . In other words, if we next add the clockwise
rotation from the transmission line, we obtain an input impedance, Z i ,
with a strongly reduced gap between f L and fH (i.e., we have reduced
the dispersion for the transmission line and part of the curve is actually
running “backward”).

This approach can be extended and modified in many ways. If, for
example, we extend the length of the cable from about λ/8 to about λ/4,
as shown in Figure 1.17a, the new Z i may have the high frequency fH ,
somewhat ahead of the low frequency f L (i.e., we see a moderate disper-
sion). However, if we note that the impedance of a parallel LC circuit
is located on the rim of the Smith chart around the infinity point of the
Smith chart, as shown, it is easy to see that adding this impedance in
parallel with Z i will result in a new Z i where the dispersion even for this
longer cable is strongly reduced, as shown in Figure 1.17b (see Appendix
B in ref. 20).

We can extend this approach indefinitely, alternating between series and
parallel LC circuits. It is easy to see that the waves on this composite cable
can be considered as a combination of forward- and backward-traveling
waves, where the first is always present and the relative strength of the
second depends on the specific design. Although this is all well and good,
it would be erroneous to think that we have produced a new exotic mate-
rial. In fact, if we let the original load impedance, Z L, go toward the
rim of the Smith chart, we observe that only the forward-traveling wave
will remain. Or put another way, if we cut a section out of our composite
cable, it has no particular redeeming feature. We have simply demonstrated
some old network tricks, well known for broadband matching technique
[20,32].

It should finally be noted that the concept as presented here has some
similarities with the circuit obtained by the duality concept: for example,
the use of parallel capacitors. However, it fails to use the inductors, which
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give a greater variation with frequency. Also, it does not alternate between
parallel and series LC circuits at every λ/4 separation. All in all, the
duality approach is lacking compared to the circuit presented here. Actu-
ally, there is very little justification in using duality to deal with this
problem.
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Figure 1.17 (a) The same as in Figure 1.16a but for a longer transmission line. Also
indicated to the right in the Smith chart is the impedance of a parallel LC circuit. (b)
When the parallel LC circuit is added to the left of the transmission line, we observe
reduced dispersion of Z i , even backward-traveling waves over a limited frequency range.
Note: We have not “invented” a new “material,” since it falls apart for Z L reactive and
other cases as well.
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1.9.2 Periodic Structures

We investigated above the possibility of limiting or even reversing dis-
persion on a transmission line. This background will greatly facilitate our
extension to periodic structures. An example is shown in Figure 1.18a,
where we show a slotted frequency-selective surface (FSS) to the right
and a dipole FSS to the left. This case differs from the transmission-line
case in Figures 1.16 and 1.17 by the fact that the space to the right with
intrinsic impedance Z 0 will put us right in the center of the Smith chart

Resistively Loaded 
Dipole FSS

Slot 
FSS

Resistive 
Sheet

RZ0 ~Z0

(a)

(b)
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RL

∼λ/4

1
2

Ei

Z0 Z0
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Z0 Z0~Z0
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Figure 1.18 (a) Actual configuration of a combination of a slot FSS backed by a resistive
sheet with a sheet resistance of about Z 0. To the left is a resistively loaded dipole FSS. The
incident field is coming from the left as shown. (b) Equivalent circuit of the configuration
shown in part (a). The circled numbers refer to the impedances looking to the right except
that◦4 refers simply to the loaded dipole FSS without space behind it.
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and not at about 2Z 0, as shown in Figure 1.16. The remedy for this
dilemma is simply to add a resistance sheet of about Z 0 in parallel with
the space impedance as shown in Figure 1.18a and also in the equiva-
lent circuit in Figure 1.18b. This results in a total resistance◦1 equal to
about Z 0/2. We now add the slotted FSS in parallel. Recalling that the
equivalent circuit for a slotted FSS is a parallel LC circuit, we readily
see that the total impedance◦2 looking to the right is merely located on a
circle going through zero and about Z 0/2, as indicated in the Smith chart
in Figure 1.19a. Note that when seen from the center of the Smith chart,
this impedance curve runs the “wrong” way (counterclockwise). Thus, the
impedance◦3 obtained by clockwise rotation of◦2 has reduced dispersion.
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Figure 1.19 (a) The various impedances as denoted in Figure 1.16b shown in a Smith
chart up to◦3 . (b) The remaining impedances from Figure 1.16b shown in a Smith chart.
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Further reduction is obtained by adding a loaded dipole FSS. We recall
that the equivalent circuit◦4 for this configuration is a series RLC circuit,
as shown in Figure 1.18b. As shown in the Smith chart in Figure 1.19b,
this impedance is located on a circle going through RL and the infinity
point. Again we observe that the impedance ◦4 runs the “wrong” way
(i.e., it will reduce the dispersion of impedance◦3 ).

However, we see no particular reason at this point to continue this
discussion concerning the possibility of creating new “materials” with a
negative index of refraction. As mentioned earlier, we have really not cre-
ated any new unique medium but merely applied a well-known approach
from broadband matching techniques [20,32]. And it is far from lossless.
Thus, you can forget about amplification of the evanescent waves.

1.10 REGARDING VESELAGO’S CONCLUSION:
ARE THERE DEFICIENCIES?

1.10.1 Background

In 1968, Veselago asked a simple question: What would happen if both
µ and ε for a material were negative [1]? He concluded that the index
of refraction, n1, between an ordinary medium with µ, ε, > 0 and one
with µ, ε < 0 would be negative. Further, while Poynting’s vector would
propagate in the usual direction, the phase vector would point backward,
later giving rise to the term backward-traveling waves . More extensions
of Veselago’s conclusions were added later by others. However, Veselago
had conceived the most important aspect: a negative index of refraction.
He stated quite correctly that no such material had ever been found or
produced, and he very prudently added that there were, perhaps, very good
reasons for the absence of such materials.

It was eventually suggested by Pendry almost 30 years later that mate-
rials with µ, ε < 0 could be produced artificially by a periodic structure
comprised of special elements [6–9]. We investigated that possibility ear-
lier and concluded that none of the features characteristic of Veselago’s
medium could be produced by a periodic structure regardless of the type
of element. Given that fact, it is natural to ask the simple question: Is
Veselago’s medium physically realizable?

1.10.2 Veselago’s Argument for a Negative Index of Refraction

Veselago arrived at his conclusions by considering the boundary condi-
tions between two media, 1 and 2, as shown in Figure 1.20. He first stated
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that the tangential components for the two media must be equal regard-
less of the sign of µ and ε in the two media; that is (using Veselago’s
notation),

Et1 = Et2 Ht1 = Ht2 (1.12)

Further, the boundary conditions for the normal components states that

ε1En1 = ε2En2 µ1Hn1 = µ2Hn2 (1.13)

Thus, we see clearly that if ε1, µ1 and ε2, µ2 have the same signs, the
direction of propagation k̄2 in medium 2 will be as indicated in Figure 1.20
for n12 > 0. However, if ε2, µ2 has the sign opposite that of ε1, µ1, the
normal components of Ē and H̄ will be opposite each other according
to (1.13), which means that the phase velocity kv2 in medium 2 will
be as indicated in Figure 1.20: left-handed. However, we also note that

D1 = e1En1 = e2En2 = D2

B1 = m1Hn1 = m2Hn2 = B2

Poynting’s vector 
(RH)

Refracted for n12 < 0

Refracted for n12 > 0 
(RH)

(LH)
k2v

k2

k1r

k1

Ei or Hi

Et or Ht

e2
e1

m2
m1

Maxwell’s equations

n12 = ±

e1, m1 e2, m2

Et or Ht

Figure 1.20 Veselago’s proof that the index of refraction is negative for two media if
ε1, µ2 > 0 and ε2, µ2 < 0. His argument is that the tangential field components must be
the same regardless of handedness. However, the normal components change sign with
ε1/ε2 and µ1/µ2 according to Maxwell’s equations, as indicated in the figure. His proof
is correct, but only mathematically, since it implies negative propagation constant β2 and
ultimately negative time (see the discussion related to Figure 1.21).
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Poynting’s vector (in cgs units) is given by

S̄ = c

4π
Ē × H̄ (1.14)

That is, S̄ always forms a right-handed set with the vectorsĒ andH̄ and will
therefore point in the direction opposite k̄2v as also shown in Figure 1.20.

In other words, Veselago had shown that for two media, 1 and 2, where
ε1, µ1 and ε2, µ2 have opposite signs, the index of refraction, n12, would
be negative. Furthermore, since the phase delay through a medium is
given by n12β0d , we observe immediately that for n12 > 0 we experience
a phase delay and, similarly, a phase advance for n12 < 0, as illustrated in
the Smith chart in Figure 1.2. Such conclusions should immediately raise
questions about causality.∗ Indeed, some papers took issue with Veselago’s
conclusion, of which the most conspicuous was one by Valanju, Walser,
and Valanju [33]. However, that merely led to an exchange of comments
from Pendry and others, and eventually died out. In any case, Valanju et
al. were never proven wrong. Meanwhile, the stream of papers concerning
metamaterials continued unabated, and eventually at least four books on
the same subject were published [2,28,29,46].

In this writer’s opinion, Walser and associates were right and one may
wonder why their paper did not have a greater impact. One reason proba-
bly is that it was a little intricate and not immediately understood. Thus, in
the following we attempt a simpler explanation and show that Veselago’s
conclusions have physical deficiencies.

1.10.3 Veselago’s Flat Lens: Is It Really Realistic?

The concept for Veselago’s flat “lens” is by now well known, as shown
in Figure 1.21. It consists of a flat slab where ε2, µ2 not only is negative
but also ε2 = − ε1 and µ2 = − µ1 (i.e., n12 = − 1) such that the refracted
angle, according to Veselago, is always the negative of the angle of
incidence. We show two rays emanating from the source point S located
to the left. They cross inside the lens at a point denoted cross 1 and
outside to the right at a point denoted cross 2. Such crossings are
often thought to be focal points. However, more is required for such
a classification. Foremost, we must require that all rays arrive with the
same phase. Inspection of the two rays show clearly that ray SB is
delayed in phase with respect to ray SA2 by section A1B . Further, section
BA3 is inside the metamaterials where the signal is advanced precisely
by the same amount, according to Figure 1.2, such that the two rays will

∗After all, how can a signal arrive before it starts?
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S

Figure 1.21 Veselago’s flat lens with ε2 =− ε1 and µ2 =− µ1. The longest path ray
will be delayed in phase corresponding to A1B but be advanced in Veselago’s medium
corresponding to BA3 (see also Figure 1.2). However, if the two rays are to arrive at the
same time at cross 1, it must involve negative time in Veselago’s medium. See also the
discussion in the text in conjunction with equations (1.15) to (1.17) as well as Figures
6.1 and 6.2.

arrive at cross 1 in phase. However, we must also require the two rays
to arrive at the crossing at the same time. Obviously, that would require
the time delay A1B to be canceled by a time advance BA3 (i.e., negative
time!). Although negative time does not “offend” mathematicians, it is
definitely not an option open to physicists, particularly not to engineers.∗
So no wonder we have trouble synthesizing Veselago’s medium!

1.11 CONCLUSIONS

When Veselago published his now famous paper in 1968 [1], he merely
asked a simple question: What would happen if both µ and ε were nega-
tive? He came up with several interesting conclusions. The most important
were:

1. The index of refraction between an ordinary medium and one with
µ, ε < 0 would be negative.

2. The field vectors Ē and H̄ and the direction of phase propagation
would form a left-handed triplet, whereas in an ordinary medium
they are right-handed.

∗Surely, it is possible for the two rays to arrive at different times and still be in phase,
but only for a finite number of discrete frequencies. Thus, it fails for a general modulated
signal. Similarly, a “static” case would consist of just one frequency. Since no modulation
would be possible in this case, it would be of no practical interest (see also Section 6.5).
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Apparently there was little interest in Veselago’s work until Pendry
in the mid-1990s suggested that material with negative ε and µ could
be made artificially by use of periodic structures with special elements
[6–9]. He and others subsequently came up with additional conclusions
concerning materials with µ, ε < 0. The most important were:

3. Evanescent waves would increase as they propagate through a
medium with ε, µ< 0, not decrease as they do in an ordinary
medium.

4. The phase would advance in a medium with ε, µ< 0 even if lossless
[2–4], not be retarded as in an ordinary medium.

Conclusions 3 and 4 are identical from a mathematical point of view.
(The exponent in the phase term goes from imaginary to positive real.)
Strangely enough, some can accept one but not the other. (They are, of
course, both wrong. The first leads to infinite energy at infinity; the other
violates causality. See the comments below in conjunction with equations
(1.15) to (1.17).] In this writer’s opinion, the first of the conclusions
above (i.e., negative index of refraction) has never been demonstrated
satisfactorily, despite numerous claims in the literature. Most bothersome
is the fact that the “negative refracted” power is always less than about
1 to 2% of the power transmitted through a low-loss dielectric reference
material. This writer has suggested that the “refracted” field could simply
be radiation from a surface wave characteristic for finite periodic structures
with interelement spacings below λ/2 [20,21]. Or it could be a sidelobe
from the mainbeam(s). But it certainly is not a refracted field! (See also
Appendix D about lossy dielectric wedges.)

The second conclusion, that a material with µ, ε < 0 must have Ē, H̄,

and the propagation factor form a left-handed triplet, is probably the one
that will be most difficult to synthesize by an infinite periodic structure.
In fact, the field from such a structure was shown rigorously to always be
right-handed, regardless of the element type. It would require rewriting
Maxwell’s equations to come up with a left-handed system!

Similarly, the field from an infinite periodic structure was shown
always to consist of either propagating waves with phase retardation as
you move away from the structure where they originate, or of evanescent
waves that are attenuated as you move away. In other words, as claimed
in conclusions 3 and 4, the fields simply could not be synthesized by
an infinite periodic structure whether it consisted of a single array or of
multiple arrays. Of all these conclusions, 3 and 4 are probably the ones
that have been the most difficult for this author to accept. It appears
that Pendry was quite comfortable with satisfying pure math and less
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concerned about physics. It simply makes no physical sense to have the
amplitude of the electric field go to infinity as we go toward infinity.
Nor can a signal arrive before we send it!

Similarly, having the propagation factor β go negative, as indicated in
Figure 1.2, leads to fundamental physical problems. More specifically, let
us consider a medium with propagation constant β and phase velocity v .
Let us assume further that it will take t seconds to travel a distance of d
meters. Then clearly we have

d = vt meters (1.15)

We further have

v = λf = λ2πf

2π
= ω

β
(1.16)

Substituting equation (1.16) into (1.15) yields

d = ωt

β
meters (1.17)

Inspection of (1.17) shows that if we assume that the distance d as well as
the angular frequency ω are both positive (!), clearly β and t must have
the same sign. In particular, if β = n1β0 < 0, as shown in Figure 1.2,
then clearly time t must be negative as well. This observation supports
our discussion in Section 1.10.3 about Veselago’s flat lens. It also lends
credence to the claim of Valanju et al. [33] that causality is violated for
materials with µ, ε < 0 (see also Figures 6.1 and 6.2).

Certainly, Veselago was right when he stated in his original paper that
material with µ, ε < 0 has never been found in nature. And he added
(very prudently): “There are perhaps good reasons for this.” He was,
in this writer’s opinion, also correct in his proof of negative index of
refraction—however, only from a purely mathematical point of view.
From a physical point of view, it was deficient because it leads to negative
time. Walser et al. saw this very early, in 2002 [33].

This writer attended Engheta’s oral presentation in Torino in 2001 [3].
He commented from the floor that he found the paper very interesting but
that he did “not believe a word of it because it violated Foster’s Reactance
Theorem.” It was followed by much discussion, but no agreement was
reached.

We finally investigated the possibility of backward-traveling waves in
transmission lines. These are deemed absolutely essential in obtaining the
features characteristic of Veselago’s medium. They have been investigated
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intensely by [28] and [29] using duality. We used a more direct approach
here simply by applying a broadband matching technique. We found that
it is indeed possible (and well known) to obtain an input impedance of
a transmission line terminated resistively that makes a loop running the
“wrong” way in the Smith chart, as seen from the center over a limited
frequency band. This can be interpreted as a backward-traveling wave
superimposed on a forward-traveling wave. But this is possible only if
the transmission line is terminated in a resistive load in conjunction with
a suitable reactance, never if the load impedance is purely imaginary.
In other words, it is possible only when we are inside the Smith chart,
where Foster’s reactance theorem does not hold. We would therefore
not characterize this as a special material (it “works” only when termi-
nated with special loads) but, rather, as an application of the well-known
broadband matching technique. And this solution is, of course, inherently
lossy.

1.12 COMMON MISCONCEPTIONS

1.12.1 Artificial Dielectrics: Do They Really Refract?

Artificial dielectrics made of arrays of short conducting wires suspended
either in free space or in a mother dielectric have been known for more
than 50 years. W. E. Kock [34] is usually credited with being the origi-
nator of the fundamental idea: that an array of small metallic objects can
delay a plane wave propagating through such a medium similar to what is
observed in an ordinary dielectric medium compared to free space [34].
It is further believed, at least by some, that this delay can change the
direction of propagation.

However, earlier in the chapter we stated categorically that a periodic
structure of any conducting planar elements suspended in free space can-
not change the direction of a plane wave incident upon such a structure.
Obviously we owe the reader an explanation for this discrepancy. We are
well aware that we disagree with the prevailing view regarding artificial
dielectric.

The concept for artificial dielectric is based on an equivalent transmis-
sion line loaded periodically with shunt impedances, Z s , corresponding to
each array as shown in Figure 1.22. It is further well known that for short
wires (2l < 0.3λ) the equivalent shunt impedances Z s are basically capac-
itive, resulting in a phase delay compared to that of free space, β0d per
array. This fact is usually taken into account by introducing the effective
propagation constant βeff, where in the present case, βeff > β0. The theory
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Figure 1.22 (a) Example of an artificial dielectric of small wires suspended in air; (b)
equivalent circuit of the artificial dielectric shown in part (a).

for an artificial dielectric now states (defines) that the effective index of
refraction is [35,36]

neff = βeff

β0
(1.18)

Certainly, had we considered a homogeneous dielectric material rather
than an artificial dielectric of wires, the definition of the index of refraction
as given by (1.18) would be correct. However, a more rigorous approach
is needed when working with artificial dielectric or periodic structures.

First, we realize that when a plane wave with direction of propaga-
tion ŝ = x̂sx + ŷsy + ẑsz is incident upon an infinite array in the x - and
z -directions, the element currents in column k and row n of array 1 will,
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according to Floquet’s theorem, be given as [5]

Ikn = I 1
00e

−jβ0kDxsx e−jβ0nDzsz (1.19)

Assuming that the interelement spacing Dx , Dz < λ/2, the element cur-
rents given by equation (1.19) will, according to fundamental array theory
as shown in Section 1.5, produce propagating plane waves only in the for-
ward direction ŝ as well as the specular direction ŝs = x̂ssx − ŷssy + ẑssz.
And the same statement holds for all the other arrays as well (see Chapters
4 and 8 of ref. 5 for details).

Certainly, we hasten to emphasize that the array currents I a
kn, where

a = 1, 2, . . ., N , might indeed be delayed or advanced with respect to
each other. However, that fact is by itself not capable of changing the
direction of the radiation from the individual arrays. That depends only
on the phase distribution across the individual arrays, and that is for an
infinite array always given by (1.19) (i.e., Floquet’s theorem) and thus
will radiate only in the forward direction ŝ as well as in the specular
direction ŝs . However, see also Section 1.12.2.

If we fill the entire space between the arrays with a material with prop-
agation constant β1, there will be a change of propagation from ŝ0 in air
to ŝ1 in the “mother” material. It is determined simply by matching phase
velocities along the arrays and leads, as is well known from Snell’s law.
However, there is no additional change of direction due to the periodic
structures (for details, see Chapters 4, 5, and 8 in ref. 5). More specifi-
cally: The arrays can only affect the propagation constant orthogonal to
the arrays, not parallel to them. It appears that only a material with a
propagation constant different from that of the incident space, β0 in this
case, can accomplish this.

A very important next step is to break the mother material up
into arrays consisting of rectangular “flakes.” Such an arrangement of
elements that are not simply conducting but have permittivity and/or
permeability open up new exciting possibilities, to be treated in a future
paper by R. Walser et al.

1.12.2 Real Dielectrics: How Do They Refract?

Actually, what we said earlier about artificial dielectric is only approxi-
mately true if the number of parallel arrays is relatively small. In a real
dielectric we work with periodic structures where the elements typically
are molecular and where the number of arrays is very large indeed. This
will result in essentially two things: (1) The delay caused by each array
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will eventually add up, resulting in a significant change of direction of
propagation; and (2) the fields scattered from the individual arrays will add
up to a wave propagating in the direction of the incident wave and, even-
tually, attain equal amplitude and be 180◦ out of phase. This statement is
based on the extinction theorem presented by Ewald [45]. Thus, the field
inside a real dielectric will consist only of a refracted wave propagating
in a direction consistent with Snell’s law.

There will, of course, be a somewhat similar effect in the artificial
dielectric case. However, because the elements typically are larger, the
number of arrays tend to be smaller, resulting in a weak effect. Just
exactly what constitutes a “small” and a “large” number of arrays is
an interesting problem to ponder. Probably the total field transmitted in
the forward direction would have an amplitude following a spiral with
decreasing radius as the number of arrays increases. It would require
extensive computer runs with the PMM code, requiring help from students
no longer available. Why? Because when you take on a student, your
life expectancy should go beyond about five years, and I am past that
limit!

Of course, in an artificial dielectric of small extent, the direction of
propagation can change considerably when passing close to the individual
element. However, the average direction is the same.

One thing is certain: Neither an artificial nor a real dielectric will pro-
duce negative refraction!

1.12.3 On the E - and H -Fields

It was originally suggested by Pendry that ε originates in parallel wires
whereas µ is associated with split-ring resonators. It is often implied
that the resulting E - and H-fields are independent of each other. This is
fundamentally wrong. Only at dc can you control these two field vectors
independently. At higher frequencies they become like the two sides of
one piece of paper: You cannot have one side without the other. This is
a simple consequence of Maxwell’s equations.

More specifically, coupling between parallel wires and split-ring
resonators is typically assumed to be about zero. Considering that the
coupling is actually 100%, it is obvious that this will lead to both compu-
tational and conceptual mistakes. What actually takes place in a periodic
structure of wires and split-ring resonators is discussed in Appendix A.
We do not perform an actual calculation. Rather, to understand what
really goes on, we explain the physics behind it, which is more important.
Needless to say, we do not observe any negative µ or ε whatsoever.
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1.12.4 On Concentric Split-Ring Resonators

The array of split-ring resonators is often made such that a smaller element
is mounted concentrically inside a slightly larger one, whether circular or
rectangular. The purpose of such an arrangement is, I am told, to obtain a
broader bandwidth similar to staggered tuning. This expectation is based
on the assumption that the coupling between the concentric elements is
zero, or at least “not important.” Nothing could be further from the truth.
In fact, the coupling between concentric arrays is 100%. We do obtain two
resonances, but instead of having a small valley between them, we find
that they are separated by an infinite deep null (assuming that interelement
spacing is small enough not to have grating lobes). Double tuning of arrays
in general is discussed in detail in Chapter 9 of ref. 20.

1.12.5 What Would Veselago Have Asked if . . .

When Veselago asked his famous question in 1968 [1], he was obviously
envisioning Maxwell’s equations written in the usual form using µ and ε.
However, as shown in Appendix A, it is also possible to write Maxwell’s
equations in a form that does not contain µ and ε, but instead, the propa-
gation constant β = ω

√
µε and the intrinsic impedance Z = √

µ/ε.∗ This
makes quite a bit of sense since we typically measure β and Z from where
we obtain µ and ε. Also, we are in general, from both a theoretical and a
practical point of view, more interested in β and Z than in µ and ε (see
Appendix A).

It is quite interesting to speculate what question Veselago would have
asked had he used β and Z . Almost everyone agrees that a negative Z
makes no sense unless we try to simulate a black hole in outer space. And
a negative β could simply indicate a wave propagating in the negative
direction but with a phase delay as we move away from the source.
Although this case would be trivial, it would be quite a different story if
a wave propagated with a phase advanced as we moved away from the
source. I doubt that Veselago would have fallen into that trap. See also
the discussion in connection with equations (1.15) to (1.17) as well as
Section 1.5.

Well, Veselago did not use β and Z but µ and ε. And as we all know,
his question started almost 30 years later, one of the most controversial
subjects in our time. It has resulted in several books and literally thousands

∗To the best of this writer’s knowledge, this was first observed by W. Rotman in 1962
[37]. However, recently it was pointed out by the author’s Swedish friend Per Erik Ljung
that E. Hallén also considered this subject in his book Elektricitetsläre (p. 109) as early
as 1953.



COMMON MISCONCEPTIONS 43

of papers, but would we have been better off without these? At least I do
not think we would be worse off. We have so far not seen any practical
use (other than what we could design without any theoretical input from
materials with a negative index of refraction).

It is often stated that we do not have the means to make such structures
precise and lossless enough today but will perhaps in the future. I do not
think so! Anything I have seen so far has been child’s play compared
to the highly sophisticated structures used in modern technology. No, the
problem is pure and simple: The solution just does not exist! I hope this
chapter has shed some light on this subject.

1.12.6 On “Magic” Structures

Every so often you see papers that claim a larger transmission through
a periodic structure than expected. Typically, we are dealing here with
simple structures such as circular holes (or squares, for that matter) in a
thin perfectly conducting screen. The claims are based on the assumption
that the transmission coefficient is given by the ratio between the sum of
the physical area of the holes and the area of the entire screen: in other
words, simple physical optics. Apparently, it is not always realized that
periodic structures can exhibit resonances. A frequent explanation is based
on the presence of a layer of “plasmons” adjacent to the screen. Although
such a layer might be a reality at optical frequencies, we have never found
it necessary to resort to such a mechanism at microwave frequencies.

True, a periodic structure of circular holes does possess a somewhat
peculiar resonance. Actually, a single circular aperture does not res-
onate. What happens in an array is simply that just before onset of
the lowest-order grating lobe, the lowest-order evanescent mode becomes
extremely strong, which manifests itself in a lot of stored energy of
such “polarity” that it makes the aperture holes resonate. This layer of
stored energy is as close as we get to a “plasmon layer” at microwave
frequencies.

Incidentally, any periodic structure with resonances governed primarily
by the onset of grating lobes is usually undesirable because these vary
so dramatically with frequency and angle of incidence. They were among
the first type of periodic structures to be explored more than 40 years
ago, and their bad features are well documented [38–40]. I was therefore
surprised when I saw an article in IEEE Transactions on Antennas and
Propagation, [41] in which researchers working in optics had written a
paper about periodic structures with circular apertures in the hope that the
FSS community would find this new “discovery” useful. For the record,
we remind the reader that perfect transmission can be obtained for an array
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of slots of length about λ/2 and an arbitrary vanishing narrow slot width
provided that the conductivity is 100% (i.e., there is virtually no physical
area!) [42–44]—and a myriad of other element types (see Chapter 2 of
ref. 5).
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2 On Cloaks and Reactive Radomes

2.1 CLOAKS

2.1.1 Concept

A new concept has recently been suggested not only to reduce the
backscatter of an object but actually to see around it and observe what
is behind. More precisely, the incident signal is captured by a cloak
surrounding the object, guided around it, and finally escapes out on
the back side. Note that we are not absorbing the incident signal, as is
usually the case, rather, we are redirecting it away from the backscatter
direction. Typically, all this is accomplished by use of metamaterial with
negative µ and ε, or so it is claimed.

In this chapter we show that it may at least be possible to capture the
incident signal and let it out on the back side. However, we will show that
it does not depend on the presence of exotic materials with negative µ

and ε, but can be explained by classical electromagnetic theory. Finally,
a very simple cloak is suggested merely by using simple FSS structures,
leading to potentially better designs.

2.1.2 Prior Art

An example of a cloak is given in Physical Review , vol. E75 [1].
A schematic of the concept is shown in Figure 2.1. The target to be
“cloaked” consists, in this case, merely of a dielectric cylinder located
at the center. The actual cloak is made of flat conducting slabs arranged
radially around the dielectric cylinder as shown in the figure. Finally, the
spaces between the conducting slabs are filled with dielectrics.

Actual numerical calculations of this design are given in ref. 1 and
duplicated in Figure 2.2. The incident wave is coming from the right and
going left. We note that the backscattered field, shown in Figure 2.2a,
is indeed reduced, while the forward-scattered field is concentrated in
a narrow beam. Silverinha et al. [1] explain the workings of this cloak
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Original Model

conducting slabs equally
spaced around cylinder

high dielectric inserts

dielectric cylinder

Figure 2.1 Cloak comprised of conducting slabs arranged radially around a dielectric
cylinder. The space between the conducting slabs is filled with dielectric. (From ref. 1.)

simply by stating that the flat conductors have an equivalent dielectric
constant less than 1, whereas the dielectric between the conducting slabs
is greater than 1. Thus, it seems to be implied that the “average” dielectric
constant is close to free space, making possible entrance into the space
between cloak and object.

2.1.3 Alternative Explanation

However, a straightforward and correct explanation that does not depend
on materials with negative µ and/or ε is obtained by inspection of the
equivalent circuit shown in Figure 2.3. We first note that the conductive
slabs arranged around the center core are equivalent to shunt inductors.
(This fact has been known for a very long time; see, for example, the 1919
patent of Marconi and Franklin [2, pp. 7–8]). Also, direct calculation by
use of the well-tested PMM program yields an inductance unless grating
lobes are present and interelement spacings are larger than 0.5λ and for
an oblique angle of incidence. Further, the dielectric segments located
between the conducting slabs are equivalent to capacitors in parallel with
the equivalent inductors, as shown in Figure 2.3. Thus, around the resonant
frequency the shunt impedance seen by an incident wave becomes very
large, which enables the signal to penetrate the centerpiece and eventually
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(a)

(b)

(c)

Figure 2.2 Field calculated for the cloak shown in Figure 2.1. (a) The incident field
from the right goes through the cloak without significant backscatter; (b) and (c) show
the effects of modifying the slabs. (From ref. 1, with permission of Nader Engheta.)
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conducting slab 

high dielectric 

Equivalent Circuit
Note: No Negative µ  or ε Whatsoever! 

dielectric body

Figure 2.3 Equivalent circuit for the cloak shown in Figure 2.1. The conducting slabs
are inductive, the dielectric inserts capacitive. When connected in parallel they form a
high impedance, enabling the incident wave to penetrate the cylinder and be re-radiated
in the back.

go around and escape at the back side. Note that this explanation relies
only on the physical properties of the cloak. No negative µ and/or ε is
involved, only fundamental electromagnetic theory.

2.1.4 Alternative Design

A simpler and potentially more effective cloak design is shown in
Figure 2.4. It consists of one or more slotted FSSs that will let the
incident signal inside in the front and be guided around to the back,
where it is re-radiated. The advantage of using an FSS design is simply
that a considerable knowledge of the workings of periodic structures in
general could be put to use during the design phase of this type of cloak.
However, whether a cloak is better than a classical absorber in hiding an
object is indeed debatable.

2.1.5 What Can You Really Expect from a Cloak?

A cloak is supposed not only to eliminate backscatter as an absorber would
do but also to guide the signal around the object and let it escape at the
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dielectric body

slot FSS

Figure 2.4 Simpler version of the cloak in Figures 2.1 and 2.3, consisting of a slotted
FSS wrapped around a dielectric core.

back side. Ultimately, it should also be able to transfer the “back picture”
to the front such that you can actually see “through” the object. None of
the designs discussed above will do that. In fact, this will require materials
that are equivalent to a bundle of optical fibers. So why not use exactly
such an arrangement? Materials that will do that will be challenging to
produce—but at least they do not violate physical laws.

2.2 REACTIVE RADOMES

Radomes in general are usually designed to be transparent at the operating
frequency of the antenna behind them. In this way the antenna impedance
undergoes only minor changes. However, if the antenna is mismatched,
it is conceptually possible to design the radome such that matching takes
place to any impedance desired. We denote such radomes as reactive since
they act primarily as a lossless tuning device.

2.2.1 Infinite Planar Array with and Without Reactive Radome

The simplest way to illustrate the reactive radome concept is probably
in conjunction with an infinite planar array without a ground plane. The
equivalent circuit for such a configuration without a radome has already
been derived [2, Chaps. 4 and 5] and is shown for easy reference in
Figure 2.5. We observe how the antenna terminals are connected via the
antenna reactance jX A to two semi-infinite transmission lines in parallel,
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2RA

jXA

Terminals

Plane of Array

2RA

Figure 2.5 Equivalent circuit of an infinite planar array of dipoles without a ground
plane. RA denotes the terminal resistance and jX A the terminal reactance.

each with characteristic impedance 2RA. These transmission lines carry
the radiated energy to the left and right of the plane of the array. Note
further that RA denotes the total terminal radiation resistance of the infinite
array.

If the total length of the dipole elements is somewhat shorter than λ/2,
the antenna reactance jX A will typically be negative (i.e., capacitive). In
that case we may tune the antenna to resonance simply by inserting an
inductance of value −jX A at the terminals, as shown in Figure 2.6. The
radiation resistance RA may not be exactly the desired terminal resistance
but that can eventually be adjusted by use of a transformer or another
matching device.

However, instead of using a matching device at the terminals, we may
alternatively use a matching device placed suitably somewhere along the
two semi-infinite transmission lines. In particular, it could be a dielectric
slab that at the same time may serve as a radome. An example of this
approach is shown in Figure 2.7. Here we have placed a dielectric slab
with intrinsic impedance Z 1 on each side of the infinite dipole array. In the
Smith chart of the same figure we show how the radiation resistance 2RA

of each semi-infinite transmission line can be transferred by the dielectric
slab into the impedance denoted ◦1 , which is chosen such that adding
the capacitive antenna reactance, 2jX A in series lands us in the arbitrary
resistance 2RA1 for each side (i.e., a total resistance of RA1). This is
accomplished by adjustment of Z 1 as well as the thickness of the slabs.

2RA

jXA

Plane of Array

2RA

RA
−jXA

Figure 2.6 If the dipoles are shorter than about λ/2, jX A will typically be negative (i.e.,
the reactance capacitive). We can in that case tune the array to resonance by inserting an
inductance −jX A at the terminals as shown.
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2RA

2jXA

Plane of Array

2RA

2jXA
Z1

µ,ε >0

Z1

2RA2RA1 Z1

2j
X A 1

µ,ε >0

µ,ε >0

Figure 2.7 By placing dielectric slabs on each side of the array, the radiation resistance
2RA can be transformed into the impedance◦1 . Further addition in series of the antenna
reactance 2jX A lands us in the resistance 2RA1, yielding a total resistance of RA1. By
adjusting Z 1 as well as the slab thickness, we can obtain arbitrary values of RA1.

Alternatively, we may place the two dielectric slabs λ/2 farther away
from the array. Obviously, that leads to the same impedance RA1 as
obtained in Figure 2.7, but can still lead to the same value as earlier. How-
ever, the bandwidth will, in general, be different. If an arbitrary spacing
different from λ/2 is used, matching is still possible, but Z 1 and the slab
thickness will be different.

Finally we show in Figure 2.8 a case where the two matching slabs
are made of a material with negative µ and ε. In that case the impedance
2RA is rotated counterclockwise in the Smith chart until it reaches ◦1
(see Figure 1.2). From then on, the matching procedure is identical to the
case in Figure 2.7 when µ and ε are positive. Whether counterclockwise
rotation is actually possible is quite another matter.

From these examples we learn that the terminal impedance RA + jX A of
an array can be tuned to resonance not only by matching at the terminals,
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2RA

2jXA

Plane of Array

2RA

2jXA
Z1

µ,ε <0

µ,ε <0

Z1

2RA2RA1 Z1

2j
X A 1

1 1

µ,ε <0

Figure 2.8 The same situation as in Figure 2.7 except that the two slabs have negative
µ, ε. Thus, according to conventional theory (see Figure 1.2), the resistance 2RA is rotated
counterclockwise to the impedance◦1 . Addition of 2jX A is similar to the case shown in
Figure 2.7.

as usual, but also by placing suitable matching devices such as dielectric
slabs on each side of the array. We also saw that the slabs could have µ and
ε < 0. This could conceivably lead to a larger bandwidth if designed cor-
rectly. However, it should be emphasized that there is, in general, nothing
“magical” about using materials with negative µ and ε compared to con-
ventional ones. In both cases the matching can be designed to increase
the bandwidth slightly. An example using conventional material is given
in Chapter 6 of ref. 3.

2.2.2 Line Arrays and Single Elements

We considered above an infinite planar array flanked by dielectric slabs
on both sides. From here we may conceive of many other configurations
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µ,ε 
whatever!

 

Figure 2.9 Short dipole enclosed in a spherical shell with µ and ε. By variation of
the radius of the shell, its thickness, and µ and ε, the dipole can always be matched
regardless of the sign of µ and ε. However, the directivity can never exceed (by much!)
the directivity of the dipole (see Section 2.3.2).

which work on the same basic principle: use of a dielectric radome that
tunes the antenna to resonance. The most obvious is probably a line array
surrounded by a dielectric cylindrical shell. Similarly, we may consider
a single dipole enclosed in a spherical dielectric shell as illustrated in
Figure 2.9. In fact, such a configuration was considered by Ziolkowski
[4–6]. However, all his results are simulations based on the existence of
negative µ and ε. Many scientists are quite skeptical about these results
(see, in particular, Kildahl [7]). Also, Hansen gives a frank assessment
in his book about small antennas [8]. Since this author has already com-
mented on materials with µ, ε < 0, we shall leave it at that for now. Again,
we emphasize that matching is possible regardless of the sign of µ, ε, but
the directivity will basically be as for a dipole as long as the size of the
radome is less than λ/4 (see also Section 2.3.2).

2.3 COMMON MISCONCEPTIONS

2.3.1 Misinterpretation of Calculated Results

When working with metamaterials, it is common practice to assume not
only negative µ and ε but also a negative index of refraction. In this way,
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many interesting but also questionable experiments can be simulated, as
amply shown, for example, in ref. 5. In fact, it was how we obtained the
concept for the flat lens discussed in Chapter 1. An alternative approach
is simply not to assume negative µ, ε, or index of refraction, but simply
to calculate scattering for whatever form of the actual model of elements,
as would be done based on classical electromagnetic theory, such as the
method of moments or the finite element time domain. An example of
this approach was the cloak calculation shown in Figure 2.2. This author
is aware of several cases where this approach was followed and where
the calculations were interpreted as proof of negative µ, ε, and index of
refraction. However, just as we saw in the cloak case above, the behavior
could always be explained without any notion of negative µ, ε, or index
of refraction (see also Appendix A).

2.3.2 Ultimately: What Power Can You Expect from a Short
Dipole Encapsulated in a Small Spherical Radome?

Sometimes even experienced antenna practitioners fall into the trap of
believing that obtaining maximum voltage from a receiving antenna
should be the goal. This is, of course a misconception since merely
inserting a transformer could in principle yield any voltage desired.
What is important is how much maximum power Pmax can be extracted
from an antenna when exposed to an incident plane wave with effective
field strength E 0 propagating in free space with intrinsic impedance
Z 0 = 120π . The answer is well known:

Pmax = E2
0

120π
Aeff = E2

0

120π

λ2

4π
G (2.1)

where Aeff is the receiving area of the antenna and G is the gain of the
antenna, G = εADA, where DA is the directivity of the antenna and εA is
the efficiency of the antenna. To obtain the maximum power Pmax, the
antenna must be conjugate matched as well as polarization matched.

The antenna efficiency εA is determined by the ratio between the loss
resistance and the radiation resistance. For a dipole of total length greater
than 0.3λ, the efficiency εA is almost 100% (if the antenna is made of wire
with reasonable good conductivity). For shorter dipoles, the efficiency can
typically go down to a few percent, depending on antenna length and wire
resistivity. Furthermore, there will (for short dipoles) usually be significant
loss in the matching network.
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The key to understanding this problem is the directivity DA. It is
obtained by integration of the radiation pattern, which for a short dipole
(2l < 0.1 λ) is the well-known doughnut pattern, yielding a directivity
DA = 1.5 or 1.76 dBi over an isotropic radiator. There really is nothing
you can do to increase DA except to make the dipole longer, actually quite
a bit longer, such as 2l > 0.4 λ, leading to DA ∼ 2 dBi. Thus, when encap-
sulating a short dipole in any kind of small dielectric shell, it is conceivable
(but not likely) that the directivity could increase by 0.1 to 0.2 dBi just
because the effective “aperture” has increased. Again, let us emphasize,
you will obtain maximum received power only when conjugate matched .
And therein lies the “rub”! If you compare a short unmatched dipole to
the same dipole matched by a dielectric shell or any more conventional
matching at the terminals, you can easily obtain fantastic “improvement”
in antenna voltage as well as received power. You are simply not compar-
ing apples with apples. It is as misleading as what happened to one of my
engineering friends who landed in New York shortly after World War II.
Being forced to take whatever job he could find, he ended up working for
a small antenna company with somewhat questionable ethical standards.
His boss asked him to design a television rabbit ear antenna switch with
three positions marked, “Good,” “Better,” “Best.” After a week his boss
checked in on him and became quite annoyed when he found that no
progress had been made. “Here is what you do,” he explained. “In posi-
tion ‘Good’ you short circuit the antenna terminals, in position ‘Better’
you connect just one antenna arm, and in position ‘Best’ you connect both
arms.”

It is puzzling that anything as fundamental as a short dipole encapsu-
lated in a dielectric shell has been treated not only in the IEEE Trans-
actions on Antennas and Propagation, but also in the magazine, a book
section, and probably places that I am not aware of. I do understand
the tremendous publication pressure that academicians are coming under
today from their department heads and deans: They must publish or perish!
Actually, I place more blame on the reviewers than the authors.

2.4 CONCLUDING REMARKS

In a paper written in 1968, Veselago asked a perfectly good question: What
would happen if both µ and ε were negative? He examined his question by
considering the boundary conditions between an ordinary material with
µ, ε > 0 and one with µ, ε < 0. He concluded correctly that it would
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lead to a negative index of refraction. However, his solution was purely
mathematical. The fact is that any time that a mathematical solution is
found to a physical problem, it must be tested for physical reality. More
specifically, we examined in Chapter 1 perhaps the best known application
of a negative index of refraction: the flat lens. We found that to focus
inside as well as outside the slab, it should be made of a material that
advanced the signal in time: in other words, could produce negative time.
Since to the best of this writer’s knowledge, no one has ever claimed the
existence of such a concept, we state that Veselago’s conclusion, although
mathematically correct, would not stand up in physical reality.

I am not sure how many scientists are aware of these facts. However,
it has not slowed down the steady stream of publications. At least five
full-fledged books have been published, as have at least 1000 papers, and
this will probably continue for a long time.

Meanwhile, potential contractors are trying to find new applications.
The cloaks and radomes discussed in this chapter are but a few examples.
Although the usefulness of these gadgets is debatable, one thing is certain:
Their functionality does not depend on material with a negative index of
refraction. How could it? In Chapter 1 we showed fairly conclusively that
such materials simply do not exist!
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3 Absorbers with Windows

3.1 INTRODUCTION

Many variations of frequency-selective surfaces are known today. Typi-
cally, they may reflect at some frequencies while they are transparent at
others. Similarly, they can be designed to absorb at some frequencies,
whereas they essentially reflect at all other frequencies. In this chapter we
consider periodic structures that absorb in certain frequency bands while
they are transparent in others. They are often called rasorbers . Nobody
has yet suggested using metamaterials to solve this problem. So this time
we beat them to it!

3.2 STATEMENT OF THE PROBLEM

Absorption can be obtained by placing resistive sheets or elements in
front of a ground plane. Such an arrangement can be designed to absorb
in a certain frequency range while it will be reflective everywhere else
(see Chapter 4). If, in addition, we want our configuration to be trans-
parent in another frequency range, it will be necessary but not sufficient
to require that the ground plane be transparent in that range. Basically,
this can be done by making the ground plane a slotted FSS. However,
we must also require the resistive sheets or elements to be “invisible” at
these transparent frequencies while they should absorb otherwise—and
therein lies the essential problem. In fact, quite often it is expected that
just using some typical lossy FSS elements can somehow do the trick.
Although it is sometimes possible to “luck out,” it is in general not
the way to go. In the following paragraph we show a concept that has
been tested and proven to work. However, other approaches may be
possible.

Metamaterials: Critique and Alternatives, By Ben A. Munk
Copyright  2009 John Wiley & Sons, Inc.
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3.3 CONCEPT

In Figure 3.1 we show the simplest of all elements: a straight wire exposed
to an incident plane wave. If the total element length 2l ∼λ/2, the cur-
rent distribution will basically be co-sinusoidal and strong, as shown in
Figure 3.1b. Similarly, if 2l<∼ λ/3, the current distribution will still be
co-sinusoidal but of relatively low amplitude, as shown in Figure 3.1a.
Finally, when 2l > 2λ/3, the current distribution will be sinusoidal, com-
plicated (!), and strong, as shown in Figure 3.1c.

When the wire is lossless, only scattering and no absorption will take
place. However, if the wire is resistive, the incident field will be par-
tially absorbed and partially scattered. Obviously, when the wire current
is negligible as in Figure 3.1a (i.e., the wire segment 2l is small com-
pared to λ/2), neither substantial scattering nor absorption will take place.

< ∼ l/3

Low Scattering and Absorption

Strong Scattering and Absorption

∼ l/2

Uncertain Scattering and Absorption

> ∼ 2l/3

s

Ei

(a)

(b)

(c)

2

22

2

2

2

Figure 3.1 Plane wave with direction ŝ incident upon a straight wire of length 2l . Three
cases are shown for different wavelengths.
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In contrast, substantial absorption and scattering will take place in the
cases shown in Figure 3.1b and c.

We may conclude from the presentation above that if a composite ele-
ment is made from wire segments, we must require that the segments be
somewhat shorter than λ/2 for them to neither scatter nor absorb. In con-
trast, good absorption (and scattering) will, in general, take place when
the wire segments are 2l ∼ λ/2. Longer wire segments should be avoided
simply because they are somewhat unpredictable and may change dramat-
ically with angle of incidence.

3.4 CONCEPTUAL DESIGNS

Next we show by various examples how to control the current distribution
on the elements such that we produce a radome at the middle frequency
fm and an absorber at the lower frequency fl . A simple case is shown
in Figure 3.2, where we have placed a single choke of length λm /4 in
the middle of a straight wire. This will effectively prevent any current
from flowing across the gaps between the two horizontal sections since
a transmission line of length λm /4 short-circuited at one end will exhibit
infinite impedance at the other at the midfrequency fm . Furthermore, we
require the two horizontal sections to have length l< ∼ λm /3. This will
limit the current on these sections to a low value at the frequency fm (see
Figure 3.1a). However, at frequencies below fm , the input impedance of
the choke becomes inductive, whereby the two horizontal sections can
be tuned to resonate at a lower frequency fl , exhibiting a strong current
similar to the case shown in Figure 3.1b.

1 < ~ lm/3
~0.03lm

2 < ~ lm/3

lm/4

Figure 3.2 When a choke of length lm /4 is inserted midway in a wire of total length
2l, no current can flow across the gap. If l < ∼λm /3, the current on the entire element
will be negligible (see Figure 3.1a). λm denotes the wavelength at the midfrequency fm .
However, at a lower frequency fl , the choke becomes inductive and a strong current can
exist on the entire element (see Figure 3.1b).
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lm/4

1 < ~ lm/3 2 < ~ lm/3 2 < ~ lm/3 1 < ~ lm/3

Figure 3.3 When more chokes are added as shown, a strong current over the entire
element can be obtained at a frequency fl that is lower than for the one-choke case shown
in Figure 3.2.

If we use only a single stub, as shown in Figure 3.2, it is obvious
that the length requirements of the horizontal sections can only produce
a lower resonant frequency fl , somewhat below the middle frequency fm .
However, to lower fl further below fm , we can use more chokes and more
horizontal sections, as shown in Figure 3.3 for three chokes. We must
again require all the chokes to have the same length, λm /4. However, the
horizontal sections l1 and l2 do not necessarily have to be equal, but they
must all be smaller than about λm /3.

Minor variations of the attachments of the chokes to the horizontal
wires are possible. For example, the horizontal sections can be attached
to the chokes anywhere, as shown in Figure 3.4, as long as the total
length of the chokes is λm /4. When connected to the open end, the
chokes exhibit the largest bandwidth, whereas it is zero when connected
to the short-circuited end. Another motivation for alternative attachment
points may simply be related to space limitations (see, e.g., Figure 3.7).

We have not shown the current distribution at the middle frequency fm
simply because it is small (ideally, it is zero, or at least the average is).
However, at the low frequency fl the current is very strong, as shown in
Figure 3.5 for the three-choke case. This, of course, is exactly what we
need to obtain an effective absorption. In fact, we merely have to add
some resistance to the elements. This can be done in two basic ways: We
can make the horizontal sections out of a resistive material (the chokes

< λm/4 lm/4

1 < ~ lm/3 2 < ~ lm/3 2 < ~ lm/3 1 < ~ lm/3

Figure 3.4 The bandwidth of the chokes can be varied by variation of the attachment
point of the horizontal sections. The closer the point is to the open end of the chokes,
the more bandwidth there is when choking. The total length of the chokes must always
be λm /4.
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lm/4RR

Figure 3.5 Typical current distribution I l on a three-choke design at the low frequency
fl . The load resistors R are placed close to the middle choke, where the current is maximum
at the frequency fl and negligible at fm .

must always be made of a perfect conductor to work effectively), or we
can insert lumped resistors, as denoted by R in Figure 3.5. The latter is
the preferred approach because these resistors can be placed where the
current at the frequency fl is maximum (i.e., right next to the choke in
the middle). This position has the added advantage that the current at the
frequency fm is closest to zero there, such that minimum attenuation is
encountered in the transparent band.

We finally place the choked FSS in front of a slotted ground plane
that is transparent at fm , as shown in Figure 3.6. Typically, the spacing
between these two components should be λl /4. That leads to a spacing
that is considerable at the frequency fm . However, since both the ground
plane and the choked FSS are invisible (at least in principle), this distance
is of only minor importance.

∼l /4

Slotted Groundplane 
Transparent at fm

Reflective at f

Choke FSS 
Transparent at fm

Absorbent at f

Transparent at fm

Absorbent at f

Ei

Et

Er

Figure 3.6 Choked FSS with an element as shown in Figure 3.5 is placed a distance of
about λl /4 in front of a ground plane that is transparent at the midfrequency fm .
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3.5 EXTENSION TO ARBITRARY POLARIZATION

So far we have considered only designs capable of handling linear polar-
ization. In this section we show how to modify the structure such that
arbitrary polarization can be accommodated. It is often believed that it can
be done simply by placing two linear systems as above, orthogonal to each
other. Although at first this sounds like a good idea, the reader should be
warned that this approach may encounter certain practical limitations. The
fundamental problem is typically how to place the elements close enough
to each other that grating lobes can be avoided at the midfrequency fm .
Since these can be of high intensity and at some frequencies have direc-
tions coinciding with the incident field, they can severely jeopardize the
backscattered field and must therefore be avoided at all costs. Further,
since the onset of grating lobes for a specific angle of incidence and array
configuration depends only on the interelement spacings, it becomes of
paramount importance to choose an array type that will enable us to delay
the onset of grating lobes as much as possible.

One of the most efficient ways to pack elements close together is to
use three-legged elements arrayed in a triangular grid. Thus, based on
what we have seen above, we choose the choked FSS design shown in
Figure 3.7. We observe that each of the element legs has two chokes.
To reduce direct coupling between neighboring chokes, the attachment
points have been moved slightly down from the open end of the chokes
as discussed earlier. Similarly, the end of the legs have been shaped like
“anchors” in order to make the elements as compact as possible (i.e., the
onset of grating lobes is delayed). Finally, we have added load resistors in
each leg as shown. The dimensions given in Figure 3.7 are approximately
such that absorption should take place in the X-band and transparency
should be in the KA-band.

3.6 THE HIGH-FREQUENCY BAND

So far not much has been said about the high-frequency band fh except
that it is complicated and to some extent unpredictable. We are, of course,
talking here about the absorption and scattering properties of the large
composite rasorber element, as depicted, for example, in Figure 3.7. How-
ever, it really is not terribly important provided that we use the right
design approach. In fact, we merely place an FSS resonating at fh and
loaded with resistors (or simply made of resistive material) in front of the
entire configuration. This is backed by another FSS, also resonating at fh
but with no resistive loading (i.e., it acts as a ground plane at fh ). The
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Centerline Schematic
Line Width: 0.15 mm
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Figure 3.7 Example showing how the elements in Figure 3.5 can be modified to handle
arbitrary polarization. Three-legged elements arranged in a triangular grid are particularly
well suited since the elements can be closely packed and thereby delay the onset of grating
lobes.

electrical spacing between these two FSSs should typically be around λh /4
to provide good absorption at fh . However, at the lower frequencies, fl
and fm , these two FSSs are basically invisible (actually, they are slightly
capacitive, which can be tuned out). Note that these two FSSs act as a
shield at fh such that no grating lobes from the rasorber panel will be
excited in that band.

3.7 COMPLETE CONCEPTUAL RASORBER DESIGN

A complete conceptual rasorber design is shown in Figure 3.8. The signal
is incident from the left. We first encounter FSS panels ◦1 and◦2 both
resonating in the high-frequency band fh . Panel◦1 is loaded with resistors,
while◦2 acts as a ground plane (i.e., together they act as an absorber in the
high band, as explained above). Note that these two panels are essentially
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Absorbs at fh
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Figure 3.8 Basic rasorber design: absorbs at fl and f h ; transparent at fm .

transparent at the lower frequencies fl and fm . Next, we see rasorber panel◦3 as shown in Figure 3.7; that is, it will absorb in the low-frequency
band fl in conjunction with the slotted ground plane ◦4 , while both of
these panels are transparent at the midfrequency band fm . We note finally
that the slotted screen◦4 is flanked by a dielectric slab on each side. Their
thickness is slightly larger than 0.25λm electrically and their purpose is to
provide scan compensation at the radome frequency fm . The value of the
dielectric constant should typically be around 1.6, as explained in ref. 1.

Note further that the rasorber panel◦3 must be supported by a dielectric
substrate that will affect the transmission as well as the backscatter. At the
midfrequency fm it is suggested that the capacitive effect of the substrate be
canceled, simply by making the traps slightly more inductive: for example,
by making them slightly shorter. It is strongly recommended first to tune
rasorber panel◦3 alone to perfect transmission.

At the low frequency fl , both the rasorber substrate and the dielectric
slab in front of the slotted ground plane will affect the optimum spac-
ing between the rasorber panel◦3 and the slotted ground plane◦4 . The
simplest way to overcome this problem is, in general, to reduce the spac-
ing from about 0.25λl to something like 0.20λl . From a practical point
of view, substrates could be placed between sheets◦1 and◦2 as well as
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between sheets◦2 and◦3 . If fh ∼ 100 GHz, typical thicknesses for each
layer could be around 20 mils.

3.8 PRACTICAL DESIGNS

The concepts and design approaches outlined above have been used to cal-
culate several designs. They were all very successful and worked well as
both absorbers and radomes. Unfortunately, permission to show them was
not given. Thus, we merely show in Figure 3.9 the typical performance
of a panel without a frequency or dimensions.

3.9 OTHER APPLICATIONS OF TRAPS:
MULTIBAND ARRAYS

We saw above how traps can be used to produce panels that are transparent
at some frequencies and absorptive at others. There are, however, other
applications. For example, it is sometimes desirable to design an interlaced
dual-band array leading to short elements operating at the high-frequency
band and long elements at the low band. While the short elements, in gen-
eral, will not “bother” the long elements operating in the low-frequency
band (see Figure 3.1a), the opposite situation can sometimes be prob-
lematic. One solution to this problem is simply to “kill” the current on
the long elements at high frequencies by use of traps, as illustrated, for
example, in Figures 3.3 and 3.4.

0

∼−20

Reflected field
(absorbed)

Transmit

dB

Low Middle High

Frequency

Reflected field
(absorbed)

Figure 3.9 Typical reflection in the low and high bands where absorption takes place.
Also, typical transmission at midband where the panel works like a radome.



70 ABSORBERS WITH WINDOWS

The concept can eventually be extended to multiband arrays. However,
the impedance properties of all the traps must be evaluated carefully in
all frequency bands.
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4 On Designing Absorbers
for an Oblique Angle of
Incidence*

4.1 LAGARKOV’S AND CLASSICAL DESIGNS

At the International Conference on Materials for Advanced Technolo-
gies (ICMAT 2007) in Singapore, the well-known Russian professor A.
Lagarkov and his co-worker V. Kisel presented a new and intriguing
absorber concept based on metamaterial with a negative index of refrac-
tion. Their claim was that their design should be able to absorb all incident
signals, regardless of angle of incidence and frequency.

They introduced their concept as illustrated in Figure 4.1. Here a line
source is placed at a distance, y0, from an impedance wall (i.e., an
absorber). They then ask: How should this impedance be designed to
ensure transfer of maximum energy into the absorber, or by implication,
how can we reduce the signals reflected from this interface as much as
possible for all angles of incidence? The actual Lagarkov concept is shown
in Figure 4.2. It consists basically of a thin resistive sheet presumably with
a sheet resistance equal to 120π (space cloth). It is backed by an airspace
followed by a flat lens, which again is followed by a ground plane as
shown in the figure. The airspace and the flat lens have the same thick-
ness. Thus, all incident signals will, according to the generally accepted
theory discussed in Section 1.2, be delayed as much in the airspace as it
is advanced in the flat lens, regardless of the angle of incidence or fre-
quency. (Indeed, some of us have a hard time accepting this!) In other
words, all signals reflected from the ground plane will meet at the “focal
point” with the same phase delay, π , as caused by the reflection from the
ground plane.

∗This chapter is based partly on a paper published in IEEE Transactions on Antennas and
Propagation in January 2007 coauthored by B. Munk, P. Munk, and J. Pryor.

Metamaterials: Critique and Alternatives, By Ben A. Munk
Copyright  2009 John Wiley & Sons, Inc.
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y
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Impedance Wall
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Figure 4.1 The way that Lagarkov analyzes his absorber: a line current at y0 radiating
down into an impedance wall.

Incident signals

y

“Focal point”
Resistive sheet

Flat lens 
m = e = −1

Air 
m0,e0

m0, e0

Figure 4.2 The concept behind Lagarkov’s absorber design: The flat lens advances the
phase as much as the airspace delays it. Thus, all signals reflected from the ground plane
will be 180◦ out of phase at all angles of incidence and all frequencies at the focal point.

We may characterize this design as a Salisbury screen, where the effect
of the ground plane has been eliminated by use of a flat lens. Later
we investigate ordinary Salisbury screens and find that they are indeed
affected severely by the ground plane, leading to limited bandwidth and
angle of incidence dependence. Thus, if a flat lens could be realized,
there is no question that we would indeed be witnessing a major break-
through.
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However, there are at least two serious flaws in Lagarkov’s design.
First, nobody has yet been able to actually build a working flat lens, as
far as we know. It exists only as a concept in some people’s minds. In
fact, this author categorically rejects its existence, as discussed in Sections
1.10 and 1.11 as well as in Chapter 6. As stated there, it will simply
require “negative” time, which is okay from a mathematical, but not from
a physical, point of view. Of course, we can use amplifiers with delay
times. That leads to phased arrays, not to new materials.

But even if a flat lens could be realized, we would not yet be out of the
woods! More precisely, if the space cloth has a sheet impedance of 120π ,
that would produce zero reflection only for a normal angle of incidence.
For oblique incidence, the sheet impedance should be lowered by the
cosine to the angle of incidence for parallel polarization, and similarly, be
increased by the inverse for orthogonal polarization. This is all discussed
in great detail in the following sections, where we also show what to do
about this problem: namely, use of dielectric matching plates. Typically,
they have a dielectric constant in the range 1.3 to 1.8 (i.e., they are fully
realizable, in contrast to materials with µ = ε = − 1).

In the next sections we investigate various absorber designs, such as the
Salisbury screen, the Jaumman absorber, and the circuit analog absorber.
They have all been designed to yield good absorption for all angles of
incidence, ranging from normal up to ±45◦ for both orthogonal and par-
allel polarization. Like Lagarkov, we use a matching plate, but ours has
ε = 1.6 and µ = 1. Thus, ours is indeed more readily realizable and we
present real calculated results showing a typical bandwidth of an octave
for 20 dB or better absorption for both orthogonal and parallel polari-
zation.

Absorbers can be constructed by placing one or more resistive sheets in
a stratified medium. The simplest design, called a Salisbury screen after
its inventor [1], consists of a single resistive sheet placed λ/4 in front
of a perfectly conducting ground plane. Extension of the bandwidth is
possible by use of more resistive sheets spaced approximately λ/4 apart.
These types are usually referred to as Jaumann absorbers [2, Sec. 9.3].
Further increase in bandwidth is possible by placing suitable dielectric
slabs between the resistive sheets and, in particular, in front of the outer-
most resistive sheet. Finally, the resistive sheets can be made in the form
of lossy FSS sheets. That will result in a complex sheet admittance that
by proper design can extend the bandwidth even further [2, Sec. 9.4].

Examples of all these types of absorbers exposed to an incident field
with arbitrary polarization for normal as well as oblique incidence are
given below. Note that here we are interested primarily in specular reflec-
tion. For bistatic scattering, in general, see Chapters 4 and 5 of ref. 3.
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4.2 SALISBURY SCREEN

The Salisbury screen, shown in the insert of Figure 4.3a, will serve as our
baseline design. It consists of a single resistive sheet with conductivity
Y S equal to that of free space Y 0 and is placed a distance d1 in front of a
perfectly conducting ground plane. The relative dielectric constant of slab
d1 is denoted ε1. Also, in Figure 4.3a we show the specular reflection
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Figure 4.3 The specular reflection coefficient as a function of frequency of various
Salisbury screens for normal and 45◦ angles of incidence. The dielectric constant of the
medium between the ground plane and the resistive sheet is as shown in the respective
inserts: (a) ε1 = 1.0 with d1 = 0.75 cm; (b) ε1 = 1.5 with d1 = 0.613 cm; (c) ε1 = 2.0 with
d1 = 0.53 cm; and (d) ε1 = 2.5 with d1 = 0.475 cm. Note: At 10 GHz, β1d1 =π /2 for all
cases. Further, the resistive sheet has conductance Y s = Y 0.
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curves for a normal as well as a 45◦ angle of incidence (orthogonal and
parallel polarization). We observe immediately two fundamental dilemmas
for an oblique angle of incidence:

1. The resonant frequency is raised from 10 GHz to about 14 GHz.
2. The specular reflection coefficient changes from −∞ dB to −15

dB.

The change in resonant frequency is easy to explain. Let the space d1

have the propagation constant β1, while r1y denotes the direction cosine∗
of the wave propagation inside the dielectric. Then the electrical spacing is
equal to β1d1r1y [2, Secs. 4.6, 4.7, and 7.3 and Chap. 5], and resonance
occurs when β1d1r1y = π /2. When the angle of incidence is changed
from normal to some oblique value, r1y will change from 1 to a value
smaller than 1, depending on ε1. For air, r1y = 0.707 at a 45◦ angle of
incidence (i.e., resonance occurs at 10/0.707 = 14.14 GHz), as observed in
Figure 4.3a. If we fill the space d1 with a dielectric medium, r1y will for
the same angle of incidence in air be reduced as a direct consequence of
Snell’s law. Thus, the change in resonant frequency will also be reduced.
In fact, we show in Figure 4.3a–d a series of reflection curves where we
have varied the relative dielectric constant ε1 in steps from 1.0 to 2.5 and
where the electrical thickness β1d1 = π /2 at f = 10 GHz for all values of
ε1. Clearly, we observe a significant stabilization of the resonant frequency
with angle of incidence as we increase ε1. However, we also observe
some reduction in bandwidth as ε1 increases. This is simply because the
intrinsic admittance Y1 = √

ε1/µ1 increases with ε1. Thus, ε1 should not
be chosen arbitrarily high. Values around 2 or slightly higher seem a
good compromise for many practical designs, as will be shown later by
examples.

We also observe in Figure 4.3a–d that the resonance reflection coef-
ficient at a 45◦ angle of incidence remains at ∼− 15 dB regardless of
ε1 and polarization. The reason for this is quite simple. At resonance,
β1d1r1y = π /2; that is, the ground plane admittance◦1 , as shown later in
Figure 4.4, is zero, such that the incident field sees only the sheet admit-
tance, Y S = Y 0. Thus, the bistatic reflection coefficient for orthogonal and
parallel polarization, respectively, with respect to the E -field is then [2,
App. C]

∗The direction cosine r1y is defined as the cosine to the angle between the direction(s)
of propagation r̂ and a specific axis, in this case the y-axis. The subscript 1 refers to
medium 1.
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E
⊥� = Z0 − Z0/r0y

Z0 + Z0/r0y

(4.1)

E
‖ � = Z0 − Z0r0y

Z0 + Z0r0y

(4.2)

For a 45◦ angle of incidence we have r0y = 0.707 and we obtain E
⊥� =

−E
‖ � = −0.172 or −15.3 dB below the ground-plane reflection, which is

precisely what is observed in Figure 4.3b–d for all values of the dielectric
constant ε1 and both polarizations.

4.3 SCAN COMPENSATION

In Section 4.2 we observed a reflection at oblique incidence caused by
a mismatch between free space and the sheet admittance. If the match
were perfect at a normal angle of incidence, the reflection would increase
significantly with scan angle. This phenomenon is by no means unique
for planar absorbers. Actually, we observe exactly the same phenomenon
when a plane wave is incident upon an array of dipoles: for example,
is loaded with resistors (see, e.g., ref. 2, Sec. 9.9.2, 4.11.2, and 5.10).
Furthermore, we show at the same place that the scan impedance could
be made approximately constant by placing a suitable dielectric slab in
front of the dipoles.

It is worth pointing out that this compensation is not a simple conse-
quence of Snell’s law, as is often assumed. In fact, for oblique incidence
the electrical thickness should be slightly thicker than one-fourth wave-
length, while the optimum dielectric constant is given approximately by
[2, Sec. 5.10, eq. (5.52)]

ε1 ≈ 1 + cos θ0 = 1 + r0y (4.3)

where θ0 is the angle between the direction of propagation in air and the
normal to the array.

Thus, guided by our experience from arrays, we place a dielectric slab
in front of the resistive sheet. Since the optimum angle of incidence is
chosen here to be 45◦, we obtain, according to (4.3), the dielectric constant
ε1 ∼ 1 + cos 45◦ = 1.7 and the electrical thickness is chosen to be about
0.25λ2 (i.e., the mechanical thickness at 10 GHz is equal to 0.574 cm, as
shown in the insert of Figure 4.4).
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Figure 4.4 (a) Smith chart depicting various admittances as shown in (b):◦1 denotes
the ground-plane admittance as seen at the plane of the resistive sheet looking toward the
ground plane;◦2 is the admittance of the resistive sheet;◦3 is the sum of◦1 and◦2 ;◦4
is obtained by transforming◦3 through slab d2. (b) Schematic of a Salisbury screen with
dielectric slab d2 in front. Note: Frequency compensation is obtained because the various
frequencies of◦3 are rotated into◦4 such that the wideband frequencies cluster around
the center of the Smith chart. Note: The circled numbers denote the admittances at the
various positions in the absorbers, not the numbers of layers.

4.4 FREQUENCY COMPENSATION

In Section 4.3 we suggested placing a dielectric matching plate in front
of the resistive sheet. Our initial motivation was to obtain scan compen-
sation. However, in this section we show that it is also possible by proper
design to achieve a significant increase in bandwidth (i.e., we can obtain
frequency as well as scan compensation at the same time; for more details,
see Chapter 6 of ref. 3).

The equivalent circuit for such an arrangement is shown in Figure 4.4,
where we also show a Smith chart with the relevant admittances as
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follows. The admittance as seen looking toward the ground plane at the
plane of the resistive sheet is denoted◦1 . It is purely imaginary and there-
fore located at the rim of the Smith chart. Further, the sheet admittance
Y S is denoted◦2 and is seen no longer equal to Y 0 (its optimum value
will be determined below). The sum of◦1 and◦2 is denoted◦3 , which is
finally transformed through slab d2 into the admittance curve◦4 .

The value of the sheet admittance◦2 is obtained simply by noting that
at the center frequency 10 GHz, the ground-plane admittance◦1 is equal
to zero (i.e., the admittance sum◦3 is simply equal to◦2 ). Thus, if the
dielectric slab d2 is λ2/4 thick, the input admittance◦4 is given simply by

curve◦4 = Y 2
2

curve◦2 (4.4)

For a perfect match we must require curve◦4 = Y0 at resonance, and from
(4.4) we obtain, for ε2 = 1.7,

curve◦2 = Y 2
2

Y0
= 1.7Y0 (4.5)

Also shown in the Smith chart of Figure 4.4 are the transformation circles
for the specific frequencies 10, 13, and 16 GHz.∗ Note that the admit-
tance at the center frequency, 10 GHz, is rotated exactly λ2/4, while the
higher frequencies, 13 and 16 GHz, are rotated more and more as the
frequency increases (similarly, the lower frequencies will rotate less and
less). As seen in Figure 4.4, this results not only in a transformation of
the admittance curve◦3 into◦4 in the center of the Smith chart but also
in a compression around Y 0 at the center frequencies (i.e., we obtain a
larger bandwidth). This is a typical example of broadband matching. For
more about this subject, see Chapter 6 of ref. 3.

Further, we show in Figure 4.5 the reflection coefficient as a func-
tion of frequency for normal and 45◦. At a normal angle of incidence
we observe a substantial increase in bandwidth compared with the simple
Salisbury screen shown in Figure 4.3a; in fact, the 20-dB bandwidth has
been increased by a factor of about 2.3. Further, we show in Figure 4.6
the reflection curves at a 45◦ angle of incidence for orthogonal as well as
parallel polarization. They are seen to be lacking somewhat in both fre-
quency stability and bandwidth, in particular for the parallel polarization.
However, as demonstrated in Figure 4.3, this problem can be partly cured

∗For further discussion of this admittedly somewhat unorthodox approach, see Appendix
B of ref. 3.
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Figure 4.5 (a) Specular reflection coefficient as a function of frequency for normal and
45◦ angles of incidence, orthogonal as well as parallel polarization. (b) Schematic of a
Salisbury screen with a dielectric slab d2 in front. Note the significant shift of resonant
frequency for oblique incidence. It is due primarily to ε1 = 1, as illustrated in Figure 4.3.
This problem is alleviated by an increase in ε1, as shown in Figure 4.6.

by increasing ε1. Further, the length of d1 and d2 should be made slightly
longer than λ1/4 and λ2/4, respectively. This will partly compensate for
the reduction caused by r1y and r2y with angle of incidence as discussed
earlier.

Thus, based on these considerations, we arrive at the design shown in
Figure 4.6. We observe a much improved frequency stability with angle of
incidence compared with the earlier design shown in Figure 4.5, although
the bandwidth for parallel polarization is still somewhat lacking.

Probably the best guidance of design is to observe the various admit-
tances in the complex plane: in particular, the Smith chart, shown in
Figure 4.7a for a normal angle of incidence. Note that at 10 GHz the admit-
tance◦4 has been moved slightly to the right by choosing Y S = 1.6Y 0 and
not 1.7Y 0, as calculated originally in equation (4.5). That simply centers
the other frequencies of◦4 a little better (i.e., we obtain a lower reflec-
tion for more frequencies). Finally, the oblique cases for 45◦ are shown
in Figure 4.7b and c for orthogonal and parallel polarization, respec-
tively. Note in the orthogonal case in Figure 4.7b how◦2 is increased by
1/cos 45◦ to 1.7 · √

2 = 2.4. However, the intrinsic admittance of slab d2
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Figure 4.6 (a) Specular reflection coefficient as a function of frequency for normal and
45◦ angles of incidence, orthogonal as well as parallel polarization. (b) Schematic of a
Salisbury screen with a dielectric slab d2 = 0.64 cm in front and d1 = 0.505 cm behind.
This design shows much better stability with angle of incidence than the design shown
in Figure 4.5 because ε1 = 2.5 instead of ε1 = 1.0.

is also increased by 1/cos 45◦ such that◦4 still lands around Y 0. Simi-
larly, we observe in Figure 4.5c for the parallel case how◦2 is reduced
by cos 45◦ and so is the intrinsic admittance for slab d2, such that ◦4
again lands around Y 0, as in the orthogonal case. Alternatively, we can
simply prefer not to renormalize the admittance by 1/cos 45◦ and cos
45◦, respectively. This approach is followed in the next section, where
we consider the circuit analog absorber.

4.5 CIRCUIT ANALOG ABSORBERS

The Jaumann absorbers discussed above consisted of simple resistive
sheets where the sheet admittance ◦2 was independent of frequency. In
a circuit analog (CA) absorber these sheets are basically substituted for
by resistive sheets with a frequency-selective pattern. Such a combination
is capable of producing a complex sheet admittance◦2 that can greatly
enhance the bandwidth beyond what is possible with a simple Jaumann
absorber.
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(a)

(c)

(b)

(d)

Figure 4.7 Various Smith chart plots for the Salisbury screen shown in the insert
(same as in Figure 4.6).◦1 denotes the ground-plane admittance as seen at the plane
of the resistive sheet looking toward the ground plane; ◦2 is the admittance of the
resistive sheet;◦3 denotes the sum of◦1 and◦2 ; and◦4 is obtained by transforming◦3 through slab d2. Note the frequency compensation taking place by transformation
through d2. (a) Smith chart plot for normal incidence; (b) Smith chart plot for 45◦ inci-
dence, orthogonal polarization; (c) Smith chart plot for the 45◦ incidence, parallel polari-
zation.
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Basically, any classical FSS element is a candidate for a CA sheet;
in fact, a rather complete survey and discussion of elements in general
can be found in Chapter 2 of ref. 2. Traditionally, most CA absorbers
have been made of straight dipole elements. Since absorbers in general
are required to work for arbitrary polarization, the elements typically were
made of crossed or orthogonal clusters of straight elements, as explained
in Section 9.5.4 of ref. 2. Such configurations are capable of producing
absorbers with a bandwidth in excess of 10 : 1. However, these designs
are intended to produce a low return in the backscatter region for normal
and moderate angles of incidence only. In the present case we require
the bistatic return, as well, to be low for angles ranging from normal up
to a ±45◦ angle of incidence. To avoid the onset of free-space grating
lobes (which can severely jeopardize the bistatic return) and to some
extent even trapped grating lobes, we must simply require an interelement
spacing smaller than λ0/2, where λ0 is the free-space wavelength at the
highest frequency. It is possible to embed a dipole array in thin dielectric
slabs (“underwear”) with high ε and thereby delay the onset of free-space
grating lobes [2, Sec. 5.13.1]. However, trapped grating lobes easily occur
for an oblique angle of incidence, making precise matching difficult. In
general, it is a better idea to use elements that are inherently small. As
emphasized numerous times in Sections 2.3 and 2.7 of ref. 2, elements of
the loop type are particularly suitable because of their small size, leading
to small interelement spacings. Here we use a square loop, where the side
length is only about λ0/4 at the center frequency (it will be reduced further
when placed in a stratified medium, as shown later). More specifically, we
show in Figure 4.8 the dimensions of an array of square loops as well as
the dielectric profile. Also shown is the reflection coefficient as a function
of frequency for a normal incidence. For square loop designs, see also
ref. 4.

A more detailed explanation of the intricacies of this CA absorber is
obtained by plotting the appropriate curves in a Smith chart as obtained
from the PMM program. Thus, we show in Figure 4.9a the ground-plane
admittance◦1 as well as the CA sheet admittance◦2 for a normal angle of
incidence. Note that the latter is no longer constant, as was the case with
the Jaumann absorber, but varies strongly with frequency. In fact, when
the ground-plane admittance◦1 is inductive below about 10 GHz, the CA
admittance is capacitive. Thus, when these two curves are added together
to yield the total admittance◦3 , as shown in Figure 4.9b, we notice that
this curve is somewhat compressed as a function of frequency because
the reactive parts of◦1 and◦2 partially cancel each other.

Finally, we transform◦3 through slab d2 and obtain the final curve◦4 ,
as also depicted in Figure 4.9b. We note again further compression simply
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Figure 4.8 The reflection coefficient as a function of frequency for the CA design shown
in part (b), normal angle of incidence, as obtained using the PMM program. The CA sheet
is comprised of perfectly conducting square loops loaded with eight 100-� resistors, one
in each corner and one in the middle of each side.

because the higher frequencies rotate faster than the lower ones, just as
was the case with the Jaumann absorber discussed earlier. Similarly, we
show in Figure 4.10 the reflection coefficient curves for a 45◦ angle of
incidence at orthogonal as well as parallel polarization. Further, curves◦1
to◦4 are shown in two Smith charts in Figure 4.11a and b for orthogo-
nal polarization. And finally, we show the same curves in Figure 4.12a
and b for parallel polarization. The compression of the final curve ◦4
is seen to be even better than for a normal angle of incidence simply
because the oblique case has been favored in the design procedure. Note
how the frequency point 16 GHz of curve◦2 in Figure 4.12a apparently
exhibits a discontinuity. However, the same curve but with a finer fre-
quency increment is shown in Figure 4.13 and shows total continuity. A
closer investigation shows that this anomaly is caused by excitation of
the odd mode on the loops at about 20 GHz. It produces an antiresonance
approximately midway between the fundamental resonance at 10 GHz and
the second resonance at about 20 GHz (see also ref. 2, Chap. 2).



84 ON DESIGNING ABSORBERS FOR AN OBLIQUE ANGLE OF INCIDENCE

Normal

10

j2

j1

j0.5

j0.2

0 0.2 0.5 1 2

j2

j1

j0.5

j0.2

4 GHz

16 GHz

1

2

4 GHz

16 GHz

10

j2

j1

j0.5

j0.2

0 0.2 1 2

j2

j1

j0.5

j0.2

10

10

16 GHz

16 GHz

4 GHz

4 GHz

3

4

(a)

(b)

(c)

Dx = Dz = .86 
W = .15

All dimensions in 
cm.

1
2

3 4

e1=2.5
d1=.52 d1=.64

e1=1.7

Loops loaded with 8  
resistors, 100 Ω each

0.5

Figure 4.9 Smith chart plots of the CA design shown in part (c) for the normal angle of
incidence as obtained with the PMM code. (a) Admittance◦1 denotes the ground-plane
admittance as seen in the CA sheet looking left. Admittance◦2 denotes the admittance
of the CA sheet alone; it is comprised of an array of conducting square loops loaded
with eight 100-� resistors. (b) Admittance◦3 denotes the sum of◦1 and◦2 shown in
Figure 4.9a. Admittance◦4 denotes the final input admittance as seen at the surface of
slab d2 looking left; it is obtained by transforming◦3 through slab d2.
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Figure 4.10 Specular reflection coefficient as a function of frequency for the CA design
shown in part (b) for a 45◦ angle of incidence, orthogonal (⊥) as well as parallel ( || )
polarization as obtained with the PMM code. The CA sheet is comprised of perfectly
conducting square loops loaded with eight 100-� resistors, one in each corner and one in
the middle of each side.

4.6 OTHER DESIGNS: COMPARISON AND DISCUSSION

Comparison with other designs is always of interest, in particular if a
different approach has been used. Particularly noteworthy in that respect
are two papers that use the microgenetic algorithm (MGA) approach.
The first of these [5] appeared in June 2001 and with the exception of
a single design contains only examples that are optimized for a single
polarization. However, the second paper [6], which appeared in March
2002, contains designs that are optimized for arbitrary polarization, as
considered exclusively in this chapter. Consequently, only two examples
from the latest paper are considered here, denoted cases 1 and 2.

Both cases contains two FSS screens based on the “pixel” approach.
They are sandwiched between several dielectric slabs, some lossy and
some essentially lossless. Both designs have about a 19-dB bandwidth,
slightly less than an octave. The lowest bistatic reflection coefficient is
−19.38 and −18.45 dB for cases 1 and 2, respectively. Further, the total
thickness is 5.7 and 5.65 mm, respectively, corresponding to 0.57λ0 and
0.565λ0 at 30 GHz. These thicknesses are quite comparable to all the
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Figure 4.11 Smith chart plots of the CA design shown in part (c) for a 45◦ angle of
incidence, orthogonal E -field polarization. (a) Admittance◦1 denotes the ground-plane
admittance as seen at the CA sheet looking left. Admittance◦2 denotes the admittance
of the CA sheet alone; it is comprised of an array of conducting squared loops loaded
with eight 100-� resistors. (b) Admittance◦3 denotes the sum of◦1 and◦2 shown in
Figure 4.11a. Admittance◦4 denotes the final input admittance as seen at the surface of
slab d2 looking left; it is obtained by transforming◦3 through slab d2.
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Figure 4.12 Smith chart plots of the CA design shown in part (c) for a 45◦ angle of
incidence, parallel E -field polarization as obtained with the PMM code. (a) Admittance◦1 denotes the ground-plane admittance as seen at the CA sheet looking left. Admittance◦2 denotes the admittance of the CA sheet alone; it is comprised of an array of conducting
squared loops loaded with eight 100-� resistors. (b) Admittance◦3 denotes the sum of◦1
and◦2 shown in Figure 4.12a. Admittance◦4 denotes the final input admittance as seen
at the surface of slab d2 looking left; it is obtained by transforming◦3 through slab d2.
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Figure 4.13 The same CA admittance curve◦2 as shown in Figure 4.12a but with finer
frequency intervals. It clearly shows continuity. It is related to an antiresonance between
the fundamental resonance at 10 GHz and the second resonance around 20 GHz (odd
mode).

designs presented in this chapter. The present design has a bandwidth
about the same as that in MGA designs; however, the reflection is signif-
icantly lower. For orthogonal polarization the bandwidth is significantly
larger (f H /f L ∼ 2.7).

The difference in performance between the design obtained here by
the analytic approach and that in the MGA approach, obtained by more
than 31 hours of computer optimization per case, is interesting to explore.
First, the computer placed FSS screen 2 only about 0.03λ0 in front of
the perfectly conducting ground plane for case 2. This spacing is simply
so small that it essentially shorts out FSS screen 2 and thus renders it
ineffective. In fact, if FSS screen 2 next to the ground plane is removed
completely, results obtained from the PMM program change by less than
1 dB. Similarly, for case 1 the analog spacing was somewhat longer but
still smaller than desirable to be effective. FSS screen 1, on the other
hand, is placed in the “right neighborhood” to be effective provided that
it is designed correctly. However, closer inspection shows that the surface
resistances of both CA screens are about an order of magnitude too high to
carry any current of the proper magnitude. In fact, if screen 1 is removed
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completely, the reflection coefficient as obtained by the PMM program is
less than 2 dB higher than with screen 1 in place.

Further, we observe that the cell sizes of the two CA screens are about
1.0λ0 and 1.4λ0. Such large interelement spacings result in numerous
grating lobes, which at some frequencies and angle of incidence will
coincide with the backscatter and specular directions. In general, they can
add significantly to the bistatic reflection and should therefore be avoided
at all cost. Although they are reduced as the result of the excessive high
surface resistance of the CA sheets, as pointed out above, they are still at
a dangerously high level. In fact, cell sizes should in general be less than
about 0.5λ0 for all FSS and phased array designs, as demonstrated in this
chapter.

In view of the fact that both FSS screens are essentially ineffective,
one may ask the logical question: How do we explain the absorption? The
answer is simply: It came from all the lossy dielectric sheets. They simply
create a multilayered Jaumann absorber. In fact, both of the papers referred
to above [5,6] contain extensive identical tables of εr

′ and εr
′′ for 10 dif-

ferent dielectric materials as a function of frequency. Their values are
4.48275 < εr

′ < 24.77497 and 1.84577 < εr
′′ < 18.98354 and are given in

steps of 1 GHz from 19 to 36 GHz. Each of the two MGA designs contains
eight dielectric slabs, some lossy and some essentially lossless. However,
comparison with the designs in this chapter suggests that although it is pos-
sible to make materials with these dielectric constants, these precise values
are not necessary, nor do we need that many layers in the present case.

Finally, it should be noted that many other papers [7-9] have considered
absorbers similar to the types considered here. However, since they are
basically narrowbanded and designed for normal angle of incidence only,
it is not pertinent to compare them with the designs above.

4.7 CONCLUSIONS

In this chapter we first presented an absorber suggested by Lagarkov and
Kisel. It can be described as a resistive screen backed by a flat lens backed
by a ground plane. The purpose of the flat lens was to make the effect of
the ground plane independent of the angle of incidence. It did indeed do
that, but was hampered by the fact that a working flat lens just was not
available. Another shortcoming was that the resistive sheet was not scan
compensated. As a consequence, no actual calculated results were shown.

True to the concept for this book, we proceeded to present alternative,
realistic designs. More specifically, we investigated absorbers made of
resistive sheets placed in a stratified dielectric medium. We started with
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the simple Salisbury screen as a baseline, progressed to the Jaumann, and
finally, to more sophisticated circuit analog absorbers made of resistive
sheets provided with FSS features. Although such designs have been the
subject of rather intense investigations for a normal angle of incidence
[2, Sec. 9.5.4], what is new in this chapter is that we also find the spec-
ular scattered field for oblique incidence and arbitrary polarization. We
found in all cases that a strong shift upward in frequency occurred with
increasing angle of incidence. This was due primarily to the fact that
the electrical spacing between the ground plane and the resistive sheet
is given by β1d1r1y , where r1y is the cosine to the angle of incidence
inside the dielectric, if any. As the angle of incidence increases, r1y will
become smaller, and consequently, β1 must increase to maintain β1d1r1y

∼ π /2. The fundamental cure for this dilemma was simply to fill the
space between ground plane and resistive sheet with a dielectric. As a
result of Snell’s law, r1y will be smaller with higher εr and thereby pro-
vide greater stability with angle of incidence. However, we also observed
some reduction in bandwidth. Thus, the dielectric constant ε1 should not
be increased indiscriminately. Values around 2 to 3 seem to be a good
compromise. We also observed a mismatch between the absorber sheets
and the incident field that increased with angle of incidence. This phe-
nomenon is the same as that observed for matched arrays scattering in
the bistatic direction when exposed to an incident plane wave, discussed
extensively earlier. Thus, we only had to demonstrate the simplest cure,
the use of a dielectric matching slab in front. For ideal scan compensation
it was found that the dielectric constant of such a plate should be approx-
imately εr ∼ 1 + cos θ1i , where θ1i is the maximum angle of incidence in
air. We found this to be a good choice.

However, what is new is that we also found that use of dielectric
matching slabs could be used to increase the bandwidth significantly. The
proper dielectric constant for scan compensation could also yield a large
bandwidth by proper choice of the resistance of the resistive sheets, with
or without the FSS feature. In fact, the relative bandwidth could typically
increase from f H /f L ∼ 1.2 for a simple Salisbury screen to about 1.4 for
parallel and 2.0 for orthogonal polarization for a single resistive layer pro-
vided with a dielectric matching plate. For a single-layer CA sheet with
dielectric matching plate we found the relative bandwidth to be equal to
f H /f L ∼ 2 for parallel and equal to f H /f L ∼ 2.7 for orthogonal polar-
ization (angle of incidence is 45◦). Note that none of these designs has
been optimized. Inspection of the appropriate Smith charts (Figures 4.11
and 4.12) shows that further improvement is possible: for example, by a
slight relocation of curve ◦4 . A most interesting comparison was made
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with designs obtained entirely by numerical optimization: namely, the
microgenetic algorithm [5,6].
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5 The Titan Antenna:
An Alternative to Magnetic
Ground Planes

5.1 INTRODUCTION

The Titan antenna will probably never be built again—so why talk about
it?

First: This was the most difficult matching problem I ever encountered
in my entire career. Consequently, it contains many “neat tricks” that
could be useful for antenna designers in general.

Second: The Titan is one of only a handful of antennas operating at two
frequency bands (140 to 150 and 250 to 270 MHz) using the same
antenna elements and the same matching networks for both bands.

Third: The distance between the mast and dipole elements was only
about 0.015λ at the low band (the antenna was to fit inside a 12-inch
silo when stored).

Also: It would be an excellent illustration of practical antenna design
for both students and professors. As pointed out by my good friend
Dr. Ruth Rotman, it is an example of an antenna that could not have
been developed just by computation. You must know how to use a
Smith chart.

Finally: It shows an alternative to the magnetic ground plane.

The purpose of the Titan antennas was to transmit data between missile
sites. There were several identical vertical polarized antennas, each stored
in its own silo at each site. When an antenna was activated, it would be
raised out of the silo driven by compressed air. When an antenna was
knocked out, another antenna would be activated automatically.

The mast consisted of two steel pipes with diameters of 7 and 6 inches
welded together in the middle. For mechanical reasons these dimensions
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could not be reduced. Further, for economical reasons the diameter of the
silo could not be more than 12 inches. Add to that a radome with a wall
thickness of about 0.25 inch that should fit between the antenna and the
silo. Cutting out the details, the distance from the center of the dipole
element to the surface of the mast could be no greater than about 1.2 inch
or about 0.015λ at the low frequency. That is the smallest spacing between
a dipole and a ground plane that I have ever seen. It is often believed
that this situation would require a magnetic ground plane. However, the
solution given here is far superior.

5.2 LAYOUT OF THE ANTENNA

Back-of-the-envelope calculations quickly revealed that four dipoles
placed on one side of the mast would be sufficient to produce the desired
gain in the low band. This would also produce a desirable cardioid
pattern in the horizontal plane. However, since there was no room for
another set of dipoles at the high band, the radiation simply would have
to take place from the same elements as well.

The most obvious solution to this problem is shown in Figure 5.1. In
part (a) we show two of the four dipoles and their electrical dimensions
at the low band. Similarly, in part (b) we show the same two dipoles
with electrical dimensions at the high band. At the low-frequency band
we observe an interelement spacing of 0.8λL, which in that range will
produce almost maximum gain. However, at the high band we observe that
the interelement spacing is 1.45λH . This spacing will lead to formation
of grating lobes with subsequent loss of gain that could not be tolerated.

This dilemma was solved by using sleeve dipoles, as shown in
Figure 5.2, instead of simple dipoles. Let us first consider the high
band at the bottom of the figure since this is primarily what drives the
design at this point. We observe that the sleeve dipole is comprised of
a midsection of length 0.2λH and two outer sections each of length
0.4λH . These dimensions were chosen such that the current distribution
as shown in the figure was considerable larger at the two outer sections
than for the midsection. In fact, the current distribution at the high band
looked almost like two half-wave dipoles with end-to-end separation of
0.2λH . Similarly, the tip-to-tip distance of the original dipoles had been
reduced from 0.55λH in Figure 5.1 to 0.45λH in Figure 5.2. Certainly,
these interelement spacings were not ideal, but as we shall see, were
sufficient to reduce the grating lobes to acceptable levels. Keep in mind
that the dipole dimensions were also affecting the impedance critically,
as will be seen later.
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Figure 5.1 Typical current distribution on simple dipoles: (a) at the low band; (b) at
the high band. Note that the interelement spacing at the high band is 1.45λH , leading to
grating lobes and unacceptable loss of gain.
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Figure 5.2 Typical current distribution on sleeve dipoles: (a) at the low band; (b) at the
high band. Note that the interelement spacing at the high band is the same as before, but
the current distribution now looks almost like two halfwave dipoles with tip-to-tip spacing
of 0.2λH (instead of zero), and the gap between the sleeve dipoles has been reduced to
0.45λH instead of 0.55λH . Still not ideal, but acceptable.
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Finally, we note that the current distribution at the low band, as shown
in Figure 5.2a, is perfectly ideal. No gain problems were ever experienced
in that band.

5.3 ON DOUBLE-BAND MATCHING IN GENERAL

A fundamental problem with designing antenna elements for two fre-
quency bands is that, in general, it is very difficult to change the elements
such that only one frequency band is affected. For example, if the length
of the element is changed, it will, in general, affect the impedance in
both bands, and what is desirable for one band may be just the opposite
for the other. Thus, one should try to design elements such that certain
adjustments affect only one band and not the other.

An example of such a design applicable to out present problem is shown
in Figure 5.3. We show here both the current and voltage distribution along
an element at the high-frequency band. Note that the voltage distribution
has a null approximately in the middle of the two outer sections. That
means that we can attach whatever at that location without changing either
the current or the voltage distribution or, more precisely, the impedance
at the high-frequency band. We now attach two slanted conducting straps,
each with one end connected to the mast and the other two ends to the
voltage null point, as shown in Figure 5.3. The outer ends, connected
to the neutral points, can be moved somewhat up and down. Although
this will have only a minor effect on the impedance in the high-frequency
band, the two slanted sections have turned the element into something like
a folded dipole at the low band (actually a �-match), where the impedance
changes significantly when the slanted straps are moved up and down.

Mast

Current
Voltage

Conducting
straps

Figure 5.3 Current and voltage distribution at the high band on a sleeve dipole. Where
the voltage is zero, we can attach conducting straps essentially without disturbing the
fields in the high band.
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Incidentally, the easiest way to locate the voltage null along the ele-
ments at the high band is probably experimentally. You simply record
the terminal impedance at the center frequency of the high band. Next,
you slide your fingers along either of the two outer dipole sections. When
the impedance does not change, you have located the voltage null point
quite precisely and you ask the machinist to attach the strap holders just
there. Next time you update your résumé, you may even claim “hands-on
experience”!

5.4 MATCHING THE SLEEVE ELEMENTS

It would be nothing short of naiveté to assume that the array of sleeve
dipoles could be matched to anything close to 50 � by simple adjust-
ment of the straps and the element dimensions in general. Ideally, the
distance between the dipoles and the mast should be considerably larger
than 0.015λL, but that was not an option, as explained earlier. In order to
understand the rather complex matching scheme for this antenna, let us
consider the schematic of a single sleeve dipole, as shown in Figure 5.4.
The impedances at the two feedpoints marked◦1 are obtained by mea-
surement of the impedance at the terminals marked◦4 . They are shown
in the Smith chart in Figure 5.5 and denoted L◦1 and H◦1 for the low-and
high-frequency bands, respectively. For a refresher on matching, in gen-
eral, see Appendix B in ref. 1.

3

42

1

2

1

Figure 5.4 Schematic of a sleeve dipole and the “reversing” reactance◦2 at the high
band: a coaxial stub inside the outer dipole sections.◦4 is a balanced transmission line
formed by the outer conductors of two 50-� coaxial cables joined by a conducting clamp
some distance below the feeding point◦4 .
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Figure 5.5 The impedance curves L◦1 and H◦1 (low and high bands, respectively) right
at the feedpoints◦1 of the sleeve dipole (see Figure 5.4). Also shown are the curves L◦2
and H◦2 , which include the coaxial reactances at◦2 . Task: To transform L◦2 and H◦2 to
the inside of the goal circle (VSWR = 2).

The goal is to transform both of these impedance curves to the inside
of a circle with VSWR = 2 by using the same matching network. Con-
sidering the relatively small size of the two impedance curves L◦1 and
H◦1 , this seems a trivial matter, at least to the untrained eye. However,
two facts must be kept in mind. First, the nature of the Smith chart is
such that curves at the edge will be greatly enlarged when transformed
merely mathematically to the center region. However, what is more cru-
cial is how the actual transformation is executed. For example, if we use
a conventional single-stub tuner, we will quickly find that although the
center frequency could be transformed to the center of the Smith chart,
the lower and higher frequencies of the band would be completely outside
our “goal circle.”
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An excellent example of this situation is shown in Figure B2 in
ref. 1. Also discussed there is what to do about it: namely, “reverse”
the impedance curve, which means that it should run “backward” in
the Smith chart.∗ This is typically done by insertion of, for example, a
pure reactance, either in series or in parallel with the pertinent antenna
impedance. An example of this technique is shown in Figure B3 of ref.
1. Note that the final VSWR at 50 � is now less than 1.1. (No formal
optimization was used to obtain this result, only a parametric study.)

In the present case we have solved the “reverse” problem by creating
a series coaxial stub by inserting an inner conductor into part of the
two outer sections of the sleeve dipoles as illustrated in Figure 5.4. The
two coaxial stubs are short circuited at the outer ends, and their electrical
length is slightly shorter than a quarter wavelength at the high band. Thus,
their input impedances are purely inductive such that the high-frequency
band H◦1 is transformed up into curve H◦2 as illustrated in Figure 5.5
(for details, see Appendix B in ref. 1). The remarkable feature of H◦2 is
that it has the higher frequencies located above the lower such that it runs
backward when seen from the center of the Smith chart. That means that
the curve H◦2 is compressed in frequency when connected to a cable of
proper length and characteristic impedance, as illustrated shortly.

We further note that the low band L◦1 in Figure 5.5 is being moved
into curve L◦2 by the inductive stubs. However, this transformed curve is
not reversed, due to the fact that L◦1 is located in the inductive part of
the Smith chart. In fact, L◦2 is unfortunately being moved toward the rim
of the Smith chart, but by no more than we can control, due to the fact
that the inductive reactance of the two inductive stubs is fairly low at the
low frequencies.

The actual reversing of the low-frequency band will not take place
before the curves L◦2 and H◦2 are transformed into L◦3 and H◦3 , respec-
tively, at the terminals◦3 , as shown in Figure 5.4. The actual transformed
curves are shown in the Smith chart in Figure 5.6. Note that both of these
curves are now located in the capacitive part of the Smith chart. We need
to reverse L◦3 , whereas H◦3 essentially should be left alone. What kind
of impedance would be capable of doing just that, and where would it
come from physically?

We get the answer to that question if we again study the feeding
arrangement in Figure 5.4. We observe that the sleeve dipoles are fed
by two 50-� coaxial transmission lines operating as a balanced 100-�

∗Running backward in the Smith chart does not violate Foster’s reactance theorem, which
pertains only to pure reactances located entirely on the rim of the Smith chart, not to
impedances inside the chart. (Sure, we are very close to the edge, but as we will see, far
enough inside to be “saved.”)
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Figure 5.6 The two curves L◦2 and H◦2 (see Figure 5.5) are transformed to the ter-
minal area◦3 and denoted L◦3 and H◦3 , respectively. We then add the reactance from
the balanced stub and obtain L◦4 ahd H◦4 . Further transformation takes place along the
balanced transmission line, yielding L◦5 and H◦5 (see Figures 5.7 and 5.8). Next, trans-
formation takes place in two coaxial sections, each with characteristic impedance 22 �

yielding the curves L◦6 and H◦6 at a 200-� level. Connecting adjacent dipoles in parallel
yields a 100-� level that matches right into the balanced 100-� transmission line. The
two antenna halves are then connected in parallel at the balun to match right into the
50-� main line.

twin-lead line. Normally, the two outer coaxial shields should be con-
nected to each other at ◦4 by a conducting clamp or simply soldered
together. However, we have left it open and instead connected the two
outer shields by a clamp at a lower position, as shown in Figure 5.4.
These two shields act on the outside as a section of a twin-lead cable
short circuited at the lower end by the clamp. Thus, the input impedance
of the twin-lead stub at◦4 is purely reactive and connected in series with
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the impedances L◦3 and H◦3 . If the distance from the lower clamp to◦4 is somewhat shorter than a quarter-wavelength at the lower-frequency
band, the twin-lead impedance at◦4 will be purely inductive, such that
the impedance curve L◦3 will be transformed into the inverted curve L◦4
shown in Figure 5.6.

However, for the outer twin-lead section not to affect the impedance
H◦3 significantly (since it is already reversed), we want its input
impedance at◦4 to act electrically as a short at the high band (i.e., the
distance from the lower clamp to◦4 should ideally be one half-wavelength
at the high frequency). Typically, the electrical length at the center of
the low band would be about 0.2λL; that is, the electrical length at the
center of the high band would be approximately (0.2)(260/145) = 0.3λH

(i.e., significantly shorter than 0.5λH ).
This dilemma was solved by placing a shunt capacitor across the outer

twin-lead line approximately midway between the lower clamp and ◦4 .
This capacitor is not shown in Figure 5.4 but can be seen clearly in the
physical layout shown in Figure 5.7. Such a capacitor would make the
electrical length of the twin-lead stub larger at both the low and high
frequencies. However, it will affect the high frequency most because the
capacitor is located close to a voltage maximum at the high frequency
and not as close at the low frequencies. The detailed calculation (in a
Smith chart, of course!) is left as an exercise for the student. Note further
that the electrical short at◦4 does not have to be terribly effective since
the impedance level at H◦4 is so high. Thus, H◦3 is essentially identical
to H◦4 .

Finally, we show in Figure 5.7 a rather detailed picture of what an
individual sleeve dipole actually looked like. We note the coaxial match-
ing stubs inside the outer dipole sections as well as the two 50-� coaxial
cables working as a balanced feedline with the shorting bar and the capac-
itor, discussed earlier. Finally, note the three robust cable holders welded
to the mast. Why three and not just two? Well, that’s an exciting story
that we tell in Section 5.8.

5.5 FURTHER MATCHING: THE MAIN DISTRIBUTION
NETWORK

We saw above how the impedance curves L◦4 and H◦4 shown in Figure 5.6
got reversed. This step should always be the first and be performed as
close to the element terminals as possible before the impedance curves
start to “curl up” with increasing frequency. However, further matching
takes place in the main feedwork shown in Figure 5.8. We start with the
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Figure 5.7 Detailed drawing of a single-sleeve dipole being fed from a balanced line
comprised of two 50-� coaxial cables. Also shown are the two coaxial sections with
characteristic impedance 22 �, each located between◦5 and◦6 . Finally, note the three
cable holders welded to the mast, as well as the capacitance for adjusting the length of
the balanced stub.
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Figure 5.8 Complete schematic of the feed network for the entire antenna array.
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two 50-� balanced coaxial lines connected directly to the terminals◦4 of
each sleeve dipole. The other ends are connected to a pair of specially
machined coaxial sections each with characteristic impedance 22 �. Their
endpoints are denoted◦5 and◦6 , as indicated in Figure 5.7 and to the right
in Figure 5.8. In Figure 5.6 we see how the impedance curves L◦4 and
H◦4 are being transformed into L◦5 and H◦5 , respectively, by the balanced
coaxial transmission line. We observe that these impedance curves are
located in the same neighborhood in the Smith chart despite the fact that
the electrical length of the balanced coaxial line is 0.35λL at the low
frequency and 0.65λH at the high frequency, respectively.

Next, L◦5 and H◦5 are transformed into L◦6 and H◦6 , respectively, via
the two 22-� sections. We note that this transformation was originally
done the usual way in a Smith chart normalized to 22 �. However, we
like to show the transformation as shown in Figure 5.6 because it shows
so vividly how an impedance curve is greatly enlarged when it is trans-
formed from the outer to the inner part of the Smith chart, as discussed
earlier.

We note further that L◦6 , as well as H◦6 , are at the 200-� level such that
when two adjacent dipole elements are connected in parallel, the level is
reduced to the 100-� level. Thus, it is matched directly into the last section
of a balanced 2 × 50-� line. Note further that since no frequency-sensitive
transformers are involved, there are no bandwidth limitations except for
the bandwidth of the curves L◦6 and H◦6 themselves.

Finally, the two 100-� balanced transmission lines for each antenna
half are joined in parallel at the balun as shown in Figure 5.8. That brings
the final level down to 50 �, which is the level used in Figure 5.6 when
showing the two curves L◦6 and H◦6 , transformed to the balun.

5.6 THE BALUN

It was pointed out earlier how the feed network was designed without any
frequency-sensitive parts. Unfortunately, it did not seem possible to pull
similar tricks in the case of the balun. We simply needed a balun with a
bandwidth of about 3 : 1. Finally, it was decided to use the design shown
in Figure 5.9. This layout, often appropriately called a mast balun, may be
compared with the well-known Roberts balun, the main difference being
that whereas the Roberts balun is oblong, the mast balun is flattened out.
(For an in-depth discussion of baluns in general, see Chapter 23 in ref. 2.)
Both of these designs will balance almost perfectly at all frequencies.
Their frequency limitation is due to the reactance of the stubs, consist-
ing of the outer coaxial shields and the surface of the mast. Since the
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Broadband Balun 100 − 300 MHz

∼l/4

50 Ω

50 Ω

50 Ω

50 Ω 50 Ω

Figure 5.9 Broadband balun mounted on the outside of the mast. The open-ended stub
inside the top section becomes capacitive at the lower frequencies, whereas the two balun
shunts become inductive. That increases the bandwidth substantially.

characteristic impedances of these two stubs are fairly large and the two
reactances on each side are in series, we will end up with a fairly large total
reactance, in parallel with a relatively low (ca. 50-�) impedance. Further,
a compensating stub was inserted in the top balun. Thus, a bandwidth
with a 3 : 1 frequency range was readily obtained. We finally observe in
Figure 5.9 how the two balanced 100-� transmission lines to each array
half are connected in parallel at the 50-� balun, creating perfect broadband
matching.

5.7 THE RADIATION PATTERN

Typical radiation patterns in the horizontal plane are shown in Figure 5.10
at the low and high bands, respectively. The cardioid patterns are due
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Figure 5.10 Measured horizontal cardoid pattern at the low and high bands, respectively.

entirely to the shadowing effect of the mast and had the desired shape. A
few specimens were made with a corner reflector added to enhance the
gain (see Figure 5.15). The effect on the impedance from the reflector
was minimal (more than can be said about the effect from the mast).

Similarly, we show in Figure 5.11 the vertical pattern in the low and
high bands. The low pattern is quite satisfactory, while the high band has
some small grating lobes, as anticipated (see Section 5.2). However, since
there was no sidelobe specifications and we met the gain requirement, it
was of no concern.

The antenna was measured in the horizontal position on a primitive
turntable that could handle the approximate 1-ton weight, as required. It
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Figure 5.11 Measured vertical pattern at the low and high bands, respectively. The
grating lobes, visible at the high band, are sufficiently suppressed not to affect adversely
the gain in the high band.

was being pushed around by my technician, Jim, using the “Armstrong”
method. That explains the slight misalignment of the pattern.

5.8 SOMETHING THAT SOUNDS TOO GOOD TO BE TRUE
USUALLY IS

When the first prototype of the Titan antenna was tested, I expected the
VSWR to slightly exceed 2 : 1. It was hoped that minor adjustments could
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(a)

(b)

Figure 5.12 (a) Undesirable pattern caused by mast oscillation (the entire mast was
“hot”). (b) Vertical pattern desired For an explanation, see the text.

bring it within specs. Much to my surprise, the VSWR was considerably
lower, actually 1.6. I was immediately suspicious—and sure enough, the
vertical antenna pattern looked like a disaster. Instead of a pattern as
indicated in Figure 5.12b, it looked like the one shown in part (a). Very
quickly it was suspected that the entire mast was being excited, as indi-
cated in the figure. In fact, when the impedance was measured, it would
change dramatically if you placed your hand on the end of the mast. In
other words: It was “hot”!

Obviously, some imperfect balance got the entire mast excited more
than the dipoles. But where did the imbalance come from? The first sus-
pect was, of course, the balun, However, it seemed okay. After careful
reflections over what was different between the lab model and the first
prototype, it was established that the 100-� balanced line attached directly
to the dipole terminals◦4 had hung down from the dipoles at 90◦ from
the mast for the lab model (the mast was placed in a horizontal position).
This was convenient when working on matching in general. In contrast,
the mechanical engineers had bent the feed cables so that they were par-
allel with the mast as shown in Figure 5.7 for the prototype, and welded
the two lower cable holders solidly to the mast (all with my approval, of
course). However, note that one of the two 50-� cables was longer than
the other, due to a larger bending radius (only on the outside; inside, the
cable lengths were cut to the correct length). There was the imbalance.
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More precisely, when a short was placed from the longest outside cable
to the mast at the right point, the patterns were perfect. The mechanical
engineer was not very happy about moving one cable holder to the new
position closer to the dipoles. I said: “Just leave it and put another where
it gives the right balance.” That solution was fine with him—and that is
why we have three cable holders and not just two!

5.9 EFFICIENCY MEASUREMENTS

Every time a conducting element is placed close to a ground plane or in
this case a substantial mast, the terminal impedance will be driven toward
the rim of the Smith chart. Consequently, the antenna becomes more
susceptible to ohmic losses in the elements. Due to the complexity of the
present antenna, the sponsor determined to get an idea about the efficiency
simply by measuring the temperature rise at seven agreed-upon locations
on an element when exposed to full power (1 kW). This was done by use of
thermocouplers. Since all parts of the elements were grounded to the mast,
it was simple to place the control wires such that they did not interfere
with the radiated field. Although I do not recall the temperature specs, I
vividly remember that the rise in temperature was substantially less than
the specs. This evidently suggests that the ohmic losses are quite a bit
smaller than is often assumed (see, e.g., Figs. 2–11 and 2–12 in ref. 2).

5.10 A COMMON MISCONCEPTION

A magnetic ground plane is, in general, defined as a structure with infinite
high surface impedance, in contrast with an electric-conducting ground
plane, where the surface impedance is zero. Thus, when using an electric
ground plane, an electric current element must be placed some distance
from the ground plane. In contrast, an electric current element can con-
ceptually be placed directly on top of a magnetic ground plane.

Many elaborate schemes have been proposed in the literature for pro-
ducing magnetic ground planes. However, they all follow the same basic
design concept: An inductive impedance is created by placing an elec-
tric ground plane about 0.05 to 0.15λ behind the plane of the magnetic
ground plane. You then add a shunt capacitance by adding either a dielec-
tric slab or a periodic structure of conducting elements. This rather simple
idea is being elevated to immediate respectability by denoting the latter
concoction as belonging to the metamaterial family. Sure, it works—but
only over a bandwidth of a few percent, depending on the distance to the
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electric ground plane. I have stated repeatedly that you are, in general,
better off by using “smart” matching by placing your electric current ele-
ment some distance from the electric ground plane (see, e.g., Sections
6.12.4 and 6.12.5 in ref. 1). The Titan antenna presented in this chapter
is further proof of this statement. It not only provides an excellent match
over about an 8% bandwidth in one band, but actually in two widely sepa-
rate bands for a ground plane distance as short as 0.015λ. At that distance
a magnetic ground plane would be able to obtain a bandwidth of only
1 to 2%, and in one band only! The trick is, of course, that we apply a
matching technique that inverts the antenna impedance (smart matching).
Is it any wonder that I am somewhat skeptical of “blind” optimization?

Why discuss this subject in this book? Because magnetic ground planes
are perceived to be metamaterials.

5.11 WE PUT THE MAGNETIC GROUND PLANE TO REST

The concept referred to as the magnetic ground plane (MG) has been
investigated for some time in several papers and books. In addition, several
papers dealing with the MG have been rejected before publication simply
because they missed the point or were just trivial (as were many of the
published “peer-reviewed” articles).

The fundamental idea behind an MG is straightforward: It should pro-
vide us with a structure yielding infinite or at least a large sheet impedance,
such that elements with electric currents will not be shorted out even when
placed directly on top of the MG. Obviously, the image of the electric
currents in the MG will always be in phase with the original. It is widely
believed, or at least implied, that maximum directivity of a single ele-
ment or column is obtained when the element(s) are placed directly on
top of the MG. As illustrated in Figure 5.13, that is indeed the case. In
Figure 5.13a we show the radiation pattern when the elements are placed
directly on an MG, and in Figure 5.13b, when they are placed λ/4 in front
of an MG. Obviously, the image and the original will add in phase in all
directions and produce an omnidirectional pattern in the first case, while
in the latter case, they will cancel each other in the forward direction
(i.e., the directivity is zero in the forward direction). It is interesting to
note that if we were to replace the MG with an electric ground plane,
we would still obtain maximum directivity for “small” spacing but only
a slightly smaller directivity for λ/4 spacing. In addition, the directivity
for the electric ground plane is always higher than for the MG case, as
discussed in Section 6.12.4 of ref. 1. So apart from the fact that magnetic
conductors do not occur in nature, one wonders what is its claim to fame.
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Figure 5.13 The radiation pattern of an electric current and a magnetic ground plane
for (a) close spacing between the original and the magnetic ground plane; omnidirectional
pattern. (b) λ/4 spacing; no field in the forward direction.

Let us consider how we may construct an artificial MG as illustrated
in Figure 5.14. Typically, it consists of an electric ground plane in front
of which we have placed our electrical elements. The spacing between
these and the electrical ground plane may typically be 0.05 to 0.15λ (i.e.,
the impedance contribution from the electrical ground plane at the plane
of the elements is inductive). Thus, if we place some form of capacitance
next to the dipoles, the ground-plane impedance will be very large, as
required of an MG. Such a capacitance can take many forms, ranging
from a simple dielectric sheet to small conducting elements of almost any
shape. Alternatively, we could load the electrical elements themselves with
capacitors. Whatever we do, it is important to realize that the radiation
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Figure 5.14 An artificial magnetic ground plane (or high impedance) is typically created
by placing a capacitive reactive surface a distance of about 0.05 to 0.15λ in front of an
electric ground plane. The reactive surface can be a dielectric slab or a periodic structure
of small conductors.

pattern of a large array is determined primarily by the highly pointed
array factor, not by the element pattern. Thus, the directivity of the array
is basically not affected by the spacing between the ground plane and the
elements, nor by the capacitive loading. Thus, our only concern is how
to match the total impedance observed at the terminals of the electrical
elements. The value of the ground-plane impedance is irrelevant as long
as the dipole impedance is not purely imaginary and different from zero
and as long as matching is possible.

An example of an antenna following this design philosophy is given
in Chapter 6 of ref. 1. Here we consider an array with a bandwidth of
approximately 9 : 1 with a maximum VSWR of 2 : 1, considerably better
than can be obtained with an MG. Another example is the Titan antenna
discussed in this chapter, where the ground-plane spacing is merely about
0.015λ. The bandwidth of an MG for such a small spacing would be of
the order of 1 to 2%. Note: A larger ground-plane spacing produces a
larger bandwidth.

To summarize: The magnetic ground plane concept aims to produce a
high impedance at the plane of the electrical elements by use of a dielectric
slab or an equivalent. Alternatively and potentially much more effective
is to combine the impedance of the electrical elements themselves with
the ground-plane impedance to yield the proper total terminal impedance.
If done cleverly, it may lead to a considerably larger bandwidth.
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It is absolutely amazing how the simple magnetic ground plane concept
has attained such importance and has resulted in numerous papers and
book chapters. Most deplorable is the fact that most authors simply do
not even consider the only really important factor: the terminal impedance
of the antenna placed on top.

Every time a dielectric slab is placed next to a periodic structure, atten-
tion should be given to the possibility of surface waves. More on this
subject and how to avoid it is may be found in my first book [3].

Typical periodic structures of conducting “flakes” can also be used to
produce the necessary capacitance. The shape may be square, rectangular,
circular, or hexagonal, just to mention a few. Sometimes they are made
in the form of loops, and the inner part may be filled with more or less
meaningful wire structures. The oddest I have seen was filled with some
fractal contraption. Considering that the diameter of loops was only a
small fraction of a wavelength, such a design seems rather pointless.
Presumably, “smiley faces” would work just as well!

For a systematic presentation of a “high-impedance” ground plane, the
reader is referred to Chapter 11 of ref. 4.

5.12 CONCLUSIONS

We designed an antenna with several unique features, such as:

1. The antenna operated in two bands, 140 to 150 and 250 to 270 MHz,
using the same special element (a sleeve dipole) in both bands.

2. The same matching network was used for both bands.
3. The distance from the sleeve dipole to the surface of the mast was

only 0.015λL at the low band, leading to extremely high terminal
impedances in both bands.

4. The antenna fits inside a 12-inch silo and the diameter of the mast
is 7 inches (for the bottom section). This explains the lack of room
for more than one set of elements, as well as matching networks.

5. The main feeding system uses no frequency-sensitive components,
yielding a bandwidth determined only by the elements per se.

6. A new type of broadband balun (1 : 3), especially suitable to be
mounted outside a mast, was developed.

7. Using magnetic ground planes is not only unnecessary but counter-
productive.

It has generally been agreed by everyone who analyzed this
antenna that it constitutes one of the most sophisticated designs in
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Figure 5.15 One version of the Titan antenna where a corner reflector has been added
to the standard version. It folds up along the antenna when stored in a silo. It had only
a minor effect on the impedance of the already strongly decoupled antenna impedances,
due to the mast.
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the VHF–UHF region. It is therefore suggested that the antenna be
used as an illustration of antenna technology in general, and practi-
cal antenna design in particular, for the benefit of both students and
instructors.

P.S. The complexity of this antenna often makes people believe that it
would be too tricky to build. Actually, counting all the variants of this
antenna, almost 200 antennas were build and installed without any sig-
nificant problems. One version had a corner reflector that could be folded
up along the mast to fit in the silo when stored as shown in Figure 5.15.
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6 Summary and Concluding
Remarks

6.1 BACKGROUND

In 1968, Veselago asked a perfectly good question: What would happen if
the permeability µ and the permittivity ε for a material were both nega-
tive? [1]. He concluded that the refractive index between two media with
µ1, ε1 > 0 and µ2, ε2 < 0, respectively, would be negative. He arrived at
this result simply by matching the boundary conditions. A logical exten-
sion of this discovery led to the postulate of the flat lens (i.e., a perfectly
flat slab with µ= ε = − 1). It was claimed that it could focus energy
inside as well as outside the slab.

For almost 30 years after Veselago published his paper, it appears that
it attracted almost no interest at all: that is, until Pendry came along in the
mid-1990s and suggested that materials with µ, ε < 0 could be made arti-
ficially by use of periodic structures of various wire elements [2–5]. Not
long after, at the turn of the century, a group of physicists at the University
of San Diego built a prismlike configuration consisting of straight wires
and split-ring resonators as suggested by Pendry [6–9]. They claimed
that they had indeed observed negative refraction experimentally. It was
followed quickly by an avalanche of papers, books, and conventions in
which negative refraction was presented as a fact of life. Almost no papers
with a critical view were being published.

Meanwhile, numerous configurations claiming negative µ and ε by the
theorists were tested experimentally—by professionals, not just students
who wanted to graduate! No negative µ and ε were ever observed, and
negative refraction was typically so weak that it could be characterized
as being simply spurious signals.

This author never had a contract concerning metamaterials, nor did
I ever ask for one. However, I did have some experience in periodic
structures in general. It therefore became quite common that in casual

Metamaterials: Critique and Alternatives, By Ben A. Munk
Copyright  2009 John Wiley & Sons, Inc.

115



116 SUMMARY AND CONCLUDING REMARKS

conversation I would hear remarks such as “Hey, Ben, this looks like
your stuff. What do you think about it?”

I gave my first oral opinion at the Torino conference ICEAA01 in
2001 after a paper given by Engheta [10,11]. He was considering the
resonance frequency of a cavity between two ground planes half-filled
with material with µ, ε > 0 and half with µ, ε < 0, respectively. The
resonance frequency remained almost constant from dc to broad daylight!
I argued from the floor that if the entire cavity were filled with µ, ε < 0,
the resonance frequency would move counterclockwise in a Smith chart,
violating Foster’s reactance theorem (see Figure 1.2). I added, to the great
indignation of the audience, that although I found the paper interesting,
I did not believe a word of it! However, so as not to jeopardize funding
for any of my colleagues, I decided to put a hold on publishing a paper.
Not before 2003 did I submit to IEEE Transactions on Antennas and
Propagation a paper with the title “On Negative µ1 and ε1: Fact and
Fiction.” One reviewer found it interesting, whereas the two others were
adamantly against it. However, rather than spending time fighting for
publication, I decided to publish it some other time. It is given in Appendix
A, five years after it was written, without editing.

Meanwhile, many potential sponsors were under intense pressure to
support this new endeavor, which promised unbelievable returns. There
were a few skeptics, but typically, they felt intimidated when confronted
by the enormous output of publications that claimed to have observed
a negative index of refraction. (How could so many be wrong? Besides,
nobody wanted to miss out on the big breakthrough.) Essentially only one
paper, by Valanju, Walser, and Valanju, objected strongly [12].

Many in government as well as industry wanted a publication that was
rigorous but also emphasized what really went on from a physical point
of view. Eventually, I decided to take a stab at it. The result is the book
you hold in your hand.

6.2 THE FEATURES OF VESELAGO’S MATERIAL

Veselago concluded that essentially two features were associated with his
material:

1. There was a negative index of refraction between two media with
µ1, ε1 > 0 and µ2, ε2 < 0, respectively.

2. A plane wave propagating through his medium would be left-
handed, meaning that Ē, H̄, and the direction of phase propagation
form a left-handed triplet (see Figure 1.4) (the Poynting vector
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still points in the same direction as for a normal right-handed
wave propagating through a medium with µ2, ε2 > 0). It was later
suggested that Veselago had notions about backward-traveling
waves [13,14]. But there is no evidence to support that claim as far
as this writer can determine.

It was later postulated by Pendry and others that:
3. A wave propagating through Veselago’s medium would exhibit

phase advance, in contrast to phase delay, when propagating in a
medium with µ2, ε2 > 0 (see Figure 1.2).

4. The evanescent waves propagating through Veselago’s medium
would increase as they moved away from their origin.

It should be noted that claims 3 and 4 obviously are closely related from
a theoretical point of view. Strangely enough, some people can accept one
but not the other.

6.3 WHAT CAN A PERIODIC STRUCTURE
ACTUALLY SIMULATE?

To the best of this author’s knowledge, all attempts to realize Veselago’s
medium have so far been done by application of periodic structures using
various elements. Considering the fact that we have some experience with
periodic surfaces, it was therefore natural that we first investigated whether
it was possible to simulate any feature of Veselago’s medium by use of
periodic surfaces using whatever elements we desired.

We concluded, with great certainty, that a negative index of refraction
just was not possible when the structure was infinite and the interelement
spacing less than λ/2. If the structure was finite and the interelement spac-
ings still less than λ/2, weak radiation could be observed in the negative
sector. It was, however, not negative refraction but merely radiation from
either a surface wave characteristic of finite periodic structures or possi-
bly simply a sidelobe from the main beam in the positive sector [15]. The
weakness of these waves has nothing to do with either ohmic or dielectric
losses. They are due merely to low radiation efficiency of surface waves
in this particular case.

Further, if the interelement spacings were greater than λ/2, grating lobes
could be observed. These are often confused with backward-traveling
waves. However, there is absolutely nothing backward or left-handed
about them. They are perfectly “normal” except that they can propagate
antiparallel to the incident field.
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We emphasize that these findings have absolutely nothing to do with
the type of element that we use in the periodic structure. We concluded
further, with great certainty, that all fields radiated from infinite periodic
structures are right-handed regardless of element type and interelement
spacings (see Section 1.6). Finally, we saw absolutely no evidence of
evanescent waves with increasing amplitude or propagating waves with
phase advance: that is, unless you terminate your structure in a resistive
load. That has nothing to do with creating a new magic material but simply
represents network tricks related to broadband matching. The author is
quite familiar with this subject, as discussed in several sections of ref.
[15] as well as in Chapter 5.

6.4 DID VESELAGO CHOOSE THE WRONG BRANCH CUT?

We stated above that a periodic structure could not realize a single feature
characteristic of Veselago’s material. It is therefore natural to revisit Vese-
lago’s original paper [1]. He arrived at his results by matching boundary
conditions as usual. As mentioned in Chapter 1, he apparently did so
correctly and formally postulated negative refraction. However, as also
pointed out in Chapter 1, the solution was purely mathematical, and all
such solutions must be checked for physical validity. We did just that by
examination of the “perfect” lens (i.e., a flat slab with µ= ε = − 1). We
found that in order to focus at all frequencies, the medium should provide
us with a time advance, or “negative time,” not delay as is normally the
case for µ, ε > 0.

From a mathematical point of view, negative time is just another param-
eter that is completely acceptable. However, from a physical point of view,
it is not permitted. (If anyone out there has some negative time, please
send me a slice; it could prolong my life!) See also Sections 6.5 and 1.11.

6.5 COULD WE EVER HAVE A NEGATIVE INDEX
OF REFRACTION?

When Veselago postulated a negative index of refraction, he did not
specify that periodic structures should be used. He left the creation of his
material completely open; in fact, he was wondering whether there were
good reasons why such a medium may not be realizable. It is therefore
natural to ask the question: Could we ever create any material where a
negative index of refraction could be possible? To answer this question,
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Delayed Advanced

Wavefront 2 
Wavefront 1

m1,e1 > 0 m2,e2 > 0

s2

s1

Figure 6.1 A wave propagating in direction ŝ1 is incident upon a boundary between two
media with µ1, ε1 > 0 and µ2, ε2 < 0. The upper part of the incident wave is delayed.
Thus, the upper part of the refracted wave must be advanced when propagating in the
direction ŝ2 as shown (i.e., associated with negative time). This supports the findings by
Valanju et al. [12].

consider Figure 6.1. It shows the boundary between two semi-infinite
media with µ1, ε1 > 0 and µ2, ε2 < 0, respectively. A plane wave
propagating in the direction ŝ1 is incident upon this boundary. We ask:
Is it possible to obtain a plane wave in the medium µ2, ε2 propagating
in the direction ŝ2, as shown in the figure? We observe that the upper
part of the incident wavefront in medium 1 is delayed. Thus, the upper
part of the wavefront in medium 2 must be advanced in time to create
a plane wave as shown. In other words, medium 2 must somehow be
associated with negative time. And as discussed earlier, that is not an
option.

However, not everyone is convinced by the argument given in con-
junction with Figure 6.1. Thus, in Figure 6.2 we give a somewhat more
detailed explanation of why a flat lens just will not work even if negative
refraction were possible. We consider a source in medium 1 emanating a
single pulse along each of three (or more) rays denoted 0, 1, and 2, respec-
tively. If we assume for the moment that negative refraction, n12 = − 1,
is possible, these rays will meet at the point denoted crossover 1 in the
figure. Since ray 1 has a total path length 2�l1 longer than that of ray 0,
the pulse associated with ray 1 will arrive at the crosspoint with a time
delay proportional to 2�l1. Similarly, the pulse associated with ray 2 will
be delayed by a time proportional to 2�l2. Thus, all the pulses going
through the crossover point will do so at different times and never be able
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Medium 1 
m1,e1

Medium 2 
m2 = −m1, e2 = −e1, n12 = −1
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Source Crossover 1

2∆  2
2∆  1

∆  2

∆  1

∆  2
∆  1

Figure 6.2 How a pulse starting at the source will arrive at crossover 1 with time delays
depending on the inclination of the individual rays. Thus, a strong picture of the source
at crossover 1 is not possible: or a flat lens does not work.

to reproduce a strong and undistorted reproduction of the “picture” at the
source.∗

This discussion showing the failure of the flat lens could actually stop
right here. However, one could argue that it could “work” if time delay
associated with positive time could be replaced with time advance associ-
ated with negative time, as suggested in the discussion of Figure 6.1. Thus,
we must again conclude that Veselago’s solution, although mathematically
correct, is deficient in the physical world because it relies on negative
time. Or, alternatively: the rotation in the counterclockwise direction in
Figure 1.2 is not possible.

6.6 COULD VESELAGO HAVE AVOIDED
THE WRONG SOLUTION?

It is interesting to note just exactly what boundary condition is responsible
for producing a negative index of refraction. In fact, it is the normal
component of the displacement field that is continuous when going from
medium 1 to medium 2:

D̄1 = ε1Ē1 = ε2Ē2 = D̄2 (6.1)

∗This train of pulses can, of course, be decomposed into a spectrum of sinusoidal waves.
Some of these may very well (actually quite likely) be in phase at the focal point. However,
most of the components are not. Thus, our conclusion above that the crossover point is
not a focal point was correct.
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Obviously, when ε1 and ε2 have different signs, so will Ē1 and Ē2. And,
as illustrated in Figure 1.20, that is precisely what formally leads to a
negative index of refraction. However, as pointed out in Appendix A,
Maxwell’s equations can be written in the alternative form

∇ × Ē = −jβ1Z1H̄ (6.2)

Z1∇ × H̄ = jβ1Ē (6.3)

where, as usual,

β1 = ω
√

µ1ε1 (6.4)

Z1 =
√

µ1

ε1
(6.5)

From equations (6.4) and (6.5) we see that neither β1 nor Z 1 will change
if µ1 and ε1 are both negative [i.e., (6.2) and (6.3) are unchanged as
well and “nothing” happened]. Of course, we could have chosen the other
branch cut in (6.4). However, this is trivial since it merely constitutes an
identical wave propagating in the opposite direction. As to choosing Z 1
negative, everyone agrees that it is only relevant close to a “black hole”
in outer space, not in a passive medium. See also equation (6.6).

Interestingly enough, Veselago specifically stated that to “learn some-
thing new about materials in general” we should use Maxwell’s equations
containing µ1 and ε1, as is generally done [1]. We did indeed learn many
new startling features, most notoriously, negative index of refraction.
However, we now know that this was a nonphysical solution that vio-
lated the physical laws, as illustrated, for example, in Figures 6.1 and 6.2
(see also Sections 1.11, 6.5, and 1.12.4).

6.7 SO WHAT CAME OUT OF IT?

As stated earlier, we did not see any convincing experiment showing a
negative index of refraction (too weak a signal). Nor did we ever produce
a flat lens, although numerous front-page pictures have been shown. We
did get an avalanche of enthusiastic papers and at least four books, not
counting this one, that can hardly be characterized as anything but critical
[17-20].

Rarely did we see any papers in opposition. We can only speculate
on the reasons for that. Undoubtedly, there were more believers than
nonbelievers; and many of the skeptics were simply too timid to speak
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up. But most of all, getting an opposing paper published was almost
impossible. It would eventually be rejected by the vast number of earlier
authors and reviewers.

6.8 IS PUBLISHING THE ULTIMATE GOAL
IN SCIENTIFIC RESEARCH?

Someone was once giving a very upbeat assessment of the future of meta-
materials with a negative index of refraction. He finished jubilantly with

We saw 250 papers in 2004.
In 2005 we expect even more!

Well, sir, that is beautiful poetry indeed! But is the quantity of papers
really a measure of the quality and significance of the research in ques-
tion? I don’t think so. Certainly, in the academic world “publish or
perish” requires a minimum number of publications. That was not always
the case. In fact, some of the greatest innovators wrote relatively few
papers.

6.9 WHAT EXCITES A SCIENTIST?

It should be obvious by now that this author has the greatest respect for
the science of metamaterials. Only when fundamental laws of physics
are violated, in particular when a negative index of refraction is claimed,
must I strongly object. Further, I see nothing wrong in Veselago ask-
ing his now famous question. Obviously, I think he made an honest
mistake with regard to negative refractions and left-handedness based
merely on boundary conditions. However, it would all have been incon-
sequential had it not been for Pendry, who apparently believed that merely
producing a material with negative µ and ε would indeed result in neg-
ative refraction. He added more features, in particular that evanescent
waves would increase as you moved away from the source leading to a
superlens.

Although these concepts raised eyebrows in some camps, it would prob-
ably be correct to state that the vast majority of scientists really believed
these new exciting ideas. This statement is based on the fact that we saw
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more than 1000 enthusiastic papers and hardly any critical ones. Further,
technical conferences of highest standards were customarily dominated
completely by metamaterials. Mostly, academics were involved, although
some activity was detected in industry. Typically, however, they were
observing others and not spending their own IRAD money. However,
there was plenty of funding from the government. And undoubtedly, that
was one of the primary drivers. In fact, being a scientist today makes you
face many difficult choices.

But what really fascinates me is how such a misconception could live
for more than a decade. The fact is that although everybody knew Vese-
lago’s name and that he postulated a negative index of refraction, very
few scientists had actually read his original 1968 paper, and even fewer
really knew his argument based on boundary conditions. What everyone
understood was the workings and ramifications of the flat lens. And from
here sprang a myriad of papers all assuming that a negative index of
refraction was a reality even if it had never been shown conclusively
in this author’s opinion (too weak a signal), as discussed extensively
in Chapter 1. What was put in place very quickly was a “theory” that
in a seemingly logical way explained “everything.” Very creative minds
invented materials called double positive, double negative, and so on.
It was assumed in general that all these features could be obtained by
using periodic structures (a notion that made me “freak out”). Most sci-
entists simply like to read a logical layout that “explains” everything.
Most of them have spent the majority of their time studying true and
well-founded theories. Rarely did they have to doubt Maxwell’s equations,
and if they did, they were probably wrong! When I discuss my views
in scientific meetings, the first reaction is invariably: But how can so
many people be wrong? It simply takes quite awhile for many scientists
to get used to the idea that they have been reading science fiction, not
science.

From an educational point of view we should probably do more to train
our students to be skeptical. In that respect I have found it very useful to
review papers with students. Actually, it is great fun. And talking about
reviews, I would gladly sign my reviews and have them printed along
with the paper. I think the quality (and courtesy!) of the reviews would
improve exponentially! Of course, it should be followed up by academic
credit and not, as it is now, just be an opportunity for the reviewer to
show his or her ego from behind a curtain. Let us have an open and frank
discussion.
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6.10 HOW FAR HAVE WE GONE IN OUR SELF-DECEPTION?

I recently reviewed a paper where the authors concluded that the intrinsic
impedance of a left-handed material was negative. To them it indicated
that “something was wrong.” Reviewer 1 thought otherwise. He quoted a
well-known researcher (no names, due to the review process): “On sign
and branch of certain parameters for simple, lossy double-negative mate-
rials, the sign of these parameters is a matter of choice, and that a positive
as well as negative sign can be used, as long as it is used consistently in
a given solution.” However, on p. 14 in ref. 17, the following is stated:

“Zi = E+
i

H r
z,i

= ωµi

λx,i

(6.6)

Thus, as both µ2 and λx , 2 are negative in the left-handed medium, the
impedance Z i is positive as is required for a passive medium.”

The difference between the two conclusions above is that the first is
based on pure math while the second is rooted in the real, physical world.
In other words, we see basically the same problem as discussed in Sections
1.10, 1.11, and 6.4 to 6.6, where we stated that whereas, for example, time
can be negative in the mathematical world, this is not an option in the
physical.

Says this author: Why waste more time on left-handed materials? They
have never been found in nature, has never been produced artificially, and
probably just cannot be made. Certainly, everyone is entitled to spend his
or her time pondering whatever subject he or she chooses, such as: What if
the mechanical mass could be negative? Certainly, such a material has not
yet been found on this planet, but maybe it could be located clinging to the
ceiling in a cave. It would have a great future for producing “antigravity
pills.” Sure, the Air Force would be interested. Frankly, it has as much
chance of being realized as has the flat lens that relies on negative time
(see Sections 6.4 and 6.5).

6.11 BUT DIDN’T ANYONE SUSPECT ANYTHING?

Not long ago I asked a leading pioneer in this area if he still believed in a
negative index of refraction. His answer: “Well, I have so many contracts.
It depends on where I go. Some places I believe it is possible, other places
I don’t.” When I told another scientist about my conclusions, he merely
said, “Well, fine. But just don’t talk about it.”
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Were they concerned about their funding, which has been flowing so
freely? Frankly, I don’t think we have created an environment that has
promoted good science. Science fiction, yes, but not science. Of course,
both of these scientists had a very impressive number of publications.
However, nobody should be rewarded for just writing large numbers of
papers. It should be the significance of the research itself that carries the
day. Too often these two tasks are on a collision course.

Frankly, it seems strange that very few of the highly educated
researchers in this field suspected that “all was not well.” And if they
did, why did they not speak up? Without insinuating anything, is truth
not more important than funding? Also, why are any references to the
theory of periodic structures left out almost systematically? Many of the
standard misconceptions could have been weeded out just by reading, for
example, refs. 15 and 16.

6.12 HOW REALISTIC ARE SMALL ARRAYS?

In this day and age, when “real estate” on a “platform” is at a premuim,
it has long been of interest to reduce the size of antennas in general,
provided that the gain and bandwidth remain the same. It has quite often
been suggested that the use of metamaterials of some sort would make
such a dream come true. Let us remind the reader about a few facts that
should be well known to competent antenna scientists but apparently are
very often overlooked.

The directivity of an antenna depends only on the size of the aperture
measured in wavelength in air (provided that we transmit into free space)
as well as the shape of the aperture distribution. It is immaterial whether
the array elements are fed directly from individual generators or arrive
via an exotic material. For a given-size aperture the directivity depends
only on the shape of the aperture distribution: for example, a uniform dis-
tribution leads to maximum directivity, while lower values are obtained
for tapered distribution (but also lower sidelobes). If the spacings between
the elements are smaller than about λ/2 (depending on scan), adding more
elements will not change the directivity provided that the aperture dis-
tribution is essentially unchanged. However, the impedance of the array
will, in general, be more broadbanded by making the interelement spacing
smaller (see Chapter 6 in ref. 15).

No computer program, no matter how exotic, can ever lead to new
designs that violate these fundamental concepts. It is deplorable that so
much time has been spent in front of screens where the operator may have
perceived reality but very often was just playing Russian roulette!
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NOTE: As this book is almost into final printing, the author became
aware of a most recent publication [21]. This paper is of great interest
because it not only agrees with our findings but uses an entirely differ-
ent approach, namely, thermodynamic. It shows that for negative index
materials, “negative heat” would be developed. In this book we conclude
that “negative time” is essential in Veselago’s medium. Obviously, both
of these requirements are physically unrealistic.
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APPENDIX A
The Paper Rejected in 2003

A.1 COMMENTS WRITTEN IN 2007 CONCERNING MY
REJECTED PAPER SUBMITTED IN 2003

This author always had doubt about the existence of a negative index of
refraction. I alluded to that at the ICEAA01 conference in Torino, Italy,
in 2001 when I pointed out from the floor that the results presented by
Engheta [1] violated Foster’s reactance theorem (my results for µ, ε < 0
would have rotated counterclockwise in the Smith chart in Figure 1.2).
However, not before 2003 did I submit for publication in IEEE Transac-
tions on Antennas and Propagation a paper with the inflammatory title:
“On Negative µ1 and ε1: Fact and Fiction.” Here I analyzed, without
actual calculations, scattering from a periodic structure comprised of a
single layer of infinitely long wires and double split-ring resonators as it
would have been done by a person who had no knowledge (or interest)
in materials with µ, ε < 0. As is well known, it leads to an equivalent
circuit consisting of an infinite transmission line with a shunt impedance.
If the structure is lossless, the shunt impedance is purely reactive (i.e., it
will be located on the rim of the Smith chart and rotate clockwise as
the frequency increases; see Figure 2 in Section A.2. However, if the
structure is lossy, the shunt impedance will be lossy as well and be
located at least partially inside the Smith chart, where Foster’s reac-
tance theorem no longer holds. In fact, when observed from the center
of the Smith chart, the shunt impedance can indeed run counterclock-
wise over a limited frequency range (see, e.g., Figure 4 in Section A.2).
Loss in the shunt impedance can have various causes. It may simply
be due to the usual ohmic and dielectric losses in the structure itself.
Such losses will be particularly noteworthy if two resonances are close
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to each other, as, for example, in a double split-ring resonator (again see
Figure 4). Or it could be due to (God forbid!) the presence of grating
lobes. These will supply real energy in the grating lobe directions and
manifest themselves as resistive parts of the shunt impedance. Such a
situation may indeed lead to transmission curves running counterclock-
wise over a limited frequency range. In fact, a recent paper [2] claimed
experimental evidence of “left-handed” material consisting merely of con-
ducting plates with circular holes. Surely enough, the distance between
the holes was about λ, which would result in grating lobes even for
a normal angle of incidence. The phase of the field transmitted can
indeed run “backward” in such a case; however, Ē, H̄, and direction of
propagation in any direction will always form a “right-handed” triplet
(see Section 1.6). There is absolutely nothing “left-handed” or back-
ward traveling about the transmitted field coming from such a structure.
Besides, grating lobes would weaken the field in the principal direction
of propagation. You can forget about the perfect lens when using this
design.

As far as the actual rejection is concerned, there were a total of three
reviewers. One found it interesting (although at times a bit polemic!),
while the other two were adamantly against it. One of them even stated:
“This paper should never be published, not even in the magazine.” (Sorry,
Ross, despite all the wonderful articles you have brought us over the years,
this is what he said!)

Since my next promotion hardly depends on publication of a paper or
two (after all, I am long retired), I decided not to waste my time fighting
a couple of incompetent reviewers (they were simply a gold mine for one
of my favored entertainments: common misconceptions). I believe the
paper was important in 2003 and even more so today, five years later. So
here it is for readers to judge for themselves. You may find the language
a bit “juicy” at times. For example, the two “negative” reviewers were
somewhat upset by my remarks at the end of Section 6.
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A.2 THE PAPER REJECTED IN 2003

On Negative µ1 and ε1: Fact and Fiction
Ben A. Munk

Abstract

Materials perceived as having both negative µ1 and ε1 have been of consid-
erable interest for some time. Apart from purely theoretical interest, it holds
out the possibility for producing lenses with super-resolution to mention just
a single feature [1]. However, this paper is not about possible applications
but simply about the very existence of such materials as well as interpreta-
tion of various experiments. We conclude that “negative refractions” seems
inconsistent with basic electromagnetic theory and that the observed scattered
field from models of these metamaterials are most likely caused by radiation
from certain types of surface waves unique to finite periodic structures with
inter-element spacings less than λ/2.

1. Background: Do we really need µ1 and ε1?

Using the constitutive relationships

B̄ = µ1H̄ (1)

D̄ = ε1Ē (2)

we can write Maxwell’s curl equations:

∇ × Ē = −jωB̄ = −jωµ1H̄ (3)

∇ × H = jωD̄ + J̄ = jωε1Ē + J̄ (4)

Further, we have for the intrinsic impedance

Z1 =
√

µ1

ε1
(5)

and the propagation constant

β1 = ω
√

µ1ε1 (6)

Substituting (5) and (6) into (3) and (4) yields for a source free region
(J̄ = 0):

∇ × Ē = −jβ1Z1H̄ (7)

Z1∇ × H̄ = jβ1Ē (8)
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The first set of Maxwell’s equations as given by (3) and (4) are seen to
contain µ1 and ε1 directly. Thus, if we change signs of µ1 and ε1 it opens
up the possibility for all kinds of sign changes for Ē and H̄ as well. Or
does it really? In fact, if we instead consider the second set of Maxwell’s
equations as given by (7) and (8), we observe that they contain only the
intrinsic impedance Z 1 and the propagation constant β1. Further, we see
from (5) and (6) that if we change sign of both µ1 and ε1, no change will
be observed for either Z 1 or β1, and consequently not of the field vectors
Ē and H̄, either. That is, unless we choose the negative sign associated
with the square root for β1 as given by (6). We will discuss this choice
later several times.

It should be pointed out that Veselago in his original 1968 paper [4] is
fully aware that expressions containing products of µ1 and ε1 are invariant
when we change signs for both µ1 and ε1. He further points out that only
when µ1 or ε1 appears alone, as in (3) and (4) above, can we expect to gain
insight into new materials. Further, Ē, H̄ and β̄1 form a right-handed triplet
of vectors when µ1 > 0 and ε1 > 0, while Veselago states that they form a
left-handed system if µ1 and ε1 are negative. He made no claims whether
such left-handed materials actually exist but speculated that they might be
realized in plasmas under certain circumstances. Note, that choosing the
negative sign for β1 apparently brings us in conceptual agreement with
Veselago’s left-handed system. However, we will not go into this subject
in this paper but will limit our investigation to the widely publicized
artificial metamaterials that consist merely of periodic structures made
of various wire elements suspended on a dielectric substrate. Note that
these imitations of left-handed materials are made entirely of right-handed
materials. Consequently, Ē, H̄ and β̄1 do not change handedness when
entering the artificial material and its properties can be calculated in the
conventional way.

But why are we customarily using (3) and (4), rather than (7) and
(8)? Primarily because of tradition. We simply inherited µ1 and ε1 from
static electromagnetism where they can be obtained individually by direct
measurements. In the dynamic range we usually measure Z 1 and β1 and
from there we find µ1 and ε1 by application of (5) and (6). It is somewhat
ironic that when a scientist learns about the values of µ1 and ε1 for a new
material, he quickly determines Z 1 and β1. That will indicate what the
typical use could be for that new material as, for example, a low loss
dielectric for a radome or for an absorber. In other words, are we not
fussing a little bit too much over µ1 and ε1? And thereby perhaps ending
up on the wrong street?



THE PAPER REJECTED IN 2003 133

2. But are artificial materials with negative µ1 and ε1 not a reality?
Not necessarily!

Certainly, artificial materials have been produced that claim large neg-
ative values of both µ1 and ε1. They are usually made of a periodic
structure with elements typically shaped similar to a “horseshoe” [3] as
shown in Figure 1a. Interlaced end-loaded dipoles or just straight wires
are sometimes also added [3–6]. A typical equivalent circuit is shown in
Figure 1b. The horseshoe elements are merely forming a parallel com-
bination of coils and capacitors with a resonant frequency, f 2, observed
when the circumference of the horseshoe is ∼λ/2 (in the dielectric sub-
strate, if any). Further, there will be a significant capacitance C e between
adjacent elements.

This will result in a series resonance frequency, f 1 < f 2, when the
parallel circuit is inductive. The equivalent circuit in Figure 1b may be
summarized in the equivalent circuit of Figure 1c where we show a trans-
mission line with characteristic impedance Z 1 and a shunt reactance jX S .
It is very instructive to plot jX S in a Smith chart as shown in Figure 2
[7,8]. Since it is purely reactive (for no ohmic loss) it will be located
at the rim of the Smith chart. At the DC frequency, f 0 = 0, jX S = ∞,
which is also the case at f 2 as shown. The reflection coefficient at these
two frequencies will be zero as indicated in Figure 2b. However, at the
frequency f 1, jX S = 0 resulting in 100% reflection as also shown. (See

(a)

f2

Ce

Ei

Ce

(b)

f1

(c)

Z1 Z1

jXs

f2 2
λ

~

Figure 1 An artificial dielectric with perceived negative µ1 and ε1 is typically made as
a periodic structure with various compact elements. (a) The most common element used
for metamaterials with µ1, ε1 < 0, namely the horseshoe element. (b) Equivalent circuit of
horseshoe element shown in (a). It exhibits an antiresonance at f 2 where the circumference
of the horseshoe is ∼λ/2 (in dielectric, if any). Further, due to the capacitance, C e , between
adjacent elements, it exhibits a resonance at f 1 < f 2. (c) The reactance observed in (b) can
be summarized as a shunt reactance jX s on an infinite transmission line with characteristic
impedance, Z 1.



134 APPENDIX A

(a) (b)

f2f0 = 0 f1

1.0

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

Frequency

f1 Z1

f1

f0
f2

Z1

jXs

f2

0

jXs

∞

Figure 2 (a) The shunt reactance jX s shown in the insert is purely reactive and therefore
located on the rim of the Smith chart. It is infinite at f 0 = 0 and f 2 while it is a short
circuit at f 1. (b) The reflection coefficient as seen by an incident wave from the left side
in the insert when the right side is terminated in Z 1 (or the cable infinite long).

also [8], chapter 9.) Note that precise calculations based on, for example,
the PMM program will verify this representation that is based primarily
on physical insight valid for small elements.

As we move up in frequency we may encounter more resonances and
anti-resonances alternating among each other according to Foster’s Reac-
tance Theorem, i.e. moving clockwise. That is, until we reach onset of
grating lobes, in which case the reactance jX S becomes lossy due to radi-
ation in the grating lobe direction(s) and it moves inside the Smith chart.
We can accelerate this rotation in the Smith chart by adding more res-
onating elements for example in the form of smaller horseshoe elements
inside the original ones as shown in the insert of Figure 3a. We show here
a Smith chart where we note that new resonant and antiresonant frequen-
cies, f 3 and f 4, respectively, have been added as a result of the inside
horseshoe element. Again, as long as there is no loss and no grating lobe,
the shunt impedance, jX S , for small elements will be purely imaginary
and located entirely on the rim. The reflection coefficient is shown in
Figure 3b.

A very instructive experiment is now to move the frequencies f 2 and
f 4 close to each other for example by making the inside element only
slightly smaller than the outside. Further, it is in that case realistic to add
losses to our model, either ohmic and/or dielectric. In that event the shunt
reactance becomes lossy and will move away from the rim to the inside
of the Smith chart as shown in Figure 4a. In particular the frequency
point f 3 can in extreme cases move significantly to the right as shown.
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Figure 3 (a) By placing a smaller horseshoe element inside the longer one in Figure 2(a),
we can introduce the higher resonance frequencies f 3 and f 4. (b) The reflection coefficient
as seen by a wave incident from the left side in the insert when the right side is terminated
in Z 1.

The reflection coefficient is shown in Figure 4b. Note that the curve is
actually running counter clockwise in the neighborhood of f 3. This in
no way violates Foster’s reactance theorem that pertains only to lossless
systems [9]. The “backward rotation” of the curve is sometimes interpreted
as the existence of a material with negative µ1 and ε1. However, if we
normalize our Smith chart to a point inside the f 3 loop, the curve will
run clockwise and show no “abnormal” behavior. Still, our “composite
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Figure 4 (a) When moving the two “horseshoe” frequencies, f 2 and f 4, closer to each
other, the impedance at f 3, under the influence of loss, will move closer to f 2 and f 4 as
shown. (b) The reflection coefficient as seen by an incident wave from the left side in the
insert when the right side is terminated in Z 1.
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material” is the same. This confusion seems to be related to splitting the
complex curve into real and imaginary components. Bad idea unless done
right!

3. But what about the index of refraction, n1, and propagation constant,
β1?

The intrinsic impedance Z 1 and the propagation constant β1 are given
by (5) and (6), respectively. As already pointed out, changing the signs of
µ1 and ε1 simultaneously does not change either Z 1 or β1, but we may
choose the negative sign for β1.

Further, we still have to discuss the index of refraction as given by

n1 =
√

µ1ε1

µ0ε0
(9)

Obviously, if we change the signs of both µ1 and ε1, we will not observe
any change in n1 either. However, mathematically speaking, the complete
solution for n1 is

n1 = ±
√

µ1ε1

µ0ε0
(10)

Here the + sign simply bends an incident plane wave according to the well
known Snell’s Law. The negative value on the other hand will produce
a wave propagating with a negative angle of refraction. It is believed by
many that this phenomenon can be observed for materials with negative
artificial µ1 and ε1 [1,3–6].

This problem has been theoretically investigated by Ziolkowski and
others [10,11] but they have apparently not convinced everyone in the
scientific community [12,13]. In fact, much more attention has been given
to experimental evidence of the negative sign of n1.∗

The most widely performed demonstration of negative n1 is probably
the wedge experiment shown in Figure 5. A plane wave is incident upon
a wedge with wedge angle, v , and index of refraction n1 > 0 or n1 < 0.
The directions of propagation for the refracted waves for both of these
cases are also shown.

Indeed, attempts to design such a wedge have been done by using meta-
materials made of horseshoe elements as shown in Figure 1 and discussed
in section 2. The wedge shape comes about by using various layers of
arrays of unequal length as shown in Figure 6. Many research groups have

∗It appears that few believe calculations except the one who did them. Everybody believes
measurements except the guy who took them!
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n1 < 0 

n1 < 0 

ν

Figure 5 A wedge with wedge angle v is exposed to an incident field from below. We
show the refracted field for the index of refraction n1 > 0 (ordinary) as well as for n1 < 0
(extraordinary).

reported a signal to the “negative side” that eventually could indicate the
possibility of a negative n1 [14,15]. However, probably the most inter-
esting of these measurements were performed by a group from Boeing
[16]. They noted that earlier measurements had been criticized because the
refractions pattern was not measured in the far field. Consequently they
performed measurement not only in the near field where they obtained
pattern similar to Figure 6 alright, but also took measurements in the far
field where the pattern looked somewhat different, namely as shown in
Figure 7. It can best be described as being of similar shape as the near
field pattern also shown in Figure 7 but intersected with several deep
nulls. This agrees perfectly with the experience of all seasoned antenna

n1< 0
Horse shoe 
elements

Ei

Figure 6 An artificial wedge made of horseshoe elements as shown in Figure 1. An
incident signal Ēi from below may produce a field on the top that may be interpreted as
the artificial wedge has an index of refraction n1 < 0.
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Figure 7 Experimental curves, as obtained by [16], of the refracted field for: (left) An
artificial wedge of horseshoe elements, in the near field (33 cm) as well as the far field
(66 cm). The negative angular location could be interpreted as a negative index of refrac-
tion. (right) The ordinary observed refracted field with n1 > 0 for a Teflon wedge in the
near field (33 cm) as well as the far field (66 cm).

engineers, namely, that as we move closer to a radiating structure, the
first to go from the far field pattern are the nulls. The logical question
is now: Is there any configuration that will produce a far field scattering
pattern similar to the far field pattern shown in Figure 7? There is indeed.
In fact, if we expose a finite array of straight wires to an incident plane
wave it has been shown that a left and right going “surface” wave can be
excited and radiate a pattern as shown in Figure 8. (See [8], Figure 4.9.)
Typically this effect for straight dipoles is strongest at 20–30% below
the resonance of the straight wires and we must require the inter-element
spacing in the x -direction to be less than λ/2. This spacing requirement
is indeed fulfilled for the horseshoe array in Figure 1 and although no
calculations of such finite arrays of horseshoes are available at this time,
we have little doubt that they, too, are able to carry surface waves with
a radiation pattern similar to the straight wire case in Figure 8. It is fur-
ther interesting to note that the magnitude of both the measured curves
in Figure 7 and the calculated curves in Figure 8 are about 20 dB or
more below the incident field. This is definitely not in agreement with
calculations by Ziolkowski that claims calculated magnitudes as strong
as ∼0.3 dB below the incident field [10]. Actually the deep nulls in the
refraction pattern were also observed by Shelby et al. [14]. Only, they
interpreted this as a flaw in their artificial wedge due to the element size
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Figure 8 The calculated bistatic scattered field at f = 7.7 GHz from a finite × infinite
array of 50 columns of straight dipoles resonating ∼10 GHz. Incident field as shown in
insert. (From [8], Figure 4.9).

being too large. Consequently they averaged their measured results and
thereby missed probably the most interesting feature of their experiment.

4. Further: No problems with boundary conditions when surface waves
are introduced.

Figure 9 shows a plane wave in medium◦1 with direction of propaga-
tion, ŝ1, entering medium◦0 where the direction is denoted ŝ0. Thus, the
phase velocity along the boundary is β1s1x and β0s0x for medium◦1 and◦0 , respectively. Matching these two phase velocities yields β1s1x = β0s0x

and by noting that s1x = sin θ1 and s0x = sin θ0 we obtain Snell’s Law

sin θ1

sin θ0
= β0

β1
=

√
µ0ε0

µ1ε1
= 1

n1
(11)
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Figure 9 An incident wave medium◦1 with angle of incidence θ is being refracted in
the direction θ0 in medium◦0 . For a negative index of refraction, the refracted angle
would be–θ0.

If n1 < 0 as suggested by (10), we obtain sin θ0 < 0, i.e., a direction
of propagation in media ◦0 as indicated by the broken line arrow in
Figure 9. Obviously the phase velocities of the incident and the negative
refracted wave at the boundary are physically incompatible. However,
many proposals have been suggested to overcome this “minor” problem.
One suggestion was simply to reverse the direction of the broken line
arrow. [Why not? This whole subject is basically about signs anyway!]
Another simply throws the hands up into the air and cries “Anomaly”
(Indeed!). However, do not forget that our artificial material is located
entirely in a right-handed and not a left-handed space. The fact is that only
surface waves attached to some structure at the boundary can carry waves
to the left (and right) without having to match the incident field. Such sur-
face waves have phase velocities completely different from β1s1x = β0s0x ,
i.e., the field of this wave is completely different from the incident field.
More specifically, we show in Figure 10 (upper) the actual calculated
element currents in an array of 25 infinitely long columns of dipoles,
each 1.5 cm long. Also shown in the same figure (lower) is the Fourier
analysis of the actual currents. Note that we also obtain, in addition to
the Floquet current at rcx = 0.707, two opposite traveling surface waves
at rcx =± 1.25. Obviously, this phase velocity can never be matched to
the incident wave where |rcx |<1. Note, however, that it is the incident
wave that excites the surface wave that in turn radiates a typical pattern
as shown in Figures 7 and 8. When the angle of incidence θ1 is changed,
the multi-lobed pattern will change somewhat alright but not according to
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Figure 10 Top: Actual calculated element currents in an array of 25 infinite long columns
of dipoles each 1.5 cm long. Angle of incidence is 45◦ as shown in insert. Bottom: A
Fourier analysis of the actual calculated element currents above. Note that in addition to
the Floquet current at rcx = 0.707, we also observe two opposite traveling surface waves
at rcx = ± 1.25. Also the surface wave at rcx = 1.25 is considerably stronger than the
Floquet current. However, it has less efficient radiation as observed in Figure 8.

the negative Snell’s Law given by (10). For further details, see reference
[8], chapter 4, and [17–20].

But how do we know that the surface wave is attached to the periodic
structure and not just the dielectric interface? From the bandwidth. The
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periodic structure of straight dipoles can support strong surface waves over
∼10% bandwidth [8] while purely dielectric surface waves would be more
broadbanded. Finally, a periodic structure of horseshoe shape would be
very narrow banded as has been lamented repeatedly by everybody. The
fact is that the phenomenon attributed to the horseshoe element can be
observed just as well or even better with a host of other elements.

5. Negative artificial propagation constant β1 is an illusion: a direct
proof.

The wedge experiment described above has apparently convinced many
scientists that negative index of refraction is possible by using artificial
metamaterials. Hopefully, the discussion here has indicated that this may
not be quite the case. However, many participants in this endeavor would
like to see an alternative and more direct proof. Thus, in the following
example the propagation constant, β1, will be investigated rather than the
index of refraction, n1. Keep in mind, however, that the sign for these
two are identical as seen by inspection of (10) and the complete solution
of (6). This proof is so direct and simple that one wonders, why it has
not been presented before.

In Figure 11 we show an ordinary dielectric slab of thickness l2 and
propagation constant β2. To the left we have placed a groundplane and to
the right a slab of metamaterials with equivalent thickness l1 and prop-
agation constant β1. Typically this is believed to come about by using
one or more of the horseshoe arrays shown in Figures 1–3 and 4. We are
going to determine the input impedance Z in1 at the right surface of the
metamaterials slab l1 looking left as indicated in Figure 11.

We will obtain Z in1 in two ways: (a) By using the Smith chart shown in
Figure 12 and assuming β1 < 0 as postulated by some scientists. (b) By
direct calculation of the groundplane with periodic structures placed in
front of it as shown schematically in the inset of Figure 11.

In Figure 12 we show how the input impedance Z in2 of slab l2 is
obtained by rotating the amount β2l2 clockwise in the Smith chart from
the groundplane (zero). Next we obtain Z in1 by rotating the amount β1l1
in the counter clockwise direction from Z in2 (if the intrinsic impedances
for slab l1 and l2 differ, it is a simple matter to adjust for this in the Smith
chart). The important point is not so much where we end up on the rim
of the Smith chart as the fact that as the frequency increases, Z in2 rotates
clockwise and the contribution from slab l1 moves opposite. Obviously, if
l2 ∼ 0, Z in1 will always move counter clockwise for increasing frequency
because of the assumed negative value of β1.

Alternatively, we can also obtain Z in1 by direct calculation; for
example, by using the PMM program. However, for the purpose of
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Figure 11 Top: A groundplane followed by a right-handed slab with material constants
µ2ε2 and thickness l2. Next follows a section of one or more wire FSS arrays. Their
total perceived thickness is l1 and the material constants µ1ε1. Bottom: The approximate
equivalent circuit when the number of FSS arrays equals two.

determining the direction of Z in1 for increasing frequency, it is perfectly
adequate to use the equivalent circuit for each FSS sheet as given in
Figures 1 and 2 and shown in Figure 11, lower part, for two sheets.
Obviously, from Foster’s reactance theorem [9] we can immediately
conclude that Z in2 will rotate clockwise with increasing frequency
regardless of now many FSS sheets we use. Thus, the propagation
constant β1 for the artificial metamaterials can never be negative as
assumed above.

Further, as alluded to in the introduction, this example also shows that
the values of µ1 and ε1 are only of secondary interest. It is Z 1 and β1
that really “run the show.”

6. Is there any other way to obtain negative β1 and n1?

At this point it appears that a negative propagation constant, β1, as
well as a negative index of refraction, n1, cannot be obtained by use of
periodic structures as we know them today. However, is it possible by
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Figure 12 Calculation of the input impedance Z in1 two ways: First, by using the circuit
in Figure 10, top, when we assume β1 < 0. Second, by direct calculation using the PMM
program by placing actual FSS arrays in front of slab l2 as shown in Figure 10, bottom.
Alternatively, the sign of β1 is easily obtained by application of Foster’s reactance theorem
on the equivalent circuit.

any other techniques? Many scientists would probably suggest “Metama-
terials.” Now, this is a relatively new discipline and a precise definition
seems not to have crystallized yet (at least not to this author’s knowledge).
However, as the mystique somehow evaporates, it consists essentially of a
three dimensional periodic structure. This author sees no reason why these
should behave radically different than the multilayered periodic surfaces
considered above and also in reference [7], chapters 7 and 8. In other
words, the emergence of negative β1 and n1 is not very likely. If anyone
pulls it off, please be advised not to write a paper. Just see the author of
this paper immediately.

7. Conclusions

We have discussed how µ1 and ε1 can actually be replaced by the
intrinsic impedance Z1 = √

µ1/ε1 and the propagation constant β1 = ω√
µ1ε1. Obviously, when changing signs of both µ1 and ε1, no change

is observed in Z 1 and β1 and not in the field vectors unless we choose
β1 < 0. However, one is, of course, still entitled to ponder the question
whether materials with negative µ1 and ε1 do exist at all. Typically they
are attributed to periodic structures made of horseshoe shaped elements,
simple endloaded dipoles or both. It was pointed out that such structures
have an equivalent circuit consisting of a transmission line with a
shunt reactance jX s having alternative poles and zeros according to
Foster’s reactance theorem (until onset of grating lobes). However, this
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is typical for most periodic structures. In other words, if negative µ1 and
ε1 can be extracted from horseshoe elements and dipoles, the same can
be done with a myriad of other infinite periodic structures. We simply
don’t think this is possible unless loss is introduced as discussed above in
section 2.

The question whether negative indices of refraction and propagation
constant actually exist is probably the most controversial. First of all, we
must realize that this problem has most likely very little to do with whether
µ1 and ε1 are positive or negative but a lot to do with the sign we chose
for n1 = ±√

µ1ε1/µ0ε0. We discussed in detail that choosing the negative
sign would lead to inconsistencies in the boundary conditions between
the incident and refracted fields. However, we also pointed out that it is
indeed possible to have both a left and a right going surface wave existing
on a periodic structure. We emphasize that this type of surface wave
can exist only on a finite periodic structure and only with inter-element
spacing less then λ/2 [8]. Note further that phase velocities of the surface
waves and the X -component of the incident field are completely different.
Thus, we are not talking here about matching fields and therefore not about
a negative index of refraction. In other words, when we change the angle
of incidence the “refracted” field will not change like a negative Snell’s
Law. The field observed by measurement is simply the field radiated by
surface waves unique to finite periodic structures. The calculated pattern
of these surface waves and the measured refraction pattern looks very
similar, namely multi-lobed, and their magnitudes are down ∼20 dB or
more from the incident field.

We finally demonstrated, by direct calculation using the equivalent
circuit for FSS sheets, that the propagation constant β1 (and thereby the
index of refraction, n1) is always positive.

It should finally be emphasized that measurements of dielectric
substrates with horseshoe and other elements has been performed at
numerous laboratories. To the best of our knowledge nobody has actually
measured either negative µ1 or ε1. The result of their findings were that
the samples were dielectric slabs with wires that sometimes could make
the reflected field go backward in the Smith chart. However, such a
feature is typically observed for broadband matching as discussed in [8].
It has nothing to do with negative µ1 and ε1. This effect is sometimes
denoted the “Mambrino Effect.”

It appears that we are right back to Veselago’s paper from 1968. He
never claimed that materials with real negative µ1 and ε1 actu-
ally existed on this planet. Do they in outer space? Are “black holes”
related to such materials? Should we choose the negative sign for Z 1
in (5)?
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APPENDIX B
Cavity-Type Broadband Antenna
with a Steerable Cardioid Pattern

An IFF antenna: Where we show a logical development of a design
concept, which unfortunately so often is missing in this day and age.
You cannot just fool around with “magic” materials. A design concept is
necessary, as shown here.

B.1 INTRODUCTION

This antenna was intended to be used as an IFF antenna operating some-
where in the range 1.0 to 1.25 GHz. The objective was to produce a
radiation pattern with a broad main beam in the front sector and low radi-
ation in the back sector. Further, the pattern should be steerable in at least
four directions in the horizontal plane. In other words, we were looking
for a steerable antenna with a cardioid pattern. Such an antenna would
obviously be very useful in reducing jamming incident in the back sector.

B.2 DESIGN 1

It is well known that placing two omnidirectional antennas a quarter-
wavelength apart and feeding them 90◦ out of phase will produce a car-
dioid pattern, as illustrated in Figure B.1. Since the antenna should be flush
mounted, we used four loop elements rather than monopoles placed inside
a circular cavity, as illustrated in Figure B.2. We notice further that the
loops have been provided with series capacitors for matching purposes by
drilling holes lined with Teflon sleeves inside small brass blocks located
at the 90◦ bend. In this way the impedance of each of the four loops
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Figure B.1 The best-known way of producing a cardioid pattern: Two monopoles fed
in quadrature and spaced λ/4 apart.

could be tuned to a value with VSWR < 2 if the other three loops were
open-circuited. However, great changes in the single loop impedance were
observed depending on the load condition of the other three. Thus, as
we expected, there was strong mutual coupling among the four loops.
Nevertheless, we managed to produce satisfactory cardioid patterns but
only over a bandwidth of a few percent. In other words, this design was
not satisfactory at all.

However, before we pursue alternative designs, we measured the
impedance of each of the two active loops and determined the funda-
mental problem with this design: Whereas the impedance of the front
loop was behaving “nicely” over the entire band, the impedance of the
back loop was extremely bad: in fact, so bad that at some frequencies it
wandered off the Smith chart! We see no reasons to present these results
in detail here but refer interested readers to ref. 1 for details.
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Figure B.2 The mechanical design of loops containing a series capacitance created
between rod A and the hole in the brass block lined with Teflon sleeve C.

B.3 DESIGN 2

Although the results above revealed only a small portion of a rather long
series of experimental work, we may quite safely conclude that the lack
of pattern bandwidth can be traced back to a very strong mutual coupling
between the loops in the cavity. It was further felt that the asymmetric
nature of design 1 was primarily to be blamed for this calamity. Con-
sequently, we concentrated on obtaining a more symmetrical design, as
shown in Figure B.3. It consists of four loops similar to design 1. How-
ever, in addition, it has a top-loaded monopole mounted in the center.
Further, any two opposing loops are always excited with currents of equal
amplitude and exactly 180◦ out of phase. This assures that the coupling
between the monopole and any two opposing pairs of loops will ideally
be zero. The cardioid-shaped pattern is now created in the following way.

If we feed the four loops with equal amplitude but with a progres-
sive phase (namely, 0◦, 90◦, 180◦, and 270◦), it can be shown that the
radiation pattern for these four loops will essentially be circular in the hor-
izontal plane provided that the average cavity diameter is less than 0.6λ

at midband, as will, of course, the radiation pattern of the monopole in
the middle. However, if we would record the phase of the far field of the
monopole as we move around the antenna once at a certain distance, we
would find it to be constant while the phase of the field from the four loops
would change by 360◦. Thus, at a certain direction in the horizontal plane
the “loop field” and the monopole field will be exactly in phase, whereas
in the opposite direction, they will be exactly out of phase. If, further, the
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Ground plane
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Figure B.3 Design 2, consisting of four loops with a top-loaded monopole in the middle.
Feeding opposing loops in series from a balun assures the two loops to be exactly 180◦

out of phase.

two fields are of the same magnitude, a complete cancellation will take
place in this direction.

A more complete understanding is perhaps best obtained by inspection
of Figure B.4. Here we show the two figure-eight patterns from loop pairs
1 + 3 and 2 + 4. Since they are fed in quadrature, they will combine into
a circular pattern coinciding with the monopole pattern in amplitude. The
total pattern also shown in Figure B.4 can be obtained by simple use of
phasors. It is also clear by inspection of Figure B.4 that loops 2 + 4 not
only “waste” all their radiated power out to the sides of the radiation
pattern but also deliver no energy in the forward direction. Consequently,
we might as well not excite loops 2 and 4, thus arrive at the modified
pattern shown in Figure B.4b (design 2b). If we compare the two patterns
in Figure B.4a and b, we note that curve a is down only 3 dB (with respect
to ideal omnidirectional pattern at ±90◦), while curve b is down 6 dB in
the same directions. What is perhaps even more important is the fact that
the null in the back direction is considerably broader for curve b than for
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Figure B.4 (a) The cardioid pattern created by the monopole pattern and all four loops.
(b) The cardioid pattern created by the monopole pattern and only two loops.

curve a. In fact, a more exact set of curves, shown in Figure B.5, bears out
this statement very well. What’s more, curve b has more directivity than a
(estimated to be about 2 dB). On the other hand, the advantage by design
2a is that if we change the phase difference continuously between the
group of four loops and the monopole, the null in the back direction will
continuously rotate correspondingly in the horizontal plane, while design
2b is more suitable for stepwise rotation. However, when we consider that
design 2b is lower than 15 dB for the back angular sector beyond 90◦

(see Figure B.5, curve b), this drawback becomes less important. Based on
the foregoing considerations, we decided to actually develop design 2b,
which would be somewhat simpler, lighter, and cheaper to build because
we would not need a special 3-dB 90◦ hybrid to feed the two sets of loops.
It should also be emphasized that design 2b could always be relatively
easily modified into design 2a if it was later found to be desirable.
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Figure B.5 Radiation patterns calculated for the two versions of design 2. Curve a:
monopole and all four loops fed in phase rotation (design 2a). Curve b: Monopole and
two opposing loops fed 180◦ out of phase (design 2b).

B.4 DEVELOPMENT OF DESIGN 2B

Design 2b can be considered to be made of two subantennas interlaced
into each other: namely, one subantenna consisting of two loops producing
the figure-eight pattern and the monopole producing the omnidirectional
pattern. To produce a perfect figure-eight pattern, the two opposing loops
are fed in series rather than in parallel. This will assure that the two
loops are always fed 180◦ out of phase, as illustrated in Figure B.6a.
For contrast, we also show in Figure B.6b the two loops fed in parallel,
leading to in-phase feeding. (The terms in phase and out of phase refer
here to a cylindrical coordinate system with vertical axis.)

Feeding the two loops 180◦ out of phase as in Figure B.6a requires the
use of a balun. The first model is shown in Figure B.7a. It can be viewed
as a stripline version of the coaxial version shown in Figure B.7b, used
earlier by the author with excellent results (see Section 5.6). Basically, it
consists of two transmission-line sections each of length about λ/4. They
are connected at their far ends to the ground plane, where the unbalanced
input is located. By connecting the inner conductor to the opposite outer
conductor as shown, we obtain the balanced output in the middle of the
construction. As mentioned above, the coaxial version of this balun has
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Figure B.6 (a) Two opposing loops being fed 180◦ out of phase by being fed in series
(requires a balun). (b) Two opposing loops fed in-phase in parallel.
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Figure B.7 (a) The first balun made in stripline. (b) The better-known coaxial forerunner
for the stripline version above (see Section B.5).
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been used before; however, the stripline version shown in Figure B.7a
was less than successful; it radiated. In an attempt to eliminate this prob-
lem, we modified the stripline design into a microstrip design, but to no
avail. Also, moving the two outer conductors closer to the ground plane
showed only minor improvements, if any. We also thought that perhaps
the unbalanced input leading from the balun to the right edge of the ground
plane in Figure B.7a could somehow excite the entire ground plane, which
consisted merely of slightly more than the cavity base (i.e., a 8 × 8 inch
square). To this end we remounted the input connector at the edge of the
ground plane as before, but this time in the plane orthogonal to the plane
of the balun. Since this plane is electrically neutral, it was considered a
better place to mount the input connector; however, again, this move was
disappointing.

We finally decided that the ground plane available was too small for
this type of balun to work satisfactorily, and we consequently decided to
change to another type of balun. Although this new type ultimately proved
successful, as we shall see below, we are in retrospect not quite sure that
putting the blame on the size of the ground plane was correct. The fact is
that the new balun also radiated independent of the ground plane but was
subsequently brought under control, as explained later.

The new type of balun is shown in Figure B.8 and is merely a stripline
version of the well-known Roberts balun. This type will provide a bal-
anced output from dc up to frequencies when the transmission line deteri-
orates because of higher-order modes. Its bandwidth limitation in practice
is determined by the fact that the length of the slit should be approxi-
mately an odd multiple of a quarter-wavelength in order not to affect the
impedance properties of the antenna connected to the balanced output.
This was no limitation in the present case (ca. 25%); in fact, the reac-
tance from the slit in parallel with the antenna impedance at the balanced
output can often be designed to make the combined “distorted” impedance
more “broadbanded” than the original antenna impedance.

When this new balun was connected to a single pair of loops, we
obtained a quite acceptable radiation pattern (i.e., nicely shaped symmetric
figure eight with nulls more than 20 dB deep). However, when we next
started taking patterns of the monopole in the middle (see Figure B.3),
we ran into a multitude of problems.

First, the radiation pattern of the monopole was not omnidirectional but
oval-shaped (at least at some frequencies). Second, the balun was “hot”
(i.e., it radiated). The first problem was caused by the parasitic excitation
of the two loops. The second was caused by the fact that the voltages
induced in the two loops from the monopole were in phase rather than
180◦ out of phase. This phenomenon is illustrated in Figure B.9. We
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Figure B.8 The second balun is a stripline version of the well-known Roberts balun.

observe that while the push–push mode actually will never enter through
the balun to the unbalanced input terminal, they will excite the entire
balun in a push–push mode with respect to ground (i.e., the circuit board
in Figure B.9).

The parasitic excitation of the loops leading to a distorted pattern of the
monopole will of course depend very much on the load condition of the
loops. It was determined experimentally that short circuiting the two loops
close to these inputs to ground (i.e., at points A and A′ in Figure B.9)
produced the best monopole pattern. In other words, what was needed was
a device that would short circuit the loops to ground when the voltages
on the two loops produced push–push currents as shown in Figure B.9,
while it would let the push–pull currents produced by a voltage at the
loop input pass unobstructed.

B.4.1 Push–Push Traps

This action can possibly be accomplished in a number of ways. However,
we believe that the simplest and most direct approach consists of merely
connecting the two loops with a transmission line of length about λ/2.
This is illustrated in Figure B.10 and works as follows: Imagine first
that a push–push signal is applied to the “balanced” input (coming from
the loops, or whatever), as illustrated in Figure B.11a. From each end
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Figure B.9 The H -field from the monopole excites the two loops in phase, which
subsequently makes the balun “hot” with respect to the ground plane (circuit board).

of the interconnecting cable, a wave will now travel toward the center
where the two voltages will meet in phase (i.e., add together, just like the
interconnecting cable was open-circuited at this point). Since the distance
from this open circuit to the two ends is λ/4, we will obtain at the two
endpoints the equivalent of a short circuit (i.e., the push–push mode on
the transmission line will be stopped). On the other hand, if a push–pull
mode is applied to the input as shown in Figure B.10b, the voltages
meeting at the center of the transmission line will now be 180◦ out of
phase (i.e., they will cancel, producing an equivalent short circuit at the
center of the interconnecting cable). Consequently, an equivalent open
circuit is produced at the two ends of the interconnecting cable, and the
push–pull mode on the feeding lines will pass unobstructed.

In the practical execution of the push–push traps, we used RG-58U
cable stripped of the PVC coating. Care should be taken to ensure good
contact between the braids and the groundplane to prevent the trap from
radiating.

B.4.2 Actual Layout

We are now ready to show the stripline layout of the antenna circuitry as
given in Figure B.11. There are two inputs (to be combined later): one
for the monopole and one for the loops. The latter is as explained earlier
at the balun, and from here the balanced output is seen to be connected
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Figure B.10 The working of push–push traps. (a) A push–push signal will cause volt-
ages to meet in phase in the middle of the interconnecting cable, resulting in an electrical
short circuit at the loops. (b) A push–pull signal will cause voltages to meet out of phase
in the middle of the interconnecting cable, resulting in an electrical open circuit at the
loops.

to all four loops. However, only one set of loops should be excited at a
time, and this is accomplished in the following way:

To each of the four loops is connected a transmission line λ/4 long
(switching traps) and is terminated in a switching diode. When a pair of
diodes are open (i.e., not conducting), we obtain short circuits at these two
loop inputs (i.e., the energy cannot be radiated by these particular loops).
Contrarily, if a pair of diodes act as short circuit (i.e., conducting), the
impedance of the switching traps at the loop inputs is infinite and will
permit energy transfer between the loops to the feeding lines. Note an
additional feature in Figure B.11: that the transmission lines from the
loops to the two branch points B and B′ are all about λ/4 long. The reason
for this is simply that when the switching traps act like short circuits at the
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Figure B.11 Bottom view of the actual layout of the circuit board feeding the monopole
and the four loops from the balun. Also note the switching traps activating the loops. In
the model, screws were used instead of diodes.

input of one set of the loops, a high impedance will be produced at point
B (i.e., the energy transfer to the other set of loops will not be disturbed).

B.4.3 Phase Reversal in the Balun

As can be seen from the description above, the switching traps determine
which set of loops is going to radiate. If we further excite the monopole
with proper amplitude and phase, a beam will be formed in one of the
four directions east, west, north, or south. To shift the beam from, for
example, north to south, we merely have to change the phase of loops
2 and 4 180◦ with respect to the monopole. This could be accomplished
by a simple λ/2 transmission line, which could be short-circuited by a
diode. However, due to the relatively large bandwidth desired (ca. 25%),
the electrical length of the transmission line would probably vary more
over the frequency band than could be tolerated in order to maintain a
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good null in the back direction of the pattern (see later). This problem is
avoided by performing the phase switching in the balun as illustrated in
Figure B.12. Instead of a single inner conductor we have split it up into
two in parallel, each of which has a total length of 3

4λ. We have further
connected a pair of transmission lines λ/4 long at points B and B′, and
each terminated in a switching diode. Let us now assume that the diode to
the left is open-circuited and the one to the right is short-circuited. That
will result in a short circuit across the transmission line at point B, while
the energy can pass unobstructed along the feedline going through point
B′. Furthermore, since the distance from point B to the branch point A is
about λ/4, the short circuit at B will produce a high impedance at point
A (i.e., the energy will flow freely through the transmission line to the
right). Finally, since the distance from point B to point C (at the balanced
terminal at the top) is about λ/2, the short circuit at B will also produce
a short circuit at point C between the inner and outer conductor, which
is precisely what is required for proper operation of a Roberts balun

balun output

unbalanced
input

λ/2

λ/4

A

B

C

λ/4 λ/4

B'

C′

Figure B.12 Modified Roberts balun provided with switch traps, enabling us to change
the phase 180◦.
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(in fact, the frequency dependence of the ∼λ/2 transmission line will
partly compensate for the frequency dependence of the ∼λ/4 fork at the
balanced output).

By reversing the conducting condition of the two diodes in Figure B.12,
we can lead the power transfer along the transmission to the left. The
important point now is to note that this will change the phase of the signal
at the balanced output by exactly 180◦ (i.e., the beam will rotate by 180◦

in the horizontal plane). Note further that due to complete symmetry of
the balun in Figure B.12, the frequency sensitivity of the balanced output
is the same for the two phase positions. As we shall see later, this is
important in order to maintain a good null in the back direction of the
radiation pattern.

B.4.4 Final Execution of Design 2b

In Figure B.13 we show the final version of our preferred design 2b.
We notice the top-loaded monopole in the middle of the cavity. It is
fed from the upper N-connector at the bottom to the left via a 100-�
microstrip line in series with a capacitor. The purpose of the latter is to
invert the monopole impedance while the 100-� microstrip line trans-
forms the impedance very nicely into about 50 � (for details about this
technique, see Appendix B in ref. 2). Further, the four loops are fed
from the lower N-connector at the bottom to the left (only two loops are
excited at a time). We clearly see the Roberts balun as well as one of the
push–push traps.

Finally, we feed the two N-connectors from a specially designed hybrid.
By measuring the fields radiated separately from the monopole and from
a pair of loops over the entire frequency band, it was determined that the
best fit would be obtained by using a 4- to 2-dB hybrid. This little jewel
was not only designed but also built by use of an Exacto knife in a single
night by Clayton Larson, one of the author’s former students. In fact, this
antenna would never had been realized without Clayton at my side. We
had fun!

B.4.5 Radiation Pattern

Typical radiation pattern in the horizontal plane is shown in Figure B.14
for the midrange frequencies. The complete set of patterns can be found
in the original report [1]. However, we do show in Figure B.15 the
front-to-back ratio over the entire band 1.0 to 1.25 GHz.

Finally, shown in Figure B.16 are the vertical radiation patterns in the
midfrequency range. A complete set is given in ref. 1.
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Figure B.13 Final model of design 2b.
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Figure B.14 Cardioid pattern of the IFF antenna. Frequencies 1100 to 1190 MHz. Taken
at elevation about 8◦ above horizon. Loop 1 + 3 activated. Vertical polarization.
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Figure B.15 FB ratio as a function of frequency taken from the pattern measured in
Figure B.14.
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Figure B.16 Vertical pattern of the IFF antenna taken through the plane of symmetry.
Frequencies 1100 to 1180 MHz. Loop 1 + 3 activated. Vertical polarization.
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Figure B.17 Impedance seen at the 4-dB hybrid connected to the monopole and a pair
of loops via the balun.

B.4.6 Impedance

The impedance as seen at the input of the 4-dB hybrid is shown in
Figure B.17. It is lacking slightly at the first 0.01 GHz as well as the last
0.05 GHz. However, these frequencies were actually outside the frequency
band designed.

B.5 CONCLUSIONS

We produced an antenna comprised of four loops placed in a circular
cavity with a top-loaded monopole placed in the middle. Such an antenna
could easily produce a broad steerable beam with vertical polarization in
the frequency range 1.0 to 1.25 GHz. The radiation in the back sector was
15 to 25 dB below the main beam, depending on the frequency (20 dB or
more between 1030 and 1150 MHz). The measured gain was about 2 dB
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higher than that of a standard IFF antenna. The VSWR was less than 2 : 1
over 1010 to 1200 MHz. The complete antenna was about 15 cm deep.
However, a total depth of about 5 cm seems possible, as discussed in
Appendix B of ref. 1. The push–push traps was covered by a patent [3].
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APPENDIX C
How to Measure the Characteristic
Impedance and Attenuation of a Cable

C.1 BACKGROUND

Several of the antenna designs presented in this book and elsewhere have
used matching networks put together with cable sections of various char-
acteristic impedance. Designing such sections, whether coaxial, twin lead,
or microstrip, is well known and will therefore not be discussed here.

In the case of coaxial cable sections, the practical execution may be in
the form of a rigid outer conductor into which we insert a suitable inner
conductor supported by either beads or solid dielectric (foam is often
used). Another approach is simply to draw the inner conductor out of
a suitable coaxial cable and, instead, insert a suitable thinner inner con-
ductor leading to a higher characteristic impedance. Although this sounds
somewhat crude and primitive, I have watched technicians perform such
an “operation” several times with very good success.

Quite often, it is desirable to verify your calculations of the charac-
teristic impedance by measurements. Although many practitioners will
be quite familiar with this problem, I am quite often asked to comment
on this topic. Thus, since this definitely is important when producing
antennas as alternatives to those made of exotic materials that very often
cannot be produced, I thought it appropriate to give the following brief
discussion.

Measurements of the characteristic impedance typically start with the
input impedance of a cable section terminated in some load impedance.
More specifically, we show in the insert of Figure C.1 a transmission
line of length l , propagation constant β and characteristic impedance
Z 0. It is terminated in a load impedance Z L, resulting in the reflection
coefficient

Metamaterials: Critique and Alternatives, By Ben A. Munk
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Figure C.1 The input impedance Z i moves on a circle determined by Z l and Z h as
indicated in the figure. The characteristic impedance is determined by Z0 = √

ZlZh.

� = ZL − Z0

ZL + Z0
(C.1)

The expression for the input impedance Z i has many forms. However, the
author’s favored form is readily obtained by noting that when the voltage
V 0 is applied to the input terminals, a signal will travel toward the load
Z L, where it will be reflected as �V 0. When it arrives back at the input
terminals, the total phase delay will be e−j 2βl ; that is, the total voltage
V tot at the input terminal is

Vtot = V0 (1 + �e−j2βl) (C.2)

Similarly, the current I 0 will be reflected as–�I 0, leading to a total current
I tot at the input terminals

Itot = I0 (1 − �e−j2βl) (C.3)
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Thus, the input impedance is

Zi = Vtot

Itot
= V0

I0

1 + �e−j2βl

1 − �e−j2βl
or Zi = Z0

1 + |�|ejϕr e−j2βl

1 − |�|ejϕr e−j2βl
(C.4)

where Z 0 = V 0/I 0.
The beauty of (C.4) is that it constitutes a bilinear relationship between

the independent variable z = e−j 2βl and the dependent variable Z i . Thus,
as is well known [1], when z moves along a circle (which it obviously does
as 2βl varies with either frequency or cable length), the input impedance
Z i will also be located on a circle, which is easy to see by inspection of
(C.4). Quite simply, when

ejϕr e−j2βl = 1 (C.5)

the largest numerical (and real) value of Z i becomes (see Figure C.1)

Zh = Z0
1 + |�|
1 − |�| (C.6)

Similarly, for

ejϕr e−j2βl = −1 (C.7)

the smallest (and real) value of Z i is

Zl = Z0
1 − |�|
1 + |�| . (C.8)

From equations (C.6) and (C.8),

ZhZl = Z2
0 or Z0 =

√
ZhZl. (C.9)

Thus, to determine Z 0 we merely plot the input impedance Z i as a function
of frequency in the complex plane when the cable is terminated in an
arbitrary impedance Z L. Z i should follow a circle that intersects the real
axis in Z h and Z l . The characteristic impedance Z 0 is then given by (C.9).

Note: It is not necessary to know the load impedance, Z L. But if you
do, the circle for the input impedance must go through Z L eventually
compensated for cable loss (see below).

Note: It was implied above that Z L could be arbitrary as long as it
does not change with frequency. Thus, we conclude immediately that Z L

should be real. Also, values of Z L close to Z 0 usually provide us with
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better accuracy. In fact, using a short circuit and an open circuit usually
does not work satisfactorily. (Open circuits cannot, in general, be trusted.
They radiate.)

C.2 INPUT CONNECTOR EFFECT

Quite often it turns out that the input circle has its center located somewhat
off the real axis. An example of such a case is shown in Figure C.2. There
can be various reasons for this displacement, but quite often it is caused by
a mismatch between the connector and the cable. Typically, the connector
has a characteristic impedance of 50 �, while the cable has a higher
characteristic impedance. This will cause the two impedances Z l and Z h

to be relocated to positions Z ′
l and Z ′

h , respectively. For the sake of
simplicity, let us assume that the distances OZ l = OZ ′

l and OZ h = OZ ′
h ;

that is, from (C.9) we conclude that

Z0 =
√

OZ′
l · OZ′

h (C.10)

Z0Z

Z ′′′

Correct Zi without 
connector distortion

Zi with connector 
distortion 

Zh′

Zh′Zh

′′Z

Figure C.2 Typical displacement of the input circle for Z i due to a connector with
characteristic impedance different from Z 0. The characteristic impedance is given approx-
imately by Z0 = √

Z′′
l Z′′

h .
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Let us further denote the points where the dislocated impedance circle
crosses the real axis by Z ′′

l and Z ′′
h . Then from the theorem “power of

the circle” [1] we also have

OZ′′
l · OZ′′

h = OZ′
l · OZ′

h (C.11)

And finally, from (C.10) and (C.11),

Z0 ∼
√

OZ′′
l · OZ′′

h (C.12)

In other words, if the dislocated circle crosses the real axis in the
impedances Z ′′

l and Z ′′
h , the characteristic impedance Z 0 is given

approximately by

Z0 ∼
√

Z′′
l Z

′′
h (C.13)

C.3 DO THE FORMULAS HOLD IN THE SMITH CHARTS?

So far we have considered the usual complex plane with a rectangular
coordinate system. In such a system we have made use of the fact that the
impedance Z l is proportional to the distance OZ l and the analog for Z h .
This is not the case when we work in the Smith chart, and the question
arises: Will the formulas above work in the Smith chart? This situation
is illustrated in Figure C.3. Actually, all we have to do is merely read
the numbers for Z l and Z h directly in the Smith chart. Substituting these
values in (C.10) will yield the correct value for Z 0, and in the case of
(C.13), an approximate value.

Note: How the Smith chart is normalized with respect to Z 1 is imma-
terial as long as we read the actual values for Z l and Z h .

C.4 HOW TO MEASURE THE CABLE LOSS

Note: In contrast to the measurements performed above, the determination
of the cable loss can only be determined in a Smith chart normalized to
the characteristic impedance Z 0 of the cable in question.

If we terminate a cable of length l in a short, the input impedance for
the lossless case is obtained by rotating 2βl along the rim of the Smith
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Z0
ZhZ

Z1

ZL

Zi

0

Z0 =   Z  Zh  

∞

Figure C.3 Typical input impedance circle when located in a Smith chart with reference
to Z 1 �= Z 0.

chart as illustrated in Figure C.4. If the cable has an attenuation of α neper/
meter, the distance from the center of the Smith chart is reduced to

b = ae−2αl (C.14)

where a is the radium of the Smith chart as illustrated in Figure C.4.
From (C.14) we readily see that the total two-way attenuation for a cable
of length l is

2αl(dB) = 20 log a/b(dB)

where α is now measured in dB/m. Thus, the one-way attenuation for the
cable is

α(dB/m) = 1

l(m)
10 log a/b(dB/m) (C.15)

Thus, the attenuation of a cable of length l and characteristic impedance
Z 0 is obtained by plotting the input impedance Z i in a Smith chart nor-
malized to Z 0. This impedance will be located on a circle with its center
at the center of the Smith chart. By measuring the ratio between this
impedance circle and the radius of the Smith chart, we can immediately
obtain the attenuation α (dB/m) from (C.15).
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Zi for NO loss

a

Z0 ZL=0

0

Zi for
lossy
case

Zi

b = ae−2al

1 10log a/b dB/m
(m)

a dB/m = 

2β

Figure C.4 To determine the attenuation of a cable of length l (m), we plot the input
impedance Z i of the short-circuited cable in a Smith chart normalized to Z 0. The atten-
uation is obtained from α(dB/m) = [1/l(m)]10 log( a

b
)(dB/m).
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APPENDIX D
Can Negative Refraction Be Observed
Using a Wedge of Lossy Material?

D.1 INTRODUCTION

Throughout this book we have steadfastly claimed that a negative index
of refraction does not seem possible. However, a recent paper by Sanz
et al. [1] showed that a glass wedge with loss but without negative param-
eters could produce negative refraction at 320 nm. Garcia and Nieto-
Vesperinas [2] showed analytically that below negative index media
(NIM) lattice, cutoff ε is imaginary and losses dominate. These papers
inspired R. C. Hansen to investigate the possibility of a negative index of
refraction at microwave frequencies [3]. He exposed a dielectric wedge
of very lossy material to an incident field produced by a linear array of
isotropic line sources parallel to the wedge edge and spaced λ/4 to avoid
grating lobe complications. Calculation of the field transmitted seems to
indicate that a negative index of refraction is possible.

The purpose of this appendix is to show that significant fields in the neg-
ative sector can indeed be obtained using a wedge of very lossy material.
However, as we show, it is not caused by negative refraction but probably
by a broadening of the beam transmitted. We start our investigation by
reviewing certain fundamentals.

D.2 REFRACTION FOR PLANAR SLABS

In this section the transmission of an incident plane wave through a pla-
nar dielectric slab located in air is considered. We denote the angle of
incidence by θ in, the angle of refraction by θout, and the angle inside the

Metamaterials: Critique and Alternatives, By Ben A. Munk
Copyright  2009 John Wiley & Sons, Inc.
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dielectric by θdie, as shown in Figure D.1. θ in and θdie are related by
Snell’s law:

sin θdie

sin θin
= 1√

µε
(D.1)

The lossy case is somewhat more complicated by the fact that we no
longer are dealing with simple plane waves inside the slab, as shown in
Figure D.2. Here the planes of equal phase are still orthogonal to the
direction of propagation, θdie, while the planes of equal amplitude are
parallel with the input face. However, θdie is no longer obtained from the
simple Snell’s law (D.1) but from Stratton [4]:

sin θdie

sin θin
= βair√

q2 + β2
air sin2 θin

(D.2)

where βair is the propagation constant in air,

q = ρ(βdie cos γ − αdie sin γ ), (D.3)

and αdie is the attenuation (N/m) in the dielectric. Further, ρ and γ are
defined by

cos θ1 =
√

1 − (a2 − b2 + j2ab) sin2 θin = ρe−jγ (D.4)

where θ1 is the complex angle of the refracted field in the dielectric
obtained from Snell’s law by matching the phase velocities. Further,

θout
m0,e0

m0,e0

m,e
(Lossless)

θdie

θin

Figure D.1 Definition of the incidence angle θ in, the refraction angle θout, and the angle
θdie inside a planar lossless dielectric slab.
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θout

m0,e0

µ0,ε0

m,e 
(Lossy)

Equi-
phase

Equi-
Amplitude

θdie

θin

Figure D.2 Inside a lossy dielectric slab the field consists of inhomogeneous plane waves
with the equiphase planes orthogonal to the direction θdie, whereas the equiamplitude
planes are parallel to the input plane. Note: θ in ≡ θout regardless of loss.

denoting the propagation constant in dielectric by βdie, we have

a = βairβdie

α2
die + β2

die

(D.5)

b = βairαdie

α2
die + β2

die

(D.6)

For details, see Section 9.8 in ref. 4.
Further, from equations (48) and (49) in Section 5.2 in ref. 4, we have,

for a lossy dielectric,

αdie = ω


µε

2




√
1 + σ 2

ε2ω2
− 1







1/2

(D.7)

βdie = ω


µε

2




√
1 + σ 2

ε2ω2
+ 1







1/2

(D.8)

where σ is the conductivity of the dielectric. From equations (D.7)
and (D.8),

α2
die + β2

die = ω2µε

√
1 + σ 2

ε2ω2
(D.9)
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Substituting equation (D.9) into (D.5) and (D.6) yields

a = βairβdie

ω2µε
√

1 + σ 2/ε2ω2
(D.10)

b = βairαdie

ω2µε
√

1 + σ 2/ε2ω2
(D.11)

Further, from equations (D.10) and (D.11) and by application of (D.7)
and (D.8), we have

a2 − b2 = β2
air

(ω2µε
√

1 + σ 2/ε2ω2)2
(β2

die − α2
die)

= β2
air

ω2µε
(
1 + σ 2/ε2ω2

) (D.12)

and

2ab = 2
β2

airβdieαdie[
ω2µε

√
1 + σ 2/ε2ω2

]2

= 2β2
air

ω2
[
(µε/2)

(√
1+σ 2/ε2ω2+1

)]1/2[
µε
2

(√
1+σ 2/ε2ω2−1

)]1/2

[
ω2µε

√
1+σ 2/ε2ω2

]2

= β2
air(σ/εω)

ω2µε
(
1 + σ 2/ε2ω2

) � 1 for
σ

εω
� 1 (D.13)

Further applying (D.12) in (D.13) yields

2ab

a2 − b2
= σ

εω

That is, for very lossy dielectric where σ /εω � 1, we have

2ab � a2 − b2 (D.14)

Applying (D.14) to (D.4) yields

ρε−jγ =
√

1 − (a2 − b2 + jab) sin2 θin

�
√

j − j2ab sin2 θin (D.15)
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and since 2ab � 1 according to (D.13),

ρε−jγ ∼ 1 − jab sin2 θ (D.16)

yielding ρ ∼ 1 and γ ∼ 0. Substituting these values into (D.3) yields

q = ρ(βdie cos γ − αdie sin γ ) ∼ βdie (D.17)

Finally, substituting (D.8) into (D.17) yields

q ∼
√

ωµσ

2
(D.18)

which agrees with (64) on p. 504 in ref. 4. Finally, substituting (D.18)
into (D.2) yields

sin θdie

sin θ∈
= βair√

ωµσ/2
(D.19)

We see from (D.19) that the angle of refraction θdie inside the dielectric
is small, indeed, but never negative. Frankly, since nobody, to the best
of this author’s knowledge, has ever suggested that a negative index of
refraction exists for µ, ε > 0, it may seem that the rather excessive proof
above was a waste of time. Perhaps! Nevertheless, here it is, in case
someone doubts it.

D.3 WEDGE-SHAPED DIELECTRIC

Instead of planar dielectric slabs, let us next consider the wedge-shaped
cases. The lossless case is shown in Figure D.3, where we have assumed
that θdie is at least approximately equal to the planar lossless case consid-
ered earlier. Inspection of the figure readily shows that the new θout for
the wedge-shaped case is somewhat larger than for the planar case. This
is supported further by the fact that the rays closest to the wedge edge go
through less dielectric and are therefore less delayed, leading to further
tilt (i.e., a larger value of θout). However, if the direction is measured
with respect to the input plane, the wedge case and the planar case can
be larger or smaller than the planar case depending on the wedge angle,

, but never negative.

In the lossy case depicted in Figure D.4, two important points should be
mentioned. First, the direction of the rays inside the wedge will be closely
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θout = θin In planar case

θout

θdie

θin

m0,e0

∆

m0,e0

m,e
(Lossless)

θout > θin In wedge case

Figure D.3 In the lossless wedge case, θ in and θdie are defined as in the planar case,
whereas θout is measured from the normal to the output face (i.e., θout > θ in). However,
if θout is measured from the normal to the input plane, we can have θout ><θ in but never
θout < 0.

aligned with the normal to the input plane. Again, as in the lossless case,
this leads to a slightly greater value of θout for the wedge case. However,
if we measure θout from the normal to the input plane, θout can be larger
or smaller than θ in but never negative. The second point is that Hansen
performed his experiment not with an incident plane wave but rather, a
beam produced by a finite array with an aperture of about 4λ, producing a
beamwidth of about 15◦. This will result in a finite aperture illumination
at the output surface of the wedge. The field radiated into the upper space

θout > θin In wedge case

θout = θin In planar case

θout

θdie (θdie very small for large loss)

θin

m0,e0

∆

m0,e0

m,e
(Lossy)

Figure D.4 In the lossy wedge case, θ in, θdie, and θout are basically defined as in the
lossless case, with the same restrictions except that θdie is very small but never negative.
Also, θdie is different from the lossless case.
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can be obtained from the equivalence theorem by calculating the field
radiated from this aperture.

In the lossless case this aperture field would be a fairly accurate replica
of the array beam and no particular unexpected feature would be observed
by evaluation of the radiation pattern. In the lossy case, however, it is
important to realize that the part of the aperture to the left has a much
stronger field than the part to the right because the longer path in the lossy
wedge attenuates more. We do not have all the information necessary
to calculate the exact aperture distribution in the lossy case. However,
we shall make an approximate argument that very clearly indicates the
effect of having a highly asymmetric aperture illumination rather than a
symmetric one.

D.4 ASYMMETRIC APERTURE DISTRIBUTIONS
IN GENERAL

A simple asymmetric aperture distribution is the triangular shape shown
in Figure D.5a. It can, like all arbitrary distributions, be decomposed into
an even and an odd distribution. In this case there will be the rectangular
shape shown in Figure D.5b and the double triangular shape shown in
Figure D.5c. The radiation patterns for these two components are shown
in Figure D.6a and b, respectively. The symmetric yields the well-known
(sinx )/x pattern, where the sidelobe level starts at around 13 dB below
the main beam. The double triangular shape yields two beams located
on each side of the main beam and about 7 dB below it. Note that the
odd component is always in quadrature with the even component. Thus,
the sum of these two components yielding the total field, as shown in
Figure D.6c can never have a null.

Due to the high loss in the wedge, it is entirely possible that the actual
aperture field is located strongly to the left as indicated in Figure D.7. In
that case, the amplitude of the radiation pattern will basically be twice
as wide as for the aperture shown in Figure D.6c. Thus, we could obtain
readily a strong signal in the “negative” sector and misinterpret this as
negative refraction.

D.5 CONCLUSIONS

Although the discussion above has, at times, been somewhat heuristic, for
reasons explained in the footnote, we are nevertheless able to draw some
very important conclusions about refraction from a very lossy wedge.
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(a)

(b)

(c)

Asymmetric Aperture
Distribution (arbitrary)

Even
Component

Odd
Component

Figure D.5 Any arbitrary aperture distribution, as in this case a triangular distribution
as seen in part (a) can always be decomposed into an even distribution as shown in part
(b) and an odd distribution as shown in part (c).

When the input angle θ in is small, the output angle θout measured with
respect to the input face can be very small as well, depending on the wedge
angle, 
. However, it can never be negative, neither in the lossless nor
the lossy case (see Figures D.3 and D.4).

When the wedge is exposed to an antenna beam rather than an incident
plane wave, the field transmitted through the wedge can, by the equiva-
lence theorem, be obtained from an equivalent aperture on the top surface
of the wedge. In the lossless case the field transmitted will be a good
replica of the incident beam. In the lossy case, however, the equivalent
aperture field will be highly asymmetric, due to the larger attenuation
when going through the thicker part of the wedge.

This new asymmetric aperture field was decomposed into an even and
an odd component. Since these two components are always in quadrature,
their sum, i.e., the total pattern, can never have a null. If we assume further
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(a)

Total Pattern

Even
Component

Odd
Component

(in quadrature
with symmetric)

Aperture Distribution Radiation Pattern

20
Angle

0−20

(b)

20
Angle

0−20

(c)

20
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0−20
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Figure D.6 (a) The radiation pattern (sinx )/x of the even aperture distribution. The
sidelobe level is down at least 13 dB below the main beam. (b) The radiation pattern for
odd distribution, in this case double triangular shape. Produced two beams about 7 dB
below the main beam and with the same beamwidth, one 90◦ ahead, the other 90◦ behind
the main beam. (c) The total pattern is the sum of parts (a) and (b). It’s always higher
than the highest component. The calculation of these curves by Jens Munk is gratefully
acknowledged.

that the asymmetric aperture distribution fills only half the original lossless
aperture, we obtain a new beamwidth that is roughly twice as wide as in
the lossless case. Thus, part of the beam can readily show up in the
“negative” sector, and be interpreted as negative refraction.

These findings substantiate to a high degree Hansen’s calculated result:
The angle of incidence θ i should be small, as shown in Figure 3 of
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(a)

Assymetric
Aperture

Distribution

(b)

10

20

30

40

−20
Angle

Total
Radiation
Pattern

dB

20

Figure D.7 A realistic aperture distribution for very loss wedge. Beamwidth is twice
the value shown in Figure D.6c.

Hansen’s paper [3], the wedge material very lossy, and the incident field an
antenna beam rather than a plane wave. Obviously, I agree wholeheartedly
with Hansen. On one point I must respectfully disagree, however. This
phenomenon should not be referred to as negative refraction—simply
because it is not. It is positive.
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