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Preface

This book deals with optical metamaterials – artificially structured materials with
nanoscale inclusions and strikingly unconventional properties at optical frequencies.
These materials can be treated as macroscopically homogeneous media and can ex-
hibit a variety of unusual and exciting responses to light. Man-made materials with
subwavelength inclusions have been purposely utilized by artists and craftsmen for
centuries, as indicated by a number of glass vessels ranging from the late Roman
era to the Renaissance period. However, optical metamaterials have flourished only
in the present century thanks to combined advances in nanofabrication, numerical
modeling, and characterization tools. In only a few years, the field of optical meta-
materials has emerged as one of the most exciting topics in the science of light, with
stunning and unexpected outcomes that have repeatedly fascinated researchers, sci-
entists, and even the general public.

The philosophy behind the area of optical metamaterials is distinct from most
other branches of optical studies in that it does not emphasize the explanation,
implementation, or utilization of known phenomena, but rather it focuses on the
creation of entirely new stories and new events that no one has even considered.
This philosophy is best illustrated by a simple quotation from Back to Methuselah
by George Bernard Shaw, one of the finest playwrights of the twentieth century. The
quote became widespread after its adoption by Robert Kennedy during his presiden-
tial campaign:

“Some men see things as they are and say ‘Why?’ I dream things that never were and say,
‘Why not?”’

Indeed, the persistence of asking “why” has been fascinating scientists throughout
the history of optics. From ancient scholars like Euclid, Ptolemy and Alhazen to
the modern giants who shaped today’s knowledge of optics, the pursuit of answers
to observed phenomena has led to major discoveries that have made it possible for
us to understand the realities of optics. By combing the knowledge derived from
asking “why” and the implementation of available materials, numerous optical com-
ponents, devices and systems have been developed that have radically altered both
the everyday life of people around the globe and the scope of modern science.

With all the advances in optics throughout the ages, now is perhaps the time to
focus more on the theme of “why not.” It is time to rethink the limits of optics,
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and reconsider the long-established guidelines within which optical scientists often
work. With this in mind, we choose to be bold and adventurous, rethinking the
answers to questions such as, “Why not refract light the other way?” Or maybe we
should ask, “Why not build a microscope to see a DNA strand with the naked eye?”
We can even ponder more mysterious and mythical questions, including, “Why not
create a cloak that makes an object invisible?” These concepts are not strictly pro-
hibited by any fundamental physical laws, nor are many other equally fascinating
possibilities. Perhaps, then, it is indeed time to explore many truly amazing ideas
that may be temporarily beyond our vision, but not inherently beyond our reach.

All the questions above, now open for reconsideration by asking “why not,” are
the pursuits of optical metamaterials. In this research field, the control of light is
not limited by the properties of optical materials that are readily available. Instead,
we choose to create materials that never were, by tailoring the elements of arti-
ficial structures down to the deeply subwavelength scale. This aspect of optical
metamaterials is bound to revolutionarily alter the design strategies and implementa-
tion philosophies that people use in building optical devices and systems. The new
research field of optical metamaterials opens a whole new world of fundamental
studies and practical applications that were quite undreamt of in the realm of con-
ventional optics. Still in its infancy, the optical metamaterials have already offered
hope to the seemingly crazy dreams mentioned above, and they have demonstrated
potential benefits in various applications including optical sensing, novel waveg-
uides and antennas, sub-diffraction-limited imaging, nanoscale photolithography,
photonic nanocircuits, and many more.

The intense development in the evolving field of optical metamaterials has started
attracting an increasing number of students and researchers. Although a large and
drastically growing number of publications are constantly added to the literature of
this field, we feel there remains a lack of a reader-friendly book that helps to make
optical metamaterials accessible to a wider audience. In particular, new participants
in a highly interdisciplinary field of study like optical metamaterials can easily get
lost if they have to wade through many textbooks of different subjects simultane-
ously. To describe optical metamaterials in a simple, easy-to-understand way was
our primary motivation for embarking on this book.

In writing the book, we sought to provide an accessible entrance into the fasci-
nating world of optical metamaterials. In a relatively slim volume, we are trying to
provide students and researchers with the basic knowledge that is required to enter
this research area, as well as providing the broad perspective that is now needed
to understand the latest breakthroughs. It should be stressed that this book is not
intended as a thorough treatise and up-to-date review of all research work avail-
able in this field. Instead, the book provides a comprehensive, self-contained but
digestible introduction to the basic ideas and major topics in optical metamaterials.
We hope that it will be useful to the interested reader as a stepping stone towards
more advanced research currently underway in the field. We have tried to produce
a balanced text from which the reader will be able to gain a perspective of optical
metamaterials as a whole as well as a flavor for where the subject is going.
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We now would like to take a moment to guide you through the contents of this
book. The material in the book is presented in an order that aims to progressively
increase the reader’s comprehension of the subject. The book starts with a discus-
sion of the definition, emergence, motivation and scope of the research field of
optical metamaterials. Then in Chap. 2 we discuss the optical properties of met-
als, dielectrics and their composites. The delicate arrangement of these materials
forms the constituent building blocks for the metamaterials we are truly interested
in studying. Chapter 3 covers the fabrication techniques, characterization schemes
and data treatment methods for optical metamaterials. Once the basics have been
established, from Chap. 4–6 we present three major categories of optical metama-
terials, namely electric metamaterials, magnetic metamaterials, and negative-index
metamaterials. The principles, advances, and examples for each category will be an-
alyzed in detail. The last three chapters deal with exciting novel opportunities made
possible by optical metamaterials. In Chap. 7 we discuss nonlinear effects in optical
metamaterials, including the necessary mathematical descriptions. Chapter 8 de-
scribes metamaterial-based imaging systems with subwavelength resolution. Most
notably, several milestone experiments related to super-resolution in both the near-
and far-field regimes are discussed. Finally, in Chap. 9 we provide the principles
and applications of transformation optics, which molds the flow of light in an un-
precedented manner by specifying the spatial distributions of anisotropic material
parameters. In particular, this chapter gives a detailed discussion of the most intrigu-
ing outcome of transformation optics – an electromagnetic cloak of invisibility.

We have attempted to introduce most of the major subjects involved in optical
metamaterials while at the same time keeping the book within a relatively small
compass. Although the frontier in the study of optical metamaterials is developing
rapidly, the basic knowledge and ways of thinking presented in this book are ex-
pected to be widely adopted in many of the new topics of optical metamaterials that
are either ongoing or about to breach the horizon. The book can be used as a refer-
ence text by people working in metamaterials, plasmonics, nanophotonics, and other
related fields. It can also be used as a course textbook or a book for self-instruction
at the senior undergraduate or graduate level, as well as for a short course offered
by a professional society. As such, the book presumes that the reader has a general
knowledge of basic electrodynamics at the undergraduate level.

This book would not have been completed without the help of many people. In
particular, we are deeply grateful to Mark Thoreson for his painstaking review and
critical proofreading of the entire manuscript. We are also thankful for the support
and helpful suggestions from Professor Mark Brongersma at Stanford University.

In addition, it is a pleasure to acknowledge our debt and gratitude to many col-
leagues whose expertise, discussions, and collaboration have benefited us over the
years. These include Drs. A. V. Kildishev, A. K. Sarychev, V. P. Drachev, A. K.
Popov, U. K. Chettiar, H.-K. Yuan, I. R. Gabitov, S. A. Myslivets, N. M. Litchinitser,
E. E. Narimanov, A. E. Boltasseva, T. A. Klar, Sir J. B. Pendry, V. G. Veselago,
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X. Zhang, D. R. Smith, M. Wegener, N. Engheta, N. I. Zheludev, U. Leonhardt,
M. A. Noginov, V. A. Podolskiy, G. W. Milton, D. H. Werner, I. C. Khoo, A. I.
Maimistov, R. Z. Sagdeev, D. A. Genov, A. Boardman, and I. I. Smolyaninov. We
are also grateful to our families and close friends for their support.

Stanford, CA Wenshan Cai
West Lafayette, IN Vladimir M. Shalaev
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Chapter 1
Introduction

1.1 What are Metamaterials?

Almost all electromagnetic phenomena and devices result from interactions between
waves and materials. In this sense, the realization of an electromagnetic functional-
ity is meant to manipulate the waves in a desired manner by elaborating structures
and geometries with available materials. With the myriad of delicate structures
proposed and produced by scientists and engineers around the world, the even-
tual capability and diversity of electromagnetic devices are largely limited only by
the scope of available materials used to build them. Some fundamental constraints
do exist that may make a desired property absolutely impossible. For example, no
medium allows a chain of optical pulses traveling inside it to travel faster than the
free space speed of light because of the causality requirement. However, many de-
sired electromagnetic properties, similar to the case of monopole magnets, seem to
be lacking in nature even though there are no physical laws preventing the existence
of such phenomena.

Conventionally, novel electromagnetic materials are synthesized at the molecu-
lar level. Teflonr (polytetrafluoroethylene) is representative of this situation. This
synthetic fluoropolymer exhibits many attractive features, such as a very low re-
fractive index, that are not available in most transparent media at room temperature;
hence it finds numerous optical applications due to its beneficial properties. Another
approach to realize a novel electromagnetic property is to create an artificially struc-
tured composite consisting of well-arranged functional inclusions of subwavelength
dimensions. Although the unit size of such inclusions is usually several orders be-
yond the atomic or molecular level of a conventional material, the inhomogeneity
scale of these composite structures is still much smaller than the wavelength of inter-
est and their electromagnetic responses can be expressed in terms of homogenized,
“effective” material parameters. Such artificial, functional materials engineered to
fulfill the prescribed electromagnetic properties, usually referred to as “metamateri-
als,” are the theme of this book. In particular, we focus our attention on the carefully
fashioned structures exhibiting exotic properties at optical frequencies – we will
consider optical metamaterials.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications,
DOI 10.1007/978-1-4419-1151-3 1, c� Springer Science+Business Media, LLC 2010
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2 1 Introduction

The prefix “meta” (�©£’ in Greek) means “beyond,” and in this sense the name
“metamaterials” signifies systems that are beyond conventional materials. The word
“metamaterial” first appeared in literature in 2000 when Smith et al. published their
seminal paper on a structured material with simultaneously negative permeability
and permittivity at microwave frequencies [1]. Other sources suggest that the term
“metamaterial” was first coined slightly earlier, by Rodger M. Walser, a physics
professor the University of Texas in 1999 [2–4]. In merely a few years, the field
of metamaterials has rapidly grown and blossomed, involving researchers in var-
ious disciplines including basic physics, optics, material science, mechanics and
electrical engineering.

There has been enormously widespread use of the term “metamaterial” since
the beginning of this century, which results in over 2,000 papers in the database
of Institute for Scientific Information (ISI) with it as a key word and over 300,000
Google

TM
search results as of early 2009. However, the exact meaning of metama-

terial is still nebulous; a unique and unambiguous definition for metamaterials is
still yet to be established. Even some of the most visible definitions for the term
do not satisfy all the researchers in the field. For example, the European Union’s
Metamorphose Network, the primary sponsor of the Metamaterials Congress, de-
fines a metamaterial as “an arrangement of artificial structural elements, designed to
achieve advantageous and unusual electromagnetic properties” [5]. Such a defini-
tion, although it addresses the “artificial” nature of metamaterials, is perhaps overly
inclusive and fails to recognize the important difference between metamaterials and
other man-made structures such as photonic crystals.

Many leading experts in the field prefer to put terms like “properties unlike any
naturally occurring substance” or “not observed in nature” in the definition of a
metamaterial [6]. These definitions usefully emphasize the major pursuit of meta-
material research – to achieve electromagnetic features not found in conventional
materials. However, it might be too glib to exclude any naturally occurring property
from the focus of metamaterial research. We are truly humble in the face of Mother
Nature, and it would take far too much effort and may not be possible at all to thor-
oughly examine and determine the nonexistence of a property in naturally occurring
materials. For example, although materials with negative index of refraction are, in-
controvertibly, one of the central topics in metamaterial research, negative refraction
has been astonishingly observed in compound eyes of some lobsters [7]. The situa-
tion is quite similar to what happened in area of photonic crystals, which are periodic
optical structures designed to affect the motion of photons. Although photonic crys-
tals are a brilliant achievement of the work of many researchers, similar structures
and phenomena have actually existed for millions of years inside gemstone opals
and the wings of Morpho butterflies [8].

After examining the key concepts behind metamaterials, we shall define metama-
terials with the following definition for the purposes of our discussions: A metama-
terial is an artificially structured material which attains its properties from the unit
structure rather than the constituent materials. A metamaterial has an inhomogene-
ity scale that is much smaller than the wavelength of interest, and its electromagnetic
response is expressed in terms of homogenized material parameters.



1.1 What are Metamaterials? 3

Metamaterials are, above all, man-made materials. The structural units of a
metamaterial, known as meta-atoms or meta-molecules, must be substantially
smaller than the wavelength being considered, and the average distance between
neighboring meta-atoms is also subwavelength in scale. The subwavelength scale of
the inhomogeneities in a metamaterial makes the whole material macroscopically
uniform, and this fact makes a metamaterial essentially a “material” instead of a de-
vice. The scale of the inhomogeneities also distinguishes metamaterials from many
other electromagnetic media. Conventional materials and artificial metamaterials
share the feature that their lattice constants are much smaller than the wavelength
of interest. When the scale of the inhomogeneities is on the order of a wavelength,
however, the response of the structure is dominated by diffraction and interference
effects. Phenomena in this category occur across nearly the entire electromagnetic
spectrum, including crystals in X-ray diffraction, photonic crystals in optics, and
phased array radars at microwave frequencies. With even larger inhomogeneity
scales, the response of structures is usually described using geometrical optics and
ray tracing.

In our metamaterial definition, we don’t demand anything in terms of emer-
gent properties in a metamaterial, because there is no rigorous way to define how
“different” the metamaterial properties should be compared to the properties of
its constituent materials or other naturally occurring media. Nor do we require
any ordering in a metamaterial; although most reported metamaterials do follow
a certain periodicity, there are also many random composites with fascinating elec-
tromagnetic responses. We do not want to exclude such materials from the scope of
metamaterial research.

When tracing the history of metamaterials, it makes little sense to argue who
made the first metamaterial. Centuries ago, people started using metamaterials de-
liberately in art pieces without a full understanding of the physics behind the results
they achieved. A famous example is the Lycurgus Cup exhibited in the British
Museum; the Roman glass challis dates from the fourth century AD. The cup was
made from probably the first known metamaterial – ruby glass with gold nanopar-
ticles embedded [9]. The scattering property of the metamaterial offered the cup a
unique beauty, appearing green when viewed in reflected light such as daylight but
reddish with light transmitted through the glass, as depicted in Fig. 1.1 [10, 11].

In modern science, artificial electromagnetic metamaterials were produced and
studied long before the term “metamaterial” entered the scientific community.
Perhaps one of the first modern metamaterials with engineered, subwavelength
meta-atoms was attributed to the “twisted jute” material proposed by Bose in 1898
to produce an artificial chiral effect [12]. Artificial dielectrics, which are usually
periodic arrays of metallic wires, spheres or plates, were studied extensively by
microwave engineers more than half of a century ago [13–15]. These artificial
dielectrics are essentially identical to the electric metamaterials in the current ter-
minology. Other examples of metamaterials or their elements developed before the
term metamaterial was coined include the split-ring resonators [16, 17], arrayed
frequency filters [18], bianisotropic and chiral materials [19], and others.
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Fig. 1.1 The Lycurgus Cup viewed (a) in reflected light and (b) in transmitted light. A metallic
nanoparticle used in the metamaterial is shown in (c). (a, b), Copyright The Trustees of the British
Museum. (c), Adapted from [9]. Courtesy of D. J. Barber and I. C. Freestone

When discussing the emergence of metamaterials and the surge of interest in this
field, we have to appreciate a few seminal papers that laid the groundwork for re-
search in the area of modern metamaterials. In our opinion, there are three milestone
papers that should be mentioned in this regard. The first is Veselago’s paper on left-
handed materials [20]. This paper studied the strikingly unusual phenomena to be
expected in a hypothetical left-handed substance in which the field vectors E, H and
the wave vector k form a left-handed system. The paper also explicitly presented
the required material parameters to achieve the material – simultaneously negative
values of permittivity and permeability. The first experimental demonstration of a
Veselago medium by Smith et al. is second in our list [1], which makes the huge
leap from a theoretical prediction to experimental validation. The third seminal pa-
per is Pendry’s work on a perfect lens [21], which represents the initial attempt to fill
the gap between novel metamaterials and exciting applications. Interestingly, all the
three papers that inaugurated the field of metamaterials were focused on negative in-
dex metamaterials. This fact is the major reason that during the first few years of the
surge in metamaterial interest, the word metamaterial was almost synonymous with
left-handed material. Today’s metamaterial research has expanded far beyond mate-
rials with negative refraction. Various artificially engineered metamaterials are now
demonstrating unprecedented electromagnetic properties that are not observed in
naturally occurring materials and cannot be obtained by conventional synthesis tech-
niques. The structural units of metamaterials can be tailored in shape and size, their
composition and morphology can be artificially tuned, and inclusions can be de-
signed and placed in a predetermined manner to achieve prescribed functionalities.

The idea of metamaterials has been quickly adopted in the optics community.
Among all the branches of today’s metamaterial research, those materials exhibiting
tailored electromagnetic responses at light frequencies, known as optical metama-
terials, are by far the most fascinating and most challenging topic. Light is the
ultimate means of sending information to and from the interior structure of materi-
als – it packages data in a signal of zero mass and unmatched speed. The burgeoning
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optical metamaterial research activities are a result of the combination of a wealth of
nanofabrication techniques with advances in nanoscale imaging and computational
electromagnetic design and simulations. Within the rapidly developing and highly
multidisciplinary field of optical metamaterials, several key research directions have
been emerging, including optical magnetism [22–24], optical negative index mate-
rials [25–29], giant artificial chirality [30, 31], nonlinear optics in metamaterials
[32–35], super resolution with metamaterials [36–41], and electromagnetic cloaks
of invisibility [42–46]. We note that both “optical metamaterials” and “photonic
metamaterials” appear in literatures frequently without noticeable difference in their
meanings. So in this book, the two terms are used interchangeably.

Photonic metamaterials revolutionarily altered the way that people propose and
design functional optical devices. Materials used in conventional optical designs are
usually both homogeneous and isotropic; therefore the design of devices is largely
an issue of engineering the interfaces between different media. For instance, in
the lens-making industry, cascaded lenses of different materials with finely con-
trolled curvatures are often used to minimize multiple types of aberrations. The
emergence of photonic metamaterials allows us to tailor optical space and provide
new responses that are precluded in the constituent materials. The design strategy of
optical devices is radically changed when metamaterials are involved – the desired
functionality is achieved not only by configuring the interfaces between different
materials, but by the control of essentially every single point in optical space. This
enables applications using novel, spatially varying architectures of metamaterials
where the electromagnetic properties of every position are carefully prescribed.

The last 6 years have witnessed the birth and development of the new research
area of optical metamaterials. Such unconventional electromagnetic media can have
numerous and far-reaching implications. These materials bring the promise of cre-
ating entirely new prospects for controlling and manipulating photons, and they
provide potential benefits in various fields including optical sensing, miniature an-
tennae, novel waveguides, subwavelength imaging, nano-scale photolithography
and photonic circuits. We should note that the research field of photonic metama-
terials is still in its infancy. Today’s optical metamaterials are still far from perfect.
They are usually highly dissipative, dispersive and anisotropic, but they are very
real nonetheless. Having confirmed the ability of optical materials to produce un-
precedented results, researches are now optimizing their design, exploring the new
physics behind these materials and postulating exciting new functional devices.

1.2 Macroscopic Effective Parameters

Most electromagnetic phenomena are governed by Maxwell’s equations, which
are a set of equations describing the interrelationship between fields, sources, and
material properties. Impinging fields in a system can influence the organization
of the electrical charges and magnetic dipoles in a medium, and fields can in-
duce polarization and magnetization to some degree, depending on the particular
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material involved. The electromagnetic properties of a material are determined by
two material parameters: the permittivity " and the permeability �, describing the
coupling of a material to the electric and magnetic field components of an electro-
magnetic wave, respectively. These two parameters, along with another two related
values – the refractive index n D

p
�" and the impedance Z D

p
�=", are es-

sentially macroscopic effective parameters because they are used to describe the
overall average response of the material as a whole. Microscopically, a piece of
crystal consists of atoms arranged in a periodic manner with a lattice constant of a
few angstroms. On the atomic scale, in each atom or molecule, tiny electric dipoles
can be excited by the electric component of incident light, and subsequent radiation
of the energy in the dipoles occurs with a certain delay in time. The excited dipoles
create a periodic local field in the crystal, referred to as Lorentz local field; there-
fore the field distribution inside the crystal is certainly not uniform. However, the
incident light does not really feel the underlying inhomogeneity in the crystal, nor
does it feel the processes of absorption and radiation. On the macroscopic scale, the
detailed features and responses of the inhomogeneous structure are averaged, and
relationships can be established between the macroscopic field vectors in Maxwell’s
equations, namely the electric field E, the magnetic field H , the electric displace-
ment field D, and the magnetic flux density B . This is the origin of the permittivity
and permeability parameters of materials. At optical frequencies, this complicated
physics is usually described using the transmittance and reflectance of light with a
certain retardation (delay) in addition to the energy absorbed in the material, and a
complex value of the refractive index or permittivity is used to describe such phe-
nomena.

Similarly, the scale of inhomogeneities in a metamaterial is much smaller than
the wavelength of interest – the metamaterial design ensures this. The inhomogene-
ity scale corresponds to the lattice constant of the artificial structure for the case
of periodic metamaterials. Therefore, though the interaction between electromag-
netic fields and meta-atoms is quite complicated at the scale of the inhomogeneities,
macroscopically the wave feels a homogeneous medium. Furthermore, similar to
the treatment of conventional materials, the electromagnetic responses of the meta-
material to external fields can be homogenized and are described using effective
parameters including the permittivity, permeability, refractive index and impedance.
This fact explains again why metamaterials made from basic constituents are identi-
fied as materials instead of devices. From the point of view of Maxwell’s equations,
a material is a collection of subwavelength units with global properties described by
" and �. Through the dedicated design of meta-atoms, which is usually a delicate
metal-dielectric structure, metamaterial research allows us to tailor the electromag-
netic response of media in an unprecedented manner.

We should note that although the macroscopic material parameters are often
treated as single real numbers (for example, we say the refractive index of water
is 1.33), the actual situation is much more complicated. Using the permittivity " as
an example, causality forces it to be dispersive, which means that permittivity is a
function of wavelength (except for the case of a vacuum). The frequency depen-
dence of permittivity is deeply rooted in the causality requirement – the material’s
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response to the external field must arise after the field is applied, and there must be a
phase delay between the excitation field and the radiated one. Since the permittivity
function ".!/ is analytic in the upper half complex plane, it satisfies the Kramers–
Kronig relations [47]. Therefore, there is an imaginary part associated with ".!/ that
characterizes the dissipation of energy within a medium. In an anisotropic medium,
the field vectors E and D are not necessarily parallel to each other; hence the per-
mittivity must be in the form of a tensor rather than a scalar value. Anisotropic and
strongly dispersive features generally occur in most of metamaterials studied thus
far; for this reason, we should always specify the frequency and direction under
consideration when we address any effective parameters in a metamaterial. Finally,
there are cases such as bianisotropic media where the electromagnetic response is
not sufficiently described with " and � tensors because of the complexity of the unit
scatterers. Such structures may require additional material parameters like magne-
toelectric coefficients, which link the electric field vectors and the magnetic ones.
Although some important metamaterial elements like split-ring resonators are bian-
isotropic to some extent, we shall exclude detailed discussions of such situations in
this book.

Since the response of a material to external fields is largely determined only
by the two material parameters " and �, we can use an electromagnetic parameter
space to classify materials based on the two values [48]. As shown in Fig. 1.2, the
real part of permittivity "r is plotted to the horizontal axis of the parameter space,
while the vertical axis corresponds to the real part of permeability �r . Therefore
materials with all possible combinations of "r and �r can be placed in the param-
eter space. Conventional materials known to be transparent are found in the first
quadrant, where both "r and �r have positive values. A negative value of ".�/ in-
dicates that the direction of the electric (magnetic) field induced inside the material
is in the opposite direction to the incident field. Noble metals at optical frequencies

Fig. 1.2 The parameter
space for " and �. The two
axes correspond to the real
parts of permittivity and
permeability, respectively.
The dashed green line
represents non-magnetic
materials with � D 1
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are good examples for materials with negative ", and negative � can be found in
ferromagnetic media near a resonance [49]. No propagating waves can be supported
in materials represented by the second and fourth quadrants, where one of the two
parameters is negative and the index of refraction becomes purely imaginary. In the
domain of optics, all conventional materials are confined to an extremely narrow
zone around a horizontal line at � D 1 in the space, as represented by the dashed
line in Fig. 1.2.

Metamaterial research, essentially, is related to the innovative exploitation of the
electromagnetic parameter space. The major focus of the metamaterial community
is to create artificial materials that enter regions of the parameter space that are not
forbidden by Maxwell’s equations but are not observed in any conventional me-
dia, and to take advantage of this expanded parameter space for better control of
electromagnetic waves. Progress in optical metamagnetics has allowed researchers
to move material properties away from the non-magnetic line, and negative index
metamaterials have opened the third quadrant of the parameter space, which was
completely inaccessible previously. With the current and foreseeable advances in
computational power and fabrication techniques, other territories of the parameter
space will be explored in the search for additional and unprecedented electromag-
netic properties. It is hard to see any fundamental factors that may limit the eventual
capabilities of optical metamaterials in molding the flow of light, except for our own
creativity, imagination, and eagerness.

Let us briefly mention the notation conventions that will be used in this book for
our discussions. Throughout this book, the permittivity " is a dimensionless value
and represents the relative permittivity (also called the dielectric constant), i.e., the
permittivity of a material relative to that of a pure vacuum at the same frequency. A
similar concept applies for the permeability �. We also use a frequency-dispersive
permittivity ".!/ and permeability �.!/ to characterize the electromagnetic re-
sponse of a material. There is an alternative description based on the generalized,
spatially dispersive permittivity tensor Q".!; Ek/ to describe both the electric and mag-
netic responses without using permeability � [50]. We also mention here that we
have selected exp.�i!t/ for the time-harmonic factor, which is assumed for all elec-
tromagnetic waves in this book. Consequently, a usual passive medium exhibits pos-
itive values in the imaginary parts of permittivity, permeability, and refractive index.
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Chapter 2
Optical Properties of Metal-Dielectric
Composites

2.1 Optical Materials and Electronic Structures

As discussed in the preceding chapter, metamaterials are man-made materials
consisting of artificially structured units that are made from naturally occurring
substances and usually (but not necessarily) arranged in a periodic fashion. These
units, sometimes called “meta-atoms” or “meta-molecules,” are a delicate arrange-
ment of two or more conventional materials with known bulk properties, although
the character of the composite architecture can be quite exotic and distinct from
all of its constituents. This scenario is quite similar to what we are familiar with
in the everyday act of cooking: The taste of the final outcome can be far beyond
the simply combined flavors of the individual ingredients, but a good cook must
know the nature of each ingredient before putting them together in a prescribed
procedure. Similarly, in order to design and implement optical metamaterials, it is
essential to study the physical properties of the basic constituent materials, includ-
ing dielectrics, semiconductors, and metals. It is also necessary to understand the
mechanism responsible for their optical behaviors. The purpose of this chapter is to
help us understand the optical behavior of the basic constituents of metamaterials.

Although used extensively in optics, the terms “dielectric” and “metals” are actu-
ally borrowed from electronics, where different types of bulk materials are classified
based on their resistivity. In a dielectric, also called an insulator, the allowed energy
bands are either completely filled or completely empty. Consequently, no electrons
can move in an electric field, and the flow of electric current is prohibited. On the
contrary, a conductor contains free electric charges that will flow when an electric
potential difference is applied to the material. Metals are by far the most commonly
used conductors due to the fact that they are rich in loosely held free electrons be-
cause one or more of their energy bands are partly filled. Another important category
in the electronic material classification system is “semiconductors,” which are ma-
terials that have all their energy bands entirely filled except for one or two bands
that are slightly filled or slightly empty. A classical way to visualize the difference
between these different types of electronic materials is to use the Fermi level and
energy band theory, which are detailed in most textbooks on solid state physics [1].

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications,
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dielectric semiconductor metal

E

Fig. 2.1 Simplified energy band diagram for a typical dielectric, semiconductor, and metal. The
shaded gray and light gray regions represent the valence band and the conduction band, respec-
tively, and the empty region between them indicates the band gap

According to the Pauli exclusion principle, no two electrons in an atom can share
one identical quantum state. In fact, this discreteness requirement can be extended
beyond an isolated atomic system. In a crystalline solid, for example, discrete en-
ergy levels are created due to the covalent bonding of atoms in the crystal lattice.
These allowed energy levels are lumped into two energy bands, the conduction band
and the valence band. The valence band consists of numerous closely spaced levels
which are mostly filled by electrons, while the conduction band represents electronic
levels at higher energies that are mostly unoccupied. The two bands are separated
by an energy region where no electron states are allowed. The width of this empty
energy region, called a band gap or forbidden band, determines whether a substance
is a dielectric, semiconductor or conductor. The band gap width represents the en-
ergy barrier that must be overcome by a bound electron in the valence band in order
to take part in the electric conduction process. The energy band diagrams for typical
dielectrics, semiconductors and metals are illustrated in Fig. 2.1.

A dielectric is characterized by a wide energy band gap, usually larger than 5 eV.
As a result, a relatively high energy is necessary to promote a valance band elec-
tron into the conduction band. This is why thermal generation of free carriers in
dielectrics is extremely weak, and a huge amount of energy is required to obtain
even a feeble amount of current. The band structure of semiconductors, as depicted
in the middle panel of Fig. 2.1, is probably the most familiar band diagram because
of the extensive use of semiconductors in today’s electronics industry. The moder-
ate forbidden gap makes it possible for electrons in the valence band to be lifted to
the conduction band with a small excitation energy and become free to conduct cur-
rent. In sharp contrast to dielectrics and semiconductors where there are two distinct
bands separated by an energy gap, in conductors like metals, the valence band and
the conduction band overlap without a forbidden band in between. Consequently,
any energy that is added to electrons is sufficient to propel them into the conduction
band, and there are always sufficient free electrons moving about in a conductor to
form a current flow if an electric field is applied.

When it comes to the optical properties of materials, we should be very care-
ful when applying the concepts from electronics to our optical studies. Many
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dielectrics, indeed, have optical properties that are closely correlated with their
electronic structure. For example, the photon energy of visible light, which ranges
between 1.5 eV and 3 eV, is not sufficient to bridge the gap between the valence
band and the conduction band in common insulators. Therefore, such materials are
typically transparent in the visible spectrum. As an alternate scheme, it would be
quite plausible to classify materials simply based on their electronic properties. Do-
ing so can cause even further confusion, however. One good example to illustrate
this point is indium tin oxide (ITO), a solid that is extensively used in transpar-
ent electrodes in the display and lighting industries owing to its spectacular feature
of combining both electrical conductivity and optical transparency. Electronically,
therefore, ITO is a metal-like substance, but optically it acts as a dielectric. This
situation is also true for some real metals. For example, tungsten is clearly a metal
because it conducts current in the filaments of light bulbs. In the visible light spec-
trum, however, tungsten looks more like a lossy dielectric and features a positive
dielectric constant value.

In most circumstances in the research of optical metamaterials, semiconductors
are treated as dielectric materials, which can be either lossless or absorptive depend-
ing on the wavelength range being considered. As seen in Fig. 2.1, the electronic
structure of insulators and semiconductors are different merely in the width of
the forbidden gap. Strictly speaking, there is not a clear dividing line that separates
one category from the other. In electronics, the relatively narrow forbidden band in
some semiconductors facilitates the manipulation of electrons via various schemes,
which was the starting point of semiconductor device technology. In optics, how-
ever, it is the photons that excite electrons in the valence band. Therefore, the
critical consideration becomes the comparison of photon energy and the bandgap
of a crystal, which specifies the shortest wavelength (the “critical” wavelength) at
which the dielectric remains transparent. The critical wavelength �c is related to the
bandgap Eg by

�c D
hc

Eg
D

1240 nm
Eg (in eV)

; (2.1)

where h is Planck’s constant and c is the speed of light in vacuum. The values
of band gap and critical wavelength for some common dielectrics are given in
Table 2.1 [1, 2].

When used as transparent dielectrics, many semiconductors feature a high dielec-
tric constant, which is particularly useful in the design of many metamaterial-based
functions. In Chaps. 8 and 9 we will show a few examples of metamaterial devices
with high-permittivity semiconductors as the dielectric constituents.

2.2 Optical Properties of Dielectric Materials

Dielectrics are by far the dominant materials used for optical components and
devices. In conventional optical systems, almost all functional parts, except for some
reflection surfaces, are made from crystalline and glassy materials. The reason is
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Table 2.1 Band gap and
critical wavelength of
common dielectrics at room
temperature

Dielectric
material

Band gap
(eV)

Critical
wavelength .�m/

Diamond 5.50 0.23
Si 1.12 1.10
Ge 0.66 1.87
SiC 2.99 0.41
GaN 3.44 0.36
GaP 2.27 0.55
GaAs 1.42 0.87
InP 1.34 0.92
InAs 0.35 3.50
ZnO 3.44 0.36
ZnS 3.68 0.34
ZnSe 2.82 0.44
CdTe 1.48 0.84
PbS 0.41 3.03
SiO2 �8:5 �0:15

Al2O3 �9 �0:14

TiO2 3.0 0.41

simple: light is effectively manipulated only when it can efficiently pass through a
medium, meaning that the medium is, at least to some degree, a dielectric

The underlying physical background of light interacting with a dielectric can be
analyzed using Maxwell’s equations plus the following two constitutive relations:

D D "0E C P D "0.1C �e/E D "0"rE (2.2a)
B D �0.H CM/ D �0.1C �m/H D �0�rH (2.2b)

Equation (2.2a) specifies the relationship between the electric displacement D, the
electric field E, the polarization density P and the electric susceptibility �e , while
(2.2b) is for their magnetic counterparts. The vacuum permittivity and permeability
in SI units are "0 D 8:85�10�12 F=m and �0 D 4 �10�7 H=m. According to our
notational conventions stated in the previous chapter, we shall omit the subscript r
in the relative permittivity "r and permeability "r in our discussion. The study of
the (linear) interactions between light and matter, essentially, involves determining
the solutions to Maxwell’s equations by using the constitutive relations along with
appropriate boundary conditions.

At optical frequencies, the magnetic susceptibility �m in any conventional mate-
rial diminishes for reasons to be elaborated in Chap. 5, and the relative permeability
�r is taken normally to be unity. This condition substantially simplifies our de-
scription of optical materials – transparent ones in particular – by assigning a
refractive index n D

p
" to each medium. Even though all media are dispersive

and absorbent in a strict sense, the use of real numbers for refractive indices is ex-
tremely convenient, and therefore it has become standard practice in the design and
analysis of optical components and devices. Particularly, the refraction and reflec-
tion behaviors of dielectric systems, including magnitude and phase information,
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are well characterized by a set of Fresnel equations, which are simple algebraic
formulas with refractive indices and incident angles as the only variables.

Although the refractive index of an isotropic, homogeneous and linear dielectric
material can be viewed as a real number in many cases, we should note that for a
rigorous treatment of light interacting with optical media, the frequency dependence
of the material properties should be carefully considered. At optical frequencies,
the oscillation of the electric field is so fast that the bound charges in atoms or
molecules are unable to follow the electric field in time. Consequently, (2.2a) does
not hold in the time domain for the high frequencies of the optical range. Instead,
the electromagnetic response of the medium described by D.t/ at time t depends
not only on the electric field E at that moment, but also on the value of E at all past
times. Hence the constitutive relation has to involve time operators (convolution) as
follows [3]:

D.t/ D "0E.t/C "0 �

Z �

�1

�e.t � �/E.�/d� (2.3)

Fortunately, the proportionality is still valid for the relationship betweenD andE in
the frequency domain, as long as the material being considered is a linear medium
(which means the susceptibility is independent of the strength of the electric field).
We therefore write the frequency-domain constitutive relationship as:

D.!/ D "0".!/E.!/ D "0Œ1C �e.!/�E.!/: (2.4)

As mentioned in the introduction of the book, most metamaterials with metal-
dielectric composite units are strongly dispersive. In the visible or near-infrared
wavelength region, the origin of the dispersion in a metamaterial is mostly as-
cribed to the metallic part, because metals are much more dispersive than transparent
dielectric media. Nevertheless, it is very helpful to study the frequency sensitivity
of the dielectric function ".!/ in dielectric media. In particular, when we extend our
interest to the whole optical spectrum ranging from the near-UV (200–400 nm) to
the mid-infrared (tens of microns), the dispersion of even the best transparent ma-
terial is no longer a negligible feature. The transparency window for most dielectric
materials is bounded at the long-wavelength side by the infrared absorption mode
of phonons due to lattice vibrations, while at the high-frequency side the window
is bounded by interband electron-hole transitions. The approximate spectral trans-
parency ranges for a number of important dielectric materials are shown in Fig. 2.2
[1, 2, 4]. When designing an optical metamaterial, it is important to make sure that
the selected dielectric constituent is transparent within the wavelength range of in-
terest. Otherwise substantial loss may arise from electron or photon resonances
in the dielectric, which are detrimental to the performance of the metamaterial in
most cases.

The dielectric function ".!/ can be expressed in a classical Helmholtz–Drude
model:

".!/ D 1C
X

j

Sj!
2
j

!2j � !
2 � i!	j

; (2.5)
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Fig. 2.2 The spectral range of transparency for several important dielectric materials

where !j is the resonance frequency of the j th mode, and Sj and 	j represent
the strength and the damping constant of the j th mode, respectively. A typical
frequency-dependent permittivity of a usual, transparent dielectric is plotted in
Fig. 2.3. In this example, two resonances are included in the oscillator formula, with
!1 representing the phonon resonance in the mid-infrared, and !2 corresponding to
the electron transition in the UV range due to the bandgap of the crystal. The dielec-
tric function exhibits a Lorentz line shape at each resonance along with a distinct
peak in the imaginary part of ".!/, which indicates the loss feature associated with
the resonance. We see from the example in Fig. 2.3 that, between the two resonance
frequencies, the permittivity curve is rather flat with a negligible imaginary part.
This explains why a common dielectric like quartz or alumina is transparent to the
visible light.

The real part of ".!/ exhibits a Lorentz line shape around each resonance. The
real part "0 is large and positive at the low-frequency side of the resonance, and it
has a negative value when the frequency is slightly higher than that of the resonance.
A negative dielectric constant is somewhat counterintuitive, because transparent
materials have positive dielectric functions in the visible range. A negative value
of "0 implies that the response (in our case, the polarization density P or the
electric displacement D) is directed opposite to the electric field E. The electro-
magnetic response of a material around a resonance is illustrated in Fig. 2.4, where a
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Fig. 2.3 The dielectric function ".!/ for a typical dielectric material with the lattice resonance
and electron transition resonance marked as !1 and !2, respectively
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Fig. 2.4 The positive and negative electromagnetic responses around a resonance. The three
spring-mass oscillators are used as a mechanic analogue of the scenario

spring-mass oscillator is used to facilitate understanding. Away from the resonance,
the response is able to follow the driving force with no delay. When the frequency is
slightly lower than the resonance frequency !0, the function (" or �) is increasingly
positive and the response (P for electric resonances and M for magnetic ones) is
enhanced. On the other side of the resonance peak, the function can take a negative
value, thus the response is opposite to the driving force.
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The simple square-root relationship between the refractive index and the
permittivity still holds in the frequency domain. Therefore the frequency-dependent
refractive index n.!/, being a complex value in the general case, is related to the
dielectric function ".!/ by

n.!/ D n0.!/C in00.!/ D
p
".!/: (2.6)

In many optics textbooks and in most published literature, the real part of the com-
plex number n.!/ is simply called the refractive index or the index of refraction,
while the imaginary part n00.!/ is referred to as the absorption index. In addition,
the notation k or 
 is frequently used for the same quantity. Some basic algebra
leads us to the useful relations between the real and imaginary parts of the refractive
index and those of the dielectric function:

"0 D n02 � n002I "00 D 2n0n00 (2.7a)

n02 D
h
"0 C

p
"02 C "002

i.
2In002 D

h
�"0 C

p
"02 C "002

i.
2 (2.7b)

In (2.7) we omit the argument ! to make the equations concise. In standard material
handbooks [2, 5, 6], either the complex refractive index or the complex dielectric
function may be provided for a set of wavelength or frequency values.

The frequency dependence of n.!/ is very similar to the plot given in Fig. 2.3
for the permittivity ".!/, except for the fact that the curve for the real part n0.!/ is
raised (offset) along the vertical axis to avoid a negative value in the real part of the
index. Since the imaginary part n00.!/ is negligibly small (usually less than 10�5)
for common transparent dielectrics in the visible range, the refractive index of such
materials can be modeled in a form similar to (2.5) without involving the imaginary
part or the damping constants. In this situation, (2.5) reduces to the widely used
Sellmeier dispersion formula:

n.�/2 D 1C
X

j

Sj�
2

�2 � �2j
(2.8)

Some modified forms of the Sellmeier formula also exist in the literature in which
an empirical approximation for n.�/ instead of n.�/2 is provided. Power series
approximations to the Sellmeier formula are also used, where the index n.�/ or
n.�/2 is expressed as the sum of powers of wavelength as

P
j Aj�

j , where the
index j can be both positive and negative.

For weakly absorptive media, the absorption coefficient ˛ is routinely used to
characterize the attenuation of light propagating in the material. The absorption
coefficient is the exponential index appearing in Beer’s law, which says that the
intensity I0 of light will decrease to I0exp.�˛z/ as the light travels a distance z in a
medium. Since the electric field E changes along the propagation direction follow-
ing the function expŒi2 .n0 C in00/z=�0�, and the intensity is proportional to E2, it
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is easy to see that the absorption coefficient ˛ is connected to the imaginary part the
refractive index by

˛ D 4�n00
ı
�0: (2.9)

The absorption coefficient ˛ has dimensions of reciprocal length, and it is usually
expressed in the units of cm�1.

Up to this point, we have covered most of the necessary, fundamental informa-
tion on the optical properties of dielectric materials that may be directly pertinent
to metamaterial studies. The properties of bulk crystals that are not discussed here
include, for example, optical anisotropy and nonlinear responses, which we touch
on briefly now. Optical anisotropy and birefringence are intrinsic properties of crys-
talline dielectrics. In an anisotropic medium such as uniaxial or biaxial crystals,
the optical response to the external field is directionally dependent. Moreover, the
polarization field P is not necessarily aligned with the electric field, so tensors of
rank 2 instead of scalar values must be used for the electric susceptibility � and the
permittivity ". In optical metamaterials, however, the length scale of the continu-
ous dielectric portion of the unit structure is so small – being much smaller than
the light wavelength – that all dielectric components tend to have an “amorphous”
state without a preferred direction. Therefore in the design and simulation of op-
tical metamaterials, a scalar value is usually sufficient for the permittivity or the
refractive index of the dielectric constituent. As for the nonlinear properties of di-
electrics, they are normally neglected because most of today’s optical metamaterials
are operated in the linear response region. Even when the nonlinearity of metama-
terials are included (see Chap. 7), the nonlinear effects will typically result from the
meta-molecules as a whole plus the surface states of the metallic part, while the
nonlinearity of the dielectric itself plays a very minor role.

2.3 Optical Properties of Metals

Conventionally, the use of metals in optical systems is limited to only a few applica-
tions like mirrors and optical thin films. In optical metamaterials, however, most of
the designs being studied incorporate metals in the unit structure of the metamate-
rial. The sharp contrast between the optical response of metals and that of dielectrics
is essential to making meta-atoms functional elements. In this section we briefly re-
view the physical processes involved in light-metal interactions and emphasize the
modification of metal behaviors at the nanoscale.

Common impressions from everyday experience tell us two of the most pro-
nounced features of metals at optical frequencies. First, metals are opaque – you
cannot look through a piece of metal unless it’s thinner than the so-called skin
depth, which is on the scale of few tens of nanometers. Secondly, metals are highly
reflective. Most of light impinging on a smooth metal surface will be rebounded
or reflected from the surface. Both of these properties originate from behavior of
electrons in metals. Let us look again at the energy band diagram for metals, as
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shown in the right panel of Fig. 2.1. The Fermi level in metals sits inside a con-
tinuous energy band, and there is no gap between the empty energy levels and the
occupied ones. Consequently, the photon energy from any electromagnetic radia-
tion is enough to excite an electron to a higher level. Since the empty electron states
are continuously available, light of all frequencies that enters into a metal (which
is not easy at all) can be absorbed within a tiny propagating length, usually less
than 100 nanometers. Many metals, like silver and aluminum, have a bright silvery
appearance when exposed to sunlight because they are highly reflective across the
entire visible spectrum. Some metals, including gold and copper, are colored be-
cause the high-frequency components of light are not well reflected, and the light
we perceive from them contains predominantly colors in the yellow to red wave-
length range. All these phenomena can be explained using the dielectric functions
of different metals, which will be covered in this section.

Similar to the study of dielectric materials in the previous section, most of the
mechanisms behind light-metal interactions are ascribed to the frequency-dependent
permittivity of metals. The starting points in the evaluation of metal permittivity are
the constitutive relations in (2.2)–(2.4), in addition to the behavior of free electrons
in a driving electric field, which are described in terms of an electron gas.

The electromagnetic response of a metal is largely dictated by the collective
movement of free electrons within the metal crystalline structure. In the following
treatment we will extend the Lorentz harmonic oscillator model to metals. In this
case, the electrons are considered to be freely able to move about in the metal lattice,
without any restoring force or spring constant. Therefore, the resonance frequency
!0 from the standard Lorentz model is zero in this case, and it does not appear in the
analysis below. This model for electron motion in a metal is known as the Drude free
electron model. With a time harmonic incident electric field E0e�i!t , the equation
of motion for a free electron is

m
@2Er.t/

@t2
Cm�

@Er.t/

@t
D �e EE0e

�i!t ; (2.10)

where m and e represent the effective mass and the charge of the electron, respec-
tively, and  is the damping constant. Solving this differential equation, we obtain
the displacement r of the electron from its original position:

Er.t/ D
e

m

EE0e
�i!t

.!2 C i�!/
: (2.11)

The polarization density P , by definition, is the total dipole moment per unit vol-
ume. Therefore, the polarization can be expressed as P D ner, where n denotes
the density of free electrons in the metal. From (2.11) and (2.2a), we obtain the
frequency dependence of the dielectric function:

".!/ D 1 �
!2p

!2 C i�!
D 1 �

!2p

!2 C �2
C i

!2p�

!.!2 C �2/
; (2.12)
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Table 2.2 Plasma frequency !p , damping constant � and Fermi velocity vF of selected noble
metals
Metal ¨p (eV) ¨p .10

15 s�1/ � (eV) � .1015 s�1/ vF .10
6 ms�1/

Silver 9.2 14.0 0.021 0.032 1.4
Gold 9.1 13.8 0.072 0.11 1.4
Copper 8.8 13.4 0.092 0.14 1.6
Aluminum 15.1 22.9 0.605 0.92 2.0

where !p is the volume plasma frequency at which the density of the electron gas
oscillates:

!p D

s
ne2

"0m
: (2.13)

Note that the damping constant  , which represents the electron collision rate, is
absolutely necessary to provide an imaginary part in �.!/ or ".!/. Sometimes the
inverse of  – the mean electron collision time � D  �1 – is used in the Drude
model. Hence the damping constant  is related to the electron mean free path l
and the Fermi velocity vF by

� D vF =l: (2.14)

The volume plasma frequency !p , the damping constant  and the Fermi veloc-
ity vF for several noble metals (silver, gold, copper and aluminum) are shown in
Table 2.2 [1, 7]. Although the Fermi velocity vF does not explicitly enter into the
Drude model in (2.12), it will be used when we evaluate the size-effect dependence
on the dielectric function, so we choose to include the data of vF in the table for
reference.

The Drude model for the dielectric function in (2.12) is an elegant and concise
treatment for the optical properties of noble metals. However, it has to be modi-
fied to adequately reflect reality. One common observation that is not predicted by
the Drude model is that gold and silver, with almost identical plasma frequencies,
appear so different when exposed to visible light. Since gold is “golden” in color,
what happens to the green and blue portions of the white light spectrum when gold
is viewed under white-light illumination?

It is clear that our model has to be improved. This is not unexpected, since we
have only accounted for free electrons, but not all electrons in a metal are free. Al-
though the behavior of noble metals is dominantly governed by the free electron
response, the contribution from bound electrons should also be taken into account
when working at high frequencies, including the visible range. Both the Drude
model and the energy band diagram for metals in Fig. 2.1 describe only the elec-
trons in the outer atomic orbitals, namely the 5s, 6s and 4s states for silver, gold and
copper, respectively. However, interband transitions such as the transition from the
5d state to the 6sp state in gold, for example, do exist in metals when excited by light
waves. Even in silvery-colored metals like silver or alkali metals where the interband
transition occurs well beyond the visible spectrum, the influence of such transitions
is still needed to supplement the Drude model. The contribution from the interband
transitions of bound electrons to the dielectric function ".!/ is quite similar to the
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corresponding resonance in dielectric materials (see, for example, the resonance at
!2 in Fig. 2.3), and these transitions can be written in a standard Lorentz form as:

"ib.!/ D 1C
!21

!20 � !
2 � i	!

; (2.15)

where !0 denotes the oscillation frequency of a bound electron under an applied
electric potential, and !1 and 	 are related to the density and damping of bound
electrons, respectively. The overall dielectric function of the metal therefore con-
tains both the Drude term for free electrons and "ib.!/ for bound ones:

".!/ D "0.!/C i"00.!/ D "ib.!/C 1 �
!2p

!2 C i�!
: (2.16)

As an example of the interband contribution to the dielectric function of metals,
in Fig. 2.5 we plot "ib.!/ for gold with an interband transition in the visible region
based on function (2.15). The central frequency !0 of the resonance is 2.8 eV, which
corresponds to a wavelength of 450 nm. In the calculation, the values !1 D 3:0 eV
and 	 D 0:6 eV are used. From Fig. 2.5 we can see that the interband transi-
tion of bound electrons indeed exerts a huge influence on the properties of gold
in the visible frequencies. The dielectric function of gold is distorted, moving to-
wards the positive " direction (more dielectric-like), associated with increased loss
for blue and green light. This is the physical origin behind the bright yellow color of
the metal – the blue and green light is more strongly absorbed by the gold, leaving
predominantly yellow light reflected back to the observer.
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Fig. 2.5 Contribution of the interband transition to the permittivity of gold at visible frequencies
calculated with (2.15)
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Another noticeable feature of the interband transition is that it has a non-zero
impact on the dielectric function of the metal even at wavelengths much longer
than the resonance wavelength. This can be seen from the long-wavelength side of
Fig. 2.5, or from 2.15 by setting ! ! 0. Therefore, when working at longer wave-
lengths away from the interband resonance (infrared range for gold, and visible plus
infrared for silver), we can replace the frequency-dependent "ib.!/ in (2.16) by a
constant offset denoted "1. For example, the interband offset contribution for gold
in Fig. 2.5 is about 1.2. It is important to note that, due to the complicated band
structure of bound electrons in noble metals, there are usually multiple interband
transitions in the UV or deep UV spectrum. Hence the offset "1 is a sum or integral
value after taking all pertinent transitions into account. Eventually, then, the mod-
ified Drude model taking into account the constant offset of interband transitions
becomes:

".!/ D "0.!/C i"00.!/ D "1 �
!2p

!2 C i�!
D"1 �

!2p

!2 C �2
C i

!2p�

!.!2 C �2/
:

(2.17)

The empirical values for "1 for silver and gold are about 5 and 9, respectively. The
terms containing �2 in the denominators of the rightmost side can be neglected for
quick calculations because � is much smaller than ! at optical frequencies.

In Fig. 2.6 we show the calculated dielectric function of silver compared to
the widely accepted experimental data from [7]. Using the parameters given in
Table 2.2, a reasonable agreement between the analytical model of (2.17) and the
measured data across the visible and near-IR range is achieved for both the real and
the imaginary parts of the permittivity. Tabulated data for other metals can be found
in optics handbooks like [2, 5, 6].

As opposed to dielectric materials, which are characterized by a positive permit-
tivity at optical frequencies, the real part of the dielectric function for noble metals is
distinctively negative. A negative value for the permittivity implies that the free elec-
trons in metals oscillate out of phase with respect to the driving electric field. Thus
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Fig. 2.6 Comparison between the experimental data from [7] and the modified Drude model for
(a) the dielectric function and (b) the complex refractive index of silver
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most of incident photons are reflected at the interface between a metal and a dielec-
tric. A better way to illustrate this point is to use the refractive index of metal. From
(2.7) along with (2.17), we can obtain the complex refractive index of metals, as
plotted in Fig. 2.6b for silver. At optical frequencies, "00 � j"0j holds for the permit-
tivity function of metals, therefore the refractive index has a pronounced imaginary
part while the real part of the index is only slightly larger than zero. From the Fresnel
equations, we know that the reflection coefficient expressed by .n1�n2/=.n1Cn2/
must have an absolute value of unity when n1 is real and n2 is purely imaginary. As
a result, at the boundary between a dielectric and a noble metal, almost all light is
reflected as long as the wavelength is substantially longer than that of the interband
transitions. Another phenomenon resulting from the large value of n00 is that light
can only penetrate through a very thin layer of the noble metal. This travelling dis-
tance, called the skin depth, is the inverse of the absorption coefficient ˛ in (2.9).
The skin depth of noble metals at optical frequencies is about 50 nm.

When studying the interaction of light with nanostructured metals or metal-
dielectric composites, the properties of metals need to be further modified due to the
size effect. In the Drude free electron model, the damping parameter  is usually
considered to be a constant at a given temperature. The fixed value of  , however, is
no longer valid when the geometrical size of the metal goes below tens of nanome-
ters. (2.14) tells us that  is a collision rate related to an electron’s mean free path
l in the metal, which can be estimated using the data in Table 2.2. When the length
scale of the continuous metal portion of the metamaterial unit structure is compa-
rable to or smaller than l , the movement of free electrons is further limited by the
physical boundary of the metal structure, and the effective mean free path is reduced
according to [8]:

1

l1
D
1

l
C
1

R
; (2.18)

where R represents the size of the metal particle and l1 is the size-limited mean
free path of electrons. Combining (2.14) and (2.18), we find that the new damping
parameter 1 with the size effect included is:

�1 D � C a
vF
R
; (2.19)

where the prefactor a is on the order of one and depends on the geometry specifics
and some other factors. When evaluating the permittivity of metal in nanoscale,
therefore, 1 should be used as the damping constant in the modified Drude model
of (2.17). Since the real part of the dielectric function is only marginally related
to the damping constant while the imaginary part is proportional to  , we should
recalculate the imaginary part "00.!/ for nanostructured metals. The imaginary part
of silver’s permittivity for different size limits is plotted in Fig. 2.7. When the di-
mension of the metal is tens of nanometers or smaller, the magnitude of "00 is
substantially larger than its bulk value. This feature should be taken into account in
the design and simulation of most optical metamaterials with metal-dielectric meta-
atoms. For example, the metal nanostrips in Chap. 5 and the nano fishnet in Chap. 6
clearly require size-effect adjustments to accurately describe the metal permittivity.
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Fig. 2.7 The imaginary part of the dielectric constant of silver with the size effect taken into
account

At the end of this section, we want to mention the rapidly growing research field
of plasmonics, which is focused on the control and manipulation of light waves at
the subwavelength scale using metallic structures. At optical frequencies, the free
electrons in noble metals can sustain volume and surface charge density oscilla-
tions, called plasmons. Depending on the geometry of the metal structures and their
surrounding environment, plasmons can take different forms, ranging from surface
plasmon polaritons propagating along the metal-dielectric boundaries to localized
plasmons with electrons oscillating inside metal nanoparticles. Plasmonics allows
optical signals be squeezed into deep subwavelength scale, which helps to bridge
length scale mismatch between typical optical systems and on-chip electronics.
Many promising results in plasmonics research have revealed its tremendous poten-
tial for various applications, including subwavelength microscopy, light emission
and detection, photovoltaic harvesting, biochemical sensing, optical signal process-
ing, and many more.

2.4 Metal-Dielectric Composites and Mixing Rules

As has been stated earlier, most of the compositional units used in making the
meta-atoms of photonic metamaterials are delicate, subwavelength structures con-
taining both metal and dielectric components. The response of a metamaterial to
an electromagnetic field is critically contingent on the specific architecture of the
meta-atoms; therefore it is hard to develop a simple and unified method for an-
alyzing the properties of an arbitrary structural unit of a metamaterial. However,
for metamaterials without well-structured building blocks, there are generalized
analytical approaches that allow us to estimate the average electromagnetic re-
sponse of composite materials. In such randomly structured media, the metal and
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dielectric components are arranged in a disordered fashion, and the overall optical
properties of a metal-dielectric composite can be significantly different from those
of its constituent materials. Random metal-dielectric metamaterials have found
applications in diverse areas such as nonlinear optics and biochemical spectroscopy.
Moreover, many metamaterial devices are designed and implemented based on
random metal-dielectric composites. A few examples of such devices are discussed
in Chaps. 8 and 9.

In a composite, where metal and dielectric components intersperse with each
other in a disordered manner, the boundary conditions in the system are so compli-
cated that the determination of its electromagnetic response by solving Maxwell’s
equations becomes practically impossible. Fortunately, under certain conditions the
situation can be simplified significantly. For the study of the optical properties of a
composite system with an inhomogeneity scale much smaller than the wavelength
of interest, electrodynamic scattering by individual metal or dielectric particles is
overshadowed by the average response of the whole system. Therefore, we can in-
vestigate the optical properties of a microscopically heterogeneous composite by
evaluating the effective dielectric function of the macroscopically uniform medium.
We obtain this effective dielectric function in terms of the permittivities of the in-
dividual components as well as their respective volume fractions. This method is
known as the effective medium approach.

Two of the most widely used effective medium approaches are the Maxwell–
Garnett theory (MGT) [9] and the Bruggeman effective medium theory (EMT) [10].
Each of these two methods is based upon slightly different assumptions regarding
the composite topology and the material properties of each constituent in the mix-
ture. Depending on the relative concentration of the inclusions and the process of
fabrication, metal-dielectric composites may have different types of microscopic
structures. To present this point more clearly, TEM images of two samples with typ-
ical topologies are shown in Fig. 2.8. In the first composite sample, the inclusions

Fig. 2.8 TEM images of typical metal-dielectric composites in (a) the Maxwell–Garnett geometry
and (b) the Bruggeman geometry. The dark and bright areas represent the metal and the dielectric
components, respectively. Scale bar is 200 nm for both images
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particles (the black areas of the image) embedded in the host material (the white
areas of the image) are quite dilute and have well-defined, spherical shapes. This is
usually called the Maxwell–Garnett geometry. When the two constituent materials
intermingle with each other and the two materials play symmetric roles, as shown
in Fig. 2.8b, it is difficult to say which is the host and which is the inclusion. This
type of topology is commonly referred to as the Bruggeman geometry.

Besides MGT and Bruggeman’s EMT that we shall focus on in this section, the
published literature on composites contains a range of other mixing rules including
Polder and van Santen’s method [11], the Looyenga’s formula [12], the de Loor
model [13], and many other approaches developed during the last three decades
[14–17]. Most of these models can be derived from the Clausius–Mossotti formula
(also known as the Lorentz–Lorenz equation), which was established by several
pioneers of mean-field theory, namely O.-F. Mossotti, R. Clausius, L. Lorenz, and
H. Lorentz. The early history of this field can be found in literature surveys con-
ducted by Landauer [18], and a detailed treatment of the problem is available in
textbooks on scattering of random media [19, 20].

We shall start our analysis with the Lorentz local field expression. Without losing
generality, let us consider the case of a dense optical medium with molecular dipoles
arranged in a cubic lattice. Lorentz pointed out that the local field experienced by
a molecule is not the macroscopically averaged field E but is instead EL, where
the subscript “L” represents “local.” This is not a surprising claim with today’s
knowledge of the structure of solids – of course there are tremendous electric fields
inside an atom or within the gaps between atoms, because all solids are shown to
be non-uniform when examined at the atomic scale. However, all local fluctuation
of the fields average out to zero if you look at the material at a scale much larger
than the atomic features. Macroscopically, therefore, the magnitude of the field in
a homogeneous medium is regarded as a constant if loss is not an issue. However,
when we study the effects of an external field upon individual atoms, molecules or
particles, the local features of electromagnetic field must be carefully analyzed.

To evaluate the local field EL at the site of a molecule in a uniform solid, the
molecule is imagined to be surrounded by a spherical cavity, which is appropriately
called the Lorentz sphere. The radius R of the sphere is macroscopically small in
order to accommodate the discrete nature of the medium very close to the molecule,
but it is microscopically large enough so that the matrix lying outside may be treated
as a continuous medium. The space inside the sphere is assumed to have a free
space permittivity of "0 because the gaps between individual molecules contain
nothing but vacuum. When an external electric field is applied, electric charges are
distributed around the surface of the hypothetical sphere, which give rise to an addi-
tional field imposed upon the central molecule. A schematic for computing the local
field using the Lorentz cavity concept is illustrated in Fig. 2.9.

In the Lorentz model, the local field acting on the central dipole can be decom-
posed into four components:

EL D E0 CEd CEs CEnear; (2.20)
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Fig. 2.9 The Lorentz sphere concept for calculating the local field EL

where E0 represents the external field. Ed is the depolarization field due to the
polarization charges lying at the external surface of the medium. The relationship
between Ed and the macroscopic polarization P is simply Ed D �P="0. Es
denotes the field due to the polarization charges lying on the surface of the Lorentz
sphere, and Enear is the field induced by other dipoles lying within the sphere.

The sum of the first two terms on the right-hand side of (2.20), E0 C Ed , is the
homogeneous field averaged over the entire volume of the material. It is exactly the
macroscopic field E that enters into the Maxwell equations. For a homogeneous
medium, the field E has a constant magnitude throughout the medium. On the other
hand, the local field EL is a microscopic field that fluctuates rapidly within the
medium. This field can be quite large at the molecular sites themselves.

Now it is the time to evaluate the third term, Es , in the Lorentz local field
expression. For this purpose, we relate the surface charge density on the surface
of the Lorentz sphere to the polarization P in the medium. The total charge over a
surface segment dS is P cos �dS , where � is the angle between P and the normal
of the surface segment. This amount of surface charge produces, according to the
Coulomb’s law, an electric field dEs along the radial direction given by:

dEs D
P cos �dS
4�"0R2

: (2.21)

Considering the symmetry of the system, the total field Es resulting from all the
surface charges on the Lorentz sphere is directed along the direction of the external
field, with a magnitude of
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Es D

Z

S

P cos2 �dS
4�"0R2

D

Z �

0

P cos2 �
4�"0R2

� 2�R2 sin �d� D
P

3"0
: (2.22)

As for the last unknown term in (2.20), the field Enear due to the dipoles within the
spherical cavity is the only term that depends on the crystal structure. There are a
few cases for which this term vanishes, for example in a liquid or a gas where the
dipoles are randomly distributed in uncorrelated positions. In our example we as-
sume a cubic crystal lattice, where the Enear term also vanishes owing to the lattice
symmetry. We therefore obtain an expression of the total Lorentz local field in a
surprisingly neat form:

EL D E C
P

3"0
: (2.23)

This is known as the Lorentz relation: the field acting at an atom site in a cubic
lattice is the macroscopic field E plus P=3"0 from the polarization of other atoms
in the system.

Similar to the treatment in the previous section where we derived the Drude
model, we relate the polarization P to the electric dipole moment of each molecule.
If we let ˛ denote the polarizability of one molecule, the polarization P is ex-
pressed as

P D N˛EL D N˛

�
E C

P

3"0

�
; (2.24)

where N is the volume density of the dipoles
Combining (2.24) and the basic constitutive relation in (2.2a), we build the final

connection between the polarizability ˛ and the relative dielectric constant " of the
medium:

N˛

3"0
D
" � 1

"C 2
(2.25a)

and
˛ D

3"0

N

" � 1

"C 2
: (2.25b)

This is the Clausius–Mossotti relation, which provides the essential link between the
macroscopic observable " and the microscopic parameter ˛. The significance of the
formulation above should be viewed in a historical context. From this perspective,
the dielectric function is nothing mysterious because there is a distinct connection
between the electric response of individual molecules and the macroscopic behavior
of bulk material as described by a dielectric constant or an electric susceptibility.

Now we will apply the Clausius–Mossotti relation to a metal-dielectric compos-
ite. We assume that spherical particles of one substance with a relative permittivity
"1 are embedded in a host medium with relative permittivity "h. In this case,
Clausius–Mossotti relation in (2.25a) should be rewritten as

N˛

3"0"h
D

" � "h

"C 2"h
: (2.26a)
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The polarizability ˛ in (2.25b) then becomes

˛ D
3"0"hf

N

"1 � "h

"1 C 2"h
; (2.26b)

where f is the volume filling fraction of the "1 material in the composite. Note that
the term 1=N in (2.25b) represents the volume occupied by each molecule, and is
replaced by f=N in (2.26b) accordingly.

When dealing with a composite material, the parameter " in (2.26a) should rep-
resent the effective permittivity of the composite. We substitute the polarizability ˛
(2.26b) into (2.26a) and obtain

" � "h

"C 2"h
D f

"1 � "h

"1 C 2"h
: (2.27)

Alternatively, the effective permittivity " can be expressed in an explicit way as:

" D "h
1C 2f "1�"h

"1C2"h

1 � f "1�"h
"1C2"h

: (2.28)

The central formula in the Maxwell–Garnett theory (MGT), (2.28) is known as the
Maxwell–Garnett formula, which describes the bulk effective permittivity of a com-
posite in terms of the permittivity of the inclusion "1 and the host dielectric constant
"h. For a metal-dielectric composite, we can view the metal as the inclusion while
the dielectric component serves as the host. An equivalent form of (2.27), derived
using the Rayleigh scattering theory, was first formulated by J. C. Maxwell Garnett
when studying the color of glasses with embedded metal colloids [9].

Although the effective permittivity in MGT can reach the permittivities of the two
constituents when the filling fraction approaches the two extreme values of f D 0

and f D 1, (2.27) clearly shows that MGT treats the matrix and the inclusion in
an unsymmetrical manner. Therefore, before evaluating the effective parameters of
a two-phase composite using MGT, one constituent has to be considered the “host”
and the other the “inclusion.” This asymmetry is particularly strong when the dif-
ference in the permittivities of the two materials is large. In fact, MGT provides a
reasonable estimation of the effective dielectric function only when the volume fill-
ing factor of the inclusion is substantially less than 1. In this case the MGT formula
of (2.28) can be expanded using a Taylor series as:

" D "h C 3f "h
"1 � "h

"1 C 2"h
CO.f 2/ (2.29)

Thus the Maxwell–Garnett formula, to the first order of approximation, is a linear
function of the filling function f and does not yield a critical threshold fc for the
metal-insulator phase transition of a composite. The resonance in the MGT model
occurring at "1 D �2"h represents the surface plasmon resonance of an isolated
spherical metal particle embedded in the host. The Drude model for noble metals in
(2.12) indicates that this plasmon resonance occurs at
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Fig. 2.10 The effective absorption coefficient of a dilute suspension of metal particles in a vacuum.
A volume filling fraction f D 0:05 and a Drude damping constant of 0:002!p are used in the
calculation

! D !p=
p
1C 2"h: (2.30)

In Fig. 2.10 the normalized absorption coefficient defined as ˛ D .2!=c/Imp"eff

for a dilute suspension of metal spheres in a vacuum is plotted as a function of the
frequency normalized by !p [21]. A Drude metal with � D 0:002!p is assumed,
and the metal filling fraction is taken as 5%. The spectral position of the prominent
absorption peak in Fig. 2.10 approaches the surface plasmon frequency of a metal
given by (2.30) in the limit of low filling fraction.

In order to evaluate the effective parameters of a composite medium without
restricting the analysis only to the low-f cases, Bruggeman made a great improve-
ment to the Maxwell–Garnett theory by finding a way to treat the two constituent
materials in a symmetric fashion, thus overcoming many of the difficulties of MGT
that we discussed above. Bruggeman’s EMT is, arguably, the most widely known
version among a variety of mean-field theories.

Let us consider spherical particles of two different materials ."1; "2/ that are
dispersed in a host matrix with a dielectric constant of "h. The volume filling factors
of the two inclusions are f1 and f2, respectively. In this case (2.26a) should be
modified to

" � "h

"C 2"h
D
N1˛1

3"0"h
C
N2˛2

3"0"h
; (2.31)

where polarizabilities ˛1 and ˛2 have forms as in (2.26b). After some algebra we
obtain the counterpart of (2.27) for a two-inclusion composite:

" � "h

"C 2"h
D f1

"1 � "h

"1 C 2"h
C f2

"2 � "h

"2 C 2"h
: (2.32)

Clearly, the two inclusions are now induced in a symmetric manner. Note that in a
two-phase composite where f1 C f2 D 1, each constituent should be regarded as
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one inclusion, and the “host” medium is the composite material itself. Therefore in
(2.32) we set " D "h and have:

f1
"1 � "

"1 C 2"
C f2

"2 � "

"2 C 2"
D 0: (2.33)

This is the effective-medium expression first developed by D. A. G. Bruggeman in
1935 [10]. Because of its immense popularity in the research of composite media, in
conventional terminology Bruggeman’s method and the result in (2.33) are simply
referred to as the “effective medium theory.” A rigorous procedure for the deriva-
tion of Bruggeman’s expression can be obtained by requiring that the electric flux
deviation spatially average to zero in the composite [22].

Unlike the Maxwell–Garnett theory, the two components here are symmetrical
with respect to the exchange of roles of "1 and "2. In other words, in EMT both
phases are considered to be embedded in the effective medium, and there is no need
to give preference to one phase over the other. Since each component is treated
equally in the mixture, it is quite straightforward to generalize (2.33) to any number
of components: X

i

fi
"i � "

"i C 2"
D 0;

X

i

fi D 1: (2.34)

Equation (2.33) is a quadratic equation with the solution

" D
1

4

n
.3f1 � 1/"1C.3f2 � 1/"2 ˙

p
Œ.3f1 � 1/"1 C .3f2 � 1/"2�2 C 8"1"2

o
:

(2.35)

The sign in the formula above is chosen in such a way that the imaginary part of the
effective permittivity is positive. This is required by causality in any passive media.

As an example, in Fig. 2.11 we show the effective permittivity of silver-silica
composites for a series of metal filling factors. A typical silver–silica composite in
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Fig. 2.11 The real and imaginary parts of the effective permittivity of silver-silica composites for
a series of metal filling factors. The silver permittivity is from the modified Drude model in (2.17),
and the dielectric function of silica is based on a Sellmeier formula
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the Bruggeman geometry is illustrated in Fig. 2.8b. The real part of "eff approaches
the silver permittivity with increasing metal filling fraction f , which is a rather
intuitive result. Interestingly, the imaginary part of "eff shows a broadened resonance
peak due to the electromagnetic interactions between the metal and dielectric grains.

In addition to the self-consistent symmetry feature, another important advantage
of Bruggeman’s EMT over MGT is that EMT predicts a critical filling fraction for
metal, which is usually referred to as the percolation threshold. In Fig. 2.11 we see
that the resonance band in "eff

00 is very broad in the curve where f D 0:4. In fact,
this peak can extend to an infinite bandwidth if the filling fraction approaches 1=3,
which is the percolation threshold for a three-dimensional metal-dielectric com-
posite. Electronically, the percolation threshold represents the minimum volume
fraction of conducting particles needed for the formation of a continuous conduct-
ing pathway. In a composite where the magnitude of the metal permittivity j"1j is
much larger than the permittivity of the dielectric component "2, using (2.35) we
can approximate the effective permittivity " as:

"

"1
D

8
ˆ̂<

ˆ̂:

1
2
.3f1 � 1/; if 1

3
< f1 6 1

0 ; if 0 < f1 6 1
3

(2.36)

Equation (2.36) clearly indicates that the metal-dielectric composite acts as a
dielectric medium for small metal concentrations of less than one third. Beyond
the percolation threshold, the composite acts as a dilute metal with an effective per-
mittivity proportional to .f � 1=3/.

The sudden change in the electronic conductivity at the percolation threshold can
be proved by direct calculations using EMT because the conductivity is related to
the imaginary part of permittivity by ¢.¨/ D ¨©00.¨/. The effective conductivity of
metal-dielectric composites for a series of metal filling factors is shown in Fig. 2.12.
In this calculation, the same Drude metal as that from Fig. 2.10 is used as the metal
component, and the dielectric part is assumed to be a vacuum. The broad resonance
peaks in Fig. 2.12 are identical to the resonance bands shown in Fig. 2.11. The most
interesting features in Fig. 2.12 are that spikes in the effective conductivity occur at
¨! 0when the metal filling fraction is larger than the percolation threshold of 1=3.
In other words, the composite electronically acts like an insulator with an extremely
low DC conductivity when f < 1=3, and the composite becomes a conductor for
f > 1=3 because a continuous metallic path is formed across the sample and the
metal component forms an infinite cluster [20].

In all the foregoing analysis of this section, we assumed that the metal-dielectric
composite is a three-dimensional medium, which seems to be a trivial assumption
for any real samples. However, there is an important category of random media
where the composite material is confined to a thin layer with a deeply subwavelength
thickness. In this case, the composite should be considered to be a two-dimensional
film. An easy way to generalize the MGT and EMT analyses for a d -dimensional
medium is to replace the term ."i C 2"/ in the denominators of the MGT and EMT
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Fig. 2.12 The effective conductivity of metal-dielectric composites calculated by (2.35) for a
series of metal filling factors

expressions in (2.27) and (2.33) by Œ"i C .d � 1/"�. Specifically, the generalized
MGT for a d -dimensional medium is:

" � "h

"C .d � 1/"h
D f

"1 � "h

"1 C .d � 1/"h
; (2.37)

and the EMT expression becomes

f1
"1 � "

"1 C .d � 1/"
C f2

"2 � "

"2 C .d � 1/"
D 0: (2.38)

Accordingly, the resonance peak in MGT for a low-f metal-dielectric film will
occur at !p=

p
1C .d � 1/"h, and the percolation threshold in EMT becomes 1=d ,

which is 0.5 for a two-dimensional semicontinuous metal film.
Another important matter in all mean-field theories is the issue of particle shape

in the composite material. The previous derivations of the Clausius–Mossotti rela-
tion, the Maxwell–Garnett Theory and the Effective Medium Theory are all based
on the assumption that the inclusions are spherical particles. When the shape of
the inclusion particles is notably non-spherical, modified forms of MGT or EMT
must be used with an additional depolarization or screening factor that accounts for
the effect of particle shape. To be more general, we consider an inclusion of ellip-
soidal particles with semiaxes ai ; aj and ak . In this case, the polarizability is as
follows [23]:

˛i i D
"0"h."1 � "h/

."1 � "h/Li C "h
aiajak ; (2.39)
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where Li is the depolarization factor given by:

Li D

Z 1

0

aiajakds

2.s C a2i /
3=2.s C a2j /

1=2.s C a2
k
/1=2

; (2.40)

The depolarization factor Li depends on the shape of the particle and the direction
of the incident light’s electric field with respect to the particle axis ai . The values
of Li lie between 0 and 1=3 when a particle is prolate along the ai axis, while the
Li values are between 1=3 and 1 if the particle is disk-like along the ai axis. The
sum of all three depolarization factors †Li must equal unity for any particle shape.
Numerical integrations and graphs for the depolarization factors of ellipsoids can be
found in [24]. Simplified analytical formulas for special ellipsoids like prolate and
oblate spheroids are also available [25]. However, we suggest that the interested
reader calculate the integral in (2.40) directly, which can be easily handled with
many computational software packages.

With the inclusion shape effect taken into consideration, the Maxwell–Garnett
formula should be written as:

" � "h

"C 
"h
D f

"1 � "h

"1 C 
"h
; (2.41)

and the EMT formula becomes

f1
"1 � "

"1 C 
"
C f2

"2 � "

"2 C 
"
D 0; (2.42)

where 
 is the screening parameter determined by the shape and the orientation of
the nanoparticles with respect to the external electric field. Factor 
 is related to the
Lorentz depolarization factor L by:


 D .1 � L/=L: (2.43)

Therefore, a long elliptical cylinder placed along the electrical field will have a
depolarization factor close to zero and a screening factor 
 approaching infinity. An
extreme version of this scenario is a film of well-aligned, thin silver wires, which ex-
erts full screening for light in one polarization but has no screening in the perpendic-
ular direction. Such a film is routinely used as a linear polarizer in optical systems.

Notice that for spherical nanoparticles, L D 1=3 and 
 D 2. Thus the formulas
in (2.41) and (2.42) reduce to the commonly seen expressions for MGT and EMT,
respectively. Just as MGT works well only when the filling factor is small, (2.41)
is reliable only when the screening is not substantial. If the depolarization factor
is close to zero, there is strong interaction between the nanoparticles and the ex-
ternal field, and the system will not behave in the way the shape-dependent MGT
predicts. In this case, the modified EMT of (2.42) should be used even with a small
metal filling fraction. Moreover, the shape-sensitive EMT also produces a modified
percolation threshold, given as fc D L. With even further statistical treatments,
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the shape-dependent MGT or EMT formulas can be extended to randomly oriented
ellipsoidal inclusions [26].

The effective medium approach can also be used “in reverse.” In nanocrystal
research, it is a standard practice to calculate the permittivity of nanoparticles when
the permittivity of the other component is known and that of the whole composite
is measured [27]. In such applications, Bruggeman’s EMT is preferred over MGT
because singularities may arise in reversed MGT calculations when the fraction of
nanoparticles is large or when the contrast in the permittivities of the two phases is
significant. Of course, when non-spherical nanoparticles are present in the system
being considered, EMT with morphology information as in (2.42) should be used
accordingly.

We note that the mean-field theories discussed above are just analytical approx-
imations for the calculation of the effective permittivity of a composite. Although
very simple and easy to implement, such theories fail to address the fine features of
the composite down to the subwavelength scale. The most general effective medium
approach is the spectral representation method (also known as the Bergman theory
or the Bergman–Milton representation), in which a set of spectral density func-
tions are used as fit functions and correlate with the geometrical information in the
composite [28,29]. In the spectral representation theorem, the micro- or nano-scale
features are no longer simply neglected or described using numbers like the depolar-
ization factor L, but are fully taken into account by defining geometrical functions
whose analytical properties are quite general. The spectral representation method
clearly distinguishes between the influence of the geometrical structure and that of
the dielectric properties of the components on the effective behavior of the system.
It generally holds without further restrictions, as long as the quasistatic approxima-
tion is valid. For spherical or well-aligned ellipsoidal inclusions, the solutions from
the spectral representation method will simply reduce to the MGT or Bruggeman’s
EMT expressions under certain assumptions. The mathematics of the spectra repre-
sentation is quite involved, and a full discussion is out of the scope of this chapter.
Readers that wish to explore this topic in detail can turn to the original papers
[28–30] and specific books on the spectral representation method [21, 31].
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Chapter 3
Experimental Techniques and Data Treatment

3.1 Fabrication of Two-Dimensional Optical Metamaterials

Like most branches of materials science, the central task of metamaterials research
is not only design, testing or theoretical exploration, but also the fabrication of real
structures. No matter how spectacular the predicted outcome seems to be, it is not
much more than an illusion or a dream unless there is at least a remote hope of
realization. In this sense, the recent boom in optical metamaterial research is only
possible because of advances in nanofabrication technology developed during the
last 20 years. Unlike metamaterials for microwave frequencies, whose unit struc-
tures can be handled even with bare hands, the fabrication of optical metamaterials
is intrinsically challenging. The reason is simple: The definition of metamaterials
requires that the size of the build blocks be substantially smaller than the wave-
length under consideration, which is just a few hundred nanometers for visible light.
Therefore, the creation of an optical metamaterial is bound to include the construc-
tion of meta-atoms at a deep subwavelength scale and the dense packing of the
meta-atoms in an effective medium with prescribed properties. Undertaking such
a task relies on quite complicated techniques such as electron-beam lithography,
focused ion beam milling, nanoimprint lithography, interference optical lithogra-
phy, direct laser writing, and more. In this section we will give a general overview
of a range of fabrication techniques commonly used for two-dimensional (2D) and
three-dimensional (3D) optical metamaterials. An extensive review of different fab-
rication processes has been presented in [1].

Although most optical materials in real-life devices have to be three-dimensional,
the manufacturing of truly 3D plasmonic metamaterials creates daunting tech-
nological challenges. Moreover, many of the evolving techniques for 3D optical
metamaterials are closely related to standard 2D fabrication methods. Therefore in
the following discussion, we shall first focus our attention on the fabrication of 2D
plasmonic nanostructures.

Despite the fact that photolithography is the dominant process used for micro-
fabrication in the integrated circuit industry, the small periodicities and tiny feature
sizes in most optical metamaterials still exceed the capability of the start-of-the-art,
193-nm photolithographic technology where deep ultraviolet light with � D 193 nm

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications,
DOI 10.1007/978-1-4419-1151-3 3, c� Springer Science+Business Media, LLC 2010
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is used for exposure. As a result, the majority of the reported 2D layers of plasmonic
metamaterials have been fabricated using electron-beam lithography, often abbre-
viated as e-beam lithography or EBL. Most of the milestone results in photonic
metamaterials up to now have been achieved using the EBL technique. Examples
include metamaterials with a negative index of refraction [2], prominent magnetic
response [3], giant chiral effect [4], and so on.

In contrast to photolithography, EBL employs a focused beam of electrons in-
stead of a light beam to form the desired patterns on a surface covered with an
exposable film. The de Broglie wavelength of high-energy electrons is much smaller
than that for light, and therefore EBL can significantly overcome the light-frequency
diffraction limit that plaques all typical photolithography systems. The electron
beam spot size can be as small as a few nanometers, which allows for extremely
fine patterns down to the nanoscale regime. EBL is the most prevalent tool for the
fabrication of planar nanostructures because it enjoys complete flexibility in pattern-
ing as far as 2D geometries are concerned. Moreover, EBL is a maskless process,
unlike traditional photolithography, and so EBL does not require the fabrication of
any mask plates before the fabrication can proceed. In addition, the patterns for EBL
can be changed very easily through software control.

The main drawback of EBL is the relatively poor efficiency, both in terms of time
and money. Compared to other common fabrication processes, EBL is very expen-
sive and takes significantly longer to create the desired pattern. This is because the
electron beam must be scanned across the pattern area serially, in a pixel-by-pixel
fashion. Hence, within a reasonable time of a few hours, only a small area of sub-
millimeter size can be patterned. The fabrication cost is also a major consideration,
as EBL facilities are highly complex and require substantial maintenance. In addi-
tion to these issues, EBL patterns can also be very challenging when it comes to
lifting off the pattern from the substrate if the size of the desired features is smaller
than the thickness of e-beam resist. Therefore, EBL is not a suitable solution for
patterning large areas or doing volume production of optical metamaterials. Despite
these disadvantages, EBL still remains the tool of choice for fabricating quasi-2D
optical metamaterials with metal-dielectric unit structures.

Another serial fabrication technique that can be used to make optical metamate-
rials is focused-ion beam (FIB) milling. Instead of an electron beam, a FIB system
uses a focused beam of gallium ions to modify or pattern a design. While the elec-
tron beam in EBL only modifies the exposable resist, the accelerated ions in FIB
have energies of tens of keV and are “strong” enough to sputter atoms – both
metal and dielectric – from the surface of the specimen. FIB is primarily used as
a micro-machining tool for purposes such as circuit modification and read-write
head trimming. The focused spot size of the ion beam is around 10 nm, which
make FIB an alternative technique for the fabrication of photonic metamaterials.
Unlike EBL fabrication, where the e-beam writes a pattern on a resist layer and
metal-dielectric layers are deposited afterwards, in FIB milling the ion beam directly
carves pre-deposited layers into the desired nanostructures. With this technique,
split-ring resonators (SRRs) operating at �1:5�m were reported with a feature size
of 100 nm across an area over 300�m2 (see Fig. 3.1b) [5]. Although such a pattern is
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Fig. 3.1 Examples of 2D optical metamaterials using various fabrication techniques. (a) A
negative-index material working at a red light frequency made by EBL. Reproduced from [13]
by permission of the MRS Bulletin; (b) An array of planar SRRs from FIB milling. Reproduced
with permission from [5]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA; (c) A hexagonal
array of “nano-burgers” made by IL. Reprinted with permission from [8]. Copyright (2007) OSA;
(d) A fishnet structure generated by NIL, with inset showing the hard mold. Adapted from [10]

well within the capability of EBL, FIB milling does offer some advantages. Notably,
EBL fabrication of such samples requires time-consuming dose tests and processing
operations, leading to a relatively longer overall fabrication time. In contrast, FIB
milling does not involve any post-processing steps, and the optimization procedure
during the operation is less complicated than the EBL technique. It reportedly took
as short as 20 min to create SRR patterns across a 16�m � 16�m pattern area [5].

We note that although FIB milling is impressive in its time efficiency, it is not
a good choice for making high-quality samples of optical metamaterials. The best
attainable resolution for FIB milling is generally inferior to that from EBL systems.
More importantly, FIB is inherently a destructive and contaminating process. When
hitting the surface of the target, high-energy gallium ions can be implanted into the
top surface of the sample. As a result, the dielectric component of the metamaterial
may become porous, and the metal part may exhibit substantially altered properties.
Such undesired modifications of the material properties can result in an unpleasant
discrepancy between the predicted performance and the experimental observations
of a metamaterial sample. Therefore, in some specific designs, FIB can serve as a
good choice for rapid prototyping, but it is usually not considered as a general tool
for the fabrication of arbitrary 2D optical metamaterials.
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Both EBL and FIB milling techniques suffer from low throughput because they
both perform a pixel-by-pixel scan throughout the desired pattern area. Conse-
quently, neither EBL nor FIB is capable of large-scale or volume production. The
largest possible size of the pattern area for these techniques is no more than the mil-
limeter scale, and it takes an equally large amount of effort to simply reproduce the
same structure. Fortunately, several techniques have been developed and adapted to
manufacture 2D photonic metamaterials with much higher efficiency. Such novel
techniques include interference lithography and nanoimprint lithography.

Interference lithography (IL), also known as holographic lithography, is a vari-
ation of photolithography that can pattern periodic features without the use of
photomasks. In the IL process, two or more coherent light beams interfere to gen-
erate a standing wave, which can be recorded in a photoresist. For the fabrication
of optical metamaterials, the most significant advantage of the IL technique is its
capability of producing large-area patterns. Indeed, IL makes it possible to fabricate
metamaterial films and coatings over a wide area, comparable to that of commercial
optics (�1 inch. in size). Similar to standard optical lithography, IL uses a single-
step exposure instead of a slow raster scan to modify the recording resist. Therefore,
a pattern area similar to the coherent beam size is completed at once. This patterned
area can be as large as the centimeter scale. Moreover, the periodic nature of in-
terference patterns fits perfectly well with the arrangement of meta-atoms, which
requires a certain ordering in most cases. Several metamaterials with artificial mag-
netism or a negative index of refractive in the near- or mid-infrared ranges have been
reported based the IL process [6–8].

However, the IL technique has intrinsic constraints which prevent it from serving
as a general tool for the fabrication of optical metamaterials. Interference lithog-
raphy is within the category of photolithography in any case, so it suffers from
the conventional diffraction limit. This is the major reason that most experimental
demonstrations of IL-generated metamaterials work for the infrared range instead
of the visible. Another serious concern is the pattern flexibility. Unlike EBL or stan-
dard photolithography that can produce almost any arbitrary shape in a pattern, in
the IL process the geometry of unit cells and periodicities is rather limited. For ex-
ample, the fringes from two-beam interference give rise exclusively to gratings or
strips, and three-beam interference produces arrays with hexagonal symmetry and
elliptic units. In order to create a rectangular lattice, either the delicate arrangement
of four coherent beams or a double-step exposure of two-beam interference is re-
quired. Spatial coherence among the all the interfering beams is strictly required.
Although recent advances in IL techniques such as immersion and multiple expo-
sures have extended IL capabilities to some extent, this technique is not likely to
become the candidate for the fabrication of arbitrarily designed optical metamateri-
als. The major merit of IL lies in its cost-efficiency in handling the mass production
of some special metamaterial patterns.

For volume production of nanostructures with low processing cost, the recently
developed process of nanoimprint lithography (NIL) offers a promising possibil-
ity. Unlike most lithographic approaches that achieve the desired pattern definition
by modifying the chemical properties of a recording resist layer using exposure
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with light or electrons, NIL accomplishes pattern transfer by direct mechanical
deformation of the resist using a hard mold or stamp. The mold contains the
nanoscale features to be produced and is pressed onto a soft resist under controlled
environmental conditions. The resolution of NIL fabrication is not limited by any
diffraction or scattering effects, and the smallest attainable features are solely de-
fined by the mold fabrication, which can be on the order of 10 nm. The fabrication
of the hard stamp is quite challenging, but once the appropriate hard mold is ready,
the mass production of the same nanostructure can proceed with unparalleled effi-
ciency. A review of the methods and material requirements of the NIL technique
can be found in [9].

Several optical metamaterials created with NIL have been reported in litera-
ture. In [10], for example, large-area patterning of a fishnet structure with metal-
dielectric-metal stacks was demonstrated. In that work, a negative refractive index
at a near-infrared wavelength was observed. A mid-infrared magnetic metamaterial
consisting of L-shaped resonators with fourfold dispersion symmetry was reported
by the same group [11]. The NIL technique was also successfully applied to an
infrared chiral metamaterial at room temperature [12]. Although NIL provides an
attractive opportunity for high-throughput manufacturing, this technique is rarely
used for testing novel designs of photonic metamaterials because the process of
template or mold patterning is quite involved, and it must rely on other lithographic
processing techniques like EBL, photolithography, or FIB as well as reactive ion
etching methods.

To end this section, in Fig. 3.1 we provide SEM images for typical optical meta-
materials from the four fabrication techniques discussed thus far. Figure 3.1a shows
the SEM image of a negative-index metamaterial (NIM) that operates at a red light
frequency and was made by EBL [13]. A FIB-generated array of planar SRRs ex-
hibiting a magnetic resonance in the near-infrared is depicted in Fig. 3.1b [5]. As
for large-scale 2D patterns, Fig. 3.1c shows a hexagonal array of “nano-burgers”
fabricated with a three-beam IL technique, where a pyramid-shaped prism is used
to generate three coherent waves from one largely expanded laser beam [8]. Finally,
Fig. 3.1d illustrates the SEM image of a fishnet pattern made by the NIL technique
that exhibits a negative index of refraction in the near-infrared range [10].

3.2 Approaching the Third Dimension

In the previous section we discussed the fabrication processes for 2D photonic meta-
materials, where the produced structures typically have to lay on a flat substrate and
have a thickness of much less than a wavelength. In order to make full use of the
novel properties of optical metamaterials, a sufficient interaction length between
the impinging light and the artificial medium is usually necessary in realizing func-
tional devices. The importance of the effort in moving from planar patterns to truly
3D nanostructures cannot be overestimated. Unique fabrication techniques must be
developed for the synthesis of 3D optical metamaterials with subwavelength, com-
plicated meta-atoms.
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Fig. 3.2 Examples of 3D optical metamaterials fabricated in a layer-by-layer manner. (a) A near-
infrared NIM with three functional layers made by EBL. Reprinted with permission from [15].
Copyright (2007) OSA; (b) Four layers of SRRs based on EBL with patterning-and-flattening
approach. Reprinted from [16] by permission from Macmillan Publishers Ltd: Nat. Mater., copy-
right (2008); (c) A NIM wedge exhibiting negative refraction for visible light made by an advanced
FIB technique. Reprinted from [17] by permission from Macmillan Publishers Ltd: Nature, copy-
right (2008). Courtesy of X. Zhang

Although still relatively rare in the literature, a number of approaches have been
proposed and demonstrated for the creation of photonic metamaterials with suf-
ficient thickness. One straightforward way of approaching the third dimension in
metamaterials is to create more stacks in a standard EBL fabrication. For negative-
index materials (NIMs) with the fishnet geometry, it has been shown in simulations
that stacking multiple functional layers will not deteriorate the overall performance
of the NIM [14]. This finding brings hope to the possibility of bulk optical metama-
terials by stacking together planar layers of 2D structures. Based on this prediction,
a NIM of three functional layers exhibiting a negative refractive-index in the near-
infrared was demonstrated using a standard EBL process [15]. The produced sample
is shown in Fig. 3.2a.

While the realization of a three-layered NIM can be viewed as an important step
towards thicker metamaterial slabs, this method is not likely to be a viable candi-
date for making real 3D optical metamaterials. Anyway, the total thickness of the
triple-layer NIM in [15] is less than 200 nm, much smaller than the wavelength
of its negative-index band. It is not quite feasible to increase the number of layers
much because there is a limit to the thickness of patterned structures that a standard
EBL process can handle, for two reasons. First, for a given resolution of features,
the thickness of the resist layer can not be arbitrary large due to constraints in the
lift-off procedure. Secondly, the EBL procedure usually produces non-vertical side
walls with a slanted angle of about 8ı with respect to the substrate normal. There-
fore, the cross-section of the resultant structure is trapezoidally shaped, with the
opening at the bottom substantially smaller than that of the top layer. When the total
thickness of the nanostructure is increased further, the openings of patterns close to
the substrate can even diminish to zero.

In order to overcome the two constraints of the standard EBL process mentioned
above, a patterning-and-flattening approach was presented for multiple-layered op-
tical metamaterials [16]. When the first layer of metallic SRRs is completed using
a conventional EBL process, a solidifiable polymer is spin-coated on the metallic
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nanostructure to flatten the surface of the patterned sample. Afterwards, alignment,
in-plane fabrication and planarization procedures are repeated to generate multiple
layers. In a demonstration of this technique in [16], four layers of well-aligned SRRs
were fabricated, as seen in Fig. 3.2b. A magnetic response in the SRRs at the near-
to mid-infrared frequencies was observed in the produced sample. Although this
layer-by-layer EBL technique using a planarization process is a promising method
to create multi-layered samples of better quality compared to the standard, single-
step EBL process, it might be too costly to create large-scale and thick 3D optical
metamaterials in this way due to the tedious repetition of steps involved in the fab-
rication procedure.

The FIB milling technique discussed in the previous section can also be used
to create optical metamaterials of multiple functional layers. For this purpose, al-
ternating films of metal and dielectric materials with designed thickness are first
evaporated on a substrate. After that, FIB milling is used to cut through the whole
stack to form nano-sized patterns., Based on this FIB process, a fishnet NIM struc-
ture of ten functional layers was reported [17]. The aspect ratio in the milled
nanostructure is rather high, with a side wall angle of only 4:3ı. Moreover, in the
work in [17] the fishnet stacks was milled into a wedge, and a reversed Snell’s law
was directly observed with the refracted beam bending in the “wrong” direction.
The SEM image of the fishnet wedge is shown in Fig. 3.2c.

The fabrication of multilayered metal-dielectric metamaterials by FIB or EBL
is a critical extension of the standard 2D nanopatterning techniques, but such a
process can not be used to create truly 3D meta-atoms with an arbitrary design.
From Fig. 3.2a–c we see that the geometry in each structure is basically invariant
along the vertical direction, except for the slanted angles induced in the fabrica-
tion processes. All these structures, to some extent, can be viewed as the result
of extruding 2D patterns, instead of genuine 3D architectures. Recently, a number
of advanced techniques have been developed with the potential of 3D patterning of
metallic structures. Below we outline some of these novel fabrication approaches.

One of these approaches is the technology of two-photon-photopolymerization
(TPP), also referred to as direct laser writing (DLW), which makes use of polymer-
ization via a nonlinear, multiphoton process that occurs at the focal point of a tightly
focused laser beam [18]. By controlling the location of polymerization in a 3D ma-
trix, TPP allows for the fabrication of 3D nanostructures at sub-diffraction-limit
spatial resolutions. The 3D polymeric structure created with TPP serves as a skele-
ton that can be coated with metal to complete the plasmonic nanostructure, since
such designs contain both metal and dielectric components. The metallization pro-
cess is usually achieved through the deposition of metallic nanoparticles by means
of electroless plating, which is a very flexible metallization approach and allows for
site-selective metal coating [19, 20]. Figure 3.3a shows the SEM image of an array
of silver-coated nano-springs fabricated by the TPP technique [21].

The DLW technique is capable of not only sculpting delicate 3D meta-atoms,
but it also can create entire 3D arrays of bulk metamaterials. Many complicated
photonic crystals with features of less than 1�m have been produced based on the
DLW method. Compared to the application of TPP/DLW in 3D photonic crystals,
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Fig. 3.3 Examples of 3D metal-dielectric nanostructures fabricated using a multiphoton polymer-
ization technique. (a) Array of silver-coated nano-springs made by TPP and electroless plating,
with inset showing in individual structure. Reprinted with permission from [21]. Copyright (2006)
OSA. (b) 3D array of silver-coated nano-bars fabricated by direct laser writing and chemical
vapor deposition. Reprinted from [23] by permission from Macmillan Publishers Ltd: Nat. Mater.,
copyright (2008)

however, the creation of bulk optical metamaterials is even more challenging in two
regards. First, the features of metamaterials, by definition, should be smaller than
those of photonic crystals for the same wavelength. Second, most metamaterials
require metal components in their unit structures, which is not easily achievable
with common metallization methods such as evaporation or sputtering. Fortunately,
several approaches have been demonstrated for coating the polymer backbone with
metals, sometimes within selectively preset areas [22]. The example of a 3D ar-
ray of thin bars is shown in Fig. 3.3b, where a layer of silver is coated on the
polymer backbone via chemical vapor deposition [23]. The silver on the sample
in Fig. 3.3b appears to be somewhat granular, but it is connected nonetheless. An
easy-to-understand review of the principles and applications of the multiphoton
polymerization technique is presented in [24].

Other fabrication methods for 3D metal-dielectric nanostructures include direct
electron-beam writing [25], focused-ion beam chemical vapor deposition [26], 3D
holographic lithography [27], deep X-ray lithography [28], and multilayer nanoim-
print lithography [29]. Some of these techniques may suffer from strict material
and geometry limitations, but they have shown impressive capabilities in producing
complicated 3D photonic crystals, and it will not be surprising to see delicate 3D
metamaterials resulting from these techniques. A detailed discussion of all pertinent
methods is beyond the scope of this section. Readers with a special interest may re-
fer to comprehensive reviews on the fabrication of optical metamaterials or photonic
crystals [1, 30].

Besides the top-down approaches discussed above, there are several bottom-
up methods where 3D artificial media are created based on self-assembly or
self-organization through controlled chemical processes. Such chemical synthe-
sis approaches may be able to produce all the patterns in a bulk structure in parallel.
Therefore, these methods would potentially cost much less than top-down methods
that create a desired structure by carving the space point by point. However, we
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should note that all self-assembly schemes are very specific, working only for some
particular array patterns along with very strict material constraints. In most of cases,
we cannot rely on self-assembly or self-organization in order to realize an arbitrarily
designed metamaterial with prescribed properties. Nevertheless, there have been a
number of experiments showing the potential of bottom-up fabrication methods
for making some types of optical metamaterials. For example, self-assembly of
opals was shown to serve as a versatile template, to which subsequent synthesis
of guest materials including metals, semiconductors and insulators can be intro-
duced [31]. Such opal templates have been successfully applied to silicon photonic
crystals [32]. In another work, three-dimensional arrays of hollow silver spheres
were created using polymer colloidal crystals as templates [33]. For large-scale
metamaterials consisting of two-dimensional arrays of thin wires, the honeycomb
structures of anodic alumina or silicon can work as amazing templates [34]. In an-
other experiment, a bulk NIM was reported based on the self-organization of porous
alumina and metal electroplating [35]. Under appropriate anodizing conditions, a
self-ordered porous alumina structure with pores arranged in a hexagonal lattice
can be produced. When the array of voids is fully formed, silver nanowires can be
grown inside the nanopores of the template, and a uniform 2D array of silver wires
in the alumina host is created. With the right geometrical parameters, such a bulk
metamaterial can exhibit negative refraction in the red light wavelength range [35].

3.3 Characterization of Spectral Properties

When a photonic metamaterial is properly designed and successfully fabricated, the
next step is to characterize the obtained nanostructure. In this section, we briefly
discuss several common methods for determining the spectral properties of opti-
cal metamaterials. The characterization of optical nanostructures can be grouped
into two categories: standard nano-characterization tools, and bench-top optical
measurements. The former group includes instruments like scanning electron mi-
croscopes (SEM) and atomic force microscopes (AFM), as well as various near-field
optical microscopes. Here we focus on the latter category, which usually consists of
small-scale optical components and devices set up on optical tables and lab benches.

The testing approaches for metamaterials can be quite diverse. Depending on the
specific objective of the study, there are a range of experimental observables rou-
tinely used for the analysis of the properties of structures at optical frequencies.
When a probe light beam impinges upon a piece of a sample, the most prominent
information from the specimen is contained in the reflected and transmitted light.
As with all electromagnetic waves, the reflected and transmitted beams contain
both magnitude and phase information, which are all important and whose val-
ues are deeply rooted in the properties of the sample. At optical frequencies, the
magnitudes of reflectance R and transmittance T , which can be obtained via inten-
sity measurements using various power detectors, are much more accessible than
the phase information, which is attainable only with complicated interferometric
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schemes. In the following discussion we consider several approaches suitable for
the measurement of spectral magnitude information from photonic metamaterials.
The possible methods to experimentally extract the phase information will be ad-
dressed at the end of this section.

The most commonly used characterization method for optical metamaterials is
measurement of broadband transmission and reflection spectra. Although not a
complete set of information due to the lack of phase properties, the spectrally depen-
dent T and R curves help to locate the spectral positions and evaluate the relative
strengths of resonances in a metamaterial. In fact, almost all experimental demon-
strations of optical metamaterials present the T and R spectra as functions of the
incident wavelength. Moreover, a reasonable agreement between the experimental
spectra and data from simulations or calculations is usually considered to be con-
vincing proof for the validity of the theoretical work and the success of fabrication
procedures.

In most cases, we consider a layer of metamaterial to be a macroscopically planar
and uniform slab. Consequently, when light is incident upon the sample, only reg-
ular transmission and specular reflection are considered, while all other scattering
and diffusion processes are generally neglected. The principle behind the spectral
measurement of T and R is quite simple. The probe light should come from a
broadband or tunable light source, such as a tungsten-halogen lamp or a supercon-
tinuum of light generated from nonlinear fibers. The probe light impinges upon the
sample, and the transmitted or reflected beam is then introduced into a detection
device, such as a photodiode, a charge-coupled device (CCD), or a photomultiplier.
A monochromator is usually inserted in the optical path, either before or after the
sample, in order to analyze the spectrum. The transmission and reflection spectra
should be collected using appropriate references. In the transmission measurement,
free space is a good reference for T D 100% if the whole specimen (including sub-
strate) is considered to be the sample, or an empty substrate area without patterns
can be used as the reference if only the nanostructured layer is to be evaluated. When
measuring the reflectance, a good mirror or a special reflectance standard should be
used to calibrate theR D 100% reference. Polarization control of the optical system
is necessary, as most optical metamaterials are highly anisotropic.

Spectrophotometers are the standard commercial equipment for the collection of
broadband T andR spectra. A spectrophotometer can be viewed as a combination of
a spectrometer, which generates light of any selected wavelength, and a photometer
that measures the radiant flux. Most spectrophotometers are configured in a dual-
beam manner, where one beam is used to probe the sample and the other serves as a
reference. In a typical spectrophotometer, the angle of incidence is easily adjustable
in the transmission mode, while reflection at normal incidence is usually approxi-
mated using a small incidence angle in order to separate the incident and reflected
beams. When the scattering and diffusion portions of the reflected and transmitted
light are to be collected, an integration sphere can be used in the detection module.

In the characterization of optical metamaterials, however, the measurement of
transmission and reflection usually cannot be carried out in a commercial spec-
trophotometer. Samples fabricated by EBL or FIB are usually very small, with a
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Fig. 3.4 A “home-made” setup for collecting broadband transmission and reflection spectra of
small samples. Reprinted with permission from [3]. Copyright (2007) OSA

typical size on the order of a hundred micrometers. Such a sample area is not large
enough for most spectrophotometers, and appropriate sample holders and acces-
sories are not available for handling and locating the invisibly small pattern region.
There are different ways to resolve this difficulty in optical experiments. Many ad-
vanced microscopes have detection modules and employ a highly focused light spot
from objective lenses. Such a multifunctional piece of equipment allows for the
observation and spectral measurement of a specimen simultaneously. The spectral
measurement can also be carried out using a home-made setup with basic optical
components. An example of such a setup is illustrated in Fig. 3.4, which utilizes an
imaging approach. The small sample of size S is imaged onto the focal plane of
the collection system, which may include a fiber bundle and a spectrograph. The
magnified image size is S � .f1=f2/, which is set to be significantly larger than
the collecting area of the optical system to ensure reliable data collection. A high-
quality polarizer like a Glan–Taylor prism is placed at the output of the broadband
lamps to select light with the desired linear polarization. The transmission and re-
flection spectra can be normalized to a bare substrate and a calibrated silver mirror,
respectively.

Since most metamaterials are absorptive, it is informative to present the ab-
sorption spectrum of the sample under investigation. More importantly, plasmonic
resonances in optical metamaterials are always accompanied by distinct absorbance.
Therefore, the peaks in the absorption curve are often used as fingerprints for iden-
tifying the resonance features. In most cases, the absorption .A/ is not directly
measurable, but is inferred from transmission and refraction data based on the sim-
ple relationship A D 1 � T �R.

In the infrared frequency range, there is another distinct approach for spec-
tral characterization, namely the Fourier transform infrared spectroscopy (FTIR).
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In contrast to spectral domain measurements that rely on dispersive elements to
separate different wavelengths, FTIR is a time-domain measurement where spec-
tra are indirectly determined based on the measurement of the temporal coherence
of an infrared source. The FTIR method avoids using the usually slow scanning
process in monochromator-based instruments. Instead, in a FTIR spectrometer, sig-
nals at all frequencies of a light source are measured simultaneously based on an
interferometer, usually in a Michelson configuration. The mirror in one arm of the
interferometer is stationary, while the other arm contains a moving mirror oscillating
back and forth. The output of the interferometer is incident upon the sample and is
then introduced into a detector. The resultant interferogram, which is an intensity
pattern varying over time, can be viewed as an encoded signal containing informa-
tion from all wavelengths of light coming from the infrared source. The detected
interferogram signal is then decoded by Fourier transformation through computer
software, and the frequency spectrum of the sample can be obtained. Once the FTIR
is initiated and the sample is properly mounted, the whole data collection process is
extremely fast – typically on the order of one second. A FTIR spectrum also enjoys
a better signal-to-noise ratio compared to most dispersive spectrometers due to a
greater optical throughput. In FTIR, all light from the source enters the detector si-
multaneously, while in conventional spectrometers, only light within a tiny portion
of spectrum is collected at one time.

As mentioned above, the end of this section includes a brief discussion on the
issue of phase measurement in optical metamaterials. In order to evaluate the phase
shift of light when passing through a metamaterial layer, a combination of special in-
terferometers and power measurement is usually necessary. When the metamaterial
being studied is highly anisotropic, it is possible to estimate the phase shift property
by measuring the phase difference between two orthogonally polarized light beams
[2, 36]. An example of experimental setup for measuring the phase anisotropy of
a thin metamaterial slab is shown in Fig. 3.5a. This setup employs the polarization
interferometry to evaluate the difference in phase shifts between two orthogonally
polarized waves, �® D ®jj � ®?. The spectra of �® is capable of revealing the
resonance property of the phase shift in the sample. A more informative approach
for phase measurement is to directly detect the phase shift of a sample with respect
to a well-defined reference. The walk-off interferometer shown in Fig. 3.5b provides
such a capability. The walk-off configuration has two optical channels which differ
in geometrical paths. It gives a phase shift ®s introduced by a sample relative to
that of a reference layer of air ®r with the same thickness and the same boundary
condition: •® D ®s � ®r. The birefringence effect in uniaxial crystals like calcite is
employed to separate the two beams with orthogonal polarizations and then bring
them together to produce interference. Note that the difference between the obtained
values of absolute phase shift for the two orthogonally polarized beams should be
the same as the phase anisotropy measured by using the setup in Fig. 3.5a, as can be
seen from the following relationship:

�' D 'k � '? D .ı'k C 'r / � .ı'? C 'r / D 's;k � 's;? (3.1)
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Fig. 3.5 The experimental setup for phase measurement. (a) The common-path polarization inter-
ferometer for phase anisotropy measurement. (b) The walk-off interferometer to detect the absolute
phase shift of the sample. P polarizer; LC liquid crystal tunable waveplate; PD photodetector; �=2
variable half waveplate. Orthogonal polarizations of light are shown by dots and lines

This provides an easy way to check the validation of the measured data. Detailed
discussions of the two setups in Fig. 3.5 are available in [37, 38].

Another successful phase measurement of optical metamaterials with a differ-
ent interferometric configuration has been conducted in [7]. The phase shift of
light within a metamaterial layer can also be obtained using ultrashort pulses, as
demonstrated in [39,40]. It is also possible to extract phase information from meta-
materials, to some extent, using ellipsometry techniques. In ellipsometry, the change
in the polarization state of light reflected from the sample is measured. The ellipso-
metric coefficients ‰ and � provide as much information as a phase anisotropy
measurement in the reflection mode at an inclined angle. In particular, spectro-
scopic ellipsometry employs a broadband spectrum of probe light, thus it is able to
reveal some of the frequency-dependent phase information without using delicate
home-made apparatus. Such measurements have been used in verifying a magnetic
response from SRRs in the terahertz range [41].

3.4 Extraction of Homogenized Optical Parameters

For a given metamaterial with fine features much smaller than the wavelength of
interest, one of the most critical tasks is to extract the effective parameters in-
cluding the electric permittivity ", magnetic permeability �, refractive index n
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and impedance Z from experimental observables. In the general case, all of these
parameters are complex quantities with both real and imaginary parts. The four pa-
rameters are not independent, and they can be grouped into two sets. The first set, "
and �, stems from the constitutive relations in (2.2), and directly enters Maxwell’s
equations. The other two quantities, n and Z, are more conveniently used in the
description of wave phenomena at the boundary of different materials. The two sets
are interrelated by " D n=Z and � D nZ. Strictly speaking, all these variables are
frequency-dependent, as mentioned in Chap. 2.

For a uniform slab made of a metamaterial, an ideal retrieval process is expected
to replace the microscopically inhomogeneous slab with a conceptually uniform
medium with effective parameters (" and �, or n and Z) such that the far-field
scattering patterns are faithfully reproduced. Even though the unit structures of
a metamaterial can be very complicated, the local details of the electromagnetic
responses are encapsulated by distilling the macroscopic parameters from the com-
posite media. The philosophy involved here is not much different from the use of
these quantities for conventional materials – the responses from a collection of scat-
tering atoms or molecules are conveniently described in an averaged fashion, as we
have detailed in the previous chapter. The most accessible experimental observables
from which the homogeneous parameters are extracted include the complex trans-
mission and reflection coefficients t and r . At microwave frequencies, equivalent
quantities named the scattering parameters (S -parameters) are sometimes preferred
among electrical engineers.

There are numerous methods to determine the complex refractive index n D
n0Cin00 of a conventional, non-magnetic .� D 1/medium. These methods, although
usually not immediately applicable to obtaining the effective parameters of a meta-
material, are still of considerable interest among the researchers in this field. One
of the most straightforward methods is the so-called .R; T / approach [42], where
the only required observables are the magnitudes of reflection R and transmission
T from the sample under test with a known thickness at normal incidence. The rela-
tions between .R; T / and n are described by the generalized Fresnel’s law, including
the coherence conditions between the different interfaces in the system [43]. An-
other approach is to measure only one of the magnitude spectra R.!/ or T .!/ at
normal incidence over a broad spectral range, and then perform a Kramers-Kronig
analysis. This method is more useful when the testing sample is opaque and thus
only R.!/ is measurable [44]. However, if the reflection R at only some particular
spectral lines is available, one has to gather both the magnitude and the phase infor-
mation of the complex reflectivity r . This is the basic idea behind the ellipsometry
technique.

We note, however, that all the schemes mentioned above cannot be directly ap-
plied to obtain the electromagnetic parameters in a metamaterial. For a general
metamaterial, there are at least four variables to be determined, because both the ef-
fective permittivity " and the permeability� are complex quantities having unknown
real and imaginary parts. Alternatively, one can use the other set of parameters
n D n0C in00 and Z D Z0C iZ00 to characterize the sample, but again we face four
unknowns. As a result, a measurement scheme based solely on the magnitudes of
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R and T is not capable of retrieving all the necessary variables. Ellipsometry-type
schemes suffer from the additional fact that almost all metamaterials are highly
anisotropic with their properties being critically angular-dependent. Since all four
unknowns enter into Fresnel’s formulas, all the complex coefficients of both r and t
are necessary to retrieve the effective parameters of a metamaterial.

Owing to the profound importance of the retrieval process in almost all meta-
material studies, the protocol to extract the effective parameters from experimental
observables was investigated by Smith et al. soon after their first demonstration of a
negative-index material [45]. Similar treatments were developed and reexamined by
a number of other experts in metamaterial research [38, 46–49]. The basic physics
underlying the retrieval process is rather straightforward. To start, let us consider a
homogeneous slab of thickness d under normal incidence. Assuming that the slab is
placed in a vacuum, the complex transmission coefficient t and reflection coefficient
r are related to the impedance Z and the refractive index n by:

t D

�
cos.nkd/ �

i

2

�
Z C

1

Z

�
sin.nkd/

��1
(3.2)

and

r D �
i

2

�
Z �

1

Z

�
sin.nkd/ � t; (3.3)

where k D 2�=�0 is the free space wave vector. The above equations are available
in many textbooks on thin film optics (for example, [43]), and can be obtained
using a simple summation method based on Fresnel’s formulas. Please note that for
clarity in the subsequent derivations, the notation t here is a normalized value, which
is equivalent to the conventional transmission coefficient times the factor eikd [45].

We invert the formulas in (3.2) an (3.3) and obtain the explicit expressions for Z
and n [45]:

Z D ˙

�
.1C r/2 � t2

.1 � r/2 � t2

�1=2
(3.4)

cos.nkd/ D
1 � r2 C t2

2t
(3.5)

When n and Z are available, the other set of material parameters can be obtained
immediately by the relationships " D n=Z and � D nZ.

Clearly, (3.4) and (3.5) lead to ambiguity in the retrieved parameters due to the
multi-valued nature of trigonometric and square root functions. This problem can
be resolved by the combination of several considerations. First of all, for any passive
material, the imaginary parts of "; �; n and the real part of Z must be positive to
obey the causality condition (with the complicated exception for "00 and �00 at anti-
resonances, see [50] for a detailed explanation). With this constraint, the impedance
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Z can be uniquely determined by (3.4). Similarly, the imaginary part of n D n0Cin00

is also immediately obtainable by solving (3.5):

n00 D ˙
1

kd
Im
�

cos�1
�
1 � r2 C t2

2t

��
(3.6)

along with the additional requirement of n00 > 0. Note that the inverse cosine func-
tion cos�1.x/ allows arbitrary complex arguments, in which case the real part of
cos�1.x/ is bound within Œ0; ��, but there is no such constraint for the range of its
imaginary part.

Now it comes to the most nebulous part of the retrieval process, the real part of
the refractive index. Equation (3.5) yields the following expression for n0 [45]:

n0 D ˙
1

kd
Re
�

cos�1
�
1 � r2 C t2

2t

��
C
2�m

kd
; (3.7)

where m is an integer. So there are two ambiguities hidden within (3.7): the sign
before the first term on the right-hand side, and the correct branch corresponding to a
definite value ofm. The first issue is relatively easy to resolve – the same sign as that
of (3.6) should be taken since both equations stem from the same complex solution.
As for the second ambiguity, for slabs with very small thickness d � �0, as in most
2D optical metamaterials, the branches with different values ofm are well separated,
and the correct branch can be identified by the fact that the frequency-dependent
n0.!/ has to be continuous across a wide wavelength range. The retrieval process
usually starts at a sufficiently large wavelength away from all pertinent resonances in
the metamaterial. In this case m D 0 is taken for slabs of subwavelength thickness.
The retrieval is then carried out towards shorter wavelengths, and the index m in
(3.7) should be adjusted to counter any discontinuity in n.!/.

We note that when applying the retrieval process discussed above to metamaterial
slabs, a couple of precautions should be taken into consideration. First, the thickness
of the effective slab must be well-defined, because the slab thickness d is used as
an input to the whole procedure of retrieving the effective parameters. This is not as
trivial as it appears to be, because all metamaterials are inherently inhomogeneous
when observed at a subwavelength scale. If the thickness of the metamaterial film
is also deeply subwavelength, it is hard to identify the exact position of the two
boundaries when we approximate the material as a slab with two parallel surfaces.
Secondly, the magnitude of the two coefficients t and r should be sufficiently differ-
ent from zero, otherwise substantial error and uncertainty may occur in the retrieval
process. The extracted parameters would have little meaning if the retrieval proce-
dure is highly sensitive to noise-level variations in the complex coefficients t and r .
The issues of stability and accuracy of the retrieval algorithm were elaborated in
[48,49]. As for the scale of inhomogeneities in the metamaterial, it is always desired
to have the size of meta-atoms be much smaller than the illuminating wavelength so
that the composite is safely within the metamaterial regime. However, it has been
shown that the " and � values can be assigned to a metamaterial using the standard
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retrieval procedure even when its unit cell has a size comparable to the wavelength
of light [49, 51]. Finally, when dealing with metamaterials with apparent resonance
behaviors, artifacts may appear in the retrieved effective parameters. Sometimes an
anti-resonance accompanied by a nonphysical negative value in the imaginary part
of " (or �) may occur around the magnetic (or electric) resonance in a metamaterial,
owing to the periodic arrangement of the resonant unit cells. Such an anomaly has
been observed in many reported results on plasmonic metamaterials.

To conclude this section, we briefly address the issue of uniqueness in the inverse
scattering problem because it is a basic principle that makes the retrieval process
possible. For a given piece of material under a known illumination, it is natural
to accept the fact that a unique electromagnetic response would arise. The reverse
statement – that a particular scattering property represented by a combination of
t and r uniquely determines the constituent parameters " and � – is also true as
long as only one component of each tensor (" or �) is involved in the light-matter
interaction [52]. So the above retrieval procedure is valid when the metamaterial is
characterized with normal incidence and a linear polarization is sustained during the
light-matter interaction. More complicated protocols are necessary for metamateri-
als exhibiting chiral or bianisotropic behaviors [53,54]. In these materials, different
polarization states are coupled, and it is not sufficient to describe their electromag-
netic responses using just the " and � tensors.

The retrieval protocol discussed thus far contains most of the essential physics
for extracting effective parameters from the amplitudes and phases of the waves
transmitted and reflected from a metamaterial slab. However, this technique is not
immediately applicable to most optical metamaterials, because the procedure is
based on the assumption that the metamaterial is in the form of a free-standing
slab surrounded by a vacuum. In almost all reported metamaterials for the optical
frequency, substrate layers are involved, and therefore the metamaterial slabs are
embedded in an asymmetric environment. In the most usual case, where one side of
the metamaterial slab is immediately attached to a microscopically thick substrate
and the other side interfaces air or vacuum, the basic retrieval formulas in (3.4) and
(3.5) should be modified to:

cos.nkd/ D
1 � r2 C nst

2

Œ.ns C 1/C r.ns � 1/�t
; (3.8)

and

Z D
i Œ.r C 1/ � t cos.nkd/�

nst sin.nkd/
; (3.9)

where ns represents the index of refraction for the substrate. A general treatment of
the retrieval procedure for multilayer systems is provided in [38].

At the end of this section, we want to emphasize that the retrieval of effective
parameters from complex t and r coefficients is not only useful for the treatment
of experimental data, but also an indispensible tool for the simulation and model-
ing of metamaterials. Most theoretical work on metamaterials relies on numerical
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electromagnetic approaches such as finite-element methods (FEM), finite-difference
time-domain (FDTD) methods, the finite integration technique (FIT), and the
method of moments (MoM). A number of commercial packages are widely used
by metamaterial researchers, including COMSOL Multiphysicsr, CST Microwave
Studior, RSoft FullWAVEr, and others. The output of such computational tools is
usually the distribution of electromagnetic waves, which should be processed using
the retrieval algorithm to extract the effective material parameters. Moreover, for
those cases where a complete set of scattering parameters are not fully accessible in
experiments, a good agreement between the measured T and R curves of the meta-
material and the simulated spectra is usually regarded as an essential prerequisite
for validating the material parameters obtained from simulations, even though there
is not sufficient data to extract these parameters purely from experiments.
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Chapter 4
Electric Metamaterials

4.1 A Brief Overview of Artificial Dielectrics

The present chapter is focused on electric metamaterials, namely, metamaterials
with prescribed electric properties. Most of the time the electric response of a
medium is described using its electric permittivity ", so the main purpose of studying
electric metamaterials is to create artificial metal-dielectric structures that possess a
permittivity of a desired value. Such a task, in fact, had been investigated long before
the recent explosion of metamaterial research. For example, the beautiful Roman
glass shown in Fig. 1.1 can be justly regarded as electric metamaterial consisting of
gold nanoparticles embedded in a ruby host, and its color behavior is well-explained
using the mixing rules for random metal-dielectric composites described in Chap. 2.

From the 1940s to the 1970s, electric metamaterials with periodic metal-
dielectric compositional units were extensively studied under the aegis of radar
development, although at that time such materials didn’t bear the modern name of
electric metamaterials. Instead, the term “artificial dielectrics” was widely used,
especially in microwave technology, to describe the man-made materials with
subwavelength metal particles periodically distributed in a uniform background
host. These materials are called “artificial dielectrics” because they serve as the
macroscopic analogue of natural dielectrics except that the atoms or molecules are
artificially structured – exactly what we are doing in today’s metamaterial research.

The first widely recognized pioneer of artificial dielectrics was probably Winston
Kock, an engineer working at Bell Laboratories in the 1940s. In search for low
loss, light weight and cost effective lenses for radio waves, Kock proposed several
lens structures consisting of parallel metal plates or metallic sphere arrays embed-
ded in a dielectric matrix [1, 2]. A few distinct features of Kock’s work merit his
recognition as a founding pioneer of the research field of metamaterials. First, he
used equivalent material parameters to characterize the response of his artificial di-
electrics to the impinging electromagnetic fields. Secondly, he investigated periodic
metal-dielectric structures of different effective indices of refraction, both larger and
smaller than unity, and he used the terms “phase delay” and “phase advance” to de-
scribe wave propagation properties [1, 2]. Moreover, Kock unambiguously pointed
out the analogue between his artificial dielectrics and a natural crystalline dielectric
material [2].
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One of the most important artificial dielectric structures is the “rodded medium”
where a periodically spaced lattice of metallic rods is embedded in vacuum or other
dielectric material. Early researchers who contributed to the development of this
topic include Brown [3], Golden [4], and Rotman [5]. The rodded medium, also
known as the wire grid or wire mesh, offers the capability of mimicking a plasma
similar to that of a Drude metal, and the plasma frequency of the composite material
can be adjusted by varying the geometrical parameters of the wire array. A similar
structure was reinvented by Sir John Pendry in the later years of the last century [6].
The application of Pendry’s result to a left-handed media in the year 2000 marked
the birth of the metamaterial research field [7].

It is worth noting that although a periodically structured artificial dielectric
working at optical frequencies was too difficult to make until the techniques of
nanofabrication were developed, the language of optics was well-adopted in the
early studies of artificial dielectrics. The index of refraction was quite routinely
used when describing the wave behavior in such media at microwave frequen-
cies, and the magnitude, value and dispersion in the effective refractive index of
artificial dielectrics can be engineered in a controlled manner. Much literature on
microwave artificial dielectrics include the term “optical properties” when the radio
wave behavior is characterized using the refractive index, although no functionality
at optical frequencies is discussed in these works. A nice review of the progress in
the optical properties of artificial dielectrics before the early 1970s was conducted
by Silin [8].

The reason why we devote this chapter to electric metamaterials is two-fold.
First, optical artificial dielectrics are, incontrovertibly, within the category of pho-
tonic metamaterials, although they might not be so novel as to symbolize the
metamaterial research field. More importantly, various artificial dielectrics, both
periodic and disordered, serve as the bases for more complicated metamaterial struc-
tures and devices such as negative-index materials [9] and optical hyperlenses [10].
In fact, since any metamaterial must exhibit an electric response different from that
of its constituent materials, it is not exaggerating to say that all metamaterials are at
least electric metamaterials, no matter whether the resultant electric property is the
primary output of the study or not. Artificial dielectrics are particularly necessary
when the desired device requires a gradient in the material property. Examples of
structures with a varying permittivity requirement include conventional devices like
a Luneburg lens [11] and new inventions such as an optical cloak [12].

4.2 Optical Properties of Stratified Metal-Dielectric Composites

In this section we analyze a periodically layered composite with two isotropic con-
stituent materials aligned in a parallel manner. The bulk permittivities of the two
constituents are "1 and "2, respectively. The volume filling fraction of material 1 is
noted as f1, so the second constituent has a filling factor of f2 D 1 � f1. In such a
system, there are two principal situations to be considered: when the external electric
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Fig. 4.1 Schematic of a layered metal-dielectric structure, with the permittivities of the two con-
stituents given as "1 and "2, respectively. Two principal effective permittivities are marked as "

jj

and "
?

field is directed either parallel or perpendicular to the planar interfaces. The scenario
is depicted in Fig. 4.1. When the thickness of the layers is much smaller than the
wavelength, the stratified system acts as a metamaterial and can be described using
equivalent parameters. Our goal here is to evaluate the effective permittivity ("jj or
"?) for the two principal polarizations.

Regardless of the incident wave electric field polarization, the basic constitutive
relation holds for each constituent layer as well as for the whole composite:

Di D "iEi ; (4.1)

where the subscript i may be 1 or 2 for the two components or e for the overall
effective medium. When the incident wave is polarized parallel to the interfaces
of the layered system, the electric field E must be continuous across the boundary
between the layers as dictated by Maxwell’s equations:

E1 D E2 D Ee: (4.2)

The effective electric flux density De is taken as the volume-averaged sum of the
flux density in the two constituent layers:

De D f1D1 C f2D2: (4.3)

Combining (4.1)–(4.3), we obtain the effective permittivity "jj of the composite ma-
terial when the electric field is directed along the layers:

"jj D f1"1 C f2"2: (4.4)
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The situation is quite different when the stratified composite is subjected to an
electric field polarized perpendicular to the interfaces. In this case the electric flux
Di must be continuous at the boundary between two adjacent layers due to the
absence of a surface charge, while the effective electric field in the composite is
evaluated in a weighted-average fashion:

D1 D D2 D De; (4.5)
Ee D f1E1 C f2E2: (4.6)

From (4.1), (4.5) and (4.6) we have:

"? D
"1"2

f2"1 C f1"2
: (4.7)

Alternatively, the two effective permittivities of a layered composite can be de-
rived based on Bruggeman’s effective medium theory with the modification from
the shape effect, as given in (2.42):

f1
"1 � "

"1 C 
"
C f2

"2 � "

"2 C 
"
D 0: (4.8)

The parameter 
 in the above equation represents the screening of the external fields
by a medium. The screening factor 
 reaches its maximum value of infinity when
all the boundaries of the composite are parallel to the electric field, and it reaches
a value of zero if the field is normal to the boundaries. These two extreme cases
correspond exactly to the two principal orientations of the layered system as shown
in Fig. 4.1. By setting 
 !1 in (4.8), we reproduce the expression for "jj in (4.4).
As for the perpendicular direction, (4.8) simply reduces to the value for "? in (4.7)
when we set 
 D 0.

The formulas of effective permittivity in (4.4) and (4.7) can be generalized for
periodically layered systems consisting of more than two materials:

"k D
X

i

fi"i ; (4.9)

"�1? D
X

i

fi"
�1
i
: (4.10)

In the equations above, †fi D 1 should be fulfilled for the entire composite. There-
fore, the permittivity of a layered composite is equal to the weighted arithmetic
mean of the permittivities of all its constituents when the electric field is parallel to
the interfaces, and the permittivity takes the value of the weighted harmonic mean
of all the constituent permittivities when a perpendicular electric field is applied.

For an arbitrary two-phase composite, the permittivities in (4.4) and (4.7) provide
the upper and lower bounds for the effective permittivity of the composite, because
the electric field cannot be screened more than the full screening with 
 D 0 or
less than the zero screening of 
 !1. This fact was first revealed by Otto Wiener
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in 1912 [13], therefore the expressions in (4.4) and (4.7) are sometimes referred
to as the Wiener bounds. A nice way to visualize the Wiener bounds of a metal-
dielectric composite is to use the complex permittivity plane, where the real and
imaginary parts correspond to the horizontal and vertical axes, respectively [14].
The permittivity of each constituent "1 or "2 is represented by an isolated point on
the complex plane. When varying the filling fractions f1 and f2 of the composite,
the low-screening bound in (4.4) grows along a straight line connecting the two
points given by "1 D "10Ci"100 and "2 D "20Ci"200, while the high-screening bound
in (4.7) gives rise to an arc of a circle passing through "1; "2 and the origin [15].

To illustrate this scenario, in Fig. 4.2 we plot the Wiener bounds for a titanium-
silicon composite at a wavelength of 600 nm. The dielectric constants of the two
constituents are "1 D �4 C 12i for Ti and "2 D 15 C 0:2i for Si [16]. When the
metal filling fraction changes from f D 0 to f D 1, the effective permittivity "jj for
the parallel polarization varies from "2 to "1 along the straight solid line, while the
permittivity in the perpendicular direction "? grows according to the dashed circular
arc. For a fixed metal filling factor, the shape-dependent EMT in (4.8) defines a thin
curve in Fig. 4.2 indicating all the possible values for the effective permittivity of
the composite, regardless of the microstructure the composite medium may exhibit.
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Fig. 4.2 The Wiener bounds for the permittivity of a titanium–silicon composite at œ D 600 nm.
The thin solid lines represent the possible values for the effective permittivity of the composite
with fixed metal filling fractions
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Note that the thin curve for a given f lies between two points on the Wiener bounds
for the same filling factor. This is exactly what Wiener’s absolute bounds for the
effective permittivity imply.

The Wiener bounds provide us with a convenient tool to estimate the accessi-
ble range of effective permittivities in a composite with given constituent materials.
By using a layered metal-dielectric composite, the effective permittivity can reach
very interesting values that are hard to access in conventional, bulk materials. For
example, the dielectric constant of a composite with the electric field parallel to the
interfaces can approach zero when the relationship f1=f2 D �"2="1 is fulfilled
in low-loss constituents. The expression for the perpendicular permittivity "? in
(4.7) indicates that the effective permittivity can asymptotically approach infinity if
f1=f2 D �"1="2 is satisfied. This feature can also be observed using the complex
permittivity plane of Fig. 4.2. When the imaginary parts of "1 and "2 are small, the
two points corresponding to f D 0 and f D 1 both lie very close to the horizontal
axis; therefore the circular arc for "? will extend to infinitely large values. Extreme
values of permittivity such as " D 0 and " D 1 have great potential in developing
photonic nanocircuits, where subwavelength nanoparticles with appropriate dielec-
tric constants are utilized as lumped elements working at optical frequencies [17].
In such nanocircuits, epsilon-infinity materials are needed as conducting wires for
optical displacement currents, while the epsilon-near-zero media serve as insulators
to isolate each functional element.

A number of metamaterial devices have been proposed and demonstrated based
on layered metal-dielectric composites. With appropriate choices for the two con-
stituent permittivities and filling fractions, it is possible to create a highly anisotropic
material with "jj close to zero and "? approaching infinity simultaneously. Such
layered media have found applications in several versions of superlenses and hy-
perlenses [10, 18–20]. With dedicated control of the spatially varying thickness
combinations, the stratified metal-dielectric structure has also been used in the de-
sign of an optical cloaking device in a cylindrical geometry [21].

4.3 Periodic Array of Metallic Wires

In this section we will discuss the “rodded medium” where thin metallic wires are
periodically arranged in vacuum or a dielectric matrix. Such wire mesh structures
of 1D, 2D and 3D networks were systematically studied by Rotman about half a
century ago [5]. Rotman investigated several arrangements of wire grids whose
structures are illustrated in Fig. 4.3. The two-dimensional wire array in Fig. 4.3a
is designed to produce a plasma resonance for a z-polarized electric field, and the
layered grid structure in Fig. 4.3b works for any electromagnetic incidence whose
wave vector is directed parallel to the normal of the grid plane. When the metallic
wires form a three-dimensional mesh with a periodic cubic lattice, as depicted in
Fig. 4.3c, the wire medium becomes quasi-isotropic and exhibits a plasma resonance
for fields with arbitrary states of polarization. Such artificial wire composites have
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Fig. 4.3 The rodded media of different dimensions studied by W. Rotman. (a) A two-dimensional
wire array for z-polarized electric field. (b) A three dimensional lattice for any electric field po-
larized within the y � z plane. (c) A three-dimensional quasi-isotropic wire grid for arbitrary
polarization

been shown to work as dilute plasmas that create a negative electric response with
controllable strength. Although they were known for several decades among radio
wave engineers as artificial dielectrics with configurable dielectric functions, the
wire medium has gained immense prosperity in physics and material science during
the last decade, thanks to its reintroduction by Sir John Pendry with a more physics-
oriented flavor [6, 22].

The rodded medium can display a plasmonic response in a certain frequency
band, depending mostly on the geometrical parameters, namely the wire diameter
2r and the length of the unit cell a. When the unit cell length (also known as the
lattice constant) of the wire array is small in comparison with the wavelength of
interest, the wire array system can be treated as an electric metamaterial because
the electromagnetic radiation fails to resolve the wires, which are subwavelength in
size for this scenario. In this regard, the primary goal of our study is to obtain the
effective dielectric function ".!/ of the wire grid. To simplify our task, we consider
a two-dimensional wire array as shown in Fig. 4.3a. The composite medium is ap-
parently anisotropic, and the polarization state we are interested in corresponds to
a plane wave propagating in the xy plane with an electric field polarized along the
thin wires. In the following analysis, therefore, we use ".!/ to denote the element
"zz.!/ in a general 3 � 3 permittivity tensor.

The effective permittivity "eff .!/ can be written in a Drude form as in (2.12)
which includes an effective plasma frequency along with a damping constant repre-
senting the dissipation:

"eff .!/ D 1 �
!2p

! .! C i�/
; (4.11)

where !p and � represent the effective plasma frequency and the effective damping
constant of the wire medium, respectively. As opposed to a real Drude metal whose
plasma frequency and damping factor have definite physical meanings, the two pa-
rameters !p and � in the effective Drude model of (4.11) are closely tied to the
geometry of the wire array as well as to the metal properties. Hence, in deriving the
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effective dielectric function "eff .!/ for an electric metamaterial, one of the essential
tasks is to approximate !p and � based on known quantities. There are different
models for the expression of the effective plasma frequency in a rodded medium.
In this section, we strictly follow the effective mass approach initiated by Pendry in
his seminal paper [6].

As discussed in Sect. 2.3, the plasma frequency in a bulk metal depends on the
density and mass of free electrons, and the plasma frequency is usually situated in
the near-UV or visible spectrum for good conductors. In contrast, the plasma fre-
quency of the wire medium is substantially reduced relative to that of the pure metal
for two reasons. First, the effective electron density is diluted by a factor of �r2=a2

because the free electrons are restricted within the physical boundaries of the wires.
The second reason was described by Pendry as an increase in the “effective elec-
tron mass” resulting from the induced current in the wire and the excited magnetic
field. The self-inductance possessed in the metallic wires acts to oppose the rate
of change in the current, which is a direct result of Lenz’s law. Consequently, the
electrons in the wires act as if they have gained a prodigious amount of mass. This
increased “effective electron mass” contributes to a reduced plasma frequency in the
material. We note however that this notion of the “effective electron mass” should
be understood here only in the context of the described self-inductance effect.

Modifying the equivalent plasma frequency expression to account for the reduced
effective electron density is quite straightforward. The electron density in the wire
array is taken in a volume-averaged manner:

Neff D N
�r2

a2
; (4.12)

where N refers to the actual electron density in the pure metal. Now we turn to
the “effective mass” modifications in the plasma frequency expression. In order to
evaluate the “effective mass” of electrons due to the self inductance, we apply the
concept of generalized (canonical) momentum in quantum mechanics. In the La-
grangian formalism of a charged particle with a static mass m and charge q, the
overall momentum has a form of p D mv C qA, where v is the charge velocity
and A represents a vector potential. Therefore the “effective mass” from the self
inductance is related to the magnetic vector potential by

meff D
eA

v
: (4.13)

For a mean electron velocity v and a free electron density N in the metallic wires,
the current flow in one wire is �r2eN v. According to Ampère’s law, this current
flow gives rise to an azimuthal magnetic field around the wire:

H.R/ D
�r2eN v
2�R

; (4.14)
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where R is the distance from the wire center. The magnetic field H.R/ can be
written in terms of the curl of a vector potential which is directed along the z axis:

H.R/ D r � A.R/=�0: (4.15)

Although generally speaking the vector potential A.R/ is not uniquely defined be-
cause of the issue of gauge choices, our assumption of r << a as well as the lattice
symmetry allows us to choose the vector potential in the following form:

A.R/ D
�0r

2eN v
2

ln.a=R/: (4.16)

Since we have assumed that the wires are made from good conductors, the flow of
free electrons is bound to the surface of the wires. Therefore, it is a fair estimate that
all electrons feel a magnetic vector potential of A.r/. Combining (4.13) and (4.16),
we obtain the “effective mass” of the electrons in the wire medium:

meff D
�0r

2e2N

2
ln.a=r/: (4.17)

With both Neff and meff readily available, we obtain the plasma frequency of the
wire medium:

!2p D
Neff e

2

"0meff
D

2�c20
a2 ln.a=r/

; (4.18)

where c0 D 1
ıp

�0"0 is the vacuum light speed.
Several more complicated but precise derivations for the effective plasma fre-

quency of the wire medium have been developed. Shalaev and Sarychev provide the
following expression [23, 24]:

!2p D
2�c20

a2
h
ln
�
a
.p

2r
�
C �=4 � 3=2

i ; (4.19)

and Maslovski et al. show that the plasma frequency can be expressed as [25]:

!2p D
2�c20

a2
�
ln.a2

ı
4r.a � r/

	 : (4.20)

A comparison between these three models has been conducted in [26]. All three
approaches in (4.18–4.20) agree reasonably well with transfer matrix simulations,
and the improved expressions for !p in (4.19) and (4.20) indeed offer a better pre-
diction of the plasma behavior. Another quite involved analytical formula for !p is
available in [27].

To complete the Drude approximation for the effective permittivity of the wire ar-
ray in (4.11), we need to evaluate the effective damping constant � , which describes
the medium’s loss factor. The damping constant � vanishes if the wires are made
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of a perfect conductor, and the permittivity of the wire medium is then simply
"eff .!/ D 1 � !p

2=!2. However, the finite conductivity of real metals results in
ohmic loss in the thin wires, which can be introduced by modifying the inductance
of the wire with an imaginary part. From the magnetic field H.R/ in (4.14) we can
estimate the unit inductance of a wire:

L D
�0
R a
p

�

r H.R/dR

�r2eNv
�
�0

2�
ln
�a
r

�
: (4.21)

The denominator in the equation above is equal to the current flow in the wire, and
the upper limit a

ıp
� of the integration represents the equivalent radius of a unit

cell in the wire array. The approximation in (4.21) holds for thin wires with r << a.
Comparing (4.18) and (4.21), we find that the plasma frequency !p of the wire

medium is related to the inductance of a wire by:

!2p D
1

"0a2L
: (4.22)

A detailed derivation of effective plasma frequency from the self-inductance per-
spective is presented in [25].

When the metal has a finite conductivity � , the inductance of the wire is taken as
a complex value with the following modification:

L! LC
��r2

i!
: (4.23)

Combining (4.11), (4.21), (4.22) and (4.23), we finally obtain the expression for the
effective permittivity of the wire medium in a Drude form [6]:

"eff .!/ D 1 �
!2p

!


! C i"0a2!2p

ı
�r2�

� : (4.24)

If the wire array is embedded in a host medium with a permittivity "h instead of a
vacuum, the first term in the right-hand side of (4.24) should be replaced by "h.

Since the effective plasma frequency in a wire medium can be tuned by adjusting
the medium’s geometrical parameters, the spectral region of desired permittivity
values can be engineered to occur practically at any frequency range from the
microwave region to the optical range. Using metals made into an array of thin
wires, the plasma frequency !p of a medium can be reduced by several orders of
magnitude.

In the next part of this section, we provide an example of a wire medium with
an effective plasma frequency in the gigahertz regime. We take a two-dimensional
wire array with a wire radius of r D 5�m and a lattice constant of a D 40mm. The
wires consist of silver, which has a free electron density of N D 5:8 � 1028 m�3

and a conductivity of 6:3�107 S m�1 at room temperature. In the wire medium, the
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electron concentration is diluted by eight orders of magnitude according to (4.12).
As for the “effective electron mass,” (4.17) predicts thatmeff is 2:1�1025 kg, which
is “heavier” than a silver atom. The substantially reduced electron density and in-
creased “effective electron mass” together give rise to a reduction in the effective
plasma frequency by six orders of magnitude. The expression by Pendry in (4.18)
gives a plasma frequency of !p D 2  � 1:0GHz, while (4.19) and (4.20) both
indicate a slightly different value of !p D 2  � 1:1GHz.

As for the dissipation in the wire medium, from (4.24) we obtain a damping
constant of � D 0:018!p . Therefore, the loss factor in our artificial dielectric is on
the same order of that of usual conductors, considering that the ratio �=!p is 0.011
for copper. The effective permittivity of the wire medium in our example is plotted
in Fig. 4.4.

Similar to a Drude metal, the wire array metamaterial has a negative permit-
tivity for electromagnetic waves with frequencies lower than the effective plasma
frequency. Above the plasma frequency, the effective permittivity is positive and the
medium acts as a transparent dielectric. This feature shows the potential of using the
wire array for filters and polarizers. Indeed, a plasmonic, high-pass filter based on a
two-dimensional cubic lattice of gold wires has been reported for terahertz electro-
magnetic radiation [28]. It is worth noting that in practical applications, the wires
do not necessarily consist of pure metals. Instead, a dielectric skeleton forming the
lattice and coated with a desired metal works equally well as the pure metal case, as
long as the metal coating is thicker than the metal’s skin depth at the operational fre-
quency. This technique is especially useful when precious and therefore expensive
metals like silver or gold are involved in design.
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Fig. 4.4 The dielectric function of a silver wire array with r D 5�m and a D 40mm. The
horizontal axis represents the wave frequency f D !=2 . The effective plasma frequency is
!p D 2 � 1GHz, and the damping constant is � D 0:018!p
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The wire array in our example is comfortably within the applicability regime of
the effective-medium limit and can be safely viewed as a metamaterial because the
lattice constant a is only about one-tenth of the free space wavelength at 1 GHz
.� D 0:3m/. The metal filling fraction in the wire-array metamaterial is only a few
parts per million. It is possibly surprising that such a low concentration of metal is
enough to induce such a dramatic change in the effective dielectric function ".!/.
This feature, in fact, is not unexpected if we think of the rodded medium using
the language described in Sect. 2.4. When the incident electric field is polarized
along the wires, the field experiences a minimum of screening as indicated by a
near-zero depolarization factor. Therefore, a small concentration of metal is suffi-
cient to produce a substantial contribution to the overall dielectric function of the
effective medium. In addition, the permittivity component normal to the wire direc-
tion should have a value identical to the dielectric constant of the host, because the
wires and the external electric field experience a negligible interaction when they
are perpendicular to each other.

The expression for the effective permittivity of the wire array in (4.24) is based
on the assumption that the wires are made from a quasi-perfect conductor with a
bulk permittivity approaching infinity. The finite conductivity in metal gives rise
to the damping constant � of the effective medium, while the effective plasma fre-
quency in (4.18–4.20) at first appears to be independent of the metal properties. This
assumption, however, is only justified for electromagnetic wavelengths longer than
the infrared range, where the magnitude of the negative permittivity in noble metals
is sufficiently large. In the visible frequencies, the metal permittivity following a
Drude model of "m D 1 � !p;m

2=!2 has a limited magnitude, and the effective
plasma frequency !p of the wire medium is necessarily dependent on the plasma
frequency of the bulk metal !p;m [29]:

!2p D
�r2!2p;m

a2
: (4.25)

The result in (4.25) shows that the effective plasma frequency is proportional to the
volume fraction of wires, which is quite intuitive as !p of the wire medium should
move toward the bulk value of !p;m when the metal filling factor approaches unity.

At optical frequencies, wire arrays have been used in a wide variety of struc-
tures and devices. In optical negative-index metamaterials, arrays of metal wires
and their analogues are the mainstream choice for creating a controllable negative-"
background, which is necessary in most designs for negative index media [9]. The
wire medium is also used to construct metamaterials with ultralow refractive indices
of less than unity. Such an ultralow index band corresponds to frequencies slightly
higher than the effective plasma frequency, as can be observed in Fig. 4.4. Several
intriguing phenomena with low-index wire media have been experimentally demon-
strated, including total external reflection [30], air-core planar dielectric waveguides
[31] and power splitters for air-core waveguides [32].

We note that, strictly speaking, the analysis for wire media in this section only ap-
plies to the “ideal” polarization where the electric field is parallel to the wires. If the
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external field is directed along an arbitrary orientation, the wire mesh may support
additional modes that cannot be adequately characterized by a local permittivity. In
such situations, the electric response of the medium becomes non-local with spatial
dispersion, which means that the induced polarization is dependent upon not only
the point-wise field values, but also on the field variations at other points in space.
A detailed discussion on this issue and possible ways to tame the spatial dispersion
of wire grid metamaterials can be found in [33–35].

4.4 Semicontinuous Metal Films

In all the foregoing parts of this chapter, we focused on electric metamaterials with
metal and dielectric components arranged in an ordered fashion. Although most
of the metamaterial designs reported in the literature indeed exhibit a certain pe-
riodicity, there is yet another type of electric metamaterial without well-defined
meta-atoms. Random metal-dielectric composites can be regarded as disordered
metamaterials with very interesting optical properties that differ markedly from
those of ordinary bulk materials. This type of nanostructured material has attracted
enormous interest during the past few decades because of the rich physics and
unique properties in disordered metal-dielectric systems. Such systems are also
likely to become even more important with the miniaturization of electronic and
optoelectronic components. In Chap. 2, we used the effective medium approach to
characterize the macroscopic, average electromagnetic response of random metal-
dielectric composites. In this section we will look at them more closely and study
their local optical properties down to the nanometer scale.

Random metal-dielectric composites can be fabricated by a range of deposition
techniques, including thermal evaporation, electron-beam evaporation, and sputter-
ing as well as electroplating. Due to the nature of these deposition methods, the
majority of random metal-dielectric composites are confined to a thin film or coat-
ing on a two- or three-dimensional substrate. Therefore, in most of cases, such
random composites are treated as a two-dimensional system. Most metal-dielectric
composites are formed by depositing metal onto a dielectric substrate, a process
that can be described qualitatively as follows. During the deposition process, small
and isolated metal islands nucleate first on the substrate, and a composite with a
low metal filling fraction similar to the sample in Fig. 2.8a begins to develop. With
additional deposition and the subsequent increase in metal concentration, the metal
islands grow in size and begin to coalesce, forming irregularly shaped clusters of
fractal geometry on the substrate. Figure 2.8b shows the appearance of a typical
sample at this step. As the film grows and the cluster size increases, at a certain
point the metal concentration f exceeds a critical value fc , referred to as the perco-
lation threshold. The physical essence and significance of the percolation threshold
have been briefly addressed in Sect. 2.4. When the metal filling fraction reaches
the value fc , an infinite “backbone cluster” spanning the entire substrate is formed.
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Before this critical point, the composite behaves as a dielectric, while for f > fc a
conductor-like behavior is established.

The percolation threshold implies more than merely an insulator-to-metal
transition. When the filling fraction of the metal component approaches the perco-
lation threshold, a modest alteration of the film morphology will induce a drastic
change in the optical response. Percolation films are characterized by a fractal
geometry that will appear similar at different length scales. The self-similarity in
fractals implies that a fractal system exhibits the same overall shape as one of its
parts; therefore the fractal shows the same statistical properties at many scales.
Interesting examples of fractals in nature include coastlines, snow flakes, lightning,
fern leaves, cauliflowers and blood vessel systems. A percolation metal-dielectric
composite is formed by clusters of all sizes, from the size of individual particles
to the “infinite” fractal cluster that spans the whole film. Such a morphological
feature results in the creation of localized plasmonic resonances, sometimes called
“hot spots,” across a broad electromagnetic spectrum. This can be understood qual-
itatively based on very simple arguments described below. In the vicinity of the
percolation threshold, the system is a scale-invariant fractal set as illustrated in the
inset of Fig. 4.5. At optical frequencies, noble metals exhibit a high conductivity
with a small loss factor as determined by the imaginary part of the metal’s permit-
tivity. We can describe each metal grain or cluster as an inductance L connected
in series to a resistance R. The dielectric gaps, in turn, act as capacitive elements
and are represented by a capacitance C . By virtue of this description, composite
films can be viewed as a network of RLC circuits [36]. If we use l to represent the
size of the metal and dielectric grains, both the inductance L and the capacitance
C should scale proportionally to l . The frequency at which such effective RLC
circuits resonate is given by !r D 1

.p
LC / l�1. Consequently smaller clusters

resonate at higher frequencies while larger clusters resonate at lower frequencies
[36, 37]. Thus, metal-dielectric films can be thought of as a collection of resonating
optical RLC circuits where R, L and C assume random values. The geometrical dis-
order in the composite determines these random values and gives rise to resonance
frequencies covering a very wide spectral range from the UV to the mid-IR.

The light-induced plasmon modes in percolation metal-dielectric films can
lead to dramatic enhancement of optical responses in a broad spectral range. The
creation of electromagnetic “hot spots” in semicontinuous metal films is a phe-
nomenon within the broad category of Anderson localization, a process named after
P. W. Anderson who first predicted the localization of electron wave functions with-
out diffusion in semiconductors with a certain degree of randomness [38]. There are
a number of numerical models for the field fluctuations and higher-order field mo-
ments in semicontinuous films, which predict reasonably well the localization of the
surface plasmons and the strong local field enhancement in percolation composites
[36, 37, 39]. Experimental observations in accordance with the theoretical predic-
tions have confirmed the existence of giant local fields, which can be enhanced by a
factor of 105 for linear responses and over 1020 for nonlinear efficiencies [36, 40].
In Fig. 4.5 we show the local field enhancement in a percolating metal-dielectric
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Fig. 4.5 The spatial distributions of the normalized local intensity in a typical silver-silica perco-
lating film at an arbitrary wavelength of 1:5�m. The cartoon inset shows the self-similar features
in the local film morphology

film at an arbitrary wavelength of 1:5�m. The local electric field is concentrated in
nanometer-sized areas and is characterized by sharp peaks that exceed the applied
field by several orders of magnitude.

Random metal-dielectric composites have had a growing impact in various topics
in optics. The giant electric field fluctuations near the percolation threshold lead to
huge enhancements of various nonlinear optical effects. Percolation metal-dielectric
films make possible surface-enhanced Raman spectroscopy with unsurpassed detec-
tion sensitivity, because Raman scattering is proportional to the fourth moment of
the electric field [41]. A similar enhancement is available for the optical Kerr effect
and four-wave mixing [42]. Random metal-dielectric films are also widely used in
applications like surface-enhanced infrared absorption [43], harmonic generation
[44], and photovoltaics [45]. Semicontinuous metal films also find roles in optical
data recording and mid-infrared filters, thanks to a recently developed frequency-
selective photomodification technique [46, 47].
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Chapter 5
Magnetic Metamaterials

5.1 Negligible Optical Magnetism in Nature

For materials at optical frequencies, the dielectric permittivity " is generally
different from that in vacuum. For example, negative permittivity values are rou-
tinely observed in noble metals at frequencies less than their plasma frequency. In
contrast, the magnetic permeability � for naturally occurring materials is always
close to its free space value in the optical range. The nearly absence of a magnetic
response seems like a general rule in the field of optics. Indeed, in the famous
textbook by Landau and Lifshitz [1], there is a quite general statement on the
reason why a magnetic response resulting from orbital currents in atoms should
be negligible at optical frequencies, and consequently, “the magnetic permeability
�.!/ ceases to have any physical meaning at relatively low frequencies: : : There is
certainly no meaning in using the magnetic susceptibility from optical frequencies
onwards, and in discussion of such phenomena we must put � D 1” [1].

The major reason behind the absence of optical magnetism in nature is that
the magnetic field component of light couples to atoms much more weakly than
the electric component, making light interacting with matter a “one-handed” sit-
uation. The magnetic coupling to an atom is proportional to the Bohr magneton
�B D e„=2mec D ˛ea0=2, while the electric coupling is ea0. The induced mag-
netic dipole also contains the fine structure constant ˛ � 1=137, so the effect of
light on the magnetic permeability is ˛2 times weaker than light’s effect on the elec-
tric permittivity. This means that of the two field components of light – electric and
magnetic – only the electric “hand” efficiently probes the atoms of a material, while
the magnetic component remains relatively unused. Consequently, in all conven-
tional optical materials and devices, only the electric component of light is directly
controlled. The magnetic field component of light plays merely an auxiliary role
through its relation with the electric field governed by Maxwell’s equations. The
magnetic response (which is due to electronic spin states) in naturally-occurring
materials diminishes at frequencies higher than a few gigahertz. Moreover, there are
no free magnetic monopoles, and thus it is not feasible to obtain a magnetic plasma
as we can accomplish with electrons. Therefore, it is indeed a challenging issue to
achieve any magnetic response in the microwave frequencies and higher, let alone
more extreme values like negative permeability.
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Recently, however, the emergence of metamaterial research has fundamentally
altered the situation. In metamaterials that consist of artificial subwavelength struc-
tures with tailored properties, the magnetic response is not limited anymore to the
electronic spin states of individual atoms. Instead, magnetism can be achieved even
in optical frequencies by specially designed “meta-atoms” – functional units of the
metamaterial that are smaller than the wavelength. Therefore, artificial magnetism
is possible in metamaterials as long as the magnetic field component of the inci-
dent light can interact effectively with the “meta-atoms.” In this chapter we discuss
a series of magnetic elements developed during the last few years in metamate-
rial research, including split-ring resonators (SRRs), metallic staple arrays, coupled
nanorods, nanoplates and nanostrips. The magnetic response in these structures has
spanned several decades of the electromagnetic spectrum, from microwave frequen-
cies up to the blue portion of visible light.

5.2 Split-Ring Resonators

The pursuit of magnetically active structures at high frequency is one of the core
tasks in metamaterial research. The problem of low coupling to the magnetic field
of light can be overcome by using metamaterials that mimic magnetism at high fre-
quencies. For the microwave range, a recipe was suggested by Pendry in which he
predicted that a pair of concentric split-ring resonators (SRRs) with subwavelength
dimensions and facing in opposite directions would give rise to an effective perme-
ability different than unity [2]. Actually, the term “split-ring resonator” was coined
long before Pendry’s work. In the early 1980s, Hardy used a similar structure and
this exact term to describe a hollow metallic cylinder with a linear cut that exhib-
ited a magnetic resonance at about 1 GHz [3]. Pendry and coworkers reinvented the
structure in its modern form, a design that has become a prototype for many meta-
magnetic elements in today’s metamaterial research. A schematic of the Pendry’s
SRR structure is illustrated in Fig. 5.1a [2].
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Fig. 5.1 (a) The double split-ring resonator as the building block of a metamaterial with magnetic
response at microwave frequencies. (b) The equivalent circuit of a double SRR
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Because the SRR structure is the first magnetic meta-atom and is still playing
a dominating role in artificial magnetism at microwave frequencies, it is helpful
to have an intuitive tour about how such an elegant but complicated unit evolves
from a bulk piece of metal. First let us consider a circular metal plate placed in an
oscillating electromagnetic wave with the magnetic field polarized normal to the flat
surface. Is the metal plate magnetically active in this case? The answer is yes, but
very weakly so. The oscillating magnetic field induces a circular current in the round
plate, which produces a magnetic flux opposing the external magnetic field. In fact
this can be viewed as a simple result of Lenz’s law: any induced electromotive force
will be in the direction such that the flux it creates will oppose the change in the flux
that produces it. Consequently, a metal plate is weakly diamagnetic, and an array of
such plates would exhibit an effective permeability slightly less than unity.

Because the circular current is mostly confined to the outer perimeter, we can
remove the inner part of the plate, and the plate evolves into a ring. The response of
a metallic ring to the external magnetic field is purely inductive and non-resonant.
To introduce a resonance behavior and enhance the magnetic response, capacitance
can be purposely introduced. As seen in Fig. 5.1a, a gap in each metallic ring pre-
vents the formation of a complete circular current, and charges accumulate across
the gaps. With both capacitance and inductance, the SRR is a resonant element.
Capacitance is more effectively introduced when two rings are placed concentri-
cally with their gaps opposite of each other (see Fig. 5.1a), which is one reason why
double SRRs are preferable to single SRRs in metamaterial designs. Note that the
pair of rings in a double SRR acts as one meta-atom. Another reason why double
SRRs are preferred over single SRRs is the consideration of minimizing the elec-
tric polarizability in the system. In a single SRR, the accumulated charges around
the gap induce a pronounced electric dipole moment, which may overshadow the
desired magnetic dipole moment. With two SRRs placed in the manner shown in
Fig. 5.1a, the fundamental electric dipole moments of the two rings tend to can-
cel each other, and the magnetic dipole moment dominates. Therefore, a standard
double SRR structure is most often used in SRR-based metamaterial designs.

It is important to remember that the goal of the design is to create artificial mag-
netic “atoms” for a metamaterial. Therefore the size of each SRR should be much
smaller than the free space wavelength at the frequency range of interest. From the
equivalent circuit point of view, each SRR essentially behaves as a quasistatic LC
circuit in response to the external field, as shown in Fig. 5.1b. A careful estimation
of the equivalent inductance L and capacitance C can give us an estimate of the
resonance frequency in an SRR acting as a magnetic meta-atom. The ring forms the
inductive portion, which in total give rise to an inductance of L � 2�0r . The esti-
mation of the capacitanceC is more involved because capacitance can arise from the
slot between the two rings as well as the two cuts of each individual ring. An analy-
sis of the current flow and charge distribution show that the current lines (conductive
current plus displacement current) excited by the external magnetic field follow a
complicated path with the pair of the rings, extending from one ring to the other
across the slot in between [4]. Therefore, the capacitance between the two rings
is the dominating source of the total capacitance, and the gap capacitance in each
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ring is comparably small. Note that the total capacitance between two ring-shaped
electrodes, C0 � 2�r"0.c C t /=d , is not a good evaluation for the equivalent ca-
pacitance because the total capacitance of a double SRR should be regarded as the
series connection of two separated capacitors, each representing one half of the dou-
ble SRR with a value of C0=2 [4]. Hence, the equivalent capacitance for calculating
the resonance frequency is C � C0=4. If we take into account the ohmic loss in the
structure, a resistance element R � �r=cı� should be added to form a RLC circuit,
with ı and � being the skin depth and the conductivity of the metal, respectively [5].
With all this preparation, the magnetic resonance frequency of the double SRRs can
be estimated as !0 D

p
1=.LCR=j!0/C . Note that such an analysis based on an

equivalent circuit model is very coarse. Nevertheless, a lumped-element model pro-
vides us a straightforward perception of the physics behind standard double SRRs
and offers a quick tool for roughly estimating the resonance frequency range. More-
over, such a model helps us to visualize how the resonance frequency varies with
respect to the geometrical parameters.

The strength of the magnetic response and the effective permeability of an array
of SRR elements can be estimated from the magnetic momentmH D �r2I of each
SRR unit. A first-order estimation gives the following expression [6]:

mH D �
2r4�0H

ı
.!20=!

2 � 1/L (5.1)

where H is the external magnetic field. Therefore, the effective permeability of the
overall system is �eff D 1C mH=VH , with V being the volume of each unit cell
of the SRR array. Such an expression leads to a dia- or paramagnetic SRR array
response to the external magnetic field, depending on whether the wavelength of
the incoming magnetic field is shorter or longer than the resonance wavelength. The
effective permeability is therefore different from unity, even though the natural ma-
terials comprising the SRR array have unity permeability at frequencies at about a
gigahertz or higher. Again, we note that this is a very rough analysis, and specifi-
cally it does not take into account important SRR phenomena like electric coupling
and bianisotropic behavior. More thorough and detailed analyses of double SRRs
using analytical models and numerical simulations have been studied extensively in
Refs. [4–6].

SRRs operating in the GHz regime were first demonstrated by Smith et al., in
which the rings had a diameter of several millimeters [7]. The fabrication of dou-
ble SRRs for use at microwave frequencies is now a routine practice using printed
circuit board (PCB) technology. Such structures have been used as magnetic build-
ing blocks for various applications at microwave frequencies, most notably in the
experimental demonstration of the first negative-index materials as detailed in the
next chapter. The symbolic importance of SRRs in metamaterial researches is hard
to overestimate. In fact, the publication of the double SRR design shown in Fig. 5.1a
was the first time in the literature where the term “metamaterial” is explicitly used.

Since the successful demonstration of artificial magnetism in the microwave
range, significant effort has been devoted to designing and demonstrating mag-
netic metamaterials at infrared and optical frequencies. Intuitively, the concept of
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SRRs can be moved towards higher frequencies by simple scaling (shrinking). Since
Maxwell’s equations are scalable, shrinking this design in size could lead to a sim-
ilar response at higher frequencies. However, we note that the materials properties
of metals do not actually scale; metals, which are important components of meta-
materials, have very different properties in the optical range, where the plasmon
resonance is of critical importance, as opposed to the microwave case. Also, it is
not feasible to simply scale down the double SRRs of Fig. 5.1 due to the fabrication
difficulties involved in such an undertaking. As the required dimensions of the SRR
elements decrease, fabrication moves past the capabilities of standard PCB technol-
ogy and into the optical lithography or electron-beam lithography regimes. These
lithography techniques have been used to make structures with smaller characteris-
tic sizes, but they also have limitations for SRR fabrication. Lithographic techniques
used for the fabrication of submicron metal structures are usually performed in a
layer-by-layer fashion. However, the standard SRR-based magnetic response re-
quires the plane of the SRR to be parallel to the incident wave-vector to guarantee
magnetic field penetration through the SRR plane. This is hard to accomplish when
the SRRs are lying flat on a substrate. One easy method to partially alleviate this is-
sue is to use oblique incidence for the external electromagnetic wave. This provides
a magnetic field that obliquely penetrates the SRR planes.

Using scaling techniques along with inclined incidence, the resonance frequency
of double SRRs has been pushed up to 1 THz [8]. A sample with terahertz SRRs and
the associated polarization condition is illustrated in Fig. 5.2. The size of each SRR
in this case is about 40�m. Near the resonance frequency, the effective permeability
exhibits a Lorentzian spectral dependence with minimum and maximum values of
�1 and 4, respectively.

Fig. 5.2 Double SRR structure with terahertz magnetic response using oblique incidence. Adapted
from [8]. Reprinted with permission from AAAS. Courtesy of X. Zhang
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5.3 Optical Magnetic Elements

In this section, we discuss different routes for pushing the operational frequency of
magnetic metamaterials into the optical regime. As of early 2009, various structures
have been proposed to achieve magnetic responses at higher and higher frequencies.
The basic principle behind these designs is that the unit structures can support a
principal eigenmode with a circular current distribution that gives rise to a magnetic
moment. Such a magnetic moment introduces resonance behavior for the structure.
The magnetic moment is parallel to the incident magnetic field and gives rise to
� > 1 below the resonance frequency. Above the resonance frequency, the magnetic
moment is anti-parallel to the incident magnetic field and produces � < 1 for the
structure.

In order to obtain a metamagnetic response at higher frequencies without playing
the trick of inclined incidence, different variations of SRRs have been explored. One
of the most important designs for achieving a magnetic resonance toward the opti-
cal regime is based on arrays of single SRRs lying in a plane perpendicular to the
direction of wave propagation. In contrast to the standard SRR operation, where a
magnetic field normal to the SRR plane is required to excite the magnetic response,
the single in-plane SRRs may act as magnetic dipoles without the involvement of the
incident magnetic field at all [9]. The different orientations of SRRs with respect to
the external field are illustrated in Fig. 5.3. The standard application of SRRs with
an H field component penetrating the SRR plane is shown in Fig. 5.3a. The fabri-
cation difficulties in making such a structure based on micro- or nano-fabrication
techniques are obvious. In Fig. 5.3b, c, the SRR arrays lie on a substrate, a design
that is certainly compatible with standard lithography and deposition techniques. In
the latter two situations, the applied magnetic field is parallel to the SRR plane, but
it cannot play a role in creating magnetic dipoles in the structure. However, there
is an amazing property in the configuration in Fig. 5.3b. When the electric field is
parallel to the gap-bearing side of the SRR, there is an asymmetric current mode
in the two arms of the ring, and a magnetic dipole can be obtained. If the electric

Fig. 5.3 Different orientations of single SRR arrays. (a) The standard SRR operation where the
magnetic dipole can be excited by the external H field. (b) The magnetic dipole is possible due to
the asymmetric mode of excited current. (c) No magnetic response is obtained when the E field is
parallel to the arms of SRR
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Fig. 5.4 (a) A single-SRR as a magnetic element and (b) its equivalent LC circuit

field is polarized along the two arms (Fig. 5.3c), however, identical currents will be
excited in the two arms of SRR, and no loop-like current flow can be obtained to
produce a magnetic dipole.

Besides the current symmetry considerations, the underlying physics in planar
single SRRs can also be interpreted from an equivalent circuit point of view. The
discussion below closely follows the work on metamagnetics at 100 THz in Ref.
[10]. As discussed in the previous section, an SRR such as that shown in Fig. 5.4
can be viewed as an LC oscillator, with the inductance corresponding to the ring
and the gap serving as the capacitance. For such an oscillator, there are two means
to excite resonance: either the magnetic field vector must penetrate the inductor
“coil” (the ring), or the electric field vector must be aligned normal to the capacitor
“plate” (the surfaces of the cut). The standard operational mode of SRRs shown in
Fig. 5.3a corresponds to the first excitation method, while the capacitance excitation
method with the electric field polarized along the gap-bearing side is represented in
Fig. 5.3b. In the third case of Fig. 5.3c, both the inductance and the capacitance do
not interact with the external field; therefore no resonance behavior is expected for
the case shown in the last panel.

Magnetic resonance with electric field excitation has been achieved in the mid-
infrared wavelength of 3�m [10]. The experimental spectra are shown in Fig. 5.5
using single SRRs with sizes of about 320 nm (from [10]). When the electric field
polarization is rotated by 90ı, the magnetic resonance disappears completely in
good agreement with the reasoning above. By further reducing the size of SRRs,
magnetic responses based on this principle have been achieved from the far-infrared
to the long wavelength end of the visible spectrum [11].

It is important to note that the electrically coupled magnetic resonance is an in-
direct one, and it is inevitably weak compared to the magnetic resonance excited by
the magnetic field directly. The retrieved effective parameters in the work discussed
above [10] show that the minimum value of the effective permeability around the
3�m magnetic resonance is as large as 0.8, only marginally smaller than that of a
magnetically inactive medium. This is the major reason why metamagnetics in pla-
nar single-SRRs cannot be used in many interesting applications of artificial mag-
netism, including negative-index materials and electromagnetic cloaking devices.
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Fig. 5.5 The transmission and reflection spectra of planar single-SRRs under two polarization
configurations for magnetic resonance at 3�m. An electron micrograph of the sample is shown on
the right-hand side. Adapted from [10]. Reprinted with permission from AAAS

Another serious drawback of planar SRRs is the breakdown of geometrical
scaling and subsequent saturation of the resonance frequency. This saturation ef-
fect fundamentally prevents SRRs from providing magnetic resonance at the “true”
optical frequencies – the visible range. The scaling breakdown of single SRRs is de-
scribed below and was first explained in Ref. [12] in terms of the kinetic energy of
electrons and electron self-inductance, which results from the plasmonic behavior
of noble metals in the optical regime. Similar conclusions have been drawn using
an equivalent circuit model as detailed in Ref. [13]. Note that this saturation effect
is an intrinsic property of an SRR as a resonator, and is independent of how the
SRR is excited. In other words, the analysis below applies to both the planar SRRs
with an electrically coupled magnetic response as well as the standard SRRs whose
response is driven by the external magnetic field directly.

Consider the single SRR in Fig. 5.4a, which is essentially an LC resonator with
a magnetic resonance occurring at the eigenfrequency !m D 1=

p
LC . To the first

order of approximation, the equivalent lumped elements of the LC circuit are L D
�0l

2=t and C D "0wt=d . We use a to denote the unit cell size of the single SRR.
That is, a serves as a scaling factor, and all the geometrical parameters .l; d; t;w/
vary in proportion to a. The simple expressions of L and C show that both scale
with a. This gives rise to an important relation between the resonance frequency
and the scaling factor of the SRRs: !m D c0

p
d=wl2 / 1=a [14]. Within this

simple expression lies the basic scaling capability of SRRs: the resonance frequency
is inversely proportional to the size of the SRR.

This simple but crude reasoning, however, is based on the assumption of perfect
metal with infinite carrier density. In this case, the current excited by the exter-
nal field is carried by electrons with zero velocity. In reality, since a metal has a
finite electron density and hence a finite plasma frequency, there must be finite elec-
tron velocity proportional to the current I in the loop. Hence, there is additional
kinetic inductance Lkin that accounts for the total kinetic energy of the moving
electrons [12]. Derivations show that the additional inductance Lkin is inversely
proportional to the scaling factor a. As a result, the magnetic resonance frequency
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Fig. 5.6 Array of nano-staples with a mid-infrared magnetic resonance. Reprinted with permission
from [15]. Copyright (2005) by the American Physical Society

!m D 1=
p
.LC Lkin/C D 1=

p
a2 C const:, where the constant comes from

the product of C and Lkin and is origin of the scaling saturation effect in SRRs.
Simulations show that the saturation effect determines a maximum resonance of
2� � 373 TH z, which corresponds to a wavelength of about 800 nm [14].

The intrinsic limit to scaling SRR size for obtaining a magnetic response in
the optical range has pushed researchers to seek alternative designs for magnetic
meta-atoms. The objective is to find a structure that fulfills the following require-
ments: (1) compatibility with available nanofabrication techniques, (2) magnetic
resonance excited by external magnetic field directly, and (3) negligible saturation
effects for high-frequency operation. One alternative to double SRRs is to fabricate
a staple-like structure facing a metallic mirror as shown in Fig. 5.6 [15]. The struc-
ture consists of an array of gold “staples” separated from a continuous gold film
by a ZnS spacing layer. From an equivalent circuit point of view, the upper loop
of the staple works as an inductance while the staples footings serve as capacitors.
Each staple can be viewed as a pair of staples facing each other, because the uni-
form gold film works as an imaging mirror. The experimental demonstration in Ref.
[15] used an array periodicity of 600 nm, and a Lorentz resonance in the effective
permeability was observed with a minimum value of about �0:5 at the frequency
of �65THz. Understandably, the magnetic activity in this nano-staple structure is
much stronger than that of the planar SRRs in the previous section because the sta-
ples are effectively “standing-up” SRRs that allow direct coupling to the external
magnetic field. Simulations also showed that it is possible to extend the negative
permeability to higher frequencies of near-IR (near 1:3�m) by reducing the pitch
size and dimensions of the arrays [15].

More advanced artificial elements for magnetic metamaterials include arrays of
pairs of metallic rods, plates or strips. Each of these structures is capable of sup-
porting a principal eigenmode with an anti-symmetric current distribution in the
coupled system. The optical diamagnetic response in pairs of metallic rods was
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Fig. 5.7 A composite consists of pairs of metallic nanorods can support magnetic resonance at
optical frequencies

Fig. 5.8 Schematic of the structure consisting of coupled nanostrips

first predicted in 2002 [16]. A composite comprising pairs of parallel nanorods
along with the required incident field polarization is illustrated in Fig. 5.7. The mag-
netic field oscillates through the gap between the rods and excites a current loop
in each pair of nanorods. Such a nanorod system may also exhibit a negative in-
dex of refraction, as detailed in the next chapter. In the actual fabrication of paired
nanorod arrays using electron-beam lithography and direct deposition, the cross-
section of each rod would become a thin rectangle or trapezoid whose thickness is
much smaller than its length and width. Therefore in the literature, nanorod pairs are
sometimes called by other names like cut-wire pairs or plate pairs [17]. Sometimes
square-shaped plate pairs are favored because the geometry eliminates undesirable
polarization anisotropy in the metamaterial. Negative effective permeabilities from
square nano-plate pair arrays has been observed at near-IR wavelengths between 1.0
and 1:5�m [17].

One of the most successful magnetic metamaterials proposed thus far is the pair
of metal strips shown schematically in Fig. 5.8. These strips support asymmetric
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Fig. 5.9 The FE-SEM image (a) and the AFM image (b) of a typical nanostrip sample

currents in the metal structures induced by the perpendicular magnetic field compo-
nent of light. The paired metal strip design is closely related to the system of pairs of
rods. By simply extending the pairs of rods in Fig. 5.7 along the direction of the ex-
ternal magnetic fieldH , pairs of strips are obtained. The magnetic resonance in such
a structure was first predicted in Ref. [18], and, simultaneously and independently,
in Ref. [19].

The basic structure of the nanostrip magnetic metamaterial consists of a pair
of metallic nanostrips spaced by a dielectric layer, as illustrated in Fig. 5.8 [20].
Reflecting the realities of fabrication, the upper and lower strips are purposely de-
picted to be non-identical, and therefore the overall cross-section of the strip pair
is trapezoidal in shape. Figure 5.9a, b show the field-emission scanning electron
microscope (FE-SEM) and atomic force microscope (AFM) images of a representa-
tive paired nanostrip structure fabricated by electron-beam lithography and vacuum
deposition techniques. The nanostrip structures exhibit both magnetic and electric
resonances under TM illumination with the magnetic field polarized along the strips
(see Fig. 5.8 for polarization definition). For TE polarization with the electric field
aligned with the strips, the structure has no resonant effects. In Fig. 5.10 we plot the
experimentally collected transmission, reflection and absorption spectra of a typical
paired-nanostrip sample under the TM polarization with the magnetic and electric
resonance wavelengths marked as �m and �e , respectively.

To illustrate the nature of the magnetic and electric resonances, consider the sim-
ulation for the field distribution at the two resonance wavelengths �m and �e of a
representative coupled nanostrip sample obtained from a commercial finite element
software (COMSOL Multiphysicsr), as shown in Fig. 5.11. The figure depicts a
cross-sectional view of the paired nanostrips with the three thick layers representing
the Ag�Al2O3�Ag sandwich structure. The arrows show the electric displacement
while the color map represents the magnetic field. At the magnetic resonance
(Fig. 5.11b), the electric displacement forms a loop resulting in an artificial
magnetic moment. Also, note the strong magnetic field inside the loop between
the two metal strips. At the electric resonance (Fig. 5.11a), the electric displacement
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Fig. 5.10 The transmission
(T), reflection (R) and
absorption (A) spectra of a
representative
paired-nanostrip sample
under TM polarization

Fig. 5.11 Simulated electric displacement and magnetic field distributions at (a) the electric res-
onance �e and (b) the magnetic resonance �m. Electric displacement is shown by arrows, while
magnetic field strength is indicated by color. Reprinted with permission from [20]. Copyright
(2007) OSA

is predominantly aligned along one direction with a small circulating component.
The magnetic field is also lower compared to the magnetic resonance. The small cir-
culating component of the electric displacement results in a small magnetic moment,
which manifests itself as a magnetic anti-resonance. The physics of anti-resonances
has been discussed extensively in Refs. [21–23].

5.4 Magnetism in the Visible Spectrum

Let us briefly review the major facts of magnetic metamaterials that we have dis-
cussed thus far. During the first few years of the intense study of metamaterials,
SRRs and their analogues have been the magnetic “meta-atoms” of choice, and
their magnetic response has spanned several decades of the electromagnetic spec-
trum from C-band microwave frequencies up to the optical wavelength of 800 nm.
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At visible wavelengths, however, other structures like coupled nanorods or nanos-
trips are preferred. This is because of the intrinsic limits to scaling the sizes of SRRs
for obtaining a magnetic response in the optical range. In this section, we present a
route to strong and controllable magnetic responses in the visible wavelength range
based on a structure consisting of arrays of paired, thin silver strips.

The magnetism in coupled nanostrips has been discussed theoretically and was
first demonstrated experimentally at the very red end of the visible range [22].
By spatially tuning the dimensions and creating a family of paired-strip samples
with varying geometries, magnetic responses can be achieved across the entire vis-
ible spectrum [20]. The dependence of the magnetic resonance wavelength on the
geometric parameters, which was both experimentally observed and analytically
studied, provides a general recipe for producing optical magnetism with controllable
strength for any visible frequency. We note that any optical magnetic responses,
whether they have a positive or negative permeability, are important for various
applications such as negative refraction, subwavelength waveguides and antennas,
spectrally selective filters, and total external reflection. Most importantly, devices
based on transformation optics including an electromagnetic cloak, which may be
the most exciting potential applications of metamaterials, are based on the delicately
designed distribution of both the permittivity and permeability, and these values can
be either positive or negative depending on the specific design requirements.

Before we proceed with discussing experimental demonstrations of magnetism
in the visible range, it is important to address one issue regarding the constituent
materials used in metal-dielectric metamaterials for visible light frequencies. For
metamaterials that are operational from microwave frequencies to the near infrared,
different metals have been used to create functional units. Copper is commonly
used in microwave metamaterials, partially because it is the standard material in
PCB fabrications. For the infrared band of the optical frequencies, both gold and
silver structures are routinely used; gold is usually preferred owing to its better
performance in various nano-fabrication techniques and its stability against envi-
ronmental degradation such as oxidation. For metamaterials at visible frequencies,
however, silver is the metal of choice mainly because of its superior (smaller) loss
factor compared to any other metal. Gold has roughly three times more loss than
silver, which makes it less favored in high-frequency metamaterials. Moreover, the
absorption edge of gold due to interband transitions .5d ! 6sp/ falls within the
visible range, which essentially rules it out as a metal for metamaterials at visi-
ble frequencies. Therefore in magnetic nanostrips operating in the visible range,
silver is chosen to form the pairs of metal strips. As for the dielectric spacer be-
tween the silver nanostrips, a material with a relatively large dielectric constant is
favored to obtain better field confinement. Therefore in the present structure, alu-
mina .n > 1:6/ is used instead of silica .n < 1:5/ as the spacer dielectric. Note
that semiconductors with very high dielectric constants like silicon or germanium
should not be used for visible-light metamaterials because of the substantial loss
caused by electron transitions across the bandgap.

We now move into the discussion of experimental demonstrations of magnetism
in the visible range using nanostrip pair samples [20]. As illustrated in Fig. 5.8, the
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Table 5.1 Geometric parameters of magnetic nanostrip samples
Bottom width Average width Periodicity

Sample # wb w p Coverage %a

A 95 50 191 0.50
B 118 69 218 0.54
C 127 83 245 0.52
D 143 98 273 0.52
E 164 118 300 0.55
F 173 127 300 0.58
a
Cover ratio is calculated by the ratio of bottom width wb to the periodicity p

whole nanostrip pair stack is trapezoidally shaped with an average width of w and a
bottom width of wb due to fabrication limitations. The thickness of each silver layer
and the alumina spacer are t D 35 nm and d D 40 nm, respectively. These param-
eters are optimized values based on a spatial harmonic analysis [24]. For different
samples, the width w of the strips was varied to obtain optical magnetic resonances
at a set of wavelengths. Six different structures with varying widths were prepared,
as shown in Table 5.1. The periodicity p in different samples was changed in cor-
respondence to the width, such that the overall coverage ratio of each sample is
roughly 50%. This ensures that the strengths of the magnetic resonances in different
samples are comparable. The samples were fabricated by electron beam lithography
techniques. The geometries of the samples were first defined on a glass substrate
with a thin (15 nm) layer indium-tin-oxide via an electron beam writer. Then, stan-
dard vacuum electron beam deposition methods were used to produce a stack of
silver and alumina layers corresponding to Fig. 5.8. Note that two thin alumina lay-
ers of 10 nm were added to the top and bottom of the Ag�Al2O3�Ag sandwich
stacks for fabrication stability. The desired paired nanostrip structures were obtained
after a lift-off process. All six samples are on the same substrate and were fabricated
simultaneously for a fair comparison. Each sample is 160�m � 160�m in size.

To qualitatively illustrate the resonance properties of the magnetic samples with
different strip widths, optical microscopy images of the samples were collected
for two orthogonal polarizations, as shown in Fig. 5.12. For the resonant TM po-
larization case (Fig. 5.12a, c), there are distinct colors in the different samples in
both the transmission and reflection modes, indicating the various resonant frequen-
cies in different samples. For the non-resonant TE polarization, however, the colors
are the same for all samples. In this case the samples act as diluted metals with a
behavior similar to perfect metals: more reflection and less transmission at longer
wavelengths. This is why the non-resonant images all appear blue in transmission
mode (Fig. 5.12b) and red in reflection mode (Fig. 5.12d).

The transmission and reflection spectra (Fig. 5.13) of the samples have been
collected to reveal the nature of the resonances quantitatively. As expected, there
are strong resonances in both the transmission and reflection spectra for TM po-
larization (Fig. 5.13a, c). For TE polarization, the spectra display a non-resonant
wavelength dependence over a broad wavelength range (Fig. 5.13b, d). The slopes
of the spectra in the TE mode confirm that the samples act as diluted metal in this
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Fig. 5.12 Optical microscopy images of the magnetic samples for two orthogonal polarizations.
(a) Transmission mode with TM polarization; (b) transmission mode with TE polarization; (c)
reflection mode with TM polarization; (d) reflection mode with TE polarization. Letters A–F
correspond to the sample naming in Table 5.1. Reprinted with permission from [20]. Copyright
(2007) OSA

case and explain again why samples look blue in transmission mode (Fig. 5.12b) and
red in reflection mode (Fig. 5.12d). The six samples were fabricated with a range of
strip widths from 50 nm (Sample A) to 127 nm (Sample F), and magnetic resonances
occurring from 491 to 754 nm were obtained. This functional frequency range cov-
ers most of the visible spectrum. It is important to note that the positions of the
resonant wavelengths in the TM mode move towards the blue when decreasing the
width of the strips from Sample F to Sample A, which verifies that these coupled
nanostrip structures exhibit a well-behaved magnetic resonance scaling property.

The spectra for TM polarization exhibit important features at three distinct
characteristic wavelengths. Figure 5.14 shows the transmission, reflection and ab-
sorption (including diffractive scattering) spectra of a typical paired-strip sample
(Sample E) under TM polarization with three characteristic wavelengths marked on
the curves. The magnetic resonance around �m results from an anti-symmetric cur-
rent flow in the upper and lower strips, which forms a circular current and gives
rise to a magnetic dipole response. This magnetic resonance is the major feature
that we are pursuing in the coupled nanostrip structure. In addition to the anti-
symmetric current mode, the strip pair also supports a symmetric current mode near
�e , which results in an electric resonance. These two resonances induce the two
local minima in the transmission spectra and local maxima in reflection, as illus-
trated in Fig. 5.14. The absorption spectrum in Fig. 5.14 shows enhanced absorption
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Fig. 5.13 Transmission (T) and reflection (R) spectra of the coupled nanostrip samples for two
orthogonal polarizations. (a) T with TM polarization; (b) T with TE polarization; (c) R with TM
polarization; (d) R with TE polarization. Letters A–F correspond to the sample naming in Table 5.1.
Reprinted with permission from [20]. Copyright (2007) OSA

near the two resonance wavelengths �m and �e , which is natural for plasmonic res-
onances in metal-dielectric structures. The transmission spectrum also displays a
sharp turn-back at a relatively short wavelength �d . This characteristic wavelength
indicates the diffraction threshold and serves as a fingerprint for such grating-like
structures. For a one dimensional grating with a periodicity p, a diffraction channel
is created whenever the wavelength � reaches below a diffraction threshold given
by �d;j D nsp=j , where j is an integer and ns is the refractive index of the grating
substrate (in our case, ns D 1:52 for the glass substrate) [25]. When the wavelength
� falls below �d;j , strong distortion in the transmission spectrum is present and sub-
stantial optical power transfers to diffractive scattering, which is usually attributed
to Wood’s anomaly [26]. In the experimental results discussed here, this threshold
is observed for Samples D, E and F, whose first-order thresholds �d;1 are within the
detection range of � > 400 nm. The positions of �d;1 obtained from Fig. 5.13a for
the three samples agree extremely well with calculated values, exhibiting deviations
of less than 1%.

In addition to experimental characterizations, the properties of the coupled
nanostrip samples were investigated by numerical simulation with a commercial
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Fig. 5.14 Transmission (T) and reflection (R) and absorption (A, including diffractive scattering)
spectra under TM polarization for a typical coupled nanostrip sample (Sample E) with three char-
acteristic wavelengths indicated. Solid lines show the experimental data, and dashed lines represent
simulated results. The two cross-sectional schematics of the strip pair illustrate the current modes
at electric and magnetic resonances, respectively. Reprinted with permission from [20]. Copyright
(2007) OSA

finite element package (COMSOL Multiphysicsr). The material properties of silver
were taken from well-accepted experimental data [27], with the imaginary part of
the permittivity serving as an adjustable parameter to reflect the actual imperfections
of the nanostrip pair fabrication quality. A detailed description of the techniques
used in simulating such structures is discussed in Ref. [22]. The transmission, re-
flection and absorption spectra for a representative sample (Sample E) are plotted
in Fig. 5.14 along with the experimental data. All of the features observed in the
experimental spectra are reproduced remarkably well in the numerical simulations.

5.5 Analytical Model of Magnetic Nanostrips

For practical designs and applications, it is desirable to have an analytical expression
for the relation between the magnetic resonance wavelength �m and the geometric
parameters .w; d; t/ of paired-strip structures [20]. Following the cavity model ap-
proach discussed in Ref. [28], we can see that for the range of parameters used in
the experiments shown above where �m > 2ndw, the cavity resonant wavelengths
�m are well described by
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where "0m is the real part of the metal permittivity and nd is the refractive index
of the spacer. Because the fabricated structures are indeed more complicated than
the ideal case described by the cavity model, there are small deviations between
�m calculated with (5.2) and the experimentally observed values. Such deviations
can be fully accounted for by introducing in (5.2) the effective strip width weff . For
the range of the parameters used in the experiments, calculations show that weff

is only slightly smaller than the bottom width wb of the coupled strips, namely
weff D 0:96wb .

Equation (5.2) has no analytical solution, although it allows useful approxi-
mations in some cases. First-order approximations for the hyperbolic cotangent
function in (5.2) with d
=2� 1 can be incorporated to simplify the expression. In
addition, the second term in the square root can be neglected assuming 2ndw��m.
The permittivity "0m of silver is approximated by the Drude model with "0m.�/ D
5 � �2=�2p , where �p D 134:6 nm is the plasma wavelength of silver [27]. Using
these simplifications, the approximate solution to (5.2) can be written as:

�m D
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�t
C
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d

w2

�2td
�p: (5.3)

This approximation provides physical insight and confirms the intuitive conclusion
that scaling down the width w of the strips results in a shorter resonant wavelength
�m. Moreover, there is a less intuitive conclusion that reducing the thickness t
of the metal strips tends to give �m a red-shift, which has been observed in both
simulations and experiments [22]. Another interesting approximation for (5.2) can
be obtained if the dimensions of coupled strips are relatively large (w2 � �p

2 and
td � �p

2) while d
=2 � 1. In this case, the resonant wavelength �m is inde-
pendent of the thickness t and separation d , and it depends only on the geometric
parameter w: �m � 2ndw.1C �p

2=4 2td/ � 2ndw. This limiting case accurately
describes, for example, microwave magnetic media using paired metal wires [29],
where the resonant wavelength is solely dependent on the length of the wires. Not
surprisingly, the second approximation leads to a natural solution for the basic mode
of an electromagnetic cavity with a characteristic size of w.

In Fig. 5.15 we plot the dependence of the magnetic resonance wavelength �m
with respect to the average width w of the trapezoidal-shaped paired-strip samples
from both experiments and analytical approaches. The experimental data for the
relationship between �m and w is taken from Fig. 5.13a, c. In plotting the results
of (5.2), weff D 0:96wb is used for calculations. From Fig. 5.15 we can see that
the results obtained from the analytical method of (5.2) match the experimental
data remarkably well. Therefore, the equations can be used as a general recipe for
producing paired-strip magnetic metamaterials at any desired optical wavelength.
Figure 5.13 also exhibits negligible saturation due to size scaling, which indicates
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Fig. 5.15 The dependence of the magnetic resonance wavelength �m on the average width w of
the trapezoidal-shaped paired-strip samples. Square: experimental data for �m as a function of w
taken from Fig. 5.13 (a, c); triangles: analytical �m.w/ relationship determined by (5.2)

that such a structure is capable of producing optical magnetism at even shorter
wavelengths.

As for the strength of the magnetic responses in the experimentally studied
paired-strip samples, the effective permeability �0 of each sample around the mag-
netic resonance wavelength �m was retrieved using numerical simulations with
the homogenization technique of [30]. For each sample, the material properties
and geometrical parameters used in the retrieval procedure guarantee good agree-
ment between the simulated and experimental broadband spectra. The minimum
values of permeability for the six coupled-strip samples are shown in Fig. 5.16. The
permeability obtained in each sample is distinct from unity, as opposed to conven-
tional optical materials, and is found to be �1:6 in Sample F for dark-red light of
750 nm and 0.5 in Sample A at the blue wavelength of less than 500 nm. We note
that for all the samples, the magnetic resonance wavelength �m is at least five times
larger than the strip width w, and therefore the coupled-strip samples can be re-
garded as two-dimensional metamaterials at the wavelengths of interest.

The experimental and numerical studies of a family of coupled nanostrips with
varying dimensions have offered a universal structure to create optical magnetic
responses across the whole visible spectrum. The obtained dependence of the mag-
netic resonance wavelength on the geometric parameters provides us with a general
recipe for designing such magnetic metamaterials at any desired optical frequency.
Additionally, it is possible to tune the magnitude of the effective permeability �0

by changing the coverage percentage of the strips. Therefore, the coupled nanostrip
structure can serve as a general building block for producing controllable optical
magnetism for various practical implementations.
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Fig. 5.16 The minimum values of the retrieved permeability �0 at various the magnetic resonance
wavelengths �m for the six samples experimentally studied

5.6 High-Permittivity Route to Artificial Magnetism

In the previous sections we achieve metamagnetic responses by using plasmonic res-
onances to introduce asymmetric current modes in subwavelength metal structures.
There is an alternative approach to obtain artificial magnetism that relies instead
on the Mie resonances in subwavelength dielectric resonators. Subwavelength par-
ticles with very high positive dielectric permittivity support strong resonances with
a large displacement current, which may give rise to strong magnetic field induced
by contra-directional displacement currents. Moreover, the large dielectric constant
implies a small wavelength inside the high-permittivity region; therefore the physi-
cal size of the resonator can be many times smaller than the free-space wavelength.
This situation justifies the treatment of the system as a macroscopically homogenous
medium, and the use of effective constitutive parameters to describe its interaction
with external waves is applicable.

Although the choices are relatively limited, a number of materials do exist with
very high permittivity for both microwave frequencies and the mid- to far-infrared.
At microwave frequencies, ferroelectric ceramics like BaxSr1�xTiO3 (BST) are
attractive candidates for this purpose [31]. Such materials can exhibit a relative
dielectric constant of several hundred at gigahertz frequencies and at room tempera-
ture without an external driving dc voltage. For the far- or mid-infrared, polaritonic
materials like LiTaO3, TlBr, TlCl or SiC have been used in this scheme [32]. When
placing the subwavelength resonators together to form a metamaterial, it is not
essential to follow any particular lattice symmetry because the Mie resonance is lo-
calized. The critical quantities are the geometry (size and shape) of individual rods
or spheres, which determine the spectral position and the properties of the Mie reso-
nances. Intuitively, the packing density of the resonators does have an impact on the
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effective parameters of the metamaterial because the macroscopic electromagnetic
parameters describe the volume-averaged response of the material.

Following the discussion in Ref. [31], we use a square lattice of high-permittivity
cylinders as an example to show the strong magnetic resonances in such struc-
tures. A schematic is depicted in Fig. 5.17a, where dielectric cylinders with diameter
of 2a are placed in a two-dimensional periodic matter with a lattice constant
of d . The incident magnetic field is polarized along the axes of the cylinders. The
scattering property of a cylindrical particle can be solved analytically using Mie
scattering theory. With the calculated field distribution, the effective permeability
of the system along the direction of the cylindrical axis can be evaluated using
�eff D hBi =�0 hH i, where the average value of B is taken over a unit-cell area
of d � d , and the average magnetic field H is taken along a line at the unit-cell
boundary parallel to the cylinders [31]. Assuming the permittivity of cylinders is
200C5i , the effective permeability for a system with a lattice constant of 5 mm and
cylinder diameter 2 mm is plotted in Fig. 5.17b. A strong Lorentz-shaped resonance
in the effective permeability near the microwave frequency of 4 GHz is observed.

Among all the ferroelectric and phonon-polaritonic materials for the high-
permittivity scheme, SiC is by far the most attractive one in optical metamaterial
research because its phonon resonance band falls into the mid-infrared range of
the optical spectrum. SiC is a polaritonic material with its phonon resonance band
centered at 12:5�m .800 cm�1/, which introduces a sharp Lorentzian behavior in
its electric permittivity. The dielectric function of SiC in the mid-infrared is well
described with the following model [33, 34]:
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Fig. 5.17 (a) A square lattice of high-permittivity cylinders with a lattice constant of d and cylin-
der diameter of 2a. (b) The resonance behavior in the effective permeability of the system. The
solid and dashed lines represent the real part and imaginary parts of the permeability, respectively
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Fig. 5.18 The dielectric
function of silicon carbide
(SiC) around its polaritonic
resonance in the mid-infrared
calculated with the analytical
model of (5.4)
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where "1 D 6:5; !L D 972 cm�1; !T D 796 cm�1 and 	 D 5 cm�1. The
dielectric function of SiC around its polaritonic resonance frequency is plotted in
Fig. 5.18. On the high-frequency side, the dielectric function is strongly negative,
which makes its optical response similar to that of metals and has been utilized
in applications like a mid-infrared superlens [35]. At frequencies lower than the
resonance frequency, the permittivity can be strongly positive, which makes SiC
an attractive candidate for producing dielectric-based magnetic metamaterials using
high-permittivity Mie resonators in the mid-infrared wavelength range [36].

We note, however, that this technology cannot be extended into the visible or
near-infrared optical regime because the permittivity of such ferroelectric or po-
laritonic materials becomes relatively small for frequencies above the dielectric
relaxation frequency. Nevertheless, artificial magnetism with dielectric materials
like SiC is of great interest for various applications. In Chap. 9 we will present a
design of an invisibility cloaking device operating at the mid-infrared where the
desired distribution of the magnetic permeability is accomplished by specially ar-
ranged SiC nanowires.
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Chapter 6
Negative-Index Metamaterials

6.1 A Brief Historical Review

The refractive index is one of the most important parameters for an optical medium.
Defined as n D c=v, it measures the comparative velocity of light in different media.
When a light beam travels across the boundary between two different materials, it
bends owing to the change in refractive index at the interface. This phenomenon,
refraction, gives the reason why a water pool appears shallower than it actually
is, why a straw placed partially in water at a slant seems to bend towards the surface,
and why people can use eyeglasses to adjust the path of light in front of their eyes
and alleviate the effects of conditions such as myopia.

The refractive index is a complex number n D n0Cin00, where the imaginary part
n00 characterizes the losses in the material. Using the electromagnetic description
of light given by Maxwell’s equations, the refractive index n is related to basic
material parameters, namely the permittivity " and the permeability �, via n2 D "�.
Therefore there is ambiguity in choosing the sign of n because mathematically there
are two solutions for the refractive index: n D ˙

p
"�. For all known naturally

occurring transparent materials like water or glass, both " and � are positive and
thus the refractive index can be written as n D

p
"�. For anisotropic media like

crystals or absorbing materials such as metals, the situation is more complicated
and a tensor or complex value of the refractive index is required for describing the
optical behavior of such materials. However, for any naturally existing material it is
always true that the positive square root should be chosen.

But what about a negative sign in front of the square root? Is there any funda-
mental law of physics that prevents such a thing from happening? If not, what would
happen to electromagnetic fields in a medium with a negative index of refraction?
And finally, how could we create such a material in reality? All these questions are
to be addressed in this chapter.

Although the research field of negative-index materials (NIMs) is a fairly new
topic that has blossomed in the literature for fewer than 10 years, it is probably not
that surprising to learn that a few scientific giants actually considered phenomena
related to NIMs quite some time ago. These studies were perhaps so early that they
could not be fully appreciated by contemporaries. Negative phase velocity and its
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consequences were discussed in works by Sir Arthur Schuster and Lamb as early
as 1904 [1, 2]; later the optical properties of NIMs were studied by Russian physi-
cists Mandel’stam [3] and Sivukhin [4]. The first systematic study of the general
properties of a hypothetical medium with a negative refractive index is attributed to
Veselago, then with the Lebedev Physical Institute in Moscow, who analyzed the
consequences for electromagnetic waves interacting with such a medium and re-
ported on his initial effort in searching for such materials [5]. He pointed out that
when both " and � are simultaneously negative, the negative square root must be
chosen in the refractive index equation. Veselago coined the term “left-handed ma-
terials (LHMs)” for such media, because the field vectors E, H and the wave vector
k form a left-handed system. He also noted that many remarkable properties would
be associated with a negative index medium. The recent boom in NIMs was indeed
inspired by Sir John Pendry, who not only provided a practical recipe on the building
blocks for NIMs [6, 7], but also made critical predictions on the possible applica-
tions of metamaterials including perfect lenses and superlenses with subwavelength
resolution [8], and an electromagnetic cloak of invisibility [9].

Left-handed materials are probably the most prominent class of metamaterials
among all branches in the present metamaterial research. In fact, during the first
few years of the metamaterial boom, the idea of a negative index of refraction was
emphasized so much that the term metamaterial was often taken to be synonymous
with negative index materials or left-handed materials.

Although the term “left-handed materials” introduced by Veselago was initially
assumed to be applicable for materials with "; � and n being simultaneously nega-
tive (and real), this term now has been used in a much broader context and includes
other optical systems that possess antiparallel phase velocity and Poynting vector.
Such a “left-handedness” property can occur in a variety of systems, including pho-
tonic crystals, highly-anisotropic materials, metal-insulator-metal waveguides, and
more. Some of these systems will be discussed in the last section of this chapter.
Also it is worth noting that the term “left-handed materials” may introduce un-
necessary confusion because this term also arises in the study of chiral materials.
Therefore nowadays the term “negative-index (meta)materials” prevails among re-
searchers in related fields. Another term used by metamaterial researchers for the
same substance is “double-negative materials,” which emphasizes the fact that both
" and� have negative values in such a material. There are also other terms for NIMs,
such as “backward wave media,” “negative phase-velocity media,” etc. These names,
however, appear relatively sparsely in the literature.

Because the index of refraction is a fundamental material parameter that enters
into almost all basic formulae for optics, bringing the refractive index into a new do-
main of negative values has truly excited the imagination of researchers worldwide.
These NIMs bring the concept of refractive index into a new domain of exploration
and thus promise to create entirely new prospects for manipulating light, with revo-
lutionary impacts on present-day optical technologies.
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6.2 Reversed Phenomena in Negative-Index Media

Due to the ambiguity in determining the sign of n D ˙
p
"�, the question arises

even for the simplest case of “negative” materials: which sign for n is to be chosen
when both " and � are equal to �1?

The right sign needs to be assigned in order to satisfy the causality condition. For
any realistic passive medium, there is a positive imaginary part for both " and �,
even though they may be quite small. With " D �1C iı1 and � D �1C iı2 and
taking the case when 0 < ı1 � 1 and 0 < ı2 � 1, we have

n D ˙
p
.�1C iı1/ .�1C iı2/ D ˙

p
.1 � ı1ı2/ � i .ı1 C ı2/

� ˙

�
1 �

i .ı1 C ı2/

2

�
: (6.1)

Causality requires that the imaginary part of n has to be positive for any passive
material. Therefore in the equation above, the minus sign must be chosen when the
real parts of both " and � are negative.

Negative refractive is of course more than a mathematical trick. The arrival of
NIMs provides a rather unique opportunity for researchers to reconsider and pos-
sibly even revise the interpretation of very basic laws. Because the real part of the
refractive index n0 denotes the relative decrease in phase velocity of light when com-
pared with vacuum, the negative refractive index in NIMs implies that the phase
velocity is directed against the flow of energy. Considering a plane wave propa-
gating in the z direction with free-space wave-vector k and angular frequency !,
a direct conclusion from the wave form of ei.nkz�!t/ is that the phase of the elec-
tromagnetic wave traveling in a NIM becomes advanced instead of retarded as in
common materials. A discussion of the relations among the vectors EE; EH , and Ek
can make this point more clear. For a plane wave, Maxwell’s equations give the
following relations for the three vectors:

(
Ek � EH D �!"0" EE

Ek � EE D !�0� EH
(6.2)

Thus for a common material with positive " and �, the vectors EE; EH , and Ek form
a right-handed coordinate system and Ek is parallel to the Poynting vector EE � EH ,
which indicates the direction of energy propagation. However, in a NIM where both
" and� have negative values, from the two equations above it is clear that the vectors
EE; EH , and Ek form a left-handed system. This is the reason why NIMs are sometimes

called left-handed materials, as noted in the seminal paper by Veselago. Note that
in such a system the wave-vector Ek is anti-parallel to the Poynting vector. Again we
reach the apparently astonishing results that in a NIM the energy propagates against
the wave-vector and the phase is advanced in the propagation direction. Many exotic
phenomena result from this unique phase reversal effect in NIMs.
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Fig. 6.1 The refraction of a light beam when passed through the boundary of air and a PIM (left)
or a NIM (right)

The most intuitive result of a negative refractive index is the modified Snell’s
law. Snell’s law is the simple formula used to calculate the refraction angle of
light traveling across the interface between two media of differing refractive in-
dices, n1 sin �i D n2 sin �t . If we extend this law to account for negative refraction,
when a light beam passes through the boundary between a positive index material
(PIM) and a NIM, the angle of refraction �t has to be a negative value. This indi-
cates that the refracted beam is bent at the same side of the normal to the interface.
A schematic of this scenario with negative refraction is depicted in Fig. 6.1.

The bending of light at the PIM/MIM interface can be determined in another
way with richer physics. As discussed previously, in a NIM the wave-vector Ek is
oriented opposite to the light ray represented by the Poynting vector. At the interface
of any two media the tangential component of the wave-vector must be continuous,
which is inferred by one of the most fundamental laws in physics – momentum
conservation. Hence the only possible way to implement the refracted ray is as
shown in Fig. 6.1.

Many interesting phenomena result from the negative index and phase reversal
exhibited in NIMs, including a reversed Doppler effect, reversed Cerenkov radiation
and a reversed Goos–Hänchen shift [5].

The Doppler effect is the apparent change in frequency of a wave that is perceived
by a detector moving relative to the source of the wave. During the relative motion,
the detector is always pursuing points of the wave that correspond to some definite
phase. The frequency “felt” by the detector is ! D !0 C Ek � Ev, where ¨0 is the
actual frequency, Ek is the wave-vector of the wave detected by the observer, and Ev
is the velocity of the source with respect to the detector. The velocity is positive
when the source is approaching the detector. A well-known example of this effect
is the perceived frequency of the sound wave emanating from an ambulance siren
as it rushes past a stationary observer. The perceived frequency is higher when the
vehicle is moving towards the observer because Ek and Ev are in the same direction,
while the frequency is perceived to be lower when the siren is moving away due to
the negative value of the dot product Ek � Ev. A similar phenomenon happens in optical
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waves except that there is a prefactor of 	 D 1
.p

.1 � v2=c2/, which takes into
account the effect of the special theory of relativity. However, in a NIM the light
wave perceived by the detector has the wave-vector Ek pointing from the detector
to the source instead of the opposite as in any common material. Consequently,
the frequency measured by the detector would be lower when the light source is
approaching it because Ek and Ev are anti-parallel in this case.

Cerenkov radiation is the electromagnetic radiation in a cone of angles emitted
by a charged particle passing through an insulator at a speed greater than that of light
in the medium. The angle of the cone corresponds to the condition when the emitted
photons interfere constructively. The angle of the Cerenkov cone with respect to the
particle motion direction is determined by cos' D 1=nˇ, where ˇ is the speed of
the particle normalized by the vacuum light speed. Hence the Cerenkov radiation
will go backward in a NIM because an obtuse angle for the cone must be chosen
when n is negative.

There are other basic laws in optics that need to be modified to account for neg-
ative refraction, such as the Goos–Hänchen shift occurring at total reflection [10]
and the Brewster’s angle in polarizing optics [11]. Generally speaking, in the field of
NIMs we need to carefully reconsider nearly all optical phenomena that are related
to the phase information of light.

6.3 Negative Refraction in Microwave Frequencies

One of the main objectives at the very beginning of metamaterial research was to
construct and verify a negative-index material. Before we proceed with discussing
possible strategies for this goal, it is useful to clarify the reason why there is no nat-
urally occurring material with a negative index of refraction readily observed, even
though there is no theoretical obstacle which would hamper the existence of such a
material. As we have discussed in Chap. 1, for any naturally occurring material such
as crystals or man-made materials whose scale of inhomogeneities is much smaller
than the incident wavelength, the electromagnetic response of the material is well-
characterized by using the macroscopic parameters " and �. Negative values of the
two parameters do exist in nature. For example, noble metals at optical frequencies
are good examples of materials with negative ". As for the negative value of �, some
antiferromagnets and insulating ferromagnets have been shown to provide negative
effective magnetic permeability [12, 13]. A material would have a negative refrac-
tive index if both " and � are simultaneously negative at the same frequency (this
is a sufficient but not necessary condition [14]), which is represented by the third
quadrant in Fig. 1.2. Furthermore, the possibility of realizing simultaneously nega-
tive effective values of " and � in uniaxial antiferromagnets was briefly discussed
several decades ago [15]. Unfortunately, in natural materials the negative electrical
resonance mostly occurs for frequencies of at least a few terahertz, while any natural
magnetic resonance dies off for such a high frequency.
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Since magnetic coupling to electromagnetic fields is a precursor for negative
refraction, one of the most critical steps for achieving a NIM is to overcome the low-
frequency barrier of magnetic response in conventional materials. Thanks to the
advances in metamaterial research, it is now possible to make electromagnetic waves
“two-handed” at high frequencies by using artificially engineered metal-atoms with
a strong magnetic coupling. During the last few years, NIMs have been demon-
strated across several decades of the electromagnetic spectrum, from the X-band
microwave frequencies up to the red end of the visible light.

Although the term “refractive index” is more commonly used in optics, earlier
experimental demonstrations (before 2005) of negative indices of refraction were
focused on microwave frequencies. Prepared with the knowledge of controllable
electric responses from Chap. 4 and artificial magnetism from Chap. 5, the con-
struction of NIMs no longer seems to be such a mysterious and challenging task.
Negative index materials were first realized in a very rudimentary form in which the
negative index was presented along only one principal direction [16]. Later on, two-
dimensional [17] and three-dimensional NIMs [18] were demonstrated using similar
techniques. The famous two-dimensional NIM made by a group at the University
of California – San Diego is shown in Fig. 6.2a, where a periodic array of SRRs
was fabricated with wires placed uniformly between the split rings. This metamate-
rial consists of two building blocks – the wires with negative effective permittivity
"eff .!/ giving rise to an electric response, and the SRRs with negative effective
permeability �eff .!/ resulting from the response to an applied magnetic field. Com-
bining the use of SRRs and metal wires, the UCSD group built a two-dimensional
periodic array, and a negative index of refraction in the microwave frequency range
was verified that was appropriate to a modified Snell’s law [17]. Two years later,
Parazzoli et al. used a similar structure to create a three-dimensional cube operating
in free space, and measurements confirming the negative index of refraction of the
structure were performed at a distance much larger than the wavelength [18]. This
experiment removed any doubts regarding the possibility of fabricating NIMs. The
structures used in the these first demonstrations is the prototype utilized in most of
the early NIMs reported in the literature. Only recently have researchers developed
new geometries to obtain a magnetic response at optical frequencies.
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Fig. 6.2 (a) The NIM at microwave frequency built by the UCSD group. (b) The experimental
result verified the modified Snell’s law. Adapted from [17]. Reprinted with permission from AAAS
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6.4 The Debut of Optical Negative-Index Materials

Although first obtained in the microwave range, scaling negative refraction up to
the optical range is very important for both the theoretical significance and for the
application value that such materials could provide. Indeed, the refractive index is a
concept conventionally used at optical frequencies rather than microwave frequen-
cies. Similar to the considerations shown in Chap. 5 for optical magnetism, direct
downward scaling of microwave NIM structures is not a realistic method to produce
optical NIMs due to both fabrication challenges and, more importantly, material
limitations. The electromagnetic response of metals in the optical range is vastly
different than at lower frequencies, where " is extremely large and metals behave
as nearly perfect conductors. This distinction prohibits the design of optical NIMs
using the same structures as their microwave counterparts. On the other hand, at
optical frequencies, " in metals can be comparable to the dielectric permittivity of
a host material, enabling the excitation of a surface plasmon resonance. This opens
up a new method of achieving negative permittivity and permeability.

The challenges in optical NIM research lay not only in design and fabrication,
but also in experimental characterization. The experimental verification of optical
negative-index metamaterials is far more complicated than that of their microwave
counterparts. Refractive index, by definition, implies the bending of the direction
of the Poynting vector of light at an interface. Unfortunately, to date most of the
reported optical NIMs were in the form of planar layers of subwavelength thick-
nesses fabricated by optical or electron-beam lithography [19–25]. This limitation
in fabricated NIMs has prohibited experimentalists from directly observing the
negative bending of a beam of light from a wedge-like structure, as was done in
microwave NIM experiments. Another approach for directly observing a negative
refractive index is based on geometrical optics, where one could detect the lateral
displacement at the output interface of a homogeneous NIM slab for obliquely in-
cident light beams. This method is limited in a similar way as the wedge approach,
however, because the subwavelength thickness of available optical NIM samples
precludes the experimental observation of any lateral shift of light beams. More
critically, methods relying on the direction of the Poynting vector with inclined in-
cidence at interfaces are, in principle, not capable of unambiguously identifying
the sign of the effective index of refractive in an anisotropic material. Actually, a
negative angle of refraction is an intrinsic property of uniaxial media and has been
observed in natural crystals like calcite and yttrium orthovanadate (YVO4) [26].

Now let us come back to the material properties required of a negative-index ma-
terial. To make a NIM, it is essential to tune the resonance property of the (artificial)
material in such a way that the frequencies for the negative electric response and
those for the negative magnetic response occur in an overlapping spectral range.
A negative effective permittivity at controlled frequencies can be obtained using
artificial materials consisting of periodic metallic structures. The electric response
of such a material can be designed to mimic the Lorentz model, and the charac-
teristic frequency parameters !0 and !p are largely dependent on the geometry
of the lattice and the metallic element [6]. A controllable magnetic response at
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gigahertz frequencies and above has been studied extensively, as detailed in the
previous chapter. Therefore the key in NIM demonstrations is to combine the elec-
tric response and magnetic response in an appropriate manner. We should again
note that the condition of simultaneously negative " and � given in Veselago’s
seminal paper is a sufficient but not necessary condition for constructing NIMs. A
possible approach to achieve a negative refractive index in a passive medium is to
design a material where the (isotropic) permittivity " D "0 C i"00 and the (isotropic)
permeability � D �0 C i�00 obey the equation:

"0�00 C �0"00 < 0 (6.3)

This leads to a negative real part of the refractive index n D n0 C in00 D
p
"�

[14, 27]. The inequality above is always satisfied if both "0 < 0 and �0 < 0.
However, due to the natural inertness of magnetic permeability at optical frequen-
cies, it is a practical challenge to obtain an effective permeability very different
from 1, especially at very high frequencies such as the frequency of visible light.
Equation (6.3) strictly implies that n0 < 0 cannot occur in a magnetically inactive
medium with � D 1 C 0i . Consequently, a magnetic response is essential in a
NIM. The good news implied in (6.3) is that, instead of relying on a negative �0, a
negative index of refraction can be achieved in a magnetically lossy medium with
a negative "0 along with �00 > 0. In this case the inequality in (6.3) may still be
fulfilled, and therefore a negative real part of the refractive index n0 can be obtained.
Actually both of the earliest reported optical NIMs (in 2005) belong to this category.
However, the figure of merit F D jn0j=n00 in these cases is typically small.

The necessary condition for an NIM in (6.3) can be achieved in an array of cou-
pled nanorods. It was shown in an early paper by Lagarkov and Sarychev that a pair
of metal nanorods can have a large paramagnetic response [28]. Then, Podolskiy
et al. showed that such a pair of metal nanorods is also capable of a diamagnetic re-
sponse and, most importantly, negative n0 in the optical range [29]. Following these
theoretical predictions, the first optical metamaterial with a negative index of re-
fraction was experimentally demonstrated by a research group at Purdue University
using a layer of paired metal nanorods [19].

The building block of the metamaterial is a pair of nanorods, as illustrated in
Fig. 6.3. An AC electric field parallel to both rods induces parallel currents in both
rods. The magnetic field, which is oriented perpendicular to the plane of the rods,
causes anti-parallel currents in the two rods as shown in Fig. 6.3. These anti-parallel
currents cause the magnetic response of the system. The magnetic response will be
dia- or paramagnetic depending on whether the wavelength of the incoming mag-
netic field is shorter or longer than the magnetic resonance of the coupled rods.
The two parallel rods form an open current loop, which acts as a transmission line
with a current resonance. Such a current loop is closed at the ends of the rod-pair
through the displacement current. For normally-incident light with the electric field
polarized along the rods and the magnetic field perpendicular to the pair, both the
electric and the magnetic responses can experience resonant behavior at certain fre-
quencies. Above the resonance frequency, the circular current in the pair of rods
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Fig. 6.3 Schematic of the array of paired nanorods

and the displacement current at the ends of the rods can lead to a magnetic field op-
posing the external magnetic field of the incident light. In this design the electrical
component of the incident wave excites a symmetric current mode in each rod pair,
whereas the magnetic component excites an anti-symmetric mode. The excitation
of plasmon resonances for both the electric and the magnetic light components in
an overlapping frequency range results in resonant behavior for the refractive index,
which can become negative above the resonance as previously predicted. This can
be thought of as a resonance in an optical LC circuit, with the metal rods provid-
ing the inductance L and the dielectric gaps between the rods acting as capacitive
elements C .

The sample was fabricated using electron-beam lithography. The designed unit
cell of the paired nanorods array is shown in Fig. 6.4a. Figure 6.5 shows field-
emission scanning electron microscope (FE-SEM) images of a portion of the sample
and a closer view of a single pair of nanorods.

We emphasize that a full characterization of the complex transmission and re-
flection coefficients, including the magnitude and phase information, is critical in
experimental work on negative refractive index materials. The spectra of the mag-
nitudes of the transmission and reflection are important to identify the positions,
spectral widths and relative strength of the electromagnetic resonances in a nanofab-
ricated material. However, these values are not sufficient to verify and characterize
the negative index in the structure, and to retrieve the important parameters like the
effective permittivity ."/, permeability .�/, impedance .Z/ and refraction index .n/
ambiguously. The measurement of the phase shift in the metamaterial layer is also
of critical importance, because it is closely related to the definition of the refractive
index – the phase of wave is retarded in normal PIMs and is advanced in NIMs.

The complex coefficients for transmittance and reflectance needed for the
retrieval of the refractive index were measured directly in the paired nanorod
experiments. The transmission .T D jt j2/ and reflection .R D jr j2/ spectra
were collected with a spectrophotometer using linearly polarized light. The phase
measurements were performed using polarization and walk-off interferometry tech-
niques, as we discussed in Chap. 3. Along with the experimental investigation, the
optical properties of the paired nanorod structure were also simulated based on a
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Fig. 6.4 (a) The designed elementary cell of the paired nanorod structure. (b) Dimensions of a
pair of trapezoidal-shaped nanorods on a glass substrate

Fig. 6.5 Field-emission scanning electron microscope images of the fabricated array (top view).
Left: a single pair of nanorods. Right: a fragment of the pattern

3D finite-difference time domain (FDTD) method. Figure 6.6 illustrates the results
for the phase measurements, including the phase anisotropy and the absolute phase
shift, both of which are compared with 3D FDTD simulations. The phase anisotropy
curve �® for transmitted light shows a strong resonant dependence with a negative
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Fig. 6.7 Real part of the refractive index retrieved from experiments (blue) and simulations
(black). The inset is a zoomed view of the region around 1:5�m where the index of refraction
is negative

value as much as ��100ı around the communication wavelengths of �1:5�m.
From the inset of Fig. 6.6 we can see that the phase shift of the sample with re-
spect to an air slab of the same thickness is ®s;jj D �61

ı for light transmittance at
� D 1:5�m. The magnitude of this value is well below the phase shift in an air
slab of 165 nm ®r D 40ı at 1:5�m, so the negative phase acquired in the sample
is ®s � �21

ı. This negative value indicates that the effective index of refraction is
negative for the wavelengths discussed above. Note that a rather high transmittance
of about 25% is obtained at œ � 1:5�m.

Based on the effective parameter retrieval technique discussed in Chap. 3, we can
obtain the effective index of refraction for two different polarizations using r and t
coefficients. Figure 6.7 is a zoomed view of the real part of the retrieved index of
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Fig. 6.8 (a) Schematic of the paired gold films with dielectric voids. (b) SEM picture of the struc-
ture. Reprinted with permission from [20]. Copyright (2005) by the American Physical Society

refraction using experimental data and the simulated results. Experimental studies
of the nanorod sample provide a value of n D �0:3˙ 0:1 at 1:5�m. The results in
Fig. 6.7 indicate good agreement between measurements and simulations.

An optical negative index is also possible in the inverse of the coupled-nanorod
structure, that is, pairs of elliptically shaped voids in metal films [20]. A negative
refractive index at about 2�m was reported using such an inverse, resonant structure
(note that this observation was obtained at about the same time as [19]). A schematic
and a representative SEM image of such a geometry are illustrated in Fig. 6.8. In
order to construct the coupled-void structure, we begin with two thin films of metal
separated by a dielectric spacer layer. Then, elliptically shaped voids are etched in
the two metal films to form the paired elliptical voids. This creates the inverse of the
original structure of paired metal ellipses. However, both types of samples should
exhibit similar resonance behaviors if the orientation of the electric and magnetic
fields are also interchanged. This is a result of the Babinet principle. It is useful
to note then that, due to the Babinet principle, inverted NIMs such as elliptical or
rectangular dielectric voids in metal films are physically equivalent to paired metal
rods embedded in a dielectric host. This gives us increased flexibility in designing
NIM structures that are actually realizable with current fabrication methods.

We should also note that the first optical NIMs in Refs. [19, 20] were only
rudimentary demonstrations. This is the case because the negative indices in those
demonstrations were accomplished in part because of the significant contribution
from the imaginary part of the magnetic permeability �00, which typically does not
allow for a sufficiently low loss factor.

6.5 General Recipe for Construction

While the two earliest optical NIMs discussed in the preceding section have proven
that NIMs are possible at optical frequencies, they both possessed significant losses
as indicated by a very large imaginary part n00 in the effective refractive index. Based
on our discussion about the sufficient and necessary conditions for the negative
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index of refraction, we can categorize NIMs into two types: double-negative NIMs
(DN-NIMs) in which Veselago’s requirement of both "0 < 0 and �0 < 0 is satisfied,
or single-negative NIMs (SN-NIMs) where only the necessary condition in (6.3) is
fulfilled with "0 < 0 and �0 > 0. The NIMs with pairs of nanorods in Fig. 6.5 and
nano-voids in Fig. 6.8 both belong to the SN-NIM class, which inevitably exhibit a
low figure of merit (FOM).

As we have briefly discussed in Sect. 6.4, for NIMs the ratio �n0=n00 is often
taken as a FOM because low-loss NIMs are desired in most applications. The FOM
of NIMs can be expressed in terms of the effective permittivity and permeability:

FOM D �
j�j "0 C j"j�0

j�j "00 C j"j�00
(6.4)

Equation (6.4) indicates that a DN-NIM with "0 < 0 and �0 < 0 will have a lower
n00 value than an SN-NIM with the same n0 < 0 and �0 > 0. In addition, DN-NIMs
can provide better impedance matching to common positive-index materials than
SN-NIMs.

Although both negative "0 and negative �0 can be realized based on electric and
magnetic resonances, respectively, it is not a good practice to combine the two types
of plasmonic resonances at an overlapping frequency range. First, it is typically very
difficult to obtain a system where both resonances occur at the same frequency. Sec-
ond, any plasmonic resonance always brings loss to the system. Since an electric
resonance is not really necessary in order to obtain a negative "0, we should try to
avoid using an electric resonance in our design. A possible solution to this generic
problem is to use a resonant magnetic structure along with a non-resonant metal-
lic structure that provides “background” negative permittivity in a broad spectral
range, including the wavelength band where the magnetic resonance occurs. This is
not hard to achieve since noble metals like gold and silver have negative permittiv-
ities at optical frequencies below their plasma frequencies. Hence, merely adding
a metal film above and below the magnetic resonator, for example, should provide
the necessary negative permittivity for a NIM [30]. An alternative method proposed
to achieve the background negative permittivity is to use pairs of continuous metal
wires that do not have an electrical resonance at the wavelength of interest [31].
Then a magnetic resonance with a negative permeability is obtained by including
appropriately designed pairs of metallic wires or plates.

The general guidelines above result in the “fishnet” structure, also known as
the double-grating structure, which is today’s prevailing structure for negative-
index metamaterials at optical frequencies [21]. In the fishnet structure, the pairs
of broader metal strips provide negative permeability via asymmetric currents (as
described in Chap. 5), whereas the pairs of narrower metal strips (wires) act as a
diluted metal. This situation is more clearly illustrated in Fig. 6.9. The fishnet can
be viewed as a resonant magnetic structure combined with a non-resonant electric
structure. It is important to note that in the fishnet structure of Fig. 6.9, the pairs
of narrower strips act as such off-resonant wires and, at the wavelength where the
magnetic resonance occurs in the broader strips, they simply provide a background
negative permittivity.
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+ =

μ<0 (resonant) ε<0 (non-resonant) n<0 (resonant)

Fig. 6.9 The fishnet structure: resonant magnetic strips combined with a non-resonant electric
grating

Based on the fishnet structure, several groups around the world have demon-
strated a negative index of refraction in the near-infrared and the visible ranges.
A double-negative fishnet was first reported at a wavelength of 1:8�m with an
FOM above 1 [21], and then at 1:4�m with an FOM of about 3 [22]. A three-layer,
double-negative fishnet was also demonstrated at 1:4�m, which shows that stacking
multiple layers of the fishnet structure will not deteriorate the NIM performance
in terms of optical loss [32]. The Purdue group successfully pushed the double-
negative band of fishnet NIMs into the visible light spectrum. In an early report,
the Purdue team showed a dual-band fishnet NIM exhibiting a double-negative be-
havior at 813 nm with an effective refraction index of n0 � �1 and an FOM of 1.3
[25]. For a different polarization, the same sample also processes a single-negative
band around 770 nm, which sits at the very red end of the visible spectrum. Later,
the same group reported a DN-NIM at 725 nm with a similar geometry, where
an FOM of �1:1 was observed [33]. For the orthogonal polarization, the sample
displays SN-NIM behavior with an FOM of 0.5 at �710 nm, also an improvement
in comparison with the earlier work [25].

The SEM image of the fishnet structure discussed in Ref. [33] is shown in
Fig. 6.10a. The sample is fabricated using standard e-beam lithography, e-beam
evaporation and lift-off processes. A schematic figure of a unit cell of the fishnet
structure along with the incident polarization is illustrated in Fig. 6.10b. The prop-
erties of the plasmonic resonances in the structure can be visualized by simulating
the field distribution in the sample at a few interesting wavelengths, as depicted in
Fig. 6.10c, d. In the field maps, the color depicts the magnetic field, while the ar-
rows show the electric displacement. Figure 6.10c shows an electric resonance at a
wavelength of 540 nm, where the electric displacements in both the top and bottom
strips are aligned together. We emphasize that this electric resonance is not related to
the negative-index behavior we are pursuing. The important electric behavior of the
sample is that at the longer wavelength side of the electric resonance, the effective
dielectric function exhibits a non-resonant Drude behavior, which serves perfectly
as a broadband, background negative ". Figure 6.10d shows the field distribution
of the magnetic resonance at 720 nm, which is essentially identical to the magnetic
response of paired nanostrips that were discussed in Chap. 5.

The retrieved effective parameters for the fishnet sample are plotted in Fig. 6.11
[33]. Figure 6.11a clearly indicates that the electric behavior beyond the electric
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Fig. 6.10 (a) SEM image of the fishnet structure. (b) Schematic of a unit cell of the fishnet struc-
ture. (c) and (d) show the field maps of the region marked with red lines in (a) at wavelengths of
540 and 720 nm, respectively. Reproduced from [33] by permission of the MRS Bulletin
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resonance of �540 nm is similar to that of a dilute metal. This is the desired re-
sponse and is in agreement with our discussion of the general recipe for broadband,
background negative " from the beginning of this section. The magnetic resonance
at �720 nm gives rise to a negative effective permeability, which is necessary for a
DN-NIM. Figure 6.11b reveals a negative index of about �1 along with an FOM of
above 1 at a wavelength of 725 nm, corresponding to red light. As a “by-product,”
at the other polarization the same sample also displays a single-negative response
at the slightly shorter wavelength of �710 nm. Not surprisingly, the FOM of the
single-negative band is 0.5, much lower than that of the double-negative band.

A number of interesting NIM phenomena have been observed in fishnet struc-
tures. In an experiment with a fishnet NIM irradiated at a wavelength near 1:5�m
and probed by a chain of femtosecond pulses, simultaneously negative phase and
group velocities were observed, which means both the carrier wave oscillation and
the pulse envelope moved against the direction of energy propagation [23]. Another
experiment with a fishnet structure at the near-infrared wavelength of�1:7�m real-
ized optical modulation of the effective refractive index, where the photoexcitation
of an amorphous silicon spacer resulted in the dynamic tuning of the metamaterial
properties [34]. The fishnet geometry also allows for truly three-dimensional optical
NIMs. In Ref. [35] a stack of fishnets designed to show NIM behavior for visible
light was milled into a wedge, and a reversed Snell’s law at the PIM/NIM inter-
face was directly verified by observing that the refracted beam bent in the “wrong”
direction. An SEM image of this fishnet wedge was shown in Fig. 3.2c in Chap. 3.

6.6 Alternative Approaches

The techniques discussed in the preceding two sections represent the standard
approach for realizing NIMs at optical frequencies. In this standard method, del-
icate meta-atoms are carefully designed and arranged into a metamaterial whose
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macroscopic electromagnetic responses are characterized by a negative effective
permittivity " and a negative (or positive but lossy) effective permeability �. In this
section we consider several other schemes to achieve a negative effective refractive
index or a negative angle for a refracted light beam at optical frequencies. Alterna-
tive approaches include photonic crystals, anisotropic materials, chirality methods,
plasmonic waveguides, nano-transmission lines, and more.

Negative refraction of light can be realized due to band-folding effects in
specially-designed photonic crystals. Photonic crystals are usually periodic di-
electric structures that are designed to affect the behavior of photons in a method
similar to the way a semiconductor’s periodic potential affects the behavior of elec-
trons. Strictly speaking, photonic crystals cannot be considered as metamaterials,
and the behavior of light waves inside them typically cannot be characterized by
an effective refractive index. This is because the periodicity in photonic crystals
is comparable to the operational wavelength. Therefore, it is hard to distinguish
between the effects of refraction and diffraction in photonic crystals. Nevertheless,
by designing appropriate dispersion relations in photonic crystals, a negative angle
of refraction and an anti-parallel relationship between the wave-vector and the
energy propagation are indeed possible.

In fact, the phenomenon of negative refraction in photonic crystals was suggested
long before the first demonstration of an optical NIM [36]. In 2000, Notomi pointed
out that in a strongly-modulated photonic crystal, light propagation properties are
not very sensitive to the angle of incidence, and therefore the propagation becomes
refraction-like in the vicinity of the photonic band gap. In such a situation, the effec-
tive refractive index can be defined, and its sign and absolute value can be varied by
changing the crystal structure, the refractive indices of constitutive materials, and the
incident wavelength. The effective index of refraction can be negative or less than
unity for this scenario. A good analogy of the effective refractive index in photonic
crystals is the effective mass in semiconductors. The effective mass is a measure
of the band curvature near the bandgap in semiconductors, and the effective index
plays a very similar role in photonic crystals. More advanced theoretical work on
negative refraction in photonic crystals was carried out in Refs. [37, 38]. Negative
refraction of light at near-infrared wavelengths has been experimentally observed
in a two-dimensional, group III–V photonic crystal [39] and in a silicon-polymer
photonic-crystal membrane [40].

We note that although negative light refraction can be realized in photonic
crystals, not all the exotic properties predicted in homogeneous NIMs can be ex-
pected in photonic crystals. For instance, the amplification of evanescent waves
contributing to the super-resolution predicted by Pendry can only be partially real-
ized in photonic-crystal NIMs. This is due to the fact that, for the very large k-vector
components carrying information about the smallest features of an object, the struc-
tural periodicity is too large, and the photonic crystal cannot be considered to be an
effective medium supporting all values of the transverse wavevector for evanescent
waves [37]. On the other hand, NIMs based on photonic crystals may hold cer-
tain advantages over plasmonic NIMs. Most prominently, photonic-crystal NIMs
are entirely dielectric media with little loss, while in metal-dielectric metamaterials
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the loss is the most painful obstacle for many practical applications. NIMs based
on photonic crystals also avoid the requirement of a magnetic response, which is
always a daunting task at optical frequencies.

Another nonmagnetic route to low-loss negative refraction is based on strongly
anisotropic materials [41–43]. Instead of engineering subwavelength units with de-
sired " and� values, the starting point for anisotropy-based negative refraction is the
exploration of the possible relationships between the wavevector k and the Poynting
vector S in nonmagnetic, homogenous media. In an ideal NIM, the two vectors k
and S are antiparallel to each other, which implies an angle of 180ı between them.
In a common uniaxial crystal, generally there is a non-zero angle between k and
S , determined by the birefringence of the crystal as well as the incidence direction.
If we can substantially increase this angle, the projections of k and S along cer-
tain orientations will be directed opposite to each other, and a NIM-like behavior is
expected.

This scenario can be better explained with the help of the isofrequency curves,
as shown in Fig. 6.12. Assuming that the light propagates within the x–z plane, the
isofrequency curve shows the dispersion relation, given as [43]:

k2x
"z
C
k2z

"x
D
!2

c2
: (6.5)

For a given point on the isofrequency curve, the wavevector k is represented by
a vector from the origin to that point, and the angle of the Poynting vector S is
normal to the tangent of the curve at the point. In the isotropic case with "x D "z,
the wave vector surface is circular and the vectors k and S are collinear, as shown
in Fig. 6.12a. An anisotropic crystal corresponds to the case in Fig. 6.12b, where the
wave vector surface becomes ellipsoidal and, as a result, the angle between k and
S is non-zero. Finally, for a material with negative transverse dielectric permittivity
"x < 0 and positive in-plane permittivity "z > 0, the dispersion relation becomes
hyperbolic. The curvature of the hyperbola is such that the signs of kz and Sz are
opposite, as shown in Fig. 6.12c. This opposite directionality between kz and Sz

leads to a negative effective index of refraction. In particular, an effective negative
refractive index has been predicted in a waveguiding system when an anisotropic
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material with "x < 0 and "z > 0 is used as a core of a planar (in the y–z plane)
waveguide with metallic walls [42]. For the propagating modes in such a waveguide,
the wave vector and the energy flux are antiparallel.

The strong anisotropy required in these scenarios can be achieved via differ-
ent schemes. For example, as we discussed in Chap. 4, stratified metal-dielectric
composites may exhibit highly anisotropic optical properties, with the two prin-
cipal effective permittivities given by (4.4) and (4.7). Strong anisotropy is also
possible in a two-dimensional rodded system as depicted in Fig. 4.3a, where the
effective permittivity is negative for light polarized along the metallic wires, and
it is positive for the perpendicular polarization. An experimental demonstration
of negative refraction based on strong anisotropy was shown at the mid-infrared
wavelength of �10�m [44]. In this experiment, alternating layers of highly doped
InGaAs and intrinsic AlInAs were used to form the low-loss, three-dimensional,
all-semiconductor metamaterial, and negative refraction for all angles of incidence
has been observed [44]. A two-dimensional wire system has also been used to
demonstrate anisotropy-based negative refraction. In Ref. [45] a Berkeley group
created an alumina/silver system where silver wires are electrochemically deposited
in a porous alumina template prepared by electrochemical anodization. In this wire
system, a reversed Snell’s law was observed at a red light wavelength of �700 nm.

Negative refraction in waveguides is possible not only for photons, but also for
plasmon polaritons. It has been shown that metal-insulator-metal (MIM) waveg-
uides can function as all-angle negative index media for surface plasmon modes in
such structures [46,47]. Many intriguing phenomena associated with NIMs, includ-
ing a negative angle of refraction and subwavelength imaging, have been predicted
in MIM systems. In experiments, MIM waveguides with negative-index behavior for
plasmon polariton modes have been verified [48]. In that demonstration, a bimetal
Au�Si3N4�Ag waveguide was used to support a dispersion curve with a nega-
tive slope at green light frequencies. Such abnormal dispersion implies antiparallel
group and phase velocities for plasmons in the MIM waveguide. When connecting
this bimetal waveguide to a conventional Ag�Si3N4�Ag slot waveguide, all-angle
negative refraction at the interface between the two waveguides is observed within
the visible spectrum of light. We note that although MIM structures may display
negative-refraction properties, they should not be viewed as negative-index media
for light waves, but instead as negative-index media only for surface plasmon polari-
tons. In addition, although such special waveguides are interesting structures, they
are not considered to be metamaterials. A negative slope in the dispersion curve for
plasmon polaritons or exciton-polaritons can also realized in other systems, includ-
ing organic crystals, gyrotropic materials, and metallic thin films [49].

A few other approaches for optical NIMs have been proposed, but as of yet they
have not been confirmed through experiments. For example, nanoscale metallic
and dielectric particles can serve as optical lumped elements such as nanoresis-
tors, nanoinductors and nanocapacitors, analogous to circuit elements in electronics
[50, 51]. When fused together, nanoparticles with different permittivities can form
parallel and serial nanoelements that can be arranged into optical nanotransmission
lines. Such nanotransmission lines at optical frequencies may exhibit negative-index
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behavior, similar to the reported transmission-line NIMs at microwave frequencies
[52, 53]. A negative index of refraction has also been proposed in frequency-
selective surfaces [54] and three- or four-level atomic systems [55, 56].

Finally, there is a chiral route to negative refraction. As independently suggested
by Pendry and Tretyakov [57, 58], the effective refractive index in chiral materials
can be expressed as:

nL;R D
p
"�˙ �; (6.6)

where � is a parameter characterizing the strength of the chirality, and the subscripts
L and R denote the two circularly polarized eigenstates. Therefore, one of the
two circularly polarized beams in a strongly chiral medium may exhibit a negative
index of refraction, as long as the product "� is small enough so that the chiral-
ity parameter � dominates in the right-hand side of (6.6). Chirality-based NIMs
have been experimentally demonstrated in both the microwave frequency range and
the terahertz range [59, 60]. Given the fact that giant chiral responses in optical
metamaterials have been reported by at least two groups [61, 62], it would not be
surprising to see an optical NIM based on chiral responses in the near future.

References

1. Schuster A (1904) An introduction to the theory of optics. Arnold, London
2. Lamb H (1904) On group-velocity. Proc Lond Math Soc 1:473–479
3. Mandel’shtam LI (1945) Group velocity in a crystal lattice. Zh Eksp Teor Fiz 15:475–478
4. Sivukhin DV (1957) The energy of electromagnetic waves in dispersive media. Opt Spektrosk

3:308–312
5. Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of

sigma and mu. Sov Phys Usp 10:509–514
6. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in

metallic mesostructures. Phys Rev Lett 76:4773–4776
7. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and en-

hanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084
8. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969
9. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:

1780–1782
10. Berman PR (2002) Goos–Hanchen shift in negatively refractive media. Phys Rev E 66:067603
11. Fu CJ, Zhang ZMM, First PN (2005) Brewster angle with a negative-index material. Appl Opt

44:3716–3724
12. Thompson GHB (1955) Unusual waveguide characteristics associated with the apparent nega-

tive permeability obtainable in ferrites. Nature 175:1135–1136
13. Hartstei A, Burstein E, Maradudi AA, Brewer R, Wallis RF (1973) Surface polaritons on semi-

infinite gyromagnetic media. J Phys C Solid State Phys 6:1266–1276
14. Depine RA, Lakhtakia A (2004) A new condition to identify isotropic dielectric-magnetic

materials displaying negative phase velocity. Microw Opt Technol Lett 41:315–316
15. Camley RE, Mills DL (1982) Surface-polaritons on uniaxial antiferromagnets. Phys Rev B

26:1280–1287
16. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with

simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187
17. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of

refraction. Science 292:77–79



References 121

18. Parazzoli CG, Greegor RB, Li K, Koltenbah BEC, Tanielian M (2003) Experimental
verification and simulation of negative index of refraction using Snell’s law. Phys Rev Lett
90:107401

19. Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005)
Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

20. Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental
demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404

21. Zhang S, Fan WJ, Malloy KJ, Brueck SRJ, Panoiu NC, Osgood RO (2006) Demonstration of
metal-dielectric negative-index metamaterials with improved performance at optical frequen-
cies. J Opt Soc Am B 23:434–438

22. Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Low-loss negative-index
metamaterial at telecommunication wavelengths. Opt Lett 31:1800–1802

23. Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative
phase and group velocity of light in a metamaterial. Science 312:892–894

24. Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at
780 nm wavelength. Opt Lett 32:53–55

25. Chettiar UK, Kildishev AV, Yuan HK, Cai WS, Xiao SM, Drachev VP, Shalaev VM (2007)
Dual-band negative index metamaterial: double negative at 813 nm and single negative at
772 nm. Opt Lett 32:1671–1673

26. Chen XL, He M, Du YX, Wang WY, Zhang DF (2005) Negative refraction: an intrinsic prop-
erty of uniaxial crystals. Phys Rev B 72:113111

27. McCall MW, Lakhtakia A, Weiglhofer WS (2002) The negative index of refraction demystified.
Eur J Phys 23:353–359

28. Lagarkov AN, Sarychev AK (1996) Electromagnetic properties of composites containing elon-
gated conducting inclusions. Phys Rev B 53:6318–6336

29. Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-
handed materials. J Nonlinear Opt Phys Mater 11:65–74

30. Chettiar UK, Kildishev AV, Klar TA, Shalaev VM (2006) Negative index metamaterial com-
bining magnetic resonators with metal films. Opt Express 14:7872–7877

31. Zhou JF, Zhang L, Tuttle G, Koschny T, Soukoulis CM (2006) Negative index materials using
simple short wire pairs. Phys Rev B 73:041101

32. Dolling G, Wegener M, Linden S (2007) Realization of a three-functional-layer negative-index
photonic metamaterial. Opt Lett 32:551–553

33. Chettiar UK, Xiao S, Kildishev AV, Cai W, Yuan HK, Drachey VP, Shalaev VM (2008) Optical
metamagnetism and negative-index metamaterials. MRS Bull 33:921–926

34. Kim E, Shen YR, Wu W, Ponizovskaya E, Yu Z, Bratkovsky AM, Wang SY, Williams RS
(2007) Modulation of negative index metamaterials in the near-IR range. Appl Phys Lett
91:173105

35. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-
dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

36. Notomi M (2000) Theory of light propagation in strongly modulated photonic crystals: refrac-
tionlike behavior in the vicinity of the photonic band gap. Phys Rev B 62:10696–10705

37. Luo C, Johnson SG, Joannopoulos JD, Pendry JB (2002) All-angle negative refraction without
negative effective index. Phys Rev B 65:201104

38. Foteinopoulou S, Soukoulis CM (2003) Negative refraction and left-handed behavior in two-
dimensional photonic crystals. Phys Rev B 67:235107

39. Berrier A, Mulot M, Swillo M, Qiu M, Thylen L, Talneau A, Anand S (2004) Negative refrac-
tion at infrared wavelengths in a two-dimensional photonic crystal. Phys Rev Lett 93:073902

40. Schonbrun E, Tinker M, Park W, Lee JB (2005) Negative refraction in a Si-polymer photonic
crystal membrane. IEEE Photonics Technol Lett 17:1196–1198

41. Belov PA (2003) Backward waves and negative refraction in uniaxial dielectrics with negative
dielectric permittivity along the anisotropy axis. Microw Opt Technol Lett 37:259–263

42. Podolskiy VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-
handed system. Phys Rev B 71:201101



122 6 Negative-Index Metamaterials

43. Alekseyev LV, Narimanov E (2006) Slow light and 3D imaging with non-magnetic negative
index systems. Opt Express 14:11184–11193

44. Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Narimanov
EE, Sivco DL, Gmachl C (2007) Negative refraction in semiconductor metamaterials. Nat
Mater 6:946–950

45. Yao J, Liu ZW, Liu YM, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative
refraction in bulk metamaterials of nanowires. Science 321:930

46. Alu A, Engheta N (2006) Optical nanotransmission lines: synthesis of planar left-handed meta-
materials in the infrared and visible regimes. J Opt Soc Am B 23:571–583

47. Shin H, Fan SH (2006) All-angle negative refraction for surface plasmon waves using a metal-
dielectric-metal structure. Phys Rev Lett 96:073907

48. Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science
316:430–432

49. Agranovich VM, Shen YR, Baughman RH, Zakhidov AA (2004) Optical bulk and surface
waves with negative refraction. J Lumin 110:167–173

50. Engheta N, Salandrino A, Alu A (2005) Circuit elements at optical frequencies: nanoinductors,
nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504

51. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by
metamaterials. Science 317:1698–1702

52. Grbic A, Eleftheriades GV (2003) Periodic analysis of a 2-D negative refractive index trans-
mission line structure. IEEE Trans Antennas Propag 51:2604–2611

53. Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed
transmission-line lens. Phys Rev Lett 92:117403

54. Khoo IC, Williams Y, Diaz A, Chen K, Bossard JA, Li L, Werner DH, Graugnard E, King JS,
Jain S, Summers CJ (2006) Liquid-crystals for tunable photonic crystals, frequency selective
surfaces and negative index material development. Mol Cryst Liq Cryst 453:309–319

55. Oktel MO, Mustecaplioglu OE (2004) Electromagnetically induced left-handedness in a dense
gas of three-level atoms. Phys Rev A 70:053806

56. Thommen Q, Mandel P (2006) Electromagnetically induced left handedness in optically
excited four-level atomic media. Phys Rev Lett 96:053601

57. Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C (2003) Waves and energy in
chiral nihility. J Electromagn Waves Appl 17:695–706

58. Pendry JB (2004) A chiral route to negative refraction. Science 306:1353–1355
59. Plum E, Zhou J, Dong J, Fedotov VA, Koschny T, Soukoulis CM, Zheludev NI (2009) Meta-

material with negative index due to chirality. Phys Rev B 79:035407
60. Zhang S, Park YS, Li JS, Lu XC, Zhang WL, Zhang X (2009) Negative refractive index in

chiral metamaterials. Phys Rev Lett 102:023901
61. Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy

due to electromagnetic coupling. Appl Phys Lett 90:223113
62. Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral

magnetic metamaterials. Opt Lett 32:856–858



Chapter 7
Nonlinear Optics with Metamaterials

7.1 Recent Advances of Nonlinear Effects in Metamaterials

In all the preceding chapters, we studied the linear properties of optical
metamaterials, assuming that the effective electric permittivity " and magnetic
permeability � are independent of the incident light intensity. Indeed, an over-
whelming portion of the experimental results on metamaterials reported thus far
are exclusively focused on the linear response of metamaterials to external electro-
magnetic radiation. However, nonlinear effects in metamaterials have become an
emerging field of study, particularly among theoretical physicists. A range of non-
linear phenomena in a variety of metamaterials, especially negative-index materials
(NIMs), have been theoretically investigated to a considerable extent. The studied
topics include general treatments for nonlinear wave propagation and nonlinear
Schrödinger equations in NIMs [1, 2], as well as specific nonlinear processes such
as second-harmonic generation (SHG) and parametric amplification [3–6].

The linear responses of metamaterials have substantially augmented the linear
properties available from naturally-occurring materials. In the same way, the stud-
ies of nonlinear metamaterials may have a revolutionary impact on the entire field of
nonlinear optics. Conventional studies of nonlinear optics are mainly focused on the
exploration of various high-order processes in different crystals. The capability to
design custom nonlinear materials, which is possible in metamaterials, is bound to
open entirely new outlooks for nonlinear light-matter interactions. A good example
of nonlinear phenomena in artificial media is the case of supercontinuum genera-
tion in photonic crystal fibers [7]. Although supercontinuum generation in glass and
liquids has been known for several decades, the technique of using artificially struc-
tured holey fibers immediately became the standard method for supercontinuum
generation soon after its invention at the beginning of this century, while super-
continuum generation from conventional materials has become sparsely mentioned
since then.

The theoretical exploration of nonlinear processes in metamaterials began shortly
after the very first demonstration of a NIM, which consisted of arrays of metallic
wires and split-ring resonators (SRRs). The initial idea of the investigation is quite
straightforward: If the metallic building-blocks of the NIM are embedded in a
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nonlinear dielectric, an intensity-dependent response from the whole metamaterial
should be reasonably expected [8]. As discussed in Sect. 4.3, the expression for
the effective permittivity "eff for wire arrays given in 4.24 contains the dielectric
constant of the surrounding medium. Therefore, a nonlinear electric response is
produced in the metamaterial when, for example, an optical Kerr medium is used
as the host matrix. More interestingly, the effective permeability �eff of this NIM
would also exhibit a nonlinear response owing to a rather complicated chain of
relationships. In Chap. 5 we have shown that the SRR structure can be viewed as
a LC resonator, where the capacitance element in a single SRR primarily results
from the gap. In the present case, that gap is filled with a nonlinear material, and
the resonance behavior �eff will be sensitive to the magnitude of the electric field
localized within the gap. This magnitude is in turn related to the current flow inside
the ring generated by the external magnetic field [8].

Here we see one of the striking features of metamaterials used as nonlinear me-
dia. The nonlinear effects in all conventional crystals depend on a specific power of
the electric field, while the magnitude of the magnetic field seems to play no role
in the nonlinear processes. This claim is a natural extension of our discussion in
Sect. 5.1 on the natural “inertness” of magnetic responses in the optical frequency
range. In sharp contrast to this, however, the giant magnetic response in magnetic
and negative-index metamaterials allows for the dependence of both " and � on the
intensity of the electromagnetic field.

The optical properties of nonlinear metamaterials are sensitive to the strength
of external fields. Such a feature has made it possible to design active metama-
terial devices with various tunable functionalities such as switching and filtering.
At microwave frequencies, such reconfigurable metamaterials can be achieved by
introducing power-dependent lumped elements such as varactor diodes [9]. Sev-
eral microwave metamaterials based on varactor devices have been experimentally
reported, ranging from tunable SRRs as notch filters [10] to second-harmonic gen-
eration in transmission-line NIMs [11].

As for the optical frequencies, although novel nonlinear properties in optical
metamaterials have been extensively studied, up to now the experimental demon-
stration of nonlinearity within the optical range is an extremely rare event. In
addition, regrettably, most of the exotic nonlinear effects in photonic metamaterials
predicted by theorists largely remain unverified in reality. Among the very few no-
table exceptions is harmonic generation from planar arrays of gold SRRs reported
by a group at Karlsruhe University, Germany [12,13]. In their experiment, the SHG
efficiency from the magnetic dipole resonance in SRRs was shown to surpass that
from the electric resonance by several orders. Such remarkable SHG and third-
harmonic generation (THG) efficiencies are claimed to be attributed to the magnetic
component of the Lorentz force acting upon the metal electrons [12]. Although the
experimental data for harmonic generation in SRRs is undoubted, it remains open
to debate whether the metamagnetic response explains the mechanism behind the
observed phenomena. Indeed, enhanced frequency conversion efficiency is known
to occur in plasmonic nanostructures without the involvement of any magnetic reso-
nance [14–16]. Later studies by the same group have shown that similar SHG signals
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can be produced in an array of complementary SRRs, which has an electric-dipole
resonance instead of a magnetic one, according to Babinet’s principle [17]. Further
theoretical studies have shown that the dominant reason for the strong SHG in SRRs
stems from the convective derivative of the continuous electron current, which can
be fully analyzed using the tools of cold plasma electrodynamics theory [17, 18].

Another important experiment on the nonlinear response of optical metamateri-
als was carried out by a Berkeley group using a fishnet NIM [19]. In this work, a
spectroscopic study covering several nonlinear processes including SHG, THG and
four-wave mixing from a sandwich fishnet structure was conducted with varying
wavelengths for the fundamental signal. In the spectral domain, the observed nonlin-
ear resonances are much narrower than the linear absorption, and the spectral widths
are further reduced for processes of higher orders. This investigation indicates that
the major reason for the enhanced nonlinearity in fishnet NIMs is the plasmonic
nature of the light-NIM interaction and the associated local field enhancement from
the plasmon resonances.

Interesting nonlinear phenomena occur not only within metamaterials, but also
at the interfaces between metamaterials and conventional media. It has been pointed
out that stable nonlinear surface waves can be supported at the boundary between a
NIM and a conventional, positive-index material (PIM) [20]. Under certain condi-
tions, such surface waves possess the property of bulk NIM waves, where the energy
flow is directed opposite to that of the phase propagation [21]. Things get even more
intriguing when we stack nonlinear interfaces together. In the linear region, it has
been known for some time that a photonic band gap corresponding to a zero av-
eraged index of refraction can be created in a layered heterostructure consisting of
interlaced ordinary PIMs and NIMs [22]. When the positive-index layers exhibit a
Kerr nonlinearity, a hysteresis behavior occurs in the transmittance of the stratified
system as a function of the incident intensity, which may lead to bistability and the
creation of zero-index gap solitons [23]. Later it was revealed that such bistability
behavior is possible in a bilayer with just one NIM layer and one Kerr optical slab
[24]. The bistability and gap solitons can also be formed in other NIM–PIM struc-
tures, such as a nonlinear coupler where one channel is filled with a NIM and the
other channel has a positive index of refraction [25,26]. The hysteresis and solitons
in the nonlinear coupler result from an effective feedback mechanism due to the op-
posite directionality of the phase velocity and the Poynting vector in the NIM arm.
Similar solitons can be generated even without using NIMs. For example, it has been
suggested that subwavelength discrete solitons can be supported in layered electric
metamaterials consisting of metallic and nonlinear dielectric slabs [27]. The forma-
tion of such discrete solitons arises from the threefold interplay between diffraction,
nonlinear focusing and surface plasmon tunneling.

In Ref. [28], a family of solitary wave solutions is found, which is similar to
pulses associated with self-induced transparency in the framework of the Maxwell–
Bloch model. The evolution of incident optical pulses is studied, as are the collision
dynamics of the solitary waves. These simulations reveal that the collision dynamics
vary from near perfectly elastic to highly radiative, depending on the relative phase
of the initial pulses [28].
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Nonlinear phenomena in metamaterials also offer promise in various real-world
applications. For example, the bistability mentioned above and discussed in
Refs. [23, 24] can easily switch from low transmission to a perfectly transmit-
ting state, which may be used for optical switching, optical limiting and memory
devices. Nonlinear effects also provide hope for better, low-loss optical metama-
terials. It has been suggested that the power absorption in NIMs can be efficiently
compensated via different schemes, including optical parametric amplification [6]
and resonant four-wave mixing [29]. In addition, nonlinear metamaterials may help
in the development of a superlens that is more robust against material imperfections
such as chromatic dispersion and power dissipation. With an appropriate quadratic
nonlinear response, an image of the second-harmonic field with subwavelength
resolution can be achieved even for a slab lens that is opaque at the fundamental
frequency [30]. The wave-mixing in second-order nonlinear NIMs can also be used
for terahertz wave generation from optical signals [31].

The efficiency of most nonlinear wave-mixing processes critically depends on
the phase-matching of the participating waves. In NIMs, the anti-parallel relation-
ship between the phase velocity and energy velocity in combination with the strong
frequency dispersion of the material parameters play a pivotal role in most non-
linear optical phenomena. In particular, they facilitate a fundamentally new regime
of phase matching – backward phase matching. In the following sections, we ana-
lyze in detail a number of second-order nonlinear processes in NIMs, with emphasis
given to the salient features of these phenomena in NIMs as compared to their coun-
terparts in conventional PIMs. Specially, in Sect. 7.2 we analyze the general wave
equations for second-order nonlinear optics and apply them to the SHG process.
The modified Manley–Rowe relations in NIMs are also presented. In Sect. 7.3 we
discuss optical parametric amplification in NIMs and its application to loss com-
pensation in metamaterials. Unlike all of the other parts of this book, where SI units
are assumed, in this chapter we use the Gaussian system of units because it is a
convention in most of the literature on nonlinear optics.

7.2 Second-Harmonic Generation and the Manley–Rowe
Relations in Negative-Index Materials

Since its discovery in the early 1960s, second harmonic generation, also referred to
as frequency doubling, is by far the most fundamental and best understood optical
nonlinear interaction. Naturally, then, SHG was one of the first nonlinear processes
examined in the context of NIMs. In this section we focus on the unique properties
of the SHG process occurring in a dispersive negative-index material. First we be-
gin with a general treatment of second-order nonlinear optics using a set of wave
equations. When two electromagnetic waves with frequencies !1 and !2 propagate
in a quadratic nonlinear medium characterized by a nonlinear electric susceptibil-
ity �.2/P , a number of new frequencies can be generated including !1 ˙ !2 (sum-
and difference-frequency generation), 2!1 and 2!2 (SHG of each fundamental



7.2 Second-Harmonic Generation and the Manley–Rowe Relations 127

frequency). Strictly speaking, all nonlinear media are dispersive and the conversion
efficiency of these nonlinear processes is critically dependent on the relationship
among the wave vectors involved. Such a relationship, usually called the phase-
matching condition, results from the photon momentum conservation and it is a
matter of foremost consideration for frequency mixing in bulk nonlinear media.

The general equations describing three-wave interactions in a �.2/ medium, us-
ing the slowly varying envelope and phase approximations, can be written in the
following form [32, 33]:
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where k2j D .!j =c/
2".!j /�.!j /; c represents the vacuum light speed, and Okj is

the sign of the refractive index nj . Note that (7.1) is quite general, with all possible
combinations of "j and �j considered. The nonlinear polarization terms are:
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.2/.!1I!3;�!2/A3A

�
2 expŒiz.k3 � k2/�; (7.2a)

PNL.!2/ D �
.2/.!2I!3;�!1/A3A

�
1 expŒiz.k3 � k1/�; (7.2b)

PNL.!3/ D �
.2/.!3I!1; !2/A1A2 expŒiz.k1 C k2/�; (7.2c)

where Aj denotes the amplitude of wave !j .
The above equations describe the process of the SHG if !1 D !2 	 ! and

A1 D A2 	 A! are the frequency and the complex amplitude of the fundamen-
tal wave, and !3 D 2!1 	 2! and A3 D A2! are those of the second-harmonic
signal. Another important second-order nonlinear phenomenon is the optical para-
metric amplification, where a signal beam at !s passes through a nonlinear medium
together with a pump beam of a higher frequency !p , and photons of the pump
light are converted into signal photons as well as idler photons at the frequency of
!i D !p�!s . This process can also be described by (7.2) If !1 D !s andA1 	 As
correspond to the frequency and the complex amplitude of the signal wave, !2 D !i
and A2 	 Ai are those of the idler wave, and !3 D !p and A3 	 Ap correspond to
the pump wave. Also, it is convenient to simplify the notations as ".!j / 	 "j and
�.!j / 	 �j .

Second-harmonic generation behavior in NIMs is drastically different from that
in usual, positive-index nonlinear media, mostly owing to the inherent dispersion
and the antiparallel phase and energy velocity directions in NIMs. Since in NIMs
a negative index can occur only within a rather limited frequency range, the funda-
mental wave at ! and the frequency-doubled wave at 2! cannot simultaneously fall
within the negative-index band of a nonlinear metamaterial. Consequently, most of
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Fig. 7.1 The schematics of the SHG processes in (a) a PIM and (b) a NIM, and the distribution of
fundamental and frequency-doubled waves across the slab in (c) a PIM and (d) a NIM

the characteristic relationships in SHG, including the phase-matching condition, the
dependence of conversion efficiency on interaction length, and the Manley–Rowe
relation have to be fundamentally modified for nonlinear metamaterials [3, 4, 34].

Here we consider the SHG process arising from the nonlinear electric po-
larization instead of the nonlinear magnetization. This assumption allows us to
conveniently compare the SHG process in NIMs to the conventional SHG process
in PIMs, where only the electric response is actively involved in the nonlinear phe-
nomenon. Schematics of the SHG processes in PIM and NIM slabs are shown in
Fig. 7.1. It is assumed that the nonlinear material is a NIM at the fundamental fre-
quency ! and has a positive refractive index at the second-harmonic frequency 2!.
The fundamental wave is incident upon both nonlinear slabs from the left interface;
therefore, the energy flow of the fundamental frequency always travels from left to
right, regardless the type of the nonlinear material. The scenario of SHG process in
a conventional PIM is shown in Fig. 7.1a, where the energy and phase of both the
fundamental wave and the frequency-doubled beam flow to the right, in good agree-
ment with our intuition for nonlinear phenomena. In sharp contrast, the directions of
the Poynting vector and the phase velocity are opposite in NIMs, so in that material
slab the phase of the wave at the fundamental frequency ! propagates from right to
left while the energy flows from left to right. In order to satisfy the phase-matching
requirement of k2! D 2k! , the k-vector of the generated second-harmonic wave
has to be directed to the left, as illustrated in Fig. 7.1b. Finally, since the sec-
ond harmonic experiences a positive index at the frequency 2!, its energy flow is
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co-directed with the phase velocity and, therefore, the energy propagates from
right to left as well. This new type of phase-matching condition, known as “back-
ward phase-matching,” provides a fundamentally new regime for the SHG process
[3, 4, 34].

With the above picture of the novel SHG interaction in mind, we shall go through
the wave equations from (7.1) and (7.2) to treat the SHG process in NIMs analyti-
cally. Equation (7.1) is immediately adaptable to the SHG in NIMs, with Ok1 in (7.1a)
taking a negative sign. Assuming the continuous wave case and using the symmetry
properties of the tensor �.2/ [32, 33] (7.1) can be written in the form:
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where �k D 2k! � k2! represents the phase mismatch, and K D �
c2
�.2/.!/ is a

constant for the specific SHG process.
From the wave equations in (7.3), we can derive the Manley–Rowe relation,

which describes the balance in the photon fluxes of waves participating in a non-
linear optical process. Combining the two equations above, we have:

k!
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d jA! j
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d z
�
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d jA2! j
2

d z
D 0; (7.4)

or, for the energy flow:
d jS! j

d z
�
d jS2! j

d z
D 0: (7.5)

If we assume that the nonlinear slab is lossless and that the phase-matching con-
dition k2! D 2k! is satisfied (implying that "2! D �"! and �2! D ��!), the
spatially invariant Manley–Rowe relation takes the form:

jA! j
2 � jA2! j

2 D C 2 D const: (7.6)

In a conventional SHG process in PIMs, the Manley–Rowe relation requires that
the sum of the squared amplitudes is constant. This is fairly intuitive – since both
the fundamental wave and the harmonic wave propagate along the same direction,
it is reasonably expected that the generated wave at 2! grows as the fundamental
photons are annihilated. However, when the nonlinear medium behaves as a NIM
for the fundamental wave, the input interface of the fundamental beam becomes the
output interface for the generated SHG beam, as shown in Fig. 7.1b. Consequently,
it is the difference instead of the sum of the squared amplitudes that remains invari-
ant along the propagation direction. The unusual form of Manley–Rowe relation in
NIMs stems from the fact that the Poynting vectors for the fundamental and the
second harmonic beams are antiparallel, while their wave vectors are parallel to
each other.
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If we decompose the complex amplitudes into real amplitudes and phases as
A!;2! D e!;2! exp.i'!;2!/, the wave equations in (7.3) can be rewritten as:
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. Taking into account the equations for '! and '2! , it is found
that '2! � 2'! D 3 =2. Then we obtain:
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For the SHG process in a NIM slab with a finite length L, the boundary conditions
are given by e!.0/ D e10 and e2!.L/ D 0. Therefore, we obtain the solutions for
the wave magnitudes e! and e2! as functions of the propagating length z:

e!.z/ D
C

cos ŒC
 .L � z/�
; (7.9a)

e2!.z/ D C tan ŒC
 .L � z/� ; (7.9b)

where C
L D cos�1.C=e10/.
We see that the spatially invariant intensity difference in the modified Manley–

Rowe relation given by (7.6) depends on the slab thickness. Owing to the boundary
conditions for the second harmonic wave at the rear interface of the slab, the conver-
sion at any point within the NIM slab depends on the total thickness of the slab. The
development of the fundamental and SHG wave amplitudes along the propagation
direction in a nonlinear NIM is shown is Fig. 7.1d. This behavior is radically dif-
ferent from the PIM case, where the right-hand side of (7.7a) would have opposite
signs, and the boundary conditions are simply e!.0/ D e10 and e2!.0/ D 0. As a
result, the wave solutions for SHG in PIMs are:

e!.z/ D
C

cosh.
C z/
; (7.10a)

e2!.z/ D C tanh.
C z/; (7.10b)

where the constant C is the same as e10. Therefore, under the conditions of phase-
matching, the fundamental wave decays as it goes through the nonlinear medium,
while the SHG wave accumulates an increasing magnitude, as shown in Fig. 7.1c.

The above analysis for SHG in a NIM slab with thickness L can be easily ex-
tended to the case of a semi-infinite lossless NIM at z > 0. Since both waves should
disappear as z!1, the constant C is equal to zero. Consequently, e!.z/ D e2!.z/
throughout the semi-infinite NIM, as implied by the Manley–Rowe relation in (7.6).
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So the incoming radiation at the fundamental frequency can be converted to the
second-harmonic signal in the opposite direction with an efficiency approaching
100% in a semi-infinite, lossless NIM slab, provided that the phase matching con-
dition �k D 0 is satisfied. In this sense, the NIM acts as a nonlinear perfect mirror.
By applying the boundary condition e!.0/ D e10, we obtain the expression for the
wave amplitudes:

e!.z/ D e2!.z/ D
e10


e10zC 1
; (7.11)

which implies a concurrent decrease of both waves of equal amplitudes along the
z-axis.

7.3 Optical Parametric Amplifications in Negative-index
Materials

The significance of the backward phase-matching condition in nonlinear NIMs is
not limited only to the SHG process. Instead, it has a profound effect on all kinds
of wave mixing phenomena. In this section, we discuss the unique properties of
second-order optical parametric amplification (OPAs) in NIMs. Similar to the as-
sumption we used in the previous section, we take the left-handed behavior to be
present only within a certain frequency range, and hence we assume that the signal
wave at frequency !1 experiences a negative index of refraction while both the idler
wave at !2 and the pump at !3 fall into the positive-index range. The schematics of
OPA processes in PIMs and NIMs are shown in Fig. 7.2a and b, respectively. In the
NIM case, all wave vectors are directed from left to right, while the energy of the
signal wave flows against the traffic due to the nature of the nonlinear medium as a
NIM at frequency !1.

In the parametric amplification process, high-energy photons at the pump fre-
quency !3 are down-converted into signal .!1/ and idler .!2/ photons with the
frequency relationship !3 D !1 C !2. With the undepleted pump approximation
given as A3 D Ap D constant, the wave equations in (7.1) can be applied to the
OPA process in a NIM in the following form:
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where�k D k3�k1�k2 represents the phase mismatch in the nonlinear interaction.
In contrast to the previous section on SHG, where a lossless nonlinear material is
assumed, in the following treatment of OPA we include the loss factors ˛1 and ˛2
for the signal and idler waves, respectively. Since loss is one of the major problems
in existing NIMs and especially in those operating at optical frequencies, the OPA



132 7 Nonlinear Optics with Metamaterials

S3

S2

S1k1

k2

k3
S3

S2

S1k1

k2

k3

PIM

a

c d

b

NIM

Δk=0 Δk=0gL=4.8,

z

0 L

η1a

η1a

η2g

η2g

z

0 L
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process may serve as a gain source that can help to compensate the dissipative loss
in NIMs [6]. To incorporate the loss effect into the wave equations, we rewrite
(7.12) as:
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.
To solve the differential equations in (7.13), a set of boundary conditions should

be appropriately imposed. Due to the negative index experienced by the signal wave
at !1, the boundary conditions for a1 are defined at the opposite side of the slab
.z D L/, as opposed to the boundary conditions for the idler a2 (with a positive
index), which are defined at the front slab interface. With the boundary conditions
a1.L/ D a1L and a2.0/ D a20, the solutions to (7.13) are [3, 6]:
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When the input interface has a zero idler magnitude a2.0/ D a20 D 0, the
amplification factor for the left-handed signal wave at !1 is given by �1a D
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2, where:
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The solutions in (7.14) and (7.15) reveal several unusual properties of parametric
amplification in NIMs. In particular, the amplification factor for the signal wave
and the conversion efficiency for the idler wave exhibit oscillating behavior even
with perfect phase matching �k D 0, which is in sharp contrast to the case in
PIMs. This difference is illustrated in Fig. 7.2c, d. Importantly, the amplification
in NIMs depends on the product gL rather than simply on g as in PIMs, where g
is the factor proportional to the product of the quadratic nonlinear susceptibility and
the intensity of the pump field. The reason for this behavior is that the signal and the
idler are determined by the boundary conditions on the opposite sides of the slab,
and they increase in opposite directions. The important advantage of backward OPA
in NIMs is the effective distributed feedback, which enables oscillations without a
cavity. In the NIM case, each spatial point serves as a source for the generated wave
in the reflected direction, whereas the phase velocities of all interacting waves are
co-directed. We also note that the OPA process in NIMs enables the generation of
entangled, counter-propagating photons in the signal and idler beams. Photons from
these two beams also have different handedness: vectors E, H, and k form a left-
handed system in the signal and a right-handed triad in the idler [6].

The OPA process described above can serve as an efficient loss-compensation
mechanism in NIMs. Losses are known to be the major obstacle that may prohibit
many practical applications of optical NIMs. As we have discussed in Chap. 6, due
to causality requirements, lossless resonant NIMs cannot be realized without the
incorporation of some active components. It has also been argued that the Kramers–
Kronig relation imposes certain limitations on achieving negative refraction without
losses [35] (which is still possible, at least for a narrow spectral range [36]). How-
ever, the latter statement relies on a linear Kramers–Kronig relation in a purely linear
system, while in the general nonlinear case such a relation is either not applicable
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or should be modified [33]. Therefore, nonlinear optical effects such as the OPA
process have a strong potential for loss compensation in NIMs. The OPA system we
have shown in this section indicates the possibility of using electromagnetic waves
with frequencies outside the negative index range to provide loss-balancing sig-
nal amplification at a frequency within the negative-index band. Indeed, parametric
amplification has been demonstrated experimentally, although it was in a negative-
index nonlinear transmission line medium rather than in an optical system [37].
A detailed analysis of the feasibility of compensating losses in NIMs by OPA is
presented in Ref. [6].

In addition to second-order nonlinear interactions, the cubic OPA process has
also been theoretically investigated [38, 39]. The third-order OPA system may
employ embedded four-level centers that can be tuned, resulting in the possible
realization of tunable transparency windows in NIMs. This technique relies on a
four-wave interaction process in a medium with a cubic nonlinearity. In this case,
two control (pump) fields at frequencies !1 and !2 combine to create two fields –
the signal and the idler fields – at frequencies !3 and !4. Similar to the quadratic
OPA case, the cubic parametric amplification process also strongly relies on back-
ward phase-matching between the interacting waves. Laser-induced transparency,
quantum switching, frequency tunable, narrow-band filtering, amplification, and a
miniature mirrorless optical parametric generator of the entangled backward and
ordinary waves are among the possible applications of the OPA process in NIMs
[39, 40].
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Chapter 8
Super Resolution with Meta-Lenses

8.1 Perfect Lens with Subwavelength Resolution

In the previous two chapters, we described many intriguing properties in negative
index materials (NIMs). One of the most striking predictions regarding NIMs as
well as an exciting potential application is the “perfect lens.” Since light entering a
NIM from free space will take a sharp turn at the interface, it is straightforward to
see that a planar slab of NIM with sufficient thickness can act as a lens, sometimes
dubbed as the Veselago lens. As depicted in Fig. 8.1c, diverging light rays from an
object are negatively refracted at the first surface of the NIM slab, and the negative
refraction of rays is repeated again at the second boundary. Consequently, the NIM
slab creates an image within the slab and a second non-inverted image in the free
space after the output interface. Compared to a conventional convex lens, the NIM
lens looks quite exotic in that it does not have any axis or curvature, nor does it focus
parallel rays or magnify small objects. All of these features were recognized in the
seminal paper by Veselago [1]. The amazing properties of such a slab lens were first
analyzed by J. B. Pendry, who pointed out that a slab with refractive index n D �1
placed in vacuum allows the imaging of objects with sub-wavelength precision [2].

Due to the Abbe diffraction limit, conventional lenses based on positive-index
materials with curved surfaces (Fig. 8.1a) are not able to resolve objects smaller
than approximately half of the illuminating wavelength �0. The waves scattered by
an object have all of the Fourier components with the wavevector in the propagat-

ing direction kz D
q
k20 � k

2
x � k

2
y , where k0 is the free-space wavevector, and

each pair of .kx ; ky/ corresponds to a Fourier component of the waves from the

object. The total transverse wavevector is kt D
q
k2x C k

2
y . When kt is smaller

than k0; kz is a real number and the wave can propagate in any common mate-
rial without significant power loss. However, when the value of kt exceeds k0; kz

becomes an imaginary value and the wave decays exponentially in the propaga-
tion direction. Such waves, usually called “evanescent waves,” are confined to the
vicinity of the object and do not have any contribution to the image obtained by
standard lenses. However, these evanescent waves carry the sub-wavelength fea-
tures of an object, because to probe the fine details it is required that the transverse

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications,
DOI 10.1007/978-1-4419-1151-3 8, c� Springer Science+Business Media, LLC 2010

137



138 8 Super Resolution with Meta-Lenses
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Fig. 8.1 The limitation of conventional lens and the idea of the NIM slab lens. (a) A conventional
lens only collects the propagating waves. (b) The loss of the evanescent waves in conventional
imaging system. (c) The focusing ability of a NIM slab. (d) The growth of evanescent waves in the
NIM slab and the restoration of both the propagating and evanescent waves

wavelength �t D 2�=kt be smaller that the scale of the features, otherwise the
wave will overlook the fine details of the object. Since the maximum possible value
of kt for propagating waves is identical to the free-space wavevector k0, the highest
resolution can be estimated as 2�=kt;max D �0. Therefore, conventional imaging
systems cannot provide sub-wavelength resolution since they are unable to restore
the evanescent waves (Fig. 8.1b) [3]. More precise analysis shows that the diffrac-
tion limit or Abbe’s limit for a conventional lens is �0=.2n sin˛/, where n is the
refractive index of the medium in which the imaging system is immerged, and ˛
represents the semi-aperture angle of the lens.

In order to beat the diffraction limit and obtain images with subwavelength fea-
tures, researchers have managed to probe and collect the evanescent waves before
they fade away. This is exactly the mechanism behind near-field scanning optical
microscopy, where a probe is placed in the near field to collect evanescent waves.
For many years, there seemed to be no alternative to explore evanescent modes,
except for using a tip or probe in extremely close proximity to the surface of a spec-
imen. In 2000, however, Pendry made a groundbreaking prediction, saying that a
NIM slab is capable of producing flawless images because of its unique property of
amplifying evanescent waves. Along the propagating direction, the field component
of each Fourier mode from the object can be expressed as exp.�i!t C ikzz/. In

free space, kz D
q
k20 � k

2
x � k

2
y is a positive quantity for propagating waves, and

kz D i
z D i
q
k2x C k

2
y � k

2
0 for the decaying near fields. In a NIM the value of the

wavevector kz is

kz D �

r
"�!2

c2
� k2x � k

2
y (8.1)
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for propagating waves. The material parameters " and � possess negative values,
and their product remains positive. The negative value of kz in (8.1) describes the
phase reversal effect in NIMs, as we have discussed in Chap. 6. More interestingly,
kz for evanescent waves in NIMs exhibits a negative imaginary value:

kz D �i
z D �i

r

k2x C k
2
y �

"�!2

c2
: (8.2)

Consequently, the evanescent Fourier components inside a planar NIM slab grow
exponentially along the z direction, following the function exp.
zz/, where 
z is a
positive real number. When a NIM slab is used as a Veselago lens, the growth of
evanescent waves inside the NIM fully compensates for the decay in the rest of the
optical path, therefore evanescent waves revert to their original level at the imaging
plane. This scenario is illustrated in Fig. 8.1d. As for the propagating components
in a NIM lens, their amplitudes remain constant throughout the system, while their
phase values accumulate to zero from the object plane to the image plane, owing to
the reversed phase propagation in the NIM slab. Therefore, ideally all Fourier modes
from the object, including both propagating waves and evanescent components, are
fully recovered at the image plane, and a resolution far below the diffraction limit
can be obtained.

It is important to note that the amplification of evanescent waves in NIMs does
not violate energy conservation, because evanescent waves carry no energy. In an
ideal, lossless NIM slab, the Poynting vector of evanescent waves is zero, so no en-
ergy transport is involved during the growth of evanescent modes in NIM slabs. The
critical mechanism of NIM lenses is related to the resonant surface waves excited
by the evanescent components of light at the NIM surface. The large energy density
associated with these surface waves is built up over time. The energy source of the
surface waves is light scattered from the object, and the evanescent waves serve as
a coupling medium between the source and the surface modes.

It is also worth noting that the conditions for the “perfect lens” are rather severe,
and the far-field “perfect lens” may only have theoretical significance. Rigorous
analysis shows that any realistic losses, anisotropy or impedance mismatch that are
inevitable in today’s resonance-based designs of NIMs can eliminate the desired
effect of flawless imaging [4–6]. Moreover, the image of a “perfect lens” is intrinsi-
cally unstable [7]. To date, all the NIMs based on resonance properties of plasmonic
metamaterials are highly dissipative, anisotropic, and lossy. That is the major rea-
son why so far there has been no far-field demonstration of super-resolution using
a planar NIM slab, except for a few rudimentary results at microwave frequencies
using NIM slabs with thicknesses close to or even smaller than the operating wave-
length [8–10].
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8.2 Near-Field Superlens

Fortunately, there is another version of the slab lens that is relatively easier to
achieve. Although not perfect, it is still capable of imaging with sub-wavelength
resolution. This design could be called a “poor man’s superlens,” as suggested by
Pendry. Provided that all of the dimensions of a system are much smaller than the
wavelength, the electric and magnetic fields can be regarded as quasi-static and in-
dependent, and the requirement for superlensing of p-polarized waves (TM mode)
is reduced to only " D �"h, where "h is the permittivity of the host medium inter-
facing the lens [2]. The near-field version of the perfect lens, usually referred to as
“near-field superlens (NFSL),” does not require optical magnetism and therefore is
relatively easier to achieve. Although limited to the near-field zone only, this kind
of near-field super-lens (NFSL) still allows many interesting applications includ-
ing biomedical imaging and sub-wavelength lithography. Since a NFSL relies on a
negative-" material, noble metals are an attractive option due to their negative di-
electric responses at optical frequencies, as we discussed in Chap. 2. In particular,
silver is usually regarded as the metal of choice, because in the optical range silver
has a much lower loss factor (described by the imaginary part of permittivity) as
compared to all other metals. Similar to the case of a “perfect lens,” where surface
modes at the NIM interface are critical for the amplification of evanescent waves, the
interface between silver and air is capable of supporting surface-plasmon polaritons
when the NFSL condition " D �1 is satisfied. This is the reason that the frequency
at which the metal permittivity is equal to �1 is commonly referred to as the metal’s
surface plasmon frequency. For silver, the wavelength corresponding to its surface
plasmon frequency is about 340 nm, a value in the near-ultraviolet regime.

The growth of evanescent waves in silver slabs, which is a prerequisite for the
superlensing effect with silver, has been experimentally verified [11]. The experi-
ment proved that the magnitude of evanescent waves can indeed be enhanced along
the propagation distance in a silver slab until particular distance is reached where the
material loss dominates over the amplification of the evanescent waves. The results
in Ref. [11] show that enhancement in the evanescent wave magnitude can reach
a factor of over 30 when an optimized film thickness of 50 nm is used. Soon after
these results were published, experimental evidence of the superlensing effect with
silver slabs was observed by two research groups [12, 13]. A schematic of the ex-
perimental configuration of the Berkley experiment is illustrated in Fig. 8.2, where
near-field optical lithography was used to examine the imaging capability of a silver
slab sandwiched between photoresist layers. Using a 35-nm ultra-flat film of sil-
ver as the lens at an ultraviolet wavelength of 365 nm, the researchers successfully
recorded the images of a grating with a 60-nm .��0=6/ half pitch as well as and
an arbitrary object with a 40-nm line width. Further details of the Berkeley NFSL
experiment were presented in Ref. [14].

Analogous to the surface plasmon polaritons supported by metals, surface
phonon polariton modes in SiC have enabled near-field superlensing in the mid-
infrared at a frequency around 10�m [15]. As we described previously in Chap. 5,
the phonon-resonance property of SiC gives rise to negative permittivity on the
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Fig. 8.2 Optical superlensing with a silver slab operating at a near-ultraviolet wavelength. An
image with a resolution of�40 nm is recorded by the photoresist layer next to the silver superlens.
Reprinted from [12] with permission from AAAS. Courtesy of X. Zhang

high-frequency side of the resonance. In an experimental demonstration of this in
Ref. [15], a planar SiC slab of 440 nm thickness was sandwiched between two SiO2
thin films of 220 nm each. The best superlensing performance occurred at a wave-
length of 10:8�m where the NFSL operational condition Re."SiC/ D �Re."SiO2/

is fulfilled. The image transferred through the SiC slab was collected by near-field
scanning microscopy, and a resolution of��0=20 was confirmed in the experiment.

There have been several variations of superlens designs based on a single sliver
slab. For example, several groups proposed the use of layered metal-dielectric com-
posite as the superlens material [16–19]. Numerical studies indicate that a superlens
based on metal-dielectric multilayers may have certain advantages over a pure silver
superlens, especially when the issue of robustness against loss is concerned. Under a
certain circumstance, layered metal-dielectric structures can support subwavelength
resolution even without the involvement of evanescent wave amplification. This op-
erational regime is referred to as canalization, where the layered system works as
a transmission device which delivers images with subwavelength features from one
interface of system to the other [20].

The capability of super-resolution in NFSL designs is limited by a number of
factors. First and foremost, the distance between the object and image planes must
be subwavelength, as implied by the definition of “near-field.” Otherwise, the retar-
dation effect resulting from the traveling-wave nature through the lensing system
will invalidate the assumption of static fields and the uncoupling of the electric
and magnetic field components, which is a requirement for near-field superlensing.
Second, any loss in the NSFL material will substantially deteriorate the desired
super-resolution. Although silver is usually considered to be a low-loss metal in the
near-ultraviolet and visible spectral range, the imaginary part of its permittivity is
still comparable to unity, which is significant enough to be a primary limiting factor.
The surface roughness and imperfections in any actually fabricated negative-" slab
will further limit the experimentally achievable super-resolution in a NFSL. The
overall performance of a NFSL imaging system is determined by the number of
evanescent waves with different kt > k0 that can be restored in the image plane.
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8.3 “Tunable” Superlens Using Random Composites

We note, however, that the silver NFSL can operate only at a single frequency !
satisfying the lens condition ".!/ D �"h, which is indeed a significant drawback of
a lens based on bulk metals. As we discussed in Chap. 2, the permittivity of a noble
metal can be well approximated by the Drude model in the form of (2.17). Thus
for any given host material with dielectric constant "h, the condition "m0 D �"h
is satisfied only at one particular wavelength; for a silver slab in air, for example,
this occurs at � � 340 nm. The operational wavelength �op can be shifted if a host
material other than air is used. However, in practice for a particular desired �op it re-
mains a problem to find a host material such that the operating condition "m0.�op/ D

�"h.�op/ is exactly fulfilled. In addition, it is difficult to obtain �op beyond the visi-
ble range since the value �"m0.�op/ is too large to match any realistic host medium.

The situation can be changed dramatically when we consider using metal-
dielectric composite as the lens material. As we showed in Sect. 2.4, in sharp
contrast to pure metal slabs, metal-dielectric composite films are characterized by
an effective permittivity "e that depends critically on the permittivities and the fill-
ing factors of both the metal and dielectric components. As a result, for a given host
medium, "e D "e.!; p/ may have the value of �"h at practically any wavelength
in the visible and NIR region. The wavelength corresponding to Re."e/ D �"h de-
pends on the structure of the composite and the material constants of the metal and
dielectric components in the composite. A schematic for such a “tunable” NFSL is
shown in Fig. 8.3.

The optical properties of metal-dielectric composites are well described by the
effective medium theory (EMT) [21]. According to the EMT, the effective permit-
tivity "e for a d -dimensional composite material comprising metal particles with
permittivity "m and a volume filling factor p, along with a dielectric component
with permittivity "d and a filling factor 1 � p:

"e D "
0
e C i"

00
e D

1

2.d � 1/

�
.dp � 1/"m C .d � 1 � dp/"d

˙

q
Œ.dp � 1/"m C .d � 1 � dp/"d �

2 C 4.d � 1/"m"d


(8.3)

where the sign should be chosen such that "00e > 0.

Fig. 8.3 Schematic of the
tunable NFSL based on a
metal-dielectric composite
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The dependence of the effective dielectric permittivity "e on the light wavelength
� and on the metal filling factor p is the key to realizing the tunable NFSL [22]. The
operational wavelength defined by the condition ReŒ"e.p; �op/� D �"h.�op/ de-
pends on p and thus can be controlled by varying the metal filling factor. This makes
it possible to tune the operating point over a wide wavelength range of interest.

The principle of the tunable NFSL operation is illustrated in Fig. 8.4. The permit-
tivity of silver is given by the Drude model. The effective permittivity of a composite
Ag � SiO2 film with a metal filling factor p D 0:85 is calculated by the two-
dimensional EMT model. The real part of the effective permittivity "e is smaller
than that of pure metal in magnitude; the imaginary part describes a broad surface-
plasmon absorption band resulting from the electromagnetic interactions between
individual grains in the composite. The permittivities of air, silicon (Si) and sili-
con carbide (SiC) are also shown in the figure (we used the tabulated data of [23]
and fitted it with functions providing excellent agreement within the visible and
NIR range).

For a pure silver slab, the operation wavelengths determined by the condition
ReŒ"e.p; �op/� D �"h.�op/ are indicated in Fig. 8.4 by points A, B, and C for
host media of air, SiC and Si, respectively. For the composite NFSL, semiconductor
materials like Si and SiC with large "h are beneficial to use as the host materials
because they can move �op outside the plasmon absorption band and thus avoid sig-
nificant losses that are associated with large values of "e 00 and hence detrimental to
the achievable resolution. The imaginary parts of the permittivities of Si and SiC
within the wavelength range of interest are negligible and thus do not contribute to
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losses. As seen in Fig. 8.4, using SiC or Si as the host material, a NFSL with a com-
posite Ag � SiO2 film at p D 0:85 operates at points D and E, respectively, which
are both outside the absorption band of the composite.

Thus, for a given host material, one can fabricate a metal-dielectric film with an
appropriate filling factor to work at any desired wavelength within a wide wave-
length range. For example, with a composite Ag � SiO2 film as the lens and SiC
as the surrounding medium, the operational wavelength can be any value to the
right of point B (B corresponds to the pure metal with p D 1:0) in Fig. 8.4 until a
pre-defined cutoff condition (discussed later) is reached, which determines the long-
wavelength and low-p limits for the NFSL operation. Moreover, at the operational
point the loss of the lens material can be less than that of pure metal if the resonance
peak is avoided. As shown in Fig. 8.4, the curve representing "e 00 is lower than that
of pure metal at the wavelengths corresponding to points D and E. The adverse ef-
fect of absorption is less of an issue when semiconductors with high permittivities
are used as the host material. This is because such materials provide a better spatial
resolution, which is approximately proportional to 1=ln.j"0="00j/ for a lens material
with permittivity " D "0 C i"00 [24].

Figure 8.5a shows the required metal filling factor p for superlens operation
using an Ag � SiO2 composite lens. The filling factors were found from the su-
perlens equation ReŒ"e.p; �op/� D �"h.�op/ for different wavelengths with Si or
SiC as the host medium. For each kind of host material, the lower limit of the op-
erational wavelength range corresponds to the pure metal .p D 1/ case. A lower
metal filling factor is required for a longer operational wavelength. For very long
wavelengths, the required filling factor for the composite approaches the percolation
threshold where the broad resonance peak in "e 00.�/ reduces the super resolution ef-
fect. In Fig. 8.5a the upper limit of the possible wavelength range is determined
such that Im."e/=Re."h/ D 0:1 at the longer wavelength end of the operational
range. Note that the criterion we use here is a very conservative one. For a sil-
ver lens working in air as first proposed in Ref. [2] or polymethyl methacrylate
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Fig. 8.5 Performance of an Ag�SiO2 composite lens with Si or SiC as the host medium. (a)
The required metal filling factor p for different wavelengths. (b) The value of Im."e/=Re."h/ for
different wavelengths
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(PMMA) as studied in Refs. [12, 25], the value of Im."e/=Re."h/ was as large as
0.4 while sub-wavelength resolution was still achievable. As seen in Fig. 8.5a, with
an Ag�SiO2 composite as the lens material the operation ranges are 0:47–0:67�m
for SiC host material and 0:61–1:10�m for Si host material. Therefore, combining
the results of the two host media we can achieve a possible operational wavelength
range of 0:47–1:10�m, which covers nearly the whole visible spectrum and the
shorter part of NIR band. The operational range can be expanded even further by
using other host media or other constituent materials for the metal-dielectric com-
posite. The value of Im."e/=Re."h/ as a function of the operational wavelength is
plotted in Fig. 8.5b.

To illustrate the imaging ability of the proposed tunable NFSL based on metal-
dielectric films, we calculate the optical transfer function (OTF) of the system and
the image obtained at the imaging plane for a given object. For simplicity we assume
invariance along the y direction for the whole system (coordinates are shown in
Fig. 8.3). The OTF from the object plane to the image plane is written as

OTF.kx/ D Tp.kx/ exp.ik.1/z d1/ exp.ik.2/z d2/ (8.4)

where Tp.kx/ is the transmission coefficient of the slab for the p-wave (TM mode).
The index “1” represents the material between the object plane and the lens and
the index “2” represents the material between the lens and the image plane. The
transmission coefficient is given as [26]:

Tp.kx/ D
4.k

.1/
z ="1/.k

.e/
z ="e/ exp.ik.e/z d/
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As an example, the performance of the Ag � SiO2 NFSL with SiC as the host
and operating at 632.8 nm is illustrated in Fig. 8.6. At this wavelength the host per-
mittivity "h D 6:94, the effective permittivity of the lens "e D �6:94C i0:31, and
the required metal filling factor given by the relation ReŒ"e.p; �op/� D �"h.�op/ is
p D 0:82. The thickness of the lens is chosen to be d D 20 nm. The modulation
transfer function (MTF), which is defined as MTF.kx/ D jOTF.kx/j2, represents
a useful way to evaluate the imaging ability of a NFSL [27]. In Fig. 8.6a the MTF of
the imaging system (solid line) together with the MTF from the object plane to the
image plane without the lens are plotted as functions of the transverse wavevector
kx . For the perfect lens MTF.kx/ D 1 for all kx and thus a perfect image can be
produced. For free space, as shown by the dashed line in Fig. 8.6a, MTF.kx/ D 1

for propagating waves (when kx=k0 < 1) and it decays exponentially for evanes-
cent waves (when kx=k0 > 1). For the composite NFSL with the parameters given
above, the MTF can maintain a value comparable to unity for a range of kx up
to 15k0, which indicates a resolution of about �=15k0 D �=30 can be obtained.
Figure 8.6b illustrates the simulated result of the image of a pair of slits of width
d and center-to-center separation 2d . The result shows that the composite lens is
capable of reconstructing the object at the image plane. Without the lens, the pair
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Fig. 8.6 The imaging ability of a 20 nm Ag�SiO2 composite lens with SiC as the host medium
working at 632.8 nm. (a) The MTF of the imaging system as a function of the transverse wavevec-
tor kx . (b) The simulated result of the image of a pair of slits of width d and center-to-center
separation 2d

of slits cannot be resolved, as shown by the dashed curve in Fig. 8.6b. Note that the
procedure to calculate the MTF and the image as described above is exact (no quasi-
static or other approximations were used). The only assumption is y-invariance and
p-wave illumination.

It is worth noting that the effective permittivity of the metal-dielectric compos-
ite calculated using the two-dimensional EMT is a method of approximation, which
provides a simple analytical way to evaluate the effective properties of the composite
film. To assure that the composite NFSL does give acceptable resolution, we re-visit
the properties of the composite film using the block-elimination (BE) method. The
BE method is an exact numerical approach to calculate the effective parameters and
local-field distribution of a metal-dielectric film. The detailed procedure is demon-
strated in Ref. [28]. Compared to the results by EMT, the resonance range of the
effective permittivity calculated by the BE method has a longer tail. Therefore, the
value of "e 00 at the operational wavelength of the NFSL obtained by the BE method
is somewhat larger compared to the EMT results. The imaginary part of permittivity
of an Ag�SiO2 composite with different metal filling factors calculated by the EMT
and the BE method are illustrated in Fig. 8.7a and b, respectively; the two calcula-
tions are in reasonable agreement. Because the BE algorithm is time-consuming, it
is not feasible to calculate the exact p D p.�/ relationship of the composite NFSL
using this method. However, using the p D p.�/ relation given in Fig. 8.5a as a
starting point, one can verify that the "e 00 obtained by the exact BE method is indeed
acceptable for the composite NFSL to provide the superlensing effect.

There is no unambiguous way to define the resolution of an imaging system. Here
we use a modified version of Rayleigh’s criterion to evaluate the limit of resolution
for the proposed composite NFSL system. Similar to the example in Fig. 8.6b, we
consider a NFSL system where the lens thickness is d and the object is a pair of
slits of width d and center-to-center separation 2d . At the image plane, the two
slits are regarded as barely resolvable if the intensity at the midpoint of the slit
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Fig. 8.7 (a) The imaginary parts of the effective permittivity "e 00 of an Ag�SiO2 composite
calculated by the EMT. (b) "e 00 calculated by the BE method
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Fig. 8.8 The upper bound of "e 00 determined by the Rayleigh criterion (dashed) and the "e 00 at
the operational wavelength calculated by the BE method (solid). The NFSL system is a 20-nm
Ag�SiO2 composite with Si or SiC as the host medium. The object is the same as that in Fig. 8.6b

pair is 8I0= 
2 D 0:811I0, where I0 is the maximum intensity [29]. This criterion

provides an upper bound for the detrimental effects on NFSL performance such as
loss, impedance mismatch, retardance, and others.

Considering an Ag� SiO2 composite NFSL of d D 20 nm with Si or SiC as the
surrounding medium, the upper bound of "e 00 determined by the Rayleigh criterion is
shown in Fig. 8.8, together with the values of "e 00 within the operational wavelength
range obtained by the BE method using linear interpolation. We see that the "e 00

calculated by the exact two-dimensional BE method is still far below the upper
bound of "e 00 defined by the Rayleigh criterion, which verifies that the composite
NFSL can give near-field super-resolution.
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8.4 Potential Applications of the Composite Lens

As seen from the considerations above, random metal-dielectric composite films
have potential for use in the development of versatile and wavelength-controllable
NFSL designs. Such versatility and wavelength selectivity can make the difference
in a wide range of applications including bio-sensing, spectroscopy, sub-wavelength
imaging, and nanolithography. A few examples of these applications are briefly dis-
cussed in this section.

The first application of the proposed composite lens is surface-enhanced, remote
sensing of bio-molecules such as proteins, using, for example, the phenomenon
of surface-enhanced Raman scattering (SERS). In SERS, a metal surface with
nanoscale roughness provides field enhancement to the Raman scattering process,
greatly enhancing the scattered signal intensity. In this approach, however, a com-
posite superlens is used to image a SERS-active substrate to a different place in
space where analyte bio-molecules are located. In this way, the bio-molecules are
physically separated from the SERS-active substrate. This method has advantages
over typical SERS schemes because it is known that in SERS the molecules directly
in contact with the metal surface typically experience undesired modifications and
denaturing due to at least the charge transfer effect [30], causing significant changes
in their optical spectra and biological activity. As a result, SERS spectra often repre-
sent signatures of metal-molecule complexes rather than the molecules themselves.
A metal-dielectric composite lens offers a solution to the problem by “imaging”
the high local fields of the SERS substrate to the other side of the composite lens,
where bio-molecules are placed, as illustrated in Fig. 8.9a. Using this technique, the
molecules are removed from the metal and thus do not undergo any modification
caused by the metal, but they still experience the dramatic enhancement provided
by the metal surface. In addition, the use of a tunable NFSL based on a composite
film is certainly more convenient here compared to a pure silver lens, which would
only work at a single wavelength in UV range. Moreover, it is known that a semi-
continuous film used as a SERS substrate is more effective for longer wavelengths
[21], which would not be possible at all for a pure silver lens.

Fig. 8.9 Examples of applications for composite NFSL designs. (a) Remote SERS sensing; (b)
non-contact bio-molecule probing; (c) nanoscale lithography
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For various biomedical and detection applications it is of critical importance to be
able to optically probe the internal structure of intact cells, spores, and other biologi-
cal objects with sub-wavelength resolution. Near-field scanning optical microscopy
(NSOM) is a method that can accomplish sub-wavelength resolution imaging by
employing a tiny optical fiber tip and bringing the tip to within a few nanometers
of an object. However, NSOM imaging cannot probe inside a cell or object directly,
since the technique requires that the fiber tip be within a few nanometers of the area
of interest. Thus the tip would need to penetrate inside the object, which can often
modify or even destroy the object. However, we can avoid this fate by using a metal-
dielectric superlens, allowing us to observe the various internal structures in intact
cells and other objects. The metal-dielectric lens would allow us to place the image
of a bio-object on the other side of the lens. We can then scan the object’s image
with an NSOM tip without touching the object itself. The schematic for the proposed
technique is depicted in Fig. 8.9b. Such remote, non-invasive, intra-object imaging
is of particular interest for biomedical analysis and sensing of biological agents.

The proposed tunable NSFL may also find applications in nanoscale optical
manufacturing. There are already promising results in this area obtained using a
silver slab lens [13]. Using an appropriately designed composite NFSL rather than
a silver slab, we could use any of a number of available laser sources that can
make the proposed nano-fabrication more versatile and less expensive. A schematic
illustrating this scheme is shown in Fig. 8.9c. The tunable NFSL produces an image
of the mask in the image plane, where photo-resist has been placed. The spatial
resolution in this case can be well below the diffraction limit, which makes laser
nano-manufacturing possible.

8.5 Far-Field Imaging with Super-Resolution

In the foregoing sections, we have described in detail the mechanism of opera-
tion and the realization of NFSLs that allow for sub-diffraction-limited resolution.
Although these are very intriguing and fundamentally important issues, the su-
perlensing effect in such systems is limited to the near field. This fact greatly
restricts the possible use of superlenses in many applications such as the direct
observation of the subwavelength features of objects using common cameras or
even the human eye. According to Pendry’s initial perfect-lens proposal, a thick
slab of a negative-index medium is theoretically capable of providing far-field
super-resolution. However, losses inherent in today’s plasmonic negative-index
metamaterials eliminate any chance of far-field superlensing. Therefore, the goal
of this section is to explore the possibility of subwavelength resolution in the far-
field without the use of NIMs. Most experimental breakthroughs on this topic were
achieved by a Berkeley group led by Xiang Zhang.

One way to break the diffraction limit in the far-field is to convert the enhanced
evanescent waves in a NFSL into propagating waves by a coupling element. This
coupling mechanism can be achieved by adding a periodic grating on the outer
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Fig. 8.10 The far-field superlens with a silver slab plus periodic corrugations. (a) Schematic of the
far-field superlens and its adaptation in a conventional microscope; (b) SEM image of a nanoslit-
pair object; (c) diffraction-limited image of the object from a regular optical microscope; (d) the
far-field superlens resolves the subwavelength details of the object. Adapted with permission from
[32]. Copyright (2007) American Chemical Society. Courtesy of X. Zhang

surface of the silver superlens [31, 32]. The role of such periodic corrugations in
the coupling between light waves and surface plasmons has been known for a long
time [33] and is widely used for applications such as extraordinary optical trans-
mittance and subwavelength light concentration [34, 35]. Figure 8.10a depicts a
schematic of the far-field optical superlens reported in Ref. [32]. A properly de-
signed, subwavelength grating is added onto a 35-nm-thick silver superlens in order
to convert some evanescent modes into propagating waves. When inserting the spec-
imen as well as the corrugated silver slab into a conventional optical microscope, a
far-field imaging system with subwavelength resolution can be achieved. Similar to
the silver superlens, the far-field lens works at the surface plasmon frequency of the
silver–polymer interface, which occurs at 377 nm in this demonstration. The exper-
iment shows that the far-field superlens is capable of imaging a pair of 50-nm-wide
nanoslits separated by a gap of 70 nm, as shown in Fig. 8.10d. Without the far-field
superlens, a conventional optical microscope fails to resolve such small features, as
seen in Fig. 8.10c.

Compared with near-field scanning optical microscopes, the far-field superlens
provides a relatively efficient method for image collection. This new invention
projects the subwavelength details of an object into the far field, thus avoiding
the point-by-point scanning commonly seen in most near-field techniques. However,
there are a number of limitations regarding the imaging capability of a far-field su-
perlens. First, although the image can be transported to the far zone, the specimen
has to be placed very close to the silver superlens surface. Otherwise, the evanes-
cent waves will diminish to a negligible magnitude before they interact with the
metal. Second, the one-dimensional grating only allows for the scattering of evanes-
cent modes to propagating waves along a single direction. As a result, the system in
Fig. 8.10 can only resolve the subwavelength features of a one-dimensional object,
such as the thin slit pair used in the demonstration. This limitation may be partially
circumvented by introducing more sophisticated corrugations and advanced image
reconstruction techniques [36]. More fundamentally, there is an intrinsic limitation
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to the wavevector band within which the evanescent modes can be manipulated [32].
For the far-field superlens shown in Fig. 8.10, only the evanescent waves with trans-
verse vector between nk0 and nk0 C kƒ can be reliably retrieved, where n is the
refractive index of the surrounding material and kƒ represents the grating wavevec-
tor. This limitation to the maximum allowed wavevector of evanescent waves, in
turn, sets the bound for the best achievable resolution in a far-field superlens. More
complicated, multiple measurements with high-order coupling elements must be
used if a wider bandwidth in the Fourier space is to be probed.

An optical “hyperlens” consisting of alternating metal and dielectric layers in
a cylindrical geometry offers an alternative method to convert evanescent waves
into propagating waves that can be collected in the far zone. Instead of complet-
ing the wave conversion with specific corrugations on the superlens surface, in a
hyperlens the transverse wavevectors of an object’s evanescent waves are gradu-
ally suppressed as the waves travel outward from inside the cylinder. Eventually the
transverse wavevectors are reduced to such an extent that they become smaller than
the light wavevector, and therefore the evanescent waves evolve into propagating
waves in free space or in the surrounding dielectric medium. This mechanism was
proposed by two teams independently [37,38], and was later confirmed experimen-
tally by the Zhang group at Berkeley [39].

As we showed in Chap. 3, a stratified metal-dielectric composite can work as
a metamaterial with very anisotropic optical properties along its two principal di-
rections. For the construction of a hyperlens, the metallic and dielectric layers are
arranged concentrically in a cylindrical system in such a manner that the two ef-
fective permittivities have opposite signs: "r < 0 and "� > 0. If this condition is
satisfied, the isofrequency curve of the composite medium is hyperbolic. The reader
may better visualize the scenario by referring to Fig. 6.14c and replacing the kx
and kz there by kr and k� , respectively. The hyperbolic wavevector surface gives
rise to two essential features necessary for a hyperlens. First, the wavevector for a
fixed frequency can take on arbitrarily large values [37]. More importantly, since
the Poynting vector is indicated by the normal to the isofrequency curve, the Poynt-
ing vectors for most Fourier components are directed largely parallel to each other,
being perpendicular to the asymptote of the hyperbolic curve [40]. This effect is
particularly evident when the hyperbolic dispersion curve is nearly flat, a feature
adopted in the hyperlens design. Consequently, a point source placed inside a hy-
perlens generates a beamlike radiation along the radial direction, as illustrated in
Fig. 8.11a. Furthermore, the directional nature of radiation and the cylindrical sym-
metry together give rise to a magnification of the object, with the magnification
equal to the ratio between the outer and inner radii of the hyperlens. The magnifi-
cation causes the image of the subwavelength features of the object to be enlarged
and observable using conventional optical devices.

In the experimental demonstration of a hyperlens working at an ultraviolet
wavelength of 365 nm [39], a curved periodic stack of silver and alumina layers
were deposited on a half-cylinder cavity etched on a quartz substrate, as shown
in the schematic of Fig. 8.11b. The entire hyperlens consisted of 16 alternating
layers of Ag=Al2O3, with the thickness of each layer held constant at 35 nm. The
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Fig. 8.11 (a) Magnification and beaming effects in a hyperlens consisting of alternating metal and
dielectric layers. Reprinted with permission from [37]. Copyright (2006) OSA. (b) Schematic of
the hyperlens demonstrated by the Berkeley group; (c) an arbitrary object (the text “ON”) and its
hyperlens image with sub-diffraction resolution. Reprinted from [39] with permission from AAAS.
Courtesy of X. Zhang

magnification of this hyperlens was about 2.3. The object was formed by inscrib-
ing nanoscale patterns into a chrome layer located on the inner surface of the
half-cylindrical hyperlens. By incorporating the hyperlens with a regular optical
microscope, a sub-diffraction-limited resolution of 130 nm was achieved. One ex-
ample of the imaged object is the arbitrary pattern consisting of the text “ON” with a
line width of�40 nm, as shown in Fig. 8.11c. The performance of the hyperlens can
be improved if a spherical geometry instead of the cylindrical shape is used. In this
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case, the object is uniformly magnified and faithfully restored at the outer surface
of the spherical hyperlens.

Another demonstration of a magnifying, cylindrical lens was realized for surface
plasmons confined in a two-dimensional surface [41]. The reported device was
formed of concentric polymer rings on a gold surface. At the designed operational
wavelength of �500 nm, the dispersion curves for surface plasmon waves at gold-
polymer and gold-air interfaces exhibit opposite slopes. As a result, the effective
refractive indices as perceived by the surface plasmons are alternatingly positive
and negative for the concentric layers, fulfilling the hyperlens requirement [37, 38].
The magnifying action of the plasmonic hyperlens was demonstrated by imaging
rows of polymer dots placed inside the inner ring, and the magnified images were
captured by collecting the scattered radiation using a conventional microscope.
A deeply subwavelength resolution on the order of 70 nm was obtained in the
plasmonic imaging system.

In Ref. [42], it was shown that the use of nonperiodically distributed thick-
nesses of the hyperlens layers may result in better performance. We also note that
the originally proposed hyperlens suffers from strong reflections at its inner and
outer cylindrical surfaces, causing reduced light throughput. With local control of
the electromagnetic response of metamaterials, the impedance matching at these
boundaries can be improved [43]. Moreover, the actual fabrication and use of the
hyperlens is extremely challenging, as in its original concept it requires cylindrical
symmetry. Such symmetry is needed to slowly increase the electromagnetic mode
wavelength as the wave spreads away from the center of the device to the point
where propagation in air becomes possible [44]. In addition, its cylindrical symme-
try limits applications, because placing an object of interest in the hyperlens’ inner
cylindrical cavity is often impossible. One would be better served by a planar hy-
perlens – if it were possible. The approach of “engineering optical space” based on
the transformation optics with local control of a metamaterial’s response offers a
direct solution to this problem [45]. The process of “slowing down” the evanescent
waves required for converting them into propagating waves in air can be achieved
by properly varying the dielectric tensor within the hyperlens. Simulations for the
proposed flat hyperlens show that it can produce magnified far-field images of sub-
� structures [46]. Such a planar, magnifying hyperlens could eventually become
a standard add-on to conventional microscopes. By enabling nanoscale resolution
in optical microscopy, metamaterial-based transformation optics could allow one to
literally see extremely small objects with the eye, including biological cells, viruses
and, possibly, even DNA molecules.

A number of other schemes have been proposed for far-field sub-diffraction-
limited resolution based on optical metamaterials. Numerical studies from the
Kawata group in Osaka, Japan, showed that subwavelength images can be trans-
ferred over distances of at least many wavelengths using a lens made of stacked
silver nanorods [47]. The chains of nanorods with weakly damped plasmon reso-
nances project images from one end of the system to the other end in a pixel-to-pixel
fashion, as illustrated in Fig. 8.12a. The situation very much resembles that of
aconventional fiber image waveguide consisting of thousands of optical fibers,
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Fig. 8.12 Metallic nanolens with chains of silver nanorods. (a) Schematic of far-field imaging
with stacked arrangement of silver nanorod arrays; (b) spectral dependence of plasmon resonance
modes as a function of rod length; (c) magnification of images based on tapered arrangement of
nanorod arrays. Reprinted from [47] by permission from Macmillan Publishers Ltd: Nat Photonics,
copyright (2008)

which transmit images to a remote end. However, there is one fundamental dif-
ference between the common fiber bundle system and this new invention. In a
fiber-bundle imaging guide, each fiber transmits a pixel with a size subject to the
diffraction limit. In the proposed nanorod arrays, however, each chain of nanorods
is capable of capturing the local features of an object with a typical size of no more
than tens of nanometers. Thus the resolution of the nanorod-bundle system is not
limited by diffraction.

The most fascinating feature of the proposed silver-wire lens scheme lies in its
potential for color imaging. The nanorod chain can be designed such that different
orders of plasmons at several wavelengths within the visible spectrum can be sup-
ported simultaneously. This effect can be visualized by the frequency dependence
of plasmon modes as a function of the rod length, as shown in Fig. 8.12b. From the
color theory in visual arts we know that a set of three colors is usually enough to mix
and produce all other perceivable colors (for example, the RGB color model). There-
fore, real-time color imaging is in principle possible in the silver-wire lens system.
Magnification in this lens is also not a problem, since the stacked layers of metallic
nanorods can follow a tapered arrangement to provide magnification. In addition,
the separation between adjacent pixels at the exit end can be large enough to allow
for observation with conventional optics. A schematic for the magnification effect
is shown in Fig. 8.12c. A similar mechanism for a magnifying lens using tapered
arrays of continuous metallic wires was proposed earlier in Ref. [48].

There is yet another way proposed to achieve subwavelength imaging even
without the recovery of evanescent waves. This scheme makes use of the “super-
oscillation” effect, which relies on the fact that band-limited functions can oscillate
arbitrarily faster than the highest Fourier components they contain [49]. Such super-
oscillating fields can be generated by some patterned metal surfaces. Using this
effect, subwavelength focusing of light and one-to-one imaging of point sources to
the far-field were experimentally verified [50, 51]. In these experiments, a quasi-
periodic array of nanoholes in a thin metal screen was utilized to achieve the
transition between super-oscillation and super-resolution.
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At the end of this section, we want to note that none of the schemes discussed
above can be regarded as being close to an ideal far-field imaging system with super-
resolution. They are usually highly sensitive to material losses and imperfections,
and they are mostly subject to operational limitations such as subwavelength work-
ing distances and narrow working bandwidths. They are, nonetheless, very real in
today’s science. With continuing efforts to optimize the designs, explore new phys-
ical phenomena and postulate new structures, metamaterial researchers may create
a robust and versatile far-field lens with sub-diffraction resolution in the distant but
foreseeable future.

References

1. Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of
sigma and mu. Sov Phys Usp 10:509–514

2. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969
3. Pendry JB, Smith DR (2004) Reversing light with negative refraction. Phys Today 57:37–43
4. Smith DR, Schurig D, Rosenbluth M, Schultz S, Ramakrishna SA, Pendry JB (2003) Lim-

itations on subdiffraction imaging with a negative refractive index slab. Appl Phys Lett
82:1506–1508

5. Podolskiy VA, Narimanov EE (2005) Near-sighted superlens. Opt Lett 30:75–77
6. Webb KJ, Yang M, Ward DW, Nelson KA (2004) Metrics for negative-refractive-index

materials. Phys Rev E 70:035602
7. Rao XS, Ong CK (2003) Subwavelength imaging by a left-handed material superlens. Phys

Rev E 68:067601
8. Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed

transmission-line lens. Phys Rev Lett 92:117403
9. Lagarkov AN, Kissel VN (2004) Near-perfect imaging in a focusing system based on a left-

handed-material plate. Phys Rev Lett 92:077401
10. Aydin K, Bulu I, Ozbay E (2007) Subwavelength resolution with a negative-index metamaterial

superlens. Appl Phys Lett 90:254102
11. Liu ZW, Fang N, Yen TJ, Zhang X (2003) Rapid growth of evanescent wave by a silver super-

lens. Appl Phys Lett 83:5184–5186
12. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver

superlens. Science 308:534–537
13. Melville DOS, Blaikie RJ (2005) Super-resolution imaging through a planar silver layer. Opt

Express 13:2127–2134
14. Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X (2005)

Realization of optical superlens imaging below the diffraction limit. New J Phys 7:255
15. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy

through a SiC superlens. Science 313:1595–1595
16. Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2001) Imaging, compression and Poynt-

ing vector streamlines for negative permittivity materials. Electron Lett 37:1243–1244
17. Ramakrishna SA, Pendry JB, Wiltshire MCK, Stewart WJ (2003) Imaging the near field. J Mod

Opt 50:1419–1430
18. Wood B, Pendry JB, Tsai DP (2006) Directed subwavelength imaging using a layered metal-

dielectric system. Phys Rev B 74:115116
19. de Ceglia D, Vincenti MA, Cappeddu MG, Centini M, Akozbek N, D’Orazio A, Haus JW,

Bloemer MJ, Scalora M (2008) Tailoring metallodielectric structures for superresolution and
superguiding applications in the visible and near-IR ranges. Phys Rev A 77:033848



156 8 Super Resolution with Meta-Lenses

20. Belov PA, Hao Y (2006) Subwavelength imaging at optical frequencies using a transmission
device formed by a periodic layered metal-dielectric structure operating in the canalization
regime. Phys Rev B 73:113110

21. Shalaev VM (2000) Nonlinear optics of random media: fractal composites and metal-dielectric
films. Springer, Berlin

22. Cai WS, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys
Rev B 72:193101

23. Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New York
24. Larkin IA, Stockman MI (2005) Imperfect perfect lens. Nano Lett 5:339–343
25. Melville DOS, Blaikie RJ, Wolf CR (2004) Submicron imaging with a planar silver lens. Appl

Phys Lett 84:4403–4405
26. Ramakrishna SA, Pendry JB (2002) The asymmetric lossy near-perfect lens. J Mod Opt

49:1747–1762
27. Fang N, Zhang X (2003) Imaging properties of a metamaterial superlens. Appl Phys Lett

82:161–163
28. Genov DA, Sarychev AK, Shalaev VM (2003) Metal-dielectric composite filters with con-

trolled spectral windows of transparency. J Nonlinear Opt Phys Mater 12:419–440
29. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge
30. Adrian FJ (1982) Charge-transfer effects in surface-enhanced Raman-scattering. J Chem Phys

77:5302–5314
31. Durant S, Liu ZW, Steele JA, Zhang X (2006) Theory of the transmission properties of an opti-

cal far-field superlens for imaging beyond the diffraction limit. J Opt Soc Am B 23:2383–2392
32. Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical

superlens. Nano Lett 7:403–408
33. Raether H (1988) Surface plasmons. Springer, Berlin
34. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmis-

sion through sub-wavelength hole arrays. Nature 391:667–669
35. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW

(2002) Beaming light from a subwavelength aperture. Science 297:820–822
36. Xiong Y, Liu Z, Sun C, Zhang X (2007) Two-dimensional Imaging by far-field superlens at

visible wavelengths. Nano Lett 7:3360–3365
37. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the

diffraction limit. Opt Express 14:8247–8256
38. Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamate-

rial crystals: theory and simulations. Phys Rev B 74:075103
39. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-

diffraction-limited objects. Science 315:1686–1686
40. Jacob Z, Alekseyev LV, Narimanov E (2007) Semiclassical theory of the hyperlens. J Opt Soc

Am A 24:A54–A61
41. Smolyaninov II, Hung YJ, Davis CC (2007) Magnifying superlens in the visible frequency

range. Science 315:1699–1701
42. Kildishev AV, Chettiar UK, Jacob Z, Shalaev VM, Narimanov EE (2009) Materializing a binary

hyperlens design. Appl Phys Lett 94:071102
43. Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434
44. Narimanov EE, Shalaev VM (2007) Beyond diffraction. Nature 447:266–267
45. Shalaev VM (2008) Transforming light. Science 322:384–386
46. Kildishev AV, Shalaev VM (2008) Engineering space for light via transformation optics. Opt

Lett 33:43–45
47. Kawata S, Ono A, Verma P (2008) Subwavelength colour imaging with a metallic nanolens.

Nat Photonics 2:438–442
48. Shvets G, Trendafilov S, Pendry JB, Sarychev A (2007) Guiding, focusing, and sensing on the

subwavelength scale using metallic wire arrays. Phys Rev Lett 99:053903



References 157

49. Huang FM, Zheludev N, Chen YF, de Abajo FJG (2007) Focusing of light by a nanohole array.
Appl Phys Lett 90:091119

50. Huang FM, Chen Y, de Abajo FJG, Zheludev NI (2007) Optical super-resolution through super-
oscillations. J Opt A Pure Appl Opt 9:S285–S288

51. Huang FM, Kao TS, Fedotov VA, Chen YF, Zheludev NI (2008) Nanohole array as a lens.
Nano Lett 8:2469–2472



Chapter 9
Transformation Optics and Electromagnetic
Cloak of Invisibility

9.1 Invisibility and Transformation Optics: An Overview

This chapter elaborates on the possibility and approach of using metamaterials to
achieve the ultimate optical illusion – invisibility. Invisibility is a longtime dream
that may date back to the very beginning of human civilization. The concept of being
unseen and hence undetectable has appeared numerously in myths, legends, folklore
and fiction as well as occurring in modern works such as movies, TV series and
video games. For example, in the Greek mythology, the hero Perseus (son of Zeus)
killed and beheaded Medusa (one of the Gorgons) when equipped with a helmet of
invisibility. Also during the ancient Greek period, Plato described in his great work
The Republic the ring of Gyges which could allow its owner to be invisible at will.
This is one of the literary sources of many popular and similar subsequent stories,
including the well-known book series and movie trilogy The Lord of the Rings.

All these stories, though fascinating to people for generations, have little to do
with the physics of real life. In fact, nature and technology contain a number of
cases where the phenomenon of invisibility is demonstrated to some extent. In order
to proceed with our discussion of the range of schemes to obtain the desired invis-
ibility effect, we first clarify what the word “invisibility” really implies. Literally,
invisibility represents the state of an object staying in plain view of an observer with-
out being seen. In the real world, the phenomena of being invisible may be grouped
into a few categories, which we briefly mention next. An otherwise visible object
can stay indiscernible from the surrounding environment due to similarities in colors
or patterns. This is usually referred to as camouflage and is prevalent in the natu-
ral colorings of many animals. Another method of being undetectable is to prevent
information about the object from reaching detectors (like radar). This is usually
accomplished by using absorptive surfaces along with special shapes and materials,
all intended to reduce the cross-section of the object against particular sources. This
is the idea behind various stealth techniques. The ultimate version of invisibility is
to make an object reflect no light and absorb no energy. That is, the object is given
the same scattering properties as those of a vacuum. This last method of invisibility
is the eventual goal of cloaking devices with electromagnetic metamaterials.
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Camouflage can be classified into two types based on its adaptability in real
time. Static camouflage exists universally among wild animals resulting from evo-
lutionary pressure over generations. Many species exhibit colors or patterns that are
similar to their surroundings, which allow to avoid predators or to sneak up on prey.
This idea has been adopted by humans for many years for various purposes, espe-
cially in battledress. Active camouflage, which refers to the ability of an object to
blend into its environment adaptively, allows concealment from visual observation
in real time. Nature’s famous examples are chameleons, which are able to change
their skin color for various purposes such as camouflage, communication, and tem-
perature control. A more convincing case of active camouflage in nature is observed
in some species of octopi that can perfectly blend into their background by actively
changing various skin properties including color, shape and texture. Man-made ac-
tive camouflage effects have also been demonstrated using a camera-plus-projector
scheme developed in the Tachi group at the University of Tokyo [1]. Their prototype
camouflage system uses a camera placed behind an object to be hidden to record
background images. Then, the recorded real-time background scene is processed by
a computer and then projected onto the masked object. In this way, a see-through
effect is achieved and an illusory transparency is obtained for the object.

Stealth technology, also known as low observability technology, is in a sense in-
visibility because it acts to prevent information about an object from returning to a
detector such as a radar station. This field covers a range of techniques that render
military vehicles less detectable. Generally speaking, stealth technology can refer to
any technique that minimizes the visibility of objects to various observation schemes
including radar, infrared or other detection methods. Because radar is today’s pri-
mary detection method for military aircraft, the term “stealth technology” is usually
used for a combination of schemes to suppress radar returns from aircraft. The
overall objective of stealth technology is to minimize the reflection cross-section
of the object. The techniques that have been adopted for this goal include the use
of radar-absorbing coatings to reduce the reflectance, flat surfaces and sharp edges
to reflect radar signals away from the detector, a non-metallic airframe to increase
radar transparency, and so on. Noticeable examples of stealth aircraft include the
F-117 Nighthawk and the B-2 Spirit bomber from the United States Air Force.

It is interesting to note that neither active camouflage nor stealth technology can
provide the ideal effect of invisibility. A perfectly invisible device should exhibit
the same scattering property as that of a vacuum. In other words, the device together
with the object to be hidden should reflect no light and cast no shadow. Neither
the illusionary see-through effect in the computer-mediated camouflage nor the
reduced radar cross-section in stealth technology can offer the ultimate apparatus
of invisibility. Fortunately, artificially structured metamaterials have enabled un-
precedented flexibility in manipulating electromagnetic waves and producing new
functionalities, and have brought the ancient dream one step closer to reality. During
the last few years, increasing attention has been focused on creating an electromag-
netic cloak of invisibility based on various schemes, including anomalous localized
resonance [2–4], dipolar scattering cancellation [5, 6], tunneling light transmit-
tance [7], sensors and active sources [8], and coordinate transformation [9, 10].
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The transformation approach, which generalized a similar idea for conductivity
cloaking [11, 12], has triggered enormous interest because the proposed device is
supposed to render a macroscopic object invisible, and the design is not sensitive
to the object that is being masked. In other words, cloaks based on transformation
optics bear remarkable similarities to the mythological cloaks: a closed surface is
created which renders arbitrary objects within its interior invisible to detection. The
objective of this chapter is to discuss the principles of such devices and possible
designs for cloaking at optical frequencies.

We emphasize that cloaking is only one topic within the broad context of
transformation optics, which allows scientists to control the path of light in an
unprecedented manner [13]. By creating complicated spatial distributions of the
electric permittivity and magnetic permeability, we can curve optical space and mold
the flow of light in many unusual ways. With transformation designs, we can create
a hypothetical space with desired topological properties – a situation that looks quite
similar to the curved time-space in the general relativity.

It is somewhat surprising to learn that the relationship between light propaga-
tion and effective space-time geometries was considered almost a century ago, for
example, in early papers by Tamm [14, 15]. The basics of transformation optics
are built on the fundamental results developed by Dolin [16], Post [17] and Lax–
Nelson [18]. In his work, Dolin not only realized that Maxwell’s equations appear
to be form-invariant under a space-deforming transformation, but also demonstrated
deeper physical insight. He conceived a spherical inhomogeneity with a specific set
of anisotropic permeability and permittivity tensors such that an incident plane wave
can pass through the inhomogeneity without distortions – exactly the idea behind
today’s transformation-based electromagnetic cloak. Unfortunately, these important
early studies were not fully appreciated and were almost forgotten. Only recently
has the field of transformation optics been reestablished [9, 10, 19–21].

Because of the form-invariance of Maxwell’s equations under coordinate trans-
formations, we can design a functional device following an objective-oriented
strategy. First, we apply a form-invariant transformation to Maxwell’s equations
to distort and tailor real space in a desired manner in accordance with the required
functionality. Second, the permittivity and permeability tensors needed to achieve
the real space distortion are determined from coordinate transformations, and a usu-
ally inhomogeneous and anisotropic medium is specified. Finally, realistic design
and fabrication constraints for the required material properties are incorporated to
eventually realize the device. Note that the obtained material parameters from the
second step are typically very complicated and are hard to synthesize using naturally
occurring materials and conventional technologies. This is the major reason that the
transformation approach has gained popularity only during the recent prosperity of
metamaterial research.

Additionally, we should not underestimate the difficulty in achieving the spe-
cific material properties for any functional devices based on transformation optics.
As of early 2009, various transformation-based devices have been proposed includ-
ing an invisibility cloak, a magnifying far-field superlens [22], a beam shifter and
splitter [23], a light beam rotator [24] and a planar focusing antenna [25], among
others. However, most of the more interesting devices already proposed stop at the
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second step discussed above and remain as only conceptual designs, with two no-
table exception being the experimental demonstrations of electromagnetic cloaks at
microwave frequencies [26,27]. This an indication that metamaterial research is still
in its infancy, and there is a large amount of work to be done before we can fully
direct the electromagnetic fields in artificial structures at will.

9.2 Cloaking by Coordinate Transformation

At the root of transformation optics is the mathematical form-invariance of
Maxwell’s equations describing the interrelationships among fields, sources and
materials. Let us first write down the standard differential form of the equations in
a Cartesian coordinate system:
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Here we avoid using the electric displacement field
*

D and the magnetic flux den-

sity
*

B to simplify the discussion. All notations in the equations follow the usual

interpretation. The current density
*

J and the charge density � represent the sources
of the system, and the permittivity " and permittivity � are 3 � 3 tensors in the
general case.

For an arbitrary coordinate transformation from the original Cartesian coordinate
x to a new coordinate x0, the coordinate change can be described using the Jacobian
matrix G consisting of all first-order partial derivatives gij D @x

0
i

ı
@xj (we avoided

the standard notation J for the Jacobian to avoid possible confusion with the current
density). Form-invariance implies an amazing property for Maxwell’s equations: the
form of Maxwell’s equations in the new (primed) coordinate remains exactly the
same as (9.1) as long as the set of transformations is applied to all the variables in
the following manner [9, 20]:
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for electromagnetic fields.
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If free current and charges exist in the system,
*

J and � should also be
renormalized as follows:
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where GT and jGj represent the transpose and determinant of the Jacobian matrix,
respectively.

After all these transformations of variables as well as replacing the nabla sym-
bol r by its counterpart r 0 for the new system, the Maxwell’s equations in the
x0 coordinate become identical to the Cartesian form given in (9.1). The proof of
transformation-invariance is a bit involved and is out of the scope of this chapter.
The interested reader may consult the related literature directly [20]. Note that the
material properties (i.e., the permittivity and permeability tensors) for the new co-
ordinate can also be obtained based on other methods of derivation, for example,
starting from the Minkowski form of Maxwell’s equations [28] or using the trans-
formations of contra-variant tensors similar to the tools in general relativity [29].

To help readers obtain a better understanding of the basic concepts and imple-
mentation procedure of transformation optics, let us consider a simple example and
show step-by-step procedures to obtain the required material parameters based on a
specific desired functionality. Starting from a cylindrical region r 0 6 b in a cylindri-
cal coordinate system .r 0; � 0; z0/, we try to transform the axis of the cylinder r 0 D 0
into a hollow region of r 6 a in the new coordinates .r; �; z/, as shown in Fig. 9.1.
That is, we compress the region r 0 6 b in the old system into a concentric cylindri-
cal shell of a 6 r 6 b in the new coordinate system. Please note that from now on,
we associate the prime symbol with the original system, while using the non-primed
system for the new one. The reason why we make this change is because we will

Fig. 9.1 The coordinate transformation that compress a cylindrical region of r 0 6 b in the old
coordinate system .r 0; � 0; z0/ into a concentric cylindrical shell of a 6 r 6 b in the new coordinate
system .r; �; z/



164 9 Transformation Optics and Electromagnetic Cloak of Invisibility

discuss the properties and parameters for the new coordinate extensively throughout
the rest of this chapter, so it is good to avoid superfluous prime symbols in the text
and equations.

The simplest way to complete the spatial transformation in Fig. 9.1 is the follow-
ing linear function:

r D .1 � a=b/ r 0 C a (9.5)

while the other two coordinates .�; z/ are left unchanged. With the given form of the
transformation function, we can calculate the transformation coefficients
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from a Cartesian mesh .x0 D r 0 cos � 0I y0 D r 0 sin � 0I z0/ to the transformed system
.r; �; z/.

The calculation of the transformation coefficients is much simpler than in a gen-
eral case because the medium (free space) in the old coordinates is isotropic and
homogeneous, and the Jacobian matrix is purely diagonal. The elements of the trans-
formation matrix are:
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Based on these elements in the transformation matrix, we obtain the following per-
mittivity and permeability components for the concentric cylindrical shell in the new
coordinate system .a 6 r 6 b/:
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The material parameters as functions of the radius r in the transformed coordinate
are plotted in Fig. 9.2 for a representative case. During numerical simulations and
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Fig. 9.2 The required material properties as functions of the radius r in order to complete the
spatial transformation in Fig. 9.1 based on the linear transformation in (9.5). A shape factor of
a=b D 1=3 is used in this example

experimental realizations, material parameters in Cartesian coordinates are some-
times required. The tensor components of permittivity in the (x, y, z) coordinate
system are related to those in the cylindrical system .r; �; z/ as follows [30]:

"xx D "r cos2 � C "� sin2 � (9.9a)
"xy D "yx D ."r � "� / sin � cos � (9.9b)
"yy D "r sin2 � C "� cos2 � (9.9c)

and the permeability components can be obtained following the same rule.
We should stress a few important features of the material properties in the new

coordinate system. First, because there is nothing but a vacuum in the old coordi-
nate system in our example, the tensors for the material in the new system are only
dependent on the Jacobian of the transformation itself. Secondly, the permittivity
and permeability tensors for the new coordinate system are identical because both
tensors follow exactly the same transformations according to (9.2). Obviously, if
the old system contains a uniform background permittivity of "b , all components of
the permittivity tensor in the new system should be multiplied by this value. Most
importantly, although the space prior to the transformation is merely a vacuum, the
material for the new coordinate system is neither homogeneous nor isotropic. Actu-
ally, all components of the permittivity and permeability tensors are strong functions
of r , and some extreme values occur like the infinite value of "� and �� at r D a re-
quired by the transformations. The inhomogeneity and anisotropy in the transformed
parameters are very general features in transformation optics, and they emphasize
once again the basic pursuit of metamaterial research – the realization of material
properties not observed in their constituent materials and are not found in nature.
Devices and functionalities in transformation optics, after some basic mathematics,
come down to a matter of metamaterial research.
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The above example is not just a toy exercise. In fact, with this seemingly trivial
example, we present one of the most important devices with transformation optics –
an electromagnetic cloak in cylindrical coordinates. The inner cylindrical region in
the new system is transformed from a volume-less line in uniform Cartesian coor-
dinates; therefore no electromagnetic radiation can enter into the inner cylindrical
space in the transformed system. Consequently, we can conceal an arbitrary object
in the hollow region, and an external observer is unable to detect it electromagneti-
cally. In short, it is a cloak of invisibility.

Using a similar technique, we can also create cloaking devices of other shapes
such as a spherical cloak [9]. In this case, we need to open a hollow region of r < a
inside a spherical space of radius b in the original coordinates .r 0; � 0; �0/. Like the
linear transformation used in the cylindrical example, we use the same coordinate
change r D .1 � a=b/ r 0 C a for r while keep � and � unchanged. The Jacobian
matrix for this transformation and the rules in (9.2) require the following values for
the permittivity and permeability components within the cloaking shell a < r < b:
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r
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For both the cylindrical and the spherical cloaking devices, the material properties
outside the external surface at r D b remain identical to those before the coordinate
transformation. In our examples, the external material is vacuum. Inside the cloaked
region r < a, the permittivity and permeability are free to assume any values be-
cause they do not give any contribution to the overall scattering properties of the
system. As a result, an arbitrary object can be hidden inside the cloaked region (as
long as the size fits), and the electromagnetic scattering of the whole system includ-
ing the annulus-shaped cloak and any object inside it is identical to the scattering
properties of vacuum. This intriguing feature sets the transformation-based cloaking
device apart from other schemes proposed for invisibility [2–8], which usually rely
on a priori knowledge of the object to be concealed.

Now let us briefly address the uniqueness theorem of electromagnetic scattering,
which touches on the fundamental possibility of a perfect cloak of invisibility. We ar-
gued above that the scattering properties of the whole cloaking system are identical
to that of a vacuum. Such a claim, however, seems to conflict with the uniqueness of
the inverse scattering problem, which indicates that any given electromagnetic field
distribution would uniquely determine the boundary conditions [31,32]. In fact, the
uniqueness theorem of scattering applies only to isotropic media, while the material
properties of cloaking devices are necessarily inhomogeneous and anisotropic [26].
Therefore, it is theoretically allowed that two distinct systems, one a vacuum and
the other a cloak, share the same non-scattering properties.

The ray trajectories inside a spherical cloak with material parameters given in
(9.10) are illustrated in Fig. 9.3 (from [9]). The incident plane wave enters the
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Fig. 9.3 The wave trajectories of a spherical cloaking system with material properties specified in
(9.10). (a) A two-dimensional cross sectional view; (b) a three-dimensional view. Reprinted from
[9] with permission from AAAS

concentric shell and flows smoothly around the cloaked region due to the specific
gradient in the " and � components of the cloaking shell. After the inner sphere,
the wave distortion is fully recovered and eventually exits the system as plane wave
again. The fields outside the cloaking device contain no information about the whole
system including anything hidden inside the cloaked region. Hence, electromagnet-
ically, the device is completely invisible and undetectable to an external observer.

It is worth noting that the concept of using a gradient in the material properties to
control the light path is not a new invention. There is actually an example of (partial)
invisibility in nature due to a gradient in the refractive index of air. Above the surface
of a desert radiated by the scorching sun, the refractive index of the hot and rarefied
air right above the desert surface is smaller than that of the comparatively cooler
air away from the ground. As a result, light rays from above may bend away from
the sand surface before reaching the eyes of a desert traveler. Thus, the gradient in
the refractive index of the air explains the cause of the inferior mirage occurring in
deserts, which create illusive images of lakes (actually, the image of blue sky) and
forests that deceive travelers. Moreover, there is an “invisible” region below and in
front of our observer because, when he looks in that direction, he actually receives
light rays from above and in front of him.

9.3 Towards Experimental Demonstrations

With all these fascinating features of electromagnetic cloaks based on transforma-
tion optics, one natural question arises: how can we really build such a cloak of
invisibility? From an application point of view, the construction of an electromag-
netic cloak implies that we need to elaborate realistic structures and materials to
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fulfill the set of parameters corresponding to any types of cloak, like the properties
required by (9.8) or (9.10). Although recent studies on electromagnetic metamateri-
als have provided unprecedented control over the material properties, it is still quite
challenging, if not impossible, to exactly fulfill the material parameters governed by
a particular form of the coordinate transformation. Taking the cylindrical cloak as an
example, we see from Fig. 9.2 that continuous variations in the anisotropic parame-
ters of both " and� are required within the concentric region. As detailed in Chap. 2,
it is challenging to achieve any effective magnetic response at frequencies of giga-
hertz and above, let alone the well-controlled magnetic permeability distributed in a
particular fashion. Furthermore, although magnetic responses at microwave or opti-
cal frequencies have been demonstrated using artificial “meta-atoms” like split-ring
resonators, coupled nanowires or paired nanostrips, controlling all the components
of the permeability tensor simultaneously in an anisotropic metamaterial is probably
beyond the capability of current metamaterial research. Additionally, there are sin-
gularities in some parameters of the constitutive material of the cloak; for example,
the infinite values of "� and �� at the inner boundary r D a of a cylindrical cloak
are singularities. Such extreme values along with the rapid changes in the material
parameters are hardly realistic.

To ease the harsh requirements in the anisotropic spatial variations of the con-
stitutive parameters, we can consider a cloaking device that will work for only a
particular state of polarization. Let us again use the cylindrical cloak as an exam-
ple. The desired material properties with the " and � tensors given in (9.8) imply
complicated distributions of all components of both tensors. Such parameters, when
fulfilled perfectly, would provide cloaking performance for any external incident
field with arbitrary propagation direction and an arbitrary polarization state. For the
standard incident polarizations (TE and TM), the requirement in (9.8) can be re-
laxed such that only three of the six components are relevant. For example, with TE
polarization (electric field polarized parallel to cylinder axis), only "z; �r and ��
enter into Maxwell’s equations. Moreover, the parameters can be further simplified
to form reduced parameters which are more realistic for practical applications. Since
the trajectory of the waves is determined by the dispersion relation, and, therefore,
by the cross-product components of the " and � tensors instead of the two tensors
individually, the cloaking operation is sustained as long as n� D

p
"z�r and nr Dp

"z�� are kept the same as those determined by the values in (9.8). A rigorous
proof of the last claim is available in Ref. [26] and the supporting materials therein.

Following the guidelines for the simplification of the constitutive parameters
given above, we can force the angular component �� of the permeability tensor
in (9.8) to be unity and obtain the following material properties for TE incident
wave polarization [26]:

�r D
�r � a

r

�2
I�� D 1I "z D

�
b

b � a

�2
(9.11)

Equation (9.11) shows that the simplification procedure results in a set of reduced
parameters that allow for a permeability gradient only along the radial direction. No
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Fig. 9.4 Structure of the cylindrical cloaking device at a microwave frequency along with plot of
the material properties �r ; �� and "z that are implemented. Reprinted from [26] with permission
from AAAS

magnetic response is necessary for the azimuthal permeability component, and the
permittivity along the vertical direction "z is a constant that is larger than one.

Now that we have simplified the material specifications, the next step is to con-
struct a metamaterial with specific dimensions, unit cells, and constituent materials
to obtain spatial variations in the material parameters as necessitated by (9.11). In
the first experimental demonstration of a cylindrical cloak at microwave frequencies
[26], the device was made up of ten concentric dielectric cylinders filled with copper
split-ring resonators, as shown in Fig. 9.4. The SRRs are placed in the ��z plane, so
they exhibit a magnetic resonance within a predesigned frequency range when there
is a magnetic flux component along the radial direction. The strength of the mag-
netic response and the value of the effective radial permeability �r are determined
by the geometry and density of the unit cells. Therefore, the magnetic permeability
�r can be tuned by varying the dimensions of the SRRs, and the required gradient
in �r in (9.11) can be achieved. During the design, all the geometrical parameters
of SRRs, including the curvature at the corners of each loop, must be adjusted very
carefully to realize quasi-independent control of both �r and "z. Such fine control
enables a constant value of "z while tuning the value of �r from 0 at the inner layer
to .1 � a=b/2 at the outer surface of the cylindrical cloak. As for the azimuthal
permeability �� , since the SRRs exhibit no effective magnetic response with in-
plane magnetic flux, �� remains at the value of 1 throughout the device. The three
constitutive parameters are also plotted in Fig. 9.4. (from [26]).



170 9 Transformation Optics and Electromagnetic Cloak of Invisibility

The operating frequency of the device in Fig. 9.4 is 8.5 GHz, which corresponds
to a free-space wavelength of 3.5 cm. The edge length of each SRR is 3 mm, which
is less than 1/10 of the free-space wavelength. Hence the structure is indeed a meta-
material device. In order to evaluate the degree to which the structure approximates
a cloak at the targeted microwave frequency, the cylindrical device is placed in a par-
allel plate waveguide comprising two conducting plates separated by the height of
the cloak, which is roughly one half of the wavelength inside the cloaking material.
In this case the propagating properties of the electromagnetic wave can mimic that of
a plane wave incident upon a two dimensional cylindrical cloak extended infinitely
along the direction of its axis. The apparatus in Ref. [26] used to test the cloak de-
sign was able to perform field maps, so both the amplitude and the phase of the
electric field inside the planar waveguide were measured as polarized microwaves
were directed toward the device. In the experiment, the electric field patterns were
measured with a conducting cylinder placed inside the cloaked region, and these
fields were compared against the case of a bare, uncloaked copper cylinder. The
result is shown in Fig. 9.5 (from [26]). With a bare metal cylinder as the scatterer
(Fig. 9.5a), the incident waves were scattered, and the wave front after the object is
substantially distorted, which represents the shadow of the object. When the object
is surrounded by the cloaking shell (Fig. 9.5b), the perturbation of the microwaves
by the system is alleviated. The result, although not a perfect demonstration of invis-
ibility, confirmed the feasibility of creating a cloaking device using metamaterials,
and it verified the bending and recovery of waves due to a gradient in the material
properties. In addition, the device significantly suppressed both the backward and
forward scattering of the incident waves, which is a clear indication of the cloaking
capability. This demonstration accomplished by engineers at Duke University was
the first experimental validation of electromagnetic cloaking; it has drawn enormous
media interest and was named one of the top ten breakthroughs of 2006 [33].

Within our discussion of the realization of an electromagnetic cloak, let us briefly
address the issue of operational bandwidth, which is of both theoretical value and
practical interest. In the equations up to this point in this chapter, the frequency
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Fig. 9.5 Snapshots of time-dependent, steady-state electric-field patterns in an electromagnetic
cloak design. (a) Experimental measurement the field pattern with an uncloaked copper cylinder.
(b) Experimental measurement of the copper cylinder surrounded by the cloaking device. The
stream lines in (a) indicates the direction of power flow. Reprinted from [26] with permission
from AAAS
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dependence of the material parameters is not taken into account. The bandwidth of
a transformation-based cloaking device is determined by the frequency range over
which the material properties in (9.8), (9.10) or (9.11) are exactly satisfied. Unfor-
tunately, the curved trajectory of light within the cloak implies a refractive index n
of less than 1 in order to satisfy the minimal optical path requirement of Fermat’s
principle, but any metamaterial with n < 1 must be dispersive to fulfill causality. In
other words, since the phase velocity in the cloaking material is larger than the speed
of light, dispersion is necessary to avoid a superluminal group velocity, which is
strictly forbidden except for the case of strong anomalous dispersion where substan-
tial loss occurs. In addition, theoretical analysis shows that the anisotropic cloaking
parameters required by a given transformation can be precisely fulfilled only for a
single frequency value [34]. Therefore any shell-type cloak design can work only
over a very narrow frequency range. It is also revealed that there might be a solution
for this fundamental bandwidth constraint based on a multiple, “cascaded” cloaks
designed for different wavelengths [35], using a complicated combination of tech-
niques including dispersion control, dynamic transformation and active medium. In
Sect. 9.7, we will discuss several alternative schemes for the realization of broad-
band, low-loss cloaks operating at optical frequencies.

9.4 Non-magnetic Optical Cloak

The experimental demonstration of the microwave cloak confirmed the feasibility
of cloaking devices using the transformation approach. However, the design used in
Ref. [26] cannot be implemented for an optical cloak, which is certainly of particular
interest because optical frequencies are where the word “invisibility” is convention-
ally defined. The reported microwave cloak in Ref. [26] used a set of simplified
parameters specified in (9.11), and the required gradient in the radial permeabil-
ity was achieved by varying the dimensions of a series of SRRs. As for optical
wavelength range, it is a known fact that there are intrinsic limits to the scaling of
SRR size in order to exhibit a magnetic response in the visible spectrum [36, 37].
Replacing the SRRs with other optical magnetic structures like paired nano-rods
[38] or nano-strips [39] is also a very challenging approach because magnetism
based on such resonant plasmonic structures is usually associated with a high loss
factor, which is detrimental to the performance of cloaking devices.

The requirement of optical magnetism can be avoided if we consider just a par-
ticular polarization of incidence. In contrast to the design of a microwave cloak with
TE polarization as shown in the previous section, we focus on TM incidence with
the magnetic field polarized along the z axis of a cylindrical system [40], as shown
in Fig. 9.6a. In this case only �z; "r and "� must satisfy the requirements in (9.8),
and the dispersion relations inside the cloak remain unaffected as long as the prod-
ucts of �z"r and �z"� are kept the same as those determined by the values in (9.8). It
is worth noting that under TM illumination only one component of � is of interest,
which allows us to completely remove the need for any optical magnetism. In (9.8)



172 9 Transformation Optics and Electromagnetic Cloak of Invisibility

Fig. 9.6 Coordinate transformation and structure of the designed non-magnetic optical cloak. (a)
The coordinate transformation that compresses a cylindrical region r < b into a concentric cylin-
drical shell a < r < b. There is no variation along the z direction. (b) A small fraction of the
cylindrical cloak

we multiply "r and "� by the value of �z and obtain the following reduced set of
cloak parameters:

�z D 1; "� D

�
b

b � a

�2
; "r D

�
b

b � a

�2 �r � a
r

�2
: (9.12)

Compared to the cloak with ideal properties as shown in (9.8), the reduced parame-
ters in (9.12) provide the same wave trajectory. The only adverse effect of using the
reduced set is the non-zero reflection due to the impedance mismatch at the outer
boundary. The ideal parameters in(9.8) result in a perfectly-matched impedance of
Z D

p
�z="� D 1 at r D b, while the reduced set in (9.11) produces an impedance

at the outer boundary ofZ D 1�Rab , where Rab D a=b denotes the ratio between
the inner and outer radii. Therefore, the level of power reflection due to reduced
parameters can be estimated as j.1 �Z/=.1CZ/j2 D ŒRab=.2 �Rab/�2.

The non-magnetic nature of the system as indicated in (9.12) removes the most
challenging issue of the design. The azimuthal permittivity "� is a constant with a
magnitude larger than 1, which can be easily achieved in conventional dielectrics.
The key to the implementation is to construct the cylindrical shell with the desired
radial distribution of "r varying from 0 at the inner boundary of the cloak .r D a/
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to 1 at the outer surface .r D b/. The required distribution of "r in the design
can be realized by using metal wires of subwavelength size in the radial direction
embedded in a dielectric material, as shown in Fig. 9.6b. The aspect ratio of the
metal wires, defined by the ratio of the length to the radius of the wire, is denoted by
˛. The spatial positions of the wires don’t have to be periodic and can be random.
Also, for large cloaks, the wires can be broken into smaller pieces that are smaller
in size than the wavelength.

The shape-dependent electromagnetic response of a subwavelength particle such
as the metal wire in Fig. 9.6b can be characterized by the Lorentz depolarization
factor L and the screening parameter, as given in (2.40) and (2.43). Note that a long
wire with large aspect ratio ˛ along the electric field results in a small depolariza-
tion factor and a large screening factor, which indicates strong interactions between
the field and the wires. For a composite cloak with metal wires as inclusions in a
dielectric, the electromagnetic properties are well-described by “shape-dependent”
effective-medium theory (EMT) as discussed in Sect. 2.4. The effective permittivity
"eff for a composite material comprising metal particles with permittivity "m, a vol-
ume filling factor f and screening factor 
, along with a dielectric component with
permittivity "d and a filling factor 1 � f , is given by (2.42) with the solution:

"eff D
1

2


n
N"˙

p
N"2 C 4
"m"d

o
(9.13)

where N" D Œ.
C 1/f � 1�"mC Œ
 � .
C 1/f �"d , and the sign in (9.13)) should be
chosen such that "00eff > 0.

The benefit of using metal wires in a composite cloak is that the radial permit-
tivity "r determined by (9.13) may exhibit a positive value less than 1 with minimal
imaginary part. For the structure in Fig. 9.6b, the filling fraction in (9.13) for calcu-
lating "r is f .r/ D fa � .a=r/, with fa being the filling fraction of metal at the inner
surface of the cloak. The azimuthal permittivity "� inside the cloak is essentially the
same as that of the dielectric because the response of the wires to the angular elec-
trical field E� oriented normal to the wires is small and at low metal filling factors
it can be neglected.

The reduced set of cloak parameters in (9.12) requires a smooth variation of the
radial permittivity from 0 to 1 as r changes from a to b. For optimal performance,
"eff ;r should exactly follow the function described in (9.12) such that

"eff ;r .fa � a=r/ D Œb=.b � a/�
2 Œ.r � a/=r�2 : (9.14)

In a practical design, "eff ;r is allowed to have some discrepancy from the optimal
value inside the cloak. The most important points are at the inner and outer surfaces
of the cloak, where (9.14) should be satisfied exactly. This ensures the desired wave
trajectory at r D b and the minimum leakage energy at r D a.

To determine all of the parameters of the design shown in Fig. 9.6b, we define
two filling fraction functions f0.�; ˛/ and f1.�; ˛/ such that for given constituent
composite materials and a wire aspect ratio of ˛, the effective radial permittivity is



174 9 Transformation Optics and Electromagnetic Cloak of Invisibility

(
"eff ;r .�; f0.�; ˛// D 0

"eff ;r .�; f1.�; ˛// D 1
: (9.15)

Combining (9.14) and (9.15), at the operational wavelength � we obtain

(
f0.�; ˛/ D fa

f1.�; ˛/ D fa � a=b
: (9.16)

Hence we can express the shape factor Rab as

Rab D a=b D f1.�; ˛/=f0.�; ˛/: (9.17)

Using (9.17) with the expression for "� in (9.12), we obtain the operating condition
of the cloak:

"� .�/ D

�
f0.�; ˛/

f0.�; ˛/ � f1.�; ˛/

�2
: (9.18)

For practical applications, it is important to design a cloaking device operating at a
pre-set operational wavelength �op. For this purpose the design process is as follows.
First we choose materials for the metal wires and the surrounding dielectric. Second,
we calculate the values of f0 and f1 as functions of the aspect ratio ˛ at �op using
the EMT model in (9.13). The required aspect ratio for �op is the one that satisfies
(9.18). Then, the geometrical factors of the cloak, including Rab and fa, can be
determined based on (9.16) and (9.17). Note that the same design works for all
similar cylindrical cloaks with the same shape factor Rab .

As a practical example, we have designed an optical cloak operating at
the wavelength of 632.8 nm (He–Ne laser) and consisting of silver and silica.
Equations (9.13), (9.15) and (9.18) together yield the desired aspect ratio ˛ D 10:7,
and the filling fractions at the two boundaries are fa D 0:125 and fb D 0:039,
respectively. Then with (9.16) and (9.17) we find the shape factor of the cylindrical
cloak to be Rab D 0:314. The effective parameters of �z; "r and "� from this
design together with the exact set of reduced parameters determined by (9.12)
are shown in Fig. 9.7. We can see that �z and "� perfectly match the theoretical

Fig. 9.7 Material parameters
"r ; "� and �z of the proposed
cloak operating at
� D 632:8 nm. The solid
lines represent the exact set of
reduced parameters
determined by (9.12). The
diamond markers show the
material properties of the
designed metal wire
composite cloak with
parameters obtained from
(9.13) to (9.18)
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Fig. 9.8 Unit cell for full-wave finite-element simulations of effective parameters. (a) The actual
unit cell (cylindrical sector) encapsulating a spheroidal silver wire is substituted by a cell made of
a right rectangular prism. (b) The geometry of the 3D rectangular unit cell. In simulations hc and
lc are fixed, while wc changes in proportion to the radius of each layer

requirements throughout the cylindrical cloak. The radial permittivity "r fits the
values required by (9.12) exactly at the two boundaries of the cloak, and follows the
overall tendency very well inside the cloak.

To validate if the required distribution of permittivity could be achieved using
prolate spheroidal silver nanowires embedded in a silica tube, we determine the
effective anisotropic permittivity of a unit cell with sub-wavelength dimensions.
We start with a homogenization method, where the actual unit cells (cylindrical
sectors) with different electromagnetic surroundings are substituted by cells made
of right rectangular prisms, as shown in Fig. 9.8. The full-wave finite-element (FE)
numerical analysis confirms that the range of desired "r and "� fits rather well with
those predicted by EMT. The FE modelling also shows that the dependence of "r
and "� can match exactly those required by (9.12) through additional adjustment of
the aspect ratio and the volume fraction of the nanowires in each layer. As for the
loss feature, the FE simulations show that the radial permittivity "r has an imaginary
part of about 0.1 throughout the cloak. Although this is a very small value for metal-
dielectric metamaterials, it may still weaken the cloaking effect. It is possible to
compensate the loss by using a gain medium as already proposed for applications
of perfect tunnelling transmittance [7] and lossless negative-index materials [41].

To illustrate the performance of the proposed non-magnetic optical cloak with
a design corresponding to Fig. 9.6 at �op D 632:8 nm, we performed field map-
ping simulations using a commercial FE package (COMSOL Multiphysics). The
object hidden inside the cloak is an ideal metallic cylinder with radius r D a. The
simulation model consisted of the cylindrical cloak identical to the one shown in
Fig. 9.6 with TM polarized waves. The simulation domain also consisted of PML
layers at all the boundaries to absorb the outgoing waves. The simulated results of
magnetic field distribution around the cloaked object together with the power flow
lines are illustrated in Fig. 9.9. We note that the size of the cloak is more than six
times the operational wavelength, while the simulated area is more than 20 times
the wavelength. Figure 9.9a shows the field distribution around the metal cylinder
surrounded by the designed cloak with parameters given by the diamond markers in
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Fig. 9.9 Finite-element
simulations of the magnetic
field mapping around the
cloaked object with TM
illumination at
� D 632:8 nm. (a) The object
is inside the designed metal
wire composite cloak with
parameters given by the
diamond markers in Fig. 9.7.
(b) The object is surrounded
by vacuum without the cloak

Fig. 9.7. With the cloak (Fig. 9.9a) the wave fronts flow around the cloaked region
with remarkably small perturbation, while without the cloak (Fig. 9.9b) the waves
around the object are severely distorted and an evident shadow is cast behind the
cylinder. In the designed system with Rab D 0:314, the estimated power reflection
is about 4% when one uses the reduced set of parameters given by (9.12). This is
a low level of reflection, and the small value is consistent with what we observe
in simulations. Thus, our simulations clearly show the capability of reducing the
scattering from the object hidden inside the cloaked region.

In this section we have demonstrated a design of an optical cloak based on co-
ordinate transformation. The non-magnetic nature of our design eases the pain of
constructing gradient magnetic metamaterials in three-dimensional space, and there-
fore paves the way for the realization of cloaking devices at optical frequencies. The
proposed design can be generalized to cloaks with other metal structures, such as
chains of metal nanoparticles or thin continuous or semi-continuous metal strips.
It can be also adopted for other than the optical spectral ranges, including the in-
frared and the microwave. We note that the achievable invisibility with the proposed
cloak is not perfect due to impedance mismatch associated with the reduced mate-
rial specifications and the inevitable loss in a metal-dielectric structure. However,
we believe that even rudimentary designs and implementations of an optical cloak
are of great potential interest and bring us one step closer to the ultimate optical
illusion of invisibility.

9.5 Cloaking with High-Order Transformations

As we have described in the previous two sections, in an electromagnetic cloak
based on a transformation approach, reduced sets of material properties are gen-
erally favored due to their easier implementation in reality, although a seemingly
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inevitable drawback of undesired scattering exists in such cloaks [26]. The major
detrimental effect of using the non-simplified parameters as compared to the per-
fect set is the non-zero scattering due to impedance mismatch at the outer surface
of the cloaking system. In this section we suggest using high-order transformations
to create smooth moduli at the outer boundary of the cloak, therefore completely
eliminating the detrimental scattering within the limit of geometric optics [42].

Again, let us consider a coordinate transformation where a cylindrical region
r 0 6 b is compressed into a concentric cylindrical shell a 6 r 6 b, as shown in
Fig. 9.1. Mathematically, there are countless ways to perform the spatial transforma-
tion. In most reported literature on this topic [9, 26, 30, 40], a linear transformation
function in the form of (9.5) is used for this purpose. This linear transformation,
although straightforward and intuitive, prohibits any flexible control of the asso-
ciated moduli. As a result, impedance mismatching and undesired scattering are
inevitable for cloaks using any form of reduced parameters, including the demon-
strated microwave cloak in Ref. [26] for TE incidence and the designed optical cloak
in Ref. [40] for TM polarization.

This scenario, however, can be dramatically changed when using a high-order
transformation instead of the linear one. We may conceive any possible transfor-
mation function r D g.r 0/ from .r 0; � 0; z0/ to .r; �; z/ in order to compress the
cylindrical region r 0 6 b into a concentric shell. We allow several flexible vari-
ables in the expression of g.r 0/ for further adjustments as detailed later. With the
given form of the transformation, we calculate the Jacobian matrix for this coordi-
nate change, and based on the techniques described in Refs. [9,28], the permittivity
and permeability tensors can be determined as well:

"r D �r D


r 0
ı
r
�
@g.r 0/

ı
@r 0I "� D �� D 1="r I

"z D �z D


r 0
ı
r
� �
@g.r 0/

ı
@r 0
	�1

: (9.19)

For the linear transformation, the material parameters in (9.19) reduce to the simple
forms given in Refs. [26, 30]. Note that for a closed-form expression of the param-
eters in .r; �; z/ space, all r 0 in (9.19) should be replaced by r 0 D g�1.r/. From the
expressions in above we can see that the impedance at the outer boundary is per-
fectly matched, that is,

p
��="z

ˇ̌
ˇ
rDb
D
p
�z="�

ˇ̌
ˇ
rDb
D 1, which is an important

feature of an ideal cloak.
From the material properties of an exact cloak, the corresponding reduced param-

eters can be obtained [26, 40], As shown in the previous section, a non-magnetic
cloak is of particular interest at optical frequencies due to the absence of optical
magnetism in nature. We focus on TM incidence with the magnetic field polarized
along the z axis. In this case only �z; "r and "� enter into Maxwell’s equations. To
simplify the " and � tensors while maintaining the wave trajectory inside the cylin-
drical shell, in (9.19) we multiply "r and "� by �z and obtain the following reduced
set of non-magnetic cloak parameters:

"r D


r 0
ı
r
�2
I "� D

�
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ı
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	�2
I �z D 1I (9.20)
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Similarly, for the TE polarization, the required parameters for a general transforma-
tion are:

�r D


r 0
ı
r
�2 �

@g.r 0/
ı
@r 0
	2
I �� D 1I "z D

�
@g.r 0/

ı
@r 0
	�2 (9.21)

From (9.20) we calculate the impedance at the outer boundary:

Z jrDb D
p
�z="�

ˇ̌
ˇ
rDb
D @g.r 0/

ı
@r 0: (9.22)

And the impedance for the TE mode has the same form as (9.22). In the rest part
of this section we will focus on the TE mode, but we should keep in mind that the
approach below applies to both TM and TE cases.

By setting it equal to unity, we can fix the function g.r 0/ together with all the ma-
terial properties, and a non-magnetic cloak with minimized scattering is achieved.
The perfectly matched impedance also indicates .@r=@r 0/jrDb D 1. This smooth
modulus at the outer surface removes the discontinuity and minimizes the scattering
after the high-order transformation.

Following the implementation guidance described above, we consider a quadratic
transformation function with one flexible parameter p:

r D g.r 0/ D
�
1 � a=b C p



r 0 � b

�	
r 0 C a: (9.23)

We see that the boundary confinements g.0/ D a and g.b/ D b are fulfilled. By
setting Z

ˇ̌
rDb
D 1, we fix the flexible variable p D a

ı
b2 and obtain the following

optimal transformation:
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�
.a=b/



r 0
ı
b � 2

�
C 1
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All non-magnetic material properties can be determined consequently using (9.20).
To make sure that the transformation is monotonic, we require a shape factor
a=b < 0:5.

As an example, Fig. 9.10 shows the anisotropic material properties of two non-
magnetic cylindrical cloaks with p D a=b2 (optimal quadratic transformation) and
p D 0 (linear transformation) respectively. The shape factor in this example is
a=b D 0:31. In the optimal quadratic case, all three material parameters "r ; "� and
�z are equal to unity at the outer boundary r D b, which perfectly matches the
surrounding vacuum parameters.

To compare the performance of the non-magnetic cloaks with different trans-
formation methods, we conduct field-mapping simulations using the finite-element
package COMSOL Multiphysics. The cloaking systems are examined at � D
632:8 nm with the same geometry as that in Fig. 9.10. The object hidden inside
the cloaks is an ideal metallic cylinder with a radius the same as that of the in-
ner surface. In Fig. 9.11, under four circumstances we plot the magnitudes of the
normalized scattered field. The scattered field from the object itself is shown in
Fig. 9.11a. The strong forward scattering at the right-hand side corresponds to the
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Fig. 9.10 Anisotropic
material parameters "r ; "� of
two non-magnetic cloaks with
p D a=b2 (optimal quadratic
transformation, solid lines)
and p D 0 (linear
transformation, dashed lines).
�z equals unity in both cases.
The shape factor .a=b/ in this
example is 0.31 and the
diameter .2b/ is 4�m.
Reprinted with permission
from [42]. Copyright (2007),
American Institute of Physics

Fig. 9.11 Full-wave field-mapping simulations of the magnitudes of normalized scattered field
for a metal cylinder inside (a) a vacuum without any cloak; (b) an ideal linear cloak; (c) the linear
non-magnetic cloak with p D 0 and (d) the optimal quadratic cloak with p D a=b2. Reprinted
with permission from [42]. Copyright (2007), American Institute of Physics

shadow cast behind the object. The scattered field outside an ideal cloak is illustrated
in Fig. 9.11b, which is essentially zero in magnitude. The results of non-magnetic
cloaks for both the linear transformation and the optimal quadratic case are illus-
trated in Fig. 9.11c and d, respectively. The linear case exhibits an evident scattering
pattern from the outer boundary of the system because of the impedance mismatch.
On the other hand, the quadratic transformation function results in negligible scat-
tering from the cloaking system. The figure of merit for cloaking (defined as the
ratio of the scattering cross-sections without and with the cloak) is about 10 for
the considered quadratic cloak, and it increases towards infinity with the size of the
cloaking system.
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Fig. 9.12 The scattering patterns from the four cases shown in Fig. 9.12. Purple: a metal cylinder
(scatterer) with no cloak; blue: the cylinder with the ideal cloak; orange: the cylinder with a linear
non-magnetic cloak; red: the cylinder with an optimal quadratic non-magnetic cloak. Reprinted
with permission from [42]. Copyright (2007), American Institute of Physics

To clearly illustrate the scattering and directivity properties of different cloaking
systems, in Fig. 9.12 we plot the scattering radiation patterns corresponding to the
four cases of Fig. 9.11. The curves in Fig. 9.12 show the energy flow in the radial
direction normalized by the maximum value in the non-cloaked case at a boundary
outside the outer surface of the cloaks. In the ideal cloaking system, the scattering
energy flow is zero, which is indicated by the solid inner circle in Fig. 9.12. The
linear cloak with reduced parameters gives rise to a noticeable and strongly direc-
tional scattering pattern. In the non-magnetic quadratic cloak, the overall scattering
is much less significant. The peak value of the radial Poynting vector in the quadratic
cloak is more than six times smaller than that of its linear counterpart. Moreover,
the directivity in the scattering pattern is substantially suppressed as compared to
the linear cloak case, which is an important feature of a quasi-ideal cloak.

To summarize this section, we proposed an electromagnetic cloak using high-
order transformation to create smooth rather than discontinuous moduli at the outer
interface. By this approach, the undesired scattering is completely eliminated within
the limit of geometric optics, even for cloaks using non-magnetic materials to sim-
plify the implementation. We applied this scheme to the non-magnetic cylindrical
cloak and demonstrated that the scattered field is reduced by almost an order of
magnitude in a cloak with optimal quadratic transformation comparing to that with
the usual linear compression.

9.6 Designs for High-Order Optical Cloaking

The electromagnetic cloaks based on high-order transformations [42], as discussed
in the previous section, may provide not only better cloaking performance, but
also more flexibility in determining the properties of constitutive materials. In this
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section, we present two novel designs for optical cloaking based on high-order trans-
formations for TM and TE polarizations, respectively. These designs are possible for
visible and infrared wavelengths [43].

From an application point of view, the design of an electromagnetic cloak
is meant to elaborate realistic structures and materials which fulfill the set of
required parameters corresponding to any cloaking systems. The reported experi-
mental demonstration of a microwave cloak in Ref. [26] presented a structure where
(9.11) was satisfied, and the proposed non-magnetic optical cloak in Ref. [40] cor-
responded to the case described by (9.12). One common feature shared in the two
systems is that both works utilize designs based on a standard linear transformation
r D g.r 0/ D .1 � a=b/ r 0 C a. In sharp contrast to the previous work, the purpose
of this section is to present realistic designs based on more general high-order trans-
formations. In particular, for the TM polarization, we propose a non-magnetic cloak
design compatible with mature fabrication techniques such as direct deposition and
direct etching; for TE incidence, we present a structure that allows for a radial gradi-
ent in the magnetic permeability while avoiding the use of plasmonic metallic units
in the optical range.

First we focus on the non-magnetic cloak in the TM mode with parameters given
in (9.20). In this case, the design of cloak is essentially to produce the required
gradient in "r and "� using readily available materials. Apparently, a cloak cannot
consist of only a single-constituent material, because a spatial variation in material
properties is critical to building a cloak. To start the design, we first examine the
overall flexibility we can achieve in the effective permittivity of a general two-phase
composite medium. When an external field interacts with a composite consisting of
two elements with permittivity of "1 and "2 respectively, minimal screening occurs
when all internal boundaries between the two constituents are parallel to the electric
field, and maximal screening happens when all boundaries aligned perpendicular to
the field. As we have discussed in Chap. 4, these two extremes are possible in an
alternating layered structure, provided that the thickness of each layer is much less
than the wavelength of incidence [44]. In this case the two extreme values of the
effective permittivity can be approximated as

"k D f "1 C .1 � f /"2I "? D "1"2=.f "2 C .1 � f /"1/ (9.25)

where f and 1 � f denote the volume fractions of components 1 and 2, and the
subscripts jj and ? indicate the cases with electric field polarized parallel and per-
pendicular to the interfaces of the layers, respectively.

The two extrema in (9.25), namely the Wiener bounds to permittivity, set the
absolute bound on all possible values of the effective permittivity of a two-phase
composite [45, 46]. In realistic composites, more strict limits, for example those
from the spectral representation developed by Bergman and Milton [47, 48], might
apply in addition to the Wiener bounds, but (9.25) nonetheless provides a straight-
forward way to evaluate the accessible permittivity in a composite with given
constituent materials. The Wiener bounds can be illustrated on a complex "-plane
with the real and imaginary parts of " being the x and y axis, respectively, as we
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have shown in Fig. 4.2. In this plane, the low-screening bound in (9.25) corresponds
to a straight line between "1 and "2, and the high-screening bound in (9.25) defines
an arc which is part of the circle determined by the three points "1; "2 and the origin.

The required material properties for the cloak in (9.20) indicates that, for a non-
magnetic cylindrical cloak with any transformation function, "r varies from 0 at the
inner boundary of the cloak .r D a/ to 1 at the outer surface .r D b/, while "� is a
function of r with varying positive value, except for the linear transformation case
where @g.r 0/=@r 0 is a constant. Now we can evaluate the possibility of fulfilling
the required parameters in (9.20) based on alternating metal-dielectric slices whose
properties are estimated by (9.25). With phase 1 being a metal ."1 D "m < 0/ and
phase 2 representing a dielectric ."2 D "d > 0/, the desired material properties of
the cloak are only possible when the slices are within the r�z plane of the cylindrical
coordinates. In this case "r and "� correspond to "jj and "? in (9.25), respectively.
This scenario is illustrated in Fig. 9.13. The thick solid and dashed lines represent
the two Wiener bounds "jj.f / and "?.f / respectively. The constituent materials
used for the calculation are silver and silica at a green light wavelength of 532 nm.
The pair of points on the bounds with the same filling fraction are connected with a
straight line for clarification purposes. When "r changes between 0 and 1, the value
of "� varies accordingly as shown by the arrow between the two thin dashed lines.
Therefore, the construction of a non-magnetic cloak requires that the relationship
between the two quantities "jj and "? (as functions of f ) within the range shown
in Fig. 9.13 fits the material properties given in (9.20) for a particular transforma-
tion function r D g.r 0/. Another attractive feature of the proposed scheme is the
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Fig. 9.14 Schematic of a
cylindrical non-magnetic
cloak with high-order
transformations for TM
polarization. Reprinted with
permission from [43].
Copyright (2008) OSA

minimal loss factor. As shown in Fig. 9.13, the loss feature described by the imag-
inary part of the effective permittivity is on the order of 0.01, much smaller than
that of a pure metal or any resonant metal-dielectric structures. A schematic of the
proposed structure consisting of interlaced metal and dielectric slices is illustrated
in Fig. 9.14.

Mathematically, for a preset operational wavelength we seek a transformation
together with the cylindrical shape factor a=b that fulfills the following equation:

"m"d

�
@g.r 0/

ı
@r 0
�2
C
�
r 0
ı
g.r 0/

�2
� ."m C "d / D 0 (9.26)

And
g.0/ D aI g.b/ D bI @g.r 0/

ı
@r 0 > 0 (9.27)

There does not exist an exact analytical solution to the equations above. However,
we may use polynomial functions to approach a possible solution. More specifically,
a quadratic function in the following form of (9.23) can serve as a good candi-
date for an approximate solution to (9.26). Such a transformation automatically
satisfies the boundary and monotonicity requirements in (9.27), and it is possible
to fulfill (9.26) with minimal deviation when a proper shape factor is chosen. In
Table 9.1 we provide transformations, materials and geometries for non-magnetic
cloaks designed for several important frequency lines across the visible range in-
cluding 488 nm (Ar-ion laser), 532 nm (Nd:YAG laser), 589.3 nm (sodium D-line),
and 632.8 nm (He–Ne laser). In the calculations, the permittivity of silver is taken
from well accepted experimental data [49], and the dielectric constant of silica is
from the tabulated data in Ref. [50]. Note that the same design and transformation
work for all similar cylindrical cloaks with the same shape factor a=b. When the
approximate quadratic function is fixed for a given wavelength, the filling fraction
function f .r/ is determined by the following equation:

f .r/ D
Re ."d / �



g�1.r/

ı
r
�2

Re ."d � "m/
(9.28)

As an example, in Fig. 9.15 we show the anisotropic material properties of a non-
magnetic cloak corresponding to the � D 532 nm case in Table 9.1. Our calculation
shows that with the approximate quadratic transformation, the effective parameters
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Table 9.1 Approximate quadratic transformations and materials for constructing a
cloak with alternating slices
� "1 "2 p � .b2=a/ a=b

488 nm "Ag D �8:15C 0:11i "SiO2 D 2:14 0.0662 0.389
532 nm "Ag D �10:6C 0:14i "SiO2 D 2:13 0.0517 0.370
589.3 nm "Ag D �14:2C 0:19i "SiO2 D 2:13 0.0397 0.354
632.8 nm "Ag D �17:1C 0:24i "SiO2 D 2:12 0.0333 0.347
11:3�m "SiC D �7:1C 0:40i "BaF2 D 1:93 0.0869 0.356
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Fig. 9.15 Anisotropic material parameters "r and "� of a non-magnetic cloak made of silver-silica
alternating slices corresponding to the third row .� D 532 nm/ in Table 9.1. The solid lines repre-
sent the exact parameters determined by (9.20), and the diamond markers show the parameters on
the Wiener’s bounds given by (9.25). Reprinted with permission from [43]. Copyright (2008) OSA

"r and "� obtained with the Wiener bounds in (9.25) fit with the exact parameters re-
quired for this transformation by (9.20) remarkably well, with the average deviation
of less than 0.5%.

Compared to the previously designed cloak in Ref. [40] which requires thin metal
needles embedded in a dielectric host following a pre-designed distribution, the fab-
rication feasibility of the newly proposed design is obvious because such vertical
wall-like structures are compatible with mature fabrication techniques like direct
deposition and direct etching.

In the next part of the section, we focus on constructing a cylindrical cloak for
TE mode working within the mid-infrared frequency range with a gradient in the
magnetic permeability, as requested by (9.21). An electromagnetic cloak operating
at mid-infrared is of great military and civilian interests, because this wavelength
range corresponds to the thermal radiation band from human bodies. For this pur-
pose there could be several different approaches which all involve silicon carbide,
an important media for metamaterial research in mid-infrared. SiC is a polaritonic
material with its phonon resonance band falling into the spectral range centered at
around 12:5�m .800 cm�1/, which introduces a sharp Lorentz behavior in its elec-
tric permittivity. The dielectric function of SiC at mid-infrared is well described with
the model in (5.4). On the high-frequency side, the dielectric function is strongly
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negative, which makes its optical response similar to that of metals and has been
utilized in applications like a mid-infrared superlens [51, 52]. At frequencies lower
than the resonance frequency, the permittivity can be strongly positive, which makes
SiC an attractive candidate for producing high-permittivity Mie resonators at the
mid-infrared wavelength range [53].

SiC structures can be used to build mid-infrared cloaking devices in different
styles. For example, we may consider using the needle-based structure detailed in
Ref. [40] for the TM mode, where needles made of a low-loss negative-" polaritonic
material like SiC or TiO2 are embedded in an IR transparent dielectric like ZnS.
The non-magnetic cloak using alternating slices structure as we have shown in this
section provides a more realistic design. With SiC as the negative-" material and
BaF2 as the positive-" slices with material properties given in Ref. [50], we can find
the appropriate transformation function and shape factor that fulfills the material
property requirements at a preset wavelength. The result for � D 11:3�m (CO2
laser range) is shown in the last row of Table 9.1.

Now we consider a cylindrical cloak for the TE mode with the required material
properties given in (9.21), which indicates that a gradient in the magnetic perme-
ability along the radial direction is necessary. To be more specific, �r varies from
0 at the inner boundary .r D a/ to Œ@g.r 0/=@r 0�2 at the outer surface .r D b/,
while the required "z changes accordingly following the function Œ@g.r 0/=@r 0��2.
The magnetic requirement may be accomplished using metal elements like split-ring
resonators, coupled nanostrips or nanowires. However, such plasmonic structures in-
evitably exhibit a high loss, which is detrimental to the cloaking performance. A SiC
based structure provides an all-dielectric route to a magnetic cloak for the TE mode
due to the Mie resonance in a subwavelength SiC unit.

Meta-magnetic responses and a negative index of refraction in structures made
from high-permittivity materials have been studied extensively in recently years
[53–57]. Magnetic resonance in a rod-shaped high-permittivity particle can be ex-
cited by different polarizations of the external field with respect to the rod axis.
When a strong magnetic resonance and an effective permeability substantially dis-
tinct from 1 are desired, the rod should to be aligned parallel to the electric field to
assure the maximum possible interaction between the rod and the external field. In
our design of a cylindrical cloak for the TE mode, the desired radial permeability
has values of less than (but close to) 1, and resonance behavior in the effective per-
mittivity "z should be avoided for a minimal loss. Therefore, with the electrical field
polarized along the z axis of the cylindrical system, we arrange the SiC rods along
the r axis and form an array in the � � z plane. The proposed structure is depicted
in Fig. 9.16, where arrays of SiC wires along the radial direction are placed between
the two surfaces of the cylindrical cloak.

The effective permeability of the system can be estimated as follows using the
approach in Ref. [54]:

�rD
2

kL21

L1J1.kL1/�tJ1.kt/Ca0tH
.1/
1 .kt/�a0L1H

.1/
1 .kL1/Cc0tJ1.nkt/=n

J0.kL2=2/ � a0H
.1/
0 .kL2=2/

(9.29)
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Fig. 9.16 Schematic of a
cylindrical non-magnetic
cloak with high-order
transformations for TE
polarization. Reprinted with
permission from [43].
Copyright (2008) OSA
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Fig. 9.17 The required and the calculated effective parameters �r and "z for a cylindrical TE
cloak with SiC wire arrays for � D 13:5�m. Reprinted with permission from [43]. Copyright
(2008) OSA

where h and ' represent the periodicities along the z and � directions respectively,
t denotes the radius of each wire, n D

p
"SiC is the refractive index, k D 2�=�0

denotes the wave vector, L1 D
p
hr'=� and L2 D .hC r'/=2 represent the two

effective unit sizes based on area and perimeter estimations respectively.
a0 D ŒnJ0.nkt/J1.kt/ � J0.kt/J1.nkt/�

. h
nJ0.nkt/H

.1/
1 .kt/�H

.1/
0 .kt/J1

.nkt/
i

and c0 D
h
J0.kt/ � a0H

.1/
0 .kt/

i.
J0.nkt/ are the scattering coefficients,

and the Bessel functions in the equation follow the standard notations. The permit-
tivity along the z direction is well approximated using Maxwell–Garnett method
[54]. In the design we choose the appropriate transformation, geometry and op-
erational wavelength such that the calculated effective parameters �r and "z follow
what is required by (9.21) with tolerable deviations. In Fig. 9.17 we plot the required
and the calculated �r and "z for a TE cloak at � D 13:5�m. The parameters used
for this calculation are a D 15�m; a=b D 0:35; t D 1:2�m; h D 2:8�m; ' D
10:6ı, and the p coefficient in the quadratic transformation is 0:5a=b2. We observe
very good agreement between the required values and the calculated ones based
on analytical formulae, and the imaginary part in the effective permeability is less
than 0.06. This computation verifies the feasibility of the proposed cloaking system
based on SiC wire arrays for the TE polarization.
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To summarize this section, using high-order transformations we proposed two
novel designs of optical cloaks for TM and TE polarizations. This critical develop-
ment builds upon our previous work on the design of a non-magnetic cloak and the
suggestion of using high-order transformations to produce more flexible cloaking
systems. The realistic structures and models discussed in the section may lead to a
practical path towards realizing actual cloaking devices at optical wavelengths.

9.7 Alternative Approaches for Optical Cloaking

In all of the preceding sections of this chapter we focused on the “standard” method
for optical cloaking, where a volume with a closed surface in free space is con-
verted into a hollow shell sharing the same outer boundary. In this method, the
resultant constitutive materials for such cloaking devices are necessarily anisotropic
and dispersive. In this section we present a few alternative approaches for cloaking
at optical frequencies with appealing features such as broadband operation, isotropy
and low loss.

The first alternative scheme to be discussed is the “invisibility carpet” initiated
by Li and Pendry [58]. In contrast to the cylindrical or spherical cloaks where the
cloaked region is compressed into a non-scattering line or point, the transformation
for carpet cloaking is designed such that a curved, conducting surface is converted
into a flat surface, eliminating the distortion of light from the deformed mirror as
well as anything underneath it. This scenario is illustrated in Fig. 9.18, where the
cloak is rectangular in shape with a portion of its bottom curved inwards to produce
a hidden region. Therefore, the cloaking device hides the curved carpet along with
any object hiding under it by giving the region the appearance of a flat, reflecting
surface. The spatial transformation occurs between the bottom-curved rectangular
region in the actual system and a regular rectangle in a virtual space, as depicted by
the grey areas in Fig. 9.18.

Although the proposed invisibility carpet does not seem to be an ideal cloaking
device as it fails to offer a “see-through” effect against the background of a free
space, it does possess distinct advantages over the standard cloaking systems dis-
cussed in the previous sections. Unlike the cylindrical or spherical cloaks where the
required permittivity and permeability distribution necessarily exhibits singular val-
ues at their inner boundaries, the constitutive parameters for an invisibility carpet
are much more modest, avoiding all extreme values. Furthermore, since the trans-
formation function for the desired spatial conversion is not unique, the coordinate
transformation can be purposely tailored in such a way that the anisotropy of the
cloak material is substantially suppressed, with a residual anisotropy factor (defined
as the ratio between the effective refractive index along orthogonal directions) of
usually no more than a few percent away from unity. This is achieved by the min-
imization of the Modified-Liao functional with slipping boundary conditions [59],
as detailed in Ref. [58]. The cloaking carpet with quasi-isotropic parameters cor-
responds to the case of a spatial transformation with conformal mapping, meaning
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a

b

c

Fig. 9.18 Schematic of the invisibility carpet. (a) Light scattered from a bump on a planar reflect-
ing surface. (b) Light scattered from the deformed mirror shielded by an invisibility carpet. Note
that all rays outside the rectangular box are identical to those of a plane wave incident upon a pla-
nar reflector. (c) Ray tracing of a plane wave directly impinging on a perfect reflecting plane. The
red and blue rays represent the incident and scattered light rays, respectively. The solid black line
indicates conducting planes, and the gray color denotes regions where coordinate transformation
is applied

that pairs of grid lines intersecting at 90ı are preserved during the transformation.
One example of the material parameters for a quasi-isotropic rectangular carpet is il-
lustrated in Fig. 9.19 [58]. This surface plot shows the magnitude of the normalized
effective permittivity "eff ="ref in the device, with "ref representing the background
permittivity ("ref D 1 if the device is placed in free space against a conductive
plane). The permeability is unity throughout the region, so the effective index of
refraction is simply the square root of "eff . The anisotropy factor is about 1.04 – a
value that can be neglected without inducing sizable deviations, and the magnitude
of "eff ranges between 0.68 and 1.96.

The material properties of the invisibility carpet in Fig. 9.19 implies several ap-
pealing features for experimental realizations of such a device. First of all, the
quasi-conformal mapping gives rise to square-shaped transformed cells, which re-
sult in extremely low anisotropy in the cloaking material. By neglecting the trivial
anisotropy in the constitutive materials in the design, we can avoid the use of
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Fig. 9.19 Two-dimensional spatial distribution of the normalized effective permittivity in a carpet-
cloaking device. Quasi-conformal mapping is used, as indicated by the gray-colored grid lines.
The solid black lines represent perfect conducting planes. Reprinted with permission from [58].
Copyright (2008) by the American Physical Society

particles with complicated shapes. Secondly, the range of the required dielectric
function is very modest and without singularities. Moreover, if the device is oper-
ated against a dielectric background with "ref > 1, the required effective permittivity
will rise accordingly. For example, the range of "eff becomes 1.2–3.5 if the invisible
carpet in the previous example is immersed in water .nref D 1:33/. Such a span of
effective permittivity is within the reach of usual dielectric materials. Consequently,
an all-dielectric invisibility carpet brings hope for two of the most desirable features
in a general cloaking system – low-loss and broadband operation.

The experimental realization of the invisibility carpet, also referred to as a
ground-plane cloak, was first reported by a Duke University research group at
microwave frequencies [27]. In this demonstration, nonresonant metamaterial
elements with controlled, subwavelength geometries are used to construct the
rectangular-shaped carpet, and the measured field mapping shows that the distortion
of waves from a perturbation on a conducting plane is effectively mitigated with
the help of the ground-plane cloak. The broadband operational range of the device
was also confirmed in the experiment. In principle, the same design is effectively
scalable towards operation at optical frequencies, although the delicate manipula-
tion of metal-dielectric meta-atoms at deeply subwavelength scales might be too
challenging when it comes to the optical range.

Soon after the realization of the microwave ground-plane cloak, optical carpet
cloaking was demonstrated simultaneously by two independent groups [60, 61]. In
both devices, a refractive index profile similar to that in Fig. 9.19 is achieved by
“tuning” the filling fraction of silicon in a two-dimensional film. This can be real-
ized in a silicon slab either by drilling holes via focused ion beam milling [60], or
by plasma etching with a patterned mask [61]. Note that the sizes and separations
of the voids or pillars in the silicon film must be substantially smaller than the op-
erational wavelength of the devices, so that the effective-medium approach works.
The densities of nanofabricated holes or pillars are carefully engineered in order
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Fig. 9.20 An all-dielectric invisibility carpet working at the near-infrared wavelength range. (a)
The design of the silicon-based device with different regions marked; (b) SEM image of the fabri-
cated carpet cloak. The inset is a zoomed view of the central region of the device. Reprinted from
[60] by permission from Macmillan Publishers Ltd: Nat Mater, copyright (2009). Courtesy of X.
Zhang

to yield the desired two-dimensional profile of the effective index of refraction. As
an example, the design and SEM image of the carpet cloak reported by the Berke-
ley group are shown in Fig. 9.20 [60]. In both experiments, the waveguide mode
reflected from the deformed mirror is shown to be largely collimated, resembling
that of an incoming beam that is directly incident upon a flat surface without any
deformation. These carpet cloaking devices are all-dielectric without any resonant
or strongly dispersive elements involved, so they are nearly lossless and broadband.
These features are also confirmed in the two experiments. The two silicon-based
invisibility carpets work around a near-infrared wavelength of 1:6�m, beyond sil-
icon’s interband absorption wavelength. Moving the operational wavelength to the
visible range may require other constitutive materials, and more demanding fabri-
cation techniques are probably necessary as the wavelength itself shrinks further to
the submicron regime.

There is yet another scheme to achieve low-loss, broadband optical cloaking
with isotropic constitutive materials. Smolyaninov and coauthors suggest that the
anisotropic material parameters required in transformation-based devices can be em-
ulated by specially designed, tapered waveguides [62]. When this general principle
is applied to optical cloaking, broadband electromagnetic cloaking can be demon-
strated in a nice and simple way. The experimental realization in Ref. [62] utilizes
a configuration that is identical to the classic geometry of the Newton rings obser-
vation, and the tapered waveguide is formed within the gap between a gold-coated
convex lens and a planar metal surface. A schematic view of the experimental setup
is shown in Fig. 9.21. In this structure, there exists a cutoff radius on the order of
tens of microns for the allowed waveguide modes, and no photon launched into
the waveguide can reach an area within the cutoff radius from the point of contact
between the two gold-coated surfaces. More interestingly, light beams directly inci-
dent at the cutoff region generate no shadow – a characteristic feature of invisibility
cloaks. The cloaked area spans a region about 100 times larger than the operational
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Fig. 9.21 A schematic view of the experimental realization of optical cloaking by tapered waveg-
uides. One-quarter of the gold-coated convex lens is removed in the figure to show the interior
details

wavelength. The experiment in Ref. [62] is conducted using visible light of different
wavelengths, and the direct “see-through” effect is obtained against the background
of free space. Such features are not readily available in carpet cloaking devices.
Moreover, it’s interesting to note that the geometry in the cloaking experiment us-
ing a tapered waveguide in Ref. [62] is similar to another broadband invisibility
approach proposed in Ref. [63], which is based on transformation optics of a curved,
non-Euclidean space such as the surface of a virtual sphere.

Cloaking at optical frequencies can also be demonstrated in a purely two-
dimensional surface with surface plasmon polaritons [64]. In this work, the dis-
tribution of the radial component of permittivity in a nonmagnetic cylindrical cloak
as indicated by (9.12) is approximated by tuning the effective refractive index as
perceived by plasmon waves. The scenario is analogous to the hyperlens discussed
in Sect. 8.5, where the anisotropic distribution of the effective parameters in a cylin-
drical coordinate system can be fulfilled for either light waves or surface plasmons.
Some basic characteristics of an electromagnetic cloak, including reduced visibil-
ity and the flow of energy around the cloaked region, were partially verified in the
experimented in Ref. [64].

9.8 Concluding Remarks on Transformation Optics

As discussed in this chapter, one of the most exciting applications of transformation
optics is an electromagnetic cloak that can bend light around itself, similar to the
flow of water around a stone, making invisible both the cloak and an object hidden
inside. By excluding light from a certain area of space and bending the light around
the space, one can make an object in that area invisible (see Fig. 9.22a).
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Fig. 9.22 Examples of transformation-based devices. (a) Optical cloaking; (b) light concentrator;
(c) impedance-matched hyperlens; (d) planar hyperlens. (b) and (d) reprinted with permission from
[22]. Copyright (2008) OSA. (c) Reprinted with permission from [65]. Copyright (2007) OSA

However, as mentioned in the beginning of this chapter, practical applications of
transformation optics go far beyond just cloaking. Theory allows the control of light
in an extreme and ultimate manner by providing a general recipe for obtaining com-
plex spatial distributions of anisotropic permittivity and permeability. Using these
distributions, a “curvilinear” optical space is molded, thereby creating the channel
for the desired flow of light. The core challenge here is to approximate the required
ideal optical space by manufacturable nanostructured metamaterials, with minimal
loss of the required functionality, and thereby move from the theoretical description
to actual prototypes.

One can, for example, not only exclude light from some region, as in a cloak,
but also do the opposite and concentrate light within a certain area of the space. In
such a concentrator, light could be collected from all directions onto an arbitrarily
small spot, leading to extremely high intensities [22] (see Fig. 9.22b). The light
concentrator may enable applications such as omni-directional solar light collection
and field-enhanced sensing.
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Transformation optics can also enable an impedance-matched hyperlens (see
Fig. 9.22c) which does not reflect and therefore represents a highly efficient imag-
ing device with sub-wavelength resolution [65]. Moreover, transformation optics
can make possible a planar hyperlens [22] (see Fig. 9.22d), which could be one
of most exciting and promising metamaterials application to date (see also Chap. 8).
Such a planar magnifying hyperlens could revolutionize the field of optical imaging.

Transformation optics enabled by metamaterials transforms the science of light
and opens up many exciting applications that often go beyond what we could imag-
ine until very recently. The field of transformation optics, which is enabled by
metamaterials, has inspired a fresh look to be taken at the very foundations of optics
[13]. Analogous to general relativity, where time and space are curved, transforma-
tion optics shows that the space for light can also be bent in an almost arbitrary way.
The ability to design and engineer optical space provides the possibility of con-
trolling the flow of light with nanometer spatial precision. Thus, general relativity
may find practical use in a number of novel optical devices based on transforma-
tion optics, guiding how, using metamaterials, the space for light can be curved in a
predesigned and well-controlled way.

Generally, light propagates so that the optical path, which is given by the prod-
uct of the physical length and the refractive index, is minimized (has an extremum,
strictly speaking). Thus, by creating a complex distribution for the refractive index
n, the geometrical path that minimizes the optical path can be curved in an almost
arbitrarily complex way. One might think that such molding of a light path is pos-
sible only in the limit of geometrical optics, which implies a scale much larger than
the wavelength. However, we saw in this chapter that provided the basic optical pa-
rameters of materials, " and �, are transformed appropriately, and because of the
generic invariance of Maxwell’s equations, transformation optics makes it possible
to mold and control light on all scales, from macroscopic sizes down to the deeply
subwavelength scale. Thus by creating a desired distribution of " and �, and thus a
distribution of refractive index n, one can “curve” the space for light in a nearly ar-
bitrary way, making it possible to propagate light not only in the backward direction
(when n is negative) but also along nearly any curved line. As a result, a myriad of
fascinating devices are achievable using transformation optics and metamaterials.
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